
Oleg Kiselyov
Andy King (Eds.)

 123

LN
CS

 9
61

3

13th International Symposium, FLOPS 2016
Kochi, Japan, March 4–6, 2016
Proceedings

Functional and
Logic Programming

Lecture Notes in Computer Science 9613

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Oleg Kiselyov • Andy King (Eds.)

Functional and
Logic Programming
13th International Symposium, FLOPS 2016
Kochi, Japan, March 4–6, 2016
Proceedings

123

Editors
Oleg Kiselyov
Tohoku University
Sendai
Japan

Andy King
School of Computing
University of Kent
Canterbury
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-29603-6 ISBN 978-3-319-29604-3 (eBook)
DOI 10.1007/978-3-319-29604-3

Library of Congress Control Number: 2015960824

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume contains the proceedings of the 13th International Symposium on Func-
tional and Logic Programming – FLOPS 2016 – held in Kochi, Japan, March 4–6,
2016.

FLOPS brings together practitioners, researchers, and implementers of declarative
programming, to discuss mutually interesting results and common problems: theoret-
ical advances, their implementations in language systems and tools, and applications
of these systems in practice. The scope includes all aspects of the design, semantics,
theory, applications, implementations, and teaching of declarative programming.
FLOPS specifically aims to promote cross-fertilization between theory and practice and
among different styles of declarative programming.

FLOPS 2016 put a particular stress on the connections between theory and practice.
This stress was reflected in the composition of the Program Committee, in the call for
submissions and, ultimately, in the program of the symposium.

The call for papers attracted 36 submissions, of which the Program Committee, after
careful and thorough discussions, accepted 14. The accepted papers cover not just
functional and logic programming but also program transformation and re-writing, and
extracting programs from proofs of their correctness. The invited speakers, Kazunori
Ueda and Atze Dijkstra, reflected on the lessons of two projects (one of which was a
national, Japanese project), with declarative programming at their center. In addition to
the invited talks and contributed papers, the symposium program included, for the first
time, tutorials and a poster session. The tutorials on “Attribute Grammars”, “Agda”,
and “Programming in Picat” were presented, respectively, by Atze Dijkstra, Andreas
Abel, and Neng-Fa Zhou. These tutorials were designed to complement the invited talk
with in-depth expositions.

This year we initiated an award for the best paper submitted to the symposium. We
were delighted to announce that the award for FLOPS 2016 went to Arthur Blot,
Pierre-Evariste Dagand, and Julia Lawall for their article entitled “From Sets to Bits
in Coq.”

Putting together FLOPS 2016 has been a team effort. First of all, we would like to
thank the authors of the submitted papers and the presenters of the invited talks and the
tutorials. Without the Program Committee (PC) we would have had no program either,
and we are very grateful to the PC members for their hard work. Supporting the PC
were a number of additional reviewers, and we and the PC would like to acknowledge
their contribution. The reviews were unusually detailed and helpful. An author of one
rejected paper wrote to us, not to complain but to praise the reviews of his submission.
We are greatly indebted to the general chair, Yukiyoshi Kameyama for his advice,
encouragement, and support throughout the process and taking on many administrative
chores. The local chair, Kiminori Matsuzaki, and the local Organizing Committee were
invaluable in setting up the conference and making sure everything ran smoothly.

Finally, we would like to thank our sponsor, the Japan Society for Software Science
and Technology (JSSST) SIGPPL, for their continuing support. We acknowledge the
cooperation of ACM SIGPLAN, the Asian Association for Foundation of Software
(AAFS), and the Association for Logic Programming (ALP).

January 2016 Oleg Kiselyov
Andy King

VI Preface

Organization

Program Chairs

Andy King University of Kent, UK
Oleg Kiselyov Tohoku University, Japan

General Chair

Yukiyoshi Kameyama University of Tsukuba, Japan

Local Chair

Kiminori Matsuzaki Kochi University of Technology, Japan

Program Committee

Andreas Abel Gothenburg University, Sweden
Lindsay Errington USA
Makoto Hamana Gunma University, Japan
Michael Hanus CAU Kiel, Germany
Jacob Howe City University London, UK
Makoto Kanazawa National Institute of Informatics, Japan
Hsiang-Shang Ko National Institute of Informatics, Japan
Julia Lawall Inria-Whisper, France
Andres Löh Well-Typed LLP, UK
Anil Madhavapeddy Cambridge University, UK
Jeff Polakow USA
Marc Pouzet École normale supérieure, France
Vítor Santos Costa Universidade do Porto, Portugal
Tom Schrijvers KU Leuven, Belgium
Zoltan Somogyi Australia
Alwen Tiu Nanyang Technological University, Singapore
Sam Tobin-Hochstadt Indiana University, USA
Hongwei Xi Boston University, USA
Neng-Fa Zhou CUNY Brooklyn College and Graduate Center, USA

External Reviewers

Guillaume Baudart
Timothy Bourke
Benoit Desouter
Sandra Dylus
Adrien Guatto
Geoff Hulette
Kazuhiro Inaba
Georgios Karachalias

Anthony Widjaja Lin
Lunjin Lu
Kazutaka Matsuda
Shin-Cheng Mu
Björn Peemöller
Lutz Strassburger
Jan Rasmus Tikovsky
Paolo Torrini

VIII Organization

UHC: Coping with Compiler Complexity
(Keynote Abstract)

Atze Dijkstra

Utrecht University, Department of Information and Computing Sciences
atze@uu.nl

Abstract. Programming language design may be difficult, but by now doing an
actual design of a language feature is an often repeated and relatively well
understood process involving known ingredients: construct a minimal language
incorporating the desired feature, define (operational) semantics, a declarative
type system, an algorithmic type system, and a prototype implementation.
Obviously, this is a gross simplification ignoring the mathematic craftsmanship
involved, and not always all of the above ingredients are being dealt with. Still,
this is the raw material and mechanics of design found in many conference
proceedings on programming languages and their design.

In contrast however, how to implement a designed programming language
feature and incorporating it into an existing programming language seems to be
less well exposed. A sketch of an implementation and its related issues often is
given but of the actual code and its details often at best is summarized by a
footnote referring to the (repository of the) implementation. Of course publi-
cations exist which specifically address an implementation itself [8] but the size
limited nature of a publication forces such descriptions of implementations to
narrow down to a limited set of language features and often simplification of the
implementation itself is required to obtain clarity and compactness. With the risk
of oversimplification we conjecture that design and implementation of indi-
vidual programming language features is well understood but it is less clear how
the implementation of the combination of such individual features can be done
in a systematical and predictable way, or, in other words: how do we deal with
the complexity arising out of programming language feature implementation
both in isolation and combination (as it occurs in a compiler)?

Here we will deal with this issue of compiler complexity by looking at the
approaches taken for UHC (Utrecht Haskell Compiler) [4, 3, 2]. UHC is a
Haskell compiler intended to be experimented with, both in terms of the use of
tools for construction and in terms of being a platform for (relatively) easy
experimentation with language features and their implementation. In particular,
within UHC two more general sources of complexity are being dealt with:

1. Specification of semantics specifically for implementation. The complexity
lies in how to algorithmically specify computations over an AST (Abstract
Syntax Tree).

2. Combination of implementation of individual programming language fea-
tures into a full compiler. The complexity lies in the interaction between
language features.

Over the lifespan of the UHC project the following approaches and solu-
tions have been explored:

– (addressing complexity source 1) The use of attribute grammars for the
specification of programming language feature implementations.
The UUAG [9] is mostly used for the implementation of UHC. The AG
formalism is further explored into various directions, for example Ruler
(also addressing complexity source 2) [5] specifically targets type system
specification, Viera [10] embeds the tools for description of programming
language implementation (i.e. parser, attribute grammar) as a DSL into
Haskell (GHC [7]).

– (addressing complexity source 2) Partitioning the full implementation
description into smaller fragments as belonging to a particular language
feature; these are then combined together when constructing a compiler
using Shuffle [1].

– (addressing complexity source 1) The use of CHR (Constraint Handling
Rules) [6] for type related computations involving backtracking.

The above approaches vary in their success. We will discuss our experience
with these approaches, in particular what more formal counterparts can be
implemented with our tools, small examples of this looks, and what (in retro-
spect) did or did not work.

References

1. Dijkstra, A.: Shuffle. http://foswiki.cs.uu.nl/foswiki/Ehc/Shuffle
2. Dijkstra, A.: Stepping through Haskell. Ph.D. thesis, Utrecht University, Department of

Information and Computing Sciences (2005)
3. Dijkstra, A., Fokker, J., Swierstra, S.D.: The architecture of the Utrecht Haskell compiler. In:

Haskell Symposium 2009. ACM Request Permissions, September 2009
4. Dijkstra, A., Fokker, J., Swierstra, S.D.: UHC Utrecht Haskell Compiler. Technical report

(2009)
5. Dijkstra, A., Swierstra, S.D.: Ruler: programming type rules. In: FLOPS 2006. Proceedings

of the 8th International Conference on Functional and Logic Programming, pp. 30–46.
Springer-Verlag, April 2006

6. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)
7. GHC Team: The Glasgow Haskell Compiler. https://www.haskell.org/ghc/
8. Jones, M.P.: Typing Haskell in Haskell. In: Haskell Workshop. http://www.cse.ogi.edu/

~mpj/thih/thih-sep1-1999/ (1999)
9. Swierstra, S.D., Middelkoop, A., Bransen, J.: UUAG (Utrecht University Attribute Gram-

mar) system. http://foswiki.cs.uu.nl/foswiki/HUT/AttributeGrammarSystem
10. Viera, M.: First class syntax, semantics, and their composition. Ph.D. thesis, Universiteit

Utrecht, Department of Information and Computing Sciences, March 2013

X A. Dijkstra

http://foswiki.cs.uu.nl/foswiki/Ehc/Shuffle
https://www.haskell.org/ghc/
http://www.cse.ogi.edu
http://www.cse.ogi.edu
http://foswiki.cs.uu.nl/foswiki/HUT/AttributeGrammarSystem

Contents

Logic/Constraint Programming and Concurrency: The Hard-Won Lessons
of the Fifth Generation Computer Project . 1

Kazunori Ueda

From Sets to Bits in Coq . 12
Arthur Blot, Pierre-Évariste Dagand, and Julia Lawall

From Proposition to Program: Embedding the Refinement Calculus in Coq. . . 29
Wouter Swierstra and Joao Alpuim

The Boolean Constraint Solver of SWI-Prolog (System Description) 45
Markus Triska

Probabilistic Inference by Program Transformation in Hakaru
(System Description) . 62

Praveen Narayanan, Jacques Carette, Wren Romano,
Chung-chieh Shan, and Robert Zinkov

An Interaction Net Encoding of Gödel’s System T : Declarative Pearl 80
Ian Mackie and Shinya Sato

Space-Efficient Planar Acyclicity Constraints: A Declarative Pearl 94
Taus Brock-Nannestad

Executable Relational Specifications of Polymorphic Type Systems Using
Prolog . 109

Ki Yung Ahn and Andrea Vezzosi

Proof Relevant Corecursive Resolution . 126
Peng Fu, Ekaterina Komendantskaya, Tom Schrijvers,
and Andrew Pond

A Coq Library for Internal Verification of Running-Times 144
Jay McCarthy, Burke Fetscher, Max New, Daniel Feltey,
and Robert Bruce Findler

A Transformational Approach to Parametric Accumulated-Cost Static
Profiling . 163

R. Haemmerlé, P. López-García, U. Liqat, M. Klemen, J.P. Gallagher,
and M.V. Hermenegildo

http://dx.doi.org/10.1007/978-3-319-29604-3_1
http://dx.doi.org/10.1007/978-3-319-29604-3_1
http://dx.doi.org/10.1007/978-3-319-29604-3_2
http://dx.doi.org/10.1007/978-3-319-29604-3_3
http://dx.doi.org/10.1007/978-3-319-29604-3_4
http://dx.doi.org/10.1007/978-3-319-29604-3_5
http://dx.doi.org/10.1007/978-3-319-29604-3_5
http://dx.doi.org/10.1007/978-3-319-29604-3_6
http://dx.doi.org/10.1007/978-3-319-29604-3_6
http://dx.doi.org/10.1007/978-3-319-29604-3_7
http://dx.doi.org/10.1007/978-3-319-29604-3_8
http://dx.doi.org/10.1007/978-3-319-29604-3_8
http://dx.doi.org/10.1007/978-3-319-29604-3_9
http://dx.doi.org/10.1007/978-3-319-29604-3_10
http://dx.doi.org/10.1007/978-3-319-29604-3_11
http://dx.doi.org/10.1007/978-3-319-29604-3_11

Polymorphic Types in Erlang Function Specifications 181
Francisco J. López-Fraguas, Manuel Montenegro,
and Juan Rodríguez-Hortalá

Declarative Foreign Function Binding Through Generic Programming 198
Jeremy Yallop, David Sheets, and Anil Madhavapeddy

Incremental Computing with Abstract Data Structures 215
Akimasa Morihata

Declarative Programming with Algebra . 232
Andre van Delft and Anatoliy Kmetyuk

Author Index . 253

XII Contents

http://dx.doi.org/10.1007/978-3-319-29604-3_12
http://dx.doi.org/10.1007/978-3-319-29604-3_13
http://dx.doi.org/10.1007/978-3-319-29604-3_14
http://dx.doi.org/10.1007/978-3-319-29604-3_15

Logic/Constraint Programming
and Concurrency: The Hard-Won Lessons
of the Fifth Generation Computer Project

Kazunori Ueda(B)

Department of Computer Science and Engineering, Waseda University,
3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

ueda@ueda.info.waseda.ac.jp

1 Introduction

The technical goal of the Fifth Generation Computer Systems (FGCS) project
(1982–1993) was to develop Parallel Inference technologies, namely systematized
technologies for realizing knowledge information processing on top of parallel
computer architecture [8].

The design space of methodologies for bridging parallel computers and knowl-
edge information processing is immense. For this reason, it was considered nec-
essary to set up a working hypothesis to conduct research in a coherent manner,
and the Logic Programming paradigm was adopted as the working hypothesis.
The FGCS project decided to develop a Kernel Language1 based on Logic Pro-
gramming as the core of systematized technologies for bridging the architecture
layer and the application layer.

When the FGCS project started, the language specification and the imple-
mentation techniques of Prolog was reasonably well established already, and
the Warren Abstract Machine (WAM), which became the de-facto standard of
the implementation technique of Prolog, was under design. However, the under-
standing of the leading people of the FGCS project was that realizing a system
of technologies for Parallel Inference necessarily meant to develop a new form
of general-purpose computing technologies that encompass (but are not limited
to) knowledge information processing. In particular, being able to describe a full
operating system for the Parallel Inference Machine (PIM) to be developed in the
project and to express and execute various parallel algorithms was considered to
be a fundamental requirement on the Kernel Language.

Consequently, the research goal of the Kernel Language was set to designing
a concurrent and parallel programming language under the working hypoth-
esis of Logic Programming, and soon after I joined the project in 1983, the
Kernel Language Task Group started the overall language design with inter-
national collaboration. After many discussions on the requirement specification
1 The FGCS project designed and implemented two Kernel Languages, KL0 and KL1,
of which this article focuses on KL1 for the Parallel Inference Machine. KL0 was a
Kernel Language for the Sequential Inference Machine developed for quick startup
of the project.

c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 1–11, 2016.
DOI: 10.1007/978-3-319-29604-3 1

2 K. Ueda

of the language, we became convinced by the end of 1983 that Concurrent Logic
Programming—more specifically, Concurrent Prolog introduced to us by Ehud
Shapiro [15]—was basically the right choice as the basis of the Kernel (as opposed
to user-level) Language of the project for its simplicity and expressive power I
will describe later.

Both Logic Programming (and Constraint Programming as its relative) and
concurrent programming (and concurrency theory as its foundation) build upon
basic concepts quite different from mainstream programming models such as
imperative and functional programming, which requests researchers and techni-
cians to switch their mindset to work on them. Furthermore, Concurrent Logic
Programming (and Concurrent Constraint Programming as its generalization)
that emerged from the interaction of these two paradigms requests the switching
of mindset not only to users and researchers of mainstream programming lan-
guages but also to researchers of Logic Programming and concurrency. Appreci-
ating its essence and significance was not straightforward in spite of its technical
simplicity. This is still true thirty years later, and makes it rather difficult for
researchers of neighboring fields to be aware of the paradigm.

Nevertheless, Concurrent Logic Programming yielded various spin-off
technologies in its thirty years of history. In particular, Concurrent Constraint
Programming (CCP) formulated from Concurrent Logic Programming and
Constraint Logic Programming attracted great attention as a theoretical model
of concurrency rather than a tool for programming (hence we refer to CCP as
Constraint-Based Concurrency).

The aim of this article is to convey the essence of Concurrent Logic Program-
ming and Constraint-Based Concurrency and to describe how their research and
development evolved after their conception.

I published several articles related to the present topic in the past [8,19–21].
The exciting design process of the Kernel Language is detailed in [8], while the
development of the paradigm until mid 1990’s and my own view and vision of
the paradigm are detailed in [19] and summarized in [20]. This article is a revised
version of [21]. The references are not exhaustive; more extensive bibliography
can be found in [8,19] and other technical papers.

2 Emergence and Contribution of Concurrent
Logic Programming

In the early 1980’s, concurrent execution of logic programs was becoming an
area of active research. It started with the introduction of coroutines into Pro-
log, but Relational Language (1981) was the first to feature don’t-care nonde-
terminism (a.k.a. choice nondeterminism, as found in concurrent programming
and concurrency theory) in place of don’t-know nondeterminism, i.e., nondeter-
minism in the sense of solution search (as found in Prolog and nondeterministic
automata). The time was the eve of the FGCS project. Started with Relational
Language, researchers vied for Concurrent Logic Programming languages with
clear semantics and high expressive power.

Logic/Constraint Programming and Concurrency 3

Fig. 1. Genealogy of concurrent logic programming and constraint-based concurrency

Figure 1 shows a genealogy of Concurrent Logic Programming and Constraint-
Based Concurrency. An arrow indicates direct technical influence from one to
another. I was involved in the design of the four shaded languages. Guarded
Horn Clauses (GHC) [17], which became the model of the Fifth Generation
Kernel Language (KL1), was born from close investigation and reconstruction
of the language constructs of Concurrent Prolog and PARLOG. GHC in turn
motivated the refinement of those two languages, and its key concept was further
inherited to many other computational models and languages.

The over twenty languages and models shown in Fig. 1 differ in their goals and
functionalities but shares one concept: dataflow synchronization. A major reason
why imperative concurrent programming is difficult lies in the separation of
control dependency and data dependency. The idea of dataflow synchronization,
namely to wait until a necessary piece of data become available, resolves this
dissociation and plays an important role in describing the cooperative behavior
of concurrent processes correctly and clearly.

While message passing in other computational models also can be seen as
dataflow synchronization, message passing in Concurrent Logic Programming
enabled the passing of incomplete messages, namely messages containing unin-
stantiated variables to be used as reply boxes. Incomplete messages make intrigu-
ing use of partial information (data structure with not yet determined parts),
a key feature of logic and constraint programming. The contribution of Concur-
rent Prolog was that it demonstrated the effective use of partial information in
concurrent programming for the first time.

Incomplete messages contain logical variables (a.k.a. single-assignment
variables). Those logical variables can be used not only for a single reply to
a message but also as channels or streams for subsequent communication (a.k.a.
sessions) between concurrent processes. Thus incomplete messages realized what
the process calculi community later called channel mobility. Just like records and
pointers form dynamic data structures, processes and channels form dynamic

4 K. Ueda

process structures. Programming of dynamically evolving process structures is an
essential feature of flexible concurrent programming languages. The fact that the
FGCS project adopted a Kernel Language featuring channel mobility and started
its parallel implementation in the mid 1980’s seems to indicate the project’s fore-
sight, considering that concurrency theory for evolving process structures—the
π-calculus and its asynchronous variants—was developed after the late 1980’s.

Concurrent Logic Programming was unfortunately often regarded as “a ver-
sion of Logic Programming without search capabilities,” but its technical con-
tribution is better appraised in the light of concurrency and communication.

Models and languages that emerged in the same period (early to mid 1980’s)
include the theoretical model of Communicating Sequential Processes (CSP),
MultiLisp, the functional language Id, and the concurrent object-oriented lan-
guage ABCL. The future construct of MultiLisp, the I-structure of Id, and future-
type messages of ABCL are all closely related to logical variables in (Concurrent)
Logic Programming.

3 From Guarded Horn Clauses to Constraint-Based
Concurrency

When the basics of Concurrent Logic Programming was established in the early
1980’s, CCS (Calculus of Communicating Systems) and Structural Operational
Semantics were still quite new formalisms. To my knowledge, there was almost no
technical interaction between those formalisms and Concurrent Logic Program-
ming in the early 1980’s, which is to say that the development of Concurrent
Logic Programming was not driven by the methodology of theoretical computer
science such as formal semantics but by close investigation of language con-
structs through prototype implementation and by the study of properties and
consequences deduced from language specifications. Guarded Horn Clauses was
actually born by the study of the (informal) semantics of Concurrent Prolog, in
particular the study of its atomic (indivisible) operations in fine-grained parallel
execution. The study went in parallel with a (sequential) implementation project
of Concurrent Prolog, based on our principle that the best way to understand a
programming language was to implement it.

The design of Guarded Horn Clauses was also influenced by discussion with
the architecture group of the FGCS project led by Shunichi Uchida. When the
design of the Kernel Language started, an alternative approach was to introduce
coarse-grained parallel processing while retaining the functionalities of Prolog.
However, the architecture group maintained that the Kernel Language should
embrace as fine-grained concurrency as possible in order to promote the research
and development of novel parallel architectures. This guideline acted as one of
the key design principles of the Kernel Language, leading to the study of its
atomic actions, and contributed to the stability of the resulting language.

Another design principle the project members agreed upon after big dis-
cussions on the research direction was Occam’s Razor; that is, we asked our-
selves the following research question: What was the minimum set of language

Logic/Constraint Programming and Concurrency 5

constructs to turn Logic Programming into an expressive concurrent program-
ming language? This was influenced by the design philosophy of Concurrent
Prolog which came with only two constructs, read-only unification and guard,
and was chosen as a concrete working hypothesis towards KL1. However, through
our intensive study including three implementations of Concurrent Prolog, the
apparently simple language specification turned out to have some semantical
difficulties. This made me seek an alternative language specification, and Guard
Horn Clauses was devised in the end of 1984 as an alternative with just one
additional syntactic construct, guard, which bore the semantics of dataflow syn-
chronization. It did not take too long until GHC was accepted by the project as
a new working hypothesis towards KL1. It did not take too long until GHC was
then subsetted to Flat GHC (GHC without nested guards), the language that
finally became the basis of KL1. Thus the design process of the Kernel Language
could be phrased as “evolution by devolution” [16,19].

When we design programming languages and computational models, formal
semantics is not an ultimate goal but a step towards further study. The most
important thing for languages and models to be of value is to give deep insight
into them and find out useful properties.

Let us give one example of such study in the design process of GHC. In
sequential computing, the value of a variable at a given time point is a well-
defined notion. On the other hand, I had thought in studying the properties of
GHC that the value of a variable observed at some time point and place would
not necessarily a well-defined notion. I thought that the model of concurrency
we wanted to establish should allow the observation of the value of a variable to
take time and the value of a variable to be transmitted asynchronously to each
occurrence of the variable. At a workshop on Functional and Logic Programming
held in Trento, Italy in December 1986, I asked if there was a theory that made
clear distinction between variables and occurrences of variables. Per Martin-Löf
responded that Jean-Yves Girard of the University of Paris 7 was considering
Linear Logic.

Linear Logic, published immediately after that, did have no direct connection
to asynchrony I was thinking about, but it turned out to have close relationship
to Concurrent Logic Programming in a different sense. Around that time, choice
nondeterminism of Concurrent Logic Programming was often criticized for the
lack of logical interpretation. For instance, consider a scheduling program and a
goal which returns either precedes(a,b) or precedes(b,a) depending on what
nondeterministic choice is made. Here, both precedes(a,b) and precedes(b,a)
can be deduced from the original program and the initial goal, but their con-
junction “precedes(a,b) and precedes(b,a)” should not be derivable. This
problem of classical logic was not addressed until the mid 1980’s, but Linear
Logic enabled us to interpret it appropriately by introducing additive conjunc-
tion. It was around 1990 that a number of programming languages based on
Linear Logic were proposed, starting with the language LO (Linear Objects).

In the late 1980’s, another connection between Concurrent Logic Program-
ming and Logic emerged, which was unexpected when the former was designed.

6 K. Ueda

Slightly after the advent of Concurrent Logic Programming, Constraint Logic
Programming was proposed by generalizing the data domain of Logic Program-
ming (finite terms), and inspired by that, the synchronization and transmission
mechanisms of Concurrent Logic Programming—and GHC in particular—were
formulated as the implication relation between constraint store (containing par-
tial information about the values of variables) and the information that are
expected to be received [12]. Logical implication thus received a new light as an
account of the synchronization mechanism of Concurrent Logic Programs.

This attempt to integrate Concurrent Logic Programming and Constraint
Logic Programming lead to Concurrent Constraint Programming, namely the
theory of Constraint-Based Concurrency formulated using structural operational
semantics. I pointed out in the mid 1980’s that the essence of the computation
of GHC was interprocess communication based on the observation and gen-
eration of substitutions, namely bindings between variables and values [19],
and Constraint-Based Concurrency reformulated it in a general form termed
ask and tell without assuming particular data domains. The initial proposal of
Constraint-Based Concurrency considered both atomic tell (in which publica-
tion of constraints is done atomically upon nondeterministic choice of a clause)
and eventual tell (in which publication of constraints is done after nondetermin-
istic choice of a clause), but through heated discussions with Vijay Saraswat and
Ken Kahn, the framework converged to its eventual tell version ([8], article by
Ken Kahn) that reflects the semantics of GHC and admits my view of the (even-
tual) value of a variable described above.

Despite its concise operational semantics, the significance and the essence of
Constraint-Based Concurrency is not yet sufficiently disseminated and under-
stood properly. The basic concepts of process calculi such as CCS, CSP and
the π-calculus are not difficult to understand since they handle communication
channels explicitly. On the other hand, Constraint-Based Concurrency is often
described as “concurrent processes sharing a constraint store and communicat-
ing by ask ing and tell ing constraints to the store.” This tends one to remind
imperative concurrent programming using shared memory which may hinder
proper understanding of the framework. The reality is that a constraint store
does not only allow one to express (i.e., encode) communication channels using
lists but allows one to express private channel communication and channel mobil-
ity because variables in a constraint store can be accessed only from processes to
which those variables are explicitly distributed. However, this important secrecy
property of Constraint-Based Concurrency is not necessarily recognized even by
experts of the paradigm, suggesting the difficulty of balancing abstraction and
concretion in the research and dissemination of computing paradigms.

Both Constraint-Based Concurrency and the π-calculus were born in the end
of the 1980’s. The International Conference on Fifth Generation Computer Sys-
tems 1988 (FGCS’88), held slightly before that, had a big panel discussion on the
Theory and Practice of Concurrent Systems, attended by Ehud Shapiro, William
Dally, Geoffrey Fox, Carl Hewitt, Robin Milner, David H. D. Warren, and the
myself. Personal and technical collaboration originated by this conference lead

Logic/Constraint Programming and Concurrency 7

to the advance of research on the models of concurrency in Japan. The asyn-
chronous π-calculus by Kohei Honda (1990) was born in this background.

4 Development After the 1990’s and Diversification

Concurrent Logic Programming and Constraint-Based Concurrency yielded var-
ious new frameworks of computation that opened up new application domains.

One such framework is Hybrid Concurrent Constraint Programming [7] focus-
ing on hybrid systems in which the states of systems may cause both continuous
and discrete changes.

Variables in Concurrent Logic Programming are single-assignment; the par-
tial information of their values may be accumulated incrementally in the course
of program execution but will not change destructively. Still, it allow us to repre-
sent a history of state changes as streams of states. The use of streams is however
limited to systems with discrete time. A natural way of modeling systems with
continuous time in Constraint Programming is to let state variables be functions
over time which may cause discrete and/or continuous changes.

With this view, two paradigms were born as extensions of Constraint-Based
Concurrency: Timed Concurrent Constraint Programming (Timed CC) for han-
dling discrete changes, and Hybrid Concurrent Programming (Hybrid CC) for
handling both discrete and continuous changes. Once one regards the value of
a variable as a function over time, its evolution over time can be fully formu-
lated in the framework of Constraint Programming with the aid of differential
equations. The mainstream approach to the modeling and analysis of hybrid
systems uses automata as a central tool, and developing high-level language
constructs including those for abstraction and modularization is still an impor-
tant challenge. Hybrid Concurrent Constraint Programming was a step towards
this direction.

Another important framework originated from Concurrent Logic Program-
ming is Constraint Handling Rules (CHR) [6]. CHR has syntax similar to Con-
current Logic Programming languages but allows multisets of atomic formulae on
both the left-hand side the right-hand side of rules, making it a multiset rewrit-
ing language. CHR was designed for programming constraint solvers rather than
concurrency. It did not aim at a stand-alone programming language but at pro-
viding host languages including functional, logic, and object-oriented languages
with constraint programming capabilities. It is interesting to see that a closely
related computational model finds its place in an area very different from con-
current programming and is accumulating various applications.

One of the initial goals of Concurrent Logic Programming was to make
the development of parallel software significantly easier. Its scope is not lim-
ited to knowledge information processing, and it was actually applied to high-
performance computing. Languages born in the 1990’s in this line of research
include PCN (Program Composition Notation) [5], CC++ (Compositional C++)
[3], and HPC++ [11]. PCN allows one to parallelize sequential code in C and
Fortran using the idea of Concurrent Logic Programming, and its overall design

8 K. Ueda

deeply reflects that of Concurrent Logic Languages. The subsequent languages,
CC++ and HPC++, aimed at exploiting the nice properties of logical variables
in program parallelization while minimizing the change of the base languages.
This thread of research was driven by researchers including Ian Foster who lead
Grid Computing later on.

After the mid 1990’s, research on language constructs in the practice of
concurrent and parallel computing became less popular. Java, which smartly
appeared in this period, took an extremely conservative approach to concur-
rency. However, next trends are visiting mainstream programming languages in
the 21st century. IBM’s X10 [4] aims at wholesale redesign of Java’s concurrent
and parallel programming constructs, in which Vijay Saraswat, the founder of
Constraint-Based Concurrency, is deeply involved and inherits its basic princi-
ples. Another example is Cω [2], an extension of C�, one of whose goals is to
improve the description of asynchronous concurrency. Although Cω was born
in the research thread of the Join calculus, it shares the basic idea of dataflow
synchronization with Constraint-Based Concurrency.

Another language we need to mention is Erlang [1] that was developed as a
industrial-strength concurrent language. Erlang shares its design principles with
Concurrent Logic Programming in that both adopt single-assignment variables
and fine-grained concurrency based on message passing, and strong similarity is
found in programs written in those languages. Erlang did not employ flexible
interprocess communication as found in Concurrent Logic languages; instead
it featured error recovery and real-time processing which are essential in some
practical applications.

Finally, we should mention MGTP, a Model-Generation Theorem Prover
implemented on top of the Kernel Language KL1 [9,10]. The adoption of Con-
current Logic Programming for the Fifth Generation Kernel Language was sim-
ply a result of separation of concerns, and how to implement higher-level Par-
allel Inference on top of KL1 was always an important subject of the FGCS
project. MGTP has shown that a reasonably large class of full first-order logic
can be encoded into Concurrent Logic programs and runs scalably on parallel
computers.

5 Challenges in Computational Models
for the 21st Century

The biggest challenge in the theory and practice of concurrent programming
is to establish “the λ-calculus in the world of concurrency” [19]. The fact that
numerous models of concurrency have been proposed after the π-calculus implies
that we have not yet agreed upon a model which is as stable and unifying as
the λ-calculus. We do not know if this endeavor will end with a success, but I
believe it is a rewarding challenge.

In the 21st century, Robin Milner proposed Bigraphical Reactive Systems
(BRS) [13] as the next step of the π-calculus. Its main motivation was to formu-
late systems in which hierarchical structures (such as administrative domains)

Logic/Constraint Programming and Concurrency 9

and connection structures (for communication) co-exist. Indeed, while the major-
ity of concurrency models were concerned with connection structures, some mod-
els that appeared since the 1990’s, such as the Chemical Abstract Machine and
the Ambient calculus, featured hierarchical structures and its evolution.

Guarded Horn Clauses did not support hierarchical structuring, but the key
requirement of the Fifth Generation Kernel Language KL1, designed based on
GHC, was to be capable of describing operating systems for parallel comput-
ers. The major difference between GHC and KL1 was that KL1 featured a
Shoen2 construct for the hierarchization and management of computation. Shoen
was designed from practical requirements, but the hierarchical graph rewrit-
ing language LMNtal [22], designed and implemented in an attempt to reunify
Constraint-Based Concurrency and CHR, happened to be our second challenge
towards the unification of hierarchy and connectivity. LMNtal also happened to
share its design motivation with BRS in that both addressed the integration
of the two structuring mechanisms. Although initially designed as a unifying
model of concurrency, our LMNtal implementation features state-space search
and LTL model checking of hierarchical graph rewriting systems [23]—don’t-
know nondeterminism is now back and programs with more than 109 states can
be handled.

Another important challenge in concurrency will be to develop powerful type
systems for non-sequential computing. Those type systems are expected to play
even more important roles than the roles played by traditional type systems,
because it is important in non-sequential computing to analyze physical as well
as logical aspects such as the cost of communication and the resource needed
for computation. In the FGCS project, I designed and implemented Moded Flat
GHC [18], a Concurrent Logic Programming language with a static type system
for reasoning about interprocess communication using mobile channels repre-
sented by logical variables. Similar type systems were designed in process calculi.
However, many things remain to be done towards type systems for concurrency
and type systems covering both logical and physical properties of computation.

Computing environments around us are changing towards wide-area, nano-
scale, many-core, and low-power computation. The main theoretical models
that supported 20th-century computing were Turing machines for computability,
RAM model for complexity, and the λ-calculus for programming. However, it is
hard to believe that they are sufficient to support 21st-century computing. Since
concurrency is now ubiquitous, it seems important to upgrade our foundational
theories and software technologies. University curricula also need to reflect the
trends of computing environments.

Concurrent Logic Programming and related technologies born in the 1980’s
found rather limited places for use in the 20th-century mainstream computing,
but 21st-century computing environments may give us opportunities of reassess-
ment and new development of this technology.
2 A Japanese word meaning a manor.

10 K. Ueda

References

1. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)
2. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C�.

In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 415–440. Springer,
Heidelberg (2002)

3. Chandy, K.M., Kesselman, C.: CC++: A Declarative Concurrent Object-Oriented
Programming Notation. In: Research Directions in Concurrent Object-Oriented
Programming, The MIT Press, 281–313 (1993)

4. Charles, P., et al.: X10: An object-oriented approach to non-uniform cluster com-
puting. In: OOPSLA 2005, pp. 519–538. ACM (2005)

5. Foster, I., Olson, R., Tuecke, S.: Productive parallel programming: The PCN app-
roach. Sci. Program. 1(1), 51–66 (1992)

6. Frühwirth, T.: Theory and practice of Constraint Handling Rules. J. Log. Program.
37(1–3), 95–138 (1998)

7. Gupta, V., Jagadeesan, R., Saraswat, V., Bobrow, D.G.: Programming in hybrid
constraint languages. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.)
HS 1994. LNCS, vol. 999. Springer, Heidelberg (1995)

8. Fuchi, K., Kowalski, R., Furukawa, K., Ueda, K., Kahn, K., Chikayama, T., Tick,
E.: Launching the new era. Commun. ACM 36(3), 49–100 (1993)

9. Fujita, H., Hasegawa, R.: A model-generation theorem prover in KL1 using a
ramified stack algorithm. In: 8th International Conference on Logic Programming
(ICLP’91), pp. 535–548. The MIT Press (1991)

10. Hasegawa, R., Fujita, H., Koshimura, M., Shirai, Y.: A model generation based
theorem prover MGTP for first-order logic. In: Kakas, A.C., Sadri, F. (eds.) Com-
putational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp.
178–213. Springer, Heidelberg (2002)

11. Johnson, E., Gannon, D.: HPC++: Experiments with the parallel standard tem-
plate library. In: 11th International Conference on Supercomputing, pp. 124–131.
ACM (1997)

12. Maher, M.J.: Logic semantics for a class of committed-choice programs. In: Fourth
International Conferenceon Logic Programming (ICLP’87), pp. 858–876. The MIT
Press (1987)

13. Milner, R.: The Space and Motion of Communicating Agents. The Cambridge
University Press, Cambridge (2009)

14. Saraswat, V.A., Rinard, M.: Concurrent constraint programming (Extended
Abstract). In: POPL 1990, pp. 232–245. ACM (1990)

15. Shapiro, E.Y.: A Subset of Concurrent Prolog and Its Interpreter. ICOT Tech.
Report TR-003, Institute for New Generation Computer Technology (ICOT),
Tokyo (1983)

16. Tick, E.: The deevolution of concurrent logic programming languages. J. Log. Pro-
gram. 23(2), 89–123 (1995)

17. Ueda, K.: Guarded Horn Clauses. ICOT Technical Report TR-103, Institute for
New Generation Computer Technology (ICOT), Tokyo (1985). In: Wada, E. (ed.)
Logic Programming. LNCS, vol. 221, pp. 168–179. Springer, Heidelberg (1986)

18. Ueda, K., Morita, M.: Moded Flat GHC and its message-oriented implementation
technique. New Gener. Comput. 13(1), 3–43 (1994)

19. Ueda, K.: Concurrent logic/constraint programming: The next 10 years. In: Apt,
K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Programming
Paradigm: A 25-Year Perspective, pp. 53–71. Springer, Heidelberg (1999)

Logic/Constraint Programming and Concurrency 11

20. Ueda, K.: Logic programming and concurrency: A personal perspective. ALP News
Lett. 19(2), 37–52 (2006)

21. Ueda, K.: Logic and constraint programming versus concurrency. Comput. Softw.
25(3), 49–54 (2008). http://doi.org/10.11309/jssst.25.3 49

22. Ueda, K.: LMNtal as a hierarchical logic programming language. Theor. Comput.
Sci. 410(46), 4784–4800 (2009)

23. Ueda, K., Ayano, T., Hori, T., Iwasawa, H., Ogawa, S.: Hierarchical graph rewrit-
ing as a unifying tool for analyzing and understanding nondeterministic systems.
In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 349–355.
Springer, Heidelberg (2009)

http://doi.org/10.11309/jssst.25.3_49

From Sets to Bits in Coq

Arthur Blot(B), Pierre-Évariste Dagand, and Julia Lawall

Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inria, LIP6 UMR 7606,
Paris, France

arthur.blot@ens-lyon.org

Abstract. Computer Science abounds in folktales about how — in the
early days of computer programming — bit vectors were ingeniously used
to encode and manipulate finite sets. Algorithms have thus been devel-
oped to minimize memory footprint and maximize efficiency by taking
advantage of microarchitectural features. With the development of auto-
mated and interactive theorem provers, finite sets have also made their
way into the libraries of formalized mathematics. Tailored to ease prov-
ing, these representations are designed for symbolic manipulation rather
than computational efficiency. This paper aims to bridge this gap. In the
Coq proof assistant, we implement a bitset library and prove its correct-
ness with respect to a formalization of finite sets. Our library enables
a seamless interaction of sets for computing — bitsets — and sets for
proving — finite sets.

1 Introduction

Sets form the building block of mathematics, while finite sets are a fundamental
data structure of computer science. In the world of mathematics, finite sets
enjoy appealing mathematical properties, such as a proof-irrelevant equality [17]
and the extensionality principle for functions defined over finite sets. Computer
scientists, on the other hand, have devised efficient algorithms for set operations
based on the representation of finite sets as bit vectors and on bit twiddling
[3,27], exploiting the hardware’s ability to efficiently process machine words.

With interactive theorem provers, sets are reinstituted as mathematical
objects. While there are several finite set libraries in Coq, these implementations
are far removed from those used in efficient code. Recent work on modeling low-
level architectures, such as the ARM [14] or x86 [18] processors, however, have
brought the magical world of bit twiddling within reach of our proof assistants.
We are now able to specify and reason about low-level programs. In this paper,
we shall tackle the implementation of bitsets and their associated operations.

Beyond the goal of certifying low-level programs, our work can contribute
to mechanized reasoning itself. Indeed, our work is deeply rooted in the Curry-
Howard correspondence, which blurs the line between proofs and computations.
As shown by SSReflect, proof-by-reflection [2] is a powerful technique to scale
proofs up. At the heart of this technique lies the fact that computation happens
within the type theory. Last but not least, it is revealing that the finite set library
c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 12–28, 2016.
DOI: 10.1007/978-3-319-29604-3 2

From Sets to Bits in Coq 13

provided by the Coq standard library originates from the CompCert [19] project,
whose certified compiler crucially relies on such efficient datastructures.

This paper recounts an investigation from the concrete world of bit vectors to
the abstract world of finite sets. It grew from a puzzled look at the first page of
Warren’s Hacker’s Delight [27], where lies the cryptic formula x&(x−1). How do
we translate the English specification given in the book into a formal definition?
How do we prove that this formula meets its specification? Could Coq generate
efficient and trustworthy code from it? And how efficiently could we simulate it
within Coq itself? We aim to answer those questions in the following.

This paper makes the following contributions:

– in Sect. 3, we establish a bijection between bitsets and sets over finite types.
Following a refinement approach, we show that a significant part of SSRe-
flect finset library can be refined to operations manipulating bitsets;

– in Sect. 4, we develop a trustworthy extraction of bitsets down to OCaml’s
machine integers. While we are bound to axiomatize machine integers, we
adopt a methodology based on exhaustive testing to gain greater confidence
in our model;

– in Sect. 5, we demonstrate our library through two applications. We have
implemented a Bloom filter datastructure, proving the absence of false nega-
tives. We have also implemented and verified the n-queens algorithm [13].

The source code of our development is available at

https://github.com/artart78/coq-bitset

2 Finite Sets and Bit Vectors in Coq

Let us first recall a Coq formalization of finite sets and a formalization of bit vec-
tors. The former provides basic algebraic operations, such as union, intersection,
complement, etc., and more advanced ones, such as cardinality and minimum.
The latter offer extended support for describing bit-level computations, such as
logical and arithmetic operation on memory words.

2.1 A Finite Set Library: finset

To manipulate finite sets in Coq, we rely on the finset library [20], provided
by the Mathematical Components platform [15]. The finset library provides set-
theoretic operators for dealing with sets of elements of a finite type, i.e. sets of
finite cardinality. A finite set being a finite type itself, we also make extensive use
of SSReflect’s fintype library [25]. We recall their key definitions in Table 1.

Remark 1. It is crucial to constrain the underlying type to be finite: a bitset rep-
resents collections thanks to their finite enumeration. Indeed, the bitset encodes
the fact that, for any given set, every element of this enumeration is either
present or absent. ��

https://github.com/artart78/coq-bitset

14 A. Blot et al.

Table 1. Key operations on finite sets [20,25]

Coq judgment Informal semantics

T : finType card(T) is finite
T : finType � {set T} : Type type of finite sets of T-elements
A : {set T} � #| A | : nat cardinality of the set A

x : A � x \in A : bool membership test
k : T � k |: A : {set T} insertion of the element k in A

A :\ k : {set T} removal of the element k from A

P : T → bool � [set x : T | P] : {set T} subset of T satisfying P

A, B : {set T} � A :|: B : {set T} union of A and B

A, B : {set T} � A :&: B : {set T} intersection of A and B

A, B : {set T} � A :\: B : {set T} difference of A and B

i0 : T � [arg min_(i < i0 in A) M] : T an i \in A minimizing M

Table 2. coq-bits API (fragment)

Coqjudgment Informal semantics

n : nat � BITS n : Type vector of n bits

bs : BITS n, k : nat � getBit bs k : bool test the kth bit
xs, ys : BITS n � andB xs ys : BITS n bitwise and
xs, ys : BITS n � orB xs ys : BITS n bitwise or
xs, ys : BITS n � xorB xs ys : BITS n bitwise xor

xs : BITS n � invB xs : BITS n bitwise negation
xs : BITS n, k: nat � shrBn xs k : BITS n right shift by k bits
xs : BITS n, k: nat � shlBn xs k : BITS n left shift by k bits

The canonical example of a finite set is the type ’I_n : Type (where n : nat

is an index) of the finite ordinals below n. Intuitively, ’I_n represents the set
{0, · · · , n − 1}. Every finite set of cardinality n is isomorphic to ’I_n.

Remark 2. We are confident that our development could carry over to different
formalizations of finite sets and finite ordinals such as, e.g., the MSets library [10]
and the Finite sets library [9] provided by the Coq standard library.

2.2 A Bit Vector Library: coqBits

To model operations on bitsets, we rely on coq-bits [18], a formalization of logi-
cal and arithmetic operations on bits. A bit vector is defined as an SSReflect
tuple [26] of bits, i.e. a list of booleans of fixed (word) size. The key abstractions
offered by this library are listed in Table 2. The library characterizes the inter-
actions between these elementary operations and provides embeddings to and
from Z/2nZ.

From Sets to Bits in Coq 15

3 Sets as Bit Vectors, Bit Vectors as Sets

There is an obvious bijection between a finite set of cardinality n and a bit vector
of size n. Since we can sequentially enumerate each inhabitant of a finite type, we
can uniquely characterize an inhabitant by its rank in this enumeration. Thus,
a finite set can be concisely represented by setting the kth bit to true if and only
if the element of rank k belongs to the set.

In Coq, this bijection is captured by the (extensional) definition

Definition repr {n}(bs: BITS n) E := E = [set x : ’I_n | getBit bs x].

where the right-hand side reads a standard set comprehension. We shall therefore
say that a bit vector bs represents a set E if repr bs E holds.

The crux of this definition is to establish a relation between the abstract
notion of finite sets — convenient for mathematical proofs — and the concrete
artefact of bit vectors — enabling efficient computations. This relational presen-
tation establishes a data refinement of finite sets by bitsets [8,12].

In the following sections, we show that logical operations on finite sets are
reflected by concrete manipulations on bitsets. In each case, we also prove that
the refinement relation is preserved. As a result, an algorithm defined paramet-
rically over the representation of a finite set will be instantiable to finite sets —
for proofs — and bit sets — for computations. We shall illustrate this technique
in Sect. 5.1.

3.1 Set Membership

Over finite sets, set membership merely requires checking whether an element
belongs to an enumeration of the set’s elements. It is therefore a decidable prop-
erty, provided by the finset operator x : T, A : set T � x \in A : bool

In terms of bitsets, this can be implemented by shifting the kth bit to the
least significant position and masking the resulting bit vector with 1:

Definition get {n}(bs: BITS n)(k: ’I_n): bool

:= (andB (shrBn bs k) #1) == #1.

We then prove that our refinement of finite sets is respected by get. To do
so, we show that, given a finite set E represented by a bitset bs, testing the
membership of an element k in E is equivalent to getting the kth bit in bs:

Lemma 1 (Representation of Membership). For a non-empty finite set E

of cardinality n.+1 represented by a bitset bs, get agrees with the set membership
operation for every element of E, i.e.

Lemma get_repr: forall n (k: ’I_n.+1)(bs: BITS n.+1) E, repr bs E →
get bs k = (k \in E).

16 A. Blot et al.

3.2 Inserting and Removing Elements

Inserting an element k into a bitset bs amounts to setting the kth bit to 1. For
instance, to set a specific bit, we apply an or-bitmask
Definition insert {n}(bs: BITS n) k: BITS n := orB bs (shlBn #1 k).

Once again, the formal specification and the computational realizer are
related through a representation lemma, e.g.:

Lemma 2 (Representation of Insertion). For a finite set E represented by
a bitset bs, set insertion is refined by insert:

Lemma insert_repr: forall n (bs: BITS n) (k: ’I_n) E, repr bs E →
repr (insert bs k) (k |: E).

3.3 Algebra of Sets

The refinement relation holds for the standard algebra of sets. For two finite sets
A, B : set T, we have that

– the complement ~: A is realized by invB (bitwise negation),
– the intersection A :&: B is realized by andB (bitwise and),
– the union A :|: B is realized by orB (bitwise or), and
– the symmetrical difference (A :\: B) :|: (B :\: A) is realized by xorB (bit-

wise xor).

For each of these definitions, we prove the corresponding representation lemmas.

3.4 Cardinality

Computing the cardinality of a bitset requires counting the number of bits set
to 1. To the delighted hacker, this merely amounts to implementing a popu-
lation count algorithm [27, Sect. 5–1]. Several efficient implementations of this
algorithm exist: we refer our reader to the above reference for a tour of each of
them.

We chose to implement the population count via a lookup table. The gist of
the algorithm is as follows. Let us consider a bitvector bs of size n (e.g., n = 64)
and let k be a divisor of n (e.g., k = 8). We tabulate the number of 1s in all
the bit vectors of size k. The idea is that for a sufficiently small value of k, this
table fits within a single cache line. Therefore, to compute the number of 1s in
bs, we can add the number obtained by looking up the key corresponding to the
segment [k × i, k × (i + 1) − 1] in the table, for i ∈ [0, n/k − 1].

For example, on a 64-bit architecture, one would typically split the bit vector
into segments of 8 bits, pre-computing a lookup table of 256 elements. Because
the table fits in a single cache line, the individual lookups are fast. We have thus
traded space (an impossibly large lookup table covering all 64-bit numbers) for
time (by iterating the lookup 8 times instead of performing it once).

The first step, which happens off-line, thus involves computing a lookup table
mapping any number between 0 and 2k to its number of bits set:

From Sets to Bits in Coq 17

Definition pop_table {n}(k: nat): seq (BITS n).

Looking up the number of bits set in the segment [i×k, i×(k+1)−1] is a matter
of right shifts followed by a suitable and-mask to extract the segment. We obtain
the segment’s population count by a lookup in the pre-computed map:

Definition pop_elem {n}(k: nat)(bs: BITS n)(i: nat): BITS n

:= let x := andB (shrBn bs (i * k)) (decB (shlBn #1 k)) in

nth (zero n) (pop_table k) (toNat x).

Finally, we obtain the total population count by iterating over the i segments of
bit vectors of size k, adding their individual population counts:

Fixpoint popAux {n}(k: nat)(bs: BITS n)(i: nat): BITS n :=

match i with

| 0 => zero n

| i’.+1 => addB (pop_elem k bs i’) (popAux k bs i’)

end.

Definition cardinal {n}(k: nat)(bs: BITS n): BITS n

:= popAux k bs (n %/ k).

As before, the implementation has been shown to refine its specification.

3.5 Minimal Element

Finding the minimal element of a bitset amounts to identifying the least sig-
nificant bit that is set to one. To put it another way, the rank of the minimal
element is the number of trailing zeros [27, Sect. 5–4]. The classical formula for
computing the number of trailing zeros for a bit vector of size n is given by

Definition ntz {n}(k: nat)(bs: BITS n): BITS n

:= subB #n (cardinal k (orB bs (negB bs))).

The intuition is that orB bs (negB bs) has the same number of trailing zeros
as bs while all the bits beyond the minimal element are set. Therefore, the
cardinality of this bit vector is its length minus the number of trailing zeros. We
prove the usual representation lemma.

4 Trustworthy Extraction to OCaml

While bit vectors provide a faithful model of machine words, their actual rep-
resentation in Coq — as lists of booleans — is far removed from reality. To
extract our programs to efficient OCaml code, we must bridge this last gap and
develop an axiomatic presentation of OCaml’s machine integers.

We shall specify the semantics of this axiomatization by means of the coq-bits
primitives. Once again, we rely on a refinement relation, stating that OCaml’s
integers refine coq-bits’s integers (in fact, they are in bijection) and asserting
that each axiomatized operation on OCaml’s integers is a valid refinement of the

18 A. Blot et al.

corresponding operation in the coq-bits library. In effect, each abstract operation
can be seen as a specification.

However, introducing new logical axioms cannot be taken lightly: one invalid
assumption and the actual behavior of an OCaml operation could significantly
diverge from its Coq specification. Built on such a quicksand, a formal proof is
close to useless. For example, when extracting a Coq model of 8-bits integers
onto OCaml 63-bit integers, it is all too easy to forget to clear the 55 most
significant bits1. An operation overflowing a byte followed by a left shift — such
as shrB (shlB #0 9) 1 — would incorrectly expose the overflow, thus betraying
the encoding. We can however take advantage of the fact that there is only
a finite number of OCaml integers and that our specifications are decidable
properties: we gain a higher level of trust in our model by exhaustively testing
each specification against its OCaml counterpart.

4.1 Axiomatization and Extraction of Int8

Our axiomatization of machine integers merely involves importing the functions
relative to integers defined in the OCaml standard library [23]. The list of axiom-
atized operations is summarized in Table 3. Concretely, the axioms and their
realizers are defined as follows:
Axiom Int8: Type.

Extract Inlined Constant Int8 => "int".

Axiom lt: Int8 → Int8 → bool.

Extract Inlined Constant lt => "(<)".

To mediate between machine integers and bit vectors, we define two conver-
sion functions

Definition bitsToInt8 : BITS 8 → Int8 := (..).

Definition bitsFromInt8 : Int8 → BITS 8 := (..).

which ought to establish a bijection between Int8 and BITS 8. This fact can-
not be established within Coq: bitsFromInt8 and bitsToInt8 perform various
shifts and tests on machine integers, operations of which Coq has no knowledge
of since they were axiomatized. To Coq, an axiomatized operation is nothing
but a constant, i.e. a computationally inert token.

4.2 Gaining Trust in Extraction

Although our axiomatisation of machine integers is computationally inert, it
can be extracted to OCaml, where it computes. In OCaml, we can therefore
easily run the tests bitsFromInt8 (bitsToInt8 bs) = bs for all 8-bit vector
bs. If this equality is experimentally verified, this provides a strong (meta-level)
indication that bitsToInt8 is cancelled by bitsFromInt8. We thus propose to

1 Needless to say, this example is drawn from the authors’ harsh experience.

From Sets to Bits in Coq 19

gain trust in our model by (exhaustively) testing it [14]. We adopt a systematic
infrastructure, inspired by translation validation [22]. Let us illustrate with the
cancelativity property.

First of all, bit vectors of size 8 being finitely enumerable, we can write a
test — in Coq — checking the cancelativity property for all possible bit vectors:

Definition bitsToInt8K_test: bool :=

[forall bs , bitsFromInt8 (bitsToInt8 bs) == bs].

After extraction to OCaml, we can inspect the value bitsToInt8K_test: if it
is false, then our specification is definitely incorrect. If it is true, then we may
confidently accept the validation axiom

Axiom bitsToInt8K_valid: bitsToInt8K_test.

that reflects in SSReflect/Coq2 the fact that we observed true in OCaml.
Using this axiom and by the very definition of our test, we can prove the can-
celativity property:

Lemma bitsToInt8K: cancel bitsToInt8 bitsFromInt8.

Proof.

move=> bs; apply/eqP; move: bs.

by apply/forallP: bitsToInt8K_valid.

Qed.

We follow the same methodology for the remaining specifications. For a
desired specification Spec, we

1. implement an exhaustive test spec_test checking this property;
2. check that the extracted code returns true;
3. reflect its validity through an axiom spec_valid;
4. prove the desired property Spec from the test and its axiomatized validity.

To establish a bijection between BITS 8 and Int8, we chose to test for injec-
tivity of bitsFromInt8. From injectivity, we easily deduce cancelativity and
bijectivity follows naturally. The injectivity lemma is stated as follows:

Lemma bitsFromInt8_inj: injective bitsFromInt8.

We can reflect the concluding equality in terms of the decidable equality ==

of bit vectors. However, the premise refers to the propositional equality of two
Int8 values. As such, we have no way to turn this statement into a checkable
assertion. Morally, however, we know that the propositional equality over Int8
should be consistent with OCaml’s equality, which we have axiomatized as eq.
This leads us to introduce the following — uncheckable — axiom:

Axiom eqInt8P : Equality.axiom eq.

where eq is an axiom that extracts to OCaml’s structural equality test.

2 Boolean values are transparently lifted to types through the is_true: bool → Prop

predicate that assigns the empty set to false and the unit set otherwise.

20 A. Blot et al.

Fig. 1. Realizer for the forallInt8 quantifier

Similarly, we need a device for verifying universal quantifications over bit
vectors. This decision procedure is realized by a simple enumeration routine
(Fig. 1) postulated as an axiom in Coq:

Axiom forallInt8 : (Int8 → bool) → bool.

Extract Inlined Constant forallInt8 => "Forall.forall_int8".

The reflection property is once again uncheckable and therefore postulated

Axiom forallInt8P : forall P PP,

viewP P PP →
reflect (forall x, PP x) (forallInt8 (fun x => P x)).

Remark 3 (Trusted Proving Base). The axioms eqInt8P and forallInt8P are
the only axioms whose validity is not safeguarded by experimental valida-
tion. eqInt8P seems rather innocuous since it merely asserts that equality over
OCaml’s integers is defined precisely by OCaml’s implementation of equality. An
error in forallInt8P would be more consequential: if, for instance, the bounds
min_int and max_int are both mistakenly set to 0, then many false properties of
machine integers would be presented as “experimentally true.” As usual with a
mathematical definition, it is only by confronting this definition against expected
properties (such as, for example, the cyclic properties of Int8) that confidence
can be gained in its validity. ��

Using these two devices, we can test injectivity of bitsFromInt8 with

Definition bitsFromInt8_inj_test: bool :=

forallInt8 (fun x =>

forallInt8 (fun y =>

(bitsFromInt8 x == bitsFromInt8 y) ==> (eq x y))).

Running this test confirms its validity, which we can then postulate in our model.
Injectivity follows, by a small proof involving the reflection of integer equality

From Sets to Bits in Coq 21

and of quantification over integers. From which we conclude by establishing the
existence of a bijection between Int8 and BITS 8:

Lemma bitsFromInt8_bij: bijective bitsFromInt8.

Remark 4. The execution of the OCaml-extracted test takes 4 s for to cover all 8-
bits integers. The equivalent test for 16-bit integers did not complete after several
hours. Using manually optimized (and, therefore, less trustworthy) OCaml code,
we were able to run the tests in 0.23 s for 8-bit integers and in 7 h 27 for 16-bit
integers. Our hand-tuned test routine includes the following optimizations:

– factorizing the conversion from integers to bitsets across multiple tests;
– avoiding Peano integers by directly manipulating native OCaml integers.

The last point is essential for keeping a quadratic algorithm. Running the test
for 32-bit integers is feasible, but is likely to take years of CPU time. Obviously,
64-bit integers cannot be exhaustively tested.

Despite our best efforts, our extraction remains unverified in a formal sense: it
is trustworthy in as much as it gives consistent results with a particular version of
the OCaml compiler (or interpreter), running on a particular operating system
and a specific machine. To all intents and purposes, we have not provided a
proof of correctness of our extraction: we have merely developed an experimental
process by which to test its validity.

4.3 Refining Bit Vectors to Integers

The bijection naturally leads us to a refinement relation from Coq’s bit vectors
down to OCaml’s machine integers. We thus define

Definition native_repr (i: Int8)(bs: BITS wordsize): bool

:= eq i (bitsToInt8 bs).

that is to say: an integer refines a bit vector if they are in bijection.
Following the refinement methodology, we then show that each operation on

bit vectors is refined by a corresponding operation on machine integers. Let us
consider the case of bitwise negation. We would like to prove that lnot, which
extracts to OCaml’s lnot, is a valid refinement of invB:

Lemma lnot_repr: forall i bs,

native_repr i bs → native_repr (lnot i) (invB bs).

This statement reads as follows: if i is a native integer corresponding to the
bitset bs, then the lnot operator acts exactly the same way as invB on it. The
operator invB — bitwise negation — thus provides a specification for the opera-
tion lnot axiomatized in Coq. To prove this property, we craft a exhaustive test

Definition lnot_test: bool

:= forallInt8 (fun i =>

native_repr (lnot i) (invB (bitsFromInt8 i))).

22 A. Blot et al.

that we extract and run in OCaml. The result being true, we feel confident in
asserting its validity to Coq:
Axiom lnot_valid: lnot_test.

The lemma lnot_repr follows from the definition of lnot_test and
lnot_valid. We similarly specified, tested and proved the validity of all remaining
operations (Table 3).

Table 3. Specifications, axioms and the realizers of Int8

Informal semantics Coq axiom OCaml extraction

Zero zero 0

Successor suc fun x → (x + 1) land 0xff

Arithmetic negation neg fun x → (-x) land 0xff

Addition add fun x y → (x + y) land 0xff

Bitwise negation lnot fun x → (lnot x) land 0xff

Bitwise and land (land)

Bitwise or lor (lor)

Bitwise xor lxor (lxor)

Shift left lsl fun x y → (x lsl y) land 0xff

Shift right lsr (lsr)

Equality eq (=)

Comparison lt (<)

4.4 Refining Sets to Machine Integers

In Sect. 3, we have established a refinement relation between BITS n and finite
sets. In Sect. 4.1, we have established another refinement relation between Int8
and BITS 8. By transitivity, we obtain a refinement of finite sets to Int8:
Definition machine_repr (n: Int32)(E: {set ’I_wordsize}): Prop :=

exists bv, native_repr n bv ∧ repr bv E.

The desired representation lemmas then carry over from finite sets to integers,
trickling through bit vectors. For example, one defines the complement and easily
proves its associated representation lemma
Definition compl (bs: Int32): Int32 := lnot bs.

Lemma compl_repr: forall i E,

machine_repr i E → machine_repr (compl i) (~: E).

5 Applications

To illustrate our approach, we now tackle two examples of algorithms that rely
on finite sets for their proof and bitsets for their efficient execution. In Sect. 5.1,
we present a certified Bloom filter [4] implementation. In Sect. 5.2, we implement
an algorithm solving the n-queens problem.

From Sets to Bits in Coq 23

5.1 Bloom Filters

A Bloom filter is an efficient — but approximate — abstraction for monotone
sets. It offers an operation for inserting an element into the set and another for
testing membership. It is approximate in the sense that it is subject to false
positives: an element might be signaled as belonging to a set into which it has
never been inserted. However, it is free of false negatives: if the membership
test fails, then it is indeed the case that the element has never been inserted.
Combined with its small memory footprint, this last property makes this data
structure very useful in practice.

Under the hood, a Bloom filter relies on a collection (Hi) of hashing func-
tions onto ’I_n, for some integer n (usually, the architecture’s word size). Upon
inserting an element p, we compute the i hashes of p and collect them in a single
signature set of cardinality n:

Fixpoint bloomSig_aux (curFilter: T)(H: seq (P → ’I_wordsize))(e: P): T

:= match H with

| [::] => curFilter

| h :: H => bloomSig_aux ((singleton (h e)) \cup curFilter) H e

end.

Definition bloomSig (H: seq (P → ’I_wordsize))(e: P): T

:= bloomSig_aux \emptyset H e.

The kth element of the signature set is thus set if and only if there is hashing
function reducing to this value. To update the Bloom filter, we simply take the
union of this signature set and the previously-computed ones:

Definition bloomAdd (S: T)(H: seq (P → ’I_wordsize))(add_elt: P): T

:= S \cup (bloomSig H add_elt).

To check whether an element belongs to the filter, we once again compute
its signature. If all the signature is a subset of the Bloom filter, then the corre-
sponding element may have been inserted into the set. Otherwise, it definitely
was not:
Definition bloomCheck (S: T)(H: seq (P → ’I_wordsize))(e: P) : bool

:= let sig := bloomSig H e in (sig \cap S) = sig.

The correctness of our implementation is established by

Theorem 1 (Absence of False Negatives). Let (Hi) be a collection of hash-
ing functions. If an element belongs to the Bloom filter, then this element belongs
to any subsequent extension of the Bloom filter. Or, contrapositively:

Lemma bloom_correct: forall T T’ H add check, machine_repr T T’ →
(~ bloomCheck (bloomAdd T H add) H check) →
(~ bloomCheck T H check) ∧ (add <> check).

This ensures that the element is still detected in all subsequent Bloom filters
generated by adding more elements, i.e. it will never be a false negative.

24 A. Blot et al.

Remark 5. Although insertion (bloomAdd) and membership test (bloomCheck) are
implemented over native integers for efficiency, the correctness argument is more
easily established by reasoning over abstract sets. To bridge this gap, we merely
instantiate our parametric definition to use finite sets (Sect. 4.4), thus obtain-
ing an abstract specification bloomAdd_finset. Parametricity tells us that the
specification and its implementation verify the refinement relation.

5.2 The n-queens Problem

Our second application is a freshman’s classic. The n-queens problem involves
finding the number of ways to place n queens on a n×n board so that no queen
threatens another, i.e. belongs to the same row, column or diagonal. To do so,
the algorithm recursively fill the board row-by-row, making sure at each step
to put the queen on a safe column. To enforce this invariant, Richards [24] has
shown that it is sufficient to maintain a (finite) set of occupied columns and of
the left and right diagonals at the given position. Upon moving to the next row,
we update the occupied column and the diagonal sets: the new queen occupies
a new column, while the diagonals are merely shifted by one element.

A particularly eager freshman (or one of Filliâtre’s students [13]) would use
a bitset ld to store the occupied left diagonals (relative to the current line),
a bitset rd to store the occupied right diagonals (relative to the current line),
and a bitset col to store the occupied columns. The set of possible positions is
then concisely described by the set ~: (ld :|: rd :|: col). To decide on the
next position to explore, we may take the minimal element of this set, using ntz

(Sect. 3.5). The algorithm terminates when the set of columns col is full.

Fig. 2. Execution time for the n-queens algorithm

The correctness proof covers about 1300 lines of code, including about 50
lines of intermediairy definitions. Once again, we crucially rely on the equiv-
alence between machine integers and finite sets (Sect. 4.4) to streamline the

From Sets to Bits in Coq 25

proof. We provide the performance of the extracted code in Fig. 2, comparing
it against a hand-written OCaml implementation and a C implementation. The
hand-coded OCaml executes within 30 % of the execution time of a reference C
implementation, as is common for OCaml code. The extracted Coq code is twice
as slow as the OCaml one. We attributes this slow-down to the naivety of our
Coq implementation that encodes mutual recursion through an indexed type.
The resulting extracted code thus repeatedly performs a (needless) boolean test
in a tight loop.

6 Related Work

Our treatment of bitsets is rooted in the data refinement approach [1]. This
approach involves relating a formal specification to a concrete implementation,
refining the model at each step. Refinements have made their way into interactive
theorem provers, such as Isabelle [7,16] and Coq [11]. Our presentation builds
upon the work of Denes et al. [12] in the Coq proof assistant. In particular, we
follow the authors in using parametricity to abstract over representations and
obtain the representation lemmas for (almost) free [8].

We demonstrated our library by implementing and verifying two algorithms
in Coq. By doing so, we use Coq as a software verification platform. This
approach is reminiscent — although at a much smaller scale — of the CFML [6]
tool. Indeed, CFML provides a verification platform for OCaml programs by
embedding an axiomatic model — the characteristic formula — in Coq and
providing a program logic suitable to higher-order, effectful programs in Coq.
We took the more lightweight (but also more restrictive) approach of writing
programs directly in Coq, relying on extraction to obtain executable OCaml
programs.

Why3 [5] is another platform for deductive program verification. It uses a col-
lection of SMT solvers and interactive theorem provers to prove that programs
meet their specifications. It supports manipulation of and reasoning about bit-
sets. To this end, the SMT solvers are extended with an axiomatic theory of
bitsets. This theory has been shown consistent through a Coq model. When-
ever an SMT solver fails to discharge a proof obligation, the Coq formalization
can be used to, manually and interactively, prove the corresponding statement.
Why3 is thus able to reason about algorithms manipulating bitsets automati-
cally. For example, the n-queens algorithm was proved correct by Filliâtre [13].
Amazingly, most proof obligations (35 out of 41) are discharged automatically
by the SMT solvers, freeing the programmer from the burden of writing for-
mal proofs. The remaining proof obligations were proved in Coq, in as little as
142 lines of tactics in total. Our proof was meant to exercise our library and
was thus developed without automated assistance. As a consequence, it is much
longer (1200 lines of tactics) and admittedly more pedestrian.

26 A. Blot et al.

Table 4. Refined operations over finite sets

Informal semantics finset definition bitset definition

Membership:
\in : T → {set T} → bool get: Int8 →

’I_wordsize → bool

Insertion:
|: : T →

insert: Int8 → Int8 → Int8
{set T} → {set T}

Removal:
:\ : T →

remove: Int8 → Int8 → Int8
{set T} → {set T}

Empty set: set0 : {set T} zero: Int8

Full set: setT : {set T} one: Int8

Complement: ~: : {set T} → {set T} compl: Int8 → Int8

Intersection:
:&: : {set T} →

inter: Int8 → Int8 → Int8
{set T} → {set T}

Union:
:|: : {set T} →

union: Int8 → Int8 → Int8
{set T} → {set T}

Sym. difference:
:\: : {set T} →

symdiff: Int8 → Int8 → Int8
{set T} → {set T}

Cardinality: #|_| : {set T} → nat cardinal: Int8 → Int8

Minimal element:
[arg min_(i < _ in _) i]

ntz: Int8 → Int8
: T → {set T} → T

7 Conclusion

In this paper, we have developed an effective formalization of bitsets, covering
a significant fragment of SSReflect’s finset library. We summarize the equiv-
alences we have established in Table 4. Through this work, we hope to rejoice
both Hackers and Mathematicians with delights [27]. To account for both —
often divergent — point of views, we have adopted the data refinement approach
advocated by Denes et al. [8]. We leveraged parametricity — a deep meta-
mathematical property — to relate the proof-oriented and the computation-
oriented specializations of our generic programs.

We would like to extend our work beyond a single machine word so as to
support arbitrarily large bitsets. To this end, we would need native support for
persistent (or non-persistent) arrays in Coq. Finally, our bitset library is but a
first step toward building certified domain-specific compilers for programming
low-level systems. In particular, device drivers are typically configured through
intricate combinations of bitsets, e.g. for setting flags or checking the configura-
tion status. We wish for our library to provide a verified connecting rod between
the low-level interaction with the device and its high-level specification [21].

Acknowledgements. We are grateful to Arthur Charguéraud and Maxime Dénès
for several discussions on these questions. We also thank Jean-Christophe Filliâtre for
suggesting the n-queens example, and Clément Fumex and Claude Marché for pointers
to the literature. We finally thank the anonymous FLOPS reviewers, whose remarks
helped us to streamline our presentation.

From Sets to Bits in Coq 27

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Allen, S.F., Constable, R.L., Howe, D.J., Aitken, W.E.: The semantics of reflected
proof. In: Symposium on Logic in Computer Science (LICS 1990), pp. 95–105
(1990)

3. Beeler, M., Gosper, R.W., Schroeppel, R.: Hakmem. Tech. report Massachusetts
Institute of Technology (1972). http://hdl.handle.net/1721.1/6086

4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

5. Bobot, F., Filliâtre, J.C., Marché, C., Melquiond, G., Paskevich, A.: The Why3
platform. LRI, CNRS & Univ. Paris-Sud & INRIA Saclay (2015)

6. Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: International Conference on Functional programming (ICFP 2011), pp.
418–430 (2011)

7. Klein, G., Cock, D., Sewell, T.: Secure microkernels, state monads and scalable
refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS,
vol. 5170, pp. 167–182. Springer, Heidelberg (2008)

8. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free!. In: Gonthier, G., Nor-
rish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 147–162. Springer, Heidelberg
(2013)

9. Coq Standard Library: Finite sets. https://coq.inria.fr/library/Coq.Sets.Finite
sets.html

10. Coq Standard Library: Modular implementation of finite sets. https://coq.inria.
fr/library/Coq.MSets.MSets.html

11. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: deductive synthesis of
abstract data types in a proof assistant. In: Principles of Programming Languages
(POPL 2015), pp. 689–700 (2015)

12. Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to computational
algebra in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp.
83–98. Springer, Heidelberg (2012)

13. Filliâtre, J.-C.: Verifying two lines of C with Why3: an exercise in program verifi-
cation. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152,
pp. 83–97. Springer, Heidelberg (2012)

14. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7
instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010.
LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010)

15. Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system.
Technical report RR-6455, INRIA (2008)

16. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in
Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013)

17. Hedberg, M.: A coherence theorem for Martin-Löf’s type theory. J. Funct. Pro-
gram. 8(4), 413–436 (1998)

18. Kennedy, A., Benton, N., Jensen, J.B., Dagand, P.E.: Coq: The world’s best macro
assembler? In: Symposium on Principles and Practice of Declarative Programming
(PPDP 2013), pp. 13–24 (2013)

19. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

http://hdl.handle.net/1721.1/6086
https://coq.inria.fr/library/Coq.Sets.Finite_sets.html
https://coq.inria.fr/library/Coq.Sets.Finite_sets.html
https://coq.inria.fr/library/Coq.MSets.MSets.html
https://coq.inria.fr/library/Coq.MSets.MSets.html

28 A. Blot et al.

20. Mathematical Components: Finite sets. http://ssr2.msr-inria.inria.fr/doc/math
comp-1.5/MathComp.finset.html

21. Mérillon, F., Réveillère, L., Consel, C., Marlet, R., Muller, G.: Devil: an IDL for
hardware programming. In: Symposium on Operating Systems Design and Imple-
mentation (OSDI 2000) (2000)

22. Necula, G.C.: Translation validation for an optimizing compiler. In: Conference
on Programming Language Design and Implementation (PLDI 2000), pp. 83–94
(2000)

23. OCaml Standard Library: Pervasives. http://caml.inria.fr/pub/docs/manual-oc
aml/libref/Pervasives.html

24. Richards, M.: Backtracking algorithms in MCPL using bit patterns and recursion
(1997)

25. Ssreflect library: Finite type. http://ssr.msr-inria.inria.fr/doc/ssreflect-1.5/Ssreflect.
fintype.html

26. Ssreflect library: Tuple. http://ssr.msr-inria.inria.fr/doc/mathcomp-1.5/MathCo
mp.tuple.html

27. Warren, H.S.: Hacker’s Delight. Addison-Wesley Professional, Boston (2012)

http://ssr2.msr-inria.inria.fr/doc/mathcomp-1.5/MathComp.finset.html
http://ssr2.msr-inria.inria.fr/doc/mathcomp-1.5/MathComp.finset.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html
http://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html
http://ssr.msr-inria.inria.fr/doc/ssreflect-1.5/Ssreflect.fintype.html
http://ssr.msr-inria.inria.fr/doc/ssreflect-1.5/Ssreflect.fintype.html
http://ssr.msr-inria.inria.fr/doc/mathcomp-1.5/MathComp.tuple.html
http://ssr.msr-inria.inria.fr/doc/mathcomp-1.5/MathComp.tuple.html

From Proposition to Program

Embedding the Refinement Calculus in Coq

Wouter Swierstra1(B) and Joao Alpuim2

1 Universiteit Utrecht, Utrecht, The Netherlands
w.s.swierstra@uu.nl

2 RiskCo, Utrecht, The Netherlands
joao.alpuim@riskco.nl

Abstract. The refinement calculus and type theory are both frameworks
that support the specification and verification of programs. This paper
presents an embedding of the refinement calculus in the interactive theo-
rem prover Coq, clarifying the relation between the two. As a result, refine-
ment calculations can be performed in Coq, enabling the semi-automatic
calculation of formally verified programs from their specification.

1 Introduction

The idea of deriving a program from its specification can be traced back to
Dijkstra (1976); Floyd (1967) and Hoare (1969). The refinement calculus (Back
1978; Morgan 1990; Back and Wright 1998) defines a formal methodology that
can be used to construct a derivation of a program from its specification step by
step. Crucially, the refinement calculus presents single language for describing
both programs and specifications.

Deriving complex programs using the refinement calculus is no easy task. The
proofs and obligations can quickly become too complex to manage by hand. Once
you have completed a derivation, the derived program must still be transcribed
to a programming language in order to execute it – a process which can be rather
error-prone (Morgan 1990, Chap. 19).

To address both these issues, we show how the refinement calculus can be
embedded in Coq, an interactive proof assistant based on dependent types.
Although others have proposed similar formalizations of the refinement calcu-
lus (Back and von Wright 1990; Hancock and Hyvernat 2006), this paper presents
the following novel contributions:

– After giving a brief overview of the refinement calculus (Sect. 2), we begin
by developing a library of predicate transformers in Coq, based on indexed
containers (Altenkirch and Morris 2009; Hancock and Hyvernat 2006), making
extensive use of dependent types (Sect. 3). We will define a refinement relation,
corresponding to a morphism between indexed containers, enabling us to prove
several simple refinement laws in Coq.

c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 29–44, 2016.
DOI: 10.1007/978-3-319-29604-3 3

30 W. Swierstra and J. Alpuim

– This library of predicate transformers can be customized to cope with dif-
ferent programming languages and programming constructs. We show how
to define a refinement relation between programs in the While language
(Nielson et al. 1999) (Sect. 4).

– These definitions give us the basic building blocks for formalizing derivations
in the refinement calculus. They do, however, require that the derived program
is known a priori. We address this and other usability issues (Sect. 5).

– Finally, we validate our results by proving a soundness result and performing
a small case study (Sect. 6). This soundness result relates our definitions to
the usual weakest precondition semantics for imperative languages. The case
study, taken from Morgan’s textbook on the refinement calculus (Morgan
1990), derives a binary search algorithm for the square root of a positive
integer. Such a program has many properties that make it difficult to formalize
directly in Gallina, the fragment of Coq that is used for programming, such
as non-structural recursion and mutable references.

2 Refinement Calculus

The refinement calculus, as presented by Morgan (1990), extends Dijkstra’s
Guarded Command language with a new language construct for specifications.
The specification [pre, post] is satisfied by a program that, when supplied an
initial state satisfying the precondition pre, can be executed to produce a final
state satisfying the postcondition post . Crucially, this language construct may
be mixed freely with (executable) code constructs.

Besides these specifications, the refinement calculus defines a refinement
relation between programs, denoted by p1 � p2. This relation holds when
forall P ,wp (p1,P) ⇒ wp (p2,P), where wp denotes the usual weakest precondi-
tion semantics of a program and its desired postcondition. Intuitively, you may
want to read p1 � p2 as stating that p2 is a ‘more precise specification’ than p1.

A program is said to be executable when it is free of specifications and only
consists of executable statements. Morgan (1990) refers to such executable pro-
grams as code. To calculate an executable program C from its specification S ,
you must find a series of refinement steps, S � M0 � M1 � ... � C .
Typically, the intermediate programs, such as M0 and M1, mix executable code
fragments and specifications.

To find such derivations, Morgan (1990) presents a catalogue of lemmas that
can be used to refine a specification to an executable program. Some of these
lemmas define when it is possible to refine a specification to code constructs.
These lemmas effectively describe the semantics of such constructs. For example,
the following law may be associated with the skip command:

Lemma 1 (skip). If pre ⇒ post, then [pre, post] � skip.

Besides such primitive laws, there are many recurring patterns that pop up
during refinement calculations. For example, combining the rules for sequential
composition and assignment, the following assignment lemma holds:

From Proposition to Program Embedding the Refinement 31

Fig. 1. Derivation of the swap program

Lemma 2 (Following Assignment). For any term E,

[pre, post] � [pre, post [w\E]];w ::= E

We will illustrate how these rules may be used to calculate the definition of
a program from its specification. Suppose we would like to swap the values of
two variables, x and y . We may begin by formulating the specification of our
problem as:

[x = X ∧ y = Y , x = Y ∧ y = X]

Using the two lemmas we saw above, we can refine this specification to an
executable program. The corresponding calculation is given in Fig. 1. Note that
we have chosen to give a simple derivation that contains some redundancy, such
as the final skip statement, but uses a modest number of auxiliary lemmas and
definitions.

For such small programs, these derivations are manageable by hand. For
larger or more complex derivations, it can be useful to employ a computer to
verify the correctness of the derivation and even assist in its construction. In the
coming sections we will develop a Coq library for precisely that.

3 Predicate Transformers

In this section, we will assume there is some type S , representing the state that
our programs manipulate. In Sect. 4 we will show how this can be instantiated
with a (model of a) heap. For now, however, the definitions of specifications,
refinement, and predicate transformers will be made independently of the choice
of state.

We begin by defining a few basic constructions in Coq:

Definition Pred (A : Type) : Type := A → Prop.

32 W. Swierstra and J. Alpuim

This defines the type Pred A of predicates over some type A. Using this definition
we can define a subset relation between predicates as follows:

Definition subset (A : Type) (P1 P2 : Pred A) : Prop := forall x , P1 x → P2 x .

A predicate P1 is a subset of the predicate P2, if any state satisfying P1 also
satisfies P2. In the remainder of this paper, we will write P1 ⊆ P2 when the
property subset P1 P2 holds.

Next we can define the PT data type, consisting of a precondition and post-
condition:

Record PT : Type :=
MkPT {pre : Pred S ;

post : forall s : S , pre s → Pred S }.

The postcondition is a ternary relation between the input state, a proof that
this input state satisfies the precondition, and the output state. Such a ternary
relation is typical when modeling post-conditions in type theory to avoid the
need for ‘ghost variables’, relating the input and output states (Nanevski et al.
2008; Swierstra 2009a; Swierstra 2009b). We will sometimes use the notation
[P ,Q] rather than the more verbose MkPT P Q .

As its name suggests, the PT type has an obvious interpretation as a predicate
transformer, i.e., a function from Pred S to Pred S :

Definition semantics (pt : PT) : Pred S → Pred S :=
fun P s ⇒ {p : pre pt s & post pt s p ⊆ P }.

The semantics function computes the condition necessary to guarantee that the
desired postcondition P holds after executing a program satisfying the given
specification pt . Intuitively, the precondition of the specification must hold and
the postcondition must imply P . We will sometimes write �pt� rather than
semantics pt for the sake of brevity.

Next, we characterize the refinement relation between two values of type PT
as follows:

Inductive Refines (pt1 pt2 : PT) : Type :=
Refinement : forall (d : pre pt1 ⊆ pre pt2),

(forall (s : S) (x : pre pt1 s), post pt2 s (d s x) ⊆ post pt1 s x) →
Refines pt1 pt2.

We consider pt2 to be a refinement of pt1 when the precondition of pt1 implies
the precondition of pt2 and the postcondition of pt2 implies the postcondition
of pt1. As our postconditions are ternary relations, we need to do some work to
describe the latter condition. In particular, we need to transform the assumption
that the initial state holds for the precondition of pt1 to produce a proof that
the precondition of pt2 also holds for the same initial state. To do so, we use the

From Proposition to Program Embedding the Refinement 33

first condition, d , that the precondition of pt1 implies the precondition of pt2.
We will use the notation, pt1 � pt2, for the proposition Refines pt1 pt2.

To validate the correctness of this definition, we will show that it satisfies the
characterization of refinement in terms of weakest precondition semantics given
in Sect. 2. To do so, we have proven the following soundness result:

Theorem soundness : forall pt1 pt2,
pt1 � pt2 ↔ forall P , �pt1� P ⊆ �pt2� P .

In other words, the Refines relation adheres to the characterization of the refine-
ment relation in terms of predicate transformer semantics. The proof is almost
after unfolding the various definitions involved.

Even if we have not yet fixed the state space S , we can already prove that
the structural laws of the refinement calculus, such as strengthening of postcon-
ditions, hold:

Lemma strengthenPost (P : Pred S) (Q1 Q2 : forall s,P s → Pred S) :
(forall (s : S) (p : P s), Q1 s p ⊆ Q2 s p) →
[P , Q2] � [P , Q1].

To prove this lemma, we need to show that P ⊆ P and that the postcondition
Q1 implies Q2. The first proof is trivial; the second follows immediately from our
hypothesis. Similarly, we can show that the refinement relation is both transitive
and reflexive.

These definitions by themselves are not very useful. Before we can perform
any program derivation, we first need to fix our programming language.

4 The While Language

In this paper, we will focus on deriving programs in the While programming
language (Nielson et al. 1999). The syntax of the While language may be defined
as follows:

S ::= skip | S1;S2 | x ::= a | if e then S1 else S2 | whilee do S

Like Dijkstra’s Guarded Command Language (1976), the While language has
the most common constructs from any imperative language: assignment, branch-
ing, and iteration. Although it lacks many features, such as memory manage-
ment, methods, classes, or user-defined types, the While language is a suitable
minimal language for the purpose of our study.

Before defining our syntax any further, we emphasize that this development
is parametrized over some fixed type of identifiers, Identifier . Next, we fix our
choice state S to be a finite map from identifiers to natural numbers, representing
the values of variables stored on the heap, using the finite map modules from
Coq’s standard library. This choice is somewhat limited, but there are numerous
alternative definitions using a universe construction and indexed data types to
store heterogeneous data on the heap (Nanevski et al. 2008; Swierstra 2009b).

34 W. Swierstra and J. Alpuim

It is straightforward to model the syntax of the While language as an induc-
tive data type in Coq:

Inductive Statement : Type :=
| Skip : Statement
| Seq : Statement → Statement → Statement
| Assign : Identifier → Expr → Statement
| If : BoolExpr → Statement → Statement → Statement
| While : Pred heap → BoolExpr → Statement → Statement
| Spec : PT → Statement .

In what follows we will use the shorthand notation c1; c2 for Seq c1 c2 and x ::=e
for Assign x e.

Our development is parametrized over some (ordered) type representing iden-
tifiers. We have omitted the definition of expressions, consisting of integer and
boolean constants, variables, and several numeric and boolean operators. Note
that every While statement must also include a loop invariant of type Pred heap.

In addition to the constructs given by the EBNF grammar above, this data
type includes a constructor Spec, containing the specification of an unfinished
program fragment. The refinement laws we will define shortly determine how
such specifications may be refined to executable code.

Semantics

Before discussing the refinement calculation further, we need to fix the semantics
of our language. We shall do so by associating a predicate transformer, i.e., a
value of type PT , with every constructor of the Statement data type.

Each rule in Fig. 2 associates pre- and postconditions, i.e., a value of type
PT , with a syntactic constructs of the While language. We use the somewhat
suggestive notation, {P } c {Q } to associate with the statement c the conditions
[P ,Q]. These rules are not added as axioms to Coq; nor are they the constructors
of an inductive data type. Rather, we can assign semantics to our Statement data
type directly, as a recursive function:

Fixpoint semantics (c : Statement) : PT

In addition to the rules from Fig. 2, this function simply maps specifications,
represented by the Spec constructor, to their associated predicate transformer.

Let us examine the rules in Fig. 2 a bit more closely. Each precondition
may refer to an initial state s; each postcondition is formulated as a binary
relation between an initial state s and a final state s ′, ignoring the (proof of
the) precondition on s for the moment. For example, the postcondition of the
Skip rule states that the initial state s is equal to the final state s ′. Similarly,
the rule assignment states that the postcondition is equal to the precondition,
where the value associated with the identifier x has been updated to the result
of evaluating the right-hand side of the assignment statement, �e�. Note that the
semantics of expressions requires an additional environment argument, recording
the state of all variables, that we have omitted for the sake of brevity.

From Proposition to Program Embedding the Refinement 35

Fig. 2. Semantics of While

The rules for compound statements are slightly more complicated. To
sequence two commands c1 and c2, the rule Seq requires the precondition of
c1 should hold and its postcondition should imply the postcondition of c2. The
postcondition of the composition states that there is an intermediate state t ,
that relates the postconditions of both statements.

The rule for conditionals, If, is reasonably straightforward: when the boolean
condition b holds, the precondition of the then-branch must be satisfied and its
postcondition is the postcondition of the entire statement. When the boolean
condition is not satisfied, a similar statement holds for the else-branch.

Finally, the While rule is the most complex. Besides the precondition, P ,
and postcondition, Q , associated with the body of the loop, the While rule
requires the programmer to specify the loop invariant, I . The precondition of
the While rule consists of three conjuncts:

– the invariant I must hold initially;
– the boolean guard b holds and the invariant must together imply the precon-

dition of the loop body;
– the loop body must preserve the invariant.

The postcondition merely states that the boolean guard no longer holds, but
the invariant has been maintained. Note that this formulation captures partial
correctness; there is no variant ensuring that the loop must terminate eventually.

Using these semantics, we now define a refinement relation between state-
ments in the While language:

Definition RefinedBy c1 c2 := Refines (semantics c1) (semantics c2).

Once again, we will use the notation c1 � c2 when RefinedBy c1 c2 holds.

36 W. Swierstra and J. Alpuim

Example: Swap

With these definitions in place, we can now formalize the proof in Fig. 1. To do
so, we need to find a proof of the swapCorrect lemma, formulated as follows:

Definition swapSpec :=
[In X s ∧ In Y s, find s ′ X = find s Y ∧ find s ′ Y = find s X].

Definition swap : Statement := Skip;
T ::= Ref Y ;
Y ::= Ref X ;
X ::= Ref T .

Lemma swapCorrect : swapSpec � swap.

Here we use the Ref constructor to include variables in our expression language.
The proof is reasonably straightforward: we repeatedly apply the transitivity of
the refinement relation, explicitly passing the mediating Statement that we read
off from Fig. 1. The only non-trivial proof obligations that arise concern reading
from and writing to our heap.

Unfortunately, this form of post-hoc verification is very different from the
program calculation that we would like to perform. The proof requires repeatedly
stating the ‘next step’ in the refinement proof explicitly, every time we apply
transitivity of the refinement relation. As a result, the straightforward proof
script is lengthy and error-prone. In the next section we will develop machinery to
enable the interactive discovery of programs, rather than the mere transcription
of an existing proof.

5 Interactive Refinement

Although we can now take any pen-and-paper proof of refinement and verify this
in Coq, we are not yet playing to the strengths of the interactive theorem prover
that we have at hand. In this section, we will show how to develop lemmas and
definitions on top of those we have seen so far that facilitate the interactive cal-
culation of a program from its specification. Carefully choosing the formulation
of our lemmas and the order of their assumptions will help guide the refinement
process.

We start by defining a function that determines when a statement is exe-
cutable, i.e., when there are no occurrences of the Spec constructor:

Fixpoint isExecutable (c : Statement) : Prop

Rather than fixing the exact program upfront, we can now reformulate the
correctness lemma of swap as follows:

Lemma swapCalc : {c : Statement | SwapSpec � c
∧ isExecutable c}.

The notation {x :A | P x } in Coq is used to denote a dependent pair consisting
of a witness x : A and a proof that x satisfies the property P .

From Proposition to Program Embedding the Refinement 37

To prove this lemma we need to provide an executable c : Statement and
a proof that SwapSpec � c. This is a superficial change – we could now
complete the proof by providing our swap program as the witness c and reuse our
previous correctness lemma. Instead of doing this, however, we wish to explore
how to reformulate typical refinement calculus laws to enable the interactive
construction of a suitable program.

Consider the following assignment rule, given in Lemma 2. We can formulate
and prove the lemma in Coq as follows:

Lemma followAssign1

(x : Identifier) (e : Expr)
(P : Pred S) (Q : forall (s : S),P s → Pred S) :
let Q ′ := fun s pres s ′ ⇒ Q s pres (s ′[x �→ �e�]) in
[P ,Q] � [P ,Q ′]; x ::= e.

Here we use the notation s ′ [x �→ �e�] to indicate that the value asso-
ciated with the identifier x in s ′ has been updated to �e�. The proof of this
lemma is reasonably straightforward. After applying the Refinement construc-
tor, the remaining proof obligations are trivial to discharge. Having proven this
lemma, however, we cannot immediately use it to prove a goal of the shape
{c : Statement | spec � c ∧ isExecutable c}. To do so, we need to define an
additional wrapper.

Lemma followAssign2 {P : Pred S } {Q }
(x : Identifier) (e : Expr) :
let spec1 := Spec ([P ,Q]) in
let spec2 := Spec ([P , fun s pres s ′ ⇒ Q s pres (s ′[x �→ �e�])]) in
{c : Statement | (spec2 � c) ∧ isExecutable c} →
{c : Statement | (spec1 � c) ∧ isExecutable c}.

We can now use this lemma to finish our derivation, swapCalc. Every appli-
cation of the followAssign2 lemma changes the postcondition; once we have
completed our three assignments, we will need to show that our postcondition
is a direct consequence of our precondition. This last step is the most important
and is the only step that requires any verification effort.

Looking at the formulation of the followAssign2 lemma more closely, however,
we see that we can always apply this rule, regardless of the pre- and postcon-
ditions of our specification. By heedlessly applying this lemma, we can paint
ourselves into a corner, leaving an unprovable goal later on in the refinement
derivation. Put differently, applying this rule defers all the verification work,
whereas we would like to derive the overall correctness of a program from the
correctness of a sequence of refinement steps.

To address this, we have defined the following final version of the following
assignment rule:

38 W. Swierstra and J. Alpuim

Lemma followAssign {P : Pred S } {Q }
(x : Identifier) (e : Expr) (Q ′ : forall (s : S),P s → Pred S) :
let spec1 := Spec ([P ,Q]) in
let spec2 := Spec ([P ,Q ′]) in
(forall s pres s ′,Q ′ s pres s ′ → Q s pres (s ′[x �→ �e�])) →
{c : Statement | (spec2 � c) ∧ isExecutable c} →
{c : Statement | (spec1 � c) ∧ isExecutable c}.

Applying this rule yields two subgoals: the explicit proof relating the two
postconditions and the remainder of the refinement calculation. Furthermore,
when applying this rule the user must explicitly pass the ‘new’ postcondition
Q ′. This formulation of the following assignment rule, however, has one signif-
icant advantage: it encourages users to perform a small amount of verification,
corresponding to the proof of first subgoal, every time it is applied. Where the
previous formulations made it possible to rack up arbitrary ‘verification debt’,
this last version enables the incremental development of the correctness proof.

This section has focused on a single lemma, followAssign. This lemma is
representative for the design choices that we have made in the implementation
of several related refinement laws. We have tried to capture our methodology
in a handful of following design principles, that we applied when formulating
further refinement laws:

– Any refinement law should prove a statement of the form {c : Statement |
spec � c ∧ isExecutable c}. Users are expected to formulate their specifica-
tions in this fashion. Fixing this form enables us to assume the open (sub)goals
have a certain shape, which we can exploit during the program calculation and
proof automation.

– There is at least one lemma implementing each of the refinement rules shown
in Fig. 2. Often we provide several composite definitions, that refine specific
parts of a composite command, such as the body of a loop or one component
of a sequential composition.

– The order of hypotheses in lemmas matters. Coq presents the user with the
remaining subgoals in the same order in which they occur as arguments to
the lemma being invoked. Therefore subgoals that are most likely to be prob-
lematic should come first. For example, a poor choice of postcondition Q ′

in the final version of the followAssign lemma could yield unprovable sub-
goals. Requiring that problematic subgoals are completed first, minimizes the
chance of a complete refinement calculation getting stuck on an unproven
subgoal arising from an earlier step.

– We never assume anything about the shape of the pre- or postcondition of
the specifications involved. For example, consider the usual rule for sequential
composition from Hoare logic:

{P } c1 {Q } {Q } c2 {R}
Sequence{P } c1; c2 {R}

From Proposition to Program Embedding the Refinement 39

To apply this rule, we require the precondition of c1 and postcondition of c2 to
be identical. This is not necessarily the case in the middle of a refinement cal-
culation. Instead of requiring users to weaken postconditions and strengthen
preconditions explicitly, it can be useful to provide an equivalent, yet more
readily applicable, alternative definition:

{P } c1 {Q2} {Q1} c2 {R} Q2 → Q1
Sequence{P } c1; c2 {R}

Here we have turned the explicit relation between the postcondition of c1 and
the precondition of c2 into an additional subgoal. As a result, the rule can
always be applied, but it now carries an additional proof obligation.

6 Validation

This section presents two separate results, validating our work. We will show
how our choice of pre- and postconditions associated with the While are sound
and complete with respect to the usual weakest precondition semantics. Later,
we will use our definitions to formalize a derivation by Morgan (1990).

Soundness

In Fig. 2, we are free to associate any choice of pre- and postconditions with the
syntax of the While language – how can we validate that our choice of pre-
and postconditions are correct? Or what does ‘correctness’ even mean in this
context? In this section, we will show how our definitions relate to those found
in the literature.

Typically, weakest precondition semantics are specified by associating predi-
cate transformers with the constructs from a programming language. For exam-
ple, the rules typically associated with the While language are give in Fig. 3.

On the surface, the pre- and postconditions we have chosen in Fig. 2 are not
at all similar. Yet we can relate these two semantics precisely. The semantics
given in Fig. 3 define a function wpwith the following type:

Fixpoint wp(c : Statement) (R : Pred S) : Pred S

Fig. 3. Weakest precondition semantics of While

40 W. Swierstra and J. Alpuim

Recall from Sect. 3 that we can assign semantics to any value of PT , inter-
preting it as a predicate transformer of type Pred S → Pred S . Using this
semantics, we can now relate our definitions with the traditional semantics in
terms of weakest preconditions:

Theorem soundness (c : Statement) (P : Pred S) :
forall s,wpc P s ↔ �c� P s.

This result is important: our choice of semantics in Fig. 2 is sound and
complete with respect to the usual axiomatic semantics in terms of predicate
transformers.

Case Study: Square Root

Now that we have covered the basic design principles and semantics of our
embedding of the refinement calculus, we aim to validate our results through
a case study. In this section, we will repeat the calculation of a program to per-
forms a binary search to find the integer square root of its input integer. This
example is taken from Morgan’s textbook on refinement calculus (Morgan 1990,
Chap. 9). The complete calculation can be found in Fig. 4. Note that we have
numbered every refinement step explicitly.

Given the desired postcondition, r = 	 √
s �, we apply several refinement

laws until we are left with an executable program. To avoid repetition, we use
the notation P � Q when the term P contains a single specification that can

Fig. 4. Calculating the integer square root program

From Proposition to Program Embedding the Refinement 41

be refined by Q . In particular, any executable code fragments in P will not be
repeated in Q (or the remainder of the derivation). This is a slight variation on
the notation that Morgan uses, that more closely follows the intuition of ‘open
subgoal’ with which users of interactive theorem provers will already be familiar.

The first step strengthens the postcondition, requiring that the additional
condition I must also be satisfied. In later steps, this will become our loop
invariant, stating that our current approximation lies between the upper bound
q and lower bound r . The proof continues by splitting off a series of assignments
that ensure I holds initially (Step 2).

Once we have established that the loop invariant holds initially (Step 3),
we introduce a while statement (Step 4). The loop will continue until the lower
bound, r , can no longer be increased without overlapping with the upper bound
q . Although we could refine the body of the while with the skip command,
this would cause our program to diverge. Instead, we begin by assigning to the
variable p the ‘halfway point’ between our bounds q and r (Step 6). Finally, we
check whether p is too large or too small to be the integer square root (Step 7).
Both branches of the conditional update our bounds accordingly, after which the
loop body is finished (Step 8).

How difficult is it to perform such a refinement proof in Coq? Most individual
refinement steps correspond to a single call to an appropriate lemma. Discharg-
ing the subgoals arising from the application of each lemma typically requires a
handful of tactics, many of which we believe could be automated further. The
only non-obvious steps arise from having to apply several custom lemmas about
division by two. The entire proof script weighs in at just under 200 lines, exclud-
ing general purpose lemmas defined elsewhere; as some of our lemmas require
explicit pre- and postconditions, the proof scripts can become rather verbose.
This is unfortunate, as adapting the specification may require updating the con-
ditions mentioned explicitly in the proof script. We believe that it should be able
to halve the length of the proof by tidying up the proof and investing in better
automation.

Interactive verification in this style has several important advantages. Firstly,
it is impossible to fudge your ‘proofs.’ On paper, it can be easy to gloss over
certain verification conditions that you believe to hold. The proof assistant keeps
you honest. Furthermore, the interactive derivation in this style produces an
abstract syntax tree of the executable code. This can be easily traversed to
generate imperative (pseudo)code. Some of the errors that Morgan describes
arise from the fact that, even after the pen and paper proof has been completed,
the resulting code still needs to be transcribed to a programming language. This
need not be a concern in this setting.

7 Discussion

The choice of our PT types and definition of refinement relation are not novel.
Similar definitions of indexed containers (Altenkirch and Morris 2009) and inter-
action structures (Hancock and Setzer 2000a,b) can already be found in the

42 W. Swierstra and J. Alpuim

literature. Indeed, part of this work was triggered by Peter Hancock’s remark
that these structures are closely related to predicate transformers and the refine-
ment relation between them, as we have made explicit in this paper.

We are certainly not the first to explore the possibility of embedding a refine-
ment calculus in a proof assistant. One of the first attempts to do so, to the best
of our knowledge, was by Back and Von Wright (Back and von Wright 1989).
They describe a formalization of several notions, such as weakest precondition
semantics and the refinement relation, in the interactive theorem prover HOL.
This was later extended to the Refinement Calculator (Butler et al. 1997), that
built a new GUI on top of HOL using Tcl/Tk. More recently, Dongol et al. have
extended these ideas even further in HOL, adding a separation logic and its
associated algebraic structure (Dongol et al. 2015). There are far fewer such
implementations in Coq, Boulmé (2007) being one of the few exceptions. In con-
trast to the approach taken here, Boulmé explores the possibility of a monadic,
shallow embedding, by defining the Dijkstra Specification Monad.

There is a great deal of work marrying effects and dependent types. Swier-
stra’s thesis explores one potential avenue: defining a functional semantics for
effects (Swierstra 2009b; Swierstra and Altenkirch 2007). For some effects, such
as non-termination, defining such a functional semantics in a total language
is highly non-trivial. Therefore, systems such as Ynot take a different app-
roach (Nanevski et al. 2008)s. Ynot extends Coq with several axioms, corre-
sponding to the different operations various effects support, such as reading
from and writing to mutable state. The type of these axioms captures all the
information that a programmer may use to reason about such effects. These
types are similar to those presented here in Fig. 2. Contrary to the approach
taken here, however, Ynot lets users write their programs without considering
their specification. Users only need to write proofs after specifying the pre- and
postconditions for a certain function. The refinement calculus, on the other hand,
starts from a specification, which is gradually refined to an executable program.

In the future, we hope to investigate how these various approaches to ver-
ification may be combined. One obvious next step would be to re-use the sep-
aration logic and associated proof automation defined by later installments of
Ynot (Chlipala et al. 2009) as the model of the heap in our refinement calculus.
Furthermore, we have (for now) chosen to ignore the variants associated with
loops. As a result, the programs calculated may diverge. Embellishing our defi-
nitions with loop variants is straightforward, but will make our definitions even
more cumbersome to use.

Type theory and the refinement calculus are both frameworks that combine
specification and calculation. By embedding the refinement calculus in type the-
ory, we study their relation further. The interactive structure of many proof
assistants seems to fit well with the idea of calculating a program from its speci-
fication step-by-step. How well this approach scales, however, remains to be seen.
For now, the embedding presented in this paper identifies an alternative point
in the spectrum of available proof techniques for the construction of verified
programs.

From Proposition to Program Embedding the Refinement 43

Acknowledgments. The first author would like to thank Peter Hancock for his
patience in explaining the relation between interaction structures and the refinement
calculus. The first author’s visit to Scotland was funded by the London Mathematical
Society’s Scheme 7 grant.

References

Altenkirch, T., Morris, P.: Indexed containers. In: 24th Annual IEEE Symposium on
Logic in Computer Science, LICS 2009, pp. 227–285 (2009)

Back, R.J.R., von Wright, J.: Refinement concepts formalized in higher order logic.
Formal Aspects Comput. 2, 247–272 (1989)

Von Wright, J.: Refinement Calculus: Refinement Calculus. Texts in Computer Science.
Springer, New York (1998)

Back, R.J.R., von Wright, J.: Refinement concepts formalised in higher order logic.
Formal Aspects Comput. 2(1), 247–272 (1990)

Back, R.J.R.: On the Correctness of Refinement in Program Development. PhD thesis,
University of Helsinki (1978)

Boulmé, S.: Intuitionistic refinement calculus. In: Della Rocca, S.R. (ed.) TLCA 2007.
LNCS, vol. 4583, pp. 54–69. Springer, Heidelberg (2007)

Butler, M.J., Grundy, J., L̊angbacka, T., Ruksenas, R., Wright, J.V.: The refinement
calculator. In: Formal Methods Pacific (1997)

Chlipala, A., Malecha, G., Morrisett, G., Shinnar, A., Wisnesky, R.: Effective inter-
active proofs for higher-order imperative programs. In: International Conference on
Functional Programming, ICFP 2009, pp. 79–90 (2009)

Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
Dongol, B., Gomes, V.B.F., Struth, G.: A program construction and verification tool

for separation logic. In: Hinze, R., Voigtländer, J. (eds.) MPC 2015. LNCS, vol. 9129,
pp. 137–158. Springer, Heidelberg (2015)

Floyd, R.W.: Assigning meanings to programs. Math. Aspects Comput. Sci 19(19–32),
1 (1967)

Hancock, P., Hyvernat, P.: Programming interfaces and basic topology. Ann. Pure
Appl. Logic 137(1), 189–239 (2006)

Setzer, A., Hancock, P.: Interactive programs in dependent type theory. In:
Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. lncs, vol. 1862, pp. 317–339.
Springer, Heidelberg (2000)

Hancock, P., Setzer, A.: Specifying interactions with dependent types. In: Workshop
on subtyping and dependent types in programming (2000b)

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

Morgan, C.: Programming from specifications. Prentice-Hall Inc, Upper Saddle River
(1990)

Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: Dependent
types for imperative programs. In: International Conference on Functional Program-
ming, ICFP 2008, pp. 229–240 (2008)

Flemming, N., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

44 W. Swierstra and J. Alpuim

Swierstra, W.: A hoare logic for the state monad. In: Berghofer, S., Nipkow, T.,
Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 440–451. Springer,
Heidelberg (2009)

Swierstra, W.: A functional specification of effects. PhD thesis, University of
Nottingham (2009)

Swierstra, W., Altenkirch, T.: Beauty in the beast: In: Proceedings of the ACM
SIGPLAN Workshop on Haskell Workshop, pp. 25-36. ACM (2007)

The Boolean Constraint Solver of SWI-Prolog
(System Description)

Markus Triska(B)

Database and Artificial Intelligence Group, Vienna University of Technology,
Vienna, Austria

triska@dbai.tuwien.ac.at

http://www.metalevel.at

Abstract. We present a new constraint solver over Boolean variables,
available as library(clpb) (documentation: http://eu.swi-prolog.org/
man/clpb.html) in SWI-Prolog. Our solver distinguishes itself from other
available CLP(B) solvers by several unique features: First, it is written
entirely in Prolog and is hence portable to different Prolog implementa-
tions. Second, it is the first freely available BDD-based CLP(B) solver.
Third, we show that new interface predicates allow us to solve new
types of problems with CLP(B) constraints. We also use our implementa-
tion experience to contrast features and state necessary requirements of
attributed variable interfaces to optimally support CLP(B) constraints
in different Prolog systems. Finally, we also present some performance
results and comparisons with SICStus Prolog.

Keywords: CLP(B) · Boolean unification · Decision diagrams · BDD

1 Introduction

CLP(B), Constraint Logic Programming over Boolean variables, is a declara-
tive formalism for reasoning about propositional formulas. It is an important
instance of the general CLP(·) scheme introduced by Jaffar and Lassez [11] that
extends logic programming with reasoning over specialized domains. Well-known
applications of CLP(B) arise in circuit verification and model checking tasks.

There is a vast literature on SAT solving, and there are many systems and
techniques for detecting (un)satisfiability of Boolean clauses (see [14,18,22] and
many others).

However, a CLP(B) system is different from common SAT solvers in at least
one critical aspect: It must support and take into account aliasing and unifica-
tion of logical variables, even after SAT constraints have already been posted.
Generally, CLP(B) systems are more algebraically oriented than common SAT
solvers: In addition to unification of logical variables, they also support variable
quantification, conditional answers and easy symbolic manipulation of formulas.
In this paper, we discuss several use cases and consequences of these features.

This paper is organized as follows: In Sect. 2, we briefly outline the cur-
rent state of available CLP(B) systems, followed by a brief discussion of Binary
c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 45–61, 2016.
DOI: 10.1007/978-3-319-29604-3 4

http://eu.swi-prolog.org/man/clpb.html
http://eu.swi-prolog.org/man/clpb.html

46 M. Triska

Decision Diagrams. In Sect. 4, we present the interface and implementation
of a new CLP(B) system, its distinguishing new features, a comparison of
attributed variable interfaces and necessary requirements for optimally support-
ing CLP(B) solvers on top of Prolog. Section 5 describes new applications made
possible by the new features of our library, followed by performance results and
a brief discussion of implementation variants and planned features.

2 CLP(B) Systems and Implementation Methods

Support of CLP(B) constraints has been somewhat inconsistent between and
even within different Prolog systems over the last few decades. CHIP [9] was
one of the first widely used systems to support CLP(B) constraints, and shortly
after, SICStus Prolog supported them too [4], up until version 3. However, more
recent versions of SICStus Prolog, while shipping with a port of the clpb library,
do not officially support the solver in any way.1 In contrast, Prolog IV [1] and
GNU Prolog [8] do support Boolean constraints.

Implementation methods of CLP(B) systems are likewise diverse. We find
two main implementation variants used in major Prolog systems: (1) implemen-
tations based on Binary Decision Diagrams (BDDs) and (2) approximation of
CLP(B) constraints by other constraints, using for example indexicals. SICStus
Prolog is an instance of the former variant, and GNU Prolog one of the latter.

Each of these variants has strengths and weaknesses: Among the major
advantages of BDD-based implementations we find completeness and some alge-
braic virtues which we will explain in later sections of this paper. In comparison,
approximation-based implementations are generally simpler, more scalable and
much more efficient on selected benchmarks [5]. However, they are incomplete in
general and require an explicit search to ensure the existence of solutions after
posting constraints.

3 Binary Decision Diagrams (BDDs)

A Binary Decision Diagram (BDD) is a rooted, directed and acyclic graph and
represents a Boolean function [2,12]. In this paper, we assume all BDDs to be
ordered and reduced. This means, respectively, that all variables appear in the
same order on all paths from the root, and that the representation is minimal
in the sense that all isomorphic subgraphs are merged and no redundant nodes
occur.

In the Prolog community, BDDs have already appeared several times: Apart
from the CLP(B) library used in SICStus Prolog, we also find BDDs in the
form of small Prolog code snippets. For example, Richard O’Keefe has gener-
ously made a small library available for his COSC410 course in the year 2011.2

1 The documentation of SICStus Prolog 4.3.2 contains the exact wording of current
support terms of the clpb module that ships with the system: “The library module
is a direct port from SICStus Prolog 3. It is not supported by SICS in any way.”.

2 Source: http://www.cs.otago.ac.nz/staffpriv/ok/COSC410/robdd.pl.

http://www.cs.otago.ac.nz/staffpriv/ok/COSC410/robdd.pl

The Boolean Constraint Solver of SWI-Prolog 47

BDDs also occur in publications that introduce or use closely related data struc-
tures [19,20]. Within the logic programming community, important applications
of BDDs arise in the context of probabilistic logic programming [13] and termi-
nation analysis of Prolog programs [3,6].

4 A New CLP(B) System: library(clpb) in SWI-Prolog

We have implemented a new CLP(B) system, freely available in SWI-Prolog [21]
as library(clpb). In this section, we present the design choices, interface pred-
icates and implementation. Subsections 4.5, 4.6 and 4.7 are targeted at imple-
mentors and contributors of Prolog systems and constraint libraries, and assume
familiarity with BDDs and Prolog interfaces for attributed variables.

4.1 Implementation Choices: BDDs, SAT Solvers, Libraries

Before presenting the actual features and implementation of our new system, we
present a brief high-level overview of the various implementation options and
their consequences, and give several reasons that justify the choices we have
made in our implementation.

When implementing a new CLP(B) system, we typically have a clear idea
of what we need from it. Also in our case, the intended use was very clear
from the start: Since 2004, the author has been working on facilitating a port
of Ulrich Neumerkel’s GUPU system [16,17] to SWI-Prolog so that more users
can freely benefit from it. GUPU is an excellent Prolog teaching environment,
and one of its integrated termination analyzers, cTI [3], heavily depends on
the CLP(B) implementation of SICStus Prolog. Already a cursory glance at
the source code of cTI makes clear that it depends on features that only a
BDD-based solver can provide, since cTI goes as far as inspecting the concrete
structure of BDDs in its implementation.

Still, we initially hoped for a shortcut: Our hope was that we could simulate
the behaviour of a BDD-based CLP(B) system by using a simpler (external or
internal) SAT solver. For example, we envisioned that checking for tautologies
could be easily handled by looking for counterexamples of the accumulated con-
straints, and checking consistency of accumulated constraints could be handled
by trying to generate concrete solutions after posting each constraint.

Alas, such a simplistic approach falls short for several reasons. One of those
reasons is efficiency: For example, detecting tautologies (a prominent operation
in cTI) is hard in general, but easy after BDDs have been built. Another, more
fundamental reason is that many use cases of CLP(B) depend on symbolic results
instead of “only” detecting satisfiability, and such results are much more readily
obtained with BDD-based approaches.

As a simple example, consider the integrated circuit shown in Fig. 1 (a).
A Prolog program that describes the circuit with CLP(B) constraints (see
Sect. 4.2) is shown in Fig. 1 (b). No concrete solutions are asked for by that
program: To verify the circuit, we care more about the symbolic expressions

48 M. Triska

that are obtained as residuals goals of this program, and less about concrete
solutions. For example, with the given program, the query ?- xor(x, y, Z).
yields the residual goal sat(Z=:=x#y), expressing Z as a function of the intended
input variables, which are universally quantified. From this, we see at one glance
that the circuit indeed describes the intended Boolean xor operation. When pro-
ducing residual goals, existential quantification is implicitly used by the Prolog
toplevel to project away variables that do not occur in the query.

Fig. 1. (a) Expressing xor (X ⊕ Y = Z) with four nand gates and (b) describing the
circuit with CLP(B) constraints. ?- xor(x, y, Z). yields sat(Z=:=x#y).

To efficiently provide such features and others (see also Sect. 4.4), we decided
to base our implementation on BDDs instead of only emulating them.

Having made the decision to implement a BDD-based CLP(B) system, the
next arising question was how to actually use BDDs so that they work in the
context of CLP(B). Even though the excellent implementation description of
an existing BDD-based CLP(B) system [4] was of course available to us, many
unsettled questions still remained, such as: How is an existing BDD changed
after unification of two variables? How do we handle unification of two variables
that reside in different BDDs? How exactly does the notion of universally quan-
tified variables affect all operations on BDDs? How are residual goals produced?
Finally, are there not some subtly misguiding mistakes in the implementation
description, e.g., is a BDD really represented by a ground Prolog term in SICStus
Prolog, or are there not variables also involved?

In the face of so many initially unsettled questions, we anticipated a lot of
prototyping and rewriting in the initial phase of our implementation, which also
turned out to be necessary. To facilitate prototyping, enhance portability, and to
study and answer high-level semantic questions separated from lower-level issues,
we are consciously not hard-wiring our solver with an external BDD package
until semantic aspects (see Sect. 4.7) are settled to provide a more stable basis
for low-level changes. Therefore, we have created a new high-level Prolog imple-
mentation of BDDs that forms the basis of our new CLP(B) system.

We consider the availability of a completely free CLP(B) system where the
above questions are answered in the form of an executable specification an inte-
gral part of our contribution, since it also shows the places where, if at all,
external BDD libraries can be most meaningfully plugged in.

The Boolean Constraint Solver of SWI-Prolog 49

4.2 Syntax of Boolean Expressions

We have strived for compatibility with SICStus Prolog and provide the same
syntax of Boolean expressions. Table 1 shows the syntax of all Boolean expres-
sions that are available in both SICStus and SWI-Prolog. Universally quantified
variables are denoted by Prolog atoms in both systems, and universal quantifiers
appear implicitly in front of the entire expression. Atoms are useful for denot-
ing input variables: In residual goals, intended output variables are expressed
as functions of input variables. The expression card(Is,Exprs) is true iff the
number of true expressions in the list Exprs is a member of the list Is of integers
and integer ranges of the form From-To.

In addition to the Boolean expressions shown in Table 1, we have also chosen
to support two new Boolean expressions. These new expressions are shown in
Table 2. They denote, respectively, the disjunction and conjunction of all Boolean
expressions in a list. We have found this syntax extension to be very useful in
many practical applications, and encourage their support in other CLP(B) sys-
tems. This syntax was kindly suggested to us by Gernot Salzer.

Table 1. Syntax of Boolean expressions available in both SICStus and SWI

MeaningExpression

0, 1 false, true
variable unknown truth value
atom universally quantified variable

~Expr logical not
Expr + Expr logical or
Expr * Expr logical and
Expr # Expr exclusive or
Var ^ Expr existential quantification

Expr =:= Expr equality
Expr =\= Expr disequality (same as #)
Expr =< Expr less or equal (implication)
Expr >= Expr greater or equal
Expr < Expr less than
Expr > Expr greater than

card(Is,Exprs) see description in text

Table 2. New and useful Boolean expressions in SWI-Prolog

Expression Meaning

+(Exprs) disjunction of list Exprs of expressions

*(Exprs) conjunction of list Exprs of expressions

50 M. Triska

4.3 Interface Predicates of library(clpb)

Regarding interface predicates of our system, we have again strived primarily
for compatibility with SICStus Prolog, and all CLP(B) predicates provided by
SICStus Prolog are also available in SWI-Prolog with the same semantics. In
particular, the interface predicates available in both systems are:

sat(+Expr): True iff the Boolean expression Expr is satisfiable.
taut(+Expr, -T): Succeeds with T=0 if Expr cannot be satisfied, and with

T=1 if T is a tautology with respect to the stated constraints. Otherwise,
it fails.

labeling(+Vs): Assigns a Boolean value to each variable in the list Vs in
such a way that all stated constraints are satisfied.

4.4 New Interface Predicates

BDDs have many important virtues that can be easily made available in a BDD-
based CLP(B) system. The core idea of efficient algorithms on BDDs is often to
combine the solutions for the two children of every BDD node in order to obtain
a solution for the parent node.

In addition to the interface predicates presented in the previous section, we
have implemented three new predicates that are not yet available in SICStus
Prolog:

sat count(+Expr, -N): N is the number of different assignments of truth
values to the variables in the Boolean expression Expr, such that Expr is
true and all posted constraints are satisfiable.

random labeling(+Seed, +Vs): Assigns a Boolean value to each variable in
the list Vs in such a way that all stated constraints are satisfied, and each
solution is equally likely, using random seed Seed and committing to the
first solution.

weighted maximum(+Weights, +Vs, -Maximum): Assigns 0 and 1 to the vari-
ables in Vs such that all stated constraints are satisfied, and Maximum is
the maximum of

∑
wivi over all admissible assignments. On backtracking,

all admissible assignments that attain the optimum are generated.

As we show in the following section, these predicates are of great value in
many applications, and we encourage their support in other CLP(B) systems
based on BDDs. This is because these predicates are very easy to implement
with BDD-based approaches, and omitting them deprives users of these benefits,
unnecessarily.

Using the new +/1 syntax to express the disjunction of Boolean expressions in
a list, we also suggest the new idiom sat count(+[1|Vs], N) to count the num-
ber of assignments of truth values to variables in Vs that satisfy all constraints
that are posted so far, without further constraining the set of solutions.

The Boolean Constraint Solver of SWI-Prolog 51

4.5 Implementation

We briefly outline the underlying ideas of our implementation. Perhaps most
strikingly, our library is written entirely in Prolog. This is a deliberate design
decision, facilitating rapid prototyping and portability. To the best of our knowl-
edge, ours is the first BDD-based CLP(B) system that is freely available. Our
library comprises about 1, 700 LOC, including documentation and comments.

Internally, we are using the following representation, using attributed vari-
ables as in hProlog [7]: Each CLP(B) variable belongs to exactly one BDD. Each
CLP(B) variable gets an attribute of the form index root(Index,Root), where
Index is the variable’s unique integer index, and Root is the root of the BDD
that the variable belongs to.

Each CLP(B) variable is also equipped with an association table that helps us
keep the BDD reduced. The association table of each variable must be rebuilt on
occasion to remove nodes that are no longer reachable. We rebuild the association
tables of involved variables after BDDs are merged to build a new root. This
only serves to reclaim memory: Keeping a node in a local table even when it no
longer occurs in any BDD does not affect the solver’s correctness.

A root is a logical variable with a single attribute, a pair of the form Sat-BDD,
where Sat is the Boolean expression (in original form) that corresponds to BDD.
Sat is necessary to rebuild the BDD after variable aliasing, and to project all
remaining constraints to a list of sat/1 goals.

Finally, a BDD is either: (1) The integers 0 or 1, denoting false and true,
respectively, or (2) a node of the form node(ID,Var,Low,High,Aux), where:

– ID is the node’s unique integer ID
– Var is the node’s branching variable
– Low and High are the node’s low (Var = 0) and high (Var = 1) children
– Aux is a free variable, one for each node, that can be used to attach attributes

and store intermediate results.

This representation means that we are using (assuming SWI-Prolog and
machine-sized integers) 48 bytes per node on 64-bit systems, and we need to
store this roughly twice because each node is also represented in the association
table of its branching variable.

In addition to this considerable memory overhead, our choice to use associa-
tion tables incurs a logarithmic runtime overhead compared to hashing. On the
plus side, association tables scale very predictably and do not require any ad hoc
considerations and complex treatment of edge-cases.

Figure 2 shows an essential predicate of our library: It is called make node/4,
and given a branching variable and its two children, it builds (low high key/3)
a unique Key and, depending on whether such a node already exists, either
yields that node, or builds a new node. A unique ID is generated for each new
node by incrementing a global backtrackable variable called $clpb next node.
The predicates lookup node/3 and register node/3 (implementation omitted)
access the branching variable’s association table to fetch or store a node. In

52 M. Triska

Fig. 2. make node/4, the essential predicate for creating a BDD node

addition, if the two children are identical, then the resulting node is simply that
child itself. Thus, make node/4 automatically keeps the BDD reduced.

Many of the implemented algorithms use memoization to store intermediate
results for later use. We are using DCGs and semicontext3 notation in several
internal predicates to implicitly thread through stored results. We refer inter-
ested readers to the source code of our library for the fully detailed picture of
the implementation.

4.6 Consistency Notions in the Context of CLP(B)

Completeness of our CLP(B) system follows from the well-known fact that, for
fixed variable order and function, the corresponding BDD is canonical. Hence,
as long as all BDDs that represent the posted constraints are different from 0,
there is at least one admissible solution.

In addition, the well-known CLP(FD) notion of domain consistency is of
course equally applicable to CLP(B): For example, when posting the constraint
sat(X*Y + ~X*Y), then a domain consistent CLP(B) solver must yield the uni-
fication Y = 1. We implement domain consistency in our CLP(B) system, and,
although this is not documented and does not directly follow from its implemen-
tation description, library(clpb) in SICStus Prolog seems to implement this
as well.

In fact, SICStus Prolog goes even beyond domain consistency, and seems to
implement an undocumented additional property that, for lack of an established
terminology (see also [10]), we shall call aliasing consistency. By this, we mean
that if taut(X =:= Y, 1) holds for any two variables X and Y, then X = Y is
posted. For example, when posting sat((A#B)*(A#C)), then an aliasing consis-
tent CLP(B) solver must yield the unification B = C.

We implement both consistency notions as follows: First, in a single global
sweep of the BDD, we collect all variables that are not skipped in any branch
of the BDD that leads to 1. It is easy to see that if a variable is skipped in a
branch that leads to 1, then it can assume both possible truth values, and cannot
be involved in any aliasing. The collected variables are further classified into
(1) variables that allow only a single truth value, (2) further-branching variables

3 A Prolog DCG primer is available at http://www.metalevel.at/dcg.html.

http://www.metalevel.at/dcg.html

The Boolean Constraint Solver of SWI-Prolog 53

(i.e., variables that do not have 1 as any child in any node) and (3) negative-
decisive variables (i.e., variables that have 0 as one child in all nodes). It is
easy to see that any potential aliasing must involve one further-branching and
one negative-decisive variable, and in additional partial sweeps of the BDD, we
determine all unifications that hold among the collected variables.

We have tested the impact of enabling domain and aliasing consistency on a
range of benchmarks, and generally found the impact to be very acceptable and
sometimes even improving the running time. For this reason, we have opted to
enable both consistency notions and benefit from their algebraic properties.

4.7 Unification of Attributed Variables

At the time of this writing, there is no consensus across different Prolog systems
regarding the interface predicates for attributed variables. Two different inter-
faces used by major implementations are, respectively, the one used by SICStus
Prolog, and the one used by hProlog and SWI-Prolog. The most striking differ-
ence between these two interfaces (see [7]) is that in SICStus Prolog, unifications
are undone before verify attributes/3 is called, whereas for example in SWI-
Prolog, attr unify hook/2 is called with the unification already in place.

Using our implementation experience, we strongly endorse the SICStus inter-
face and its greater generality. We justify this with three different arguments:

(1) The interface used in SWI-Prolog is not general enough to express what
we need. For example, according to the documentation of SICStus Prolog, the
unification P = Q of two CLP(B) expressions P and Q is equivalent to post-
ing sat(P =:= Q). In SWI-Prolog, we cannot fully implement this semantics,
because at the time the unification hook is called, the unification has already
taken place and may have created a cyclic term instead of retaining variables.

(2) The interface used in SWI-Prolog makes it extremely hard to reason
about simultaneous unifications. Critically, two variables may be instantiated
simultaneously, using for example [X,Y] = [0,1]. This may not pose any prob-
lem when admissible unifications can be determined from ground values alone,
but it is a severe limitation when additional structures such as decision diagrams,
typically stored in attributes, are required. This is because when the unification
hook is called for X, then Y is no longer a variable and its previous attributes
cannot be directly accessed.

(3) The interface used in SWI-Prolog makes reasoning about unifications
extremely error-prone. For example, when unifying two CLP(B) variables, the
unification hook is called with the two variables already aliased and in fact
identical. In our experience, failure to take possible aliasings into account is a
common mistake when working with the SWI interface, and it would improve
ease of use considerably if, as in the SICStus interface, unifications were undone
before the unification hook is invoked by SWI-Prolog.

It is clear that the SICStus interface has some performance impact, because
unifications have to be undone. In our view, this small disadvantage is completely
negligible when taking into account the increased generality and ease of use of
the SICStus interface.

54 M. Triska

5 New Applications of library(clpb)

In this section, we present new applications of our CLP(B) system to illus-
trate the value of the new interface predicates that we provide. Importantly,
these applications all rely exclusively on the CLP(B) interface predicates that
are explained in the previous section. In other words, they do not use any low-
level primitives that directly manipulate a BDD. Instead, everything is expressed
as sat/1 constraints, and the new interface predicates are used to count solu-
tions and select solutions etc. Similar functionality is also available in many
BDD packages. However, a CLP(B) system is much more convenient to use than
a low-level library, and different formulations of the same problem can be tried
more easily.

5.1 Counting Solutions

We now apply the new interface predicates of our CLP(B) solver to solve a
problem that asks for the number of solutions. It is one of the problems posed
in the well known set of challenging mathematical tasks called Project Euler.4

Specifically, it is:

Project Euler Problem 172: How many 18-digit numbers n (without lead-
ing zeros) are there such that no digit occurs more than three times in n?

One way to solve this problem is to find a recursive formula that breaks
the problems into smaller parts, and to use memoization to make computed
intermediate results quickly available for later reference.

However, in our experience, such a way to solve this problem is comparatively
tedious and error-prone: It is easy to overlook a case, or to accidentally count
some combinations multiple times. Thus, it is hard to be absolutely certain about
the correctness of a recursive formula in such cases.

In contrast, the problem has a completely straight-forward and short formu-
lation using CLP(B) constraints: We can use Boolean variables vi (0 ≤ i ≤ 9) to
represent a single digit d, where vi = 1 indicates that d = i. This method nat-
urally scales to multiple digits by using further sets of variables for subsequent
digits. Figure 3 shows how to indicate the number 2016 in this way, where each
row corresponds to one digit.

Fig. 3. Representing 2016 with a Boolean 4 × 10 matrix, using one row per digit

4 See http://projecteuler.net for more information.

http://projecteuler.net

The Boolean Constraint Solver of SWI-Prolog 55

Obviously, exactly one of vi must be 1 to specify the unique value of a single
digit. Thus, if vi are represented as a Prolog list Ls of 10 Boolean variables, we
state sat(card([1],Ls)) in terms of CLP(B).

The main constraint of the puzzle is readily expressed over each column of
the resulting matrix, using sat(card([0,1,2,3],Ls)) to constrain each digit
to occur at most 3 times.

Figure 4 shows the complete Prolog code to solve the problem with CLP(B).
The query euler 172(N) yields N = 227485267000992000 after about 7 hours of
computation time, using an Intel Core i7 CPU (2.67 GHz) and about 20 GB RAM
with SWI 7.3.7.

Fig. 4. Using CLP(B) constraints to solve Project Euler Problem 172

In contrast to the recursive version and complex combinatorial considera-
tions, there is hardly any room for errors with such a simple CLP(B) model.

5.2 Random Solutions

In our second example, we apply CLP(B) constraints to model an exact cover
problem. The task is to cover an N × N chessboard with triominoes, which are
rookwise connected pieces with three cells.

We use the following CLP(B) encoding: Each cell of the chessboard corre-
sponds to a column of a matrix (bij), and each possible placement of a single
triomino corresponds to one row. bij = 1 means that placing a triomino accord-
ing to row i covers cell j. For each row, we introduce a Boolean variable xk,
where xk = 1 means that we choose to place a triomino according to row i.
An exact cover of the chessboard means that for each set Sl of Boolean vari-
ables, Sl = {xk | bkl = 1}, exactly one of the variables in Sl is equal to 1, i.e.,
sat(card([1],list(Sl))) holds, with list(Sl) denoting a Prolog list correspond-
ing to Sl.

In Fig. 5, subfigures (a) and (b) illustrate a common phenomenon when
using CLP(FD) constraints to solve such tasks: Successive solutions are often
very much alike. Simply adding randomization to labeling/2 is in general not
sufficient to guarantee random solutions due to potential clustering of solu-
tions. Subfigures (c) and (d) illustrate that solutions can be selected with

56 M. Triska

uniform probability with CLP(B) constraints, using the new interface predi-
cate random labeling/2.

Fig. 5. Exact covers of a 6 × 6 chessboard. (a) and (b) are successive solutions found
with CLP(FD) constraints. (c) and (d) are found with CLP(B), using random seeds 0
and 1, respectively.

5.3 Weighted Solutions

In the third example, we use the new interface predicate weighted maximum/3
to maximize the number of Boolean variables that are true.

The example we use to illustrate this concept is a simple matchsticks puzzle.
The initial configuration is shown in Fig. 6 (a), and the task is to keep as many
matchsticks as possible in place while at the same time letting no subsquares
remain. For example, in Fig. 6 (b), exactly 7 subsquares remain, including the
4 × 4 outer square. Figure 6 (c) shows an admissible solution of this task.

Fig. 6. (a) A grid of matchsticks, (b) Exactly 7 subsquares remaining and (c) Removing
the minimum number of matchsticks so that no subsquares remain

Such puzzles are readily formulated with CLP(B) constraints, using one
Boolean variable to indicate whether or not a matchstick is placed at a par-
ticular position. Our new interface predicates make it easy to find and count
solutions, and also to maximize or minimize the number of used matchsticks.

CLP(B) constraints are not limited to very small puzzles and toy examples
though: For tasks of suitable structure, CLP(B) constraints scale quite well and
let us solve tasks that are hard to solve by other means.

The Boolean Constraint Solver of SWI-Prolog 57

In the next example (taken from [12]), we use CLP(B) constraints to express
maximal independent sets of graphs: Boolean variables bi denote whether node i
is in the set. In addition, each node i is assigned a weight wi. The task is to find
a maximal independent set that maximizes the total weight

∑
biwi. For con-

creteness, let us consider the cycle graph C100, and assign each node i the
weight wi = (−1)ν(i), where ν(i) is the number of ones in the binary repre-
sentation of i. The grey nodes in Fig. 7 show a maximal independent set of C100

with maximum total weight. In the figure, nodes with negative weight are drawn
as squares, and nodes with positive weight are drawn as circles.

Fig. 7. Maximal independent set of C100 with maximum weight (= 28)

CLP(B) constraints yield the optimum (28) within a few seconds in this
example. Moreover, we can use our new interface predicates to compute other
interesting facts. For example, C100 has exactly 792,070,839,848,372,253,127
independent sets, and exactly 1,630,580,875,002 maximal independent sets.

6 Benchmark Results

We now use several benchmarks to compare the performance of our system with
the CLP(B) library that ships with SICStus Prolog. We are using SWI-Prolog
version 7.3.7, and SICStus Prolog version 4.3.2. All programs are run on an Intel
Core i7 CPU (2.67 GHz) with 48 GB RAM, using Debian 8.1.

The benchmarks comprise examples5 from the literature that are also used
in [4] and other publications:

pigeon8x9: The task of attempting to place 9 pigeons into 8 holes in such a
way that each hole contains at most one pigeon. Clearly, this problem is
unsatisfiable.

queens N : Placing N queens on an N × N chessboard in such a way that no
queen is under attack.

schur N : Distribute the numbers 1, . . . , N into 3 sum-free sets. A set S is
sum-free iff i, j ∈ S implies i + j �∈ S. This is satisfiable for all N up to
and including the Schur number S(3) = 13, and unsatisfiable for N > 13.

5 The code of all benchmarks is available at http://www.metalevel.at/clpb-bench.

http://www.metalevel.at/clpb-bench

58 M. Triska

triominoes N : Triomino cover (see Sect. 5.2) of an N × N chessboard.

We benchmark each example in three different ways, and the results are sum-
marized in Table 3: First, we build a single conjunction C of all clauses and
post sat(C). The columns titled sat show the timing results (in seconds) of this
call for SWI and SICStus, respectively. Then, we build a list Cs of clauses and
post maplist(sat, Cs). The timing result of this is shown in the sats columns.
Finally, we invoke taut(C,), and the timing results of this call are shown in
the taut columns.

Table 3. Running times (in seconds) of different benchmarks

name vars clauses SWI 7.3.7 SICStus 4.3.2

sat sats taut sat sats taut

pigeon8x9 72 17 1.2 1.2 1.2 0.07 0.01 0.05

queens6 36 302 12.7 12.8 12.9 0.01 2.7 0.01

queens7 49 490 65.7 65.9 67.3 3.62 22166 0.03

schur13 39 139 10.6 10.7 10.7 0.31 2.8 0.19

schur14 42 161 13.1 13.2 13.3 0.57 7.63 0.41

triominoes5 94 25 3.6 3.7 3.7 0.01 – 0.02

triominoes6 148 36 22.6 22.7 23.3 – – 0.08

There are several things worth pointing out about these results: First, it is
evident that the CLP(B) solver of SICStus Prolog often vastly outperforms our
library. We can safely expect the SICStus library to be at least two orders of
magnitude faster than ours on many benchmarks. In part, this huge difference
in performance may certainly be attributed to the fact that SWI-Prolog itself is
already more than three times slower than SICStus Prolog on benchmarks that
are in some sense deemed to be representative of many applications. Neng-Fa
Zhou, the author of B-Prolog, kindly maintains a collection of these results at
http://www.picat-lang.org/bprolog/performance.htm. Since our library is writ-
ten entirely in Prolog, it strongly depends on the performance of the underlying
Prolog system.

Second, there is a large relative difference between the sat and sats columns
within SICStus Prolog. In the queens7 case, it is particularly pronounced.
In SWI-Prolog, there is virtually no difference between these variants, because
we always implicitly post individual sat/1 constraints if the given formula is a
compound term with principal functor */2, i.e., a conjunction.

Third, some of the benchmarks cannot be solved at all with SICStus Prolog
on this machine: We use “–” to denote an insufficient memory exception.

http://www.picat-lang.org/bprolog/performance.htm

The Boolean Constraint Solver of SWI-Prolog 59

7 CLP(B) with Other Types of Decision Diagrams

BDDs are not the only kind of decision diagrams that are practically useful, and
the question arises whether other types of decision diagrams are not at least
equally suitable as the basis of CLP(B) systems.

To collect preliminary experiences with different implementation variants,
we have created a variant6 of library(clpb) that is based on Zero-suppressed
Binary Decision Diagrams (ZDDs). The key idea of ZDDs [15] is to assign a
slightly different meaning to the diagram: In ZDDs, a branch leading to 1 only
means true if all variables that are skipped in that branch are zero. ZDDs are
therefore especially useful when many variables are zero in solutions.

The ZDD-based variant of library(clpb) does not feature all the function-
ality that the BDD-based version provides. This is due to two main reasons:
The first reason is that, due to the different semantics of the diagrams, a ZDD-
based approach necessitates that all variables be known in advance, at least if we
want to avoid rebuilding all ZDDs every time a new variable occurs. Therefore,
a special library predicate must be called before using the ZDD-based version
in order to “declare” all Boolean variables that appear in the formulation. The
ZDD-based variant is thus not a drop-in replacement of the BDD-based version
that ships with SWI-Prolog.

The second reason is that the shortcomings (see Sect. 4.7) of SWI-Prolog’s
interface predicates for attributed variables are especially severe when ZDDs
are involved. This is because simultaneous unifications, such as [A,B] = [0,1],
significantly complicate the reasoning when deciding whether a variable (still)
occurs in a ZDD. With BDDs, these limitations are a bit less severe, because a
variable that does not occur in a BDD can assume either truth value.

So far, we have collected only very limited experience with ZDDs, in part also
due to the mentioned limitations of SWI-Prolog’s interface predicates. Neverthe-
less, we would like to point out two interesting tasks for which the ZDD-based
variant is very well suited, and hint at planned future developments.

First, we extend the triomono tiling task to a 9 × 12 grid. One solution is
shown in Fig. 8 (a). Project Euler Problem 161 asks for the number of such
tilings. Using the ZDD-based variant, it takes about 13 GB RAM and 2 days of
computation time to construct a ZDD that represents all solutions and compute
the number (which is 20,574,308,184,277,971). Using the BDD-based version of
library(clpb) requires more than 4 times as much memory.

Second, we allow, in addition to triominoes, also monominoes and dominoes,
and cover an 8 × 8 chessboard. Figure 8 (b) shows one solution. With the ZDD-
based variant, 1 GB RAM suffices to compute the number of possible coverings
(there are exactly 92,109,458,286,284,989,468,604 of them). Using BDDs takes
about 10 times as much memory.

Many other interesting applications of ZDDs are described in [12], and we
plan to make many of them accessible in future versions of this library variant.
This may require suitable additional interface predicates.

6 The variant is freely available at http://www.metalevel.at/clpb-zdd.

http://www.metalevel.at/clpb-zdd

60 M. Triska

Fig. 8. (a) Project Euler Problem 161: Covering a 9 × 12 grid with triominoes; (b)
Covering a chessboard with monominoes, dominoes and triominoes

8 Conclusion and Future Work

We have presented the first BDD-based CLP(B) system that is freely available.
It features new interface predicates that allow us to solve new applications with
CLP(B) constraints.

Implementing the system in Prolog has allowed us to prototype many ideas
quickly. The implementation provides a high-level description of all relevant
ideas, and is portable to other Prolog systems that support attributed variables.

We hope that the availability of a free BDD-based CLP(B) system leads
to increased interest in CLP(B) constraints within the Prolog community, and
encourages other vendors to likewise support such libraries.

Ongoing and future work is focused on additional test cases to ensure the
system’s correctness, porting the system to other Prolog systems such as YAP
and SICStus Prolog, and improving performance. Stefan Israelsson Tampe is
currently porting the solver to Guile-log, a Prolog system based on Guile.

Additional interface predicates may be needed to cover further applications
of BDDs and ZDDs. Careful design of these predicates is necessary to provide
sufficient generality without exposing users to low-level details of the library.

Acknowledgments. First and foremost, I thank Ulrich Neumerkel for introducing
me to constraint logic programming and to testing constraint solvers. For their encour-
agement about CLP(B), I thank Nysret Musliu and Fred Mesnard. My gratitude also
goes to Jan Wielemaker for providing a robust and free Prolog system, for his fast
reaction times and much appreciated support when discussing and implementing new
features. I thank Mats Carlsson for the visionary CLP(B) solver of SICStus Prolog and
sending me a complimentary version of his system. For their supremely well-written
documents about BDDs, I thank Donald Knuth and Henrik Reif Andersen. These books
and papers further increased my interest in the subject and were very useful during
development. I also thank the anonymous reviewers for their helpful comments.

With all my heart, I thank my partner Barbara for her love.

References

1. Benhamou, F., Touräıvane, T.: Prolog IV: langage et algorithmes. In: JFPLC, pp.
51–64 (1995)

The Boolean Constraint Solver of SWI-Prolog 61

2. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

3. Burckel, S., Hoarau, S., Mesnard, F., Neumerkel, U.: cTI: Bottom-up termination
inference for logic programs. In: 15. WLP, pp. 123–134 (2000)

4. Carlsson, M.: Boolean Constraints in SICStus Prolog. SICS TR, T91, 09 (1991)
5. Codognet, P., Diaz, D.: A simple and efficient boolean solver for constraint logic

programming. J. Autom. Reason. 17(1), 97–129 (1996)
6. Colin, S., Mesnard, F., Rauzy, A.: Un module Prolog de mu-calcul booléen: une

réalisation par BDD. In: JFPLC 1999, Huitièmes Journées Francophones de Pro-
grammation Logique et Programmation par Contraintes, pp. 23–38 (1999)

7. Demoen, B.: Dynamic attributes, their hProlog implementation, and a first evalu-
ation. Report CW 350, Department of Computer Science, K.U. Leuven, October
2002

8. Diaz, D., Abreu, S., Codognet, P.: On the implementation of GNU Prolog. TPLP
12(1–2), 253–282 (2012)

9. Dincbas, M., Hentenryck, P.V., Simonis, H., Aggoun, A., Graf, T., Berthier, F.:
The constraint logic programming language CHIP. In: FGCS, pp. 693–702 (1988)

10. Hooker, J.N.: Projection, consistency, and George Boole. Constraints 21(1), 59–76
(2016). http://dx.doi.org/10.1007/s10601-015-9201-2

11. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: POPL, pp.111–119
(1987)

12. Knuth, D.E.: The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise
Tricks & Techniques; Binary Decision Diagrams, 12th edn. Addison-Wesley Pro-
fessional, Reading, Massachusetts (2009)

13. Mantadelis, T., Rocha, R., Kimmig, A., Janssens, G.: Preprocessing boolean for-
mulae for BDDs in a probabilistic context. In: Janhunen, T., Niemelä, I. (eds.)
JELIA 2010. LNCS, vol. 6341, pp. 260–272. Springer, Heidelberg (2010)

14. Marques-Silva, J.: Algebraic Simplification Techniques for Propositional Satisfia-
bility. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, p. 537. Springer, Heidelberg
(2000)

15. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: Design Automation Conference (DAC), pp. 272–277 (1993)

16. Neumerkel, U.: Teaching Prolog and CLP (tutorial). In: ICLP (1997)
17. Neumerkel, U., Kral, S.: Declarative program development in Prolog with GUPU.

In: Proceedings of the 12th International Workshop on Logic Programming Envi-
ronments, WLPE, pp. 77–86 (2002)

18. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
In: Second DIMACS Implementation Challenge (1993)

19. Tarau, P.: Pairing functions, boolean evaluation and binary decision diagrams.
CoRR abs/0808.0555 (2008). arxiv.org/abs/0808.0555

20. Tarau, P., Luderman, B.: Boolean evaluation with a pairing and unpairing function.
In: SYNASC 2012, pp. 384–390 (2012)

21. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. TPLP 12(1–2),
67–96 (2012)

22. Zhang, H.: SATO: an efficient propositional prover. In: McCune, W. (ed.) CADE
1997. LNCS, vol. 1249. Springer, Heidelberg (1997)

http://dx.doi.org/10.1007/s10601-015-9201-2
http://arxiv.org/abs/org/abs/0808.0555

Probabilistic Inference by Program
Transformation in Hakaru (System Description)

Praveen Narayanan1(B), Jacques Carette2, Wren Romano1,
Chung-chieh Shan1, and Robert Zinkov1

1 Indiana University, Bloomington, USA
{pravnar,wrengr,ccshan,zinkov}@indiana.edu

2 McMaster University, Hamilton, Canada
carette@mcmaster.ca

Abstract. We present Hakaru, a new probabilistic programming sys-
tem that allows composable reuse of distributions, queries, and infer-
ence algorithms, all expressed in a single language of measures. The
system implements two automatic and semantics-preserving program
transformations—disintegration, which calculates conditional distribu-
tions, and simplification, which subsumes exact inference by computer
algebra. We show how these features work together by describing the
ideal workflow of a Hakaru user on two small problems. We highlight our
composition of transformations and types in design and implementation.

1 Introduction

To perform probabilistic inference is to answer a query about a probability dis-
tribution. The longstanding enterprise of probabilistic programming aims to per-
form probabilistic inference in a modular way, so that the distribution, query,
and inference algorithm can be separately reused, composed, and modified.

The modularity we envision is motivated by the typical machine-learning
paper published today. Often the first section presents a problem, the second
section presents a distribution and query, and the third section presents an infer-
ence algorithm that answers the particular query for the particular distribution.
Just as the second section composes its content using words such as “mixture”
and “condition”, the third section composes its content using words such as
“proposal” and “integrate out”. From this description using English and math,
a person skilled in the art of probabilistic inference can write the specialized
code that reproduces the results of the paper.

We aim to automate this code-generation task, so that changes to programs
that perform probabilistic inference become easier to try out and carry out.

Thanks to Mike Kucera and Natalie Perna for helping to develop Hakaru.
This research was supported by DARPA grant FA8750-14-2-0007, NSF grant CNS-

0723054, Lilly Endowment, Inc. (through its support for the Indiana University
Pervasive Technology Institute), and the Indiana METACyt Initiative. The Indiana
METACyt Initiative at IU is also supported in part by Lilly Endowment, Inc.

c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 62–79, 2016.
DOI: 10.1007/978-3-319-29604-3 5

Probabilistic Inference by Program Transformation in Hakaru 63

We focus on making inference compositional—that is, on making the third
section of the typical machine-learning paper executable—because less is known
about it.

Contributions. Hakaru is a new, proof-of-concept probabilistic programming sys-
tem that achieves unprecedented modularity by two means:

1. a language of measures that represents distributions and queries as well as
inference algorithms;

2. semantics-preserving program transformations based on computer algebra.

The two main transformations are

1. disintegration, which calculates conditional distributions and probability den-
sities, and

2. simplification, which subsumes exact inference and supports approximate
inference, by making use of Maple.

All our transformations take input and produce output in the same language, so
we can compose them to express inference algorithms.

This paper shows how these features work together by describing the ideal
workflow of a Hakaru user on two small problems.

2 Inference Example on a Discrete Model

In Pearl’s classic textbook on probabilistic reasoning [9], Example 1 (page 35)
begins as follows:

Imagine being awakened one night by the shrill sound of your burglar
alarm. What is your degree of belief that a burglary attempt has taken
place?

The workflow of a Hakaru user is that of Bayesian inference:

1. Model the world as a prior probability distribution on what is observed
(alarm or not) and what is to be inferred (burglary or not). Hakaru defines
a language of distributions that formalizes this modeling.

2. Turn the prior into a conditional distribution, which is a function that maps
what is observed to a distribution on what is to be inferred. Hakaru provides
transformations that automate this conditioning.

3. Apply the function to what is actually observed (true, the alarm did sound)
to get the posterior distribution on what is to be inferred (burglary or not,
given that the alarm did sound). Hakaru can show the distribution not only
by generating a stream of samples, but also as a term in the language.

64 P. Narayanan et al.

2.1 Modeling

We start with an example of step 1. The prior distribution given by Pearl can
be expressed as the following Hakaru term:

model :: (Mochastic repr) => repr (HMeasure (HPair HBool HBool))
model = bern 0.0001 `bind` \burglary ->

bern (if_ burglary 0.95 0.01) `bind` \alarm ->
dirac (pair alarm burglary)

Hakaru is a language embedded in Haskell in “finally tagless” form [1], so the
code above is actually parsed and type-checked by the Haskell compiler GHC.
In the type signature, (Mochastic repr) => repr is due to the finally-tagless
embedding, HBool is Hakaru’s boolean type, HPair is Hakaru’s product type
constructor, and HMeasure turns a type of values into a type of distributions.
The type constructor HMeasure is a monad [3,10], whose unit and bind opera-
tions are spelled dirac and bind. In this embedding style the types of dirac
and bind do not unify with Haskell’s return and >>=. Although we could use
-XRebindableSyntax to obtain do notation, we avoid doing so in this work.

As usual, the monad HMeasure is made interesting by the primitive operations
Hakaru provides for it. In the model above, bern 0.0001 is the distribution on
booleans that is true 0.01% of the time and false the other 99.99% of the
time. Its type is (Mochastic repr) => repr (HMeasure HBool). The boolean
randomly produced by this distribution is fed to Hakaru’s if , which models
how burglary influences alarm.

Besides reading it, another way to understand this model is to run it as a
sampler. Each run produces a pair of booleans: runSample model usually prints
Just (False,False). The sampler chooses burglary, the second component of
the pair, followed by alarm, the first component.

2.2 Conditioning

To answer Pearl’s question, we should focus on the portion of the distribution
where alarm is true. We could run model over and over as a sampler and collect
only the samples where alarm is true, but the vast majority of samples would
have alarm be false, so it would take a long time to gather enough samples
to answer Pearl’s question with any accuracy. Instead, we move to step 2 of
our workflow. We apply Hakaru’s disintegrate transformation to obtain the
conditional distribution of burglary given alarm:

conditional :: (Mochastic repr, Lambda repr)
=> repr (HBool :-> HMeasure HBool)

conditional = disintegrate model

In general, Hakaru’s disintegrate transformation turns a Hakaru program of
type HMeasure (HPair a b) into a Hakaru function (:->) from a to HMeasure b.

Probabilistic Inference by Program Transformation in Hakaru 65

The particular function produced in this case is shown in Fig. 1. This is produced
by Hakaru’s pretty-printer.

The generated code is large and full of reducible expressions, such as

superpose [(1, weight (19/20) $
weight (1/10000) $
dirac true),

(1, weight (1/100) $
superpose [])]

To explain what this expression means and how it can be reduced, we need
to describe the semantics of Hakaru.

Fig. 1. The output of disintegrating the burglary model

66 P. Narayanan et al.

A Hakaru program of HMeasure type can be understood in two ways: as an
importance sampler and as a measure. An importance sampler is a random pro-
cedure that produces an outcome along with a weight (or fails, which is like pro-
ducing the weight 0). A weight is a non-negative real number. For example, dirac
true produces the outcome true with the weight 1. In general, dirac always
produces the weight 1, whereas the weight produced by m `bind` \x -> k x
is the product of the weights produced by m and k x. The weight produced by
weight (1/10000) $ m is 1/10000 times the weight produced by m. A typical
use of an importance sampler is to run it repeatedly while maintaining a running
weighted average of some function of the outcome.

The syntax of superpose in Hakaru is that it takes a list of weight-measure
pairs [(w1,m1), . . . , (wn,mn)] and produces a measure. What a sampler built
with superpose does is to choose one of the measures mi, with probability
proportional to the weights wi, and sample from it. The weight produced by
superpose is

∑n
i=1 wi times the weight produced by mi. If the list is empty

(that is, n = 0) then superpose simply fails. Hence, the fragment displayed
above produces the outcome true with weight (1 + 1) · (19/20) · (1/10000) half
of the time, and fails the other half of the time.

This sampler is not preserved when we simplify a Hakaru expression. What
is preserved is the measure. A measure is like a probability distribution, but it
doesn’t necessarily sum to 1, thanks to weight and superpose in the language.
The measure denoted by weight (1/10000) $ m is the measure denoted by m
scaled by 1/10000. And superpose represents a linear combination of measures,
so superpose [] denotes the zero measure.

The following equations on measures are valid, like in linear algebra:

weight w $ superpose [] = superpose []
weight w $ weight w' $ m = weight (w * w') $ m
superpose [(w, m), (w', m)] = weight (w + w') $ m
superpose [(w, m), (w', superpose [])] = weight w $ m

Consequently, the fragment displayed above denotes the same measure as the
simpler expression: weight ((19/20) * (1/10000)) $ dirac true.

This latter program as a sampler always produces the outcome true with
weight (19/20) · (1/10000). This behavior is not the same but better, because a
running weighted average would converge to the same result more quickly when
we don’t throw away half of our samples.

Instead of simplifying Fig. 1 by hand, we can apply Hakaru’s simplify
transformation:

simplified = simplify conditional

The result produced by Hakaru’s pretty-printer is:

lam $ \x1 ->

if_ x1

(superpose [(19/200000, dirac true), (9999/1000000, dirac false)])

(superpose [(1/200000, dirac true), (989901/1000000, dirac false)])

Probabilistic Inference by Program Transformation in Hakaru 67

This result both runs more efficiently (because again, it fails less often) and
reads more easily (because again, it is shorter). It is a Hakaru function (con-
structed using lam) that takes the observed alarm as input and returns a measure
on burglary. In this instance, Hakaru performed linear-algebra-like reductions
with the help of the computer algebra system Maple, and produced a compact
representation of the conditional distribution. In this sense, simplification sub-
sumes exact inference. We can easily read off that, if we apply this function to
true in step 3 of our workflow, then we would get a posterior distribution that is
19/200000 parts burglary and 9999/1000000 parts no burglary. (These numbers
do not sum to 1, nor do we expect them to.)

2.3 Sampling

The simplified posterior is a Hakaru program and it can be run as a sampler:
runSample (app simplified true) usually prints Just False.

3 Inference Example on a Continuous Model

We now turn to an example that involves random real numbers. Imagine the
task of building thermometers to measure room temperatures. To build a reliable
thermometer we would like to calibrate two attributes of the device. The first
attribute is the amount of temperature noise—how much the room temperature
fluctuates over time. The second attribute is the amount of measurement noise—
how much the thermometer measures the same actual temperature as a different
value each time it is used because of its imperfections. Calibrating a thermometer
would mean approximating these attributes as best as possible. We can then
build a thermometer that corrects its measurements with accurate knowledge of
the temperature noise and measurement noise.

3.1 Modeling

To perform our calibration task, we would like to make several experimental mea-
surements and then infer the noises from these measurements. We need step 2
of our workflow to produce a conditional distribution on noises given measure-
ments. So we begin in step 1 by defining a distribution on pairs of measurements
and noises:

thermometer :: (Mochastic repr)
=> repr (HMeasure (HPair (HPair HReal HReal)

(HPair HProb HProb)))
thermometer =

liftM unsafeProb (uniform 3 8) `bind` \noiseT ->
liftM unsafeProb (uniform 1 4) `bind` \noiseM ->
normal 21 noiseT `bind` \t1 ->
normal t1 noiseM `bind` \m1 ->

68 P. Narayanan et al.

normal t1 noiseT `bind` \t2 ->
normal t2 noiseM `bind` \m2 ->
dirac (pair (pair m1 m2) (pair noiseT noiseM))

The type of thermometer shows it is a measure on pairs. The first component
of the pair has type HPair HReal HReal. That is, we take only two measure-
ments in this simplistic model. To determine the noises accurately, we should use
thousands of measurements, not just two. That is why we need to add arrays to
Hakaru. In order to handle arrays, the simplification and disintegration program
transformations would have to be modified, which is the focus of ongoing work.
Here we describe a system without container data-types and show its use on
examples having a low number of dimensions.

The second component is a pair of non-negative reals, which are denoted by
the HProb type in Hakaru. The HProb type is like HReal but records the knowl-
edge that the number is non-negative. This knowledge is useful in at least two
ways. First, knowing that noiseT is positive helps the simplification transforma-
tion produce noiseT instead of sqrt(noiseT^2). Second, during sampling an
HProb number is typically a probability and represented by its log in floating
point. This alleviates the common probabilistic computation problem of under-
flow errors in extremely small probabilities.

In thermometer we express prior beliefs about how noises are distributed,
which are seen in the calls to uniform. Often such beliefs about distributions
(and their parameters such as 3, 8 and 1, 4 above) come from domain knowledge.
Furthermore, we model temperatures and measurements as being Gaussian dis-
tributed with some noisy perturbations. This is expressed in Hakaru by normal:

normal :: (Mochastic repr) => repr HReal -> repr HProb -> repr (HMeasure HReal)

normal mu sd = lebesgue `bind` \x ->

superpose [(exp_ (- (x - mu)^2

/ fromProb (2 * pow_ sd 2))

/ sd / sqrt_ (2 * pi_)

, dirac x)]

The first argument to normal is the mean of the Gaussian distribution. The
second argument is the standard deviation, which must be non-negative, as the
type HProb above shows. Actually, it has to be positive. The term lebesgue
denotes the Lebesgue measure on the reals.

Besides expressing these distributions, we model the network of influences
among the random variables. First we draw the candidate noise values noiseT
and noiseM from their respective distributions. We want to use these noises as
standard deviations for the normal distributions. However, the uniform distri-
bution is over HReal values since uniform distributions can, in general, produce
negative real numbers. But, because the parameters to the uniform distributions
are positive, we know that values drawn from them must in fact be positive.
Thus, we use the unsafeProb construct (which is safe in this case) to produce
the HProb-typed noiseT and noiseM.

The initial room temperature t1 is centered around 21◦C, and the later tem-
perature t2 is centered around t1. Both are drawn with standard deviation

Probabilistic Inference by Program Transformation in Hakaru 69

noiseT. We can think of this as a random walk starting at 21◦C. Finally, mea-
surements m1 and m2 are taken of each temperature, with standard deviation
noiseM. These dependencies amount to a hidden Markov model, more specifi-
cally a linear dynamic model in one dimension.

3.2 Conditioning

For our inference goal we need to obtain a conditional distribution on the noises
given the measurements. We can get it by applying the disintegration transfor-
mation, as in Sect. 2. A conditional distribution on noises given measurements is
a function from measurements to a distribution on noises. This is precisely what
the function type of thermConditional says.

thermConditional :: (Mochastic repr, Lambda repr)
=> repr (HPair HReal HReal

:-> HMeasure (HPair HProb HProb))
thermConditional = disintegrate thermometer

Hakaru’s pretty-printer, used on thermConditional, produces Fig. 2. Of
course, this expression is different from thermometer. The measurements m1
and m2, which used to be drawn from normals, are now the input variables x2
and x3 (bound by deconstructing the argument x1 using unpair). In place of the
two measurement calls to normal, the distribution is now weighted by the den-
sity of each Gaussian at the corresponding measurement. Unlike a distribution,
a density is a function from HReal to HProb.

Fig. 2. The thermometer model after disintegration

The reader might wonder why Fig. 1 is rather large, given the simple model
it came from, while Fig. 2 is modest though the model it comes from seems more
complex. This is because the burglar model contains discrete choices (calls to
bern), which tend to inflate the output of disintegration, while the thermometer
model is a straight-line program.

70 P. Narayanan et al.

While thermConditional represents the correct posterior distribution, it is
not yet efficient for inference. This is because of the two calls to normal that
still exist. Our prior distribution thermometer does not return the variables
drawn from these normals, which are the temperatures t1 and t2. The mea-
sure is a marginal distribution on only m1, m2, noiseT, and noiseM. Similarly,
thermConditional, when given measurements, returns a distribution only on
the noises, not on the variables x5 and x7. Because the distribution uses the
random variables x5 and x7 only internally, running it as a sampler amounts to
naive numerical integration over them, which is inaccurate and slow.

It would be better to integrate over x5 and x7 exactly. We can use the
simplification transformation to do it:

thermSimplified = simplify thermConditional

The pretty-printed output of simplifying the conditional distribution is shown
in Fig. 3. The remaining calls to normal have disappeared and all the weight
factors are combined into a single formula. By removing x5 and x7 and storing
the intermediate factors that are the results of integrating these variables, Hakaru
has performed what is known as marginalization or variable elimination.

Fig. 3. The result of simplifying thermConditional

Once again, simplification subsumes exact inference with help from computer
algebra. While this code could be made yet more concise by let-binding, it already
makes for an efficient sampler.

Probabilistic Inference by Program Transformation in Hakaru 71

3.3 Sampling

The next step in the workflow of a Hakaru user is to sample from the posterior.
In this example, the posterior distribution is only 2-dimensional, so it is easy
to tune the noise parameters by importance sampling or by searching a grid
exhaustively. In higher dimensions, most parameter combinations are very bad,
and exhaustive search is intractable, so we often want to use a Markov chain
Monte Carlo (MCMC) technique in order to get an answer in a reasonable
amount of time. That is what we demonstrate here.

MCMC means that the sampler generates not a single random sample but
a chain of them, each dependent on the previous one. Most MCMC algorithms
require specifying an easy-to-sample proposal distribution that depends on the
current element of the chain [7]. This distribution is sampled to propose a can-
didate for the next element in the chain. We show here the Metropolis–Hastings
method (MH), a popular MCMC algorithm that compares the posterior and pro-
posal densities at the current and proposed elements in order to decide whether
the next element of the chain should be the proposed element or a repetition
of the current element. This decision mathematically ensures that the chain is
composed of samples that represent the posterior accurately.

A good proposal distribution will propose samples that are representative
of the posterior. In this sense, the proposal embodies a strategy for searching
and approximating the posterior space. Hakaru lets us specify our own proposal
distribution based on our understanding of the model. MH practitioners know
that custom proposal distributions are an important way to improve MH per-
formance. Here we show a proposal distribution that a Hakaru user could write
for the current example.

proposal :: (Mochastic repr)
=> repr (HPair HReal HReal)
-> repr (HPair HProb HProb)
-> repr (HMeasure (HPair HProb HProb))

proposal _m1m2 ntne =
unpair ntne $ \noiseTOld noiseEOld ->
superpose [(1/2, uniform 3 8 `bind` \noiseT' ->

dirac (pair (unsafeProb noiseT') noiseEOld)),
(1/2, uniform 1 4 `bind` \noiseE' ->

dirac (pair noiseTOld (unsafeProb noiseE')))]

This particular proposal distribution leaves one noise parameter unchanged
and draws an update to the other noise parameter from a uniform distribution.
Thus, once the Metropolis–Hastings sampler finds a good setting for one para-
meter, it can remember it and more or less leave it alone for a while as it fiddles
with the other parameter. In contrast, importance sampling tries to hit upon
good settings for both parameters at once, which is less likely to happen. On
the other hand, the chain dependency of Metropolis–Hastings sampling means
it can stay stuck in a globally sub-optimal part of the search space for a long
time.

72 P. Narayanan et al.

A generic MH algorithm can be defined as a reusable transformation on
Hakaru terms. It has this type:

mh :: (Mochastic repr, Integrate repr, Lambda repr,
env ~ Expect' env, a ~ Expect' a, Backward a a)

=> (forall r'. (Mochastic r') => r' env -> r' a
-> r' (HMeasure a))

-> (forall r'. (Mochastic r') => r' env -> r' (HMeasure a))
-> repr (env :-> (a :-> HMeasure (HPair a HProb)))

The various constraints in the type are a consequence of the finally tagless
embedding. The Expect, Integrate and Lambda constraints require the interpre-
tation (repr) to define operations for expectation, integration, and the lambda
calculus. The Backward constraint is required for the density calculation step
that forms a part of the MH procedure. The sampling interpretation satisfies
these constraints.

We cam apply the generic mh to our custom proposal and the desired pos-
terior thermSimplified:

mhKernel = mh proposal thermSimplified

noiseT

noiseE

3

4

5

6

7

8

1

2

3

4

0 1000 2000 3000 4000

0 1000 2000 3000 4000
Sample number

Va
lu

e

(a) Traceplot of sampled parameter values given observed temperatures (29◦C,26◦C)

noiseT

0.00

0.05

0.10

0.15

0.20

3 4 5 6 7 8

noiseE

0.0

0.1

0.2

0.3

1 2 3 4

(b) Density plots for the noise parameters

Fig. 4. Sampling from the conditioned posterior using Metropolis–Hastings

Probabilistic Inference by Program Transformation in Hakaru 73

This invocation generates a Metropolis–Hastings transition kernel that can
be used to produce samples from the posterior. We first condition the kernel on
observed temperature measurements – pair 29 26. We then run this sampler
for 20000 iterations and use every 5th sample (a process known as thinning) to
produce the plot in Fig. 4.

Knowing that the MH kernel likely contains large mathematical expressions
from density calculation, and knowing that the simplify transformation is mod-
ular and reusable, we can attempt to speed up the computation at each iteration
of the MH kernel by invoking simplify mhKernel. The performance gained from
this reuse of algebraic simplification is shown in the middle row of Table 1.

Table 1. Time needed to draw 20,000 MH samples averaged over 10 runs.

Source of Hakaru code Average run time

Generated by disintegrator 2,015± 4ms

Generated, then automatically simplified 569 ± 4

Written by hand 529 ± 10

Simplification here introduces efficiency with respect to wall clock time and
not in the number of samples needed for convergence. The third program in
Table 1 is a hand-coded Hakaru sampler written non-compositionally. For com-
parison, we also wrote a model of thermometer in the probabilistic language
WebPPL [5]; it generates a Metropolis-Hastings sampler that takes 948±8ms.
All measurements were produced on a quad-core Intel i5-2540M processor run-
ning 64-bit Ubuntu 14.04. Hakaru’s samplers use GHC 7.8.3 -O2, and WebPPL’s
sampler is compiled to JavaScript and run on Node.js version 0.10.28.

4 Inference by Composable Program Transformations

As the examples above show, Hakaru transforms a probabilistic program to
other programs in the same language that generate samples or otherwise perform
inference. This major design decision contrasts with most other probabilistic
programming systems, which handle a probabilistic program either by producing
code in a different language, or by generating samples or otherwise performing
inference directly—without staging.

Because Hakaru transformations stay in the same language, we can compose
them. For example, we use disintegration and simplification together to generate
efficient densities, which are at the heart of Metropolis–Hastings sampling, as
well as conditional distributions, which are at the heart of Gibbs sampling. Even
after we apply an approximate inference technique such as Metropolis–Hastings
to a problem, we can still inspect and optimize the generated solution before
running it. We can also compose inference techniques (such as particle filtering
and Metropolis–Hastings) as well as analyses (perhaps to estimate the running
time or accuracy of a sampler).

74 P. Narayanan et al.

4.1 Semantic Specifications of Transformations

Although all our transformations operate on Hakaru syntax, we specify what
they do by referring to Hakaru semantics based on integrators. For example, for
the models in Sects. 2 and 3, the specification of disintegration guarantees that
the denotations of the model and the posterior are related as below.

We describe elsewhere the implementation of this specification, which
involves reordering integrals and computing a change of variables [12].

The specification of simplification is just that its output has the same measure
semantics as the input. Implementing the specification involves translating to
and from an integrator representation of measures, and improving the integral
using computer algebra. We describe this process in detail elsewhere [2].

4.2 Comparison with Other Embeddings

Like us, Kiselyov and Shan [6] and Ścibior et al. [11] both embed a probabilis-
tic language in a general-purpose functional language, respectively OCaml and
Haskell. Like us, they both express and compose inference techniques as transfor-
mations that produce programs in the same language. But unlike our embedding,
their embeddings are “shallower”: the language defines a handful of constructs
for manipulating distributions, and reuses the host languages’ primitives for all
other expressions.

On one hand, their transformations consequently cannot inspect most of the
input source code, notably deterministic computations and the right-hand side
of >>=. Thus, Hakaru can compute densities and conditional distributions in
the face of deterministic dependencies, and Hakaru can generate Metropolis–
Hastings samplers using a variety of proposal distributions. On the other hand,
a shallow embedding ensures that any deterministic part of a probabilistic pro-
gram runs at the full speed of the host language.

WebPPL is a probabilistic language embedded in Javascript, providing infer-
ence methods to transform input programs into a different language [5]. Venture
[8] and Anglican [13] are probabilistic programming systems that build upon
Lisp and Clojure respectively to define strict, impure languages for composing
inference procedures. In all these works, the code – derived via transformations
or building blocks – can perform direct inference but not stage any computation.

5 Expressing Semantic Distinctions by Types

We make crucial use of types to capture semantic distinctions in Hakaru. These
distinctions show up both in the implementation and in the language itself.

Probabilistic Inference by Program Transformation in Hakaru 75

Figure 5 illustrates the types of each construct or macro described in this paper,
grouped by the interface (such as Mochastic) that an interpretation (such as
Sample) would need to implement.

Fig. 5. The types of language constructs and macros used in the examples

5.1 Distinguishing Hakaru from Haskell

The foremost distinction is between Hakaru’s type system and Haskell’s type
system. That is, we distinguish between the universe1 of Hakaru types, Hakaru,
and the universe of Haskell types, *.

At first this distinction may seem unnecessary, since we can identify Hakaru
types as those which are the argument to some repr. However, making the
distinction eliminates two broad classes of bugs.

First, there are many types in * which we do not want to allow within Hakaru.
For example, Hakaru has support for arbitrary user-defined regular recursive
polynomial data types. However, Haskell’s data types are far richer, including:
non-regular recursive types, non-strictly-positive recursive types, exponential
types, higher-rank polymorphism, GADTs, and so on. Consequently, we must
not allow users to embed arbitrary Haskell data types into Hakaru. The kind * is
much too large for Hakaru, so by introducing the Hakaru kind we can statically
prohibit all these non-Hakaru types.
1 We implement this universe of types by defining our own Haskell kind using GHC’s
-XDataKinds extension. Thus, we call Hakaru and * both “universes” and “kinds”.

76 P. Narayanan et al.

Second, distinguishing between Hakaru and * guarantees a form of hygiene
in the implementation. Without the kind distinction it is easy to accidentally
equivocate between Haskell’s types and Hakaru’s types. This equivocation intro-
duces confusion about what exists within the Hakaru language itself, versus what
exists within the interpretation of Hakaru programs. One example of this con-
fusion is the lub operator used by disintegration to make a nondeterministic
choice between two Hakaru programs that mean the same measure. When intro-
ducing the Hakaru kind we noticed that it was not entirely clear whether the
lub operator is in the language or a mere implementation detail.

5.2 Distinguishing Values and Distributions

Hakaru’s type system draws a hard distinction between individual values (of
type a) and distributions on values (of type HMeasure a). To see why this is
necessary, consider the pseudo-program “x = uniform 0 1; x + x”. As writ-
ten it is unclear what this pseudo-program should actually mean. On one hand,
it could mean that the value x is drawn from the distribution uniform 0 1, and
then this fixed value is added to itself. On the other hand, it could mean that
x is defined to be the distribution uniform 0 1, and then we draw two samples
from this distribution and add them together.

To distinguish these two meanings, stochastic languages like Church [4] must
introduce a memoization operator; however, it is often difficult to intuitively
determine where to use the memoization operator to obtain the desired behavior.
In contrast, Hakaru distinguishes these meanings by distinguishing between let-
binding and monadic-binding:

sampleOnce = uniform 0 1 `bind` \x -> dirac (x + x)
sampleTwice = uniform 0 1 `let_` \x -> liftM2 (+) x x

Importantly, there is no way to mix up the second lines of these programs. If
x is monadically bound, and hence has type HReal, then the expression liftM2
(+) x x does not type check, because HReal is not a monad so it cannot be the
type of arguments to liftM2 (+). Whereas, if x is let-bound, and hence has
type HMeasure HReal, then the expression dirac (x + x) does not type check,
because we do not define (+) on measures; but even if we did define (+) on
measures, then the expression would have type HMeasure (HMeasure HReal)
which doesn’t match the signature.

5.3 Distinguishing Values in Different Domains

It is often helpful to distinguish between various numeric domains. Although
the integers can be thought of as real numbers, it is often helpful to specify
when we really mean integers. Similarly, although the natural numbers can be
thought of as integers and the positive reals can be thought of as reals, it is
often helpful to explicitly capture the restriction to non-negative numbers. Thus,
Hakaru provides four primitive numeric types: HNat, HInt, HProb, and HReal.

Probabilistic Inference by Program Transformation in Hakaru 77

There are at least four reasons for making these distinctions. First, it helps
with human understanding to say what we mean. Second, many of the built-in
distributions are only defined for non-negative parameters, thus the non-negative
types HNat and HProb are necessary to avoid undefinedness. Third, capturing the
integral and non-negative constraints helps with algebraic simplification since we
do not have to worry about the non-occurring cases. Fourth, for the situations
where we must actually compute values (e.g., the sampling interpretation), know-
ing that HProb is non-negative means that we can represent these values in the
log-domain in order to avoid problems with underflowing.

5.4 Distinguishing Different Interpretations of Hakaru

We use a “finally tagless” embedding of Hakaru in Haskell [1]. Thus an inter-
pretation of Mochastic is implemented as an instance. We have several such
interpretations—a sampler, a pretty-printer, and two variants of embedding
our language into Maple. Transformations are also instances, but where repr
appears as a free variable. For example, we have an expectation transformation
Expect, which takes a measure expression and returns its expectation functional.
Another transformation implements disintegration, which is performed by lazy
partial evaluation of measure terms.

As our use of bind indicates, we use Higher Order Abstract Syntax (HOAS)
to encode Hakaru binding. In exchange for preventing scope extrusion, HOAS
makes some manipulations of bindings difficult to express. Basically, one sig-
nificant advantage of finally tagless is that if we can write your transformation
compositionally, then it will compose beautifully with other such transforma-
tions. But some transformations are hard to write compositionally. For example,
it is easy to write “macros” such as liftM2, as well as the Expect transformation,
but it is hard to implement lazy partial evaluation.

Even for a compositional transformation, finally-tagless style makes our code
hard to debug, because for example Expect repr is implemented in terms of
an abstract repr that is not required to be an instance of Show. This rules out
using Debug.Trace.traceShow in the middle of the implementation of Expect.

We love how the Haskell type of a Hakaru term tracks how the term will be
interpreted, such as Expect PrettyPrint. The flip side is that to apply multiple
interpretations to the same term (like to scale a distribution so it sums to 1), we
must either create the “product” of two interpretations (and using it to interpret
a term takes time exponential in the number of nested binders in the term), or
the Haskell type of a term must be universally quantified over repr. The latter
is very natural for experienced Haskell programmers, but is hard to explain to
others, thus limiting the potential of Hakaru as a general-purpose probabilis-
tic programming language. Another issue is that the very hygiene which is a
strength of finally-tagless makes it awkward to have “free variables” (parame-
ters) in a term; these must all be lam bound before a term can be disintegrated
or simplified. This contrasts sharply with how easily a computer algebra system
handles free variables in equivalent terms [2].

78 P. Narayanan et al.

6 Conclusion

A major challenge faced by every probabilistic programming system is that prob-
abilistic models and inference algorithms do not compose in tandem: just because
a model we’re interested in can be built naturally from two submodels does not
mean a good inference algorithm for the model can be built naturally from good
inference algorithms for the two submodels. Due to this challenge, many sys-
tems with good support for model composition resort to a fixed or monolithic
inference algorithm and do their best to optimize it.

Hakaru demonstrates a new way to address this challenge. On one hand,
Hakaru supports model composition like any other embedded monadic DSL does:
on top of primitive combinators such as dirac, bind, and superpose, users can
define Haskell functions to express common patterns of samplers and measures.
On the other hand, because each inference building block is a transformation on
this DSL, Hakaru supports inference composition like a compiler construction kit
or computer algebra system does: users can define Haskell functions to express
custom pathways from models to inference.

We are working to extend the Hakaru language, to express high-dimensional
models involving arrays and trees, and to express more inference algorithms,
including parallel and streaming ones. We are also working to make Hakaru
more usable: by representing the abstract syntax as a data type, by cus-
tomizing the concrete syntax, and by inviting user interaction for transforming
subexpressions.

References

1. Carette, J., Kiselyov, O., Shan, C.-c.: Finally tagless, partially evaluated: Tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–543
(2009)

2. Carette, J., Shan, C.-c.: Simplifying probabilistic programs using computer algebra
(2015). http://www.cs.indiana.edu/ftp/techreports/TR719.pdf

3. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. Lecture Notes in Mathematics, vol.
915, pp. 68–85. Springer, Heidelberg (1982)

4. Goodman, N.D., Mansinghka, V.K., Roy, D., Bonawitz, K., Tenenbaum, J.B.:
Church: A language for generative models. In: Proceedings of the 24th Confer-
ence on Uncertainty in Artificial Intelligence, pp. 220–229. AUAI Press (2008)

5. Goodman, N.D., Stuhlmüller, A.: The design and implementation of probabilistic
programming languages. http://dippl.org (2014). Accessed 20 November 2015

6. Kiselyov, O., Shan, C.-c.: Embedded probabilistic programming. In: Taha, W.M.
(ed.) DSL 2009. LNCS, vol. 5658, pp. 360–384. Springer, Heidelberg (2009)

7. MacKay, D.J.C.: Introduction to Monte Carlo methods. In: Jordan, M.I. (ed.):
Learning and Inference in Graphical Models. Kluwer (1998)

8. Mansinghka, V.K., Selsam, D., Perov, Y.N.: Venture: a higher-order probabilistic
programming platform with programmable inference. CoRR abs/1404.0099 (2014).
http://arxiv.org/abs/org/abs/1404.0099

http://www.cs.indiana.edu/ftp/techreports/TR719.pdf
http://dippl.org
http://arxiv.org/abs/org/abs/1404.0099

Probabilistic Inference by Program Transformation in Hakaru 79

9. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988). revised 2nd printing (1998)

10. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability
distributions. In: Conference Record of the Annual ACM Symposium on Principles
of Programming Languages POPL 2002, pp. 154–165. ACM Press (2002)

11. Ścibior, A., Ghahramani, Z., Gordon, A.D.: Practical probabilistic programming
with monads. In: Proceedings of the 8th ACM SIGPLAN Symposium on Haskell,
pp. 165–176. ACM (2015)

12. Shan, C.-c., Ramsey, N.: Symbolic Bayesian inference by lazy partial evaluation
(2015). http://www.cs.tufts.edu/∼nr/pubs/disintegrator-abstract.html

13. Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to probabilistic
programming inference. In: Proceedings of the 17th International conference on
Artificial Intelligence and Statistics, pp. 1024–1032 (2014)

http://www.cs.tufts.edu/~nr/pubs/disintegrator-abstract.html

An Interaction Net Encoding of Gödel’s
System T

Declarative Pearl

Ian Mackie1(B) and Shinya Sato2

1 LIX, CNRS UMR 7161, École Polytechnique, 91128 Palaiseau Cedex, France
mackie@lix.polytechnque.fr

2 University Education Center, Ibaraki University,
2-1-1 Bunkyo, Mito-shi, Ibaraki 310-8512, Japan

Abstract. The graph rewriting system of interaction nets has been very
successful for the implementation of the lambda calculus. In this paper
we show how the ideas can be extended and simplified to encode Gödel’s
System T —the simply typed λ-calculus extended with numbers. Sur-
prisingly, using some results about System T , we obtain a very simple
system of interaction nets that is significantly more efficient than a direct
encoding for the evaluation of programs.

1 Introduction

Gödel’s System T [7] is the simply typed λ-calculus, with functions and prod-
uct types, extended with natural numbers. It is a very simple system, yet has
enormous expressive power—well beyond that of primitive recursive functions.

Interaction nets [9] are a model of computation, based on graph rewriting.
They are user defined rewrite systems and because we can write systems which
correspond to term rewriting systems we can see them as specification languages.
But, because we must also explain all the low-level details (such as copying and
erasing) then we can see them as a low-level operational semantics or more
specifically, as an implementation language. Supporting this latter point, we
remark that in general graph rewriting, locating (by graph matching) a reduction
step is considered an expensive operation, but in interaction nets there is a very
simple mechanism to locate a redex (called an active pair in interaction net
terminology), and there is no need to use expensive matching algorithms. There
are interesting aspects of interaction nets for parallel evaluation—we will hint
at some of these aspects later in the paper.

Over the last years there have been several implementations of the λ-calculus
using interaction nets. These include optimal reduction [8], encodings of exist-
ing strategies [12,15], and new strategies [13,14]. One of the first algorithms to
implement Lévy’s [11] notion of optimal reduction for the λ-calculus was pre-
sented by Lamping [10]. Asperti et al. [3] devised BOHM (Bologna Optimal
Higher-Order Machine) building on the ideas of Lamping.

c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 80–93, 2016.
DOI: 10.1007/978-3-319-29604-3 6

An Interaction Net Encoding of Gödel’s System T 81

The purpose of this paper is to add to this list of interaction net imple-
mentations and to bring together on one hand the successful study of encoding
λ-calculus and related systems into interaction nets mentioned above, together
with the result that Gödel’s System T can be encoded with the linear λ-calculus
and an iterator [2]. Specifically, there are redundancies in System T —copying
and erasing can be done either by the iterator or by the λ-calculus. We can
remove the copy and erasing power of the λ-calculus, and still keep the expres-
sive power. Taking this further, we can also get primitive recursive functions as
a subset of this system. The key motivation for bringing these works together is
that the linear λ-calculus can be very easily encoded into interaction nets, and
therefore there is a hope for a very efficient implementation of this language.

The rest of this paper is structured as follows. In the next section we recall the
basic notations of interaction nets, to fix notation, and also give the definition of
linear System T . In Sect. 3 we give a compilation of the calculus into interaction
nets and give the dynamics of the system together with some examples. In Sect. 4
we discuss some aspects of this work, and finally we conclude in Sect. 5.

2 Background

2.1 Interaction Nets

In the graphical rewriting system of interaction nets [9], we have a set Σ of
symbols, which are names of the nodes in our diagrams. Each symbol has an arity
ar that determines the number of auxiliary ports that the node has. If ar(α) = n
for α ∈ Σ, then α has n + 1 ports: n auxiliary ports and a distinguished one
called the principal port.

α

· · ·x1 xn

Nodes are drawn as circles. A net built on Σ is an undirected graph with nodes
at the vertices. The edges of the net connect nodes together at the ports such
that there is only one edge at every port. A port which is not connected is called
a free port.

Two nodes (α, β) ∈ Σ ×Σ connected via their principal ports form an active
pair, which is the interaction nets analogue of a redex. A rule ((α, β) =⇒ N)
replaces the pair (α, β) by the net N . All the free ports are preserved during
reduction, and there is at most one rule for each pair of nodes. The following
diagram illustrates the idea, where N is any net built from Σ.

α β
...

...
x1

xn

ym

y1

=⇒ N
...

...
x1

xn

ym

y1

82 I. Mackie and S. Sato

The most powerful property of this graph rewriting system is that it is one-
step confluent: the order of rewriting is not important, and all sequences of
rewrites are of the same length (in fact they are permutations). This has practical
consequences: the diagrammatic transformations can be applied in any order, or
even in parallel, to give the correct answer. We write =⇒ for a single interaction,
and =⇒∗ for the transitive reflexive closure. An interaction net is in normal form
when there are no active pairs. The notation N ⇓ N ′ indicates that there exists
a finite sequence of interactions N =⇒∗ N ′ such that N ′ is a net in normal form.
Thus N is (strongly) normalising if N ⇓ N ′.

2.2 System T
In this section we recall the main notions of Gödel’s System T . This is an applied
λ-calculus with, in addition to function types, products and natural numbers.
Intuitively, we can think of it as a minimal higher-order language that is an
extension to the simply typed λ-calculus. From an alternative perspective, it
is a language that has greater computational power than primitive recursive
functions—we can define Ackermann’s function for instance.

We refer the reader to [7] for a detailed description of System T . In [2] it
was shown that there are redundancies in this calculus: copying and erasing can
be done either in the λ-calculus or using the iterator. This leads to a simplified
presentation using the linear λ-calculus. In this paper we refine the calculus
further by introducing pattern matching. There is nothing deep in this step, but
it allows us to present the same computational power as System T in a very
precise syntax. In the following we assume familiarity with the λ-calculus [4],
and also some basic recursion theory.

Table 1 summarises the syntax of this linear System T . The first four lines
give the linear λ-calculus with pairs. The construct λp.t is the usual abstraction,
extended to allow patterns of variables or pairs of patterns (as defined at the
bottom of the table). The remaining three rules define the syntax for constructing
numbers and the iteration. We work with terms modulo α-conversion as usual.

The pattern notation requires a little explanation. In the term λp.t, if the
pattern p is a variable, say x, then we have the usual abstraction. However,
we allow richer patterns built from pairs. It is through these patterns that we
are able to access the components of the pairs constructed in the syntax (so
we do not need explicit projection functions). Thus we can write terms such as
λ〈x, y〉.t, λ〈x, 〈y, z〉〉.t, etc. Because the language is typed, we will always have
arguments of the correct shape for the pattern matching.

In Fig. 1 we give the (linear) typing rules for this calculus. We write judge-
ments as p1 : A1, . . . , pn : An � t : B. The typing rules also capture the linear
variable constraints in an alternative way.

Our version of linear System T has a number of useful properties: it is conflu-
ent, strongly normalising and reduction preserves types. Reduction also preserves
the variable constraints, and is adequate to give normal forms for programs of
type nat. We first define reduction, then give explanations below.

An Interaction Net Encoding of Gödel’s System T 83

Context

(Var)
x : A � x : A

Γ, p : A, q : B � t : C
(Pattern Pair)

Γ, 〈p, q〉 : A ⊗ B � t : C

Γ, p : A, q : B, Δ � t : C
(Exchange)

Γ, q : B, p : A, Δ � t : C

Logical Rules:

Γ, p : A � t : B
(−◦Intro)

Γ � λp.t : A −◦ B

Γ � t : A −◦ B Γ � u : A
(−◦Elim)

Γ � tu : B

Γ � t : A Δ � u : B
(Pair)

Γ, Δ � 〈t, u〉 : A ⊗ B

Numbers:

(Zero)
Γ � 0 : nat

Γ � t : nat
(Succ)

Γ � S t : nat
Γ � t : nat Δ � u : A Θ � v : A −◦ A

(Iter)
Γ, Δ, Θ � iter t u v : A

Fig. 1. Linear system T

Table 1. Terms

Terms Variable constraint Free variables (fv)

x − {x}
tu fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

λp.t bv(p) ⊆ fv(t) fv(t) � bv(p)

〈p, q〉 fv(p) ∩ fv(q) = ∅ fv(p) ∪ fv(q)

0 − ∅

S t − fv(t)

iter t u v fv(t) ∩ fv(u) = fv(u) ∩ fv(v) = ∅ fv(t) ∪ fv(u) ∪ fv(v)

fv(t) ∩ fv(v) = ∅

Pattern Variable constraint Bound variables (bv)

x − {x}
〈p, q〉 bv(p) ∩ bv(q) = ∅ bv(p) ∪ bv(q)

84 I. Mackie and S. Sato

Definition 1 (Reduction). The main reduction rules for this calculus are
given in the following table:

Reduction Condition
(λp.t)v −→ [p 	 v].t fv(λp.t) = ∅

iter (S t) u v −→ iter t (vu) v fv(v) = ∅

iter 0 u v −→ u fv(v) = ∅

The conditions on the rules are used to constrain the possible reductions and
preserve the linearity of the terms. The matching operation [p 	 u].t is inspired
by that of the ρ-calculus [5]. λp.t is a generalised abstraction—it can be seen as a
λ-abstraction on a pattern p instead of a single variable. [p 	 u].t is a matching
constraint denoting a matching problem p 	 u whose solutions will be applied
to t. The reduction rules for the matching construct are:

[x 	 v].t −→ t[v/x]
[〈p, q〉 	 〈t, u〉].t −→ [p 	 t].[q 	 u].t

Thus matching creates substitutions. Substitution is a meta-operation defined as
usual, and reductions can take place in any context. Matching forces evaluation
of terms, and will always succeed.

This calculus has a number of properties: it is terminating and confluent,
and reduction preserves types. We will not give an extensive study of those
properties here however, as we are interested in implementing this calculus in
interaction nets. We will simply give an important property of reduction that
will be essential to prove any results about the encoding later. Define t ⇓ n if
t −→∗ u and u is a normal form (i.e., no further reduction is possible).

Lemma 1. Let t be a closed linear System T term. If t ⇓ u then exactly one of
the following occurs:

1. if t : nat, then u = Sn(0).
2. if t : A ⊗ B, then u = 〈v, w〉, for some terms v and w.
3. if t : A−◦B, then u = λx.v, for some term v.

Proof. We show the case for nat. Since t is closed and reduction preserves types,
u can only be a number, an application or an iter construct. If u is an application,
say (λx.a)b, then since u is closed, (λx.a) must also be closed, and therefore it is
not a normal form as a reduction can take place (contradiction). If u is an iter,
say iter n a b, then since u is closed, n must also be closed, and therefore it is
not a normal form as a reduction can take place (contradiction). Therefore, u
must be a number. The other two cases follow similar reasoning.

2.3 Examples

Here we give a several examples to illustrate how to use the syntax and what
terms look like.

An Interaction Net Encoding of Gödel’s System T 85

– Pairs and pattern matching:

λ〈x, y〉.〈y, x〉 : A ⊗ B−◦B ⊗ A
λ〈x, 〈y, z〉〉.〈〈x, y〉, z〉 : A ⊗ (B ⊗ C)−◦(A ⊗ B) ⊗ C

– Addition, multiplication and exponentiation can be defined as:

add = λmn.iter m n (λx.Sx) : nat−◦nat−◦nat
mult = λmn.iter m 0 (add n) : nat−◦nat−◦nat
exp = λmn.iter n (S 0) (mult m) : nat−◦nat−◦nat

Note in particular that each function satisfies the linearity constraints.
– When we need to copy or erase, we can do that as shown in the following

examples for numbers:

C = λx.iter x 〈0, 0〉 (λ〈a, b〉.〈Sa,Sb〉) : nat−◦nat ⊗ nat
fst = λ〈n,m〉.iter m n (λx.x) : nat ⊗ nat−◦nat
snd = λ〈n,m〉.iter n m (λx.x) : nat ⊗ nat−◦nat

– Ackermann’s function is a standard example of a non primitive recursive
function:

ack(0, n) = S n
ack(S n, 0) = ack(n,S 0)
ack(S n,S m) = ack(n, ack(S n,m))

In a higher-order functional language, there is an alternative definition that
we can write in our syntax:

ack = λm.λn.(iter m (λx.S x) (λxy.iter (S y) (S 0) x))n

We can simplify this definition slightly by using the usual η-rule: λx.tx = t,
(we remark that x �∈ fv(t) because of the linearity constraint).

ack = λm.iter m (λx.S x) (λxy.iter (S y) (S 0) x)

3 Interaction Net Encoding

In this section we give a translation T (·) of linear System T into interaction
nets. A term t with fv(t) = {x1, . . . , xn} will be translated as a net T (t) with
the root edge at the top, and n free edges corresponding to the free variables:

T (t)
· · ·

x1 xn

The labelling of free edges is just for the translation (and convenience), and is
not part of the system. The nodes needed for this compilation will be introduced
on demand, and we give the interaction rules later in the section. We will occa-
sionally make some assumptions about the order of the free edges to make the
diagrams simpler below.

86 I. Mackie and S. Sato

Variable. When t is a variable, say x, then T (t) is translated into an edge:

x

Abstraction. If t is an abstraction, say λp.t′, then there are two alternative
translations of the abstraction, which are given as follows:

λc

Tp(p) T (t′)
· · · · · ·

λ

T (t′)Tp(p)

b b v

x1 xn

� �

In these diagrams, we use an auxiliary function for the translation of patterns
Tp(p) which is given by the following two rules.

x

Tp(x)

�

Tp(p) Tp(q)

· · · · · ·
Tp(〈p, q〉)

If p is a variable, then it is translated into an edge. Otherwise, if it is a pair
pattern, then it is translated as shown in the right hand diagram above.

Returning to the compilation of abstraction, in the first case, shown on the
left in the above diagram, is when fv(λp.t′) = ∅. Here we use a node λc to
represent a closed abstraction and we explicitly connect the occurrence of the
variable of the body of the abstraction to the λc node.

The second case, shown on the right, is when fv(λp.t′) = {x1, . . . , xn}. Here
we introduce three different kinds of node: λ of arity 3, for abstraction, and two
kinds of node representing a list of free variables. A node b is used for each free
variable, and we end the list with a node v. The idea is that there is a pointer to
the free variables of an abstraction; the body of the abstraction is encapsulated
in a box structure. We assume, without loss of generality, that the (unique)
occurrence of the variable x is in the leftmost position of T (t′).

It is worth noting that a closed term will never become open during reduction,
but crucially for this system to work, terms may become closed during reduction.
The distinction between open and closed terms is important in the dynamics of
the interaction system that is given later.

An Interaction Net Encoding of Gödel’s System T 87

Application. If t is an application, say uv, then T (uv) is given by the follow-
ing net, where we have introduced a node @ of arity 2 corresponding to an
application.

@

T (u) T (v)

· · · · · ·

Pair. If t is a pair, say 〈u, v〉, then T (〈u, v〉) is given by the following net, where
we have introduced a node ⊗ of arity 2 corresponding to a pair.

⊗

T (u) T (v)

· · · · · ·

Numbers. A number will be represented by a chain of successor nodes (S), termi-
nating with a zero (0) node. S has one auxiliary port, and 0 has none. Therefore,
if t is a number, it is either 0 or S(u), for some term u. These two cases are
translated as follows:

T (0) = 0 T (S(u)) = S

T (u)
· · ·

Iterator. If t is iter n u v, then we introduce one new node. The principal port
of this node points to the function v, because we must wait for this to become
a closed term before starting the interaction process.

It

T (n) T (u) T (v)
· · · · · · · · ·

This completes the compilation function. A closed term will be translated as a
net with one edge at the root of the term. We give some examples before defining

88 I. Mackie and S. Sato

the reduction rules for the interaction nodes that we introduced in the above
compilation. The first example is the net T (λ〈x, y〉.〈y, x〉), which illustrates the
pattern and pairing construct:

λc

� ⊗

The second example shows the function snd defined previously. The compi-
lation T (λ〈m,n〉.iter m n (λx.x)) gives the following net:

λc

λc

� It

The final example, given in Fig. 2 is the net corresponding to the Ackermann
function: T (λm.iter m (λx.S x) (λxy.iter (S y) (S 0) x)).

3.1 Reduction

We next give the rules to complete the interaction net system. In Fig. 3 we give
the first seven interaction rules that encode β-reduction, pattern matching and
substitution. The first rule starts the implementation of β-reduction, connecting
the body of the abstraction to the result, and the argument becomes a substitu-
tion. The second rule implements the matching. The remaining rules propagate a
substitution through a net, and an important rule is v interacting with λ, where
a closed abstraction is created.

The rules so far are similar to some other interaction net systems for the
λ-calculus, so could be considered standard. The next three rules implement
the iterator operation that we explain in more detail. When the iterator node
interacts with a closed abstraction we have the following rule:

It

λc

=⇒
Itc

An Interaction Net Encoding of Gödel’s System T 89

Fig. 2. Ackermann function

This rule creates a new node Itc that will interact with numbers. The node also
holds on to the body and the variable edge of the abstraction. The two rules
for the Itc node are as follows. The first rule is when we erase the function, and
connect the result to the base value.

Itc

0

=⇒ ε ε

The final rule is when we unfold one level of iteration. Here the function is
duplicated with δ nodes, and one copy is applied to the base value as required.
Because the function being duplicated is closed, the duplication process is easily
proved to be correct.

Itc

S

=⇒
Itc

δ δ

90 I. Mackie and S. Sato

Fig. 3. Interaction rules

In Fig. 4 we give the final rules for duplication and erasing, where we use α
to range over all other nodes in the system.

These rules are all that we need to implement our linear System T . By
showing that we simulate the reduction rules we get the following result.

Theorem 1. Let t : nat be a closed linear System T term with normal form u,
then T (t) ⇓ T (u).

It is possible to give an encoding of Gödel’s System T directly to interaction nets,
however this comes at a cost as we must incorporate the non-linear aspects of the
λ-calculus: copying and erasing. With our encoding, we have isolated the copying
and erasing to closed functions, which is a much simpler operation (and we do
not need many of the so-called bookkeeping operations of the general systems).

An Interaction Net Encoding of Gödel’s System T 91

Fig. 4. Duplication and erasing interaction rules

Thus, using a result from [1], stating that the linear version is as powerful as the
non-linear version, gives a greatly simplified interaction system.

Moreover, we can go further. Using a result of Dal Lago [6]: if we take the
linear λ-calculus where iterated functions must be closed by construction (i.e.,
fv(v) = ∅ in iter t u v) then this system captures exactly the primitive recursive
functions. If we are building functions to iterate that must be closed by construc-
tion, then we no longer need the box structure to identify when a term becomes
closed. The consequence of this result here is that we can eliminate b, v and λ
nodes (and the associated interaction rules), so that λc and @ are sufficient to
encode the linear λ-calculus.

Theorem 2. An interaction system built from the nodes 0, S, It, Itc, δ, ε, λc,
and @ is complete for primitive recursive functions.

The encoding of the linear λ-calculus as a system of interaction nets is particu-
larly simple, since substitution is implemented for free: β-reduction is a constant
time operation. This is a consequence of the fact that substitution is essentially
implemented as an assignment. What we have achieved therefore is a very simple,
with no overheads, implementation of Gödel’s System T and primitive recursive
functions in interaction nets.

4 Discussion

Very few people write programs with unary arithmetic (zero and successor).
Nevertheless, the same techniques are used to represent lists and other data-
structures that are ubiquitous. All our results can be adapted to work for a
version of System T with built-in numbers (and also richer data-types), together
with operations that work directly with these numbers. Our belief is that to
understand complex languages and make them efficient, it is fruitful to start with
simple subsets and build up. This is the approach we have taken in this paper.

92 I. Mackie and S. Sato

Implementations of the λ-calculus are made complicated by the non-linear
aspects of the calculus. Using the linear λ-calculus with iterators gives a simpler
formulation of many algorithms, and even simpler when the iterated function
is closed. It is possible to use compilation techniques to transform a non-linear
algorithm in System T to our linear version, and in addition find ways to close
functions. This approach uses some standard ideas from compilation such as
continuations, but applied to a linear setting. We hope to report on some of
these details in a future work, and also the impact on implementation efficiency.

Finally, we mention that there are a number of parallel implementations of
interaction nets, and consequently the system presented in this paper can directly
take advantage of this. However, some choices in the encoding can give different
results: the most efficient sequential system is not necessarily the best system to
try to run on parallel hardware. Again, we hope to be able to understand this
aspect better through extensive benchmark testing.

5 Conclusion

We have given a very simple and efficient implementation of Gödel’s System T
using the graph rewriting formalism of interaction nets. The aim of this paper
was initially to apply some of the ideas used for the representation of the λ-
calculus in interaction nets to the the linear version of System T to investigate
if the resulting system provides a useful implementation technique.

This work is a building block in a larger programme of research to investigate
when interaction nets are useful for the evaluation of programs (either because
they are more efficient than standard techniques, of if they offer some other
advantage such as parallelism, small run-time system, etc.). A first step in this
direction is the extension of the language with data-types, in particular lists, and
investigate if other algorithms can also benefit from the techniques used here.

References

1. Alves, S., Florido, M., Fernández, M., Mackie, I.: The power of linear functions.
In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 119–134. Springer, Heidelberg
(2006)

2. Alves, S., Fernández, M., Florido, M., Mackie, I.: Gödel’s system T revisited. Theor.
Comput. Sci. 411(11–13), 1484–1500 (2010)

3. Asperti, A., Giovannetti, C., Naletto, A.: The Bologna optimal higher-order
machine. J. Funct. Program. 6(6), 763–810 (1996)

4. Barendregt, H.P.: The Lambda calculus: its syntax and semantics. Studies in Logic
and the Foundations of Mathematics, vol. 103. North-Holland Publishing Com-
pany, Amsterdam (1984)

5. Cirstea, H., Kirchner, C.: The rewriting calculus - Part I and II. Logic J. Interest
Group Pure Appl. Logics 9(3), 427–498 (2001)

6. Lago, U.D.: The geometry of linear higher-order recursion. In: Panangaden, P.,
(ed.) Proceedings of the 20th Annual IEEE Symposium on Logic in Computer
Science, LICS 2005, pp. 366–375. IEEE Computer Society Press, June 2005

An Interaction Net Encoding of Gödel’s System T 93

7. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in The-
oretical Computer Science, vol. 7. Cambridge University Press, Cambridge (1989)

8. Gonthier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal lambda reduction.
In: Proceedings of the 19th ACM Symposium on Principles of Programming Lan-
guages (POPL 1992), pp. 15–26. ACM Press, January 1992

9. Lafont, Y.: Interaction nets. In: Proceedings of the 17th ACM Symposium on Prin-
ciples of Programming Languages (POPL 1990), pp. 95–108. ACM Press (1990)

10. Lamping, J.: An algorithm for optimal lambda calculus reduction. In: Proceedings
of the 17th ACM Symposium on Principles of Programming Languages (POPL
1990), pp. 16–30. ACM Press, January 1990

11. Lévy, J.-J.: Optimal reductions in the lambda calculus. In: Hindley, J.P., Seldin,
J.R., (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pp. 159–191. Academic Press (1980)

12. Lippi, S.: λ-calculus left reduction with interaction nets. Math. Struct. Comput.
Sci. 12(6) (2002)

13. Mackie, I.: YALE: yet another lambda evaluator based on interaction nets. In:
Proceedings of the 3rd ACM SIGPLAN International Conference on Functional
Programming (ICFP 1998), pp. 117–128. ACM Press, September 1998

14. Mackie, I.: An interaction net implementation of closed reduction. In: Scholz, S.-
B., Chitil, O. (eds.) IFL 2008. LNCS, vol. 5836, pp. 43–59. Springer, Heidelberg
(2011)

15. Sinot, F.-R.: Call-by-name and call-by-value as token-passing interaction nets. In:
Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 386–400. Springer, Heidelberg
(2005)

Space-Efficient Planar Acyclicity Constraints

A Declarative Pearl

Taus Brock-Nannestad(B)

Inria & LIX/École Polytechnique, Palaiseau, France
taus.brock-nannestad@inria.fr

Abstract. Many constraints on graphs, e.g. the existence of a simple
path between two vertices, or the connectedness of the subgraph induced
by some selection of vertices, can be straightforwardly represented by
means of a suitable acyclicity constraint. One method for encoding such
a constraint in terms of simple, local constraints uses a 3-valued variable
for each edge, and an (N + 1)-valued variable for each vertex, where
N is the number of vertices in the entire graph. For graphs with many
vertices, this can be somewhat inefficient in terms of space usage.

In this paper, we show how to refine this encoding into one that
uses only a single bit of information, i.e. a 2-valued variable, per vertex,
assuming the graph in question is planar. We furthermore show how this
same constraint can be used to encode connectedness constraints, and a
variety of other graph-related constraints.

1 Introduction

In this paper, we aim to present an “encoding pearl” that shows how to encode
various graph constraints in terms of an acyclicity constraint, and also how to
decompose such an acyclicity constraint into a space-efficient (in terms of the
combined sizes of the variable domains) collection of low-level constraints.

Our acyclicity constraint can be seen as a refinement of an intuitive, obviously
correct, but space-inefficient constraint, which, to the best of our knowledge,
is due to Tamura [5], although it is an obvious enough encoding that it may
simply be folklore. To the best of our knowledge, the space-optimised constraint
we present here is novel.

We will present our constraints both using a high-level, prose description, but
also in terms of the more explicit language of finite linear integer constraints.
We choose this as the target for our encoding because of its flexibility — we
will freely make use of the fact it straightforwardly permits the encoding of e.g.
conditionals and reified constraints.

In many cases, using a specialised acyclicity constraint, such as the one pre-
sented by Gebser et al. [1], will be more efficient for finding solutions to constraint
satisfaction problems, as it can use domain-specific knowledge to propagate con-
straints in a way that a näıve encoding may not be able to.

On the other hand, there are often large gains to be had from encoding
a problem using high-level constraints into e.g. a boolean satisfiability (SAT)
problem, as seen in the Sugar CSP solver [6].
c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 94–108, 2016.
DOI: 10.1007/978-3-319-29604-3 7

Space-Efficient Planar Acyclicity Constraints 95

Given the above considerations, we make no claims about the real-world
efficiency of the solution we present in this paper, and rather present it as a neat
theoretical curiosity.

The remainder of the paper is structured as follows. In Sect. 2, we show how
acyclicity plays a crucial rôle in encoding path constraints. In Sect. 3, we present
a straightforward but space-inefficient encoding of such a constraint, in a sub-
set of planar graphs which we call grid graphs, followed by a few improvements
in Sect. 4. In Sect. 5, we present our optimised encoding, and we prove its cor-
rectness in Sect. 6. In Sect. 7, we show how to extend the results concerning grid
graphs to general planar graphs without a loss in efficiency. Section 8, we consider
other kinds of graph constraints, and show how these can also be encoded using
our acyclicity constraint. Finally, in Sect. 9, we conclude and discuss future work.

2 Making Use of Acyclicity

In this section, we will show exactly how an acyclicity constraint can be used to
correctly enforce certain constraints on graphs. First, let us assume we are given
some fixed graph G with two distinguished vertices s and t, and that we wish
to select some subset of the edges so that they make up a single simple path
from s and t. We will associate a variable to each edge of the graph, and say this
variable has the value 1 if the edge is selected, and 0 otherwise. To ensure that
the path is simple, we can add constraints that restrict the number of selected
edges meeting a vertex as follows:

– Around s and t, we require that there is exactly one selected edge.
– For any other vertex v, we require that the number of selected edges around

v is either 0 or 2.

These constraints already eliminate many incorrect selections, but unfortunately
not all of them. The problem is that the above constraints ensure that the
solution must be path-like around each vertex, but this is not enough:

s t s t

Any part of a cycle is also path-like around each vertex in the cycle, hence we
may get spurious cycles with just the above constraints. At this point it should
hopefully be clear that if we find some way of preventing cycles from appearing
in our assignment of edges, we may ensure that the solution consists of only a
single, simple path.

Before we present a way of encoding such an acyclicity constraint, we will
briefly remark on two simplifying assumptions we can make in this setting.
First of all, we may assume that the graph in question is simple, i.e. there is

96 T. Brock-Nannestad

at most one edge between any two vertices, and no edges from a vertex to itself.
This can be justified by noting that if we have selected two edges that have the
same start and end vertices, then we have already created a cycle. Similarly, any
edge that is not part of any cycle of the graph can also be disregarded for the
purposes of enforcing acyclicity. Thus, in the remainder of this paper, we will
assume that the underlying graph is simple and bridgeless.

3 A Basic Encoding of the Acyclicity Constraint

First, we’ll describe an inefficient, but hopefully intuitive encoding of an acyclic-
ity constraint. To simplify the presentation, we’ll only present the results in this
section for a very simple and well-behaved graph. The graph we will consider has
a vertex for each point (i, j) ∈ Z × Z, and edges between any two vertices that
are a unit distance apart. For the variables representing these paths, we will use
hi,j for the horizontal edge extending rightwards from the vertex at (i, j), and
vi,j for the edge extending vertically at this vertex. Furthermore, we will in cer-
tain situations rely on these edges having values that indicate not just whether
they are selected, but also marking them with a specific direction. In this case,
we will assume that the variables hi,j and vi,j may take on values from the set
{−1, 0, 1}. A negative value indicates that the direction of the edge is to the left
or down, and a positive value indicates that the direction of the edge is to the
right or up. Thus,

To avoid having to consider truly infinite graphs, we will assume that all variables
that are indexed by positions (i, j) take on the default value 0 on all but finitely
many points. This essentially restricts us to working within a finite subgraph
of the grid graph. The benefit of doing this, as opposed to working with finite
graphs to begin with, is that this presentation allows for a uniform presentation
of the constraints, and in particular avoids nasty boundary conditions that might
otherwise arise.

Essentially, the constraints we will add have the following effect:

– First, all paths are forced to be simple — paths may not touch or cross each
other:

∀i, j. |hi,j | + |vi,j | + |hi−1,j | + |vi,j−1| ∈ {0, 1, 2}.

– Secondly, all paths are forced to be directed. If a vertex has two edges con-
nected (which is the maximum as per the previous constraint), then one edge
must be pointing towards the vertex, and the other must point away from the
vertex. This can be encoded as follows:

∀i, j. |hi,j − hi−1,j + vi,j − vi,j−1| ≤ 1

Space-Efficient Planar Acyclicity Constraints 97

This constraint may seem a bit unintuitive, but it is a straightforward matter
to check that this (along with the preceding constraint) forces paths to be
directed.

Next, we associate a variable ui,j to each vertex (i, j). This variable will take on
values from the set {0, . . . , N} where N is the number of vertices of the subgraph
we are considering. These variables are constrained as follows:

– Along any directed edge, the value of the source vertex must be strictly greater
than the value of the target vertex:

∀i, j. (hi,j > 0) ⊃ (ui,j > ui+1,j)
∀i, j. (hi,j < 0) ⊃ (ui,j < ui+1,j)
∀i, j. (vi,j > 0) ⊃ (ui,j > ui,j+1)
∀i, j. (vi,j < 0) ⊃ (ui,j < ui,j+1)

The effect of these constraints is the following: first, all cycles must become
directed cycles, as enforced by the first constraint. Second, the vertices appearing
in a directed path must have values that are strictly decreasing along this path.
Having both of these constraints thus precludes any cycles from appearing in the
graph. Of course, this constraint might be too strict, for instance by excluding
paths that should be allowed, but it’s easy to see that any directed path can
have strictly decreasing values assigned to it, since the domain of these values is
larger than the number of vertices in the graph.

The main problem with this encoding is the size of the domain of the values.
We require that each vertex (i, j) has a unique variable ui,j associated to it, and
that these variables may take on values from the domain {0, . . . , N} where N
is the total number of vertices in the graph. Thus, the more vertices our graph
has, the greater this domain must be, leading to a quadratic growth in terms of
space.

4 Potential Refinements

In this section, we will explore a few possible refinements that unfortunately do
not quite improve matters. Although it is not customary to present approaches
that do not work, we believe that in this case it gives a useful glimpse into the
genesis of the encoding that will be presented in the next section.

The first and most obvious way of reducing the domains of the vertex vari-
ables would be to just reduce the domain. Unfortunately, this will in general also
exclude some paths, which is not always desirable. The main problem with this
approach is that the values along a path must still be strictly decreasing, hence
whatever bounds we put on the values will also be a bound on the lengths of the
paths it is possible to represent in the graph.

Of course, it is not necessary to strictly decrease the value along every edge
in the graph. We could instead require that the values are non-increasing every-
where, as long as we have some guarantee that it will be strictly decreasing along
at least one edge of any given cycle.

98 T. Brock-Nannestad

One way of enforcing this would be to pick a subset of the edges in advance,
and tailor the constraints to be enforce a strict decrease along these edges, and
allow any kind of decrease everywhere else.

How should one choose such a subset? An easy way to do so is to find a
spanning tree of the graph, and then select all the edges that are not in this
spanning tree to be the strictly decreasing ones. This works because any cycle
must contain at least one of these edges, since the tree by definition cannot
contain any cycles.

How much of an improvement is this? In a graph with N vertices, the span-
ning tree will contain N − 1 edges, and hence the number of strictly decreasing
edges will be E − (N − 1) where E is the number of edges in the graph. In the
worst case, there exists a path that traverses all of these edges, and hence the
domain of values associated to the vertices must have at least as many elements
as the length of this path. In the case of the grid graph, we can define a spanning
tree by taking all of the vertical edges, and a single horizontal line of edges. This
leaves roughly half the edges of the graph as strictly decreasing.

Instead of choosing the strictly decreasing edges in advance, we might also
select them in a more dynamic fashion. The basic idea is the following: if we
can identify some feature (or set of features) that is guaranteed to be part of
every cycle, we can use this to add strictly decreasing edges only at the points
where these features occur. For instance, every cycle must contain at least one
top-left corner, hence we could choose to make the vertical edge of each such
corner strictly decreasing.

This is again an improvement on the previous situation, as the number of
such corners in any path can be bounded in advance. Note that any top-left
corner cannot have a similar corner immediately below or to the right, hence
in a grid with N vertices, N/3 is certainly an upper bound on the number of
top-left corners. Unfortunately, we can still construct paths that contain many
top-left corners, hence this is not an asymptotic improvement on the efficiency
of the encoding.

Here are two examples of paths that have many top-left corners, which we
have marked using circles:

If we consider these and other examples, it quickly becomes apparent that any
path that contains many top-left corners must also contain many bottom-right
corners, which are marked with squares above. Moreover, if we follow the paths
given by these examples, we find that we alternate between top-left and bottom-
right corners.

Space-Efficient Planar Acyclicity Constraints 99

5 An Optimised Encoding

As the refinements in the previous section hinted, there seems to be a relationship
between the number of top-left corners and bottom-right corners.

First, we will change our encoding slightly. Instead of requiring a set of values
to be (strictly) decreasing along the edges, we will instead keep just a single bit
of information at each vertex. Our goal will be to give conditions that impose
either equality or disequality constraints between vertices that are connected by
an edge, in such a way that any cycle must contain an odd number of disequality
constraints. If we can ensure this behaviour, then we will have succeeded in
disallowing all cycles. Intuitively, we can imagine walking along the cycles with a
single bit, following the directed edges, and flipping the value of our bit whenever
we encounter a certain configuration of edges. As long as we make an odd number
of flips, we are guaranteed to end up with the opposite parity when we return to
the starting position. Naturally, paths with be unaffected by these constraints.

To encode these constraints, we first assign a binary-valued variable pi,j to
each vertex (i, j). We next add the following constraints:
– For all edges directed downwards or to the left, we simply enforce equality

between the values at each end:

∀i, j. (hi,j < 0) ⊃ (pi+1,j = pi,j)
∀i, j. (vi,j < 0) ⊃ (pi,j+1 = pi,j)

– For edges directed upwards or to the right, we similarly constrain the values
at each end, but choose whether to enforce equality or disequality depending
on whether the edges in question form an “up-then-right” or “right-then-up”
corner:

∀i, j. (hi−1,j > 0) ⊃ (pi−1,j = pi,j ⊕ (vi,j > 0))
∀i, j. (vi,j−1 > 0) ⊃ (pi,j−1 = pi,j ⊕ (hi,j > 0))

Here, ⊕ is the “exclusive or” operation.

Note that these four constraints cover all the possibilities for which the value of
hi,j and vi,j is non-zero. Moreover, the four constraints are also disjoint, i.e. for
any given edge, at most one of the above constraints apply. Here is an example
that shows how the above constraints force the assignment of the pi,j values for
a particular directed path (where we have arbitrarily set the value of p at the
beginning of the path to 0):

00

0

0 1

0 0

0

0000

0

0

0

1 1 1 1 1 1 1 1

1

1

1

11

11

11

1

0 0 1

1111

100 T. Brock-Nannestad

The circles and squares indicate the vertices at which the flips take place.
Observe that if we were to close the cycle by adding an extra edge going left,
there would be no way of reconciliating the values of p.

All that remains now is to show that closed simple cycles must always contain
an odd number of corners at which the parity flips. This will be the subject of
the next section.

6 Turning Number Parity

In this section we will prove that the turning number of a simple closed cycle is
always equal to either 1 or −1.

This result is known already for suitably well-behaved curves in the plane [7]
and also for polygons [2], but to keep this paper somewhat self-contained, we
will present a proof from first principles.

First, we must define precisely what kinds of directed paths we allow.

Definition 1. A directed path consists of a sequence of steps of unit length
going either up, right, left or down. We furthermore require that whenever a
path changes direction, it does so by ±90◦. We say a path is closed if the last
step of the path ends at the beginning of the path. We say a path is simple if it
does not cross or touch itself, that is, every point is the source or target of at
most two segments of the path.

Definition 2. A corner of a given path is any point at which the path makes a
turn. We use the notation →| for a corner at which the path moves up and then
right, and define

→|

, →|, → | ,
→|,

→ |
, →| , and →| similarly . In arithmetic expressions,

we use the same notation to represent the number of such corners in the path in
question. Thus, →| +

→ |
represents the total number of →| and

→ |
corners in the

given path.

We will first present a way of calculating the turning number of a path, i.e. the
number clockwise rotations a person following the path would make. Note that
this need not be a whole number.

Intuitively, whenever the path turns to the right locally (→| ,

→|

, →| or → |), the
turning number increases by 1/4, and conversely whenever it turns to the left
locally (→|,

→ |
, →| or →|), the turning number decreases by 1/4. Based on this, we

define the turning number of a path as follows:

Definition 3. The turning number of a path is defined as

1/4(→| +

→|

+ →| + → |) − 1/4(→| +
→ |
+ →| + →|).

Of course, this definition is a bit cumbersome to work with, but luckily there is
an easier way to calculate the turning number in the case of closed paths. To
see this, we first need the following lemma:

Lemma 1. For any closed path, the following equalities hold:

→| − →| = → | − →| = →| − → |
=

→| − →|

Space-Efficient Planar Acyclicity Constraints 101

Proof. Consider any →| or →| corner. Following the path in the direction of the
arrow, we must eventually end up at a →| or

→|

corner, since the path is closed.
A similar argument shows that any →| or

→|

corner is preceded by a →| or →|

corner. Thus, we have the following equality relating the number of such corners
in the path:

→| + →| = →| +

→|

.

By rearranging this equality, we get

→| − →| =

→| − →| ,

which gives us one part of the desired equality. The remaining equalities follow
in the same way. ��
Corollary 1. The turning number of a closed path is given by →| − →| .

Proof. Rearranging the definition of the turning number, we find that it is
equal to

1/4((→| − →|) + (→ | − →|) + (→| − → |
) + (

→| − →|)).

By the preceding lemma, each of the four differences is equal to →| − →| , and
hence the entire expression reduces to simply →| − →| . ��
In addition to this, we also have the nice result that the turning number of a
closed path is well-behaved with regard to various transformations of this path:

Corollary 2. Rotating a closed path does not change the turning number. Mir-
roring or reversing the direction of a closed path inverts the turning number.

Proof. We show here one of the cases. Consider a given closed path. By the
previous corollary, it has turning number equal to →| − →| . If the direction of
the path is reversed, every →| corner becomes a

→ |
corner, and every →| corner

becomes a →| corner. Thus, the value of →| − →| is equal to
→ | − →| after reversing

the direction of the path. We now have
→ | − →| = −(→| − → |

),

and from the previous lemma, it follows that →|− → |
is the turning number of the

reversed path. We thus conclude that reversing the direction of the path inverts
the turning number. The remaining cases are similar. ��
Next, we need to show that any closed, simple path has a turning number of
either +1 or −1. We prove this in two steps. First, we show that any closed,
simple path can be reduced to a path with only four edges (i.e. a square) by a
sequence of local reductions. By observing that the local reductions preserve the
turning number, we get the desired result.

Theorem 1. Any closed, simple path with length greater than 4 can be reduced
using local reductions to a closed, simple path with a strictly smaller length and
with the same turning number.

102 T. Brock-Nannestad

Proof. Formally, we prove this by induction on the length of the path. We will
leave these appeals to the induction hypothesis implicit, however, and simply
present the reductions. Additionally, we will present the reductions in terms of
undirected paths, and only consider the turning number once we’ve established
exactly what the reductions are.

First, we want to find an appropriate place to reduce the path. This will
be a horizontal segment of some length where each end of the segment points
downwards:

First, however, we must establish that there must exist such a segment. We
do this with a sequence of observations:

Observation 1: There is at least one horizontal segment. As the path has
length greater than 4, it must contain some segment, either horizontal or
vertical. If the segment is horizontal, we are done. If the segment is vertical,
we can follow it upwards until it turns (which it must, as the path is closed),
and there we will find a horizontal segment.

Observation 2: The topmost horizontal segment must turn downwards at each
end. If at either end it turns upwards, we may follow the path upwards until
it turns again. At this point, we will have found a horizontal segment which
is higher up than the topmost horizontal segment, and this is a contradiction.

Having now established the existence of the desired segment, we will pick a
segment of this form for which the length is minimal, i.e. no segment of this
form with strictly smaller length exists. It is this segment we will reduce locally.

We first consider the case where the left end of the segment turns under the
segment. We ignore the right end of the segment for now:

The dotted lines at the bottom indicate the directions in which the path may
proceed. Note that the path cannot turn up, as this would make it either non-
simple or of length exactly 4.

In this case, we reduce the path as follows:

In a similar fashion, we can reduce the right end of the segment in the cases
where it too turns underneath the segment. This leaves the following remaining
case:

Space-Efficient Planar Acyclicity Constraints 103

We would like to reduce it as follows:

To do so, however, we need to argue that this does not make the path intersect
itself, otherwise we would be unable to apply the induction hypothesis. We will
therefore establish that there cannot be any horizontal segments immediately
below the given horizontal segment. Assume for the purposes of contradiction
that there exists such a segment. Following the segment to the left, it must
eventually turn downwards. Turning upwards would make the path intersect
itself. Similarly, the right end of the segment must also turn downwards. At this
point, however, we would have a horizontal segment, turning down at both ends,
and with a length that is strictly smaller than the length of the segment we
started with, and this is a contradiction. As we have now established that there
are no horizontal segments directly beneath our chosen segment, we may now
reduce it as previously shown.

This takes care of all possible cases. All that remains now is to note that the
above reductions preserve the turning number. This can either be done the hard
way, by checking every single case separately, or it can be done the clever way,
by using Corollary 2. Note that rotating the path does not change the turning
number, and reversing and mirroring it only changes the sign of the turning
number, hence it is sufficient to observe that all the configurations seen in the
reductions above can be rotated, mirrored or reversed in such a way that there
are no →| or →| corners either before or after the reduction. It is then immediate
that all the reductions preserve the turning number. ��
Armed with the above theorem, we may now prove that the desired property of
closed, simple paths indeed holds.

Corollary 3. The turning number of a closed, simple path is either 1 or −1.

Proof. Using the previous theorem, any closed, simple path of length greater
than 4 may be reduced to one with a strictly smaller length, without changing
the turning number. All that remains, then, is to check that all closed paths of
length at most 4 have turning number ±1. There are exactly two of these paths,
and the result thus follows from a simple inspection of these. ��
Now that we have established that

→| − →| = ±1, and thus →| + →| ≡ 1 mod 2

we have shown that the constraint presented in the previous section indeed has
the property that any closed simple cycle induces an odd number of disequalities,
and thus leads to a contradiction.

104 T. Brock-Nannestad

7 From Grid Graphs to General Planar Graphs

In this section, we will show how to extend the results of the previous section to
general planar graphs.

One obvious way of doing this would be to use the fact that any planar
graph can obviously be approximated by a suitable subgraph of the grid graph,
by suitably “rasterising” an embedding of the planar graph. This would not be
particular efficient, however, as the approximation might use many more vertices
than the original graph.

Instead, we will show how a certain kind of planar graph embedding gives
rise to a straightforward way of assigning appropriate turning number parity
constraints to a general planar graph.

Our main tool for this purpose will be the so-called visibility representation
[3,4] of a planar graph. Put briefly, any planar graph can be represented in a
form where every edge is a vertical line, and every vertex is a horizontal line:

a

b

c
d

e
f

g

a

b

c

d

e

f

g

Now, this is already a much better representation than simply approximating
an arbitrary planar embedding. First, note that the turning number parity does
not change along any vertical edge, hence we can simply think of these as very
tall single edges. Thus, we can easily represent any planar graph as one that is
locally grid-like, by putting d vertices for each vertex of degree d in the original
graph. However, we can in fact do better still. To see this, consider the ways in
which a path can traverse a vertex in the visibility representation. If the path
crosses the vertex without changing direction from up to down or vice versa, it is
clear that the turning number parity does not change. This takes care of four of
the possibilities. If, on the other hand, the path changes direction at the vertex,
we must consider whether it moves leftwards or rightwards across said vertex.
In the former case, the parity is unchanged, and in the latter case, it is flipped.
This fully sums up the local behaviour of paths going through a vertex.

The key observation now is that we can enforce exactly this behaviour on
any straight-line embedding of the planar graph. To do this, we will mark each
vertex in the original graph embedding with information from the visibility rep-
resentation that will enable us make the former act exactly as the latter. We will
mark this as a small dotted arrow traversing each vertex. Every edge to the left

Space-Efficient Planar Acyclicity Constraints 105

of the arrow (when looking in the direction the arrow is pointing) will be among
the edges above this vertex in the visibility representation, and dually the edges
on the right of the arrow will be the edges below the vertex. Similarly, the edges
will be ordered according to which order they occur around the vertex, using the
direction of the arrow to distinguish between the possibilities. Essentially, one
can think of this representation as one in which all the vertices in the visibility
representation have been contracted into a single vertex again.

a
b

c d

e
f

g

a
b

c
d

e
f

g

a

b
c d

e
f

g

The question of whether the parity should flip when traversing a vertex in this
graph can now be easily explained in terms of this additional arrow: if the path
“bounces off” the arrow, and is travelling in the direction the arrow is pointing,
the parity should flip. In all other cases, the parity should remain the same.

8 Further Graph Constraints

In this section, we will consider a variety of further graph constraints that may
be achieved by adapting our acyclicity constraint.

First, let us consider the problem of connectedness. Given a subset of the
vertices, we would like to enforce that the subgraph containing exactly these
vertices (and the edges that connect them with each other) is in fact connected.
For the sake of simplicity, we will assume that we have selected one vertex r that
is guaranteed to be in the subset. We now enforce the constraint as follows:

– we associate a 2-valued variable si,j to each vertex, representing whether said
vertex is part of the selected subset.

– For each vertex in this subset, except for the vertex r, we require that at
exactly one of its edges is selected, and that it points away from the vertex:

∀(i, j) ∈ Z×Z\{r}. (hi,j > 0)+(vi,j > 0)+(hi−1,j < 0)+(vi,j−1 < 0) = 1

This constraint subsumes the constraints from Sect. 3 that forced the solution
to contain only simple, directed paths, hence we discard these constraints.

The effect of these requirements is that our selected edges now induce a tree
structure on the subgraph induced by the selected vertices. The vertex r then
acts as the root of this induced tree. As there is only one root vertex, and as
the tree will contain only edges from the subgraph, it is immediate that the
subgraph in question must be connected.

Again, the acyclicity constraint becomes crucial — without it, a tree may end
in a cycle, and thus might fail to be eventually connected to the root. All that

106 T. Brock-Nannestad

remains, then, is to ensure that the possibility of having multiple edges entering
a vertex does not break the acyclicity constraint we have already defined. The
only way this could happen is if there were some way to constrain a given edge
to take on two unequal values at the same time. As we only constrain the value
of an edge entering a vertex based on the local configuration of it and the edge
(if any) leaving the vertex, and as there is at most one edge leaving a vertex,
it is impossible for the acyclicity constraint to overconstrain the variables. Note
that this is not the case if we allow more than one edge to exit a given vertex.

8.1 Single-Cycle Constraints

Previously, we have seen how to constrain the solution to consist of a single path.
We will now consider how to constrain the solution to consist of a single cycle
instead. Off-hand, this may seem a bit strange, as we would then simultaneously
constrain the solution to contain no cycles, and yet also a single cycle, which
would be a contradiction.

To get the desired behaviour, we will first adapt the acyclicity constraint to
allow this constraint to be broken at exactly one vertex in the graph. We first
associate a 2-valued variable bi,j to each vertex. This variable will be constrained
as follows:

– Among all the vertices, at most one of them can have bi,j = 1. This is easily
enforced by the following constraint:

∑

i,j

bi,j = 1

– At any vertex, the acyclicity constraint is only enforced if the value of bi,j
is equal to zero. For each constraint C(i, j) concerning the vertex (i, j) this
amounts to adding a precondition as follows:

∀i, j. (bi,j = 0) ⊃ C(i, j)

At this point we have enough to encode the single-cycle constraint, but in fact
we can do even better in this particular situation. One drawback of the acyclicity
constraint we presented previously is that it requires a domain of size 3 for the
variables associated to edges. If, on the other hand, our solution is known to
consist of only cycles, we do not need this extra information to be encoded in
the edges. The crucial observation is the following: if the solution consists of only
cycles, we can keep track of the number of cycles (modulo 2) that any given face
of the graph is inside. This allows us to associate a direction to each edge by
stating that the face to the left of a given edge (as seen in the implicit direction
of the edge) is always the outside face.

The benefit of this optimisation is clear: instead of constraining the 3-valued
edges to ensure that they give rise to directed cycles, we may assume they are 2-
valued, and simply add a single 2-valued variable fi,j for each face of the graph.
As there are generally more edges than faces in a given planar graph, this is an
improvement. If we define that fi,j is the face that is immediately above hi,j

Space-Efficient Planar Acyclicity Constraints 107

and immediately to the right of vi,j , it is a straightforward matter to propagate
the inside/outside information by the following constraints (recall that the edges
now have domain {0, 1}):

∀i, j. fi,j−1 = fi,j ⊕ hi,j

∀i, j. fi−1,j = fi,j ⊕ vi,j

where we previously used, say, hi,j < 0, we may now instead put (fi,j−1 =
0) ∧ (fi,j = 1), and thus restate the constraints from Sect. 5 in terms of the fi,j
variables.

In fact, by doing this, we can eliminate the hi,j and vi,j variables entirely,
and rewrite any expression referring to these variables into one using the fi,j
variables instead.

9 Conclusion and Future Work

In this paper, we presented a novel way of encoding acyclicity constraints for
planar graphs by means of a notion of turning number parity.

Although this encoding is efficient in terms of space, it is less clear whether
it is actually practical to use. One benefit of the basic encoding is that cycles
may be detected by simple interval constraint propagation where

x ∈ {k, . . . , �}, y ∈ {m, . . . , n}, x < y

immediately induces the constraints k < y and x < n, and thus constrains
the domain of x and y to be {k, . . . ,min(�, n − 1)} and {max(k + 1,m), . . . , n}
respectively. If moreover we know that y < x, propagating the above constraint
will eventually exclude all possibilities in the domain of either x or y, and thus
create a contradiction.

For the refined constraint, the picture is less clear. Essentially, we induce
a sequence of equalities and disequalities between the parity variables in our
directed cycle. If we decide on the parity of some variable in a path, the conse-
quences of this choice will immediately propagate to every other vertex in the
path, and if the path is in fact a cycle, this propagation will ultimately fail. If,
on the other hand, no such choice has been made, the constraint propagation
engine may fail to detect the contradiction. Consider for instance the following
(dis)equalities:

a �= b, b = c, c = d, d = a, a, b, c, d ∈ {0, 1}
With these constraints, there is no local way to make progress by pruning the
domains of the variables.

On the other hand, only a small bit of propagation is required to obtain a
contradiction. If we add the following propagation rules

x �= y, y = z =⇒ x �= z x �= y, y �= z =⇒ x = z,

and apply it to the above example, it will eventually derive a �= a, and get a
contradiction. In fact, for path and cycle constraints, we can use the above as

108 T. Brock-Nannestad

simplification rules, and allow them to consume both of the input constraints
(for the connectedness constraint, this is no longer valid).

As we have shown, there exists an efficient encoding for planar graphs. It
would be interesting to see how one might adapt the present constraints to
handle non-planar graphs as well. One thing that should be noted is that the
present approach does not immediately extend to more general graphs. Consider
for instance the following graph embedded on the following planar representation
of the torus (where the top and bottom edges are identified, and likewise for the
left and right edges).

Here, it is easy to construct cycles that e.g. have no corners at all — in which
case the turning number parity certainly doesn’t change — or an even number
of corners:

Thus, it is necessary to add further constraints to ensure that these cycles
are also excluded.

Acknowledgements. This work is funded by the ERC Advanced Grant ProofCert.

References

1. Rintanen, J., Janhunen, T., Gebser, M.: SAT modulo graphs: acyclicity. In: Fermé,
E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 137–151. Springer, Heidelberg
(2014)

2. Grünbaum, B., Shephard, G.C.: Rotation and winding numbers for planar polygons
and curves. Trans. Am. Math. Soc. 322(1), 169–187 (1990)

3. Otten, R., Van Wijk, J.: Graph representations in interactive layout design. In:
Proceedings of the IEEE International Symposium on Circuits and Systems, pp.
914–918 (1978)

4. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of
planar graphs. Discrete Comput. Geom. 1(1), 343–353 (1986)

5. Tamura, N.: Solving puzzles with Sugar constraint solver. Slides, August 2008.
http://bach.istc.kobe-u.ac.jp/sugar/puzzles/sugar-puzzles.pdf

6. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. Constraints 14(2), 254–272 (2009)

7. Whitney, H.: On regular closed curves in the plane. Compositio Mathematica 4,
276–284 (1937)

http://bach.istc.kobe-u.ac.jp/sugar/puzzles/sugar-puzzles.pdf

Executable Relational Specifications
of Polymorphic Type Systems Using Prolog

Ki Yung Ahn1(B) and Andrea Vezzosi2

1 Portland State University, Portland, OR, USA
kya@pdx.edu

2 Chalmers University of Technology, Gothenburg, Sweden
vezzosi@chalmers.se

Abstract. A concise, declarative, and machine executable specification
of the Hindley–Milner type system (HM) can be formulated using logic
programming languages such as Prolog. Modern functional language
implementations such as the Glasgow Haskell Compiler support more
extensive flavors of polymorphism beyond Milner’s theory of type poly-
morphism in the late 70’s. We progressively extend the HM specification
to include more advanced type system features. An interesting develop-
ment is that extending dimensions of polymorphism beyond HM resulted
in a multi-staged solution: resolve the typing relations first, while delay-
ing to resolve kinding relations, and then resolve the delayed kinding
relations. Our work demonstrates that logic programing is effective for
prototyping polymorphic type systems with rich features of polymor-
phism, and that logic programming could have been even more effective
for specifying type inference if it were equipped with better theories and
tools for staged resolution of different relations at different levels.

Keywords: Hindley–Milner · Functional language · Type system ·
Type inference · Unification · Parametric polymorphism · Higher-kinded
polymorphism · Type constructor polymorphism · Kind polymorphism ·
Algebraic datatype · Nested datatype · Logic programming · Prolog ·
Delayed goals

1 Introduction

When implementing the type system of a programming language, we often face
a gap between the design described on paper and the actual implementation.
Sometimes there is only an ambiguous description in English (or in other natural
languages). Even when there is a mathematical description of the type system
on paper, there can be a gap between the description and the implementation.
Language designers and implementers can suffer from this gap because it is dif-
ficult to determine whether a problem originated from a flaw in the design or a
bug in the implementation. Having a declarative (i.e., structurally similar to the
design) and flexible (i.e., easily extensible) machine executable specification is
extremely helpful, especially for prototyping or testing experimental extensions
c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 109–125, 2016.
DOI: 10.1007/978-3-319-29604-3 8

110 K.Y. Ahn and A. Vezzosi

to the language’s type system. Jones’ attempt of Typing Haskell in Haskell [20]
is an exemplary work that demonstrates the value of such a concise, declara-
tive, and machine executable specification: the authors report that 90+ pages of
Hugs type checker implementation in C could be specified in only 400+ lines of
readable Haskell script.

Logic programming languages like Prolog are natural candidates for the pur-
pose of specifying type systems that support type inference: the syntax and
semantics are designed to represent logical inference rules (which is how type
systems are typically formalized) and they offer native support for unification
(which is the basic building block of type inference algorithms). As a result,
type system specifications become even more succinct in Prolog than in func-
tional languages. More importantly, the specifications are relational, capturing
both type checking and type inference without duplication.

Our contributions are demonstrating

– A relational specification for a polymorphic type system that can be executed
for both purposes of type checking and type inference (Sect. 2.1).

– A succinct and declarative specification for several dimensions of polymor-
phism (type, type constructor, kind) in less than 35 lines of Prolog (Sect. 2.2).

– A specification that is easily extend from the prior specifications with several
pragmatic features such as pattern matching, recursion schemes, and poly-
morphic recursion (with the help of a few type annotation) (Sect. 3).

– A two-staged inference scheme for types and kinds using delayed goals
(Sect. 2.2): We discovered that kind inference can be delayed after type infer-
ence (it is in some sense quite natural).

– A motivating example for a dualized view on variables in logic programming:
Type variables are viewed as unifiable logic variables in type inference but they
are viewed as concrete/atomic variables (or identifiers) in kind inference in our
specification. Better way of organizing this concept is desirable to produce
better relational specifications for polymorphic type systems.

We give a step-by-step tutorial style explanation of our specification in
Sect. 2, gradually extending from the Prolog specification of the simply-typed
lambda calculus. In Sect. 3, we demonstrate that our method of specification is
flexible for extensions with other language features. All our Prolog specification
in Sects. 2 and 3 are tested on SWI Prolog 7.2 and its source code are available
online.1 We contemplate on more challenging language features such as GADTs
and term indices in Sect. 4, discuss related work in Sect. 5, and summarize our
discussion in Sect. 6.

2 Polymorphic Type Inference Specifications in Prolog

We start from a Prolog specification for the Hindley–Milner type system (HM)
in Sect. 2.1 and then extend the specification to support type constructor
polymorphism and kind polymorphism in Sect. 2.2.
1 http://kyagrd.github.io/tiper/.

http://kyagrd.github.io/tiper/

Executable Relational Specifications of Polymorphic Type Systems 111

The following two lines should be loaded into the Prolog system before load-
ing the specifications in this paper.

:- set_prolog_flag(occurs_check,true).

:- op(500,yfx,$).

The first line sets Prolog’s unification operator = to perform an occurs check,
which is needed for the correct behavior of type inference. The second line
declares $ as a left-associative infix operator, which is used to represent the
application operator in the object language syntax. For instance, E1$E2 is an
application of E1 to E2. Note that $ is left associative because we want E1$E2$E3
to mean ((E1$E2)$E3).2

2.1 HM

The four rules defining the type predicate in the specification of HM (Fig. 1) are
almost literal transcriptions of the typing rules of HM. The query type(C,E,T)

represents a typing judgment usually denoted by C � E : T on paper, meaning that
the expression E can be assigned a type T under the typing context C. A typing
context is a list of bindings. There are two kinds of bindings in HM: monomorphic
bindings (X:mono(A)) and polymorphic bindings (X:poly(C,A)). Expressions in
HM are either variables (X), lambda expressions (lam(X,E)), applications (E1$E2),
or let-expressions (let(X=E0,E1)).

The first rule for finding a type (T1) of a variable (var(X)) amounts to
instantiating (instantiate(T,T1)) the type (T) from the first binding (X:T) that
matches the variable (X) bound in the typing context (C). The two rules for
lambda expressions and applications are self-explanatory. The last rule for let-
expressions introduces polymorphic bindings. HM supports rank-1 polymor-
phic types (a.k.a. type schemes), which are introduced by this polymorphic

Fig. 1. Executable relational specification of HM in Prolog

2 We intentionallay adopted the same symbol as the application operator $ in the
Haskell standard library. In contrast to the right-associative operator in Haskell, our
operator represents the default function application most often denoted by empty
spaces and left-associative by convention.

112 K.Y. Ahn and A. Vezzosi

let-bindings.3 The typing context C inside the polymorphic binding poly(C,A)

is the typing context of the let-expression where A is being generalized.
The instantiate predicate cleverly implements the idea of the polymorphic

instantiation in HM. The built-in predicate copy term makes a copy of the first
argument and unifies it with the second argument. The copied version is iden-
tical to the original term except that all the Prolog variables have been sub-
stituted with freshly generated variables. The instantiation of a polymorphic
type poly(C,T) is implemented as copy term(t(C,T),t(C,T1)). Firstly, a copied
version of t(C,T) is made. Say t(C2,T2) is the copied version with all variables
in both C and T are freshly renamed in C2 and T2. Secondly, t(C2,T2) is unified
with t(C,T1), which amounts to C2=C and T2=T1. Because C2 is being unified with
the original context C, all freshly generated variables in C2 are unified with the
original variables in C. Therefore, only the variables in T that do not occur in
its binding context C will effectively be freshly instantiated in T1. For example,
the result of copy term(t([X:T],Y->X),t([X:T],T1)) is T1 = Y1->X, where only Y

is instantiated to a fresh variable Y1 but X stays the same because it appears in
the typing context [X:T]. This exactly captures generalization and instantiation
of polymorphic types in HM.

One great merit of this relational specification is that it also serves as a
machine executable reference implementation. We can run it for type checking:

?- type([], lam(x,var(x)), A -> A).

true .

as well as for type inference:
?- type([], lam(f,lam(x,var(f)$var(x))), T).

T = ((_G1571->_G1572)->_G1571->_G1572) .

and, although it is not the focus of this work, also for type inhabitation:
?- type([], E, A -> A).

E = lam(_G1555, var(_G1555)) .

In the following sections, we discuss how to add polymorphic features to
the specification. The specifications with the extended features also serve as
machine executable reference implementations, which are able to perform both
type checking and type inference.

2.2 HM + Type Constructor Polymorphism + Kind Polymorphism

Modern functional languages such as Haskell support rich flavors of polymor-
phism beyond type polymorphism. For example, consider a generic tree datatype

data Tree c a = Leaf a | Node (c (Tree c a))

where c determines the branching structure at the Nodes and a determines the
type of the value hanging on the Leaf s. For instance, it instantiates to a binary

3 Here, in this subsection, we consider non-recursive bindings only but the specification
of HM can be easily modified to support recursive bindings (see Sect. 3.1).

Executable Relational Specifications of Polymorphic Type Systems 113

tree when c instantiates to a pair constructor and a rose tree when c instantiates
to a list constructor. The type system of Haskell infers that c has kind ∗ → ∗
and a has kind ∗. That is, this generic tree datatype is polymorphic on the
unary type constructor variable c as well as on the type variable a. Haskell’s
type system is also able to infer types for polymorphic functions defined over
Trees, which may involve polymorphism over type constructors as well as over
types. Furthermore, recent versions of the Glasgow Haskell Compiler support
kind polymorphism [34].

The Prolog specification in Fig. 2 describes type constructor polymorphism
and kind polymorphism, in only 32 lines (excluding empty lines). We get kind
polymorphism for free because we can reuse the same instantiate predi-
cate for kinds, which was used for types in the HM specification. However,
the instantiation for types needs to be modified, as in inst type, to ensure
that the kinds of freshly generated type constructor variables match with the
corresponding variables in the polymorphic type. For example, each use of
Node ::∀ c a . c (Tree c a) → Tree c a generates two variables, say c′ and a′,
and the type system should make sure that c′ has the same kind (∗ → ∗) as
c and a′ the same kind (∗) as a. The samekinds predicate used in inst type
generates such kinding relations exactly for this reason. Other than ensuring
same kinds for freshly generated variables, inst type instantiates polymorphic
types just as instantiate does. In the remainder of this section, we focus our
discussion on the modifications to support type constructor variables.

Supporting type constructor variables of arbitrary kinds introduces the pos-
sibility of ill-kinded type (constructor) formation (e.g., F G when F : ∗→∗ but
G : ∗ → ∗ or A → B when A : ∗ → ∗). In our Prolog specification, we use the
atomic symbol o to represent the kind usually denoted by ∗ (e.g., in Haskell)
because * is predefined as a built-in infix operator in Prolog. The kind predi-
cate transcribes the kinding rules for well-formed kinds, which is self-explanatory
(HM without let-binding duplicated on the type level instead of term level).

The typing rules (type) need some modifications from the rules of HM, in
order to invoke checks for well-kindedness using the kinding rules (kind). We
discuss the modification in three steps.

The first step is to have the typing rules take an additional argument for
the kinding context (KC) along with the typing context (C). The typing rules
should keep track of the kinding context in order to invoke kind from type.
That is, we change the definition of the type predicate from type(C,...) to
type(KC,C,...).

The second step is to invoke well-kindedness checks from the necessary places
among the typing rules. We follow the formulation of Pure Type Systems [7],
a generic theory of typed lambda calculi, which indicates that well-kindedness
checks are required at the formation of function types, that is, in the typing rule
for lambda expressions. One would naturally attempt the following modification:

type(KC,C,lam(X,E),A->B) :- type(KC,C,[X:mono(A)|C],E,B),

kind(KC,A->B,o).

114 K.Y. Ahn and A. Vezzosi

Fig. 2. HM + type constructor polymorphism + kind polymorphism in Prolog (without
pattern matching).

This second step modification is intuitive as a specification, but rather frag-
ile as a reference implementation. For instance, a simple type inference query
for the identity function fails (where the HM specification successfully infers
T = A -> A):

?- type([],[],lam(x,var(x)),T).

ERROR: Out of local stack

Executable Relational Specifications of Polymorphic Type Systems 115

There are mainly two reasons for the erratic behavior. Firstly, there is not
enough information at the moment of well-kindedness checking. At the invoca-
tion of kind, the only available information is that it is a function type A -> B.
Whether A and B are variables, type constructor applications, or function types
may be determined later on, when there are other parts of the expression to be
type checked (or inferred). Secondly, we have a conflicting view on type variables
at the typing level and at the kinding level. At the typing level, we think of type
variables as unification variables, implemented by Prolog variables in order to
exploit the unification natively supported in Prolog. At the kinding level, on the
contrary, we think of type variables as concrete names that can be looked up in
the kinding context (just like term variables in the typing context).

The last step of the modification addresses the erratic behavior of the sec-
ond step. A solution for these two problems mentioned above is to stage the
control flow: first, get as much information as possible at the typing level, and
then, concretize Prolog variables with atomic names for the rest of the work
at the kinding level. Instead of directly invoking kind within type, we collect
the list of all the necessary well-kindedness assertions into a list to be han-
dled later. This programming technique is known as delayed goals in logic pro-
gramming, which is like building up a to-do list or continuation. We use the
Definite Clause Grammar (DCG) rules [25,31] to collect delayed goals using a
neat syntax. The DCG rules were originally designed for describing production
rules of formal grammar, where nonterminals are specified within the brackets
and context-sensitive conditions are specified within curly braces using ordinary
Prolog predicates. Here, we exploit DCG rules (as many others do) as a neat
syntax for a writer monad that collects kind assertions as a side-output within
the brackets (e.g., [kind(KC,A->B,o)]) and pure computations appear in curly
braces (e.g., first(X:T,C)). The infer type predicate implements the two-
staged solution as follows:

1. The 1st line is the first stage at the typing level. For example,
?- phrase(type([],[],lam(x,var(x)),T), Gs0).

T = (_G1643->_G1643),

Gs0 = [kind([], (_G1643->_G1643), o)] .

it infers the most generic type (G1643-> G1643) of the identity function and
generates one delayed goal, namely kind([], (G1643− > G1643), o).

2. In the 2nd line, we make a copied version of the delayed goals using
copy term in order to decouple the variables of the first stage from the vari-
ables of the second stage. After the 2nd line, Gs contains a copied version of
Gs0 with freshly renamed variables, say Gs = [kind([], (G2211-> G2211),

o)].
3,4. The 3rd and 4th lines collects all the type variables in Gs into Xs, that is,

Xs=[G2211], continuing with the identity function example.
5. The 5th line maplist(variablize,Xs) instantiates the Prolog variables

collected in Xs into concrete type variables with fresh names. In
variablize, gensym(t,X) generates atoms with fresh names that start

116 K.Y. Ahn and A. Vezzosi

with t. For instance, X=t1, X=t2, · · · . After the 5th line, where it is con-
cretized as G2211=var(t1), we have Xs = [var(t1)] and Gs = [kind([],

(var(t1)->var(t1)), o)].
6,7. Freshly generated type variables need to be registered to the kinding context

in order to be well-kinded. The 6th line monomorphically binds all the
variable names in Xs and collects them into KC1. Continuing with the identity
function example, KC1=[t1:mono(K1)] after the 6th line. The 7th line extends
each kinding context in Gs with KC1 for the freshly generated variables. The
goals with extended contexts are collected in Gs1. After 7th line, we have
Gs1 = [kind([t1:mono(K1)], (var(t1)->var(t1)), o)].

8. Finally, the delayed well-kindedness assertions in Gs1 are called on as goals,
which amounts to the following query for our identity function example:
?- kind([t1:mono(K1)], (var(t1)->var(t1)), o).

K1 = o

3 Supporting Other Language Features

The purpose of this section is to demonstrate that our Prolog specification for
polymorphic features is extensible for supporting other orthogonal features in
functional languages including general recursion (Sect. 3.1), pattern matching
over algebraic datatypes (Sect. 3.2), and recursion schemes over non-regular alge-
braic datatypes with user provided annotations (Sect. 3.3). The specification for
the pattern-matching and the recursion schemes in this section are extensions
that build upon the specification in Sect. 2.2.

Discussions on the details of the Prolog code is kept relatively brief, com-
pared to the previous section, because our main purpose here is to demonstrate
that supporting these features does not significantly increase the size and the
complexity of our specification. Readers with further interest are encouraged to
experiment with our specifications available online (see Sect. 1, p. 2).

3.1 Recursive Let-Bindings

Adding recursive let-bindings is obvious. We simply add a monomorphic binding
for the let-bound variable (X) when inferring the type of the expression (E0)
defining the let-bound value as follows:

type(KC,C,letrec(X=E0,E1),T) --> type(KC,[X:mono(A) |C],E0,A),

type(KC,[X:poly(C,A)|C],E1,T).

We could also allow polymorphic recursion by type annotations on the let-
bound variable, like we will do for Mendler-style iteration over non-regular
datatypes in Sect. 3.3.

3.2 Pattern Matching for Algebraic Datatypes

In Fig. 3 (on p. 9), we specify pattern matching expressions without the scrutinee,
which is also known as pattern-matching lambdas. A pattern lambda is a function
that awaits an expression to be passed in as an argument to pattern match its

Executable Relational Specifications of Polymorphic Type Systems 117

Fig. 3. A Prolog specification of non-nested pattern-matching lambdas (coverage check-
ing not included).

Fig. 4. A Prolog specification for Mendler-style iteration on algebraic datatypes
(including non-regular nested datatypes).

118 K.Y. Ahn and A. Vezzosi

value. For example, let {p1 → e1; · · · ; pn → en} be a pattern-matching lambda.
Then, the application {p1 → e1; · · · ; pn → en} e corresponds to a pattern
matching expressions in Haskell of the form case e of {p1 → e1; · · · ; pn → en}.

We represent pattern-matching lambdas in Prolog as a list of clauses that
match each pattern to a body, for instance, [’Nil’-->E1, ’Cons’(x,xs)-->E2]
where E1 and E2 are expressions of the bodies. For simplicity, we implement the
most simple design of non-nested patterns. That is, a pattern is either an atom
that represents a nullary data constructor, such as ’Nil’, or a complex term
with an n-ary function symbol that represents an n-ary data constructor and
n variables as its arguments, such as ’Cons’(x,xs). Here, we are using the
convention that names of type constructors and data constructors start with
uppercase letters while names of term variables (including pattern variables)
start with lowercase letters. We also add a delayed well-kindedness goal because
pattern lambdas introduce function types (A -> T), just like ordinary lambda
expressions.

3.3 Recursion Schemes for Non-Regular Algebraic Datatypes

Consider the following two recursive datatype declarations in Haskell:

data List a = NL | CL a (List a)
data Bush a = NB | CB a (Bush (Bush a))

List is a homogeneous list, which is either empty or an element tailed by a List
that contains (zero or more) elements of the same type as the prior element.
Bush is a list-like structure that is either empty or has an element tailed by a
Bush that contains (zero or more) elements but their type (Bush a) is different
from the type of the prior element (a).

Every recursive component of List, which is the tail of a list, has exactly
the same type argument (a) as the List containing the tail. Because the types
of recursive occurrences in List are always the same, or regular, and List is
therefore categorized as a regular datatype. The recursive component of Bush,
on the contrary, has a type argument (Bush a) different from the type argument
(a) of its containing Bush. Due to this non-regularity of the types in its recursive
occurrences, Bush is categorized as a non-regular datatype, which is also known
as a nested datatype [8] because the types of recursive components typically
become nested as the recursion goes deeper.

In order to define interesting and useful recursive functions over non-regular
datatypes, one needs polymorphic recursion, whose type inference is known to be
undecidable without the aid of user supplied type annotations. In Fig. 4 (on p9),
we specify a subset of a functional language that supports a recursion scheme,
which naturally generalizes from regular datatypes to non-regular datatypes. In
particular, we specify the Mendler-style iteration [1,21] supported in the Nax
language [2]. In Nax, all recursive constructs, both at the type level and at the
term level, are defined using the primitives provided by the language, avoiding
uncontrolled general recursion.

Executable Relational Specifications of Polymorphic Type Systems 119

Fig. 5. Example queries of type inference: list length and bush sum.

120 K.Y. Ahn and A. Vezzosi

The mu(F) appearing in the Prolog specification corresponds to a recur-
sive type μF constructed by the fixpoint type operator μ applied to a base
structure F , which is not recursive by itself. Here, we require that F is either
a type constructor introduced by a (non-recursive) datatype declaration or
a partial application of such a type constructor. We add a kinding rule for
the fixpoint type operator by adding another rule of the kind predicate for
mu(F). We also add two accompanying rules for recursive values. The expres-
sion in(N,E) constructs a recursive value of type mu(F)$I 0$...$I N. In case
of regular datatypes, where mu(F) does not require additional type arguments
(i.e., mu(F):o), N is 0. The Mendler-style iteration expressions define (termi-
nating) recursive computation over recursive values. There are two rules for
Mendler-style iteration – one for regular datatypes and the other for non-regular
datatypes.

The Mendler-style iteration over regular datatypes (mit(X,Alts)) does
not need any type annotation. The Mendler-style iteration over non-regular
datatypes (mit(X,Is-->T0,Alts)) needs an annotation (Is-->T0) to guide the
type inference because it is likely to rely on polymorphic recursion. We require
that Is must be list of variables. For instance, mit(X,[I1,I2,I3]-->T0,Alts)
has type (mu(F)$I1$I2$I3)->T0 for some F. The specification for Mendler-style
iteration relies on pattern-matching lambdas discussed in the previous subsec-
tion. Once we have properly set up the kinding context and typing context
for the name of the recursive call (X), the rest amounts to inferring types for
pattern-matching lambdas. Pointers to further details on Mendler-style recur-
sion [1,3,33] and Nax [2] are available in the references section at the end of
this article. Here, in Fig. 5, we provide type inference queries on some example
programs using Mendler-style iteration.

A missing part from a typical functional language’s type system, which we
have not discussed in this paper, is the initial phase of populating the kinding
context and typing context from the list of algebraic datatype declarations prior
to type checking the expressions using them. With fully functioning basic build-
ing blocks for kind inference (kind) and type inference (type), inferring kinds of
type constructor names and inferring types for their associated data constructors
should be straightforward.

4 Future Work

We plan to continue our work on several additional features, including general-
ized algebraic datatypes (GADTs) and real term-indices in GADTs (as in Nax).

GADTs add the complexity of introducing local constraints within a pattern-
matching clause, which should not escape the scope of the clause, unlike global
unification constraints in HM. It would be interesting to see whether Prolog’s
built-in support for handling unification variables and symbols could help us
express the concept of local constraints as elegantly as we expressed polymorphic
instantiation in Sect. 2.

Executable Relational Specifications of Polymorphic Type Systems 121

The kind structure needed for type constructor polymorphism is exactly the
kinds supported in the higher-order polymorphic lambda calculus, known as Sys-
tem Fω [17]. Type constructors in Fω can have types as arguments. For example,
the type constructor List for lists has kind ∗ → ∗, which means that it needs
one type argument to be fully applied as a type (e.g. List Nat : ∗).

kind in System Fω κ :: = ∗ | κ → κ

kind in System Fi κ :: = ∗ | κ → κ | {A } → κ

To support terms, as well as types, to be supplied to type constructors as argu-
ments, the kind structure needs to be extended. System Fi [4], which Nax is
based on, extends the kind structure with {A } → κ to support term indices in
types. This extension allows type constructors such as Vec : ∗ → {Nat } → ∗
for vectors (a.k.a. length indexed lists). For instance, Vec Bool {8} is a type of
boolean vectors of length 8. There are two ramifications regarding type inference:

– the unification is modulo equivalence of terms: For instance, the type system
should consider Vec Bool {n} and Vec Bool {(λx.x) n} as equivalent types.

– Type inference/checking and kind inference/checking invoke each other: A typ-
ing rule has to invoke a kinding rule to support type constructor polymorphism
(Sect. 2.2). In the extended kind structure, types can appear in kinds (A in
{A} → κ) and therefore kinding rules need to invoke typing rules.

Extending our specification with term indices would be an interesting future work
that might involve resolving possible challenges from these two ramifications.

In addition, we are planning to develop specifications for more practical lan-
guage constructs such as records with named fields and modules for organizing
definitions in different namespaces. To support high degree of polymorphism
with records and modules, we will also need to support row polymorphism [16]
and first-class polymorphism (e.g., [27]).

5 Related Work

5.1 HM(X), CHR, and Typol

The idea of using logic programming (LP) to specify type systems is not new,
for instance, Typol [12] and HM(X) [24].

Typol is a specification language for both static semantics (i.e. type systems)
and dynamic semantics of programming languages, where type checkers and
interpreters could be generated directly from Typol specifications by compiling
the specification into Prolog code. Although Despeyroux [12] demonstrated that
Typol can be used for type system based on HM (more specifically, the core of
ML), it was mainly used for language specifications without parametric polymor-
phism — in the 80’s, there were not as much practical programming languages
supporting parametric polymorphism as in the 21st century.

In the late 90’s, Odersky, Sulzmann, and Wehr [24] defined a general frame-
work called HM(X) for specifying extensions of HM (e.g., records, type classes,

122 K.Y. Ahn and A. Vezzosi

intersection types) and Alves and Florido [5] implemented HM(X) using Con-
straint Handling Rules (CHR) in Prolog. Testing a type system extension in the
HM(X) framework provides a certain level of confidence that the extension would
work well with type polymorphism in HM. Testing an extension by extending
our specification provides additional confidence that the extension would work
well with type constructor polymorphism and kind polymorphism, as well as
with type polymorphism.

CHR have been used for type inference in many other occasions. For instance,
Csorba et al. [11] discuss “Pros and Cons of using CHR for Type Inference” of
the Q programming language, which is a functional language well suited for
complex calculations on large volume of data. Although Q was designed to be
strongly typed, prior implementations dynamically checked those types during
runtime execution. They implemented a static type inference for Q using CHR in
Prolog. Interestingly, our work using Prolog for type inference shares a common
Con (difficulties they had to overcome by workaround) in their work using CHR
in Prolog for type inference. One of their difficulties was to “influence the firing
order of rules with different heads”, which corresponds to our need to process
kind predicates after processing type predicates. Such Cons seem to be common
in LP regardless of the use of CHR.

5.2 Delayed Goals and Control Flow in Logic Programming

The concept of delayed goals has been used in many different contexts in LP.
An AILog textbook [26] introduces delaying goals as one of the useful abilities
of a meta-interpreter. Several Prolog systems including SWI and SICStus pro-
vide built-in support for delaying a goal until certain conditions are met using
the predicates such as freeze or when. In our specification, we could not sim-
ply use freeze or when because we pre-process the collected delayed goals (see
variablize in Sect. 2.2). Recently, Schrijvers et al. [29] implemented delimited
continuations for Prolog, which might be a useful abstraction for the delayed
goals used in our work.

5.3 Other Logic Programming Systems

Some experimental Prolog implementations support interesting features such as
nominal abstraction in αProlog [10] and a (restricted version of) higher-order
unification in λProlog [23]. However, we have not found a relational specification
of a polymorphic type systems using them. The αProlog developer attempted
to implement the HM type inference for mini-ML in αProlog, but failed to pro-
duce a working version.4 The Teyjus λProlog compiler version 2 includes a PCF
[30] example, which is similar to HM but without polymorphic let-bindings. In
both example implementations, they define the type inference predicate tailored
for type inference only (unlike our relational specification that works for both
type checking and inference) and the unification used in their type inference are
manually crafted rather than relying on the native unification of the LP systems.

4 See miniml.apl in the examples directory of the αProlog version 0.4 or 0.3.

Executable Relational Specifications of Polymorphic Type Systems 123

Kanren5 [14] is a declarative LP system embedded in a pure functional sub-
set of Scheme. A relational implementation of HM is provided in the Kanren
repository, which works for both type checking, type inference, and also for type
inhabitance searching, as in our HM specification in Prolog. A simplified version
called miniKanren [9] has been implemented in several dialects of Scheme 6 and
an even further simplified kernel μKanren [18] is being implemented in growing
number of host languages as an embedded Domain Specific Language (eDSL) for
LP. By design, Kanren does not provide concrete syntax, therefore, it is not best
suited for a specification language. However, Kanren has its benefits of being
flexible, simple, and portable. If one is to build a tool based on LP concepts and
wishes to support interfaces to one or more programming languages, μKanren
may be a good choice to target as the backend.

Executable type system specifications in Prolog have been studied for sup-
porting static types in Prolog itself (e.g., [28]). Recently, there has been research
on type inference using LP with non-standard semantics (e.g., corecursive, coin-
ductive) for object-oriented languages (e.g., featherweight Java) but functional
languages were left for future work [6]. Johann et al. [19] have developed S-
resolution, which is proven [15] to produce the same results when the depth-first-
search style SLD-resolution used in Prolog is proven to be inductive. S-resolution
can also answer some queries for which SLD-resolution fails to terminate. S-
resolution might be useful for us to eliminate the need for delayed goals in our
specification.

5.4 Descriptions of Type Inference Algorithms in ITPs

There are several formal descriptions of type inference algorithms using Inter-
active Theorem Provers (ITPs) such as Coq [13] and Isabelle/HOL [32]. The
primary motivation in such work is to formally prove theoretical properties (e.g.,
soundness, principal typing) of type inference algorithms, which is different from
our motivation of providing a human readable and machine executable specifica-
tion for the type system to reduce the gap between theoretical specification and
practical implementation. Some of those descriptions are not even executable
because the unification is merely specified as a set of logical axioms. Formally
describing certifiable type inference in ITPs is challenging (and therefore also
challenging to extend or modify) for two reasons. First, fresh names should be
monitored more explicitly and rigorously for the sake of formal proof. Second,
algorithms may need to be massaged differently from their usual representations,
in order to convince the termination checker of the ITP (e.g. [22]).

6 Conclusions

During this work, we searched for relational specifications of type systems that
are executable in logic programming systems, only to find out that there are sur-
5 Kanren is a phonetic transcription of the Kanji word meaning “relation”. See http://

kanren.sourceforge.net/.
6 See http://minikanren.org/.

http://kanren.sourceforge.net/
http://kanren.sourceforge.net/
http://minikanren.org/

124 K.Y. Ahn and A. Vezzosi

prisingly few (Sect. 5.3); we found a few for HM but were not able to find spec-
ifications for more sophisticated polymorphisms. Our work is a pioneering case
study on this subject matter, demonstrating the possibility of relational specifi-
cation for advanced polymorphic features, highlighting the benefits of relational
specifications, and identifying limitations of the LP systems presently available.

There are novel features and designs scattered around in different theo-
ries/systems that could be useful for relational specifications of type systems, as
discussed in Sect. 5 (e.g., nominal logic in LP, embedded DSLs for LP, abstrac-
tions for control flow in LP, alternative resolution semantics). We believe that
there should be a tool that makes it easy to develop relational specifications of
type systems. Such a tool can open a new era in language construction, analo-
gous to the impact when parser generators such as Yacc were first introduced.
But to realize such a tool for applications pedagogical examples, we need a com-
bined effort of both functional and logic programing communities to seamlessly
put together such novel ideas accomplished individually in different settings into
the context of “relational specifications of polymorphic type systems”.

Acknowledgements. Thanks to Patricia Johann for helping us clarify the specifica-
tion for Mendler-style iteration, Ekaterina Komendantskaya and Frantisek Farka for
the discussions on S-Resolution, Peng Fu for pointers to Kanren, Chris Warburton for
careful proofreading, and FLOPS’16 reviewers for their feedback.

References

1. Abel, A., Matthes, R., Uustalu, T.: Generalized iteration and coiteration for higher-
order nested datatypes. In: FoSSaCS 2003 (2003)

2. Ahn, K.Y.: The Nax language. Ph.D. thesis, Department of Computer Science,
Portland State University, November 2014

3. Ahn, K.Y., Sheard, T.: A hierarchy of Mendler-style recursion combinators. In:
ICFP 2011. ACM (2011)

4. Ahn, K.Y., Sheard, T., Fiore, M., Pitts, A.M.: System Fi: a higher-order polymor-
phic lambda calculus with erasable term indices. In: TLCA 2013 (2013)

5. Alves, S., Florido, M.: Type inference using Constraint Handling Rules. In: WFLP
2001, vol. 64 of Electronic Notes in TCS, pp. 56–72. Elsevier (2002)

6. Ancona, D., Lagorio, G.: Coinductive type systems for object-oriented languages.
In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 2–26. Springer,
Heidelberg (2009)

7. Barendregt, H.: Introduction to generalized type systems. J. Funct. Program. 1(2),
125–154 (1991)

8. Bird, R., Meertens, L.: Nested datatypes. In: MPC: 4th International Conference
on Mathematics of Program Construction (1998)

9. Byrd, W.E.: Relational programming in miniKanren: techniques, applications,and
implementations. Ph.D. thesis, Indiana University (2009)

10. Cheney, J., Urban, C.: αProlog: A logic programming language with names, bind-
ing, and α-equivalence. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol.
3132, pp. 269–283. Springer, Heidelberg (2004)

11. Csorba, J., Zombori, Z., Szeredi, P.: Pros and cons of using CHR for type inference.
In: CHR 2012, KU Leuven, Deptarment of CS, Tech-report CW 624 (2012)

Executable Relational Specifications of Polymorphic Type Systems 125

12. Despeyroux, T.: Executable specification of static semantics. In: MacQueen, D.B.,
Plotkin, G., Kahn, G. (eds.) Semantics of Data Types 1984. LNCS, vol. 173,
pp. 215–233. Springer, Heidelberg (1984)

13. Dubois, C.: Proving ML type soundness within Coq. In: Aagaard, M.D., Harrison,
J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 126–144. Springer, Heidelberg (2000)

14. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. MIT Press,
Cambridge (2005). ISBN 978-0-262-56214-0

15. Fu, P., Komendantskaya, E.: A type theoretic approach to structural resolution.
In: Pre-Proceedings of LOPSTR 2015 (2015)

16. Gaster, B.R., Jones, M.P.: A polymorphic type system for extensible records and
variants. Technical report (1996)

17. J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. Ph.D. thesis, Université Paris VII (1972)

18. Hemann, J., Friedman, D.P.: μKanren: A minimal functional core for relational
programming. In: Scheme 2013 (2013)

19. Johann, P., Komendantskaya, E., Komendantskiy, V.: Structural resolution for
logic programming. In: Techincal Communications of ICLP (2015)

20. Jones, M.P.: Typing Haskell in Haskell. In: Haskell 1999, October 1999
21. Matthes, R.: Extensions of System F by Iteration and Primitive Recursion on

Monotone Inductive Types. Ph.D. thesis, Ludwig-Maximilians University (1998)
22. McBride, C.: First-order unification by structural recursion. J. Func. Program. 13,

1061–1075 (2003). ISSN 1469–7653
23. Mitchell, D.J., Nadathur, G.: System description: teyjus - a compiler and abstract

machine based implementation of λprolog. In: Ganzinger, H. (ed.) CADE 1999.
LNCS (LNAI), vol. 1632, pp. 287–291. Springer, Heidelberg (1999)

24. Odersky, M., Sulzmann, M., Wehr, M.: Type inference with constrained types.
Theor. Pract. Object Syst. 5(1), 35–55 (1999). ISSN 1074–3227

25. Pereira, F.C.N., Warren, D.H.D.: Definite clause grammars for language analysis.
Artif. Intell. 13, 231–278 (1980)

26. Poole, D., Mackworth, A.K.: Artificial Intelligence - Foundations of Computational
Agents. Cambridge University Press, Cambridge (2010)

27. Russo, C.V., Vytiniotis, D.: Qml: explicit first-class polymorphism for ml. In: ML
2009, pp. 3–14. ACM, New York (2009)

28. Schrijvers, T., Costa, V.S., Wielemaker, J., Demoen, B.: Towards typed prolog.
In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366,
pp. 693–697. Springer, Heidelberg (2008)

29. Schrijvers, T., Demoen, B., Desouter, B., Wielemaker, J.: Delimited continuations
for prolog. In: Proceedings of ICLP 2013 TPLP (2013)

30. Scott, D.S.: A type-theoretic alternative to CUCH ISWIM OWHY. Manuscript
(1969)

31. SWI-Prolog team. SWI-Prolog reference manual (section 4.2) (2005)
32. Urban, C., Nipkow, T.: Nominal verification of algorithm W. In: From Semantics

to Computer Science, pp. 363–382. Cambridge University Press (2009)
33. Vene, V.: Categorical Programming with Inductive and Coinductive Types. Ph.D.

thesis, Department of Computer Science, University of Tartu, August 2000
34. Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D.,

Magalhães, J.P.: Giving Haskell a promotion. In: TLDI 2012. ACM (2012)

Proof Relevant Corecursive Resolution

Peng Fu1(B), Ekaterina Komendantskaya1, Tom Schrijvers2,
and Andrew Pond1

1 Computer Science, University of Dundee, Dundee, UK
pfu@dundee.ac.uk

2 Department of Computer Science, KU Leuven, Leuven, Belgium

Abstract. Resolution lies at the foundation of both logic programming
and type class context reduction in functional languages. Terminating
derivations by resolution have well-defined inductive meaning, whereas
some non-terminating derivations can be understood coinductively. Cycle
detection is a popular method to capture a small subset of such deriva-
tions. We show that in fact cycle detection is a restricted form of coin-
ductive proof, in which the atomic formula forming the cycle plays the
rôle of coinductive hypothesis.

This paper introduces a heuristic method for obtaining richer coin-
ductive hypotheses in the form of Horn formulas. Our approach sub-
sumes cycle detection and gives coinductive meaning to a larger class
of derivations. For this purpose we extend resolution with Horn formula
resolvents and corecursive evidence generation. We illustrate our method
on non-terminating type class resolution problems.

Keywords: Horn clause logic · Resolution · Corecursion · Haskell type
class inference · Coinductive proofs

1 Introduction

Horn clause logic is a fragment of first-order logic known for its simple syntax,
well-defined models, and efficient algorithms for automated proof search. It is
used in a variety of applications, from program verification [3] to type inference
in object-oriented programming languages [1]. Similar syntax and proof methods
underlie type class inference in functional programming languages [17,24]. For
example, the following declaration specifies equality class instances for pairs and
integers in Haskell:

instance Eq Int where ...
instance (Eq x ,Eq y) ⇒ Eq (x , y) where ...

P. Fu—This author is supported by EPSRC grant EP/K031864/1.
A. Pond—This author is supported by Carnegie Trust Scotland.

c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 126–143, 2016.
DOI: 10.1007/978-3-319-29604-3 9

Proof Relevant Corecursive Resolution 127

It corresponds to a Horn clause program ΦPair with two clauses κInt and κPair :

κInt : Eq Int
κPair : (Eq x ,Eq y) ⇒ Eq (x , y)

Horn clause logic uses SLD-resolution as an inference engine. If a derivation
for a given formula A and a Horn clause program Φ terminates successfully with
substitution θ, then θA is logically entailed by Φ, or Φ � θA. The search for a
suitable θ reflects the problem-solving nature of SLD-resolution. When the unifi-
cation algorithm underlying SLD-resolution is restricted to matching, resolution
can be viewed as theorem proving: the successful terminating derivations for A
using Φ will guarantee Φ � A. For example, Eq (Int , Int) � Eq Int ,Eq Int �
Eq Int � ∅. Therefore, we have: ΦPair � Eq (Int , Int). For the purposes of this
paper, we always assume resolution by term-matching.

To emphasize the proof-theoretic meaning of resolution, we will record proof
evidence alongside the derivation steps. For instance, Eq (Int , Int) is proven by
applying the clauses κPair and κInt . We denote this by ΦPair � Eq (Int , Int) ⇓
κPair κInt κInt .

Horn clause logic can have inductive and coinductive interpretation, via the
least and greatest fixed points of the consequence operator FΦ. Given a Horn
clause program Φ, and a set S containing (ground) formulas formed from the
signature of Φ, FΦ(S) = {σA | σB1, . . . , σBn ∈ S and B1, . . . Bn ⇒ A ∈ Φ} [18].
Through the Knaster-Tarski construction, the least fixed point of this operator
gives the set of all finite ground formulas inductively entailed by Φ. Extending
S to include infinite terms, the greatest fixed point of FΦ defines the set of all
finite and infinite ground formulas coinductively entailed by Φ.

Inductively, SLD-resolution is sound: if Φ � A, then A is inductively entailed
by Φ. It is more difficult to characterise coinductive entailment computationally;
several approaches exist [16,18,22]. So far the most popular solution is to use
cycle detection [22]: given a Horn clause program Φ, if a cycle is found in a
derivation for a formula A, then A is coinductively entailed by Φ.

Consider, as an example, the following Horn clause program ΦAB :

κA : B x ⇒ A x
κB : A x ⇒ B x

It gives rise to an infinite derivation A x � B x � A x � By noticing
the cycle, we can conclude that (an instance) of A x is coinductively entailed
by ΦAB . We can construct a proof evidence that reflects the circular nature of
this derivation: α = κA (κB α). This being a recursive equation expecting the
greatest fixed point solution, we can represent it with the greatest fix point ν
operator, να.κA (κB α). Now we have ΦAB � A x ⇓ να.κA (κB α). From now
on, we call the evidence containing ν-term a corecursive evidence.

According to Gibbons and Hutton [7] and inspired by Moss and Danner [20],
a corecursive program is defined to be a function whose range is a type defined
recursively as the greatest solution of some equation (i.e. whose range is a coin-
ductive type). We can informally understand the Horn clause ΦAB as the fol-
lowing Haskell data type declarations:

128 P. Fu et al.

data B x = KB (A x)
data A x = KA (B x)

So the corecursive evidence να.κA (κB α) for A x corresponds to the corecursive
program (d : : A x) = KA (KB d). In our case, the corecursive evidence d is
that function, and its range type A x can be seen as a coinductive type.

Corecursion also arises in type class inference. Consider the following mutu-
ally recursive definitions of lists of even and odd length in Haskell:

data OddList a = OCons a (EvenList a)
data EvenList a = Nil | ECons a (OddList a)

They give rise to Eq type class instance declarations that can be expressed using
the following Horn clause program ΦEvenOdd:

κOdd : (Eq a,Eq (EvenList a)) ⇒ Eq (OddList a)
κEven : (Eq a,Eq (OddList a)) ⇒ Eq (EvenList a)

When resolving the type class constraint Eq (OddList Int), Haskell’s standard
type class resolution diverges. The state-of-the-art is to use cycle detection [17]
to terminate otherwise infinite derivations. Resolution for Eq (OddList Int)
exhibits a cycle on the atomic formula Eq (OddList Int), thus the derivation
can be terminated, with corecursive evidence να.κOdd κInt (κEven κInt α).

The method of cycle detection is rather limited: there are many Horn clause
programs that have coinductive meaning, but do not give rise to detectable
cycles. For example, consider the program ΦQ:

κS : (Q (S (G x)),Q x) ⇒ Q (S x)
κG : Q x ⇒ Q (G x)
κZ : Q Z

It gives rise to the following derivation without cycling:
Q (S Z) � Q Z,Q (S (G Z)) � Q Z,Q (G Z), Q (S (G (G Z))) � When
such derivations arise, we cannot terminate the derivation by cycle detection.

Let us look at a similar situation for type classes. Consider a datatype-generic
representation of perfect trees: a nested datatype [2], with fixpoint Mu of the
higher-order functor HPTree [12].

data Mu h a = In {out : : h (Mu h) a }
data HPTree f a = HPLeaf a | HPNode (f (a, a))

These two datatypes give rise to the following Eq type class instances.

instance Eq (h (Mu h) a) ⇒ Eq (Mu h a) where
In x ≡ In y = x ≡ y

instance (Eq a,Eq (f (a, a))) ⇒ Eq (HPTree f a) where
HPLeaf x ≡ HPLeaf y = x ≡ y

Proof Relevant Corecursive Resolution 129

HPNode xs ≡ HPNode ys = xs ≡ ys
≡ = False

The corresponding Horn clause program ΦHPTree consists of ΦPair and the fol-
lowing two clauses :

κMu : Eq (h (Mu h) a) ⇒ Eq (Mu h a)
κHPTree : (Eq a,Eq (f (a, a))) ⇒ Eq (HPTree f a)

The type class resolution for Eq (Mu HPTree Int) cannot be terminated by
cycle detection. Instead we get a context reduction overflow error in the Glasgow
Haskell Compiler, even if we just compare two finite data structures of the type
Mu HPTree Int .

To find a solution to the above problems, let us view infinite resolution from
the perspective of coinductive proof in the Calculus of Coinductive Constructions
[4,8]. There, in order to prove a proposition F from the assumptions F1, .., Fn, the
proof may involve not only natural deduction and lemmas, but also F , provided
the use of F is guarded. We could say that the existing cycle detection methods
treat the atomic formula forming a cycle as a coinductive hypothesis. We can
equivalently describe the above-explained derivation for ΦAB in the following
terms: when a cycle with a formula A x is found in the derivation, ΦAB gets
extended with a coinductive hypothesis α : A x . So to prove A x coinductively,
we would need to apply the clause κA first, and then clause κB, finally apply
the coinductive hypothesis. The resulting proof witness is να. κA (κB α).

The next logical step we can make is to use the above formalism to extend
the syntax of the coinductive hypotheses. While cycle detection only uses atomic
formulas as coinductive hypotheses, we can try to generalise the syntax of coin-
ductive hypotheses to full Horn formulas.

For example, for program ΦQ, we could prove a lemma e : Q x ⇒ Q (S x)
coinductively, which would allow us to form finite derivation for Q (S Z), which
is described by (e κZ). The proof of e : Q x ⇒ Q (S x) is of a coinductive
nature: if we first assume α : Q x ⇒ Q (S x) and α1 : Q C, then all we need
to show is Q (S C).1 To show Q (S C), we apply κS , which gives us Q C ,
Q (S (G C)). We first discharge Q C with α1 and then apply the coinductive
hypothesis α which yields Q (G C), and can be proved with κG and α1. So we
have obtained a coinductive proof for e, which is να.λα1.κS (α (κG α1)) α1.
We can apply similar reasoning to show that ΦHPTree � Eq (Mu HPTree Int) ⇓
(να.λα1.κMu (κHPTree α1 (α (κPair α1 α1)))) κInt using the coinductively proved
lemma Eq x ⇒ Eq (Mu HPTree x)2.

To formalise the above intuitions, we need to solve several technical problems.
1. How to generate suitable lemmas? We propose to observe a more gen-

eral notion of a loop invariant than a cycle in the non-terminating resolution.

1 Note that here C is an eigenvariable.
2 The proof term can be type-checked with polymorphic recursion.

130 P. Fu et al.

In Sect. 3 we devise a heuristic method to identify potential loops in the resolu-
tion tree and extract candidate lemmas in Horn clause form.
In general, it is very challenging to develop a practical method for generating
candidate lemmas based on loop analysis, since the admissibility of a loop in
reduction is a semi-decidable problem [25].

2. How to enrich resolution to allow coinductive proofs for Horn formulas?
and how to formalise the corecursive proof evidence construction? Coinductive
proofs involve not only applying the axioms, but also modus ponens and gener-
alization. Therefore, the resolution mechanism will have to be extended in order
to support such automation.

In Sect. 4, we introduce proof relevant corecursive resolution – a calculus
that extends the standard resolution rule with two further rules: one allows us
to resolve Horn formula queries, and the other to construct corecursive proof
evidence for non-terminating resolution.

3. How to give an operational semantics to the evidence produced by core-
cursive resolution of Sect. 4? In particular, we need to show the correspondence
between corecursive evidence and resolution seen as infinite reduction. In Sect. 5,
we prove that for every non-terminating resolution resulting from a simple loop,
a coinductively provable candidate lemma can be obtained and its evidence is
observationally equivalent to the non-terminating resolution process.

In type class inference, the proof evidence has computational meaning, i.e.
the evidence will be run as a program. So the corecursive evidence should be
able to recover the original infinite resolution trace.

In Sects. 6 and 7 we survey the related work, explain the limitations of our
method and conclude the paper. We have implemented our method of candi-
date lemma generation based on loop analysis and corecursive resolution, and
incorporated it in the type class inference process of a simple functional lan-
guage. Additional examples and implementation information are provided in
the extended version.

2 Preliminaries: Resolution with Evidence

This section provides a standard formalisation of resolution with evidence
together with two derived forms: a small-step variant of resolution and a reifi-
cation of resolution in a resolution tree.

We consider the following syntax.

Definition 1 (Basic Syntax).

Term t : := x | K | t t′

Atomic Formula A, B, C, D : := P t1 ... tn

Horn Formula H : := B1, ..., Bn ⇒ A
Proof/Evidence e : := κ | e e′

Axiom Environment Φ : := · | Φ, (κ : H)

Proof Relevant Corecursive Resolution 131

We consider first-order applicative terms, where K stands for some constant
symbol. Atomic formulas are predicates on terms, and Horn formulas are defined
as usual. We assume that all variables x in Horn formulas are implicitly univer-
sally quantified. There are no existential variables in the Horn formulas, i.e.,⋃

i FV(Bi) ⊆ FV(A) for B1, . . . , Bn ⇒ A. The axiom environment Φ is a set of
Horn formulas labelled with distinct evidence constants κ. Evidence terms e are
made of evidence constants κ and their applications. Finally, we often use A to
abbreviate A1, ..., An when the number n is unimportant.

The above syntax can be used to model the Haskell type class setting as fol-
lows. Terms denote Haskell types like Int or (x , y), and atomic formulas denote
Haskell type class constraints on types like Eq (Int , Int). Horn formulas corre-
spond to the type-level information of type class instances.

Our evidence e models type class dictionaries, following Wadler and Blott’s
dictionary-passing elaboration of type classes [24]. In particular the constants
κ refer to dictionaries that capture the term-level information of type class
instances, i.e., the implementations of the type class methods. Evidence applica-
tion (e e′) accounts for dictionaries that are parametrised by other dictionaries.
Horn formulas in turn represent type class instance declarations. The axiom envi-
ronment Φ corresponds to Haskell’s global environment of type class instances.
Note that the treatment of type class instance declaration and their correspond-
ing evidence construction here are based on our own understanding of many
related works ([14,15,23]), which are also discussed in Sect. 6.

In order to define resolution together with evidence generation, we use res-
olution judgement Φ � A ⇓ e to state that the atomic formula A is entailed by
the axioms Φ, and that the proof term e witnesses this entailment. It is defined
by means of the following inference rule.

Definition 2 (Resolution). Φ � A ⇓ e

Φ � σB1 ⇓ e1 · · · Φ � σBn ⇓ en

Φ � σA ⇓ κ e1 · · · en
if (κ : B1, ..., Bn ⇒ A) ∈ Φ

Using this definition we can show ΦPair � Eq (Int , Int) ⇓ κPair κInt κInt .
In case resolution is diverging, it is often more convenient to consider a small-

step resolution judgement (in analogy to the small step operational semantics)
that performs one resolution step at a time and allows us to observe the inter-
mediate states.

The basic idea is to rewrite the initial query A step by step into its evidence e.
This involves mixed terms on the way that consist partly of evidence, and partly
of formulas that are not yet resolved.

Definition 3 (Mixed Terms).

Mixed term q : := A | κ | q q′

Mixed term context C : := • | C q | q C

132 P. Fu et al.

At the same time we have defined mixed term contexts C as mixed terms with
a hole •, where C[q] substitutes the hole with q in the usual way.

Definition 4 (Small-Step Resolution). Φ � q → q′

Φ � C[σA] → C[κ σB]
if (κ : B ⇒ A) ∈ Φ

For instance, we resolve Eq (Int , Int) in three small steps: ΦPair �
Eq (Int , Int) → κPair (Eq Int) (Eq Int), ΦPair � κPair (Eq Int) (Eq Int) →
κPair κInt (Eq Int) and ΦPair � κPair κInt (Eq Int) → κPair κInt κInt . We write
Φ � q →∗ q′ to denote the transitive closure of small-step resolution.

The following theorem formalizes the intuition that resolution and small-step
resolution coincide.

Theorem 1. Φ � A ⇓ e iff Φ � A →∗ e.

The proof tree for a judgement Φ � A ⇓ e is called a resolution tree. It conve-
niently records the history of resolution and, for instance, it is easy to observe
the ancestors of a node. This last feature is useful for our heuristic loop invariant
analysis in Sect. 3.

Our formalisation of trees in general is as follows: We use w, v to denote
positions 〈k1, k2, ..., kn〉 in a tree, where ki � 1 for 1 � i � n. Let ε denote the
empty position or root. We also define 〈k1, k2, ..., kn〉 · i = 〈k1, k2, ..., kn, i〉 and
〈k1, k2, ..., kn〉 + 〈l1, ..., lm〉 = 〈k1, k2, ..., kn, l1, ..., lm〉. We write w > v if there
exists a non-empty v′ such that w = v+v′. For a tree T , T (w) refers to the node
at position w, and T (w, i) refers to the edge between T (w) and T (w · i). We use
� as a special proposition to denote success.

Resolution trees are defined as follows, note that they are a special case of
rewriting trees [13,16]:

Definition 5 (Resolution Tree). The resolution tree for atomic formula A is
a tree T satisfying:

– T (ε) = A.
– T (w · i) = σBi and T (w, i) = κi with i ∈ {1, ..., n} if T (w) = σD and

(κ : B1, ..., Bn ⇒ D) ∈ Φ. When n = 0, we write T (w · i) = � and T (w, i) = κ
for any i > 0.

In general, the resolution tree can be infinite, this means that resolution is non-
terminating, which we denote as Φ � A ⇑. Figure 1 shows a finite fragment of
the infinite resolution tree for ΦHPTree � Eq (Mu HPTree Int) ⇑.

We note that Definitions 2 and 4 describe a special case of SLD-resolution
in which unification taking place in derivations is restricted to term-matching.
This restriction is motivated by two considerations. The first one comes directly
from the application area of our results: type class resolution uses exactly this
restricted version of SLD-resolution. The second reason is of more general nature.

Proof Relevant Corecursive Resolution 133

Eq (Mu HPTree Int)

Eq (HPTree (Mu HPTree) Int)

Eq (Mu HPTree (Int, Int))

Eq (HPTree (Mu HPTree) (Int, Int))

......

κ1
HPTree κ2

HPTree

κ1
Mu

Eq Int

�

κInt

κ1
HPTree

κ2
HPTree

κ1
Mu

Fig. 1. The infinite resolution tree for ΦHPTree � Eq (Mu HPTree Int) ⇑

As discussed in detail in [6,16], SLD-derivations restricted to term-matching
reflect the theorem proving content of a proof by SLD-resolution. That is, if A
can be derived from Φ by SLD-resolution with term-matching only, then A is
inductvely entailed by Φ. If, on the other hand, A is derived from Φ by SLD-
resolution with unification and computes a substitution σ, then σA is inductively
entailed by Φ. In this sense, SLD-resolution with unification additionally has
a problem-solving aspect. In developing proof-theoretic approach to resolution
here, we thus focus on resolution by term-matching.

The resolution rule of Definition 2 resembles the definition of the consequence
operator [18] used to define declarative semantics of Horn clause Logic. In fact,
the forward and backward closure of the rule of Definition 2 can be directly used
to construct the usual least and greatest Herbrand models for Horn clause logic,
as shown in [16]. There, it was also shown that SLD-resolution by term-matching
is sound but incomplete relative to the least Herbrand models.

3 Candidate Lemma Generation

This section explains how we generate candidate lemma from a potentially infi-
nite resolution tree. Based on Paterson’s condition we obtain a finite pruned
approximation (Definition 8) of this resolution tree. Anti-unification on this
approximation yields an abstract atomic formula and the corresponding abstract
approximated resolution tree. It is from this abstract tree that we read off the
candidate lemma (Definition 11).

We use Σ(A) and FVar(A) to denote the multi-sets of respectively function
symbols and variables in A.

Definition 6 (Paterson’s Condition). For (κ : B ⇒ A) ∈ Φ, we say κ
satisfies Paterson’s condition if (Σ(Bi) ∪ FVar(Bi)) ⊂ (Σ(A) ∪ FVar(A)) for
each Bi.

134 P. Fu et al.

Paterson’s condition is used in Glasgow Haskell Compiler to enforce termination
of context reduction [23]. In this paper, we use it as a practical criterion to
detect problematic instance declarations. Any declarations that do not satisfy the
condition could potentially introduce diverging behavior in the resolution tree.

If κ : A1, ..., An ⇒ B, then we have κi : Ai ⇒ B for projection on index i.

Definition 7 (Critical Triple). Let v = (w · i) + v′ for some v′. A critical
triple in T is a triple 〈κi, T (w), T (v)〉 such that T (v, i) = T (w, i) = κi, and κi

does not satisfy Paterson’s condition.

We will omit κi from the triple and write 〈T (w), T (v)〉 when it is not important.
Intuitively, it means the nodes T (w) and T (v) are using the same problematic
projection κi, which could give rise to infinite resolution.

The absence of a critical triple in a resolution tree means that it has to be
finite [23], while the presence of a critical triple only means that the tree is
possibly infinite. In general the infiniteness of a resolution tree is undecidable
and the critical triples provide a convenient over-approximation.

Definition 8 (Closed Subtree). A closed subtree T is a subtree of a resolu-
tion tree such that for all leaves T (v) �= �, the root T (ε) and T (v) form a critical
triple.

The critical triple in Fig. 1 is formed by the underlined nodes. The closed
subtree in that figure is the subtree without the infinite branch below node
Eq (Mu HPTree (Int , Int)). A closed subtree can intuitively be understood as
a finite approximation of an infinite resolution tree. We use it as the basis for
generating candidate lemma by means of anti-unification [21].

Definition 9 (Anti-Unifier). We define the least general anti-unifier of
atomic formulas A and B (denoted by A � B) and the least general anti-unifier
of the terms t and t′ (denoted by t � t′) as:

– P t1 ..., tn � P t′1 ..., t′n = P (t1 � t′1) ... (tn � t′n)
– K t1 ... tn � K t′1 ... t′n = K (t1 � t′1) ... (tn � t′n)
– Otherwise, A � B = φ(A,B), t � t′ = φ(t, t′), where φ is an injective function

from a pair of terms (atomic formulas) to a set of fresh variables.

Anti-unification allows us to extract the common pattern from different ground
atomic formulas.

Definition 10 (Abstract Representation). Let 〈T (ε), T (v1)〉, ..., 〈T (ε),
T (vn)〉 be all the critical triples in a closed subtree T . Let C = T (ε) � T (v1) �
... � T (vn), then the abstract representation T ′ of the closed subtree T is a tree
such that:

– T ′(ε) = C

Proof Relevant Corecursive Resolution 135

– T ′(w · i) = σBi and T ′(w, i) = κi with i ∈ {1, ..., n} if T ′(w) = σD and
(κ : B1, ..., Bn ⇒ D) ∈ Φ. When n = 0, we write T ′(w·i) = � and T ′(w, i) = κ
for any i > 0.

– T ′(w) is undefined if w > vi for some 1 � i � n.

The abstract representation unfolds the anti-unifier of all the critical triples.
Thus the abstract representation can always be embedded into the original closed
subtree. It is an abstract form of the closed subtree, and we can extract the
candidate lemma from the abstract representation.

Definition 11 (Candidate Lemma). Let T be an abstract representation of a
closed subtree, then the candidate lemma induced by this abstract representation
is T (v1), ..., T (vn) ⇒ T (ε), where the T (vi) are all the leaves for which T (vi) ⇒
T (ε) satisfies Paterson’s condition.

Figure 2 shows the abstract representation of the closed subtree of Fig. 1. We
read off the candidate lemma as Eq x ⇒ Eq (Mu HPTree x).

Eq (Mu HPTree x)

Eq (HPTree (Mu HPTree) x)

Eq (Mu HPTree (x , x))Eq x

κ1
HPTree

κ2
HPTree

κ1
Mu

Fig. 2. The abstract representation of the closed subtree of Fig. 1

The candidate lemma plays a double role. Firstly, it allows us to construct a
finite resolution tree. For example, we know that Eq (Mu HPTree Int) gives
rise to infinite tree with the axiom environment ΦHPTree . However, a finite
tree can be constructed with Eq x ⇒ Eq (Mu HPTree x), since it reduces
Eq (Mu HPTree Int) to Eq Int , which succeeds trivially with κInt . Next we
show how to prove the candidate lemma coinductively, and such proofs will
encapsulate the infinite aspect of the resolution tree. Since an infinite resolu-
tion tree gives rise to infinite evidence, the finite proof of the lemma has to be
coinductive. We discuss such evidence construction in detail in Sects. 4 and 5.

4 Corecursive Resolution

In this section, we extend the definition of resolution from Sect. 2 by introducing
two additional rules: one to handle coinductive proofs, and another – to allow
Horn formula goals, rather than atomic goals, in the derivations. We call the
resulting calculus corecursive resolution.

136 P. Fu et al.

Definition 12 (Extended Syntax).

Proof/Evidence e : := κ | e e′ | α | λα.e | να.e
Axiom Environment Φ : := · | Φ, (e : H)

To support coinductive proofs, we extend the syntax of evidence with functions
λα.e, variables α and fixed point να.e (which models the recursive equation
α = e expecting the greatest solution). Also we allow the Horn clauses H in
the axiom environment Φ to be supported by any form of evidence e (and not
necessarily by constants κ).

Definition 13 (Corecursive Resolution). The following judgement for core-
cursive resolution extends the resolution in Definition 2.

Φ � σB1 ⇓ e1 · · · Φ � σBn ⇓ en

Φ � σA ⇓ e e1 · · · en
if (e : B1, ..., Bm ⇒ A) ∈ Φ

Φ, (α : A ⇒ B) � A ⇒ B ⇓ e HNF(e)

Φ � A ⇒ B ⇓ να.e
(Mu)

Φ, (α : A) � B ⇓ e

Φ � A ⇒ B ⇓ λα.e
(Lam)

Note that HNF(e) means e has to be in head normal form λα.κ e. This require-
ment is essential to ensure the corecursive evidence satisfies the guardedness
condition.3 The Lam rule implicitly assumes the treatment of eigenvariables,
i.e. we instantiate all the free variables in A ⇒ B with fresh term constants.

We implicitly assume that axiom environments are well-formed.

Definition 14 (Well-Formedness of Environment).

· � wf
Φ � wf

Φ, α : H � wf
Φ � wf

Φ, κ : H � wf

Φ � H ⇓ e

Φ, e : H � wf

As an example, let us consider resolving the candidate lemma Eq x ⇒
Eq (My HPTree x) against the axiom environment ΦHPTree . This yields the
following derivation, where Φ1 = ΦHPTree , (α : Eq x ⇒ Eq (Mu HPTree x)) and
Φ2 = Φ1, (α1 : Eq C):

Φ2 � Eq C ⇓ α1

Φ2 � Eq C ⇓ α1 Φ2 � Eq C ⇓ α1

Φ2 � Eq (C ,C) ⇓ (κPair α1 α1)

Φ2 � Eq (HPTree (C ,C)) ⇓ α (κPair α1 α1)

Φ2 � Eq (HPTree (Mu HPTree C)) ⇓ κHPTree α1 (α (κPair α1 α1))

(Φ2 = Φ1, α1 : Eq C) � Eq (Mu HPTree C) ⇓ κMu (κHPTree α1 (α (κPair α1 α1)))

Φ1 � Eq x ⇒ Eq (Mu HPTree x) ⇓ λα1.κMu (κHPTree α1 (α (κPair α1 α1)))

ΦHPTree � Eq x ⇒ Eq (Mu HPTree x) ⇓ να.λα1.κMu (κHPTree α1 (α (κPair α1 α1)))

3 See the extended version for a detailed discussion.

Proof Relevant Corecursive Resolution 137

Once we prove Eq x ⇒ Eq (Mu HPTree x) from ΦHPTree by corecursive resolu-
tion, we can add it to the axiom environment and use it to prove the ground query
Eq (Mu HPTree Int). Let Φ′ = ΦHPTree , (να.λα1.κ1 (κ2 α1 (α (κ3 α1 α1))) :
Eq x ⇒ Eq (Mu HPTree x)). We have the following derivation.

Φ′ � Eq Int ⇓ κInt

Φ′ � Eq (Mu HPTree Int) ⇓ (να.λα1.κMu (κHPTree α1 (α (κPair α1 α1)))) κInt

5 Operational Semantics of Corecursive Evidence

The purpose of this section is to give operational semantics to corecursive reso-
lution, and in particular, we are interested in giving operational interpretation
to the corecursive evidence constructed as a result of applying corecursive res-
olution. In type class applications, for example, the evidence constructed for
a query will be run as a program. It is therefore important to establish the
exact relationship between the non-terminating resolution as a process and the
proof-term that we obtain via corecursive resolution. We prove that corecursive
evidence indeed faithfully captures the otherwise infinite resolution process of
Sect. 2.

In general, we know that if Φ � A →∗ C[σA], then we can observe the
following looping infinite reduction trace:

Φ � A →∗ C[σA] →∗ C[σC[σ2A]] →∗ C[σC[σ2C[σ3A]]] → ...

Each iteration of the loop gives rise to repeatedly applying substitution σ to the
reduction context C.

In principle, this mixed term context C may contain an atomic formula B that
itself is normalizing, but σB spawns another loop. Clearly this is a complicating
factor. For instance, a loop can spawn off additional loops in each iteration.
Alternatively, a loop can have multiple iteration points such as Φ � A →∗

C[σ1A, σ2A, ..., σnA].4 These complicating factors are beyond the scope of this
section. We focus only on simple loops. These are loops with a single iteration
point that does not spawn additional loops.

We use |C| to denote the set of atomic formulas in the context C. If all
atomic formulas D ∈ |C| are irreducible with respect to Φ, then we call C a
normal context.

Definition 15 (Simple Loop). Let Φ � B →∗ C[σB], where C is normal. If
for all D ∈ |C|, we have that Φ � σD →∗ C′[D] with |C′| = ∅, then we call
Φ � B →∗ C[σB] a simple loop.

4 Note that we abuse notation here to denote contexts with multiple holes. Also we
abbreviate identical instantiation of C[D, . . . , D] those multiple holes to C[D].

138 P. Fu et al.

In the above definition, the normality of C ensures that the loop has a single
iteration point. Likewise the condition Φ � σD →∗ C′[D], which implies that
Φ � σnD →∗ C′n[D], guarantees that each iteration of the loop spawns no
further loops.

Definition 16 (Observational Point). Let Φ � B →∗ C′[σB] be a simple
loop and Φ � B →∗ q. We call q an observational point if it is of the form C[δB].
We use O(B)Φ to denote the set of observational points in the simple loop.

For example, we have the following infinite resolution trace generated by the
simple loop (with the subterms of observational points underlined).

ΦHPTree � Eq (Mu HPTree x) → κMu (Eq (HPTree (Mu HPTree) x)) →
κMu (κHPTree (Eq x) (Eq (Mu HPTree (x, x)))) →

κMu (κHPTree (Eq x) (κMu (Eq (HPTree (Mu HPTree) (x, x))))) →
κMu(κHPTree(Eq x)(κMu(κHPTree(Eq(x, x))(Eq(Mu HPTree ((x, x), (x, x))))))) →

κMu(κHPTree(Eq x)(κMu(κHPTree(κPair (Eq x)(Eq x)))(Eq (Mu HPTree ((x , x), (x , x))))))) → ...

In this case, we have σ = [(x , x)/x] and Φ � σ(Eq x) → κPair (Eq x) (Eq x).
The corecursive evidence encapsulates an infinite derivation in a finite fix-

point expression. We can recover the infinite resolution by reducing the corecur-
sive expression. To define small-step evidence reduction, we first extend mixed
terms to cope with richer corecursive evidence.

Definition 17. Mixed term q : := A | κ | q q′ | α | λα.q | να.q

Now we define the small-step evidence reduction relation q � q′.

Definition 18 (Small Step Evidence Reduction). q � q′

C[να.q] �ν C[[να.q/α]q] C[(λα.q) q′] �β C[[q′/α]q]

Note that for simplicity we still use the mixed term context C as defined in
Sect. 2, but we only allow the reduction of an outermost redex, i.e., a redex
that is not a subterm of some other redex. In other words, reduction unfolds
the evidence term strictly downwards from the root, this follows closely the way
evidence is constructed during resolution.

We call the states where we perform a ν-transition corecursive points. Note
that ν-transitions unfold a corecursive definition. These correspond closely to
the observational points in resolution.

Definition 19 (Corecursive Point). Let q′ �∗ q. We call q a corecursive
point if it is of the form C[(να.e) q1... qn]. We use S(q′) to denote the set of
corecursive points in q′ �∗ q.

Let e ≡ να.λα1.κMu (κHPTree α1 (α (κPair α1 α1))). We have the following
evidence reduction trace (with the subterms of corecursive points underlined):

Proof Relevant Corecursive Resolution 139

e (Eq x) �ν (λα1.κMu (κHPTree α1 (e (κPair α1 α1)))) (Eq x) �β

κMu (κHPTree (Eq x) (e (κPair (Eq x) (Eq x)))) �ν

κMu (κHPTree (Eq x) ((λα1.κMu (κHPTree α1 (e (κPair α1 α1)))) (κPair (Eq x) (Eq x)))) �β

κMu(κHPTree(Eq x)(κMu(κHPTree(κPair (Eq x)(Eq x))(e(κPair (κPair (Eq x)(Eq x))(κPair (Eq x)(Eq x)))))))
�ν ...

Observe that the mixed term contexts of the observational points and the
corecursive points in the above traces coincide. This allows us to show observa-
tional equivalence of resolution and evidence reduction without explicitly intro-
ducing actual infinite evidence.

The following theorem shows that if resolution gives rise to a simple loop,
then we can obtain a corecursive evidence e (Theorem 2 (1)) such that the
infinite resolution trace is observational equivalent to e’s evidence reduction trace
(Theorem 2 (2)).

Theorem 2 (Observational Equivalence). Let Φ � B →∗ C[σB] be a simple
loop and |C| = {D1, ...,Dn}. Then:
1. We have Φ � D1, ...,Dn ⇒ B ⇓ να.λα1....λαn.e for some e.
2. C[δB] ∈ O(B)Φ iff C[(να.λα.e) q] ∈ S((να.λα.e) D).

The proof can be found in the extended version.

6 Related Work

Calculus of Coinductive Constructions. Interactive theorem prover Coq pio-
neered implementation of the guarded coinduction principle ([4,8]). The Coq
termination checker may prevent some nested uses of coinduction, e.g. a proof
term such as (να.λx.κ0 (κ1 x (α (α x)))) κ2 is not accepted by Coq, while from
the outermost reduction point of view, this proof term is productive.

Loop detection in term rewriting. Distinctions between cycle, loop and non-
looping has long been established in term rewriting research ([5,25]). For us,
detecting loop is the first step of invariant analysis, but we also want to extract
corecursive evidence such that it captures the infinite reduction trace.

Non-terminating type-class resolution. Hughes (Sect. 4 [11]) observed the cyclic
nature of the instance declarations instance Sat (EqD a) ⇒ Eq a and
instance Eq a ⇒ Sat (EqD a). He proposed to treat the looping context
reduction as failure, in which case the compiler would need to search for an
alternative reduction.

The cycle detection method [17] was proposed to generate corecursive evi-
dence for a restricted class of non-terminating resolution. It is supported by the
current Glasgow Haskell Compiler.

Hinze and Peyton Jones [10] came across an example of an instance of the
form instance (Binary a,Binary (f (GRose f a))) ⇒ Binary (GRose f a),
but discovered that it causes resolution to diverge. They suggested the follow-
ing as a replacement: instance (Binary a,∀b . Binary b ⇒ Binary f b) ⇒

140 P. Fu et al.

Binary (GRose f a). Unfortunately, Haskell does not support instances with
polymorphic higher-order instance contexts. Nevertheless, allowing such implica-
tion constraints would greatly increase the expressitivity of corecursive resolu-
tion. In the terminology of our paper, it amounts to extending Horn formulas
to intuitionistic formulas. Working with intuitionistic formulas would require a
certain amount of searching, as the non-overlapping condition for Horn formulas
is not enough to ensure uniqueness of the evidence. For example, consider the
following axioms:

κ1 : (A ⇒ B x) ⇒ D (S x)
κ2 : A,D x ⇒ B (S x)

κ3 : ⇒ D Z

We have two distinct proof terms for D (S (S (S (S Z))))):

κ1 (λα1.κ2 α1 (κ1 (λα2.κ2 α1 κ3)))
κ1 (λα1.κ2 α1 (κ1 (λα2.κ2 α2 κ3)))

This is undesirable from the perspective of generating evidence for type class.

Instance declarations and (Horn Clause) logic programs. The process of simplify-
ing type class constraints is formally described as the notion of context reduction
by Peyton Jones et. al. [15], Sect. 3.2 of the same paper also describes the form
of type class instance declarations. Type class evidence in its connection with
type system is studied in Mark Jones’s thesis [14, Chapter 4.2]. Instance decla-
rations can also be interpreted as single head simplification rules in Constraints
Handling Rules (CHR) [23], which implies that instance declarations can be
modeled as Horn formulas naturally. To our knowledge, the tradition of study-
ing logic programming proof-theoretically dates back to Girard’s suggestion that
the cut rule can model resolution for Horn formulas [9, Chapter 13.4]. Alterna-
tively, Miller et. al. [19] model Horn formulas using cut-free sequent calculus.
Context reduction, instance declaration and their connection to proof relevant
resolution are also discussed under the name of LP-TM (logic programming with
term-matching) in Fu and Komendantskaya [6, Sect. 4.1].

7 Conclusion and Future Work

We have introduced a novel approach to non-terminating resolution. Firstly,
we have shown that the popular cycle detection methods employed for logic
programming or type class resolution can be understood via more general coin-
ductive proof principles ([4,8]). Secondly, we have shown that resolution can be
enriched with rules that capture the intuition of richer coinductive hypothesis
formation. This extension allows to provide corecursive evidence to some deriva-
tions that could not be handled by previous methods. Moreover, corecursive
resolution is formulated in a proof-relevant way, i.e. proof-evidence construction

Proof Relevant Corecursive Resolution 141

is an essential part of corecursive resolution. This makes it easier to integrate it
directly into type class inference.

We have implemented the techniques of Sects. 3 and 4, and have incorporated
them as part of the evidence construction process for a simple language that
admits previously non-terminating examples.5

Future Work. In general, the interactions between different loops can be com-
plicated. Consider ΦPair with the following declarations (denoted by ΦM):

κM : Eq (h1 (M h1 h2) (M h2 h1) a) ⇒ Eq (M h1 h2 a)
κH : (Eq a,Eq ((f1 a), (f2 a))) ⇒ Eq (H f1 f2 a)
κG : Eq ((g a), (f (g a))) ⇒ Eq (G f g a)

Eq (M H G Int)
1

Eq (H (M H G) (M G H) Int

Eq ((M H G Int), (M G H Int))

Eq (M G H Int)
2

Eq (G (M G H) (M H G) Int)

Eq ((M H G Int), (M G H ((M H G) Int)))

Eq (M G H ((M H G) Int))
2

Eq (M H G Int)
1

κPair

κPair

κG

κM

Eq (M H G Int)
1

κ1
Pair

κ2
Pair

Eq Int

�

κInt

κ1
H

κ2
H

κM

Fig. 3. A Partial Resolution tree for ΦM � Eq (M H G Int) ⇑

A partial resolution tree generated by the query Eq (M H G Int) is described
in Fig. 3. In this case the cycle (underlined with the index 1) is mutually nested
with a loop (underlined with index 2). Our method in Sect. 3 is not able to
generate any candidate lemmas. Yet there are two candidate lemmas for this
case (with the proof of e2 refer to e1):

e1 : (Eq x ,Eq (M G H x)) ⇒ Eq (M H G x)
e2 : Eq x ⇒ Eq (M G H x)

We would like to improve our heuristics to allow generating multiple candidate
lemmas, where their corecursive evidences mutually refer to each other.

5 See the extended version for more examples and information about the implemen-
tation. Extended version is available from authors’ homepages.

142 P. Fu et al.

There are situations where resolution is non-terminating but does not form
any loop such as Φ � A →∗ C[σA]. Consider the following program ΦD:

κ1 : D n (S m) ⇒ D (S n) m
κ2 : D (S m) Z ⇒ D Z m

For query D Z Z , the resolution diverges without forming any loop. We would
have to introduce extra equality axioms in order to obtain finite corecursive evi-
dence.6 We would like to investigate the ramifications of incorporating equality
axioms in the corecursive resolution in the future.

We plan to extend the observational equivalence result of Sect. 5 to cope
with more general notions of loop and extend our approach to allow intuition-
istic formulas as candidate lemmas. Another avenue for future work is a formal
proof that the calculus of Definition 13 is sound relative to the the greatest Her-
brand models [18], and therefore reflects the broader notion of the coinductive
entailment for Horn clause logic as discussed in the introduction.

Acknowledgements. We thank Patricia Johann and the FLOPS’16 reviewers for
their helpful comments, and Frantǐsek Farka for many discussions. Part of this work
was funded by the Flemish Fund for Scientific Research.

References

1. Ancona, D., Lagorio, G.: Idealized coinductive type systems for imperative object-
oriented programs. RAIRO - Theor. Inf. Appl. 45(1), 3–33 (2011)

2. Bird, R.S., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) MPC 1998. LNCS,
vol. 1422, pp. 52–67. Springer, Heidelberg (1998)

3. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Gurevich Festschrift II 2015. LNCS, vol. 9300, pp. 24–51.
Springer, Heidelberg (2015)

4. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806. Springer, Heidelberg (1994)

5. Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3, 69–115 (1987)
6. Fu, P., Komendantskaya, E.: A type-theoretic approach to resolution. In: 25th

International Symposium, LOPSTR 2015. Revised Selected Papers (2015)
7. Gibbons, J., Hutton, G.: Proof methods for corecursive programs. Fundam. Inf.

Spec. Issue Program Transform. 66(4), 353–366 (2005)
8. Gimenez, C.E.: Un calcul de constructions infinies et son application a la

vérification de systèmes communicants (1996)
9. Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types, vol. 7. Cambridge Univer-

sity Press, Cambridge (1989)
10. Hinze, R., Peyton-Jones, S.: Derivable type classes. Electron. Notes Theor. Com-

put. Sci. 41(1), 5–35 (2001)

6 See the extended version for a solution in Haskell using type family and more
discussion.

Proof Relevant Corecursive Resolution 143

11. Hughes, J.: Restricted data types in Haskell. In: Haskell Workshop, vol. 99 (1999)
12. Johann, P., Ghani, N.: Haskell programming with nested types: a principled app-

roach (2009)
13. Johann, P., Komendantskaya, E., Komendantskiy, V.: Structural resolution for

logic programming. In: Technical Communications of ICLP 2015, July 2015
14. Jones, M.P.: Qualified Types: Theory and Practice, vol. 9. Cambridge University

Press, Cambridge (2003)
15. Jones, S.P., Jones, M., Meijer, E.: Type classes: an exploration of the design space.

In: Haskell Workshopp (1997)
16. Komendantskaya, E., Johann, P. Structural resolution: a framework for coinductive

proof search and proof construction in Horn clause logic. Submitted
17. Lämmel, R., Peyton-Jones, S.: Scrap your boilerplate with class: extensible generic

functions. In: Proceedings of 10th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2005, pp. 204–215, New York, NY, USA. ACM
(2005)

18. Lloyd, J.W.: Foundations of Logic Programming. Springer Science & Business
Media, Heidelberg (1987)

19. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Ann. Pure Appl. Log. 51(1), 125–157 (1991)

20. Moss, L.S., Danner, N.: On the foundations of corecursion. Log. J. IGPL 5(2),
231–257 (1997)

21. Plotkin, G.D.: A note on inductive generalization. Mach. Intell. 5, 153–163 (1970)
22. Simon, L., Gupta, G., Mallya, A., Bansal, A.: Co-logic programming: extending

logic programming with coinduction. In: Arge, L., Cachin, C., Jurdziński, T.,
Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 472–483. Springer,
Heidelberg (2007)

23. Sulzmann, M., Duck, G.J., Peyton Jones, S.L., Stuckey, P.J.: Understanding func-
tional dependencies via constraint handling rules. J. Funct. Program. 17(1), 83–129
(2007)

24. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceed-
ings of 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 60–76. ACM (1989)

25. Zantema, H., Geser, A.: Non-looping rewriting. Universiteit Utrecht, Faculty of
Mathematics & Computer Science (1996)

A Coq Library for Internal Verification
of Running-Times

Jay McCarthy1(B), Burke Fetscher2, Max New2, Daniel Feltey2,
and Robert Bruce Findler2

1 University of Massachusetts at Lowell, Lowell, USA
jay.mccarthy@gmail.com

2 Northwestern University, Evanston, USA
{burke.fetscher,max.new,daniel.feltey,robby}@eecs.northwestern.edu

Abstract. This paper presents a Coq library that lifts an abstract yet
precise notion of running-time into the type of a function. Our library
is based on a monad that counts abstract steps, controlled by one of
the monadic operations. The monad’s computational content, however,
is simply that of the identity monad so programs written in our monad
(that recur on the natural structure of their arguments) extract into
idiomatic OCaml code. We evaluated the expressiveness of the library
by proving that red-black tree insertion and search, merge sort, insertion
sort, Fibonacci, iterated list insertion, BigNum addition, and Okasaki’s
Braun Tree algorithms all have their expected running times.

1 Introduction

For some programs, proving that they have correct input-output behavior is only
part of the story. As Crosby and Wallach (2003) observed, incorrect performance
characteristics can also lead to security vulnerabilities. Indeed, some programs
and algorithms are valuable precisely because of their performance characteris-
tics. For example, mergesort is preferable to insertion sort only because of its
improved running time. Unfortunately, defining functions in Coq or other the-
orem proving systems does not provide enough information in the types to be
able to state these intensional properties.

Our work provides a monad (implemented as a library in Coq) that enables
us to include abstract running times in types. We use this library to prove
several important algorithms have their expected running times. Our library
has two benefits over Danielsson (2008)’s. First, it allows programmers to write
idiomatic code without embedding invariants in data types, so we can reason
about a wider variety of programs. Second, and more significantly, our monad
adds no complexity computations to the extracted OCaml code, so it has no
verification overhead on running time. We elaborate these details and differences
throughout the paper and, in particular, in Sect. 8.

The rest of the paper is structured as follows. In Sect. 2, we give an overview
of how the library works and the style of proofs we support. In Sect. 3, we dis-
cuss the cost model our proofs deal with. In Sect. 4, we explain the extraction of
c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 144–162, 2016.
DOI: 10.1007/978-3-319-29604-3 10

A Coq Library for Internal Verification of Running-Times 145

our programs to OCaml. In these first three sections, we use a consistent exam-
ple that is introduced in Sect. 2. Following this preamble, Sect. 5 walks through
the definition and design of the monad itself. Section 6 describes the results of
our case study, wherein we proved properties of a variety of different functions.
Section 7 discusses accounting for the runtimes of various language primitives.
Finally, Sect. 8 provides a detailed account of our relation to similar projects.
Our source code and other supplementary material is available at http://github.
com/rfindler/395-2013.

2 Overview of Our Library

The core of our library is a monad that, as part of its types, tracks the running
time of functions. To use the library, programs must be explicitly written using
the usual return and bind monadic operations. In return, the result type of a
function can use not only the argument values to give it a very precise specifica-
tion, but also an abstract step count describing how many primitive operations
(function calls, matches, variable references etc.) that the function executes.

To give a sense of how code using our library looks, we start with a definition
of Braun trees (Braun and Rem 1983) and the insertion function where the
contributions to the running time are explicitly declared as part of the body of
the function. In the next section, we make the running times implicit (and thus
not trusted or spoofable).

Braun trees, which provide for efficient growable vectors, are a form of bal-
anced binary trees where the balance condition allows only a single shape of
trees for a given size. Specifically, for each interior node, either the two children
are exactly the same size or the left child’s size is one larger than the right child’s
size.

Because this invariant is so strong, explicit balance information is not needed
in the data structure that represents Braun trees; we can use a simple binary
tree definition.

Inductive bin tree {A:Set} : Set :=

| bt mt : bin tree

| bt node : A -> bin tree -> bin tree -> bin tree.

To be able to state facts about Braun trees, however, we need the inductive
Braun to specify which binary trees are Braun trees (at a given size n).

Inductive Braun {A:Set} : (@bin tree A) -> nat -> Prop :=

| B mt : Braun bt mt 0

| B node : forall (x:A) s s size t t size,

t size <= s size <= t size+1 ->
Braun s s size -> Braun t t size ->

Braun (bt node x s t) (s size+t size+1).

This says that the empty binary tree is a Braun tree of size 0, and that
if two numbers s size, t size are the sizes of two Braun trees s t, and

http://github.com/rfindler/395-2013
http://github.com/rfindler/395-2013

146 J. McCarthy et al.

Fig. 1. Braun tree insertion

if s size < = t size < = s size + 1, then combining the s and t into a single
tree produces a Braun tree of size s size+t size+1.

Figure 1 shows the insertion function. Let us dig into this func-
tion, one line at a time. It accepts an object i (of type A) to
insert into the Braun tree b. Its result type uses a special notation:
{! «result id» !:! «simple type» !<! «running time id !>! «property»!}
where the braces, exclamation marks, colons, less than, and greater than are
all fixed parts of the syntax and the portions enclosed in «» are filled in based
on the particulars of the insert function. In this case, it is saying that insert
returns a binary tree and, if the input is a Braun tree of size n, then the
result is a Braun tree of size n+1 and the function takes fl log n + 1 steps of
computation (where fl log computes the floor of the base 2 logarithm).

These new {! ... !} types are the types of computations in the monad.
The monad tracks the running time as well as tracking the correctness property
of the function.

The body of the insert function begins with the match expression that
determines if the input Braun tree is empty or not. If it is empty, then the
function returns a singleton tree that is obtained by calling bt node with two
empty children. This case uses <==, the return operation that injects simple
values into the monad and += that declares that this operation takes a single
unit of computation. That is, the type of += insists that += accepts a natural
number k and a computation in the monad taking some number of steps, say
n. The result of += is also a computation in the monad just like the second
argument, except that the running time is n+k.

In the non-empty case, the insertion function recurs with the right subtree
and then builds a new tree with the subtrees swapped. This swapping is what
preserves the Braun invariant. Since we know that the left subtree’s size is either
equal to or one larger than the right’s, when we add an element to the right and
swap the subtrees, we end up with a new tree whose left subtree’s size is either
equal to or one greater than the right.

The «var» <- «expr»; «expr» notation is the monadic bind operator; using a
let-style notation. The first, right-hand side expression must be a computation
in the monad; the result value is pulled out of the monad and bound to var

A Coq Library for Internal Verification of Running-Times 147

for use in the body expression. Then, as before, we return the new tree in the
monad after treating this branch as a single abstract step of computation.

We exploit Sozeau (2006)’s Program to simplify proving that these functions
have their types. In this case, we are left with two proof obligations, one from
each of the cases of the function. The first one is:

forall n, Braun bt mt n ->

Braun (bt node i bt mt bt mt) (n + 1) /\1 = fl log n + 1

The assumption is saying that n is the size of the empty Braun tree, which tells
us that n must be zero. So simplifying, we are asked to prove that:

Braun (bt node i bt mt bt mt) 1 /\1 = fl log 0 + 1

both of which follow immediately from the definitions. This proof request corre-
sponds exactly to what we need to know in order for the base case to be correct:
the singleton tree is a Braun tree of size 1 and the running time is correct on
empty input.

For the second case, we are asked to prove:

forall i j s t bt an n,

(forall m : nat, Braun t m -> Braun bt (m + 1) /\an = fl log m + 1) ->

Braun (bt node j s t) n ->

Braun (bt node i bt s) (n + 1) /\an + 1 = fl log n + 1

Thus, we may assume a slightly more general inductive hypothesis (the inner
forall) than we need (it is specialized to the recursive call that insert makes,
but not the size of the tree) and that the tree bt node j s t is a Braun tree
of size n. So, we must show that bt node i bt s is a Braun tree of size n + 1
and that the running time is correct.

Because the size information is not present in the actual insertion function,
Coq does not know to specialize the inductive hypothesis to the size of t. To
clarify that, we can replace m with t size and, since we know that the tree is
not empty, we can replace n with s size + t size + 1 and simplify to arrive
at this goal:

forall i j s t bt an s size t size,

Braun bt (t size + 1) ->

an = fl log t size + 1 ->

Braun (bt node j s t) (s size + t size + 1) ->

Braun (bt node i bt s) (s size + t size + 1 + 1) /\
an + 1 = fl log (s size + t size + 1) + 1

which we can prove by using facts about logarithms and the definition of Braun
trees.

This theorem corresponds precisely to what we need to know in order to
prove that the recursive case of insert works. The assumptions correspond to
the facts we gain from the input to the function and from the result of the
recursive call. The conclusion corresponds to the facts we need to establish for
this case. This precision of the obligation is thanks to Program and the structure
of our monad.

148 J. McCarthy et al.

3 Implicit Running Times

One disadvantage to the code in the previous section is that the running times
are tangled with the body of the insertion function. Even worse, making mistakes
when writing += expressions can produce un-provable claims or cause our proofs
about the running times to be useless, as they will prove facts that are irrelevant
to the functions we are using.

To handle this situation, we’ve written a simple Coq-to-Coq translation func-
tion that accepts functions written in our monad without any += expressions and
turns them into ones with += expressions in just the right places.

Our translation function accepts a function written in the monad, but with-
out the monadic type on its result, and produces one with it. For example, the
insert function shown on the left in Fig. 2 is translated into the one on the
right. As well as adding += expressions, the translation process also generates
a call to insert result in the monadic result type. The user must define this
function separately and the translation’s output must be used in that context:

Definition insert time n := 9 * fl log n + 6.

Definition insert result (A : Set) (i : A) (b:bin tree) (res:bin tree) c :=

(forall n, Braun b n ->

(Braun res (S n) /\
(forall xs, SequenceR b xs -> SequenceR res (i::xs)) /\
c = insert time n)).

Unlike the previous version, this one accounts for the larger constant factors
and it also includes a stricter correctness condition. Specifically, the new con-
junct uses SequenceR (a proposition we wrote) to insist that if you linearize the
resulting Braun tree into a list, then it is the same as linearizing the input and
consing the new element onto the list.

Rather than develop a novel, and potentially controversial cost semantics,
we show the utility of our monad by adopting the Rosendahl (1989) cost model.

Fig. 2. Inserting += into insert

A Coq Library for Internal Verification of Running-Times 149

This model treats each function call, variable lookup, and case-dispatch as a
single unit of abstract time. In Fig. 2, the first return is annotated with a cost
of 6 because it references 4 variables, calls 1 function, and does 1 case-dispatch.
The second return is annotated with a cost of 9 because it references 6 variables
(the self-reference is not counted), calls 2 functions, and does 1 case-dispatch.

Our translation function is straightforward and is included in the supplemen-
tary materials (add-plusses/check-stx-errs in rkt/tmonad/main.rkt). Our
monad could support different cost semantics, without modification, provided a
function could map them to the program’s syntax in a straightforward way.

An alternative approach would be to follow Danner et al. (2013) and build
a Coq model of a machine and programming language. We would then define
a cost judgement for this machine and prove its soundness with respect to the
machine’s reduction lengths. Finally, we would show that our monadic types
allow incremental proofs of their cost results. In some sense, this “deep embed-
ding” would be a more direct study of cost and cost proofs, but it would be no
more directly connected with the running time of the programs, unless we could
establish a connection to the OCaml VM.

4 Extracting the insert Function

One of the important benefits of our library is that none of the correctness
conditions and running time infrastructure affect Coq’s extraction process. In
particular, our monad extracts as the identity monad, which means that the
OCaml code produced by Coq does not require any modifications. For example,
here is how insert extracts:

type ’a bin tree = | Bt mt

| Bt node of ’a * ’a bin tree * ’a bin tree

let rec insert i = function

| Bt mt -> Bt node (i, Bt mt, Bt mt)

| Bt node (j, s, t) -> Bt node (i, (insert j t), s)

The only declarations we added to aid Coq’s extraction was the suggestion that
it should inline the monad operations. And since the extracted version of our
monad is the identity monad, the monad operations simply evaporate when they
are inlined.

More importantly, however, note that this code does not have any proof
residue; there are no extra data-structures or function arguments or other arti-
facts of the information used to prove the running time correct.

5 The Monad

One way to account for cost is to use the monad to pair an actual value (of
type B) with a natural number representing the computation’s current cost, and

150 J. McCarthy et al.

then ensure that this number is incremented appropriately at each stage of the
computation. Unfortunately, this cost would be part of the dynamic behavior of
the algorithm. In other words, insert x bt would return a new tree and a num-
ber, violating our goal of having no complexity residue in extracted programs.

In Coq parlance, the problem is that we have a pair of two Set values—the
B and the nat—and Sets are, by definition, part of the computational content.
Instead, we need to have a Set paired with something from the universe of truth
propositions, Prop. The trouble is finding the right proposition.

We use a new function C that consumes a type and a proposition that is
parameterized over values of the type and numbers. Specifically, we define C:

Definition C (A:Set) (P:A -> nat -> Prop) : Set :=

{a : A | exists (an:nat), (P a an)}.
For a given A and P, C A P is a dependent pair of a, a value of type A, and a

proof that there exists some natural number an related to a by P. The intention is
to think of the natural number as the running time and P as some specification of
running time (and possibly also correctness) specific to the particular function.
Importantly, the right-hand side of this pair is a proposition, so it contributes
no computational content when extracted into OCaml. To see this in practice,
consider insert’s result type:

: {! res !:! @bin tree A !<! c !>!

(forall n, Braun b n -> (Braun res (n+1) /\ c = fl log n + 1)) !}
This is a shorthand (using Coq’s notation construct) for the following call

to C, in order to avoid duplicating the type between !:! and !<!:

(C (@bin tree A) (fun (res:@bin tree A) (c:nat) =>

(forall n, Braun b n -> (Braun res (n+1) /\ c = fl log n + 1))))

One important aspect of the C type is that the nat is bound only by an
existential, and thus is not necessarily connected to the value or the runtime.
Therefore, when we know an expression has the type C A P, we do not know
that its running time is correct, because the property might be about anything
and the proof might supply any nat to satisfy the existential. Thus, in order
to guarantee the correct running times, we treat types of the form C A P as
private to the monad’s defining module. We build a set of operations that can
be combined in arbitrary ways but subject to the restriction that the nat must
actually be the running time.

The first of these operations is the monadic unit, ret. Suppose a program
returns an empty list, <== nil. Such a program takes no steps to compute, because
the value is readily available. This logic applies to all places where a computation
ends. To do this, we define <== x to be ret x , a use of the monad operator ret.
The underscores ask Coq to fill in well-typed arguments (asking the user to pro-
vide proofs, if necessary, as we saw in Sect. 2). This is the type1 of ret:
1 The definition of ret, and all other monadic operations, are in the supplementary

material and our public Github repo. The types are the most interesting part, how-
ever, so we focus on them.

A Coq Library for Internal Verification of Running-Times 151

Definition ret (A:Set) (P:A -> nat -> Prop) (a:A) (Pa0:P a 0) : C A P.

This specifies that ret will construct a C A P only when given a proof, Pa0, that
the correctness/runtime property holds between the actual value returned a and
the natural number 0. In other words, ret requires P to predict the running time
as 0.

There are two other operations in our monad: inc that adds to the count
of the running time, and bind that combines two computations in the monad,
summing their running times. We tackle inc next.

Suppose a program returns a value a, with property P, that takes exactly one
step to compute. We represent such a program with the expression:

+= 1; <== a

We would like our proof obligation for this expression to be P a 1. We know,
however that the obligation on <==, namely P a 0, is irrelevant or worse, wrong.
There is a simple way out of this bind: what if the P for the ret were different
than the P for of the entire expression? In code, what if the obligation were
P’ a 0? At worst, such a change would be irrelevant because there may not be
a connection between P’ and P. But, we can choose a P’ such that P’ a 0 is the
same as P a 1.

We previously described P as a relation between As and nats, but in Coq this
is just a function that accepts an A and a nat and returns a proposition. So,
we can make P’ be the function fun a an => P a (an+1). This has the effect
of transforming the runtime obligation on ret from what was described above.
The proof P’ a 0 becomes P a 1. In general, if the cost along a control-flow
path to a ret has k units of cost, the proof will be P a k. Thus, we accrue the
cost inside of the property itself.

The monadic operator inc encapsulates this logic and introduces k units of
cost:

Definition inc (A:Set) k (PA : A -> nat -> Prop)

(x:C A (fun x xn => forall xm, xn + k = xm -> PA x xm))

: C A PA.

In programs using our monad, we write += k; e, a shorthand for inc k e.
The key point in the definition is that the property in x’s type is not PA, but a
modified function that ensures the argument is at least k.

In principle, the logic for bind is very similar. A bind represents a composi-
tion of two computations: an A-producing one and an A-consuming, B-producing
one. If we assume that the property for A is PA and PB for B, then an attempt at
a type for bind is:

Definition bind1 (A:Set) (PA:A -> nat -> Prop)

(B:Set) (PB:B -> nat -> Prop)

(am:C A PA) (bf:A -> C B PB)

: C B PB.

152 J. McCarthy et al.

This definition is incorrect from the cost perspective, because it does not
ensure that the cost for producing the A is accounted for along with the cost of
producing the B.

Suppose that the cost of generating the A was 7, then we should transform the
property of the B computation to be fun b bn => PB b (bn+7). Unfortunately,
we cannot “look inside” the A computation to know that it costs 7 units. Instead,
we have to show that whatever the cost for A was, the cost of B is still as expected.
This suggests a second attempt at a definition of bind:

Definition bind2 (A:Set) (PA:A -> nat -> Prop)

(B:Set) (PB:B -> nat -> Prop)

(am:C A PA)

(bf:A -> C B (fun b bn => forall an, PB b (bn+an)))

: C B PB.

Unfortunately, this is far too strong of a statement because there are some
costs an that are too much. The only an costs that our bind proof must be
concerned with are those that respect the PA property given the actual value
of a that the A computation produced. We can use a dependent type on bf to
capture the connection between the costs in a third attempt at the type for bind.

Definition bind3 (A:Set) (PA:A -> nat -> Prop)

(B:Set) (PB:B -> nat -> Prop)

(am:C A PA)

(bf:forall (a:A),

C B (fun b bn => forall an, PA a an -> PB b (bn+an)))

: C B PB.

This version of bind is complete, from a cost perspective, but has one problem
for practical theorem proving. The body of the function bf has access to the
value a, but it does not have access to the correctness part of the property
PA. At first blush, the missing PA appears not to matter because the proof of
correctness for the result of bf does have access through the hypothesis PA a
an, but that proof context is not available when producing the b result. Instead,
bind assumes that b has already been computed. That assumption means if the
proof of PA is needed to compute b, then we will be stuck. The most common
case where PA is neccessary occurs when bf performs non-structural recursion
and must construct a well-foundness proof to perform the recursive call. These
well-foundness proofs typically rely on the correctness of the a value. Some of
the functions we discuss in our case study in Sect. 6 could not be written with
this version of bind, although some could.

It is simple to incorporate the PA proof into the type of bf, once you realize
the need for it, by adding an additional proposition argument that corresponds
to the right-hand side of the C A PA value am:

Definition bind (A:Set) (PA:A -> nat -> Prop)

(B:Set) (PB:B -> nat -> Prop)

(am:C A PA)

A Coq Library for Internal Verification of Running-Times 153

(bf:forall (a:A) (pa:exists an, PA a an),

C B (fun b bn => forall an, PA a an -> PB b (an+bn)))

: C B PB.

When writing programs we use the notation «x»<-«expr1»; «expr2» as a
shorthand for bind expr1 (fun (x :) (am :) => expr2)

Because all of the interesting aspects of these operations happen in their
types, the extractions of these operations have no interesting dynamic content.
Specifically ret is simply the identity function, inc is a function that just returns
its second argument and bind applies its second argument to its first.

Furthermore, we have proven that they obey variants of the monad laws
that incorporate the proof obligations (see the file monad/laws.v in the sup-
plementary material). Our versions of the monad law proofs use an auxiliary
relation, written sig eqv, rather than equality. This relation ensures that the
values returned by monadic commands are equal and that their proofs are equiv-
alent. In practice, this means that although the theorems proved by expressions
such as (m >>= (\x -> f x >>= g)) and ((m >>= f) >>= g) are written dif-
ferently, they imply each other. In particular, for that pair of expressions, one
proves that (n m + (n f + n g)) is an accurate prediction of running time and
the other proves that ((n m + n f) + n g) is an accurate prediction of running
time, which are equivalant statements.

In summary, the monad works by requiring the verifier to predict the running-
time in the PA property and then prove that the actual cost (starting at 0 and
incrementing as the property passes down) matches the prediction.

6 Case Study

To better understand how applicable our monad is, we implemented a variety of
functions: search and insert for red-black trees, insertion sort, merge sort, both
the naive recursive version of the nth Fibonacci number function and the itera-
tive version, a function that inserts m times into a list at position n using both
lists and zippers, BigNum add1 and plus, and all of the algorithms mentioned
in Okasaki (1997)’s paper, Three Algorithms on Braun Trees. We chose these
algorithms by first selecting Okasaki’s papers, because the project originated in
a class and we knew Okasaki’s paper to be well-written and understandable to
undergraduates. From that initial selection, we moved to an in-order traversal
of Cormen et al. (2009) looking for functional algorithms that would challenge
the framework.

To elaborate on the Braun tree algorithms, Okasaki’s paper contains several
versions of each of the three functions, each with different running times, in each
case culminating with efficient versions. The three functions are:

– size: computes the size of a Braun tree (a linear and a log squared version)
– copy: builds a Braun tree of a given size filled entirely with a given element

(a linear, a fib ◦ log, a log squared, and a log time version), and
– make array: converts a list into a Braun tree (two n log n and a linear version).

154 J. McCarthy et al.

Fig. 3. copy log sq

In total, we implemented 19 different functions using the monad. For all
of them, we proved the expected O running times. For merge sort, we proved
it is Θ(n log(n)). For the naive fib, we proved that it is Θ of itself, O(2n),
and Ω(2n/2), all assuming that the addition operation is constant time. For the
iterative fib, we prove that it is O(n2). For the list insertion functions, we prove
that when m is positive, the zipper version is O of the list version (because the
zipper version runs in O(m + n) while the list version runs in O(n ∗ m).) For
BigNum arithmetic, we prove that add1 is O(log(n)) and that plus is Θ(log(n)).
In all cases, except for make array linear and red-black tree insertion, the
proofs of running time include proof of correctness of the algorithm. Finally, in
the proofs for BigNum arithmetic and about the Fibonacci functions, we use a
simplified cost model that reduces all inc constants to 1. The supplementary
material contains all of the Coq code for all of the functions in our case study.

6.1 Line Counts

Our supplementary material contains a detailed account of the lines of Coq code
produced for our study. We separate the line counts into proofs that are inside
obligations (and thus correspond to establishing that the monadic types are
correct) and other lines of proofs. In total there are 12,870 lines of code. There
are 5,321 lines that are not proofs. There are 1,895 lines of code in obligations
and 5,654 lines of other proofs.

We have built a library of general proofs about the monad (such as the monad
laws), an asymptotic complexity library, a Log library, and some common facts
and definitions about Braun trees. This library accounts for over 25 % of the
code of each category.

With the exception of the make array linear and the red-black tree inser-
tion function, the proofs inside the obligations establish the correctness of the
functions and establish a basic running time result, but not an asymptotic one
in terms of O.

For example, Fig. 3 is the definition of the copy log sq function, basically
mirroring Okasaki’s definition, but in Coq’s notation. The monadic result type is

Definition copy log sq result (A:Set) (x:A) (n:nat) (b:@bin tree A) (c:nat) :=

Braun b n /\ SequenceR b (mk list x n) /\ c = copy log sq time n.

A Coq Library for Internal Verification of Running-Times 155

which says that the result is a Braun tree whose size matches the input natural
number, that linearizing the resulting tree produces the input list, and that the
running time is given by the function copy log sq time.

The running time function, however, is defined in parallel to copy log sq
itself, not as the product of the logs:

Program Fixpoint copy log sq time (n:nat) {measure n} :=

match n with

| 0 => 3

| S n’ => if (even odd dec n’)

then 13 + copy log sq time (div2 n’)

else 16 + copy log sq time (div2 n’) + insert time (div2 n’)

end.

This parallel definition allows a straightforward proof that copy log sq’s run-
ning time is copy log sq time, but leaves as a separate issue the proof that
copy log sq time is O(log2 n). There are 56 lines of proof to guarantee the
result type of the function is correct and an additional 179 lines to prove that
copy log sq time is O(log2 n).

For simple functions (those with linear running time except
make array linear), the running time can be expressed directly in the
monadic result (with precise constants). However, for most of the functions the
running time is first expressed precisely in a manner that matches the structure
of the function and then that running time is proven to correspond to some
asymptotic complexity, as with copy log sq.

6.2 Extraction

The extracted functions naturally fall into three categories.
In the first category are functions that recur on the natural structure of their

inputs, e.g., functions that process lists from the front, functions that process
trees by processing the children and combining the result, and so on. In the
second category are functions that recursively process numbers by counting down
by one from a given number. In the third category are functions that “skip” over
some of their inputs. For example, some functions recur on natural numbers by
dividing the number by 2 instead of subtracting one, and merge sort recurs by
dividing the list in half at each step.

Functions in the first category extract into precisely the OCaml code that
you would expect, just like insert, as discussed in Sect. 2.

Functions in the second category could extract like the first, except because
we extract Coq’s nat type, which is based on Peano numerals, into OCaml’s
big int type, which has a different structure, a natural match expression in
Coq becomes a more complex pattern in OCaml. A representative example of
this pattern is zip rightn. Here is the extracted version:

156 J. McCarthy et al.

let rec zip rightn n z =

(fun fO fS n -> if (eq big int n zero big int) then fO () else fS (pred big int n))

(fun ->

z)

(fun np ->
zip rightn np (zip right z))

n

The body of this function is equivalent to a single conditional that returns z
when n is 0 and recursively calls zip rightn on n-1 otherwise. This artifact in
the extraction is simply a by-product of the mismatch between nat and big int.
We expect that this artifact can be automatically removed by the OCaml com-
piler. This transformation into the single conditional corresponds to modest
inlining, since fO and fS occur exactly once and are constants.

Functions in the third category, however, are more complex. They extract
into code that is cluttered by Coq’s support for non-simple recursion schemes.
Because each function in Coq must be proven to be well-defined and to terminate
on all inputs, functions that don’t simply follow the natural recursive structure of
their input must have supplemental arguments that record the decreasing nature
of their input. After extraction, these additional arguments clutter the OCaml
code with useless data structures equivalent to the original set of arguments.

The function cinterleave is one such function. Here is the extracted version:

let rec cinterleave func x =

let e = let a,p = let x0,h = x in h in a in

let o = let x0,h = let x0,h = x in h in h in

let cinterleave0 = fun e0 o0 -> let y = ,(e0,o0) in cinterleave func y in

(match e with

| Nil -> o

| Cons (x0, xs) -> Cons (x0, (cinterleave0 o xs)))

let cinterleave e o =

Obj.magic (cinterleave func (,((Obj.magic e),(Obj.magic o))))

All of the extra pieces beyond what was written in the original function
are useless. In particular, the argument to cinterleave func is a three-deep
nested pair containing and two lists. The is a constant that is defined at
the top of the extraction file that is never used for anything and behaves like
unit. That piece of the tuple corresponds to a proof that the combined length
of the two lists is decreasing. The function starts by destructuring this complex
argument to extract the two lists, e and o. Next it constructs a version of the
function, cinterleave0, that recovers the natural two argument function for use
recursively in the body of the match expression. Finally, this same two argument
interface is reconstructed a second time, cinterleave, for external applications.
The external interface has an additional layer of strangeness in the form of
applications of Obj.magic which can be used to coerce types, but here is simply
the identity function on values and in the types. These calls correspond to use

A Coq Library for Internal Verification of Running-Times 157

of proj1 sig in Coq to extract the value from a Sigma type and are useless and
always successful in OCaml.

All together, the OCaml program is equivalent to:

let rec cinterleave e o =

match e with | Nil -> o

| Cons (x, xs) -> Cons (x, (cinterleave o xs))

This is exactly the Coq program and idiomatic OCaml code. Unlike the
second category, it is less plausible that the OCaml compiler already performs
this optimization and removes the superfluity from the Coq extraction output.
However, it is plausible that such an optimization pass could be implemented,
since it corresponds to inlining, de-tupling, and removing an unused unit-like
argument. In summary, the presence of these useless terms is unrelated to our
running time monad, but is an example of the sort of verification residue we wish
to avoid and do successfully avoid in the case of the running time obligations.

The functions in the first category are: insert, size linear, size, make array

naive, foldr, make array naive foldr, unravel, to list naive, isort’s insert,

isort, clength, minsert at, to zip,from zip, zip right, zip left,

zip insert, zip minsert, minsertz at, bst search, rbt blacken, rbt balance,

rbt insert. The functions in the second category are: fib rec, fib iter, sub1,

mergesort’s split, insert at, zip rightn, zip leftn, add1, tplus. The functions in
the third category are: copy linear, copy fib, copy log sq, copy2, diff,

make array td, cinterleave, merge, mergesort. Some of the functions in the second
category are also in the third category.

7 Accounting for Language Primitives

Rosendahl (1989)’s cost function counts all primitive functions as constant (sim-
ply because it counts a call as unit time and then doesn’t process the body). For
most primitives, this is the right behavior. For example, field selection functions
(e.g., car and cdr) are certainly constant time. Structure allocation functions
(e.g., cons) are usually constant time when using a two-space copying collector,
as most garbage-collected languages do. Occasionally, allocation triggers garbage
collection, which we can assume amortized constant time (but not something our
framework handles).

More interestingly, and more often overlooked, however, are numeric
primitives. In a language implementation with BigNums, integers are generally
represented as a list of digits in some large base and grade-school arithmetic
algorithms implement the various operations. Most of these operations do not
take constant time.

If we assume that the base is a power of 22, then division by 2, evenness
testing, and checking to see if a number is equal to 0 are all constant-time
operations. The algorithms in our study use two other numeric operations: +
and sub1 (not counting the abstract comparison in the sorting functions).
2 This is the case if BigNums are represented as lists of bits.

158 J. McCarthy et al.

In general, addition of BigNums is not constant time. However, certain uses of
addition can be replaced by constant-time bit operations. For instance, doubling
and adding 1 can be replaced by a specialized operation that conses a 1 on
the front of the bitstring. Fortunately, every time we use addition in one of the
functions in our Braun library, the operation can be replaced by one of these
efficient operations.

One of the more interesting uses is in the linear version of size, which has
the sum lsize+rsize+1 where lsize and rsize are the sizes of two subtrees
of a Braun tree. This operation, at first glance, doesn’t seem to take constant-
time. But the Braun invariant tells us that lsize and rsize are either equal, or
that lsize is rsize+1. Accordingly, this operation can be replaced with either
lsize*2+1 or lsize*2, both of which are constant-time operations. Checking
to see which case applies is also constant time: if the numbers are the same, the
digits at the front of the respective lists will be the same and if they differ by 1,
those digits will be different.

The uses of addition in fib, however, are not constant time. We did not
account for the time of additions in the recursive implementation of fib. We have
proved, however, that the iterative fib function, which requires linear time when
additions are not counted, requires quadratic time when we properly account for
primitive operations.

Our implementation of addition has a run time that is linear in the number
of bits of its input. Using this fact, we can prove that iterative fib has a run
time that is asymptotic to the square of its input. To prove that fib’s run
time is bounded below by n2, we first observe that for all n ≥ 6 we have that
2n/2 ≤ fib(n). In the nth iteration of the loop, fib adds numbers with n

2 bits
in their binary representation, which takes time on the order of n

2 . For large
enough n, this implies that the run time of the additions in the iterative fib
function are bounded below by 1

2 (6 + 7 + · · · + n). This sum has a quadratic
lower bound. Since the other primitives used in calculating fib run in constant
time, the run time is dominated by the addition operations, thus the run time
of fib is bounded below by a factor of n2.

A similar argument shows that the run time of fib has a quadratic upper
bound. Combining these two results proves that the run time of the iterative ver-
sion of fib is asymptotically n2 when we account for primitive operations. The
supplementary material contains proofs of these facts in Coq (fib/fib iter.v).

Although our analysis of fib properly accounts for addition, it does not con-
sider all language primitives. Specifically, the above analysis of the fib function
ignores the subtraction that occurs in each iteration of the loop. For example,
in the extracted OCaml code for fib, pattern matching against S n becomes a
call to the pred big int function. Subtracting 1 from a number represented in
binary requires more than constant time; sub1 may need to traverse the entire
number to compute its predecessor.

To be certain that the non-constant run time of sub1 does not affect our
calculation of fib’s run time, we argue that the implicit subtractions in the
implementation of fib take amortized constant time. Although subtraction by 1

A Coq Library for Internal Verification of Running-Times 159

is not always a constant time operation, it does require constant time on half of its
possible inputs. On any odd number represented in binary, subtracting by 1 is a
constant time operation. It follows that any number equivalent to 2 modulo 4 will
require 2 units of time to perform the sub1 operation because sub1 will terminate
after two iterations. In general, there is a 1

2n chance that sub1 terminates after
n iterations. To account for all uses of sub1 in the implementation of fib, we
note that we will perform the sub1 operation on each number from 1 to n. This
gives a cost in terms of the iterations required by sub1 that is bounded above
by n∗ (12 + 2

4 + 3
8 + · · ·+ n

2n + · · ·). One can show that this infinite sum converges
to 2 ∗ n, thus for a sequence of n sub1 operations this shows that subtraction
implicit in the definition of fib requires amortized constant time. Overall, the
run time of the additions performed by fib will dwarf the time required by
subtraction. This justifies the fact that we do not explicitly consider the time
taken by sub1 operations.

Although we can account for the recursion pattern using sub1 described
above that counts down from n to 0, there are several other recursive uses
of sub1 found in our library. For example, our implementations of copy2 and
copy insert loop by subtracting 1 then dividing by 2. As for fib, we have not
explicitly accounted for these other uses of sub1. We do, however, believe that
the overhead of using sub1 in these functions does not change their asymptotic
complexity, but we have verified this only by testing and informal arguments.

8 Related Work

The most closely related work to ours is Danielsson (2008), which presents a
monad that carries a notion of abstract time. Unlike our monad, his does not
carry an invariant – in our terms his construction does not have the P argument.
In our opinion, figuring out the design of monad operations that support the P
argument is our major technical advance. Accordingly, his system cannot specify
the running time of many of the Braun functions, since the size information is
not available without the additional assumption of Braunness. Of course, one
can bake the Braun invariants into the Braun data-structure itself, which would
provide them to his monad via the function arguments, but this restricts the
way the code is written, leaves residue in the extracted code, and moves the
implementation away from an idiomatic style. Also, his monad leaves natural
numbers in the extracted code; avoiding that is a major goal of this work.

While Crary and Weirich (2000)’s work does not leverage the full expressive-
ness of a theorem proving system like Coq’s, it does share a similar resemblance
to our approach. Also like Danielsson (2008)’s and unlike ours, it does not pro-
vide a place to carry an invariant of the data structures that can be used to
establish running times.

Weegen and McKinna (2009) give a proof of the average case complexity of
Quicksort in Coq. They too use monads, but design a monad that is specially
tailored to counting only comparison operations. They side-step the extraction
problem by abstracting the implementation over a monad transformer and use
one monad for proving the correct running times and another for extraction.

160 J. McCarthy et al.

Xi and Pfenning first seriously studied the idea of using dependent types
to describe invariants of data structures in practical programming languages
(Xi 1999a,b; Xi and Pfenning 1999) and, indeed, even used Braun trees as an
example in the DML language, which could automatically prove that, for exam-
ple, size log sq is correct.

Filliâtre and Letouzey (2004) implemented a number of balanced binary tree
implementations in Coq with proofs of correctness (but not running time), with
the goal of high-quality extraction. They use an “external” approach, where the
types do not carry the running time information, which makes the proofs more
complex.

Swierstra (2009)’s Hoare state monad is like our monad in that it exploits
monadic structure to make proof obligations visible at the right moments. How-
ever, the state used in their monad has computational content and thus is not
erased during extraction.

Charguéraud (2010) and Charguéraud and Pottier (2015)’s characteristic for-
mula generator seems to produce Coq code with obligations similar to what our
monad produces, but it does not consider running time.

Others have explored automatic techniques for proving that programs have
particular resource bounds using a variety of techniques (Gulwani et al. 2009;
Hoffmann and Shao 2015; Hofmann and Jost 2003; Hughes and Pareto 1999)
These approaches are all weaker than our approach, but provide more
automation.

Similarly, others have explored different approaches for accounting for various
resource bounds and costs, but we do not provide any contribution in this area.
Instead, we take an off-the-shelf cost semantics (Rosendahl (1989))’s) and use
it. We believe our approach applies to other cost models.

We have consistently used the word “monad” to describe what our library
provides and believe that is a usefully evocative word to capture the essence
of our library. However, they are not technically monads for two reasons. First,
the monad laws are written using an equality, but we use an equivalence rela-
tion appropriate to our type. Second, our types have more parameters than the
single parameter used in monads, due to the proof information residing in the
types, so our “monad” is actually a generalized form of a monad, a specializa-
tion of Atkey (2009)’s or Altenkirch et al. (2010)’s. Swierstra (2009) and Swamy
et al. (2013) follow this same evocative naming convention.

Our code uses Sozeau (2006)’s Program facility in Coq for writing
dependently-typed programs by separating idiomatic code and detail-oriented
proofs in the program source. Without Program, our programs would have to
mix the running time proofs in with the program, which would greatly obscure
the code’s connection to the original algorithm, as one does in Danielsson (2008).

We have experimented with supporting proofs about imperative programs by
combining our monad’s types with a variation of the Swierstra (2009) and Swamy
et al. (2013) monads. The types and proofs work out, but are considerably more
complicated, due in part to the complexity of proofs about imperative programs.

A Coq Library for Internal Verification of Running-Times 161

We consider it future work to study whether there is a more elegant approach
and develop a detailed case study.

Acknowledgments. Thanks to reviewers of previous versions of this paper. Thanks to
Neil Toronto for help with the properties of integer logarithms (including efficient imple-
mentations of them). This work grew out of a PL seminar at Northwestern; thanks to
Benjamin English, Michael Hueschen, Daniel Lieberman, Yuchen Liu, Kevin Schwarz,
Zach Smith, and Lei Wang for their feedback on early versions of the work.

References

Altenkirch, T., Chapman, J., Uustalu, T.: Monads need not be endofunctors. In: Pro-
ceedings of the Foundations of Software Science and Computation Structure (2010)

Atkey, R.: Parameterised notions of computation. JFP 19(3–4), 335–376 (2009)
Braun, W., Rem, M.: A logarithmic Implementation of Flexible Arrays. Eindhoven

University of Technology, MR83/4 (1983)
Charguéraud, A.: Characteristic Formulae for Mechanized Program Verification. Ph.D.

dissertation, Université Paris Diderot (Paris 7) (2010)
Charguéraud, A., Pottier, F.: Machine-checked verification of the correctness and amor-

tized complexity of an efficient union-find implementation. In: Proceedings of the
ITP (2015)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd
edn. MIT Press, Cambridge (2009)

Crary, K., Weirich, S.: Resource bound certification. In: Proceedings of the POPL
(2000)

Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complexity attacks. In:
Proceedings of the USENIX Security Symposium (2003)

Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely func-
tional data structures. In: Proceedings of the POPL (2008)

Danner, N., Paykin, J., Royer, J.S.: A static cost analysis for a higher-order language.
In: Proceedings of the Workshop on Programming Languages meets Program Veri-
fication (2013)

Filliâtre, J.-C., Letouzey, P.: Functors for proofs and programs. In: Schmidt, D. (ed.)
ESOP 2004. LNCS, vol. 2986, pp. 370–384. Springer, Heidelberg (2004)

Gulwani, S., Mehra, K.K., Chilimbi, T.: SPEED: precise and efficient static estimation
of program computational complexity. In: Proceedings of the POPL (2009)

Hoffmann, J., Shao, Z.: Automatic static cost analysis for parallel programs. In:
Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 132–157. Springer, Heidelberg
(2015)

Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional
programs. In: Proceedings of the POPL (2003)

Hughes, J., Pareto, L.: Recursion and Dynamic Data-structures in bounded space:
towards embedded ML programming. In: Proceedings of the ICFP (1999)

Okasaki, C.: Three algorithms on braun trees. JFP 7(6), 661–666 (1997)
Rosendahl, M.: Automatic complexity analysis. In: Proceedings of the International

Conference on Functional Programming Languages And Computer Architecture
(1989)

Sozeau, M.: Subset coercions in Coq. In: Proceedings of the TYPES (2006)

162 J. McCarthy et al.

Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying higher-
order programs with the dijkstra monad. In: Proceedings of the PLDI (2013)

Swierstra, W.: A hoare logic for the state monad. In: Proceedings of the TPHOLS
(2009)

van der Weegen, E., McKinna, J.: A machine-checked proof of the average-case com-
plexity of quicksort in Coq. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES
2008. LNCS, vol. 5497, pp. 256–271. Springer, Heidelberg (2009)

Xi, H.: Dependently typed data structures. In: Proceedings of the Workshop on Algo-
rithmic Aspects of Advanced Programming Languages (1999a)

Xi, H.: Dependently Types in Practical Programming. Ph.D. dissertation, Carnegie
Mellon University (1999b)

Xi, H., Pfenning, F.: Dependently types in practical programming. In: Proceedings of
the POPL (1999)

A Transformational Approach to Parametric
Accumulated-Cost Static Profiling

R. Haemmerlé1, P. López-Garćıa1,2(B), U. Liqat1, M. Klemen1,
J.P. Gallagher1,3, and M.V. Hermenegildo1,4

1 IMDEA Software Institute, Madrid, Spain
2 Spanish Council for Scientific Research (CSIC), Madrid, Spain

pedro.lopez@imdea.org
3 Roskilde University, Roskilde, Denmark

4 Technical University of Madrid (UPM), Madrid, Spain

Abstract. Traditional static resource analyses estimate the total
resource usage of a program, without executing it. In this paper we
present a novel resource analysis whose aim is instead the static profiling
of accumulated cost, i.e., to discover, for selected parts of the program,
an estimate or bound of the resource usage accumulated in each of those
parts. Traditional resource analyses are parametric in the sense that the
results can be functions on input data sizes. Our static profiling is also
parametric, i.e., our accumulated cost estimates are also parameterized
by input data sizes. Our proposal is based on the concept of cost cen-
ters and a program transformation that allows the static inference of
functions that return bounds on these accumulated costs depending on
input data sizes, for each cost center of interest. Such information is much
more useful to the software developer than the traditional resource usage
functions, as it allows identifying the parts of a program that should be
optimized, because of their greater impact on the total cost of program
executions. We also report on our implementation of the proposed tech-
nique using the CiaoPP program analysis framework, and provide some
experimental results.

1 Introduction and Motivation

The execution of software consumes resources such as time, energy, and memory.
The goal of automatic program resource analysis is to infer the resources that a
program uses as a function of the size of the input data or other environmental
parameters of the program, without actually executing the program. Previous
work on this topic, mainly for inferring asymptotic time complexity bounds, goes
back to the 1970s. Recent research has adapted and extended these techniques
for inferring other resources, including for example energy [14,15].

In this paper we investigate an extension of this problem which, although
based on the same essential techniques, has a different range of applications.
Rather than estimating the total resource usage of a program, we wish to perform
static profiling of its resource usage. This means that we intend to discover,

c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 163–180, 2016.
DOI: 10.1007/978-3-319-29604-3 11

164 R. Haemmerlé et al.

for selected parts of the program, an estimate of the resources used by those
parts. As before, the estimates will be parameterised by input sizes. However,
these input sizes will be of the entry predicate/function, unlike the input sizes
of the selected parts, as in the standard resource analysis.

There are several motivations for this research. Firstly, a profile of the
resource usage of the program can show the developer which parts of the program
are the most resource critical. For example, it can expose the cost of functions
that are perhaps not particularly resource hungry by themselves but which are
called many times. Such parts are natural targets for optimization, since there a
small improvement can yield important savings. Secondly, there are cases where
the overall resource functions of a program might not be obtainable. This can be
for instance because some program parts are too complex for analysis or because
the code for some parts is not available and the cost cannot even be reasonably
estimated. In this case useful information may still be obtained by excluding
such parts from the analysis, obtaining information about the resource usage for
the rest of the program. Thirdly, resource usage models (for example Tiwari’s
energy consumption model [29]) are sometimes based on summing the individual
resource usage of basic components of the program. The analysis presented here
fits naturally with such models. Finally, in cases where a program has mutually
recursive functions/predicates, the standard cost analysis infers similar resource
functions for each recursive function. In such cases, a static profile finds precisely
the resource functions for each mutually recursive part of the program, and helps
identify the parts that are responsible for most of the cost.

The traditional profiling techniques are dynamic (i.e., require executing the
program on some particular input) and are based either on code instrumenta-
tion, i.e., introducing additional pieces of code in the sections to be measured, or
on running a process that performs the profiling together with the measured pro-
gram. In both cases, the dynamic profiler introduces an overhead in the resource
measured that needs to be properly discriminated, which is non trivial. For
example, it may be the case that an instruction in the original program has a
very different energy consumption in the presence of code added by the pro-
filer just before it. In contrast, the static profiling approach we propose in this
paper obtains safe upper and lower bounds on resource consumption, because it
is based on the semantics of the program rather than particular executions of it.
I.e., the results are valid for all possible program inputs.

Our starting point is the well-developed technique of extracting recurrence
relations that express resource usage functions [1,5–7,25,32]. These are then
solved to get a closed-form function expressing the (bounds on) parameterised
resource usage. In our work we will make use the CiaoPP program analysis frame-
work, which includes a set of generic resource analyses based on these techniques.
In particular, we will use the analysis described in [28]. CiaoPP operates on an
intermediate semantic program representation based on Horn Clauses [16], that
we will refer to as the “HC IR.” By transforming the input language into this
intermediate representation, the CiaoPP framework has been shown capable of

Accumulated-Cost Static Profiling 165

analyzing imperative programs at the source, bytecode, or binary level with
competitive precision and efficiency (see [14–16,20,21] for details).

Our approach to static profiling is based on a transformation that is per-
formed at the level of the CiaoPP Horn Clause-based intermediate representa-
tion. The proposed transformation allows a standard cost analyzer (CiaoPP in
our experiments) to statically infer functions that return bounds on accumulated
costs depending on input data sizes, for a number of predefined program points
of interest (predicates in our case), referred to as cost centers. Intuitively, given
a program P, the cost accumulated in a given predicate p ∈ P is defined in the
context of the execution of a single call to another predicate q ∈ P. It expresses
the addition of (part of) the resource usages corresponding to the execution of
all calls to predicate p generated by a single call to predicate q ∈ P.

In the rest of the paper, Sect. 2 presents informally a general model of
(dynamic) profiling and how we turn it into a static version. Section 3 reviews
established techniques for cost analysis based on extracting and solving cost rela-
tions. Section 4 formalizes our notion of accumulated cost. Section 5 describes the
implementation of the technique, based on a source-to-source transformation.
Section 6 reports some experimental results. In Sect. 7 we comment on some
related work and finally Sect. 8 concludes, discussing future directions.

2 From Dynamic Profiling to Static Profiling

We start by presenting informally a general model of (dynamic) profiling and
how we turn it into a static version. Our model is based on the notion of cost
centers, inspired from the work of Sansom and Peyton Jones [26] and Morgan
and Jarvis [18]. This approach was also applied to Logic Programs and extended
to perform run-time checking of non-functional properties in [17]. Intuitively a
cost center provides a dynamic scoping mechanism to uniquely attribute the
execution costs of a part of the code to an identifier. The scope of the cost
center is dynamic in the sense that execution costs of code that are not explicitly
associated to a cost center are dynamically attributed to the same cost center
as the caller. For a number of languages it is convenient to identify the cost
centers with (a subset of) functions, procedures, or predicates. In this paper we
follow this path. Alternatively, cost centers can be defined by special scoping
constructs [26].

As an example,1 assume that a programmer wishes to profile a program which
uses the following variance() function (variance() naively computes the
variance of an array of integers):

1 As mentioned in the introduction, CiaoPP’s analyses deal with programs written
in such C-like languages (among others) by analyzing corresponding Horn Clause
representations.

166 R. Haemmerlé et al.

1 int variance(int * arr, int size){
2 int tmp[size], i = size;
3 while(i > 0) {
4 i--;
5 tmp[i] = (arr[i] - mean(arr, size));
6 tmp[i] = tmp[i] * tmp[i]; }
7 return mean(tmp, size);
8 }

Assume that mean() is a given function that computes the mean of an integer
array. First consider that both mean() and variance() are cost centers. In
this case the actual execution costs of the code that appears textually within
the variance() function will be aggregated at each call to such function and
will be attributed to the variance() cost center. However the cost of calls to
mean() –including those made from variance()– will not be attributed to
variance(). Now consider the case where variance() is declared a cost cen-
ter, but mean() is not. In this case the execution costs of calls to mean() made
from the variance() function will be also aggregated to those of variance()
(but not those made from other points in the program).

Returning to the case where both variance() and mean() are declared
as cost centers, assume that the programmer profiles the energy consumption
(measured as nano joules, nJ) of a call to the variance() function over the
array {1, 2, 3, 4}, on some particular architecture. Assume that the result of the
profiler is that 74.7 units of energy are accumulated in the variance() cost
center and 464.4 units in the mean() cost center. Since mean() is called 4
times, the cost of a single call to it (with the array above) would be 116.1 nJ
(464.4/4). If only variance() were declared a cost center, the profiler would
have accumulated all the cost in it, i.e., 464.4 + 74.7 nJ. In such a case, the cost
measured by the profiler would be the same as what we call the standard cost
of a (single) call to variance() with the given array (i.e., 539 nJ).

Since the accumulated value in the mean() cost center is much larger than
that accumulated in the variance() cost center, this indicates that for this
particular call most of the energy is consumed inside the mean() function,
i.e., that this function is responsible for most of the standard cost of the call
to variance(). This can be a strong indicator that it may be worthwhile
to either optimize the body of mean() or try to reduce the number of times
it is called. Note, however, that with just this data, which come from a run
with a particular input, the programmer does not really have any guarantees
that the results are representative of the general behavior of the program for
all inputs. This problem is usually tackled by repeating the process on a large
set of different inputs. This can lead to more indicative results, but still has
several drawbacks. First, this process can be very long, because profiling usually
introduces additional execution costs, which get multiplied by the number of
inputs. Second, and more importantly, even if a large number of inputs is used,
this still does not provide a strong guarantee, i.e., there may be some corner case
inputs for which the call behaves in a very different way. Finally, the approach

Accumulated-Cost Static Profiling 167

does not allow the comparison of the asymptotic cost accumulated in the different
cost centers.

To overcome the problems outlined above, we propose to statically infer
(lower and upper) bounds on the cost accumulated in the cost centers as func-
tions of the sizes of the input data to the profiled call (the call variance() in
our example). In the example above, the system we have implemented infers
(for the resource “energy”2) that for a call to variance() with a list of
size size, the costs accumulated in the variance and mean() functions are
24.32+size×12.59 and 23.03+17.46×size2+40.49×size energy units (nano
joules) respectively. In this case the system infers these expressions for both the
upper and lower bounds, which means that they are exact costs. Hence, the pro-
grammer does have the guarantee that for all non-trivial calls (i.e., for all calls
with non-empty lists) and for any input data, the code of mean() consumes
most of the energy. In this case an obvious improvement can be made, since the
call to mean(arr, size) can be safely moved outside the loop:

1 int variance(int * arr, int size){
2 int tmp[size];
3 int i = size;
4 int m = mean(arr, size);
5 while(i > 0) {
6 i--;
7 tmp[i] = (arr[i] - m);
8 tmp[i] = tmp[i] * tmp[i];
9 }

10 return mean(tmp, size);
11 }

For this version of the program, the system infers that the costs accumu-
lated in the variance() and mean() functions are 28.18 + size × 8.73 and
46.06 + 34.92 × size energy units (nano joules) respectively. For brevity and
simplicity we chose a program that is rather naive and where the optimization
is obvious (and would in fact be done by some compilers automatically), but the
same reasoning applies to more complex cases that are not easy to spot with-
out profiling information. Furthermore, the static profiling functions can also be
used for guiding automatic optimization by the compiler.

3 The Classical Cost Relations-Based Parametric
Static Analysis

The approach to cost analysis based on setting up and solving recurrence equa-
tions was proposed in [32] and has been developed significantly in subsequent
work. For example, in [25] an automatic upper-bound analysis was presented
based on an abstract interpretation of a step-counting version of a functional

2 Using as back-end analysis the energy analysis of [14,15] on an XCore XS1 processor
with the program compiled by the XMOS xcc compiler without optimization.

168 R. Haemmerlé et al.

program, in order to infer both execution time and execution steps. However,
size measures could not automatically be inferred and the experimental section
showed few details about the practicality of the analysis. In the context of Logic
Programming, a semi-automatic analysis was presented in [5,6] that inferred
upper-bounds on the number of execution steps, given as functions on the input
data sizes. This work also proposed techniques to address the additional chal-
lenges posed by the Logic Programming paradigm, as, for example, dealing with
the generation of multiple solutions via backtracking. However, a shortcoming
of the approach was its loss in precision in the presence of divide-and-conquer
programs in which the sizes of the output arguments of the “divide” predicates
are dependent. This approach was later fully automated (by integrating it into
the CiaoPP system and automatically providing modes and size measures) and
extended to inferring both upper- and lower-bounds on the number of execu-
tion steps (which is non-trivial because of the possibility of failure) in [7,10]. In
addition, [7] introduced the setting up of non-deterministic recurrence relations
for the class of divide-and-conquer programs mentioned above, and proposed a
technique for computing approximated closed form bound functions for some
of them. Such a technique was based on bounding the number of terminal and
non-terminal nodes in the set of computation trees corresponding to the eval-
uation of the non-deterministic recurrence relations, and bounding the cost of
such nodes. Non-deterministic recurrence relations were also used and further
developed in [1] (named Cost Relations). The approach in [5–7] was generalized
in [22] to infer user-defined resources (by using an extension of the Ciao assertion
language [11]), and was further improved in [28] by defining the resource analysis
itself as an abstract domain that is integrated into the PLAI abstract interpre-
tation framework [19,24] of CiaoPP, obtaining features such as multivariance,
efficient fixpoints, and assertion-based verification and user interaction. A sig-
nificant additional improvement brought about by [28] is that it is combined
with a sized types abstract domain, which allows the inference of non-trivial cost
bounds when they depend on the sizes of input terms and their subterms at any
position and depth. Recently, many other approaches have been proposed for
resource analysis [1,2,8,9,12,13,23,30]. While based on different techniques, all
these analyses infer, for all predicates p of a given program P, an approximation
of the notion of cost that we call the standard cost or single call cost. Most of
them infer an upper bound, while others infer both upper and lower bounds.
The following example shows this (for the case of CiaoPP) and also illustrates
that this concept of cost may not be directly useful for locating performance
bottlenecks.

Example 1. Consider the following implementation of an eval(E,M,R) pred-
icate that evaluates modulo 2M a given expression E built from additions and
multiplications. This implementation assumes that two predicates are given:
add(A,B,M,R) and mult(A,B,M,R), that respectively add and multiply two
infinite precision numbers A and B modulo 2M, and unify the result with R.

Accumulated-Cost Static Profiling 169

1 eval(const(A),M,R) :- eval_const(A,M,R).
2 eval(A+B, M,R) :- eval_add(A,B,M,R).
3 eval(A*B, M,R) :- eval_mult(A,B,M,R).
4

5 eval_const(A,_,R) :- R=A.
6 eval_add(A,B,M,R) :- eval(A,M,RA), eval(B,M,RB), add(RA,RB,M,R).
7 eval_mult(A,B,M,R):- eval(A,M,RA), eval(B,M,RB),mult(RA,RB,M,R).

For the sake of simplicity, assume that all the costs are null except those
related to the evaluation of add/4 and mult/4. Assume that the cost of the eval-
uation of add(A,B,M,R) is M and the cost of the evaluation of mult(A,B,M,R)
is M2. Under these assumptions, the standard CiaoPP cost analysis infers that the
cost of the evaluation of eval(E,M,R) is bounded by (2depth(E) − 1) × (M+ M2)
where depth(E) stands for the depth of the expression E – note that the exact
bound is (2depth(E)−1)×M2. However, such an analysis does not help finding pre-
cisely which part of the code is responsible for most of the cost. Indeed since all
the predicates (eval/3, eval add/4, and eval mult/4) are mutually recur-
sive, the system will infer a similar cost for eval add/4 and eval mult/4.
Furthermore, those costs will be expressed in terms of different input variables
making the actual comparison difficult.

4 Parametric Accumulated-Cost Static Profiling

We now formalize the new notion of cost that we propose, the accumulated
cost, which has been intuitively described in Sect. 1. As mentioned before, our
approach is based on the notion of cost centers: user-defined program points
(predicates, in our case) to which execution costs are assigned during the execu-
tion of a program. Data about computational events is accumulated by the cost
center each time the corresponding program point is reached by the program
execution control flow.

We start by presenting a formal profiled semantics for Logic Programming.
For this purpose we assume given a program P. We also assume that each predi-
cate p is associated with a cost costp ∈ R and that the cost centers are defined as
a set ♦ of predicate symbols. In the following we will use overlined symbols such
as t̄, x̄, or ē to denote a sequence of terms, variables, or arithmetic expressions.

We define a predicate call with context as a tuple of the form r : p(t̄), where r,
the context, is a cost center (i.e., a predicate from ♦) and p(t̄) is a predicate call.
Then, we define profiled states as tuples of the form 〈α ; θ ; κ〉 where α is a
sequence of predicate calls with context, θ is a substitution that maps variables
to calling data, and κ, the cost assignment, is a family of real numbers indexed
by the cost centers ♦. The profiled resource semantics is defined as the smallest
relation →P over profiled states satisfying:

170 R. Haemmerlé et al.

q = update♦(p, r) (p(s̄) : − β) ∈ Pρ σ is an m.g.u. of s̄ and t̄θ

〈r : p(t̄), α ; θ ; κ〉 →P 〈q : β, α ; θ ◦ σ ; κ[q �→ κq + costp]〉
σ is an m.g.u. of t and [sθ]

〈r :(t is s), α ; θ ; κ〉 →P 〈α ; θ ◦ σ ; κ〉
where:

– q : β, α is a notation for the sequence q : p1(s̄1), ..., q : pn(s̄n), α, assuming β is
the sequence p1(s1), ..., pn(sn).

– [s] stands for the arithmetic evaluation of s (if s is not a ground arithmetic
expression, then [s] is not defined, as well as the rule using it),

– ρ stands for a renaming with fresh variables,
– κ[q �→ c] is the assignment that maps p to c if p = q or to κp otherwise, and
– update♦(p, r) equals either p if p ∈ ♦, or r otherwise.

The first rule can be understood as an extension of SLD resolution with cost.
Concretely, the cost costp of the called predicate p is added to the value of the
current cost center, the cost center being updated beforehand to the current
predicate if the latter is in fact a cost center, and left unchanged otherwise. The
latter rule characterizes the semantics of the built-in is/2, where we assume
w.l.o.g. that the operation has no cost. Standard left-to-right evaluation is simply
recovered by ignoring the cost assignment together with the calling contexts. In
the following section, we will use the notation (α ; θ), where α is a sequence
of predicate calls and θ a substitution, to denote a standard (non-profiled) LP
state.

In the following, we use Π as the set of tuples of terms, and R to denote
the set of real numbers. For any cost center p ∈ ♦, the profiled resource usage
function is the function Cp

♦ : 2Π → 2R
n

defined as:

Cp
♦(T̄) =

⎧
⎪⎨

⎪⎩

{
κ | t̄ ∈ T̄ & 〈p : p(t̄) ; ε ; 0̄〉 →∗

P 〈� ; θ ; κ〉} if p(t̄) terminates
universally ∀t̄ ∈ T̄

R
n otherwise

where 0̄ stands for the trivial cost assignment that maps any cost center to 0, →∗
P

is the reflexive and transitive closure of →P , � denotes the empty sequence of
predicate calls, ε is the identity substitution, and n is the number of cost centers.
We use the “top” element in 2R

n

(i.e., Rn) to denote a “don’t know” cost for
non-terminating programs, which, for simplicity, are currently not defined in our
framework. Note that the cost κp in an infinite derivation can be (asymptotically)
different from +∞ as (1) p can be the context of only a finite number of the
steps involved in an infinite derivation, and (2) because costs of predicates can
be zero or negative. The profiled semantics is a natural generalization of the
standard resource usage semantics which is able to handle several costs which
are accumulated in the cost centers. Indeed the resource usage function inferred
by the standard analysis can be understood as the function Cp = Cp

{p} defined
over a unique cost center.

Accumulated-Cost Static Profiling 171

Cp
q(T̄) denotes the cost accumulated in q from the calls p(t̄) (t̄ ∈ T̄), that is,

the union of the ith component of all tuples in Cp
♦(T̄) if q is the ith cost center in

♦ (formally Cp
q(T̄) =

{
κq | κ ∈ Cp

♦(T̄)
}
). In particular, if p(t̄) deterministically

succeeds (e.g., when it is obtained by translation of some imperative program)
the cost accumulated in q from p(t̄) is unique, i.e., Cp

q({t̄}) = {c} for some
c ∈ R. In such a case, by a slight abuse of notation, we denote the unique value
by Cp

q(t̄).

Example 2. Consider the deterministic program given in Example 1. If we profile
the program, defining all the predicates of the program as cost centers except
add/4 and mult/4, the costs accumulated in eval const/3, eval add/4
and eval mult/4 for a call of the form eval(E,M,R) are respectively bounded
by 0, (0.5 × 2depth(E) × M), and (0.5 × 2depth(E) × M2). This makes it easier to spot
the source of most of the cost, i.e., eval mult/4. Therefore, to improve the
efficiency of the whole program, it can be useful to concentrate on this predicate,
either by optimizing its implementation or by reducing the number of times it
is called.

We write p � q if q is reachable from q, that is, if q(t̄) →∗
P (p(s̄), α) for some

calling data t̄ and s̄, and some sequence of calls α. Given a set ♦ of cost centers
assigned to a program P and some predicate p, we define the set of reachable
cost centers from p as the sequence ♦p = {q | q ∈ ♦ ∧ p �� q}.

Theorem 1. Let P be a program and ♦ ⊆ pred(P) a set of cost centers for it.
Then, for all p ∈ ♦: for all T̄ ⊂ Π it holds that: Cp(T̄) =

{∑
q∈♦p

Cp
q(T̄)

}
. In

particular, if p(t̄) deterministically succeeds Cp(t̄) =
∑

q∈♦p
Cp
q(t̄).

Note that Theorem 1 provides the basis for a compositional and modular def-
inition of the standard (i.e., single call) cost analysis, from the results of the
accumulated cost analysis. Note also that (by definition of reachable cost cen-
ter) p is always reachable from itself, even though p does not call itself.

5 Inferring Accumulated Cost via Transformation

As mentioned before, our implementation of the static profiler is based on a
source-to-source transformation. In this section we show such a transformation
that allows obtaining accumulated cost information for cost centers by perform-
ing a sized type analysis in CiaoPP. Basically, the transformation consists of
adding shadow arguments to each predicate of the Horn clauses that represent
the accumulated cost for each cost center.

5.1 The Transformation

In this section we assume there is exactly n cost centers and ♦ is defined as the
family {pi}i∈0..n−1. The transformation proposed consists of adding n+1 shadow

172 R. Haemmerlé et al.

arguments to each predicate, such that on success those variables will be assigned
to the costs accumulated in the program. There are n shadow arguments for the
cost accumulated in the cost centers called by the predicate, and an additional
one for the cost associated with the calling context, which is not known statically.

Formally, the transformation is defined by the functions �·�♦ and �·�n that
respectively translate clauses and goals. The function �·�n : A∗ → (A∗ × En+1)
(E is the set of possibly non-ground arithmetic expressions) that translates
sequences of atoms is defined recursively on the length of the goal as:

– �q(t̄), α�n = ((q(t̄, x̄), β), x̄ + ē) where (β, ē) = �α�n

– ���n = (�, 0̄)

where x̄ (resp. 0̄) stands for a sequence of (n + 1) fresh variables (a sequence of
(n + 1) zeros). On the other hand the function �·�♦ : C → C is defined by cases
as follows:

�q(t̄) : − α�♦ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(q(t̄, x̄) : − β,

x̄ is ē[ēn ← 0][ēi ← (costq + ei + en)] if q = pi ∈ ♦
(q(t̄, x̄) : − β,

x̄ is ē[ēn ← (costq + en)] otherwise

where (β, ē) = �α�n, x̄ is a sequence of n + 1 fresh variables, and x̄ is ē is
a notation for x0 is e0, . . . , xn is en (assuming x̄ = (x0, . . . , xn) and ē =
(e0, . . . , en)).

The translation of a clause is defined by case on the predicate q it defines.
Suppose q is some cost center pi ∈ ♦. In this case the costs associated with
q itself (i.e., costq) are assigned to the argument corresponding to q, namely
ei. Furthermore the costs in evaluating q that are not associated to any other
cost center (i.e., en) are also assigned to ei. Thus we have ē[ēn ← 0][ēi ←
(costq + ei + en)]. On the other hand, if q is not a cost center, then the costs
associated with q are associated to its context, namely en, and thus we have
ē[ēn ← (costq + en)].

Example 3. We show now the translation of the code corresponding to our run-
ning example, given in Example 1, assuming that the cost centers are eval/3,
eval const/4, eval add/4, and eval mult/4. In the translation the out-
put arguments Ce, Cc, Ca, and Cm correspond to the cost accumulated in the
respective cost centers. On the other hand, the output C is the cost that has
not been accumulated in any of the cost centers. Within the translation we
leave the actual implementations of add/4 and mult/4 unspecified and marked
by (...).

Accumulated-Cost Static Profiling 173

1 eval(const(A),M,R,Ce,Cc,Ca,Cm,C) :-
2 eval_const(A,M,R,De,Dc,Da,Dm,D),
3 Ce i s De+D, Cc i s Dc, Ca i s Da, Cm i s Dm, C i s 0.
4 eval(A+B,M,R,Ce,Cc,Ca,Cm,C) :-
5 eval_add(A,B,M,R,De,Dc,Da,Dm,D),
6 Ce i s De+D, Cc i s Dc, Ca i s Da, Cm i s Dm, C i s 0.
7 eval(A*B,M,R,Ce,Cc,Ca,Cm,C) :-
8 eval_mult(A,B,M,R,De,Dc,Da,Dm,D),
9 Ce i s De+D, Cc i s Dc, Ca i s Da, Cm i s Dm, C i s 0.

10 eval_const(A,_M,R,Ce,Cc,Ca,Cm,C) :- R=A,
11 Ce i s 0, Cc i s 0, Ca i s 0, Cm i s 0, C i s 0.
12 eval_add(A,B,M,R,Ce,Cc,Ca,Cm,C) :-
13 eval(A,M,RA,De,Dc,Da,Dm,D), eval(B,M,RB,Ee,Ec,Ea,Em,E),
14 add(RA,RB,M,R,Fe,Fc,Fa,Fm,F),
15 Ce i s De+Ee+Fe, Cc i s Dc+Ec+Fc, Ca i s Da+Ea+Fa+D+E+F,
16 Cm i s Dm+Em+Fm, C i s 0.
17 eval_mult(A,B,M,R,Ce,Cc,Ca,Cm,C) :-
18 eval(A,M,RA,De,Dc,Da,Dm,D), eval(B,M,RB,Ee,Ec,Ea,Em,E),
19 mult(RA,RB,M,R,Fe,Fc,Fa,Fm,F),
20 Ce i s De+Ee+Fe, Cc i s Dc+Ec+Fc, Ca i s Da+Ea+Fa,
21 Cm i s Dm+Em+Fm+D+E+F, C i s 0.
22 add(RA,RB,M,R,Ce,Cc,Ca,Cm,C) :-
23 (...)
24 Ce i s 0, Cc i s 0, Ca i s M, Cm i s 0, C i s 0.
25 mult(RA,RB,M,R,Ce,Cc,Ca,Cm,C) :-
26 (...)
27 Ce i s 0, Cc i s 0, Ca i s 0, Cm i s M*M, C i s 0.

The following theorem states that the translation of a given program simu-
lates the original one, while reifying the cost assignment as a first-order argu-
ment.

Theorem 2. Assume a given program P profiled according n cost centers ♦ =
{p0, . . . , pn−1} and a predicate p different from is.

(Soundness). If (p(t̄, x̄) ; θ) →∗
�P�♦ (� ; σ) (for some sequence of pairwise x̄

distinct variables free in t̄ and θ) then there exists a derivation of the form
〈pi : p(t̄) ; θ ; 0̄〉 →∗

P 〈� ; σ′ ; κ〉, with t̄σ′ = t̄σ, κpj
= xjσ (for j ∈ 1, ..., n−1

and j �= i), and κi = xiσ + xnσ.
(Completeness). If 〈pi : p(t̄) ; ε ; 0̄〉 →∗

P 〈� ; θ ; κ〉, then there exists a deriva-
tion of the form (p(t̄, x̄) ; ε) →∗

�P�♦ (� ; σ), with t̄θ = t̄σ, κpk
= xjσ (for

j ∈ 1, ..., n − 1 and j �= i), and κi = xiσ + xnσ.

5.2 Performing the Resource Usage Analysis

The Horn Clause program resulting from the transformation described above,
whose predicates are augmented with shadow output arguments representing the

174 R. Haemmerlé et al.

accumulated cost for each cost center, is analyzed in order to infer lower and
upper bounds on the sizes of such arguments, which actually represent bounds
on the respective accumulated costs.

In order to obtain such bounds, we use the size analysis presented in [27,28],
integrated in the CiaoPP system. The goal of this analysis is to infer lower
and upper bounds on the sizes of output arguments as a function on the sizes of
input arguments. This analysis is based on the abstract interpretation framework
present in CiaoPP, and basically infers sized types for output arguments. Sized
types are representations that incorporate structural (shape) information and
allow expressing both lower and upper bounds on the size of a set of terms and
their subterms at any position and depth. For a more detailed explanation of
this process, we refer the reader to [27].

Continuing with our running example, consider the output argument Ca,
which represents the accumulated cost of the cost center eval add/4 when it
is called from eval/4. In a preprocessing step, the program is unfolded in order
to avoid mutual recursion, which makes the analysis harder. After the unfolding
step, the analysis infers types for the predicate arguments by using an existing
analysis for regular types [31]. This analysis infers that for a call to a transformed
version of eval/4 (with shadow variables) of the form:

eval(Exp,M,R,Ce,Cc,Ca,Cm,C)

with Exp and R bound and the rest of arguments as free variables, then Ca gets
bound to a number upon success, i.e., a term of type num. From the inferred
regular type, the analysis derives a sized type schema, which is just a sized type
with variables in bound positions, along with a set of constraints over those
variables.

In this case, the corresponding sized type for num is num(α,β), where α and
β are variables representing lower and upper bounds on the size of the elements
that belong to such type. The metric we use for the size of a number is its
actual value, since num is a basic type. For compound types, e.g., lists, trees
or arithmetic expressions, we can use several metrics for the size of any term
belonging to them, such as the depth of such term (as in our example), or the
number of type rule applications needed for the type definition to succeed for
such term.

The next step involves setting up recurrence relations between size variables.
Thus, for β, that represents the upper bound of the size of Ca, we obtain the
following equation (where Sizepred

arg is the size of the argument arg corresponding
to predicate pred):

β = SizeevalCa (Sizeexp, M) =

{
2 ∗ SizeevalCa (Sizeexp − 1, M) + M if Sizeexp > 1

0 otherwise

At this point, we have obtained a recurrence relation that represents the size
of the output argument. However, such expression is not useful for some appli-
cations. One disadvantage of using recurrence relations is that the evaluation of
them given concrete input values usually takes longer than the evaluation of an

Accumulated-Cost Static Profiling 175

equivalent non-recursive expression. In addition, it is not easy to see the com-
plexity order of a given procedure just by looking at its recurrence relation, and
the comparison with other functions is also more difficult. For this reason, the
analysis uses a solver for obtaining closed-form representations for recurrence
relations. Such closed forms can be either exact solutions or safe overapproxi-
mations. In our example, the closed-form version for the recurrence is:

β = Sizeeval
Ca (Sizeexp,M) = (2Sizeexp − 1) ∗ M

Assuming that the metric for the size of arithmetic expressions is the depth
of the term representing them, we have that Sizeexp = depth(exp). Thus, we
can finally conclude that the accumulated cost of eval add/4 when called
from eval/3 (i.e., the size of Ca in the transformed version of the program), is
given by

(2depth(exp) − 1) ∗ M.

6 Experimental Results

We have performed an experimental evaluation of our techniques with the proto-
type implementation described in Sect. 5 over a number of selected benchmarks
from [28]. The benchmarks are written directly as Horn Clause programs (in
Ciao). In each benchmark, a number of predicates are marked as cost centers.
The results are shown in Table 1. Static profiling was performed for each cost cen-
ter, capturing the accumulated cost with respect to an entry predicate (marked
with a star, e.g., appendAll2∗). While in the experiments both upper and lower
bounds were inferred, for the sake of brevity we only show upper bound func-
tions. Also, each clause body is assumed to have unitary cost.

Column 1 of Table 1 shows the list of benchmarks while column 2 provides the
list of cost centers for each benchmark. Column 3 shows the parametric accumu-
lated cost inferred for each cost center, as a resource usage upper bound function
on input data sizes of the entry predicate.Column 4 compares the parametric
accumulated cost function of each cost center from column 3 with the results
from a dynamic profiling tool [17]. Although the analysis infers upper bounds
on the accumulated cost, for some benchmarks these are exact upper bounds (in
fact, exact costs) and for others these are correct but relatively imprecise. The
imprecision introduced in the benchmarks listfact and appendAll2 is due to the
fact that the cost not only depends on the input data sizes but also on the sizes
of the sub-terms in the input data, since the analysis statically assumes an upper
bound on the sizes of the sub-terms. Note that CiaoPP is the only analysis tool
that infers concrete upper bound functions over sized types (costs that depend
on the sizes of subterms) [28].

Column 5 shows for comparison the cost inferred by the standard (i.e., non-
accumulated) cost analysis [28] for each program and its auxiliary predicates
(also marked as cost centers). The comparison of the accumulated and standard
cost functions (columns 3 vs. 5) shows the usefulness of our approach: the upper
bounds on cost centers display accumulated costs for program parts that were

176 R. Haemmerlé et al.

Table 1. Experimental results.

Program Cost-Center

Predicate

Accumulated

Cost UB

Static vs.

Dyn

Standard Cost UB #Calls

appendAll2 appendAll2∗ b1 0% 2b1b2b3 + b1b2 + b1 1

appendAll b1b2 33% b1b2 b1

append 2b1b2b3 61% β b1b2 + b1

hanoi hanoi∗ 2v − 1 0% 2v+1 − 2 1

processMove 2v − 1 0% 1 2v − 1

coupled coupled∗ 1 0% v + 1 1

f v
2 +

(−1)v

4 + 3
4 1.2% v v

2 − (−1)v

4 + 1
4

g v
2 +

(−1)v

4 − 1
4 0% v v

2 +
(−1)v

4 − 1
4

minsort minsort∗ β + 1 0%
(β+1)2

2 + β+1
2 1

findmin
(β+1)2

2 + β−1
2 7% β β + 1

dyade dyade∗ β1 0% β1(β2 + 1) 1

mult β1β2 0% β β1

variance naive variance∗ 1 0% 2β2 1

sq diff β − 1 0% 2β2β1 − 2β2 β − 1

mean 2β2 − β 0% β − 1 β

variance variance∗ 1 0% 5β + 3 1

sq diff β 0% β β

mean 4β + 2 0% 2β + 1 2

listfact listfact∗ β 0% β(δ + 2) 1

fact βδ + β 47% δ + 1 β

– ln(αi,βi)(n(γi,δi)) represents the size of the list of numbers Li, where βi and δi (resp. αi and

γi) denote the upper (resp. lower) bounds on the length of the list and the size of its numbers

respectively.

– llln(a1,b1)(lln(a2,b2)(ln(a3,b3)(n(a4,b4)))) represents the size of the list of lists of lists of num-

bers similarly.

– n(μ,v) denotes the size of a number with lower- and upper-bounds μ and v respectively.

not visible with the standard analysis. For instance, similarly to Example 1,
the coupled benchmark has two auxiliary mutually recursive predicates f and g
that are processing elements of a list alternatively until the list becomes empty.
The standard analysis infers almost the same upper bound for both functions
due to the mutual recursion, whereas the accumulated cost precisely points out
the source of cost in the mutually recursive parts. Similarly, in hanoi, although
the cost of processMove (processing a single hanoi move) is unitary, we can see
that it is called an exponential number of times. The analysis is providing hints
to the programmer about the parts of the program that are most profitable
candidates for optimization. Note that the upper bound cost functions inferred
by static profiling for each cost center predicate are on the input data sizes of
the program (entry predicate), in contrast to the standard analysis where the
cost functions are on the input data sizes of the predicate that the cost function
corresponds to.

Accumulated-Cost Static Profiling 177

Finally, in column 6 an additional #Calls cost is presented, indicating the
number of times each predicate is called, as a function of input data sizes of the
entry predicate. These cost functions are inferred using the standard analysis
by defining explicitly a #Calls resource for each cost center predicate. A big
complexity order in the number of calls to a predicate (in relation to that of a
single call) might give hints to reduce the number of calls to such predicate in
order to effectively reduce its impact on the overall cost of the program (i.e., the
cost of a call to the entry point). More interestingly, since both the Accumulated
and #Calls costs of a predicate q are expressed as functions of input data sizes
of the entry predicate, their quotient (Column 3 / Column 6) is meaningful and
will give an approximation of the cost of a single call to q as a function of the
input data sizes of the entry predicate. Note that the standard analysis (Column
5) also provides an upper-bound approximation of this cost but as a function of
the input data sizes of predicate q.

7 Related Work

Static profiling in the context of Worst Case Execution Time (WCET) Analysis
of real-time programs is presented in [4]. It proposes an approach to computing
worst-case timing information for all code parts of a program using a comple-
mentary metric, called criticality. Every statement of a real-time program is
assigned with a criticality value, expressing how critical the respective code is
for the global WCET. Our approach is not limited to WCET, since it is able
to obtain results for a general class of user-defined resources. Furthermore, our
inferred metrics are parametric on the input data sizes of the main program, in
contrast to the criticality metric, which is a numeric value in the range [0, 1]. In
addition, our approach is modular and compositional, able to compute accumu-
lated costs w.r.t. calls originating from different procedures of the program, and
not only the main program entry point. In [3] the authors present static profiling
techniques to estimate the execution likelihood and frequency of program points
in order to assess whether the cost of certain compile-time optimizations would
pay off. To this end, they explore the use of some static analysis techniques for
predicting the result of conditional branches, such as assuming uniform distribu-
tion over all branches, making heuristic based predictions, and performing value
range propagation. In this context, our approach can be used to infer bounds on
the number of times a certain program point will be called from a given entry
point, as functions on input data sizes, in contrast with a single value repre-
senting the execution likelihood or frequency. Besides, since our techniques are
supported mainly by the theory of abstract interpretation, the approximations
inferred are correct by design.

8 Conclusions

In this paper we have presented a novel approach of static profiling of accumu-
lated cost that infers upper- and lower-bounds of the resource usage accumulated

178 R. Haemmerlé et al.

in particular parts of a program as a functions on the input data sizes of the
program. We have constructed a prototype implementation of the proposed app-
roach using the CiaoPP program analysis framework. Preliminary experimental
results with the tool support the usefulness of our approach where precise accu-
mulated upper bound cost functions were inferred for parts of the program for
which the standard analysis was not able to infer precise information. The upper
bound functions inferred by the static profiling were also evaluated against a
dynamic profiling tool [17], and showed promising accuracy for the static analy-
sis. However in cases where the cost depended on the sizes of the sub-terms of
the input, the upper bound accumulated cost loses precision.

Acknowledgements. This research has received funding from the European Union
7th Framework Program agreement no 318337, ENTRA, Spanish MINECO TIN’12-
39391 StrongSoft project, and the Madrid M141047003 N-GREENS program.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. J. Autom. Reasoning 46(2), 161–203 (2011)

2. Albert, E., Genaim, S., Masud, A.N.: More precise yet widely applicable cost analy-
sis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 38–53.
Springer, Heidelberg (2011)

3. Boogerd, C., Moonen, L.: On the use of data flow analysis in static profiling.
In: Eighth IEEE International Working Conference on Source Code Analysis and
Manipulation, pp. 79–88, September 2008

4. Brandner, F., Hepp, S., Jordan, A.: Static profiling of the worst-case in real-time
programs. In: Proceedings of the 20th International Conference on Real-Time and
Network Systems, RTNS 2012, pp. 101–110. ACM, New York (2012)

5. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. ACM Trans. Program.
Lang. Syst. 15(5), 826–875 (1993)

6. Debray, S.K., Lin, N.-W., Hermenegildo, M.: Task Granularity Analysis in Logic
Programs. In: Proceeding of the 1990 ACM Conference on Programming Language
Design and Implementation, pp. 174–188. ACM Press, June 1990

7. Debray, S.K., López-Garćıa, P., Hermenegildo, M., Lin, N.-W.: Lower bound cost
estimation for logic programs. In: 1997 International Logic Programming Sympo-
sium, pp. 291–305. MIT Press, Cambridge, October 1997

8. Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., Fuhs, C.: Symbolic evalu-
ation graphs and term rewriting: a general methodology for analyzing logic pro-
grams. In: PPDP, pp. 1–12. ACM (2012)

9. Grobauer, B.: Cost recurrences for DML programs. In: Proceedings of the Sixth
ACM SIGPLAN International Conference on Functional Programming, ICFP
2001, pp. 253–264. ACM, New York (2001)

10. Hermenegildo, M., Puebla, G., Bueno, F., Lopez-Garcia, P.: Integrated program
debugging, verification, and optimization using abstract interpretation (and the
Ciao system preprocessor). Sci. Comput. Program. 58(1–2), 115–140 (2005)

11. Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J.F.,
Puebla, G.: An overview of Ciao and its design philosophy. Theor. Pract. Logic
Program. 12(1–2), 219–252 (2012). arxiv.org/abs/1102.5497

http://arxiv.org/abs/org/abs/1102.5497

Accumulated-Cost Static Profiling 179

12. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14:1–14:62 (2012)

13. Igarashi, A., Kobayashi, N.: Resource usage analysis. In: Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2002, pp. 331–342. ACM, New York (2002)

14. Liqat, U., Georgiou, K., Kerrison, S., Lopez-Garcia, P., Hermenegildo, M.V.,
Gallagher, J.P., Eder, K.: Inferring energy consumption at different software levels:
ISA vs. LLVM IR. In: Van Eekelen, M., DalLago, U. (eds.) FOPARA 2015, LNCS.
Springer (2016, to appear)

15. Liqat, U., et al.: Energy consumption analysis of programs based on XMOS ISA-
level models. In: Gupta, G., Peña, R. (eds.) LOPSTR 2013, LNCS 8901. LNCS,
vol. 8901, pp. 72–90. Springer, Heidelberg (2014)

16. Méndez-Lojo, M., Navas, J., Hermenegildo, M.V.: A flexible, (C)LP-based app-
roach to the analysis of object-oriented programs. In: King, A. (ed.) LOPSTR
2007. LNCS, vol. 4915, pp. 154–168. Springer, Heidelberg (2008)

17. Mera, E., Trigo, T., Lopez-Garćıa, P., Hermenegildo, M.: Profiling for run-time
checking of computational properties and performance debugging in logic pro-
grams. In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp.
38–53. Springer, Heidelberg (2011)

18. Morgan, R.G., Jarvis, S.A.: Profiling large-scale lazy functional programs. J. Funct.
programing 8(3), 201–237 (1998)

19. Muthukumar, K., Hermenegildo, M.: Compile-time derivation of variable depen-
dency using abstract interpretation. J. Logic Program. 13(2/3), 315–347 (1992)

20. Navas, J., Méndez-Lojo, M., Hermenegildo, M.: Safe upper-bounds inference of
energy consumption for java bytecode applications. In: The Sixth NASA Lang-
ley Formal Methods Workshop (LFM 2008), pp. 29–32, April 2008. (Extended
Abstract)

21. Navas, J., Méndez-Lojo, M., Hermenegildo, M.: User-definable resource usage
bounds analysis for java bytecode. In: Proceedings of the Workshop on Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE 2009), vol.
253. Electronic Notes in Theoretical Computer Science, pp. 65–82. Elsevier, North
Holland, March 2009

22. Navas, J., Mera, E., López-Garćıa, P., Hermenegildo, M.V.: User-definable resource
bounds analysis for logic programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007.
LNCS, vol. 4670, pp. 348–363. Springer, Heidelberg (2007)

23. Nielson, F., Riis Nielson, H., Seidl, H.: Automatic complexity analysis. In: Le
Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 243–261. Springer, Heidelberg
(2002)

24. Puebla, G., Hermenegildo, M.: Optimized algorithms for incremental analysis of
logic programs. In: Cousot, Radhia, Schmidt, D.A. (eds.) SAS 1996. LNCS, vol.
1145. Springer, Heidelberg (1996)

25. Rosendahl, M.: Automatic complexity analysis. In: 4th ACM Conference on Func-
tional Programming Languages and Computer Architecture (FPCA 1989), pp.
144–156. ACM Press (1989)

26. Sansom, P.M., Peyton Jones, S.L.: Time and space profiling for non-strict, higher-
order functional languages. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 1995, pp. 355–366.
ACM, New York (1995)

180 R. Haemmerlé et al.

27. Serrano, A., Lopez-Garcia, P., Bueno, F., Hermenegildo, M.: Sized type analysis
for logic programs (technical communication). In: Swift, T., Lamma, E. (eds.) The-
ory and Practice of Logic Programming, 29th International Conference on Logic
Programming (ICLP 2013) Special Issue, On-line Supplement, vol. 13, pp. 1–14.
Cambridge University Press, August 2013

28. Serrano, A., Lopez-Garcia, P., Hermenegildo, M.: Resource usage analysis of logic
programs via abstract interpretation using sized types. In: 30th International Con-
ference on Logic Programming (ICLP 2014) Theory and Practice of Logic Pro-
gramming, vol. 14(4–5), pp. 739–754 (2014). (special issue)

29. Tiwari, V., Malik, S., Wolfe, A.: Power analysis of embedded software: a first
step towards software power minimization. IEEE Trans. VLSI Syst. 2(4), 437–445
(1994)

30. Vasconcelos, P.B., Hammond, K.: Inferring cost equations for recursive, polymor-
phic and higher-order functional programs. In: Trinder, P., Michaelson, G.J., Peña,
R. (eds.) IFL 2003. LNCS, vol. 3145, pp. 86–101. Springer, Heidelberg (2004)

31. Bueno, F., Vaucheret, C.: More precise yet efficient type inference for logic pro-
grams. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp.
102–116. Springer, Heidelberg (2002)

32. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975)

Polymorphic Types in Erlang
Function Specifications

Francisco J. López-Fraguas(B), Manuel Montenegro,
and Juan Rodŕıguez-Hortalá

Departamento de Sistemas Informáticos Y Computación,
Universidad Complutense de Madrid, Madrid, Spain

fraguas@sip.ucm.es, {montenegro,juanrh}@fdi.ucm.es

Abstract. Erlang is a concurrent functional programming language
developed by Ericsson, well suited for implementing distributed systems.
Although Erlang is dynamically typed, the Dialyzer static analysis tool
can be used to extract implicit type information from the programs, both
for documentation purposes and for finding errors that will definitively
arise at program execution. Dialyzer is based on the notion of success
types, that correspond to safe over-approximations for the semantics of
expressions. Erlang also supports user given function specifications (or
just specs), that are contracts providing more information about the
semantics of functions. Function specs are useful not only as documen-
tation, but also can be employed by Dialyzer to improve the precision of
the analysis. Even though specs can have a polymorphic shape, in prac-
tice Dialyzer is not able to exploit all their potential. One reason for that
is that extending the notion of success types to a polymorphic setting
is not trivial, and several interpretations are possible. In this work we
propose a precise formulation for a novel interpretation of function specs
as polymorphic success types, and a program transformation that allows
us to apply this new interpretation on the call sites of functions with a
declared spec. This results in a significant improvement in the number
of definite errors that Dialyzer is able to detect.

1 Introduction

Erlang [2] is an eager concurrent functional programming language developed
by Ericsson. It is a dynamically typed language, in contrast with languages like
Haskell or ML where programs must be recognized as well typed by a static
analysis, according typically with some variant of Hindley-Milner system [4],
ensuring statically type safety, i.e., that the evaluation of a well-typed expression
within a well-typed program will not incur a type clash at any step. This kind of
analysis is conservative in the sense that it rejects programs that could be free

Work partially supported by the Spanish MINECO project CAVI-ART (TIN2013-
44742-C4-3-R), Madrid regional project N-GREENS Software-CM (S2013/ICE-
2731) and UCM-Santander grants GR3/14-910502, GR3/14-910398.

c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 181–197, 2016.
DOI: 10.1007/978-3-319-29604-3 12

182 F.J. López-Fraguas et al.

of runtime errors in purely operational terms, but that are not detected as such
by the analysis.

Dynamic typing provides usually more liberality; however, runtime error
detection means probably late error detection, a serious inconvenience in prac-
tice. To address this in Erlang, the Dialyzer static analysis tool was proposed in
[7] with two essential design principles: it should be applicable to already existing
Erlang programs and should not produce false positives: signalling a type error
must imply that a runtime error will certainly happen. As it is said in [14], the
lemma ‘well-typed programs never go wrong’ of Hindley-Milner types is replaced
in the Dialyzer approach by ‘ill-typed programs always fail’.

Dialyzer, Success Types and Type Specifications. Dialyzer considers
primitive types integer, atom,. . . , tuple types {τ1, . . . , τn}, list types [τ], func-
tional types (τ1, . . . , τn) → τ ,. . . . Each individual Erlang value v is itself a type
and the union τ1|τ2 of two types is also a type. Types represent sets of values
that can be ordered by set inclusion. The empty and the total set of values are
represented by the types none and any1.

Dialyzer tries to infer success types [9] that are over-approximations for the
semantics of expressions: τ is a success type for e if τ contains all the possible
values to which e can be reduced. A type (τ1, . . . , τn) → τ is a success type for a
function f if whenever f(e1, . . . , en) reduces to a value v then v ∈ τ and each ei

reduces to a value vi ∈ τi. Notice that any is a success type for any expression,
that (any, . . . , any) → any is a success type for any f , and that if none is a
success type for e then e cannot be reduced to any value, thus indicating a
definite error, not just a possible one. Singleton and union types allow Dialyzer
to infer frequently quite precise success types, as this simple example shows:

f(0) -> 1 ; f(1) -> 0. g(2) -> 0. h(0) -> 0.
e1() -> f(0). e2() -> g(e1()). e3() -> h(e1()).

Dialyzer (more exactly, its associated tool Typer [8]) infers the following success
types, reported in the form of specs (type specifications or signatures):

-spec f(0 | 1) -> 0 | 1. -spec e1() -> 0 | 1.
-spec g(2) -> 0. -spec e2() -> none.
-spec h(0) -> 0. -spec e3() -> 0.

Dialyzer has detected that e2 is not reducible to any value. The rest of specs
are strict overapproximations of the corresponding semantics, but are neverthe-
less more precise than types like Int → Int (for f) or Int (for ei) that would
have been inferred in ML or Haskell. But, as we will see soon, Dialyzer has also
important limitations which are the focus of this paper.

User given type specifications were considered in [6] and later on incorporated
to Erlang, as contracts specifying the intended behavior of functions. They are
useful as documentation and also used by Dialyzer to refine its analysis. For
instance, the user could give the specification -spec f(0) -> 1 ; (1) -> 0 that
allows Dialyzer to refine its analysis, obtaining
1 Written in actual Erlang as none(), any(), but we omit those () for types.

Polymorphic Types in Erlang Function Specifications 183

-spec e1() -> 1. -spec e2() -> none. -spec e3() -> none.

which corresponds better (perfectly, in this case) to reality. In this paper we
assume that user specs correspond indeed to success types, i.e., that the contract
corresponding to each spec is fulfilled by its function definition. In practice,
Dialyzer only checks that user specs are compatible with the inferred success
types. In presence of user specs, errors reported by Dialyzer anticipate definite
runtime errors or violations of the contract given by the specs. It is in this sense
that the absence of false positives must be understood.

Dialyzer, Polymorphism and this Work. The limitations of Dialyzer become
quickly apparent with polymorphic functions. The simplest example is given by
the function id(X) -> X, whose Hindley-Milner type would be ∀α.α → α. What
Dialyzer infers is -spec id(any) -> any, with no connection between the two any’s.
This causes a great loss of precision: for the function f above, Dialyzer infers none
for f(2), but 0|1 for f(id(2)), since id(2) is analyzed as any.

Could user specs come to our rescue? Yes . . . in principle. User specs permit
polymorphic specifications like -spec id(X) -> X when X::any where a condition
X::τ expresses that X is a subtype of τ (so, in this case, any X fulfils X::any).
Erlang’s documentation [1] says that ‘it is up to the tools that process the spec-
ifications to choose whether to take this extra information into account or not’.
However, Dialyzer does not use it in a sensible way, but replaces each occurrence
of X by its bound any, thus falling exactly into the same imprecisions as before.
We do not know of any other Erlang tool that improves the situation. Moreover,
it is not obvious how polymorphism of function specs must be interpreted, due
to the union nature of success types.

Those are precisely the problems addressed in this paper: how to interpret
polymorphic specifications in a setting of success types and how to improve
Dialyzer’s treatment of them. We do not investigate here inference of polymor-
phic success types, a subject of obvious interest but left to future work. We post-
pone until Sect. 3 the discussion of suitable interpretations of polymorphism, but
we elaborate a bit more via examples our ideas for improving Dialyzer’s behavior.

The kind of imprecisions pointed out with id occur with any other polymor-
phic function. Consider for instance map and two applications of it.

map(F,[]) when is function(F) -> [];
map(F,[X|Xs]) -> [F(X)|map(F,Xs)].

e1() -> map(fun(X)->not(X) end,[1,2]). %this expression will fail

e2() -> map(fun(X)->not(X) end,[true,false]).

Dialyzer infers the rather imprecises -spec map(fun(),[any]) -> [any] and
-spec ei() -> [any]. Adding the polymorphic -spec map(fun((A) -> B),[A1])

-> [B] when A1::A does not help too much: we still obtain -spec ei() -> [any].

Forcing Dialyzer to be Polymorphic. To overcome the diagnosed problem
we could have tried to identify which parts of Dialyzer should be changed or
even to build a completely new inference system and tool. Instead, we have done

184 F.J. López-Fraguas et al.

something much more lightweight: we run Dialyzer (as it is, no change in the
tool) not over the original program but over a program transformation so that the
effect is as if Dialyzer had used properly the polymorphic specifications provided
in the program. The key idea is replacing inline each application of a function
with a polymorphic spec by an expression having the same type as the original
application and where the dependencies between types –lost in the direct use of
Dialyzer– are kept and properly managed by Dialyzer because of the inlining.
A convenient way of doing such a transformation is by means of parameterized
Erlang macros, that are expanded at compile time. Abstracting out the macros
to auxiliary functions would not be useful, because those functions would suffer
of the same problems of the original ones. To get an idea of how this works,
consider the map example: we distil a macro MAP(F,L) from the polymorphic
spec of map and replace each application of map by one of ?MAP.

-define(MAP(F,L),begin
F1 = F , L1 = L,
receive {A,A1,B} ->

F1 = ?FUN(A,B),
L1 = ?LIST(A1),
A = A1,
?LIST(B)

end
end).

% Other auxiliary macros FUN/2, LIST/2, ALT/2, ...
e1() -> ?MAP(fun(X)->not(X) end,[1,2]).
e2() -> ?MAP(fun(X)->not(X) end,[true,false]).

We leave detailed explanations for Sect. 4; but we remark that the trans-
formation does not pretend to preserve evaluation, since MAP is not based on
the code of map but only on its spec. The noticeable fact is that now Dialyzer
infers for ei the expected ‘good’ types: -spec e1() -> none and -spec e2() ->

[boolean]. That is precisely the purpose of the transformation. Section 4 contains
a complete transformation scheme that, being automatic and general, produces
a slightly more complex code.

Organization of the Paper. The two main sections come after formalizing
simple success types in Sect. 2. In Sect. 3 we discuss and propose a precise inter-
pretation of function specifications as polymorphic success types. Section 4 con-
tains the program transformation that forces Dialyzer to simulate polymorphic
specs, as well as some results about its correctness. Some auxiliary technical
contents, including proof sketches, have been left to a technical report [10].

2 Simple Success Types

In this section we formalize an interpretation of Dialyzer success types, which is
hopefully equivalent to the original notion from [8,9]. The main idea is that a

Polymorphic Types in Erlang Function Specifications 185

CS0 = Atom � Integer � Float �
{[]} � Pid

CS2 = {[|], { , }}
CSn = {{ , . . .n , }} ∀n ∈ N\{2}

DVal � Atom ⊕ Integer ⊕ Float ⊕ Pid ⊕ {[]} ⊕⊕
c∈CSn

{c} ⊗ DV al ⊗ . . .n ⊗ DV al ⊕⊕
n∈N

(DV al ⊗ . . .n ⊗ DV al) ↪→ P(DV al)

Fig. 1. Definition of the set of Erlang values

success type τ for an expression e represents a safe over-approximation for the
semantics of e, formalized through a denotational semantics for expressions and
types that gives e a smaller denotation than that for τ in a preorder over the
semantic domain.

For this task we use a variation of Core Erlang [3], that is expressive enough
to represent most Erlang programs, but that allows for a simpler presentation. A
detailed description of the syntax and denotational semantics of the considered
language is available in [10]. We use a reflexive semantic domain DVal (see
Fig. 1), whose definition is based on standard primitive domains and standard
domain constructors, which ensure it is correctly defined [5]. The denotation of
expressions is defined by the semantic function E [[]] : Exp → (UFS → Exp) →
P(DV al) where Exp is the set of expressions, and definitional environments
Λ ∈ UFS → Exp are mappings from user function symbols to Exp that serve to
model programs. We write E [[e]]Λ for the semantics of e within Λ and frequently
omit Λ when implied by the context. In general E [[e]] is a set of values, due
to the non-determinism caused by concurrency primitives like receive. Note
that values can be functions, hence E [[e]] can be a set of functions. We will need
some notations regarding (sets of) functions: we write f |C for the restriction of
a function f to a subset C of its domain; the range restriction of f is denoted
by f |−1

C , and is defined by f |−1
C (x) = f(x) iff f(x) ∈ C; f |−1

C (x) is undefined
otherwise. This is extended to set of functions as fs|C(x) = {f |C(x) | f ∈
fs}, and fs|−1

C (x) = {f |−1
C (x) | f ∈ fs}. We define the application of a set

of functions fs with common domain to a set of values vs in that domain as
fs(vs) = {f(v) | f ∈ fs, v ∈ vs}, and to a value as fs(v) = fs({v}).

We consider a preorder e � e′ on DVal (see [10]) and extend it to P(DVal)
to capture the notion that E [[e′]] is more powerful than E [[e]], in the sense that for
each value in E [[e]] there is a greater one in E [[e′]] (i.e. a function with a greater
graph, a tuple with greater elements, . . .).

We refer to the original success types from [8,9] as simple success types, to
stress their difference to the success type schemes we will consider for function
specs in Sect. 3, reminding to what is usually done also in Hindley-Milner-like
type systems. We assume a set of type variables T V and use α, β ∈ T V. The set
of simple types T is defined in Fig. 2. To better reflect its meaning, we write here
τ ∪ τ ′ instead of the concrete Erlang syntax τ | τ ′. Notice that individual values
v ∈ Val are types, where Val is a subset of Exp that only contains (intensional)
values. We assume the existence of a denotation V[[]] of these intensional values—
see [10] for details—. The type nelist(τ, τ ′) stands for (possibly improper) not
empty lists with elements of type τ and ending of type τ ′; note all the variant

186 F.J. López-Fraguas et al.

T C0 	 C0 ::= none | any | atom | integer | float | pid | v (v ∈ Val)
T C2 	 C2 ::= ∪ | nelist(,) T Cn 	 Cn ::= { , . . .n , }
T Cn+1 	 Cn+1 ::= (, . . .n ,) →
T 	 τ ::= α | Cn(τ1, . . . , τn)

T [[none]] = ∅ T [[any]] = DVal T [[atom]] = Atom T [[integer]] = Integer
T [[float]] = Float T [[pid]] = Pid T [[v]] = {V[[v]] []} T [[τ1 ∪ τ2]] = T [[τ1]] ∪ T [[τ2]]
T [[nelist(τv, τc)]] =

lfp (λZ.{([|], v, c) | v ∈ T [[τv]], c ∈ T [[τc]]} ∪ {([|], v, z) | v ∈ T [[τv]], z ∈ Z})
T [[{τ1, . . . , τn}]] = {({,

n· · ·, }, v1, . . . , vn) | ∀i ∈ {1..n}.vi ∈ T [[τi]]}
T [[(τ1, . . . , τn) → τ]] = { ⊕

z∈Dom

λ̂z.T [[τ]]} where Dom
def
=

∏n
i=1 T [[τi]]

Fig. 2. Syntax and semantics of simple types

types for lists from [1] can be expressed with nelist and ∪: for example list(0
| 1) can be expressed as nelist(0 ∪ 1, []), as [] ∈ CS0 implies [] ∈ Val , hence
[] ∈ T C0 and so [] ∈ T . Type substitutions π ∈ TSubst are finite mappings
π : T V → T . We say π is ground when π(α) is ground for any α.

The denotation T [[τ]] of a simple type τ is a set of semantic values in DVal
given by the mapping T [[]] : T → P(DVal) defined in Fig. 2. The notation λ̂v1.v2

denotes a function with a single binding from v1 to v2 —i.e., with a single point as
graph— whereas the ⊕ operator merges two functions provided their domains are
disjoint. Note T [[]] is for example able to distinguish the type any from the type
(any) → any , as T [[any]] = P(DVal) and T [[(any) → any]] = DVal ↪→ DVal ,
and therefore T [[any]] � 0 	∈ T [[(any) → any]], showing that any contains more
values than (any) → any .

We formalize that hierarchy among types by overloading the preorder � on
DVal to T as τ1 � τ2 iff T [[τ1]] � T [[τ2]]. Note none of the overloadings of � is a
partial order, as they are not antisymmetric: for example, with τ1 = 0 ∪ integer ,
τ2 = integer we have τ1 � τ2 and τ2 � τ1, but τ1 and τ2 are different types.
Nevertheless, as is standard, this preorder defines a partial order on the quotient
set for the equivalence relation τ ′ � τ ∧τ � τ ′, which is a lattice [8,9] with any as
� and none as ⊥. For the remainder of the paper, when using or � on elements
of T , we implicitly work modulo that equivalence relation. We can now use the
denotational semantics to formulate with precision the notion of success types.

Definition 1 (Success Type, for Simple Types). We say that τ ∈ T is a
success type for e ∈ Exp, written e : τ , iff E [[e]] � T [[τ]].

Example 1. τ1 = (0 ∪ 1) → 0 ∪ 1 is a success type for the expression e =
fun(X) → case X of 0 → 0, as E [[e]] = λ̂(0).{0} � λ̂(0).{0, 1} ⊕ λ̂(1).{0, 1} =
T [[(0 ∪ 1) → 0 ∪ 1]]. The type τ1 is not the only valid success type for e. For
example, (0) → 0 is a more precise one.

This formulation tries to generalize Definition 1 from [9], that is only defined
for functions, to arbitrary expressions. In general, expressions may have more

Polymorphic Types in Erlang Function Specifications 187

than one success type, because e : τ1 and τ1 � τ2 imply e : τ2. In particular
e : any for all expressions e. On other other hand, e : none is equivalent to
E [[e]] � T [[none]] = ∅, which implies that no value can be computed for e, i.e.
that evaluating e will surely lead to a runtime error.

3 Success Type Schemes

Following the official Erlang documentation [1], we define the set of success type
schemes T S as: T S � σ:: = ∀α1, . . . , αm. τ | τ1

1 ⊆ τ1
2 , . . . , τ l

1 ⊆ τ l
2 for αi ∈ T V,

τ, τ j
i ∈ T . This notion of type schemes expresses a form of bounded polymor-

phism, as type variables can be instantiated only with types that respect the
corresponding type inclusion constraint. We use the semantics above to charac-
terize these constraints, so τ1 ⊆ τ2 is satisfied iff ∅ 	= T [[τ1]] and τ1 � τ2. Note
success type schemes are just another presentation of Erlang function specs,
and that T S contains type schemes corresponding to overloaded specs, which
have the general form ∀α1, . . . , αm. (τ1

p1
, . . . , τ1

pn
) → τ1

r ∪ . . . ∪ (τo
p1

, . . . , τo
pn

) →
τo
r | τ1

1 ⊆ τ1
2 , . . . , τ l

1 ⊆ τ l
2 for a given f ∈ FSn. For this reason we will use

the terms ‘function spec’ and ‘type scheme’ interchangeably for the rest of the
paper. Notice that, in this system, overloaded schemes can be understood as
union types (represented with the ∪ operator), since success types overapprox-
imate the behaviour of programs. This contrasts with the traditional approach
in which overloading is achieved via intersection types [12].

Just like we have characterized whether a simple type is a success type for an
expression or not, we are interested in defining when a type scheme is a success
type scheme for a function. We discuss here the issue.

A first obvious approach would be trying to mimic Definition 1, for which
we would need a suitable definition for the denotation of a success type scheme
T S[[]] : T S → P(DVal), and then require E [[f]] � T S[[σ]] for σ to be a success
type scheme of f . Let us consider for now a simplified setting where specs σ have
the shape ∀αj ⊆ τj . τ . A first possible definition of T S[[σ]] could be T S[[σ]] =
T [[C(σ)]] where C(σ) is the compaction of σ, the simple type resulting of replacing
type variables by their bounds, i.e., C(∀αj ⊆ τj . τ) = τ [αj/τj]. However, this
corresponds to the observed behaviour of Dialyzer, as described through the
examples of id and map in Sect. 1, for which we know that the polymorphism
nature of type schemes is lost.

We could also consider the other extreme, with the following “singleton”
interpretation of success type schemes in which a polymorphic type variable is
instantiated with individual values taken from the denotation of its bound:

T S[[∀αj ⊆ τj . τ]] =
⋃

vj∈T [[τj]]∩DVal

T [[τ [αj/vj]]]

Just like the previous interpretation was too loose, this interpretation is too
strict; for instance, when applied to take : ∀αe ⊆ any, αt ⊆ any. (integer, [] ∪
nelist(αe, αt)) → [] ∪ nelist(αe, αt) it does not allow αe to be instantiated

188 F.J. López-Fraguas et al.

with 0 ∪ 1, because that does not correspond to a value but to a set of values.
Therefore take(1, [0 | [1 | []]]) would be considered a contract violation. So maybe
we should try with something in the middle. The following interpretation allows
to instantiate the type variables of a type scheme with any subtype of its bound.

T S[[∀αj ⊆ τj . τ]] =
⋃

τ ′
j⊆τj

T [[τ [αj/τ ′
j]]]

This seems to corresponds to the polymorphic treatment of the list constructor
that can be observed in Dialyzer: for example the type nelist(0∪1, []) is inferred
for the list [1, 0]. Sadly, the condition E [[f]] � T S[[σ]] for this T S is just as strong
as E [[f]] � T [[C(σ)]], i.e., the first T S we considered. The problem is that the
supremum of {τ [αj/τ ′

j] | τ ′
j ⊆ τj} is precisely C(σ). So this interpretation is as

loose as the first one.
Nevertheless, we are quite close to the final interpretation of type schemes we

propose in this paper, which at the end does not define a semantics T S[[σ]] for
type schemes, but needs to be more complex. Let us define the decomposition of
a type scheme, D() : T S → P(T) as D(∀αj ⊆ τj . τ) = {τ [αj/τ ′

j] | τ ′
j ⊆ τj}. It is

easy to check that for any type scheme
⊔

D(σ) = C(σ), and that C(σ) ∈ D(σ).
What it is interesting about D(σ) is that it corresponds to a decomposition of
the semantics T [[C(σ)]] as {T [[τ]] | τ ∈ D(σ)} ∈ P(P(DVal)). The idea then is
that σ is a success type scheme for f iff f : C(σ) and E [[f]] can be decomposed
following D(σ). We formalize this idea through several conditions that must be
satisfied by the semantics of any function for which a type scheme is declared.
These are understood as additional conditions that are part of the contract the
programmer assumes when declaring a function spec. We continue focusing on
simplified declarations f : σ for σ = ∀αj ⊆ τj . (τp) → τr. Then D(σ) defines the
following decomposition of T [[C(σ)]]:

{T [[((τp) → τr)[αj/τ ′
j]]] | τ ′

j ⊆ τj}

For f : σ we require the following condition to hold for any τ ′
j ⊆ τj :

E [[f]]|T [[(τp)[αj/τ ′
j]]]

� T [[((τp) → τ l
r)[αj/τ ′

j]]]

With this condition we are saying that f defines a relation between input argu-
ments and function results that respects the shape of the semantics decomposi-
tion expressed by σ. Consider for example the identity function id = fun(X) →
X, and assume we declare id : ∀α ⊆ any. (α) → α. It is easy to see that for
τ ⊆ any we have that id|T [[τ]] ∈ T [[(τ) → τ]], because id just returns its input
argument. Now we can use the inequality above to conclude that id(0) : 0, rea-
soning only with the specification id : ∀α ⊆ any. (α) → α, regardless of the
concrete definition of id, in the line of Wadler’s ‘free theorems’ [15].

Proof. E [[id(0)]] = E [[id]](E [[0]]) = E [[id]]|E[[0]](E [[0]]) = E [[id]]|T [[0]](E [[0]]), as E [[0]] �
T [[0]]. But then by id : ∀α ⊆ any. (α) → α and using the inequality above with
τ ′
j = 0 we have E [[id]]|T [[0]](E [[0]]) � T [[(0) → 0]](E [[0]]), and we can use 0 : 0 to

Polymorphic Types in Erlang Function Specifications 189

get T [[(0) → 0]](E [[0]]) � T [[(0) → 0]](T [[0]]) = (λ̂0.{0})({0}) = {0}. So we have
E [[id(0)]] � {0} � T [[0]], i.e. id(0) : 0.

On the other hand, for g = fun(X) → case X of {Y1 when is integer(X) →
0, Y2 when true → X} that inequality does not hold for the declaration g : ∀α ⊆
any. (α) → α, because for τ = 1 we have that E [[g]]|T [[1]](1) = {0} 	∈ T [[(1) →
1]](1). One way to see this, that might be familiar to functional programmers, is
that the inequality condition above tries to capture the notion of parametricity
first proposed in Reynolds’ abstraction theorem [13], and later exploited in [15].
The function g breaks parametricity, because its rules inspect the variable X,
which has a polymorphic type α. Conversely, id respects parametricity, because
it does not inspect its polymorphic argument, and just returns it untouched.

That was a form of bottom-up information flow, where the type of a function
argument affects the type of the whole function application. For f : σ with
σ = ∀αj ⊆ τj . (τp) → τr we also require the following inequality condition, that
corresponds to top down information flow, that should hold for any τ ′

j ⊆ τj :

E [[f]]|−1

T [[τr[αj/τ ′
j]]]

� T [[((τp) → τ l
r)[αj/τ ′

j]]]

We can use this inequality for equational reasoning with id, but now with top-
down information flow, where the type of a function application affects the type
of its arguments. In particular we will conclude (again by using only the type
specification of id) that if id(a) is evaluated to some value v : 0, then in that
evaluation a must be reduced to a value va : 0, i.e. 0 is a value for a.

Proof. By hypothesis E [[id(a)]] � T [[0]]. Also E [[id(a)]] = E [[id]](E [[a]]), hence
E [[id(a)]] = E [[id]]|−1

T [[0]](E [[a]]) � T [[(0) → 0)]](E [[a]]) using the inequality above

with τ ′
j = 0. So, given v ∈ E [[id(a)]] we have v ∈ T [[(0) → 0]](E [[a]]). This implies

that to compute any v ∈ E [[id(a)]] we need compute some va ∈ E [[a]] such that
va ∈ dom(T [[(0) → 0]]) = T [[0]], i.e. va : 0.

Additionally, for f : σ we require f : C(σ), in order to avoid accepting
trivially small type schemes. For example, that condition rejects id : (0) → 0,
since (0) → 0 is not a success type for id .

After giving the intuitions, we generalize the previous conditions to arbitrary
types schemes for function symbols of the shape ∀αj .

⋃o
l=1(τ l

pi
) → τ l

r | τk
1 ⊆ τk

2 .
We first need to generalize the notion of compaction. For any conjunction of
constraints τk

1 ⊆ τk
2 the set of its solutions is the set Sol(τk

1 ⊆ τk
2) of ground

π ∈ TSubst such that var(τk
1 ⊆ τk

2) ⊆ dom(π) and (τk
1 ⊆ τk

2)π is satisfied. For
any σ ∈ T S, given σ = ∀αj .

⋃o
l=1(τ l

pi
) → τ l

r | τk
1 ⊆ τk

2 we assume var(σ) ⊆
var(τk

1 ⊆ τk
2) without loss of generality, by adding additional trivial constraints

α ⊆ any for any α ∈ var(σ)\var(τk
1 ⊆ τk

2). Then the compaction of σ is defined
as C(σ) = (

⋃o
l=1(τ l

pi
) → τ l

r)πs for πs =
⊔

Sol(τk
1 ⊆ τk

2).

Definition 2 (Success Type, for Type Schemes). For any f ∈ FSn and
σ ∈ T S we say that σ is a success type scheme for f , denoted f : σ, iff given

190 F.J. López-Fraguas et al.

σ = ∀αj .
⋃o

l=1(τ l
pi

) → τ l
r | τk

1 ⊆ τk
2 we have f : C(σ) and the following conditions

are met for πs =
⊔

Sol(τk
1 ⊆ τk

2):

1. For any π ∈ Sol(τk
1 ⊆ τk

2), given πl
p = π|

var(τ l
p)

then

E [[f]]|⋃o
l=1 T [[(τ l

pi
)πl

p]]
�

o⋃

l=1

T [[(τ l
pi

)πl
p → τ l

rπ
l
pπs]]

2. For any π ∈ Sol(τk
1 ⊆ τk

2), given πl
r = π|var(τ l

r) then

E [[f]]|−1⋃o
l=1 T [[τ l

rπl
r]]

�
o⋃

l=1

T [[(τ l
pi

)πl
rπs → τ l

rπ
l
r]]

3. For any ground πp such that dom(τp) ⊆ ⋃o
l=1 var(τ l

p) and Sol((τk
1 ⊆ τk

2)πp) =
∅ then E [[f]]|⋃o

l=1 T [[(τ l
pi

)πp]]
= ∅

4. For any ground πr such that dom(τp) ⊆ ⋃o
l=1 var(τ l

r) and Sol((τk
1 ⊆ τk

2)πr) =
∅ then E [[f]]|−1⋃o

l=1 T [[τ l
rπr]]

= ∅

Items 1. and 2. of Definition 2 express the relation between function input and
outputs. These are basically the same we discussed above, with minor modi-
fications over the domain of solutions π, that for the sake of readability were
omitted in the presentation above. To understand these changes, let’s consider
a function f with declared spec f : σ with σ = ∀α. (α) → 0 | α ⊆ any. A
function with this type can only return 0 regardless of its argument. So for any
expression e used as an argument for f , we have E [[f(e)]] = E [[f]]|−1

T [[0]](E [[e]]),
and we should not be able to say a thing about the type of e, because α does
not appear in the right hand side of σ. If we could, then we would be able to
perform wrong deductions, thus introducing false positives in Dialyzer. A less
artificial example would be the case of map, assuming the same spec as in Sect. 1:
∀α, α1, β. ((α) → β, list(α1)) → list(β) | α1 ⊆ α, α ⊆ any, β ⊆ any. Assuming
for instance a call map(g, [e]), in a context that forces map(g, [e]) : [true∪false],
then β should be instantiated to true∪false, but we should not be able to infer
derive any constraint about the domain of g from that.

Regarding items 3. and 4. of Definition 2, they express relationships between
polymorphic variables, which can be used to fail when an instantiation of the
variables results in unsolvable constraints. Consider again the example of map
together with the function not defined as fun(X) → case X of {true →
false; false → true}; then it is clear that the call map(fun(X) → not(X),
[1, 2]) will fail. We can use item 3. of Definition 2 to deduce E [[map(fun(X) →
not(X), [1, 2])]] = E [[map]]|((α)→β,list(α1))πp

(E [[(fun(X) → not(X)]], E [[[1, 2])]]) =
∅(E [[(fun(X) → not(X)]], E [[[1, 2])]]) = ∅ = T [[none]] for πp = [α/true ∪
false, α1/1 ∪ 2, β/true ∪ false], as 1 ∪ 2 ⊆ true ∪ false has no solution.

Although certainly complex, the notion of success type scheme given by us
corresponds to the intuitive idea of parametricity honouring function. That can

Polymorphic Types in Erlang Function Specifications 191

be understood in simple terms considering that polymorphic functions should
not inspect data variables with a polymorphic variable as type, i.e. data variables
with a polymorphic variable as type are a kind of opaque data container. Note
we can still perform matching against the constructed part of a polymorphic
variable, as for example in head defined by fun(Xs) → case Xs of [X|] → X,
declared as head : ∀α. nelist(α) → α | α ⊆ any. In this case we inspect Xs,
but only for the constructed fragment nelist of its type nelist(α, []). The same
applies to the typical operations in polymorphic lists like map, take, filter, . . .
These notions should be familiar to the seasoned functional programmer, that
would then have an intuitive understanding of the additional contract she is
accepting by assuming Definition 2.

At the time of writing, Erlang only allows the programmer to place specs
in top-level function definitions. However, we can also apply Definition 2 to
expressions that are always evaluated to a function.

4 A Program Transformation for Simulating Success
Types Schemes

In this section we introduce an algorithm that transforms a given program by
substituting macro expansions for polymorphic function calls. For each ground
type τ there is a macro which is replaced with an Erlang term with the same
semantics as T [[τ]]. We can build these terms in a compositional way. For each
function definition f/n with a monomorphic type τi

n → τ , the algorithm gener-
ates a macro with n arguments, and is expanded to a term that overapproximates
T [[τ]] provided the set of possible arguments of the macro overapproximate their
corresponding T [[τi]]. If f/n has a polymorphic type ∀αi.τf , the macro generates
fresh variables corresponding to the αi, which are subsequently bound to ground
types during type inference.

The generation of the macro for a type scheme requires the latter to be left
linear, that is, that no variable occurs twice in the types of the parameters. In
the presence of union types, nonlinearity can be a source of misconceptions. For
instance, assume a function f/2 with type scheme ∀α.(α, α) → true. Although
it seems at first sight that the definition f(0,a) -> true does not fit into this
scheme, it actually does under the instance [α/0 ∪ a]. In fact, we can prove
by using Definition 2 that this scheme is equivalent to ∀α1, α2.(α1, α2) → true.
In a similar way we can establish the equivalence between ∀α.(α, α) → α and
∀α.(α1, α2) → α1 ∪ α2. If the programmer intends to convey the constraint of
both parameters being equal, she would have to add the conditions α1 ⊆ α2 and
α2 ⊆ α1 to the previous scheme. The resulting scheme would exclude any func-
tion f such that E [[f(v1, v2)]] 	= ∅ for some values v1, v2 ∈ DVal such that there
exist two types τ1 and τ2 that “separate” these values, that is, v1 ∈ T [[τ1]]\T [[τ2]]
and v2 ∈ T [[τ2]]\T [[τ1]]. In this case, the third condition of Definition 2 would not
be satisfied, since we would get Sol({τ1 ⊆ τ2, τ2 ⊆ τ1}) = ∅ but E [[f]]|T [[(τ1,τ2)]] �
E [[f]]|E[[(v1,v2)]] � ∅. With the current type system there are values that can-
not be separated by types. For instance, let us consider fun(X) → X + 1

192 F.J. López-Fraguas et al.

and fun(X) → X − 1. Each of these expressions has (integer) → integer as
the smallest type containing its semantics, so the expressions cannot be sepa-
rated.

In order to left-linearize a type scheme we rename each occurrence of the
same variable with different type variables and substitute, in the right-hand side
of the type scheme, the union of these variables for the original one.

Definition 3. Given a type scheme σ = ∀αi.(τj) → τ | C, we say that a type
scheme σ′ = ∀αi

′.(τj
′) → τ ′ | C ′ is a left linearization of σ iff σ′ does not

contain free type variables, no type variable occurs twice in τj
′ and there exists

a substitution π : {αi
′} → {αi} such that:

1. τ ′
jπ = τj for every j.

2. If we define the substitution πimg = [αi/ ∪β∈π−1({αi}) β] then τ ′ = τπimg .
3. C ′ = {τ ′

1 ⊆ τ ′
2 | var({τ ′

1, τ
′
2}) ⊆ {αi

′}, (π(τ ′
1) ⊆ π(τ ′

2)) ∈ C}.

The first condition of this definition requires the types of the parameters τj to
be instantiations of their counterparts τ ′

j in which type variables are replaced by
type variables. The second condition states that whenever we replace a variable
α by several variables α′

1, . . . , α
′
n, the left linearization of σ replaces α by α′

1 ∪
. . . ∪ α′

n in the result type of the function. The last condition specifies the set
of constraints C ′ in the linearized type scheme. The constraints occurring in the
original (non-linear) type scheme have to be replicated in the linear type scheme
with their corresponding variables. For instance, the linearization of ∀α.(α, α) →
integer | α ⊆ integer yields ∀α1, α2, (α1, α2) → integer | α1 ⊆ integer , α2 ⊆
integer as a result.

Now we show how to transform a type τ into an Erlang term or macro expan-
sion with the same semantics. The function BT fun (Fig. 3) does this transforma-
tion. It is given the simple type τ to be transformed. If τ is a type constructor
applied to several arguments τi

n, the function receives a list of expressions ei
n

such that each ei is an overapproximation of the semantics of τi. In the transla-
tion we assume function definitions such as ’ANY’, ’NONE’, etc. These functions
are defined in [10], and their semantics are those of their corresponding type.
For instance, E [[’ANY’()]] = T [[any]]. We assume an environment Λ0 containing
these auxiliary definitions. The ALT macro represents a nondeterministic choice
between its arguments. The macro NELIST expands to a list of arbitrary length
with elements of a given type. Finally, we have a family of macros {FUNn}ni ∈ N

representing the functions of arity n. Each macro is parametric on the vari-
ables corresponding to the input arguments and the variable corresponding to
the result. From these macro definitions we specify the translation of compound
types in the right column of Fig. 3.

As we shall see later, the macro generated for a given function binds its
parameters to the translation of their corresponding types. We could perform
this translation directly via the BT fun function, but the notion of parametricity
implied by Definition 2 allows us to generate macros that reflect a given type
scheme in a more accurate way. For instance, assume a function f/1 with type

Polymorphic Types in Erlang Function Specifications 193

BT fun [[none]] [] = ’NONE’()
BT fun [[any]] [] = ’ANY’()
BT fun [[atom]] [] = ’ATOM’()
BT fun [[integer]] [] = ’INTEGER’()
BT fun [[float]] [] = ’FLOAT’()
BT fun [[pid]] [] = ’PID’()

BT fun [[v]] [] = v where v ∈ Val
BT fun [[∪]] [e1, e2] = ?ALT(e1, e2)

BT fun [[{ ,
n· · ·, }]] [ein] = {ei

n}
BT fun [[nelist(,)]] [e1, e2] = ?NELIST(e1, e2)

BT fun [[(,
n· · ·,) →]] [ei

n, e] = ?FUNn(ei
n, e)

Fig. 3. Translation of type constructors into expressions.

TRpar [[C()]] η αi
n = {{fun() → ’NONE’()

n},BT fun [[C]] []} (if C ∈ T C0)

TRpar [[α]] η αi
n = {{ei

n}, η(α)} where ∀i.ei =

{
fun() → η(α) if αi = α

fun() → ’NONE’() otherwise

TRpar [[τ1 ∪ τ2]] η αi
n = ?ALT(TRpar [[τ1]] η αi

n,TRpar [[τ2]] η αi
n)

TRpar [[C(τj
m)]] η αi

n = {{⊔
ej,1

m, . . . ,
⊔

ej,n
m},BT fun [[C]] [ej

m]}
where ∀j ∈ {1..m}.{{ej,1, . . . , ej,n}, ej} = TRpar [[τj]] η αi

n

if C ∈ {nelist(,), { ,
m· · · }, (,

m−1· · ·) → }

e1 � e2 =

{
e2 if e1 = fun() → ’NONE’()

e1 otherwise

⊔
ei

n = e1 � (e2 � ...(en−1 � en)...)

Fig. 4. Translation of the types of the parameters and type variable bindings

scheme ∀α.[] ∪ nelist(α) → α ∪ false. By using Definition 2 we can prove that
f([]) can be evaluated only to false. In fact, for every simple type τ :

E[[f([])]] � E[[f]]|T [[[]∪nelist(τ)]] (E[[[]]]) � T [[[] ∪ nelist(τ) → τ ∪ false]] (E[[[]]]) � T [[τ]] ∪ {false}

In particular, for τ = 0 and τ = 1 we would obtain that E [[f([])]] is a subset
of both {0, false} and {1, false}, so, if f([]) is evaluated to a value, then that
value must be false. Thus, f has also the type scheme ∀α.([] → none ∪ false) ∪
(nelist(α) → α ∪ false), which is equivalent to the scheme shown previously. In
general, when a function expects a parameter of type τ , but the type of the
actual argument does not bind some of the variables in τ , these variables are
bound to none in f ’s result type. In Fig. 4 we define the TRpar function, which
receives a simple type τ , a mapping η from type variables to program variables
and a list of variables αi. It returns a tuple whose second component is an
Erlang term with the same semantics as τ , but replacing the type variables of
the latter by program variables as specified by η. The first component of the
result is another tuple with as many closures as type variables in the list αi

given as third parameter. The i-th closure of the tuple will be evaluated to η(αi)
if αi occurs free in τ , or to ’NONE’() otherwise. We return closures instead of
plain values, since a none value inside tuple component would make the whole
tuple to have type none. As an example, let us assume η = [α/A]. The result of
TRpar [[0 ∪ α]] η [α] is ?ALT({{fun() → ’NONE’()}, 0}, {{fun() → A}, A}).

In Fig. 5 we show the GenMacro function which, given a type scheme σ for
a function f/n it returns the definition of a macro Mf/n overapproximating its

194 F.J. López-Fraguas et al.

GenMacro(∀αi
m.τj

n → τ | {τ ′
k ⊆ τ ′′

k

l}) =
-define(Mf/n(Xj

n
),

let {Zj = Xj
n} in

receive {Ai
m} → let {{η′(αj,k)}, Zj} = TRpar [[τj]] η αj,k

n

in

let {{}, Tk} = TRpar [[τ ′
k]] η []

l
in

let {{}, Tk} = TRpar [[τ ′′
k]] η []

l
in

let {{}, R} = TRpar [[τ]] η′′ [] in R
end)

where {Zj
n}, {Tk

l}, {Ai
n}, {A′

i

n} and R are fresh

η = [αi/Ai
m
], η′ = [αi/A′

i

m
], η′′ = [αi/A′

i()
m
]

∀j ∈ {1..n}.{αj,k} = var(τj)

Fig. 5. Translation of a function f of a type scheme σ into a macro

semantics. The macro receives as many parameters as the arity of f . Firstly, it
assigns those parameters to fresh variables Zj in order to avoid unnecesary code
replication of the macro arguments at the macro expansion when the Xj occurs
more than once in its definition. The receive statement brings the variables Ai

m

into scope with type any . The types of these variables are subsequently bound
to the types of the parameters Zj by the assignments generated by TRpar , which
also bind the A′

i variables to their corresponding closures containing either the Ai

or ’NONE’(), as explained in the previous paragraph. Then, GenMacro translates
the constraints of the type schemes into assignments to the same fresh variable
T . Notice that, assuming that e1 : τ1 and e2 : τ2, the sequence T = e1, T = e2

is typable if τ1 and τ2 are joinable (i.e. non disjoint). This is a less accurate,
but safe, overapproximation of the ⊆ relation between types. Finally, the result
of the macro expansion is the type of the result of the function, in which the
closures assigned to the A′

i are invoked. As an example, we consider the macro
generated for the type scheme ∀α.(int , [] ∪ nelist(α, [])) → [] ∪ nelist(α, [])):

-define(M(N, Xs), Z1 = N, Z2 = Xs,
receive A ->

{{}, Z1} = {{}, ’INT’()},
{{AP}, Z2} = ?ALT({{fun ’NONE’/0}, []},

{{fun() -> A end}, ?NELIST(A,[])),
?ALT([], ?NELIST(AP(),[]))

end).

The definition of Fig. 5 only covers the case in which the input scheme is
not overloaded. In the case of overloaded schemes we would have to generate
an auxiliary macro for each of the specifications and another one defined as the
disjunction (via ?ALT) of these auxiliary macros.

Once these macros have been generated, the transformation of the program
is straightforward. Given an expression e, we denote by eT the result of replac-
ing each function call f(e1, . . . , en) in e by the corresponding macro expansion

Polymorphic Types in Erlang Function Specifications 195

?Mf/n(e1, . . . , en). Aditionally, the transformed environment ΛT of Λ is the envi-
ronment resulting from the transformation of the expressions occurring in the
right-hand side of the bindings in Λ plus the bindings contained within Λ0.

The following results prove the adequacy of the transformation. The first one
shows three related things: that Mσ reflects the largest semantics compatible
with σ, that the transformation overapproximates the semantics of expressions
and, as a consequence, that the transformation is sound for computing success
types, hence for detecting failures.

Proposition 1. Let Λ be an environment and ΛT its transformation. Then:

(i) If f/n : σ, then E [[f]]Λ � E [[fun(X1, . . . , Xn) →?Mσ(X1, . . . , Xn)]]Λ
0
.

(ii) E [[e]]Λ � E [[eT]]Λ
T

, for any e.
(iii) If eT : τ for ΛT then e : τ for Λ, for any e, τ .

All this would be useless if the loss of precision of the transformation with respect
to the real semantics implied also a loss of precision in Dialyzer’s analysis. We
shall study now under which conditions the transformed program produces less
accurate results than the original one. As it was stated in Sect. 3, Dialyzer uses
the compaction of the polymorphic spec given by the user. Let us denote by
ΛC the environment that results from replacing in Λ every type scheme σ by
C(σ). If Dialyzer used the environment ΛC for inferring success types, then we
would ensure that it yields the same or more accurate results when applied to
the transformed program.

Proposition 2. If Dialyzer infers e : τ in an environment ΛC , then it infers
eT : τ ′ in ΛT for some τ ′ � τ .

The improvement is in fact strict in many cases, as proved by the examples of
id, map and all usual polymorphic functions. This proposition applies when the
user has specified a spec σ whose compaction C(σ) is equal or more accurate
than the type τ inferred by Dialyzer, as it happens in the great majority of
cases. If it does not, then Dialyzer uses τ � C(σ) in the environment that is
used for analysing the calls to f in the rest of the program. This may lead to
a loss of precision when applying our transformation, as the following example
shows:

-spec f(any()) -> any(). g() -> f(1).
f(0) -> 0.

Dialyzer would infer the call g() to have type none, as it considers the type
((0) → 0)�((any) → any) = 0 → 0 when analysing f(1). However, our transfor-
mation replaces f(1) by a term ?F(1) whose semantics is that of (any) → any ,
so the expression g() is inferred with type any . Nevertheless, we can adapt
our transformation such that it uses GenMacro(τ) instead of GenMacro(σ)
whenever τ ⊆ C(σ). We just would have to apply Dialyzer twice, firstly to
the original program without user-given specs, and then to the transformed
program.

196 F.J. López-Fraguas et al.

5 Conclusions and Future Work

Dialyzer is a great tool for preventing statically different kinds of failures in
Erlang programs; in particular, runtime reduction errors are detected when Dia-
lyzer infers the empty type none as the return success type for a function. The
precision of the inference can be improved if the user provides more refined
types by means of type specs, that can be even polymorphic and with subtyping
constraints. However, polymorphism of specs is not fully exploited by Dialyzer,
leading to a great loss of precision in many cases (for instance, most of the func-
tions in the Erlang module lists have a polymorphic spec). Types inferred in
previous proposals, like [11], were not better.

This weakness is probably not casual: as we have discussed in this paper, it is
not obvious how polymorphic success types must be interpreted. Our first con-
tribution has been a precise notion of what a polymorphic specification means,
expressing the intuition, familiar to the seasoned functional programmer, that
polymorphic functions are parametric and must not inspect argument positions
corresponding to polymorphic data variables.

Our second contribution came from the observation that the content of
polymorphic specs can expressed by pieces of Erlang code that, when inlined
in a program replacing original function calls, force Dialyzer to really take
into account the polymorphism of the function spec. This leads to a macro-
based program transformation that, although losing precision from the point of
view of the actual program semantics, permits Dialyzer to do a more refined
analysis.

We think fair to say that our work improves significantly the present behav-
ior of Dialyzer regarding polymorphism, and we see other positive aspects in
the approach: it is lightweight, since no changes are needed in Dialyzer nor
in user written programs, as far as the specifications are already in the pro-
gram; it is scalable, because the macro expansions have a linear impact on
the size of programs; and it is modular in the sense that only function specs
are used for the transformation, so the actual definitions of function can be
changed as far as specs are respected. We have implemented the transforma-
tion in an easy-to-use tool that can be found at http://dalila.sip.ucm.es/poly
erlang. Its source code is available at https://github.com/manuelmontenegro/
erlang-poly-transformer. This tool runs under Dialyzer 2.7.3 with Erlang/OTP
17 (ERTS v6.13).

In this work we have assumed that the specs given by the user are correct,
in the sense that they are success types schemes of the function to which they
are attached, according to Definition 2. Checking that correctness of user-given
specs is left to future work. We also aim to devise an inference algorithm for
polymorphic specs, so that the programmer does not need to declare them.

Acknowledgements. The authors would like to thank Kostis Sagonas and
Stavros Aronis, for many fruitful discussions about Dialyzer and success types, that
have been fundamental for developing the intuitions about the meaning of polymorphic
success types that is proposed in this paper.

http://dalila.sip.ucm.es/poly_erlang
http://dalila.sip.ucm.es/poly_erlang
https://github.com/manuelmontenegro/erlang-poly-transformer
https://github.com/manuelmontenegro/erlang-poly-transformer

Polymorphic Types in Erlang Function Specifications 197

References

1. Erlang reference manual user’s guide v 6.4: 7. types and function specifications
(2015). http://erlang.org/doc/reference manual/typespec.html

2. Armstrong, J.: Programming Erlang: Software for a Concurrent World. The Prag-
matic Programmers. Pragmatic Bookshelf (2013)

3. Carlsson, R.: An introduction to core erlang. In: Proceedings of the PLI 2001
Erlang Workshop. Citeseer (2001)

4. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 207–212. ACM (1982)

5. Gunter, C.A., Mosses, P.D., Scott, D.S.: Semantic domains and denotational
semantics. Technical report MS-CIS-89-16, Department of Computer and Infor-
mation Science, University of Pennsylvania, February 1989

6. Jimenez, M., Lindahl, T., Sagonas, K.: A language for specifying type contracts
in erlang and its interaction with success typings. In: Proceedings of the 2007
SIGPLAN Workshop on ERLANG Workshop, pp. 11–17. ACM (2007)

7. Lindahl, T., Sagonas, K.: Detecting software defects in telecom applications
through lightweight static analysis: a war story. In: Chin, W.-N. (ed.) APLAS
2004. LNCS, vol. 3302, pp. 91–106. Springer, Heidelberg (2004)

8. Lindahl, T., Sagonas, K.: Typer: a type annotator of erlang code. In: Proceedings
of the 2005 ACM SIGPLAN Workshop on Erlang, pp. 17–25. ACM (2005)

9. Lindahl, T., Sagonas, K.: Practical type inference based on success typings. In:
Proceedings of the 8th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP 2006, pp. 167–178, New York,
NY, USA. ACM (2006)

10. López-Fraguas, F.J., Montenegro, M., Sánchez-Hernández, J.: Polymorphic types
in Erlang function specifications (extended version). Technical report TR-3-15,
Departamento de Sistemas Informáticos y Computación, Universidad Complutense
de Madrid (2015)

11. Marlow, S., Wadler, P.: A practical subtyping system for erlang. In: Proceedings of
the Second ACM SIGPLAN International Conference on Functional Programming,
ICFP 1997, pp. 136–149, New York, NY, USA. ACM (1997)

12. Pierce, B.C.: Programming with intersection types and bounded polymorphism.
Technical report (1991)

13. Reynolds, J.C.: Types, abstraction, and parametric polymorphism. In: Mason,
R.E.A. (ed.) Information Processing 83. Elsevier Science Inc. (1983)

14. Sagonas, K.: Using static analysis to detect type errors and concurrency defects
in erlang programs. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010.
LNCS, vol. 6009, pp. 13–18. Springer, Heidelberg (2010)

15. Wadler, P.: Theorems for free! In: Proceedings of the Fourth International Con-
ference on Functional Programming Languages and Computer Architecture, pp.
347–359. ACM (1989)

http://erlang.org/doc/reference_manual/typespec.html

Declarative Foreign Function Binding Through
Generic Programming

Jeremy Yallop(B), David Sheets, and Anil Madhavapeddy

University of Cambridge Computer Laboratory, Cambridge, UK
jeremy.yallop@cl.cam.ac.uk

Abstract. Foreign function interfaces are typically organised monolith-
ically, tying together the specification of each foreign function with the
mechanism used to make the function available in the host language. This
leads to inflexible systems, where switching from one binding mechanism
to another (say from dynamic binding to static code generation) often
requires changing tools and rewriting large portions of code.

In contrast, approaching the design of a foreign function interface as
a generic programming problem allows foreign function specifications to
be written declaratively, with easy switching between a wide variety of
binding mechanisms — static and dynamic, synchronous and asynchro-
nous, etc. — with no changes to the specifications.

1 Introduction

The need to bind and call functions written in another language arises frequently
in programming. For example, an OCaml programmer might call the C function
gettimeofday to retrieve the current time:

int gettimeofday(struct timeval *, struct timezone *);

Before calling gettimeofday, the programmer must write a binding that exposes
the C function as an OCaml function. Writing bindings presents many opportuni-
ties to introduce subtle errors [8,12,14], although it is a conceptually straightfor-
ward task: the programmer must convert the arguments of the bound function
from OCaml values to C values, pass them to gettimeofday, and convert the
result back to an OCaml value.

In fact, bindings for functions such as gettimeofday can be produced mechan-
ically from their type definitions, and tools that can generate bindings (e.g. [2])
are widely available. However, using an external tool — i.e. operating on rather
than in the language — can be damaging to program cohesiveness, since there
is no connection between the types used within the tool and the types of the
resulting code, and since tools introduce types and values into a program that
are not apparent in its source code.

This paper advocates a different approach, based on generic programming
(e.g. [9]), a collection of techniques for defining functions such as equality, seri-
alisation, and traversal that can be applied at a wide variety of types. Generic
programming involves introducing a representation of some collection of types,
c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 198–214, 2016.
DOI: 10.1007/978-3-319-29604-3 13

Declarative Foreign Function Binding Through Generic Programming 199

then writing generic functions, parameterised by that representation, that can
operate across all of the corresponding types.

The starting point of generic programming is typically a representation of
host language types. However, as this paper shows, generic programming
techniques can also be applied to binding foreign functions, where the types
of interest are the types of the foreign language, and the generic functions are
binding strategies that turn the names and types of foreign-language functions
into functions that can be called from the host language. In this way it is pos-
sible to eliminate the boilerplate needed to bind foreign functions — not by
generating it with an external tool, but by using the abstraction mechanisms
of the language to parameterise over the common type structure. The result is
type-safe, flexible, and tightly integrated into the host language.

For concreteness, this paper focuses on ocaml-ctypes, a widely-used library
for calling C functions from OCaml based on the generic programming app-
roach, and assumes some knowledge of OCaml language features such as func-
tors and generalized algebraic data types (GADTs) [13]. However, the techniques
described in the following pages can be used to build a declarative foreign func-
tion library in any language that supports generic programming.

1.1 Outline

The generic programming approach presented here involves two key ingredients.
The first ingredient is an interpretation-independent representation of foreign

language types as host language values (Sect. 2).
The second ingredient is an abstract binding interface that can be imple-

mented in different ways to support different binding mechanisms. Section 3
develops various such mechanisms, including an evaluator for binding foreign
functions dynamically (Sect. 3.1), a code generator for generating bindings sta-
tically (Sect. 3.2), an inverted approach for exposing host language functions to
the foreign language, and some more exotic approaches, for asynchronous calls
and out-of-process calls with improved memory safety (Sect. 3.3).

The techniques used for declarative binding of foreign-language functions can
also be applied to determining the layout of foreign-language objects (Sect. 4).

The extended version of this paper offers more complete code listings of some
of the generic functions and generated code from this edition and additional
evidence for the practicality of the generic programming approach to foreign
function interface design, including a description of a number of real-world uses
of ocaml-ctypes in commercial and free software, and measurements that show
that the performance of bindings generated by ocaml-ctypes is comparable to
that of hand-written code.

2 Representing Foreign Types as Native Values

The first step in building a generic foreign function library is constructing a
representation of foreign language types as host language values.

200 J. Yallop et al.

type _ ctype =

Void : unit ctype

| Char : char ctype

| Int : int ctype

| Pointer : α ctype → α ptr ctype

| View : { read : β → α; write : α → β; ty: β ctype } → α ctype

| Struct : struct_type → α structure ctype

| Funptr : α cfn → α funptr ctype

and _ cfn =

Returns : α ctype → α cfn

| Fn : α ctype * β cfn → (α → β) cfn

and α structure = (* elided *) and struct_type = (* elided *)

and α ptr = (* elided *)

Fig. 1. C type representations, concretely

module type TYPE = sig

type α cty

val void: unit cty

(* Scalar types *)

val char: char cty

val int: int cty

val ptr: α cty → α ptr cty

val view: (α → β) → (β → α) → α cty → β cty

(* Aggregate types *)

type τ structure and (α, τ) field

module type STRUCTURE = sig

type t

val t : t structure cty

val field: string → α cty → (α, t) field

val seal: unit → unit

end

val structure: string → (module STRUCTURE)

(* Functions and function pointers *)

type α fn

val returning: α cty → α fn

val (@→): α cty → β fn → (α → β) fn

type α funptr

val funptr: α fn → α funptr cty

end

Fig. 2. C type representations, abstractly

Declarative Foreign Function Binding Through Generic Programming 201

Figure 1 defines generalized algebraic datatypes (GADTs) ctype and cfn for
representing a variety of C object and function types. Each C type is mapped
to a corresponding OCaml type, which is represented by the type parameter of
ctype; for example, a value of type int ctype represents a C type that appears
in OCaml as a value of type int.

The TYPE signature (Fig. 2) provides an abstract interface for building type
representations, with an abstract type cty in place of the concrete type ctype

and a function for each constructor. Using cty rather than using ctype directly
introduces additional flexibility in mapping types as described by the user to
concrete representations of types, as Sect. 4 will show.

Representing C Scalar Types. The constructors Void, Char and Int represent
the C types with corresponding names, which are mapped to the OCaml types
unit, char and int. (The full implementation supports the other scalar types —
float, short, etc.) The Pointer constructor builds a C type representation from
another C type representation, much as the C type constructor * builds a type
from a type. (In the full implementation the parameterised type ptr comes with
various operations for reading and writing values, but they are not needed in the
exposition here.) The View constructor uses an isomorphism to vary the mapping
between C types and OCaml types; for example, given functions for converting
between char ptr and string

val string_of_ptr : char ptr → string

val ptr_of_string : string → char ptr

the following expression builds a value of type string ctype to represent values
that appear in C as char * and in OCaml as string:

View {read = string_of_ptr; write = ptr_of_string; ty = Pointer Char}

Representing C Aggregate Types. Besides scalar types such as integers and
pointers, C supports a number of aggregate types. The TYPE signature (Fig. 2)
exports types structure and field for representing structs and struct fields,
with a function structure for creating new struct types, and with a signature
STRUCTURE that exposes a value t representing a struct, a function field that
adds a field to an existing struct type, and a function seal that converts an
incomplete type to a complete type that cannot be further extended. The two
type parameters of field represent the type of the field and the type of the
structure to which the field belongs. The type t in the STRUCTURE signature
operates as a static tag: each call to structure generates an instance of STRUCTURE
whose t is distinct from all other types in the program; this prevents struct

representations from being used interchangeably, which would violate type safety.
Figure 3 shows the STRUCTURE machinery in action. Each line of OCaml code

(on the right) corresponds to the corresponding line of the C code (on the left),
which declares a struct timeval with two fields.

202 J. Yallop et al.

The first line creates a module Tv representing an initially empty struct type
timeval. The actual representation of the struct type, based on the Struct con-
structor of Fig. 1, is internal to the Tv module; only the field and seal functions
and the type representation t are exposed through the interface.

The second and third lines call the Tv.field function to add unsigned long

fields with the names tv_sec and tv_usec. Calling Tv.field performs an effect
and returns a value: that is, it extends the struct represented by Tv with an
additional field, and it returns a value representing the new field, which may be
used later in the program to access struct tv values.

The final line “seals” the struct type representation, turning it from an incom-
plete type into a fully-fledged object type with known properties such as size and
alignment, just as the closing brace in the corresponding C declaration marks
the point in the C program at which the struct type is completed. Adding fields
to the struct representation is only possible before the call to seal, and creating
values of the represented type is only possible afterwards; violation of either of
these constraints results in an exception.

There are multiple possible implementations of the STRUCTURE interface and
its operations field and seal, which are explored further in Sect. 4.

struct timeval {

unsigned long tv_sec;

unsigned long tv_usec;

};

module Tv = (val structure "timeval")

let sec = Tv.field "tv_sec" ulong

let usec = Tv.field "tv_usec" ulong

let () = Tv.seal ()

Fig. 3. The timeval struct in C and OCaml

As with ptr, structure comes with various operations for reading and writing
fields, allocating new structures, and so on, but they are again not needed in
this exposition. Additionally, the full implementation supports union and array
types.

Representing C Function Types. Finally, besides object (i.e. value) types, C
supports function and function pointer types. The TYPE interface (Fig. 2) exports
a type fn for representing C function types, along with constructors returning

and @→, and a type funptr for representing C function pointer values, along
with a value funptr for constructing function pointer type representations. The
following expression constructs a representation of the type of gettimeofday from
the introduction:

ptr Tv.t @→ ptr Tz.t @→ returning int

which has the following type, writing tv for Tv.t structure, and similarly for tz:

(tv ptr → tz ptr → int) fn

As the type parameter tv ptr → tv ptr → int indicates, the @→ builds cur-
ried OCaml functions to represent C functions of multiple arguments. However,
returning and @→ carefully distinguish object types, which are represented with
cty, from function types, which are represented with fn. A C function that takes

Declarative Foreign Function Binding Through Generic Programming 203

module type FOREIGN = sig

type α res

val foreign: string → α fn → α res

end

Fig. 4. The FOREIGN interface

module Bindings(F : FOREIGN) = struct

let gettimeofday =

F.foreign "gettimeofday" (ptr Tv.t @→ ptr Tz.t @→ returning int)

end

Fig. 5. Binding gettimeofday, abstractly

one argument and returns a function pointer that accepts another argument is
quite different from a function of two arguments, and the coding represents them
differently. More precisely, returning builds a representation of a function type
from the object type that the function returns, and @→ adds an object type as an
additional argument to an existing function type. The funptr function supports
the inverse conversion, turning object types into function types.

In the concrete representation of Fig. 1, the ctype datatype supports a addi-
tional constructor Funptr for representing function pointers. The Returns and Fn

constructors of the datatype fn correspond to the TYPE functions returning and
@→ functions for building fn values.

3 Interpreting Type Representations

The type representations of Sect. 2 can support a number of generic operations
including sizeof, allocation, and pretty-printing of types and values. This section
focuses on various implementations of an abstract operation foreign, which
builds a binding to a foreign function from its name and a representation of
its type. Figure 4 shows the FOREIGN signature, which contains a single function,
foreign. The return type, res, is left abstract so that each binding strategy can
instantiate it appropriately.

Figure 5 shows a binding for gettimeofday, abstracted over the implementa-
tion of FOREIGN.

3.1 Dynamically Interpreting Foreign Function Bindings

Interpreting Calls. The first implementation of foreign evaluates the type
representation to build bindings dynamically. The parameterised type res in the
FOREIGN signature is instantiated with the alias α res =α, so the type of foreign
is as follows:

val foreign : string → α fn → α

204 J. Yallop et al.

typedef int (*compar_t)(void*, void*);

int qsort(void*,size_t,size_t,compar_t)

Fig. 6. The C qsort function

That is, foreign turns a C function type description and a name into an OCaml
function. Applying foreign to the name and type representation of gettimeofday
in the top level returns a function that can be called immediately:

let f = foreign "gettimeofday" (ptr Tv.t @→ ptr Tz.t @→ returning int)

val f : tv ptr → tz ptr → int = <fun>

The call to foreign resolves the name "gettimeofday" and dynamically syn-
thesises a call description of the appropriate type. In the ocaml-ctypes implemen-
tation, dynamic name resolution is implemented by the POSIX function dlsym

and call frame synthesis uses the libffi library to handle the low-level details.
Call synthesis involves two basic types. The first, ffitype, represents C types;

there is a value of ffi_type for each scalar type:

type ffitype

val int_ffitype : ffitype

val char_ffitype : ffitype

val pointer_ffitype : ffitype

The second type, callspec, describes a call frame structure. There are prim-
itive operations primitives for creating a new callspec, for adding arguments,
and for marking the callspec as complete and specifying the return type:

type callspec

val alloc_callspec : unit → callspec

val add_argument : callspec → ffitype → int

val prepare_call : callspec → ffitype → unit

(The return type of add_argument represents an offset which is used for writing
each argument into the appropriate place in a buffer when performing a call.)

Finally, the call function takes a function address, a completed callspec, and
callback functions that write arguments and read return values from buffers.

val call : address → callspec → (address→unit) → (address→α) → α

The complete implementation of foreign may be found in the extended ver-
sion of this paper.

Building a typed interface to these libffi primitives – that is, using them to
implement foreign – is straightforward. Each call to foreign uses alloc_callspec
to create a fresh callspec; each argument in the function representation results
in a call to add_argument with the appropriate ffitype value. The Returns con-
structor results in a call to prepare_call; when the arguments of the function
are supplied the call function is called to invoke the resolved C function. There
is no compilation stage: the user can call foreign interactively, as shown above.

Declarative Foreign Function Binding Through Generic Programming 205

let compar_t = dfunptr (ptr void @→ ptr void @→ returning int)

module Bindings(F : FOREIGN) = struct

let qsort = F.foreign "qsort"

(ptr void @→ size_t @→ size_t @→ compar_t @→ returning void)

end

Fig. 7. Using dfunptr to bind to qsort

Interpreting Callbacks. The dynamic foreign implementation turns a func-
tion name and a function type description into a callable function in two stages:
first, it resolves the name into a C function address; next, it builds a call frame
from the address and the function type description. In fact, this second stage is
sometimes useful independently, and it is supported as a separate operation:

val fn_of_ptr : α fn → unit ptr → α

Conversions in the other direction are also useful, since an OCaml function
passed to C must be converted to an address:

val ptr_of_fn : α fn → α → unit ptr

The implementation of ptr_of_fn is based on the callspec interface used
to build the call interpreter and uses an additional primitive operation, which
accepts a callspec and an OCaml function, then uses libffi to dynamically
construct and return a “trampoline” function which calls back into OCaml:

val make_function_pointer : callspec → (α →β) → address

These conversion functions are rather too low-level to expose directly to
the user. Instead, the following view converts between addresses and pointers
automatically:

let dfunptr fn = view (funptr fn) (fn_of_ptr fn) (ptr_of_fn fn)

val dfunptr : α fn → α cty

The dfunptr function builds object type representations from function type
representations, just as C function pointers build object types from function
types. Figure 7 shows dfunptr in action, describing the callback function for qsort
(Fig. 6). The resulting qsort binding takes OCaml functions as arguments:

qsort arr nmemb sz

(fun l r → compare (from_voidp int !@l) (from_voidp int !@r))

(The from_voidp function converts from a void * value to another pointer type.)
This scheme naturally supports even higher-order functions: function pointers

which accept function pointer as arguments, and so on, allowing callbacks into
OCaml to call back into C. However, such situations appear rare in practice.

206 J. Yallop et al.

3.2 Statically Compiling Foreign Function Bindings

Interpreting function type descriptions as calls is convenient for interactive devel-
opment, but has a number of drawbacks. First, the implementation suffers from
significant interpretative overhead (quantified in the extended version of this
paper). Second, there is no check that the values passed between OCaml and
C have appropriate types. The implementation resolves symbols to function
addresses at runtime, so there is no checking of calls against the declared types
of the functions that are invoked. Finally, it is impossible to make use of the
many conveniences provided by the C language and typical toolchains. When
compiling a function call a C compiler performs various promotions and con-
versions that are not available in the simple reimplementation of the call logic.
Similarly, sidestepping the usual symbol resolution process makes it impossible
to use tools like nm and objdump to interrogate object files and executables.

Fortunately, all of these problems share a common cure. Instead of basing the
implementation of foreign on an evaluation of the type representation, the rep-
resentation can be used to generate both C code that can be checked against the
declared types of the bound functions and OCaml code that links the generated
C code into the program.

Transforming the evaluator of Sect. 3.1 into a code generator can be seen
as a form of staging, i.e. specializing the dynamic foreign function based on
static information (i.e. the type description) in order to improve its performance
when the time comes to supply the remaining arguments (i.e. the arguments
to the bound function). As we shall see, the principles and techniques used in
the staging and partial evaluation literature will be helpful in implementing the
code-generating foreign.

Generating C. In all, three new implementations of the FOREIGN signature are
needed. The first FOREIGN implementation, GenerateC, uses the name and the type
representation passed to foreign to generate C code. The functor application
Bindings(GenerateC) passes the name and type representation for gettimeofday

to GenerateC.foreign, which generates a C wrapper for gettimeofday.
The generated C code, shown below, converts OCaml representations of val-

ues to C representations, calls gettimeofday and translates the return value rep-
resentation back from C to OCaml1. If the user-specified type of gettimeofday

is incompatible with the type declared in the C API then the C compiler will
complain when building the generated source.
1 There are no calls to protect local variables from the GC because the code gener-

ator can statically determine that the GC cannot run during the execution of this
function. However, it is not generally possible to determine whether the bound C
function can call back into OCaml, and so the user must inform the code generator
if such callbacks may occur by passing a flag to foreign.

Declarative Foreign Function Binding Through Generic Programming 207

value ctypes_gettimeofday(value a, value b) {

struct timeval *c = ADDR_OF_PTR(a);

struct timezone *d = ADDR_OF_PTR(b);

int e = gettimeofday(c, d);

return Val_int(e);

}

Generating OCaml. The second new FOREIGN implementation, GenerateML,
generates an OCaml wrapper for ctypes_gettimeofday. The ctypes_gettimeofday

function deals with low-level representations of OCaml values; the OCaml wrap-
per exposes the arguments and return types as typed values. The functor applica-
tion Bindings(GenerateML) passes the name and type representation of
gettimeofday to GenerateML.foreign, which generates an OCaml module
GeneratedML that wraps ctypes_gettimeofday.

The OCaml module generated by GenerateML also matches the FOREIGN sig-
nature. The central feature of the generated code is the following foreign imple-
mentation that scrutinises the type representation passed as argument in order
to build a function that extracts raw addresses from the pointer arguments to
pass through to C:

external ctypes_gettimeofday : address → address → int

= "ctypes_gettimeofday"

let foreign : type a. string → a cfn → a =

fun name t → match name, t with

| "gettimeofday",

Fn (Pointer _, Fn (Pointer _, Returns Int)) →
(fun x1 x2 → ctypes_gettimeofday (rawaddr x1) (rawaddr x2))

The type variable a is initially abstract but, since the type of t is a GADT,
examining t using pattern matching reveals information about a. In particular,
since the type parameter of cfn is instantiated to a function type in the definition
of the Fn constructor (Fig. 1), the right-hand side of the first case of the definition
of foreign above is also expected to have function type. Similar reasoning about
the Pointer, Int and Returns constructors reveals that the right-hand side should
be a function of type σ ptr → τ ptr → int for some types σ and τ , and this
condition is met by the function expression in the generated code.

Linking the Generated Code. The generated OCaml module GeneratedML

serves as the third FOREIGN implementation; it has the following type:

FOREIGN with type α fn = α

The application Bindings(GeneratedML) supplies GeneratedML as the argument F

of the Bindings functor (Fig. 5). The generated foreign function above becomes
F.foreign in the body of Bindings, and receives the name and type representation
for gettimeofday as arguments. The inspection of the type representation in
foreign serves as a form of type-safe linking, checking that the type specified by
the user matches the known type of the bound function. In the general case, the

208 J. Yallop et al.

type refinement in the pattern match within foreign allows the same generated
implementation to serve for all the foreign function bindings in the Bindings

functor, even if they have different types.

The Trick. The pattern match in the GeneratedML.foreign function can be
seen as an instance of a binding-time improvement known in the partial eval-
uation community as The Trick [7]. The Trick transforms a program to intro-
duce new opportunities for specialization by replacing a variable whose value
is unknown with a branch over all its possible values. In the present case, the
GeneratedML.foreign function will only ever be called with those function names
and type representations used in the generation of the GeneratedML module. Enu-
merating all these possibilities as match cases results in simple non-recursive code
that may easily be inlined when the Bindings functor is applied.

Cross-Stage Persistence. The scheme above, with its three implementations
of FOREIGN, may appear unnecessarily complicated. It is perhaps not immediately
obvious why we should not generate C code and a standalone OCaml module,
eliminating the need to apply the Bindings functor to the generated code.

One advantage of the three-implementation scheme is that the generated code
does not introduce new types or bindings into the program, since the generated
module always has the same known type (i.e. FOREIGN). However, there is also a
more compelling reason for the third implementation.

The GeneratedML.foreign function converts between typed arguments and
return values and low-level untyped values which are passed to C. In the case
where the type of an argument is a view, converting the argument involves apply-
ing the write function of the view representation. For example, the following
binding to the standard C function puts uses the string view of Sect. 2 to sup-
port an argument that appears in OCaml as a string and in C as a char *:

let puts = foreign "puts" (string @→ returning int)

Calling puts with an argument s involves applying ptr_of_string to s to obtain
a char*. However, there is no way of inserting ptr_of_string into the generated
code. In the representation of a view the write function is simply a higher-
order value, which cannot be converted into an external representation. This is
analogous to the problem of cross-stage persistence in multi-stage languages: the
generated code refers to a value in the heap of the generating program.

The three-implementation approach neatly sidesteps the difficulty. There is
no need to externalise the write function; instead, the generated foreign imple-
mentation simply extracts write from the value representation at the point when
Bindings is applied:

let foreign : type a. string → a cfn → a =

fun name t → match name, t with

| "puts", Fn (View {write}, Returns Int) →
(fun x1 → ctypes_puts (write x1).addr)

| (* ... *)

Declarative Foreign Function Binding Through Generic Programming 209

Thus, the third implementation of FOREIGN makes it possible to use views and
other higher-order features in the type representation.

3.3 Further Interpretations

Inverted Bindings. Section 3.1 showed how to invert the call interpreter to
support callbacks; Sect. 3.2 showed how to stage the call interpreter to improve
safety and speed. The question naturally arises: Is there a use for an inverted,
staged interpreter? It turns out that there is.

The primary use of ocaml-ctypes is making C libraries available to OCaml
programs. However, as the discoveries of disastrous bugs in widely-used C
libraries continue to accumulate, the need for safer implementations of those
libraries written in high-level languages such as OCaml becomes increasingly
pressing. As this section shows, it is possible to expose OCaml code to C via
an interpretation of FOREIGN that interprets the parameter of the res type as a
value to consume rather than a value to produce.

Specialising the res type of the FOREIGN signature (Fig. 5) with a type that
consumes α values gives the following type for foreign:

val foreign : string → α fn → (α → unit)

that is, a function which takes a name and a function description and con-
sumes a function. This consumer of functions is just what is needed to turn the
tables: rather than resolving and binding foreign functions, this implementation
of foreign exports host language functions under specified names.

Continuing the running example, this foreign implementation can export a
function whose interface matches gettimeofday. Once again, it suffices to apply
the Bindings functor from Fig. 5 to a suitable module. As with the staged call
interpreter (Sect. 3.2), Bindings is applied multiple times – once to generate a C
header and a corresponding implementation which forwards calls to OCaml call-
backs, and again to produce an exporter which connects the C implementation
with our OCaml functions.

As mentioned in Sect. 3, ocaml-ctypes includes a generic pretty-printing func-
tion that formats C type representations using the C declaration syntax. Apply-
ing the pretty-printer to the gettimeofday binding produces a declaration suit-
able for a header:

int gettimeofday(struct timeval *, struct timezone *);

The generation of the corresponding C implementation proceeds similarly to
the staged call interpreter, except that the roles of OCaml and C are reversed:
the generated code converts arguments from C to OCaml representations, calls
back into OCaml and converts the result back into a C value before returning
it. The addresses of the OCaml functions exposed to C are stored in an array
in the generated C code. The size of the array is determined by the number of
calls to foreign in the functor – one, in this case.

The generated OCaml module GeneratedInvML populates the array when the
module is loaded by calling a function register_callback with a value of type
t callback.

210 J. Yallop et al.

val register_callback : α callback → α → unit

The type parameter of the callback value passed to register_callback is the
type of the registered function:

type _ callback = Gettimeofday : (address → address → int) callback

Finally, the generated foreign function is reminiscent of the staged imple-
mentation of Sect. 3.2; it scrutinises the type representation to produce a function
consumer, which passes the consumed function to register_callback:

let foreign : type a. string → a cfn → (a → unit) =

fun name t → match name, t with

|"gettimeofday",

Fn (Pointer tv, Fn (Pointer tz, Returns Int)) →
(fun f → register_callback Gettimeofday

(fun x1 x2 → f (makeptr tv x1) (makeptr tz x2)))

The applied module Bindings(GeneratedInvML) exports a single function,
gettimeofday, which consumes an OCaml function to be exported to C:

val gettimeofday : (tv ptr → tz ptr → int) → unit

The complete code generated for the inverted binding may be found in the
extended version of this paper.

Asynchronous Calls. Since the standard OCaml runtime has limited support
for concurrency, many modern OCaml programs make use of cooperative con-
currency libraries such as Lwt [16]. Cooperative concurrency requires taking care
with potentially blocking calls, since a single blocking call can cause suspension
of all threads. To help mitigate the problem, Lwt supports a primitive

val detach : (α → β) → α → β Lwt.t

which associates a potentially blocking computation with one of a pool of system
threads. It is sometimes useful to wrap detach around calls to foreign functions.

As the signature of detach indicates, Lwt has a monadic interface: potentially
blocking computations run in the Lwt.t monad. A simple generalization of the
TYPE signature turns foreign calls into monadic computations:

module type TYPE’ = sig

type α comp

val returning : α ctype → α comp fn

(* otherwise the same as TYPE *)

end

(The original TYPE signature of Fig. 5 can be recovered from TYPE’ by substitut-
ing type α comp = α.) The implementation of Sect. 3.2 requires corresponding
changes: each foreign call in the generated OCaml code is enclosed in a call to
detach, and each generated C call includes code to release OCaml’s runtime lock.

Applying Bindings to this Lwt-specialised implementation of FOREIGN builds
a binding to gettimeofday that runs in the Lwt monad:

val gettimeofday : tv structure ptr → tz structure ptr → int Lwt.t

Declarative Foreign Function Binding Through Generic Programming 211

Out-of-process Calls. High-level languages often make strong guarantees
about type safety that are compromised by binding to foreign functions. Safe
languages such as OCaml preclude memory corruption by isolating the pro-
grammer from the low-level details of memory access; however, a single call
to a misbehaving C function can result in corruption of arbitrary parts of the
program memory.

One way to protect the calling program from the corrupting influence of a C
library is to allow the latter no access to the program’s address space. This can
be accomplished using a variant of the staged call interpreter (Sect. 3.2) in which,
instead of invoking bound C functions directly, the generated stubs marshall the
arguments into a shared memory buffer where they are retrieved by an entirely
separate process which contains the C library.

Once again, this cross-process approach is straightforward to build from exist-
ing components. The data representation is based on C structs: for each foreign
function the code generator outputs a struct with fields for function identifier,
arguments and return value (Fig. 8). The struct is built using the type represen-
tation constructors (Sect. 2) and printed using the generic pretty printer. These
structs are then read and written by the generated C code in the two processes.
Besides the C and ML code generated for the staged interpreter, the cross-
process interpretation also generates C code that runs in the remote process and
a header file to ensure that the two communicants have a consistent view of the
frame structs.

struct gettimeofday_frame {

enum function_id id;

struct timeval *tp;

struct timezone *tz;

int return_value;

};

Fig. 8. A struct for making cross-process calls to gettimeofday

The extended version of this paper describes experiments that quantify the
overhead of these cross-process calls.

4 Interpreting Type Descriptions

As Sect. 2 showed, the structure, field and seal functions (Fig. 2, Sect. 2) can
together be used to describe C struct types. The implementation of these oper-
ations must determine both the appropriate memory offsets of each field in the
struct, and the size and alignment requirements of the whole struct; these num-
bers are determined by the order of the fields, the memory alignment require-
ments of each field type, and sometimes by additional compilation directives. As
with FOREIGN, there are a variety of approaches to implementing the STRUCTURE

interface.

Computing Layout Information. The simplest approach to implementing
STRUCTURE is to give implementations of field and seal that simply compute the
appropriate layout directly.

212 J. Yallop et al.

module Types(T: TYPE) = struct

module Tv = (val T.structure "timeval")

let sec = Tv.field "tv_sec" ulong

let usec = Tv.field "tv_usec" ulong

let () = Tv.seal ()

end

Fig. 9. timeval layout, abstractly

The structure function builds an incomplete empty struct with no alignment
requirements. The field function computes the next alignment boundary in the
struct for its field argument, and updates the alignment requirements for the
struct. The seal function inserts any padding necessary to align the struct and
marks it as complete. The extended version of this paper gives the full code.

Computing structure layout in this way works for simple cases, but has a
number of limitations that make it unsuitable to be the sole approach to laying
out data. First, libraries may specify non-standard layout requirements (e.g. with
the __packed__ direction), and attempting to replicate these quickly becomes
unmanageable. Second, some libraries, (e.g. libuv), define structs with inter-
spersed internal fields which vary both across platforms and across versions.
Replicating this variation in the bindings quickly leads to unmaintainable code.

Retrieving Layout Information. These drawbacks can be avoided with an
alternative implementation of STRUCTURE that, instead of attempting to repli-
cate the C compiler’s structure layout algorithm, uses the C compiler itself as
the source of layout information, much as the staged foreign (Sect. 3.2) gener-
ates C code to bind functions rather than using libffi to replicate the calling
convention.

As with the staged foreign function, the idea is to use The Trick to transform
field and seal from functions which compute the layout into functions which
map particular concrete arguments into previously computed layout information.
In order to bring the layout information directly into the OCaml program an
additional stage is needed: first, the Types structure (Fig. 9) is applied to a
module Generate_C to produce a C program which retrieves layout information
with calls to offsetof and sizeof:

printf("{ftype;fname;foffset=%zu}\n", offsetof(struct timeval, tv_sec));

Compiling and running the C program produces an OCaml module Types_impl

which satisfies the TYPE signature, and which contains implementations of field
and seal specialized to the structs and fields of the Types module:

let field s fname ftype = match s, fname with

| Struct { tag = "timeval"}, "tv_sec" → {ftype; fname; foffset = 4}

(* ... *)

The application Types(Types_impl) passes the layout information through to the
calls to Tv.field and Tv.seal, making it available for use in the program.

Declarative Foreign Function Binding Through Generic Programming 213

This technique extends straightforwardly to retrieving other information that
is available statically, such as the values of enum constants or preprocessor macros.

5 Related Work

The approach of representing foreign language types as native language values
is inspired by several existing FFIs, including Python’s ctypes, Common Lisp’s
Common FFI and Standard ML’s NLFFI [4], each of which takes this approach.

This paper follows NLFFI’s approach of indexing foreign type representations
by host language types in order to ensure internal consistency (although OCaml’s
GADTs, unavailable to the author of NLFFI, make it possible to avoid most of
the unsafe aspects of the implementation of that library). However, this paper
departs from NLFFI in abstracting the declaration of C types from the mecha-
nism used to retrieve information about those types, using OCaml’s higher-order
module system to perform the abstraction and subsequent selection.

The use of functors to abstract over interpretations of the TYPE and FOREIGN

signatures is a central technique in this paper. Carette et al. [5] use functors in
a similar way, first abstracting over the interpretation of an embedded object
language (λ calculus), then developing a variety of increasingly exotic interpre-
tations which perform partial evaluation, CPS translation and staging of terms.

The use of GADTs to represent foreign language types, and their indexes to
represent the corresponding native language types (Sect. 2) can be viewed as an
encoding of a universe of the kind used in dependently-typed programming [3,
15]. Altenkirch and McBride [1] use universes directly to represent the types
of one programming language (Haskell) within another (OLEG) and then to
implement generic functions over the corresponding values.

Mapping codes to types and their interpretations by abstracting over a para-
meterised type constructor is a well-known technique in the generic program-
ming community [6,17]. Hinze [10] describes a library for generic programming
in Haskell with a type class that corresponds quite closely to the TYPE signa-
ture of Sect. 2, except that the types described are Haskell’s, not the types of
a foreign language. There is a close connection between Haskell’s type classes
and ML’s modules, and so Karvonen’s implementation of Hinze’s approach in
ML [11] corresponds even more directly to this aspect of the design presented
here.

References

1. Altenkirch, T., McBride, C.: Generic programming within dependently typed
programming. In: Proceedings of the IFIP TC2/WG2.1 Working Conference on
Generic Programming, pp. 1–20 (2003)

2. Beazley, D.M.: SWIG: An easy to use tool for integrating scripting languages with
C and C++. In: USENIX Tcl/Tk Workshop (1996)

3. Benke, M., Dybjer, P., Jansson, P.: Universes for generic programs and proofs in
dependent type theory. Nord. J. Comput. 10(4), 265–289 (2003)

214 J. Yallop et al.

4. Blume, M.: No-longer-foreign: Teaching an ML compiler to speak C “natively”.
Electron. Notes Theoret. Comput. Sci. 59(1), 36–52 (2001)

5. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: Tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–
543 (2009)

6. Cheney, J., Hinze, R.: A lightweight implementation of generics and dynamics. In:
Haskell 2002, pp. 90–104. ACM, New York (2002)

7. Danvy, O., Malmkjær, K., Palsberg, J.: Eta-expansion does the trick. ACM Trans.
Program. Lang. Syst. 18(6), 730–751 (1996)

8. Furr, M., Foster, J.S.: Checking type safety of foreign function calls. In: PLDI 2005,
pp. 62–72. ACM, New York (2005)

9. Gibbons, J.: Datatype-generic programming. In: Backhouse, R., Gibbons, J., Hinze,
R., Jeuring, J. (eds.) SSDGP 2006. LNCS, vol. 4719, pp. 1–71. Springer, Heidelberg
(2007)

10. Hinze, R.: Generics for the masses. J. Funct. Program. 16(4–5), 451–483 (2006)
11. Karvonen, V.A.J.: Generics for the working ML’er. In: ML 2007. ACM (2007)
12. Kondoh, G., Onodera, T.: Finding bugs in java native interface programs. In:

ISSTA 2008, pp. 109–118. ACM (2008)
13. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml

system (release 3.12): Documentation and user’s manual. In: INRIA, July 2011
14. Li, S., Tan, G.: Finding reference-counting errors in python/C programs with affine

analysis. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 80–104. Springer,
Heidelberg (2014)

15. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf Type The-
ory: An Introduction. Clarendon, New York (1990)

16. Vouillon, J.: Lwt: A cooperative thread library. In: ML 2008. ACM (2008)
17. Yang, Z.: Encoding types in ML-like languages. In: ICFP 1998. ACM (1998)

Incremental Computing with Abstract Data
Structures

Akimasa Morihata(B)

University of Tokyo, Tokyo, Japan
morihata@graco.c.u-tokyo.ac.jp

Abstract. Incremental computing is a method of keeping consistency
between an input and an output. If only a small portion of the input is
modified, it is natural to expect that the corresponding output can be
obtained more efficiently than full re-computation. However, for abstract
data structures such as self-balancing binary search trees, even the most
primitive modifications may lead to drastic change of the underlying
structure. In this paper, we develop an incremental computing method,
which can deal with complex modifications and therefore is suitable for
abstract data structures. The key idea is to use shortcut fusion in order
to decompose a complex modification to a series of simple ones. Based
on this idea, we extend Jeuring’s incremental computing method, which
can deal with algebraic data structures, so as to deal with abstract data
structures. Our method is purely functional and does not rely on any
run-time support. Its correctness is straightforward from parametricity.
Moreover, its cost is often proportional to that of the corresponding
modification.

1 Introduction

It is common to process data that is gradually modified. Incremental computing
(aka self-adjusting computing [1]) enables us to deal with such situations without
full re-processing. Formally, given input x, objective function f , and modification
modify , instead of calculating f (modify x), incremental computing uses f+ such
that f (modify x) = f+ (f x). It has many practical applications.

Interactive Editor: Incremental computing is useful for visualizing the effect
of modifications to source data. For example, it may enable us to modify a
HTML file while checking the rendering result.

Big Data Analysis: Incremental computing naturally leads to on-line process-
ing and thus may make it possible to analyze data that are too large to store.

Error Recovery: When analyzing data sent from a server, we may detect, for
example from the checksum, that the data is broken. By using incremental
computing, we can start the calculation with the erroneous data and later
fix the result.

Because of its importance, there are many studies for systematically developing
programs that support incremental computing [1–11].
c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 215–231, 2016.
DOI: 10.1007/978-3-319-29604-3 14

216 A. Morihata

For incremental computing, we usually assume modifications to be small.
However, for abstract data structures, this assumption does not generally hold.
As an example, consider a set implemented by a sorted list. To keep knowing
its size while adding elements, we would like to have function s+ such that
s+ e (size s) = size (insert e s), where insert adds an element to a set.

insert e s = case s of [] → [e]
a : s′ → if e ≡ a then s

else if e < a then e : s else a : insert e s′

Note that 1+size s is not always equal to size (insert e s) because insert e s = s
if e is in s. In fact, the implementation of insert is not very simple and possibly
reconstructs whole of the list. It is therefore unclear whether existing incremental
computing methods are applicable to this case. Other abstract data structures
have similar problems. In a queue implemented by a pair of lists, a dequeue
operation may cause a list reversal. In self-balancing binary search trees, every
modification, such as an insertion or a deletion, may lead to a series of rotations.

In this paper, we propose an incremental computing method, which is suitable
for programs involving abstract data structures. Our development is based on
the following observations:

– Most abstract data structures are implemented on simple structures such as
lists and trees.

– Even though modifications for abstract data structures may be complex, each
of them can be decomposed into a series of primitive ones for the underlying
structure, such as constructor applications and pattern matching.

These observation indicate that incremental computing for programs with
abstract data structures can be reduced to one for those with simpler underlying
structures. For example, the sets discussed above is based on lists, and insert
can be regarded as a series of list construction (cons) and pattern-matching;
therefore, it is natural to expect that incremental computing methods for list
operations can be extended to those for the set.

To make our idea concrete, we consult shortcut fusion [12,13], which uses
polymorphic functions for capturing how intermediate data structures are con-
structed and/or destructed. For example, consider the following polymorphic
function insert that implements insert .

insert = insert ([], (:)) (λl → case l of [] → Nothing; a : x → Just (a, x))
insert :: ∀α. (α,A → α → α) → (α → Maybe (A,α)) → A → α → α
insert (n, c) d e s

= case d s of Nothing → c e n
Just (a, s′) → if e ≡ a then s

else if e < a then c e s
else c a (insert (n, c) d e s′)

insert uses the parameters, n, c, and d, instead of the empty list, list extension,
and pattern-matching, respectively. The polymorphic type of insert states that

Incremental Computing with Abstract Data Structures 217

the output (of type α) is obtained by either using the parameters or returning
the given list, s. Hence, incremental computing of insert seems possible if the
both cases are managed. The latter is easy since it is sufficient to just reuse the
previous value. For the former, we can utilize existing incremental computing
methods for list operations. In fact, passing appropriate parameters to insert
suffices. For instance, to compute size, consider the following s+.

s+ = insert (0, λ− x → x+1) (λx → if x ≡ 0 then Nothing else Just (a, x−1))

Here, the arguments, 0, (+1), and (−1), respectively correspond to [], (:), and
pattern-matching. a is any value of the appropriate type. Regardless of a, the
polymorphic type of insert guarantees s+ e (size s) = size (insert e s), which
is exactly what we hope to have.

Our approach has several benefits. First, it enables us to extend incremental
computing methods for simple modifications to complex modifications. In this
paper, we extend Jeuring’s approach [8]. Second, not the program but the type
is sufficient to see the correctness. In fact, correctness is straightforward from
parametricity [14,15]. Third, since the incremental version just uses supplied
functions instead of constructors and destructors, the cost of incremental com-
puting is often proportional to that of the corresponding modification. Lastly,
it is purely-functional source-to-source transformation and does not require any
run-time support such as memoization. Therefore, it is easier to combine other
functionalities, such as lazy evaluation and compiler optimizations.

Our major contributions are the following.

– We show two examples to demonstrate our approach: splay trees [16] (Sect. 2)
and regular-expression matching (Sect. 3).

– We provide a datatype-generic formalism to our approach (Sect. 4), which
subsumes both examples.

2 Incremental Computing on Splay Trees

We use Haskell for describing programs. We may abbreviate (A → B,B → A) to
A ↔ B. We deal with only purely functional, total, and terminating programs
so as to simplify discussions concerning parametricity [14,15].

2.1 Splay Trees

In this section, we consider splay trees [16] that store integers. We implement
them by the following node-labeled binary trees.

data BTree = Nd BTree Int BTree | Lf

Splay trees are binary search trees. To accelerate subsequent operations, they
use a characteristic heuristic called splaying, which moves the accessed node to
the root. Figure 1 shows a simplified implementation of the lookupk operation in
the TreeStructures package1 for Haskell, in which k denotes the integer located.
1 https://hackage.haskell.org/package/TreeStructures-0.0.1.

https://hackage.haskell.org/package/TreeStructures-0.0.1

218 A. Morihata

Fig. 1. The lookup operation for splay trees.

We may want to associate structural information with splay trees. For exam-
ple, if we consider avoiding splaying for short trees, we would like to incrementally
calculate the size and the height.

2.2 Incremental Computing on Binary Trees

Our starting point is an incremental computing method by Jeuring [8]. His
method is based on structural recursion, aka. folds.

foldBTree :: ∀α. (Maybe (α, Int, α) → α) → BTree → α
foldBTree φ Lf = φ Nothing
foldBTree φ (Nd l v r) = φ (Just (foldBTree φ l, v, foldBTree φ r))

Folds can implement several computations. For example, they subsume size and
height.

size = foldBTree φsize

φsize Nothing = 1
φsize (Just (l, a, r)) = 1 + l + r

height = foldBTree φheight

φheight Nothing = 1
φheight (Just (l, a, r)) = 1 + max l r

Unfortunately, folds are not generally suitable for incremental computing:
when we destruct a tree, it is impossible to know the size and/or the height
of a subtree from that of the parent. To remember values for each subtree and
thereby avoid full re-computation, Jeuring’s method employs a labeled version
of binary trees, BTree, and upward accumulation [17,18], uaBTree φ.

data BTree a = Nd (BTree a) Int (BTree a) a | Lf a

uaBTree φ :: ∀α. (Maybe (α, Int, α) → α) → BTree → BTree α

uaBTree φ = foldBTree φ

φ Nothing = Lf (φ Nothing)
φ (Just (l′, v, r′)) = Nd l′ v r′ (φ (Just (valBTree l′, v, valBTree r′)))

We in addition use an auxiliary function, valBTree, which extracts the associated
label: valBTree (Lf a) = a and valBTree (Nd − − − a) = a. It is easy to see

Incremental Computing with Abstract Data Structures 219

valBTree◦uaBTree φ = foldBTree φ, i.e., the value associated with the root is exactly
the value of the corresponding fold; thus, we can reduce incremental computation
of folds to that of upward accumulations.

Jeuring showed that, by using upward accumulations, we can incrementally
calculate any folds when the structure is modified by either by a construc-
tor application or pattern matching. Let exposeBTree (Lf −) = Nothing and
exposeBTree (Nd l v r −) = Just (l, v, r). The keys are the the following equations.

uaBTree φ (Nd l v r) = φ (Just (uaBTree φ l, v, uaBTree φ r))
exposeBTree (uaBTree φ (Nd l v r)) = Just (uaBTree φ l, v, uaBTree φ r)

The first shows that φ calculates, from the results of the subtrees, that of larger
tree. As the second shows, exposeBTree does the converse: it yields those of sub-
trees from that of the original tree.

Jeuring’s method can be summarized as the following incremental computing
algorithm.

– Given the objective function foldBTree φ and the initial structure t, calculate
the labeled tree uaBTree φ t.

– For each construction by Nd, we update the labeled tree by φ ◦ Just.
– For each destruction by pattern-matching, we update the calculated value by
exposeTree.

– If (foldBTree φ)-value is required, apply valBTree to the labeled tree.

2.3 Incremental Computing on Splay Trees

It seems difficult to extend Jeuring’s method to splay trees. Splaying is a fairly
complex operation and drastically change the structure. Therefore, it is nontriv-
ial to know the height after splaying, for example, without full re-computation.

As mentioned in the introduction, we solve the difficulty by borrowing an
idea from shortcut fusion [12,13]. Let inBTree ::Maybe (BTree, Int,BTree) → BTree
and outBTree ::BTree → Maybe (BTree, Int,BTree) be the functions that capture
construction and destruction of BTree.

inBTree Nothing = Lf
inBTree (Just (l, v, r)) = Nd l v r

outBTree Lf = Nothing
outBTree (Nd l v r) = Just (l, v, r)

Assume that a possibly complex modification, modify :: BTree → BTree, can be
implemented by supplying them to a polymorphic function, mod, as follows.

modify t = mod (inBTree, outBTree) t
mod :: ∀α. (Maybe (α, Int, α) ↔ α) → α → α

Figure 2 shows the case of lookupk. The polymorphic function, lookupk, is
obtained by substituting the parameters for every construction and destruc-
tion of BTree. As the polymorphic type explains, lookupk generates the output
only by using the parameters. In other words, lookupk forms a skeleton that

220 A. Morihata

Fig. 2. Confirming incrementalizability of lookup.

expresses how primitive modifications, inBTree and outBTree, are composed to
form a complex modification, lookupk. We can similarly derive such skeletons for
other modifications.

By using the polymorphic function, mod, we can incrementally compute
foldBTree φ on splay trees as follows.

– Given the initial splay tree, t ::BTree, calculate a labeled tree by uaBTree φ t.
– Instead of modification modify = mod (inBTree, outBTree), update the labeled

tree by mod (φ, exposeBTree).
– If (foldBTree φ)-value is required, apply valBTree to the labeled tree.

For example, to keep knowing the height, we first obtain the initial labeled
tree by uaBTree φheight t where t is the initial splay tree, and for each lookupk,
we instead update the labeled tree by lookupk (φheight , exposeBTree). The type
of lookupk guarantees the correctness of our approach.

∀φ. uaBTree φ (lookupk t) = lookupk (φ, exposeBTree) (uaBTree φ t)

Namely, calculating uaBTree φheight after the modification is equivalent to apply-
ing lookupk (φheight , exposeBTree) after uaBTree φheight .

Efficiency. The cost of the incremental computing depends on the polymorphic
function, mod. For this case, the cost of lookupk is proportional to that of
lookupk; thus, the overhead of the incremental computing is a constant factor.
In general, it is natural to expect that the cost of mod is proportional to that
of modify because the former is very often obtained by abstracting construction
and destruction in the latter.

Incremental Computing with Abstract Data Structures 221

3 Incremental Regular Expression Matching on Zippers

3.1 Zippers and Associated Structural Recursions

Next we consider another example: incrementally checking whether a string
matches a given regular expression.

In Haskell, strings are lists of characters. However, the usual lists, aka. cons
lists, are not suitable for modification because direct access to their middle is
not allowed. A better implementation is Huet’s zipper [19], which consists of a
pair of structures. For example, ([a0, a1, . . . , ai−1], [ai, ai+1, . . . , an]) represents
sequence a0a1 · · · an with a cursor at ai−1. We can quickly access ai, ai+1, and
so forth; to access ai−1, ai−2, . . . as well, we implement the first list by a snoc
list, which is constructed from the empty list [] and the snoc operator, x : a,
which adds element a to the last of list x. In order to distinguish snoc lists from
cons lists, we write the former SList A and the latter CList A.

We list four major modifications for zippers. For simplicity, we omit the case
where the operation is not applicable.

Go Right. Move the cursor to right: right (x, a : y) = (x : a, y).
Go Left. Move the cursor to left: left (x : a, y) = (x, a : y).
Remove. Remove the element: remove (x : a, y) = (x, y).
Insert. Insert an element: insert a (x, y) = (x : a, y).

For calculating values for zippers, as the previous example, we introduce folds
and upwards accumulations on zippers. Folds on zippers consumes the snoc list
by foldl and the cons list by foldr , and then, combines the two results.

foldZipper :: ∀β, γ, δ. ((γ, δ) → β,Maybe (γ,A) → γ,Maybe (A, δ) → δ) →
(SList A,CList A) → β

foldZipper (φp, φs, φc) (s, c) = φp (foldl φs s, foldr φc c)
foldl :: ∀α. (Maybe (γ,A) → γ) → SList A → γ

foldl φs [] = φs Nothing
foldl φs (x : a) = φs (Just (foldl φs x, a))
foldr :: ∀δ. (Maybe (A, δ) → δ) → CList A → δ
foldr φc [] = φc Nothing
foldr φc (a : x) = φc (Just (a, foldr φc x))

Fig. 3. Definitions of auxiliary functions

222 A. Morihata

Upward accumulations remember the intermediate results of folds. The fol-
lowing defines labeled zippers and upward accumulations. Auxiliary functions
are shown in Fig. 3. It is not difficult to see valPair ◦ uaZipper (φp, φs, φc) =
foldZipper (φp, φs, φc).

type Zipper a b c d = (SList a c,CList a d, b)
data SList a c = SNil c | Snoc (SList a c) a c

data CList a d = CNil d | Cons a (CList a d) d

uaZipper (φp, φs, φc) = foldZipper (φp, φs, φc)
φp (s′, c′) = (s′, c′, φp (val snoc s′, val cons c′))

φs Nothing = SNil (φs Nothing)
φs (Just (x′, a)) = Snoc x′ a (φs (Just (val snoc x′, a)))

φc Nothing = CNil (φc Nothing)
φc (Just (a, x′)) = Cons a x′ (φc (Just (a, val cons x′)))

3.2 Regular Expression Matching by Folds

Next, we implement regular expression matching by folds. For simplicity, we
deal with a particular expression that checks whether a string denotes a binary
decimal number. The integer part should be either 0 or a number starting from
1; the fractional part, if it exists, can be any 0/1-sequence following the decimal
point.

(1[01]*|0)([.][01]+)?

We use a deterministic finite-state automaton (DFA) shown in Fig. 4. The fol-
lowing program implements the DFA-based matching, where τL is the transition
function of the DFA.

matchL = (λp → p ∈ {p1, p3, p4}) ◦ foldl τL p0

Because the zipper generalizes a cons list, it is natural to consider a foldr -
based implementation as well. Since foldr traverses a string from the tail, we use

Fig. 4. DFA that accepts binary deci-
mal numbers: p0 is the initial state; p1,
p3, and p4 are the final states; the dead
state is omitted.

Fig. 5. DFA that accepts the reverses
of the binary decimal numbers: q0 is
the initial state; q1 and q3 are the final
states; the dead state is omitted.

Incremental Computing with Abstract Data Structures 223

another DFA shown in Fig. 5, which corresponds to the reverse of the regular
expression, ([01]+[.])?([01]*1|0); then, we have the following implementa-
tion, where τ ′

R a q = τR q a and τR is the transition function.

matchR = (λq → q ∈ {q1, q3}) ◦ foldr τ ′
R q0

The regular expression matching function on zippers, say match, can be spec-
ified by them. Let (++S) ::SList A → CList A → SList A and (++C) ::SList A →
CList A → CList A be the append functions; then, match should satisfy
match (x, y) = matchL (x++S y) = matchR (x++C y). However, these characteri-
zations are not satisfactory. In order to incrementally compute match, we would
like to implement it by foldZipper. Fortunately, the third list-homomorphism the-
orem [20,21] can be used for this purpose.

Theorem 1 ([21]). For h :: (SList A,CList A) → C, g1 :: B1 → C, f1 :: B1 →
A → B1, e1 :: B1, g2 :: B2 → C, f2 :: A → B2 → B2, and e2 :: B2, assume the
following.

h (x, y) = g1 (foldl f1 e1 (x ++S y)) = g2 (foldr f2 e2 (x ++C y))

Then, there exists (⊕) :: B1 → B2 → C that satisfies the following equation.

h (x, y) = foldl f1 e1 x ⊕ foldr f2 e2 y 	

Theorem 1 states that h is a fold on zippers if it can be expressed by both foldl
and foldr , exactly as our case. Moreover, it is possible to derive the merging
operator, ⊕. Let ψL and ψR be functions that yield a string leading to the given
state, i.e., p = foldl τL p0 (ψL p) and q = foldr τ ′

R q0 (ψR q). Such a string
is specified by a path from the initial state to that state. For example, path
q0

0,1→ q1
0→ q4 indicates that ψR q4 may result in [0, 0]. In this way, we can

obtain ψL and ψR as follows, where ⊥ denotes the dead state.

ψL p0 = []
ψL p1 = [1]
ψL p2 = [1, .]
ψL p3 = [1, ., 0]
ψL p4 = [0]
ψL ⊥ = [.]

ψR q0 = []
ψR q1 = [0]
ψR q2 = [., 0]
ψR q3 = [0, ., 0]
ψR q4 = [0, 0]
ψR q5 = [0, 0, ., 0]
ψR ⊥ = [.]

As the following calculation shows, the merging operator, ⊕, is given by
p ⊕ q = match (ψL p, ψR q).

p ⊕ q = {definition of ψL and ψR}
foldl τL p0 (ψL p) ⊕ foldr τ ′

R q0 (ψR q)
= {Theorem 1}
match (ψL p, ψR q)

224 A. Morihata

Simplifying the equation yields the following.

pi ⊕ qj ⇐⇒
i = 1 ∨ (i, j) ∈ {(0, 1), (0, 3), (2, 1), (2, 4), (3, 0), (3, 1), (3, 4), (4, 0), (4, 2)}

In summary, foldZipper ((⊕), τL, τ ′
R) does the regular expression matching on

zippers.

3.3 Incremental Computing on Zippers

As in the previous example, we prepare a skeleton that abstracts construction
and destruction in each modification. The following incons, outcons, insnoc, out snoc,
inpair, and outpair are constructors and destructors of cons lists, snoc lists, and
pairs.

incons Nothing = []
incons (Just (a, x)) = a : x

outcons [] = Nothing
outcons (a : x) = Just (a, x)

insnoc Nothing = []
insnoc (Just (x, a)) = x : a

out snoc [] = Nothing
out snoc (x : a) = Just (x, a)

inpair (a, b) = (a, b) outpair (a, b) = (a, b)

By abstracting all construction and destruction in four major modifications of
zippers, we obtain polymorphic functions shown in Fig. 6. Their types verifies the
following equation, where (modify ,mod) are either (right ,right), (left , left),
(remove,remove), or (insert , insert).

uaZipper (φp, φs, φc) ◦ modify
= mod (φp, exposepair) (φs, exposesnoc) (φc, exposecons) ◦ uaZipper (φp, φs, φc)

Fig. 6. Polymorphic functions that implement major modifications on zippers.

Incremental Computing with Abstract Data Structures 225

Therefore, by using insert ((⊕), exposepair) (τL, exposesnoc) (τ ′
R, exposecons)

instead of insert , for example, we can incrementally calculate the regular expres-
sion matching. Moreover, the cost of insert is proportional to that of insert .

3.4 Comparison to Jeuring’s Incremental Algorithm for Lists [8]

It is worth noting that our development is not specific to regular expression
matching. We can incrementalize any fold on zippers. In fact, a similar result2

is shown by Jeuring [8]. He observed that we can incrementally calculate divide-
and-conquer operations on lists according to cursor moves, insertions, and dele-
tions.

The most important point is that, as we will show in the next section, our
result is an instance of a datatype-generic theory of incremental computing;
hence, our approach subsumes Jeuring’s. By virtue of the underlying theory,
we can easily generalize the zipper-based incremental computation. In partic-
ular, because zippers and the third list-homomorphism theorem can deal with
trees [21,22], essentially the same approach is applicable to zippers for trees,
which may be useful for developing interactive structural editors, for example.

4 Datatype-Generic Incremental Computing

We have developed two incremental algorithms. We show that both are instances
of a datatype-generic theory for incremental computing.

4.1 Datatype-Generic Folds

We, like Jeuring’s [7], employ a datatype-generic formalism based on category
theory. We explain a part necessary for our development. See literature such as
a textbook [23] for further information.

A category consists of objects and arrows. In this paper, each object and each
arrow correspond to a set and a total function between sets. f :: A → B denotes
an arrow from object A to object B. A category must contain (i) the identity
arrow, idA :: A → A, for each object A, and (ii) the composition, g ◦ f :: A → C,
for each pair of arrows, f :: A → B and g :: B → C.

A functor is a mapping between categories. Functor F maps object A and
arrow f :: A → B to FA and Ff :: FA → FB so that FidA = idFA and F(g ◦
f) = Fg ◦ Ff . A bifunctor composes two categories and behaves as a functor
if an operand is fixed. Formally, † is a bifunctor if idA † idB = idA†B and
(g1 † g2) ◦ (f1 † f2) = (g1 ◦ f1) † (g2 ◦ f2).

Functors can encode data structures and structural recursions. An F-algebra
is a pair, (A,φ), where φ :: FA → A. F-algebra (μF, inF) is initial if for every
F-algebra (A,φ), there exists a unique arrow h such that φ ◦ Fh = h ◦ inF. The

2 There is a minor difference: while Jeuring required the merging operator, ⊕, to be
associative, we are not.

226 A. Morihata

unique arrow to (A,φ) is called a catamorphism (aka. fold) and denoted by ([φ])F.
The initial F-algebra establishes an isomorphism between μF and FμF; thus, μF is
the least fixed point of datatype equation X ∼= FX. Catamorphisms correspond
to structural recursions on the datatype. outF denotes the inverse of inF.

Example 1: BTree. BTree can be encoded by using polynomial functors. A
polynomial functor is composed of the constant functor !A, the identity functor
I, product bifunctor ×, and coproduct bifunctor +. They are defined as follows,
where A and B denote objects and f and g denote arrows:

!AB = A
!Af = idA

A × B = {(a, b) | a ∈ A, b ∈ B}
(f × g) (a, b) = (f a, g b)

IA = A
If = f

A + B = {Inl a | a ∈ A} ∪ {Inr b | b ∈ B}
(f + g) (Inl a) = Inl (f a)
(f + g) (Inr b) = Inr (g b)

Let T = I× !Int× I+!{()}; then, we have the initial T-algebra, (μT, inT), where
μT is isomorphic to BTree. inT, outT, and ([φ])T are exactly inBTree, outBTree, and
foldBTree if we equate Maybe (A,B,A) with A × B × A + {()}.

Example 2: Zipper. It is well known (see [32], for example) that a composite
data structure like zippers corresponds to the least fixed point in a category of
tuples, in which every object and every arrow are tuples. Since zipper consists
of three structures, two lists and a pair, we consider a category of triples.

Let C = !A× I+!{()}; then, the initial C-algebra, (μC, inC) and catamorphism
([φ])C correspond to the cons lists and the foldr function. Similarly, the least fixed
point of S = I × !A + !{()} and catamorphism ([φ])S correspond to snoc lists and
foldl . Now, Z(P, S,C) = (S × C,SS,CC) is a functor on the category of triples;
then, μZ formalizes the zipper structure. The first, the second, and the third
components respectively correspond to the pair, the snoc list, and the cons lists.
Initial algebra (μZ, inZ) is defined by inZ(p, s, c) = ((s, c), inS s, inC c). Catamor-
phisms consume the snoc list and the cons list by foldl and foldr , respectively,
and then, merge these results. This is indeed foldZipper.

4.2 Incremental Computing for Primitive Modifications

Jeuring [8] considered the following problem: Given objective function h :: μF →
A and structure t :: μF, we would like to maintain the value of h t even if t is
modified by inF or outF. Incremental computation for this problem is possible if
we have operators φ and ψ that correspond to these modifications.

Definition 1 ([8]). An incremental catamorphism3 on μF is triple (h :: μF →
A,φ ::FA → A,ψ :: A → FA) such that h ◦ inF = φ ◦ Fh and Fh ◦ outF = ψ ◦ h. 	

Any incremental catamorphism (h, φ, ψ) is associated with the following incre-
mental computing algorithm.
3 In the original paper, it is called an incremental algorithm.

Incremental Computing with Abstract Data Structures 227

– Given the initial structure t :: μF, calculate h t.
– For each modification by inF, we update the calculated value by φ.
– For each modification by outF, we update the calculated value by ψ.

The requirement ensures correctness of the algorithm. It is worth noting that the
first equation, h ◦ inF = φ ◦Fh, is equivalent to h = ([φ])F; therefore, Definition 1
is applicable only when h is a catamorphism.

Generic upward accumulation [17,18] is useful for developing incremental
catamorphisms. Given a functor F, let FA = F × !A. FA adds a value of A to a
structure by F. We assume that the least fixed point of FA exists4. Two func-
tions are associated: valF :: μFA → A extracts the associated value from the
root; exposeF :: μFA → FμFA expands the root node so that its children can be
accessed. They are defined as follows.

valF v = let (−, a) = outFA
v in a

exposeF v = let (s,−) = outFA
v in s

Given an F-algebra (A,φ), the upward accumulation by φ, denoted by uaF φ,
is defined as follows.

uaF φ :: μF → μFA

uaF φ = ([φ])F where φ v = inFA
(v, φ (FvalF v))

The upward accumulation can be used instead of the catamorphism.

Lemma 1 ([17]). The following equation holds.

valF ◦ uaF φ = ([φ])F 	

Moreover, incremental computing of upward accumulations is possible if the
modification is either inF or outF.

Theorem 2 ([8]). (uaF φ, φ, exposeF) is an incremental catamorphism
on μF. 	

Example (Contd.). The above-mentioned definitions exactly match what we
have seen in Sects. 2 and 3. For instance, μTA, valT, exposeT, and uaT φ are
identical to BTree A, valBTree, exposeBTree, and uaBTree φ.

4.3 Incremental Computing on Abstract Data Structures

Next we consider abstract data structures. An abstract data structure is char-
acterized by the underlying structure and a set of modifications. For simplicity,
we only deal with unary modifications, each of which takes only one structure.
The discussion can be easily extended to non-unary cases such as the set union
operator.
4 This assumption holds for most of the practical cases. For instance, any algebraic

datatype can be captured as the least fixed point of a container-type functor, and
for any container-type functor F, FA is container-type and therefore has the least
fixed point [24].

228 A. Morihata

Definition 2. An abstract data structure (abbreviated to ADS) on T is a pair
(T,M), where T is the underlying data structure and M ⊆ T → T is the set of
modifications. 	

The key to dealing with a complex modification, say modify ::μF → μF, is to
consider a skeleton function, mod, that implements modify and has the following
polymorphic type.

modify t = mod (inF, outF) t
mod :: ∀α. (Fα ↔ α) → α → α

The polymorphic type guarantees that mod generates the output only by using
the arguments: inF, outF, and t. We call such modify incrementalizable.

Definition 3. Modification modify :: μF → μF is incrementalizable if it is asso-
ciated with a polymorphic function mod :: ∀α. (Fα ↔ α) → α → α such that
modify = mod (inF, outF). ADS (μF,M) is incrementalizable if every modifica-
tion in M is so. 	

The following is the main theorem.

Theorem 3. Let (μF,M) be an incrementalizable ADS and (h, φ, ψ) be an
incremental catamorphism on μF. Then, for any modification M � modify =
mod (inF, outF), the following equation holds.

h ◦ modify = mod (φ, ψ) ◦ h

Proof. From parametricity [14,15] for the polymorphic type of mod, it is suffi-
cient to show h ◦ inF = φ ◦ Fh and Fh ◦ outF = ψ ◦ h, which are guaranteed from
the fact that (h, φ, ψ) is an incremental catamorphism. 	

Consider keep knowing h on an incrementalizable ADS, (μF,M). If (h, φ, ψ)
forms an incremental catamorphism, we have the following incremental comput-
ing algorithm.

– Given the initial structure t :: μF, calculate h t.
– For each modification M � modify = mod (inF, outF), we update the calcu-

lated value by mod (φ, ψ).

Theorem 3 guarantees h (modify t) = mod (φ, ψ) (h t) and thereby the cor-
rectness. In particular, by using upward accumulations, we can incrementally
calculate any catamorphism if the underlying ADS is incrementalizable.

5 Related Work and Future Work

We have developed a method of incremental computing. There has been plenty
of work already, including [1–11]. More studies can be found from these papers
and an extensive survey by Ramalingam and Reps [25].

Incremental Computing with Abstract Data Structures 229

Our approach is purely functional and based on parametric polymorphism.
While this enables us to develop a simple and clean theory, it makes our app-
roach difficult to deal with the case where not modifications but the objective
function is rather complex. Attribute-grammar-based methods [2,4–6] use value
dependencies extracted from the syntactic definition. Self-adjusting computation
[1,9,10] uses more precise value dependencies gathered at run-time. Because of
absence of this, our approach fails to deal with accumulative objective functions,
which the above-mentioned methods can.

Our method combines Jeuring’s datatype-generic incrementalization [8] with
two program transformations. Shortcut fusion [12] is a technique to eliminate
intermediate data structures. The third list-homomorphism theorem [20] has
been used for developing divide-and-conquer parallel programs. To the author’s
knowledge, neither has been used for incremental computing. Our method can
also utilize methods related to them. Those for automating shortcut fusion [26–
28] are useful for certifying incrementalizability. Those for automatic paralleliza-
tion based on the third list-homomorphism theorem [29,30] can be used for
deriving folds for composite data structures.

Our method is based on datatype-generic recursion schemes, folds and
upward accumulations. More recursion schemes are studied in the literature,
including anamorphisms, hylomorphisms [31], adjoint folds/unfolds [32], and
conjugate hylomorphisms [33]. It would be interesting if our theory can be
extended to these recursion schemes.

Acknowledgements. The author is grateful to anonymous reviewers whose com-
ments were useful to improve the presentation. Especially, it is one of them who
pointed out similarity between between a preliminary result and Jeuring’s incremen-
tal algorithms on lists. The author is supported by the JSPS Grant-in-Aid for Young
Scientists (B) 15K15965.

References

1. Acar, U.A., Blelloch, G.E., Harper, R.: Adaptive functional programming. ACM
Trans. Program. Lang. Syst. 28(6), 990–1034 (2006)

2. Demers, A.J., Reps, T.W., Teitelbaum, T.: Incremental evaluation for attribute
grammars with application to syntax-directed editors. In: Conference Record of
the Eighth Annual ACM Symposium on Principles of Programming Languages,
pp. 105–116. ACM Press (1981)

3. Pugh, W., Teitelbaum, T.: Incremental computation via function caching. In: Con-
ference Record of the Sixteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pp. 315–328. ACM Press (1989)

4. Alblas, H.: Incremental attribute evaluation. In: Alblas, H., Melichar, B. (eds.)
Attribute Grammars, Applications and Systems, International Summer School
SAGA 1991. Lecture Notes in Computer Science, vol. 545, pp. 215–233. Springer,
Heidelberg (1991)

5. Hudson, S.E.: Incremental attribute evaluation: a flexible algorithm for lazy
update. ACM Trans. Program. Lang. Syst. 13(3), 315–341 (1991)

230 A. Morihata

6. Yellin, D.M., Strom, R.E.: INC: a language for incremental computations. ACM
Trans. Program. Lang. Syst. 13(2), 211–236 (1991)

7. Jeuring, J.: Incremental algorithms on lists. In: Proceedings of SION Computing
Science in the Netherlands, pp. 315–335 (1991)

8. Jeuring, J.: Theories for algorithm calculation. Ph.D. thesis, Universiteit Utrecht
(1993)

9. Acar, U.A., Blelloch, G.E., Harper, R., Vittes, J.L., Woo, S.L.M.: Dynamizing sta-
tic algorithms, with applications to dynamic trees and history independence. In:
Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2004, pp. 531–540. SIAM (2004)

10. Chen, Y., Dunfield, J., Acar, U.A.: Type-directed automatic incrementalization.
In: ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2012, pp. 299–310. ACM Press (2012)

11. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for higher-
order languages: incrementalizing λ-calculi by static differentiation. In: ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2014, pp. 145–155. ACM Press (2014)

12. Gill, A., Launchbury, J., Peyton Jones, S.: A short cut to deforestation. In: FPCA
1993 Conference on Functional Programming Languages and Computer Architec-
ture, pp. 223–232. ACM Press (1993)

13. Takano, A., Meijer, E.: Shortcut deforestation in calculational form. In: Confer-
ence Record of FPCA 1995 SIGPLAN-SIGARCH-WG2.8 Conference on Func-
tional Programming Languages and Computer Architecture, pp. 306–313. ACM
Press (1995)

14. Reynolds, J.C.: Types, abstraction and parametric polymorphism. Inf. Process.
83, 513–523 (1983)

15. Wadler, P.: Theorems for free! In: FPCA 1989 Conference on Functional Program-
ming Languages and Computer Architecture, pp. 347–359. ACM Press (1989)

16. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–
686 (1985)

17. Bird, R.S., de Moor, O., Hoogendijk, P.F.: Generic functional programming with
types and relations. J. Funct. Program. 6(1), 1–28 (1996)

18. Gibbons, J.: Generic downwards accumulations. Sci. Comput. Program. 37(1–3),
37–65 (2000)

19. Huet, G.P.: The zipper. J. Funct. Program. 7(5), 549–554 (1997)
20. Gibbons, J.: The third homomorphism theorem. J. Funct. Program. 6(4), 657–665

(1996)
21. Morihata, A.: A short cut to parallelization theorems. In: ACM SIGPLAN Inter-

national Conference on Functional Programming, ICFP 2013, pp. 245–256. ACM
Press (2013)

22. Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: The third homomorphism the-
orem on trees: downward & upward lead to divide-and-conquer. In: Proceedings
of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009, pp. 177–185. ACM Press (2009)

23. Bird, R.S., de Moor, O.: Algebra of Programming. Prentice Hall, Upper Saddle
River (1997)

24. Abbott, M., Altenkirch, T., Ghani, N.: Containers: constructing strictly positive
types. Theor. Comput. Sci. 342(1), 3–27 (2005)

Incremental Computing with Abstract Data Structures 231

25. Ramalingam, G., Reps, T.W.: A categorized bibliography on incremental compu-
tation. In: Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 502–510. ACM Press
(1993)

26. Launchbury, J., Sheard, T.: Warm fusion: deriving build-catas from recursive def-
initions. In: Conference Record of FPCA 1995 SIGPLAN-SIGARCH-WG2.8 Con-
ference on Functional Programming Languages and Computer Architecture, pp.
314–323. ACM Press (1995)

27. Chitil, O.: Type inference builds a short cut to deforestation. In: Proceedings of the
4th ACM SIGPLAN International Conference on Functional Programming, ICFP
1999, pp. 249–260. ACM Press (1999)

28. Yokoyama, T., Hu, Z., Takeichi, M.: Calculation rules for warming-up in fusion
transformation. In: The 2005 Symposium on Trends in Functional Programming,
TFP 2005, pp. 399–412 (2005)

29. Geser, A., Gorlatch, S.: Parallelizing functional programs by generalization. J.
Funct. Program. 9(6), 649–673 (1999)

30. Morita, K., Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: Automatic inversion
generates divide-and-conquer parallel programs. In: Proceedings of the ACM SIG-
PLAN 2007 Conference on Programming Language Design and Implementation,
pp. 146–155. ACM Press (2007)

31. Meijer, E., Fokkinga, M.M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Hughes, J. (ed.) FPCA 1991. Lecture Notes
in Computer Science, vol. 523, pp. 124–144. Springer, Heidelberg (1991)

32. Hinze, R.: Adjoint folds and unfolds - an extended study. Sci. Comput. Program.
78(11), 2108–2159 (2013)

33. Hinze, R., Wu, N., Gibbons, J.: Conjugate hylomorphisms - or: the mother of all
structured recursion schemes. In: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, pp.
527–538. ACM Press (2015)

Declarative Programming with Algebra

Andre van Delft1(B) and Anatoliy Kmetyuk2

1 Rijswijk, The Netherlands
andre.vandelft@gmail.com

2 Odessa, Ukraine
anatoliykmetyuk@gmail.com

Abstract. The Algebra of Communicating Processes (ACP) is a theory
that views sequences and choices as mathematical operations: multipli-
cation and addition. Based on these base constructs others are defined,
such as parallel merge, interruption and disruption.

Conventional programming languages may be enriched with ACP fea-
tures, to gain declarative expressiveness. We have done this in SubScript,
an extension to the Scala language. SubScript has high level support for
sequences, choices and iterations in a style similar to parser generator
languages. It also offers parallel composition operations, such as and-
and or- parallelism, and dataflow.

The declarative style is also present in the way various execution
modes are supported. Conventional programming languages often require
some boilerplate code to run things in the background, in the GUI thread,
or as event handlers. SubScript supports the same execution modes, but
with minimal boilerplate. It is also easy to compose programs from blocks
having different execution modes.

This paper introduces ACP and SubScript; it briefly describes the
current implementation, and gives several examples.

1 Introduction

The Algebra of Communicating Processes (ACP) [2] is a concurrency theory
that allows for concise specifications of event-driven and concurrent processes.
ACP and the related theories CSP [9] and CCS [11] appear to be largely
ignored in R&D on declarative programming. This is unfortunate because
ACP offers a solid mathematical foundation for reasoning about program
behavior, and a uniform approach to high level process compositions such as
sequence, choice, parallelism, interruption (a process being suspended while
another one executes) and disruption (a process being canceled when another
one starts).

It is well possible to program applications using ACP. We are developing an
ACP based extension to Scala by the name of SubScript, with process refine-
ments called scripts. SubScript contains several constructs and ideas such as
or-parallelism, that are not yet covered by ACP; these are listed in [6].

The sequence and choice operators of ACP and Subscript are much like
constructs in parser generator languages. SubScript code is therefore much like
c© Springer International Publishing Switzerland 2016
O. Kiselyov and A. King (Eds.): FLOPS 2016, LNCS 9613, pp. 232–251, 2016.
DOI: 10.1007/978-3-319-29604-3 15

Declarative Programming with Algebra 233

grammar descriptions. But the style extends to other composition operations
such as parallelism, disruption and interruption.

SubScript also supports declarative specification of different code execution
modes. In conventional programming languages such as Java, handling events is
quite cumbersome: it requires creating, registering and later unregistering event
listeners. Other boilerplate code is needed to let things happen in a background
thread or in a GUI thread. In SubScript it is possible to largely abstract from
this boiler plate. Like in ACP process specifications events to which a process
reacts, appear just as actions; similar to internal actions.

It is also straightforward in SubScript to make compositions of code with
different execution modes. This is useful for instance in interactive programs.
E.g., a recurring pattern for handling user commands is to have a series of the
following kinds of actions, that have 3 different execution modes:

– handle an event (e.g. a button being pressed)
– perform an action in the GUI thread (e.g. updating a status label)
– perform an action in the background thread (e.g. requesting data from a web

server)
– perform an action in the GUI thread (e.g. showing the results)

SubScript also has anonymous scripts, also known as process lambdas. This
comes almost for free from Scala’s support for anonymous functions. Using these
there is relatively simple syntactic sugar to define a sequential dataflow construct,
which happens to be useful for exception handling as well. Another useful feature
inspired by Scala is implicit conversion from data to processes.

All of Scala is available in SubScript. This includes concurrency features such
as threads, actors and futures; SubScript allows wrapping those on a higher
declarative level.

A SubScript implementation is available. It comes with a preprocessor that
translates SubScript code into regular Scala code; some specific transformations
are deferred to Scala macros. Script translate into methods; their bodies contain
calls to the API of a SubScript Virtual Machine. There are also compatibility
layer, for the Swing and Akka frameworks.

The rest of this paper is structured as follows: Sect. 2 introduces ACP; Sect. 3
gives two SubScript example applications; Sect. 4 lists language features; Sect. 5
describes a SubScript Virtual Machine; Sect. 6 highlights dataflow programming
with SubScript; Sect. 7 discusses some related work.

The current paper is a follow up to a paper presented at the Scala Workshop
2013 [5] about dataflow programming support in SubScript, with application to
actor systems.1

2 ACP

The Algebra of Communicating Processes is an algebraic approach to reason-
ing about concurrent systems. It is a member of the family of mathematical
1 This paper contains some text fragments literally copied or adapted from the

predecessor paper.

234 A. van Delft and A. Kmetyuk

theories of concurrency known as process algebras or process calculi2. More so
than the other seminal process calculi (CCS and CSP), the development of ACP
focused on the algebra of processes, and sought to create an abstract, generalized
axiomatic system for processes.

ACP uses instantaneous, atomic actions (a,b,c,...) as its main primitives. Two
special primitives are the deadlock process 0, also known as δ, and the empty
process 1, also known as ε. Expressions of primitives and operators represent
processes. The main operators can be roughly categorized as providing a basic
process algebra, concurrency, and communication:

– Choice and sequencing - the most fundamental of algebraic operators are the
alternative operator (+), which provides a choice between actions, and the
sequencing operator (·), which specifies an ordering on actions. So, for example,
the process (a+ b) · c first chooses to perform either a or b, and then performs
action c. How the choice between a and b is made does not matter and is left
unspecified. Note that alternative composition is commutative but sequential
composition is not (because time flows forward).

– Concurrency - to allow the description of concurrency, ACP provides the
merge operator ‖. This represents the parallel composition of two processes,
the individual actions of which are interleaved. As an example, the process
(a ·b) ‖ (c ·d) may perform the atomic actions a, b, c, d in any of the sequences
abcd, acbd, acdb, cabd, cadb, cdab.

– Communication - pairs of atomic actions may be defined as communicating
actions, implying they cannot be performed on their own, but only together,
when active in two parallel processes. This way, the two processes synchronize,
and they may exchange data.

ACP fundamentally adopts an axiomatic, algebraic approach to the formal
definition of its various operators. Using the alternative and sequential composi-
tion operators, ACP defines a basic process algebra which satisfies the following
axioms:

x + y = y + x

(x + y) + z = x + (y + z)
x + x = x

(x + y) · z = x · z + y · z

(x · y) · z = x · (y · z)

0 + x = x

0 · x = 0
1 · x = x

x · 1 = x

The primitives 0 and 1 behave much like the 0 and 1 that are usually neutral
elements for addition and multiplication in algebra. x + 1 means: optionally x.
This is shown by rewriting (x + 1) · y using the axioms:

(x + 1) · y = x · y + 1 · y

= x · y + y

2 This description of ACP has largely been taken from Wikipedia.

Declarative Programming with Algebra 235

The parallel merge operator ‖ is defined in terms of the alternative and
sequential composition operators. This definition also requires two auxiliary
operators:

x ‖ y = x‖y + y‖x + x | y

– x‖y - “left-merge”: first x is to execute an atomic action, and then the rest of
x is done in parallel with y.

– x|y - “communication merge”: x and y start with a communication (as a pair
of atomic actions), and then the rest of x is done in parallel with the rest of y.

The definitions of many new operators such as the left merge operator use
a special property of closed process expressions with · and +: with the axioms
as term rewrite rules from left to right (except for the commutativity axiom for
+), each such expression reduces into one of the following normal forms: (x +
y), a · x, 1, 0. E.g. the axioms for the left merge operator are:

(x + y)‖z = x‖z + y‖z

(a · x)‖y = a · (x ‖ y)
1‖x = 0
0‖x = 0

Again these axioms may be applied as term rewrite rules so that each closed
expression with the parallel merge operator ‖ reduces to one of the four normal
forms. This way it has been possible to extend ACP with many new operators
that are defined precisely in terms of sequence and choice, e.g. interrupt and
disrupt operators, process launching, and notions of time and priorities.

Since its inception in 1982, ACP has successfully been applied to the specifi-
cation and verification of among others, communication protocols, traffic systems
and manufacturing plants.

ACP’s strict algebraic approach has an advantage over CSP and CCS: this
way theorists can study multiple models that satisfy a given set of axioms. This
fact was not relevant though choosing ACP as a base for SubScript rather than
CSP or CCS. The main reasons were:

– CSP has Two Choice Operators: a deterministic one and a nondeterministic
one. This distinction appears unnecessary as CCS and ACP can do without.

– CSP and CCS have Action Prefixing : a kind of sequential composition where
the left hand side must be an atomic action (an event, in CSP terms); the
right hand side cannot be an atomic action. In CCS this is an inconvenient
limitation. CSP has a separate sequential composition operator, but also this
is an unnecessary complication. ACP treats sequences much like mainstream
programming languages do: operands may be atomic, like assignments, or
composed, like method calls.

SubScript supports anonymous processes, also known as process lambdas.
These constructs have never been formalized for ACP, but they have been for
CCS. In 1989, Henk Goeman unified Lambda Calculus with process expressions
[8]. Shortly thereafter, Robin Milner et al. developed Pi-calculus [12], which also
combines the two theories.

236 A. van Delft and A. Kmetyuk

3 Two Simple GUI Applications

Suppose we need a simple program to look up
items in a database, based on a search string.
The user can enter a search string in the text
field and then press the Go button. This will
at first put a “Searching” message in the text
area at the lower part. Then the actual search
will be done at a database, which may take a
few seconds (simulated by a call to Thread.sleep). Finally the results from the
database are shown in the text area.

In plain Scala, the required code would be like:

val searchButton = new Button("Go") {
reactions += { case ButtonClicked(b) =>

enabled = false
outputTA.text = "Starting..."
new Thread(new Runnable {
def run() {
Thread.sleep(3000)
SwingUtilities.invokeLater(new Runnable{

def run() {outputTA.text="Ready"; enabled = true
}})

}}).start
} }

Here outputTA denotes the output text area. This code looks very technical:
lots of indentations and braces. The control flow is hidden in nested functions.
Parallelism is done by calling the start method on a Thread object. This looks
like a usual method call, but something magic happens inside. Parallelism does
not get a similar basic treatment as statement sequences do.

The order in which the lines are executed is spaghetti-like:

– The first two lines are done during initialization, in the main thread.
– Then a call back block follows, which, executed when the button is pressed.

Disabling the button and setting the “Starting...” text must be done in the
Swing thread; this happens to be the case with the call back, so no special
provision are needed.

– The call to start makes a background thread start that will execute a sleep
– After this sleep, the background thread schedules code for execution in the

Swing thread, to set a “Ready” text and to enable the button.

Between the static program text and the dynamic process is a rather large
conceptual gap. The programming task is hard and boring. The result: many
applications fail to appropriately enable and disable their GUI widgets, or they
are not responsive, or they even hang every now and then. This not only holds
for Scala, but also for almost all imperative languages.

Declarative Programming with Algebra 237

This situation is unnecessary. The SubScript notation is more concise and
intuitive:

live = searchButton
@gui: {:outputTA.text="Starting...":}
{* Thread.sleep(3000) *}
@gui: {:outputTA.text="Ready":}
...

The line breaks here denote sequential composition.3

– Line 1: live is a method like refinement called “script” for the controller
behavior. searchButton is an object that is silently converted into a script
call clicked(searchButton). This is done by an extension of Scala’s support
for implicit conversions. This call “happens” when the user presses the search
button.

– As a bonus, the call to clicked makes sure the button is exactly enabled when
applicable, i.e. when the program is ready to handle a button click.

– Lines 2 and 4 each write a message in the text area. An annotation, @gui:,
makes sure this happens in the Swing thread, as needed.

– Line 3 simulates the lasting database search using a sleep call. The asterisks
next to the braces specify that this is done in a background thread, so that
neither the GUI nor the main thread will be blocked meanwhile.

– Line 5 turns the foregoing into an “eternal” sequential loop (. . . , “etcetera”)
of search sequences.

SubScript programmers can easily specify the GUI controller life cycle, event
handling, widget enabling, and switching to the GUI thread. This is not due to
specific language features geared towards Swing, but through a custom Swing
compatibility layer, with scripts such as clicked and methods such as gui.

3.1 Extending the Program

Now we add some realistic requirements to the program.

– Pressing the Enter key in the search text field triggers the search action as well.
– The search action requires that the input text field is not empty; only then

should the search button be enabled
– Clicking button Cancel, or pressing the Escape key cancels an ongoing search.
– As long as the database search is ongoing, the progress should be indicated:

4 times per second a number is appended to the output text area.
– Clicking an Exit button or in the close box at the window’s upper right corner

exits the program, provided that the user confirms this in a dialog box.

3 There is also a semicolon to denote sequences. SubScript has a similar semicolon
inference for line breaks as Scala.

238 A. van Delft and A. Kmetyuk

We can start by raising the abstraction level of the code above, giving names
to each of its individual actions, so that we can implement these extensions by
modifying the definitions of these named actions:

live = searchSequence...

searchSequence = searchCommand showSearchingText
searchInDatabase showSearchResults

searchCommand = searchButton
searchInDatabase = {* Thread.sleep(3000) *}
showSearchingText = @gui: {:outputTA.text="Starting...":}
showSearchResults = @gui: {:outputTA.text="Ready":}

In a Java or Scala version the application state would need to be kept in
variables; updating these would be nontrivial. The progress indicator would be
cumbersome and error-prone to program (and that is why it is rarely present).
It is easier to grow the SubScript version.

The three user commands will be:

searchCommand = searchButton + Key.Enter
cancelCommand = cancelButton + Key.Escape
exitCommand = exitButton + windowClosing

The first and second plus operators create exclusive choices between but-
tons and key codes. These operands are not processes, but data items for
which implicit conversions to processes have been defined (such as clicked and
keyPressed)4.

The library script windowClosing acts on window closing events.
Exiting is implemented using a process named exit that runs in or-parallel

composition to the rest. The or-parallel operator is | |. It means that both
operands execute in parallel; as soon as one finishes successfully then the other
is terminated and the whole composition terminates successfully. In this case,
the left hand operand is an eternal loop of search sequences; the right hand
operand is a (probably) finite loop.

The exit process starts with the exit command being given; then a confirma-
tion dialog is run; all to be repeated while the result of the confirmation dialog

4 We can combine this way any kind of item for which implicit conversions to scripts
are in scope; this yields an algebra of general items rather than just of processes.

Declarative Programming with Algebra 239

is false. The result of the confirmation dialog is transferred using a dataflow
operator (explained later) to a while construct; this operator is a curly arrow
that names and types the flowing data item.

live = searchSequence... || exit
exit = exitCommand

@gui: {! confirmExit !} ~~(b:Boolean)~~> while !b

The @gui annotation in combination with special brace pairs around
confirmExit ensure that the dialog is run asynchronously in the GUI thread;
this way other parts of this program may remain active. The exclamation marks
in the brace pairs denote that confirmExit is an atomic action in the ACP
sense, which is relevant in choice contexts.

The while construct at the end does not require the conditional expression
to be inside parentheses, as long as it is a simple expression that cannot be
confused with the other parts of the script.

For the search sequence we now add items at the start and the end.
searchGuard is an “active guard” containing a sequential loop. It first checks
whether the text field (searchTF) contains some text. If it does, there is an
“optional break”. This means that the sequence and thus also the guard may
end successfully, so that searchCommand becomes active.

However maybe an event happens at the text field before the user issues this
search command; then the check needs to be redone, etc. (. . .).

Between searchGuard and searchCommand is a space. Like in Scala, this con-
struct has a high priority, but unlike in Scala, it denotes sequential composition,
in addition to semicolons and new lines.

After searchCommand a new line follows; this separates the first line from
the remaining five lines. Therefore the rest, including cancelSearch, can only
become active after the searchCommand has happened. cancelSearch is pre-
ceded by a slash symbol (/), which stands for disruption: the left hand side
happens, possibly disrupted when the right hand side starts happening. The
parentheses group the items on the preceding lines, so that the whole becomes
the left hand side of the slash operator.

searchSequence = searchGuard searchCommand
[showSearchingText

searchInDatabase
showSearchResults] / cancelSearch

searchGuard = if !searchTF.text.isEmpty then break?
anyEvent(searchTF)
...

cancelSearch = cancelCommand showCanceledText
showSearchingText = @gui: {:outputTA.text =...:}
showSearchResults = @gui: {:outputTA.text =...:}
showCanceledText = @gui: {:outputTA.text =...:}

240 A. van Delft and A. Kmetyuk

The database search was mimicked by a few seconds of sleeping; we add a
progress monitor process in an or-parallel composition. This progressMonitor
is an eternal loop: wait a short time and then append a loop counter to the
output text field, etc.

The pseudo-value here denotes “the current operand”; it is comparable to
this, the “current object”. Its field pass yields 0, 1, 2, ... in subsequent passes
of the loop.

searchInDatabase = {*Thread.sleep(3000)*}
|| progressMonitor

progressMonitor = {*Thread.sleep(250)*}
@gui: {:searchTF.text +=" " + here.pass:}
...

4 SubScript Features

SubScript extends Scala with a construct named “script”. This is a counterpart
of ACP process refinements, that coexists with variables and methods in classes.
The body of a script is an expression like the ACP process expressions.

4.1 Notation

ACP processes are notated with the mathematical expression syntax. The ACP
symbol · for sequential composition is hard to type; therefore SubScript applies a
semicolon (;) as known from Scala. As with multiplication in math, the semicolon
symbol for sequence may also be omitted, but then some white space should
separate the operands.5

The Scala symbols for and- and or-compositions of booleans, &, &&, | and
| |, were reused for analogous flavors of parallelism in SubScript. Therefore the
ACP symbol ‖ corresponds with an ampersand (&) in SubScript.

The special ACP processes 0 and 1 would clash with the usual notation for
numbers. These are replaced by symbols: [-] and [+].6

Parentheses in ACP processes are replaced as rectangular brackets in Sub-
Script scripts. This is because parentheses are already heavy in use in the base
language Scala: for value expressions, tuple notation and parameter lists.

5 In general Scala’s operator precedence rules are followed, except for the dataflow
operators; in Scala white space denotes function application; in SubScript it is
sequential composition.

6 Library scripts that refine into such special processes, may be more readable. For
the time being we want a minimal set of new keywords.

Declarative Programming with Algebra 241

Scripts are usually defined together in a section, e.g.,

script..
hello = {! print("Hello,") !}
test = hello & {! print("world!") !}

From here on the section header script.. is mostly omitted for brevity.

4.2 Scala Code Fragments

{! print(‘‘Hello,’’) !} is a normal fragment of Scala code; by default
it is executed in the main thread. Conceptually this corresponds with an
atomic action happening in the sense of ACP. This atomic action is rele-
vant for instance in a choice context such as {! print(‘‘Hello,’’) !} + {!
print(‘‘world!’’) !}

Here as soon as the atomic action happens in the left hand side operand of
the plus, the right hand side is excluded: its code fragment cannot be executed
any more, and it is marked for deactivation.

There are different flavors of code fragments (s means some Scala code):

– {! s !} - normal code fragment; corresponds by default with one atomic
action.

– {* s *} - code executed in a new thread; corresponds with two atomic actions.
– {. s .} - a code fragment executed by an event handler, e.g. a GUI listener;

corresponds with an atomic action.
– {... s ...} - a code fragment that may be executed multiple times by a

permanent event listener; each execution corresponds with an atomic action.
– {: s :} - a “tiny” code fragment. It does not correspond with an atomic

action; therefore it is efficiently executed. Apart from the code being executed,
this behaves neutrally in the ACP sense: it corresponds with 0 or 1; which one
of these depends on nearest ancestor n-ary operator.

Normal code fragments may be manipulated to run in a distinct thread such
as the GUI thread. In such cases there is a correspondence to two atomic actions
instead of one: one atomic action happens just before the start of the code
fragment execution, and one happens just after the end. The latter action will
not happen when the executing code fragment had been disrupted, e.g. from the
disruption operator /.

Threaded code fragments run in new threads; they also correspond with
two such atomic actions. When disrupted while running, the thread will get an
interrupt signal.

Scala expressions within code fragments may use a special value named here.
It refers to the current node in the call graph (i.e. a generalization of a call stack,
see Sect. 5), like this refers to the current object. here is in particular useful
for implementing event handling scripts.7

7 For convenience here is an implicit value so that it may be left out of parameter
lists that have an implicit formal parameter of the node’s type.

242 A. van Delft and A. Kmetyuk

4.3 Annotations

An annotation is a piece of Scala code that is executed when the annotated
part of a program is activated. The code may refer to its operand using the
value named there. The code may in turn register callback code for other
events that happen on the operand, e.g. when it is deactivated. This was
applied for automatic GUI widget enabling and disabling, as seen in the pre-
vious examples.

Annotations can also change the execution behavior for code fragments.
E.g. in

clearText = @gui: {: aTextField.text = " " :}

the tiny code fragment will be executed synchronously in the Swing GUI thread,
using the Swing method SwingUtilities.invokeAndWait().

When combined with a normal code fragment the annotation will execute
the code asynchronously in the Swing GUI thread using SwingUtilities.
invokeLater(); meanwhile other code fragments may be executed.8

4.4 Parallelism

For each of the boolean operators &, &&, | and || there is a counterpart parallel
operator in SubScript: & and && are and-like; they succeed when all operands
succeed. | and || are or-like; they succeed when any operand succeeds.

& and | terminate when all operands terminate. && denotes strong and-
parallelism: it terminates when any operand terminates without success. ||
denotes strong or-parallelism: it terminates when any operand terminates suc-
cessfully.

Between {!print(‘‘hello!’’)!} & {!print(‘‘world!’’)!}, each operand
essentially contains a simple code fragment rather than code to be run in a sep-
arate thread. Therefore one operand will be executed before the other; the result
is either “hello!world!” or “world!hello!”. In general the atomic actions in parallel
branches are shuffle merged, like one can shuffle card decks.

The most straightforward execution strategy will deterministically apply a
left-to-right precedence for the code fragments that are operands to the opera-
tor &. However, alternative strategies are possible, e.g. for random simulations.

4.5 Disruption and Interruption

The slash operator denotes disruption: in x/y, both operands are activated; x is
terminated as soon as an atomic action in y happens. For interruption there are
two operators: in x%/y execution of x is suspended as soon as an atomic action

8 In annotations there is implicit instead of here. Thus @gui: is equivalent to
@gui(there).

Declarative Programming with Algebra 243

in y happens; it may resume when y has success. The operator %/%/ is for zero
or more interruptions.9

4.6 Control and Iteration

SubScript has if-then-else, match, while, for and break constructs much like
counterparts in Scala. The latter three are not limited to sequential contexts,
so they enable alternative and parallel iteration control. Some special processes
are:

– break? denotes an optional break. The nearest n-ary operator determines the
exact behavior. E.g. x may or may not be executed in [break? x] y; this is
much like [[+] + x] y.

– ... marks a loop; it is equivalent to while(true).
– ..? marks a loop and at the same time an optional break.

4.7 Scripts and Calls

A SubScript implementation will translate each script into a method that has
return type Script[T] where T is the type of the script’s result value (see below).
This way most Scala language features for methods also apply to scripts: scripts
may have both type parameters and data parameters; each parameter may be
named or implicit. Variable length parameters and even script currying are pos-
sible.

The body of the example script test in Sect. 4.1 contains a call to script
hello. This is much like a method call.

A script expression may also contain value terms such as variables, literals
and Scala code between () or {}. If such a term is of type Unit then it is assumed
to be in a tiny code fragment; if it is of type Script[T] then it is a script call;
else there should be an implicit conversion to a Script[T].

ACP processes supports process communications as atomic actions that are
shared by two or more parties. In SubScript this has been generalized to shared
scripts that are called by multiple parties. E.g.

send, receive = {! println("Communication") !}

Synchronous calls to send and receive that do not exclude one another,
may result in the execution of the shared script body. This is also a generaliza-
tion of normal script calls; the latter may be considered to be special cases of
communication with only one party involved.

9 These operators start with a percent sign; they are members of a larger family of
operators that can suspend and resume operands. These operators are not meant
to be memorized; rather they may be encapsulated in higher level scripts with
descriptive names.

244 A. van Delft and A. Kmetyuk

4.8 Script Lambdas

For Scala value expressions there is a new kind of term: parameterless script
lambdas (AKA closures). These appear as script expressions placed between
rectangular brackets, such as [[a b+c] d]. These values of type Script[T] for
some type T.

The Scala way of defining parameterized lambda expressions applies
as well, essentially giving parameterized script lambdas, e.g., (i:Int) =>
[{:print(i):}].

4.9 Result Values

Code fragments and scripts have result values, which are comparable to method
return values. A difference is that a method returns only once, whereas the script
result value is available to the caller each time that the script has a success; this
may be more than once, due to the 1-element of ACP. The following scripts each
have result type Int:

s1:Int = {!5!}^
s2 = s1
s3 = s2 ^5

The first script has its result type explicitly stated; for the others the type is
inferred. The caret as a postfix operator indicates that the script’s result value
is set from its operand. The second script has only one operand that is a script
call or code fragment; in such cases the caret may be omitted.

The notation ^5 is shorthand for {:5:}^.10
A double caret is useful for operands that appear in loops, as in ..? x^^.

The result of these zero or more x’s is a list; on each success of an x, its result
value is copied to the list at the position corresponding to the position of that x
in the loop.

Double carets that immediately followed by integers creates a result tuple.
E.g.

s = {:1:}^^1 {!"str"!}^^2

will produce a tuple (1,"str"), of type (Int,String).
[x]^ is shorthand for ([x])^, and likewise for double carets etc. This mean-

ing is as follows: the parentheses enclose a Scala value, which is a script lambda
having x as body. That has a Script type, which implies that the whole is a
script call. But it is not entirely the same as x. Such a construct is useful for
more complex result structures such as lists of tuples. E.g.,

s = ..? [x^^1 y^^2]^^

10 5^ is also valid syntax; this requires an implicit conversion to be in scope that turns
the number into a script call.

Declarative Programming with Algebra 245

results in a List[(X,Y)], where X and Y are the result types of x and y.
Apart from having success, a script may terminate in failure; that will often

be due to an exception thrown from within a code fragment. The exception
should be available as an alternative kind of result, similar to what can happen
in future constructs used in functional reactive programming. Like in futures, a
normal result is packed in a Success container, and an exception is packed in a
Failure container.

5 The SubScript Virtual Machine

SubScript implementations have a Virtual Machine that executes scripts by
internally doing graph manipulation.

5.1 Script Execution from Scala

From Scala code a so called script executor may execute a script lambda, as
in executor.run([test]). The executor may be tailored for the type of appli-
cation, e.g. discrete event simulations. After the execution ends, the executor
may provide information on the execution, e.g. on whether the script ended suc-
cessfully. The SubScript VM method execute creates a fresh CommonExecutor
(the default executor type) and then calls its run method with the script closure,
e.g., execute([test]).

Other types of executors could be more suited for specific application
domains, such as discrete event simulations and multicore parallelism.

The code generated for the script closure calls library methods that build so-
called “template trees”, representing the static structure of the invoked scripts.
Based on these template trees the script executor maintains a so called call graph.
This is a generalization of a regular call stack. It is an acyclic graph; under its
root node other nodes will be added and removed according to the template tree
as the program is executed. These nodes represent process expression constructs,
such as script calls, n-ary operators and code fragments. Recursive script calls
lead to repeated occurrences, like in a call stack.

Each type of node has its own typical kind of life cycle. The executor main-
tains a prioritized queue of messages that direct the state transitions along these
life cycles.

For instance, consider the following process which prints optionally “Hello”,
and then “world!”:

Main = [{!print("H")!} + [+]] {!print("W")!}

[+] corresponds with 1 in ACP. Given the equivalence (x + 1) · y = x · y + y),
this process should behave much like

Main = {!print("H")!} {!print("W")!} + {!print("W")!}

246 A. van Delft and A. Kmetyuk

The following figure gives the template tree (in yellow) and 4 typical stages
of the call graph (in green and red):

In the first depicted call graph, the left hand side of the semicolon has been
activated. Node 7 now succeeds. Its success is propagated upwards, through node
5 until node 4.

This node does not react immediately; that has to wait until there is no
more graph management to be done at its descendant nodes. Indeed, node 7
deactivates. Then node 4 takes action. Because of the received success, this
sequential operator looks up in the template whether there would be a next
operand to activate; indeed there is one, which will become node 8.

At that point there is no more call graph management to do. Then the code
fragment of node 6 is executed (depicted in red). At the same time a conceptual
atomic action happens; a message about this is propagated upwards in the call
graph. The sequential node 4 reacts to this by excluding all its other operands;
in this respect it acts the same as a plus node. Thus the branch with node 8 is
deactivated as soon as node 6 starts executing.

After the execution, node 6 will succeed, and then again node 4 activates
the next operand from the template, this time as node 9. Node 6 is deactivated,
as is its parent node 5. The code fragment of node 9 executes. Then a success
follows which propagates upwards to the root. Finally node 9 and its ancestors
are deactivated.

Call graph management has a higher priority than executing code for atomic
actions. Graph operations below a unary or n-ary operator has a higher priority
than such operations at such an operator. This is achieved by collecting messages
arriving at such operators in so called Continuation messages. This way the
response at the n-ary operator can take into account all messages that have
arrived.

Declarative Programming with Algebra 247

The message types, in descending priority order, are:

– Activation - a node is to be added to the call graph, according to the template
tree. This may also involve executing native code for annotations, process
parameter evaluation, if- and while conditions, etc.

– CFActivated - a code fragment has been activated
– AAHappened - an atomic action has happened
– Break - a break has been encountered; a flag indicates whether it is optional
– Success - a success has been encountered
– Exclude, Suspend, Resume - atomic actions in descendants must be

excluded, suspended or resumed
– Deactivation - a node is to be removed from the graph
– Continuation - collected messages for an operator node
– CFExecutionFinished - the execution of a code fragment has finished
– CFToBeExecuted - a code fragment is to be executed in the main thread

Messages Exclude, Resume and Suspend are propagated downwards in the
call graph. Messages AAHappened, CAActivated, CFActivated are propagated
upwards in the graph; they may have effects at the nodes that they pass by.

E.g., when a AAHappened message arrives from a child node at a + or ; node,
Exclude messages for the sibling nodes are inserted in the message queue.

Break and Success are also propagated upwards, up to n-ary nodes. Such
nodes have different ways to handle Success messages that arrived from their
child nodes; often these result in sending new Success themselves.

Process communication involves multiple callers that call a single shared
script. This binds branches of the call graph together; without communication
the call graph would be a tree.

5.2 Implementation

The first SubScript implementation consisted only of a SubScript Virtual
Machine: a library written in Scala, called from code with plain Scala syntax.
The VM had been programmed using 2500 lines of Scala code. This is not a
complete implementation; most notably support for ACP style communication
is still to be done. When complete the VM may contain about 4000 lines.

In principle this approach suffices for writing the essence of SubScript pro-
grams. However, with the special syntax, e.g. for parameter lists, n-ary infix
operators, various flavors of code fragments, specifications become considerably
smaller, and these require much less parentheses and braces, which is important
for clarity.

Therefore we made a special branch of the Scala compiler that translated the
genuine SubScript syntax to the library calls. This took about 2000 lines of Scala
code, mainly in the scanner, the parser and the typer. As of 2015 by a Parboiled
[14] based preprocessor parses SubScript sources and generates Scala with some
dedicated macro calls therein; the standard Scala compiler is thereafter invoked.
This approach is leaner and more maintainable; however it leads to inconvenient
compile error messages, and it is not suited for IDE integration.

248 A. van Delft and A. Kmetyuk

6 Dataflow Programming

A relatively new SubScript language feature is dataflow, expressed by curly
arrows as seen in the GUI controller example:

exit = exitCommand
@gui: {! confirmExit !} ~~(b:Boolean)~~> while !b

We could also use a ternary version of the dataflow operator:

exit = exitCommand
@gui: {! confirmExit !} ~~(b:Boolean)~~> while !b

+~/~(e:Exception)~~> {:println(e
);}

...

In case confirmExit would throw an exception, the code fragment would end
in failure and its result would be a Failure wrapper containing the exception.
Next, because of the failure, the arrow part with the slash would be followed, so
that the exception is printed. The periods on the last line enforce that the script
is a loop, even in case while has not been reached.

In general the dataflow operator can become analogous to a combination
of match statements and exception handers. E.g., the dataflow on the left is
syntactic sugar for a lower level dataflow on the right:

x ~~(b:Boolean)~~> y1 | x ~~> case b:Boolean => [y1]

+~~(i:Int if i<10)~~> y2 | case i:Int if i<10 => [y2]

+~~(_)~~> y3 | case _ => [y3]

+~/~(e:IOException)~~> z1 | +~/~> case e:IOException => [z1]

+~/~(e: Exception)~~> z2 | case e: Exception => [z2]

So it comes down to the meaning of x~~>y+~/~>z. In such a dataflow, y and
z must be partial scripts, i.e. partial functions that return a Script[T] for some
type T. The dataflow starts with x. When x has success, y is activated with x’s
normal result value passed as actual parameter. When x terminates as a failure,
z is activated with x’s resulting exception passed as actual parameter.

x~~>y is similar, except for that it ends in failure when x ends in failure.
x~/~>z is also similar, except for that it succeeds when x succeeds.

6.1 Example: Twitter Search

A simple Twitter search application contains an input text field and a result text
area; when the user has changed the content of the input text field the application
starts a request to the Twitter web service to get 10 tweets matching the input
text.

Declarative Programming with Algebra 249

But Twitter imposes request rate limit on its API, and the client should not
exceed this. Therefore after each change in the text field the application waits
200 ms before sending the request to Twitter. If meanwhile the text field changes
again, we will restart the wait. When the input text changes while a request had
already been sent and the result was awaited, then that process is disrupted as
well.

The searches may go wrong; we can (intentionally) send an empty search
string, which will result in an error reply by the Twitter server.

A pure Scala version for the controller would contain something like:

def bindInputCallback = {
listenTo(view . searchField . keys)

val fWait = InterruptableFuture { . . . }
val fSearch = InterruptableFuture { . . . }

reactions += {case => fWait . execute ()

. flatMap {case => fSearch . execute ()}

. onComplete{case Success(tweets) => Swing .onEDT{ . . . }
case Failure (e :Throwable) => Swing .onEDT{ . . . }

} } }

InterruptableFutures are a flavor of futures that can be cancelled on demand.
This functionality requires a bunch of ad-hoc utility code in pure Scala, whereas
it is supported out-of-the-box in SubScript, backed by theory.

The SubScript version has a live script for the controller, containing a loop
of complete search sequences.

live = initialize; [mainSeq/..?]...

mainSeq = anyEvent(view.searchField)

{* Thread.sleep(keyTypeDelay) *}

{* searchTweets *} ~~(ts:Seq[Tweet])~~>updateView(ts)

+~/~(t: Throwable)~~>setErrorMsg(t)

updateView(ts: Seq[Tweet]) = @gui: {:...:}

setErrorMsg(t: Throwable) = @gui: {:...:}

The slash and the iterator in mainseq/..? denote a disruptive loop that
starts by activating 1 instance of mainSeq. As soon as the first atomic action
therein happens (anyEvent in the search field) a next iteration of the disruptive
loop is activated. Thus if a next event arrives soon enough, before the rest of
the ongoing earlier mainSeq instance has terminated successfully, that ongoing
instance is disrupted and a new delay starts, and a new instance of mainSeq is
activated, etc. The disruptive loop ends when such a mainseq has terminated
successfully.

A ternary dataflow operator directs the search result (of searchTweets) to
the either updateView or setErrorMsg..

250 A. van Delft and A. Kmetyuk

It is possible to create an implicit script that converts a future into an appro-
priate script. If such an implicit script were in scope, we may replace the threaded
code fragment {*searchTweets*} by the future fSearch.

7 Related Work

Since the predecessor paper [5] we have improved the features for result values
and dataflow.11 The dataflow support now also covers pattern matching and
exception handling. This improves the cooperation with futures and actors.

The predecessor paper contains an overview of other languages that show
some resemblance to this work. Grammar notation formalisms are most related,
as these have similar support for sequences and choices. SubScript result values
were inspired by YACC [10] and by the parser combinator library FastParse12.

SubScript has a delayed task execution. This also occurs in futures and the
async idiom, known from functional reactive programming. Futures may termi-
nate successfully or in a failure, which comparable to SubScript scripts; however
they lack alternative compositions and a 1 element. In a way SubScript adds the
expressiveness of grammar formalisms to the concurrency domain.

Other related approaches are Reactive-C [3] and its follow up SugarCubes [4].
These two have a similar execution mechanism with call graphs; yet they are not
process algebra implementations since also they lack alternative compositions
and a 1 element.

There are some papers that apply process algebra as a theoretical underpin-
ning to actors: [1,7] use Pi-calculus, and [13] applies ACP.

8 Conclusion

SubScript offers constructs from the Algebra of Communicating Processes that
supports a declarative programming style. This is useful for GUI controllers, text
parsers and probably other areas.

Futures may conveniently placed in SubScript process expressions. Likewise
SubScript processes may be converted into futures, but there is an “impedance
mismatch”. A variant of Futures that supports a kind of 1-element from ACP,
could be interesting.

The performance is typically in the order of 10,000 actions per second on
current mainstream personal computers. For most GUI controllers this speed is
acceptable; for text processing that would depend on the input size.

11 A useful definition for [x]^ (see Sect. 4.9) triggered several syntax changes. E.g.
rectangular brackets replaced parentheses to delimit process expressions. Script
lambda’s are now also written between rectangular brackets. Script terms may now
have the form (s) or {s}, with s a Scala value; such terms are method calls or script
calls, possibly after implicit conversion. Normal code fragments had the form {s};
this became {!s!}.

12 http://lihaoyi.github.io/fastparse/.

http://lihaoyi.github.io/fastparse/

Declarative Programming with Algebra 251

SubScript is an open source project13. It is currently implemented as a branch
of the regular Scala compiler, bundled with a virtual machine and libraries for
interfacing with Akka actors and Swing GUIs.

Acknowledgement. We thank the referees and especially the shepherd for their use-
ful suggestions and other comments.

References

1. Thati, P., Agha, G.: An algebraic theory of actors and its application to a simple
object-based language. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-
Orientation to Formal Methods. LNCS, vol. 2635, pp. 26–57. Springer, Heidelberg
(2004)

2. Baeten, J.C.M.: A brief history of process algebra. Theor. Comput. Sci. 335,
131–146 (2005)

3. Boussinot, F.: Reactive c: an extension of c to program reactive systems. Softw.
Pract. Experiance 21(4), 401–428 (1991)

4. Boussinot, F., Susini, J.F.: The sugarcubes tool box. In: Nets of Reactive Processes
Implementation

5. van Delft, A.: Dataflow constructs for a language extension based on the algebra
of communicating processes. In: Proceedings of 4th Workshop on Scala, SCALA
2013. ACM (2013)

6. van Delft, A.: Some new directions for ACP research. CoRR abs/1504.03719 (2015).
http://arxiv.org/abs/1504.03719

7. Gaspari, M., Zavattaro, G.: An algebra of actors. In: Ciancarini, P., Fantechi,
A., Gorrieri, R. (eds.) FMOODS, IFIP Conference Proceedings, vol. 139. Kluwer
(1999)

8. Goeman, H.: Towards a theory of (self) applicative communicating processes: a
short note. Inf. Process. Lett. 34(3), 139–142 (1990)

9. Hoare, C.: Communicating sequential processes. ACM Comput. Surv. 7(1), 80–112
(1985)

10. Johnson, S.: Yacc: Yet another compiler- compiler. Technical report, Bell Labora-
tories (1979)

11. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York Inc.,
Secaucus (1982)

12. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part i. Inf.
Comput. 100, 1–40 (1989)

13. Wang, Y.: Fully abstract game semantics for actors. CoRR abs/1403.6563 (2014)
14. Wills, P.: No more regular expressions. Scala Exchange, Skills Matter, London

(2014)

13 Subscript web site: http://subscript-lang.org.

http://arxiv.org/abs/1504.03719
http://subscript-lang.org

Author Index

Ahn, Ki Yung 109
Alpuim, Joao 29

Blot, Arthur 12
Brock-Nannestad, Taus 94

Carette, Jacques 62

Dagand, Pierre-Évariste 12

Feltey, Daniel 144
Fetscher, Burke 144
Findler, Robert Bruce 144
Fu, Peng 126

Gallagher, J.P. 163

Haemmerlé, R. 163
Hermenegildo, M.V. 163

Klemen, M. 163
Kmetyuk, Anatoliy 232
Komendantskaya, Ekaterina 126

Lawall, Julia 12
Liqat, U. 163
López-Fraguas, Francisco J. 181
López-García, P. 163

Mackie, Ian 80
Madhavapeddy, Anil 198

McCarthy, Jay 144
Montenegro, Manuel 181
Morihata, Akimasa 215

Narayanan, Praveen 62
New, Max 144

Pond, Andrew 126

Rodríguez-Hortalá, Juan 181
Romano, Wren 62

Sato, Shinya 80
Schrijvers, Tom 126
Shan, Chung-chieh 62
Sheets, David 198
Swierstra, Wouter 29

Triska, Markus 45

Ueda, Kazunori 1

van Delft, Andre 232
Vezzosi, Andrea 109

Yallop, Jeremy 198

Zinkov, Robert 62

	Preface
	Organization
	UHC: Coping with Compiler Complexity (Keynote Abstract)
	Contents
	Logic/Constraint Programming and Concurrency: The Hard-Won Lessons of the Fifth Generation Computer Project
	1 Introduction
	2 Emergence and Contribution of Concurrent Logic Programming
	3 From Guarded Horn Clauses to Constraint-Based Concurrency
	4 Development After the 1990's and Diversification
	5 Challenges in Computational Models for the 21st Century
	References

	From Sets to Bits in Coq
	1 Introduction
	2 Finite Sets and Bit Vectors in Coq
	2.1 A Finite Set Library: finset
	2.2 A Bit Vector Library: coqBits

	3 Sets as Bit Vectors, Bit Vectors as Sets
	3.1 Set Membership
	3.2 Inserting and Removing Elements
	3.3 Algebra of Sets
	3.4 Cardinality
	3.5 Minimal Element

	4 Trustworthy Extraction to OCaml
	4.1 Axiomatization and Extraction of Int8
	4.2 Gaining Trust in Extraction
	4.3 Refining Bit Vectors to Integers
	4.4 Refining Sets to Machine Integers

	5 Applications
	5.1 Bloom Filters
	5.2 The n-queens Problem

	6 Related Work
	7 Conclusion
	References

	From Proposition to Program
	1 Introduction
	2 Refinement Calculus
	3 Predicate Transformers
	4 The While Language
	5 Interactive Refinement
	6 Validation
	7 Discussion
	References

	The Boolean Constraint Solver of SWI-Prolog (System Description)
	1 Introduction
	2 CLP(B) Systems and Implementation Methods
	3 Binary Decision Diagrams (BDDs)
	4 A New CLP(B) System: library(clpb) in SWI-Prolog
	4.1 Implementation Choices: BDDs, SAT Solvers, Libraries
	4.2 Syntax of Boolean Expressions
	4.3 Interface Predicates of library(clpb)
	4.4 New Interface Predicates
	4.5 Implementation
	4.6 Consistency Notions in the Context of CLP(B)
	4.7 Unification of Attributed Variables

	5 New Applications of library(clpb)
	5.1 Counting Solutions
	5.2 Random Solutions
	5.3 Weighted Solutions

	6 Benchmark Results
	7 CLP(B) with Other Types of Decision Diagrams
	8 Conclusion and Future Work
	References

	Probabilistic Inference by Program Transformation in Hakaru (System Description)
	1 Introduction
	2 Inference Example on a Discrete Model
	2.1 Modeling
	2.2 Conditioning
	2.3 Sampling

	3 Inference Example on a Continuous Model
	3.1 Modeling
	3.2 Conditioning
	3.3 Sampling

	4 Inference by Composable Program Transformations
	4.1 Semantic Specifications of Transformations
	4.2 Comparison with Other Embeddings

	5 Expressing Semantic Distinctions by Types
	5.1 Distinguishing Hakaru from Haskell
	5.2 Distinguishing Values and Distributions
	5.3 Distinguishing Values in Different Domains
	5.4 Distinguishing Different Interpretations of Hakaru

	6 Conclusion
	References

	An Interaction Net Encoding of Gödel's System T
	1 Introduction
	2 Background
	2.1 Interaction Nets
	2.2 System T
	2.3 Examples

	3 Interaction Net Encoding
	3.1 Reduction

	4 Discussion
	5 Conclusion
	References

	Space-Efficient Planar Acyclicity Constraints
	1 Introduction
	2 Making Use of Acyclicity
	3 A Basic Encoding of the Acyclicity Constraint
	4 Potential Refinements
	5 An Optimised Encoding
	6 Turning Number Parity
	7 From Grid Graphs to General Planar Graphs
	8 Further Graph Constraints
	8.1 Single-Cycle Constraints

	9 Conclusion and Future Work
	References

	Executable Relational Specifications of Polymorphic Type Systems Using Prolog
	1 Introduction
	2 Polymorphic Type Inference Specifications in Prolog
	2.1 HM
	2.2 HM + Type Constructor Polymorphism + Kind Polymorphism

	3 Supporting Other Language Features
	3.1 Recursive Let-Bindings
	3.2 Pattern Matching for Algebraic Datatypes
	3.3 Recursion Schemes for Non-Regular Algebraic Datatypes

	4 Future Work
	5 Related Work
	5.1 HM(X), CHR, and Typol
	5.2 Delayed Goals and Control Flow in Logic Programming
	5.3 Other Logic Programming Systems
	5.4 Descriptions of Type Inference Algorithms in ITPs

	6 Conclusions
	References

	Proof Relevant Corecursive Resolution
	1 Introduction
	2 Preliminaries: Resolution with Evidence
	3 Candidate Lemma Generation
	4 Corecursive Resolution
	5 Operational Semantics of Corecursive Evidence
	6 Related Work
	7 Conclusion and Future Work
	References

	A Coq Library for Internal Verification of Running-Times
	1 Introduction
	2 Overview of Our Library
	3 Implicit Running Times
	4 Extracting the insert Function
	5 The Monad
	6 Case Study
	6.1 Line Counts
	6.2 Extraction

	7 Accounting for Language Primitives
	8 Related Work
	References

	A Transformational Approach to Parametric Accumulated-Cost Static Profiling
	1 Introduction and Motivation
	2 From Dynamic Profiling to Static Profiling
	3 The Classical Cost Relations-Based Parametric Static Analysis
	4 Parametric Accumulated-Cost Static Profiling
	5 Inferring Accumulated Cost via Transformation
	5.1 The Transformation
	5.2 Performing the Resource Usage Analysis

	6 Experimental Results
	7 Related Work
	8 Conclusions
	References

	Polymorphic Types in Erlang Function Specifications
	1 Introduction
	2 Simple Success Types
	3 Success Type Schemes
	4 A Program Transformation for Simulating Success Types Schemes
	5 Conclusions and Future Work
	References

	Declarative Foreign Function Binding Through Generic Programming
	1 Introduction
	1.1 Outline

	2 Representing Foreign Types as Native Values
	3 Interpreting Type Representations
	3.1 Dynamically Interpreting Foreign Function Bindings
	3.2 Statically Compiling Foreign Function Bindings
	3.3 Further Interpretations

	4 Interpreting Type Descriptions
	5 Related Work
	References

	Incremental Computing with Abstract Data Structures
	1 Introduction
	2 Incremental Computing on Splay Trees
	2.1 Splay Trees
	2.2 Incremental Computing on Binary Trees
	2.3 Incremental Computing on Splay Trees

	3 Incremental Regular Expression Matching on Zippers
	3.1 Zippers and Associated Structural Recursions
	3.2 Regular Expression Matching by Folds
	3.3 Incremental Computing on Zippers
	3.4 Comparison to Jeuring's Incremental Algorithm for Lists

	4 Datatype-Generic Incremental Computing
	4.1 Datatype-Generic Folds
	4.2 Incremental Computing for Primitive Modifications
	4.3 Incremental Computing on Abstract Data Structures

	5 Related Work and Future Work
	References

	Declarative Programming with Algebra
	1 Introduction
	2 ACP
	3 Two Simple GUI Applications
	3.1 Extending the Program

	4 SubScript Features
	4.1 Notation
	4.2 Scala Code Fragments
	4.3 Annotations
	4.4 Parallelism
	4.5 Disruption and Interruption
	4.6 Control and Iteration
	4.7 Scripts and Calls
	4.8 Script Lambdas
	4.9 Result Values

	5 The SubScript Virtual Machine
	5.1 Script Execution from Scala
	5.2 Implementation

	6 Dataflow Programming
	6.1 Example: Twitter Search

	7 Related Work
	8 Conclusion
	References

	Author Index

