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Preface

As a tool for large-scale computations in fluid dynamics, spectral methods
were originally proposed in 1944 by Blinova, first implemented in 1954 by
Silberman, virtually abandoned in the mid-1960s, resurrected in 1969–70 by
Orszag and by Eliason, Machenhauer and Rasmussen, developed for special-
ized applications in the 1970s, endowed with the first mathematical foun-
dations by the seminal work of Gottlieb and Orszag in 1977, extended to
a broader class of problems and thoroughly analyzed in the 1980s, and en-
tered the mainstream of scientific computation in the 1990s. Two decades
ago when we wrote Spectral Methods in Fluid Dynamics (1988) both the
subject and the authors were barely past their adolescence. As the field and
the authors are now in their middle age, the time seems ripe for a more
mature discussion of the field, accounting for the main contributions of the
intervening years. Motivated by the many favorable comments we have re-
ceived and the continuing interest in the first book (which will be referred to
as CHQZ1), yet desiring to present a more modern perspective, we embarked
on a project which has resulted in this book (referred to as CHQZ2) and
its companion book (Canuto, Hussaini, Quarteroni and Zang (2007), referred
to as CHQZ3). These, like our first text on this subject, are books about
spectral methods for partial differential equations – when to use them, how
to implement them, and what can be learned from their rigorous theory.

The original promoters of spectral methods were meteorologists study-
ing global weather modeling and fluid dynamicists investigating isotropic
turbulence. The converts who were inspired by the successes of these pio-
neers remained, for the most part, confined to these and closely related fields
throughout the 1970s. During that decade spectral methods appeared to be
well-suited only for problems governed by ordinary differential equations or
by partial differential equations with (mostly) periodic boundary conditions.
And, of course, the solution itself needed to be smooth.

Both the theory and the algorithms of classical (single-domain) spectral
methods for smooth problems were already reasonably mature in the mid-
1980s. On the theoretical side, approximation theory results were available
for periodic and nonperiodic problems, stability and convergence analyses
were in-hand for steady and unsteady linear problems, and detailed numer-
ical analyses had been produced for a variety of methods for fluid dynam-
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ics applications, and particularly for the incompressible Navier-Stokes equa-
tions. Open issues included discontinuous problems (with compressible flows
of particular interest), convergence analysis of iterative methods, artificial
outflow boundary conditions, and rigorous analysis of time discretizations.
On the algorithms front, explicit methods for fully periodic problems were
routine, efficient direct solution methods were available for several important
constant-coefficient implicit equations, numerous efficient algorithms were
available for incompressible flows with at most one nonperiodic direction,
and shock-fitting methods had been developed for compressible flows. Nu-
merous approaches were being tried for discontinuous problems, especially
for shock capturing in compressible flows. Rapid developments were taking
place in iterative methods for implicit equations. The extension of spectral
methods to problems in complex geometries through multidomain spectral
approaches was proceeding explosively.

Singular progress has indeed been made over the past two decades in ex-
tending spectral methods to arbitrary geometries, enabling what some would
consider the mathematical nirvana of a method of arbitrarily high order cap-
able of application to problems on an arbitrary geometry. In this respect, the
trajectory of spectral methods over the past 20 years has been converging
towards that of hp finite-element methods.

This process of migration from single-domain to multidomain spectral
methods has required the injection of novel mathematical tools, and stimu-
lated original investigation directions. Mathematics has had a profound im-
pact on the correct design and interpretation of the methods, and in some
cases it has inspired the development of discontinuous spectral methods (such
as the mortar method and the discontinuous Galerkin method) even for prob-
lems with continuous solutions. On the other hand, since in general a geomet-
rically complex computational domain is split into polygonal or polyhedral
subdomains (or elements), tensor-product domains are no longer a prerequi-
site for spectral methods, with the development of spectral bases on triangles
and tetrahedra.

One of the most pronounced changes is that the strong form of differential
equations has lost its primacy as the anchor for the discretization of the prob-
lem. Multidomain spectral methods are more easily and reliably approached,
both algorithmically and theoretically, from weak formulations of the differ-
ential equations. Moreover, the use of many subdomains has motivated the
use of moderate polynomial degrees in every subdomain – small from the
perspective of classical spectral methods, but large from the perspectives of
finite-difference and finite-element methods. From a theoretical viewpoint,
new error estimates have been established for which the roles of the local
polynomial degree and the geometrical size of the local elements are both
captured. From an algorithmic point of view, the role of matrices has been
addressed in great detail, corresponding to the increased interest in small and
moderate values of N and on techniques of matrix assembly. Exploitation of
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advanced linear algebra tools for sparse, ill-conditioned systems has become
of paramount importance.

In spite of this major change of perspective, the new multidomain spectral
methods still enjoy some of the most distinguishing (and desirable) features of
“classical” spectral methods – Gaussian integration formulas, low dispersion,
and ease of preconditioning by low-order discretization matrices.

Over the past twenty years the appeal of spectral methods for applica-
tions such as computational fluid dynamics has expanded, commensurate
with the erosion of most of the obstacles to their wider application. Beyond
the specific techniques, the culture of high-order methods has entered the
background knowledge of numerical analysts. Spectral methods have been
traditional in academic instruction since the 1990s and began to penetrate
industrial applications this decade. In fact, spectral methods are successfully
used nowadays for widely diverse applications, such as wave propagation (for
acoustic, elastic, seismic and electromagnetic waves), solid and structural
analysis, marine engineering, biomechanics, astrophysics, and even financial
engineering. Their principal appeal in the academic research environment still
relies on their superior rate of convergence, which makes them an ideal virtual
lab. In the industrial (extra-academic) environment, spectral-based codes are
appreciated, and often preferred, owing to the low dissipation and dispersion
errors, the neat way to treat boundary conditions, and, today, the availability
of efficient algebraic solvers that allow a favorable trade-off between accuracy
and computational cost.

The basics of classical spectral methods remain essential for current re-
search on the frontiers of both the algorithms and the theory of spectral
methods. At the same time, multidomain spectral methods have already war-
ranted books in their own right. Our objectives with the current two books are
to modernize our thorough discussion of classical spectral methods, account-
ing for advances in the theory and more extensive application experience in
the fluid dynamics arena, while summarizing the current state of multido-
main spectral methods from the perspective of classical spectral methods.
The major methodological developments in classical spectral methods during
the past two decades have been the emergence of the Galerkin with numer-
ical integration (G-NI) approach, the decline of the tau method to a niche
role, improved treatment of boundary conditions, the adaptation of advanced
direct and iterative methods to spectral discretizations also thanks to a bet-
ter insight into the mathematical basis of preconditioning, the development
of more sophisticated tools to control spurious high-frequency oscillations
without losing the formal accuracy of the method, and the formulation of
spectral discretizations on triangles (in two dimensions) and tetrahedra (in
three dimensions). From the applications perspective in fluid dynamics, new
algorithms have been produced for compressible linear and secondary stabil-
ity, for parabolized stability equations, for velocity-vorticity formulations of
incompressible flow, and for large-eddy simulations, along with refinement of
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spectral shock-fitting methods. Moreover, the once intense debate over the
impact of aliasing errors has settled down to polite differences of opinion.

While a significant amount of material in the two new books has been re-
tained from portions of our earlier text, CHQZ1, the majority of the material
is new. The most consistent augmentation is that all chapters are enhanced
by the addition of material for the G-NI method. The added material has
necessitated publishing this new work as two separate books. The rationale
for the division of the material between the two books is that we furnish in
this first book, CHQZ2, a comprehensive discussion of the generic aspects
of classical spectral methods, while the second book, CHQZ3, focuses on
applications to fluid dynamics and on multidomain spectral methods.

Chapters 1–4 of the present book are of general interest. Chapter 1 pro-
vides a motivational introduction to spectral methods, as well as a preview
of the more sophisticated single-domain applications in fluid dynamics pre-
sented in the second book. Chapter 2 contains a thorough discussion of classi-
cal orthogonal expansions, supplemented with a basic description of spectral
approximations on triangles and tetrahedra. Chapter 3 provides a comprehen-
sive guide to spectral discretizations in space for partial differential equations
in one space dimension, using the Burgers equation model problem for illus-
trative purposes. A discussion of boundary conditions for hyperbolic equa-
tions, and detailed prescriptions for the construction of mass and stiffness
matrices for elliptic problems are also given. Chapter 4 focuses on solution
techniques for the algebraic systems generated by spectral methods. In ad-
dition to a number of now classical results, the chapter offers a thorough
investigation of modern direct and iterative methods, as befits the extensive
developments that have transpired in the past two decades. A large number
of original numerical examples are presented in these two chapters. Chap-
ters 5–7 focus on the mathematical theory of classical spectral methods.
Chapter 5 consists of a review of those results from approximation theory
which are pertinent to the theoretical analysis of spectral methods. Most of
them are classical; however a few of them are newer, as they highlight the
dependence on both polynomial degree and geometrical parameters for both
tensor-product domains and simplicial domains (triangles and tetrahedra).
Chapter 6 is the focal point of this book regarding the theory of spectral
methods. The fundamental stability and convergence results are established
for all kinds of numerical spectral approximations (Galerkin, tau, collocation,
and G-NI) to linear partial differential equations, both steady and unsteady.
Finally, Chap. 7 addresses the theoretical analysis of spectral approxima-
tions to a family of partial differential equations that can be regarded as
the building blocks of mathematical modelling in continuum mechanics in
general, and in fluid dynamics in particular. It places particular emphasis
on the Poisson equation, singularly perturbed elliptic equations that govern
advection-diffusion and reaction-diffusion processes featuring sharp bound-
ary layers, the heat equation, hyperbolic equations and systems, and the
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steady Burgers equation. Moreover, it addresses the eigenvalue analysis of
matrices produced by spectral approximations, and illustrates recent tech-
niques to resolve the Gibbs phenomenon for discontinuous solutions through
filtering, singularity detection and spectral reconstruction techniques. The
first book ends with four Appendices surveying several algorithmic and the-
oretical numerical analysis topics that are not specific to spectral methods,
but of sufficient utility to some readers to warrant inclusion. In Appendix
A we review some basic notations and theorems from functional analysis.
Appendix B reviews the fast Fourier transform and some adaptations that
are particularly useful to Fourier and Chebyshev methods. Appendix C is
a gentle introduction to iterative methods and lists several specific iterative
algorithms that have been exploited in spectral methods, while Appendix D
describes some basic concepts, specific numerical schemes, and stability re-
gions for those temporal discretizations that have been favored by the spectral
methods community.

In our second book (Canuto, Hussaini, Quarteroni and Zang (2007)),
Chap. 1 covers the basic equations of fluid mechanics. Chapter 2 is solely
devoted to spectral algorithms for analyses of linear and nonlinear stability
of fluid flows. Applications to compressible flows and to parabolized stability
equations post-date our earlier book. Chapter 3, on algorithms for incom-
pressible flows, has a sharp emphasis on those algorithms that remained in
reasonably extensive use post-1990 and provides a modern discussion of solu-
tion techniques for problems with two or more nonperiodic directions. Chap-
ter 4, on algorithms for hyperbolic systems and compressible flows, empha-
sizes algorithms for enforcing boundary conditions, methods for computing
homogeneous, compressible flows, and an improved approach to shock fitting.
Chapter 5 introduces the main strategies to construct spectral approxima-
tions in complex domains, and in particular the spectral-element method, the
mortar-element method, the spectral discontinuous Galerkin method, as well
as the more traditional patching collocation method. Their theoretical prop-
erties are analyzed, and their algebraic aspects are investigated. Chapter 6
illustrates solution strategies based on domain decomposition techniques for
the spectral discretizations investigated in Chap. 5. Both Schur-based and
Schwarz-based iterative solvers and preconditioners are considered, and their
computational advantages (in particular, their property of scalability with re-
spect to the number of subdomains) are illustrated. Our project closes in the
same manner in which it began, with a survey of representative large-scale
applications of (this time multidomain) spectral methods.

Whereas with our first text we made a valiant effort to provide compre-
hensive coverage of all available spectral methods (at least for fluid dynamics
applications) and to provide a bibliography that encompassed all extant ref-
erences to spectral methods, here we acknowledge the practical impossibility
of such an ambition in the face of all the work that has since transpired in the
field. We still aim to provide comprehensive coverage of general methodology.
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However, our coverage of particular algorithms is necessarily representative
rather than complete. Our aim is to focus on those algorithms that have
stood the test of time in fluid dynamical applications, as assessed by how
widely they have been used in the past two decades. But our knowledge in
this area is certainly not exhaustive, and others would no doubt have made
somewhat different choices. In our citations we enforce a strong preference for
archival publications. We recognize that many developments appeared earlier
(in some cases many years earlier) in pre-prints or conference publications.
But we only cite non-archival sources when no archival reference is available.

The many numerical examples produced expressly for these books have all
been run on desktop computers (under both Linux and Macintosh operating
systems), usually in 64-bit arithmetic with the standard IEEE precision of
2−52 ≈ 2×10−16. A half-dozen or so different computers were employed, with
clock speeds on the order of 1–3 GHz; some of these computers had two CPUs.
The workhorse languages were Matlab and Fortran, with no special effort
devoted to fine-tuning the performance of the codes. The reader will certainly
appreciate that the occasional timings presented here are meant solely to
provide a rough comparison between the costs of alternative algorithms and
should not be construed as representing a definitive verdict on the efficiency
of the methods.

Nowadays, considerable software for spectral methods is freely available
on the web, ranging from libraries of basic spectral operations all the way to
complete spectral codes for Navier-Stokes (and other complex) applications.
Due to the highly dynamic nature of these postings, we have chosen not to
list them in the text (except to acknowledge codes that we have used here
for numerical examples), but to maintain a reasonably current list of such
sources on the Web site (http://www.dimat.polito.it/chqz/) for this and the
companion text. There is always the possibility that this site itself may need
to be moved due to unforeseen circumstances; in that event one should check
the Springer site for the link to the detailed book Web site.

The authors are grateful to Dr. Wolf Beiglböck, Dr. Ramon Khanna
and the Springer staff for their patience while waiting for our long overdue
manuscript. The authors are pleased to acknowledge the many discussions
and helpful comments on the manuscript that have been provided by col-
leagues such as Paola Gervasio, David Kopriva, Giovanni Monegato, Luca
Pavarino and Andrea Toselli. The technical support of Paola Gervasio and
Marco Discacciati in running numerical tests, preparing figures and tables,
typing and editing a significant part of the whole manuscript is gratefully
acknowledged. Thanks are also due to Stefano Berrone and Sophie Fosson
for providing further technical support, and to Susan Greenwalt for her ad-
ministrative support of this project. We appreciate the generosity of those
individuals who have given us permission to reprint figures from their work
in these texts. The authors are grateful to the Politecnico di Torino, the
Florida State University, the Ecole Polytechnique Fédérale de Lausanne and
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the Politecnico di Milano for their facilitation of this endeavor. One of us
(MYH) is particularly grateful to Provost Lawrence Abele of Florida State
University for his encouragement and support for this project. Finally, we are
most appreciative of the support and understanding we have received from
our wives (Manuelita, Khamar, Fulvia and Ann) and children (Arianna, Su-
sanna, Moin, Nadia, Marzia and Silvia) during this project.

Torino, Italy Claudio Canuto
Tallahassee, Florida M. Yousuff Hussaini
Lausanne, Switzerland and Milano, Italy Alfio Quarteroni
Carrollton, Virginia Thomas A. Zang

February, 2006



Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Historical Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Some Examples of Spectral Methods . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 A Fourier Galerkin Method for the Wave Equation . . . 7
1.2.2 A Chebyshev Collocation Method for the Heat Equation 11
1.2.3 A Legendre Galerkin with Numerical Integration

(G-NI) Method for the Advection-Diffusion-Reaction
Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.4 A Legendre Tau Method for the Poisson Equation . . . . 21
1.2.5 Basic Aspects of Galerkin, Collocation, G-NI

and Tau Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3 Three-Dimensional Applications in Fluids: A Look Ahead . . . 25

2. Polynomial Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1 The Fourier System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.1 The Continuous Fourier Expansion . . . . . . . . . . . . . . . . . 41
2.1.2 The Discrete Fourier Expansion . . . . . . . . . . . . . . . . . . . . 47
2.1.3 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.1.4 The Gibbs Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2 Orthogonal Polynomials in (−1, 1) . . . . . . . . . . . . . . . . . . . . . . . . 68
2.2.1 Sturm-Liouville Problems . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.2.2 Orthogonal Systems of Polynomials . . . . . . . . . . . . . . . . . 69
2.2.3 Gauss-Type Quadratures and Discrete Polynomial

Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3 Legendre Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.3.1 Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.3.2 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.3.3 Orthogonality, Diagonalization and Localization . . . . . . 81

2.4 Chebyshev Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.4.1 Basic Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.4.2 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.5 Jacobi Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.6 Approximation in Unbounded Domains . . . . . . . . . . . . . . . . . . . 93

2.6.1 Laguerre Polynomials and Laguerre Functions . . . . . . . . 94



XIV Contents

2.6.2 Hermite Polynomials and Hermite Functions . . . . . . . . . 95
2.7 Mappings for Unbounded Domains . . . . . . . . . . . . . . . . . . . . . . . 96

2.7.1 Semi-Infinite Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.7.2 The Real Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.8 Tensor-Product Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.8.1 Multidimensional Mapping . . . . . . . . . . . . . . . . . . . . . . . . 99

2.9 Expansions on Triangles and Related Domains . . . . . . . . . . . . . 103
2.9.1 Collapsed Coordinates and Warped Tensor-Product

Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.9.2 Non-Tensor-Product Expansions . . . . . . . . . . . . . . . . . . . 110
2.9.3 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3. Basic Approaches to Constructing Spectral Methods . . . . . 117
3.1 Burgers Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.2 Strong and Weak Formulations of Differential Equations . . . . . 119
3.3 Spectral Approximation of the Burgers Equation . . . . . . . . . . . 121

3.3.1 Fourier Galerkin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.3.2 Fourier Collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.3.3 Chebyshev Tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.3.4 Chebyshev Collocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.3.5 Legendre G-NI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.4 Convolution Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.4.1 Transform Methods and Pseudospectral Methods . . . . . 133
3.4.2 Aliasing Removal by Padding or Truncation . . . . . . . . . 134
3.4.3 Aliasing Removal by Phase Shifts . . . . . . . . . . . . . . . . . . 135
3.4.4 Aliasing Removal for Orthogonal Polynomials . . . . . . . . 136

3.5 Relation Between Collocation, G-NI
and Pseudospectral Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

3.6 Conservation Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.7 Scalar Hyperbolic Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.7.1 Enforcement of Boundary Conditions . . . . . . . . . . . . . . . 145
3.7.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3.8 Matrix Construction for Galerkin and G-NI Methods . . . . . . . 154
3.8.1 Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.8.2 An Example of Algebraic Equivalence between G-NI

and Collocation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.9 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.10 Aliasing Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4. Algebraic Systems and Solution Techniques . . . . . . . . . . . . . . . 167
4.1 Ad-hoc Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.1.1 Fourier Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.1.2 Chebyshev Tau Approximations . . . . . . . . . . . . . . . . . . . . 173
4.1.3 Galerkin Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.1.4 Schur Decomposition and Matrix Diagonalization . . . . . 181



Contents XV

4.2 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.2.1 Tensor Products of Matrices . . . . . . . . . . . . . . . . . . . . . . . 186
4.2.2 Multidimensional Stiffness and Mass Matrices . . . . . . . 187
4.2.3 Gaussian Elimination Techniques . . . . . . . . . . . . . . . . . . . 192

4.3 Eigen-Analysis of Spectral Derivative Matrices . . . . . . . . . . . . . 195
4.3.1 Second-Derivative Matrices . . . . . . . . . . . . . . . . . . . . . . . . 197
4.3.2 First-Derivative Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 200
4.3.3 Advection-Diffusion Matrices . . . . . . . . . . . . . . . . . . . . . . 206

4.4 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.4.1 Fundamentals of Iterative Methods

for Spectral Discretizations . . . . . . . . . . . . . . . . . . . . . . . . 209
4.4.2 Low-Order Preconditioning

of Model Spectral Operators in One Dimension . . . . . . 211
4.4.3 Low-Order Preconditioning in Several Dimensions . . . . 227
4.4.4 Spectral Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . 238

4.5 Descent and Krylov Iterative Methods
for Spectral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
4.5.1 Multidimensional Matrix-Vector Multiplication . . . . . . . 239
4.5.2 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

4.6 Spectral Multigrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
4.6.1 One-Dimensional Fourier Multigrid Model Problem . . . 243
4.6.2 General Spectral Multigrid Methods . . . . . . . . . . . . . . . . 246

4.7 Numerical Examples of Direct and Iterative Methods . . . . . . . 251
4.7.1 Fourier Collocation Discretizations . . . . . . . . . . . . . . . . . 251
4.7.2 Chebyshev Collocation Discretizations . . . . . . . . . . . . . . 253
4.7.3 Legendre G-NI Discretizations . . . . . . . . . . . . . . . . . . . . . 256
4.7.4 Preconditioners for Legendre G-NI Matrices . . . . . . . . . 259

4.8 Interlude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

5. Polynomial Approximation Theory . . . . . . . . . . . . . . . . . . . . . . . 267
5.1 Fourier Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

5.1.1 Inverse Inequalities for Trigonometric Polynomials . . . . 268
5.1.2 Estimates for the Truncation and Best Approximation

Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
5.1.3 Estimates for the Interpolation Error . . . . . . . . . . . . . . . 272

5.2 Sturm-Liouville Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
5.2.1 Regular Sturm-Liouville Problems . . . . . . . . . . . . . . . . . . 275
5.2.2 Singular Sturm-Liouville Problems . . . . . . . . . . . . . . . . . . 277

5.3 Discrete Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
5.4 Legendre Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

5.4.1 Inverse Inequalities for Algebraic Polynomials . . . . . . . . 281
5.4.2 Estimates for the Truncation and Best Approximation

Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
5.4.3 Estimates for the Interpolation Error . . . . . . . . . . . . . . . 289
5.4.4 Scaled Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290



XVI Contents

5.5 Chebyshev Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
5.5.1 Inverse Inequalities for Polynomials . . . . . . . . . . . . . . . . . 292
5.5.2 Estimates for the Truncation and Best Approximation

Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
5.5.3 Estimates for the Interpolation Error . . . . . . . . . . . . . . . 296

5.6 Proofs of Some Approximation Results . . . . . . . . . . . . . . . . . . . . 298
5.7 Other Polynomial Approximations . . . . . . . . . . . . . . . . . . . . . . . . 309

5.7.1 Jacobi Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
5.7.2 Laguerre and Hermite Polynomials . . . . . . . . . . . . . . . . . 310

5.8 Approximation in Cartesian-Product Domains . . . . . . . . . . . . . 312
5.8.1 Fourier Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
5.8.2 Legendre Approximations . . . . . . . . . . . . . . . . . . . . . . . . . 314
5.8.3 Mapped Operators and Scaled Estimates . . . . . . . . . . . . 316
5.8.4 Chebyshev and Other Jacobi Approximations . . . . . . . . 318
5.8.5 Blended Trigonometric and Algebraic Approximations 320

5.9 Approximation in Triangles and Related Domains . . . . . . . . . . 323

6. Theory of Stability and Convergence . . . . . . . . . . . . . . . . . . . . . 327
6.1 Three Elementary Examples Revisited . . . . . . . . . . . . . . . . . . . . 328

6.1.1 A Fourier Galerkin Method for the Wave Equation . . . 328
6.1.2 A Chebyshev Collocation Method

for the Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
6.1.3 A Legendre Tau Method for the Poisson Equation . . . . 334

6.2 Towards a General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
6.3 General Formulation of Spectral Approximations

to Linear Steady Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
6.4 Galerkin, Collocation, G-NI and Tau Methods . . . . . . . . . . . . . 344

6.4.1 Galerkin Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
6.4.2 Collocation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
6.4.3 G-NI Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
6.4.4 Tau Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

6.5 General Formulation of Spectral Approximations
to Linear Evolution Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
6.5.1 Conditions for Stability and Convergence:

The Parabolic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
6.5.2 Conditions for Stability and Convergence:

The Hyperbolic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
6.6 The Error Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

7. Analysis of Model Boundary-Value Problems . . . . . . . . . . . . . 401
7.1 The Poisson Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

7.1.1 Legendre Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
7.1.2 Chebyshev Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
7.1.3 Other Boundary-Value Problems . . . . . . . . . . . . . . . . . . . 409

7.2 Singularly Perturbed Elliptic Equations . . . . . . . . . . . . . . . . . . . 409



Contents XVII

7.2.1 Stabilization of Spectral Methods . . . . . . . . . . . . . . . . . . . 413
7.3 The Eigenvalues of Some Spectral Operators . . . . . . . . . . . . . . . 420

7.3.1 The Discrete Eigenvalues for Lu = −uxx . . . . . . . . . . . . 420
7.3.2 The Discrete Eigenvalues for Lu = −νuxx + βux . . . . . 424
7.3.3 The Discrete Eigenvalues for Lu = ux . . . . . . . . . . . . . . . 427

7.4 The Preconditioning of Spectral Operators . . . . . . . . . . . . . . . . . 430
7.5 The Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
7.6 Linear Hyperbolic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

7.6.1 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 439
7.6.2 Nonperiodic Boundary Conditions . . . . . . . . . . . . . . . . . . 445
7.6.3 The Resolution of the Gibbs Phenomenon . . . . . . . . . . . 447
7.6.4 Spectral Accuracy for Non-Smooth Solutions . . . . . . . . . 454

7.7 Scalar Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
7.8 The Steady Burgers Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Appendix A. Basic Mathematical Concepts . . . . . . . . . . . . . . . . . . . 471
A.1 Hilbert and Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
A.2 The Cauchy-Schwarz Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 473
A.3 Linear Operators Between Banach Spaces . . . . . . . . . . . . . . . . . 474
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1. Introduction

1.1 Historical Background

Spectral methods are a class of spatial discretizations for differential equa-
tions. The key components for their formulation are the trial functions (also
called the expansion or approximating functions) and the test functions (also
known as weight functions). The trial functions, which are linear combina-
tions of suitable trial basis functions, are used to provide the approximate
representation of the solution. The test functions are used to ensure that
the differential equation and perhaps some boundary conditions are satis-
fied as closely as possible by the truncated series expansion. This is achieved
by minimizing, with respect to a suitable norm, the residual produced by
using the truncated expansion instead of the exact solution. The residual ac-
counts for the differential equation and sometimes the boundary conditions,
either explicitly or implicitly. For this reason they may be viewed as a special
case of the method of weighted residuals (Finlayson and Scriven (1966)). An
equivalent requirement is that the residual satisfy a suitable orthogonality
condition with respect to each of the test functions. From this perspective,
spectral methods may be viewed as a special case of Petrov-Galerkin methods
(Zienkiewicz and Cheung (1967), Babuška and Aziz (1972)).

The choice of the trial functions is one of the features that distinguishes
the early versions of spectral methods from finite-element and finite-difference
methods. The trial basis functions for what can now be called classical spectral
methods – spectral methods on a single tensor-product domain – are global,
infinitely differentiable and nearly orthogonal, i.e. the matrix consisting of
their inner products has very small bandwidth; in many cases this matrix is
diagonal. (Typically the trial basis functions for classical spectral methods
are tensor products of the eigenfunctions of singular Sturm-Liouville prob-
lems). In contrast, for the h version of finite-element methods, the domain
is divided into small elements, and low-order trial functions are specified in
each element. The trial basis functions for finite-element methods are thus
local in character and still nearly orthogonal, but not infinitely differentiable.
They are thus well suited for handling complex geometries. Finite-difference
methods are typically viewed from a pointwise approximation perspective
rather than from a trial function/test function perspective. However, when
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appropriately translated into a trial function/test function formulation, the
finite-difference trial basis functions are likewise local.

The choice of test functions distinguishes between the three earliest types
of spectral schemes, namely, the Galerkin, collocation, and tau versions. In
the Galerkin (1915) approach, the test functions are the same as the trial
functions. They are, therefore, infinitely smooth functions that individually
satisfy some or all of the boundary conditions. The differential equation is
enforced by requiring that the integral of the residual times each test function
be zero, after some integration-by-parts, accounting in the process for any re-
maining boundary conditions. In the collocation approach the test functions
are translated Dirac delta-functions centered at special, so-called collocation
points. This approach requires the differential equation to be satisfied ex-
actly at the collocation points. Spectral tau methods are similar to Galerkin
methods in the way the differential equation is enforced. However, none of the
test functions need satisfy the boundary conditions. Hence, a supplementary
set of equations is used to apply the boundary conditions.

The collocation approach appears to have been first used by Slater (1934)
and by Kantorovic (1934) in specific applications. Frazer, Jones and Skan
(1937) developed it as a general method for solving ordinary differential equa-
tions. They used a variety of trial functions and an arbitrary distribution of
collocation points. The work of Lanczos (1938) established for the first time
that a proper choice of trial functions and distribution of collocation points
is crucial to the accuracy of the solution. Perhaps he should be credited
with laying down the foundation of the orthogonal collocation method. This
method was revived by Clenshaw (1957), Clenshaw and Norton (1963) and
Wright (1964). These studies involved the application of Chebyshev poly-
nomial expansions to initial-value problems. Villadsen and Stewart (1967)
developed this method for boundary-value problems.

The earliest applications of the spectral collocation method to partial
differential equations were made for spatially periodic problems by Kreiss
and Oliger (1972) (who called it the Fourier method) and Orszag (1972) (who
termed it pseudospectral). This approach is especially attractive because of
the ease with which it can be applied to variable-coefficient and even nonlinear
problems. The essential details will be furnished below.

The Galerkin approach enjoys the esthetically pleasing feature that the
trial functions and the test functions are the same, and the discretization
is derived from a weak form of the mathematical problem. Finite-element
methods customarily use this approach. Moreover, the first serious appli-
cation of spectral methods to PDE’s – that of Silberman (1954) for mete-
orological modeling – was a Galerkin method. However, spectral Galerkin
methods only became practical for high resolution calculations of such non-
linear problems after Orszag (1969, 1970) and Eliasen, Machenhauer and Ras-
mussen (1970) developed transform methods for evaluating the convolution
sums arising from quadratic nonlinearities. (Nonlinear terms also increase the
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cost of finite-element methods, but not nearly as much as they do for spec-
tral Galerkin methods.) For problems containing more complicated nonlinear
terms, high-resolution spectral Galerkin methods remain impractical.

The tau approach is a modification of the Galerkin method that is appli-
cable to problems with nonperiodic boundary conditions. It may be viewed
as a special case of the so-called Petrov-Galerkin method. Lanczos (1938)
developed the spectral tau method, and Orszag’s (1971b) application of the
Chebyshev tau method to produce highly accurate solutions to fluid dynamics
linear stability problems inspired considerable use of this technique, not just
for computing eigenvalues but also for solving constant-coefficient problems
or subproblems, e.g., for semi-implicit time-stepping algorithms.

In the middle 1980’s newer spectral methods, which combined the Galerkin
approach with Gaussian quadrature formulas, came into common use. These
methods share with the Galerkin approach the weak enforcement of the differ-
ential equation and of certain boundary conditions. In their original version
the unknowns are the values of the solution at the quadrature points, as in
a collocation method. We shall refer to such approaches as Galerkin with
numerical integration, or G-NI, methods.

The first unifying mathematical assessment of the theory of spectral
methods was provided in the monograph by Gottlieb and Orszag (1977). The
theory was extended to cover a large variety of problems, such as variable-
coefficient and nonlinear equations. A sound approximation theory for the
polynomial families used in spectral methods was developed. In his mono-
graph Mercier (1981) advanced the understanding of the role of Gaussian
quadrature points for orthogonal polynomials as collocation points for spec-
tral methods, as had originally been observed in 1979 by Gottlieb. Stability
and convergence analyses for spectral methods were produced for a variety of
approaches. The theoretical analysis of spectral methods in terms of weak for-
mulations proved very successful. As a matter of fact, this opened the door to
the use of functional analysis techniques to handle complex problems and to
obtain the sharpest results. Application developments were equally extensive,
and by the late 1980’s spectral methods had become the predominant numer-
ical tool for basic flow physics investigations of transition and turbulence. All
in all, the 10 years that followed were extremely fruitful for the theoretical
development and the application deployment of spectral methods.

Developments of the first five years that followed Gottlieb and Orszag
(1977) were reviewed in the symposium proceedings edited by Voigt, Gottlieb
and Hussaini (1984). Indeed, that very symposium in 1982 inspired the youth-
ful incarnations of the present authors to produce their first text on this sub-
ject (Canuto, Hussaini, Quarteroni and Zang (1988)). Subsequently, numer-
ous other texts and review articles on various aspects of spectral methods ap-
peared. Boyd (1989, and especially the 2001 second edition) contains a wealth
of detail and advice on spectral algorithms and is an especially good refer-
ence for problems on unbounded domains and in cylindrical and spherical
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coordinate systems. A sound reference for the theoretical aspects of spectral
methods for elliptic equations was provided by Bernardi and Maday (1992b,
1997). Funaro (1992) and Guo (1998) discussed the approximation of differ-
ential equations by polynomial expansions. Fornberg (1996) is a guide for the
practical application of spectral collocation methods, and it contains illus-
trative examples, heuristic explanations, basic Fortran code segments, and
a succinct chapter on applications to turbulent flows and weather predic-
tion. Trefethen (2000) is a lively introduction to spectral collocation methods
and includes copious examples in Matlab. Focused applications of spectral
methods on particular classes of problems were provided by Tadmor (1998)
and Gottlieb and Hesthaven (2001) for first-order hyperbolic problems, by
Cohen (2002) for wave equations, and by Bernardi, Dauge and Maday (1999)
for problems in axisymmetric domains. Peyret (2002) provided a rather com-
prehensive discussion of Fourier and Chebyshev spectral methods for the
solution of the incompressible Navier-Stokes equations, specifically in the
primitive equations and vorticity-streamfunction formulations.

By the late 1980’s classical spectral methods were reasonably mature,
and the research focus had clearly shifted to the use of high-order methods
for problems on complex domains. We shall refer to this class of spectral
methods generically as multidomain spectral methods or as spectral methods
in arbitrary geometries. The 1988 book by the present authors closed with
an overview of this then nascent subject. Funaro (1997) treats spectral-
element methods in the context of elliptic boundary-value problems, espe-
cially convection-dominated flows, and includes a multidomain treatment
for complex geometry. The first comprehensive texts on spectral methods in
complex domains appeared around the year 2000. Karniadakis and Sherwin
(1999) provides a unified framework for spectral-element methods (as intro-
duced by Patera (1984)) and hp finite-element methods (see, for example,
Babuška, Szabó and Katz (1981)). It includes structured and unstructured
domains, and applications to both incompressible and compressible flows.
The Deville, Fischer and Mund (2002) text focuses on high-order methods
in physical space (collocation and spectral-element methods) with applica-
tions to incompressible flows. Its coverage of the implementation details of
such methods on vector and parallel computers distinguishes it from other
books on the subject. Although specifically devoted to the hp-version of finite-
element methods, the book by Schwab (1998) provides many useful theoret-
ical results about the approximation properties of high-order polynomials in
complex domains.

The present book is focused on the fundamentals of spectral methods on
simple domains. A companion book (Canuto, Hussaini, Quarteroni and Zang
(2007)) discusses specific spectral algorithms for fluid dynamics applications
and describes the evolution of spectral methods to complex domains. We
shall refer to the companion book as CHQZ3. Citations in the present text
that refer to specific material in the companion book will have the format
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CHQZ3, Chap. x or CHQZ3, Sect. x.y. For example, a reference such as
CHQZ3, Chap. 1 refers to Chapter 1 of Canuto, Hussaini, Quarteroni and
Zang (2007).

1.2 Some Examples of Spectral Methods

Spectral methods are distinguished not only by the fundamental type of the
method (Galerkin, collocation, Galerkin with numerical integration, or tau),
but also by the particular choice of the trial functions. The most frequently
used trial functions are trigonometric polynomials, Chebyshev polynomials,
and Legendre polynomials. In this section we shall illustrate the basic prin-
ciples of each method and the basic properties of each set of polynomials by
examining in detail one particular spectral method on each of several different
types of differential equations. Each of these examples will be reconsidered
in Chap. 6 from a rigorous theoretical point of view.

1.2.1 A Fourier Galerkin Method for the Wave Equation

Many evolution equations can be written as

∂u

∂t
=M(u) , (1.2.1)

where u(x, t) is the solution, and M(u) is an operator (linear or nonlinear)
that contains all the spatial derivatives of u. Equation (1.2.1) must be coupled
with an initial condition u(x, 0) and suitable boundary conditions.

For simplicity suppose that there is only one spatial dimension, that the
spatial domain is (0, 2π), and that the boundary conditions are periodic.
Most often spectral methods are used only for the spatial discretization. The
approximate solution is represented as

uN (x, t) =
N/2∑

k=−N/2

ak(t)φk(x) . (1.2.2)

The φk are the trial functions, whereas the ak are the expansion coefficients.
In general, uN will not satisfy (1.2.1), i.e., the residual

∂uN

∂t
−M(uN )

will not vanish everywhere. The approximation is obtained by selecting a set
of test functions ψk and by requiring that

∫ 2π

0

[
∂uN

∂t
−M(uN )

]
ψk(x) dx = 0 , (1.2.3)
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for k = −N/2, . . . , N/2, where the test functions determine the weights of
the residual. In this sense the approximation is obtained by a method of
weighted residuals. Most often the numerical analysis community describes
discretizations of differential equations formulated by integral expressions
such as (1.2.3) (possibly after applying integration-by-parts) as discrete weak
formulations. This more common terminology is the one that we follow in this
text. The alternative, discrete strong formulation is characterized by enforc-
ing that the approximate representation of the solution, e.g., (1.2.2), satisfy
the differential equation exactly at a discrete set of points. Finite-difference
methods use a strong formulation, as do spectral collocation methods – see
the example in Sect. 1.2.2. A more comprehensive discussion of alternative
formulations of differential problems is provided in Sect. 3.2.

The most straightforward spectral method for a problem with periodic
boundary conditions is based on trigonometric polynomials:

φk(x) = eikx , (1.2.4)

ψk(x) =
1
2π

e−ikx . (1.2.5)

Note that the trial functions and the test functions are essentially the same,
and that they satisfy the (bi-)orthonormality condition

∫ 2π

0

φk(x)ψl(x) dx = δkl . (1.2.6)

If this were merely an approximation problem, then (1.2.2) would be the
truncated Fourier series of the known function u(x, t) with

ak(t) =
∫ 2π

0

u(x, t)ψk(x) dx (1.2.7)

being simply the familiar Fourier coefficients. For the partial differential equa-
tion (PDE), however, u(x, t) is not known; the approximation (1.2.2) is de-
termined by (1.2.3).

For the linear hyperbolic problem

∂u

∂t
− ∂u

∂x
= 0 , (1.2.8)

i.e., for

M(u) =
∂u

∂x
, (1.2.9)

condition (1.2.3) becomes

1
2π

∫ 2π

0

⎡

⎣
(

∂

∂t
− ∂

∂x

) N/2∑

l=−N/2

al(t)eilx

⎤

⎦ e−ikx dx = 0 .
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The next two steps are the analytical (spatial) differentiation of the trial
functions:

1
2π

∫ 2π

0

⎡

⎣
N/2∑

l=−N/2

(
dal

dt
− ilal

)
eilx

⎤

⎦ e−ikx dx = 0 ,

and the analytical integration of this expression, which produces the dynam-
ical equations

dak

dt
− ikak = 0 , k = −N/2, . . . , N/2 . (1.2.10)

The initial conditions for this system of ordinary differential equations
(ODEs) are the coefficients for the expansion of the initial condition. For
this Galerkin approximation,

ak(0) =
∫ 2π

0

u(x, 0)ψk(x) dx . (1.2.11)

For the strict Galerkin method, integrals such as those that appear in
(1.2.11) should be computed analytically. For the simple example problem
of this subsection this integration can indeed be performed analytically. For
more complicated problems, however, numerical quadratures are performed.
This is discussed further in Sect. 1.2.3.

We shall use the initial condition

u(x, 0) = sin(π cosx) (1.2.12)

to illustrate the accuracy of the Fourier Galerkin method for (1.2.8). The
exact solution,

u(x, t) = sin[π cos(x + t)] , (1.2.13)

has the Fourier expansion

u(x, t) =
∞∑

k=−∞
ak(t)eikx , (1.2.14)

where the Fourier coefficients are

ak(t) = sin
(

kπ

2

)
Jk(π)eikt , (1.2.15)

and Jk(t) is the Bessel function of order k.
The asymptotic properties of the Bessel functions imply that

kpak(t)→ 0 as k →∞ (1.2.16)

for all positive integers p. As a result, the truncated Fourier series,
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uN (x, t) =
N/2∑

k=−N/2

ak(t)eikx , (1.2.17)

converges faster than any finite power of 1/N . This property is often referred
to as spectral convergence.

An illustration of the superior accuracy available from the spectral method
for this problem is provided in Fig. 1.1. Shown in the figure are the maxi-
mum errors after one period at t = 2π for the spectral Galerkin method,
a second-order finite-difference method, an (explicit) fourth-order finite-
difference method, a fourth-order compact method, and a sixth-order com-
pact method. The integer N denotes the degree of the expansion (1.2.17) for
the Fourier Galerkin method and the number of grid points for the finite-
difference and compact methods. The time discretization was the classical
fourth-order Runge-Kutta method and the exact initial Fourier coefficients
were used for the spectral method. In all cases the time-step was chosen
so small that the temporal discretization error was negligible. (Appendix D
furnishes the formulas (and stability regions) for commonly used time dis-
cretizations. The familiar formula for the classical fourth-order Runge-Kutta
methods is given in (D.2.17).)

The second-order and fourth-order finite-difference methods used here
and elsewhere in this book for examples are the standard central-difference
methods with 3-point and 5-point explicit stencils, respectively. The fourth-
order and sixth-order compact methods used in our examples are the classi-
cal 3-point Padé approximations (see, for example, Collatz (1966) and Lele
(1992))

u′
j−1 + 4u′

j + u′
j+1 =

3
∆x

(uj+1 − uj−1) (1.2.18)

and

u′
j−1 + 3u′

j + u′
j+1 =

7
3∆x

(uj+1 − uj−1) +
1

12∆x
(uj+2 − uj−2) , (1.2.19)

respectively, where ∆x is the grid spacing and u′
j denotes the approximation

to the first derivative at xj = j∆x. Of course, when nonperiodic boundary
conditions are present, special stencils are needed for points at, and sometimes
also adjacent to, the boundary.

Figure 1.2 compares these various numerical solutions for N = 16 with
the exact answer. Note that the major errors in the finite-difference solutions
are ones of phase rather than amplitude. In many problems the very low
phase error of spectral methods is a significant advantage.

Because the solution is infinitely smooth, the convergence of the spectral
method on this problem is more rapid than any finite power of 1/N . Actually,
since the solution is analytic, convergence is exponentially fast. (The errors
for the N ≥ 64 spectral results are so small that they are swamped by the
round-off error of these calculations. Unless otherwise noted, all numerical
examples presented in this book were performed in 64-bit arithmetic.)



1.2 Some Examples of Spectral Methods 11

10
0

10
1

10
2

10
3

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

M
a
x
im

u
m

er
ro

r

N

Fourier

FD2

FD4

CP4

CP6

Fig. 1.1. Maximum errors for the linear hyperbolic problem at t = 2π for Fourier
Galerkin and several finite-difference schemes

Fig. 1.2. Numerical solutions for the linear hyperbolic problem at t = 2π for
N = 16 for Fourier Galerkin and several finite-difference schemes

In most practical applications the benefit of the spectral method is not
the extraordinary accuracy available for large N but rather the small size of
N necessary for a moderately accurate solution.

1.2.2 A Chebyshev Collocation Method for the Heat Equation

Fourier series, despite their simplicity and familiarity, are not always a good
choice for the trial functions. In fact, for reasons that will be explored in
the next chapter, Fourier series are only advisable for problems with periodic
boundary conditions. A more versatile set of trial functions is composed of
the Chebyshev polynomials. These are defined on [−1, 1] by

Tk(x) = cos(k cos−1 x) , (1.2.20)

for k = 0, 1, . . . .
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Let us focus on the linear heat equation

∂u

∂t
− ∂2u

∂x2
= 0 , (1.2.21)

i.e.,

M(u) =
∂2u

∂x2
, (1.2.22)

on (−1, 1) with homogeneous Dirichlet boundary conditions,

u(−1, t) = 0, u(1, t) = 0 . (1.2.23)

Choosing the trial functions

φk(x) = Tk(x) , k = 0, 1, . . . , N , (1.2.24)

the approximate solution has the representation

uN (x, t) =
N∑

k=0

ak(t)φk(x) . (1.2.25)

In the collocation approach the requirement is that (1.2.21) be satisfied
exactly by (1.2.25) at a set of collocation points xj in (−1, 1):

∂uN

∂t
−M(uN )

∣∣∣∣
x=xj

= 0 , j = 1, . . . , N − 1 . (1.2.26)

The boundary conditions

uN (−1, t) = 0, uN (1, t) = 0 (1.2.27)

and the initial condition

uN (xk, 0) = u(xk, 0) , k = 0, . . . , N , (1.2.28)

accompany (1.2.26).
Equations (1.2.26) are based on the strong formulation of the differential

equation, since the approximate solution is required to satisfy the differential
equation exactly at a set of discrete points, in this case called the collocation
points. One can formally obtain the same equations starting from a weak
formulation of the problem by taking as test functions the (shifted) Dirac
delta-functions (distributions)

ψj(x) = δ(x− xj) , j = 1, . . . , N − 1 , (1.2.29)

and enforcing the conditions
∫ 1

−1

[
∂uN

∂t
−M(uN )

]
ψj(x) dx = 0 , j = 1, . . . , N − 1 (1.2.30)

(where the integral should really be interpreted as a duality; see (A.10)).
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A particularly convenient choice for the collocation points xj is

xj = cos
πj

N
. (1.2.31)

Not only does this choice produce highly accurate approximations, but it also
is economical. Note that

φk(xj) = cos
πjk

N
. (1.2.32)

This enables the Fast Fourier Transform (FFT) to be employed in the eval-
uation ofM(uN )|x=xj , as is discussed in Sect. 2.4.

For the particular initial condition

u(x, 0) = sinπx , (1.2.33)

the exact solution is
u(x, t) = e−π2t sinπx . (1.2.34)

It has the infinite Chebyshev expansion

u(x, t) =
∞∑

k=0

bk(t)Tk(x) , (1.2.35)

where

bk(t) =
2
ck

sin
(

kπ

2

)
Jk(π)e−π2t , (1.2.36)

with

ck =

{
2 , k = 0 ,

1 , k ≥ 1 .
(1.2.37)

Because of the rapidly decaying Jk(π) factor, the truncated series converges
at an exponential rate. A well-designed collocation method will do the same.
(Since the finite series (1.2.25) is not simply the truncation of the infinite
series (1.2.35) at order N , the expansion coefficients ak(t) and bk(t) are not
identical.)

Unlike a Galerkin method, which in its conventional version is usually
implemented in terms of the expansion coefficients ak(t), a collocation method
is implemented in terms of the nodal values uj(t) = uN (xj , t). Indeed, in
addition to (1.2.25), we have the expansion

uN (x, t) =
N∑

j=0

uj(t)φj(x),

where now φj denote the discrete (shifted) delta-functions, i.e., the unique
N -th degree polynomials satisfying φj(xi) = δij for 0 ≤ i, j ≤ N .
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(These particular functions will be more commonly denoted by the symbol
ψj in the sequel and referred to as characteristic Lagrange polynomials; see,
e.g., (1.2.55)). The expansion coefficients are used only in an intermediate
step, namely, in the analytic differentiation (with respect to x) of (1.2.25).
The details of this step, which will be derived in Sect. 2.4, follow.

The expansion coefficients are given by

ak(t) =
2

Nc̄k

N∑

l=0

c̄ −1
l ul(t) cos

πlk

N
, k = 0, 1, . . . , N , (1.2.38)

where

c̄k =

{
2 , k = 0 or N ,

1 , 1 ≤ k ≤ N − 1
. (1.2.39)

The exact derivative of (1.2.25) is

∂2uN

∂x2
(t) =

N∑

k=0

a
(2)
k (t)Tk(x) , (1.2.40)

where

a
(1)
N+1(t) = 0, a

(1)
N (t) = 0 ,

c̄ka
(1)
k (t) = a

(1)
k+2(t) + 2(k + 1)ak+1(t) , k = N − 1, N − 2, . . . , 0 ,

(1.2.41)

and

a
(2)
N+1(t) = 0, a

(2)
N (t) = 0 ,

c̄ka
(2)
k (t) = a

(2)
k+2(t) + 2(k + 1)a(1)

k+1(t) , k = N − 1, N − 2, . . . , 0 .

(1.2.42)

The coefficients a
(2)
k obviously depend linearly on the nodal values ul;

hence, there exists a matrix D2
N such that

∂2uN

∂x2
(t)
∣∣∣∣
x=xj

=
N∑

k=0

a
(2)
k (t) cos

πjk

N
=

N∑

l=0

(D2
N )jlul(t) (1.2.43)

(see Sect. 2.4.2 for more details). By (1.2.27), we actually have u0(t) =
uN (t) = 0. Substituting the above expression into (1.2.26), we end up with
a system of ordinary differential equations for the nodal unknowns:

duj

dt
(t) =

N∑

l=0

(D2
N )jlul(t), j = 1, . . . , N − 1. (1.2.44)
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Supplemented by the initial conditions (1.2.28), the preceding system of or-
dinary differential equations for the nodal values of the solution is readily
integrated in time.

The maximum errors at t = 1 in the numerical solutions for a Chebyshev
collocation method, a second-order finite-difference method and a fourth-
order compact method are given in Fig. 1.3, along with the maximum errors
for the truncated Chebyshev series of the exact solution at t = 1. The Cheby-
shev method used the N + 1 non-uniformly distributed collocation points
(1.2.31), whereas the finite-difference methods used N + 1 uniformly dis-
tributed points. The maximum errors have been normalized with respect to
the maximum value of the exact solution at t = 1. The fourth-order scheme
is the classical 3-point Padé approximation,

u′′
i−1 + 10u′′

i + u′′
i+1 =

12
(∆x)2

(ui−1 − 2ui + ui+1) , i = 1, . . . , N − 1 ,

(1.2.45)
supplemented with a compact, third-order approximation at the boundary
points (see Lele (1992)), e.g.,

u′′
0 + 11u′′

1 =
1

(∆x)2
(13u0 − 27u1 + 15u2 − u3) , i = 0 . (1.2.46)
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Fig. 1.3. Maximum errors for the heat equation problem at t = 1 for Chebyshev
collocation and several finite-difference schemes. The Chebyshev truncation result
is shown for comparison

Before leaving this example, we consider a more general equation than
(1.2.21), namely,

∂u

∂t
− ∂

∂x

(
κ
∂u

∂x

)
= 0, (1.2.47)
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where the conductivity coefficient κ varies in (−1, 1) and may even depend
on the solution u. In this case, it is not convenient to apply the collocation
scheme (1.2.26) to equation (1.2.47) directly, as this would require the exact

differentiation of the heat flux F(uN ) = κ
∂uN

∂x
. Instead, one first computes

the nodal values Fl(t) = F(uN )(xl), l = 0, . . . , N , of this flux, then applies
a transformation similar to (1.2.38), and follows that with a differentiation
of the flux as in (1.2.41); the resulting expansion of the derivative is then
evaluated at the collocation points. This process amounts to differentiating
exactly the numerical flux FN (uN ) = IN (F(uN )), which is obtained by in-
terpolating the flux F(uN ) at the collocation points by a global N -degree
algebraic polynomial. (Here and in the rest of the book, IN is a general sym-
bol that denotes an interpolation operator.) The resulting collocation scheme
reads as follows:

∂uN

∂t
− ∂

∂x
IN

(
κ
∂uN

∂x

)∣∣∣∣
x=xj

= 0 , j = 1, . . . , N − 1 . (1.2.48)

Equivalently, we have

duj

dt
(t) =

N∑

l=0

(DN )jlFl(t), j = 1, . . . , N − 1, (1.2.49)

where DN is the Chebyshev collocation derivative matrix, which is discussed
in detail in Sect. 2.4.2.

The approach used for the discretization of (1.2.47) highlights a general
strategy that is adopted for collocation methods: differentiation is applied to
a function only after the argument of the function is interpolated by a global
polynomial at a suitable set of collocation points. Obviously, when the argu-
ment is itself a polynomial of degree ≤ N , as in the constant-coefficient heat
equation (1.2.21), the interpolation returns the value of the argument.

1.2.3 A Legendre Galerkin with Numerical Integration (G-NI)
Method for the Advection-Diffusion-Reaction Equation

Spectral methods are also applicable to time-independent equations. The
general boundary-value problem is given by the equation

M(u) = f (1.2.50)

to be solved in a specified domain, along with the boundary conditions

B(u) = 0 . (1.2.51)

As a first example, we consider the one-dimensional advection-diffusion-
reaction equation
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M(u) =
dF(u)

dx
+ γu = f, (1.2.52)

where the advection-diffusion flux is defined as

F(u) = −ν
du
dx

+ βu.

The domain for the equation is (−1, 1), and the boundary conditions are

B1(u) = u(−1) = 0, (1.2.53a)
B2(u) = F(u)(1) + g = 0. (1.2.53b)

We assume that the coefficients ν, β and γ as well as the data f may vary
in the domain, and that the diffusion coefficient satisfies ν ≥ ν̄ for some
constant ν̄ > 0.

Trial and test functions are defined as follows. Consider the N -th degree
Legendre orthogonal polynomial LN (x). (A detailed discussion of the prop-
erties of Legendre polynomials is furnished in Sect. 2.3.) The polynomial LN

has N − 1 extrema xj , i.e., L′
N (xj) = 0, for j = 1, . . . , N − 1; they belong

to the interval (−1, 1). Adding the boundary points x0 = −1 and xN = 1,
we obtain N +1 points, which are high-precision quadrature nodes (they are
termed the Legendre Gauss-Lobatto nodes); indeed, there exist weights wj

such that the quadrature formula

∫ 1

−1

p(x) dx ∼
N∑

j=0

p(xj)wj (1.2.54)

is exact for all polynomials p of degree ≤ 2N − 1. Based on these nodes, we
now introduce the characteristic Lagrange polynomials

ψj(x) =
1

N(N + 1)
(1− x2)
(xj − x)

L′
N (x)

LN (xj)
, j = 0, . . . , N, (1.2.55)

which are discrete (shifted) delta-functions, i.e., they are N -th degree poly-
nomials which approximate the (shifted) Dirac delta-functions δ(x− xj), as
they satisfy

ψj(xk) = δjk, j, k = 0, . . . , N. (1.2.56)

In view of the boundary condition (1.2.53a), we drop ψ0. The remaining
functions ψj , j = 1, . . . , N , will be our trial and test functions. The approx-
imate solution is sought in the form

uN (x) =
N∑

l=1

ulψl(x). (1.2.57)

Note that the coefficients in the expansion are precisely the values of uN at
the nodes ul = uN (xl), l = 1, . . . , N .
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In order to arrive at the equations which uniquely define uN , we have
to go back to the exact solution u of our boundary-value problem. We shall
derive a set of integral conditions satisfied by the exact solution (which con-
stitute the weak formulation of the problem). The same integral conditions
are enforced on the discrete solution. To this end, consider (1.2.52), multiply
both sides by any test function ψj and integrate over the interval (−1, 1); we
obtain the equations
∫ 1

−1

dF(u)
dx

ψj dx +
∫ 1

−1

γuψj dx =
∫ 1

−1

f ψj dx, j = 1, . . . , N. (1.2.58)

Integrating the first term by parts, we get
∫ 1

−1

dF(u)
dx

ψj dx = −
∫ 1

−1

F(u)
dψj

dx
dx + [F(u)ψj ]

1
−1

= −
∫ 1

−1

F(u)
dψj

dx
dx− g δjN ,

where we have used the boundary condition (1.2.53b), as well as the relations
(1.2.56). Thus, recalling the definition of the flux F(u), we see that u satisfies

∫ 1

−1

ν
du
dx

dψj

dx
dx −

∫ 1

−1

βu
dψj

dx
dx +

∫ 1

−1

γuψj dx (1.2.59)

=
∫ 1

−1

f ψj dx + g δjN , j = 1, . . . , N.

This is precisely the set of equations which we ask to be satisfied by uN as
well. If we replace u by uN in (1.2.59), we obtain the numerical scheme

∫ 1

−1

ν
duN

dx
dψj

dx
dx −

∫ 1

−1

βuN dψj

dx
dx +

∫ 1

−1

γuN ψj dx (1.2.60)

=
∫ 1

−1

f ψj dx + g δjN , j = 1, . . . , N.

Note that uN satisfies (1.2.53a) exactly; conversely, (1.2.53b) is not en-
forced directly on uN , yet it has been incorporated into (1.2.59). We say that
we enforce this boundary condition in a weak, or natural, manner.

Since the integrals in (1.2.59) are evaluated exactly, we have obtained a
pure Galerkin scheme. However, only in special situations (e.g., constant co-
efficients and data) can the integrals above be computed analytically. Other-
wise, we have to resort to numerical integration, in which case the natural
choice is the quadrature formula (1.2.54). In this way, we obtain the follow-
ing modified scheme, which we term the Galerkin with numerical integration
scheme, or in short, the G-NI scheme:
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N∑

k=0

(
ν

duN

dx
dψj

dx

)
(xk)wk −

N∑

k=0

(
βuN dψj

dx

)
(xk)wk +

N∑

k=0

(γuNψj)(xk)wk

=
N∑

k=0

(f ψj)(xk)wk + g δjN , j = 1, . . . , N. (1.2.61)

Inserting the expansion (1.2.57) for uN , we can rephrase this scheme as
a system Ku = b of N algebraic equations in the unknowns ul; in particular,
they are

N∑

l=1

Kjlul = bj , j = 1, . . . , N, (1.2.62)

where the matrix entries are

Kjl =
N∑

k=0

(
ν

dψl

dx
dψj

dx

)
(xk)wk −

(
β

dψj

dx

)
(xl)wl + γ(xj)wjδlj ,

and the right-hand side components are

bj = f(xj)wj + g δjN .

Efficient solution techniques for such a system are described in Sect. 4.2.
The G-NI scheme can be given a pointwise, or collocation-like, interpre-

tation, which serves to highlight the effect of the weak enforcement of the
boundary condition (1.2.53b). To this end, we denote by INϕ the N -th de-
gree algebraic polynomial that interpolates a function ϕ at the Gauss-Lobatto
nodes xj , j = 0, . . . , N ; this allows us to introduce the numerical flux

FN (uN ) = IN (F(uN )).

The two first sums in (1.2.61) can be written as

N∑

k=0

(
ν

duN

dx
dψj

dx

)
(xk)wk −

N∑

k=0

(
βuN dψj

dx

)
(xk)wk =

= −
N∑

k=0

(
F(uN )

dψj

dx

)
(xk)wk = −

N∑

k=0

(
FN (uN )

dψj

dx

)
(xk)wk.

Now it is crucial to observe that both the terms FN (uN )
dψj

dx
and

dFN (uN )
dx

ψj

are polynomials of degree ≤ 2N−1; hence, they can be integrated exactly by
the quadrature formula (1.2.54). Thus, we are allowed to counter-integrate
by parts in the last sum appearing above, obtaining
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−
N∑

k=0

(
FN (uN )

dψj

dx

)
(xk)wk = −

∫ 1

−1

FN (uN )
dψj

dx
dx

=
∫ 1

−1

dFN (uN )
dx

ψj dx− [FN (uN )ψj ]1−1

=
N∑

k=0

(
dFN (uN )

dx
ψj

)
(xk)wk −F(uN )(1)ψj(1) .

If we insert this expression into (1.2.61) and use the relations (1.2.56), we
obtain the following equivalent formulation of the G-NI scheme:
(

dFN (uN )
dx

+ γuN

)
(xj)wj−F(uN )(1)δjN = f(xj)wj+gδjN , j = 1, . . . , N.

(1.2.63)
For j = 1, . . . , N − 1, this is simply

dFN (uN )
dx

+ γuN − f

∣∣∣∣
x=xj

= 0, (1.2.64)

i.e., at the internal quadrature points we are collocating the differential equa-
tion after replacing the exact flux F(uN ) by the numerical one FN (uN ). For
j = N we get

dFN (uN )
dx

+ γuN − f

∣∣∣∣
x=1

− 1
wN

(
F(uN ) + g

)∣∣
x=1

= 0, (1.2.65)

i.e., at x = 1 we are collocating a particular linear combination of the discrete
form of the differential equation and the boundary condition. Since 1/wN

grows like N2 as N →∞ (see Sect. 2.3.1), (1.2.65) shows that the boundary
condition is approximately fulfilled in a more and more accurate way as the
equation residual MN (uN )− f

∣∣
x=1

gets smaller and smaller for N → ∞
(recall that the residual vanishes at all internal nodes, see (1.2.64)).

The example addressed above is indeed a paradigm for a general class
of second-order steady problems. The G-NI discretization consists of collo-
cating the differential equation (with numerical flux) at the internal Gauss
Lobatto nodes; Dirichlet boundary conditions (i.e., conditions involving only
pointwise values of the unknown function) are fulfilled exactly at the bound-
ary points, whereas Neumann or Neumann-like boundary conditions (i.e.,
conditions involving also the first derivative(s) of the unknown function) are
enforced via an intrinsically (and unambiguously) defined penalty method.

The accuracy of the G-NI method is illustrated by the following example.
We consider the problem (1.2.50)–(1.2.53) in the interval (−1, 1) with ν = 1,
β(x) = cos(π/4 · (1+x)) and γ = 1. The right-hand side f(x) and the datum
g are computed so that the exact solution is

u(x) = cos(3π(1 + x)) sin(π/5 · (x + 0.5)) + sin(π/10) . (1.2.66)
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For several values of N , we denote by uN the G-NI solution (N is the
polynomial degree) and by up (p = 1, 2, 3) the (piecewise-polynomial) finite-
element solution corresponding to a subdivision in subintervals of equal size.
In all cases, N +1 denotes the total number of nodal values. In Fig. 1.4 (left)
we plot the maximum error of the solution, while on the right we plot the
absolute error of the boundary flux |(ν dup

dx (1)+βup(1))−g| for p = 1, 2, 3, N .
The two errors exhibit a similar decay with respect to N . In particular, the
boundary condition at x = 1 is fulfilled with spectral accuracy.
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Fig. 1.4. Comparison between the accuracy of the G-NI solution (corresponding
to the curve p = N) and the finite-element solutions of order p = 1, 2 and 3 versus
N which represents the total number of nodal values. The maximum error between
the numerical solution and the exact one u(x) = cos(3π(1+x)) ·sin(π/5 ·(x+0.5))+
sin(π/10) (left) and the absolute value of the error on the flux at x = 1 (right)

1.2.4 A Legendre Tau Method for the Poisson Equation

Our second example of a steady boundary-value problem is the Poisson equa-
tion on (−1, 1) × (−1, 1), with homogeneous Dirichlet boundary conditions.
The choice of M and B in (1.2.50) and (1.2.51) is as follows:

M(u) = −
(

∂2u

∂x2
+

∂2u

∂y2

)
, (1.2.67)

B1(u) = u(x,−1) , (1.2.68a)
B2(u) = u(x,+1) , (1.2.68b)
B3(u) = u(−1, y) , (1.2.68c)
B4(u) = u(+1, y) . (1.2.68d)

(We prefer to use the negative sign in second-derivative operators such as
(1.2.67) so that M(u) is a positive, rather than a negative, operator. Al-
though this might be disconcerting to some, it does simplify the discussion
of the mathematical properties of the operator and its numerical approxima-
tions. For example, some spectral approximations to (1.2.67)–(1.2.68) yield
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symmetric and positive-definite matrices, albeit not the particular approxi-
mation discussed in the present subsection. This will become clearer in due
course, particularly in Chaps. 4, 6 and 7.)

Both Legendre and Chebyshev polynomials are suitable trial functions.
A two-dimensional Legendre expansion is produced by the tensor-product
choice

φkl(x, y) = Lk(x)Ll(y) , k, l = 0, 1, . . . , N , (1.2.69)

where Lk is the Legendre polynomial of degree k. The approximate solution
is

uN (x, y) =
N∑

k=0

N∑

l=0

aklLk(x)Ll(y) . (1.2.70)

Note that the trial functions do not satisfy the boundary conditions indi-
vidually. (In most Galerkin methods the trial functions do satisfy the bound-
ary conditions.) In this case two separate sets of test functions are used to
enforce the PDE and the boundary conditions. For the PDE the test functions
are

ψkl(x, y) = Qk(x)Ql(y) , k = 0, 1, . . . , N − 2 , (1.2.71)

where
Qk(x) =

2k + 1
2

Lk(x) ; (1.2.72)

for the boundary conditions they are

χi
k(x) = Qk(x) ,

i = 1, 2 ,

k = 0, 1, . . . , N ,
(1.2.73a)

(1.2.73b)

χi
l(y) = Ql(y) ,

i = 3, 4 ,

l = 0, 1, . . . , N .
(1.2.73c)

The integral conditions for the differential equations are
∫ 1

−1

dy
∫ 1

−1

M(uN )ψkl(x, y) dx = 0 , k, l = 0, 1, . . . , N − 2 , (1.2.74)

while the equations for the boundary conditions are

∫ 1

−1

Bi(uN )χi
k(x) dx = 0 ,

i = 1, 2 ,

k = 0, 1, . . . , N ,
(1.2.75a)

∫ 1

−1

Bi(uN )χi
l(y) dy = 0 ,

i = 3, 4 ,

l = 0, 1, . . . , N .
(1.2.75b)

Four of the conditions in (1.2.75) are linearly dependent upon the others; in
effect the boundary conditions at each of the four corner points have been
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applied twice. For the Poisson equation the above integrals may be performed
analytically. The result is

−(a(2,0)
kl + a

(0,2)
kl ) = fkl , k, l = 0, 1, . . . , N − 2 , (1.2.76)

N∑

k=0

akl = 0 ,
N∑

k=0

(−1)kakl = 0 , l = 0, 1, . . . , N , (1.2.77a)

N∑

l=0

akl = 0 ,
N∑

l=0

(−1)lakl = 0 , k = 0, 1, . . . , N , (1.2.77b)

where

fkl =
∫ 1

−1

dy
∫ 1

−1

f(x, y)ψkl(x, y) dx , (1.2.78)

a
(2,0)
kl =

(
k + 1

2

) N∑

p=k+2
p+k even

[p(p + 1)− k(k + 1)]apl , (1.2.79a)

a
(0,2)
kl =

(
l + 1

2

) N∑

q=l+2
q+l even

[q(q + 1)− l(l + 1)akq] . (1.2.79b)

These last two expressions represent the expansions of ∂2uN/∂x2 and ∂2uN/∂y2,
respectively, in terms of the trial functions.
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Fig. 1.5. Maximum errors for the Poisson problem for Legendre tau and second-
order finite-difference schemes
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The Legendre tau approximation to the Poisson equation consists of
(1.2.76) and (1.2.77). An efficient scheme for the solution of these equations
is provided in Sect. 4.1.

The specific example that will be used to illustrate the accuracy of this
method is

f(x, y) = 2π2 sinπx sinπy , (1.2.80)

which corresponds to the analytic solution

u(x, y) = sinπx sinπy . (1.2.81)

The results are given in Fig. 1.5 along with results for a second-order finite-
difference scheme. The integer N denotes the degree of the expansion (1.2.70)
in each dimension for the Legendre tau method and the number of uniform
intervals in each dimension for the finite-difference method.

1.2.5 Basic Aspects of Galerkin, Collocation, G-NI
and Tau Methods

The Galerkin, collocation, G-NI and tau methods are more general than
suggested by any of the above examples. In a broad sense, pure Galerkin
and tau methods are implemented in terms of the expansion coefficients,
whereas collocation methods and G-NI (Galerkin with numerical integra-
tion) methods are implemented in terms of the physical space values of the
unknown function. The first example illustrated only one of the key aspects
of Galerkin methods – the test functions are the same as the trial functions.
The other important aspect is that the trial functions must individually sat-
isfy all or part of the boundary conditions (the remaining ones are enforced
weakly within the integral conditions). In the case of periodic boundary condi-
tions the trigonometric polynomials automatically satisfy these requirements.
Otherwise, simple linear combinations of the orthogonal polynomials will usu-
ally suffice. For example, an obvious choice of trial functions for a Chebyshev
Galerkin approximation to the fourth example is

φk(x) =

{
T0(x)− Tk(x) , k even ≥ 2 ,

T1(x)− Tk(x) , k odd ≥ 3 ;

a computationally more efficient choice (see Sect. 2.3.3) is provided by

φk(x) = Tk−2(x)− Tk(x) , k ≥ 2 .

On the other hand, for the tau method the trial functions do not individ-
ually satisfy the boundary conditions. Thus, some equations are needed to
ensure that the global expansion satisfies the boundary conditions. Some of
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the integral equations corresponding to the highest order test functions are
dropped in favor of these boundary condition equations.

The collocation method uses the values of the function at certain phys-
ical points as the fundamental representation; the expansion functions are
employed solely for evaluating derivatives (and only when a fast transform
is available and convenient). The collocation points for both the differential
equations and the boundary conditions are usually the same as the physi-
cal grid points. The most effective choice for the grid points are those that
correspond to quadrature formulas of maximum precision.

The Galerkin with numerical integration (G-NI) method aims at preserv-
ing the advantages of both Galerkin and collocation methods. Integrals ap-
pearing in the weak formulation of the problem are efficiently approximated
by the quadrature formulas mentioned above. Usually, the solution is again
represented in physical space through its values at a selected set of nodes. In
most cases, as in the example in Sect. 1.2.3, the nodes that serve to repre-
sent the solution coincide with the nodes that are used for quadrature. Some
exceptions are discussed in later chapters. Certain boundary conditions (for
instance, those involving derivatives for second-order operators) are imposed
weakly, through a penalty approach that naturally stems from the weak for-
mulation of the problem.

1.3 Three-Dimensional Applications in Fluids:
A Look Ahead

Chapters 2–4 of CHQZ3 are devoted to the details of spectral algorithms
for investigations of instability, transition and turbulence in fluid flows. The
simplest class of flows, termed laminar flow , comprises those flows in which
the motion is quite regular and predictable, even though possibly unsteady.
(Plane Poiseuille flow, discussed in CHQZ3, Sects. 1.3, 2.3 and 3.4, is one
example of a laminar flow.) Laminar flows are either stable or unstable. In
somewhat oversimplified terms, linearly stable flows are those in which all
sufficiently small perturbations to the mean flow decay, whereas unstable
flows are those in which some small perturbations grow. Many flows start
out as laminar, become unstable (in space or time), and eventually undergo
a transition to turbulent flow. The complex category of turbulent flow is
described by Hinze (1975) as

“Turbulent fluid motion is an irregular condition of flow in which
the various quantities show a random variation with time and space
coordinates, so that statistically distinct average values can be dis-
cerned.”

In this section we illustrate some representative flow physics results from
many of the principal fully spectral algorithms that we discuss in Chaps.
2–4.
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Turbulent flows contain a wide range of length scales, bounded above by
the geometric dimension of the flow field and bounded below by the dissipa-
tive action of the molecular viscosity (see, for instance, Tennekes and Lumley
(1972, Chap. 3)). The ratio of the macroscopic (largest) integral length scale
L to the microscopic (smallest) length η (usually known as the Kolmogorov
length scale) is

L

η
= Re3/4 ,

where the Reynolds number Re is

Re =
uL

ν
, (1.3.1)

with ν denoting the kinematic viscosity and u =
(
u′2/3

)1/2

, where u′ is the
fluctuating velocity, and the bar denotes time averaging. To resolve these
scales, N mesh points would be needed in each direction, where

N = c1
L

η
.

(A summary of nondimensionalization in general and Reynolds numbers in
particular is provided in CHQZ3, Sect. 1.1.4.)

Two simple classes of turbulent flows are homogeneous turbulence, for
which the flow properties are invariant with respect to translations, and
isotropic turbulence, for which the flow properties everywhere are invariant
with respect to rotations. (Isotropic turbulence is necessarily homogeneous.)
For the simulation of homogeneous turbulence with a spectral method, it is
appropriate to take c1 = 2; for a fourth-order scheme c1 would be about 6 and
for a second-order scheme about 24. (These estimates are based on the typi-
cal requirement of 0.1% or better accuracy per period, using estimates such
as those by Kreiss and Oliger (1972), and conclusions from the channel flow
computations presented in CHQZ3, Sect. 1.3.) The ratio of the time scales of
the macroscopic and microscopic motions is T/t =

√
Re. Consequently, the

number of time-steps required to describe the flow during the characteristic
period (or temporal scale) of the physically significant events is

NTs = c0
√

Re , (1.3.2)

where the multiplicative factor, c0, is between 100 and 1000 depending on the
time-stepping algorithm and the time interval needed to obtain reasonable
statistics for the flow. Now, the number of operations required to update the
solution per time-step of a multistep scheme such as Adams-Bashforth or per
stage of a multistage scheme such as Runge-Kutta is

c2N
3 log2 N + c3N

3 ,
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where, for the spectral method, c2 = 45, c3 = 35, for the fourth-order spatial
method, c2 = 17, c3 = 120, and for the second-order spatial method, c2 = 17,
c3 = 60. (For the finite-difference methods, this assumes that the convection
term is treated explicitly, the diffusion term is treated implicitly, a Poisson
equation is solved for the pressure, and that the implicit equations for the
finite-difference method are solved exactly using FFTs. See CHQZ3, Sect. 3.3
for the details of the spectral algorithm.) Thus, for homogeneous turbulence
simulations, the storage requirement is roughly proportional to

4c31Re9/4 , (1.3.3)

and the total number of operations is approximately

c0 c31Re11/4
[
c2 log2(c1Re3/4) + c3

]
. (1.3.4)

The estimates above provide the resolution requirements for computations in
which all the scales of the flow are resolved numerically. Such a computation
is known as a direct numerical simulation (DNS). Many of the examples that
follow are from DNS computations.

The original Orszag and Patterson (1972) computations were performed
in an era in which the fastest supercomputer had a speed of roughly 1 MFlop
(106 floating point operations per second). Using a typical value of c0 = 500,
the computer time required then for one realization of homogeneous turbu-
lence by a spectral method was, according to (1.3.4), about 10 hours for their
Re = 45 cases. (Their computations used N = 32 modes in each direction.)
For sustained performances typical of the fastest supercomputers circa 1980
(100 MFlop), the computer time required for one realization of homogeneous
turbulence by a spectral method is 6 minutes for Re = 45 and 2 years for
Re = 3000 (for the Brachet et al. (1983) case mentioned below, although they
were able to save a factor of 64 by exploiting symmetries). Assuming a sus-
tained performance of 1 TFlop (1012 floating point operations per second,
typical of the very fastest supercomputers circa 2000), the computer time
required for one realization of homogeneous turbulence by a spectral method
is about 10 hours for Re = 3000, and about 4 months for Re = 40, 000 (for
the Kaneda and Ishihara (2006) results mentioned below).

Spectral methods have been singularly successful for this problem since
the corresponding requirements for a fourth-order finite-difference method
are typically a factor of 10 longer in time and a factor of 20 larger in stor-
age. Second-order finite-difference methods require more than 3 orders of
magnitude more resources than spectral methods on this problem. Moreover,
Fourier functions arise naturally in the theoretical analysis of homogeneous
turbulence, and they are the natural choice of trial functions for spectral
methods. Thus, the spectral methods, apart from their computational effi-
ciency, have the added advantage of readily permitting one to monitor and
diagnose nonlinear interactions which contribute to resonance effects, energy
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transfer, dissipation and other dynamic features. Furthermore, if there are
any symmetries underlying a problem, and symmetry-breaking phenomena
are precluded, spectral methods permit unique exploitation of these symme-
tries. (Since the finite-difference methods cannot benefit from the symmetries
exploited by Brachet et al. (1983), even the fourth-order method is nearly
a thousand times less efficient than the spectral method in this case.) These
advantages in computational efficiency are so compelling that they have mo-
tivated many flow physics research groups to adopt spectral methods despite
their additional complexity rather than simply waiting for increased compu-
tational power to make their desired computations feasible. These advantages
have also inspired many numerical analysts to develop more efficient spectral
methods and to provide their firm theoretical foundation.

Much theoretical work on homogeneous turbulence has focused on the de-
tails of the inertial range, which is the range of scales of motion (well observed
experimentally) that are not directly affected by the energy maintenance and
dissipation mechanisms (Mestayer et al. (1970)) and that possess an energy
spectrum exhibiting a scaling behavior (Grant, Stewart, and Moilliet (1962)):

E(k, t) = k−m

where k is the magnitude of the wavenumber vector and m is close to 5/3.
The spectrum with m = 5/3 is the famous Kolmogorov spectrum. The huge
Reynolds numbers required to produce an extended inertial range are ex-
perimentally accessible only in geophysical flows such as planetary boundary
layers and tidal channels.

The pioneering simulations of isotropic turbulence by Orszag and Pat-
terson (1972) evolved over the subsequent decade-and-a-half to the first nu-
merically computed three-dimensional inertial range by Brachet et al. (1983).
(See CHQZ3, Sects. 3.3.1 and 3.3.2 for details on this Fourier Galerkin al-
gorithm.) The Reynolds number was 3000 and, of course, crude by experi-
mental standards. This calculation of the Taylor-Green vortex was feasible
only because the symmetries of the problem were fully exploitable with the
spectral method to obtain an effective resolution of 2563, i.e., the equivalent
of N = 256 modes in each spatial direction. Among the salient results of
this study is the physical insight gained into the behavior of turbulence at
high Reynolds number, including the formation of an inertial range and the
geometry of the regions of high vorticity.

Two decades later Kaneda and Ishihara (2006) (see also Yokokawa et
al. (2002)) exploited 512 nodes of the Earth Simulator (then the world’s
fastest computer) to perform isotropic turbulence simulations using a very
similar, Fourier spectral algorithm on grids as large as 40963. (The sustained
speed was as fast as 16 TFlop.) Figure 1.6 illustrates the regions of intense
vorticity in 1/64 of the volume of their 20483 simulation for Re = 16, 135.
The macroscopic scale L is approximately 80% the size of one edge of the
figure, and the microscopic scale η is 0.06% of the edge length. Among the
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many results obtained from their high-resolution simulations was convincing
evidence that the scaled energy spectrum (where the wavenumber is scaled by
the inverse of the Kolmogorov length scale η = (ν3/ε̄)1/4, with ν the viscosity
and ε̄ the average dissipation rate) is not the classical Kolmogorov result of
k−5/3, but rather k−m with m � 5/3− 0.10.

Fig. 1.6. Direct numerical simulation of incompressible isotropic turbulence by
Kaneda and Ishihara (2006) on a 20483 grid. The figure shows the regions of intense
vorticity in a subdomain with 1/4 the length in each coordinate direction of the
full domain [Reprinted with kind permission by the authors]

Rogallo (1977) developed a transformation that permits Fourier spectral
methods to be used for homogeneous turbulence flows, such as flows with uni-
form shear. Blaisdell, Mansour and Reynolds (1993) used the extension of this
transformation to the compressible case to simulate compressible, homoge-
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neous turbulence in uniform shear on 1923 grids (N = 192 grid points in each
spatial direction) using a Fourier collocation method. (In this example, as in
all the examples cited in this section for inhomogeneous flows, the y direc-
tion is the direction of inhomogeneity.) Figure 1.7 illustrates the coalescence
of sound waves that is responsible for enhanced turbulence production in com-
pressible flows. The Rogallo transformation is described in CHQZ3, Sect. 3.3.3
for incompressible flow and in CHQZ3, Sect. 4.3 for compressible flow.

Fig. 1.7. Two-dimensional slice illustrating contours of the pressure field from
a compressible homogeneous turbulence DNS by Blaisdell and Zeman (1992)
[Reprinted with permission from G.A. Blaisdell, O. Zeman (1992); Center for Tur-
bulence Research, Stanford University/NASA Ames Research Center]

The applications cited above were all for problems with no physical bound-
aries. Spectral algorithms for problems with solid boundaries are more subtle,
largely because a pure Fourier method is no longer appropriate. It was not
until the late 1970’s that reliable Fourier-Chebyshev algorithms were applied
to the simplest wall-bounded flows (Orszag and Kells (1980), Kleiser and
Schumann (1980)). The principal advantage of such spectral methods over
finite-difference methods is their minimal phase errors (Sect. 1.2.1). This is
especially important in numerical simulations of instability and transition to
turbulence, because such simulations must follow the evolution and nonlinear
interaction of waves through several characteristic periods. Since phase errors
are cumulative, a method that admits phase errors of even a few percent per
period is unacceptable.

Kleiser and Schumann (1984) devised an influential algorithm for plane
channel flow using two Fourier directions and one Chebyshev direction. This
algorithm was later used by Gilbert and Kleiser (1990) for the first simula-
tion of the complete transition to turbulence process in a wall-bounded flow
using a 1283 grid. Figure 1.8 illustrates the evolution of one of the principal
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diagnostics of a transitional flow – the wall-normal shear of the streamwise
velocity ∂u/∂y. The ordinate in the top part of the figure is the Reynolds

number based on the wall shear velocity; it is given by Reτ =
√

1
ν

∂ū
∂y h,

where h is the channel half-width and ū(y, t) is the average over x and z of
the streamwise velocity. The bottom part of the figure illustrates the evolu-
tion of the vertical shear at the spanwise station containing the peak shear.
These detailed results compared very favorably with the vibrating ribbon
experiments of Nishioka, Asai and Iida (1980). The t = 136 frame was al-
ready computed by Kleiser and Schumann (1984) at lower resolution. (The
Kleiser-Schumann algorithm is given in detail in CHQZ3, Sect. 3.4.1.)

Fig. 1.8. DNS of transition to turbulence in plane channel flow by Gilbert and
Kleiser (1990). The top figure illustrates the evolution in time of the Reynolds
number based on wall friction velocity. The remaining frames illustrate the shear,
∂u/∂y, in the bottom half of the channel in a two-dimensional slice at the span-
wise (z) location containing the maximum shear [Reprinted with permission from
N. Gilbert, L. Kleiser (1990); c© 1990, Taylor and Francis Group]
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Another widely-used algorithm, this one based on the vorticity-velocity
equations, was originally developed by Kim, Moin and Moser (1987) for plane
channel flow (see CHQZ3, Sect. 3.4.1). Figure 1.9 shows results from Rogers
and Moser (1992) using the adaptation of this algorithm to incompressible,
free shear layers; Fourier series are employed in the two homogeneous direc-
tions (x and z) and Jacobi polynomials (see Sect. 2.5) in the y direction.
This figure, based on computations on a 64 × 128 × 64 grid, illustrates sev-
eral aspects of the vorticity from a simulation that is most representative
of experiments on vortex roll-up in mixing layers. The thin, shaded surfaces
correspond to the rib vortices (large component of vorticity normal to the
spanwise direction), the cross-hatched surfaces denote the “cups” (regions of
strong spanwise vorticity) that are critical to free shear layer transition, and
the lines are vortex lines that comprise the rib vortices.

Fig. 1.9. DNS of vortex rollup in an incompressible free shear layer by Rogers and
Moser (1992). The surfaces denote two types of regions of strong vorticity and the
lines are vortex lines [Reprinted with permission from M.M. Rogers, R.D. Moser
(1992); c© 1992, Cambridge University Press]

Orszag and Kells (1980) and Orszag and Patera (1983) pioneered the use
of splitting methods for wall-bounded flows. Figure 1.10 illustrates results
from a later version of a splitting method, due to Zang and Hussaini (1986),
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Fig. 1.10. Comparison of hydrogen bubble flow visualizations (left) of incom-
pressible flat plate boundary-layer transition with DNS results of Zang, Hussaini
and Erlebacher (right) [Reprinted with permission from T.A. Zang, M.Y. Hussaini
(1987); c© 1987 ASME]

applied to transition in a simplified version of flow past a flat plate. (The
simplification invokes the parallel flow approximation that is discussed in
CHQZ3, Sects. 2.3.2 and 3.4.5.) The left half of the figure is taken from the
experiments of Hama and Nutant (1963) who used a hydrogen bubble flow
visualization technique to illustrate the strongly nonlinear stage of transition.
The right half of the figure, from Zang, Hussaini and Erlebacher (see Zang,
Krist, Erlebacher and Hussaini (1987) and Zang and Hussaini (1987)), shows
how well this phenomena was reproduced in the numerical computations
using a 128×144×288 grid. These authors demonstrated that the fine details
of the vortex roll-ups were not present in the streamwise symmetry plane
but only appeared in a streamwise plane displaced by a small fraction of
the spanwise wavelength from the symmetric plane. (Details of the splitting
algorithms are provided in CHQZ3, Sect. 3.4.2.)

This same splitting algorithm – the Zang-Hussaini version – was used by
Scotti and Piomelli (2001) in their 643 large-eddy simulations of pulsating
channel flow. Large-eddy simulation (LES) is one method of accounting for the
effects of turbulence by solving an augmented set of equations on a grid much
coarser than for a DNS. (See CHQZ3, Sect. 1.1.3 for a summary of LES and
Sagaut (2005) for a thorough discussion of the subject.) Figure 1.11 illustrates
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Fig. 1.11. Turbulent fluctuations near the bottom wall in incompressible pulsating
channel flow from the LES computations of Scotti and Piomelli (2001). The left
frame is near the end of the acceleration phase and the right frame is at the middle
of the deceleration phase of the cycle [Reprinted with permission from A. Scotti,
U. Piomelli (2001); c© 2001, American Institute of Physics]

the flow structures at a fully turbulent phase of the oscillation (left half of
the figure) and at a relaminarization phase (right half). The solid surface
is a contour of the fluctuating streamwise velocity. The small-scale surfaces
are contours of a measure of the coherent vorticity due to rotational motions.
Note that the grid used for this large-eddy simulation was significantly coarser
than that used in many of the examples above for transitional and turbulent
flows. This illustrates a major attraction of the LES approach. The smaller
grid permits wide parameter studies to be performed as opposed to the one-
of-a-kind simulations typical of direct numerical simulations for such flows.
Scotti and Piomelli did parametric studies using LES to characterize the
detailed physics of such pulsating flows.

Figure 1.12 illustrates results from three additional classes of spectral al-
gorithms. The physical problem is the study of the instability of flow past
a flat plate. Unlike the computation of Zang, Hussaini and Erlebacher, shown
above in Fig. 1.10, where the parallel flow approximation was used to study
the temporal instability of this important physical problem, the results in
Fig. 1.12 were for the unadulterated, spatial instability of the nonparallel
flow past a flat plate. This problem requires the resolution of 10’s or 100’s of
wavelengths in the streamwise direction (and has challenging outflow bound-
ary conditions) rather than the mere 1 or 2 wavelengths in x that are needed
in the parallel flow approximation. The direct numerical simulation results
used Spalart’s (1988) ingenious fringe method, which permits a highly accu-
rate approximation to be obtained with a Fourier approximation in x. (See
CHQZ3, Sect. 3.6.1 for the details.) These two-dimensional DNS computa-
tions required approximately 4 points per wavelength in x and no more than
40 Jacobi polynomials in y. The parabolized stability equations (PSE) method
solve a much more economical set of equations using a marching method in
x, a low-order Fourier expansion in z and a Chebyshev collocation method
in y with N ≤ 40. (See CHQZ3, Sects. 2.4.1 and 2.5.2 for PSE algorithms.)
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Fig. 1.12. Evolution of the spatial instability of an incompressible flat-plate bound-
ary layer by Bertolotti, Herbert and Spalart (1992). Results are shown for direct
numerical simulation (DNS), parabolized stability equations (PSE) and linear sta-
bility theory (LST) using the parallel flow approximation [Adapted with permission
from F.P. Bertolotti, Th. Herbert, P.R. Spalart (1992); c© 1992, Cambridge Univer-
sity Press]

The figure compares the spatial development of the maximum streamwise
velocity perturbation as computed by the DNS and by the PSE; also shown
for comparison are results of linear stability theory (LST) using the parallel
flow approximation. (Spectral algorithms for linear stability are discussed in
CHQZ3, Sect. 2.3.) The results of the PSE method agree well with the DNS
results and are far cheaper. Hence, the PSE is far better suited to parametric
studies.

Simulations of much later stages of transition in spatially developing flows
have also been performed with both PSE and DNS techniques utilizing spec-
tral methods. The spatial simulation of oblique transition in a boundary layer
on a 1200× 64× 96 grid by Berlin, Wiegel and Henningson (1999) is a prime
example of a high-resolution DNS using the fringe method with a Fourier-
Chebyshev algorithm. Figure 1.13 illustrates a comparison of their numerical
results with flow visualizations of their experiment on transition in a bound-
ary layer. (The algorithm uses components discussed in CHQZ3, Sects. 3.4.1,
3.4.4 and 3.6.1.)

In addition to the DNS, LES and PSE computations emphasized in the
examples so far, spectral methods have also excelled in computations of
eigenvalue problems. Indeed, Orszag’s (1971b) demonstration of the power
of Chebyshev spectral methods for discretizing the eigenvalue problems aris-
ing in linear stability analyses inspired many subsequent workers to adopt
spectral methods for such problems in both incompressible and compressible
flows. Eventually, in the 1990’s computer resources were adequate for solving
such problems with two or even three directions treated as inhomogeneous.
An example of a large-scale eigenvalue problem solved by Theofilis (2000),
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Fig. 1.13. Streamwise velocity flow visualizations of incompressible boundary-layer
transition by Berlin, Wiegel and Henningson (1999): experiment (a) and spatial
computation (b) [Reprinted with permission from S. Berlin, M. Wiegel, D.S. Hen-
nigson (1999); c© 1999, Cambridge University Press]

Fig. 1.14. Isosurface of disturbance vorticity of the primary instability of an in-
compressible separation bubble by Theofilis (2000) [Reprinted with permission from
Springer-Verlag Berlin, Heidelberg 2006]
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who used two Chebyshev directions and one Fourier direction, is given in
Fig. 1.14. Spectral algorithms for discretizing the eigenvalue problems of fluid
dynamical linear stability are described in much of CHQZ3, Chap. 2.

This list is by no means exhaustive and certainly neglects applications
in related disciplines such as meteorology, oceanography, plasma physics and
general relativity. Many of the components of algorithms mentioned above
have been analyzed theoretically. The essential elements of the numerical
analysis are provided in Chap. 7. Rigorous error estimates for some incom-
pressible Navier-Stokes algorithms are reviewed in CHQZ3, Chap. 3.

The examples in this section have been confined to those using classical
spectral methods. We noted earlier in this section that fourth-order methods
require a factor of 10 more computational resources than spectral methods.
The desire to handle problems in complex domains with greater than fourth-
order accuracy has motivated the development of higher order methods using
domain decomposition. Chapters 5 and 6 of the companion book (CHQZ3)
survey spectral methods in complex domains. Chapters 2–7 of this book and
Chaps. 1–4 of CHQZ3 are devoted to classical spectral methods.



2. Polynomial Approximation

The expansion of a function u in terms of an infinite sequence of orthogonal
functions {φk}, e.g., u =

∑∞
k=−∞ ûkφk or u =

∑∞
k=0 ûkφk, underlies many

numerical methods of approximation. The accuracy of the approximations
and the efficiency of their implementation influence decisively the domain of
applicability of these methods in scientific computations.

The most familiar approximation results are those for periodic functions
expanded in Fourier series. The k-th coefficient of the expansion decays faster
than any inverse power of k when the function is infinitely smooth and all
its derivatives are periodic as well. In practice this decay is not exhibited
until there are enough coefficients to represent all the essential structures of
the function. The subsequent rapid decay of the coefficients implies that the
Fourier series truncated after just a few more terms represents an exceedingly
good approximation of the function. This characteristic is usually referred to
as spectral accuracy of the Fourier method.

The property of spectral accuracy is also attainable for smooth but nonpe-
riodic functions provided that the expansion functions are chosen properly. It
is not necessarily true that the coefficients of the expansion of a smooth func-
tion in terms of any orthogonal smooth basis decay faster than algebraically
– usually spectral accuracy is attained only when the function exhibits very
special boundary behavior. However, the eigenfunctions of a singular Sturm-
Liouville operator allow spectral accuracy in the expansion of any smooth
function. No a priori restriction on the boundary behavior is required. More-
over, since the eigenfunctions of the most common singular Sturm-Liouville
problems are polynomials, such systems are a natural extension of the Fourier
system for the approximation of nonperiodic functions.

The expansion in terms of an orthogonal system introduces a linear trans-
formation between u and the sequence of its expansion coefficients {ûk}. This
is usually called the transform of u between physical space and transform (or
wavenumber) space. If the system is complete in a suitable Hilbert space, this
transform can be inverted. Hence, functions can be described both through
their values in physical space and through their coefficients in transform
space.

The expansion coefficients depend on (almost) all the values of u in phys-
ical space, and they can rarely be computed exactly. A finite number of
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approximate expansion coefficients can be easily computed using the values
of u at a finite number of selected points, usually the nodes of high-precision
quadrature formulas. This procedure defines a discrete transform between
the set of values of u at the quadrature points and the set of approximate,
or discrete, coefficients. With a proper choice of the quadrature formulas, the
finite series defined by the discrete transform is actually the interpolant of u
at the quadrature nodes. If the properties of accuracy (in particular the spec-
tral accuracy) are retained by replacing the finite transform with the discrete
transform, then the interpolant series can be used instead of the truncated
series to approximate functions.

For some of the most common orthogonal systems (Fourier and Chebyshev
polynomials) the discrete transform can be computed in a “fast” way, i.e.,
with an operation count with leading term (5/2)N log2 N , where N is the
number of polynomials, rather than with the 2N2 operations required by
a matrix-vector multiplication.

In this chapter we shall describe in detail those orthogonal systems for
which spectral accuracy is guaranteed. Some of their approximation proper-
ties will be surveyed, and practical indications on how to use the approxi-
mating functions will be given. A rigorous description of the approximation
properties is postponed to Chapter 5.

The first five sections in this chapter are devoted to one-dimensional ap-
proximation. Multidimensional approximations on a Cartesian domain (i.e.,
a Cartesian product of intervals) are constructed by the familiar tensor-
product approach. They are considered in Sect. 2.8; some specific formulas
are also given in Sect. 5.8. Finally, several approximations in non-Cartesian
domains such as triangles and hexahedra are briefly surveyed in Sect. 2.9.

The technical definitions of the integrals, Hilbert spaces, and norms used
in the analysis of spectral methods are provided in Appendix A. They are
referenced within the text by the label of that section in the appendix in
which they are discussed.

We concentrate on discussing the details of spectral approximations in
Cartesian coordinates on bounded domains. The texts by Fornberg (1996)
and Boyd (2001) each furnish an entire chapter on spectral methods in spher-
ical and polar coordinates. Boyd (2001) also devotes an entire chapter to
spectral methods on unbounded domains. We do, however, make some brief
comments on polar coordinate systems in Sect. 3.9. We also cover the fun-
damentals of expansions in Laguerre polynomials (for semi-infinite intervals)
and in Hermite polynomials (on the infinite interval), as well as the basics
of spectral approximations on triangles (in two dimensions) and tetrahedra,
prisms and pyramids (in three dimensions). Mappings for both bounded and
unbounded domains are also outlined.

Our discussion of spectral approximations is confined to applications to
deterministic problems. Many years ago Wiener (1930) proposed the use
of expansions in multidimensional Hermite polynomials for approximating
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Gaussian stochastic processes. In the late 1980’s such expansions began to
be used for large-scale computations of stochastic structural dynamics prob-
lems; see Ghanem and Spanos (1991). Xiu and Karniadakis (2002) extended
this approach to a wide set of orthogonal polynomial expansions and have
focused their subsequent work on fluid dynamics applications. A key aspect
of this approach is that truncation for multidimensional expansions is not
accomplished in the manner that is customary for the tensor-product expan-
sions used in deterministic spectral methods. The interested reader should
consult these basic references and keep abreast of this rapidly developing
class of numerical methods, which is commonly referred to as polynomial
chaos.

2.1 The Fourier System

2.1.1 The Continuous Fourier Expansion

The set of functions
φk(x) = eikx (2.1.1)

is an orthogonal system over the interval (0, 2π):

∫ 2π

0

φk(x)φl(x) dx = 2πδkl =

{
0 if k 	= l ,

2π if k = l .
(2.1.2)

(The overline on φl(x) denotes its complex conjugate.) For a complex-valued
function u defined on (0, 2π), we introduce the Fourier coefficients of u:

ûk =
1
2π

∫ 2π

0

u(x)e−ikx dx , k = 0,±1,±2, . . . . (2.1.3)

The integrals in (2.1.3) exist if u is Riemann integrable (see (A.8), i.e., Sect. 8
of Appendix A), which is ensured, for instance, if u is bounded and piecewise
continuous in (0, 2π). More generally, the Fourier coefficients are defined for
any function that is integrable in the sense of Lebesgue (see (A.9)).

The relation (2.1.3) associates with u a sequence of complex numbers
called the Fourier transform of u. It is possible as well to introduce a Fourier
cosine transform and a Fourier sine transform of u, respectively, through the
formulas

ak =
1
2π

∫ 2π

0

u(x) cos kxdx , k = 0,±1,±2, . . . , (2.1.4)

and

bk =
1
2π

∫ 2π

0

u(x) sin kxdx , k = 0,±1,±2, . . . . (2.1.5)
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The three Fourier transforms of u are related by the formula ûk = ak − ibk

for k = 0,±1,±2, . . . . Moreover, if u is a real valued function, ak and bk are
real numbers, and û−k = ûk.

The Fourier series of the function u is defined as

Su =
∞∑

k=−∞
ûkφk . (2.1.6)

It represents the formal expansion of u in terms of the Fourier orthogonal
system. In order to make this expansion rigorous, one has to cope with three
problems:

(i) When and in what sense is the series convergent?
(ii) What is the relation between the series and the function, u?
(iii) How rapidly does the series converge?

The basic issue is how u is approximated by the sequence of trigonometric
polynomials

PNu(x) =
N/2−1∑

k=−N/2

ûke
ikx , (2.1.7)

as N tends to∞. Theoretical discussions of truncated (or finite) Fourier series
are customarily given for

PNu(x) =
N∑

k=−N

ûke
ikx (2.1.8)

rather than for (2.1.7). We have chosen to use the (mathematically uncon-
ventional) form (2.1.7) because it corresponds directly to the way spectral
methods are actually programmed. In most cases, the most important char-
acterization of the approximation is the number of degrees of freedom. Equa-
tion (2.1.7) corresponds to N degrees of freedom and is preferred by us for
this reason. We shall refer to PNu as the N -th order truncated Fourier series
of u.

Points (i), (ii) and (iii) have been subjected to a thorough mathemati-
cal investigation. See, for example, Zygmund (1959). We review here only
those basic results relevant to the application of spectral methods to partial
differential equations.

We recall the following results about the convergence of the Fourier series.
Hereafter, a function u defined in (0, 2π) will be called periodic if u(0+) and
u(2π−) exist and are equal.

(a) If u is continuous, periodic, and of bounded variation on [0, 2π] (see
(A.8)), then Su is uniformly convergent to u, i.e.,

max
x∈[0,2π]

|u(x)− PNu(x)| → 0 as N →∞ .
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(b) If u is of bounded variation on [0, 2π], then PNu(x) converges pointwise
to (u(x+) + u(x−))/2 for any x ∈ [0, 2π] (here u(0−) = u(2π−)).

(c) If u is continuous and periodic, then its Fourier series does not necessarily
converge at every point x ∈ [0, 2π].

A full characterization of the functions for which the Fourier series is ev-
erywhere pointwise convergent is not known. However, a full characterization
is available within the framework of Lebesgue integration for convergence
in the mean. The series Su is said to be convergent in the mean (or L2-
convergent) to u if

∫ 2π

0

|u(x)− PNu(x)|2 dx −→ 0 as N −→∞ . (2.1.9)

Clearly, the convergence in the mean can be defined for square-integrable
functions. Integrability can be intended in the Riemann sense, but the most
general results require that the integral in (2.1.9) be defined according to
Lebesgue. Henceforth, we assume that u ∈ L2(0, 2π), where L2(0, 2π) is the
space of (classes) of the Lebesgue-measurable functions u : (0, 2π)→ C such
that |u|2 is Lebesgue-integrable over (0, 2π) (see (A.9)). L2(0, 2π) is a complex
Hilbert space (see (A.1)) with inner product

(u, v) =
∫ 2π

0

u(x)v(x) dx (2.1.10)

and norm

‖u‖ =
(∫ 2π

0

|u(x)|2 dx
)1/2

. (2.1.11)

Let SN be the space of the trigonometric polynomials of degree N/2,
defined as

SN = span{eikx | −N/2 ≤ k ≤ N/2− 1} . (2.1.12)

Then by the orthogonality relation (2.1.2) one has

(PNu, v) = (u, v) for all v ∈ SN . (2.1.13)

This shows that PNu is the orthogonal projection of u upon the space of the
trigonometric polynomials of degree N/2. Equivalently, PNu is the closest
element to u in SN with respect to the norm (2.1.11).

Functions in L2(0, 2π) can be characterized in terms of their Fourier coeffi-
cients, according to the Riesz theorem, in the following sense. If u ∈ L2(0, 2π),
then its Fourier series converges to u in the sense of (2.1.9), and

‖u‖2 = 2π
∞∑

k=−∞
|ûk|2 (Parseval identity) . (2.1.14)
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(In particular, the numerical series on the right-hand side is convergent.) Con-
versely, for any complex sequence {ck}, k = 0,±1, . . . , such that∑∞

k=−∞ |ck|2 < ∞, there exists a unique function u ∈ L2(0, 2π) such that
its Fourier coefficients are precisely the ck’s for any k. Thus, for any function
u ∈ L2(0, 2π) we can write

u =
∞∑

k=−∞
ûkφk , (2.1.15)

where the equality has to be intended between two functions in L2(0, 2π).
The Riesz theorem states that the finite Fourier transform is an isomor-
phism between L2(0, 2π) and the space l2 of complex sequences {ck}, k =
0,±1,±2, . . . , such that

∑∞
k=−∞ |ck|2 <∞.

The L2-convergence does not imply the pointwise convergence of PNu
to u at all points of [0, 2π]. However, a nontrivial result by Carleson (1966)
asserts that PNu(x) converges to u(x) as N → ∞ for any x outside a set of
zero measure in [0, 2π].

We deal now with the problem of the rate of convergence of the Fourier
series. Hereafter, we set ∑

|k|�N/2

≡
∑

k<−N/2
k≥N/2

.

First of all, note that by the Parseval identity one has

‖u− PNu‖ =

⎛

⎝2π
∑

|k|�N/2

|ûk|2
⎞

⎠
1/2

. (2.1.16)

On the other hand, if u is sufficiently smooth, then

max
0≤x≤2π

|u(x)− PNu(x)| ≤
∑

|k|�N/2

|ûk| . (2.1.17)

This shows that the size of the error created by replacing u with its N -th
order truncated Fourier series depends upon how fast the Fourier coefficients
of u decay to zero. This in turn depends on the regularity of u in the domain
(0, 2π) and on the periodicity properties of u. Indeed, if u is continuously
differentiable in [0, 2π], then, for k 	= 0,

2πûk =
∫ 2π

0

u(x)e−ikx dx

=
−1
ik

(u(2π−)− u(0+)) +
1
ik

∫ 2π

0

u′(x)e−ikx dx .

(2.1.18)
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Hence,
ûk = O(k−1) . (2.1.19)

If now u′ is itself continuously differentiable in [0, 2π], the last integral in
(2.1.18) is 2π times the k-th Fourier coefficient of u′; hence, it decays like
k−1. It follows that ûk = O(k−2) if and only if u(2π−) = u(0+). Iterating
this argument, one proves that if u is m-times continuously differentiable in
[0, 2π] (m ≥ 1), and if u(j) is periodic for all j ≤ m− 2, then

ûk = O(k−m) , k = ±1,±2, . . . . (2.1.20)

(The symbol u(j) denotes the j-th derivative of u.) The same result holds if u
is (m− 1)-times differentiable almost everywhere in (0, 2π), with its (m− 1)-
th derivative of bounded variation in [0, 2π], and if u(j) is periodic for all
j ≤ m− 2. In this case the integral on the right-hand side of (2.1.18) has to
be replaced by the Riemann-Stieltjes integral

∫ 2π

0
e−ikx du(x) (see (A.8)).

As a corollary of (2.1.20), we conclude that the k-th Fourier coefficient of
a function which is infinitely differentiable and periodic with all its derivatives
on [0, 2π] decays faster than any negative power of k.

Examples

(1) The function

u(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 ,
π

2
< x ≤ 3π

2
,

0 , 0 < x ≤ π

2
,

3π
2

< x ≤ 2π

(2.1.21)

is of bounded variation in [0, 2π]. Its Fourier coefficients are

ûk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

π if k = 0 ,

0 if k 	= 0, even ,

(−1)(k−1)/2

k
if k 	= 0, odd .

Several truncated Fourier series for this function are illustrated in Fig. 2.1(a).
The pointwise convergence is linear and the series is not uniformly convergent.
A more detailed discussion of the convergence is given in Sect. 2.1.4.

(2) The function
u(x) = sin(x/2) (2.1.22)

is infinitely differentiable in [0, 2π], but u′(0+) 	= u′(2π−). Its Fourier coeffi-
cients are

ûk =
2
π

1
1− 4k2

.
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Fig. 2.1. Trigonometric approximations to the square wave ((a) and (d)), to u(x) =
sin(x/2) ((b) and (e)) and to u(x) = 3/(5 − 4 cosx) ((c) and (f)). Parts (a), (b),
and (c) display truncated Fourier series. Parts (d), (e), and (f) display Fourier
interpolating polynomials. The exact function is denoted by the solid curve

The truncated series for this function are shown in Fig. 2.1(b). The conver-
gence is quadratic except at the endpoints. Here it is linear and monotonic,
which is an obvious consequence of the coefficients decaying quadratically
with the same sign.

(3) The function

u(x) =
3

5− 4 cosx
(2.1.23)

is infinitely differentiable and periodic with all its derivatives in [0, 2π]. Its
Fourier coefficients are
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ûk = 2−|k| , k = 0,±1, . . . .

Note that u is actually real analytic on the real axis. This results in the
exponential decay of its Fourier coefficients. The rapid convergence is evi-
dent in Fig. 2.1(c). Note that the truncated series for N = 16 is virtually
indistinguishable from the function itself.

We should stress that the asymptotic rate of decay of the Fourier coef-
ficients does not convey the whole story of the error made in a given ap-
proximation, If a series has a finite rate of decay, ûk = O(k−m), then this
decay is observed only for k > some k0. Should the series be truncated below
k0, then the approximation will be quite poor indeed. Even for an infinitely
differentiable function there is some minimum acceptable k0, and truncations
below this level yield thoroughly unacceptable approximations.

Estimates (2.1.16) and (2.1.17) show that the error between u and its N -th
order truncated Fourier series decays faster than algebraically in 1/N , when
u is infinitely smooth and periodic with all its derivatives. As noted above,
this property is commonly called spectral accuracy , or infinite-order accuracy,
and we say that the series exhibits infinite-order convergence. (The term ex-
ponential convergence has also been used to characterize spectral methods.
However, this term is no longer is common use as a descriptor of spectral
accuracy for infinitely differentiable functions, since the error decay is only
guaranteed to be exponential in N if the function is also analytic. In this text
we only use the term “exponential convergence” in the context of particular
functions for which the convergence is actually exponentially fast.) However,
in the analysis of spectral methods for PDEs, one is often interested in es-
timating global errors like (2.1.16) or (2.1.17) for those functions u having
finite regularity. In such cases, using (2.1.20) in (2.1.16) or (2.1.17) will result
in a non-optimal rate of convergence of PNu to u. A different approach is
then required, and it will be the subject of Sect. 5.1.2.

2.1.2 The Discrete Fourier Expansion

In many practical applications, numerical methods based upon Fourier series
cannot be implemented in precisely the way suggested by the standard treat-
ment of Fourier series that was reviewed in the previous subsection. Some of
the difficulties are: The Fourier coefficients of an arbitrary function are not
known in closed form and must therefore be approximated in some way; there
needs to be an efficient way to recover in physical space the information that
is calculated in transform space; and all but the simplest nonlinearities lead
to extreme complications. The key to overcoming these difficulties is the use
of the discrete Fourier transform and the related discrete Fourier series.

For any integer N > 0, consider the set of points

xj =
2πj
N

, j = 0, . . . , N − 1 , (2.1.24)
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referred to as nodes or grid points or knots. The discrete Fourier coefficients
of a complex-valued function u in [0, 2π] with respect to these points are

ũk =
1
N

N−1∑

j=0

u(xj)e−ikxj , k = −N/2, . . . , N/2− 1 . (2.1.25)

Due to the orthogonality relation

1
N

N−1∑

j=0

e−ipxj =

{
1 if p = Nm, m = 0,±1,±2, . . . ,

0 otherwise ,
(2.1.26)

we have the inversion formula

u(xj) =
N/2−1∑

k=−N/2

ũke
ikxj , j = 0, . . . , N − 1 . (2.1.27)

Consequently, the polynomial

INu(x) =
N/2−1∑

k=−N/2

ũke
ikx (2.1.28)

is the N/2-degree trigonometric interpolant of u at the nodes (2.1.24), i.e.,
INu(xj) = u(xj), j = 0, . . . , N − 1. This polynomial is also known as the
discrete Fourier series of u. Three examples of such series are provided in
Fig. 2.1(d),(e),(f).

The ũk’s depend only on the N values of u at the nodes (2.1.24). The
discrete Fourier transform (DFT) is the mapping between the N complex
numbers u(xj), j = 0, . . . , N − 1, and the N complex numbers ũk, k =
−N/2, . . . , N/2 − 1. The two conventional forms for the DFT are given in
(2.1.25) and (2.1.27), with the latter sometimes referred to as the inverse
DFT. These equations show that the discrete Fourier transform is an orthog-
onal transformation in CN . From a computational point of view, it can be
accomplished by the Fast Fourier Transform algorithm (Cooley and Tukey
(1965)).

In this book we use the term transform method to refer to a computational
procedure in a spectral method that employs the Fast Fourier Transform.
This includes methods for transforming between physical space and transform
space and methods for evaluating derivatives (as discussed above), as well as
methods for evaluating convolution sums (as discussed in Sect. 3.4).

The simplest Fast Fourier Transform (FFT) requires N to be a power of 2.
If the data are fully complex it requires 5N log2 N−6N real operations, where
addition and multiplication are counted as separate operations. In most ap-
plications, u is real and ũ−k = ũk. In this case the operation count is halved.
Fast Fourier Transforms that allow factors of 2, 3, 4, 5 and 6 are widely
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available (Temperton (1983), Frigo and Johnson (2005)) and offer a 10–20%
reduction in the operation count over the basic power-of-2 FFT. For simplic-
ity, we shall often use just 5N log2 N as the operation count for a complex
FFT. A more complete discussion of FFT’s is contained in Appendix B.

Note that the continuous Fourier coefficients of the interpolant are pre-
cisely the values computed via the discrete Fourier transform (2.1.25). On
the other hand, ũk can be regarded as an approximation to ûk using the
composite trapezoidal rule to evaluate the integral in (2.1.3). For infinitely
differentiable, periodic functions the trapezoidal rule is the quadrature for-
mula of Lagrange type with maximum precision.

Another form of the interpolant INu that is of both theoretical and prac-
tical interest can be given. By substituting (2.1.25) into (2.1.28) and re-
arranging the sums, we obtain

INu(x) =
N−1∑

j=0

u(xj)ψj(x) , (2.1.29)

with

ψj(x) =
1
N

N/2−1∑

k=−N/2

eik(x−xj) . (2.1.30)

The functions ψj are the trigonometric polynomials in SN that satisfy

ψj(xl) = δlj , l, j = 0, . . . , N − 1 ; (2.1.31)

this follows from (2.1.24) and (2.1.26). They are the discrete delta-functions
at the nodes (2.1.24), also termed the characteristic Lagrange trigonometric
polynomials at these nodes. The interpolant INu is that particular linear
combination of such functions whose coefficients are simply the values of u
at the grid points.

The interpolation operator IN can be regarded as an orthogonal projec-
tion upon the space SN of the trigonometric polynomials of degree N/2, with
respect to the discrete approximation of the inner product (2.1.10). Actually,
the bilinear form

(u, v)N =
2π
N

N−1∑

j=0

u(xj)v(xj) (2.1.32)

coincides with the inner product (2.1.10) if u and v are polynomials of degree
N/2, due to (2.1.26):

(u, v)N = (u, v) for all u, v ∈ SN . (2.1.33)

As a consequence, (2.1.32) is an inner product on SN , and

‖u‖N =
√

(u, u)N =
√

(u, u) = ‖u‖ (2.1.34)
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is the associated norm. The interpolant INu of a continuous function u sat-
isfies trivially the identity

(INu, v)N = (u, v)N for all v ∈ SN . (2.1.35)

The discrete Fourier coefficients can be expressed also in terms of the exact
Fourier coefficients of u. If the Fourier series (2.1.6) converges to u at every
node (2.1.24), then by (2.1.25) one gets

ũk = ûk +
+∞∑

m=−∞
m �=0

ûk+Nm , k = −N/2, . . . , N/2− 1 . (2.1.36)

Formula (2.1.36) shows that the k-th mode of the trigonometric interpolant
of u depends not only on the k-th mode of u, but also on all the modes of u
that alias the k-th mode on the discrete grid. The (k +Nm)-th wavenumber
aliases the k-th wavenumber on the grid; they are indistinguishable at the
nodes since φk+Nm(xj) = φk(xj). The phenomenon is illustrated in Fig. 2.2.
Shown there are three sine waves with frequencies k = 6, −2, and −10.
Superimposed upon each wave are the eight grid-point values of the function.
In each case these grid-point values coincide with the k = −2 wave.

k = 6

k = −2

k = −10

Fig. 2.2. Three sine waves that have the same k = −2 interpretation on an eight-
point grid. The nodal values are denoted by the filled circles. The actual sine waves
are denoted by the solid curves. Both the k = 6 and the k = −10 waves are
misinterpreted as a k = −2 wave (dashed curves) on the coarse grid

An equivalent formulation of (2.1.36) is

INu = PNu + RNu , (2.1.37)
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with

RNu =
N/2−1∑

k=−N/2

⎛

⎜⎝
∞∑

m=−∞
m �=0

ûk+Nm

⎞

⎟⎠φk . (2.1.38)

The error RNu between the interpolating polynomial and the truncated
Fourier series is called the aliasing error . It is orthogonal to the truncation
error, u− PNu, so that

‖u− INu‖2 = ‖u− PNu‖2 + ‖RNu‖2 . (2.1.39)

Hence, the error due to the interpolation is actually always larger than the
error due to the truncation of the Fourier series.

Numerous papers have appeared over the years, especially in the early
days of spectral methods, that have discussed the role of aliasing errors in
spectral methods. The debate concerned the influence of these errors on both
the stability and the accuracy of the methods. Clever methods were proposed
to remove or control the aliasing effects on spectral calculations (Sect. 3.4 and
CHQZ3, Sect. 3.3). Subsequently, it was proven that the influence of aliasing
on the accuracy of spectral methods is asymptotically of the same order
as the truncation error (Kreiss and Oliger (1979)). Indeed, error estimates
(5.1.10) and (5.1.19) show that the truncation and interpolation errors decay
at the same rate. This implies similar behavior of the approximation errors
for a Galerkin and a collocation scheme. The influence of aliasing on the
stability and accuracy of actual spectral solutions of PDEs will be discussed in
Sect. 3.10 and in CHQZ3, Sects. 3.3.4 and 3.4.6. Rigorous analyses of aliasing
errors in steady Navier-Stokes algorithms are given in CHQZ3, Sect. 3.7.

The sequence of interpolating polynomials exhibits convergence properties
similar to those of the sequence of truncated Fourier series; furthermore, the
continuous and the discrete Fourier coefficients share the same asymptotic
behavior. More precisely, when N →∞, we have

(a) if u is continuous, periodic and of bounded variation on [0, 2π], then INu
converges to u uniformly on [0, 2π];

(b) if u is of bounded variation on [0, 2π], then INu is uniformly bounded on
[0, 2π] and converges pointwise to u at every continuity point for u;

(c) if u is Riemann integrable, then INu converges to u in the mean.

Concerning the discrete Fourier coefficients, we have

(d) for any integer k 	= 0, and any positive N such that N/2 > |k|, let
ũk = ũ

(N)
k be the k-th Fourier coefficient of INu. If u is infinitely smooth

and periodic with all its derivatives, formula (2.1.36) shows that |ũ(N)
k |

decays faster than algebraically in k−1, uniformly in N . More generally,
if u satisfies the hypotheses for which (2.1.20) holds, the same asymptotic
behavior holds for ũ

(N)
k , uniformly in N .
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2.1.3 Differentiation

The manner in which differentiation is accomplished in a spectral method
depends upon whether one is working with a representation of the function
in transform space or in physical space. Differentiation in transform space
consists of simply multiplying each Fourier coefficient by the imaginary unit
times the corresponding wavenumber. If Su =

∑∞
k=−∞ ûkφk is the Fourier

series of a function u, then

Su′ =
∞∑

k=−∞
ikûkφk (2.1.40)

is the Fourier series of the derivative of u. Consequently,

(PNu)′ = PNu′ , (2.1.41)

i.e., truncation and differentiation commute. The series (2.1.40) converges in
L2 provided that the derivative of u (in the sense of distributions, see (A.10))
is a function in L2(0, 2π).

Differentiation in physical space is based upon the values of the function u
at the Fourier nodes (2.1.24). These are used in the evaluation of the discrete
Fourier coefficients of u according to (2.1.25), these coefficients are multiplied
by ik, and the resulting Fourier coefficients are then transformed back to
physical space according to (2.1.27). The values (DNu)j of the approximate
derivative at the grid points xj are thus given by

(DNu)j =
N/2−1∑

k=−N/2

ũ
(1)
k e2ikjπ/N , j = 0, 1, . . . , N − 1 , (2.1.42)

where

ũ
(1)
k = ikũk =

ik

N

N−1∑

l=0

u(xl)e−2iklπ/N , k = −N/2, . . . , N/2−1 . (2.1.43)

(The use of the index l in the latter sum, in lieu of j as in (2.1.25), is motivated
by the matrix formalism used in the sequel.)

The procedure (2.1.42)–(2.1.43) amounts to computing the grid-point val-
ues of the derivative of the discrete Fourier series of u, i.e.,

DNu = (INu)′ , (2.1.44)

where INu is defined in (2.1.28). Since, in general,

DNu 	= PNu′ ,

the function DNu is called the Fourier interpolation derivative of u, to dis-
tinguish it from the true spectral derivative of u given by (2.1.41), which we
refer to as the Fourier projection derivative.
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Interpolation and differentiation do not commute, i.e.,

(INu)′ 	= IN (u′) , (2.1.45)

unless u ∈ SN . However, we shall prove in Sect. 5.1.3 that the error,

(INu)′ − IN (u′) ,

is of the same order as the truncation error for the derivative,

u′ − PNu′ .

It follows that interpolation differentiation is spectrally accurate.
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Fig. 2.3. Several versions of Fourier differentiation for u(x) = sin(x/2). The exact
result is indicated by the solid curves and the approximate results for N = 4, 8 and
16 are indicated by the dashed curves. (a) PNu

′ and (PNu)
′; (b) INu

′; (c) (INu)
′.

Part (d) shows all versions for N = 8

These various Fourier differentiation procedures are illustrated in Fig. 2.3
for the function u(x) = sin(x/2). Part (a) shows both PNu′ and (PNu)′,
which are identical. Part (b) displays INu′, and part (c) shows (INu)′. The
function u′ has a discontinuity of the same character as the square wave. The
characteristic oscillations arising from a discontinuity, known as the Gibbs
phenomenon, will be discussed at length in Sect. 2.1.4. The difference between
(INu′) and (INu)′ is apparent in parts (b) and (c). Although the truncation
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errors of both have the same asymptotic behavior, in this example at least,
the constant is much larger for (INu)′.

If u ∈ SN , then DNu = u′. Thus, due to (2.1.33), DN is a skew-symmetric
operator on SN :

(DNu, v)N = −(u,DNv)N for all u, v ∈ SN . (2.1.46)

From a computational point of view, the Fourier interpolation derivative
can be evaluated according to (2.1.43) and (2.1.42). These require N multi-
plications and two discrete Fourier transforms. The total operation count is
(5 log2 N − 5)N real multiplications or additions, provided that the discrete
Fourier transforms are computed by an FFT that takes advantage of the re-
ality of u, or that multiple derivatives are computed at once, as is the case
for multidimensional problems.

Fourier interpolation differentiation can be represented by a matrix that
will be called the Fourier interpolation derivative matrix. Equations (2.1.42)
and (2.1.43) can be combined to yield

(DNu)j =
N−1∑

l=0

(DN )jlul , (2.1.47)

where

(DN )jl =
1
N

N/2−1∑

k=−N/2

ike2ik(j−l)π/N . (2.1.48)

We arrive at the same result by differentiating both sides of (2.1.29) and
evaluating derivatives at the grid points (after exchanging the roles of j and l).
This shows that

(DN )jl = ψ′
l(xj) , (2.1.49)

i.e., the entries of the interpolation derivative matrix are the values of the
derivative of the characteristic Lagrange polynomials (2.1.30) at the grid
points.

Since the k = −N/2 term in the sum (2.1.48) makes a purely imaginary
contribution if u is a real function, its contribution effectively disappears.
(See also the discussion of this point in Sect. 3.3.1.) Therefore, in practice
(2.1.47) reduces to

(DN )jl =
1
N

N/2−1∑

k=−N/2+1

ike2ik(j−l)π/N . (2.1.50)

This sum may be evaluated in closed form:

(DN )jl =

{
1
2 (−1)j+l cot

[
(j−l)π

N

]
, j 	= l ,

0 , j = l .
(2.1.51)
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The skew symmetry of this real matrix is evident. Its eigenvalues are ik,
k = −N/2 + 1, . . . , N/2 − 1. The eigenvalue 0 has double multiplicity. Its
eigenvectors consist of the grid values of the functions 1 and cos(Nx/2). The
latter function is associated with the k = −N/2 term in the sum (2.1.50).
Note that central-difference operators for the first derivative also have a dou-
ble zero eigenvalue.

Similarly, an explicit expression for the second-derivative matrix, again
neglecting the k = −N/2 term, is

(D(2)
N )jl =

⎧
⎪⎨

⎪⎩

1
4 (−1)j+lN +

(−1)j+l+1

2 sin2
[

(j−l)π
N

] , j 	= l ,

− (N−1)(N−2)
12 , j = l .

(2.1.52)

If a Fourier collocation method is based on an odd number of points
rather than an even number, then the derivative matrix has a zero eigenvalue
of single multiplicity. This alternative version of the Fourier method uses the
collocation points

xj =
2j

N + 1
π , j = 0, . . . , N , (2.1.53)

and keeps both the cos(Nx/2) and sin(Nx/2) terms in the discrete real
Fourier series. The derivatives of these terms are both nonzero at the col-
location points. Most applications use FFTs where N is a multiple of 2. For
this reason we have chosen to present Fourier methods here only for an even
number of collocation points. Differentiation matrices for an odd number of
collocation points can be found in Peyret (2002).

For an even number of collocation points there is a way to retain the
information in the cos(Nx/2) mode for a diffusion operator of the form

d
dx

(
a(x)

du
dx

)
.

The trick is to evaluate du/dx not at xj = 2πj/N but at xj+1/2 = 2π×
(j + 1

2 )/N , to form the product a(xj+1/2)du/dx|j+1/2, and to evaluate the
final result at xj . This approach was suggested by Brandt, Fulton and Taylor
(1985). They note that it can be implemented by standard FFTs, and that
it does lead to more accurate approximations.

In principle, it is possible to compute Fourier interpolation differentiation
by simply performing the matrix multiplication implied by (2.1.47) rather
than resorting to Fourier transforms. This requires 2N2 operations. This
operation count is lower than the operation count for transforms for N ≤ 8. In
practice, the exact crossover point will depend on the computer architecture
and the programming details.

Figure 2.4 presents some timings on a desktop computer (with a clock
speed of about a GigaHertz) for Fourier interpolation differentiation using
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Fig. 2.4. Timing results for first-derivative computations using FFTs and deriva-
tive matrices

both the FFT (Fourier Derivative) and the derivative matrix (Matrix Mul-
tiply) approaches. (The Chebyshev derivative timings refer to material dis-
cussed in Sect. 2.4.) All routines were coded in Fortran and the FFTs did
take advantage of the extra 10–15% efficiency available from using radix

4 rather than just radix 2 (see Appendix B). In the Fourier case the FFT
method appears to be always faster than the derivative-matrix approach, and
it is at least an order of magnitude faster for N ≥ 64. The FFT method
has the additional advantage of lesser contamination by round-off error. As
noted in Sect. 8.3.1 of Deville, Fischer and Mund (2002), the performance of
derivative matrix routines can be improved substantially, even in a high-level
language such as Fortran, by hard-coding unrolled loops for each value of N .

2.1.4 The Gibbs Phenomenon

The Gibbs phenomenon describes the characteristic oscillatory behavior of
the truncated Fourier series or the discrete Fourier series of a function of
bounded variation in the neighborhood of a point of discontinuity. Figures
2.1(a), (b) and (c) furnish an interesting contrast. Each truncated Fourier
series exhibits some oscillations about the exact function. However, the os-
cillations for the square wave example have some distinguishing features.
The maximum amplitude of the oscillation nearest the discontinuity (the
overshoot) tends to a finite limit, and the location of the overshoot tends
toward the point of discontinuity as the number of retained wavenumbers
is increased. The truncated series for the other two examples are uniformly
convergent over [0, 2π]. They do not exhibit a finite limiting overshoot.

The behavior represented in Fig. 2.1(a) can be easily explained in terms of
the singular integral representation of a truncated Fourier series. We assume
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here that the truncation is symmetric with respect to N , i.e., we set

PNu =
∑

|k|≤N/2

ûkφk . (2.1.54)

By (2.1.3) we have

PNu(x) =
∑

|k|≤N/2

1
2π

∫ 2π

0

u(y)e−iky dy eikx

=
1
2π

∫ 2π

0

⎡

⎣
∑

|k|≤N/2

e−ik(x−y)

⎤

⎦u(y) dy .

The integral representation of PNu is therefore

PNu(x) =
1
2π

∫ 2π

0

DN (x− y)u(y) dy , (2.1.55)

where DN (ξ) is the Dirichlet kernel (where in keeping with our notational
convention for this part of the book we use DN for what is classically denoted
by DN/2)

DN (ξ) = 1 + 2
N/2∑

k=1

cos kξ

=

⎧
⎪⎨

⎪⎩

sin((N + 1)ξ/2)
sin(ξ/2)

, ξ 	= 2jπ ,

N + 1 , ξ = 2jπ ,

j ∈ Z .

(2.1.56)

It is illustrated in Fig. 2.5, where it is shown, for esthetic reasons, on the
interval [−π, π]. The Dirichlet kernel can be considered as the orthogonal
projection of the delta function upon the space of trigonometric polynomials
of degree N/2, in the L2-inner product. DN is an even function that changes
sign at the points ξj = 2jπ(N + 1) and that satisfies

1
2π

∫ 2π

0

DN (ξ)dξ = 1 , (2.1.57)

as is evident from setting u = 1 in (2.1.55). Moreover, as N → ∞, DN

tends to zero uniformly on every closed interval excluding the singular points
ξ = 2jπ, j ∈ Z. This means that for all δ > 0 and all ε > 0 there exists an
integer N(δ, ε) > 0 such that

|DN (ξ)| < ε if N > N(ε, δ) and δ ≤ ξ ≤ 2π − δ . (2.1.58)
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We return now to the square wave represented in Fig. 2.1(a). For simplicity
we shift the origin to the point of discontinuity, i.e., we consider the periodic
function

φ(x) =

{
1 , 0 ≤ x < π ,

0 , π ≤ x < 2π ,
(2.1.59)

whose truncated Fourier series is

PNφ(x) =
1
2π

∫ x

x−π

DN (y)dy

=
1
2π

[∫ x

0

DN (y)dy +
∫ 0

−π

DN (y)dy +
∫ −π

x−π

DN (y)dy
]

.

(2.1.60)

So long as x is not close to π, the last integral on the right-hand side is
arbitrarily small, provided N is large enough, by (2.1.58). The middle integral
equals π by (2.1.57); hence,

PNφ(x) � 1
2

+
1
2π

∫ x

0

DN (y)dy as N →∞ . (2.1.61)

This formula explains the Gibbs phenomenon for the square wave. If x > 0
is far enough from 0, then 1/2π

∫ x

0
DN (y)dy � 1/2π

∫ π

0
DN (y)dy = 1/2

by (2.1.57) and (2.1.58); hence, PNφ(x) is close to 1. But the function
x → 1/2π

∫ x

0
DN (y)dy has alternating maxima and minima at the points

where DN vanishes, ξj = 2jπ/(N + 1); this accounts for its oscillatory be-
havior. The absolute maximum occurs at ξ1 = 2π/(N + 1), where for large
enough N

1
2π

∫ 2π/(N+1)

0

DN (y)dy � 1
π

∫ π

0

sin t

t
= 0.58949 . . . . (2.1.62)
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Thus, the sequence {(PNφ)[2π/(N + 1)]} tends to 1.08949 · · · > 1 = φ(0+)
as N →∞. Equivalently,

lim sup
N→∞
x→0+

(PNφ)(x) > φ(0+) . (2.1.63)

Similarly, for x negative one has

lim inf
N→∞
x→0−

(PNφ)(x) < φ(0−) .

This is a mathematical characterization of the Gibbs phenomenon.
If now u = u(x) is any function of bounded total variation (see Sect. A.8)

in [0, 2π] that has an isolated jump discontinuity at x = x0, we can write

u(x) = ũ(x) + j(u;x0)φ(x− x0) ,

where j(u;x0) = u(x+
0 )− u(x−

0 ) is the jump of u at x0. The function ũ(x) =
u(x) − j(u;x0)φ(x − x0) has at worst a removable singularity at x = x0;
hence, its Fourier series converges uniformly in a neighborhood of x0. Thus,
by (2.1.61),

PNu(x) � 1
2
[u(x+

0 ) + u(x−
0 )]

+
1
2π

[u(x+
0 )− u(x−

0 )]
∫ x−x0

0

DN (y) dy as N →∞ .

(2.1.64)

This shows that the sequence {PNu} undergoes a Gibbs phenomenon at
x = x0 with the same structure as the Gibbs phenomenon for the square
wave (2.1.59).

From a mathematical point of view it is worthwhile to observe that trun-
cation does not preserve the boundedness of the total variation of a function.
This means that even if the total variation of u is finite, the total variation
of PNu is not bounded independently of N . For the square wave (2.1.59),
formula (2.1.61) shows that the total variation VN (φ; a) of PNφ in the neigh-
borhood [−a, a] of the origin is approximately

VN (φ; a) � 1
π

∫ a

0

|DN (y)|dy .

Since DN (y) = sin(1
2 (N + 1)y)/y for y close to 0, and

∫ +∞
0
| sin t/t|dt = ∞,

VN (φ; a) diverges as N →∞.
The Gibbs phenomenon influences the behavior of the truncated Fourier

series not only in the neighborhood of the point of singularity, but also over
the entire interval [0, 2π]. The convergence rate of the truncated series is linear
in N−1 at a given nonsingular point. The point x0 = π/2 is the farthest from
all the singularity points. There one has
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PNφ
(π

2

)
=

1
2π

∫ π/2

−π/2

DN (y) dy ,

or
1− PNφ

(π
2

)
=

1
π

∫ π

π/2

DN (y) dy .

A primitive of the Dirichlet kernel is (
∫

DN )(x) = x + 2
∑N/2

k=1(sin kx)/k;
whence,

1− PNφ
(π

2

)
=

2
π

∑

p≥N/4

(−1)p

2p + 1
� 2

N
as N →∞ .

This asymptotic behavior is evident in Fig. 2.1(a) for the square wave, for
the corresponding point x0 = π.

The Gibbs phenomenon also occurs for the sequence {INu} of the trigono-
metric interpolating polynomials of u. If the points

xl =
2lπ

N + 1
, l = 0, . . . , N ,

already introduced in Sect. 2.1.3, are used in the interpolation process, then
the interpolating polynomial has the following discrete integral representa-
tion:

INu(x) =
1

1 + N

N∑

l=0

DN (x− xl)u(xl) . (2.1.65)

Note that DN (x− xj)/(N + 1) is the characteristic Lagrange polynomial of
degree N/2 at the nodes (2.1.53), i.e., the trigonometric polynomial of degree
N/2 such that

1
N + 1

DN (xj − xl) = δjl, 0 ≤ j, l ≤ N .

The representation (2.1.65) for the discrete Fourier series can be related to
the representation (2.1.55) for the truncated Fourier series via the use of
the trapezoidal quadrature rule for evaluating the singular integral. This ac-
counts, at least heuristically, for the similarity of the Gibbs phenomenon
arising in the truncation and interpolation processes. Figure 2.1(d) shows
the Gibbs phenomenon for the sequence of the discrete Fourier series of the
square wave. The qualitative behavior is the same as for the truncated se-
ries, although quantitatively the oscillations appear here less pronounced.
(Compare also Figs. 2.3(b), 2.3(d).)

We have seen so far how the Gibbs phenomenon occurs in the two most
common trigonometric approximations of a discontinuous function: trun-
cation and interpolation. The capability of constructing alternative trigo-
nometric approximations that avoid or at least reduce the Gibbs phenomenon
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near the discontinuity points while producing a faithful representation of the
function elsewhere in physical space is desirable both theoretically and prac-
tically. To be of any practical use this smoothing process (also referred to as
a filtering process) ought to employ only such information that is available
from a finite approximation to the function, namely a finite number of its
Fourier coefficients or else its values at the grid points.

Since the Gibbs phenomenon is related to the slow decay of the Fourier
coefficients of a discontinuous function (as seen in Sect. 2.1.1), it is natu-
ral to use smoothing procedures that attenuate the higher order coefficients.
Thus, the oscillations associated with the higher modes in the trigonometric
approximant are damped. On the other hand, the intrinsic structure of the
coefficients carries information about the discontinuities, and this information
should not be wasted. Too strong a smoothing procedure may result in exces-
sively smeared approximations, which are again unfaithful representations of
the true function. Therefore, the smoothing method has to be suitably tuned.

Let us now focus on smoothing for truncated Fourier series. A straight-
forward way to attenuate the higher order Fourier coefficients is to multiply
each Fourier coefficient ûk by a factor σk. Thus, the truncated Fourier series
PNu is replaced by the smoothed series

SNu =
N/2∑

k=−N/2

σkûke
ikx . (2.1.66)

Typically, the σk are required to be real nonnegative numbers such that
σ0 = 1, σk = σ−k and σ|k| is a decreasing function of |k|.

The Cesáro sums are a classical way of smoothing the truncated Fourier
series. They consist of taking the arithmetic means of the truncated series,
i.e.,

SNu =
1

N/2 + 1

N/2∑

k=0

Pku =
N/2∑

−N/2

(
1− |k|

N/2 + 1

)
ûke

ikx . (2.1.67)

In this case the smoothing factors are σk = 1 − |k|/(N/2 + 1); they decay
linearly in |k|.

Other simple smoothing methods are the Lanczos smoothing and the
raised cosine smoothing. The factors that define the Lanczos smoothing are

σk =
sin(2kπ/N)

2kπ/N
, k = −N/2, . . . , N/2 . (2.1.68)

These are flat near k = 0 and approach 0 linearly as k → N/2. The factors
for the raised cosine smoothing are

σk =
1 + cos(2kπ/N)

2
, k = −N/2, . . . , N/2 . (2.1.69)
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Fig. 2.6. Several smoothings for the square wave

These are flat at k = N/2 as well as at k = 0. The effect of each of these
three smoothings upon the square wave is represented in Fig. 2.6.

The smoothed series (2.1.66) can be represented in terms of a singular
integral as

SNu(x) =
1
2π

∫ 2π

0

KN (x− y)u(y) dy , (2.1.70)

where the kernel KN (ξ) is given by

KN (ξ) = 1 + 2
N/2∑

k=1

σk cos kξ . (2.1.71)

The representation (2.1.70) allows one to describe more general forms of
smoothing than (2.1.66). The kernel KN (ξ) need not have the particular form
(2.1.71). The only requirement is that KN be an approximate polynomial
delta-function, i.e., a trigonometric polynomial of degree N/2 such that

1
2π

∫ 2π

0

KN (ξ)dξ = 1 , (2.1.72)

and such that for δ > 0 and all ε > 0 there exists an integer N(δ, ε) > 0 for
which
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|KN (ξ)| < ε if N > N(δ, ε) and δ ≤ ξ ≤ 2π − δ . (2.1.73)

Under these assumptions, one can repeat the arguments used in deriving
(2.1.64) and obtain the asymptotic formula

SNu(x) � 1
2
[u(x+

0 ) + u(x−
0 )]

+
1
2π

[u(x+
0 )− u(x−

0 )]
∫ x−x0

0

KN (y) dy
(2.1.74)

near a point of discontinuity for u. Thus, the behavior of SNu depends on
the behavior of the function

ψN (z) =
1
2π

∫ z

0

KN (y) dy (2.1.75)

in a neighborhood of the origin. There will be a Gibbs phenomenon if there
exists a sequence of points zN > 0, with zN → 0 as N → ∞, at which
ψN (zN ) ≥ α > 1

2 (for some α independent of N); in this case,

lim
N→∞

SNu(zN ) > u(x+
0 ) .

The kernel KF
N generated by the Cesáro sums is known as the Fejér kernel.

Its analytic expression is

KF
N (ξ) = 1 + 2

N/2∑

k=1

(
1− k

N/2 + 1

)
cos kξ

=

⎧
⎪⎪⎨

⎪⎪⎩

1
N/2 + 1

[
sin((N/2 + 1)ξ/2)

sin(ξ/2)

]2
, ξ 	= 2jπ ,

N/2 + 1 , ξ = 2jπ ,

j ∈ Z .

(2.1.76)
This kernel is plotted in Fig. 2.7.

Since KF
N is nonnegative and (1/2π)

∫ π

−π
KF

N (y) dy = 1, the corresponding
function ψN (z) is monotonically increasing and satisfies 0 < ψN (z) < 1

2 in
the interval (0, π). It follows that the Cesáro sums do not exhibit the Gibbs
phenomenon near a discontinuity point (see Fig. 2.6). The Cesáro sums have
several useful theoretical properties of approximation: if u is a continuous
function in [0, 2π], then the sequence SNu converges to u uniformly in the
interval as N → ∞. Moreover, the Cesáro sums preserve bounded variation
in the sense that if u is of bounded variation in [0, 2π], then the total variation
of SNu can be bounded independently of N . However, as Fig. 2.6 shows, the
Cesáro sums produce a heavy smearing of the function near a singularity
point. In most applications it is desirable to have a sharper representation of
the function, at the expense of retaining some oscillations. For this reason,
other forms of smoothing, such as Lanczos’ or the raised cosine, are preferred.
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Fig. 2.7. Comparison of the Dirichlet kernel with the smoothed kernels for N = 8

The kernel KL
N corresponding to Lanczos’ smoothing is given by

KL
N (ξ) = 1 +

N/2∑

k=1

sin
(
k

(
ξ +

2π
N

))
− sin

(
k

(
ξ − 2π

N

))

2kπ/N
, (2.1.77)

while the kernel KR
N (ξ) associated with the raised cosine smoothing is

KR
N (ξ) =

1
4

[
DN

(
ξ − 2π

N

)
+ 2DN (ξ) + DN

(
ξ +

2π
N

)]
(2.1.78)

(see again Fig. 2.7). Thus, the raised cosine kernel can be considered as
a smoothing of the Dirichlet kernel by local averages. Both KL

N and KR
N

change sign away from the origin. Thus, the associated functions ψN defined
in (2.1.75) exhibit an oscillatory behavior there. Since the first maximum
value attained is larger than 1/2, both the Lanczos’ and the raised cosine
smoothing produce the Gibbs phenomenon near a discontinuity point. How-
ever,the oscillations of KL

N and KR
N away from the origin are considerably

less pronounced than the oscillations of the Dirichlet kernel; hence the over-
shooting is dramatically reduced. Moreover, KR

N is better behaved than KL
N

from the point of view of the oscillations. Consequently, the raised cosine
smoothing is the most effective among those considered so far in this discus-
sion.

A general strategy to design a smoothing operator of the form (2.1.66)
consists of defining the smoothing factors σk as

σk = σ(2kπ/N) , k = −N/2, . . . , N/2 , (2.1.79)

where σ = σ(θ) is a real, even function that satisfies the following three
conditions (Vandeven (1991)):
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(i) σ is (p− 1)-times continuously differentiable in R, for some p ≥ 1;

(ii) σ(θ) = 0 if |θ| ≥ π;

(iii) σ(0) = 1, σ(j)(0) = 0 for 1 ≤ j ≤ p− 1.

Such a function is termed a filtering function, or simply a filter , of order p.
(The terms filtering and smoothing are used interchangeably in this context.)

Condition (iii) guarantees that the zero mode of u is kept unchanged, while
the other low modes are only moderately damped (indeed, they are less and
less damped as p increases); thus, the smoothing procedure has little effect
on a smooth function. On the contrary, condition (ii) and the smoothness of
σ imply

σ(j)(π) = 0 , 0 ≤ j ≤ p− 1 ;

this property induces a smooth and progressive damping of the higher order
modes, an essential condition for properly curing the Gibbs phenomenon.

The Lanczos smoothing (2.1.68) corresponds to the filter σ which in the
interval [0, π] is defined as

σ(0) = 1 , σ(θ) =
sin θ

θ
for θ 	= 0 . (2.1.80)

Since σ′(π) 	= 0, this is a first-order filter, although σ′(0) = σ′′(0) = 0 as for
a second-order filter. The raised cosine smoothing (2.1.69) corresponds to

σ(θ) =
1 + cos θ

2
, θ ∈ [0, π] , (2.1.81)

and is second order. A modified form of the Cesáro smoothing (obtained by
replacing N/2 + 1 by N/2 in the denominators of (2.1.67)) is given by the
filter

σ(θ) = 1− θ

π
, θ ∈ [0, π] , (2.1.82)

which is first order. Higher order filters are

(a) the sharpened raised cosine filter, given by

σ(θ) = σ0(θ)4[35− 84σ0(θ) + 70σ0(θ)2 − 20σ0(θ)3] (2.1.83)

(where σ0 is the raised cosine filter (2.1.81)), which is eighth order;
(b) the Vandeven filter of order p (Vandeven (1991)):

σ(θ) = 1− (2p− 1)!
(p− 1)!

∫ θ/π

0

[t(1− t)]p−1dt , (2.1.84)

which has optimal approximation properties; see (7.6.26) (interestingly,
this filter essentially coincides with the Daubechies filter used in the con-
struction of wavelets (Strang and Nguyen (1996));
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(c) the exponential filter of order p, for p even:

σ(θ) = e−αθp , α > 0 ; (2.1.85)

this filter does not satisfy condition (iii), however, the same effect is
achieved in practice by choosing α so that σ(π) is below machine accu-
racy.
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Fig. 2.8. Additional smoothings for the square wave

Figure 2.8 illustrates the effects of the Vandeven filter, for both p = 2 and
p = 8, as well as the eighth-order raised cosine and exponential filters upon
the square wave. The effect of the second-order Vandeven filter is similar to
that of the second-order raised cosine filter shown in Fig. 2.6. Likewise, the
effects of the various eighth-order filters in Fig. 2.8 are very similar to each
other.

Figure 2.9 shows the effects of increasing order of filter (in this case the
exponential filter) upon a Fourier truncation for a fixed value of N (in this
case N = 128). One clearly sees the progression from a heavily smoothed
series with the low-order filter (p = 2) to a high-order filtering of the series
(p = 128) that retains most of the oscillations of the original, unfiltered series.
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Fig. 2.9. Several orders of exponential smoothing for the square wave approximated
by Fourier series with N = 128. Entire domain (left) and region of discontinuity
(right)

The mathematical properties of the smoothing operators generated by
filters of order p are accounted for in Sect. 7.6.3.

Similar smoothing procedures can be implemented for discrete Fourier
series by applying the smoothing factors to the discrete coefficients. Note
however that care should be taken in operating on the discrete rather than
exact expansion coefficients when the function to be smoothed is the ap-
proximate solution of a partial differential equation. The results by Majda,
McDonough and Osher (1978) (see Sect. 7.6.4) are an example.

More sophisticated (although delicate) cures to the Gibbs phenomenon
than simply smoothing have been proposed (see the references in Sects.
7.6.3–7.6.4). The idea underlying all of them is that, whenever the loca-
tion of the singularities of a function is known, the unsmoothed coefficients
contain enough information to allow for the reconstruction of an accurate,
non-oscillatory approximation of the function in any interval between two
consecutive singularities. This can be achieved either locally, at a point in
which the function is smooth, by taking the convolutions in physical space of
its truncated Fourier series with suitable smoothing kernels, or globally, in an
interval between two consecutive singularities, by re-projecting the oscillat-
ing truncated Fourier series onto a sequence of orthogonal, nonperiodic basis
functions defined in the interval. Techniques of singularity detection are then
added in order to achieve a fully automated reconstruction procedure. Some
details on these strategies are furnished in Sect. 7.6.3, as well as in Sect. 7.6.4
in the context of Fourier discretizations of hyperbolic differential equations.

The Gibbs phenomenon is not peculiar to Fourier expansions. All or-
thogonal polynomials introduced below, as well as more general orthogonal
functions, yield Gibbs-like oscillations for truncated expansions or for interpo-
lations of discontinuous functions. The cures indicated here and in Sect. 7.6.3
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for the Fourier case extend to the nonperiodic cases, perhaps at the cost of
some technical, although not conceptual, complications.

2.2 Orthogonal Polynomials in (−1, 1)

2.2.1 Sturm-Liouville Problems

The importance of Sturm-Liouville problems for spectral methods lies in the
fact that the spectral approximation of the solution of a differential equation
is usually regarded as a finite expansion of eigenfunctions of a suitable Sturm-
Liouville problem. We recall that a Sturm-Liouville problem is an eigenvalue
problem of the form

−(pu′)′ + qu = λwu in the interval (−1, 1) ,
suitable boundary conditions for u .

(2.2.1)

The coefficients p, q and w are three given, real-valued functions such that:
p is continuously differentiable, strictly positive in (−1, 1) and continuous at
x = ±1; q is continuous, nonnegative and bounded in (−1, 1); the weight
function w is continuous, nonnegative and integrable over (−1, 1).

The Sturm-Liouville problems of interest in spectral methods are those
for which the expansion of an infinitely smooth function in terms of their
eigenfunctions guarantees spectral accuracy. This means that the “Fourier”
coefficients according to this basis decay faster than algebraically in the in-
verse of the eigenvalue. As pointed out in Gottlieb and Orszag (1977, Sect. 3)
not all the Sturm-Liouville problems ensure this property. For instance, the
Sturm-Liouville problem

u′′ + λu = 0 in (−1, 1) ,
u′(−1) = u′(1) = 0 ,

has eigenvalues λk = (πk)2/2 and corresponding eigenfunctions φk(x) =
cos(π/2)k(x + 1). A smooth function can be approximated by the cosine
series on (−1, 1) with spectral accuracy if and only if all its odd derivatives
vanish at the boundary. This is due to the fact that the coefficient p(x) in
the operator does not vanish at the boundary in this case, i.e., the Sturm-
Liouville problem is regular. Conversely, spectral accuracy is ensured if the
problem is singular , i.e., if p vanishes at the boundary. A mathematical proof
of these facts is given in Sect. 5.2.

Among the singular Sturm-Liouville problems, particular importance
rests with those problems whose eigenfunctions are algebraic polynomials
because of the efficiency with which they can be evaluated and differentiated
numerically. It is also proven in Sect. 5.2 that the Jacobi polynomials, whose
properties are summarized in Sect. 2.5, are precisely the only polynomials
arising as eigenfunctions of a singular Sturm-Liouville problem.
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2.2.2 Orthogonal Systems of Polynomials

We shall consider here from a general point of view the problem of the expan-
sion of a function in terms of a system of orthogonal polynomials. We denote
by PN the space of all polynomials of degree ≤ N . Assume that {pk}k=0,1,... is
a system of algebraic polynomials (with degree of pk = k) that are mutually
orthogonal over the interval (−1, 1) with respect to a weight function w:

∫ 1

−1

pk(x)pm(x)w(x) dx = 0 whenever m 	= k . (2.2.2)

The classical Weierstrass theorem implies that such a system is complete in
the space L2

w(−1, 1). This is the space of functions v such that the norm

‖v‖w =
(∫ 1

−1

|v(x)|2w(x) dx
)1/2

(2.2.3)

is finite. The associated inner product is

(u, v)w =
∫ 1

−1

u(x)v(x)w(x) dx . (2.2.4)

When w ≡ 1 (Legendre weight), we will often use the simpler notation
L2(−1, 1) instead of L2

w(−1, 1). The formal series of a function u ∈ L2
w(−1, 1)

in terms of the system {pk} is

Su =
∞∑

k=0

ûkpk ,

where the expansion coefficients ûk are defined as

ûk =
1

‖pk‖2w

∫ 1

−1

u(x)pk(x)w(x) dx . (2.2.5)

Equation (2.2.5) represents the polynomial transform of u. For an integer
N > 0, the truncated series of u of order N is the polynomial

PNu =
N∑

k=0

ûkpk . (2.2.6)

Due to (2.2.2), PNu is the orthogonal projection of u upon PN in the inner
product (2.2.4), i.e.,

(PNu, v)w = (u, v)w for all v ∈ PN . (2.2.7)

The completeness of the system {pk} is equivalent to the property that, for
all u ∈ L2

w(−1, 1),

‖u− PNu‖w → 0 as N →∞ . (2.2.8)
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2.2.3 Gauss-Type Quadratures and Discrete Polynomial
Transforms

We discuss here the close relation between orthogonal polynomials and Gauss-
type integration formulas on the interval [−1, 1]. The material of this subsec-
tion includes the interpolation formulas and discrete transforms pertinent to
finite polynomial expansions.

First, we review Gaussian integration formulas, including those with some
preassigned abscissas. The first result can be found in most textbooks on
numerical analysis. For completeness we report the proofs concerning Gauss-
Radau and Gauss-Lobatto formulas (see also Mercier (1981)).

Gauss integration. Let x0 < x1 < · · · < xN be the roots of the (N + 1)-th
orthogonal polynomial pN+1, and let w0, . . . , wN be the solution of the linear
system

N∑

j=0

(xj)kwj =
∫ 1

−1

xkw(x) dx , 0 ≤ k ≤ N . (2.2.9)

Then
(i) wj > 0 for j = 0, . . . , N and

N∑

j=0

p(xj)wj =
∫ 1

−1

p(x)w(x) dx for all p ∈ P2N+1 . (2.2.10)

The positive numbers wj are called weights.
(ii) It is not possible to find xj, wj, j = 0, . . . , N , such that (2.2.10) holds

for all polynomials p ∈ P2N+2.

This version of Gauss integration is quite well known. However, the roots,
which correspond to the collocation points, are all in the interior of (−1, 1).
When boundary conditions are imposed strongly at one or both end points,
one needs the generalized Gauss integration formulas that include these
points.

To obtain the Gauss-Radau formula let us consider the polynomial

q(x) = pN+1(x) + apN (x) , (2.2.11)

where a is chosen to produce q(−1) = 0 (hence, a = −PN+1(−1)/PN (−1)).

Gauss-Radau integration. Let −1 = x0 < x1 < · · · < xN be the N + 1
roots of the polynomial (2.2.11), and let w0, . . . , wN be the solution of the
linear system

N∑

j=0

(xj)kwj =
∫ 1

−1

xkw(x) dx , 0 ≤ k ≤ N . (2.2.12)
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Then

N∑

j=0

p(xj)wj =
∫ 1

−1

p(x)w(x) dx for all p ∈ P2N . (2.2.13)

The result can be established as follows. From the definition of q and the
orthogonality of the polynomials, it follows that

(q, φ)w = 0 for all φ ∈ PN−1 . (2.2.14)

For any p ∈ P2N there exist r ∈ PN−1 and s ∈ PN such that

p(x) = q(x)r(x) + s(x) .

Since q(xj) = 0, 0 ≤ j ≤ N , we have p(xj) = s(xj), 0 ≤ j ≤ N . It follows
that

N∑

j=0

p(xj)wj =
N∑

j=0

s(xj)wj =
∫ 1

−1

s(x)w(x) dx

=
∫ 1

−1

p(x)w(x) dx−
∫ 1

−1

q(x)r(x)w(x) dx .

Now (2.2.13) is a consequence of (2.2.14).
In order to obtain the Gauss-Radau formula including the right-hand

point x = +1, one has to take a in (2.2.11) in such a way that q(1) = 0. If
x0 < x1 < · · · < xN = 1 are the roots of q(x), and w0, . . . , wN is the solution
of the system (2.2.12) relative to these new points xj , then (2.2.13) holds.

The Gauss-Lobatto formula is obtained in a similar way. We consider now

q(x) = pN+1(x) + apN (x) + bpN−1(x) , (2.2.15)

where a and b are chosen so that q(−1) = q(1) =0. Then we have

Gauss-Lobatto integration. Let −1 = x0 < x1 < · · · < xN = 1 be the
N + 1 roots of the polynomial (2.2.15), and let w0, . . . , wN be the solution of
the linear system

N∑

j=0

(xj)kwj =
∫ 1

−1

xkw(x) dx , 0 ≤ k ≤ N . (2.2.16)

Then

N∑

j=0

p(xj)wj =
∫ 1

−1

p(x)w(x) dx for all p ∈ P2N−1 . (2.2.17)
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The proof of this result is similar to the previous one: here the decompo-
sition p = qr + s holds with r ∈ PN−2 and s ∈ PN .

In the important special case of a Jacobi weight (see Sect. 2.5), there is
an alternative characterization of the Gauss-Lobatto points; namely they are
the points −1, +1 and the roots of the polynomial

q(x) = p′N (x) . (2.2.18)

In fact, each p ∈ P2N−1 can be represented in the form

p(x) = (1− x2)p′N (x)r(x) + s(x)

with r ∈ PN−2 and s ∈ PN . By partial integration we have

∫ 1

−1

p′N (x)(1− x2)r(x)w(x) dx

= −
∫ 1

−1

pN (x)[(1− x2)r(x)]′w(x) dx

−
∫ 1

−1

pN (x)r(x)(1− x2)
w′(x)
w(x)

w(x) dx .

If w(x) = (1 − x)α(1 + x)β , with α, β > −1, is a Jacobi weight, then the
function (1−x2)[w′(x)/w(x)] is a polynomial of degree 1. It follows that p′N is
orthogonal to (1−x2)r(x); hence, (2.2.17) holds when the interior quadrature
nodes are the zeroes of p′N , and the weights are defined by (2.2.16).

The Gauss-Lobatto points for the particular Jacobi polynomials corre-
sponding to the weights w(x) = (1− x)α(1 + x)α are illustrated in Fig. 2.10
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−0.5

0

0.5

x
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Fig. 2.10. The Gauss-Lobatto points for N = 8 for the Jacobi polynomials with
the weight function w(x) = (1 − x)α(1 + x)α
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for N = 8 and −1
2 ≤ α ≤ 1

2 . The plot shows a relevant monotonicity property
of these nodes, and more generally of the zeros of ultraspherical Jacobi poly-
nomials (see Sect. 2.5): they move toward the center of the interval (−1, 1)
as the parameter α increases (see, e.g., Szegö (1939), Chap. VI).

As observed at the beginning of this section, the nodes of the Gauss-
type formulas play an important role in collocation approximations – they
are precisely the collocation points at which the differential equations are
enforced (see Sect. 5.4.3). We assume here that a weight function w is given,
together with the corresponding sequence of orthogonal polynomials {pk},
k = 0, 1, 2, . . . . For a given N ≥ 0, we denote by x0, x1, . . . , xN the nodes of
the N+1-point integration formula of Gauss, Gauss-Radau or Gauss-Lobatto
type, and by w0, w1, . . . , wN the corresponding weights.

In a collocation method the fundamental representation of a smooth func-
tion u on (−1, 1) is in terms of its values at the discrete Gauss-type points.
Derivatives of the function are approximated by analytic derivatives of the
interpolating polynomial. The interpolating polynomial is denoted by INu.
It is an element of PN and satisfies

INu(xj) = u(xj) , 0 ≤ j ≤ N . (2.2.19)

INu is uniquely defined since the xj ’s are distinct. Since it is a polynomial of
degree N , it admits an expression of the form

INu =
N∑

k=0

ũkpk . (2.2.20)

Obviously,

u(xj) =
N∑

k=0

ũkpk(xj) , j = 0, . . . , N . (2.2.21)

The ũk are called the discrete polynomial coefficients of u. They are some-
times referred to as discrete expansion coefficients. The inverse relationship
is

ũk =
1
γk

N∑

j=0

u(xj)pk(xj)wj , k = 0, . . . , N , (2.2.22)

where

γk =
N∑

j=0

p2
k(xj)wj . (2.2.23)

Equation (2.2.22) will be derived below. Explicit formulas for γk for the more
common orthogonal polynomials are supplied in Sects. 2.3 and 2.4.

Equations (2.2.21) and (2.2.22) enable one to transform freely between
physical space {u(xj)} and transform space {ũk}. Such a transformation for
orthogonal polynomials is the analogue of the transformation (2.1.27) and
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(2.1.25) for trigonometric polynomials. We shall call it the discrete polynomial
transform associated with the weight w and the nodes x0, . . . , xN .

For any u, v continuous on [−1, 1], we set

(u, v)N =
N∑

j=0

u(xj)v(xj)wj . (2.2.24)

The Gauss integration formulas imply that

(u, v)N = (u, v)w if uv ∈ P2N+δ , (2.2.25)

where δ = 1, 0,−1 for Gauss, Gauss-Radau or Gauss-Lobatto integration,
respectively. In particular, (u, v)N is an inner product on PN . The corre-
sponding norm is

‖u‖N =
√

(u, u)N . (2.2.26)

For any continuous v, (2.2.19) gives

(INu, v)N = (u, v)N . (2.2.27)

This shows that, as for the trigonometric systems, the interpolant INu is
the orthogonal projection of u upon PN with respect to the discrete inner
product (2.2.24).

The orthogonality of the pm’s, together with (2.2.25) give

(pm, pk)N = γkδkm , k,m = 0, . . . , N, (2.2.28)

where γk is defined in (2.2.23). From (2.2.27) and (2.2.28) we obtain

(u, pk)N = (INu, pk)N =
N∑

m=0

ũm(pm, pk)N = γkũk , k = 0, . . . , N ,

and (2.2.22) follows directly. In terms of the discrete inner product this is
just

ũk =
1
γk

(u, pk)N , k = 0, . . . , N . (2.2.29)

The discrete polynomial coefficients ũk can be expressed in terms of the
continuous coefficients ûk as follows:

ũk = ûk +
1
γk

∑

l>N

(pl, pk)N ûl , k = 0, . . . , N . (2.2.30)

This formula is an easy consequence of (2.2.29) and (2.2.28). Equivalently,
one can write

INu = PNu + RNu , (2.2.31)
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where

RNu =
N∑

k=0

(
1
γk

∑

l>N

(pl, pk)N ûl

)
pk (2.2.32)

can be viewed as the aliasing error due to interpolation (compare with
(2.1.38)). The aliasing error is orthogonal to the truncation error u−PNu so
that

‖u− INu‖2w = ‖u− PNu‖2w + ‖RNu‖2w . (2.2.33)

In general, (pl, pk)N 	= 0 for all l > N . Thus the k-th mode of the algebraic
interpolant of u depends on the k-th mode of u and all the modes whose
wavenumber is larger than N . The aliasing error has a simpler expression for
the Chebyshev interpolation points (see (2.4.20)).

2.3 Legendre Polynomials

2.3.1 Basic Formulas

We present here a collection of the essential formulas for Legendre polynomi-
als. For proofs, the reader may refer to Szegö (1939). The Legendre polynomi-
als Lk(x), k = 0, 1, . . . , are the eigenfunctions of the singular Sturm-Liouville
problem

((1− x2)L′
k(x))′ + k(k + 1)Lk(x) = 0 , (2.3.1)

which is (2.2.1) with p(x) = 1− x2, q(x) = 0 and w(x) = 1. Lk(x) is even if
k is even and odd if k is odd. If Lk(x) is normalized so that Lk(1) = 1, then
for any k:

Lk(x) =
1
2k

[k/2]∑

l=0

(−1)l

(
k

l

)(
2k − 2l

k

)
xk−2l , (2.3.2)

where [k/2] denotes the integral part of k/2. The Legendre polynomials satisfy
the recursion relation

Lk+1(x) =
2k + 1
k + 1

xLk(x)− k

k + 1
Lk−1(x) , (2.3.3)

where L0(x) = 1 and L1(x) = x. Relevant properties are

|Lk(x)| ≤ 1 , −1 ≤ x ≤ 1 , (2.3.4)

Lk(±1) = (±1)k , (2.3.5)

|L′
k(x)| ≤ 1

2k(k + 1) , −1 ≤ x ≤ 1 , (2.3.6)

L′
k(±1) = (±1)k+1 1

2k(k + 1) , (2.3.7)
∫ 1

−1

L2
k(x) dx = (k + 1

2 )−1 . (2.3.8)
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The expansion of any u ∈ L2(−1, 1) in terms of the Lk’s is

u(x) =
∞∑

k=0

ûkLk(x), ûk = (k + 1
2 )
∫ 1

−1

u(x)Lk(x) dx . (2.3.9)

We consider now discrete Legendre series. Since explicit formulas for the
quadrature nodes are not known, such points have to be computed numer-
ically as zeroes of appropriate polynomials. The quadrature weights can be
expressed in closed form in terms of the nodes, as indicated in the following
formulas (see, e.g., Davis and Rabinowitz (1984)):

Legendre Gauss (LG).

xj (j = 0, . . . , N) zeros of LN+1 ;

wj =
2

(1− x2
j )[L

′
N+1(xj)]2

, j = 0, . . . , N .
(2.3.10)

Legendre Gauss-Radau (LGR).

xj (j = 0, . . . , N) zeros of LN + LN+1 ;

w0 =
2

(N + 1)2
, wj =

1
(N + 1)2

1− xj

[LN (xj)]2
, j = 1, . . . , N .

(2.3.11)

Legendre Gauss-Lobatto (LGL).

x0 = −1, xN = 1, xj (j = 1, . . . , N − 1) zeros of L′
N ;

wj =
2

N(N + 1)
1

[LN (xj)]2
, j = 0, . . . , N .

(2.3.12)

The normalization factors γk introduced in (2.2.23) are given by

γk = (k + 1
2 )−1 for k < N ,

γN =

{
(N + 1

2 )−1 for Gauss and Gauss-Radau formulas ,
2/N for the Gauss-Lobatto formula .

(2.3.13)

Certain bounds for the weights and nodes of these quadrature formulas
are useful (see, e.g., Szegö (1939), Chap. VI). For the Gauss nodes, one has
xj = − cos θj with

(j − 1
2 )

π

N + 1
< θj < j

π

N + 2
, j = 1, 2, . . . ,

[
N+1

2

]
, (2.3.14)

(nodes with higher values of j are placed symmetrically with respect to the
origin). The Gauss-Lobatto nodes xj = − cos ηj are interlaced with the Gauss
nodes corresponding to a polynomial of one degree smaller. On the other
hand, in the interval (−1, 0), each one is placed left of the corresponding
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Gauss-Lobatto node for the Chebyshev weight, given by (2.4.14); this follows
from the monotonicity property with respect to α shown in Fig. 2.10. Hence,

j
π

N
< ηj < (j + 1)

π

N + 1
, j = 1, 2, . . . ,

[
N
2

]
. (2.3.15)

For both families, each weight wj can be estimated in terms of the node xj

as follows:
cN−1(1− x2

j)
1/2 ≤ wj ≤ c′N−1(1− x2

j)
1/2 , (2.3.16)

for suitable constants 0 < c < c′ independent of j and N .

2.3.2 Differentiation

As for the Fourier expansion, differentiation can be accomplished in transform
space or in physical space, according to the representation of the function.

Differentiation in transform space consists of computing the Legendre
expansion of the derivative of a function in terms of the Legendre expansion
of the function itself. If u =

∑∞
k=0 ûkLk, u′ can be (formally) represented as

u′ =
∞∑

k=0

û
(1)
k Lk , (2.3.17)

where

û
(1)
k = (2k + 1)

∞∑

p=k+1
p+k odd

ûp , k ≥ 0 . (2.3.18)

The key to proving this formula is the relation

(2k + 1)Lk(x) = L′
k+1(x)− L′

k−1(x) , k ≥ 0 . (2.3.19)

This, in turn, is an easy consequence of the identity (see, e.g., Abramowitz
and Stegun (1972, Chapter 22)),

(1− x2)L′
k(x) = kLk−1(x)− kxLk(x) (2.3.20)

and the recursion relation (2.3.3). By (2.3.19),

u′(x) =
∞∑

k=0

û
(1)
k

2k + 1
L′

k+1(x)−
∞∑

k=0

û
(1)
k

2k + 1
L′

k−1(x)

=
∞∑

k=1

û
(1)
k−1

2k − 1
L′

k(x)−
∞∑

k=−1

û
(1)
k+1

2k + 3
L′

k(x)

=
∞∑

k=1

[
û

(1)
k−1

2k − 1
−

û
(1)
k+1

2k + 3

]
L′

k(x) .
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On the other hand,

u′(x) =
∞∑

k=0

ûkL
′
k(x) ,

and since the L′
k are linearly independent,

ûk =
û

(1)
k−1

2k − 1
−

û
(1)
k+1

2k + 3
, k ≥ 1 , (2.3.21)

which imply (2.3.18). The previous identity generalizes, with obvious nota-
tion, to

û
(q−1)
k =

û
(q)
k−1

2k − 1
−

û
(q)
k+1

2k + 3
, k ≥ 1 , (2.3.22)

from which it is possible to get explicit expressions for the Legendre coeffi-
cients of higher derivatives. For the second derivative we have

û
(2)
k = (k + 1

2 )
∑

p=k+2
p+k even

[p(p + 1)− k(k + 1)]ûp , k ≥ 0 . (2.3.23)

The previous expansions are not merely formal provided u is smooth enough.
For instance, the series (2.3.17) is convergent in the mean if the derivative of
u (in the sense of distributions) is a function in L2(−1, 1).

Unlike for the Fourier system, differentiation and Legendre truncation do
not commute, i.e., in general,

(PNu)′ 	= PN−1u
′ . (2.3.24)

This is an immediate consequence of (2.3.18). It is the quantity on the left that
is referred to as the Legendre projection derivative. The error (PNu)′−PN−1u

′

decays spectrally for infinitely smooth solutions. However, if u has finite reg-
ularity then this difference decays at a rate slower than the truncation error
for the derivative u′ − PN−1u

′. This means that (PNu)′ is asymptotically
a worse approximation to u′ than PN−1u

′. This topic is discussed in Sect.
5.4.2.

The function u(x) = |x|3/2 will serve as an illustration of the results pro-
duced by Legendre differentiation procedures. It has the Legendre coefficients

ûk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 , k odd ,

1/(a + 1) , k = 0 ,

(2k + 1)a(a− 2) . . . (a− k + 2)
(a + 1)(a + 3) . . . (a + k + 1)

otherwise ,

where a = 3/2. A comparison between PN−1u
′ and (PNu)′ is furnished in

Figs. 2.11(a) and (b). (Only the right half of the approximation interval [−1, 1]
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Fig. 2.11. Several versions of Legendre differentiation for u(x) = |x|3/2 on [−1, 1].
The exact result is indicated by the solid curves and the approximate results for
N = 2, 4, 8, 16, and 32 are indicated by the dashed curves. Only the right half of
the interval is shown. (PN (u′) (left); (PNu)

′ (right)

is displayed.) Both approximations yield the expected slow convergence near
the singularity at x = 0. The global nature of the approximation leads to
additional problems caused by the singularity that are most apparent at
x = ±1. Further discussion of this behavior will be given in Sect. 5.4.2, after
we have presented the general results on the error between u′ and (PNu)′ in
terms of N and the regularity of u.

Let us consider now differentiation in physical space. If the function u is
known at one set of quadrature points (2.3.10), (2.3.11) or (2.3.12), one can
compute an approximate derivative of u by differentiating the interpolant INu
(as defined in (2.2.20)) and evaluating it at the same nodes. The polynomial
of degree N − 1

DNu = (INu)′ (2.3.25)

is called the Legendre interpolation derivative of u relative to the chosen
set of quadrature nodes, since in general, it is different from the projection
derivative (PNu)′.

The error between u′ and the Legendre interpolation derivative of u can
be estimated in terms of N and the regularity of u. This is done in Sect. 5.4.3
(see (5.4.36)).

In order to compute the values (DNu)(xj) , j = 0, . . . , N , from the values
u(xl) , l = 0, . . . , N , one could use formula (2.2.22) to get the discrete Leg-
endre coefficients of u, then use (2.3.18) to differentiate in transform space
and finally compute (DNu)j through (2.2.21). However, this procedure is
not efficient for N of practical interest in the absence of a (fast) transform
method for the Legendre expansion. Therefore, it is preferable to obtain the
interpolation derivative at the nodes through matrix multiplication, namely,

(DNu)(xj) =
N∑

l=0

(DN )jlu(xl) , j = 0, . . . , N . (2.3.26)
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The entries (DN )jl can be computed by differentiating the characteristic
Lagrange polynomials ψl of degree N , which are 1 at xl and 0 at all the other
collocation points; the general expression for such polynomials is

ψl(x) =
∏

k �= l
0 ≤ k, l ≤ N

(x− xk)
(xl − xk)

. (2.3.27)

In the Legendre case, these polynomials have been introduced in Chap. 1 (see
(1.2.55)). For the commonly used Gauss-Lobatto points (2.3.12), the closed
forms for the first-derivative and second-derivative matrices, respectively, are
(see Gottlieb, Hussaini and Orszag (1984))

(DN )jl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LN (xj)
LN (xl)

1
xj − xl

, j 	= l ,

− (N + 1)N
4

, j = l = 0 ,

(N + 1)N
4

, j = l = N ,

0 otherwise ,

(2.3.28)

and

(D(2)
N )jl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2
LN (xj)
LN (xl)

1
(xj − xl)2

,
1 ≤ j ≤ N − 1 ,
0 ≤ l ≤ N , j 	= l ,

L′′
N (xl)

3LN (xl)
, 1 ≤ j = l ≤ N − 1 ,

(−1)N

LN (xl)
N(N + 1)(1 + xl)− 4

2(1 + xl)2
, j = 0 , 1 ≤ l ≤ N ,

1
LN (xl)

N(N + 1)(1− xl)− 4
2(1− xl)2

, j = N , 0 ≤ l ≤ N − 1 ,

N(N + 1)(N2 + N − 2)
24

, j = l = 0 , j = l = N .

(2.3.29)
(See the discussion at the end of Sect. 2.4 for alternative expressions that
have more favorable round-off error properties.)

The matrix of the interpolation derivative can be obtained by a similarity
transformation from the matrix of the projection derivative, which is associ-
ated with the linear transformation (2.3.18) with the summation truncated
to p ≤ N . Thus they both have 0 as generalized eigenvalue of order N + 1;
the only eigenvector is L0(x), while each Lk(x), k = 1, . . . , N , is a generalized
eigenvector, i.e., a function f for which f (k) is 0.
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In spectral methods of Legendre type, differentiation is usually associated
with suitable boundary conditions. In this case, the spectra of the related
operators may exhibit different behavior. This topic is discussed in Sects. 4.3
and 7.3.

2.3.3 Orthogonality, Diagonalization and Localization

In the discretization of boundary-value problems set in the interval (−1, 1),
we will be interested in describing a polynomial of degree at most N by
the coefficients of its expansion upon a basis of PN . The Legendre basis
Lk(x), k = 0, . . . , N , given by the first N + 1 Legendre polynomials is an
example of a modal basis (sometimes called a hierarchical basis), so termed
because each basis function is associated with one particular wavenumber in
the expansion. On the contrary, the Lagrange basis ψj(x), j = 0, . . . , N , given
by the characteristic polynomials at the Gauss-Lobatto points (see (1.2.55))
is an example of a nodal basis, since each basis function is responsible for
reproducing the value of the polynomial at one particular node in the domain.

The orthogonality of Legendre polynomials implies that the mass matrix
M = (Mhk) (with Mhk = (Lh, Lk), 0 ≤ h, k ≤ N) associated with the
Legendre modal basis is diagonal. The mass matrix allows one to express
the L2-inner product of two polynomials in PN in terms of their expansion
coefficients, as

(u, v) =
N∑

h,k=0

ûhMhkv̂k = uTMv ,

where u, v are the vectors of the expansion coefficients of u, v along the basis.
Having a diagonal mass matrix may help in certain applications (such as the
discontinuous Galerkin method for time-dependent problems with explicit
time-advancing schemes – see CHQZ3, Sect. 5.3.3). The Lagrange nodal basis
leads to a diagonal mass matrix as well, provided the exact inner product is
replaced by the discrete one (2.2.24).

In applications to second-order boundary-value problems, even more cru-
cial for the efficiency of the discretization is to have a diagonal stiffness
matrix , which is the matrix K expressing the L2-inner product of the first
derivatives of two polynomials in terms of their expansion coefficients, i.e.,

(u′, v′) = uTKv for all u, v ∈ PN

(see Sect. 3.8 for a thorough discussion of mass and stiffness matrices in one
dimension and Sect. 4.2.2 for the multidimensional case). None of the bases
considered so far leads to a diagonal stiffness matrix. However, if we suitably
integrate the Legendre basis, we obtain a new modal basis that does fulfill
such a property. In particular, its elements are defined as
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η0(x) =
1
2
(
L0(x)− L1(x)

)
=

1− x

2
,

η1(x) =
1
2
(
L0(x) + L1(x)

)
=

1 + x

2
,

ηk(x) =

√
2k − 1

2

∫ 1

x

Lk−1(s) ds, 2 ≤ k ≤ N .

(2.3.30)

Recalling (2.3.19), one easily gets

ηk(x) =
1√

2(2k − 1)

(
Lk−2(x)− Lk(x)

)
, 2 ≤ k ≤ N ; (2.3.31)

another useful expression for ηk is

ηk(x) =

√
2(2k − 1)

k

(
1− x

2

)(
1 + x

2

)
P

(1,1)
k−2 (x) , 2 ≤ k ≤ N ,

(2.3.32)
where P

(1,1)
k is the k-th Jacobi polynomial, orthogonal with respect to the

weight w(x) = 1 − x2 (see Sect. 2.5). A comparison of the behavior of the
members of the three bases mentioned above is given in Fig. 2.12 for N = 4.

In the efficient design of multidomain spectral methods it is important
that local bases within each subdomain can be easily matched to form global
bases that enjoy as much localization as possible. If we think of the interval
(−1, 1) as a subdomain of a wider interval (a, b), then the Legendre basis is
clearly inappropriate to produce a global basis made up of continuous func-
tions. Indeed, each Legendre polynomial is nonzero at both endpoints of the
interval; hence, glueing together such functions would lead to globally contin-
uous functions that are supported (i.e., not identically zero) over the whole
domain. On the contrary, both the Lagrange nodal basis and the modal basis
(2.3.30) lead to well-localized global bases. Indeed, each basis contains two
functions – which we term vertex basis functions – that are nonzero at pre-
cisely one endpoint of the interval (these are the functions ψ0 and ψN in the
Lagrange basis, and the functions η0 and η1 in the modal basis); all other basis
functions – which we term basis functions, or internal basis functions – van-
ish at both endpoints. Each local bubble function, extended by zero outside
the subdomain, generates a global continuous basis function supported over
that subdomain; on the other hand, each local vertex basis function (not
vanishing at a or b) can be matched to the parent one living on the contigu-
ous subdomain to form a global continuous basis function supported over the
two subdomains (see the presentation in CHQZ3, Sect. 5.1 and, in particular,
Fig. 5.2).

A basis in PN (−1, 1) is termed boundary-adapted if it is composed of two
vertex functions plus bubble functions. In addition to the Lagrange nodal
basis at the Gauss-Lobatto points and the modal basis (2.3.30), another ex-
ample of boundary-adapted basis is given by the set of functions η0 and η1

as in (2.3.30) and



2.3 Legendre Polynomials 83

−1 1

L0

−1 1

η0

−1 1

ψ0

−1 1

�L1

−1 1

η1

−1 1

ψ1

−1 1

�L2

−1 1

η2

−1 1

ψ2

−1 1

L3

−1 1

η3

−1 1

ψ3

−1 1

L4

−1 1

η4

−1 1

ψ4

Fig. 2.12. Various basis functions on the interval (−1, 1), for N = 4: the modal
orthogonal basis {Lk} (left), the modal boundary-adapted basis {ηk} (center), the
nodal basis at the Gauss-Lobatto points {ψk} (right)
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η̃k(x) =

{
L0(x)− Lk(x), k even ≥ 2 ,

L1(x)− Lk(x), k odd ≥ 3 ;
(2.3.33)

however, since neither these basis functions nor their derivatives are L2-
orthogonal, their practical use is limited.

Obviously, a boundary-adapted basis allows for an easy enforcement of
Dirichlet boundary conditions in a Galerkin or G-NI method. Indeed, the bub-
ble functions individually satisfy homogeneous boundary conditions, whereas
the two vertex functions are used to accommodate the prescribed boundary
values, whenever they are nonzero.

The modal boundary-adapted basis (2.3.30) was developed by Babuška
and co-workers in the late 1970’s for use in the p-version of the finite-element
method (see, e.g., Babuška, Szabó and Katz (1981)). Shen (1994) proposed
the use of similar bases in spectral methods, built on both Chebyshev and
Legendre polynomials. See Sect. 4.1.3 for some algorithms using such bases.

2.4 Chebyshev Polynomials

2.4.1 Basic Formulas

Classical references on the Chebyshev polynomials are Fox and Parker (1968)
and Rivlin (1974). The Chebyshev polynomials of the first kind, Tk(x), k =
0, 1, . . . , are the eigenfunctions of the singular Sturm-Liouville problem

(√
1− x2T ′

k(x)
)′

+
k2

√
1− x2

Tk(x) = 0 , (2.4.1)

which is (2.2.1) with p(x) = (1 − x2)1/2, q(x) = 0 and w(x) = (1 − x2)−1/2.
For any k, Tk(x) is even if k is even, and odd if k is odd. If Tk is normalized
so that Tk(1) = 1, then

Tk(x) = cos kθ , θ = arc cosx . (2.4.2)

Thus, the Chebyshev polynomials are nothing but cosine functions after
a change of independent variable. This property is the origin of their wide-
spread popularity in the numerical approximation of nonperiodic boundary-
value problems. The transformation x = cos θ enables many mathematical
relations as well as theoretical results concerning the Fourier system to be
adapted readily to the Chebyshev system.

The Chebyshev polynomials can be expanded in power series as

Tk(x) =
k

2

[k/2]∑

l=0

(−1)k (k − l − 1)!
l!(k − 2l)!

(2x)k−2l , (2.4.3)
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where [k/2] denotes again the integral part of k/2. Moreover, the trigono-
metric relation cos(k + 1)θ + cos(k − 1)θ = 2 cos θ cos kθ gives the recursion
relation

Tk+1(x) = 2xTk(x)− Tk−1(x) , (2.4.4)

with T0(x) ≡ 1 and T1(x) ≡ x.
Some properties of the Chebyshev polynomials are

|Tk(x)| ≤ 1 , −1 ≤ x ≤ 1 , (2.4.5)

Tk(±1) = (±1)k , (2.4.6)

|T ′
k(x)| ≤ k2 , −1 ≤ x ≤ 1 , (2.4.7)

T ′
k(±1) = (±1)k+1k2 , (2.4.8)

∫ 1

−1

T 2
k (x)

dx√
1− x2

= ck
π

2
, (2.4.9)

where

ck =

{
2 , k = 0 ,

1 , k ≥ 1 .
(2.4.10)

The Chebyshev expansion of a function u ∈ L2
w(−1, 1) is

u(x) =
∞∑

k=0

ûkTk(x) , ûk =
2

πck

∫ 1

−1

u(x)Tk(x)w(x) dx . (2.4.11)

If we define the even periodic function ū by ū(θ) = u(cos θ), then

ū(θ) =
∞∑

k=0

ûk cos kθ ;

hence, the Chebyshev series for u corresponds to a cosine series for ū. It is easy
to verify that if u(x) is infinitely differentiable on [−1, 1], then ū(θ) is infinitely
differentiable and periodic with all its derivatives on [0, 2π]. According to the
integration-by-parts argument for Fourier series developed in Sect. 2.2.1, the
Chebyshev coefficients of a sufficiently smooth function are guaranteed to
decay faster than algebraically.

Turning now to relations of interest for discrete Chebyshev series, explicit
formulas for the quadrature points and weights are

Chebyshev Gauss (CG).

xj = cos
(2j + 1)π
2N + 2

, wj =
π

N + 1
, j = 0, . . . , N . (2.4.12)
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Chebyshev Gauss-Radau (CGR).

xj = cos
2πj

2N + 1
, wj =

⎧
⎪⎪⎨

⎪⎪⎩

π

2N + 1
, j = 0 ,

2π
2N + 2

, j = 1, . . . , N .

(2.4.13)

Chebyshev Gauss-Lobatto (CGL).

xj = cos
πj

N
, wj =

⎧
⎪⎨

⎪⎩

π

2N
, j = 0, N ,

π

N
, j = 1, . . . , N − 1 .

(2.4.14)

Note that the Chebyshev quadrature points as just defined are ordered
from right to left. This violates our general convention that quadrature points
are ordered from left to right (see Sect. 2.2.3). Virtually all of the classical
literature on Chebyshev spectral methods uses this reversed order. Therefore,
in the special case of the Chebyshev quadrature points we shall adhere to the
ordering convention that is widely used in the literature (and implemented
in the available software). We realize that our resolution of this dilemma
imposes upon the reader the task of mentally reversing the ordering of the
Chebyshev nodes whenever they are used in general formulas for orthogonal
polynomials.

The most commonly used points are those for the Gauss-Lobatto case,
which we consider in detail hereafter. The matrix representing the transfor-
mation from physical space to Chebyshev transform space (see (2.2.22)) is
available in the simple form

Ckj =
2

Nc̄j c̄k
cos

πjk

N
, (2.4.15)

where

c̄j =

{
2 , j = 0, N ,

1 , j = 1, . . . , N − 1 .
(2.4.16)

Likewise, the inverse transformation (see (2.2.21)) is represented by

(C−1)jk = cos
πjk

N
. (2.4.17)

Both transformsmaybeevaluatedby theFastFourierTransform(AppendixB),
i.e., by a transform method.

The normalization factors γk introduced in (2.2.23) are here given by

γk =
π

2
ck for k < N ,

γN =

⎧
⎨

⎩

π

2
for Gauss and Gauss-Radau formulas ,

π for the Gauss-Lobatto formula .

(2.4.18)
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The structure of the aliasing error (2.2.32) due to interpolation takes
a very simple form for the Chebyshev Gauss-Lobatto points. Recalling (2.4.2)
and using the identity (2.1.26) with N replaced by 2N , one gets, for k =
0, . . . , N ,

(Tk, Tl)N =

{
(Tk, Tk)N if l = 2mN ± k, m ≥ 0 ,

0 otherwise ;
(2.4.19)

hence, (2.2.30) becomes

ũk = ûk +
∑

j=2mN±k
j>N

ûj . (2.4.20)

As for the Fourier points, the k-th Chebyshev mode of the interpolant poly-
nomial depends upon all the Chebyshev modes that alias Tk(x) on the grid.

2.4.2 Differentiation

The derivative of a function u expanded in Chebyshev polynomials according
to (2.4.11) can be represented formally as

u′ =
∞∑

k=0

û
(1)
k Tk , (2.4.21)

where
û

(1)
k =

2
ck

+
∑

p=k+1
p+k odd

pûp , k ≥ 0 . (2.4.22)

This expression is a consequence of the relation

2Tk(x) =
1

k + 1
T ′

k+1(x)− 1
k − 1

T ′
k−1(x) , k ≥ 1 , (2.4.23)

which, due to (2.4.2), is a different form of the trigonometric identity

2 sin θ cos kθ = sin(k + 1)θ − sin(k − 1)θ .

From (2.4.23) one has

2kûk = ck−1û
(1)
k−1 − û

(1)
k+1 , k ≥ 1 ; (2.4.24)

whence, (2.4.22) follows. Note that the last relation suggests an efficient way
of differentiating a polynomial of degree N in Chebyshev space. Since û

(1)
k = 0

for k ≥ N , the nonzero coefficients are computed in decreasing order by the
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recursion relation

ckû
(1)
k = û

(1)
k+2 + 2(k + 1)ûk+1 , 0 ≤ k ≤ N − 1 , (2.4.25)

in 2N multiplications or additions. The generalization of this relation is

ckû
(q)
k = û

(q)
k+2 + 2(k + 1)û(q−1)

k+1 , k ≥ 0 . (2.4.26)

The coefficients of the second derivative are

û
(2)
k =

1
ck

∞∑

p=k+2
p+k even

p(p2 − k2)ûp , k ≥ 0 . (2.4.27)

The Chebyshev projection derivative is just (PNu)′. The Chebyshev inter-
polation derivative of a function u known at one set of quadrature nodes –
(2.4.12), (2.4.13) or (2.4.14) – is defined as the derivative of the discrete
Chebyshev series of u at the same nodes,

DNu = (INu)′ . (2.4.28)

As for Legendre polynomials, Chebyshev truncation and interpolation do
not commute with differentiation. (PNu)′ or (INu)′ are asymptotically worse
approximations of u′ than PN−1u

′ and IN−1u
′, respectively, for functions

with finite regularity. These results are made more precise in Sect. 5.5.2.
Chebyshev collocation differentiation can be accomplished efficiently by

means of a transform method. The discrete Chebyshev coefficients of u are
computed according to (2.2.22), then (2.4.25) is used to differentiate in trans-
form space, and finally the values of DNu at the grid points are obtained by
transforming back to physical space. If the discrete Chebyshev transforms
are computed by an FFT algorithm that takes advantage of the reality and
the parity of the function ũ(θ) = u(cos θ), the total number of operations
required to differentiate in physical space is (5 log2 N + 8 + 2q)N , where q
is the order of the derivative. The algorithmic details are furnished in Ap-
pendix B. The Chebyshev interpolation derivative can also be represented in
matrix form as

(DNu)(xj) =
N∑

l=0

(DN )jlu(xl) , j = 0, . . . , N . (2.4.29)

The entries (DN )jl can be computed by differentiating the characteristic
Lagrange polynomials ψl of degree N , which are 1 at xl and 0 at all the other
collocation points (see (2.3.27)).

For the popular Gauss-Lobatto points (2.4.14), these polynomials can be
expressed as

ψl(x) =
(−1)l+1(1− x2)T ′

N (x)
c̄lN2(x− xl)

. (2.4.30)
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The first derivative matrix (Gottlieb, Hussaini and Orszag (1984)) is

(DN )jl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c̄j

c̄l

(−1)j+l

xj − xl
, j 	= l ,

− xl

2(1− x2
l )

, 1 ≤ j = l ≤ N − 1 ,

2N2 + 1
6

, j = l = 0 ,

−2N2 + 1
6

, j = l = N ,

(2.4.31)

and the second derivative matrix (Peyret (1986); see also Ehrenstein and
Peyret (1989)) is

(D(2)
N )jl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)j+l

c̄l

x2
j + xjxl − 2

(1− x2
j )(xj − xl)2

,
1 ≤ j ≤ N − 1,
0 ≤ l ≤ N, j 	= l ,

−
(N2 − 1)(1− x2

j ) + 3
3(1− x2

j )2
, 1 ≤ j = l ≤ N − 1 ,

2
3

(−1)l

c̄l

(2N2 + 1)(1− xl)− 6
(1− xl)2

, j = 0, 1 ≤ l ≤ N ,

2
3

(−1)(l+N)

c̄l

(2N2 + 1)(1 + xl)− 6
(1 + xl)2

, j = N, 0 ≤ l ≤ N − 1 ,

N4 − 1
15

, j = l = 0 , j = l = N .

(2.4.32)
However, alternative expressions that reduce the impact of the round-off er-
rors resulting from subtraction of nearly equal quantities are preferred. With
this aim, the most obvious approach to reducing the impact of subtracting
nearly equal numbers for the Chebyshev derivative matrices is to use trigono-
metric identities, e.g.,

(DN )jl =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− c̄j

2c̄l

(−1)j+l

sin[(j + l)π/2N ] sin[(j − l)π/2N ]
, j 	= l ,

− xj

2 sin2(jπ/N)
, 1 ≤ j = l ≤ N − 1 ,

2N2 + 1
6

, j = l = 0 ,

−2N2 + 1
6

, j = l = N ,

(2.4.33)
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for (2.4.31). (The expression (2.4.33) was used already within the computer
programs included in Canuto et al. (1988).)

The matrix (2.4.31) is not skew symmetric, as opposed to the matrix
(2.1.51) of the Fourier differentiation. Since it is obtained by a similarity
transformation from the matrix of differentiation in transform space (see
(2.4.22)), it is immediate that the only eigenvalue is 0 with algebraic multi-
plicity N + 1. Clearly, introducing boundary conditions results in a different
structure of the spectrum, as discussed in Sects. 4.3 and 7.3.

If the interpolation derivative is computed by matrix multiplication, the
total number of operations is 2N2. Figure 2.4 (Sect. 2.1.3) also provides a tim-
ing comparison of matrix-multiply and transform-based Chebyshev deriva-
tives. The operation counts are 2N2, 5N(log2 N + 2) and 5N(log2 N − 1) for
the matrix-multiply, Chebyshev and Fourier first derivatives, respectively.
The figure reflects the greater cost of the Chebyshev derivative compared
with the Fourier derivative, by as much as a factor of 2 for small N . The
figure also indicates that for N small, say less than 12, the matrix-multiply
derivative is actually faster than the Chebyshev derivative. But for N ≥ 128,
the Chebyshev derivative is at least an order of magnitude faster. (Natu-
rally, the specific results quoted here for the crossover points depend very
strongly on the computer architecture and the efficiency of the implementa-
tion. (Again, see Deville, Fischer and Mund (2002) for techniques to speed
up the matrix-multiply derivatives.))

The use of trigonometric identities in computations of the elements of the
the derivative matrices is confined to Chebyshev polynomials, and even in
this special case further refinements have been discussed by several authors
(e.g., Breuer and Everson (1992), Don and Solomonoff (1995)). Many authors
have analyzed the sources of these errors as well as the extent to which
they affect the spatial/temporal stability of discrete solutions of boundary-
value/initial-value problems based on Chebyshev collocation methods. We
refer the interested reader to, for example, Funaro (1988), Trefethen and
Trummer (1987), Reddy and Trefethen (1992), Tang and Trummer (1996).

Alternatives applicable to general orthogonal polynomials have been pro-
vided by Welfert (1997), Schneider and Werner (1986), Baltensperger and
Berrut (1999, 2001). Often in these approaches the Lagrangian functions
(2.3.27) are reformulated in barycentric form as

ψl(x) =

λl

x− xl
N∑

k=0

λk

x− xk

, l = 0, . . . , N ,

λl =
1∏

k �=l

(xl − xk)
= (−1)l

{
1/2 , l = 0, N ,
1 otherwise .

(2.4.34)
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As pointed out in Baltenserger and Berrut (1999), it is desirable to satisfy
the consistency condition that every diagonal element of the differentiation
matrix equals the negative sum of all other elements on its row.

For the resulting representation of DN for general orthogonal polynomials
we refer to Schneider and Werner (1986):

(DN )jl =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δl

δj

(−1)j+l

xj − xl
, j 	= l ,

−
N∑

i=0,i �=j

δi

δj

(−1)i+j

xj − xi
, j = l ,

(2.4.35)

where δl = 1/2 if l = 0 or N , δl = 1 otherwise. Baltensperger and Berrut
(1999) report that (2.4.35) even reduces the round-off errors for Chebyshev
polynomials compared with (2.4.33).

Baltensperger and Berrut (1999) further recommend the use of

(D(2)
N )jl =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(DN )jl

(
(DN )jj −

1
xj − xl

)
, j 	= l ,

2(DN )2jl + 2
N∑

k=0, k �=j

(DN )jl
1

xj − xk
, j = l .

(2.4.36)

Modification of the barycentric form of the Lagrange functions (2.4.34)
based on the replacement of {λl}, l = 0, . . . , N , by alternative coefficients
{βl}, l = 0, . . . , N , yields the rational functions {ψ(β)

l (x)}, which still enjoy
the Lagrangian property ψ

(β)
l (xk) = δkl, for k, l = 0, . . . , N .

The interpolation formula based on the rational Lagrange functions,
{ψ(β)

l (x)}, underlies the so-called linear-rational collocation method (see
Berrut and Baltensperger (2001), Berrut and Mittelmann (2001), Baltensper-
ger, Berrut and Dubey (2003)). When accompanied with a new set of shifted
nodes, x̃j = g(xj), with g being a suitable map so that {x̃j} are more uni-
formly distributed than the original Gauss-Lobatto nodes {xj}, the corre-
sponding collocation method can enjoy better temporal stability properties
(Kosloff and Tal-Ezer (1993)).

2.5 Jacobi Polynomials

As noted in Sect. 2.2.1, the class of Jacobi polynomials comprises all the
polynomial solutions to singular Sturm-Liouville problems on (−1, 1). The
Jacobi polynomials P

(α,β)
k (x) of indices α, β > −1 and degree k are the

solutions to (2.2.1) with p(x) = (1− x)1+α(1 + x)1+β , q(x) = 0 and w(x) =
(1−x)α(1+x)β . The corresponding eigenfunctions are λk = k(k+α+β+1).
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In this section we collect some useful formulas for these polynomials (for more
details, see, e.g., Abramowitz and Stegun (1972, Chapter 22)).

Under the normalization P
(α,β)
k (1) =

(
k+α

k

)
, one has the expression

P
(α,β)
k (x) =

1
2k

k∑

l=0

(
k + α

l

)(
k + β

k − l

)
(x− 1)l(x + 1)k−l . (2.5.1)

The Rodriguez formula provides an alternative representation, namely,

P
(α,β)
k (x) =

(−1)k

2kk!
(1− x)−α(1 + x)−β dk

dxk

(
(1− x)α+k(1 + x)β+k

)
. (2.5.2)

Jacobi polynomials satisfy the two recursion relations:

P
(α,β)
0 (x) = 1 , P

(α,β)
1 (x) =

1
2
[(α− β) + (α + β + 2)x] ,

a1,kP
(α,β)
k+1 (x) = a2,kP

(α,β)
k (x)− a3,kP

(α,β)
k−1 (x) ,

(2.5.3)

where

a1,k = 2(k + 1)(k + α + β + 1)(2k + α + β) ,

a2,k = (2k + α + β + 1)(α2 − β2) + xΓ (2k + α + β + 3)/Γ (2k + α + β) ,

a3,k = 2(k + α)(k + β)(2k + α + β + 2) ;

and

b1,k(x)
d
dx

P
(α,β)
k (x) = b2,k(x)P (α,β)

k (x) + b3,k(x)P (α,β)
k−1 (x) , (2.5.4)

where

b1,k(x) = (2k + α + β)(1− x2) , b2,k(x) = k(α− β − (2k + α + β)x) ,

b3,k(x) = 2(k + α)(k + β) .

A useful formula that relates Jacobi polynomials and their derivatives is

dm

dxm
P

(α,β)
k (x) = 2−m Γ (k + m + α + β + 1)

Γ (k + α + β + 1)
P

(α+m,β+m)
k−m (x) ; (2.5.5)

in particular, one has

d
dx

P
(α,β)
k (x) = 1

2 (k + 1 + α + β)P (α+1,β+1)
k−1 (x) . (2.5.6)

This shows that the internal Legendre Gauss-Lobatto nodes (2.3.12) are in-
deed the zeroes of the Jacobi polynomial P (1,1)

N−1 , i.e., they are Gauss nodes for
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the weight w(x) = 1 − x2. A similar result holds for the Chebyshev Gauss-
Lobatto nodes. The discussion in Sect. 2.2.3 contains the general formulas
for the Jacobi nodes and their discrete quadrature weights.

Jacobi series are given by

u(x) =
∞∑

k=0

ûkP
(α,β)
k (x) ,

ûk =
2k + α + β + 1

2α+β+1

k!Γ (k + α + β + 1)
Γ (k + α + 1)Γ (k + β + 1)

×
∫ 1

−1

u(x)P (α,β)
k (x)(1− x)α(1 + x)β dx .

(2.5.7)

Jacobi polynomials for which α = β are called ultraspherical polynomi-
als and are denoted simply by P

(α)
k (x) . They are related to the Legendre

polynomials via
Lk(x) = P

(0)
k (x) (2.5.8)

and to the Chebyshev polynomials via

Tk(x) =
22k(k!)2

(2k)!
P

(−1/2)
k (x) . (2.5.9)

A different normalization of the ultraspherical polynomials leads to the
Gegenbauer polynomials Cν

k , which are defined as

Cν
k (x) =

Γ (ν + 1
2 )Γ (2ν + k)

Γ (ν + k + 1
2 )Γ (2ν)

P
(ν−1/2)
k (x) . (2.5.10)

Spectral methods based on Jacobi polynomials distinct from Chebyshev
and Legendre polynomials have been developed. For instance, they are essen-
tial in the construction of warped tensor-product expansions in non-Cartesian
domains (see Sect. 2.9). Gegenbauer polynomials appear in the spectrally
accurate reconstruction of discontinuous functions (see Sect. 7.6.3). Jacobi
polynomials are also used in some special Galerkin methods for wall-bounded
incompressible flows (see CHQZ3, Sect. 3.4.3).

2.6 Approximation in Unbounded Domains

There are three basic ways to construct global approximations to functions
defined on unbounded intervals, e.g., [0,∞) and (−∞,∞): (1) expand in
Laguerre or Hermite functions; (2) map the unbounded interval into a finite
one and then expand in a set of Jacobi polynomials; and (3) truncate the
domain to [0, xmax] or [xmin, xmax] and use a Jacobi expansion. See Boyd
(2001) for a detailed discussion of all three options.

We recall here the definitions and the most significant properties of La-
guerre and Hermite expansions, leaving the two other strategies for the next
section.
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2.6.1 Laguerre Polynomials and Laguerre Functions

For any α > −1, the Laguerre polynomials l
(α)
k (x), k ≥ 0, are the eigenfunc-

tions of the singular Sturm-Liouville problem in (0,+∞):
(
xα+1e−x

(
l
(α)
k

)′
(x)
)′

+ kxαe−xl
(α)
k = 0 . (2.6.1)

They are orthogonal in (0,+∞) with respect to the weight w(x) = xαe−x;
precisely, assuming the normalization l

(α)
k (0) =

(
k+α

k

)
, one has

∫ +∞

0

l
(α)
k (x)l(α)

m (x)xαe−x dx = Γ (α + 1)
(
k + α

k

)
δkm , k,m ≥ 0 . (2.6.2)

In the particular case α = 0, the polynomials lk(x) = l
(0)
k (x) satisfy lk(0) = 1

and are orthonormal in (0,+∞).
The analogue of the Rodriguez formula is

l
(α)
k (x) =

1
k!

x−αex dk

dxk
(xk+αe−x) . (2.6.3)

The Laguerre polynomials satisfy the recursion relation

l
(α)
k+1(x) = (2k + α + 1− x)l(α)

k (x)− (k + α)l(α)
k−1(x) , (2.6.4)

where l
(α)
0 (x) = 1 and l

(α)
1 (x) = α + 1 − x. The derivative of a Laguerre

polynomial satisfies the relations

d
dx

l
(α)
k (x) = −l

(α+1)
k−1 (x) (2.6.5)

and
x

d
dx

l
(α)
k (x) = kl

(α)
k (x)− l

(α)
k−1(x) . (2.6.6)

Any function v ∈ L2
w(0,+∞) can be expanded in a Laguerre series as

v =
∑

k v̂
(α)
k l

(α)
k . The convergence of the series (in weighted square mean) is

faster than algebraic, provided all the derivatives of the function belong to
L2

w(0,+∞). No boundary condition need be satisfied, since Laguerre polyno-
mials are eigenfunctions of a Sturm-Liouville problem that is singular at both
endpoints. On the other hand, convergence is in the mean, with a weight van-
ishing exponentially fast at infinity, where the expansion polynomials become
unbounded. Thus, the quality of the approximation for a fixed truncation at
k = N may deteriorate as x tends to +∞, e.g., with oscillations that are
unbounded as x→ +∞.

In order to avoid such a problem for approximating functions that vanish
at +∞, it may be more appropriate to expand in the Laguerre functions
defined as Lk(x) = e−x/2l

(0)
k (x). Thanks to (2.6.2), they satisfy
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∫ +∞

0

Lk(x)Lm(x) dx = δkm , k,m ≥ 0 , (2.6.7)

and thus form an orthonormal basis in L2(0,+∞). Note however that for an
infinitely smooth function v ∈ L2(0,+∞), the spectral convergence of the
truncated series in Laguerre functions occurs only if v decays exponentially
fast at +∞.

2.6.2 Hermite Polynomials and Hermite Functions

The Hermite polynomials Hk(x), k ≥ 0, are the eigenfunctions of the singular
Sturm-Liouville problem in (−∞,+∞)

(
e−x2

H ′
k(x)

)′
+ 2ke−x2

Hk(x) = 0 . (2.6.8)

They are orthogonal in (−∞,+∞) with respect to the weight w(x) = e−x2
;

precisely, they satisfy
∫ +∞

−∞
Hk(x)Hm(x)e−x2

dx =
√

π 2k k! δkm , k,m ≥ 0 . (2.6.9)

The analogue of the Rodriguez formula is

Hk(x) = (−1)kex2 dk

dxk
e−x2

. (2.6.10)

The Hermite polynomials satisfy the recursion relation

Hk+1(x) = 2xHk(x)− 2kHk−1(x) , k ≥ 1 . (2.6.11)

where H0(x) = 1 and H1(x) = 2x. The derivative of a Hermite polynomial
satisfies the relation

d
dx

Hk(x) = 2kHk−1(x) . (2.6.12)

A related family of Hermite polynomials is given by

Hek(x) = (1/
√

2k)Hk(x/
√

2) , k ≥ 0 . (2.6.13)

Such polynomials are orthogonal with respect to the weight w̃(x) = e−x2/2.
The Hermite functions are defined as Hk(x) = e−x2/2Hk(x). Thanks to

(2.6.9) they are orthogonal in L2(−∞,+∞):
∫ +∞

−∞
Hk(x)Hm(x) dx = δkm , k,m ≥ 0 , (2.6.14)

and form an orthonomal basis of this space.
Considerations about the spectral convergence of the expansion of a func-

tion in Hermite polynomials or functions are similar to those described above
for the Laguerre case.
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2.7 Mappings for Unbounded Domains

We focus here on some fundamentals for the mapping approach, with a par-
ticular emphasis on Chebyshev expansions.

2.7.1 Semi-Infinite Intervals

In the present subsection we shall present some guidelines for selecting global
approximations in [0,+∞) that yield faster than algebraic decay of the max-
imum error.

The combination of the mapping x = φ(ξ), for ξ ∈ [−1, 1], with a Cheby-
shev polynomial expansion in ξ is appealing because it allows the FFT to
be employed for many of the requisite series manipulations. The convergence
properties of the approximation to u(x) can be determined from the behavior
of the function v(ξ) = u(φ(ξ)). Infinite-order accuracy is expected when v(ξ)
is infinitely differentiable on [−1, 1]. Assuming that u(x) itself is infinitely
differentiable on [0,∞), the critical issue is the behavior of the derivatives of
v(ξ) at ξ = ±1. Loosely put, uniform spectral accuracy can be achieved pro-
vided the derivatives of u(x) decay fast enough and oscillate slowly enough
as x→∞.

The most frequently used mappings are algebraic, exponential and log-
arithmic, given by the following formulas, in which the constant L sets the
length scale of the mappings:

(Semi-Infinite) Algebraic Mapping.

x = L
1 + ξ

1− ξ
, ξ =

x− L

x + L
, (2.7.1)

(Semi-Infinite) Exponential Mapping.

x = −L ln
(

1− ξ

2

)
, ξ = 1− 2e−x/L , (2.7.2)

(Semi-Infinite) Logarithmic Mapping.

x =
L

2
ln
(

3 + ξ

1− ξ

)
, ξ = −1 + 2 tanh(x/L) . (2.7.3)

The algebraic mapping places the most collocation points at larger values
of x and the logarithmic mapping the fewest. Thus, the algebraic mapping is
best suited to approximation of functions that decay relatively slowly, e.g.,
algebraically in 1/x as x→∞, whereas the exponential and logarithmic map-
pings are more appropriate for more rapidly decaying functions, e.g., decaying
exponentially in x. Unlike expansions on a finite domain, spectral approxi-
mations on a semi-infinite domain have two discretization parameters – the
length scale L in addition to the usual series truncation parameter N . As
a general rule, the length scale L needs to be increased with N in order to
have spectral accuracy (see Boyd (2001)).
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Numerous authors (Grosch and Orszag (1977), Boyd (1982), Herbert
(1984)) have found that, in practice, algebraic mappings are more accurate
and more robust (less sensitive to the scale factor L) than exponential ones.
For functions that decay only algebraically the logarithmic map is the most
robust.

Spalart (1984) observed that the use of the exponential mapping (2.7.2)
for a function that decays faster than exponentially (as a Gaussian, for ex-
ample) results in an inefficient distribution of grid points. Because of the
clustering of nodes at ξ = −1 and ξ = 1, there will be more nodes for large x
than are required to resolve the function. Spalart proposed replacing (2.7.2)
with

x = −L ln ξ , ξ = e−x/L (2.7.4)

for ξ ∈ [0, 1]. Then the function v(ξ) and all of its derivatives are zero at ξ = 0.
Hence, v(ξ) may be extended smoothly to a function on [−1, 1]. (In some
cases, just the odd or just the even Chebyshev polynomials are appropriate
expansion functions.) The grid points are clustered near ξ = 1 (x = 0) and
are coarsely distributed near ξ = 0 (x = ∞). Likewise, for an exponentially
decaying function, Chebyshev expansions may be combined with the map

x = L
ξ

1− ξ
, ξ =

x

x + L
. (2.7.5)

When the infinite interval is handled by truncating the domain to [0, xmax],
infinite-order accuracy can only be achieved by increasing xmax as the num-
ber of terms in the series is increased. Boyd (1982) provides some guidance
on how xmax should increase with N .

2.7.2 The Real Line

Similar considerations apply to expansions on (−∞,+∞) as on semi-infinite
intervals. The classical preference is for expansions in Hermite functions.
However, there is no fast transform for them, and infinite-order accuracy
requires that the function decay at least exponentially fast as |x| → ∞ (Boyd
(1984)).

Cain, Ferziger, and Reynolds (1984) suggested the use of the mapping

x = −L cot(ξ/2) , ξ ∈ [0, 2π] (2.7.6)

in conjunction with Fourier series. Infinite-order accuracy is only achieved
if the function u(x) and all of its derivatives exist and match at x = −∞
and x = +∞. The reason is that the function v(ξ) = u(φ(ξ)) is implicitly
extended periodically by the use of Fourier series, and continuity of v(ξ) and
all its derivatives is required for spectral accuracy.

For functions that approach different limits (but exponentially fast) at
x = ±∞, such as u(x) = tanhx, Cain et al. proposed the mapping

x = −L cot ξ , ξ ∈ [0, π] , (2.7.7)
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with v(ξ) extended to ξ ∈ [π, 2π] by reflection. When coupled with Fourier
series, this yields infinite-order accuracy.

Boyd (1987) has discussed the use of the mapping (2.7.7) on just [0, π]
in conjunction with a sine and cosine expansion (as opposed to the complex
Fourier series on [0, 2π]). He noted that if just the cosine expansion is used,
then u(x) must at least have exponential decay (or special symmetries). If
the decay is only algebraic and no special symmetries are present, then only
algebraic convergence is possible with the cosine expansion.

An alternative approximation couples either the algebraic map,

x = L
ξ√

1− ξ2
, ξ ∈ [−1, 1] , (2.7.8)

or else the exponential map

x = L tanh−1 ξ , ξ ∈ [−1, 1] , (2.7.9)

with an expansion in Chebyshev polynomials. One expects infinite-order ac-
curacy, even if u(−∞) 	= u(+∞), provided that the derivatives of u decay
sufficiently fast, i.e., algebraic decay with (2.7.8) and exponential decay with
(2.7.9), and of course, provided that u(x) is analytic at x = ±∞.

2.8 Tensor-Product Expansions

In the previous sections we have introduced several one-dimensional expan-
sions, and we have studied their orthogonality, localization, and differentia-
tion properties. The most natural way to build a multidimensional expansion,
exploiting all the one-dimensional features, is to take tensor products of one-
dimensional expansions; the resulting functions are defined on the Cartesian
product of intervals. Precisely, given d families {φ(l)

kl
}kl of one-dimensional

basis functions on intervals (al, bl), then the family {φk(x)}k defined as

φk(x) =
d∏

l=1

φ
(l)
kl

(xl), k = (k1, . . . , kd), x = (x1, . . . , xd), (2.8.1)

is a multidimensional basis on the domain Ω =
∏d

l=1(al, bl).
The most familiar example is the multidimensional Fourier basis

φk(x) =
d∏

l=1

eiklxl = eik·x

defined on the periodic box Ω = (0, 2π)d. Another common example is the
three-dimensional Fourier-Chebyshev basis

φk(x) = ei(k1x1+k2x2) Tk3(x3)
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defined on Ω = (0, 2π)2 × (−1, 1), which is used, e.g., in Fourier-Chebyshev
spectral simulations of plane channel flow (see CHQZ3, Sect. 3.4).

Orthogonality of each one-dimensional family with respect to a weight
wl(xl) implies orthogonality of the tensor-product family with respect to the
weight w(x) =

∏d
l=1 wl(xl). On the other hand, if each individual factor φ

(l)
kl

is a characteristic Lagrange polynomial relative to a family of quadrature
points in [al, bl], then φk is a characteristic Lagrange polynomial relative to
the family of tensorized quadrature points in Ω. For instance, the expression

φk(x) =
d∏

l=1

ψkl(xl) ,

where ψk is one of the N -degree characteristic Lagrange polynomials intro-
duced in (1.2.56), defines a characteristic Lagrange polynomial relative to the
N -degree tensorized Legendre-Gauss-Lobatto points in Ω = [−1, 1]d. Such
a basis is commonly used in multidimensional G-NI methods (see Sect. 6.4.3)
in the reference domain Ω.

The one-dimensional results on the precision of the quadrature rules and
the decay rates of the coefficients extend to the tensor-product case as well.

First-order partial differentiation in wavenumber or in physical space can
be accomplished by applying one-dimensional differentiation matrices to the
coefficient vector in standard tensor-product fashion.

Boundary-adapted bases in each spatial direction tensorize to produce
a boundary-adapted basis in Ω; this is formed by bubble functions vanish-
ing on the boundary ∂Ω and by vertex functions not vanishing at precisely
one vertex, edge functions not vanishing at precisely one edge, face func-
tions not vanishing at precisely one face, and so on. For instance, the tensor
product {ηk(x) = ηk1(x

(1))ηk2(x
(2))} of two modal bases (2.3.30) on the

interval (−1, 1) contains (N − 1)2 bubble functions (for 2 ≤ k1, k2 ≤ N),
4 vertex functions (for k1, k2 ∈ {0, 1}) and 4(N − 1) edge functions (for
k1 ∈ {0, 1}, 2 ≤ k2 ≤ N , and k2 ∈ {0, 1}, 2 ≤ k1 ≤ N). Some of these
functions are represented in the left half of Fig. 2.13; the right part shows
the corresponding functions of the LGL nodal basis. As is typical, nodal ba-
sis functions are more localized than modal basis functions, but are more
oscillatory.

2.8.1 Multidimensional Mapping

If one wishes to solve a two-dimensional problem by spectral methods, and the
geometry is not directly conducive to the use of a tensor-product expansion,
then one might be able to map the domain of interest onto a more standard
computational domain, such as a square or a circle. (This might not always be
possible or even desirable. One must then resort to the multidomain spectral
methods discussed in CHQZ3, Chap. 5.)
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Fig. 2.13. Examples of boundary-adapted tensor-product basis functions on the
square (−1, 1)2, for N = 4: modal (left), nodal (right); vertex (top), edge (center),
bubble (bottom). See also Fig. 2.12

One of the standard mapping techniques is based on conformal transfor-
mations. These are discussed in most elementary texts on complex variables
(e.g., Carrier, Krook and Pearson (1966), Ahlfors (1979)). Among their ad-
vantages are the preservation of orthogonality and of simple operators such
as divergence and gradient. Conformal mappings are widely used in two-
dimensional fluid dynamical problems. The book by Milne-Thomson (1966)
contains an extensive discussion. Several numerical methods have been de-
vised for generating conformal mappings; see, for example, Meiron, Orszag
and Israeli (1981) and Trefethen (1980).
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Γ̂1

Γ̂2

Γ̂3

Γ̂4
Ω̂

Γ1

Γ2

Γ3

Γ4Ω

F

Fig. 2.14. Mapping of the unit square Ω̂ = [−1, 1]2 into a quadrilateral Ω with
curved boundaries

A fairly simple procedure exists for mapping a square Ω̂ into a quadrilat-
eral Ω with curved boundaries. The basic geometry is illustrated in Fig. 2.14.
Let the four sides of the quadrilateral be denoted by Γi, for i = 1, 2, 3, 4, and
those of the square by Γ̂i. One uses parametrizations πi from the interval
[0, 1] to Γi to construct the mapping F from Ω̂ to Ω, such that F (Γ̂i) = Γi

for all i. Gordon and Hall (1973a, 1973b) described a variety of mappings.
The simplest is a linear blending mapping, for which F can be expressed in
terms of the πi as

F (ξ, η) =
1− η

2
π3(ξ) +

1 + η

2
π1(ξ)

+
1− ξ

2

[
π2(η)− 1 + η

2
π2(1)− 1− η

2
π2(−1)

]

+
1 + ξ

2

[
π4(η)− 1 + η

2
π4(1)− 1− η

2
π4(−1)

]
.

(2.8.2)

(We assume that the arcs Γ1 and Γ3 are oriented from left to right and the
arcs Γ2 and Γ4 from bottom to top.)

The Gordon-Hall transformation can be easily extended to three dimen-
sions. A straightforward implementation is as follows: Let Ω̂ = [−1, 1]3 be
the reference cube with coordinates (ξ, η, ζ), and let âi (i = 1, . . . , 8) and Σ̂i

(i = 1, . . . , 6) denote its vertices and faces, respectively, numbered as shown
in Fig. 2.15. Let Ω ⊂ R

3 be the hexahedron, with faces Σi (i = 1, . . . , 6),
that is the image of Ω̂ under a smooth transformation F . We assume that
we know each mapping πi : [−1, 1]2 → R

3 from the reference square to the
face Σi, which is the image of the face Σ̂i under the transformation; with
obvious notation, we have π1 = π1(ξ, ζ), π2 = π2(η, ζ), π3 = π3(ξ, ζ), π4 =
π4(η, ζ), π5 = π5(ξ, η), π6 = π6(ξ, η). The vertices of Ω can be obtained as
a1 = π1(−1,−1), a2 = π1(1,−1), a3 = π3(1,−1), a4 = π3(−1,−1), a5 =
π1(−1, 1), a6 = π1(1, 1), a7 = π3(1, 1), and a8 = π3(−1, 1). Then, we can
define F as follows:
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F (ξ, η, ζ) =
1− ξ

2
π4(η, ζ) +

1 + ξ

2
π2(η, ζ) +

1− η

2
π1(ξ, ζ)

+
1 + η

2
π3(ξ, ζ) +

1− ζ

2
π5(ξ, η) +

1 + ζ

2
π6(ξ, η)

− 1− ξ

2
1− η

2
1− ζ

2
π1(−1,−1)− 1 + ξ

2
1− η

2
1− ζ

2
π1(1,−1)

− 1 + ξ

2
1 + η

2
1− ζ

2
π3(1,−1)− 1− ξ

2
1 + η

2
1− ζ

2
π3(−1,−1)

− 1− ξ

2
1− η

2
1 + ζ

2
π1(−1, 1)− 1 + ξ

2
1− η

2
1 + ζ

2
π1(1, 1)

− 1 + ξ

2
1 + η

2
1 + ζ

2
π3(1, 1)− 1− ξ

2
1 + η

2
1 + ζ

2
π3(−1, 1).

(2.8.3)

ξ

η

ζ

â1

â2

â3

â4

â5

â6

â7

â8

Σ̂1

Σ̂2

Σ̂3

Σ̂4

Σ̂5

Σ̂6

Fig. 2.15. Vertices and faces of the unit reference cube Ω̂ = [−1, 1]3

More efficient implementations, in which the vertices, edges and faces
are accounted for hierarchically, are available (see, e.g., Deville, Fischer and
Mund (2002)).

In the event that the domain Ω is actually a subdomain in a multidomain
spectral method (see CHQZ3, Chap. 5), the use of an isoparametric descrip-
tion of the curves Γi may be desirable. Here one chooses the curves Γi so
that they are exactly parametrizable by polynomials of the same order as the
discretization within Ω. This approach is common in finite-element methods
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(see, e.g., Ciarlet (2002)) and was used first in spectral-element methods (see
CHQZ3, Sect. 5.1) by Korczak and Patera (1986).

2.9 Expansions on Triangles and Related Domains

In this section we review some of the constructions of spectral polynomial
approximations on elementary domains, such as triangles or tetrahedra, that
are not Cartesian products of intervals. We distinguish between two different
strategies, which are described in the following two subsections.

2.9.1 Collapsed Coordinates and Warped Tensor-Product
Expansions

Simplicial domains, i.e., such non-tensor-product domains as triangles, tetra-
hedra, prisms and pyramids, are by far more flexible than Cartesian prod-
ucts of intervals, such as squares or cubes, in handling complex geometries
by partitioning methods. (See Ciarlet (2002) and Hughes (2000) for complete
descriptions of simplicial domains.) On the other hand, spectral methods
prove themselves extremely efficient on tensor-product domains, due to the
structure of the expansions employed therein. Therefore, it is tempting to try
to marry the efficiency of tensor products with the flexibility of triangular
geometries.

A successful realization of this marriage is provided, after Dubiner (1991b),
by the concept of warped tensor-product expansion. Although similar ideas
had appeared earlier in the literature (Proriol (1957), Koornwinder (1975)),
Dubiner’s paper was highly influential in the spectral methods community,
as he introduced bases on a triangle geared towards the discretization of
partial differential equations. Sherwin and Karniadakis (1995) extended the
construction to the three-dimensional case. Warped tensor-product expan-
sions exploit collapsed Cartesian coordinate systems in the simplices (see,
e.g., Stroud (1971)).

We describe this approach in two dimensions. Let us introduce the refer-
ence triangle T = {(x1, x2) ∈ R2 : −1 < x1, x2 ; x1 +x2 < 0} as well as the
reference square Q = {(ξ1, ξ2) ∈ R

2 : −1 < ξ1, ξ2 < 1}. The mapping

(x1, x2) �→ (ξ1, ξ2), ξ1 = 2
1 + x1

1− x2
− 1, ξ2 = x2, (2.9.1)

is a bijection between T and Q. Its inverse is given by

(ξ1, ξ2) �→ (x1, x2), x1 =
1
2
(1 + ξ1)(1− ξ2)− 1, x2 = ξ2. (2.9.2)

Note that the mapping (x1, x2) �→ (ξ1, ξ2) sends the ray in T issuing from
the upper vertex (−1, 1) and passing through the point (x1,−1) into the ver-
tical segment in Q of the equation ξ1 = x1 (see Fig. 2.16). Consequently,
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the transformation becomes singular at the upper vertex of the triangle, al-
though it stays bounded as one approaches the vertex. The determinant of
the Jacobian of the inverse transformation is given by

∣∣∣∣
∂(x1, x2)
∂(ξ1, ξ2)

∣∣∣∣ =
1− ξ2

2
. (2.9.3)

We term (ξ1, ξ2) the collapsed Cartesian coordinates of the point on the tri-
angle whose regular Cartesian coordinates are (x1, x2).

Recall that {P (α,β)
k (ξ)}, k ≥ 0, denotes the family of Jacobi polynomials

that forms an orthogonal system with respect to the weight (1− ξ)α(1 + ξ)β

in (−1, 1); see Sect. 2.5 (note that P
(0,0)
k (ξ) is the Legendre polynomial Lk(ξ)

introduced in Sect. 2.3). For k = (k1, k2), define the warped tensor-product
basis function on Q:

Φk(ξ1, ξ2) = Ψk1(ξ1)Ψk1,k2(ξ2), (2.9.4)

where

Ψk1(ξ1) = P
(0,0)
k1

(ξ1), Ψk1,k2(ξ2) = (1− ξ2)k1P
(2k1+1,0)
k2

(ξ2), (2.9.5)

which is a polynomial of degree k1 in ξ1 and k1 + k2 in ξ2. By applying the
mapping (2.9.1) one obtains the function defined on T :

ϕk(x1, x2) = Φk(ξ1, ξ2)

= P
(0,0)
k1

(2
1 + x1

1− x2
− 1)(1− x2)k1P

(2k1+1,0)
k2

(x2).
(2.9.6)

It is easily seen that ϕk is a polynomial of global degree k1 + k2 in the vari-
ables x1, x2. Furthermore, thanks to the orthogonality of Jacobi polynomials,

T

-1

-1 1

1

x1

x2

Q

-1

-1

1

1
ξ1

ξ2

Fig. 2.16. The reference triangle T is mapped onto the reference square Q. Oblique
segments are transformed into vertical segments
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one has, for k 	= h,
∫

T
ϕk(x1, x2)ϕh(x1, x2) dx1dx2 =

1
2

∫ 1

−1

P
(0,0)
k1

(ξ1)P
(0,0)
h1

(ξ1) dξ1

×
∫ 1

−1

P
(2k1+1,0)
k2

(ξ2)P
(2h1+1,0)
h2

(ξ2)(1− ξ2)k1+h1+1 dξ2 = 0.

We conclude that the set {ϕk : 0 ≤ k1, k2 and k1+k2 ≤ N} is an orthogonal
modal basis of the space

PN (T ) = span {xi
1x

j
2 : 0 ≤ i, j and i + j ≤ N} (2.9.7)

of the polynomials of global degree ≤ N in the variables x1, x2. The dimen-
sion of this space, i.e., the number of basis functions, is 1

2 (N + 1)(N + 2).
(Interestingly, Owens (1998) obtains an orthogonal basis in PN (T ) whose
elements are the eigenfunctions of a singular Sturm-Liouville problem in T .
His construction extends to triangles the approach followed in one dimension
to generate orthogonal polynomials; see Sect. 2.2.1.)

While orthogonality simplifies the structure of the mass matrix, it com-
plicates the enforcement of boundary conditions, or of matching conditions
between subdomains. This difficulty can be surmounted by building a new
modal basis, say {ϕba

k }, where “ba” stands for boundary adapted; it consists
of boundary functions (3 vertex functions plus 3(N − 1) edge functions) and
internal functions (1

2 (N −2)(N −1) bubbles). Each basis function retains the
same “warped tensor-product” structure as above. Indeed, it is enough to
replace the one-dimensional Jacobi basis P

(α,0)
k (ξ) (with α = 0 or 2k + 1) by

the boundary-adapted basis given by the two boundary functions
1 + ξ

2
and

1− ξ

2
and by the N − 1 bubbles

(
1 + ξ

2

)(
1− ξ

2

)
P

(α,β)
k−2 (ξ), k = 2, . . . , N ,

(for suitable α, β ≥ 1 fixed). Note that the choice α = β = 1 yields the
boundary-adapted basis ηk, k = 0, . . . , N , defined in (2.3.30)–(2.3.32) (up to
a normalization factor).

These univariate functions are then combined as in (2.9.4) to form the
two-dimensional basis. To be precise, the vertex functions, expressed in the
(ξ1, ξ2)-coordinates, are

ΦV1(ξ1, ξ2) =
(

1− ξ1
2

)(
1− ξ2

2

)
(vertex V1 = (−1,−1)) ,

ΦV2(ξ1, ξ2) =
(

1 + ξ1
2

)(
1− ξ2

2

)
(vertex V2 = (+1,−1)) ,

ΦV3(ξ1, ξ2) =
1 + ξ2

2
(vertex V3 = (−1,+1)) ;
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the edge functions are defined as

ΦV1V2
k1

(ξ1, ξ2) =
(

1− ξ1
2

)(
1 + ξ1

2

)
P

(β,β)
k1−2 (ξ1)

(
1− ξ2

2

)k1

, 2 ≤ k1 ≤ N ,

ΦV1V3
k2

(ξ1, ξ2) =
(

1− ξ1
2

)(
1− ξ2

2

)(
1 + ξ2

2

)
P

(β,β)
k2−2 (ξ2) , 2 ≤ k2 ≤ N ,

ΦV2V3
k2

(ξ1, ξ2) =
(

1 + ξ1
2

)(
1− ξ2

2

)(
1 + ξ2

2

)
P

(β,β)
k2−2 (ξ2) ; 2 ≤ k2 ≤ N ;

finally, the bubble functions are defined for k1, k2 ≥ 2 and k1 + k2 ≤ N , as

ΦB
k1,k2

(ξ1, ξ2) =
(

1− ξ1
2

)(
1 + ξ1

2

)
P

(β,β)
k1−2 (ξ1)

×
(

1− ξ2
2

)k1
(

1 + ξ2
2

)
P

(2k1−1+δ,β)
k2−2 (ξ2) .

The choice β = δ = 2 yields orthogonality among the bubble functions
(and certain boundary functions). However, usually the choice β = 1, δ = 0 is
preferred. Indeed, thanks to property (2.5.6)), it guarantees a good compro-
mise in the sparsity pattern of both mass and stiffness matrices; furthermore,
it leads to a more favorable conditioning of the stiffness matrix associated
with a second-order operator.

It is conceptually important to notice that the vertex function ΦV3 can
be written as

ΦV3(ξ1, ξ2) =
1− ξ1

2
1 + ξ2

2
+

1 + ξ1
2

1 + ξ2
2

;

in other words, it is the sum of the two vertex functions associated with the
vertices (−1,+1) and (+1,+1) of the square Q. These vertices collapse into
the vertex V3 of the triangle T under the mapping (2.9.2).

With such bases in hand, one can discretize a boundary-value problem
by the Galerkin with numerical integration (G-NI) method. To this end, one
needs a high precision quadrature formula on T . Since

∫

T
f(x1, x2) dx1dx2 =

1
2

∫ 1

−1

dξ1
∫ 1

−1

F (ξ1, ξ2)(1− ξ2) dξ2 (2.9.8)

(where f and F are related by the change of variables (2.9.1)), it is natural
to use a tensor-product Gaussian formula in Q for the weight (1− ξ2). This
can be obtained by tensorizing the (N + 1)-point Gauss-Lobatto formula for
the weight 1 with the (N + 1)-point Gauss-Lobatto formula for the weight
(1−ξ2). Often, in the ξ2-direction, the N -point Gauss-Radau formula for the
weight (1− ξ2) with ξ2 = −1 as integration node is preferred, since excluding
the singular point ξ2 = 1 from the integration nodes makes life easier in the
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construction of stiffness matrices (derivatives need not be computed therein)
and improves the condition number of the matrices. The resulting formula is
exact for all polynomials in Q of degree ≤ 2N − 1 in each variable, ξ1, ξ2; in
particular, it is exact for all polynomials in T of global degree ≤ 2N−1 in the
variables x1, x2. Note, however, that the number of quadrature nodes in T is
N(N + 1), nearly the double of the dimension of PN (T ), 1

2 (N + 1)(N + 2);
thus, no basis in PN (T ) can be the Lagrange basis associated with such
quadrature nodes. This means that a G-NI method, based on the quadrature
formula described above, cannot be equivalent to a collocation method at the
quadrature points (as may occur on a simple, Cartesian domain (see, e.g.,
Sects. 3.5 and 3.8.2)).

Finally, we observe that the G-NI mass and stiffness matrices on T can be
built efficiently by exploiting the tensor-product structure of both the basis
functions and the quadrature points in Q. We refer to Sect. 4.2.2 for more
details.
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Fig. 2.17. Accuracy of the spectral discretization of a Poisson problem on the
reference triangle T and on the reference square Q. In both cases, the exact solution
is u(x, y) = (1 + x)(1 + y)(x + y)exp(a(x + y)), with a = −1 (left) and a = −3
(right)

In order to give a flavor of the behavior of a spectral method on a triangle,
the Poisson problem

−∆u = f in T ,
u = g on ∂T

has been discretized by the Galerkin method, using the boundary-adapted
basis described above (with the choice β = 1, δ = 0) and mapped LGL numer-
ical integration on the right-hand side. The data f and g have been chosen to
produce the function u(x, y) = (1+x)(1+y)(x+y)exp(a(x+y)), where a < 0
is a parameter, as the exact solution (note that u vanishes on the boundary
of the triangle, i.e., g = 0). Fig. 2.17 reports the errors eN = max |u − uN |
vs. N for two different values of a, where uN is the discrete solution and the
maximum is taken over the LGL quadrature grid. For comparison, the same
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problem has been solved on the square Q using the standard tensor-product
LGL nodal basis for the same N and the same exact solution (which indeed is
defined on the whole of Q). Spectral accuracy is clearly documented for both
methods. The Galerkin projection method on the triangle yields slightly less
accurate results than on the square. However, the rates of decay of the error,
indicated by the slopes of the curves, appear to approach each other as N
increases. This indicates that the loss of accuracy due to the geometry can be
easily compensated for by increasing the polynomial degree of the triangular
basis by a fixed (small) amount.

For expansions in three-dimensional simplicial domains, we furnish here
just the basic principles; Karniadakis and Sherwin (1999) provide extensive
coverage. Spectral expansions have been developed for three collapsed co-
ordinate systems: prisms, pyramids and tetrahedra (Fig. 2.18). These are
obtained by successively collapsing the cube Q = {(ξ1, ξ2, ξ3) ∈ R

3 : −1 <
ξ1, ξ2, ξ3 < 1}. First, one applies an inverse collapsed transformation in the
ξ2 variable with respect to the ξ3 variable, leaving the ξ1 variable unchanged,
i.e.,

(ξ1, ξ2, ξ3) �→ (x1, x2, x3),

x1 = ξ1, x2 =
1
2
(1 + ξ2)(1− ξ3)− 1, x3 = ξ3.

(2.9.9)

This transformation maps Q into the prism T23 = {(x1, x2, x3) ∈ R
3 : −1 <

x1, x2, x3; x1 < 1; x2 + x3 < 0}; see Fig. 2.18(a). The generic basis function
in T23 associated with this transformation is

ϕk(x1, x2, x3) = P
(0,0)
k1

(ξ1)P
(0,0)
k2

(ξ2)(1− ξ3)k2P
(2k2+1,0)
k3

(ξ3) (2.9.10)

(with ξ1 = x1, ξ2 = 2 1+x2
1−x3

− 1, ξ3 = x3), which is a polynomial of degree k1

in the variable x1 and of global degree k2 + k3 in the variables x2 and x3.
Next, starting from the prism, one applies an inverse collapsed transfor-

mation in the x1 variable with respect to the x3 variable, leaving the x2

variable unchanged; in terms of the original variables (ξ1, ξ2, ξ3) in the cube,
we now have

(ξ1, ξ2, ξ3) �→ (x1, x2, x3),

x1 =
1
2
(1 + ξ1)(1− ξ3)− 1, x2 =

1
2
(1 + ξ2)(1− ξ3)− 1, x3 = ξ3.

(2.9.11)

This transformation maps Q into the pyramid T123 = {(x1, x2, x3) ∈ R
3 :

−1 < x1, x2, x3; x1 + x3 < 0; x2 + x3 < 0}; see Fig. 2.18(b). The generic
basis function in T123 associated with this transformation is

ϕk(x1, x2, x3) = P
(0,0)
k1

(ξ1)P
(0,0)
k2

(ξ2)(1− ξ3)k1+k2P
(2k1+2k2+2,0)
k3

(ξ3)
(2.9.12)
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(with ξ1 = 2 1+x1
1−x3

− 1, ξ2 = 2 1+x2
1−x3

− 1, ξ3 = x3), which is a polynomial of
global degree k1 + k3 in the variables x1 and x3 and of global degree k2 + k3

in the variables x2 and x3.
Finally, one cuts the pyramid by the planes x3 = constant and, in each

such plane, applies an inverse collapsed transformation in the x1 variable
with respect to the x2 variable; in terms of the original variables in the cube,
(ξ1, ξ2, ξ3), we now get

(ξ1, ξ2, ξ3) �→ (x1, x2, x3),

x1 =
1
2
(1 + ξ̄1)(1− ξ3)− 1 with ξ̄1 =

1
2
(1 + ξ1)(1− ξ3)− 1,

x2 =
1
2
(1 + ξ2)(1− ξ3)− 1, x3 = ξ3.

(2.9.13)

This transformation maps Q into the hexahedron T = {(x1, x2, x3) ∈ R3 :
−1 < x1, x2, x3; x1+x2+x3 < 0}; see Fig. 2.18(c). The generic basis function

a)

x1

x2

x3 b)

x1

x2

x3

c)

x1

x2

x3

Fig. 2.18. The reference cube (−1, 1)3 is sequentially collapsed into (a) a prism,
(b) a pyramid and (c) a tetrahedron
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in T associated with this transformation is

ϕk(x1, x2, x3) = P
(0,0)
k1

(ξ1)(1− ξ2)k1P
(2k1+1,0)
k2

(ξ2)×

× (1− ξ3)k1+k2P
(2k1+2k2+2,0)
k3

(ξ3)
(2.9.14)

(with ξ1 = 2 1+x1
−x2−x3

− 1, ξ2 = 2 1+x2
1−x3

− 1, ξ3 = x3), which is a polynomial of
global degree k1 + k2 + k3 in the variables x1, x2 and x3.

As for the two-dimensional case, the construction just sketched can be
suitably modified to produce boundary-adapted modal bases on prisms, pyra-
mids and tetrahedra. They consist of vertex functions, edge functions, face
functions and bubble functions.

2.9.2 Non-Tensor-Product Expansions

We now describe several strategies to define, in a triangle T , nodal bases
that do not have any (warped) tensor-product structure. Each strategy relies
upon the construction of an interpolation operator in the triangle; this is
accomplished by looking for a set of points

{xj} , j = 1, . . . , JN = 1
2 (N + 1)(N + 2) ,

in T = T ∪ ∂T having the following features: (i) the set is unisolvent for
PN (T ), i.e., given an arbitrary distribution of values fj at the points xj ,
there exists a unique polynomial pN ∈ PN (T ) such that pN (xj) = fj , j =
1, . . . , JN ; (ii) the distribution of points in T fulfills certain symmetries and,
possibly, certain boundary constraints; and (iii) the interpolation operator

IN : C0(T )→ PN (T ) , INf(xj) = f(xj) , j = 1, . . . , JN ,

which exists by (i), has “good” approximation properties. Condition (i) above
immediately yields the existence of the nodal basis in PN (T ) associated
with the points {xj} given by the characteristic Lagrange polynomials ψj

at these points. Condition (ii) enhances efficiency in the interpolation pro-
cess. Classically, the third condition can be expressed by requiring a mod-
erate growth with N of the so-called Lebesgue constant ΛN of the set {xj}.
This is the norm ‖IN‖ of the interpolation operator IN (see (A.3)), i.e., the
smallest constant C for which ‖INf‖∞,T ≤ C‖f‖∞,T for all f ∈ C0(T ),
where ‖f‖∞,T = maxx∈T |f(x)|. The Lebesgue constant is significant, since
through it we can relate the interpolation error in the maximum norm to the
best approximation error in the same norm; indeed, the following Lebesgue
inequality holds:

‖f − INf‖∞,T ≤ (1 + ΛN ) inf
pN∈PN (T )

‖f − pN‖∞,T for all f ∈ C0(T ).

Thus, the smaller ΛN , the closer the interpolation error to the smallest ad-
missible value. In one dimension, the Lebesgue constant for interpolation on
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equally spaced points blows up exponentially with N (as made apparent by
the classical Runge phenomenon). On the contrary, the best possible Lebesgue
constant among all distributions of N points exhibits only a logarithmic
growth with N (see Erdös (1961), Natanson (1965); see also Hesthaven (1998)
for a general overview in the context of spectral approximations); however, the
corresponding points (the so-called Lebesgue points) are not known in a con-
structive form, although they are uniquely defined. Fortunately, the main
families of Gaussian points (Gauss, Gauss-Radau, Gauss-Lobatto points) for
the Legendre or Chebyshev weights have Lebesgue constants that grow log-
arithmically or sublinearly with N . In particular, Legendre or Chebyshev
Gauss-Lobatto points have Lebesgue constants that are asymptotically close
to the optimal one. In several dimensions, interpolation at equally-spaced
points behaves just as unsatisfactorily as in one dimension; on the other
hand, in domains that are not Cartesian products of intervals, there is no
equivalent of Gaussian points defined as zeroes or extrema of suitable or-
thogonal polynomials. Therefore, the approach has been to select desirable
properties satisfied by the Gaussian points in one dimension and extend them
to higher dimension. In the sequel, we provide some examples of families of
points fulfilling the three conditions above.

Stieltjes (1885) established that the Gauss quadrature points of the classi-
cal orthogonal polynomials can be determined as the steady-state, minimum
energy solution to a problem of electrostatics; Szegö (1939) proved that such
a minimum is unique. For instance, the internal Legendre Gauss-Lobatto
points (2.3.12) minimize the electrostatic energy

E(x1, . . . , xN−1) =

= −
N−1∑

j=1

⎛

⎝log |xj + 1|+ log |xj − 1|+ 1
2

N−1∑

i=1,i �=j

log |xj − xi|

⎞

⎠ .

This remarkable property led Hesthaven (1998) to define sets of points in the
triangle via the minimization of the following electrostatic energy:

E(x1, . . . ,xJ∗
N

) =
J∗
N∑

j=1

⎛

⎝
3∑

l=1

σl(xj) +
1
2

J∗
N∑

i=1,i �=j

1
|xj − xi|

⎞

⎠ ,

where xj is a point internal to the triangle and σl(x) = ρ

∫ 1

0

1
|x− vt|

dt (for

vt = va + t(vb − va)) is the potential at x generated by a continuous distri-
bution of charges on the l-th side, [va,vb], of the triangle with a given line
charge density ρ > 0, assumed to be constant. The J∗

N internal nodes deter-
mined by the minimization process are augmented by 3N boundary nodes
that are chosen as the (mapped) Gauss-Lobatto points on each side in order
to simplify the matching between contiguous (triangular or quadrilateral) el-
ements (see CHQZ3, Chap. 5). With the aim of defining a unisolvent set for
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PN (T ), the number of internal nodes is chosen as J∗
N = 1

2 (N+1)(N+2)−3N .
Several symmetries in the distribution of these nodes are imposed to facili-
tate the minimization process; the minimization is accomplished by driving
(numerically) to steady-state a dynamical system of the N -body type. The
constant density ρ is used as a parameter to optimize the Lebesgue constant.
Numerical computations indicate that the resulting constants are in the order
of 2.6, 5.9 and 42.0 for N = 4, N = 8 and N = 16, respectively. The con-
struction is extended to tetrahedra in Hesthaven and Teng (2000). They also
exploit the symmetry of the nodes to derive efficient algorithms to compute
derivatives at the same nodes.

Another approach to the construction of a unisolvent set for PN (T )
is based on the minimization or maximization of quantities related to the
Lebesgue constant ΛN . If ψj are the characteristic Lagrange polynomials

at the points xj , j = 1, . . . , JN , one has ΛN = max
x∈T

JN∑

j=1

|ψj(x)| . Chen

and Babuška (1995, 1996) propose an algorithm to minimize the L2-average⎛

⎝
∫

T

JN∑

j=1

|ψj(x)|2 dx

⎞

⎠
1/2

; this is an easier task than minimizing the elec-

trostatic energy. A closely related strategy considers the generalized Vander-
monde matrix V (x1, . . . ,xJN ) = (ϕi(xj) ), where {ϕi} is any basis in PN (T ).
By Cramer’s rule, one has

ψj(x) =
|V (x1, . . . ,xj−1,x,xj+1, . . . ,xJN )|

|V (x1, . . . ,xJN )| ,

which suggests the maximization of the denominator, leading to the so-called
Fekete points (after the Hungarian mathematician M. Fekete). In this way,
one is guaranteed to obtain those |ψj(x)| for all j and x that yield the upper
bound for the Lebesgue constant ΛN ≤ JN . Note that Fekete points are inde-
pendent of the chosen basis, as a change of basis only results in the multiplica-
tion of |V (x1, . . . ,xJN )| by a constant. Fejér (1932) proved that Fekete points
on the interval are Legendre Gauss-Lobatto points; the same property holds in
Cartesian-product domains for the tensorized Legendre Gauss-Lobatto points
(Bos, Taylor and Wingate (2001)). Taylor, Wingate and Vincent (2000) have
developed an algorithm to compute in an approximate way sets of points that
locally maximize the Vandermonde determinants. The boundary points they
utilize coincide with the (mapped) Legendre Gauss-Lobatto points on each
side, as is customary when the interior points are chosen by the electrostatic
analogy. The resulting Lebesgue constants are smaller than Hestaven’s and
Chen and Babuška’s (for instance, they get ΛN ∼ 12.1 for N = 16). On the
other hand, by increasing N one may obtain undesired negative weights in
the quadrature formulas constructed on these nodes. Fekete points are shown,
together with the mapped LGL of the previous subsection, in Fig. 2.19.
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Fig. 2.19. Mapped LGL nodes (left) and Fekete points (right) for N = 9

In the context of the discretization of partial differential equations, the
families of points mentioned above are appropriate for defining collocation
methods in a triangle or a tetrahedron T since they are unisolvent for PN (T )
and have moderately growing Lebesgue constants. Taylor and Wingate (2000)
(whose method, although formulated in an integral manner, can be viewed
as a collocation scheme) and Pasquetti and Rapetti (2006) document the
spectral accuracy of collocation methods based on Fekete points.

Another way to enforce boundary or interface conditions in a spectral
method is through the use of a weak, or integral, formulation (such as in
a Galerkin method). Such formulations call for appropriate quadrature rules
to compute integrals on T or ∂T efficiently. The Galerkin with numerical in-
tegration (G-NI) approach precisely consists of replacing integrals by quadra-
ture formulas in a Galerkin scheme. Unfortunately, unlike the tensor-product
case, the interpolation points mentioned above are not Gaussian points: the
quadrature formulae based on such PN (T )-unisolvent families of nodes are
only exact for polynomials in PN (T ). This implies a poor approximation of
the L2-inner product in T , which prevents the G-NI scheme from yielding
spectral accuracy on smooth solutions, as clearly documented, e.g., in Pas-
quetti and Rapetti (2006).

The natural remedy consists of introducing a different quadrature formula
on T , of sufficiently high order to provide a good approximation of the L2-
inner product. Examples are given in Warburton, Pavarino and Hesthaven
(2000), Hesthaven and Warburton (2002), Pasquetti and Rapetti (2004), Pas-
quetti, Pavarino, Rapetti and Zampieri (2006). Thus, two sets of points are
involved: the set X = {xj}, j = 1, . . . , JN , of the interpolation nodes, and
the set X̃ = {x̃l}, l = 1, . . . , LN , of the quadrature nodes. The mapping
v = ( v(xj) ) �→ ṽ = ( v(x̃l) ) between the values of a polynomial in PN (T )
at the two sets of nodes is a linear transformation; it can be accomplished as
ṽ = Ṽ V −1v, where V = (ϕk(xj) ) is the (square) generalized Vandermonde
matrix of the set X with respect to any convenient basis in PN (T ) (such as,
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e.g., any of the modal bases introduced in Sect. 2.9.1), while Ṽ = (ϕk(x̃l) )
is the (rectangular) Vandermonde matrix of the set X̃ for the same basis. An
approximate L2-inner product in PN (T ) is defined as

(u, v)T ,N =
LN∑

l=1

u(x̃l)v(x̃l)w̃l ,

where w̃l are the quadrature weights; in terms of grid-point values at the
interpolation set X, it can be expressed as

(u, v)T ,N = vTMu ,

where M = (V −1)T Ṽ T W̃ Ṽ V −1 and W̃ = diag(w̃l). Differentiation at the
quadrature set X̃ (which is the basic ingredient for computing approximate
stiffness matrices) can be accomplished as ṽD = Ṽ DV −1v, where ṽD =
(Dv(x̃l) ) is the vector of the grid-point values of a partial derivative Dv at
X̃ and D is the matrix that expresses the partial differentiation of the basis
{ϕk} in transform space. (For the usual bases, its entries can be computed
analytically quite cheaply.)

We are left with the problem of choosing a high-precision quadrature for-
mula on T . We refer to Cools (2003) for an overview of the state of the art on
numerical integration on simplicial domains. A natural requirement is that
the L2-inner product be approximated by a formula that is exact for polyno-
mials in P2N (T ) (actually, P2N−1(T ) may suffice). Quadrature formulas with
minimal number of nodes for a prescribed degree of precision p are known
for several values of p, although not for all. Unfortunately, in addition to the
drawback that negative weights, or nodes outside T , may appear, the number
of corresponding nodes is not significantly smaller than the number of nodes
of the formula of equal precision obtained by mapping onto T a Gaussian
tensor-product formula on Q (as those mentioned in Sect. 2.9.1). Therefore,
to date, quadrature formulas of the latter type remain the preferred choice.

As far as the theoretical analysis is concerned, very little is known to date
about the approximation properties of the interpolation operators at such
points as the electrostatic or Fekete points in T in the (Sobolev) norms that
will be introduced in Chap. 5 and which are appropriate for the study of
differential problems.

2.9.3 Mappings

The idea underlying the Gordon-Hall transformations described in Sect. 2.8.1
provides the guidance needed to define a transformation between a reference
triangle and a triangular domain with possibly curved sides, or between a non-
tensorial reference domain such as a prism, a pyramid or a tetrahedron, and
a similar domain with possibly curved faces and edges.
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Γ̂1

Γ̂2 Γ̂3
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Γ2

Γ3
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F

Fig. 2.20. Mapping of a reference triangle T̂ into a triangle T with curved bound-
aries

Let us consider the two-dimensional situation. At first, we choose the
triangle {(ξ, η) ∈ R

2 : 0 < ξ, η ; ξ + η < 1} as the reference triangle T̂ ; let
Γ̂1 (Γ̂2, Γ̂3, resp.) denote the side whose equation is η = 0 (ξ = 0, ξ + η = 1,
resp.) of T̂ (see Fig. 2.20). Let T be a triangular domain in the plane, with
possibly curved sides, Γ1, Γ2, Γ3, such that parametrizations πi : [0, 1]→ Γi

(i = 1, 2, 3) of the sides are known. We assume that the three vertices of T
are described by π1(0) = π2(0), π1(1) = π3(1) and π2(1) = π3(0).

A mapping F : T̂ → T that extends smoothly the boundary mappings
can be constructed in the form

F (ξ, η) = Faff(ξ, η) + F1(ξ, η) + F2(ξ, η) + F3(ξ, η) .

Here,
Faff(ξ, η) = ξπ1(1) + ηπ2(1) + (1− ξ − η)π1(0)

is the affine transformation that maps each vertex of T̂ into the corresponding
vertex of T . On the other hand, each Fi provides the appropriate correction
on Γ̂i in the case of a curved side; the correction is extended to the whole of
T̂ in such a way that it vanishes on the sides Γ̂k with k 	= i. For instance,
setting

π̃1(ξ) = π1(ξ)− (1− ξ)π1(0)− ξπ1(1) ,

we define
F1(ξ, η) = (1− η)π̃1(ξ)− ξπ̃1(1− η) ,

and we easily check that F1(ξ, 0) = π̃1(ξ), F1(0, η) = 0 and F1(ξ, 1 − ξ) = 0
for 0 ≤ ξ, η ≤ 1.

The final expression for F (ξ, η) is as follows:

F (ξ, η) = (1− η)π1(ξ)− ξπ1(1− η) + (1− ξ)π2(η)− ηπ2(1− ξ)
+ (ξ + η)π3(ξ)− ξπ3(ξ + η) + ξπ1(1)− (1− ξ − η)π1(0) .

(2.9.15)

If a different reference triangle T̂ is preferred, namely, the triangle
{(ξ, η) ∈ R2 : −1 < ξ, η ; ξ + η < 0} already considered in Sect. 2.9.1
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(in which case the parametrizations πi are defined on the interval [−1, 1]),
the expression for F (ξ, η) is given by

F (ξ, η) =
1− η

2
π1(ξ)−

1 + ξ

2
π1(−η) +

1− ξ

2
π2(η)− 1 + η

2
π2(−ξ)

+
(

1 +
ξ + η

2

)
π3(ξ)−

1 + ξ

2
π3(1 + ξ + η)

+
1 + ξ

2
π1(1) +

ξ + η

2
π1(−1) .

(2.9.16)

As for the tensorial case, a common practice for parametrizing the sides
of T is to use isoparametric interpolation, i.e., polynomials of the same order
as the basis chosen in T̂ .



3. Basic Approaches to Constructing
Spectral Methods

For the remainder of this book we shall be concerned with the use of spectral
methods to obtain approximate solutions to ordinary differential equations
(ODEs) and, especially, partial differential equations (PDEs). With very few
exceptions spectral methods have only been applied to the approximation
of spatial, and not temporal, derivatives. Our focus in this book is on the
spatial approximations. The reader is referred to Appendix D for a review
of time-discretization methods, including some brief comments on spectral
approximations to time derivatives. When all or part of the time discretization
is implicit, then the solution of implicit equations is required to advance in
time. This topic is covered in the following chapter.

Our particular concern in this chapter is to illustrate how spectral ap-
proximations are actually constructed for the solutions to ODEs and PDEs.
In the first part of this chapter we illustrate spectral methods on the Burg-
ers equation. Although this is a relatively simple PDE, its discretization by
spectral methods illuminates many points that occur for much more compli-
cated problems. We begin, in Sect. 3.1, with some historical background and
with a description of some exact solutions that are used in numerical exam-
ples. In Sect. 3.3 we derive the semi-discrete (discrete in space, continuous in
time) ordinary differential equations which are satisfied by various spectral
approximations to the Burgers equation. This involves a discussion of non-
linear terms, boundary conditions, projection operators, and different spec-
tral discretizations. Section 3.4 provides a detailed discussion of transform
methods for evaluating convolution sums. Sect. 3.5 closes this illustration of
spectral discretizations for the Burgers equation with summary comments on
the analogies and contrasts of the various spectral approaches.

The second part of this chapter covers some additional topics, again in
the context of simple one-dimensional problems, that are essential for con-
structing spectral discretizations of PDEs. Some general remarks on conser-
vation properties of spectral approximations are provided in Sect. 3.6. We
then turn to scalar hyperbolic problems, for which the numerical boundary
conditions are more subtle than for elliptic or parabolic problems, and exam-
ine in Sect. 3.7 various ways of enforcing the boundary conditions. In Sect. 3.8
we illustrate how the matrices associated with the different kinds of spectral



118 3. Basic Approaches to Constructing Spectral Methods

methods are constructed. In Sect. 3.9 we then make some brief remarks on
the treatment of coordinate singularities.

Finally, Sect. 3.10 is devoted to a brief summary of the salient theoretical
results (provided in detail later in the text) on the effects of aliasing errors
as a convenience for those readers especially interested in this always contro-
versial subject but not particularly disposed to read the theoretical material
in detail.

3.1 Burgers Equation

The nonlinear Burgers equation (in strong form)

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0 in Ω , ∀t > 0 , (3.1.1)

where ν is a positive constant and Ω is the spatial domain, provides
a paradigm for more complex fluid-dynamics problems such as those de-
scribed by the Navier-Stokes equations. It can be also written in conservation
form as

∂u

∂t
+

∂F(u)
∂x

= 0 in Ω , ∀t > 0 , (3.1.2)

where the flux F is given by

F(u) =
1
2
u2 − ν

∂u

∂x
. (3.1.3)

Of course, (3.1.1) or (3.1.2) must be supplemented with an initial condi-
tion,

u(x, 0) = u0(x) in Ω , (3.1.4)

and appropriate boundary conditions.
Burgers (1948) proposed this equation, later named after him, as a simpli-

fied model of full Navier-Stokes turbulence. The Burgers equation successfully
models certain gas dynamic (Lighthill (1956)), acoustic (Blackstock (1966))
and turbulence phenomena (Burgers (1948)). Solutions to (3.1.1) exhibit
a delicate balance between (nonlinear) advection and diffusion. It became
a subject of extensive studies in the 1960s (Burgers (1974)) to investigate in
isolation the specific feature of turbulence that balances generation of smaller
scales by nonlinear advection with their dissipation by diffusion. The Burgers
equation has also served as a benchmark for field-theoretic techniques such
as direct interaction theory and renormalization group methods (Bouchaud,
Mezard and Parisi (1995), Gurarie and Migdal (1996), Polyakov (1995)). As
a simple model of nonequilibrium statistical mechanics, it has been employed
as a qualitative model of a wide variety of physical phenomena including
charge density waves (Feigelman (1980)), vortex lines in high-temperature
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superconductors (Blatter et al. (1994)), kinetic roughening of interfaces in
epitaxial growth (Krug and Sophn (1992)), formation of large-scale cosmo-
logical structures (Shandarin and Zeldovich (1989), Vergassola et al. (1994)).

Since the Burgers equation is one of the few nonlinear PDEs for which
exact and complete solutions are known in terms of the initial values (Hopf
(1950), Cole (1951)), it remains a useful model problem for evaluating
numerical algorithms (e.g., Berger and Colella (1989), Karniadakis et al.
(1991), Dietachmayer and Droegameier (1992), Grauer and Marliani (1995),
Mavriplis (1994), Huang and Russell (1997), Wei and Gu (2002)). Hopf (1950)
and Cole (1951) showed that the transformation

u = −2ν
φx

φ
(3.1.5)

reduces the Burgers equation (3.1.1) for u to a heat equation for φ:

∂φ

∂t
− ν

∂2φ

∂x2
= 0 . (3.1.6)

Observe that if ub(x, t) is a solution of (3.1.1) and c and t0 are constants,
then

u(x, t) = c + ub(x− ct, t + t0) (3.1.7)

is also a solution. For the numerical examples that follow in this chapter, we
will use two solutions for u based on solutions for ub derived from the Hopf-
Cole transformation. The solution that we will use for nonperiodic problems
is based on the isolated N-wave solution (so called because of its shape) that
is derived from

φb(x, t) =
x

t

√
a/t e−x2/(4νt)

1 +
√

a/t e−x2/(4νt)
, (3.1.8)

where a is a constant. The subscript on φ emphasizes that this φb corresponds
to the ub in (3.1.7). The solution that we will use for periodic problems is
a sum of an infinite number of N-wave solutions spaced a distance 2π apart:

φb(x, t) =
1√

4πνt

∞∑

n=−∞
e−(x−2πn)2/4νt . (3.1.9)

3.2 Strong and Weak Formulations of Differential
Equations

In Chap. 1 we referred to weak and strong formulations of differential prob-
lems in a somewhat informal fashion. Here we make those concepts more
precise, using the Burgers equation as a focus for the discussion. While these
distinctions are well known in some circles, this material is provided as a ser-
vice to the general reader.
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Both (3.1.1) and (3.1.2) are in strong form, i.e., the PDE is required to
be satisfied at each point in its domain and for each time. A weak form of
the PDE is obtained by requiring that the integral of the PDE against all
functions in an appropriate space X of test functions be satisfied; precisely,
we multiply both sides of (3.1.1) by each test function and integrate in space
(for each time), to obtain

∫ b

a

∂u

∂t
v dx +

∫ b

a

u
∂u

∂x
v dx−

∫ b

a

ν
∂2u

∂x2
v dx = 0 ∀v ∈ X , ∀t > 0 ,

(3.2.1)
when Ω = (a, b). This is often referred to as an integral form of the PDE.

Another weak form of the PDE, which is often used, is obtained by per-
forming an integration-by-parts on (3.2.1), yielding

∫ b

a

∂u

∂t
v dx− 1

2

∫ b

a

u2 ∂v

∂x
dx + ν

∫ b

a

∂u

∂x

∂v

∂x
dx

+ (
1
2
u2v − ν

∂u

∂x
v)
∣∣∣∣
x=b

− (
1
2
u2v − ν

∂u

∂x
v)
∣∣∣∣
x=a

= 0 ∀v ∈ V , ∀t > 0 .

(3.2.2)
Equation (3.2.1) is meaningful if u is twice differentiable, whereas the test

functions need not be differentiable. In contrast, (3.2.2) requires less regular-
ity on the solution, at the expense of increasing the regularity requirement
on the test functions. This is reflected by restricting the test functions to lie
in a subspace V of the original space X. All three formulations are equivalent
if the solution is smooth enough. The weak formulations, however, can ac-
commodate less regular solutions. As a matter of fact, the solution to (3.2.2)
is called the distributional solution to the original equation (3.1.1), since it
can be shown that it satisfies (3.1.1) in the sense of distributions (Schwartz
(1966), Lions and Magenes (1972), Renardy and Rogers (1993)). It is worth
pointing out that for time-independent problems with a symmetric spatial
operator, the weak formulation is also called the variational formulation,
since it can be shown that its solution satisfies an extremal problem; for in-
stance, the weak solution of the Dirichlet problem for the Poisson equation
(1.2.67)–(1.2.68) minimizes the energy integral 1

2

∫
Ω
|∇v|2 −

∫
fv.

Boundary conditions that should be satisfied by u are incorporated in
the boundary terms in (3.2.2) or are taken into account in the choice of test
functions. For instance, if the flux is required to vanish at one boundary, then
the corresponding boundary term drops out of (3.2.2). On the other hand,
if the value of u is prescribed at a boundary point, then all test functions
are required to vanish at that point, and, consequently, the boundary term
is zero.

Any discretization method considered in this book is derived from the
strong or a weak formulation of the problem. Spectral collocation methods
use the strong form of the PDE, as do finite-difference methods. For spectral
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Galerkin, Galerkin with numerical integration (G-NI) and tau methods, as
for finite-element methods, it is preferable to use the PDE in a weak form.
While all the formulations of the differential problem are equivalent (provided
that the solution is sufficiently smooth), this is not the case in general for
the various discrete formulations derived from alternative formulations of the
PDE. For example, the discrete solution based on a Galerkin method need not
coincide with the discrete solution based on a collocation method. Moreover,
Galerkin methods based on (3.2.1) are not necessarily equivalent to Galerkin
methods based on (3.2.2).

In rough terms, strong and weak formulations are equivalent at the contin-
uous (i.e., nondiscretized) level essentially because there are infinitely many
test functions at our disposal. Their clever use allows one to recover the
strong form from the weak form. This is not possible at the discrete (i.e.,
finite-dimensional) level, where only finitely many independent test functions
are available. Hence, an appropriate way to design a numerical method is to
first pick one of the formulations satisfied by the exact solution, then restrict
the choice of test functions to a finite-dimensional space, to replace u by the
discrete solution uN , and possibly to replace exact integration by quadrature
rules.

The strong form (3.1.1) can be written compactly as

ut + G(u) + Lu = 0 in Ω , ∀t > 0 , (3.2.3)

where the nonlinear operator G is defined by G(u) = u(∂u/∂x), and the
linear operator L is just −ν(∂2/∂x2). The corresponding compact version of
the weak form (3.2.1) is

(ut + G(u) + Lu, v) = 0 ∀v ∈ X , ∀t > 0 , (3.2.4)

where (u, v) denotes the inner product in X. Likewise, the compact version
of the second weak form (3.2.2) is

(ut, v)− (F(u), vx) + [F(u)v]ba = 0 ∀v ∈ V , ∀t > 0 . (3.2.5)

3.3 Spectral Approximation of the Burgers Equation

This section will illustrate discretization processes for several spectral approx-
imations to the Burgers equation. We consider here different treatments of
the nonlinear and linear terms as well as different treatments of the boundary
conditions. The rigorous discussion of these discretization processes is given
in Chap. 6.

Each discretization that we present stems from one of the three formula-
tions of the PDE. The solution is looked for in the space XN of trial functions.
The weak formulations involve a finite-dimensional space of test functions
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that will be denoted by YN ⊂ X if the weak formulation (3.2.1) is used as
the starting point, or that will be denoted by YN ⊂ V if the weak formulation
(3.2.2) is used instead.

3.3.1 Fourier Galerkin

We look for a solution that is periodic in space on the interval (0, 2π). The
trial space XN is SN , the set of all trigonometric polynomials of degree ≤ N/2
(see (2.1.12)). The approximate function uN is represented as the truncated
Fourier series

uN (x, t) =
N/2−1∑

k=−N/2

ûk(t)eikx . (3.3.1)

In this method the fundamental unknowns are the coefficients ûk(t), k =
−N/2, . . . , N/2− 1. Enforcement of the weak form (3.2.1) yields

∫ 2π

0

(
∂uN

∂t
+ uN ∂uN

∂x
− ν

∂2uN

∂x2

)
e−ikx dx = 0 ,

k = −N

2
, . . . ,

N

2
− 1 ,

(3.3.2)

which amounts to requiring that the residual of (3.1.1) be orthogonal to all
the test functions in YN = SN .

Due to the orthogonality property of the test and trial functions, we obtain
a set of ODEs for the ûk:

dûk

dt
+
(
uN ∂uN

∂x

)∧

k

+ k2νûk = 0 , k = −N

2
, . . . ,

N

2
− 1 , (3.3.3)

where (
uN ∂uN

∂x

)∧

k

=
1
2π

∫ 2π

0

uN ∂uN

∂x
e−ikx dx . (3.3.4)

The initial conditions are clearly

ûk(0) =
1
2π

∫ 2π

0

u(x, 0)e−ikx dx . (3.3.5)

The ODE initial-value problem (3.3.3)–(3.3.5) produced by the Fourier
Galerkin spatial discretization is typically integrated in time by a method
which treats the nonlinear, advection term explicitly and the linear, diffu-
sion term either implicitly or else by an integrating-factor technique (see
Sect. D.3).

The operator LN is defined by LNuN = −ν(∂2uN/∂x2), whereas the
discrete nonlinear operator GN is defined by GN (uN ) = uN (∂uN/∂x).
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The wavenumber k = −N/2 appears unsymmetrically in this approxima-
tion. If û−N/2 has a nonzero imaginary part, then the function uN (t) is not
a real-valued function. This can lead to a number of difficulties, and it is
advisable in practice simply to enforce the condition that û−N/2 is zero. This
nuisance would, of course, be avoided if the approximation contained an odd
rather than an even number of modes. However, the most widely used FFTs
require an even number of modes.

Our objective is to describe spectral methods in a way that corresponds
directly to the way they are implemented. This problem of the k = −N/2
mode arises, in practice, for all Fourier spectral methods using an even value
of N . For all of the numerical examples and practical applications discussed
in this text, N is even and the û−N/2 coefficient is set to zero. (In more
than one dimension, all Fourier coefficients with one or more indices equal to
−N/2 are set to zero.)

The reader is advised that to apply the theoretical results in Chaps. 5–7
to the Fourier methods discussed here and in Chap. 4, and in CHQZ3,
Chaps. 2–4 (where the −N/2 mode has been dropped), one needs to re-
place the N in the theoretical chapters with N/2 − 1. (Recall, as discussed
in Sect. 2.1.1, that the change from N to N/2 comes from the truncation
convention that is customary for the theory.)

The advection term (3.3.4) is a particular case of the general quadratic
nonlinear term

(uv)∧k =
1
2π

∫ 2π

0

uve−ikx dx , (3.3.6)

where u and v denote generic trigonometric polynomials of degree ≤ N/2,
i.e., elements of SN (see (2.1.12)). They have expansions similar to (3.3.1).
When these are inserted into (3.3.6) and the orthogonality property (2.1.2)
is invoked, the expression

(uv)∧k =
∑

p+q=k

ûpv̂q (3.3.7)

results. This is a convolution sum. The straightforward evaluation of (3.3.7)
requires O(N2) operations. Fortunately, transform methods allow this term
to be evaluated in only O(N log2 N) operations (see Sect. 3.4). Integration of
the implicitly treated diffusion terms takes only O(N) operations, whether
one uses an integrating-factor technique (see Sect. D.3) or a conventional time
discretization, such as an Adams-Moulton method (see Sect. D.2.3). Hence,
a single time-step for this Fourier Galerkin method takes only O(N log2 N)
operations.

3.3.2 Fourier Collocation

We again presume periodicity on (0, 2π) and take XN = SN , but now think
of the approximate solution uN as represented by its values at the grid points,
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xj = 2πj/N , j = 0, . . . , N − 1. Recall that the grid-point values of uN are
related to its discrete Fourier coefficients by (2.1.25) and (2.1.27). For the
collocation method we require that the strong form (3.1.1) be satisfied at
these points, i.e.,

∂uN

∂t
+ uN ∂uN

∂x
− ν

∂2uN

∂x2

∣∣∣∣
x=xj

= 0 , j = 0, 1, . . . , N − 1 . (3.3.8)

Initial conditions here are obviously

uN (xj , 0) = u0(xj) . (3.3.9)

In vector form, with u(t) = (uN (x0, t), uN (x1, t), . . . , uN (xN−1, t))T ,
(3.3.8) is

du
dt

+ u � DNu− νD2
Nu = 0 , (3.3.10)

where DN is the matrix, given by (2.1.41), that represents Fourier interpola-
tion differentiation, and u � v is the component-wise product of two vectors
u and v.

Suppose that an explicit-advection/implicit-diffusion time discretization
is employed. The derivative ∂uN/∂x is most efficiently evaluated by the trans-
form differentiation procedure described in Sect. 2.1.3. An efficient solution
procedure for the implicit term is discussed in Sect. 4.1.1. It, too, resorts
to transform methods. For a fully explicit time discretization, the diffusion
term is also evaluated by a transform differentiation procedure. A single
time-step thus can be performed in O(N log2 N) operations for both mixed
explicit/implicit and fully explicit time discretizations.

For the conservation form (3.1.2) of the Burgers equation, we approxi-
mate the nonlinear operator as GN (uN ) = (1/2)DN [(uN )2]. The collocation
discretization of (3.1.2) is

du
dt

+
1
2
DN (u � u)− νD2

Nu = 0 . (3.3.11)

Note that the nonlinear term is evaluated by first taking the pointwise square
of u and then differentiating. The set of equations (3.3.11) is not equivalent
to (3.3.10). In contrast, the Galerkin method produces the same discrete
equations regardless of the precise form used for the PDE.

Periodic Numerical Examples The exact periodic solution u correspond-
ing to (3.1.9), (3.1.7) and (3.1.5) for ν = 0.2, c = 4 and t0 = 1 is shown in
the upper left frame of Fig. 3.1 at t = 0 and t = π/8. The solution is nearly
linear except for a “transition zone”, which is the slowly diffusing (and ad-
vecting with speed c = 4) result of an initial discontinuity (for t = −1). This
will be solved on the interval [0, 2π] with initial data taken from this exact
solution.
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Fig. 3.1. The exact solution for the periodic Burgers equation problems (top left)
and Fourier collocation solutions at t = π/8 for N = 16 (top right), N = 32 (bottom
left), and N = 64 (bottom right)

We choose an explicit fourth-order Runge-Kutta method in time (RK4 –
see (D.2.17)) to integrate the Fourier collocation spatial discretization given
by (3.3.8). (The Runge-Kutta scheme provides the high temporal accuracy
needed to demonstrate spectral accuracy in space, which is the objective
of this example; for more challenging computations, such as for multidi-
mensional Navier-Stokes computations, one would indeed treat the viscous
term implicitly.) Figure 3.1 presents the computed solutions at t = π/8 for
N = 16, 32 and 64. The approximation with only sixteen collocation points is
unable to resolve the transition zone, and noticeable oscillations ensue. Once
the transition zone has been well resolved these oscillations disappear, as
illustrated by the N = 32 and N = 64 results in the bottom row of Fig. 3.1.

In Sect. 2.1.4 we discussed the Gibbs phenomenon, which arises in approx-
imations to functions with discontinuities. The present example illustrates
that similar oscillations arise whenever the solution contains gradients that
are too steep for the trial functions to resolve. In principle, oscillations aris-
ing from solutions with finite gradients can always be avoided by increasing
the spatial resolution. The theoretical discussion of spectral approximations
to partial differential equations with discontinuous solutions is contained in
Sect. 7.6. A summary of the various approaches to handling discontinuous
solutions in fluid dynamics applications with spectral methods is provided in
CHQZ3, Sect. 4.5.
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Fig. 3.2. Solutions to the periodic Burgers equation problem at t = π/8: compar-
ison between Fourier collocation solution and finite-difference solutions of order 2,
4 and 6
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Fig. 3.3. Maximum errors for the periodic Burgers equation problem at t = π/8



3.3 Spectral Approximation of the Burgers Equation 127

A comparison with finite-difference schemes is instructive. Figure 3.2 dis-
plays second-order central-difference (FD2), fourth-order central-difference
(FD4), and sixth-order compact (CP6), along with the Fourier collocation
(SP) solutions, using the same number of gridpoints. The sixth-order com-
pact scheme uses (1.2.19) for the first derivative and the periodic Padé ap-
proximation (see, for example, Collatz (1966) and Lele (1992))

2
11

u′′
i−1 + u′′

i +
2
11

u′′
i+1 =

12
11(∆x)2

(ui−1 − 2ui + ui+1)

+
3

44(∆x)2
(ui−2 − 2ui + ui+2) .

(3.3.12)

for the second derivative. Figure 3.3 displays the maximum errors for these
approximations as a function of N . The spectral scheme is already superior
to the second-order method for N = 16, becomes superior to the fourth-order
method for N = 32, and to the sixth-order method for N = 128. Notice that,
as expected, the FD4 solution exhibits fourth-order asymptotic error decay,
and the CP6 solutions exhibits sixth-order error decay because of the absence
of special boundary stencils.

This is a fairly easy problem for a finite-difference method since the
solution is essentially linear (and thus represented almost exactly even by
a second-order finite-difference method) over all but the transition region.
The real superiority of spectral methods emerges for problems with more
structure in the solution – see the examples in Sect. 1.2 and CHQZ3, Sect. 4.3.

The above examples were geared towards illustrating the spatial accuracy
of the method. The time-steps were typically well below the stability limit of
the RK4 method. For the N = 128 spectral case, ∆t = .0005 was needed in
order to push the temporal errors below the spatial ones.

3.3.3 Chebyshev Tau

We now seek a solution to (3.1.1) on (−1, 1) that satisfies the Dirichlet bound-
ary conditions

u(−1, t) = uL(t) , u(1, t) = uR(t) , (3.3.13)

where uL and uR are the prescribed Dirichlet boundary data. The trial space
XN consists of all the members of PN (the set of algebraic polynomials of
degree ≤ N). The discrete solution is expressed as the truncated Chebyshev
series

uN (x, t) =
N∑

k=0

ûk(t)Tk(x) , (3.3.14)

with the Chebyshev coefficients comprising the fundamental representation
of the approximation. The equation (3.1.1) is enforced through its weak form
(3.2.1), i.e., by insisting that the residual be orthogonal to the test functions
in YN = PN−2:
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∫ 1

−1

(
∂uN

∂t
+ uN ∂uN

∂x
− ν

∂2uN

∂x2

)
(x) Tk(x)(1− x2)−1/2 dx = 0 ,

k = 0, . . . , N − 2 .

(3.3.15)

Note that the weight function, w(x) = (1 − x2)−1/2, appropriate to the
Chebyshev polynomials is used in the orthogonality condition. The boundary
conditions (3.3.13) impose the additional constraints

uN (−1, t) = uL(t) and uN (1, t) = uR(t) . (3.3.16)

Equation (3.3.15) reduces to

∂ûk

∂t
+
(
uN ∂uN

∂x

)∧

k

− νû
(2)
k = 0 , k = 0, 1, . . . , N − 2 , (3.3.17)

where û
(2)
k is given by (2.4.27) and

(
uN ∂uN

∂x

)∧

k

=
2

πck

∫ 1

−1

(
uN ∂uN

∂x

)
(x) Tk(x)(1− x2)−1/2 dx , (3.3.18)

where the ck are given by (2.4.10). In terms of the Chebyshev coefficients,
the boundary conditions (3.3.16) become, through the use of (2.4.6),

N∑

k=0

ûk = uR ,
N∑

k=0

(−1)kûk = uL . (3.3.19)

The initial conditions are

ûk(0) =
2

πck

∫ 1

−1

u0(x)Tk(x)(1− x2)−1/2 dx , k = 0, 1, . . . , N . (3.3.20)

Equations (3.3.17), (3.3.19) and (3.3.20) form a complete set of ODEs for
this approximation.

The expression in (3.3.18) is a special case of

(uv)∧k =
2

πck

∫ 1

−1

u(x)v(x) Tk(x)(1− x2)−1/2 dx , (3.3.21)

which is equal to the following expression involving the convolution sums:

(uv)∧k =
1
2

∑

p+q=k

ûpv̂q +
∑

|p−q|=k

ûpv̂q . (3.3.22)

A typical time discretization is explicit for the nonlinear term and implicit
for the linear one. Transform methods (see Sect. 3.4) are an efficient means of
evaluating the nonlinear term. The implicit terms (including the boundary
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conditions) can be solved in O(N) operations by the method described in
Sect. 4.1.2.

If the boundary conditions are of Neumann type, u′(−1, t) = 0, u′(1, t) =
0, then conditions (3.3.19) are replaced by

N∑

k=1

k2ûk = 0 ,
N∑

k=1

(−1)kk2ûk = 0 . (3.3.23)

3.3.4 Chebyshev Collocation

For a collocation approximation to the Dirichlet problem the trial space XN

is the same as for the previous example and the solution uN is represented by
its values at the grid points xj = cosπj/N , j = 0, 1, . . . , N . The grid-point
values of uN are related to the discrete Chebyshev coefficients by (2.4.15)
and (2.4.17). The discretization of the PDE in strong form is

∂uN

∂t
+ uN ∂uN

∂x
− ν

∂2uN

∂x2

∣∣∣∣
x=xj

= 0 , j = 1, . . . , N − 1 , (3.3.24)

with

uN (−1, t) = uL(t) , uN (1, t) = uR(t) , (3.3.25)

uN (xj , 0) = u0(xj) , j = 0, . . . , N. (3.3.26)

Let u(t) = (uN (x0, t), . . . , uN (xN , t))T . Then, (3.3.24) can be written as,
for all t > 0,

ZN

(
du
dt

+ u � DNu− νD2
Nu
)

= 0 , (3.3.27)

where DN is the Chebyshev interpolation differentiation matrix given by
(2.4.31), and ZN is the matrix that represents setting the first and last points
of a vector to zero. The boundary conditions (3.3.25) are enforced by directly
setting the first and last entries of u(t) to uL(t) and uR(t), respectively, for
all t > 0. The numerical analysis of the Chebyshev collocation method is
reviewed in Example 3 of Sect. 6.5.1 for the heat equation, and in Sect. 7.8
for the steady Burgers equation.

The nonlinear term can be evaluated efficiently by transform methods.
The best direct solution method for an implicitly treated linear term (see
Sect. 4.1.4), however, takes O(N2) operations. Iterative solution methods (see
Sects. 4.5–4.6) are more efficient in some circumstances than direct methods,
especially for multidimensional problems.

If a Chebyshev pseudospectral transform method (see Sect. 3.4) is used
for the nonlinear term and a Chebyshev tau method for an implicitly treated
linear term (see Sect. 4.1.2), then a single time-step takes only O(N log2 N)
operations. Such a mixed discretization scheme is, in fact, typical of most
large-scale algorithms.
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3.3.5 Legendre G-NI

As our concluding example, we seek a solution to the Burgers equation that
satisfies the no-flux boundary conditions

F(u) =
1
2
u2 − ν

∂u

∂x
= 0 at x = ±1 ∀t > 0 , (3.3.28)

along with a specified initial condition at t = 0. In this case the preferred
strong form of the Burgers equation is the conservation form (3.1.2). The
weak form which is most convenient is (3.2.2); it becomes
∫ 1

−1

∂u

∂t
v dx− 1

2

∫ 1

−1

u2 ∂v

∂x
dx + ν

∫ 1

−1

∂u

∂x

∂v

∂x
dx = 0 ∀v ∈ V , ∀t > 0 ,

(3.3.29)
after applying the boundary conditions (3.3.28). The trial and test function
space V , technically indicated by H1(−1, 1), collects all continuous functions
in [−1, 1] having a square-integrable first derivative therein (see Appendix A);
for functions in V , all integrals in the previous expression are meaningful. The
boundary conditions are thus accounted for naturally in the weak formulation
(3.3.29). Functions in V need not satisfy them, but the solution u does.

For the Legendre G-NI (Galerkin with numerical integration) method the
trial function space XN = VN is the whole of PN , and it coincides with the
test function space VN . With the discrete delta-functions ψj , j = 0, 1, . . . N ,
defined as in (1.2.55), uN is represented through its grid-point values as

uN (x, t) =
N∑

l=0

uN
l (t)ψl(x).

The discrete weak formulation is obtained from (3.2.2) using the Gauss-
Lobatto quadrature formula (2.2.17) with the Legendre weight, w(x) = 1,
to approximate the integrals that appear therein. This results in the G-NI
method
(

∂uN

∂t
, v

)

N

− 1
2

(
(uN )2,

∂v

∂x

)

N

+ ν

(
∂uN

∂x
,
∂v

∂x

)

N

= 0 ∀v ∈ PN ,

(3.3.30)
where the inner product is the discrete LGL inner product introduced in
(2.2.24).

Using the discrete delta-functions as test functions, we obtain the equiv-
alent form

N∑

k=0

(
∂uN

∂t
ψj

)
(xk)wk −

1
2

N∑

k=0

(
(uN )2

∂ψj

∂x

)
(xk)wk +

+ν

N∑

k=0

(
∂uN

∂x

dψj

dx

)
(xk)wk = 0 , j = 0, . . . , N. (3.3.31)
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As before, we set u(t) = (uN
0 (t), uN

1 (t), . . . , uN
N (t))T . We now indicate by

K
(2)
N the symmetric and positive-semi-definite matrix whose entries are

(K(2)
N )jl =

N∑

k=0

(
dψl

dx
dψj

dx

)
(xk)wk .

We also introduce the matrix

(CN )jl = −(K(1)
N )lj = −

N∑

k=0

(
ψl

dψj

dx

)
(xk)wk = −dψj

dx
(xl)wl ,

as well as the diagonal mass matrix MN = K
(0)
N = diag(w0, w1, . . . , wN ) (see

Sect. 3.8 for more details on the matrices K
(r)
N ). Then (3.3.31) can be written

as the system of ODEs

MN
du
dt

+
1
2
CN (u � u) + νK

(2)
N u = 0 , t > 0, (3.3.32)

which can be integrated, for instance, by an implicit method for the linear
term coupled with an explicit method for the nonlinear term.

As we have already seen in Section 1.2.3, the G-NI method collocates at
the internal nodes the approximation of the equation obtained by interpolat-
ing the flux F(uN ); for the Burgers equation, we have

∂uN

∂t
+

1
2

∂

∂x
IN

(
(uN )2

)
− ν

∂2uN

∂x2

∣∣∣∣
x=xj

= 0, j = 1, . . . , N −1 . (3.3.33)

On the other hand, the G-NI method enforces at the boundary points a par-
ticular linear combination of the approximate equation and the boundary
condition; in particular, we have

∂uN

∂t
+

1
2

∂

∂x
IN

(
(uN )2

)
− ν

∂2uN

∂x2

∣∣∣∣
x=±1

− α F(uN )
∣∣
x=±1

= 0, (3.3.34)

with α = ±1
2N(N + 1) for x = ±1.

Note that the second terms in (3.3.33) and (3.3.34) are just the Legen-
dre interpolation derivative of (uN )2 at the grid points. If one were using
a Legendre collocation method for this problem in the traditional way, by
enforcing the boundary condition explicitly, then one would obtain (3.3.33)
plus

F(uN )
∣∣
x=±1

= 0 (3.3.35)

instead of (3.3.34). Both theoretical arguments and computational experience
suggest that (3.3.34) is better than (3.3.35) from stability as well as accuracy
considerations. We recommend the use of (3.3.34) even in the context of
a traditional collocation method.
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Nonperiodic Numerical Example The nonperiodic exact solution u cor-
responding to (3.1.8), (3.1.7) and (3.1.5) for ν = 0.01, c = 1, a = 16 and
t0 = 1 is shown in Fig. 3.4 (left) at t = 0 and t = 1. The Burgers equation is
solved on the interval (−1, 1) with initial and boundary data taken from this
exact solution.
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Fig. 3.4. The exact solution for the nonperiodic Burgers equation problems (left)
and computed maximum errors at t = 1 (right)

Figure 3.4 (right) illustrates the errors from the Chebyshev tau, Cheby-
shev collocation and G-NI numerical schemes on this problem, integrated
in time with the RK4 method (see (D.2.17)). Also included for comparison
are solutions for fourth-order and sixth-order compact differences. Compact-
difference approximations to the first and second derivatives require special
one-sided stencils for the points at and adjacent to the boundaries. For the
fourth-order scheme, the stencils used here are taken from Lele (1992); they
are third-order accurate at the boundaries and fourth-order accurate for all
the interior points. The asymptotic decay rate of the fourth-order solutions
shown in Fig. 3.4 is fourth order. The stencils for the sixth-order scheme are
third order at the boundary points, fourth order at the points adjacent to
the boundaries and sixth order everywhere else. (See Sect. 3.7 and CHQZ3,
Sect. 4.2 for further discussion of the challenges of appropriate boundary
stencils for compact schemes. As illustrated in CHQZ3, Fig. 4.2, higher order
stencils near the boundaries for this class of sixth-order schemes are tem-
porally unstable.) The asymptotic decay rate of the sixth-order results is
less than fifth order. All the spectral results decay faster than algebraically
without requiring any special treatment at the boundaries.

3.4 Convolution Sums

A principal algorithmic component of efficient Galerkin methods for nonlin-
ear or variable-coefficient problems is the evaluation of convolution sums.
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Consider, however, the Fourier Galerkin treatment of the product

s(x) = u(x)v(x) . (3.4.1)

In the case of an infinite series expansion, we have the familiar convolution
sum

ŝk =
∑

m+n=k

ûmv̂n , (3.4.2)

where

u(x) =
∞∑

m=−∞
ûmeimx, v(x) =

∞∑

n=−∞
v̂ne

inx , (3.4.3)

and

ŝk =
1
2π

∫ 2π

0

s(x)e−ikx dx . (3.4.4)

In the present context u and v are finite Fourier series of degree ≤ N/2, i.e.,
trigonometric polynomials belonging to SN , whereas s ∈ S2N . The values of
ŝk, though, are only of interest for |k| ≤ N/2. So, we truncate the product
(3.4.1) at degree N/2 (i.e., taking PN (uv)). Then (3.3.2) becomes

ŝk =
∑

m+n=k
|m|,|n|≤N/2

ûmv̂n , |k| ≤ N/2 , (3.4.5)

which amounts to requiring (3.4.4) for |k| ≤ N/2. The direct summation
implied by (3.4.5) takes O(N2) operations. (In three dimensions, the cost is
O(N4), provided, as discussed in Orszag (1980), that one utilizes the tensor-
product nature of multidimensional spectral approximations.) This is pro-
hibitively expensive, especially when one considers that for a nonlinear term
a finite-difference algorithm takes O(N) operations in one dimension (and
O(N3) in three). However, the use of transform methods enables (3.4.5) to
be evaluated in O(N log2 N) operations (and the three-dimensional gener-
alization in O(N3 log2 N) operations). This technique was developed inde-
pendently by Orszag (1969, 1970) and Eliasen, Machenhauer and Rasmussen
(1970). It was the single most important development that made spectral
Galerkin methods practical for large-scale computations.

3.4.1 Transform Methods and Pseudospectral Methods

The approach taken in the transform method for evaluating (3.4.5) for u, v in
SN is to use the inverse discrete Fourier transform (DFT) to transform ûm

and v̂n to physical space, to perform there a multiplication similar to (3.4.1),
and then to use the DFT to determine ŝk. This must be done carefully,
however. To illustrate the subtle point involved, we introduce the discrete
transforms (Sect. 2.1.2):
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uj =
N/2−1∑

k=−N/2

ûke
ikxj ,

vj =
N/2−1∑

k=−N/2

v̂ke
ikxj ,

j = 0, 1, . . . , N − 1 , (3.4.6)

and define
sj = ujvj , j = 0, 1, . . . , N − 1 , (3.4.7)

and

s̃k =
1
N

N−1∑

j=0

sje
−ikxj , k = −N

2
, . . . ,

N

2
− 1 , (3.4.8)

where
xj = 2πj/N .

Note that the s̃k are the discrete Fourier coefficients of the function s (see
(2.1.25)). Use of the discrete transform orthogonality relation (2.1.26) leads
to

s̃k =
∑

m+n=k

ûmv̂n +
∑

m+n=k±N

ûmv̂n = ŝk +
∑

m+n=k±N

ûmv̂n . (3.4.9)

The second term on the right-hand side is the aliasing error. If the convo-
lution sums are evaluated as described above, then the differential equation
is not approximated by a true spectral Galerkin method. Orszag (1971a)
termed the resulting scheme a pseudospectral method . The convolution sum
(3.4.5) in the pseudospectral method is evaluated at the cost of 3 FFTs and N
multiplications. The total operation count is (15/2)N log2 N multiplications.
The generalization of the pseudospectral evaluation of convolution sums to
more than one dimension is straightforward.

There are two basic techniques for removing the aliasing error from (3.4.9).
They are discussed in the following two subsections.

3.4.2 Aliasing Removal by Padding or Truncation

The key to this de-aliasing technique is the use of a discrete transform with
M rather than N points, where M ≥ 3N/2. Let

yj = 2πj/M, ūj =
M/2−1∑

k=−M/2

ŭke
ikyj , v̄j =

M/2−1∑

k=−M/2

v̆ke
ikyj , (3.4.10)

s̄j = ujvj , (3.4.11)
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for j = 0, 1, . . . ,M − 1, where

ŭk =

{
ûk , |k| � N/2

0 otherwise
. (3.4.12)

(Note that the ūj (and v̄j and s̄j) are the values of u at yj = 2πj/M , whereas
the uj defined in the previous section are the values of u at xj = 2πj/N .)
Thus, the ŭk coefficients are the ûk coefficients padded with zeros for the
additional wavenumbers. Similarly, let

s̆k =
1
M

M−1∑

j=0

s̄je
−ikyj , k = −M

2
, . . . ,

M

2
− 1 . (3.4.13)

Then
s̆k =

∑

m+n=k

ŭmv̆n +
∑

m+n=k±M

ŭmv̆n . (3.4.14)

We are only interested in s̆k for |k| ≤ N/2, and choose M so that the second
term on the right-hand side vanishes for these k. Since ŭm and v̆m are zero
for |m| > N/2, the worst-case condition is

−N

2
− N

2
≤ N

2
− 1−M ,

or
M ≥ 3N

2
− 1 . (3.4.15)

With M so chosen we have obtained the de-aliased coefficients

ŝk = s̆k , k = −N

2
, . . . ,

N

2
− 1 . (3.4.16)

The operation count for this transform method is (45/4)N log2(
3
2N),

which is roughly 50% larger than the simpler, but aliased, method discussed
earlier. For obvious reasons this technique is sometimes referred to as the
3/2-rule. As described here it requires an FFT that can handle prime factors
of 3. If only a prime factor 2 FFT is available, then this de-aliasing tech-
nique can be implemented by choosing M as the smallest power of 2 that
satisfies (3.4.15). This de-aliasing technique is also termed truncation and is
sometimes referred to as the 2/3-rule.

3.4.3 Aliasing Removal by Phase Shifts

A second method to remove the aliasing terms, due to Patterson and Orszag
(1971), employs phase shifts. In this case (3.4.6) is replaced with

u∆
j =

N/2−1∑

k=−N/2

ûke
ik(xj+∆), v∆

j =
N/2−1∑

k=−N/2

v̂ke
ik(xj+∆) ,

j = 0, 1, . . . , N − 1 ,

(3.4.17)
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which are just the transforms on a grid shifted by the factor ∆ in physical
space. One then computes

s∆
j = u∆

j v∆
j , j = 0, 1, . . . , N − 1, (3.4.18)

and

ŝ∆
k =

1
N

N−1∑

j=0

s∆
j e−ik(xj+∆) , k = −N

2
, . . . ,

N

2
− 1 . (3.4.19)

This last quantity is just

ŝ∆
k =

∑

m+n=k

ûmv̂n + e±iN∆

(
∑

m+n=k±N

ûmv̂n

)
. (3.4.20)

If one chooses ∆ = π/N , i.e., one shifts by half a grid cell, then

ŝk = 1
2

[
s̃k + ŝ∆

k

]
. (3.4.21)

Thus, the aliasing contributions to the nonlinear term can be eliminated
completely at the cost of two evaluations of the convolution sum. The cost
here is 15N log2 N . This is greater than the cost of the padding technique.
However, if only a power of 2 FFT is available, then the padding technique
requires the use of M = 2N points rather than (3/2)N . Its cost then increases
to 15N log2 N .

The phase-shift technique and the padding method can both be extended
to two and three dimensions. This discussion is postponed until Sect. 3.3,
where it is given in the context of applications to simulations of incompress-
ible, homogeneous turbulence.

Rogallo (1977) observed how the phase-shifting strategy can be incorpo-
rated at no extra cost into an otherwise pseudospectral algorithm to pro-
duce a method that has greatly reduced aliasing errors. Suppose that the
time-differencing scheme is second-order Runge-Kutta (see (D.2.15)). At the
first stage, the convolution sum is evaluated by the pseudospectral transform
method described in Sect. 3.4.1 except that ūj and v̄j are computed not by
(3.4.6) but rather by (3.4.17), where ∆ is a random number in (0, 2π/N).
In the second stage, (3.4.17) is again used for ūj and v̄j , but now with ∆
replaced by ∆ + π/N . As a result the aliasing errors at the end of the full
Runge-Kutta step are reduced to O(∆t2) times the pure pseudospectral alias-
ing errors, where ∆t is the size of the time-step. The use of a random shift ∆
ensures that the remaining aliasing errors are uncorrelated from step to step.

3.4.4 Aliasing Removal for Orthogonal Polynomials

Quadratic nonlinearities also produce convolution-type sums in Chebyshev
Galerkin and tau methods. A typical sum is given in (3.3.22). The simplest
approach is to examine the nonlinear term from the perspective of quadrature.
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Consider the product
s(x) = u(x)v(x) , (3.4.22)

where u and v are in PN , i.e.,

u(x) =
N∑

k=0

ûkTk(x) and v(x) =
N∑

k=0

v̂kTk(x) . (3.4.23)

Then,

ŝk =
2

πck

∫ 1

−1

u(x)v(x)Tk(x)w(x) dx , k = 0, 1, . . . , N , (3.4.24)

where w(x) is the Chebyshev weight. The term u(x)v(x)Tk(x) is a polynomial
of degree≤ 3N . These coefficients ŝk can be evaluated exactly by a Chebyshev
Gauss-Lobatto quadrature using the points yj = cos(πj/M), j = 0, 1, . . . ,M ,
provided that 2M − 1 ≥ 3N , or M ≥ 3N/2 + 1/2. (See Sect. 2.2.3.)

Transform methods can be used to produce de-aliased representations of
a quadratic product by choosing M ≥ 3N/2 + 1/2 and then (1) padding ûk

(and v̂k) as

ŭk =

{
ûk , k = 0, 1, . . . , N

0 , k = N + 1, N + 2, . . . ,M
; (3.4.25)

(2) performing inverse discrete Chebyshev transforms on the Gauss-Lobatto
points to obtain uj , vj , j = 0, 1, . . . ,M ; (3) multiplying the physical space
results to obtain sj = ujvj , j = 0, 1, . . . ,M ; (4) performing a discrete Cheby-
shev transform on sj to obtain s̆k, k = 0, 1, . . . ,M ; and finally, (5) extracting
ŝk = s̆k, k = 0, 1, . . . , N .

Unlike the Fourier de-aliasing procedure discussed in Sect. 3.4.2, the
choice here of M = 3N/2, which is desirable from the standpoint of effi-
cient FFTs, does not produce a fully de-aliased set of coefficients. However,
only the ŝN term is not fully de-aliased; this can be handed separately at
a relatively small cost. Alternatively, choosing M = 2N produces a fully
de-aliased set of coefficients, albeit at greater computational cost. A similar
nuisance arises with the use of the Gauss and Gauss-Radau points. In the
case of the tau method, this does not matter because the N -th coefficient of
the nonlinear term is not used.

Of course, quadratic terms can also be evaluated pseudospectrally by
transforming ûk and v̂k to physical space at the points xj = 2πj/N with
an N -mode Chebyshev transform, forming the product ujvj there and then
transforming back. This, of course, introduces aliasing errors. This modifi-
cation to the algorithm discussed in Sect. 3.3.3 produces a pseudospectral
Chebyshev tau method.

The approach of resorting to quadrature rules for de-aliasing procedures
can be readily extended to cubic and high-order products. For example, a cu-
bic product (such as the convective terms in compressible flow momentum
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equation) can be de-aliased by choosing M ≥ 2N , again with special treat-
ment of the N -th coefficient. This approach also applies to expansions in
other sets of orthogonal polynomials in (−1, 1), although a fast transform is
not available.

In a slightly different context, Debusschere et al. (2004) have recom-
mended the solution of a system of equations to treat nonlinear terms. For
example, to evaluate the expansion coefficients of s = u/v, one would write
this as

⎛

⎝
N∑

j=0

v̂jTj(x)

⎞

⎠
(

N∑

k=0

ŝkTk(x)

)
=

(
N∑

l=0

ûlTl(x)

)
. (3.4.26)

After multiplying both sides of this equation by Tn(x)w(x) and integrating
over (−1, 1), one obtains the following linear system for the expansion coef-
ficients of s:

N∑

k=0

⎛

⎝
N∑

j=0

2
πcn

Cjknv̂j

⎞

⎠ ŝk = ûn , (3.4.27)

where

Cjkn =
∫ 1

−1

Tj(x)Tk(x)Tn(x)w(x)dx . (3.4.28)

The solution of the linear system (3.4.27) for ŝk yields the de-aliased expan-
sion coefficients of s.

3.5 Relation Between Collocation, G-NI
and Pseudospectral Methods

In most cases Fourier pseudospectral methods are algebraically equivalent
to collocation methods. Consider again the simple Burgers equation (3.1.1),
periodic on (0, 2π). The Galerkin approximation is

dûk

dt
+
∑

m+n=k

ûmv̂n + νk2ûk = 0 , k = −N

2
, . . . ,

N

2
− 1 , (3.5.1)

where v̂k = ikûk.
The pseudospectral approximation uses a fully aliased transform method

to evaluate the convolution sum. Equation (3.5.1) is, in effect, replaced by

dûk

dt
+
∑

m+n=k

ûmv̂n +
∑

m+n=k±N

ûmv̂n + νk2ûk = 0 (3.5.2)

(see (3.4.9)).
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The collocation approximation may be written

∂uN

∂t
+ uNvN − ν

∂2uN

∂x2

∣∣∣∣
x=xj

= 0 , j = 0, . . . , N − 1 , (3.5.3)

where vN = ∂uN/∂x. Resorting to the discrete Fourier series representations
of u and v at the grid points, we have that (3.5.3) is

N/2−1∑

l=−N/2

dũl

dt
eilxj +

⎛

⎝
N/2−1∑

m=−N/2

ũmeimxj

⎞

⎠

⎛

⎝
N/2−1∑

n=−N/2

ṽne
inxj

⎞

⎠

+ν

N/2−1∑

l=−N/2

l2ũle
ilxj = 0 , j = 0, 1, . . . , N − 1 .

(3.5.4)

Applying the DFT to (3.5.4) and using the orthogonality relation (2.1.26),
we find

dũk

dt
+
∑

m+n=k

ũmṽn +
∑

m+n=k±N

ũmṽn + νk2ũk = 0 ,

k = −N

2
, . . . ,

N

2
− 1 .

(3.5.5)

This is identical to (3.5.2). Thus, except for round-off error and provided the
initial condition (and the right-hand side, if nonvanishing) is approximated
in the same way, the pseudospectral and collocation discretizations of (3.1.1)
are equivalent in the sense that they yield the same solution. So are the
pseudospectral and collocation discretizations of the Burgers equation in the
form (3.1.2). The same equivalence occurs for more complicated systems of
equations such as incompressible Navier-Stokes (see CHQZ3, Sect. 3.3.4).

A scheme for the Burgers equation implemented as a standard collocation
method can be de-aliased, if desired, by a truncation method. If at every
time-step one sets to zero the discrete Fourier coefficients for which |k| ≥
(1/3)N , the aliasing term in (3.5.2) vanishes. The collocation scheme then
becomes algebraically equivalent to a Galerkin method. In this context the
truncation method is known as the 2/3-rule. For the Burgers equation, this
truncation can be accomplished as part of the solution of the implicit part
of the equation. This is solved in transform space (see Sect. 4.1.1), and the
unwanted Fourier coefficients are easily discarded.

The Chebyshev collocation method is not equivalent to the pseudospec-
tral Chebyshev tau method mentioned in Sect. 3.4.4. As a matter of fact,

at the operator level, in the latter method the quadratic term uN ∂uN

∂x
is

approximated by

PN−2

(
IN (uN ∂uN

∂x
)
)

,
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whereas the Chebyshev collocation method uses

ĨN−2

(
IN (uN ∂uN

∂x
)
)

= ĨN−2

(
uN ∂uN

∂x

)
,

where ĨN−2v denotes the algebraic polynomial of degree ≤ N−2 interpolating
v at the internal nodes xj , j = 1, . . . , N − 1.

We might add that in some quarters the term pseudospectral method is
used to refer to what we call in this book a collocation method. We use the
adjective pseudospectral solely in terms of otherwise Galerkin or tau methods
in which the nonlinear terms are subjected to a pseudospectral evaluation.

Finally, the relations between the Legendre collocation method and the
G-NI method on an interval have already been pointed out in Sects. 1.2.3
and 3.3.5. Both methods enforce the same approximation of the differential
equation at the internal quadrature points, whereas they may enforce the
boundary conditions differently. In particular, for a second-order problem,
Dirichlet boundary conditions are treated in the same way, whereas Neu-
mann or Robin (flux) conditions are treated differently. This situation holds
in multiple dimensions as well, if the methods are set on domains which are
Cartesian products of intervals (possibly after a mapping) and use a tensor-
product Gaussian grid. On simplicial domains, such as triangles and tetrahe-
dra, collocation and G-NI methods may differ substantially, as mentioned in
Sect. 2.9.2.

3.6 Conservation Forms

In many applications to hyperbolic problems, e.g., the inviscid Burgers equa-
tion or the Euler equations of fluid dynamics, the exact solution satisfies one
or more conservation properties. Replicating some conservation properties in
the approximate solution may be necessary for a physically meaningful result
or for a numerically stable one. Even though strict conservation does not
apply to advection-diffusion problems or to the Navier-Stokes equations of
fluid dynamics, it is usually advisable to require some level of conservation
for the hyperbolic part of the problem.

We begin this section with an illustration on the Burgers equation of some
of the basic principles of assessing numerical conservation properties, and
then turn to more general equations. The inviscid, periodic Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0, 0 < x < 2π, t > 0 , (3.6.1)

satisfies an infinite set of conservation properties (for real-valued solutions)

d
dt

∫ 2π

0

ukdt = 0 , k = 1, 2, . . . , (3.6.2)
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as can be seen by multiplying (3.6.1) by uk−1 and integrating the second term
by parts. As noted above, it is desirable for the discrete solution to satisfy
analogous conservation laws. Both the spatial and temporal discretizations
affect the conservation properties. We focus on the spatial discretization and
consider the semi-discrete evolution equation. We assume here that both the
solution and its approximation are real-valued functions.

Semi-discrete Fourier approximations to the inviscid Burgers equation
satisfy only a small number of conservation properties. Consider first the
Fourier Galerkin approximation. The Fourier Galerkin equations (3.3.2) with
ν = 0 are equivalent to

∫ 2π

0

(
∂uN

∂t
+ uN ∂uN

∂x

)
v dx = 0 ∀v ∈ SN . (3.6.3)

Taking v ≡ 1 yields

d
dt

∫ 2π

0

uNdx = −1
2

∫ 2π

0

∂

∂x

(
(uN )2

)
dx = −1

2
(uN )2

∣∣∣∣
2π

0

= 0 ,

and taking v = uN produces

d
dt

∫ 2π

0

(uN )2dx = −1
3

∫ 2π

0

∂

∂x

(
(uN )3

)
dx = −1

3
(uN )3

∣∣∣∣
2π

0

= 0 .

Hence, Fourier Galerkin approximations conserve
∫

uN and
∫

(uN )2. However,
they do not necessarily conserve

∫
(uN )k for k ≥ 3. For example, the integral

in (3.6.3) is not required to be satisfied for v = (uN )2, since (uN )2 is not
guaranteed to be in SN .

Fourier collocation approximations may conserve one or both of these two
quantities, depending on precisely how the nonlinear term is approximated.
On the space SN the bilinear form (u, v)N , defined by (2.1.32), is an inner
product. Moreover, the differentiation operator DN is skew-symmetric with
respect to this inner product when applied to functions in SN ; indeed, DNv =
dv/dx for such functions. The equations (3.3.11) with ν = 0 are equivalent
to

∂uN

∂t
+

1
2
DN

(
(uN )2

)
= 0 . (3.6.4)

Taking the discrete inner product of (3.6.4) with the function v ∈ SN pro-
duces

d
dt

(uN , v)N = −1
2
(DN

(
(uN )2

)
, v)N (3.6.5)

=
1
2
((uN )2,DNv)N =

1
2
((uN )2,

dv
dx

)N .
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Taking v ≡ 1 and using the skew-symmetry of DN , this yields

d
dt

⎛

⎝2π
N

N−1∑

j=0

uN
j

⎞

⎠ = 0 ,

the discrete analog of d
dt

∫ 2π

0
uNdx = 0. (Actually, the two quantities coincide,

due to the exactness of the quadrature formula.) However, 2π
N

∑
(uN

j )2 (which
coincides with

∫ 2π

0
(uN )2dx for the same reason) is not conserved, since the

inner products on the right-hand side of (3.6.5) are not exact for v = uN .
On the other hand, if the collocation method is applied in the form

∂uN

∂t
+

1
3
DN

(
(uN )2

)
+

1
3
uNDNuN = 0 , (3.6.6)

then taking the discrete scalar product with uN , one has

d
dt

(uN , uN )N +
1
3
(DN

(
(uN )2

)
, uN )N +

1
3
(uNDNuN , uN )N = 0 .

Again, one has (DN

(
(uN )2

)
, uN )N = −(uNDNuN , uN )N , because DN is

skew-symmetric. Hence, the quadratic quantity 2π
N

∑
(uN

j )2 is conserved.
Moreover, 2π

N

∑
uN

j is also conserved, as can be demonstrated by taking the
inner product of (3.6.6) with v ≡ 1 and replacing the discrete inner product
with the continuous inner product (permitted in this case by precision of the
quadrature rule). These results are typical: collocation methods may or may
not satisfy as many conservation properties as Galerkin ones.

For the inviscid, nonperiodic Burgers equation, (3.1.1) with ν = 0, supple-
mented with the Dirichlet boundary condition u(−1, t) = 0 for all t > 0, the
integrals

∫
uk are conserved up to a boundary term. For Legendre Galerkin

approximations, conservation up to a boundary term holds for
∫

uN and∫
(uN )2, by arguments analogous to those for the Fourier Galerkin case. (In-

tegrals now are taken on (−1, 1).) The Legendre G-NI approximation in the
form (

∂uN

∂t
, v

)

N

+
1
2
(DN

(
(uN )2

)
, v)N = 0 ∀v ∈ XN ,

where XN = P
0−
N (−1, 1) is the space of all polynomials of degree ≤ N van-

ishing at x = −1, conserves
∫
uN but not

∫
(uN )2. (For v = uN the inner

product generates a Legendre Gauss-Lobatto quadrature on a polynomial of
degree 3N − 1. Indeed,

1
2
(DN ((uN )2), uN )N = −1

2

(
(uN )2,

∂uN

∂x

)

N

+
1
2
(uN (1))2.

This polynomial degree exceeds the precision of the quadrature formula.)
However, the Legendre G-NI method in the form analogous to (3.6.6),
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(
∂uN

∂t
, v

)

N

+
1
3
(
DN

(
(uN )2

)
, v
)
N

+
1
3
(uNDN (uN ), v)N = 0 ∀v ∈ XN ,

(3.6.7)
conserves both

∫
uN and (uN , uN )N =

∑N
j=0(u

N
j )2wj (which is equivalent to∫

(uN )2, as we will see in Sect. 5.3). The former result follows from replac-
ing the discrete inner product with the continuous inner product (permitted
for v ≡ 1 by precision of the quadrature rule). The quadratic conservation
property follows from choosing v = uN , using DN = ∂

∂xIN , and noting that

1
3
(DN ((uN )2), uN )N = −1

3

(
IN ((uN )2),

∂uN

∂x

)
+

1
3
(uN (1))2

= −1
3

(
(uN )2,

∂uN

∂x

)

N

+
1
3
(uN (1))2

= −1
3
(uNDN (uN ), uN )N +

1
3
(uN (1))2 .

Hence, (uN , uN )N is conserved up to the boundary term
∫ t

0
(uN (1, τ))2dτ . For

Chebyshev approximations, the inner product of the approximation does not
correspond to the physical inner product in which the conservation property
holds.

Let us now consider more general problems, starting with the (possibly
vector-valued) evolution equation

∂u
∂t

+M(u) = 0 in Ω . (3.6.8)

The independent variables themselves are conserved (except for boundary
effects) if the spatial operator is in divergence form, i.e.,

M(u) = ∇ ·F(u) , (3.6.9)

where the tensor F is called the flux function. Gauss’ theorem implies that
the solution to the evolution equation (3.6.8) satisfies

d
dt

∫

Ω

u = −
∫

∂Ω

F · n̂ . (3.6.10)

Hence, the only integral changes in u are those due to fluxes through the
boundaries.

If the spatial operator is orthogonal to the solution, i.e.,

(M(u),u) = 0 , (3.6.11)

then the quadratic conservation law

d
dt

(u,u) =
d
dt
‖u‖2 = 0 (3.6.12)
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holds. An important special case arises when the operator M is linear and
skew-symmetric, i.e.,

M(u) = Lu , (3.6.13)

with
L∗ = −L (3.6.14)

(assuming real variables). In this case

(M(u),u) = (Lu,u) = 1
2 (Lu,u) + 1

2 (u,L∗u)

= 1
2 (Lu,u)− 1

2 (u,Lu) = 0 .

Note that for a one-dimensional scalar problem with periodic boundary
conditions, M(u) = ∂u/∂x satisfies these conditions, but that M(u) =
a(x)(∂u/∂x) does not unless da/dx = 0. In more than one space dimen-
sion, M(u) = a · ∇u with ∇ · a ≡ 0 satisfies (3.6.11), for then M(u) =
1
2a · ∇u + 1

2∇ · (ua), which is skew-symmetric.
We can write the Galerkin approximation to (3.6.8) as

(
∂uN

∂t
+M(uN ) ,v

)
= 0 ∀v ∈ XN , (3.6.15)

and the collocation and G-NI approximations as
(

∂uN

∂t
+MN(uN ) ,v

)

N

= 0 ∀v ∈ XN , (3.6.16)

where MN is a suitable discrete approximation of M. Consider Fourier or
Legendre approximations to periodic and nonperiodic problems, respectively.
For spatial operators in the divergence form (3.6.2), the choice of v as the
vector with each component identically equal to one, yields, as for the Burgers
cases, that

∫
uN is conserved (except for boundary terms in the nonperiodic

case). For spatial operators of the form (3.6.11), by choosing v = uN we
immediately obtain

1
2

d
dt

(uN ,uN ) = −(M(uN ),uN ) = 0 , (3.6.17)

which demonstrates a semi-discrete quadratic conservation property. For the
linear, skew-symmetric problem, where (3.6.13) and (3.6.14) are satisfied, we
can similarly show quadratic conservation for collocation and G-NI methods.

The semi-discrete conservation laws are not satisfied by the fully dis-
crete solution unless the time discretization is symmetric (i.e. based on cen-
tered finite differences – see Appendix D). The leap frog and Crank-Nicolson
methods are symmetric. However, the departure from conservation is small
for unsymmetric time-discretization schemes, such as Adams-Bashforth and
Runge-Kutta, and the departure decreases as the time-step is reduced.
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Numerous spectral collocation computations have been presented in the
literature in which the advantages of using a conservation form have been
exhibited. Several of these demonstrations have indicated that collocation
methods can be (temporally) stable if the discrete equations satisfy quadratic
conservation, but unstable if a nonconservative form is utilized. An early, dra-
matic demonstration was provided by Dahlburg (1985) for ideal magnetohy-
drodynamics. One interpretation of this effect is that quadratic conservation
forms of the discrete equations tend to reduce the effects of aliasing errors
in collocation methods. Further discussion is provided in CHQZ3, Chap. 3 in
the context of incompressible flow computations, and in CHQZ3, Chap. 4 for
compressible flow simulations.

3.7 Scalar Hyperbolic Problems

The purpose of this section is to illustrate the essential features of the spectral
boundary treatment for a scalar, one-dimensional, nonperiodic hyperbolic
problem with an explicit time discretization. More complex situations, such
as linear and nonlinear hyperbolic systems and implicit time discretizations,
are discussed in CHQZ3, Sect. 4.2.

For an explicit time discretization, any errors produced in a finite-
difference scheme, including those due to the boundary treatment, have a fi-
nite rate of propagation. Moreover, if the scheme is dissipative the growth
of the errors will be retarded or perhaps even suppressed. However, spectral
methods have little dissipation to slow the growth of the errors, and because
of their global character the errors immediately affect the entire domain. Nu-
merical experience has confirmed that spectral methods are far more sensitive
than finite-difference methods to the boundary treatment. On the other hand,
as we will see, spectral methods require no special formulas for derivatives at
the boundary, whereas finite-difference methods typically do.

3.7.1 Enforcement of Boundary Conditions

Let us then consider the linear, scalar hyperbolic equation

∂u

∂t
+ β

∂u

∂x
= 0 , −1 < x < 1, t > 0 . (3.7.1a)

For simplicity, we assume that the wave speed β is constant and strictly
positive. Thus, the point x = −1 is the inflow boundary point, where the
equation is supplemented with the inflow boundary condition

u(−1, t) = uL(t) , t > 0 . (3.7.1b)
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The problem is completed by the initial condition

u(x, 0) = u0(x) , −1 < x < 1 . (3.7.1c)

An obvious approach is a strong imposition of the boundary condi-
tion, which is particularly straightforward to implement within a collocation
scheme. Let the collocation points be the Legendre Gauss-Lobatto points xj ,
j = 0, . . . , N, introduced in (2.3.12). The semi-discrete (in space) approxima-
tion, uN (t) ∈ PN (−1, 1) for all t > 0, is defined by the conditions

∂uN

∂t
(xj , t) + β

∂uN

∂x
(xj , t) = 0 , j = 1, . . . , N, t > 0 , (3.7.2a)

uN (−1, t) = uL(t) , t > 0 , (3.7.2b)

uN (xj , 0) = u0(xj) , j = 0, . . . , N . (3.7.2c)

The scheme can be interpreted as a G-NI scheme. Indeed, let P
0−
N (−1, 1) de-

note the space, already introduced in the previous section, of the polynomials
of degree ≤ N vanishing at the left endpoint of the interval (−1, 1); multi-
plying (3.7.2a) by v(xj)wj , where v ∈ P

0−
N (−1, 1) and wj is the Legendre

Gauss-Lobatto weight associated with the point xj , and summing up on j we
get

(uN
t , v)N + (βuN

x , v)N = 0 for all v ∈ P
0−
N (−1, 1), t > 0 , (3.7.3)

where (u, v)N =
∑N

j=0 u(xj)v(xj)wj is still the discrete L2-inner product
on PN (−1, 1) (see (2.2.24) and Sect. 5.3). Note that the trial function uN

satisfies the inflow boundary condition at each time; correspondingly each
test function vanishes at the inflow boundary point.

Since β is constant and the Gauss-Lobatto quadrature is exact for poly-
nomials of degree ≤ 2N − 1, the spatial term in (3.7.3) is actually exact,
i.e.,

(βuN
x , v)N = (βuN

x , v) =
∫ 1

−1

β
∂uN

∂x
v dx .

This immediately yields a (uniform in N) bound for the spectral solution uN

in the case of an homogeneous inflow condition, uL(t) = 0 for all t. Indeed,
taking v = uN , we have

(βuN
x , uN )N =

∫ 1

−1

β
1
2

∂

∂x
(uN )2 dx = 1

2β[(uN )2]1−1 = 1
2β(uN )2(1, t) ≥ 0 ;

whence, from (3.7.3),

d
dt
‖uN‖2N ≤ 0 for all t > 0 . (3.7.4)
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Since the discrete and continuous L2-norms are uniformly equivalent on
PN (−1, 1) (see (5.3.2)), this implies that the L2-norm of the spectral so-
lution uN is uniformly bounded with respect to N and t. As will be discussed
in Chap. 6, this uniform bound establishes the L2-stability of the approxi-
mation, and together with the consistency of the discretization, this implies
convergence of uN to the exact solution u as N → ∞. The same result
holds in the case of a nonhomogeneous inflow condition. Note that we have
d
dt‖uN‖2N = 0, except possibly for the boundary terms, which is a type of
conservation property discussed in the previous section.

A more flexible way to handle the boundary conditions, which turns out
to be useful, e.g., in multidomain spectral methods (see CHQZ3, Sect. 5.3.3)
or for systems of equations (see CHQZ3, Sect.4.2.2), is to enforce them in a
weak sense. The rationale is that whenever stability holds, then accuracy is
assured provided the boundary conditions are matched to within the same
consistency error as for the equation in the interior. As already done for
the Burgers equation at the beginning of Sect. 3.3.5, the starting point is
integration-by-parts. Let u be the solution of (3.7.1), and let v = v(x) be any
smooth function (not necessarily vanishing at x = 1). Then,

∫ 1

−1

β
∂u

∂x
v dx = −

∫ 1

−1

βu
∂v

∂x
dx + [βuv]1−1

= −
∫ 1

−1

βu
∂v

∂x
dx + βu(1, t)v(1)− βuL(t)v(−1) .

This suggests the consideration of the following G-NI scheme with weak im-
position of the boundary conditions: find uN (t) ∈ PN (−1, 1) satisfying, for
all t > 0 and all v ∈ PN (−1, 1),

(uN
t , v)N − (βuN , vx)N + βuN (1, t)v(1) = βuL(t)v(−1) , (3.7.5)

as well as the initial condition (3.7.1c). Note that in this case neither the
trial function uN nor any test function v is required to satisfy a boundary
condition. Taking v = uN , the same bound (3.7.4) is obtained as before, in
the homogeneous case, uL = 0.

An alternative, equivalent formulation is obtained by counter-integrating
by parts in (3.7.5); precisely, uN (t) ∈ PN (−1, 1) satisfies, for all t > 0 and all
v ∈ PN (−1, 1),

(uN
t + βuN

x , v)N + β
(
uN (−1, t)− uL(t)

)
v(−1) = 0 . (3.7.6)

The approximate, or weak, way in which uN matches the inflow condition
becomes apparent by taking as v suitable discrete delta-functions, namely,
the characteristic Lagrange polynomial function ψj (see (1.2.55)) at each
internal or outflow Gauss-Lobatto point xj , j = 1, . . . , N . We immediately see
that uN still satisfies the collocation equations (3.7.2a). On the other hand,
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taking v = ψ0 we obtain at the inflow point that
(

∂uN

∂t
(−1, t) + β

∂uN

∂x
(−1, t)

)
+

1
w0

β
(
uN (−1, t)− uL(t)

)
= 0 . (3.7.7)

Recalling that 1
w0

= N(N+1)
2 , we see that the boundary condition is accounted

for through a specific penalty procedure, and it is satisfied exactly only in the
limit N →∞. The formula also demonstrates that if the differential equation
is fulfilled to within spectral accuracy, so is the inflow boundary condition.

The G-NI scheme with the weak enforcement of the boundary condition
just illustrated is but a particular case of the penalty approach to handle
boundary conditions, whose use in spectral methods was first advocated by
Funaro and Gottlieb (1988, 1991). The spectral approximation uN is defined
as the solution of the polynomial equation
(

∂uN

∂t
+ β

∂uN

∂x

)
(x, t) + τβQN (x)

(
uN (−1, t)− uL(t)

)
= 0 ,

− 1 ≤ x ≤ 1, t > 0 , (3.7.8)

where τ is the penalization parameter, and QN is a fixed polynomial of degree
≤ N which determines just how the equation is enforced. Choosing

QN (x) =
(1− x)L′

N (x)
2L′

N (−1)
=

{
1 if x = −1,
0 if x = xj for j = 1, . . . , N

(where xj are the Legendre Gauss-Lobatto points) yields again the collocation
equations (3.7.2a) at the internal and outflow quadrature points, whereas at
the inflow point one has

(
∂uN

∂t
(−1, t) + β

∂uN

∂x
(−1, t)

)
+ τβ

(
uN (−1, t)− uL(t)

)
= 0 (3.7.9)

(compare with (3.7.7)). In order to establish the admissible values of τ , let
us evaluate (3.7.8) at x = xj , multiply it by uN (xj , t)wj and sum up over j.
Using the exactness of the quadrature rule to integrate by parts in space,
we obtain, in the case of a homogeneous boundary condition, the following
relation:

1
2

d
dt
‖uN‖2N +

1
2
β(uN )2(1, t) =

− (τw0 −
1
2
)β(uN )2(−1, t) for all t > 0 . (3.7.10)

Thus, the penalty method solution is bounded (i.e., it satisfies (3.7.4)) pro-
vided the penalty parameter satisfies

τ ≥ 1
2w0

.

Choosing τ smaller than the value τ = 1
w0

which stems in a natural way
from the G-NI approach, results in a loss of conservation (illustrated in the
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numerical example below); yet, in this way one may increase the allowable
time-step in an explicit time-discretization scheme.

We refer to Hesthaven (2000) and to Gottlieb and Hesthaven (2001) for
further details and generalizations of penalty methods.

So far, we have dealt with Legendre methods. Obviously, the weak im-
position of the boundary condition (scheme (3.7.5) or (3.7.6)) requires the
integration weight to be neither zero nor infinity at the boundary, thus con-
fining the quadrature nodes to be of Legendre type. On the contrary, the
strong imposition of the boundary condition (scheme (3.7.1)) is amenable to
an implementation in terms of Chebyshev Gauss-Lobatto points as well.

Another scheme that can be implemented with nodes of either Legendre or
Chebyshev type is the staggered-grid method , which we now briefly describe.
It uses two families of interpolation/collocation nodes, the Gauss-Lobatto
and the Gauss points. These two grids are staggered with respect to each
other. In this method the solution u is represented by a polynomial of degree
N − 1 using the Gauss points, whereas the “flux”, F(u) = βu, is represented
by a polynomial of degree N using the Gauss-Lobatto points. We denote their
finite-dimensional approximations by ūN and FN , respectively. Let xj , j =
0, . . . , N , denote the Gauss-Lobatto points and x̄j , j = 1, . . . , N , the Gauss
points. The boundary condition at x = −1 is enforced weakly in this method
by first constructing the polynomial ũN ∈ PN from the values

ũN (xj , t) =

{
uL(t) , j = 0 ,

ūN (xj , t) , j = 1, . . . , N ,
(3.7.11)

at the Gauss-Lobatto points, then generating the flux, F̃ (x, t) = F(ũN (x, t)).
Finally, the staggered-grid collocation conditions are

∂ūN

∂t
(x̄j , t) +

∂FN

∂x
(x̄j , t) = 0 , j = 1, . . . , N, t > 0 , (3.7.12a)

uN (x̄j , 0) = u0(x̄j) , j = 1, . . . , N , (3.7.12b)

with FN (x, t) = IGL
N (F̃ (x, t)), where IGL

N denotes the interpolation operator
at the Gauss-Lobatto nodes. Note that in general FN is a polynomial of
degree N even though ūN is a polynomial of degree N − 1 because of the
application of the boundary condition. However, ∂FN/∂x is a polynomial of
degree N − 1 because of the differentiation.

This method requires interpolating ūN from the Gauss points to the
Gauss-Lobatto points, and interpolating ∂FN/∂x back from the Gauss-
Lobatto points to the Gauss points. Procedures for this are described in
CHQZ3, Sect. 3.4.2, where the staggered grid is discussed for incompress-
ible flow computations. It requires twice as much work per step as the
non-staggered-grid method since two matrix multiplies (or four FFTs if
Chebyshev points are used) are needed per stage rather than a single matrix
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multiply (or two FFTs). This particular staggered-grid method for hyper-
bolic problems was introduced by Kopriva and Kolias (1996). Unlike the
earlier work of Cai and Shu (1993), which defined cell-averaged values of the
solution at the Gauss points and flux values at the Gauss-Lobatto points, the
Kopriva and Kolias method uses simply the pointwise values of the solution
and not the cell-averaged values at the Gauss points.

3.7.2 Numerical Examples

We now present several sets of numerical results to illustrate the behavior of
the various strategies described above for enforcing the boundary conditions.
We consider first the test problem

∂u

∂t
+

3
2
∂u

∂x
= 0 , −1 < x < 1 , t > 0 ,

u(−1, t) = sin(−2− 3t) , t > 0 ,

u(x, 0) = sin 2x , −1 < x < 1 ,

(3.7.13)

whose solution is the right-moving wave u(x, t) = sin(2x− 3t).
The first set of experiments has been conducted with the Legendre quadra-

ture/collocation points. In this way, we can compare all the formulations con-
sidered in this section: the collocation method (3.7.2) with strong imposition
of the boundary conditions, the G-NI method (3.7.6) with weak enforcement
of boundary conditions, the penalty method (3.7.8) for different values of τ ,
and the staggered-grid method (3.7.12). Figure 3.5 shows the maximum error
at t = 4 for each method as a function of the polynomial degree N . The time
discretization has been conducted with ∆t = 10−4, using the RK4 scheme for
all methods. The results show that the decay rate of the error is similar in all
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Fig. 3.5. Maximum error at t = 4 for the solution of problem (3.7.13) with different
spectral schemes
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cases. The staggered-grid method is the least accurate one; we refer to the
discussion of the subsequent Fig. 3.10 for more comments on this method.
The weak enforcement of the boundary condition (through G-NI or penalty)
yields slightly better results than the strong enforcement, although a higher
sensitivity to round-off errors appears as one approaches machine accuracy.
The penalty scheme exhibits a quite moderate sensitivity to the parameter τ ,
around the value corresponding to G-NI.

In order to assess the conservation properties of each scheme, we have
monitored the evolution in time of the quantity

Ψ(t) =
(∫ 1

−1

uN (x, t) dx + β

∫ t

0

uN (1, s) ds
)

−
(∫ 1

−1

uN (x, 0) dx + β

∫ t

0

uL(s) ds
)

,

(3.7.14)

which is zero for the exact solution, as can be seen by integrating the equation
in space and time. The results are shown in Fig. 3.6. All refer to the choice
N = 16; Simpson’s composite rule (which has the same accuracy as the RK4
time discretization) has been used to compute integrals in time. As expected,
since the G-NI method is the one most consistent with the exact conser-
vation form of the equation, this method yields the best results, although
the penalty and staggered-grid methods are nearly comparable to the G-NI
method in terms of conservation. All three of these methods achieve conserva-
tion to nearly the level of round-off error. The collocation method, however,
results in about one significant digit loss of conservation. This suggests that
strong imposition of boundary conditions should be avoided if conservation
is a central issue of the numerical simulation.
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Fig. 3.6. Evolution in time of (the discretization of) the quantity Φ(t) defined in
(3.7.14), for different spectral schemes
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Next, we consider the stationary problem

3
2

du
dx

= 6 cos 6x , − 1 < x < 1 ,

u(−1) = sin(−6) ,
(3.7.15)

in order to investigate the spatial-discretization error alone. The exact solu-
tion is u(x) = sin 6x. We have compared the collocation method (3.7.2) with
strong imposition of the boundary conditions, the G-NI method (3.7.6) with
weak enforcement of boundary conditions, and the penalty method (3.7.8)
for two values of τ . The corresponding results, reported in Fig. 3.7, show
that all methods have the same convergence rate as the polynomial degree
N increases, and that the G-NI method is slightly more accurate than the
other schemes.
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Fig. 3.7. Maximum error for the solution of problem (3.7.15), with different spec-
tral schemes (note that the two penalty curves graphically coincide)

The third set of experiments compares the Chebyshev collocation methods
(using only a non-staggered-grid) with high-order compact-difference schemes.
Figure 3.8 illustrates the maximum errors in the discrete solution to (3.7.13)
obtained with the strong scheme (3.7.2), as a function of N at t = 8, and as
a function of time for N = 16. (The time-step in the RK4 method was taken
sufficiently small for the convergence results so that the time-discretization
error was negligible; the time-step was fixed at 100 time-steps per period for
the time-dependent results.) After each stage of the Runga-Kutta scheme,
the boundary condition at x = −1 was enforced explicitly. The computed
Chebyshev solution exhibits spectral accuracy as a function of N and remains
bounded for large t. Shown there for comparison are the results of several
compact-difference schemes. These are (1) the classical fourth-order stencil
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Fig. 3.8. Maximum error at t = 8 (left) and maximum error for N = 16 as
a function of t (right) for Chebyshev collocation and several compact-difference
schemes for a scalar hyperbolic problem

(1.2.18) in the interior with third-order boundary stencils (3-4-3), (2) the
classical sixth-order compact stencil (1.2.19) in the interior with third-order
stencils at a boundary point and fourth-order stencils at a point adjacent to
the boundary (3,4-6-4,3), and (3) the classical sixth-order compact stencil in
the interior with fifth-order stencils at the boundary and points adjacent to
the boundary (5,5-6-5,5). The stencils at and near the boundary for these
schemes can be found in Carpenter, Gottlieb and Abarbanel (1993); the par-
ticular (5,5-6-5,5) stencil is given there on p. 293. The figure indicates that
the global order of accuracy of these methods is one order greater than the
order of the boundary stencil, and that all of these compact schemes are
temporally stable, i.e., remain bounded in time (see Sect. D.1), for the scalar
hyperbolic problem, as implied by the stability analysis of Carpenter, Got-
tlieb and Abarbanel (1993).

Figure 3.9 shows the corresponding results for some additional sixth-order
compact-difference schemes. Again, all use the classical sixth-order compact
stencil at interior points. The order of the stencil at a boundary point and
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Fig. 3.9. Maximum error at t = 8 (left) and maximum error for N = 16 as
a function of t (right) for several sixth-order compact-difference schemes for a scalar
hyperbolic problem
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a point adjacent to the boundary point differ amongst the schemes, which
are denoted by the same convention used above. The convergence rate in all
cases is one order higher than the order of the boundary stencil. However,
those schemes with fourth-order boundary closures are temporally unstable.
(As discussed in CHQZ3, Sect. 4.2, however, all of the compact-difference
methods used here are temporally unstable for a hyperbolic system.)
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Fig. 3.10. Maximum error at t = 8 (left) and maximum error for N = 16 as
a function of t (right) for both non-staggered-grid and staggered-grid Chebyshev
collocation schemes for a scalar hyperbolic problem

Finally, we compare the staggered-grid Chebyshev collocation method
with its conventional, non-staggered-grid, counterpart. Figure 3.10 illustrates
the convergence and temporal stability of the two Chebyshev collocation
methods. Results for the staggered-grid collocation method include the max-
imum error at the left boundary. (In these calculations the maximum error
of the staggered-grid solution interpolated to the Gauss-Lobatto points hap-
pened to always occur at the left boundary.) The staggered-grid method con-
verges just as fast as the non-staggered-grid method, although with a slightly
larger error at both the Gauss and Gauss-Lobatto points. Recall that for
given N , the staggered-grid method has one fewer degree of freedom than
the non-staggered-grid method. Even when compensation is made for this
(not illustrated in the figure), the staggered-grid method still has a slightly
larger error. The staggered-grid method is clearly also temporally stable.
For problems with more than one nonperiodic direction, the staggered-grid
method has several advantages over non-staggered-grid methods (see CHQZ3,
Sect. 4.4.2).

3.8 Matrix Construction for Galerkin and G-NI
Methods

When we apply any of the spectral techniques described so far to the spatial
discretization of a linear boundary-value problem, we end up with a linear
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system of discrete equations (ordinary differential equations in the unsteady
case, algebraic equations in the steady case). In the examples of Chap. 1,
as well as in the discussion in the previous sections of the present chapter,
we have written down the individual equations of the system, restraining
ourselves from introducing a global matrix formalism. While this approach
is often satisfactory for simple collocation and tau discretizations (for which
explicit expressions for differentiation in physical or transform space may
be available), it appears less appropriate for Galerkin and G-NI methods,
particularly in several spatial dimensions and in complex geometries. Indeed,
the modern efficient solution techniques for large algebraic systems require
the access to the matrix entries, or at least the effect of applying the matrix
to arbitrary vectors (see Chap. 4 for the details).

For these reasons, we present here the fundamentals of the construc-
tion of matrices arising from the Legendre Galerkin or G-NI discretization
of a model second-order boundary-value problem in one spatial dimension,
which incorporates variable coefficients and domain mapping. The discussion
will continue in Sect. 4.2.2 for the multidimensional, single-domain case, and
in CHQZ3, Chap. 5.1 for the multidomain case.

Let us assume that we want to solve the boundary-value problem

− d
dx

(
α

du
dx

)
+ β

du
dx

+ γu = f (3.8.1)

in a bounded interval, I = (xL, xR), of the real line, supplemented by homo-
geneous Dirichlet or Neumann boundary conditions. The coefficients and the
right-hand side are continuous functions defined in Ī = [xL, xR]. The weak,
or integral, formulation of the problem is
∫

I

α
du
dx

dv
dx

dx +
∫

I

β
du
dx

v dx +
∫

I

γuv dx =
∫

I

fv dx for all v ∈ V ,

(3.8.2)
where the trial- and test-function space V is composed of sufficiently smooth
functions that satisfy homogeneous Dirichlet boundary conditions if u is re-
quired to do so (technically, V = H1

0 (−1, 1) when Dirichlet conditions are
applied; V = H1(−1, 1) when Neumann conditions are applied; see Ap-
pendix A). A Galerkin method is obtained by restricting trial and test func-
tions to a finite-dimensional space VN ; the G-NI version results from replacing
exact integration by a high-precision quadrature formula.

In preparation for more complex situations, we assume that the inter-
val I is the image of the reference (or “parent”) interval, Î = (−1, 1), under
a smooth, invertible mapping F , i.e., I = F (Î). We denote by x̂ the coordi-
nate in Î, and by x = F (x̂) its image in I. We assume that the transformation
is nondegenerate, namely, F ′(x̂) 	= 0 for all x̂ ∈ [−1, 1]; we admit both the
F ′ > 0 and F ′ < 0 cases. (An obvious instance is provided by the affine
mapping F (x̂) = x̂(xR − xL)/2 + (xR + xL)/2.)

On the reference domain, we consider the space V̂N defined as P
0
N (−1, 1) =

{v̂ ∈ PN (−1, 1) : v̂(±1) = 0} in the case of Dirichlet boundary conditions, or
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PN (−1, 1) in the case of Neumann boundary conditions. We use a boundary-
adapted basis (see Sect. 2.3.3) for V̂N , which allows for an easy enforcement of
the boundary/interface conditions. In particular, we choose either the modal
basis defined in (2.3.30) or the Lagrange nodal basis defined in (1.2.55);
Dirichlet boundary conditions are then simply enforced by dropping the first
two elements from the modal basis and the first and last elements from the
nodal basis. (This would not be the case if we were to choose the Legendre
modal basis, {Lk}k=0,...,N .) Compactly, we write

V̂N = span {φ̂k : φ̂k ∈ B},

where B denotes either the modal basis or the nodal one. Trial and test
functions on I will be the images of the elements of V̂N under the mapping
F , i.e.,

VN = span {φk(x) = φ̂k(F−1(x)) : φ̂k ∈ B}.
Note that if F is an affine mapping, then VN is just the space of polynomials
of degree ≤ N on I, possibly vanishing on the boundary.

Setting uN =
∑

k ukφk ∈ VN and choosing in (3.8.2) as v any basis
function φh ∈ VN , we obtain the Galerkin discretization
∫

I

α
duN

dx
dφh

dx
dx +

∫

I

β
duN

dx
φh dx +

∫

I

γuNφh dx =
∫

I

fφh dx for all h ,

(3.8.3)
which can be written in algebraic form as

Lu = b , (3.8.4)

where u = (uk), b =
(∫

I
fφh dx

)
while L = K is the stiffness matrix whose

entries are

Khk =
∫

I

α
dφk

dx
dφh

dx
dx +

∫

I

β
dφk

dx
φh dx +

∫

I

γφkφh dx (3.8.5)

= K
(2)
hk + K

(1)
hk + K

(0)
hk . (3.8.6)

The G-NI discretization is obtained by replacing each integral above by
a quadrature formula, first defined on the reference interval and then trans-
ported on I via the mapping F . In particular, suppose that the integral to
be approximated is

∫
I
g(x) dx; then, setting ĝ(x̂) = g(F (x̂)) = g(x), we have

∫

I

g(x) dx =
∫

Î

ĝ(x̂)F ′(x̂) dx̂ �
N∑

j=0

ĝ(x̂j)F ′(x̂j)ŵj , (3.8.7)

where (x̂j , ŵj), j = 0, . . . ,N , are the nodes and weights of a suitable Gaussian
quadrature formula on Î. In the subsequent discussion, we will invariably use
the N -th order Legendre Gauss-Lobatto formula (i. e., we set N = N); choos-
ing N > N leads to a more accurate integration at some extra cost, which can



3.8 Matrix Construction for Galerkin and G-NI Methods 157

be desirable in the presence of variable coefficients and variable Jacobian. (See
Maday and Rønquist (1990) for a discussion of several quadrature strategies
in the construction of stiffness matrices.) The resulting approximate stiffness
matrix will be denoted by L = KGNI .

3.8.1 Matrix Elements

We now detail the construction of the individual matrix elements. We treat
the zeroth-, first- and second-order contributions separately, as well as the
right-hand side. In the discussion, we assume Neumann boundary conditions,
i.e., we include the vertex functions in the basis; in the case of homogeneous
Dirichlet boundary conditions, these functions are not included, implying
that the first and last rows and columns of the matrices below are deleted.

Zeroth-order contributions

We have

K
(0)
hk =

∫

I

γ(x)φk(x)φh(x) dx =
∫

Î

γ∗(x̂)φ̂k(x̂)φ̂h(x̂) dx̂ , (3.8.8)

with γ∗(x̂) = γ(F (x̂))F ′(x̂). Note that if γ ≡ 1, then K(0) = M coincides
with the mass matrix of the chosen basis.

If γ∗ is constant, the use of the modal basis yields the sparsity pattern
indicated in Fig. 3.11 (left). The pentadiagonal internal structure is easily
derived from the expression (2.3.31) for the internal basis functions. Indeed,
assuming γ∗ = 1, the nonzero entries of the matrix, in its upper triangular
part, are

K
(0)
00 = K

(0)
11 =

2
3

, K
(0)
01 =

1
3

, (3.8.9a)

K
(0)
02 = K

(0)
12 =

1√
6

, K
(0)
03 = −K

(0)
13 = − 1

3
√

10
, (3.8.9b)

and, for 2 ≤ h ≤ k ≤ N ,

K
(0)
hk =

⎧
⎪⎪⎨

⎪⎪⎩

2
(2h− 3)(2h + 1)

, k = h ,

− 1
(2h + 1)

√
(2h− 1)(2h + 3)

, k = h + 2 .
(3.8.9c)

Since even and odd internal modes are decoupled, two tridiagonal matrices
of half the size can be built instead. In all cases, the computational cost is
O(N) operations.

If γ∗ is a generic function, then K(0) is full. In this case, it is preferable
to resort to the G-NI approximation
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(K(0)
GNI)hk =

N∑

j=0

γ∗(x̂j)φ̂k(x̂j)φ̂h(x̂j)ŵj . (3.8.10)

The use of the modal basis yields again a full matrix, which can be computed
in O(N3) operations; note that the nodal values of the modal basis functions
can be obtained using (2.3.31) and the recurrence relation (2.3.3). On the
other hand, if the nodal basis is used, one has φ̂k(x̂j) = δkj by definition;
hence, the matrix is diagonal,

(K(0)
GNI)hk = γ∗(x̂h)ŵhδhk (3.8.11)

(realizing in this way the so-called mass-lumping), and obviously the cost of
its construction is O(N) operations.

First-order contributions

Since
dφk

dx
=

dφ̂k

dx̂
dx̂
dx

= F ′(x̂)−1 dφ̂k

dx̂
, we have

K
(1)
hk =

∫

I

β(x)
dφk

dx
(x)φh(x) dx =

∫

Î

β∗(x̂)
dφ̂k

dx̂
(x̂)φ̂h(x̂) dx̂ , (3.8.12)

with β∗(x̂) = β(F (x̂)). If β∗ is constant and the modal basis is used, the
resulting matrix has the tridiagonal internal structure indicated in Fig. 3.11
(center); its construction requires O(N) operations. Indeed, assuming β∗ = 1,
the nonzero entries of the matrix are given by

K
(1)
00 = −K

(1)
11 = −1

2
, K

(1)
01 = −K

(1)
10 =

1
2

, (3.8.13a)

K
(1)
02 = −K

(1)
20 =

1√
6

, K
(1)
12 = −K

(1)
21 = − 1√

6
, (3.8.13b)

and, for 2 ≤ h, k ≤ N ,

K
(1)
h,h+1 = −K

(1)
h+1,h =

1√
4h2 − 1

. (3.8.13c)

For a general β∗, the G-NI approximation yields

(K(1)
GNI)hk =

N∑

j=0

β∗(x̂j)
dφ̂k

dx̂
(x̂j)φ̂h(x̂j)ŵj , (3.8.14)

which simplifies to

(K(1)
GNI)hk = β∗(x̂h)ŵh(DN )hk , (3.8.15)

where (DN )hk is defined in (2.3.28), if the nodal basis is used. Note that
with both bases the matrix has a full structure, and its construction requires
O(N3) operations with the modal basis and O(N2) operations with the nodal
basis.
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Fig. 3.11. Sparsity patterns of the mass and stiffness matrices for the modal ba-
sis (2.3.30), N = 32: mass matrix (left), first-derivative stiffness matrix (center),
second-derivative stiffness matrix (right)

Second-order contributions

We have

K
(2)
hk =

∫

I

α(x)
dφk

dx
(x)

dφh

dx
(x) dx =

∫

Î

α∗(x̂)
dφ̂k

dx̂
(x̂)

dφ̂k

dx̂
(x̂) dx̂ , (3.8.16)

with α∗(x̂) = α(F (x̂))F ′(x̂)−1. If α∗ is constant and the modal basis is used,
the resulting matrix has the internal diagonal structure indicated in Fig. 3.11
(right). Precisely, assuming α∗ = 1, the nonzero entries of the matrix are

K
(2)
01 = −1

2
, K

(2)
hh =

{
1
2 , h = 0 or h = 1 ,

1 , 2 ≤ h ≤ N .
(3.8.17)

On the other hand, if α∗ is variable and one resorts to the G-NI approxi-
mation, one has

(K(2)
GNI)hk =

N∑

j=0

α∗(x̂j)
dφ̂k

dx̂
(x̂j)

dφ̂h

dx̂
(x̂j)ŵj , (3.8.18)

where the grid-point values of the derivatives are easily computed by (2.3.30)
or by (2.3.28) according to the chosen basis. In both cases, the matrix is full,
and its construction requires O(N3) operations.

Right-hand side

We have
bh =

∫

I

f(x)φh(x) dx =
∫

Î

f∗(x̂)φ̂h(x̂) dx̂ , (3.8.19)
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with f∗(x̂) = f(F (x̂))F ′(x̂). Unless f∗ has a particular polynomial expression
(in which case the modal basis may give some advantage), it is preferable to
approximate bh by the quantity b̃h defined via the quadrature formula

b̃h =
N∑

j=0

f∗(x̂j)φ̂h(x̂j)ŵj , (3.8.20)

which simplifies into b̃h = f∗(x̂h)ŵh if the nodal basis is used.

3.8.2 An Example of Algebraic Equivalence between G-NI
and Collocation Methods

Take I = Î above and consider the homogeneous Dirichlet problem

−d2u

dx2
+ γu = f in (−1, 1) ,

u(−1) = u(1) = 0 .

(3.8.21)

The standard Legendre G-NI method defines an approximation uN of u as
a polynomial in P

0
N (−1, 1) = {v ∈ PN : v(±1) = 0} of the form uN (x) =∑N−1

k=1 ukψk(x), where the ψk’s are the characteristic Lagrange polynomials
at the internal LGL nodes (2.3.12). The vector u = (uk) is the solution of
the algebraic system

KGNIu = b , (3.8.22)

which is obtained from (3.8.4) by applying the LGL quadrature formula to
compute all integrals. Thus, KGNI = K

(2)
GNI + K

(0)
GNI , with

(K(2)
GNI)hk =

(
dψk

dx
,
dψh

dx

)

N

and (K(0)
GNI)hk = (γψk, ψh)N ,

where (·, ·)N is the LGL discrete inner product and 1 ≤ h, k ≤ N −1. On the
other hand, b = (bh) with bh = (f, ψh)N =

∑N−1
k=1 (ψk, ψh)Nf(xk) for all h;

thus, b = MGNI f , where MGNI = ( (ψk, ψh)N ) = diag(w1, . . . , wN−1) is the
lumped mass matrix and f = (f(xk)) is the vector of the nodal values of f .
Consequently, (3.8.22) can be written as

KGNIu = MGNI f , (3.8.23)

or, equivalently, as
M−1

GNIKGNIu = f .
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The matrix on the left-hand side has a very precise meaning. To grasp it,
observe that the exactness of the quadrature formula yields

(K(2)
GNI)hk =

∫ 1

−1

dψk

dx
dψh

dx
dx = −

∫ 1

−1

d2ψk

dx2
ψh dx

= −
(

d2ψk

dx2
, ψh

)

N

= −wh
d2ψk

dx2
(xh) .

Since (K(0)
GNI)hk = whγ(xh)δhk, we obtain

(KGNI)hk = wh

(
−d2ψk

dx2
(xh) + γ(xh)δhk

)
= wh

(
−(D(2)

N )hk + γ(xh)δhk

)
,

where D
(2)
N is the second-derivative matrix at the LGL-nodes, defined in

(2.3.29). The term in brackets on the right-hand side is the entry (Lcoll)hk of
the matrix

Lcoll = −D̃
(2)
N + diag(γ(x1), . . . , γ(xN−1))

(where D̃
(2)
N is obtained from D

(2)
N by deleting the first and last rows and

columns, due to the boundary conditions), which corresponds to the collo-
cation discretization of our problem. In other words, we have proven the
relation

KGNI = MGNILcoll , i.e., Lcoll = M−1
GNIKGNI , (3.8.24)

which shows that the G-NI system (3.8.23) is equivalent to the collocation
system

Lcollu = f . (3.8.25)

The same conclusions hold if we discretize the more general operator (3.8.1),
again under Dirichlet boundary conditions.

The results just established are consistent with the fact, already observed
in Sects. 1.2.3 (see (1.2.64)) and 3.3.5 (see (3.3.33)), that G-NI and col-
location methods enforce the differential equation in the same (pointwise)
manner at all internal LGL nodes; they may enforce different equations only
at the boundary points (as for the weak or strong enforcement of a Neumann
boundary condition). In the present case, however, both methods enforce the
Dirichlet conditions exactly; consequently, they produce the same discrete
solution.

The difference between (3.8.23) and (3.8.25) becomes apparent at the
moment of solving the algebraic system: the matrix KGNI is symmetric and
positive definite, whereas Lcoll is not; in addition, the former matrix is better
conditioned than the latter (see Sects. 4.3.1 and 7.3). These features have an
impact on the solution techniques, as discussed in the next chapter.
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3.9 Polar Coordinates

This section provides some basic material on spectral methods in polar coor-
dinates. See Boyd (2001) and Fornberg (1996) for more comprehensive treat-
ments and especially for their discussions on spectral methods in spherical
coordinates. There are no particular subtleties for problems in an annulus.
We focus here on Poisson’s equation in a disk:

−∆u = f , 0 < r < 1 , 0 ≤ θ < 2π ,

u = 0 , r = 1 ,
(3.9.1)

which presents the challenge of a coordinate singularity. A standard Fourier
expansion in θ, either Galerkin or collocation, is clearly in order. The numer-
ical solution may be written

u(r, θ) =
M/2−1∑

m=−M/2

ũm(r)eimθ . (3.9.2)

There have been several proposals for Chebyshev expansions in radius. One
of these is

ũm(r) =
N∑

n=0
n+m even

amnTn(r) . (3.9.3)

Thus, the numerical solution to (3.9.1) will have the same parity, ũm(−r) =
(−1)mũm(r), as the analytic one. A further refinement (Orszag and Patera
(1983)) is to incorporate the decay of u(r, θ) near the origin by using

ũm(r) = rm
N∑

n=0
n+m even

amnTn(r) . (3.9.4)

Both of these expansions have better resolution near the outer edge than near
the origin, as is evident from the concentration of the zeroes of Tn(r) near
the edge. Improved center resolution can be achieved by expanding in

x = 2r − 1 (3.9.5)

and using all of the Chebyshev polynomials.
These expansions must satisfy the condition

∂u

∂θ
= 0 (3.9.6)

at the origin. This expresses the requirement that the solution be single-
valued. Obviously, this requires

ũm(r) = 0 at r = 0 for m 	= 0 . (3.9.7)
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The appropriate condition on the remaining component is

dũ0

dr
= 0 at r = 0 . (3.9.8)

These latter two conditions are readily applied in a tau approach. Note that
the expansion (3.9.4) automatically satisfies (3.9.7) and (3.9.8).

When u is a vector quantity, such as velocity, the necessary condition at
the origin is

∂u
∂θ

= 0 . (3.9.9)

In polar coordinates, u = ur r̂ + uθθ̂, where r̂ and θ̂ are the unit vectors in
the radial and azimuthal directions, and ur and uθ are the respective velocity
components. These unit vectors depend upon θ, and this dependence must
be included in applying (3.9.9). The result is

ur,m = uθ,m = 0 for |m| 	= 1

ur,m + imuθ,m = 0 for |m| = 1 .
(3.9.10)

These types of boundary conditions at the origin have been used (for mixed
spectral/finite-difference calculations) by Schnack and Killeen (1980) and by
Aydemir and Barnes (1984). They have been justified theoretically (for mixed
spectral/finite-element calculations) by Mercier and Raugel (1982).

The expansions (3.9.3) and (3.9.4) are not well suited to pure collocation
methods because there would need to be different collocation points in r for
the even m and odd m components. One needs a Fourier Galerkin-Chebyshev
collocation method.

Suppose now that a standard Chebyshev expansion is combined with the
mapping (3.9.5). If the Gauss-Lobatto points are used, then conditions such
as (3.9.6) and (3.9.9) need to be imposed at r = 0 (or x = −1). Alternatively,
one can use the Gauss-Radau points which include the point r = 1 (or x = 1)
but exclude the origin. There is then no need to impose a boundary condition
at r = 0.

3.10 Aliasing Effects

In Sect. 2.1.2 we noted that the discrete Fourier coefficients of a function
are not identical to the continuous ones (see (2.1.36)). The difference is at-
tributable to the aliasing phenomenon (see Fig. 2.2). Hence, the principal
difference between Galerkin and collocation (or pseudospectral) methods is
the presence of truncation error alone in the former versus the presence of
both truncation and aliasing errors in the latter. The question of whether
the additional aliasing errors in the collocation methods are indeed serious
has been controversial, particularly in the early years of spectral methods.
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The two most pertinent issues are the effects of aliasing upon the accuracy
and, in evolution problems, the temporal stability of the calculation. The role
of discrete conservation laws in assuring temporal stability was discussed in
Sect. 3.6. Here we summarize the available theoretical results on the effects
of aliasing upon accuracy, many of which are discussed at greater length
elsewhere in this book.

Many approximation theory results are presented in Chap. 5 for Fourier,
Legendre and Chebyshev series. Compare, for example, the Fourier Galerkin
(truncation) and collocation (interpolation) approximation error bounds
given in the L2 norm by (5.1.9) and (5.1.16), respectively. These imply that
although for fixed N the collocation error will be larger than the Galerkin
error, both errors exhibit the same asymptotic decay rate for large N . The
Legendre Galerkin and collocation estimates are furnished in (5.4.11) and
(5.4.33); the Chebyshev ones are (5.5.9) and (5.5.22). In the case of the
Legendre polynomial approximation, the collocation approximation has an
asymptotic error decay rate which is slower, by a factor of

√
N , than the

rate of the Galerkin approximation. If the function has m derivatives, then
the Galerkin error decays as N−m, whereas the collocation error decays as
N1/2−m. For smooth functions, this should be a very minor difference, once
there are enough polynomials to resolve the essential structure. Neverthe-
less for marginally resolved cases we do anticipate more difficulty with alias-
ing in spectral approximations to nonperiodic problems than for periodic
ones.

A number of theoretical results are available on the effect of aliasing upon
solutions of differential equations by spectral methods. Kreiss and Oliger
(1979) proved that the aliasing error decays at the same rate as the trun-
cation error in Fourier approximations for the one-dimensional, linear wave
equation. The spectral Galerkin (de-aliased) and collocation (aliased) ap-
proximations to the steady Burgers equation have the same asymptotic error
decay rate, as discussed in Sect. 7.8. The theory of spectral approximations
to the steady three-dimensional, Navier-Stokes equations states, too, that
Galerkin (de-aliased) and collocation (aliased) approximations behave simi-
larly in the asymptotic regime. This holds for Fourier, Chebyshev and Leg-
endre approximations. The details of this analysis are supplied in CHQZ3,
Sect. 3.7. Although the theoretical results of Sects. 7.8 and CHQZ3, Sect. 3.7
refer to steady cases only, the same conclusions can be rigorously drawn for
the unsteady situations as well, since the source of the aliasing error is in the
spatial terms of the equations.

On the other hand, Goodman, Hou and Tadmor (1994) considered the
one-dimensional, variable-coefficient, linear wave equation in the form (3.6.8)
withM(u) = ∂ (a(x)u) /∂x. They proved that aliasing produces a slow, secu-
lar growth of the high-frequency modes if the coefficient a(x) changes sign in
the spatial domain. This can produce unacceptable errors unless the solution
is well-resolved. Further details are provided in Sect. 7.6.1.
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Thus, there is reasonable theoretical support for the claim that for any
given problem, an aliased calculation will yield just as acceptable an answer
as a de-aliased one, once sufficient resolution has been achieved. Moreover, the
use of appropriate conservation forms for the discrete equations, as discussed
in general in Sect. 3.6, ameliorates some temporal instabilities that may oth-
erwise arise in aliased calculations. All the credible numerical evidence that
we have seen supports this view.

However, in some applications of spectral methods, such as fully turbu-
lent flow, the “sufficient resolution” threshold has been impractical due to
computer resource limitations. Many turbulence flow computations have had
only marginal resolution of the small scales. Some perspectives on the impact
of aliasing in these circumstances is provided in CHQZ3, Chap. 3.



4. Algebraic Systems and Solution Techniques

The solution of implicit equations is an important component of many spec-
tral algorithms. For steady problems this task is unavoidable, while spectral
algorithms for many unsteady problems are only feasible if they incorporate
implicit (or semi-implicit) time discretizations (see Appendix D for general
information about time discretizations and Sect. 3.3 and CHQZ3, Chap. 3
for some uses of implicit time discretizations with spectral discretizations in
space). We concentrate on linear systems, assuming that nonlinear ones are
attacked by standard linearization techniques.

We focus primarily on problems involving the constant-coefficient
Helmholtz equation

−∆u + λu = f (4.1)

on a d-dimensional (d = 1, 2, 3), tensor-product domain Ω ⊂ R
d, where f is

a function of x, and λ ≥ 0 is a constant. The simplest generalizations are to
the self-adjoint, variable-coefficient form

−∇ · (a∇u) + λu = f , (4.2)

where a > 0 is a function of x, and to the separable form

−
d∑

i=1

∂

∂xi

[
ai(xi)

∂u

∂xi

]
+ λu = f , (4.3)

where now ai > 0 is a function solely of xi. More complex generalizations are

−
d∑

i=1

∂

∂xi

[
ai

∂u

∂xi

]
+ λu = f , (4.4)

where ai > 0 is a function of x, and

−
d∑

i=1

gi
∂

∂xi

[
a gi

∂u

∂xi

]
+ λu = f , (4.5)

where a > 0 is a function of x, and gi > 0 is a function of xi. The form
(4.4) is nonseparable. The case (4.5) arises, for example, when mappings are
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employed; gi then is is the inverse of the Jacobian of the mapping in the
coordinate xi, i = 1, . . . , d.

We give occasional consideration to the advection-diffusion equation

−ν�u + β · ∇u = f (4.6)

and to the general (advection-diffusion-reaction) equation

−
d∑

i,j=1

∂

∂xi

(
αij

∂u

∂xj

)
+

d∑

i=1

βi
∂u

∂xi
+ γu = f . (4.7)

All equations are, of course, subject to appropriate boundary conditions.
Equation (4.1) contains as special cases the steady incompressible potential
equation and implicit temporal discretizations of the heat equation.

All spectral discretization methods lead to a linear system of the form

Lu = b . (4.8)

For spectral collocation approximations and for most G-NI approximations
the vector u consists of the grid-point values of uN (the discrete solution).
The vector b collects the grid-point values of f and all boundary data in
a collocation approximation, whereas it is obtained from this vector upon
multiplication by a suitable matrix in a G-NI approximation; the matrix L is
obtained from the nodal basis. For tau approximations and for most Galerkin
approximations, u is the vector consisting of the expansion coefficients of uN ,
whereas b collects the expansion coefficients of f and the boundary data; L is
a matrix usually obtained from the modal basis.

The linear systems arising from (4.2)–(4.7) are usually full, albeit block-
wise full and reasonably sparse in 2D and 3D. Gaussian elimination may,
in principle, be applied. However, except for special cases for which efficient
ad-hoc algorithms exist, solution of the linear systems requires O(N3d) op-
erations and O(N2d) storage, where d is the dimension of the problem. (We
assume, for simplicity, that the number of degrees of freedom in each spatial
dimension is N .)

In the first section of this chapter we discuss some direct techniques to
very special problems, which in the case of Fourier and Chebyshev methods,
where the FFT can be exploited, can yield the solution to (4.8) in O(Nd),
O(Nd log2 N) or at worst O(Nd+1) operations with at most O(Nd) additional
storage. This is followed in Sect. 4.2 by a description of general-purpose direct
methods; we describe the matrix structure produced by spectral methods ow-
ing to their tensor-product nature, and discuss Gaussian matrix factorization
techniques.

Next, we briefly describe the eigenvalue structure of simple spectral op-
erators, as they have important implications on the convergence properties
of iterative methods and on the stability conditions of time-discretization
schemes.
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The three sections which follow are devoted to iterative techniques and
to the critical issue of how to devise efficient low-cost preconditioners for
spectral discretization matrices. We will review three families of iterative
methods: descent methods, Krylov methods and spectral multigrid methods.
The residual computation requires O(Nd log2 N) operations per iteration for
Chebyshev methods, O(Nd+1) for Legendre methods, and O(Nd) additional
storage. Finally, a comparison of the performance (accuracy, memory storage
and CPU-time) of direct and iterative methods on some test problems is
provided.

The discussion in the text of iterative methods presumes that the reader is
familiar with the standard iterative schemes for linear systems such as min-
imum residual, steepest descent, conjugate gradient, generalized minimum
residual and bi-conjugate gradient methods. Appendix C furnishes notation,
algorithms and convergence properties for these schemes. The discussion in
the text itself is confined to only those aspects of these iterative methods that
are particularly relevant to linear systems arising from spectral discretizations
(in space) of partial differential equations.

4.1 Ad-hoc Direct Methods

Our objectives in this section are to explain the principles underlying the basic
direct techniques, to illustrate these on some specific problems that arise in
practice, and to summarize the literature on more specialized applications.

We shall call a solution efficient if it enables the solution to (4.8) to be
obtained in at most O(Nd log2 N) operations. This makes the cost of solving
(4.8) comparable, even for N large, to the cost of typical explicit spectral
operations such as differentiation and the evaluation of convolution sums. In
many cases, a solution cost of O(Nd+1) is still acceptable in the sense that it
only overwhelms the cost of other spectral operations for values of N of 128
or so.

An important consideration is whether only a few or else a large num-
ber of solutions to (4.8) with different data b are sought. The latter case is
typical of implicit or semi-implicit methods for unsteady problems: hundreds
or even thousands of solutions to a linear system with the same left-hand-
side but different right-hand-sides might be required. In such situations, it is
reasonable to invest a substantial amount of calculations on a pre-processing
stage that greatly reduces the subsequent cost of solving (4.8). The matrix-
diagonalization techniques presented in Sect. 4.1.4 belong to this category.
The discussion of Fourier, Chebyshev and Legendre methods in Sects. 4.1.1
and 4.1.3 is concerned with techniques for furnishing a solution to a single im-
plicit equation. Naturally, they may also be employed in unsteady algorithms
as well.
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4.1.1 Fourier Approximations

The discussion will open with the simplest case – a one-dimensional, constant-
coefficient, periodic problem:

−d2u

dx2
+ λu = f in (0, 2π) ,

u 2π-periodic .
(4.1.1)

The Fourier Galerkin approximation takes the form

k2ûk + λûk = f̂k , k = −N

2
, . . . ,

N

2
− 1 , (4.1.2)

where the Fourier coefficients ûk are defined by (2.1.3) and the corresponding
truncated Fourier series by (2.1.7). The solution to (4.1.2) is trivially

ûk = f̂k/(k2 + λ) , k = −N

2
, . . . ,

N

2
− 1 ,

(û0 arbitrary for λ = 0)
(4.1.3)

(where f̂−N/2 = 0) with an operation count of 3N , presuming u is real, so
that û−k = ûk.

A Fourier collocation approximation is (with xj given by (2.1.24))

− d2u

dx2
+ λu− f

∣∣∣∣
x=xj

= 0 , j = 0, . . . , N − 1 . (4.1.4)

This may be solved by using the discrete Fourier transform (DFT) to diago-
nalize (4.1.4):

k2ũk + λũk = f̃k , k = −N

2
, . . . ,

N

2
− 1 , (4.1.5)

where the discrete Fourier coefficients ũk and f̃k are defined by (2.1.25), then
solving for ũk as in (4.1.3), and finally reversing the discrete Fourier Trans-
form to recover uj for j = 0, 1, . . . , N − 1. The operation count for the direct
solution of (4.1.4) is 5N log2 N real operations, with the FFT used to ac-
complish the discrete Fourier transform. (For those cases in which detailed
operation counts are provided we count addition, subtraction, multiplica-
tion and division as separate operations. Lower order terms in the operation
counts, such as those linear in N in this case, are ignored unless they have
especially large coefficients.)

Both the Galerkin and collocation approximations to the constant-coeffi-
cient Helmholtz problem (4.1) in more than one dimension are equally
straightforward and efficient (O(Nd log2 N) operations).
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The problem

− d
dx

[
a(x)

du
dx

]
+ λu = f in (0, 2π) ,

u 2π-periodic ,
(4.1.6)

represents the next level of complexity. The collocation approximation to
(4.1.6) may be written in the form (4.8) with

L = −DN ADN + λI , (4.1.7)

where DN is the matrix given explicitly by (2.1.51), A is the diagonal matrix
representing multiplication by a(x) in physical space, and I is the identity
matrix. An alternative expression to (2.1.51) for DN is

DN = C−1KC , (4.1.8)

where

Ckj =
1
N

e−ikxj , k = −N

2
, . . . ,

N

2
− 1, j = 0, . . . , N − 1 , (4.1.9)

represents the DFT and

K = diag {ik′} , k = −N

2
, . . . ,

N

2
− 1 ,

k′ =

⎧
⎪⎨

⎪⎩

k , k = −N

2
+ 1, . . . ,

N

2
− 1 ,

0 , k = −N

2
,

(4.1.10)

represents differentiation in transform space. Equation (4.1.6) admits an ef-
ficient direct solution only if λ = 0 or if the Fourier series of a(x) contains
just a few low-order terms.

In the former case we have for (4.8) that

−C−1KCAC−1KCu = b , (4.1.11)

which is equivalent to

u = −C−1K−1CA−1C−1K−1Cb . (4.1.12)

(Recall that b represents the grid-point values of f for this collocation ap-
proximation.) Although K is technically singular – because of the k = 0
and k = −(N/2) components – this merely reflects the non-uniqueness of
the problem. The offending Fourier components may be assigned arbitrary
values. The solution procedure described by (4.1.12) involves four FFTs and
three multiplications, for a total cost of 10N log2 N .
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In the latter case the condition on a(x) is trivially satisfied by a(x) ≡ 1.
A less trivial example is

a(x) = sin2(x/2) =
1
2
− 1

4
(
eix + e−ix

)
. (4.1.13)

The collocation approximation to (4.1.6) can be expressed as

−1
2

N/2−1∑

k=−N/2+1

[
k2ũk −

k(k − 1)
2

αk−1ũk−1 −
k(k + 1)

2
αk+1ũk+1

+ 2λũk

]
eikxj = fj , j = 0, . . . , N − 1 ,

(4.1.14)

where we have ignored the contributions of the ũ−(N/2) term, and where

αk =

⎧
⎪⎨

⎪⎩

1 , |k| ≤ N

2
− 1 ,

0 , |k| > N

2
− 1 .

(4.1.15)

The solution procedure clearly requires two FFTs and one tridiagonal so-
lution. Since the cost of the latter is minor, the entire solution requires
5N log2 N operations.

A closely related system arises for the mapping (2.7.6) introduced by
Cain, Ferziger, and Reynolds (1984) for problems on (−∞,∞) with solutions
which tend to the same constant at ±∞. In this case, the Poisson problem
of interest is really not (4.1.6) but rather a one-dimensional version of (4.5)
with a(x) ≡ 1:

−g(x)
d
dx

[
g(x)

du
dx

]
+ λu = f in (0, 2π) ,

u 2π-periodic ,
(4.1.16)

where g(x) = sin2(x/2) is the inverse of the Jacobian of the mapping
z = − cot(x/2) which was discussed in Sect. 2.7.2. The relevant collocation
approximation is now expressible as

N/2−1∑

k=−N/2+1

[
1
4
(k − 1)(k − 2)αk−2ũk−2 −

1
2
(k − 1)(2k − 1)αk−1ũk−1

+
(

3
2
k2 − λ

)
ũk −

1
2
(k + 1)(2k + 1)αk+1ũk+1

+
1
4
(k + 1)(k + 2)αk+2ũk+2

]
eikxj =fj , j=0, 1, . . . , N−1 ,

(4.1.17)

where αk is again given by (4.1.15) and ũk = 0 for |k| = N/2 − 1, N/2
is assumed. The solution to (4.1.17) requires two FFTs and the solution of
a pentadiagonal system. The linear system needs 19N operations, whereas
the two FFTs together require 5N log2 N operations.
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The mapping (2.7.7) leads to the following approximation to (4.1.16):

1
4

N/2−1∑

k=−N/2+1

[
1
4
(k−2)(k−4)αk−4ũk−4−(k−1)(k−2)αk−2ũk−2

+
(

3
2
k2 − 4λ

)
ũk − (k + 1)(k + 2)αk+2ũk+2

+
1
4
(k+2)(k+4)αk+4ũk+4

]
eikxj =fj , j=0, 1, . . . , N−1 .

(4.1.18)

This requires the same number of operations to solve as (4.1.17); since the
odd modes decouple from the even ones, two pentadiagonal solutions of length
N/2 suffice for the linear equations.

As a rule, the generality of efficient direct methods decreases as the dimen-
sionality of the problem increases. Clearly, the generalization of techniques
for (4.1.1) are straightforward. The operation count of a Galerkin solution to
(4.1) is (2d + 1)Nd and that of a collocation approximation is 5dNd log2 N .

Two-dimensional versions of (4.2) and (4.5) are equally straightforward
if, for (4.2) the coefficient a depends only on x, for (4.5) the coefficient g1

depends only on x, and a and g2 are constant. In this case, a Fourier trans-
form in y produces uncoupled sets of equations in x, which are of the form
(4.1.6) and (4.1.16) with λ replaced with λ + k2

y. If, however, a(x) in (4.1.6)
contains a general dependence on x and y, then even for λ = 0 no efficient
direct solution is available. The prospects for problems of the type (4.1.16)
arising from the use of trigonometric mappings in two directions are almost
as poor. In this case the matrix L is banded, with half-bandwidth O(N).
Banded Gaussian elimination methods require O(N4) operations, which is
quite expensive for a two-dimensional problem. Similar considerations apply
to a third dimension.

4.1.2 Chebyshev Tau Approximations

Efficient solution processes are available for a limited class of Chebyshev and
Legendre tau approximations to one-dimensional problems. An example of
considerable importance is

−d2u

dx2
+ λu = f in (−1, 1) ,

u(−1) = u(1) = 0 .

(4.1.19)

We write the Chebyshev tau approximation as

−û
(2)
k + λûk = f̂k , k = 0, 1, . . . , N − 2 , (4.1.20)

N∑

k=0

ûk = 0,
N∑

k=0

(−1)kûk = 0 . (4.1.21a)
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The boundary conditions may also be written as

N∑

k=0
k even

ûk = 0,
N∑

k=1
k odd

ûk = 0 . (4.1.21b)

Equation (4.1.20) may be expressed as (see (2.4.27))

− 1
ck

N∑

p=k+2
p+k even

p
(
p2 − k2

)
ûp + λûk = f̂k , k = 0, 1, . . . , N − 2 . (4.1.22)

Using (4.1.21b) and (4.1.22), we arrive at a linear system of the form (4.8)
in which L is upper triangular. The solution process requires N2 operations.
A far more efficient solution procedure is obtained by rearranging the equa-
tions. We invoke the recursion relation (2.4.26) with q = 2:

2kû(1)
k = ck−1û

(2)
k−1 − û

(2)
k+1 ,

and use (4.1.20) to obtain

2kû(1)
k = ck−1

(
−f̂k−1 + λûk−1

)
−
(
−f̂k+1 + λûk+1

)
, k = 1, . . . , N − 3 .

(4.1.23)
Next use (2.4.26) with q = 1 in combination with (4.1.23):

2kûk =
ck−1

2(k − 1)
[ck−2(−f̂k−2 + λûk−2)− (−f̂k + λûk)]

− 1
2(k + 1)

[ck(−f̂k + λûk)− (−f̂k+2 + λûk+2)] , k = 2, . . . , N − 4 .

This simplifies to

ck−2

4k(k − 1)
λûk−2 +

(
1− λ

2 (k2 − 1)

)
ûk +

λ

4k(k + 1)
ûk+2

= − ck−2

4k(k − 1)
f̂k−2 +

1
2 (k2 − 1)

f̂k −
1

4k(k + 1)
f̂k+2 , k = 2, . . . , N − 4 .

(4.1.24)

By accounting carefully for the four equations which were dropped in going
from (4.1.20) to (4.1.24), we can write (4.1.20) as

ck−2λ

4k(k − 1)
ûk−2 +

[
1− λβk

2 (k2 − 1)

]
ûk +

λβk+2

4k(k + 1)
ûk+2

= − ck−2

4k(k − 1)
f̂k−2 +

βk

2 (k2 − 1)
f̂k −

βk+2

4k(k + 1)
f̂k+2 , k = 2, . . . , N ,

(4.1.25)
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where

βk =

{
1 , 0 ≤ k ≤ N − 2 ,

0 , k > N − 2 .
(4.1.26)

Note that the even and odd coefficients are uncoupled in (4.1.25) and
(4.1.21b). The structure of the linear system for the even coefficients is quasi-
tridiagonal, namely,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

...
∗ ∗ ∗
∗ ∗
∗ ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

û0

û2

û4

...
ûN−4

ûk−2

ûN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
ĝ0

ĝ2

...
ĝN−6

ĝN−4

ûk−2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.1.27)

where ∗’s denote the nonzero coefficients from (4.1.25), and ĝk is the right-
hand side of (4.1.25). This ordering has been chosen to minimize the round-
off errors arising from a specially tailored Gauss elimination procedure for
(4.1.27) which performs no pivoting (and works from the “bottom up” rather
than the more customary “top down”). Assuming that the coefficients in
(4.1.25) have already been calculated, the cost of solving for both the even
and odd coefficients is 16N . Note that if the boundary conditions were non-
homogeneous, this would be reflected merely in an appropriate nonzero entry
in the first component of the right-hand side of (4.1.27).

The coefficient of ûk in (4.1.25) is the largest coefficient, and it is desirable
for it to be on the main diagonal. The system (4.1.27) is not diagonally
dominant, and, in practice, round-off errors are a mild problem: typically
four digits are lost for N = 128. The accuracy may be increased through
iterative improvement (see Golub and Van Loan (1996), Chap. 3) or double-
precision.

The solution process for a mixed collocation/tau approximation to (4.1.19)
is: (1) perform a discrete Chebyshev transform on the grid-point values fj ;
(2) solve the quasi-tridiagonal system (4.1.25), (4.1.21b); (3) perform an in-
verse Chebyshev transform on ûk to produce the uj . Step (1) prevents this
from being a pure tau method, since the Chebyshev coefficients are com-
puted by quadrature rather than exact integration. This solution requires
5N log2 N + 24N operations, where we include the latter term because of its
large coefficient.

The Neumann problem may be solved just as efficiently. In this case,
(4.1.21) is replaced by

N∑

k=1

k2ûk = 0,
N∑

k=1

(−1)kk2ûk = 0 , (4.1.28a)
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or equivalently,

N∑

k=2
k even

k2ûk = 0,
N∑

k=1
k odd

k2ûk = 0 . (4.1.28b)

The even and odd coefficients decouple, so that the cost is the same as that
of the Dirichlet problem. If λ = 0, then the compatibility condition

k−2∑

k=0

−2
k2 − 1

f̂k = 0

is required by the algebraic problem. This is the discrete analog of the com-
patibility condition

∫ 1

−1

f(x) dx = 0

for the continuous problem.
Efficient tau approximations can be obtained for mild generalizations of

the cases discussed above. For example, Haldenwang et al. (1984) have cat-
alogued the relevant formulas for problems with nonhomogeneous bound-
ary conditions of Robin type, and Dennis and Quartapelle (1985) have
provided the formulas for including a constant-coefficient first-derivative
term in (4.1.20). In both cases, however, the resulting systems are quasi-
pentadiagonal, since the even and odd modes do not decouple.

Zebib (1984) introduced, albeit in a more general setting, the strategy of
solving a differential equation in terms of the Chebyshev expansion coeffi-
cients of the highest derivative that appears in the equation rather than in
terms of the coefficients of the function itself. There are several variations of
this, including those of Greengard (1991) and Lundbladh, Henningson and Jo-
hansson (1992). The version described here is algebraically equivalent to the
tau method described above. The starting point for this integral Chebyshev
tau approximation to (4.1.19) is the discrete equations (4.1.20) and (4.1.21b).
The Chebyshev expansions for u, du/dx and d2u/dx2 have degree N , N − 1
and N − 2, respectively. Instead of eliminating û

(2)
k in terms of ûk in (4.1.20)

as before, we eliminate ûk in favor of û
(2)
k in both (4.1.20) and (4.1.21b). By

invoking (2.4.26) first with q = 1 and then with q = 2, (4.1.20) becomes

− û
(2)
0 + λû0 = f̂0 ,

− û
(2)
1 + λ

(
û

(1)
0 −

1
8
û

(2)
1 +

1
8
û

(2)
3

)
= f̂1 ,

− û
(2)
k + λ

1
4k

[
ck−2

k − 1
û

(2)
k−2 −

(
1

k − 1
+

1
k + 1

)
û

(2)
k +

βk+2

k + 1
û

(2)
k+2

]
= f̂k ,

k = 2, . . . , N − 2 ,
(4.1.29)
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where βk is given by (4.1.26) and û
(1)
0 , û0 are integration constants. Similarly,

the boundary conditions (4.1.21b) yield

û0 +
1
4
û

(2)
0 −

7
48

û
(2)
2 +

N−2∑

k=4
k even

3
(k − 2)(k − 1)(k + 1)(k + 2)

û
(2)
k = 0 ,

û
(1)
0 −

1
12

û
(2)
1 +

N−3∑

k=3
k odd

3
(k − 2)(k − 1)(k + 1)(k + 2)

û
(2)
k = 0 .

(4.1.30)
Equations (4.1.29)–(4.1.30) decouple into 2 separate quasi-tridiagonal sys-
tems, with the boundary conditions filling the top row. For nonhomogeneous
boundary conditions, the right-hand sides of (4.1.30) are nonzero.

The solution procedure is: (1) perform a discrete Chebyshev transform
on the grid-point values fj ; (2) solve the quasi-tridiagonal system (4.1.29)–
(4.1.30); (3) apply the recursion relation (2.4.26) twice to obtain the Cheby-
shev coefficients of the solution; and (4) perform an inverse Chebyshev trans-
form on ûk to produce the uj . If either d2u/dx2 or du/dx are desired in
physical space, then the inverse Chebyshev transform is applied to their re-
spective Chebyshev coefficients obtained in (2) and (3), respectively.

Greengard (1991) noted that the process of integrating a Chebyshev series
(once) amplifies the errors by less than a factor of 2.4, whereas the process of
differentiating a Chebyshev series amplifies errors by O(N2). He argued that
one should expect greater accuracy in the first and second derivatives of the
solution resulting from this method. Most of the applications of this integral
method have used expansions with upper limits of k = N, k = N +1 and k =
N +2 for the second derivative, first derivative and function itself. Naturally,
this produces greater accuracy in the results than for a conventional tau
method truncated at k = N .

Legendre tau methods are quite similar. Here, of course, one uses the
recursion relation (2.3.22) in place of (2.4.26), and there is no fast transform.

4.1.3 Galerkin Approximations

For Legendre Galerkin approximations to (4.1.19) one simple choice of basis
functions is

φk(x) =

{
L0(x)− Lk(x), k ≥ 2 even ,

L1(x)− Lk(x), k ≥ 3 odd ,
(4.1.31)

that was already introduced in (2.3.33). The Legendre Galerkin approxima-
tion uses

uN =
N∑

k=2

ǔkφk , (4.1.32)
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and requires that

−
(

d2uN

dx2
, φh

)
+ λ(uN , φh) = (f, φh) ≡ bh , h = 2, . . . , N . (4.1.33)

(We use ǔk to denote the expansion coefficients in the special basis φk to
distinguish them from the expansion coefficients ûk in the standard Legendre
basis Lk.) Using integration-by-parts, (4.1.33) can be rewritten

(
duN

dx
,
dφh

dx

)
+ λ(uN , φh) = bh , h = 2, . . . , N . (4.1.34)

This produces the linear system

Kǔ + λM ǔ = b , (4.1.35)

where

ǔ = (ǔ2, ǔ3, . . . , ǔN )T and b = (b2, b3, . . . , bN )T , (4.1.36)

Khk =
(

dφk

dx
,
dφh

dx

)
and Mhk = (φk, φh) . (4.1.37)

The matrices in the linear system (4.1.35) are full; a Chebyshev Galerkin
approximation with an analogous choice of basis functions also leads to full
matrices.

An alternative set of basis functions which produces a tridiagonal system
for the coefficients in a Legendre Galerkin approximation to (4.1.19) is

φk(x) = sk (Lk(x)− Lk+2(x)) , k ≥ 0, (4.1.38)

where
sk =

1√
4k + 6

. (4.1.39)

Note that, up to a shift in the index, these are the bubble functions of the
modal basis introduced in Sect. 2.3.3 (see (2.3.31)). Here we follow the no-
tation of Shen (1994) in our review of the efficient solution schemes that he
developed for Legendre and Chebyshev Galerkin approximations. The expan-
sion is now

uN =
N−2∑

k=0

ǔkφk , (4.1.40)

and the Galerkin equations are
(

duN

dx
,
dφh

dx

)
+ λ(uN , φh) = (f, φh) ≡ bh , h = 0, . . . , N − 2 . (4.1.41)

The linear system still has the form (4.1.35), but now

ǔ = (ǔ0, ǔ1, . . . , ǔN−2)T and b = (b0, b1, . . . , bN−2)T . (4.1.42)
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The matrices K and M coincide, respectively, with the matrices K(2)

and K(0) constructed in Sect. 3.8 for the modal basis, provided their first
and last rows and columns are dropped. Indeed, (3.8.17) and (3.8.9c) yield,
with the current notation,

Khk =

{
1, k = h ,

0, k 	= h ,
Mhk = Mkh =

⎧
⎪⎪⎨

⎪⎪⎩

shsk( 2
2h+1 + 2

2h+5 ) , k = h ,

shsk
2

2k+1 , k = h + 2 ,

0 otherwise .

(4.1.43)
Since the even and odd terms are decoupled, (4.1.35) reduces to two sets of
tridiagonal equations; its solution therefore requires only 5N operations. We
emphasize that although a tridiagonal system results from (4.1.38), the linear
system for the basis (4.1.31) is full.

The right-hand side terms bh are related to the standard Legendre coef-
ficients f̂k by

bh = sh

(
2

2h + 1
f̂h −

2
2h + 5

f̂h+2

)
, h = 0, . . . , N − 2 . (4.1.44)

The standard Legendre coefficients of the solution uN can be recovered from
ǔk via

ûk =

{
skǔk, k = 0, 1 ,

skǔk − sk−2ǔk−2, k = 2, . . . , N .
(4.1.45)

Although only O(N) operations are required in spectral space, transforma-
tions between spectral space and physical space, e.g., evaluation of the sum
(4.1.40) at the Legendre Gauss-Lobatto quadrature points, take O(N2) op-
erations.

Problems with the nonhomogeneous boundary conditions u(−1) = u−
and u(+1) = u+ are handled by a change of dependent variables to

ṽ(x) = u(x)− (uo + xue) , (4.1.46)

where ue = 1
2 (u(1) + u(−1)) and uo = 1

2 (u(1) − u(−1)). Equivalently, this
amounts to including the vertex basis functions η0 and ηN from (2.3.30) into
the expansion of uN . Shen (1994) discusses how to solve some other second-
order problems and also demonstrates a Legendre basis that permits the
fourth-order problem

d4u

dx4
− ν

d2u

dx2
+ λu = 0 in (−1, 1) , (4.1.47)

u(±1) =
du
dx

(±1) = 0 , (4.1.48)

to be solved in O(N) operations in Legendre space.



180 4. Algebraic Systems and Solution Techniques

Shen (1995) also devised an efficient basis for a Chebyshev Galerkin ap-
proximation to (4.1.19), namely,

φk(x) = Tk(x)− Tk+2(x) , k = 0, . . . , N − 2 . (4.1.49)

The presence of the Chebyshev weight leaves the Galerkin equations in the
form

−
(

d2uN

dx2
, φh

)

w

+ λ(uN , φh)w = (f, φh)w ≡ bh , h = 0, . . . , N − 2 .

(4.1.50)
Shen shows that the basis (4.1.49) leads to the linear system (4.1.35) with ũ
and b given by (4.1.42). Shen exploited (2.4.23) and (2.4.27) to show that

Khk =

⎧
⎪⎨

⎪⎩

2π(h + 1)(h + 2), k = h ,

4π(h + 1), k = h + 2, h + 4, h + 6, . . . ,

0 , k < h or k + h odd ,

(4.1.51)

Mhk = Mhk =

⎧
⎪⎨

⎪⎩

ch+1
2 π , k = h ,

−π
2 , k = h− 2 and k = h + 2 ,

0 otherwise ,

(4.1.52)

where ck is given by (2.4.10). As before, the even and odd coefficients are
decoupled. For both sets of equations, M is tridiagonal and K is an upper-
triangular matrix, with the nonzero, off-diagonal elements in each row equal
to a constant. The linear system for this Chebyshev Galerkin method is non-
symmetric, unlike the linear system for the Legendre Galerkin method, and
this leads to slightly less favorable round-off error properties. Shen notes that
a tailored solution procedure takes roughly 7N operations.

The right-hand side terms bh are related to the standard Chebyshev co-
efficients f̂k by

bh =
π

2
(chf̂h − ch+2f̂h+2) , h = 0, . . . , N − 2 , (4.1.53)

and the standard Chebyshev coefficients of the solution uN can be recovered
from the Galerkin expansion coefficients, ǔk, via

ûk =

{
ǔk, k = 0, 1 ,

ǔk − ǔk−2, k = 2, . . . , N .
(4.1.54)

Again, only O(N) operations are needed in spectral space, but now
the transformations between spectral space and physical space take just
O(N log2 N) operations because the FFT can be exploited. Shen (1995) dis-
cusses how to solve some other second-order problems and provides a Cheby-
shev basis for solving the fourth-order equation (4.1.47) in O(N) operations
in Chebyshev space.
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Numerical Example for Ad Hoc Methods in 1-D Figure 4.1 shows the
maximum error for the various methods for solving (4.1.19) for both λ = 0
and λ = 1 × 105. The former choice of λ yields a one-dimensional Poisson
equation, and the latter is a representative value that occurs for the one-
dimensional Helmholtz equation that arises in many algorithms for incom-
pressible channel flow; in particular, for the numerical example in CHQZ3,
Sect. 1.3 and for the algorithms discussed in CHQZ3, Sect. 3.4. The exact
solution is taken to be u(x) = sin(4πx) and the right-hand side f(x) is chosen
accordingly. We see that the Galerkin methods are about an order of magni-
tude more accurate than the tau methods, and that roundoff errors are more
of a concern for the Chebyshev methods, although not particularly signifi-
cant below N = 1024. The results of the integral Chebyshev tau method are
within 10−15 of those for the Chebyshev tau method for the function itself
and are not shown here.
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Fig. 4.1. Maximum error for various approximations to (4.1.19) with λ = 0 (left)
and λ = 1 × 105 (right)

4.1.4 Schur Decomposition and Matrix Diagonalization

Let us consider the Helmholtz equation in a square,

−∆u + λu = f in Ω = (−1, 1)2 ,

u = 0 on ∂Ω .
(4.1.55)

The collocation approximation to this can be written

DxU + UDT
y + λU = F , (4.1.56)

where U is the (Nx − 1) × (Ny − 1) matrix (uij) for i = 1, . . . , Nx − 1,
j = 1, . . . , Ny−1, F is defined similarly, Dx is the second-derivative operator
(in x) in which the boundary conditions have been incorporated, and DT

y

is the transpose of the second-derivative operator (in y). (In this subsection
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we do not assume Ny = Nx, as there are some important considerations for
Ny 	= Nx.)

The Legendre G-NI approximation of problem (4.1.55) can be cast into
the algebraic form (4.1.56) too, and solved by the techniques described below.
Indeed, let K(2) be the stiffness matrix for the second-derivative operator
in one space dimension with homogeneous Dirichlet boundary conditions,
associated with the Lagrange nodal basis (see Sect. 3.8); let M = K

(0)
GNI

be the corresponding mass matrix, which is diagonal. The G-NI scheme for
(4.1.55) can be written

K(2)
x UMT

y + MxUK(2)
y

T
+ λMxUMT

y = MxFMT
y . (4.1.57)

(We refer to the subsequent Sect. 4.2.2 for a detailed description of the alge-
braic form of multidimensional Galerkin and G-NI schemes.) Then, we obtain
a system of the form (4.1.56) with Ũ = MxUMT

y and F̄ = −MxFMT
y instead

of U and F , Dx = K
(2)
x M−1

x and DT
y = (K(2)

y M−1
y )T .

Systems of the form (4.1.56) are solvable by Schur decomposition (Bartels
and Stewart (1972)). An orthogonal transformation is used to reduce Dx to
block-lower-triangular form with blocks of size at most two. Similarly, DT

y

is reduced to block-upper-triangular form. If P and Q denote the respective
orthogonal transformations, then (4.1.56) is equivalent to

DPU ′ + U ′DQ − λU ′ = F ′ , (4.1.58)

where

DP = PTDxP, DQ = QTDT
y Q, U ′ = PTUQ, F ′ = PTFQ . (4.1.59)

The solution process has four steps: (1) reduction of Dx and DT
y to real

Schur form (and determination of P and Q); (2) construction of F ′ via
(4.1.59); (3) solution of (4.1.58) for U ′; and (4) transformation of U ′ to U via
(4.1.59).

The first step can be accomplished via the QR algorithm (Wilkinson
(1965)) in (4 + 8α)(N3

x + N3
y ) operations, where α is the average number of

QR steps. Step (3) requires NxNy(Nx +Ny) operations and steps (2) and (4)
take 2NxNy(Nx + Ny) operations apiece. Assuming α = 2, a single solution
requires 20(N3

x + N3
y ) + 5NxNy(Nx + Ny) operations. Hence, step (1) is the

most time-consuming. When the same problem must be solved repeatedly,
then step (1) need only be performed once, in a pre-processing stage. The
matrices DP , DQ, P , and Q may then be stored and used as needed. In
this case a complete solution takes 5NxNy(Nx + Ny) operations, or 10N3

operations when Ny = Nx = N .
To date, however, this method has seen little use in spectral methods,

in part because of the matrix-diagonalization technique described next. It
would, however, be the method of choice for solving one equation of the form
(4.1.56).
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The matrix-diagonalization approach is similar to the Schur-decomposition
method. The difference is that the matrices Dx and DT

y in (4.1.56) are diag-
onalized rather than merely reduced to block-triangular form. An algebraic
problem of the form (4.1.58) is obtained with (4.1.59) replaced by

DP = P−1DxP = ΛDx , DQ = Q−1DT
y Q = ΛB,

U ′ = P−1UQ, F ′ = P−1FQ ,
(4.1.60)

where ΛDx is the diagonal matrix with the eigenvalues of Dx on the diagonal.
Thus, we have

ΛDxU
′ + U ′ΛDy − λU ′ = F ′ . (4.1.61)

The matrices P and Q are not necessarily orthogonal and their columns
consist of the eigenvectors of Dx and DT

y , respectively.
The matrix-diagonalization scheme for (4.1.56) consists of the same four

steps as the Schur-decomposition method except that the first, pre-processing
stage also requires that the eigenvectors and the inverse transformations be
computed. This takes an additional 4(N3

x + N3
y ) operations (Golub and Van

Loan (1996), Algorithm 7.6-3). Step (3) takes only 3NxNy operations since
the system is diagonal, and steps (2) and (4) require 2NxNy(Nx +Ny) oper-
ations apiece, as before. Software for performing the matrix transformations
for the Schur-decomposition and matrix-diagonalization algorithms are read-
ily available, e.g., in LAPACK (Anderson et al. (1999), Barker et al. (2001)).

For collocation problems requiring multiple solutions, the matrix-diago-
nalization method has the advantage of taking only 80% of the solution time
of the Schur-decomposition method: 8N3 operations when Ny = Nx = N .
Moreover, the entire solution process – steps 2, 3 and 4 – is extremely simple
and can be optimized readily. The third stage of the Schur-decomposition
method is more complicated.

This solution strategy is an application of the tensor-product approach
devised by Lynch, Rice and Thomas (1964) for finite-difference approxima-
tions to Poisson’s equation. For second-order approximations to (4.1.55) on
a rectangular grid, the pre-processing stage can be performed analytically.

In the case of tau approximations to (4.1.55), further gains in efficiency are
possible. The discrete problem may be written in the form (4.1.56) where U
is the Nx−1 by Ny−1 matrix (ûnm) consisting of the Chebyshev coefficients
of u (minus those used to enforce the boundary conditions). F is defined
similarly, and Dx and DT

y are the representations in transform space of the
second-derivative operator (with the boundary conditions used to eliminate
the two highest-order coefficients in each direction).

In the case of Dirichlet (or Neumann) boundary conditions, the even and
odd modes decouple. Thus, Dx, DT

y , P and Q contain alternating zero and
nonzero elements. This property may be exploited to reduce the cost of both
the pre-processing step (by a factor of 4) and the matrix multiplies (by a fac-
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tor of 2). The cost of steps (2) through (4) is thus 2NxNy(Nx +Ny), or 4N3

when Ny = Nx = N .
The cost of the solution stages may be halved again by performing the

diagonalization in only one direction and resorting to a standard tau solution
in the other. Thus, (4.1.56) is reduced to

DxU
′ + U ′ΛB + λU ′ = F ′ , (4.1.62)

where
U ′ = UQ, F ′ = FQ , (4.1.63)

instead of to (4.1.61). The system (4.1.62) decouples into Ny − 1 systems of
the form (4.1.20). Each of these may be reduced to a system like (4.1.25) and
solved accordingly in 16Nx operations. The cost of the solution process is
essentially halved, to 2NxNy(4+Ny) operations, since the number of matrix
multiplies is cut in two. Note that if Nx 	= Ny, then it is preferable to apply
diagonalization to DT

y if Ny < Nx and to Dx otherwise.
This particular algorithm has come to be known as the Haidvogel-Zang

algorithm after the paper by Haidvogel and Zang (1979) in which the method
was explained in detail and compared with finite-difference methods for the
Poisson equation. The method had been used earlier by both Murdock (1977)
and Haidvogel (1977) in computations of the Navier-Stokes equations with
two nonperiodic directions.

In these algorithms, as indeed with matrix computations in general,
the accumulation of round-off error is a concern. Haidvogel and Zang re-
ported the loss of three to four digits (for N between 16 and 64) with the
Schur-decomposition method. These were recovered through iterative im-
provement. Since the computation of eigenvectors can be a sensitive pro-
cess, double-precision is advisable for the pre-processing stage of the matrix-
diagonalization method.

Both methods can be generalized. The use of Neumann or Robin boundary
conditions is straightforward. However, with Robin boundary conditions the
even and odd modes do not decouple, and hence, some of the economies of the
tau method are lost. These methods can be applied to separable equations of
the form (4.5). A third, periodic direction is trivial to include in (4.1.55) since,
after Fourier transforming in this direction, one simply has an independent
set of equations with different λ. The pre-processing is independent of λ and
hence of the third, periodic direction. A third, nonperiodic direction may
be treated by diagonalizing in that direction and then using whichever of
the preceding methods is most convenient. Haldenwang et al. (1984) discuss
several alternatives. Of course, both algorithms may be applied to separable,
variable-coefficient periodic problems.

In the case of Shen’s Legendre Galerkin method (the Legendre Galerkin
method which uses the modal basis (2.3.30)), the approximation to (4.1.55)
can be written as

MU + UM + λMUM = F , (4.1.64)
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where Ujl = ũjl, Fjl = f̄jl and M is given by (4.1.43), assuming that
Nx = Ny = N , for simplicity. Shen (1994) describes the straightforward solu-
tion procedure using matrix diagonalization, including the three-dimensional
case. Since M is banded and symmetric, the eigenvalue decomposition is both
significantly cheaper and better conditioned than for the tau method. Sim-
ilarly, Shen (1995) describes how to treat two and three-dimensional equa-
tions with his Chebyshev Galerkin basis. The two-dimensional version of
the fourth-order equation (4.1.47) can be readily handled with the Legendre
Galerkin method but apparently not with the Chebyshev Galerkin method.

As it happens, these methods are more attractive in three-dimensional
problems than in two-dimensional ones. Suppose that the number of degrees
of freedom in each direction is N . The pre-processing cost is some large
multiple of N3. In two dimensions, the solution cost is a small multiple of
N3, and typical explicit spectral calculations take O(N2 log2 N) operations.
Thus, the pre-processing cost is substantially larger than the cost of a single
solution. In three dimensions, the solution cost is a small multiple of N4 and
typical explicit spectral calculations require O(N3 log2 N) operations. Thus,
the pre-processing cost may even be smaller than the cost of the solution
phase. Similarly, the extra memory required for DP , P , and its inverse is
proportionally smaller in three dimensions than in two.

Numerical Example for Ad-hoc Methods in Two Dimensions Fig-
ure 4.2 shows the maximum error for several approximations to (4.1.55)
for λ = 0 and f(x) = 32π2 sin(4πx) sin(4πy), corresponding to u(x) =
sin(4πx) sin(4πy). Matrix diagonalization was used for the solution proce-
dure. The Chebyshev tau results are taken from Haidvogel and Zang (1979),
who performed their computations in 60-bit arithmetic (on a CDC 6600).
The other data are 64-bit results taken from Shen (1994, 1995). The results
are very similar to those shown in Fig. 4.1 for the one-dimensional case.
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4.2 Direct Methods

The ad hoc methods discussed in the previous section are very efficient when
they are applicable, and many of the incompressible flow algorithms that
we discuss in CHQZ3, Chap. 3 exploit these techniques. However, general
purpose solution techniques are needed for application of spectral methods
to a broader class of problems. This section describes the matrix structure
produced by spectral Galerkin and G-NI methods. The focus is twofold: on
how the tensor-product nature of the methods can be heavily exploited to
build efficiently the matrices, and on how the sparseness of the matrices in 2D
and especially in 3D can be accounted for in the direct techniques. The matrix
structure and solution procedures are very similar for collocation methods.
(We do not discuss tau methods and Galerkin methods with modal bases, as
they are rarely used for general problems.)

4.2.1 Tensor Products of Matrices

In certain relevant circumstances, such as, e.g., constant-coefficient opera-
tors, the algebraic form of spectral discretizations to boundary-value prob-
lems takes advantage of the tensor-product structure of the expansion basis
which is used to represent the discrete solution. In such cases, tensor-product
matrices come into play. In view of the subsequent section, we recall the def-
inition and some useful facts about this class of matrices. Let us start with
some notation.

Let {φk} be a tensor-product basis on the reference domain Ω̂ = (−1, 1)d

(see (2.8.1)). For the sake of simplicity, we suppose that each entry kl of the
multi-index k = (k1, . . . , kd) varies in the range 1, . . . , N . (The use of different
ranges in each coordinate direction adds no fundamental complication, just
notational and mild implementation complexity.) A discrete function v(x) =∑

k vkφk(x) is identified by the vector v = (vk) of the expansion coefficients.
In principle, it is possible to use a single-index notation for the entries of v,
according to the lexicographic ordering vk = vk with k = k1 + (k2 − 1)N +
· · ·+ (kd− 1)Nd−1; however, we will simply write vk = vk1k2...kd , i.e., we will
consider v as a d-dimensional matrix.

Given d 2-dimensional square matrices A(l) = (a(l)
hk) of order N , we can

form their tensor product

A =
d⊗

l=1

A(l) = A(1) ⊗ · · · ⊗A(d) , (4.2.1)

which is a 2d-dimensional square matrix of order N whose entries are

Ahk =
d∏

l=1

a
(l)
hlkl

. (4.2.2)
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(assuming the same convention on the indices). The matrix A inherits all
relevant properties that are held by all the matrices A(l), l = 1, . . . , d (e.g.,
the symmetry and possible diagonal or banded structure).

4.2.2 Multidimensional Stiffness and Mass Matrices

Sect. 3.8 is devoted to the study of stiffness and mass matrices in one space
dimension. Here, we take again a second-order scalar equation, say,

−
d∑

i,j=1

∂

∂xi

(
αij

∂u

∂xj

)
+

d∑

i=1

βi
∂u

∂xi
+ γu = f in Ω ⊂ R

d , (4.2.3)

supplemented with homogeneous Dirichlet or Neumann boundary conditions
on ∂Ω, as a model for our discussion on the algebraic aspects of Galerkin and
G-NI methods in more than one space dimension. The integral formulation
of the problem is

d∑

i,j=1

∫

Ω

αij
∂u

∂xj

∂v

∂xi
dx +

d∑

i=1

∫

Ω

βi
∂u

∂xi
v dx +

∫

Ω

γuv dx =
∫

Ω

fv dx (4.2.4)

for all test functions v which vanish on that part, ∂ΩD, of ∂Ω for which the
homogeneous Dirichlet condition is imposed on u.

We assume that Ω = F (Ω̂), where Ω̂ = (−1, 1)d and F is a smooth
invertible mapping, F : x̂ → x = F (x̂), satisfying |JF (x̂)| = detJF (x̂) >
0 for all x̂ ∈ Ω̂. JF is the Jacobian matrix of the transformation F . We
suppose that ∂ΩD is the image through F of a union ∂Ω̂D of “faces” (i.e.,
(d − 1)-dimensional manifolds) contained in ∂Ω̂; thus we exclude boundary
conditions that may be Dirichlet on part of a face and Neumann on another
part of the same face.

Let {φ̂k} be a finite tensor-product basis in Ω̂ (see (2.8.1)), built up by
tensorizing copies of the univariate boundary-adapted modal or nodal bases
already considered in Sect. 3.8; we assume that each φ̂k vanishes on ∂Ω̂D.
We set V̂N = span {φ̂k}. The trial and test functions will be chosen in VN =
F (V̂N ) = span {φk}, with φk(x) = φ̂k(F−1(x)). Then, the Galerkin solution
uN =

∑
k ukφk is defined by the algebraic system (4.8), where u = (uk), b =(∫

Ω
fφh dx

)
and L is the stiffness matrix K = (Khk), which we decompose

into its second, first and zeroth-order components as K = K(2)+K(1)+K(0).
The entries of these matrices can be expressed in terms of integrals on the
reference domain. To this end, set G(x̂) = JF (x̂)−1 = (grs(x̂)) and observe
that ∇xφ(x) = GT (x̂)∇x̂φ̂(x̂). Then, we have

K
(2)
hk =

d∑

i,j=1

∫

Ω

αij
∂φk

∂xj

∂φh

∂xi
dx =

d∑

r,s=1

∫

Ω̂

α∗
rs

∂φ̂k

∂x̂r

∂φ̂h

∂x̂s
dx̂ , (4.2.5)
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with α∗
rs(x̂) =

∑d
i,j=1 αij(F (x̂))gir(x̂)gjs(x̂)|JF (x̂)|,

K
(1)
hk =

d∑

i=1

∫

Ω

βi
∂φk

∂xi
φh dx =

d∑

r=1

∫

Ω̂

β∗
r

∂φ̂k

∂x̂r
φ̂h dx̂ , (4.2.6)

with β∗
r (x̂) =

∑d
i=1 βi(F (x̂))gir(x̂)|JF (x̂)|,

K
(0)
hk =

∫

Ω

γφkφh dx =
∫

Ω̂

γ∗φ̂kφ̂h dx̂ , (4.2.7)

with γ∗(x̂) = γ(F (x̂))|JF (x̂)|.
In the remainder of this section we provide the detailed expressions for

the components of the stiffness matrices, not only for the Galerkin versions
but also for their G-NI approximations. As we shall see, one benefit of the
G-NI approximations is that for the case of arbitrary coefficients, the G-NI
matrices have greater sparsity than their Galerkin counterparts. This has
important implications for the efficiency of direct and iterative methods for
the linear systems that these methods produce.

Zeroth-order contributions

Let us first consider the (generalized) mass matrix K(0). If γ∗ has a tensor-
product structure, i.e., γ∗(x̂) =

∏d
l=1 γ∗

l (x̂l) (this is, e.g., the case if γ∗ is
constant), then K(0) is a tensor-product matrix. Precisely, one has

K(0) =
d⊗

l=1

K(0;x̂l) ,

where the matrices K(0;x̂l) are of the type (3.8.8), i.e., they are defined as

K
(0;x̂l)
hlkl

=
∫

Î

γ∗
l (x̂l)φ̂

(l)
kl

(x̂l)φ̂
(l)
hl

(x̂l) dx̂l (4.2.8)

(recall that {φ̂(l)
k } denotes the univariate basis used in the l-th direction, see

(2.8.1)).
For a general γ∗, the usual practice is to resort to the G-NI approach

and use the Lagrange nodal basis in each direction; this yields the diagonal
matrix

(K(0)
GNI)hk = γ∗(x̂h)ŵhδhk , (4.2.9)

where x̂h = (x̂h1 , . . . , x̂hd) are the tensorized quadrature nodes, and ŵh =
ŵh1 · · · ŵhd are the corresponding weights. If γ ≡ 1, we get the lumped mass
matrix MGNI .

The other matrices which contribute to the stiffness matrix K can be
analyzed in a similar manner.



4.2 Direct Methods 189

First-order contributions

Consider one contribution,

K
(1;r)
hk =

∫

Ω̂

β∗
r

∂φ̂k

∂x̂r
φ̂h dx̂ ,

to the first-order matrix K(1). If β∗
r is a tensor-product function, then K

(1)
r

can be represented as

K(1;r) =
d⊗

l=1

K(δlr;x̂l) ,

where K(1;x̂r) is a first-order univariate matrix like (3.8.12), whereas K(0;x̂l)

for l 	= r is a (generalized) mass matrix like (4.2.8).
For an arbitrary β∗

r , the use of a G-NI discretization with the Lagrange
nodal basis leads to the sparse matrix

(K(1;r)
GNI)hk =

{
β∗

r (x̂h)ŵh(DN )hrkr if hl = kl for all l 	= r,

0 otherwise,
(4.2.10)

where (DN )hk is defined in (2.3.28). A matrix-vector multiply with such a ma-
trix requires O(Nd+1) operations. Summing up all first-order contributions,
we obtain a sparse matrix K(1), which in 2D and 3D has the patterns shown
in Fig. 4.3, where nonzero elements are noted by symbols or lines.

Fig. 4.3. The pattern of the spectral G-NI matrix for the Laplacian in a 2D square
(left) and a 3D cube (right) with straight boundaries. The total number of nonzero
elements nz is 2N3 in 2D and 3N4 in 3D
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Second-order contributions

Finally, let us consider one contribution,

K
(2;r,s)
hk =

∫

Ω̂

α∗
rs

∂φ̂k

∂x̂r

∂φ̂h

∂x̂s
dx̂ ,

to the second-order matrix K(2). In the case of tensorial α∗
rs, the matrix

K(2;r,s) has the structure

K(2;r,s) =
d⊗

l=1

K(δlr+δls;x̂l) ,

i.e., it is a tensor product of zeroth and first-order univariate matrices if
r 	= s, or of zeroth and second-order univariate matrices (the latter similar
to (3.8.16)) if r = s.

For an arbitrary coefficient, if the Lagrange nodal basis is used within
a G-NI scheme, we obtain a sparse approximate matrix; precisely, if r 	= s,
we have

(K(2;r,s)
GNI )hk =

{
α∗

rs(x̂n)ŵn(DN )hrkr(DN )kshs if hl = kl for all l 	= r, s ,
0 otherwise,

(4.2.11)
where x̂n is the quadrature node whose components are x̂hr in the r-direction,
x̂ks in the s-direction, and x̂hl = x̂kl in the remaining directions, while ŵn is
the corresponding weight; if r = s, we have

(K(2;s,s)
GNI )hk =

{∑N
j=0 α∗

ss(x̂n(j))ŵn(j)(DN)jks(DN)jhs if hl = kl for all l 	= s ,
0 otherwise,

(4.2.12)
where the components of x̂n(j) are x̂j in the s-direction and x̂hl = x̂kl in the
remaining directions, and ŵn(j) is the corresponding weight. In both cases,
a matrix-vector multiply requires again O(Nd+1) operations.

Note that in 2D, the assembled matrix K(2) is in general full for arbi-
trary nonzero coefficients {α∗

rs}; in 3D and higher dimensions, it recovers
a sparse structure (for instance, all elements whose indices, h,k, differ for
three or more components are zero). However, if the matrix (α∗

rs) is diagonal
throughout Ω̂, then K(2) is also sparse in 2D and exhibits the same pattern
as shown in the left half of Fig. 4.3.

It is worth observing that the algebraic form of a Legendre G-NI approx-
imation to the Poisson problem (4.1.55) in the square, already considered in
Sect. 4.1.4, can be written as
(
K(2)

x ⊗MGNI,y + MGNI,x ⊗K(2)
y + λMGNI,x ⊗MGNI,y

)
u

= MGNI,x ⊗MGNI,yf ,
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where u and f , respectively, denote the vectors of the values of uN and f ,
respectively, at the internal LGL nodes. This is nothing but (4.1.57) under
a different but equivalent notation. A more compact form of the system is

KGNIu = MGNI f ;

as in the one-dimensional case (see Sect. 3.8.2), we have

Lcoll = M−1
GNIKGNI , (4.2.13)

where Lcoll denotes the matrix of the collocation discretization of the problem
at the internal LGL nodes.

Warped Tensor-Product Expansions

We end this section by giving a short account of the structure of the ma-
trices associated with the warped tensor-product expansions considered in
Sect. 2.9.1. We confine ourselves to the two-dimensional case; we assume to
be on the reference triangle T = {(x1, x2) ∈ R2 : −1 < x1, x2 ; x1+x2 < 0}.
The basis functions have the general structure

ϕk(x1, x2) = ψk1(ξ1)ψk1,k2(ξ2) ,

with the transformation (x1, x2) �→ (ξ1, ξ2) between T and the reference
square Q = {(ξ1, ξ2) ∈ R

2 : −1 < ξ1, ξ2 < 1} given by (2.9.1). The mass
matrix K(0) = M associated with such an expansion has components

(K(0))hk =
∫

T
ϕk(x1, x2)ϕh(x1, x2) dx1dx2

=
∫

Q
ψk1(ξ1)ψk1,k2(ξ2)ψh1(ξ1)ψh1,h2(ξ2)

(
1− ξ2

2

)
dξ1dξ2

=
∫ 1

−1

ψk1(ξ1)ψh1(ξ1) dξ1
∫ 1

−1

ψk1,k2(ξ2)ψh1,h2(ξ2)
(

1− ξ2
2

)
dξ2

= m
(1)
h1k1

m
(2)
h1k1h2k2

.

Thus, as in the pure tensor-product case, the elements of K(0) are products of
elements of suitable one-dimensional matrices. Note, however, that the second
factor, m(2)

h1k1h2k2
, also depends on the indices, h1, k1, of the first factor. This

complication, inherent to the warped nature of the tensor-products considered
here, makes the construction of the matrix, as well as the application of the
matrix to a vector, less efficient than in the pure tensor-product case.

The stiffness matrix for a constant-coefficient operator is a sum of matrices
having the same structure as K(0). This easily stems from the expressions of
the partial derivatives of the basis functions ϕk; indeed, the chain rule yields
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∂ϕk

∂x1
(x1, x2) =

(
dψk1

dξ1
∂ξ1
∂x1

ψk1,k2 + ψk1

dψk1,k2

dξ2
∂ξ2
∂x1

)
(ξ1, ξ2)

=
dψk1

dξ1
(ξ1)

2
1− ξ2

ψk1,k2(ξ2) ,

∂ϕk

∂x2
(x1, x2) =

(
dψk1

dξ1
∂ξ1
∂x2

ψk1,k2 + ψk1

dψk1,k2

dξ2
∂ξ2
∂x2

)
(ξ1, ξ2)

= (1 + ξ1)
dψk1

dξ1
(ξ1)

1
1− ξ2

ψk1,k2(ξ2) + ψk1(ξ1)
dψk1,k2

dξ2
(ξ2) .

Each addend on the right-hand sides is a product of a function of ξ1 alone
times a function of ξ2 alone. The same feature holds for all higher order
partial derivatives.

Further details on the construction of stiffness and mass matrices can be
found in the books by Karniadakis and Sherwin (1999) and Deville, Fischer
and Mund (2002).

4.2.3 Gaussian Elimination Techniques

The classical direct methods for solving the linear system (4.8) are based on
decomposing the system matrix L into the product L = RS of two factors,
R and S, the former being lower triangular, the latter upper triangular. (This
is universally known as the LU -decomposition of a matrix A, where L and U
denote the two triangular factors of A; we use the unconventional notation
R and S in lieu of L and U , as we have reserved the symbol L for the matrix
of the algebraic system to be solved.) Then, we obtain the solution of Lu = b
by solving Sû = b (backward substitution), followed by Ru = û (forward
elimination). Let n be the dimension of the original system. Then, assuming
that Rii = 1 for i = 1, . . . , n (n = (N − 1)d in the case of Dirichlet boundary
conditions, whereas n = (N + 1)d for Neumann boundary conditions), if the
first n− 1 principal minors of R are nonsingular, the algorithm reads

for k = 1, . . . , n− 1
for i = k + 1, . . . , n

Lik = Lik/Lii

for j = k + 1, . . . , n
Lij = Lij − Lik Lkj ,

(4.2.14)

then set

Sij =
{

Lij , i ≤ j ,
0 , i > j ,

Rij =

⎧
⎨

⎩

Lij , i > j ,
1 , i = j ,
0 , i < j .

The Gauss decomposition requires 2n3/3 operations, and the solution phase
takes 2n2 operations. These operation counts are O(N3d) and O(N2d), re-
spectively. In two dimensions, the solution phase alone takes O(N4) opera-
tions, significantly more than the O(N3) operations required by the ad hoc



4.2 Direct Methods 193

methods discussed in Sect. 4.1.4, which, however, are applicable only in spe-
cial cases.

It is well known that the Gauss decomposition can be successfully car-
ried out (without resorting to a pivoting strategy) if the given matrix L is
diagonally dominant (either by rows or by columns) or if it is symmetric
and positive definite. Unfortunately, spectral matrices arising from colloca-
tion methods are neither diagonally dominant nor symmetric. Consequently,
the Gauss decomposition has to be modified to allow for pivoting. This yields
the factorization PL = RS (in the case of row permutation), where R and S
are still lower and upper-triangular matrices, P is the matrix which accounts
for the permutation of rows yielding that pivot element Lii that is the largest
(in modulus) of the elements on the i-th column (see, e.g., Quarteroni, Sacco
and Saleri (2000) or Golub and Van Loan (1996)). When the matrix L is
symmetric and positive definite (e.g., this is the case for G-NI approximation
of elliptic, self-adjoint operators), the more efficient Cholesky factorization is
preferred. Here the factorization is L = CCT , where C is a lower-triangular
matrix. This yields the two systems, Cû = b and CT u = û. An algorithm
for computing the entries of C is

C11 =
√

L11

for i = 2, . . . , n
for j = 1, . . . , i− 1

Cij = (Lij −
∑j−1

k=1 CikCjk)/Cjj

Cii = (Lii −
∑i−1

k=1 C2
ik)1/2

(4.2.15)

Its computational cost is n3/3 operations; an additional 2n2 operations are
needed for the solution of the two corresponding triangular systems.

For a G-NI approximation on a rectangular domain Ω of a second-order
elliptic operator that does not contain mixed derivatives, the lower (and up-
per) bandwidth of L is n−(N+1)d−1 in the Neumann case and n−(N−1)d−1

in the Dirichlet case, and the number of nonzero entries is about 2n3/2 (see
Fig. 4.3 for the sparsity pattern of L). For a general quadrilateral domain,
L is a full matrix. When the Gauss or Cholesky factorization is used, the
matrix, L, is formed with the so-called “full” format (all entries are stored,
including the zeros).

As the problem dimensionality d increases, the cost in terms of time and
storage for the Gauss and Cholesky decompositions quickly becomes pro-
hibitive. Fortunately, the relative sparsity of the matrix L increases with
the dimensionality. However, this sparsity pattern is lost for the two factors,
R and S, of the Gauss decomposition (or C and CT of the Cholesky decompo-
sition) due to fill-in. Consequently, the sparsity results in little or no savings
in the solution cost. In order to benefit from the sparsity a reordering of L
prior to factorization is required. In Fig. 4.4 we show two examples of reorder-
ing on the 3D matrix L: the Cuthill-McKee ordering and the minimum-degree
ordering (see George and Liu (1981), Gilbert et al. (1992), Saad (1996)).
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Fig. 4.4. The pattern of the 3D spectral G-NI matrix after reordering: Cuthill-
McKee ordering (left), minimum-degree ordering (right)

A comparison of the CPU time needed to solve the Poisson equation in
a cube (using the Cholesky factorization for the G-NI or, for that matter,
the Galerkin matrix) with and without reordering is reported in Fig. 4.5. In
all cases, the curves grow like cN9, but the reorderings reduce the overall
solution time by about a third.
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Fig. 4.5. At left the CPU-time needed to solve −∆u = f with Dirichlet boundary
conditions in a cube, with Cholesky factorization, without reordering or two types of
reordering: with the symmetric reverse Cuthill-McKee ordering, and the symmet-
ric minimum-degree ordering. At right the ratio between CPU-time of Cholesky
factorization with and without reordering. The comparison curve cN9 is drawn for
c = 2/3 · 10−8

The frontal and multifrontal methods are attractive alternatives to the
Gauss or Cholesky decompositions. The basic frontal method performs the
Gauss factorization of a large sparse matrix by partly factorizing a sequence of
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small dense submatrices, called frontal matrices (see Davis and Duff (1999)).
Frontal methods work well for matrices with small profile, so that they are
usually preceded by an ordering technique to reduce the larger bandwidth
of the matrix and to bound the fill-in. Nevertheless high fill-in occurs if the
matrix cannot be ordered into a matrix with small bandwidth.

The multifrontal method is a generalization of the frontal method. As the
name suggests, several frontal matrices are employed simultaneously dur-
ing the factorization process; while one frontal matrix is being generated,
the work on the other frontal matrices is suspended. The generation of the
frontal matrices is suggested by a graph structure (a tree or a forest) with the
aim of bounding fill-in as much as possible. Multifrontal methods, like frontal
methods, are combined with ordering techniques, usually of “minimum de-
gree” type. However, multifrontal methods do require extra work with respect
to frontal methods (for the composition of the constituent frontal matrices).

More refined algorithms that exploit features of both frontal and multi-
frontal methods enable a general fill-in reduction ordering to be applied while
avoiding the data movement of classical multifrontal approaches (see Davis
(2004)).

A comparison between the storage needed to solve the linear system
using the Cholesky decomposition and the multifrontal method for a two-
dimensional Poisson problem with Dirichlet boundary conditions is reported
in Table 4.1. Here, N − 1 is the number of interior LGL points in every di-
rection, n = (N − 1)2 is the number of rows (or columns) of L. This table
indicates that, compared with the straightforward Cholesky scheme, the mul-
tifrontal approach requires more than twice as much memory, whereas, as is
illustrated later in Fig. 4.46, it takes substantially less CPU time.

Table 4.1. Memory requirements for the Cholesky and multifrontal methods

Method Words (real) Words (integer)

Cholesky n(n+ 1)/2 0

Multifrontal n2 + 3n3/2 5n3/2 + 36n

4.3 Eigen-Analysis of Spectral Derivative Matrices

Before turning to a discussion of iterative methods for the solution of the
implicit equations arising from spectral methods, we shall briefly discuss the
eigenvalues and condition numbers of some of the matrices which arise from
spectral discretizations of one-dimensional problems with first and/or sec-
ond derivatives. These have important implications for the conditioning of
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the matrices in direct methods (Sect. 4.2), for the convergence rate of iter-
ative methods (Sects. 4.4–4.7), and also for the stability restrictions of time
discretizations (Appendix D).

As far as the solution of linear systems is concerned, the condition number
κ of a matrix L in some norm ‖·‖ is given by

κ‖·‖(L) = ‖L‖
∥∥L−1

∥∥ . (4.3.1)

The condition number in the 2-norm, termed the spectral condition number ,
is given by

κ2(L) =

[
λmax

(
LTL

)

λmin (LTL)

]1/2

. (4.3.2)

In the case that L is symmetric and positive definite, this becomes

κ2(L) =
λmax (L)
λmin (L)

. (4.3.3)

This ratio of the largest to the smallest eigenvalue can be an important
parameter for symmetric and positive-definite matrices. This is discussed
further in Sect. 4.4.1. Precisely, the larger the condition number, the greater
the impact of round-off errors in direct methods, and the larger the required
number of iterations for iterative techniques. For nonsymmetric matrices,
(4.3.1) is still the right indicator for the sensitivity to round-off in direct
methods, but not necessarily for the convergence rate of iterative methods.

With respect to explicit time discretizations, the subsequent analysis will
demonstrate that, in most cases, spectral methods require a more restric-
tive time-step limit than standard low-order methods. This is due to the
property that the eigenvalues of spectral spatial discretization operators that
correspond to the high frequencies grow more rapidly with respect to the
discretization parameter N than those of low-order operators.

We note that in the analysis of temporal stability for time-discretization
methods, it is rather the generalized eigenvalues that matter, i.e., the eigen-
values of the matrix M−1L, where L is the matrix associated with the given
differential operator, and M is the mass matrix (see Appendix D).

The spatial eigenfunctions of Fourier approximations to constant-coeffi-
cient problems are just eikx for −N/2 ≤ k < N/2−1. The eigenvalues of such
problems are apparent. We shall discuss here the behavior of the eigenvalues
of various nonperiodic spectral approximations of the second-order diffusion
operator Lu = −d2u/dx2, the first-order hyperbolic operator Lu = du/dx,
and the advection-diffusion operator, Lu = −νd2u/dx2 + du/dx. The theo-
retical discussion of the spectra of these types of matrices, including rigorous
bounds on the eigenvalues, is postponed until Sect. 7.3.
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4.3.1 Second-Derivative Matrices

We consider here second-order eigenvalue problems

−d2u

dx2
= λu on (−1, 1) (4.3.4)

subject to boundary conditions of either Dirichlet type

u(−1) = u(+1) = 0 , (4.3.5a)

or of Neumann type
du
dx

(−1) =
du
dx

(1) = 0 . (4.3.5b)

Spectral discretizations of the above problem lead to algebraic (generalized)
eigenvalue problems of the form

Au = λBu , (4.3.6)

where u represents either the expansion coefficients of the discrete solution
or else its nodal values. In the case of a collocation approximation to the
Dirichlet problem, A is the (N − 1)× (N − 1) matrix Lcoll, constructed from
the negative of the square of the interpolation differentiation matrix DN by
deleting its first and last rows and columns, and B is the identity matrix. For
the Neumann problem, A is the (N + 1) × (N + 1) matrix with its second
through next-to-last rows the same as those of the negative of D2

N and its
first and last rows the same as those of DN , while B is equal to the identity
matrix except for having 0 rather than 1 on the diagonal of the first and last
rows. For tau approximations, the first N − 1 rows of A are taken from the
matrix representation of (the negative of) (2.4.27) for Chebyshev approxima-
tion, or (2.3.23) for Legendre, and its last two rows represent the boundary
conditions, e.g. (4.1.21b) for Chebyshev approximation to the Dirichlet prob-
lem. Similarly, B is the identity matrix, except for having 0 on the diagonal
of the last two rows. For Chebyshev and Legendre Galerkin approximations
using the bases (4.1.38) and (4.1.49), the matrix A in (4.3.6) is the same as
the matrix K in (4.1.35), and B is the matrix M in (4.1.35). For Legendre
G-NI approximations, A is the stiffness matrix KGNI and B is the mass
matrix MGNI given by (3.8.18) with α ≡ 1 and (3.8.11) with γ∗ ≡ 1, re-
spectively. (For the Dirichlet problem, we already noted in Sect. 3.8.2 that
Lcoll = M−1

GNIKGNI .)
We show in Sect. 7.3.1 that, except for the zero eigenvalue of the Neumann

problem, all the (generalized) eigenvalues of collocation, G-NI and tau ap-
proximations are real and positive, and there exist two positive constants,
c1, c2, independent of N such that

0 < c1 ≤ λ ≤ c2N
4 . (4.3.7)
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Fig. 4.6. Extreme eigenvalues of Chebyshev (left) and Legendre (right) approxi-
mations to the second-order derivative operator with Dirichlet boundary conditions

The extreme eigenvalues of the discrete algebraic eigenvalue problems pro-
duced by the second-order differentiation operator with Dirichlet boundary
conditions are illustrated in Fig. 4.6 for Chebyshev and Legendre approxima-
tions using collocation (here equivalent to G-NI), tau and Galerkin methods.
(The corresponding plots for Neumann boundary conditions are similar, dif-
fering only by a vertical offset.) Each part of the figure contains a solid line
representing a constant times N4, which the maximum eigenvalues track very
well. The asymptotic constants for the maximum Dirichlet eigenvalues are
given in Table 4.2, for all three methods, plus some results for the Neumann
case. The maximum eigenvalue of the Legendre methods is typically only half
as large as that of the corresponding Chebyshev method. The tau method
has a maximum eigenvalue that can be as much as 6 times larger than the
corresponding collocation or Galerkin result.

Of course, the smaller discrete eigenvalues are good approximations to the
eigenvalues of the corresponding analytic problem. It is only the upper third
of the discrete eigenvalue spectrum which differs from the analytic eigenvalues
by more than 10% (see, e.g., Vandeven (1990)). The minimum eigenvalues
for the three methods are indistinguishable graphically and are increasingly
better approximations to π2/4 as N increases.

Table 4.2. Asymptotic growth of the largest second-derivative eigenvalues

Approximation Collocation Galerkin Tau

Chebyshev Dirichlet 0.04737 N4 0.04735 N4 0.3028 N4

Legendre Dirichlet 0.02532 N4 0.02532 N4 0.1013 N4

Chebyshev Neumann 0.01418 N4 0.02531 N4

Legendre Neumann 0.006332 N4 0.02531 N4
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Table 4.3. Asymptotic trends of the G-NI second-derivative eigenvalues

Approximation λmax λmin

Legendre G-NI Dirichlet 0.3624 N2 7.0416 N−1

Legendre G-NI Neumann 0.4629 N2 3.6326 N−1

The (generalized) algebraic eigenvalue problem (4.3.6) is the discrete
counterpart of the differential eigenvalue problem (4.3.4). On the other hand,
for the G-NI method another algebraic eigenvalue problem that matters is
simply

KGNIu = λu . (4.3.8)

Indeed, these are the eigenvalues that affect the direct or iterative solution
of the system KGNIu = b, which is nothing but (4.8). For the considered
boundary conditions (again, aside from the zero eigenvalue of the Neumann
problem), we have

0 < c3N
−1 ≤ λ ≤ c4N

2

for suitable positive constants c3 and c4 independent of N (see Sect. 7.3.1).
Figure 4.7 illustrates the extreme eigenvalues of just the stiffness matrix for
Legendre G-NI approximations to the Dirichlet and Neumann problems; they
behave as predicted by the theory. Indeed, the maximum eigenvalues grow
as O(N2), whereas the minimum eigenvalues decay as O(N−1). Table 4.3
provides the asymptotic constants. Therefore, the spectral condition num-
bers grow like O(N3). This feature makes the sensitivity to round-off er-
rors in direct methods less dramatic. Moreover, the different spectral proper-
ties of KGNI and Lcoll may suggest different preconditioning strategies; see
Sect. 4.4.2.
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ditions
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4.3.2 First-Derivative Matrices

We consider next the advection operator

Lu =
du
dx

on (−1, 1) , (4.3.9)

subject to the boundary condition

u(1) = 0 . (4.3.10)

We confine ourselves in this subsection to just collocation and G-NI methods,
since tau and Galerkin methods are rarely used on first-order problems. The
eigenanalysis of spectral discretizations for first-order operators can certainly
also be discussed in terms of an eigenvalue problem and written in the form
(4.3.6). However, for the present discussion, which is restricted to fewer ap-
proximation approaches, we prefer to focus on the derivative matrix for col-
location methods (with the boundary condition used to eliminate the vari-
able uN from the matrix) and the stiffness matrix for the G-NI methods,
which incorporates the boundary conditions. We denote the collocation first-
derivative matrix by Lcoll and the G-NI stiffness and mass matrices by KGNI

and MGNI , respectively. We also examine the matrix M−1
GNIKGNI , referred

to as the generalized G-NI matrix.
Consider first the matrices for collocation differentiation. The boundary

condition (4.3.10) implies that Lcoll is an N × N matrix obtained from the
interpolation differentiation matrix DN , by deleting its last row, while using
that last row to eliminate the last column. For Chebyshev and Legendre
collocation, we show in Sect. 7.3.3 that the real parts of the eigenvalues λ of
Lcoll are strictly negative, while their moduli satisfy a bound of the form

|λ| ≤ O(N2) . (4.3.11)

Figure 4.8 illustrates the eigenvalues of Lcoll computed in 64-bit arithmetic
for a Chebyshev collocation method. These results indicate that the esti-
mate (4.3.11) is sharp. However, as noted by Trefethen and Trummer (1987),
round-off errors have a significant effect upon numerical computations of first-
derivative eigenvalues. For the 64-bit computations illustrated in Fig. 4.8,
these round-off error effects become apparent for N > 32. Trefethen and
Trummer explain that the source of the problem is the exponentially (in x)
decaying character of the eigenvectors: these behave roughly as exRe{λ}. Once
e+2Re{λ} falls below the machine precision (the 2 comes from the length of
the interval), the eigenfunctions cannot be approximated in any meaningful
sense. Since the real part of λ becomes increasingly negative as N increases,
there will be a value of N beyond which the eigenvalues can no longer be
computed reliably (with fixed-precision arithmetic).

At a more fundamental level, neither the Chebyshev collocation nor
the Legendre collocation first-derivative matrices are normal matrices.
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Fig. 4.8. Chebyshev collocation first-derivative eigenvalues computed with 64-bit
precision. Results contaminated by round-off error are indicated
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(A matrix L is termed normal if LTL = LLT .) Normal matrices have a com-
plete set of orthogonal eigenvectors. It is the lack of orthogonality of the
eigenvectors of the first-derivative matrices that is responsible for the numer-
ical difficulties in computing the eigenvalues. Even though the matrices for
the collocation and tau methods for the second-derivative problem are not
normal, they are not nearly as sensitive to round-off error.

Trefethen (1992) provided a more complete explanation of this sensitiv-
ity of the computed eigenvalues of the first-derivative matrices in terms of
pseudospectra. (See Trefethen (1997) for a review of origins of the study of
pseudospectra and Embree and Trefethen (2005) for comprehensive coverage
of the subject.) For any ε > 0, the ε-pseudospectrum of a matrix L is defined
to be that subset of the complex plane defined by

Λε(L) = {z ∈ C : z ∈ Λ(L + E) for some E with ‖E‖ ≤ ε} , (4.3.12)

where Λ(L) is the set of the eigenvalues of L. The usual spectrum is produced
for ε = 0. Loosely speaking, for ε > 0, the ε-pseudospectrum is the set
of points which are elements of the spectrum of some matrix which differs
from L (in norm) by no more than ε. For a normal matrix, Λε(L) is the same
as the set {z ∈ C : |z − Λ(L)| ≤ ε}. However, if L is not normal, Λε(L) can
be a much larger set. This is precisely the situation for these first-derivative
matrices. They are not normal, and the Λε(L) sets have a radius much larger
than ε. This is illustrated in Fig. 4.9, which displays some pseudospectra for
the Chebyshev collocation first-derivative matrix. (All pseudospectra figures
in this section were generated using the Eigtool software of Wright; see Wright
and Trefethen (2001) for the details of the algorithm.) Clearly, the size of the
ε-pseudospectra sets are orders of magnitude larger than ε.

The eigenvalues and pseudospectra of the Legendre collocation first-
derivative matrix have similar behavior (see Figs. 4.10 and 4.11). The largest
eigenvalues are much closer to the imaginary axis, but still have negative real
parts (see Sect. 7.3).

The Legendre G-NI approximation of the advection problem

du
dx

= f in (−1, 1) ,

u(1) = 0 ,

with the weak imposition of the boundary conditions (by analogy to what
was done in (3.7.5) for the time-dependent problem (3.7.1)) reads as follows:
find uN ∈ PN such that

−(uN , vN
x )N − uN (−1)vN (−1) = (f, vN )N ∀vN ∈ PN , (4.3.13)

where (·, ·)N is the LGL inner product. Note that, by analogy with what was
already shown in Sect. 3.8 for the corresponding time-dependent problem,
(4.3.13) can be equivalently written as
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Fig. 4.10. Legendre collocation first-derivative eigenvalues computed with 64-bit
precision. Results contaminated by round-off error are indicated
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Fig. 4.12. Legendre first-derivative spectra and pseudospectra for N = 16. Top-
left : spectra. Top-right : spectrum and pseudospectra of Lcoll (LC), bottom-left :
spectrum and pseudospectra of KGNI (LG-NI), bottom-right : spectrum and pseu-
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figure

(uN
x , vN )N − uN (1)vN (1) = (f, vN )N ∀vN ∈ PN . (4.3.14)

The associated (N + 1) × (N + 1) matrix that represents the left-hand side
of (4.3.13) for the nodal basis is

KGNI = −DT
NMGNI − diag{1, 0, . . . , 0} , (4.3.15)

where DN is the first-derivative matrix (2.3.28) and MGNI = diag{w0, . . .,
wN} is the diagonal mass matrix of the LGL integration weights.

Figures 4.12 and 4.13 illustrate the spectra and pseudospectra for N =
16 and N = 64, respectively, of the matrices for Legendre collocation
(Lcoll), Legendre G-NI (KGNI , see (4.3.15)), and generalized Legendre G-NI
(M−1

GNIKGNI) approximations. The spectra for the G-NI matrix are rela-
tively insensitive to round-off errors, unlike the spectra for the other two
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Fig. 4.13. Legendre first-derivative spectra and pseudospectra for N = 64. Top-
left : spectra. Top-right : spectrum and pseudospectra of Lcoll (LC), bottom-left :
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GNIKGNI (generalized LG-NI). The range for isolines is [-5,0] for
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figure

matrices. The generalized G-NI matrix is even more sensitive than the col-
location matrix. The extreme eigenvalues for these matrices, as computed in
64-bit arithmetic, are displayed in the left half of Fig. 4.14. The abrupt slope
changes in some of the curves for the extreme eigenvalues are produced by
round-off error effects, as can be seen by careful comparison of Figs. 4.13
and 4.14.

The condition numbers κ2(L) in the 2-norm for these matrices, again as
computed in 64-bit arithmetic, are displayed in the right half of Fig. 4.14. The
condition numbers of both Lcoll and M−1

GNIKGNI scale as O(N2), whereas
those of KGNI scale sublinearly with N .

The Fourier first-derivative matrix is skew-symmetric (see Sect. 2.1.3),
and therefore is a normal matrix. Hence, the numerically computed eigen-
values of the Fourier collocation first-derivative matrix are not nearly so
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susceptible to round-off errors. Moreover, the eigenvalues can be determined
analytically.

4.3.3 Advection-Diffusion Matrices

The operator of interest here is the advection-diffusion operator

Lu = −ν
d2u

dx2
+

du
dx

on (−1, 1) . (4.3.16)

Theoretical bounds on the eigenvalues of the matrices resulting from some
spectral approximations to the advection-diffusion operator are discussed in
Sect. 7.3.2. The eigenvalues are complex, but with real parts bounded from
below. For Legendre Galerkin or G-NI (collocation) methods, they have in-
deed non-negative real parts. (The same behavior occurs if a variable co-
efficient β multiplies the first derivative operator, provided ν is sufficiently
large.)

Here, we shall illustrate only Dirichlet boundary conditions (see (4.3.5a))
and confine ourselves to Legendre G-NI approximations. Let KGNI and
MGNI denote the stiffness and mass matrices for a G-NI approximation to
this advection-diffusion problem. The matrix M−1

GNIKGNI is the generalized
G-NI matrix. We examine three cases: ν = 1, ν = 10−2, and ν = 10−3.
Figures 4.15 and 4.16 display the minimum and maximum moduli of the
eigenvalues of KGNI , and M−1

GNIKGNI , respectively. The lines on these fig-
ures represent the asymptotic trends of the eigenvalues. As one would expect,
for N large enough the extreme eigenvalues have the same asymptotic scal-
ing as for the pure second-order problem, i.e., |λ(KGNI)|min = O(N−1) and
|λ(KGNI)|max = O(N2) for the stiffness matrix, and |λ(M−1

GNIKGNI)|min

= O(1) and |λ(M−1
GNIKGNI)|max = O(N4) for the generalized G-NI matrix.

The behavior is different when N is insufficiently large with respect to
1/ν to guarantee that νN2 � 1. For the model boundary-value problem



4.3 Eigen-Analysis of Spectral Derivative Matrices 207

20 40 80 160 320 640
10

−3

10
−2

10
−1

10
0

M
in

im
um

 E
ig

en
va

lu
e

ν = 1
ν = 10−2

ν = 10−3

ν = 10−4

N

N−1

20 40 80 160 320 640
10

0

10
2

10
4

10
6

M
ax

im
um

 E
ig

en
va

lu
e

ν = 1
ν = 10−2

ν = 10−3

ν = 10−4

N2

N

Fig. 4.15. Minimum (left) and maximum (right) moduli of the eigenvalues of
Legendre G-NI advection-diffusion stiffness matrices (KGNI) for Dirichlet boundary
conditions

20 40 80 160 320 640
10

−2

10
−1

10
0

10
1

10
2

M
in

im
um

 E
ig

en
va

lu
e

ν = 1
ν = 10−2

ν = 10−3

ν = 10−4

N

N0

20 40 80 160 320 640
10

0

10
2

10
4

10
6

10
8

10
10

M
ax

im
um

 E
ig

en
va

lu
e

ν = 1
ν = 10−2

ν = 10−3

ν = 10−4

N4

N

Fig. 4.16. Minimum (left) and maximum (right) moduli of the eigenvalues of
Legendre generalized G-NI advection-diffusion matrices (M−1

GNIKGNI) for Dirichlet
boundary conditions

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

N = 12

N = 20

N = 72

x
0.9 0.92 0.94 0.96 0.98 1
0

0.5

1

1.5

2

2.5

N = 72

N = 48

N = 104

x

Fig. 4.17. Solution of the advection-diffusion problem (4.3.17) for different values
of N and for ν = 10−2 (left) and ν = 10−3 (right)



208 4. Algebraic Systems and Solution Techniques

−ν
d2u

dx2
+

du
dx

= 1 , −1 < x < 1 ,

u(−1) = 0 , u(1) = 0 ,

(4.3.17)

this situation corresponds to a numerically unresolved boundary layer. The
numerical solution of such an unresolved problem contains spurious oscilla-
tions, as illustrated in Fig. 4.17. (See the theoretical discussion in Sect. 7.2;
in particular, see (7.2.3) or (7.2.13), and the discussion after (7.2.16).) Then,
the regime of behavior of extreme eigenvalues is that of the pure-convection,
first-order GNI matrix; a numerical stabilization (see Sect. 7.2.1) should be
used in order to get rid of potential instabilities.
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Fig. 4.18. Spectrum and pseudospectra of Legendre G-NI advection-diffusion ma-
trices with N = 32 for ν = 10−2. Stiffness matrix KGNI (left) and generalized
matrix M−1

GNIKGNI (right). The range for isolines is [−4.5,−1] on the left, and
[−6, 0] on the right

To illustrate the sensitivity of the spectra to round-off errors, we furnish
the pseudospectra in Figs. 4.18 and 4.19 for ν = 10−2 and ν = 10−5, re-
spectively. For the advection-diffusion problem, as for the pure first-order
problem, the generalized G-NI matrix is more sensitive to round-off error
than the stiffness matrix. Perhaps surprisingly, there is greater sensitivity to
round-off error for the ν = 10−2 case than for the ν = 10−5 one.

4.4 Preconditioning

From the previous eigen-analysis it appears clear that spectral matrices
ought to be preconditioned when solving the associated systems by iterative
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methods. We begin this section with an elementary discussion of iterative
methods that serves to motivate the practical necessity for using precondi-
tioning. Then we examine the basics of low-order finite-difference and finite-
element preconditioning for spectral discretizations by considering several
one-dimensional model problems. Next, we survey the alternatives for effi-
cient preconditioning in several dimensions. Finally, we summarize the use
of spectral discretizations of constant-coefficient operators as preconditioners
for variable-coefficient operators.

4.4.1 Fundamentals of Iterative Methods
for Spectral Discretizations

The fundamentals of iterative methods for spectral equations, as well as the
effect of preconditioning, are perhaps easiest to grasp for the simple one-
dimensional model problem

−d2u

dx2
= f in (0, 2π) ,

u 2π-periodic ,
(4.4.1)



210 4. Algebraic Systems and Solution Techniques

even though the practical motivation for iterative methods in general and
preconditioning in particular becomes obvious only for multidimensional
problems. The Fourier approximation to (4.4.1) at the collocation points,
xj = 2πj/N for j = 0, . . . , N − 1 (for N even), is

N/2−1∑

p=−N/2+1

p2ũpe
ipxj = fj , (4.4.2)

where ũp are the discrete Fourier coefficients of u. (Other than to note here
that we disable the p = −N/2 mode for the usual reasons, we won’t comment
on this mode in this section.)

This may be represented by the linear system (4.8) with u = (u0, u1, . . . ,
uN−1), b = f = (f0, f1, . . . , fN−1), and L = −D2

N = −C−1K2C where DN

is given by (2.1.51), C by (4.1.9) and K by (4.1.10). The eigenvectors of this
approximation are

ξj(p) = e2πijp/N , (4.4.3)

with the corresponding eigenvalues

λ(p) = p2 , (4.4.4)

where j = 0, 1, . . . , N − 1 and p = −N/2 + 1, . . . , N/2 − 1. The index p
has a natural interpretation as the frequency of the eigenvector. The p = 0
eigenvector corresponds to the mean level of the solution. Since it is at one’s
disposal for this problem, it can essentially be ignored.

The conceptually simplest iterative method to solve the linear system
obtained in this way is the Richardson method, which is reviewed in Sect. C.1
of Appendix C. Given an initial guess v0 to u, subsequent approximations
are obtained via

vn+1 = vn + ωrn , (4.4.5)

where ω is a relaxation parameter and rn = b−Lvn is the residual associated
with vn. The Richardson method is applicable, since all the eigenvalues of
the matrix L are positive (ignoring the eigenvalue for p = 0) and lie in
the interval [λmin, λmax], where λmin = 1 and λmax = N2/4. However, the
iterative condition number K = λmax/λmin introduced in (C.1.10) is given by

K =
1
4
N2 . (4.4.6)

Thus, even with the optimal choice of the relaxation parameter given by
(C.1.8), the number J of iterations required to reduce the error by a factor
of e satisfies

J ∼=
1
8
N2 (4.4.7)

(see (C.1.13)), i.e., it is proportional to the square of the cut-off parameter N .
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The major expense in Richardson iteration is the evaluation of Lvn.
For the problem at hand, this requires 5N log2 N operations via transform
methods and 2N2 operations for matrix multiplies. To reduce the error by
a single order of magnitude takes 1.4N3 log2 N operations, which is more
than the cost of a direct solution in one dimension. This observation moti-
vates the introduction of a preconditioner for the linear system, as discussed
in Appendix C.

4.4.2 Low-Order Preconditioning of Model Spectral Operators
in One Dimension

Preconditioning techniques have been investigated extensively for finite-
difference and finite-element methods (see Evans (1983), Saad (1996)). The
preconditioned version of Richardson’s method is (see (C.1.16))

H
(
vn+1 − vn

)
= ωrn (4.4.8)

instead of (4.4.5), where H is the preconditioning matrix. Orszag (1980) pro-
posed a preconditioning for spectral methods in physical space which amounts
to using a low-order finite-difference approximation as H. The subsequent
discussion will presume periodic boundary conditions, which lead us to an-
alyze Fourier methods; later on in this section, we will consider nonperiodic
conditions (hence, Chebyshev and Legendre methods).

Fourier collocation operators

Let H(fd2), H(fd4) and L denote second-order finite-difference, fourth-order
finite-difference and spectral collocation discretizations of the operator L =
−d2/dx2 with periodic boundary conditions in (0, 2π). For example, the
second-order finite-difference approximation to (4.4.1) is given by

−uj+1 − 2uj + uj−1

(∆x)2
= fj , j = 0, 1, . . . , N − 1 , (4.4.9)

where ∆x = 2π/N , uj � u(xj), fj = f(xj), with xj = j∆x. (We adopt the
obvious convention that uj±N = uj for all j = 0, . . . , N −1.) The inversion of
(4.4.9) requires the solution of a cyclic tridiagonal system. The fourth-order
approximation is equally straightforward and requires the solution of a cyclic
pentadiagonal system. Both types of systems can be inverted far more quickly
than the computation of Lvn. The eigenfunctions of these discretizations are
all given by (4.4.3), and the eigenvalues of H(fd2) and H(fd4) are

λ(fd2)
p = 4

sin2

(
p∆x

2

)

(∆x)2
, λ(fd4)

p =
cos(2p∆x)− 16 cos(p∆x) + 15

6(∆x)2
,

(4.4.10)
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where p = −N/2+1, . . . , N/2− 1. Since the spectral operator and the finite-
difference operator have the same eigenfunctions, it is clear that the effec-
tive eigenvalues of the preconditioned iterations based on (H(fd2))−1L and
(H(fd4))−1L are then given by

Λ(fd2)
p = (p2)(λ(fd2)

p )−1 =
(p∆x/2)2

sin2(p∆x/2)
, (4.4.11)

Λ(fd4)
p = (p2)(λ(fd4)

p )−1 =
6(p∆x)2

cos(2p∆x)− 16 cos(p∆x) + 15
. (4.4.12)

The argument p∆x lies in (−π, π) and, in fact, only [0, π) need be consid-
ered due to symmetry. Similar results for even higher order finite-difference
preconditionings are straightforward but, as we shall see, of dubious utility.

An alternative type of preconditioning is based on finite elements rather
than finite differences. The use of linear finite elements to precondition Cheby-
shev collocation approximations was originally advocated by Canuto and
Quarteroni (1985) and by Deville and Mund (1985); the latter authors sug-
gested the form that provides better performance than finite-difference pre-
conditioning. The preconditioned operator has a smaller spread of eigenvalues
(when used in strong form – see below) and hence a reduced condition num-
ber. This feature is mainly due to the weighting of the spectral residuals that
is produced when they are operated on by the mass matrix. Other advan-
tages, which emerge for nonperiodic boundary conditions, will be mentioned
later on.

The finite-element preconditioning is based on the matrices KFE and
MFE , which are the stiffness and mass matrices generated by linear finite
elements on the equally-spaced grid {xj} (j = 0, . . . , N); in other words,
denoting by ϕj the periodic, piecewise linear characteristic Lagrange func-
tions at these nodes, we have (KFE)ij =

∫ 2π

0
ϕj,xϕi,x dx and (MFE)ij =∫ 2π

0
ϕjϕi dx. The corresponding spectral matrices, K and M , are defined by

Kij =
∫ 2π

0
ψj,xψi,x dx and Mij =

∫ 2π

0
ψjψi dx, where ψj are the trigono-

metric polynomial characteristic Lagrange functions at the same nodes (see
Sect. 2.1.2). Note that Kij = (ψj,x, ψi,x)N and Mij = (ψj , ψi)N , where (·, ·)N

is the discrete inner product defined in (2.1.32); indeed, (2.1.33) holds. Thus,
K = KGNI and M = MGNI in the present constant-coefficient, periodic case.
Furthermore, the collocation matrix Lcoll can be written as Lcoll = M−1K
(see Sect. 3.8.2).

The finite-element preconditioning can be utilized in either strong form
or weak form. For the strong form, (4.4.8) is in effect replaced by

KFE

(
vn+1 − vn

)
= ωMFErn

s , (4.4.13)

where the strong form of the residual is given by

rn
s = f − Lcollvn . (4.4.14)
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The matrix that governs convergence of the strong form of finite-element
preconditioning is therefore K−1

FEMFELcoll =
(
M−1

FEKFE

)−1 (
M−1K

)
.

The weak form of finite-element preconditioning is

KFE(vn+1 − vn) = ωrn
w , (4.4.15)

where the weak form of the residual is given by

rn
w = M f −Kvn . (4.4.16)

The matrix that governs convergence of the weak form of finite-element pre-
conditioning is K−1

FEK.
For the Fourier model problem, the finite-element stiffness and mass ma-

trices are described by

(KFEu)j = −uj+1 − 2uj + uj−1

∆x
, (4.4.17)

(MFEf)j =
1
6
∆x (fj+1 + 4fj + fj−1) . (4.4.18)

For the model problem with linear, finite-element preconditioning in
strong form, the effective eigenvalues of the preconditioned matrix
K−1

FEMFELcoll are

Λ(fes)
p =

(p∆x/2)2

sin2(p∆x/2)
2 + cos(p∆x)

3
, (4.4.19)

whereas for the weak-form preconditioning the eigenvalues Λ
(few)
p of the

preconditioned matrix K−1
FEK are identical to those of second-order finite-

difference preconditioning (see (4.4.11)).
Figure 4.20 illustrates the eigenvalues for these four preconditionings. No-

tice that the eigenvalues for the two finite-difference preconditionings and
the weak finite-element preconditioning are monotonically increasing with
the mode number, whereas the minimum eigenvalue for the model problem
preconditioned by linear finite elements in weak form occurs for an interior
mode. Table 4.4 summarizes the key properties of this class of precondi-
tioning. Unlike the original system, which has a spectral condition number
scaling as N2, the preconditioned system for this model problem for both
finite-difference and finite-element preconditioning has a spectral condition
number which is independent of N . The relatively small reduction in spectral
radius achieved by moving from second-order finite-difference precondition-
ing to fourth-order finite-difference preconditioning suggests that this higher
order preconditioning is of doubtful utility. A single iteration with finite-
element preconditioning in strong form produces the same reduction in the
error that follows from two iterations with second-order finite-difference pre-
conditioning, clearly off-setting the extra cost of applying the mass matrix.
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Fig. 4.20. Preconditioned eigenvalues for the model problem

Table 4.4. Properties of finite-difference and finite-element preconditionings for
the model problem (4.4.1)

Preconditioning Λmin Λmax ωopt ρ

fd2 1.000000 2.467401 0.5768009 0.4231991

fd4 1.000000 1.850551 0.7016188 0.2983812

few 1.000000 2.467401 0.5768009 0.4231991

fes 0.6928333 1.000000 1.1814512 0.1814512

The weak form of finite-element preconditioning converges at the same rate
as second-order finite-difference preconditioning.

Effective preconditioning of the first-order advection equation

du
dx

= f (4.4.20)

is far more challenging than for the second-order equation (4.4.1). We
continue to presume periodic boundary conditions. Using the second-order
central-difference approximation

uj+1 − uj−1

2∆x
= fj , j = 0, 1, . . . , N − 1 , (4.4.21)

we arrive at the following eigenvalues for the preconditioned matrix:

Λ(2)
p =

p∆x

sin(p∆x)
(4.4.22)

for |p∆x| ∈ [0, π). The obvious difficulty is that Λ
(2)
max is unbounded. No itera-

tive scheme can overcome this property. (Since finite-element preconditioning
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does not overcome these problems, our discussion will be couched in terms
of the simpler finite-difference preconditioning.)

Orszag (1980) suggested one way around this difficulty: in the Fourier col-
location evaluation of du/dx, simply set the upper third or so of the frequency
spectrum to zero. The prescription for this is first to compute

ũk =
1
N

N−1∑

j=0

uje
−ikxj , k = −N

2
,−N

2
+ 1, . . . ,

N

2
− 1 , (4.4.23)

as usual; then to apply a high-mode cut-off, for example,

ũ
(1)
k =

⎧
⎪⎨

⎪⎩

ikũk , |k| ≤ N

3
,

0 ,
N

3
< |k| ≤ N

2
;

(4.4.24)

and finally to use

du
dx

∣∣∣∣
j

=
N/2−1∑

k=−N/2+1

ũ
(1)
k eikxj , j = 0, 1, . . . , N − 1 . (4.4.25)

The relevant range of |p∆x| is [0, 2π/3]. The upper bound on Λ
(2)
p is 2.42;

the lower bound is still 1. In addition to the loss of accuracy of the resulting
eigenvalues which this method produces, there is also the need to remove the
upper third of the spectrum of f so that the residual may be used to monitor
the convergence of the scheme.

Another approach is to use a first-order, one-sided finite-difference ap-
proximation such as

uj+1 − uj

∆x
= fj , j = 0, 1, . . . , N − 1 . (4.4.26)

The eigenvalues resulting from this preconditioning are

Λ(1)
p =

p∆x

2

sin
(

p∆x

2

)e−i(p∆x/2) . (4.4.27)

These eigenvalues are bounded in absolute value but are complex. Since the
entire frequency spectrum has been retained, there is no loss of accuracy.
However, the iterative scheme must be able to handle complex eigenvalues.

Yet another alternative is to shift, or stagger, the grid on which the deriva-
tive is evaluated with respect to the grid on which the function itself is defined.
This is illustrated in Fig. 4.21. Fourier derivative evaluations are performed
by computing ũk as usual and then using
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xj

uj

xj+3/2

du
dx

|j+3/2

Fig. 4.21. The staggered Fourier grid. The standard collocation points are denoted
by the circles and the shifted points by the x’s

Table 4.5. Preconditioned eigenvalues for a one-dimensional first-derivative model
problem

Preconditioning Eigenvalues

Central differences
p∆x

sin(p∆x)

One-sided differences e−i(p∆x/2) p∆x/2

sin(p∆x/2)

High-mode cut-off

⎧
⎨

⎩

p∆x

sin(p∆x)
0 ≤ |p∆x| ≤ (2π/3)

0 (2π/3) < |p∆x| ≤ π

Staggered grid
p∆x/2

sin(p∆x/2)

du
dx

∣∣∣∣
j+1/2

=
N/2−1∑

k=−N/2+1

ikũke
ik(xj+(π/N)) . (4.4.28)

The finite-difference eigenvalues on this staggered grid are

λ(s)
p = ik

sin
(

p∆x

2

)

p∆x

2

ei(p∆x/2) , (4.4.29)

but the spectral eigenvalues have a similar complex phase shift. Thus, the
preconditioned eigenvalues are

Λ(s)
p =

p∆x

2

/
sin
(

p∆x

2

)
. (4.4.30)

These are real and confined to the narrow interval [1, π/2). Even the simple
Richardson method will perform well with the staggered-grid preconditioning.
These alternative first-order preconditionings are summarized in Table 4.5.

Another difficulty is posed by the traditional Helmholtz equation

−d2u

dx2
− λu = f , (4.4.31)
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where λ > 0. The Helmholtz problem with periodic boundary conditions is
indefinite with eigenvalues

λp = p2 − λ , (4.4.32)

but has a well-defined solution so long as λ 	= p2 for any integer p. Second-
order finite-difference preconditioning leads to

λ(2)
p = 4 sin2

(
p∆x

2

)/
∆x2 − λ,

Λ(2)
p = (p2 − λ)/

⎛

⎜⎜⎜⎝

p2 sin2

(
p∆x

2

)

(
p∆x

2

)2 − λ

⎞

⎟⎟⎟⎠ .

(4.4.33)

There is likely to be a range of p for which Λ
(2)
p < 0. Thus, a preconditioned

version of this Helmholtz problem will have both positive and negative eigen-
values.

As a final example of the complications which can arise in practice, let us
consider the advection-diffusion problem

−ν
d2u

dx2
+

du
dx

= f , (4.4.34)

still with periodic conditions. Second-order finite-difference preconditioning
leads to

Λ(2)
p =

νp2 + ip

νp2
sin2(p∆x/2)
(p∆x/2)2

+ ip
sin(p∆x)
(p∆x)

=
ν4p4 sin2(p∆x/2)

(p∆x/2)2
+ p2 sin(p∆x)/(p∆x)

(
ν2p4

sin4(p∆x/2)
(p∆x/2)4

+ p2
sin2(p∆x)
(p∆x)2

)

+ i
νp3sin2(p∆x/2)/(p∆x/2)2 − νp3sin(p∆x)/(p∆x)

(
ν2p4

sin4(p∆x/2)
(p∆x/2)4

+ p2
sin2(p∆x)
(p∆x)2

) .

(4.4.35)

The eigenvalues are complex and although the real parts are positive, there
are some real parts which are close to zero for small ν. The staggered-grid
preconditioning produces complex eigenvalues as well, but their real parts
are safely bounded greater than zero.
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Chebyshev collocation operators

The eigenvalue ranges of the preconditioned Fourier operator are a good guide
to the range of the preconditioned Chebyshev one as well. Chebyshev poly-
nomials would be employed in place of trigonometric functions for problems
with Dirichlet or Neumann boundary conditions if a fast transform were de-
sired. The appropriate preconditioning is a second-order finite-difference or
a linear finite-element approximation on the non-uniform, Chebyshev grid.
For (4.1.19) with λ = 0, the finite-difference preconditioning is

−2
hj−1 (hj + hj−1)

uj−1 +
2

hjhj−1
uj +

−2
hj (hj + hj−1)

uj+1 = fj (4.4.36)

for j = 1, . . . , N − 1, with u0 = 0 and uN = 0, where hj = xj − xj+1 with
xj = cosπj/N . Haldenwang et al. (1984) have shown analytically that the
eigenvalues of the preconditioned matrix H−1Lcoll are given exactly by

Λ(2)
p =

p(p− 1) sin2 π

2N
cos

π

2N

sin
(p− 1)π

2N
sin

π

2N

, p = 2, 3, . . . , N . (4.4.37)

Hence,
Λ

(2)
min = 1, Λ(2)

max = N(N − 1) sin2 π

2N
. (4.4.38)

Note that Λ
(2)
max ≤ π2/4, which is the same upper bound that applies to the

second-order preconditioned Fourier operator. Francken, Deville and Mund
(1990) derived an analytical approximation to the eigenvalues for linear,
finite-element preconditioning in strong form of this same one-dimensional
problem:

Λ(2)
p �

p(p− 1) sin2 π

2N
cos

π

2N

sin
(p− 1)π

2N
sin

π

2N

(4.4.39)

×
[
2 + cos

(p− 2)π
N

− tan
π

2N
sin

(p− 2)π
N

]
, p = 2, 3, . . . , N .

They show reasonable agreement between their estimate of the eigenvalues
and numerically computed ones. However, there are a small number of eigen-
values with imaginary parts as large as ±0.1.

The finite-difference preconditioning matrix for a Chebyshev collocation
approximation to the second-derivative operator is not symmetric. However,
Heinrichs (1988) noted that it can be symmetrized by scaling the i-th row by
sin(iπ/N).

Funaro (1987) has analyzed the staggered grid preconditioning for the
nonperiodic first-order problem (4.4.20) with Dirichlet boundary conditions
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at x = +1 using Chebyshev collocation. He has shown that the preconditioned
eigenvalues are

Λ(s)
p = p sin

π

2N

/
sin

pπ

N
, p = 1, . . . , N . (4.4.40)

These are confined to the interval [1, π/2], just as they are for the periodic
problem. Funaro also presents some theoretical and numerical results for
preconditioned, one-dimensional first-order systems.

Numerical eigenvalue calculations by Phillips, Zang and Hussaini (1986)
indicate that the largest eigenvalue for the fourth-order finite-difference pre-
conditioning of the Chebyshev second-derivative operator is bounded by 1.85.
Once again, the estimate from the preconditioned Fourier operator is reliable
for the more complicated Chebyshev case. Even for the periodic problem,
fourth-order preconditioning seemed not worthwhile. The case is even more
compelling for nonperiodic problems since (1) special difference formulas are
needed at points adjacent to a boundary, and (2) stable fourth-order finite-
difference approximations on a non-uniform grid to variable-coefficient prob-
lems can be tedious to obtain.

Legendre G-NI operators

In the remaining part of this subsection, we focus on linear finite-element
preconditioning for Legendre G-NI approximations. Such an approach was
first devised by Quarteroni and Zampieri (1992). We consider the Dirichlet
boundary-value problem,

−d2u

dx2
= f, −1 < x < 1 ,

u(−1) = u(1) = 0 .

(4.4.41)

Its Legendre G-NI approximation consists of finding uN ∈ P0
N (−1, 1) (the

space of the algebraic polynomials of degree ≤ N that vanish at the endpoints
x = ±1) satisfying

(uN
x , vN

x )N = (f, vN )N for all vN ∈ P
0
N (−1, 1) , (4.4.42)

where (·, ·)N is the LGL discrete inner product defined in (2.2.24) and
(2.3.12). The corresponding algebraic system reads

KGNIu = MGNI f , (4.4.43)

where u and f are the vectors whose components are uN (xj), j = 1, . . ., N−1,
and f(xj), j = 1, . . . , N − 1, respectively, whereas KGNI and MGNI are the
Legendre G-NI stiffness and mass matrices, respectively, already introduced
in Sect. 3.8. Precisely, denoting by ψj the characteristic Lagrange polynomials
at the LGL nodes xj (see Sect. 2.3.2), we have (KGNI)ij = (ψj,x, ψi,x)N and
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(MGNI)ij = (ψj , ψi)N = wiδij . We recall that the LGL collocation matrix
for the problem at hand is Lcoll = M−1

GNIKGNI (see Sect. 3.8.2).
For the finite-element approximations used as preconditioners, we denote

by KFE and MFE the stiffness and mass matrices associated with linear
finite elements built on the LGL grid; precisely, denoting by ϕj the piecewise
linear, characteristic Lagrange functions at the nodes xj , we have (KFE)ij =
(ϕj,x, ϕi,x) and (MFE)ij = (ϕj , ϕi), where (u, v) =

∫ 1

−1
u(x)v(x) dx. For some

versions of the finite-element preconditioner, we employ the lumped mass
matrix MFE,d, which is the diagonal matrix obtained from the mass matrix by
using the composite trapezoidal numerical integration formula in evaluating
the integrals; precisely, setting hk = xk+1 − xk, we have

(MFE,d)ij =
N−1∑

k=0

[ϕj(xk)ϕi(xk) + ϕj(xk+1)ϕi(xk+1)]hk

=
(

1
2
hi +

1
2
hi−1

)
δij .

(4.4.44)

Finally, as discussed in Sect. C.1, K(B) denotes the iterative condition
number of a matrix B whose eigenvalues are all real and strictly positive,
i.e., K(B) = λmax(B)/λmin(B).

We investigate several ways of preconditioning the linear system (4.4.43).
They are defined by the preconditioned matrices and associated transformed
linear systems reported in Table 4.6.

The algebraic system (4.4.45) corresponds to the weak form of finite-
element preconditioning (according to the distinction introduced at the be-
ginning of the present subsection in the Fourier case), whereas (4.4.46) cor-
responds to the strong form. The system (4.4.47) is obtained by merely re-
placing the exact (nondiagonal) finite-element mass matrix by its lumped,
diagonal approximation. Since the preconditioning matrix in (4.4.45) is sym-
metric and positive definite, this system can be solved by the preconditioned
conjugate gradient (PCG) method; see Sect. 4.5 and Appendix C. This is not
the case for (4.4.46) and (4.4.47); hence, for the solution of these systems
one can resort, e.g., to the preconditioned Bi-CGStab or GMRES iterative
methods.

One PCG iteration costs 1 matrix-vector product plus 1 solution of the
linear system on the preconditioner, whereas one PBi-CGStab iteration costs
2 matrix-vector products plus 2 solutions of the linear system on the precon-
ditioner. The linear system on the preconditioner is solved by either Cholesky
factorization (in the symmetric case) or LU factorization (in the nonsymmet-
ric case).

The systems (4.4.48) and (4.4.49) are symmetrized versions of (4.4.46) and
(4.4.47), respectively, motivated by the desire to exploit the PCG method,
which is more robust and usually more efficient than PBi-CGStab. These
two systems involve square roots of matrices. We recall that for any given
symmetric and positive definite matrix B, B1/2 denotes its square root , i.e.,
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ṽ
=
M

1
/
2

G
N

I
v
,

(4
.4

.4
8
)

P
5

=
(M

−
1
/
2

F
E

,d
K

F
E
M

−
1
/
2

F
E

,d
)−

1
M

−
1
/
2

G
N

I
K

G
N

I
M

−
1
/
2

G
N

I
P

5
ũ
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the matrix such that B1/2B1/2 = B; now let B−1/2 be a short-hand notation
for (B1/2)−1. We note that if A and B are two symmetric and positive-definite
matrices, then the two matrices B−1A and B−1/2A B−1/2 are similar, and
therefore

K(B−1/2A B−1/2) = K(B−1A) .

The final detail concerns the computation of the the square root of a ma-
trix B. When B is diagonal, such as, e.g., MFE,d, B1/2 is simply given by
the square root of its diagonal elements. A nondiagonal (but symmetric and
positive-definite) matrix B can be diagonalized by WTBW = Λ (where Λ is
the diagonal matrix of the eigenvalues of B, and W is the matrix of the cor-
responding orthogonal eigenvectors). We then have that B1/2 = WΛ1/2WT .
However, this procedure requires the computation of the eigenvalues and
eigenvectors of the matrix; furthermore, in general it leads to a full matrix
even if the original matrix is sparse or banded.

As an alternative to diagonalization, one can employ the Cholesky de-
composition of B, namely B = BChB

T
Ch, with BCh lower triangular. Then,

setting B−T
Ch = (B−1

Ch)T = (BT
Ch)−1, B−1

ChA(B−T
Ch ) is still symmetric and posi-

tive definite and is similar to B−1A. Since

K(B−1
ChA (B−T

Ch )) = K(B−1A) ,

instead of M
−1/2
FE KFEM

−1/2
FE we can use M−1

FE,ChKFEM−T
FE,Ch in (4.4.48).

Table 4.7. Iterative condition numbers of the preconditioned matrices P1, . . . , P5

associated with problem (4.4.42)

N K(P1) K∗(P2) K(P3) K(P4) K(P5)

16 2.18516 1.35975 2.18512 1.60205 2.18512

32 2.32011 1.38172 2.32010 1.59526 2.32010

48 2.36773 1.40196 2.36772 1.59491 2.36772

64 2.39207 1.41180 2.39207 1.59483 2.39207

80 2.40686 1.41813 2.40686 1.59479 2.40686

96 2.41680 1.42170 2.41680 1.59477 2.41680

112 2.42393 1.42507 2.42393 1.59476 2.42393

128 2.42930 1.42703 2.42930 1.59475 2.42930

In Table 4.7 we report the iterative condition numbers of the precondi-
tioned matrices P1, . . . , P5, whereas Fig. 4.22 collects their extreme eigen-
values. All the condition numbers are small and uniformly bounded with
respect to N ; whence all of the preconditioners are optimal. P3 and P5,
which are almost similar to each other (their eigenvalues coincide up to
7 significant digits), are also almost similar to P1; in fact, we can write
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P3 = K−1
FE(MFE,dM

−1
GNI)KGNI , and since we have that (MFE,dM

−1
GNI)ii =(

1
2hi−1 + 1

2hi

)
/wi ∼ 1 for all i (see Sect. 7.4), we conclude that P3 ∼ P1.

Their extreme eigenvalues coincide up to the 4-th significant digit.
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Fig. 4.22. Extreme eigenvalues of the preconditioned matrices considered in
Table 4.7

In Fig. 4.23 we report the number of iterations that are required for con-
vergence of two iterative methods, CG and Bi-CGStab, on a one-dimensional
problem. A thorough discussion of the performance of iterative methods on
more challenging, two-dimensional problems is provided in Sect. 4.7.
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Fig. 4.23. Number of PCG or PBi-CGStab iterations needed to solve problem
(4.4.42) with f = 1 and u(−1) = u(1) = 0. Stopping criterion is ||r(k)||2/||r(0)||2 <
10−14. The initial vector is u0 = 0

The preconditioned matrices P1, P4 and P5 have real, positive eigenvalues
since they are the product of two symmetric and positive-definite matrices.
The theoretical analysis given in Sect. 7.4 guarantees that the eigenvalues of
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Fig. 4.24. The eigenvalues of P2 for N = 256 (1D case). The picture on the right
is a zoom of the one on the left

these matrices are uniformly bounded from above, and uniformly bounded
away from zero (with respect to N). Numerical evidence indicates that P2

has complex eigenvalues, whereas P3 has real, positive eigenvalues. The eigen-
values of P2 (for N = 256) are plotted in Fig. 4.24. As predicted by the
theory (see Sect. 7.4), their real parts are positive and uniformly bounded
away from 0, and their moduli are uniformly bounded. Their imaginary parts
are bounded by roughly one-tenth of the corresponding moduli. For a matrix
with this type of eigenstructure, the parameter

K∗ = K∗(L) =
maxj |λj |
minj |λj |

� K(LS) (4.4.50)

(where LS denotes the symmetric part of L) is an effective surrogate for K as
an indicator of the convergence properties of the Richardson iterative scheme.
(In the sequel, we will not usually comment on our use of this surrogate for
K for those matrices for which the surrogate is more appropriate; however,
the relevant figure labels and captions will reflect the use of the surrogate in
those cases.)

In Fig. 4.25 we plot the iterative condition numbers of the preconditioned
matrices P1 = K−1

FEKGNI and P2 = (M−1
FEKFE)−1M−1

GNIKGNI correspond-
ing to the elliptic problem (4.1.19) with several values of λ, not only for
Dirichlet but also for Neumann boundary conditions. In all cases the itera-
tive condition numbers are bounded from above by a small number (π2/4 or
even less).

Preconditioners based on the piecewise linear finite elements are still op-
timal (with respect to N) for the G-NI approximation of the same problem
with Robin conditions, say, ux(1) + αu(1) = 0 for α > 0, and u(−1) = 0.
In Fig. 4.26 we report the iterative condition numbers of the preconditioned
matrices P1 and P2 for different values of N and several values of α. Note
that they are uniformly bounded with respect to N , and that the condition
numbers for different values of α are graphically indistinguishable.
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Fig. 4.25. The iterative condition numbers K(P1) (left) and K∗(P2) (right) for the
problem −uxx + λu = f , −1 < x < 1, with either Dirichlet or Neumann boundary
conditions and different values of λ
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Fig. 4.26. The iterative condition numbers K∗(P1) and K∗(P2) for the problem
−uxx = f, −1 < x < 1, with Robin boundary condition ux +αu = 0 at x = −1 and
x = 1, for α = 0.01, 1 and 100; the curves for different values of α are graphically
indistinguishable. Similar results are obtained when a Dirichlet condition is enforced
on x = 1

For advection-diffusion equations such as (4.4.34) or pure advection equa-
tions like (4.4.20) the situation is more varied. For values of N large enough
with respect to 1/

√
ν (see the analysis on the stabilization of advection-

diffusion equations in Sect. 7.2), the pure G-NI method provides stable and
accurate solutions for (4.4.34) with, say, Dirichlet boundary conditions. In
that case, the standard Galerkin piecewise-linear finite-element matrix can
still be used to precondition the G-NI matrix, as the results of Fig. 4.27 show.
However, in order to get condition numbers close to 2.5, smaller values of ν
require larger values of N , or else suitable stabilization strategies for both the
G-NI and the FEM approximation. In Sect. 7.2.1 we consider stabilization
techniques for spectral Galerkin or G-NI discretizations of advection-diffusion
operators, inspired by the popular SUPG stabilization used in finite-element
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Fig. 4.27. The iterative condition number K∗(K−1
FEKGNI) for the problem −νuxx+
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Fig. 4.28. Eigenvalues of the finite-element preconditioned, advection-diffusion
operator −νuxx + ux = f, −1 < x < 1, for ν = 10−4:
(left column) N = 16, (right column) N = 48;
(upper row) with SUPG-stabilization in both spectral and finite-element scheme,
(lower row) without any stabilization in either scheme
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methods (see (7.2.20)). In that case, the natural preconditioner is provided
by the low-order finite-element scheme, stabilized by the same SUPG tech-
nique. Such a preconditioner is quite effective in all regimes. The upper row
of Fig. 4.28 shows the spectra of the resulting preconditioned operator for
two values of N . The eigenvalues, although complex, are close to a segment
in the positive real semi-axis, and the resulting condition numbers are on the
order of 2.5. For comparison, the lower row of the figure shows the spectra of
the preconditioned operator when stabilization is switched-off from both the
spectral scheme and the finite-element preconditioner.

4.4.3 Low-Order Preconditioning in Several Dimensions

As in the one dimensional case, preconditioning in several dimensions can
be accomplished by either finite-difference or finite-element operators at the
same nodal points used for the spectral discretization. This yields structured,
sparse matrices. The solution of the associated systems can be achieved by
direct or iterative algorithms. In the latter case, particularly when the system
size is very large, the preconditioning matrix itself needs to be preconditioned,
for instance by resorting to one of its inexact factorizations.

Although the separation is not at all sharp, we prefer to split our presen-
tation into two logical parts for the sake of clarity. The first part will mostly
deal with finite-difference preconditioners applied to Chebyshev collocation
discretizations and to their inexact factorizations. The second part will be
concerned with finite-element preconditioners for Legendre G-NI discretiza-
tions.

Inexact Factorizations of Low-Order Preconditioners

The structure of the preconditioning matrix is similar for second-order finite-
difference preconditioning and linear finite-element preconditioning of a spec-
tral collocation discretization. Much of the discussion in this section is com-
mon to both. Where this is the case, we will just use the term low-order pre-
conditioning to refer to either of these cases. The available theoretical results
for such preconditioning are summarized in Sect. 7.4. For one-dimensional
problems, low-order preconditionings of the spectral operator (see Sect. 4.4.2)
are a quite inexpensive part of the iterative scheme. The low-order inversion
part of the algorithm (by that we mean the solution of a linear system whose
matrix is the preconditioner) typically costs O(N) operations, compared with
the O(N log2 N) or O(N2) cost for the application of the spectral operator
to get the residual. In higher dimensions, however, the low-order inversion
becomes relatively expensive and/or complicated. The best that one can do
in terms of a direct solution is for separable problems, for which the cost
of a low-order solver using cyclic reduction (see the review by Swarztrauber
(1977)) is O(Nd(log2 N)d−1). For nonseparable problems, direct solution of
the low-order equations is still more expensive – scaling as N3d−2 for a banded
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solver. For separable problems in more that two dimensions and for nonsep-
arable problems already in two dimensions, the cost of a direct inversion of
the low-order preconditioner is much larger than the cost of evaluating the
residual – O(Nd log2 N) when fast transforms are applicable and O(N2d) oth-
erwise. General banded solver software is available in LAPACK (Anderson et
al (1999), Barker et al. (2001)) and general sparse solvers in (Davis (2004)).

Iterative methods, particularly conjugate gradient methods (and their
generalizations to nonsymmetric problems), have been the preferred strategy
for inverting the low-order preconditioner to the spectral operator. These are
reviewed in Appendix C, and their use in spectral methods is discussed in
Sects. 4.5.1 and 4.5.2. Multigrid methods, despite their asymptotically smaller
cost of only O(Nd) operations to invert a low-order approximation to an ellip-
tic problem, have not seen much use for solving the preconditioned system.
One exception is the work of Heinrichs (1993), who demonstrated multi-
grid solutions of a finite-element preconditioner for several two-dimensional
Poisson examples. Perhaps it has been their greater complexity (compared
with conjugate gradient methods) that has led to their lack of use for in-
verting low-order preconditioners to spectral methods. Some of the flavor of
multigrid methods is conveyed in Sect. 4.6 in the context of spectral dis-
cretizations. Thorough discussions of multigrid methods for finite-difference
methods are given by Stuben and Trottenberg (1982), Hackbusch (1985) and
Wesseling (2004). General multigrid software that appears suitable for per-
forming low-order multigrid on the non-uniform grids arising from Chebyshev
(or Legendre) spectral methods is available in MADPACK (Douglas (1995)).

In practice, when the size of the algebraic system is very large, precondi-
tioning of the low-order approximation is essential. Hence, the use of iterative
methods for the solution of the preconditioned spectral equations requires an
inner iteration (for the low-order equation) embedded within an outer iter-
ation (for the spectral equation itself). Preconditioning even for low-order
approximations continues to be an active field of research; see e.g. Evans
(1983), Axelsson (1994), Saad (1996), Benzi (2002), van der Vorst (2003).
The most commonly used low-order preconditioners of spectral methods, at
least for conjugate gradient-type iterative schemes, are based on incomplete-
LU decompositions (or incomplete-Cholesky decompositions for symmetric
and positive-definite matrices). Alternating-line relaxation in 2 dimensions
(or plane relaxation in 3 dimensions) has seen a more limited amount of use,
primarily for spectral multigrid methods.

To illustrate the incomplete-LU decomposition, we consider the approxi-
mate inversion of a finite-difference preconditioner for Chebyshev collocation
approximation to the two-dimensional Poisson equation (4.1.55). Let the ma-
trix HFD represent the standard five-point second-order finite-difference ap-
proximation to the differential equation (4.1.55). The standard incomplete-
LU decomposition (Meijerink and van der Vorst (1981), Axelsson (1994)) is
given by
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HIN = RINSIN (4.4.51)

(using notation in keeping with that of Sect. 4.2.3), where RIN (apart from
the diagonal) is identical to the lower-triangular portion of HFD, and SIN

is chosen so that the two super diagonals of HIN agree with those of HFD.
A modified type of incomplete-LU preconditioning – the so-called row-sum-
equivalence incomplete-LU decomposition – is obtained similarly, but the di-
agonal elements of RIN are altered from those of HFD so as to ensure that
the row sums of HIN and HFD are identical. We denote the resulting pre-
conditioning matrix for the standard incomplete-LU decomposition by HILU ,
and the one for the row-sum-equivalence version by HIRS .

A five-point approximation on a Chebyshev grid to (4.1.55) may be writ-
ten as

(HFDU)i,j = Ei,jUi,j + Di,jUi−1,j + Fi,jUi+1,j

+ Hi,jUi,j+1 + Bi,jUi,j−1 ,
(4.4.52)

where Ui,j denotes the value of the spectral solution at the grid point xi,j .
Figure 4.29 shows the structure of the matrix HFD. A five-diagonal incom-
plete-LU factorization is given by (4.4.51) with

(RINU)i,j = vi,jUi,j + ti,jUi−1,j + gi,jUi,j−1 (4.4.53)

and

(SINU)i,j = Ui,j + ei,jUi+1,j + fi,jUi,j+1 . (4.4.54)

Figure 4.30 shows the structure of the factors RIN and SIN . The coefficients
in (4.4.53) and (4.4.54) are related to those in (4.4.51) by

ti,j = Di,j , gi,j = Bi,j ,

vi,j = Ei,j − ti,jfi,j−1 − gi,jei−1,j

− α [ti,jei,j−1 + gi,jfi−1,j ] ,

ei,j = Fi,j/vi,j , fi,j = Hi,j/vi,j .

(4.4.55)

The choice α = 0 gives the standard incomplete-LU result (HILU5), and
α = 1 gives the row-sum-equivalence version (HIRS5). Since neither version
is an exact factorization of the original finite-difference matrix, some error
is inevitable. Roughly speaking, the standard incomplete-LU decomposition
(HILU5) does better on the high-frequency components and the row-sum-
equivalence alternative (HIRS5) is more accurate on the low-frequency end.

A more accurate factorization can be achieved by including one extra
nonzero diagonal in RIN and SIN as indicated in Fig. 4.31. This seven-
diagonal incomplete-LU factorization is a straightforward generalization (see
Wong, Zang and Hussaini (1986) for details in the context of spectral
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Fig. 4.31. Structure of the seven-diagonal incomplete-LU preconditioning

methods). Once again, there are both the standard, HILU7, and the row-
sum equivalence, HIRS7, versions.

A good indication of the effectiveness of these preconditionings is provided
by their eigenvalue distribution. Let us consider the case of a 16×16 grid. The
fully finite-difference preconditioning produces eigenvalues which are purely
real and confined to the interval [1,2.31]. All but two of the eigenvalues result-
ing from the standard incomplete-LU preconditioning are real; the imaginary
parts of the two complex eigenvalues are only of order 10−3. The real parts
are in [.22, 2.4]. The row-sum-equivalence preconditioned eigenvalues have
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real parts in [1, 2.7], and the imaginary parts of the only two complex ones
are of order 10−3 as well.
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Fig. 4.32. Maximum (left) and minimum (right) eigenvalues for the preconditioned
Chebyshev Laplace matrix in two dimensions using incomplete-LU decompositions
with 5 and 7 nonzero diagonals, both without (ILU) and with (IRS) the row-sum-
equivalence modification

As N increases beyond 16, more complex eigenvalues arise for the fac-
tored preconditionings, but their imaginary parts are still very small. The
complex eigenvalues remain small in number and are well removed from the
extreme moduli of the spectra; in particular, the eigenvalues with the maxi-
mum and minimum moduli are purely real. Figure 4.32 summarizes how the
extreme eigenvalues depend on the N ×N grid. (The interval [1.09, 2.60] en-
compasses the real parts of all the complex eigenvalues for the cases shown
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Fig. 4.33. Iterative condition numbers K∗ for the preconditioned Chebyshev
Laplace matrix using incomplete-LU decompositions, both without (ILU) and with
(IRS) the row-sum-equivalence modification
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in this figure; the imaginary parts are all less than 5×10−3.) These empirical
results indicate that the largest eigenvalue grows very slowly for the standard
incomplete-LU decompositions (approximately as N1/8 and N1/10 for the 5-
diagonal and 7-diagonal versions, respectively), but grows roughly as N for
both row-sum-equivalence versions. On the other hand, the smallest eigen-
value for the incomplete-LU decomposition decreases rapidly towards zero,
approximately as N−5 for the 5-diagonal preconditioning and approximately
as N−2 for the 7-diagonal preconditioning. Figure 4.33 displays the iterative
condition numbers for these cases. Eigenvalue computations for the full HFD

preconditioner indicate that its iterative condition number is bounded in this
two-dimensional case by the one-dimensional bound of π2/4 ≈ 2.47. Since all
the iterative methods discussed in Sect. 4.5 perform better for smaller K∗,
the choice there lies between HFD and HIRS7. For small values of N , HIRS7

is clearly preferable since, in practice, the inversion of HIRS7 takes only a few
percent of the time of the evaluation of Lv and its iterative condition num-
ber is nearly as good as that of the much more expensive HFD. Wong, Zang
and Hussaini (1986) present several numerical examples of these incomplete-
LU preconditionings used with iterative schemes. The preference eventually
changes for large enough N , however, since the iterative condition number
of H−1

IRS7L grows as
√

N whereas that of H−1
FDL remains bounded by 2.47.

In this case the best approach may be to use either a multigrid or a direct
method for inverting HFD.

Although the standard incomplete-LU decompositions are clearly outper-
formed by their row-sum-equivalence version for standard iterative methods,
they do have distinct advantages in the spectral multigrid context, as will be
discussed in Sect. 4.6.

In the case of bilinear finite-element preconditioning in two dimensions,
the stencil contains 9 points rather than the 5 points for second-order finite-
difference approximations. Hence, the corresponding class of incomplete-
Cholesky or incomplete-LU decompositions (depending upon whether or not
the preconditioning matrix is symmetric) require at least 9 diagonals.

Another class of preconditioners for the low-order approximation is based
upon line relaxation. The simplest description of alternating line relaxation
(ALR) uses the notation employed in Sect. 4.1.4. We write the spectral collo-
cation discretization of (4.1.55) as (4.1.56) with λ = 0 and the corresponding
full finite-difference preconditioned problem as

Rn = (F −DxV
n + V nDT

y ) ,

Hx(V n+1 − V n) + (V n+1 − V n)HT
y = ωRn ,

(4.4.56)

where R denotes here the residual matrix, and Hx and Hy are the respec-
tive finite-difference approximations to Dx and Dy, and ω is the relaxation
parameter. The approximate finite-difference preconditioned problem is

Hx(V n+1/2 − V n) = ωRn − (V n+1/2 − V n)HT
y ,

(V n+1 − V n+1/2)HT
y = ωRn −Hx(V n+1/2 − V n) .

(4.4.57)
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For second-order finite differences, the odd rows (or columns) are decoupled
from the even rows (or columns). One can then solve for all the odd rows
(columns) in parallel and then add the even rows (columns) in parallel.
This refinement is referred to as alternating zebra line relaxation (AZLR).
It was introduced as a preconditioner for approximating second-order finite-
difference preconditioners for spectral discretizations by Brandt, Fulton and
Taylor (1985). The ALR scheme is a relaxed line-Jacobi iteration, whereas
the AZLR version is relaxed line-Gauss-Seidel.

The incomplete-LU preconditionings makes more poor use of parallel com-
puters because of their recursive nature. The ALR and AZLR techniques,
however, parallelize well. Their primary use for spectral methods has been in
the context of spectral multigrid methods (see Sect. 4.6).

Yet another type of line relaxation that has been applied to spectral
methods by Streett, Zang and Hussaini (1985) is based upon approximate
factorization (AF) of the low-order preconditioner:

V n+1 = V n + ω∆V n , (4.4.58)

where ∆V n is the solution to

[αnI −HxV
n]
[
αnI − V nHT

y

]
∆V n = αnR

n . (4.4.59)

This is just the Douglas and Gunn (1964) version of alternating direction
implicit (ADI) relaxation applied to the full finite-difference approximation.
(The solution algorithm for these equations may include parallelization over
the y-direction for the inversion of the matrix in the first brackets and over
the x-direction for the other matrix.) An essential part of this type of pre-
conditioning is the choice of the parameters αn and ωn. A brief discussion
is provided by Streett, Zang and Hussaini (1985). Trial and error is a major
component of the selection process.

Finite Element Preconditioning of G-NI Operators

We now consider the multidimensional counterpart of problem (4.4.41),
namely,

−∆u = f in Ω = (−1, 1)2 ,

u = 0 on ∂Ω .
(4.4.60)

(Although we confine ourselves to homogeneous Dirichlet boundary condi-
tions for the Laplacian operator, the extension of the subsequent arguments
to the case of other boundary conditions and operators is straightforward.)
The Legendre G-NI discretization of this problem consists of finding a poly-
nomial uN in P

0
N (Ω) (the space of the algebraic polynomials of degree ≤ N

in each direction, vanishing on ∂Ω) satisfying

(∇uN ,∇vN )N = (f, vN )N for all vN ∈ P
0
N (Ω) , (4.4.61)
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where (·, ·)N denotes the two-dimensional Legendre Gauss-Lobatto (LGL)
discrete inner product in Ω. The algebraic system corresponding to (4.4.61)
reads again as (4.4.43), i.e.,

KGNIu = MGNI f , (4.4.62)

where now u and f are the vectors whose components are the values of uN

and f at the (N−1)×(N−1) interior LGL nodes xj (here numbered in lexico-
graphical order). Correspondingly, ψj will denote the characteristic Lagrange
polynomial at xj , defined by the conditions ψj ∈ P

0
N (Ω) and ψj(xk) = δjk

for all k = 1, . . . , (N − 1)2. Thus, for i, j = 1, . . . , (N − 1)2,

(KGNI)ij = (∇ψj ,∇ψi)N and (MGNI)ij = (ψj , ψi)N .

The finite-element preconditioner is built on the partition (or mesh) of
Ω = [−1, 1]2 made of the rectangles, R, whose vertices are two consecutive
LGL nodes in each direction (see Fig. 4.34).

R

xj+N−1 xj+N

xj xj+1

Fig. 4.34. The finite-element mesh in Ω induced by the two dimensional LGL grid.
An internal rectangle is highlighted with its vertices

Let ϕj denote the finite-element characteristic Lagrange function at xj ,
i.e., the globally continuous, piecewise bilinear function in each R, vanishing
on ∂Ω, such that ϕj(xk) = δjk for all k = 1, . . . , (N − 1)2. The associated
finite-element stiffness matrix KFE is defined by
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(KFE)ij = (∇ϕj ,∇ϕi) , i, j = 1, . . . , (N − 1)2 , (4.4.63)

where (·, ·) denotes the standard (L2) inner product in Ω. We will also con-
sider its numerical approximation KFE,app , defined by

(KFE,app)ij =
∑

R

∫

R

Π1,R(∇ϕT
j ∇ϕi) dx , i, j = 1, . . . , (N − 1)2 ,

where Π1,R(g) denotes the bilinear interpolant of a function g at the four
vertices of R. The finite-element mass matrix MFE is defined by

(MFE)ij = (ϕj , ϕi) , i, j = 1, . . . , (N − 1)2 .

Its diagonal approximation is the lumped mass matrix MFE,d , defined by

(MFE,d)jj =
1
4
(hj1−1 + hj1)(hj2−1 + hj2) , j = 1, . . . , (N − 1)2 ,

if xj = (xj1 , yj2).
Similarly to what we have done in Sect. 4.4.2 for the one-dimensional case,

we now introduce several preconditioned matrices, which lead to correspond-
ing linear systems equivalent to (4.4.62). They are reported in Table 4.8.

Note that (4.4.64) and (4.4.65) are exactly the counterparts of the one-
dimensional preconditioned systems (4.4.45) and (4.4.46), respectively. On
the contrary, (4.4.66) and (4.4.67) are obtained from (4.4.64) and (4.4.65),
respectively, using the approximate versions of both finite-element matrices.

As in the one-dimensional case, we can symmetrize the systems (4.4.65)
and (4.4.67), resulting in the entries (4.4.68)–(4.4.70) in Table 4.8. In (4.4.69),
MFE,Ch is the Cholesky factor of MFE . This variant is motivated by the
rapidly prohibitive (as N increases) cost of computing the square root M

1/2
FE

in the present two dimensional geometry.
The matrices P1, P3, P5, P6 and P7 have real positive eigenvalues, being

products of two symmetric and positive-definite matrices; as predicted by
the theory (see Sect. 7.4), they are uniformly bounded from above and from
below with respect to N . As for the one-dimensional case, numerical evidence
indicates that P4 has real eigenvalues, P2 has complex eigenvalues of bounded
moduli and real parts positive and uniformly bounded away from 0 (see
again Sect. 7.4), with imaginary parts hardly larger than one-tenth of the
corresponding moduli. As in the one-dimensional case, we still look at K∗

(see (4.4.50)) as a surrogate of the iterative condition number.
In Table 4.9 we report the iterative condition numbers of the precondi-

tioned matrices P1, . . . , P7. All of them are uniformly bounded with respect
to N . The values for P2 to P5 are similar to those obtained in the one-
dimensional case (see Table 4.7). On the contrary, the condition numbers of
P1 is significantly larger than the others; this behavior can be understood
by carefully exploring the tensor-product structure of the preconditioning
matrix – we refer to the last paragraph of Sect. 7.4 for the details.
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Table 4.9. Iterative condition numbers of the preconditioned matrices P1, . . . , P7

associated with problem (4.4.60)

N K(P1) K∗(P2) K(P3) K(P4) K(P5) K(P6) K(P7)

8 5.4728 1.3525 1.9454 1.9451 1.6020 2.6893 1.9451

16 6.4402 1.3597 2.1852 2.1851 1.6020 2.9846 2.1851

24 6.7655 1.3720 2.2739 2.2738 1.5957 3.0511 2.2738

32 6.9273 1.3817 2.3201 2.3201 1.5953 3.0756 2.3201

40 7.0238 1.3978 2.3485 2.3485 1.5950 3.0872 2.3485

48 7.0878 1.4020 2.3677 2.3677 1.5949 3.0937 2.3677

56 7.1333 1.4077 2.3816 2.3816 1.5949 3.0976 2.3816

64 7.1674 1.4118 2.3921 2.3921 1.5949 3.1001 2.3921

The smallest condition number is obtained, as in the one-dimensional
case, for P2; this amounts to using the strong form of finite-element precon-
ditioning, or, equivalently, to preconditioning the collocation matrix Lcoll =
M−1

GNIKGNI by the corresponding finite-element matrix M−1
FEKFE involving

the consistent mass matrix (i.e., the mass matrix with no lumping). However,
the size of the iterative condition number of the preconditioned matrix is but
one element in the evaluation of the performance of an iterative method,
the cost of the single iteration being another important element of analysis.
We will report in Sect. 4.7 numerical results concerning number of itera-
tions and CPU times for several iterative solution schemes applied to the
preconditioned systems (4.4.64)–(4.4.70). From them it emerges that, unlike
the one-dimensional case, the overall best performance is guaranteed by the
matrix P3 (corresponding to the weak form of finite-element precondition-
ing, but with an approximate stiffness matrix) within a conjugate gradient
method.

The operation counts for the major steps in the iterative solution of the
2D Poisson problem with a Legendre G-NI method are supplied in Table 4.10.
The cost of a matrix assembly scales linearly with the dimension n = (N−1)2

of the matrix; precisely it takes about 50n operations to assemble KFE or
KFE,app, about 20n to assemble MFE and about 4n to assemble MFE,d. The
factorization of the preconditioning matrix takes O(N4) operations for each
type of preconditioning listed in the table. Thus, the total pre-processing
cost – assembly of the preconditioning mass and stiffness matrices plus fac-
torization of the preconditioning stiffness matrix – is driven by the cost of
the factorization. The residual computation is dominated by the matrix-
vector product, which also takes O(N3) operations. The back-substitution
and forward-substitution stages of the solution of the preconditioned system
also take O(N3) operations. Thus, the total operation count per iteration
scales as O(N3). As documented in Sect. 4.7, the number of iterations typi-
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Table 4.10. Number of floating point operations for the major steps in the con-
struction and application of the various preconditioners for the 2D Poisson problem.
N denotes the polynomial degree, n = (N − 1)2 the matrix dimension, b the pre-
conditioner bandwidth. Residual computation takes 2nz+n operations in all cases,
where the number nz of non-zero elements is � N3.

Preconditioner Bandwidth (b) Factorization Preconditioner

assembly of KFE or of KFE or solve

KFE,appr KFE,appr

P1 50n N + 2 n(b2 + 3b) + n sqrt 4n · b
P2 50n+ 20n N + 2 n(b2 + 3b) + n sqrt 8n · b
P3 50n N + 1 n(b2 + 3b) + n sqrt 4n · b
P4 50n+ 4n N + 1 n(b2 + 3b) + n sqrt 4n · b+ n

P5 50n+ 20n N + 2 + 2n3 n(b2 + 3b) + n sqrt 4n · b+ 4n2

+n2(1 + 8b/3)

P6 50n+ 20n N + 2 2n(b2 + 3b) + 2n sqrt 8n · b
P7 50n+ 4n N + 1 n(b2 + 3b) + 2n sqrt 4n · b+ 2n

cally required to solve the 2D Poisson problem with the preconditioners dis-
cussed in this subsection is O(10). Thus, for small N , direct solution methods
are the most efficient and for intermediate N the preferred approach is itera-
tive solution with full factorization of the preconditioner. For sufficiently large
N , an inexact factorization of the preconditioner, similar to that discussed
above in the context of Chebyshev collocation methods, may be attractive.

4.4.4 Spectral Preconditioning

The vast majority of the work on preconditioners for spectral methods has fo-
cused on the use of low-order preconditioners. Yet, for some problems, a spec-
tral preconditioner can be competitive. One can precondition a variable-
coefficient problem such as (4.4) by the spectral approximation to the corre-
sponding equation in which ai are constants rather than functions of x. The
solution of the constant-coefficient preconditioner can be obtained quite ef-
ficiently by ad hoc methods (Sect. 4.1). Candidate iterative schemes for this
type of preconditioned problem include not only the methods discussed in
Sect. 4.5, but also the classic method of Concus and Golub (1973), which
was developed for low-order discretizations. The robustness and efficiency of
these methods are very problem dependent. Some examples of applications of
spectral preconditioners can be found in Guillard and Desideri (1990), Zhao
and Yedlin (1994), Strain (1994), and Dimitropoulos and Beris (1997).
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4.5 Descent and Krylov Iterative Methods
for Spectral Equations

The past four decades have witnessed extensive research into iterative schemes
for linear equations. Some standard references include the books by Varga
(1962), Young (1971), Hageman and Young (1981), Saad (1996) and van der
Vorst (2003). Appendix C furnishes a summary in a generic context of many
widely-used iterative methods. The present section is focused on the special-
ized context of iterative algorithms for spectral methods. In particular, this
section directs the users of spectral methods towards those classes of itera-
tive algorithms that have proven the most useful for solving the linear system
(4.8) produced by spectral discretizations.

The most thorough analyses of iterative methods are available for sym-
metric and positive-definite systems. Descent methods are simple, robust and
efficient schemes for such systems. Unfortunately, they are strictly applica-
ble to a limited subset of spectral equations, e.g., for Fourier collocation or
Legendre G-NI approximations to self-adjoint problems. Of course, a nonsym-
metric system of the form (4.8) can always be transformed into a positive-
definite system given by the normal equation

LTLu = LT b . (4.5.1)

But the normal equation generally has a condition number that is the square
of that for the original system, and the operator L must be applied twice.
In most cases, effective alternatives to the normal equation approach are
available and our discussion is confined to these alternatives.

4.5.1 Multidimensional Matrix-Vector Multiplication

Before entering this discussion, it is worth pointing out that at every iteration,
all iterative methods require the computation of a new residual as well as
(possibly) the solution (exact or inexact) of a linear system governed by the
preconditioning matrix. The latter issue has been extensively covered in the
previous section.

The residual evaluation can be accomplished either by a direct compu-
tation of the derivatives involved in the underlying differential operator or
by a matrix-vector multiplication. The former strategy can benefit from the
use of the transform methods that were illustrated in the previous chapters.
On the other hand, when using matrix-vector multiplication, the structure of
the spectral matrix L can be conveniently exploited. For tensor-product ma-
trices (whose impact on the efficiency of spectral methods was first pointed
out by Orszag (1980)), a matrix-vector product can be performed reason-
ably efficiently, i.e., at a cost of only O(Nd+1) operations, as opposed to the
O(N2d) operations of the standard algorithm. The implementation, which
is described below, does not resort to any fast transform method and does
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not require the storage or even the formation of the O(N2d) entries of the
spectral matrix. Another common structure is the sparse pattern of a G-NI
matrix which originates from the discretization of a separable operator (in
the reference tensor-product domain). In this case, the number of non-zero
elements in each row is O(N), yielding again a cost of O(Nd+1) operations
for a matrix-vector multiplication algorithm tailored to sparse matrices.

We now focus on the details of the algorithm for matrix-vector multipli-
cation in the tensor-product case. Let us assume that the spectral matrix is
a sum of matrices individually having the tensor-product structure illustrated
in (4.2.1). Then, for any given vector, vn, the computation of the residual,
rn = b− Lvn, can take advantage of the following algorithm for computing
a product z = Avn. Using the following factorization of the multidimensional
sum:

zh =
∑

k

a
(d)
hdkd
· · · a(2)

h2k2
a
(1)
h1k1

vk

=
N∑

kd=1

a
(d)
hdkd

(
· · ·

N∑

k2=1

a
(2)
h2k2

(
N∑

k1=1

a
(1)
h1k1

vk1k2...kd

)
· · ·
)

,

we obtain z = z(d) as the output of the recursion algorithm

z(0) = v ;
for l = 1, . . . , d,define z(l) by

z
(l)
h1...hlkl+1...kd

=
N∑

kl=1

a
(l)
hlkl

z
(l−1)
h1...hl−1kl...kd

.

Each recursion step requires O(Nd) operations using only the action of one
of the matrices A(l), whence the result. This algorithm is termed the sum
factorization technique.

The interest of this procedure is obviously not restricted to the compu-
tation of residuals. It can be applied to any linear transformation which can
be factorized into successive applications of one-dimensional operators (such
as the transforms from coefficient space to physical space and back, or the
numerical evaluation of partial derivatives or integrals of a function).

The sum factorization technique can be efficiently applied also to some
linear transformations related to the warped tensor-product expansions con-
sidered in Sect. 2.9.1. Assume for instance that the vector z = Av has to be
computed, given a vector v = (vk) = (vk1k2) and a matrix A = (ahk), whose
entries can be factorized as

ahk = a
(1)
h1k1

a
(2)
k1h2k2

.

(This is the structure of the matrix which describes, e.g., the evaluation of
a polynomial in PN (T ) at the O(N2) mapped LGL nodes, given the O(N2)
coefficients of its warped tensor-product expansion.) Then, we can write
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zh =
∑

k

ahkvk =
∑

k1

a
(1)
h1k1

(
∑

k2

a
(2)
k1h2k2

vk1k2

)
.

The recursive evaluation of the right-hand side yields z in O(N3) operations
if v contains O(N) entries in each of the two directions. Note that, unlike
the pure tensor-product case considered above, here the order in which the
factorization is performed is uniquely determined.

Unfortunately, the mass and stiffness matrices associated with warped
tensor-product expansions are sums of matrices whose entries rather have
the structure

ahk = a
(1)
h1k1

a
(2)
h1k1h2k2

(see Sect. 4.2.2); in this case, no gain is obtained from the sum factorization
technique, leaving at the standard O(N4) operations the computational cost
of applying such matrices to a vector with O(N2) entries.

We refer to Karniadakis and Sherwin (1999) for further details on the
latter topics.

4.5.2 Iterative Methods

Iterative algorithms of descent type include several variants of the minimum
residual Richardson method, the steepest descent (or gradient) Richardson
method, the conjugate gradient method, and the conjugate residual method;
see Appendix C. We abbreviate these as MRR, SDR, CG and CR respec-
tively, when used without preconditioning, and as PMRR, PSDR, PCG and
PCR respectively, when used with preconditioning. They represent a natural
choice for solving symmetric and positive-definite spectral equations, such as
those generated by Fourier collocation approximations or Legendre G-NI ap-
proximations to second-order self-adjoint problems. Efficiency requires that
the algorithms be applied to the ill-conditioned spectral matrix L in their
preconditioned version; the preconditioning matrix H should be symmetric
and positive definite as well. Sometimes, a gradient method is used on a non-
symmetric problem with the same algorithm as used for the symmetric and
positive-definite case; in such circumstances we insert the adjective truncated
in the name to emphasize that the orthogonality properties of the method
when applied to a symmetric and positive-definite system are lost. An exam-
ple is the truncated conjugate residual (TCR) method, which we use in Sect.
4.7 in some numerical examples.

The description of several preconditioned descent methods, accompanied
by pseudocodes, can be found in Sect. C.2 of Appendix C. Comparative
numerical results on their use for solving spectral equations, concerning con-
vergence histories and CPU times, are deferred to Sect. 4.7.

Standard Chebyshev collocation approximations do not yield symmetric
discretizations, even for self-adjoint problems. However, it is possible to per-
form collocation on a symmetric, weak formulation of the problem (4.2) – see
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Spalart (1986) for the weak formulation of the corresponding Fourier-Jacobi
Galerkin approximation.

More generally, descent methods are applicable in certain situations even
to nonsymmetric systems. A common situation is when the eigenvalues of the
symmetric part of H−1L, defined by

(H−1L)S =
1
2
[
(H−1L) + (H−1L)T

]
, (4.5.2)

are positive. Malik, Zang and Hussaini (1985) and Zang, Wong and Hussaini
(1986) provide one- and two-dimensional examples, respectively, of the use of
the PMRR method for solving nonsymmetric systems resulting from Cheby-
shev collocation. See Sect. 4.7 for some two-dimensional numerical examples.

Scaling can be crucial for these descent methods. Suppose that the rows
of L are scaled by Q1 and the columns by Q2, and likewise, for H. Then we
are interested in

LQ = Q1LQ2 ,

HQ = Q1HQ2 .
(4.5.3)

We have that

LQH−1
Q = Q1LH−1Q−1

1 .

Although the spectrum of LQH−1
Q corresponds to that of LH−1, the same is

not true of their symmetric parts. An example of the crucial role that scaling
can play is furnished in Malik, Zang and Hussaini (1985).

For general nonsymmetric systems, as for symmetric systems which are
preconditioned in a nonsymmetric way, iterative methods that usually work
can be found in the family of Krylov methods; they include the (restarted)
generalized minimum residual (GMRES) method, as well as the bi-conjugate
gradient stabilized (Bi-CGStab) method. Again, their preconditioned versions
should be used for spectral systems.

This family of iterative schemes are described in Sect. C.3 of Appendix C,
where pseudocodes for the preconditioned GMRES and Bi-CGStab methods
are given. Numerical results concerning their application to the solution of
spectral equations are again reported in Sect. 4.7.

4.6 Spectral Multigrid Methods

For elliptic problems such as Poisson’s equation some of the preconditioned
iterative methods described above require an increasing number of iterations
to achieve convergence as the size of the problem increases. Methods which
use either a direct method or a multigrid technique to invert the full low-order
(second-order finite-difference or linear finite-element) preconditionings are



4.6 Spectral Multigrid Methods 243

optimal, i.e., the iterative condition number is independent of N , the number
of polynomials in one dimension, and so is the convergence rate of the overall
iterative procedure. However, the cost of a direct inversion of the low-order
preconditioner increases faster than the cost of the evaluation of the residual
of the approximate solution to the discrete spectral equations. In the case of
an N × N two-dimensional problem, the cost of the direct inversion of the
preconditioning matrix is O(N4), which is large compared with the O(N3)
or O(N2 log2 N) cost of the residual computation (depending upon whether
matrix multiplies or fast transforms are used). Multigrid solution of the low-
order preconditioning equations takes only O(N2) operations. As noted in
Sect. 4.4.3 this approach has attracted little attention, perhaps undeservedly
so.

Our focus in this section will be on yet another alternative – spectral
multigrid (SMG) iterative methods – originally proposed by Zang, Wong,
Hussaini (1982). These resort to relatively cheap preconditioning schemes
such as incomplete-LU factorization or line relaxation, but within an overall
iterative scheme for which the number of iterations is independent of the
number of unknowns.

4.6.1 One-Dimensional Fourier Multigrid Model Problem

We begin the discussion of spectral multigrid techniques by reverting to the
non-preconditioned Richardson scheme with which Sect. 4.4.1 began. The
condition number of this method increases as N2. The resulting slow con-
vergence was the outcome of balancing the damping of the lowest frequency
eigenfunction with that of the highest frequency one in (C.1.7). The multi-
grid approach takes advantage of the fact that the low frequency modes
(|p| < N/4) can be represented just as well on coarser grids. It settles for
balancing the middle frequency one (|p| = N/4) with the highest frequency
one (|p| = N/2), and hence damps effectively only those modes which can-
not be resolved on coarser grids. In (C.1.8) and (C.1.9), λmin is replaced by
λmid = λ(N/4). The optimal relaxation parameter in this context is

ωMG =
2

λmax + λmid
. (4.6.1)

The multigrid smoothing factor

µMG =
λmax − λmid

λmax + λmid
(4.6.2)

measures the damping rate of the high-frequency modes. Alternatively, we
may write

µMG =
KMG − 1
KMG + 1

, (4.6.3)
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where
KMG = λmax/λmid (4.6.4)

is known as the multigrid condition number. (In the case of complex eigen-
values, we use the a surrogate K∗

MG, defined analogously to (4.4.50).) In this
example, µMG = 0.60, independent of N . Figure 4.35 illustrates the single
grid and multigrid damping factors for the positive modes p for N = 64.
Although the high-frequency errors (for p ∈ [N/4, N/2]) overall are damped
more effectively than the low-frequency errors, the low-frequency errors (for
p ∈ [1, N/4]) are damped less effectively than they are in a conventional
Richardson scheme. However, on a grid with N/2 collocation points, the
modes for |p| ∈ [N/8, N/4] are now the high-frequency ones. They get damped
on this grid. Still coarser grids can be used until relaxations are so cheap that
one can afford to damp all the remaining modes, or even to solve the discrete
equations exactly. For the case illustrated in Fig. 4.35 the high frequency error
reduction in the multigrid context is roughly 250 times as fast as the single
grid reduction for N = 64 – KSG = 1024 (see (C.1.10)) whereas KMG = 4
(see (4.6.4)).
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Fig. 4.35. Damping factors for the Fourier model problem for N − 64

We describe the multigrid process for solving a collocation problem by
considering the interplay between two grids. The fine grid problem can be
written in the form

Lfuf = ff . (4.6.5)

The decision to switch to the coarse grid is made after the fine grid approx-
imation vf has been sufficiently smoothed by the relaxation process, i.e.,
after the high-frequency content of the error, vf − uf , has been sufficiently
reduced. For the model problem, three relaxations on a grid reduce the error
by a factor of (.60)3, which is roughly an order of magnitude. The auxiliary
equation on the coarse grid is
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Lcuc = f c , (4.6.6)

where

f c = RMG

[
ff − Lfvf

]
. (4.6.7)

The restriction operator RMG interpolates a function from the fine grid to
the coarse grid. The coarse grid operator and the correction are denoted by
Lc and uc, respectively. After an adequate approximation vc to the coarse
grid problem has been obtained, the fine grid approximation is updated using

vf ←− vf + PMGvc . (4.6.8)

The prolongation operator PMG interpolates a function from the coarse grid
to the fine grid. Figure 4.36 shows one possible control structure. The symbols
Nd and Nu denote the number of relaxations on each level after the restriction
operation and after the prolongation operation, respectively. This particular
fixed algorithm is known as a V -cycle.

Nd

Nd

Nd

Nd

Nd

Nd

Nd

Nd

Nd

Nu

Nu Nu

Nu

Fig. 4.36. Two multigrid V -cycles. The number of relaxations after restriction is
denoted by Nd and the number of relaxations before prolongation is denoted by Nu

For the model problem it is clear that the ideal interpolation operators –
both restriction and prolongation – are those which transfer the eigenfunc-
tions intact and without contamination. Trigonometric interpolation accom-
plishes precisely this and can be implemented efficiently by the FFT. Con-
sider first the prolongation process: given a function on a coarse grid (with Nc

points), compute the discrete Fourier coefficients and then use the resulting
discrete Fourier series to construct the interpolated function on the fine grid
(with Nf points). This may be accomplished by performing two FFTs.

On the coarse grid, the discrete Fourier coefficients of the corrections uc
j

at the coarse-grid collocation points xc
j , j = 0, 1, . . . , Nc − 1, are computed

using

ũc
p =

1
Nc

Nc−1∑

j=0

uc
je

−ipxcj , p = −Nc/2, . . . , Nc/2− 1 . (4.6.9)
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The fine-grid approximation is then updated using

uf
j ←− uf

j +
Nc/2−1∑

p=−Nc/2

ũc
pe

ipxfj , (4.6.10)

where xf
j , j = 0, 1, . . . , Nf − 1, are the fine-grid collocation points. Similarly,

the restriction operation is given by

r̃f
p =

1
Nf

Nf−1∑

j=0

rf
j e

−ipxfj , p = −Nf/2, . . . , Nf/2− 1 , (4.6.11)

followed by

rc
j =

Nc/2−1∑

p=−Nc/2

r̃f
pe

ipxcj . (4.6.12)

Except for a multiplicative factor of (Nf/Nc), the restriction operator is the
adjoint of the prolongation operator. Zang, Wong and Hussaini (1984) provide
closed form representations of these operators. For most purposes it suffices
to use as the coarse-grid correction operator Lc just the standard colloca-
tion approximation on the coarse grid. See Zang, Wong and Hussaini (1984)
for a discussion of more complex formulations of the coarse-grid correction
operator.

Inversion of the low-order preconditioning matrix takes only O(N) opera-
tions for the one-dimensional Fourier model problem, and yields a single-grid
condition number which is independent of N . Recall that the spectral radii
for finite-difference and finite-element preconditionings are 0.43 and 0.18, re-
spectively, which are lower than the smoothing rate of 0.60 exhibited by the
non-preconditioned multigrid scheme.

Preconditioning, though, improves the multigrid method as well. Figure
4.37 displays the damping achieved when low-order preconditioning is applied
in this multigrid context. For second-order finite-difference preconditioning
on this model problem, ωMG = 16/(3π2) = 0.5403796 and µMG = 1/3,
and for linear (strong) finite-element preconditioning ωMG = 1.1319870 and
µMG = 0.08554985. These are better, but not dramatically better, than what
can be achieved without multigrid. Even for the one-dimensional Dirichlet
model problem multigrid offers only this same modest improvement in con-
vergence rate over the corresponding single grid relaxation scheme. Thus, in
one dimension spectral multigrid does not seem worth the trouble.

4.6.2 General Spectral Multigrid Methods

Suppose now that the one-dimensional periodic problem is of the self-adjoint,
variable-coefficient form
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Fig. 4.37. Damping factors for the preconditioned Fourier model problem for
N = 64

− d
dx

[
a(x)

du
dx

]
= f(x) . (4.6.13)

Brandt, Fulton and Taylor (1985) recommended use of a relaxation parameter
that depends on position according to

ω(x) =
ωMG

a(x)
, (4.6.14)

where ωMG is the parameter appropriate for the a(x) ≡ 1 case. This maintains
a smoothing rate of 0.60 for the variable-coefficient problem. Moreover, they
noted that by weighting the residuals, one can reduce the smoothing rate. In
the one-dimensional case, instead of using ri, one can use

ri ← βri−1 + αri + βri+1 , (4.6.15)

where α and β are chosen to maximize the smoothing. This is called a residual
smoothing method (RSM). Choosing α = 0.380125 and β = 0.138155, the
smoothing rate is reduced from 0.60 to 0.0620992. This is better than the
smoothing rate for direct inversion of a strong finite-element preconditioner
(0.18) or for Fourier multigrid using strong finite-element preconditioning
(0.086) and doesn’t require any matrix inversions.

Consider next a two-dimensional, variable-coefficient Poisson problem –
(4.4) with λ = 0 on [0, 2π]2 with periodic boundary conditions. A single SMG
iteration takes only O(N2 log2 N) operations, and the number of Richardson
iterations can be independent of N even without preconditioning provided
that the discrete problem is isotropic, i.e., that a1(x) is strictly proportional
to a2(x) and that (∆x)2 and (∆y)2 are in the same proportion. Using the
local relaxation parameter and the residual smoothing, we have

rij ← αrij + β(ri−1,j + ri+1,j + ri,j−1 + ri,j+1)
+ γ(ri−1,j−1 + ri−1,j+1 + ri+1,j−1 + ri+1,j+1) ,

(4.6.16)
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with α = 0.2240, β = 0.07000 and γ = 0.28800, Brandt et al. demonstrated
that a smoothing rate of 0.1058 is obtained (compared with a smoothing rate
of 0.78 on this two-dimensional problem using a local relaxation parameter
but not the residual smoothing). In contrast, exact inversion of the full low-
order preconditioner takes O(N4) operations, and yields worse smoothing
rates – the results in Table 4.4 apply to the two-dimensional Poisson problem
as well.

Erlebacher, Zang and Hussaini (1987) have examined the periodic, iso-
tropic three-dimensional Poisson problem and demonstrated that residual
smoothing reduces the smoothing rate for stationary Richardson iteration
from 0.85 to 0.20. If the problem is not isotropic, however, these refinements
are little help. Moreover, Erlebacher et al. also pointed out that residual
weighting is not very effective for the Helmholtz problem (4.2) with λ 	= 0.

For the non-isotropic Fourier SMG problem in two dimensions, Brandt
et al. resorted to finite-difference preconditioning. They used alternating line
Gauss-Seidel relaxation (AZLR with ωAZLR = 1.0) for approximate inversion
of the finite-difference preconditioner in the underlying Richardson scheme
and achieved smoothing rates for the purely periodic, two-dimensional prob-
lem of roughly 0.4. With periodic boundary conditions, line-relaxation pre-
conditioning seems preferable to incomplete-LU, because the enforcement of
periodicity is much simpler. Moreover, this relaxation scheme is more eco-
nomical of storage than incomplete-LU because one needs auxiliary storage
for just a few one-dimensional vectors rather than for many two-dimensional
vectors.

We turn now to nonperiodic boundary conditions, and hence to Cheby-
shev multigrid methods. Interpolation for nonperiodic coordinates in one di-
mension employs Chebyshev series in a fashion analogous to (4.6.9)–(4.6.12),
which can be accomplished with fast transforms. The prolongation operation
is accomplished by

ũc
p =

2
Ncc̄p

Nc∑

j=0

c̄−1
j uc

j cos
pπj

Nc
, p = 0, 1, . . . , Nc , (4.6.17)

and

uf
j ←− uf

j +
Nc∑

p=0

ũc
p cos

pπj

Nc
, j = 0, 1, . . . , Nc , (4.6.18)

where c̄k is defined by (2.4.16) with N = Nc. The recommended restriction
process is

r̃f
p =

2
Nf c̄p

Nf∑

j=0

c̄−1
j rf

j cos
pπj

Nf
, p = 0, 1, . . . , Nc , (4.6.19)

and
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rc
j =

Nc∑

p=0

r̃f
p cos

pπj

Nc
, j = 0, 1, . . . , Nc . (4.6.20)

In order for the restriction operator (4.6.19)–(4.6.20) to be the adjoint of
the prolongation operator (4.6.17)–(4.6.18), as is the recommended practice
in multigrid, one needs to use the identical definition of c̄p in both cases,
i.e., based on N = Nc in (2.4.16). See Zang, Wong and Hussaini (1984)
for more discussion on this point, as well as for a closed form solution of
these interpolation operators and for a discussion of alternatives to using
the standard collocation approximation on the coarse grid as the coarse-grid
correction operator.

Preconditioning is essential for Chebyshev multigrid. Consider incomplete-
LU decomposition applied in conjunction with second-order finite-differences.
Recall that the relevant eigenvalues are the largest eigenvalue and the lowest
high-frequency eigenvalue, which in this two-dimensional case is roughly the
eigenvalue that separates the smallest 25% of the eigenvalues from the largest
75%. The left frame of Fig. 4.32 displays the largest eigenvalue and the left
frame of Fig. 4.38 furnishes the lowest high-frequency one. The lowest high-
frequency eigenvalue (λmid) turns out to be relatively insensitive to N . The
multigrid condition numbers K∗

MG for these four preconditioners are shown
in the right frame of Fig. 4.38. Note that the standard incomplete-LU fac-
torization is superior to the row-sum-equivalence alternative in the multigrid
context. The former evidently does a better job on the high-frequency com-
ponents of the solution. Although it performs far worse on the low-frequency
components, this is immaterial for a multigrid scheme.

0 20 40 60 80
1

1.25

1.5

1.75

2
ILU5
ILU7
IRS5
IRS7

N

λ
m

id

0 20 40 60 80
0

2

4

6

8

10
ILU5
ILU7
IRS5
IRS7

N

K
∗ M

G

Fig. 4.38. Lowest high-frequency eigenvalue (left) and multigrid condition number
(right) for the preconditioned Chebyshev Laplace operator in two dimensions using
incomplete LU decompositions with 5 and 7 nonzero diagonals, both without (ILU)
and with (IRS) the row-sum-equivalence modification

For the stationary Richardson iterative method the 7-diagonal incomplete-
LU factorization on the constant-coefficient Poisson problem has a multigrid
condition number not much larger than that of the full finite-difference pre-
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conditioning (for which KMG = 2). The incomplete-LU decomposition costs
far less than the evaluation of the spectral residual for all but small values
of N , whereas the inversion of the original finite-difference matrix is more
expensive than the residual evaluation. The attraction of multigrid approach
in two (or more) dimensions is that it offers the prospect of having the num-
ber of iterations (required for convergence) virtually independent of N with
a very inexpensive preconditioner.

Heinrichs (1988, 1993) has explored various preconditioners and relaxation
schemes for Chebyshev multigrid applications to two-dimensional problems
of the form (4.4) with Dirichlet boundary conditions. In particular, Hein-
richs (1988) considered AZLR and incomplete-LU (ILU) approximations to
second-order finite-differences as preconditioners, and, among others, station-
ary Richardson (SR) and minimum residual Richardson (MRR) as relaxation
schemes. He considered several versions of ILU schemes which differed in
whether the unknowns were ordered first in x or first in y. He concluded
that the best combination for the general non-isotropic problem used AZLR
as preconditioner and MRR as the relaxation scheme. One can also find in
this reference a discussion of the appropriate multigrid cycle and recom-
mended numbers of iterations at each level for the various alternatives. Hein-
richs (1991) extended these methods to the three-dimensional counterpart
of (4.4). As in the case of standard finite-difference or finite-element multi-
grid methods, he showed that the use of alternating plane (as opposed to line)
relaxation on the finite-difference preconditioner for the Chebyshev multigrid
method did produce results that converged in a number of iterations that was
virtually independent of N .

Relatively little attention has been paid to use of finite-element precondi-
tioning in the context of spectral multigrid methods. The analysis of finite-
element preconditioning for the 2D periodic Poisson equation is straightfor-
ward. Table 4.11 summarizes the key parameters for strong (bilinear) finite-
element preconditioning of the 2D periodic Poisson equation, with second-
order finite-difference preconditioning results included for comparison. The
smoothing rates given there assume exact inversion of the preconditioners,
and these rates are based on the maximum damping factor over the high-
frequency range. In the case of the finite-difference preconditioning, the rel-
evant eigenvalues are Λmid and Λmax, whereas for the finite-element precon-

Table 4.11. Properties of finite-difference and finite-element preconditionings for
the periodic 2D Poisson problem

Preconditioning Λmin Λmid Λmax ωMG µMG

fd2 1.000000 1.233701 2.467401 0.540380 0.333333

fes 0.6928333 0.848666 1.000000 1.297438 0.101092
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ditioning they are Λmin and Λmid. Presumably, the ILU or AZLR strategies
would produce nearly this rate of convergence, as they have done for the
finite-difference preconditioning. Numerical computations of the eigenvalues
for the nonperiodic counterpart, using Chebyshev collocation, indicate that
these estimates for the periodic problem are reasonably reliable for the non-
periodic problem.

4.7 Numerical Examples
of Direct and Iterative Methods

In this section we illustrate the results obtained by direct and iterative
methods for the solution of the linear systems associated with Fourier col-
location, Chebyshev collocation and Legendre G-NI discretizations of two-
dimensional problems. Numerical results are furnished here for just a small
sample of the various algorithms discussed in Sects. 4.2–4.6. We begin with
some examples for Fourier collocation methods, focusing on descent methods
and spectral multigrid methods. We then proceed in roughly historical order,
starting with solutions to Chebyshev discretizations using rather venerable
preconditioned iterative schemes, continue to direct and iterative solutions
of Legendre G-NI discretizations, and conclude with a detailed illustration of
various preconditioners for Legendre G-NI methods.

4.7.1 Fourier Collocation Discretizations

This first set of numerical examples is for the simple, periodic Poisson problem

−∆u = f in Ω = (0, 2π)2 ,

u 2π-periodic in each direction,
(4.7.1)

and for its variable-coefficient, self-adjoint generalization

−∇ · (a∇u) = f in Ω = (0, 2π)2 ,

u 2π-periodic in each direction,
(4.7.2)

where a(x, y) = 1+ εecos(x+y), for suitable ε > 0. The function f is chosen in
such a way that the exact solution is u(x, y) = sin(4π cos(x)) sin(4π cos(y)).

Figure 4.39 presents results using conventional iterative methods on
a single grid (left) and spectral multigrid methods (right) for the Poisson
problem (4.7.1). The schemes illustrated are (static) non-stationary Richard-
son with 3 parameters (NSR – see (C.1.1) and (C.1.14), for k = 3), mini-
mum residual Richardson without preconditioning (MRR – see (C.2.2) and
Table C.1 with the PMRR2 choice), residual smoothing combined with sta-
tionary Richardson (RSM – see (4.6.16)), and non-stationary Richardson with
3 parameters preconditioned with second-order finite differences (PNSR). For
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all of these examples the convergence criterion is that ‖rn‖/‖f‖ < 10−14, and
a random initial guess u0, i.e., with each component drawn from a uniform
random distribution in (0, 1).

The iterative condition number K of the linear system for this problem
for the non-preconditioned schemes (NSR, MRR, RSM and CG) is N2/2,
and it is the usual π2/4 for the preconditioned method (PNSR). The NSR,
MRR and RSM methods are expected to require a number of iterations for
convergence that scale as N2 (see (C.1.13)), the CG method only requires
O(N) iterations (see (C.2.12)), and the number of iterations required for the
PNSR method should be independent of N . The left part of Fig. 4.39 reports
the number of iterations required to achieve convergence versus the number
of collocation points in each direction. The results are all consistent with
the expected growth with N . The NSR and MRR methods require nearly
the same number of iterations, whereas the RSM scheme takes an order of
magnitude fewer. The superiority of the conjugate gradient method over the
simpler non-preconditioned schemes is evident in the orders of magnitude
fewer iterations required at a relatively minor extra cost. The number of
iterations required by the preconditioned scheme (PNSR) is virtually constant
with N , again, as expected. Although each iteration of the preconditioned
scheme is more expensive than the non-preconditioned schemes, the dramatic
reduction in the required number of iterations yields a substantial net benefit.

Results for multigrid schemes are shown in the right part of Fig. 4.39 using
the same underlying iterative methods as for the single-grid schemes with the
exceptions that the CG method is not used and that for the PNSR scheme
alternating line relaxation is applied with only 3 sweeps rather than resorting
to an exact solution of the full finite-difference preconditioner. For multigrid
methods there are numerous alternative strategies. For these examples we
follow the recommendations in Brandt, Fulton and Taylor (1985) and used
a simple V-cycle (Fig. 4.36) starting on the finest grid. For the NSR and MRR
iterative methods we use Nd = 3 and Nu = 0, whereas for the RSM method
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Fig. 4.39. Single-grid (left) and multigrid (right) iterations necessary to converge
for the 2D periodic Poisson problem (4.7.1)
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we use Nd = 2 and Nu = 1. The performance is reported in the standard
multigrid measure of work units rather than iterations. A work unit is the
time required for a single iteration on the finest grid. This measure includes
the time required for iterations on the coarser grids, as well as for the inter-
grid transfers. In all of the multigrid examples here, the actual number of
iterations performed on the finest grid was very close to two-thirds of the
work units. Note that for 16 ≤ N ≤ 64 the number of work units required
for convergence is nearly constant with N . There is a substantial decrease
in work for N = 128, but the solution is already resolved to nearly machine
precision by N = 64, so that there is very little smoothing needed on the
finest grid. Note also how remarkably effective the residual smoothing is for
this simple problem; it even outperforms the PNSR method, for which each
iteration is much more expensive.

Observe that the best of the non-preconditioned multigrid methods
(RSM) converges in less that 40 effective fine-grid iterations, whereas on the
finer grids 103–105 iterations are needed for the simpler non-preconditioned
single-grid methods (NSR MRR and RSM), and 102–103 iterations are needed
for the non-preconditioned CG single-grid method. Moreover, although the
preconditioned single-grid results (PNSR) take slightly fewer iterations, they
come with the requirement to solve the full finite-difference approximation
at each iteration, which makes them more costly than their multigrid coun-
terpart.

Results for the variable-coefficient problem (4.7.2) are given in Fig. 4.40
for three values of the parameter ε for the best of iterative schemes. In partic-
ular, results are given for the CG and PNSR methods on a single grid, and for
the RSM (using NSR) and the PNSR (preconditioned with 3 sweeps of alter-
nating line relaxation) multigrid methods. Note that the conjugate gradient
method is still applicable because the discrete problem remains symmetric
and positive definite for ε > 0. The methods converge in all cases, but more
iterations are required as ε increases, presumably because the increasing vari-
ation of the coefficient worsens the conditioning of the linear system. For this
example the multigrid method using RSM is the most efficient.

4.7.2 Chebyshev Collocation Discretizations

We continue with some results for iterative solutions of Chebyshev collocation
discretizations to the Poisson problem

−∆u = f in Ω = (−1, 1)2 ,

u = 0 on ∂Ω ,
(4.7.3)

and to its variable-coefficient, self-adjoint generalization

−∇ · (a∇u) = f in Ω = (−1, 1)2 ,

u = 0 on ∂Ω ,
(4.7.4)
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where a(x, y) = 1 + εx2y2, for suitable ε > 0. The particular choice f = 1 is
made.

As discussed in Haidvogel and Zang (1979), a spectral solution to this
problem converges only algebraically (as 1/N4) because of the corner singu-
larities. This problem was chosen because the relatively slow decay of the
expansion coefficients ensures that the results on the performance of the it-
erative methods are representative of the most challenging problems arising
in practice. Recall that examples of some Chebyshev and Legendre ad hoc
methods for (4.7.3) have been provided in Fig. 4.2, albeit for a choice of f
and of boundary conditions that produces solutions with spectral accuracy.

In the Chebyshev collocation case the matrix L is nonsymmetric. The pre-
conditionings are the incomplete-LU factorizations of the second-order finite-
difference approximation discussed in Sect. 4.4.3. The iterative schemes are
the preconditioned minimum residual Richardson PMRR2 method described
by (C.2.2) and Table C.1 and the (truncated) preconditioned conjugate resid-
ual method described by (C.2.21). (Since the linear system is nonsymmetric,
the orthogonality conditions (C.2.13) of the conjugate residual method are
not satisfied. Hence, we refer to this method as the preconditioned truncated
conjugate residual (PTCR) method.) The convergence criterion is the same
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Fig. 4.40. Single-grid (left) and multigrid (right) iterations necessary to converge
for the 2D periodic, variable-coefficient problem (4.7.2)
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Fig. 4.41. PMRR2 (left) and PTCR (right) iterations necessary to converge for the
2D Poisson problem (4.7.3) for non-preconditioned (H = I) and various incomplete-
LU preconditionings with u0 = 0

as for the Fourier collocation example (‖rn‖/‖f‖ < 10−14), but the initial
guess is just u0 = 0.

Figure 4.41 reports the results for the Poisson problem (4.7.3). Even
though H−1L is not symmetric and positive definite, these methods still
converge for the Poisson problem since the eigenvalues of the symmetric part
(4.5.2) of the linear system are positive. The iterative condition number of
the non-preconditioned linear system scales as N4, implying, according to
(C.1.13), the same quartic growth with N of the number of required iter-
ations. Note that the performance of the various preconditioned iterative
schemes follows the trends of the iterative condition numbers illustrated in
Fig. 4.33, namely, the row-sum equivalence versions (IRS5 and IRS7) perform
better than the straight incomplete-LU versions (ILU5 and ILU7), and the
inclusion of the two extra nonzero diagonals in the incomplete decomposi-
tions is beneficial. The PMRR2 performance is noticeably worse than that of
PTCR for the plain incomplete-LU preconditionings (ILU5 and ILU7), but
the row-sum equivalence results are comparable.

The performance of the best of the incomplete-LU preconditioners –
the IRS7 version – with these same two iterative schemes on the variable-
coefficient, self-adjoint problem (4.7.4) is reported in Fig. 4.42. For small and
moderate values of N the iterative schemes converge even for fairly large
values of ε. However, for large N the schemes eventually fail to converge
as ε increases. Hence, for Chebyshev collocation methods these older itera-
tive methods (PMRR2 and PTCR) must yield to the more modern Krylov
methods discussed in Sect. C.3 of Appendix C or to the spectral multigrid
method; see Zang, Wong and Hussaini (1985) and Heinrichs (1988, 1993) for
some numerical results of the latter methods.
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4.7.3 Legendre G-NI Discretizations

The next set of examples are again for the Poisson problem (4.7.3), but
this time with Legendre G-NI discretizations. We assume that the data are
such that the exact solution is u(x, y) = sin(4πx) sin(4πy). Both direct and
iterative methods are illustrated. The associated system KGNIu = MGNI f
has a matrix with (N − 1)2 rows and columns, where N is the spectral
polynomial degree; u is the vector of the (N − 1)2 values at the internal
Gauss-Lobatto nodes. The stiffness matrix KGNI is symmetric and positive
definite; its spectral condition number scales as N3.

We begin with some comparisons between the behavior of direct and
iterative methods of solution. Two different direct methods are used: the
Cholesky factorization of KGNI as implemented in the library LAPACK (see
Sect. 4.4.1) and the multifrontal method as implemented in the library UMF-
PACK (see Sect. 4.4.3). Iterative methods are based on the PCG method
with four different kinds of preconditioners: H = I (no preconditioning, i.e.,
a simple CG method); H = diag(KGNI), i.e., the diagonal matrix whose
entries are the diagonal elements of KGNI ; H = ICHOL(KGNI), i.e., the
incomplete-Cholesky factorization of KGNI with no fill-in (see Saad (1996),
Chap. 10); H = KFE , i.e., the finite-element stiffness matrix based on the
use of bilinear elements on the two-dimensional mesh whose vertices are the
LGL nodes, as defined in (4.4.63), or its approximation KFE,app. Bear in
mind that the incomplete-Cholesky factorization for the G-NI example was
performed for the full spectral discretization, whereas in the Chebyshev col-
location example above, the incomplete-LU factorizations were performed for
the low-order preconditioning. On the other hand, the linear systems for the
KFE preconditioner were invariably solved by a direct method, based on the
Cholesky factorization of this matrix.

The first comparison is on accuracy with respect to round-off. In Fig. 4.43
we report for several values of N the relative error in the discrete maximum
norm,
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Fig. 4.42. PMRR2 (left) and PTCR (right) iterations necessary to converge for
the 2D self-adjoint problem (4.7.4) using the IRS7 preconditioning
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Fig. 4.43. Comparison of accuracy for direct and iterative solution of the 2D Pois-
son problem (4.7.3). The relative error eN versus N obtained with direct and itera-
tive methods. f is chosen such that the exact solution is u(x, y) = sin(4πx) sin(4πy)
and the initial guess for iterative methods is u0 = 0

eN = max
i,j
|u(xi, yj)− uN (xi, yj)|/max

i,j
|u(xi, yj)| ,

where the maximum is taken over all internal LGL nodes, u is the exact
solution, uN is the G-NI solution obtained by two different direct methods
(multifrontal and the Cholesky factorization) or by two different precondi-
tioned iterative methods (the PCG, with preconditioned matrix P3 given in
(4.4.66), and PBi-CGStab with preconditioned matrix P2 given in (4.4.65)).
When P3 is used, the stopping criterion is ‖rn‖/‖MGNI f‖ < 10−14, with
rn = MGNI f − KGNIu (the same results are obtained using a more strict
tolerance of 10−18). When P2 is used instead, the stopping criterion is
||rn||H/||f ||H < 10−14, with rn = f −M−1

GNIKGNIun. The iterative schemes
have slightly more favorable round-off error behavior than the two direct
methods.

We now focus on the iterative methods, starting, in Fig. 4.44, with the
dependence upon N of the iterative condition numbers of the precondi-
tioned matrix H−1KGNI for several choices of the preconditioner H. As
expected, the iterative condition number for the finite-element-based pre-
conditioners is independent of problem size, whereas the iterative condition
number grows with N for the other preconditioners. Note that the choice
H = KFE,app yields the preconditioned matrix P3 introduced in (4.4.66),
while H = (M−1

FEKFE)−1M−1
GNI yields the matrix P2 introduced in (4.4.65);

the numerical values of the iterative condition numbers for these two precon-
ditionings are reported in Table 4.9.

In cross-comparing these iterative methods we switch to the choices f = 1
and u0 = 0 for the reasons described in the previous subsection. In Fig. 4.45
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we report the number of PCG iterations (versus N), while in Fig. 4.46 we
report the CPU-time (versus N) that is needed to solve the linear system
(4.4.62). (For the iterative methods we include both the time necessary for
constructing (and factorizing) the preconditioner along with that required
for the iterations.) The behavior of the curves is consistent with the behavior
of the iterative condition numbers shown above. Note that the total num-
ber of iterations needed here for the incomplete-Cholesky preconditioning
for the Legendre G-NI discretization is roughly the same as was needed be-
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Fig. 4.44. Iterative condition number (versus N) of the preconditioned matrix
H−1KGNI for different choices of H for the solution of the 2D Poisson problem
(4.7.3)
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fore for the row-sum equivalence incomplete factorizations (RS5 and RS7)
of the low-order finite-difference preconditioning for the Chebyshev colloca-
tion discretization. The results on the CPU times neatly indicate that from
moderate to large values of N , the PCG method that uses the (exactly fac-
torized) finite-element matrices yields the best performance. The plot also
clearly documents that the multifrontal strategy invariably outperforms the
Cholesky factorization even for spectral matrices. However, for small values
of N (say, on the order of 10), typical of those used in each subdomain of
a multidomain spectral method (see CHQZ3, Chaps. 5–6), the CPU times
for factorization are negligible. In this case, the most convenient choice, in
terms of easiness of programming and memory storage, remains the direct
Cholesky factorization of the spectral matrix.

Table 4.12 compares the memory requirements of the different approaches
on a 2D problem as a function of n = (N − 1)2, the number of rows (or
columns) of the matrix KGNI . The memory demands of the two direct
methods scale as n2, whereas the memory demands for the iterative methods
scale only as n3/2. In general, the multifrontal method is the most mem-
ory intensive, followed by the Cholesky factorization, and then by the PCG
methods.

4.7.4 Preconditioners for Legendre G-NI Matrices

In Sect. 4.4.3, we introduced several preconditioned forms of the algebraic
system KGNIu = MGNI f (see (4.4.64)–(4.4.70)), and we documented the
iterative condition numbers of the corresponding matrices P1, . . . , P7 (see
Table 4.9). Here we aim at investigating the performance of the various pre-
conditioners when inserted within an appropriate iterative method to solve
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Table 4.12. Comparison of memory requirements for the solution of 2D GNI sys-
tems

Method Words (real) Words (integer)

Cholesky n(n+ 1)/2 0

Multifrontal n2 + 3n3/2 5n3/2 + 36n

PCG H = I or H = diag(KGNI) n3/2 + 5n n3/2 + n

PCG H = ICHOL(KGNI) 2n3/2 + 6n 2n3/2 + 3n

PCG H = KFE,app 2n3/2 + 5n n3/2 + 2n

the test problem considered in the previous subsection. We recall that the sys-
tems with matrices P1, P3, P5, P6 and P7 can be solved by the PCG method,
whereas those with matrices P2 and P4 require an iterative algorithm for
nonsymmetric matrices; we focus on the PBi-CGStab method, but the GM-
RES method (Sect. C.3 of Appendix C) is a viable alternative. In all cases
a direct Cholesky factorization of the finite-element matrix is performed in
a pre-processing stage, and at each iteration only the forward elimination
and back substitution are required.
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Fig. 4.47. Number of PCG and PBi-CGStab iterations to solve problem (4.7.3)
with f = 1 and u0 = 0, for the different preconditioners given by (4.4.64)–(4.4.70)

Figure 4.47 reports the number of iterations needed to meet the stopping
criterion ||rn||H/||r0||H < 10−14 with the initial guess u0 = 0. Note that
no results for P5 are reported, as the cost of computing the square root of
the finite-element matrix makes the method noncompetitive in practice even
for moderate values of N . The corresponding CPU times (in seconds) are
reported in Fig. 4.48. (The numerical results in this subsection were per-
formed on a more powerful computer – in order to explore the regime of
large N – than those in the previous subsection. Hence, the CPU times are
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Fig. 4.48. Total CPUtime (sec) of PCG and PBi-CGStab iterations to solve
problem (4.7.3) with f = 1 and u0 = 0, for the different preconditioners given
by (4.4.64)–(4.4.70)

smaller for the present results.) Note that there is a factor of at most three
difference between the fastest and the slowest methods. The precise rank-
ing of the methods no doubt depends on the details of the implementation,
the compiler, and the host computer. A comparison of Figs. 4.47 and 4.48
clearly indicates that the actual cost of a solution scheme cannot be inferred
solely from the number of iterations – the PBi-CGStab methods are not the
fastest ones despite requiring fewer iterations than the CG methods. In the
two-dimensional case, the fastest solution was obtained from preconditioned
matrix P3. It corresponds to the weak form of finite-element precondition-
ing, but with a numerical approximation of the stiffness matrix KFE that
is more consistent with the structure of the two-dimensional stiffness matrix
KGNI . Remarkably, this approximation is responsible by itself of producing
the best results, without even involving the mass matrix. We recall that in
one dimension the best results were guaranteed by the strong form of finite-
element preconditioning, which does incorporate the mass matrix. Note how-
ever that P7, which includes the mass matrix but in a symmetric way, yielded
nearly as good results as P3. The slowest solution was produced by the P6

preconditioner.
The major components of the iterative methods are assembly and factor-

ization of the preconditioning matrix, solution of the preconditioned system
at each iteration from the forward elimination/back substitution algorithms,
and residual computation. According to Table 4.10, the cost of factorizing
the preconditioner scales as N4; in contrast, the cost of assembly the precon-
ditioner scales as N2, while the cost of the other two components only scales
as N3. Hence, one expects that as N increases, factorization will increasingly
dominate the computational time. Numerical results indicate that the overall
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cost of the finite-element preconditioner can be confined between 40 and 60
percent of the total solution cost with a clever programming, provided N
stays significantly below 100. For large values of N the matrix construction
takes an increasing fraction of the computational time. In that range it seems
essential to employ some form of inexact solution of the finite-element sys-
tem, such as inexact factorization. That would reduce the operation count
for factorization from O(N4) to O(N3), albeit, as we saw in the Chebyshev
collocation examples of Sect. 4.7.2, at the price of a slow increase in the num-
ber of iterations required for convergence. A trade-off analysis depends on so
many factors (such as the kind of differential problem at hand, its spatial
dimension, the choice of the inexact factorization, the range of N and the
implementation details) that we refrain from drawing any general conclu-
sions here. See Canuto, Gervasio and Quarteroni (2006) for a comprehensive
study.

At the end of Sect. 4.7.2 we saw that the PMRR and PTCR schemes failed
to converge for Chebyshev collocation discretizations to the 2D self-adjoint
problem (4.7.4) for sufficiently large ε. Recall that the Chebyshev collocation
discretization is nonsymmetric, and that there is not a general convergence
guarantee for the PMRR and PTCR schemes unless the eigenvalues of the
symmetric part of the preconditioned operator are positive. The Legendre
G-NI discretization to (4.7.4) is, of course, symmetric and positive definite.
Moreover, this property is retained for most of the corresponding precondi-
tioned systems that we have discussed. In these cases, there is a convergence
guarantee for the various iterative methods. Figure 4.49 illustrates the per-
formance of the PCG method using the P3 preconditioner on the Legendre
G-NI discretization of the variable-coefficient, self-adjoint problem (4.7.4).
(The choice of the P3 preconditioner was made because not only is it quite
efficient in terms of overall computation time – see Fig. 4.48 – but also the
P3 preconditioner is much easier to construct than the alternatives for the
variable-coefficient problem.) Note that convergence is always achieved, and
that the required number of iterations is independent of N . As was observed
for the corresponding Fourier collocation (Fig. 4.40) and Chebyshev colloca-
tion (Fig. 4.42) examples, the required number of iterations roughly doubled
as ε increased from 0 to 10.

As a final set of numerical examples, we consider again the Legendre G-NI
method and we apply it to the solution of the advection-diffusion boundary-
value problem

−ν∆u + β · ∇u = f in Ω = (−1, 1)2 ,

u = g on ∂ΩD ,

ν
∂u

∂n
= h on ∂ΩN ,

(4.7.5)

with ∂ΩD = {(x, y) ∈ ∂Ω : β · n < 0} and ∂ΩN = ∂Ω \ ∂ΩD. We have set
ν = 0.1 and β = (1, 1)T . The functions g, h and f are chosen in such a way
that the exact solution is u(x, y) = sin(πx) sin(πy).
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Fig. 4.49. CG iterations necessary to converge for the 2D self-adjoint problem
(4.7.4) using the P3 preconditioning

The associated system (whose matrix KGNI is still positive definite but no
longer symmetric) has been solved by the multifrontal method, the Gauss-
LU factorization (implemented in LAPACK), the PBi-CGStab method in-
troduced in Appendix C. Several kinds of preconditioners H have been used:
H = I (i.e., no preconditioning), H = diag(KGNI), H = ILU(KGNI) (i.e.,
the incomplete LU-factorization with no fill-in), H = MGNIM

−1
FEKFE , which

yields the preconditioned matrix P2 (see (4.4.65)), H = KFE,app, which yields
the matrix P3. (In the last two cases the linear system associated with H is
solved by the banded-LU factorization of LAPACK.) In Figs. 4.50 we report
the condition numbers with respect to the 2-norm and the iterative condi-
tion number of the preconditioned matrix H−1KGNI versus N for different
choices of the preconditioner. As noted in Appendix C, it is the iterative
condition number K∗ which is the most useful indicator of the performance
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Fig. 4.50. Condition numbers for the advection-diffusion problem (4.7.5). 2-norm
condition number (left) and iterative condition number K∗ (right) of the precondi-
tioned matrix, for several preconditioners
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Fig. 4.51. PBi-CGStab iterations to solve problem (4.7.5), with f = 1, u0 = 0
and tolerance 10−14. Different curves refer to different choices of preconditioners

of the iterative methods. In Fig. 4.51 we report the number of iterations that
are needed to fulfill the stopping criterion ‖rn‖/‖MGNI f‖ < 10−14 when us-
ing the PBi-CGStab method. The corresponding CPU-times for the solution
of the linear system by the various direct and iterative methods mentioned
above are provided in Fig. 4.52.

There is a clear preference for iterative methods over direct methods for
all but the smallest values of N , but the preference of iterative methods does
not extend to as small a value of N as it does for the Poisson example.
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Fig. 4.52. CPU-time for the PBi-CGStab to solve problem (4.7.5), with f = 1,
u0 = 0 and tolerance 10−14. Different curves refer to different choices of precondi-
tioners
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These results suggest that P2 and P3 are the methods of choice, and amongst
these, P2, which involves the finite-element mass matrix, provides a significant
advantage.

4.8 Interlude

The emphasis in these past three chapters has been on providing a practical
foundation for the application of spectral methods to differential equations
in simple domains. We have laid out the basic elements of approximations
of smooth functions by spectrally accurate expansions in orthogonal poly-
nomials (trigonometric and algebraic), described how to construct a spectral
approximation to a differential problem using Galerkin, Galerkin with numer-
ical integration, collocation and tau methods, covered how to construct the
matrices connected with the numerical approximation, presented an eigen-
analysis of the matrices representing the spatial discretization, and surveyed
the key aspects of approximating boundary conditions. Several critical issues
of numerical efficiency were addressed, including transform methods and so-
lution of implicit equations by direct and iterative methods.

The focus of this book now shifts to the theoretical analysis of spectral
methods in simple domains. We cover in depth the relevant approximation
theory, expound on a general theory of stability and convergence for spectral
methods, and provide a number of key applications of the theory to model
problems.

Our companion book (CHQZ3) furnishes extensive coverage of spectral
algorithms for fluid dynamics applications in simple domains and then de-
scribes the evolution of spectral methods from the classical spectral methods
covered in this book and the first part of CHQZ3 to the modern-day mul-
tidomain spectral methods capable of furnishing efficient, highly accurate
approximations to differential equations in general domains.



5. Polynomial Approximation Theory

In the remainder of this book we concentrate on summarizing the fundamen-
tal spectral methods theory for approximation errors, stability and conver-
gence, and apply this to the analysis of model equations. We will not present
here all the details of all the proofs of the results that are cited. Rather, we
illustrate the basic principles of the theory by presenting proofs for repre-
sentative results. In many cases these proofs are delayed until later in the
chapter (in the interests of having a coherent summary). For the same reason
bibliographic references for the main contributions to the theory are likewise
deferred to the end of the appropriate section.

More specifically, in this chapter we present error estimates for the ap-
proximation of functions by orthogonal polynomials. The results will cover
the following topics:

(i) inverse inequalities for polynomials concerning summability and differen-
tiability;

(ii) error estimates for the truncation error u−PNu, where PNu denotes the
truncated “Fourier” series of u;

(iii) existence, uniqueness and error estimates for the polynomials of best
approximation in Lp or Sobolev norms;

(iv) error estimates for the interpolation error u − INu, where INu denotes
the polynomial interpolating u at a selected set of points in the domain.

Many of the results we present are taken from the general theory of ap-
proximation by polynomials. Their interest extends beyond the boundaries
of approximation theory, since they are applied to the convergence analysis
of spectral methods (see Chap. 6). We include proofs of those results that are
most significant for the analysis of such methods.

In all the estimates contained in this chapter, C will denote a positive
constant that depends upon the type of norm involved in the estimate, but
which is independent of the function u, the integer N , and the diameter of
the domain.
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5.1 Fourier Approximation

In this section, as well as throughout the remaining chapters, we will deal
with trigonometric polynomials of degree up to N , rather than N/2 as in
the previous chapters. This change is motivated by the desire for simplicity
in the mathematical notation. Thus, we denote here by SN the space of the
trigonometric polynomials of degree up to N :

SN = span
{
eikx | −N ≤ k < N

}
. (5.1.1)

5.1.1 Inverse Inequalities for Trigonometric Polynomials

We consider the problem of the equivalence of the Lp-norms for trigonometric
polynomials. We recall that the Lp-norm of a function u over (0, 2π) is defined
as follows:

‖u‖Lp(0,2π) =
(∫ 2π

0

|u(x)|p dx
)1/p

, 1 ≤ p <∞ , (5.1.2)

and

‖u‖L∞(0,2π) = sup
0≤x≤2π

|u(x)| , p =∞ (5.1.3)

(rigorously speaking, the supremum in the latter norm should exclude subsets
of [0, 2π] of zero measure (see Sect. A.9)). The set of functions for which each
particular norm is finite forms a Banach space denoted by Lp(0, 2π) (see
(A.9.f)). The following several inequalities enable one to relate the norms of
a given polynomial in different Lp spaces.

If p, q are any real numbers such that 1 ≤ p ≤ q ≤ ∞, and if u ∈ Lq(0, 2π),
then u ∈ Lp(0, 2π), and ‖u‖Lp(0,2π) ≤ C‖u‖Lq(0,2π), where C depends on p
and q. If u is a periodic function with a finite expansion this inequality can
be inverted. Indeed, the following Nikolski’s inequality holds:

‖φ‖Lq(0,2π) ≤ CN1/p−1/q‖φ‖Lp(0,2π) for all φ ∈ SN . (5.1.4)

A different kind of inverse inequality, the Bernstein inequality , relates the
norm of a function u ∈ SN to that of its derivatives. For all real p, 1 ≤ p ≤ ∞,
and for all integers r ≥ 1,

‖φ(r)‖Lp(0,2π) ≤ Nr‖φ‖Lp(0,2π) for all φ ∈ SN , (5.1.5)

where φ(r) denotes the derivative of order r of φ.
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5.1.2 Estimates for the Truncation and Best Approximation
Errors

Let PN : L2(0, 2π)→ SN be the orthogonal projection upon SN in the inner
product of L2(0, 2π) (see (2.1.10)):

(u− PNu, φ) = 0 for all φ ∈ SN .

With the present definition of SN (see (5.1.1)), PNu is the truncated Fourier
series of u, i.e.,

PN

( ∞∑

k=−∞
ûkφk

)
=

N−1∑

k=−N

ûkφk ,

where φk(x) = eikx.
A natural family of norms for the modern numerical analysis of differential

equations is comprised of the Sobolev norms. Hence, we present approxima-
tion results with respect to these norms. We recall that the Sobolev norm of
integer order m ≥ 0 is given by

‖u‖Hm(0,2π) =

(
m∑

k=0

∫ 2π

0

|u(k)(x)|2 dx

)1/2

. (5.1.6)

The reader unfamiliar with Sobolev spaces can think of u(k) as the classical
(continuous) derivative of u of order k. However, this norm can be defined for
a wider class of functions. These form a Hilbert space, called Hm(0, 2π), which
is introduced in (A.11.a). We are concerned here with functions periodic in
(0, 2π). We consider the subspace Hm

p (0, 2π) of Hm(0, 2π) that consists of
functions whose first m − 1 derivatives are periodic (see (A.11.d)). Since
(eikx)′ = ikeikx, it follows that for any u =

∑∞
k=−∞ ûkφk ∈ Hm

p (0, 2π), the
norm ‖u‖Hm(0,2π) is equivalent to

‖u‖m =

( ∞∑

k=−∞

(
1 + |k|2m

)
|ûk|2

)1/2

, (5.1.7)

i.e, for some positive constants C1 and C2 that are independent of u,

C1‖u‖Hm(0,2π) ≤ ‖u‖m ≤ C2‖u‖Hm(0,2π) .

The spaces Hm
p (0, 2π) consist of functions for which it is permissible to

differentiate termwise the Fourier series m times, provided the convergence
is in the square mean. For instance, H1

p (0, 2π) is the space of all functions u
for which

u′ =
∞∑

k=−∞
ikûkφk in L2(0, 2π) . (5.1.8)
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This means that the Fourier series of u′ converges in the squared mean to the
derivative of u. Result (5.1.8) is a direct consequence of the commutability
of the operators d/dx and PN on H1

p (0, 2π), i.e.,

(PNu)′ = PNu′ for all u ∈ H1
p (0, 2π) .

This, in turn follows from the identity

2π(u′)∧k = (u′, φk) = − (u, φ′
k) = ik(u, φk) = ikûk for all k .

Since u is in H1
p (0, 2π), the first inner product is well-defined. By the same

arguments, a similar characterization can be given also for Hm
p (0, 2π). It is

enough to replace the first derivative with the m-th order derivative in (5.1.8).
The first error estimate we present concerns the truncation error in the

L2-norm. We recall that, by definition, PNu is the best approximation of u in
the L2-norm among all the functions in SN . One has, for any u ∈ Hm

p (0, 2π)
and m ≥ 0,

‖u− PNu‖L2(0,2π) ≤ CN−m‖u(m)‖L2(0,2π) . (5.1.9)

This follows from the Parseval identity (2.1.14). Indeed,

1√
2π
‖u− PNu‖L2(0,2π) =

⎛

⎝
∑

|k|�N

|ûk|2
⎞

⎠
1/2

=

⎛

⎝
∑

|k|�N

1
|k|2m

|k|2m |ûk|2
⎞

⎠
1/2

≤ N−m

⎛

⎝
∑

|k|�N

|k|2m |ûk|2
⎞

⎠
1/2

,

where the symbol
∑

|k|�N has been introduced in (2.1.16). The last bracket
can be bounded by the L2-norm of u(m); hence, (5.1.9) follows.

Moreover, we can estimate the truncation error in higher Sobolev norms
as follows:

‖u− PNu‖Hl(0,2π) ≤ CN l−m‖u(m)‖L2(0,2π) (5.1.10)

for any m ≥ 0 and any 0 ≤ l ≤ m. The proof of (5.1.10) is very similar to
the one of (5.1.9). Indeed,

‖u− PNu‖Hl(0,2π) =

⎛

⎝
∑

|k|�N

(
1 + |k|2l

)
|ûk|2

⎞

⎠
1/2

≤ 2

⎛

⎝
∑

|k|�N

|k|2m−2(m−l)|ûk|2
⎞

⎠
1/2

≤CN l−m‖u(m)‖L2(0,2π) .
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We have seen that truncation and differentiation commute. Hence, PNu
is the best approximation of u in SN for any Sobolev norm 5.1.6. However,
it is not so if we consider the Lp-norms, 1 ≤ p ≤ ∞. An estimate of u−PNu
in these norms can be given as a consequence of a preliminary investigation
of the best approximation error. Results of this kind are known as Jackson’s
theorems. We shall recall here those applied to the forthcoming convergence
analysis.

The first result is concerned with the best approximation in SN , relative
to the maximum norm; it states that for any m ≥ 0

inf
φ∈SN

‖u− φ‖L∞(0,2π) ≤
π

2
N−m‖u(m)‖L∞(0,2π) . (5.1.11)

This is a particular case of the following general result concerning best ap-
proximation errors in Lp for the whole range 1 ≤ p ≤ ∞:

inf
φ∈SN

‖u− φ‖Lp(0,2π) ≤ CN−m‖u(m)‖Lp(0,2π) . (5.1.12)

In the two previous estimates we have assumed that the m-th order derivative
of u (in the sense of periodic distributions, see (A.10.c)) belongs to the space
Lp(0, 2π) for which the norm on the right-hand side is finite.

We deal now with the evaluation of the truncation error u − PNu in the
Lp-norms, 1 ≤ p ≤ ∞. We recall first that if u ∈ Lp(0, 2π), with 1 < p <∞,
then its Fourier series converges, i.e.,

‖u− PNu‖Lp(0,2π) → 0 as N →∞ . (5.1.13)

This result includes and generalizes the property (2.1.9) which corresponds
to the case p = 2. Furthermore, if 1 < p <∞,

‖u− PNu‖Lp(0,2π) ≤ C inf
φ∈SN

‖u− φ‖Lp(0,2π) . (5.1.14)

Hence, PNu approximates u in the Lp-norms with the same order as the best
approximation. If p = 1 or p =∞, inequality (5.1.14) still holds provided the
constant C is replaced by C(1 + logN). (Here and in the sequel, we do not
specify the base of logarithms, since the choice of the particular base only
influences the constant C.)

When the function u is 2π-periodic and analytic in a strip of the complex
plane about the real axis, the error u− PNu decays exponentially in N . For
instance, if u belongs to the Gevrey space Gη,m(0, 2π), i.e., if ‖u‖2Gη,m(0,2π) =
∑

k∈Z
e2η(1+|k|) (1 + |k|2m

)
|ûk|2 <∞ (which implies that u is analytic in the

strip | Im z| < η), then the same arguments as above prove that

‖u− PNu‖Hl(0,2π) ≤ CN l−me−ηN‖u‖Gη,m(0,2π) , (5.1.15)

for 0 ≤ l ≤ m.
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5.1.3 Estimates for the Interpolation Error

Let INu ∈ SN denote the trigonometric interpolant of the function u at the
nodes xj = πj/N , j = 0, . . . , 2N − 1 (see (2.1.28), where on the right-hand
side N/2 must be replaced by N). We shall give some approximation results
for the interpolation error u− INu. For the estimate in the L2-norm we have

‖u− INu‖L2(0,2π) ≤ CN−m‖u(m)‖L2(0,2π)

for all u ∈ Hm
p (0, 2π) with m ≥ 1 .

(5.1.16)

A comparison of (5.1.9) and (5.1.16) reveals that the interpolation error be-
haves asymptotically like the truncation error. A proof of this estimate will
be presented at the end of the section.

The following result provides an estimate of the interpolation error in the
maximum norm:

‖u− INu‖L∞(0,2π) ≤ C(logN)N−m‖u(m)‖L∞(0,2π) . (5.1.17)

Result (5.1.16) allows one to estimate the aliasing error RNu = INu −
PNu (see (2.1.37)). Indeed, since by (2.1.39) ‖RNu‖L2(0,2π) ≤ ‖u −
INu‖L2(0,2π), one gets

‖RNu‖L2(0,2π) ≤ CN−m‖u(m)‖L2(0,2π) (5.1.18)

under the same hypotheses as (5.1.16). The important implication of this
estimate is that the aliasing error is asymptotically no worse than the inter-
polation error in the L2-norm.

An evaluation of the interpolation error in all Sobolev norms is now pos-
sible, and it is given by the estimate

‖u− INu‖Hl(0,2π) ≤ CN l−m‖u(m)‖L2(0,2π)

for 0 ≤ l ≤ m and u ∈ Hm
p (0, 2π) , with m ≥ 1 .

(5.1.19)

This inequality follows directly from the preceding results. It is a consequence
of (5.1.18), (5.1.10) and the Bernstein inequality (5.1.5) used with p = 2 and
r = l. Indeed we get

‖u− INu‖Hl(0,2π) ≤ ‖u− PNu‖Hl(0,2π) + ‖RNu‖Hl(0,2π)

≤ CN l−m‖u(m)‖L2(0,2π) + CN l ‖RNu‖L2(0,2π)

≤ CN l−m‖u(m)‖L2(0,2π) .

As a particular relevant case of (5.1.19), one can estimate the error pro-
duced in evaluating the interpolation derivative of a function (see (2.1.44)):
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‖u′ −DNu‖L2(0,2π) ≤ CN1−m‖u(m)‖L2(0,2π) (5.1.20)

for all u ∈ Hm
p (0, 2π), m ≥ 1. Equivalently, recalling the identity (2.1.33)

and noting that u′(xj) = (INu′)(xj) for j = 0, . . . , 2N −1, one has under the
same hypotheses

⎛

⎝ π

N

2N−1∑

j=0

|u′(xj)−DNu(xj)|2
⎞

⎠
1/2

≤ CN1−m‖u(m)‖L2(0,2π) . (5.1.21)

Finally, when the function u is analytic, the error u′ −DNu decays expo-
nentially in N . Precisely, if u is a 2π-periodic analytic function in the strip
| Im z| < η0, then

‖u′ −DNu‖L2(0,2π) ≤
4

sinh(η)
Ne−ηNM(u, η) (5.1.22)

for all η, 0 < η < η0, where M(u, η) = max
| Im z|≤η

|u(z)|.

Proof of (5.1.16). For each function u : (0, 2π) → C we consider the
function Fu : (0, 2πN)→ C such that Fu(x) = u(x/N) for all x ∈ (0, 2πN).
Then we define

S∗
N = {Fφ | φ ∈ SN} .

Let xj = jπ/N , j = 0, . . . , 2N − 1, be the interpolation points, and set
θj = Nxj for j = 0, . . . , 2N − 1. We denote by I∗N the interpolation operator
with respect to these points, i.e., for all u ∈ C0([0, 2πN ]),

I∗Nu ∈ S∗
N , I∗Nu(θj) = u(θj) for j = 0, . . . , 2N − 1 . (5.1.23)

The following three relations can be easily proved:

F(INu) = I∗N (Fu) for all u ∈ C0([0, 2π]) ; (5.1.24)

I∗Nu = u for all u ∈ S∗
N ; (5.1.25)

‖u(l)‖L2(0,2π) = N l−1/2‖(Fu)(l)‖L2(0,2πN) , l ≥ 0 . (5.1.26)

Then, if we denote by I the identity operator (i.e., I(u) = u for all u), it
follows that

‖u− INu‖L2(0,2π) = N−1/2‖Fu− I∗N (Fu)‖L2(0,2πN)

= N−1/2‖(I − I∗N )(Fu− F(PNu))‖L2(0,2πN)

≤ N−1/2‖I − I∗N‖Lm‖F(u− PNu)‖Hm(0,2πN) .

(5.1.27)
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We have denoted by Lm = L(Hm
p (0, 2πN), L2(0, 2πN)) the space of all linear

and continuous applications from Hm
p (0, 2πN) into L2(0, 2πN) (see (A.3)).

Using (5.1.26) and (5.1.10) gives

‖F(u− PNu)‖2Hm(0,2πN) =
m∑

l=0

N1−2l‖(u− PNu)(l)‖2L2(0,2π)

≤ CN1−2m‖u(m)‖2L2(0,2π) .

Then, from (5.1.27) we obtain

‖u− INu‖L2(0,2π) ≤ CN−m‖u(m)‖L2(0,2π)‖I − I∗N‖Lm . (5.1.28)

Since ‖I‖Lm = 1, it remains to prove that there is a constant C independent
of N such that

‖I∗N‖Lm ≤ C . (5.1.29)

We note that (see (A.3))

‖I∗N‖Lm = sup{‖I∗v‖L2(0,2πN)|v ∈ Hm
p (0, 2πN), ‖v‖Hm(0,2πN) =1}. (5.1.30)

Using (5.1.24) and (5.1.26) it follows that

‖I∗Nv‖L2(0,2πN) = N1/2‖IN (F−1v)‖L2(0,2π) = N1/2

(∫ 2π

0

|IN (F−1v)|2 dx
)1/2

= N1/2

⎛

⎝ π

N

2N−1∑

j=0

|(F−1v)(xj)|2
⎞

⎠
1/2

=
√

π

⎛

⎝
2N−1∑

j=0

|v(θj)|2
⎞

⎠
1/2

.

(5.1.31)

We can write [0, 2πN ] =
⋃2N−1

j=0 [θj , θj+1], and by the Sobolev inequality (see
(A.12)) we get, for each m ≥ 1,

|v(θj)| ≤ C‖v‖Hm(θj ,θj+1) for j = 0, . . . , 2N − 1 .

Thus,

2N−1∑

j=0

|v(θj)|2 ≤ C‖v‖2Hm(0,2πN) ,

and (5.1.29) follows now from (5.1.30) and (5.1.31). ��
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5.2 Sturm-Liouville Expansions

In this section we consider expansions with respect to eigenfunctions of
Sturm-Liouville problems. We refer for notation to Sect. 2.2.1. We analyze the
decay properties of the coefficients of a function with respect to such a basis,
distinguishing between regular and singular Sturm-Liouville problems.

We assume that the coefficients p, q and w satisfy the assumptions made
in Sect. 2.2.1. Moreover, we suppose that

∫ 1

−1
w(x)−1dx < +∞.

5.2.1 Regular Sturm-Liouville Problems

If the function p is bounded from below by a positive constant, say p(x) ≥
p0 > 0, then the two boundary conditions to be specified in (2.2.1) assume
the form

α1u(−1) + β1u
′(−1) = 0 , α2

1 + β2
1 	= 0 ,

α2u(1) + β2u
′(1) = 0 , α2

2 + β2
2 	= 0 ,

(5.2.1)

for suitable α1, β1, α2, β2. In this case we are speaking of a regular Sturm-
Liouville boundary-value problem.

Under the assumptions that α1β1 ≤ 0 and α2β2 ≥ 0, it is known (see,
e.g., Courant and Hilbert (1953, vol. I)), that the eigenvalues of the regular
Sturm-Liouville problem (2.2.1), (5.2.1) form an infinite, unbounded sequence
of nonnegative numbers, 0 ≤ λ0 < · · · < λk < λk+1 < · · · , and have multi-
plicity 1. The corresponding eigenfunctions φk, determined up to a constant,
have exactly k zeroes in the open interval (−1, 1). The asymptotic behavior
of the eigenvalues as k →∞ is given by the formula

lim
k→∞

k2

λk
=

π2

4

∫ 1

−1

√
w/p dx . (5.2.2)

The asymptotic behavior of the eigenfunctions depends on the type of
boundary conditions. For instance, for the Neumann boundary conditions
u′(−1) = u′(1) = 0, one has
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φk(x) = Ak cos
π

2
k(x + 1) +

O(1)
k

, k →∞ .

Eigenfunctions are mutually orthogonal with respect to the weighted inner
product

(u, v)w =
∫ 1

−1

u(x)v(x)w(x) dx , (5.2.3)

namely,

(φk, φm)w = 0 if k 	= m . (5.2.4)

Moreover, the system {φk, k = 0, 1, . . . , } is complete in the weighted
L2

w(−1, 1) space (see (A.9.g)). This means that if we define the sequence
of the “Fourier” coefficients of a function u ∈ L2

w(−1, 1) as

ûk = (u, φk)w , k = 0, 1, . . .

(φk is assumed to be normalized by ‖φk‖L2
w(−1,1) = 1), and we set

PNu =
N∑

k=0

ûkφk for integer N > 0 ,

then

‖u− PNu‖L2
w(−1,1) → 0 as N → +∞ .

In other words, the “Fourier” series
∑∞

k=0 ûkφk of u is convergent to u in the
weighted squared mean for any u ∈ L2

w(−1, 1).
Local convergence properties require more regularity on u. For instance,

as in the case of the Fourier expansion, if u is of bounded variation on [−1,+1]
(see (A.8)), PNu(x) converges pointwise to [u(x+) + u(x−)]/2 for any x ∈
[−1, 1] (see, e.g., Titchmarsh (1962)).

The rate of decay of the coefficients of a function u ∈ L2
w(−1, 1) de-

pends not only on its regularity but also on the fulfillment of a suitable set
of boundary conditions. This can be seen as follows. Equation (2.2.1) and
integration-by-parts yield

ûk = (u, φk)w =
1
λk

∫ 1

−1

u[−(pφ′
k)′ + qφk] dx

=
1
λk

∫ 1

−1

[−(pu′)′ + qu]φk dx− 1
λk

[p(φ′
ku− φku

′)]1−1

=
1
λk

(
1
w
Lu, φk

)

w

− 1
λk

[p(φ′
ku− φku

′)]1−1 .

(5.2.5)

This deduction is rigorous under the assumption that the function u(1) =
1
wLu satisfy
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u(1) ∈ L2
w(−1, 1) . (5.2.6)

Due to the regularity of the elliptic operator L, this means that the second
derivative of u must be square integrable with respect to the weight 1/w.
Under this hypothesis, u and u′ are continuous up to the boundary.

Now, if u satisfies the boundary conditions (5.2.1), the boundary term in
(5.2.5) vanishes, so that

ûk =
1
λk

(u(1), φk)w .

The iteration of this argument yields ûk = 1/(λk)m(u(m), φk)w, for m ≥ 2,
provided u(m) = (1/w)Lu(m−1) ∈ L2

w(−1, 1) and u(m−1) satisfies the bound-
ary conditions (5.2.1). We deduce the asymptotic decay estimate

|ûk| ≤
C

k2m
‖u(m)‖L2

w(−1,1) .

If for some m, u(m) does not satisfy (5.2.1), then ûk decays no faster than
1/k2m, even if u is infinitely smooth. In this case u cannot be approximated
with spectral accuracy by the system of the φk’s.

5.2.2 Singular Sturm-Liouville Problems

A singular Sturm-Liouville problem occurs when p vanishes for at least one
point on the boundary. We will consider here only the case p(−1) = p(1) = 0.
The boundary conditions (5.2.1) are replaced by conditions on the type of
singularities allowed on the boundary. Precisely, one requires the solution to
satisfy

p(x)u′(x)→ 0 as x→ ±1 . (5.2.7)

Let us assume that u is square integrable with respect to both the weights
q and w, and that u′ is square integrable with respect to the weight p, i.e.,
let us assume that u ∈ X, where

X =
{
v ∈ L2

w(−1, 1) ∩ L2
q(−1, 1) | v′ ∈ L2

p(−1, 1)
}

.

(X is a Hilbert space for the norm ‖v‖2 =
∫ 1

−1
v2w dx +

∫ 1

−1
v2q dx +

∫ 1

−1
(v′)2pdx.) Then, it is possible to give the following variational formu-

lation of (2.2.1):
∫ 1

−1

(pu′v′ + quv) dx = λ

∫ 1

−1

uvw dx for all v ∈ X . (5.2.8)

This takes into account the new boundary conditions in a natural way. As
for the regular Sturm-Liouville problem, the eigenvalues of (5.2.8) form an
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unbounded sequence of nonnegative real numbers 0 ≤ λ0 ≤ · · ·λk ≤ · · · ; each
of them has finite multiplicity. The system of corresponding eigenfunctions
φk is orthogonal and complete in L2

w(−1, 1). In order to prove these results,
let us consider the following problem:

u ∈ X ,
∫ 1

−1

(pu′v′ + quv + uvw) dx =
∫ 1

−1

fvw dx for all v ∈ X .
(5.2.9)

For each f ∈ L2
w(−1, 1), there exists a unique solution to this problem. This

follows from the Riesz representation theorem (see (A.1.d)), since the left-
hand side of (5.2.9) is precisely the inner product in X. Let T : L2

w(−1, 1)→
L2

w(−1, 1) be the linear operator that maps f into u. The eigenvalues λ of
(5.2.8) are obtained from the eigenvalues µ of T by the relation λ+1 = µ−1.
The eigenfunctions are the same. It is immediate that T is a symmetric, pos-
itive operator in the inner product of L2

w(−1, 1) (i.e., it satisfies (T f, f) > 0
for any f 	= 0), and that each eigenvalue of T is ≤ 1. Moreover, one can
prove that T is compact (see (A.3)). The proof of this property is based on
the observation that if u is the solution of (5.2.9), then (pu′)′ ∈ L1(−1, 1)
and pu′ is continuous on [−1, 1]; thus, one can apply Ascoli’s Theorem (see,
e.g., Taylor (1958), Sect. 5.5). At this point one can invoke a fundamental
result of spectral analysis in Hilbert spaces (see, e.g., Taylor (1958), Theo-
rem 6.4-D) that states that the eigenvalues of T form an infinite sequence of
positive numbers that converges to 0. The corresponding eigenfunctions form
a complete orthogonal basis in L2

w(−1, 1). This yields the desired properties
for the eigenvalues of (5.2.8).

In order to investigate the behavior of the expansion coefficients ûk =
(u, φk)w of a function u ∈ L2

w(−1, 1) with respect to the system of eigenfunc-
tions of a singular Sturm-Liouville problem, we proceed as in (5.2.5):

ûk =
1
λk

∫ 1

−1

(pφ′
ku

′ + qφku) dx (by (5.2.8))

=
1
λk

∫ 1

−1

[−(pu′)′ + qu]φk dx +
1
λk

[pu′φk]1−1

=
1
λk

(
1
w
Lu, φk

)

w

+
1
λk

[pu′φk]1−1 .

(5.2.10)

Again, this holds provided (5.2.6) is satisfied. Note that under this assump-
tion, pu′ is continuous up to the boundary, since

|(pu′)(x1)− (pu′)(x2)| =
∣∣∣∣
∫ x2

x1

(pu′)′ dx
∣∣∣∣

≤
(∫ x2

x1

1
w
|(pu′)′|2

)1/2(∫ x2

x1

w

)1/2

.
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Thus, condition (5.2.7) makes sense, and it implies that the boundary term
in (5.2.8) vanishes. We stress that, unlike the case of regular Sturm-Liouville
boundary-value problems, (5.2.7) is just a regularity assumption on u over the
closed interval [−1, 1], i.e., u is not required to satisfy specific boundary condi-
tions. One can easily check that (5.2.7) is satisfied if, for instance, (p/w)u′′ ∈
L2

w(−1, 1). Again, one can iterate the argument and get the representation
ûk = 1/(λk)m(u(m), φk)w provided u(m) = (1/w)Lu(m−1) ∈ L2

w(−1, 1) and
u(m−1) satisfies (5.2.7) for m ≥ 2. In the cases of interest (see Sects. 2.3.1
and 2.4.1), λk = O(k2) as k → ∞. Hence, the expansion coefficients of u
decay faster than algebraically under the sole assumption that u be infinitely
differentiable.

This result does not necessarily hold if q is unbounded in [−1, 1]. For
instance, let us consider the singular Sturm-Liouville boundary-value problem
(Bessel equation) after changing the interval to [0, 2]:

−(xu′)′ +
n2

x
u = λxu , 0 < x < 2 ,

u(2) = 0 , u bounded near 0 .

For n 	= 0, the condition u(m) ∈ L2
w(−1, 1) forces u(m) to vanish at x = 0,

since q2/w is not integrable. In order to achieve spectral accuracy in this case,
an infinite number of boundary conditions must be satisfied even though the
operator is singular.

We conclude this section by showing that the only polynomial eigenfunc-
tions of a singular Sturm-Liouville problem are the Jacobi polynomials. Ac-
tually, if φk = (1/(λkwk))Lφk is a polynomial of degree k for k = 0, 1, 2, . . . ,
it is readily seen by taking k = 0, 1, 2 that q/w is a polynomial of degree
zero (i.e., q(x) = q0w(x)) and p/w and p′/w are, respectively, polynomials
of degree two and one. Since p must vanish at the boundary, necessarily one
has w(x) = c1(1 − x)α(1 + x)β and p(x) = c2(1 − x)α+1(1 + x)β+1. Finally,
the integrability of w in (−1, 1) implies α, β > −1.

5.3 Discrete Norms

Before stating the approximation results for the Legendre and the Chebyshev
polynomials, we give here some general theoretical results concerning the
discrete inner product (u, v)N defined in (2.2.24). This bilinear form is a high-
precision approximation of the inner product (u, v)w, with respect to which
the polynomials pk introduced in Sect. 2.2.2 are orthogonal. The quantity

‖v‖N = (v, v)1/2
N , (5.3.1)

which is meaningful for all continuous functions v in [−1, 1], defines a norm
for the polynomials of PN associated with the discrete inner product. If
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the quadrature points xj are of Gauss or Gauss-Radau type, then ‖φ‖N =
‖v‖L2

w(−1,1) for all φ ∈ PN . If the points xj are of Gauss-Lobatto type, this
equality holds for φ ∈ PN−1, but in general ‖pN‖N 	= ‖pN‖L2

w(−1,1). However,
for the polynomials of PN , the discrete norm ‖φ‖N is uniformly equivalent
to the norm ‖φ‖L2

w(−1,1) in the more important cases, such as Legendre,
Chebyshev or other Jacobi polynomials. This means that there exist positive
constants C1 and C2, independent of N , such that

C1‖φ‖L2
w(−1,1) ≤ ‖φ‖N ≤ C2‖φ‖L2

w(−1,1) for all φ ∈ PN . (5.3.2)

This result has been established by Canuto and Quarteroni (1982a). For the
Legendre and Chebyshev polynomials, one has

1 ≤ ‖pN‖N
‖pN‖L2

w(−1,1)
=

⎧
⎪⎨

⎪⎩

√
2 (Chebyshev) ,
√

2 +
1
N

(Legendre) ,

as a consequence of (2.2.23), (2.3.13) and (2.4.18). Thus, (5.3.2) holds with
C1 = 1 and C2 =

√
3, thanks to the orthogonality of the polynomials pk.

The uniform equivalence of the discrete and continuous norms on PN is
used in a variety of ways in the analysis of stability and convergence, as
will be seen in Chaps. 6 and 7. For instance, at each stage of the analysis
one may use whichever of the two norms is more convenient, and, if desired,
convert to the other norm by the uniform equivalence property. Moreover,
error estimates obtained for the continuous norm can be readily converted to
error estimates in the discrete norm, and conversely.

A trivial application of (5.3.2) is the estimate

‖v‖N ≤ C2‖INv‖L2
w(−1,1) , (5.3.3)

which holds for all the continuous functions on [−1, 1].
The difference between the L2

w-inner product (u, v)w and the discrete in-
ner product (u, v)N can be bounded in terms of truncation and interpolation
errors. Such estimates will be used in the convergence analysis of the subse-
quent chapters. Hereafter we denote by u any continuous function on [−1, 1],
and by φ any polynomial of PN .

For the Gauss and Gauss-Radau integration, we have

|(u, φ)w − (u, φ)N | ≤ ‖u− INu‖L2
w(−1,1)‖φ‖L2

w(−1,1) . (5.3.4a)

Indeed, from (2.2.25) and (2.2.27) we get

(u, φ)w − (u, φ)N = (u, φ)w − (INu, φ)w ;

hence, (5.3.4a) follows from the Cauchy-Schwarz inequality.
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For the Gauss-Lobatto integration, if (5.3.2) holds, then there exists a pos-
itive constant C independent of N such that

|(u, φ)w − (u, φ)N | ≤ C(‖u− PN−1u‖L2
w(−1,1)

+ ‖u− INu‖L2
w(−1,1))‖φ‖L2

w(−1,1) .
(5.3.4b)

Actually we have

|(u, φ)w − (u, φ)N |
= |(u, φ)w − (PN−1u, φ)w + (PN−1u, φ)w − (INu, φ)N |
≤ |(u− PN−1u, φ)w|+ |(PN−1u− INu, φ)N | (by (2.2.25))
≤ C

(
‖u− PN−1u‖L2

w(−1,1) + ‖PN−1u− INu‖N
)
‖φ‖L2

w(−1,1)

(by the Cauchy-Schwarz inequality and (5.3.2))
≤ C

(
2‖u− PN−1u‖L2

w(−1,1) + ‖u− INu‖L2
w(−1,1)

)
‖φ‖L2

w(−1,1)

(by (5.3.2)) ;

whence, (5.3.4b) follows.

5.4 Legendre Approximations

We present in this section various results concerning polynomial approxima-
tions in Lp-spaces or in Sobolev spaces, in which integration is performed
with respect to the Legendre weight w(x) ≡ 1. Additional results can be
found, e.g., in Bernardi and Maday (1997) and in Schwab (1998).

5.4.1 Inverse Inequalities for Algebraic Polynomials

We recall here the inverse inequalities concerning summability and differen-
tiability for algebraic polynomials on the interval (−1, 1). These results are
expressed in terms of Lp-norms, which are defined as follows:

‖u‖Lp(−1,1) =
(∫ 1

−1

|u(x)|p dx
)1/p

, 1 ≤ p <∞ , (5.4.1)

and

‖u‖L∞(−1,1) = sup
−1≤x≤1

|u(x)| , p =∞ . (5.4.2)

These are the norms of the Banach spaces Lp(−1, 1) defined in (A.9.f).
The inverse inequality concerning summability states that for any real p

and q with 1 ≤ p ≤ q ≤ ∞, there exists a positive constant C independent
of N such that
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‖φ‖Lq(−1,1) ≤ CN2(1/p−1/q)‖φ‖Lp(−1,1) for all φ ∈ PN . (5.4.3)

The following inequality relates the L2-norm to a weaker weighted L2-norm:

‖φ‖L2(−1,1) ≤ CNα‖φ‖L2
ηα

(−1,1) for all φ ∈ PN , (5.4.4)

where the weight on the right-hand side is ηα(x) = (1 − x2)α, with α ≥ 0,
and C is a positive constant independent of N .

On the other hand, the inverse inequality concerning differentiation states
that for any p with 2 ≤ p ≤ ∞, and for all integers r ≥ 1, there exists
a positive constant C independent of N such that

‖φ(r)‖Lp(−1,1) ≤ CN2r‖φ‖Lp(−1,1) for all φ ∈ PN . (5.4.5)

The exponent of N in both (5.4.3) and (5.4.5) is the smallest possible.
However, it is exactly twice the exponent in the Fourier inverse inequali-
ties (5.1.4) and (5.1.5), or in the corresponding uniform-grid finite-element
inequalities. This has some important consequences for the stability and con-
vergence analysis of orthogonal polynomial spectral methods. Result (5.4.5)
is also used in Sect. 7.3 to discuss the growth with N of the eigenvalues
of the discrete first- and second-derivative operators. With one exception
(the Legendre tau first derivative operator), these eigenvalues grow twice
as fast as those of the corresponding matrices generated by, say, finite-
difference or finite-element methods on uniform grids with the same num-
ber of unknowns. The implication is that, for evolution equations, explicit
time-advancing schemes applied with spectral methods in space have a more
restrictive time-step limitation than standard low-order methods.

Inverse inequalities with smaller powers of N than in (5.4.5) can be ob-
tained, at the expense of inserting a weaker weight in the left-hand side
norm or a stronger weight in the right-hand side norm. For instance, setting
η(x) = (1− x2), the following inequality holds:

‖φ′√η ‖L2(−1,1) ≤
√

2N‖φ‖L2(−1,1) for all φ ∈ PN (−1, 1) . (5.4.6)

If φ vanishes at the endpoints of the interval, then φ2η−1 is integrable and
we have the bound

‖φ′‖L2(−1,1) ≤
√

2N‖φ/√η ‖L2(−1,1) for all φ ∈ P
0
N (−1, 1) . (5.4.7)

The latter estimate is used in Sect. 7.3.1 to study the growth of the largest
eigenvalue of the stiffness matrix generated by a G-NI method.

Finally, we mention another inequality that allows one to bound the max-
imum norm of a polynomial by its norm in the Sobolev space of fractional
order H1/2(−1, 1) (see (A.11.e)). Precisely, there exists a positive constant C
independent of N such that

‖φ‖L∞(−1,1) ≤ C
√

log(1 + N) ‖φ‖H1/2(−1,1) for all φ ∈ PN . (5.4.8)
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5.4.2 Estimates for the Truncation and Best Approximation
Errors

As for the Fourier system, we will measure several approximation errors for
the Legendre system in terms of Sobolev norms. The most commonly used
Sobolev norm of order m ≥ 0 is given by

‖u‖Hm(−1,1) =

(
m∑

k=0

‖u(k)‖2L2(−1,1)

)1/2

. (5.4.9)

Again, one can consider u(k) to be the classical continuous derivative of u of
order k. These norms can actually be defined for less regular functions, which
form a Hilbert space called Hm(−1, 1). This space is introduced in (A.11.a).

In bounding from above the approximation error, only some of the L2-
norms appearing on the right-hand side of (5.4.9) enter into play. Thus, it is
convenient to introduce the seminorms

|u|Hm;N (−1,1) =

⎛

⎝
m∑

k=min(m,N+1)

‖u(k)‖2L2(−1,1)

⎞

⎠
1/2

; (5.4.10)

note that whenever N ≥ m− 1, one has

|u|Hm;N (−1,1) = ‖u(m)‖L2(−1,1) = |u|Hm(−1,1) .

The truncation error u−PNu, where PNu =
∑N

k=0 ûkLk is the truncated
Legendre series of u, can be estimated as follows: for all u ∈ Hm(−1, 1),
m ≥ 0, one has

‖u− PNu‖L2(−1,1) ≤ CN−m|u|Hm;N (−1,1) (5.4.11)

where C depends on m.
A brief comment on the right-hand side of this inequality is in order. Ob-

viously, we have |u|Hm;N (Ω) ≤ ‖u‖Hm(Ω); hence, (5.4.11) implies the estimate

‖u− PNu‖L2(−1,1) ≤ CN−m‖u‖Hm(−1,1) . (5.4.12)

Not only is (5.4.11) sharper than the latter estimate, but the presence of the
seminorm, rather than the norm, on its right-hand side expresses the fact
that the projection operator PN is exact for all polynomials in PN . Indeed,
take m = N + 1 in (5.4.11) and observe that the condition |u|HN+1;N (−1,1) =
‖u(N+1)‖L2(−1,1) = 0 is equivalent to u(N+1) vanishing identically in (−1, 1),
which in turn is equivalent to u being a polynomial of degree ≤ N . Thus, if
|u|HN+1;N (−1,1) = 0, (5.4.11) implies u− PNu = 0, i.e., PNu = u.
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Sharper estimates than (5.4.11) can be obtained. One of them is given
by the first inequality in the subsequent estimate (5.6.1); this surfaces in
a natural way in Sect. 5.6 in the proof of (5.4.11). Another one is the bound

‖u− PNu‖L2(−1,1) ≤
(

(N + 1− s)!
(N + 1 + s)!

)1/2

‖u(s)‖L2
s(−1,1) , (5.4.13)

which holds for all 0 ≤ s ≤ min(m,N + 1), with

‖u(s)‖L2
s(−1,1) =

(∫ 1

−1

|u(s)(x)|2(1− x2)s dx
)1/2

. (5.4.14)

In the limit N →∞, m fixed, the preceding estimate takes the form of (5.4.11)
with |u|Hm;N (−1,1) = ‖u(m)‖L2(−1,1) replaced by ‖u(m)‖L2

m(−1,1). This sharper
estimate arises because the allowable growth of the derivative at the endpoints
of the interval is damped there by the vanishing weight. Although we will
not explicitly mention it in the sequel, we remark that such an improvement
applies to all the error estimates given throughout this section.

The truncated Legendre series PNu is the polynomial of best approxima-
tion of u in the L2-norm. One can consider the problem of the best approx-
imation polynomial of u with respect to a general norm. For any normed
linear space X and any u ∈ X, it is known that there exists a polynomial
φ∗ ∈ PN such that

‖u− φ∗‖X = inf
φ∈PN

‖u− φ‖X ; (5.4.15)

φ∗ is called a best approximation polynomial of u in the norm of X. We are
interested in the case where X = Lp(−1, 1) for 1 ≤ p ≤ ∞. For these norms
φ∗ is unique.

The best approximation error in any Lp-norm with 2 < p ≤ ∞ decays as
the truncation error in the L2-norm, i.e.,

inf
φ∈PN

‖u− φ‖Lp(−1,1) ≤ CN−m

⎛

⎝
m∑

k=min(m,N+1)

‖u(k)‖pLp(−1,1)

⎞

⎠
1/p

. (5.4.16)

This estimate holds for all the functions u whose (distributional) derivatives
of order up to m belong to Lp(−1, 1).

The rate of convergence of the truncation error in Lp-norms, p > 2, is not
as fast as the rate of convergence of the best approximation. For instance,
for any function u with an m-th derivative of bounded variation (see (A.8)),
one has

‖u− PNu‖L∞(−1,1) ≤ CN1/2−mV (u(m)) , (5.4.17)
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where V (u(m)) is the total variation of u(m). Comparing this result with
(5.4.16) for p = ∞, and noting that a function of bounded variation is cer-
tainly bounded, we see that the rate of convergence of the truncation error
is slower by at least a factor of

√
N .

In those cases for which the truncation error of the derivatives is relevant,
the following estimate extends (5.4.11) to higher order Sobolev norms:

‖u− PNu‖Hl(−1,1) ≤ CN2l−1/2−m|u|Hm;N (−1,1) , (5.4.18)

for u ∈ Hm(−1, 1) with m ≥ 1 and for any l such that 1 ≤ l ≤ m. Note that
in the important case l = m = 1, this inequality does not imply convergence
of the derivative of the truncated series. Indeed, it is possible to construct
a function u such that the truncated Legendre series converges in L2(−1, 1)
but not in H1(−1, 1). Thus, the derivative of the series does not converge.

A simple manifestation of this phenomenon is provided by considering
a sequence of functions rather than a series. In particular, let

u(N) =
1

N + 1
LN+1 −

1
N − 1

LN−1 .

The seminorm |u(N)|H1(−1,1) is bounded, as can be verified by using the
Parseval equality to evaluate the norm of the first derivative and then using
(2.3.18), which expresses the coefficients of the derivative in terms of the
coefficients of the function. Nevertheless, in a similar fashion one obtains

‖u(N) − PNu(N)‖H1(−1,1) ∼
√

N .

Fourier series are better behaved in this regard. If u itself is in H1
p (0, 2π),

then the L2-norm of the derivative of the truncated series of u is at least
bounded. The analogous example is

u(N)(x) =
1

N + 1
ei(N+1)x − 1

N − 1
ei(N−1)x .

Clearly,

‖u(N) − PNu(N)‖H1(0,2π) =

√

2π
(

1 +
1

(N + 1)2

)
.

The difference between the two types of expansions can be attributed to
the loss of two powers of N in (5.4.5) for every derivative as opposed to only
one power of N in the Fourier case.

The function u(x) = |x|3/2 displayed in Fig. 5.1 is almost in H2(−1, 1),
i.e., for all real p < 2,

∫ 1

−1

|u′′(x)|p dx <∞ .
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Fig. 5.1. Several versions of Legendre differentiation for u(x) = |x|3/2 on [−1, 1].
The exact result is indicated by the solid, thick curve, the approximate results are
obtained for N = 2, 4, 8, 16 and 32. Only the right half of the interval is shown,
(left) PNu

′; (right) (PNu)
′

Result (5.4.18) then implies that (PNu)′ converges to u′ in the L2-norm.
But it does not imply convergence in the L∞-norm, as is evident from the
figure. Indeed, a sharp upper bound in the maximum norm for all functions
in H2(−1, 1) can be obtained from the Sobolev inequality (A.12) and the
estimate (5.4.18):

‖u′ − (PNu)′‖L∞(−1,1) ≤ C‖u− PNu‖1/2
H1(−1,1)‖u− PNu‖1/2

H2(−1,1)

≤ CN1/2|u|H2;N (−1,1) .

On the other hand, Fig. 5.1 suggests that PNu′ does converge to u′ in the
L∞-norm. This is true for all functions in H2(−1, 1), as follows from the
estimate (5.4.17) applied with u′ replacing u and with m = 1.

The rate of decay in (5.4.18) is not optimal in the sense that the best
approximation error has a faster rate of convergence in the same norms. We
will confine the discussion here to the H1(−1, 1) norm. Since H1(−1, 1) is
a Hilbert space, the best approximation polynomial for u is the orthogonal
projection of u upon PN in the scalar product that induces the norm of
H1(−1, 1). This is defined as

((u, v)) =
∫ 1

−1

(u′v′ + uv) dx for all u, v ∈ H1(−1, 1) . (5.4.19)

Then, the polynomial P 1
Nu ∈ PN such that

((P 1
Nu, φ)) = ((u, φ)) for all φ ∈ PN (5.4.20)

satisfies the identity

‖u− P 1
Nu‖H1(−1,1) = inf

φ∈PN

‖u− φ‖H1(−1,1) . (5.4.21)

The approximation error (5.4.21) satisfies, for all u ∈ Hm(−1, 1), with m ≥ 1,
the estimate

‖u− P 1
Nu‖H1(−1,1) ≤ CN1−m|u|Hm;N (−1,1) . (5.4.22)



5.4 Legendre Approximations 287

On the other hand, the error u− P 1
Nu in the L2-norm satisfies

‖u− P 1
Nu‖L2(−1,1) ≤ CN−m|u|Hm;N (−1,1) . (5.4.23)

The exponent of N is the same here as it is for the best approximation error
in the L2-norm.

An illustration of both the L2(−1, 1) and H1(−1, 1)-projections is pro-
vided in Fig. 5.2, again for the function u(x) = |x|3/2. The maximum point-
wise error for the H1-projection appears to decay slightly faster than the
corresponding error for the L2-projection (see Figs. 5.2(c) and (a)). In fact,
for all functions u ∈ Hm(−1, 1), m ≥ 1, one has

‖u− PNu‖L∞(−1,1) ≤ CN3/4−m|u|Hm;N (−1,1) (5.4.24)

and

‖u− P 1
Nu‖L∞(−1,1) ≤ CN1/2−m|u|Hm;N (−1,1) . (5.4.25)

These estimates follow from the Sobolev inequality (A.12) together with
the previous estimates in the Sobolev norms: (5.4.24) is obtained using
(5.4.11) and (5.4.18) with l = 1; (5.4.25) is a consequence of (5.4.22) and
(5.4.23). On the other hand, it is evident in Figs. 5.2(d) and (b) that the H1-
projection is definitely superior to the L2-projection in the approximation of
the first derivative of u.

The approximation results in the Sobolev norms are of importance for the
analysis of spectral approximations of boundary-value problems. In this case
it may be more appropriate to project not just onto the space of polynomi-
als, but onto the space of polynomials satisfying the boundary data. Result
(5.4.22) holds for this projection as well (provided, of course, that u satis-
fies the same boundary data). Let us consider, for instance, homogeneous
Dirichlet conditions at both endpoints of the interval (−1, 1). The functions
of H1(−1, 1) that satisfy such conditions form a subspace that is usually
denoted by H1

0 (−1, 1) (see (A.11.c)), i.e.,

H1
0 (−1, 1) =

{
v ∈ H1(−1, 1) | v(−1) = v(1) = 0

}
. (5.4.26)

Similarly, the polynomials of degree N that vanish at the endpoints form
a subspace P0

N of PN :

P
0
N = {v ∈ PN | v(−1) = v(1) = 0} . (5.4.27)

The inner product that is most commonly used for functions in H1
0 (−1, 1) is

defined by

[u, v] =
∫ 1

−1

u′(x)v′(x) dx for u, v ∈ H1
0 (−1, 1) . (5.4.28)
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Fig. 5.2. L2(−1, 1)- and H1(−1, 1)-Legendre projections for u(x) = |x|3/2. The
exact result is indicated by the solid, thick curve, and the approximate results for
N = 2, 4 and 8 by the thin curves:
u and its L2(−1, 1)-projections (upper left);
u′ and the first derivative of the L2(−1, 1)-projections of u (upper right);
u and its H1(−1, 1)-projections (lower left);
u′ and the first derivative of the H1(−1, 1)-projections of u (lower right)

It induces a norm on H1
0 (−1, 1) which is equivalent to the H1-norm, due

to the Poincaré inequality (A.13) (see also (A.11.c)). The H1
0 -projection of

a function u ∈ H1
0 (−1, 1) upon P0

N is the polynomial P 1,0
N u ∈ P0

N such that

[P 1,0
N u, φ] = [u, φ] for all φ ∈ P

0
N . (5.4.29)

We have the error estimate

‖u− P 1,0
N u‖Hk(−1,1) ≤ CNk−m|u|Hm;N (−1,1) (5.4.30)

for all u ∈ Hm(−1, 1) vanishing at the boundary, with m ≥ 1 and k = 0, 1.
More generally, for any function u ∈ H1(−1, 1), we can introduce the

affine polynomial r(x) = u(−1)
1− x

2
+ u(1)

1 + x

2
in (−1, 1) and then con-

struct the polynomial

P 1,b
N u = r + P 1,0

N (u− r) . (5.4.31)
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Note that P 1,b
N u(±1) = u(±1), i.e., P 1,b

N u matches the boundary values of u.
The difference u − P 1,b

N u can be estimated exactly as in (5.4.30), provided
u ∈ Hm(−1, 1) for some m ≥ 1.

The error bound (5.4.22) extends to higher order Sobolev norms as follows:
Let P l

Nu be the orthogonal projection of u onto PN , under the inner product
of H l(−1, 1) that induces the norm (5.4.9) (with m = l). Then

‖u− P l
Nu‖Hk(−1,1) ≤ CNk−m|u|Hm;N (−1,1) (5.4.32)

for m ≥ l, 0 ≤ k ≤ l, provided u ∈ Hm(−1, 1). The same estimate holds if we
replace P l

N by P l,λ
N (0 ≤ λ ≤ l−1), which is the orthogonal projection opera-

tor from the subspace of H l(−1, 1) of the functions vanishing at the boundary
with their derivatives of order up to λ, upon the subspace of PN of the poly-
nomials satisfying the same boundary conditions. In case of nonhomogeneous
boundary conditions, one can construct as in (5.4.31) a polynomial P l,λ,b

N u
matching the boundary values of u and its first λ derivatives, for which an
error estimate similar to (5.4.32) holds.

Finally, if k > l, i.e., if the norm in which the error is measured is stronger
than the norm for which the error is minimal, then the exponent of N in all
the previous estimates is 2k − l − 1

2 −m.

5.4.3 Estimates for the Interpolation Error

We consider now the interpolation error. Let xj , 0 ≤ j ≤ N , be the Gauss,
or the Gauss-Radau, or the Gauss-Lobatto points relative to the Legendre
weight w(x) ≡ 1, considered in Sect. 2.3.1. Let INu denote the polynomial
of degree N that interpolates u at one of these sets of points. We give some
estimates for the interpolation error u − INu in the norms of the Sobolev
spaces H l(−1, 1).

In the familiar L2(−1, 1)-norm, whenever u ∈ Hm(−1, 1) with m ≥ 1,
one has

‖u− INu‖L2(−1,1) ≤ CN−m|u|Hm;N (−1,1) , (5.4.33)

i.e., the interpolation error behaves asymptotically as the truncation error in
the L2-norm. The generalization of this formula for 1 ≤ l ≤ m is

‖u− INu‖Hl(−1,1) ≤ CN2l−1/2−m|u|Hm;N (−1,1) , (5.4.34)

exactly as for the truncation error (recall (5.4.18)). For instance, if IN denotes
the interpolation operator at the Gauss points and if u = u(N) = LN+1 −
LN−1, one has ‖u(N) − INu(N)‖H1(−1,1) ∼ cN1/2|u(N)|H1(−1,1) as N → ∞.
However, for the Gauss-Lobatto interpolation, one has the following optimal
error estimate in H1(−1, 1)

‖u− INu‖H1(−1,1) ≤ CN1−m|u|Hm;N (−1,1) . (5.4.35)
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Comparing this estimate to (5.4.22) and to (5.4.30), we see that the poly-
nomial INu behaves asymptotically both as the best N -degree polynomial
approximation of u in the H1-norm, and as the best N -degree polynomial
approximation of u (again in the H1-norm) which matches the boundary
values of u.

The last inequality includes the following bound on the error between the
exact derivative u′ and the Legendre interpolation derivative DNu = (INu)′

(see (2.3.25)):

‖u′ −DNu‖L2(−1,1) ≤ CN1−m|u|Hm;N (−1,1) . (5.4.36)

According to (5.3.3) and (5.4.33), the same estimate holds if the continuous
L2-norm of the error is replaced by the discrete L2-norm at the interpolation
points. Furthermore, (5.4.35) easily implies that Gauss-Lobatto interpolation
is stable in the H1-norm (which, in many applications, is the natural energy
norm for the problem; see Chap. 6); indeed, one has

‖INu‖H1(−1,1) ≤ C‖u‖H1(−1,1) , (5.4.37)

with C independent of N .
We conclude this section by providing an estimate for the integration error

arising from the use of Gauss quadrature formulae relative to the Legendre
weight. Assume that a (N + 1)-point Gauss, or Gauss-Radau, or Gauss-
Lobatto quadrature formula relative to the Legendre weight is used to inte-
grate the product uφ, where u ∈ Hm(−1, 1) for some m ≥ 1 and φ ∈ PN .
Then combining (5.3.4a) or (5.3.4b) with (5.4.33) and (5.4.11), one can show
that
∣∣∣∣
∫ 1

−1

u(x)φ(x) dx− (u, φ)N

∣∣∣∣ ≤ CN−m|u|Hm;N−1(−1,1)‖φ‖L2(−1,1) . (5.4.38)

5.4.4 Scaled Estimates

In view of the multidomain spectral approximations given in Chap. 5 of the
companion book CHQZ3, it is useful to consider polynomial approximations
of a function u defined not on the standard interval (−1, 1) but on a generic
interval I = (xL, xR) of length h = xR − xL. The orthogonal projections
PNu, P 1

Nu and P l
Nu onto PN with respect to the L2-, the H1- and the

H l-inner product, respectively, are constructed as above, simply by replacing
integrals over (−1, 1) by integrals over I. Boundary conditions are accounted
for as above, with the obvious modifications. Each interpolating polynomial
INu is based on the Gaussian points xj = F (x̂j), 0 ≤ j ≤ N , that are
the images of the corresponding Gaussian points x̂j on the reference interval
Î = (−1, 1) under the affine mapping x = F (x̂) = xL + 1

2h(x̂ + 1).
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On the interval I, the error estimates given above are modified by the
presence of a power of the size h of the interval. We report hereafter the
most significant ones; the constants C are now independent of both N and
h, although they depend as above on m.

Estimate (5.4.11) for the Legendre truncation error in I reads as follows:
for all u ∈ Hm(I), m ≥ 0,

‖u− PNu‖L2(I) ≤ Chmin(m,N)N−m|u|Hm;N (I) . (5.4.39)

Estimates (5.4.32) for the orthogonal projection errors in H l(I), l ≥ 1, be-
come: for all u ∈ Hm(I), m ≥ l,

‖u− P l
Nu‖Hk(I) ≤ Chk−min(m,N)Nk−m|u|Hm;N (I) , (5.4.40)

for all 0 ≤ k ≤ l. Similar estimates hold if we replace P l
N by P l,λ,b

N in order
to match the values of u and certain derivatives of u at the endpoints of the
interval. In particular, for all u ∈ Hm(I), m ≥ 1, one has

‖u− P 1,b
N u‖H1(I) ≤ Ch1−min(m,N)N1−m|u|Hm;N (I) . (5.4.41)

The interpolation error at the Gauss-Lobatto points is estimated as follows:
for all u ∈ Hm(I), m ≥ 1, one has, for k = 0, 1,

‖u− INu‖Hk(I) ≤ Chk−min(m,N)Nk−m|u|Hm;N (I) . (5.4.42)

Finally, we notice that the inverse inequality (5.4.3) becomes

‖φ‖Lq(I) ≤ Ch1/q−1/pN2(1/p−1/q)‖φ‖Lp(I) for all φ ∈ PN , (5.4.43)

whereas (5.4.5) becomes

‖φ(r)‖Lp(I) ≤ Ch−rN2r‖φ‖Lp(I) for all φ ∈ PN . (5.4.44)

Bibliographical Notes

The inverse inequality (5.4.3) is proven, e.g., in Timan (1963, p. 236). Inequal-
ity (5.4.5) for p =∞ is the classical Markov inequality (see, e.g., Timan (1963,
p. 218)); for p = 2 we refer to Babuška, Szabó, and Katz (1981) or Canuto and
Quarteroni (1982a), where different proofs are given; for 2 < p < ∞, it can
be obtained by interpolation of spaces (see Quarteroni (1984)). The inverse
inequalities (5.4.4), (5.4.6) and (5.4.7) can be found in Bernardi and Maday
(1992a). Estimates (5.4.11) and (5.4.18) have been obtained by Canuto and
Quarteroni (1982a) with the full norm (5.4.9) on the right-hand side; here, we
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error estimates for finite-element approximations. Estimate (5.4.13) can be
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found in Schwab (1998), Thm. 3.11. The discussion on the optimality of the
truncation error in higher Sobolev norms is also based on results from Canuto
and Quarteroni (1982a). For the existence and uniqueness of the polynomials
of best approximation in the Lp-norms we refer to Nikolskii (1975), Theorem
1.3.6, and Timan (1963), pp. 35–40. Estimate (5.4.16) is proven in Quarteroni
(1984), while estimate (5.4.17) is due to Jackson (1930), Theorem XV. Esti-
mates (5.4.22), (5.4.23) and (5.4.30) for the H1- and H1

0 -projection operators
are due to Maday and Quarteroni (1981), while their extension to higher or-
der projections (5.4.32) has been carried out by Maday (1990). The results
of Sect. 5.4.3 have been established by Bernardi and Maday (1992a). Finally,
the scaled estimates of Sect. 5.4.4 are typical of the analysis of the hp-version
of the finite-element method (see, e.g., Schwab (1998) and the references
therein).

5.5 Chebyshev Approximations

This section will be dedicated to Chebyshev approximation and will be similar
in spirit to the section on Legendre approximation. Since the Chebyshev
polynomials are orthogonal with respect to the nonconstant weight w(x) =
(1 − x2)−1/2, it is natural to frame the results in terms of weighted Lp and
Sobolev spaces. For additional results we refer to Bernardi and Maday (1997).

5.5.1 Inverse Inequalities for Polynomials

We define weighted Lp-norms as follows:

‖u‖Lpw(−1,1) =
(∫ 1

−1

|u(x)|pw(x) dx
)1/p

for 1 ≤ p <∞ , (5.5.1)

and we again set

‖u‖L∞
w (−1,1) = sup

−1≤x≤1
|u(x)| = ‖u‖L∞(−1,1) . (5.5.2)

The space of functions for which a particular norm is finite forms a Banach
space, indicated by Lp

w(−1, 1) (see (A.9.g)).
The inverse inequality concerning the summability in the Chebyshev Lp-

norm for polynomials states that for any p and q, 1 ≤ p ≤ q ≤ ∞, there exists
a positive constant C such that, for each φ ∈ PN ,

‖φ‖Lqw(−1,1) ≤ (2N)(1/p−1/q)‖φ‖Lpw(−1,1) . (5.5.3)

Note that the power of N is half the corresponding power in the Legendre
estimate (5.4.3).
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The inverse inequality concerning differentiation states that for any p,
2 ≤ p ≤ ∞, and any integer r ≥ 1, there exists a positive constant C such
that, for any φ ∈ PN ,

‖φ(r)‖Lpw(−1,1) ≤ CN2r‖φ‖Lpw(−1,1) . (5.5.4)

Note that this estimate shares with the Legendre estimate (5.4.5) the double
power of N on the right-hand side.

Estimates (5.4.6) and (5.4.7) have their Chebyshev counteparts, obtained
by inserting the Chebyshev weight on both sides of the integrals that define
the norms. Precisely, setting again η(x) = 1− x2, one has

‖φ′√η ‖L2
w(−1,1) ≤ CN‖φ‖L2

w(−1,1) for all φ ∈ PN , (5.5.5)

and

‖φ′‖L2
w(−1,1) ≤ CN‖φ/√η ‖L2

w(−1,1) for all φ ∈ P
0
N (−1, 1) , (5.5.6)

where C is a positive constant independent of N .

5.5.2 Estimates for the Truncation and Best Approximation
Errors

The natural Sobolev norms in which to measure approximation errors for the
Chebyshev system involve the Chebyshev weight in the quadratic averages
of the error and its derivatives over the interval (−1, 1). Thus, we set

‖u‖Hm
w (−1,1) =

(
m∑

k=0

‖u(k)‖2L2
w(−1,1)

)1/2

. (5.5.7)

The Hilbert space associated to this norm is denoted by Hm
w (−1, 1) and is

introduced in (A.11.b). Similarly to (5.4.10), we also define the seminorms

|u|Hm;N
w (−1,1) =

⎛

⎝
m∑

k=min(m,N+1)

‖u(k)‖2L2
w(−1,1)

⎞

⎠
1/2

. (5.5.8)

The truncation error u−PNu, where now PNu =
∑N

k=0 ûkTk is the trun-
cated Chebyshev series of u, satisfies the inequality

‖u− PNu‖L2
w(−1,1) ≤ CN−m|u|Hm;N

w (−1,1) , (5.5.9)

for all u ∈ Hm
w (−1, 1), with m ≥ 0. This is a particular case of the estimate

for the truncation error in the weighted Lp-norms, which reads as follows:

‖u− PNu‖Lpw(−1,1) ≤ Cσp(N)N−m
m∑

k=min(m,N+1)

‖u(k)‖Lpw(−1,1) , (5.5.10)
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for all functions u whose distributional derivatives of order up to m belong
to Lp

w(−1, 1). The constant σp(N) equals 1 for 1 < p < ∞, and 1 + logN
for p = 1 or p = ∞. As a consequence of this result, one gets an optimal
estimate for the error of best approximation in the Lp

w-norms for 1 < p <∞.
(Note that this error in the norm of L∞

w (−1, 1) = L∞(−1, 1) is estimated in
(5.4.16).)

As for the Legendre case, the seminorm on the right-hand side of (5.5.9)
can be replaced by a weaker seminorm, which is defined as in (5.4.14) with
the measure dx replaced by w(x)dx. Thus, the error decay rate predicted by
(5.5.9) is realized also for functions u that are more singular at the bound-
ary points than functions in Hm

w (−1, 1). This observation applies to all the
subsequent estimates as well.

The truncation error in higher order Sobolev norms is estimated by the
inequality

‖u− PNu‖Hl
w(−1,1) ≤ CN2l−1/2−m|u|Hm;N

w (−1,1) , (5.5.11)

for u ∈ Hm
w (−1, 1), with m ≥ 1 and 1 ≤ l ≤ m. Thus, the asymptotic behavior

of the Chebyshev truncation error is the same as for Legendre polynomials;
hence, it is non-optimal with respect to the exponent of N .

In order to define the polynomial of best approximation in H1
w(−1, 1), we

introduce the inner product

((u, v))w =
∫ 1

−1

(u′v′ + uv)w dx for all u, v ∈ H1
w(−1, 1) , (5.5.12)

and we define the related orthogonal projection on PN as the polynomial
P 1

Nu ∈ PN such that

((P 1
Nu, φ))w = ((u, φ))w for all φ ∈ PN . (5.5.13)

The corresponding general error estimate is

‖u− P 1
Nu‖Hk

w(−1,1) ≤ CNk−m|u|Hm;N
w (−1,1) , (5.5.14)

for all u ∈ Hm
w (−1, 1) with m ≥ 1, and k = 0, 1. Fig. 5.3 provides an ex-

ample of the different behavior of the L2
w(−1, 1) and H1

w(−1, 1) projections.
In higher order Sobolev norms one can prove the following result. For all
integer l such that 0 ≤ l ≤ m, and for every function u ∈ Hm

w (−1, 1), there
exists a polynomial uN ∈ PN such that

‖u− uN‖Hk
w(−1,1) ≤ CNk−m|u|Hm;N

w (−1,1) , (5.5.15)

for 0 ≤ k ≤ l. The polynomial uN can be defined as the orthogonal projec-
tion of u upon PN in an inner product on H l

w(−1, 1) that induces a norm
equivalent to ‖u‖Hl

w(−1,1).
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Fig. 5.3. L2
w(−1, 1)- and H1

w(−1, 1)-Chebyshev projections for the function u(x) =
1
48

[
2π2(θ − π)2 − (θ − π)4

]
−x where θ = cos−1 x. The exact result is indicated by

the solid, thick curve, and the approximate results for N = 2, 4 and 8 by the thin
curves: u and its L2(−1, 1)-projections (upper left);
u′ and the first derivative of the L2(−1, 1)-projections of u (upper right);
u and its H1(−1, 1)-projections (lower left);
u′ and the first derivative of the H1(−1, 1)-projections of u (lower right)

These estimates extend to functions satisfying prescribed boundary data
in the same way that the Legendre estimates did. For instance, assume that
u is a function in H1

w(−1, 1) that vanishes at x = ±1, i.e., u belongs to the
subspace of H1

w(−1, 1) defined as

H1
w,0(−1, 1) =

{
v ∈ H1

w(−1, 1) | v(−1) = v(1) = 0
}

(5.5.16)

(see (A.11.c)). The projection of u upon P
0
N (see (5.4.27)) in the norm of this

space is the polynomial P 1,0
N u ∈ P

0
N such that

[
P 1,0

N u, φ
]

w
= [u, φ ]w for all φ ∈ P

0
N . (5.5.17)

Here we use the natural inner product in H1
w,0(−1, 1):

[u, v ]w =
∫ 1

−1

u′v′w dx for u, v ∈ H1
w,0(−1, 1) (5.5.18)

(see (A.11.c)). For the projector P 1,0
N we have the following estimate:
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‖u− P 1,0
N u‖H1

w(−1,1) ≤ CN1−m|u|Hm;N
w (−1,1) , (5.5.19)

for all u ∈ Hm
w (−1, 1), m ≥ 1, vanishing at the boundary points.

Furthermore, one can find a polynomial uN ∈ P
0
N whose distance from u

decays in an optimal way both in the H1
w-norm and in the L2

w-norm, i.e.,

‖u− uN‖Hk
w(−1,1) ≤ CNk−m|u|Hm;N

w (−1,1) , (5.5.20)

for k = 0 and k = 1. For instance, uN can be defined as the solution of the
Galerkin problem

∫ 1

−1

(
u− uN

)′
(φw)′ dx = 0 for all φ ∈ P

0
N (5.5.21)

(see Sect. 7.1).
Finally, we mention that, as for the Legendre approximation, if u belongs

to H l
w(−1, 1) and vanishes at the boundary with the derivatives of order up

to λ for an integer λ ≤ l − 1, then one can find a polynomial uN satisfy-
ing the same boundary conditions as u such that an estimate like (5.5.15)
holds. A similar conclusion holds in the nonhomogeneous case, i.e., when the
derivatives of u of order up to λ are not necessarily zero at the endpoints.

5.5.3 Estimates for the Interpolation Error

We consider now the interpolation error. Let INu ∈ PN denote the interpolant
of u at any of the three families of Chebyshev Gauss points (2.4.12) or (2.4.13)
or (2.4.14). Then the following estimate holds:

‖u− INu‖L2
w(−1,1) ≤ CN−m|u|Hm;N

w (−1,1) , (5.5.22)

if u ∈ Hm
w (−1, 1) for some m ≥ 1. In higher order Sobolev norms, as for the

Legendre case, optimal error estimates do not hold. For instance, a standard
argument that uses (5.5.9), (5.5.22) and the inverse inequality (5.5.4) yields

‖u− INu‖Hl
w(−1,1) ≤ CN2l−m|u|Hm;N

w (−1,1) , (5.5.23)

for 0 ≤ l ≤ m. As for the Legendre case, this estimate can be improved for
the Gauss-Lobatto interpolation. Indeed, in the case l = 1, the power N2−m

can be replaced by the optimal one N1−m. As a consequence, Gauss-Lobatto
interpolation is stable in the H1

w-norm, i.e.,

‖INu‖H1
w(−1,1) ≤ C‖u‖H1

w(−1,1) , (5.5.24)

for all u ∈ Hm
w (−1, 1), with m ≥ 1. The optimal error estimate can be phrased

in terms of the error between the exact derivative u′ and the Chebyshev
interpolation derivative DNu = (INu)′ (see (2.4.28)) as follows:
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‖u′ −DNu‖L2
w(−1,1) ≤ CN1−m|u|Hm;N

w (−1,1) . (5.5.25)

The same estimate holds in the discrete L2
w-norm at the interpolation points.

In higher order Sobolev norms, the interpolation error at these points is again
suboptimal; precisely, one has, for 2 ≤ l ≤ m ,

‖u− INu‖Hl
w(−1,1) ≤ CN2l−1−m|u|Hm;N

w (−1,1) . (5.5.26)

When the function u is analytic, the error u(l) − (INu)(l) decays expo-
nentially in N for all l ≥ 0. Precisely, if u is analytic in [−1, 1] and has an
analytic extension to the ellipse Eη with foci in z = ±1 and sum of semi-axes
equal to eη > 1 for some η > 0, then

‖u(l) − (INu)(l)‖L2
w(−1,1) ≤

C(l)
sinh η

N2le−ηNM(u, η) , (5.5.27)

where M(u, η) = maxz∈Eη |u(z)|.
The interpolation error in the maximum norm is also of interest. An es-

timate of it is given by

‖u− INu‖L∞(−1,1) ≤ CN1/2−m|u|Hm;N
w (−1,1) (5.5.28)

under the same assumptions as for (5.5.22).
By (5.5.9) and (5.5.22) we can obtain an estimate for the integration error

produced by a Gauss-type quadrature formula relative to the Chebyshev
weight. If u ∈ Hm

w (−1, 1) for some m ≥ 1 and φ ∈ PN , then using (5.3.4a)
and (5.3.4b) we get the following result:
∣∣∣∣
∫ 1

−1

u(x)φ(x)w(x)dx−(u, φ)N

∣∣∣∣≤CN−m|u|Hm;N
w (−1,1)‖φ‖L2

w(−1,1) . (5.5.29)
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right-hand side of the estimates is new. Inequalities (5.5.14), (5.5.19) and
(5.5.20) are due to Maday and Quarteroni (1981); here, we give a different
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5.6 Proofs of Some Approximation Results

We present in this section the proofs of some of the most relevant approxima-
tion error estimates given in the two previous sections. We confine ourselves
to estimates in Hilbert norms of the truncation, interpolation and projection
operators. Indeed, these are precisely the error estimates that most frequently
occur in this book for the convergence analysis of spectral methods.

Proof of (5.4.5) and (5.5.4). Let us begin with (5.5.4); we confine our-
selves to the case p = 2 and r = 1. Let φ =

∑N
k=0 φ̂kTk. By (2.4.22) we

obtain φ′ =
∑N−1

k=0 φ̂
(1)
k Tk, with

ckφ̂
(1)
k = 2

N∑

�=k+1
�+k odd

 φ̂� ,

where the coefficients ck are defined in (2.4.10). The Cauchy-Schwarz inequal-
ity and the identity

∑N
m=1 m2 = N(N + 1)(2N + 1)/6 give

(
ckφ̂

(1)
k

)2

≤4

⎛

⎜⎝
N∑

�=k+1
�+k odd

 2

⎞

⎟⎠

⎛

⎜⎝
N∑

�=k+1
�+k odd

(φ̂�)2

⎞

⎟⎠ ≤
2
3
N(N + 1)(2N + 1)

N∑

�=0

(φ̂�)2 .

On the other hand, from (2.4.9) we have

‖φ′‖2L2
w(−1,1) =

N−1∑

k=0

πck

2

(
φ̂

(1)
k

)2

≤ π

3
N(N + 1)(2N + 1)

N−1∑

k=0

1
ck

N∑

�=0

(φ̂�)2 ≤ CN4‖φ‖2L2
w(−1,1) .

Although the proof of (5.5.4) may seem very crude, the exponent of N in
(5.5.4) cannot be reduced. To convince oneself, it is sufficient to consider the

function φ =
N∑

k=0
k+N odd

Tk, for which one has ‖φ′‖L2
w(−1,1) � N2‖φ‖L2

w(−1,1).

The proof of (5.4.5), again in the case p = 2 and r = 1, follows the same
guidelines as above, using now (2.3.18) and (2.3.9). ��

A useful Lemma. The following results, which are an elementary version
of the so called Deny-Lions Lemma (see, e.g., Quarteroni and Valli (1994),
Proposition 3.4.4), will be used in some of the subsequent proofs. Let w
denote the Legendre or the Chebyshev weight (or, more generally, any Jacobi
weight).
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Lemma 5.1. Let m ≥ 1 and 0 ≤ r ≤ m− 1 be integers. There exists a con-
stant C (depending on r) such that for all v ∈ Hm

w (−1, 1) one has

inf
φ∈Pr

‖v − φ‖Hr
w(−1,1) ≤ C‖v(r+1)‖L2

w(−1,1).

Proof. We recall that any function ψ ∈ H1
w(−1, 1) satisfying

∫ 1

−1
ψ(x) dx =

0 necessarily vanishes for at least one point in (−1, 1); hence, the Poincaré
inequality ‖ψ‖L2

w(−1,1) ≤ C‖ψ′‖L2
w(−1,1) holds true (see Sect. A.13).

Given v ∈ Hm
w (−1, 1), let ψ ∈ Pr be the unique polynomial defined by

the relations
∫ 1

−1

ψ(k)(x) dx =
∫ 1

−1

v(k)(x) dx, 0 ≤ k ≤ r.

By repeated application of the Poincaré inequality to v−ψ and its derivatives,
we get

‖v − ψ‖L2
w(−1,1) ≤ C‖v′ − ψ′‖L2

w(−1,1) ≤ · · · ≤
≤ Cr‖v(r) − ψ(r)‖L2

w(−1,1) ≤ Cr+1‖v(r+1) − ψ(r+1)‖L2
w(−1,1).

Since ψ(r+1) ≡ 0, we obtain the result. ��

Corollary 5.6.1. Let m ≥ 1 and N ≥ 0 be integers. There exists a con-
stant C depending only on m such that for all v ∈ Hm

w (−1, 1) one has

inf
φ∈PN

‖v − φ‖Hm
w (−1,1) ≤ C|v|Hm;N

w (−1,1)

(where the seminorm on the right-hand side is defined in (5.5.8)).

Proof. It is enough to set r = min(m− 1, N) in the previous Lemma. ��

Proof of (5.4.11). We give a proof that only exploits the fact that Leg-
endre polynomials are the eigenfunctions of the singular Sturm-Liouville op-
erator Lφ = −((1 − x2)φ′)′. Precisely, denoting by φk the k-th Legendre
polynomial (normalized in L2, i.e., divided by the square root of the right-
hand side of (2.3.8)), we have Lφk = λkφk; thus,

ûk = (u, φk) =
1
λk

(u,Lφk) =
1
λk

(Lu, φk) ,

provided Lu ∈ L2(−1, 1), which is implied by the condition u ∈ H2(−1, 1).
Iterating the argument µ times, we get

ûk =
1
λµ

k

(Lµu, φk) ,

provided Lµu ∈ L2(−1, 1), which is certainly true if u ∈ Hm(−1, 1) with
m = 2µ. Thus, we have
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‖u− PNu‖2L2(−1,1) =
∑

k>N

|ûk|2 =
∑

k>N

1
λm

k

|(Lµu, φk)|2

≤ 1
λm

N+1

∑

k>N

|(Lµu, φk)|2 ≤ 1
λm

N+1

‖Lµu‖2L2(−1,1)

≤ Cm

λm
N+1

‖u‖2Hm(−1,1).

Recalling that λk ∼ k2, we conclude that the bound

‖u− PNu‖L2(−1,1) ≤ cmN−m‖Lm/2u‖L2(−1,1) ≤ CmN−m‖u‖Hm(−1,1)

(5.6.1)

holds for all u ∈ Hm(−1, 1) and all even integers m ≥ 0. By space inter-
polation between two consecutive even integers, we extend the bound to all
odd integers. (This is not a simple argument. For the interested reader, in-
terpolation between Hilbert spaces is discussed, e.g., in Bergh and Löfström
(1976).) Finally, we observe that replacing u by u − φ, where φ ∈ PN is
arbitrary, leaves the left-hand side unchanged since PNφ = φ. Hence,

‖u− PNu‖L2(−1,1) ≤ CmN−m inf
φ∈PN

‖u− φ‖Hm(−1,1) ∀u ∈ Hm(−1, 1),

and Corollary 5.6.1 concludes the proof. ��
The first inequality in (5.6.1) shows that the O(N−m) rate of decay of the

error is achieved not only for those functions having their m-th derivative in
L2(−1, 1), but also for functions whose m-th derivative is more singular at
the boundary points; indeed, such derivatives appear in Lm/2u multiplied by
1− x2. This property is expressed, in equivalent form, by estimate (5.4.13).

Proof of (5.4.13). We first recall that the Legendre polynomials Lk(x) =
P

(0,0)
k (x) satisfy, by (2.5.5),

ds

dxs
Lk(x) = 2−s (k + s)!

k!
P

(s,s)
k−s (x) ;

hence, their s-derivatives are orthogonal in the inner product associated with
the norm (5.4.14), i.e., using also (2.5.7),
∫ 1

−1

L
(s)
h (x)L(s)

k (x)
(
1− x2

)s
dx =

2
2k + 1

(k + s)!
(k − s)!

δhk , h, k = 0, 1, . . .

It follows that if u =
∞∑

k=0

ûkckLk, where ck =
√

2k + 1
2 are the normalization

factors, then one has
∫ 1

−1

|u(s)(x)|2
(
1− x2

)s
dx =

∞∑

k=0

(k + s)!
(k − s)!

|ûk|2 .



5.6 Proofs of Some Approximation Results 301

On the other hand, as in the previous proof, ‖u− PNu‖2L2(−1,1) =
∑

k>N

|ûk|2,

whence the result. ��

Proof of (5.5.9). We shall make use of the transformation

x ∈ (−1, 1) , u(x) �→ u∗(θ) = u(cos θ) , θ ∈ (0, 2π) . (5.6.2)

Since θ = arc cosx, we have dθ/dx = −w(x) (the Chebyshev weight); thus,

‖u‖2L2
w(−1,1) =

1
2
‖u∗‖2L2(0,2π) . (5.6.3)

It follows that the map u �→ u∗ is an isomorphism between L2
w(−1, 1) and the

subspace of L2(0, 2π) of the even real functions. Moreover, it maps Hm
w (−1, 1)

into the space of periodic functions Hm
p (0, 2π) (see (A.11.d)). Indeed, since

u ∈ Cm−1([−1, 1]), then u∗ ∈ Cm−1(−∞,+∞) and is 2π-periodic with all
the derivatives of order up to m− 1; whence, u∗ ∈ Hm

p (0, 2π). Finally, since
|dx/dθ| = | − sin θ| ≤ 1, we also have

‖u∗‖Hm(0,2π) ≤ C‖u‖Hm
w (−1,1) for m ≥ 1 . (5.6.4)

Let P ∗
N denote the symmetric truncation of the Fourier series up to degree N ,

i.e.,

P ∗
N

( ∞∑

k=−∞
v̂ke

ikθ

)
=

N∑

k=−N

v̂ke
ikθ .

It is easily seen that

(PNu)∗ = P ∗
Nu∗ for all u ∈ L2

w(−1, 1) . (5.6.5)

Indeed, since u(x) =
∑∞

k=0 ûkTk(x), u∗(θ) =
∑∞

k=0 ûk cos kθ =
∑∞

k=0 ûk ×
(eikθ + e−ikθ)/2; whence, (5.6.5). Now, from (5.6.3) and (5.1.9) one gets

‖u− PNu‖L2
w(−1,1) =

1√
2
‖u∗ − P ∗

Nu∗‖L2(0,2π) ≤ CN−m‖u∗(m)‖L2(0,2π) ;

whence, by (5.6.4),

‖u− PNu‖L2
w(−1,1) ≤ CmN−m‖u‖Hm

w (−1,1), ∀u ∈ Hm
w (−1, 1).

As in the proof of (5.4.11), we conclude by invoking Corollary 5.6.1. ��
We remark that a sharper estimate in which a weaker semi-norm appears

on the right-hand side of (5.5.9) can be obtained. Indeed, the bound (5.6.4) is
rather crude, as it neglects the information that the Jacobian of the mapping,
|dx/dθ| =

√
1− x2, vanishes at the endpoints of the interval. Taking this into

account, one can allow the m-th derivative of u to have a stronger singular-
ity at the endpoints than permitted by being in L2

w(−1, 1). An alternative
argument to arrive at the same conclusions consists of adapting the proof of
(5.4.13) to the Chebyshev case.
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Proof of (5.4.18) and (5.5.11). Let us first deal with (5.5.11). We con-
sider the case l = 1 only; the result corresponding to l > 1 follows by an
inductive procedure. Using the triangle inequality and the estimate (5.5.9),
we obtain

‖u− PNu‖H1
w(−1,1) ≤ ‖u− PNu‖L2

w(−1,1) + ‖u′ − PNu′‖L2
w(−1,1)

+ ‖PNu′ − (PNu)′‖L2
w(−1,1)

≤ CN1−m|u|Hm;N
w (−1,1)+‖PNu′−(PNu)′‖L2

w(−1,1) .

(5.6.6)

In order to bound the last term let us expand u and u′ in Chebyshev poly-
nomials as

u =
∞∑

k=0

ûkTk , u′ =
∞∑

k=0

û
(1)
k Tk .

Let us show that the polynomial qN = PNu′ − (PNu)′ has the form

qN =

{
û

(1)
N φN

0 + û
(1)
N+1φ

N
1 if N is even ,

û
(1)
N+1φ

N
0 + û

(1)
N φN

1 if N is odd ,
(5.6.7)

where φN
0 =

N∑

k=0
k even

(1/ck)Tk and φN
1 =

N∑

k=1
k odd

Tk. We can assume first that u is

continuous with all its derivatives in [−1, 1], so that (see (2.4.22))

ckû
(1)
k = 2

∞∑

p=k+1
p+k odd

pûp , k = 0, 1, 2, . . . .

The series is absolutely convergent, since each ûp decays faster than any
power of 1/p (this follows from (5.5.9)). Still using (2.4.22) we get

(PNu)′ =
N−1∑

k=0

v̂kTk with ckv̂k = 2
N∑

p=k+1
p+k odd

pûp ;

thus,

ck(û(1)
k − v̂k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2
∞∑

p=N+2
p+N even

pûp = û
(1)
N+1 if k + N is odd ,

2
∞∑

p=N+1
p+N odd

pûp = û
(1)
N if k + N is even ;
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whence, the result (5.6.7) if u is smooth. Next, we remove this assumption.
If u is just in H1

w(−1, 1), it can be approximated by a sequence of infinitely
differentiable functions un (see (A.11.b)), for which (5.6.7) holds. Then we
can pass to the limit as n→∞, since both sides of (5.6.7) are continuous in
the norm of H1

w(−1, 1).
From estimate (5.5.9) it follows that

|û(1)
N+1| ≤ ‖u′ − PNu′‖L2

w(−1,1) ≤ CN1−m|u|Hm;N
w (−1,1) ,

and similarly for û
(1)
N . On the other hand,

‖φN
0 ‖2L2

w(−1,1) =
N∑

k=0
k even

2
ckπ
� N , ‖φN

1 ‖2L2
w(−1,1) =

N∑

k=1
k odd

2
πck
� N .

Thus, noting that φN
0 and φN

1 are orthogonal, we have

‖PNu′ − (PNu)′‖L2
w(−1,1) ≤ CN (3/2)−m|u|Hm;N

w (−1,1) ; (5.6.8)

whence, (5.5.11) follows by (5.6.6).
One can check that the exponent of N in (5.5.11) is optimal, in the sense

that one cannot expect a faster decay of the error for all u ∈ Hm
w (−1, 1).

The proof of (5.4.18) is similar, using now the expression (2.3.18) for the
Legendre coefficients of the first derivative. ��

Proof of (5.4.22), proof of (5.5.14) in the case k = 1. Let us first
deal with (5.5.14) for k = 1. Let us set

V =
{
v ∈ H1

w(−1, 1) | v̂0 =
1
π

∫ 1

−1

vT0w dx = 0
}

. (5.6.9)

V is a Hilbert space for the inner product [u, v]w defined in (5.5.18). Actually,
if u ∈ V , there exists at least one point ξ ∈ (−1, 1) where v(ξ) = 0. Hence,
the Poincaré inequality (A.13) holds, and ‖v‖V = [v, v]1/2

w = ‖v′‖L2
w(−1,1) is

a norm equivalent to the standard norm ‖v‖H1
w(−1,1). For any u ∈ H1

w(−1, 1),
let us define the polynomial

uN (x) = α +
∫ x

−1

(PN−1u
′)(s) ds . (5.6.10)

As usual, PN−1v is the truncation of degree N − 1 of the Chebyshev series
of v. The constant α is chosen in such a way that

(
uN
)∧
0

= û0. Then by
(5.5.9) it follows that

‖u− uN‖V = ‖u′ − PN−1u
′‖L2

w(−1,1) ≤ CN1−m|u|Hm;N
w (−1,1) . (5.6.11)
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The result (5.5.14) for k = 1 follows, noting that

‖u− P 1
Nu‖H1

w(−1,1) ≤ ‖u− v‖H1
w(−1,1) for all v ∈ PN .

The proof of (5.4.22) follows the same guidelines. ��

In order to prove (5.4.23) and (5.5.14) for k = 0, we need the following
regularity result. Let w denote the Legendre weight or the Chebyshev weight.

Lemma 5.2. For each g ∈ L2
w(−1, 1), there exists a unique ψ ∈ H1

w(−1, 1)
such that

∫ 1

−1

(ψ′v′ + ψv)w dx =
∫ 1

−1

gvw dx for all v ∈ H1
w(−1, 1) . (5.6.12)

Moreover, ψ ∈ H2
w(−1, 1), and there is a constant C > 0 such that

‖ψ‖H2
w(−1,1) ≤ C‖g‖L2

w(−1,1) . (5.6.13)

Proof. Since the left-hand side of (5.6.12) is the inner product of H1
w(−1, 1),

the existence and uniqueness of ψ follows from the Riesz representation the-
orem (see (A.1.d)). Choosing v = ψ in (5.6.12), we get

‖ψ‖H1
w(−1,1) ≤ ‖g‖L2

w(−1,1) . (5.6.14)

Letting v vary in D(−1, 1) (this space is defined in (A.10)), we obtain from
(5.6.12) that

−(ψ′w)′ = (g − ψ)w in the sense of distributions (5.6.15)

(see (A.10.a)). In the Legendre case, this identity together with (5.6.14) im-
mediately implies (5.6.13), and the proof is finished.

So, from now on, we assume that w is the Chebyshev weight. At first,
we show that ψ′w is continuous in [−1, 1]. Indeed, for any x1, x2 ∈ (−1, 1) it
follows by (5.6.15) and the Cauchy-Schwarz inequality (see (A.2)) that

|(ψ′w)(x1)− (ψ′w)(x2)| =
∣∣∣∣
∫ x2

x1

(g − ψ)w dx
∣∣∣∣

≤ ‖g − ψ‖L2
w(−1,1)|arc cosx2 − arc cosx1|1/2 .

Hence, (ψ′w)(±1) makes sense. Multiplying (5.6.15) by v ∈ H1
w(−1, 1) and

integrating by parts yields

[ψ′wv]1−1 =
∫ 1

−1

ψ′v′w dx−
∫ 1

−1

(g − ψ)vw dx for all v ∈ H1
w(−1, 1) .
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Hence, ψ′w(−1) = ψ′w(1) by (5.6.12). By (5.6.15), −ψ′′ = (g−ψ)−ψ′(w′/w).
Thus, it remains to prove that ψ′(w′/w) ∈ L2

w(−1, 1). Since w′/w = xw2, we
have

∫ 1

−1

(ψ′w′/w)2w dx ≤
∫ 1

−1

(ψ′)2w5 dx .

Moreover,
∫ 0

−1

(ψ′)2w5 dx =
∫ 0

−1

[∫ x

−1

(ψ′w)′ dξ
]2

w3 dx

=
∫ 0

−1

[
w2

∫ x

−1

(ψ − g)w dξ
]2

w−1 dx

≤ C

∫ 0

−1

[
1

1 + x

∫ x

−1

(ψ − g)w dξ
]2√

1 + xdx .

Using the Hardy inequality (A.14) with α = 1/2, a = −1 and b = 0, we
obtain

∫ 0

−1

(ψ′)2w5 dx ≤ C

∫ 0

−1

(ψ − g)2w dx .

Similarly, we can prove that
∫ 1

0
(ψ′)2w5 dx ≤ C

∫ 1

0
(ψ − g)2w dx. Therefore,

we conclude that ψ′′ ∈ L2
w(−1, 1), with

‖ψ′′‖L2
w(−1,1) ≤ C

(
‖ψ‖L2

w(−1,1) + ‖g‖L2
w(−1,1)

)
.

This, using (5.6.14), gives (5.6.13). ��

Proof of (5.4.23), proof of (5.5.14) in the case k = 0. Let w denote
again the Legendre weight or the Chebyshev weight. We use a well-known
duality argument, the so-called Aubin-Nitsche trick, based on the identity

‖u− P 1
Nu‖L2

w(−1,1) = sup
g∈L2

w(−1,1)
g �=0

∫ 1

−1
(u− P 1

Nu)gw dx
‖g‖L2

w(−1,1)
.

Let ψ be the solution of (5.6.12) corresponding to a given g. Then, choosing
v = u− P 1

Nu in (5.6.12) and recalling the definition of P 1
N , we get

∫ 1

−1

(u− P 1
Nu)gw dx =

∫ 1

−1

[
ψ′(u− P 1

Nu)′ + ψ(u− P 1
Nu)
]
w dx

=
∫ 1

−1

[
(ψ−P 1

Nψ)′(u−P 1
Nu)′+(ψ−P 1

Nψ)(u−P 1
Nu)
]
w dx .

The Cauchy-Schwarz inequality, estimates (5.4.23) or (5.5.14) with k = 1,
and (5.6.13) yield
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∣∣∣∣
∫ 1

−1

(uP 1
Nu)gw dx

∣∣∣∣ ≤ ‖ψ − P 1
Nψ‖H1

w(−1,1)‖u− P 1
Nu‖H1

w(−1,1)

≤ CN−1‖ψ‖H2
w(−1,1)‖u− P 1

Nu‖H1
w(−1,1)

≤ CN−1‖g‖L2
w(−1,1)‖u− P 1

Nu‖H1
w(−1,1) .

Then,

‖u− P 1
Nu‖L2

w(−1,1) ≤ CN−1‖u− P 1
Nu‖H1

w(−1,1) .

Hence, the desired result follows again using (5.4.23) or (5.5.14) with k = 1.
��

Proof of (5.4.30) with k = 1, proof of (5.5.19). As above, let w
denote the Legendre weight or the Chebyshev weight. Let us define uN as in
(5.6.10), now with α = 0. Next, define

RNu(ξ) =
∫ ξ

−1

(
PN−1u

′ − 1
2
uN (1)

)
dx ,

so that RNu ∈ P
0
N . We have, by the triangle inequality,

‖u′ − (RNu)′‖L2
w(−1,1) ≤ ‖u′ − PN−1u

′‖L2
w(−1,1) +

1
2

(∫ 1

−1

w dx
)1/2

|uN (1)| .

On the other hand, by the Cauchy-Schwarz inequality one has

|uN (1)| = |u(1)− uN (1)| =
∣∣∣∣
∫ 1

−1

(u′ − PN−1u
′) dx

∣∣∣∣

≤
(∫ 1

−1

w−1 dx
)1/2

‖u′ − PN−1u
′‖L2

w(−1,1) .

Using (5.4.11) in the Legendre case or (5.5.9) in the Chebyshev case, and the
two previous inequalities, we obtain

‖u′ − (RNu)′‖L2
w(−1,1) ≤ CN1−m|u|Hm;N

w (−1,1) .

Finally, estimates (5.4.30) with k = 1 or (5.5.19) follow since P 1,0
N u is the

polynomial of best approximation of u in the norm associated to the H1
0 -inner

product (5.4.28) in the Legendre case, or the H1
w,0-inner product (5.5.18) in

the Chebyshev case. ��

Proof of (5.4.30) with k = 0, proof of (5.5.20). As above, let w
denote the Legendre weight or the Chebyshev weight. We define uN ∈ P0

N to
be the solution of the problem
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a(u− uN , v) = 0 for all v ∈ P
0
N , (5.6.16)

where a(φ, ψ) =
∫ 1

−1
φ′(ψw)′ dx (see (7.1.13)). This is precisely the polynomial

P 1,0
N u defined in (5.4.29) in the Legendre case, or the polynomial defined in

(5.5.21) in the Chebyshev case. It is shown in Sect. 7.1 that the bilinear
form a(φ, ψ) defined on H1

w,0(−1, 1) × H1
w,0(−1, 1) satisfies the hypotheses

of the Lax-Milgram Theorem (A.5) (see (7.1.11) and (7.1.12)). Then the
existence and uniqueness of uN is assured. Moreover, by the coercivity and
the continuity of a we get

‖u− uN‖2H1
w(−1,1) ≤ C1a(u− uN , u− uN )

= C1a(u− uN , u− v)

≤ C2‖u− uN‖H1
w(−1,1)‖u− v‖H1

w(−1,1)

(by (5.6.16))

for all v ∈ P
0
N . Thus,

‖u− uN‖H1
w(−1,1) ≤ C2 inf

v∈PN

‖u− v‖H1
w(−1,1) . (5.6.17)

Estimate (5.5.20) for k = 1 follows now from (5.5.19).
In order to prove both estimates (5.4.30) and (5.5.20) for k = 0, we use

an Aubin-Nitsche duality argument similar to the one we have used to prove
(5.5.14). We have

‖u− uN‖L2
w(−1,1) = sup

g∈L2
w(−1,1)
g �=0

∫ 1

−1
(u− uN )gw dx
‖g‖L2

w(−1,1)
. (5.6.18)

For each fixed g ∈ L2
w(−1, 1), g 	= 0, let ψ = ψ(g) ∈ H1

w,0(−1, 1) be the
solution of the problem

a(v, ψ) =
∫ 1

−1

gvw dx for all v ∈ H1
w,0(−1, 1) , (5.6.19)

which is uniquely defined since the form a(u, v) is symmetric in the Legendre
case, whereas in the Chebyshev case the transpose form aT (u, v) = a(v, u)
satisfies again the hypotheses of the Lax-Milgram theorem. A very technical
argument (in the Chebyshev case) allows us to prove that ψ ∈ H2

w(−1, 1) and

‖ψ‖H2
w(−1,1) ≤ C‖g‖L2

w(−1,1) . (5.6.20)

Then, using (5.6.19) and the definitions (5.4.29) or (5.5.21), we obtain, for
each ψN ∈ P

0
N ,

∣∣∣∣
∫ 1

−1

(u− uN )gw dx
∣∣∣∣ =
∣∣a(u− uN , ψ)

∣∣ =
∣∣a(u− uN , ψ − ψN )

∣∣

≤ C‖u− uN‖H1
w(−1,1)‖ψ − ψN‖H1

w(−1,1) .
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Using (5.4.30) or (5.5.20) with k = 1 for both u and ψ yields
∣∣∣∣
∫ 1

−1

(u− uN )gw dx
∣∣∣∣ ≤ CN−m‖ψ‖H2

w(−1,1)|u|Hm;N
w (−1,1) .

Now estimates (5.4.30) and (5.5.20) with k = 0 follow using (5.6.18) and
(5.6.20). ��

Proof of (5.4.33) and (5.5.22). Let w denote the Legendre or Chebyshev
weight. By a rather technical argument, which can be found in Bernardi and
Maday (1997), Chap. 3, one first proves the bound

‖INv‖L2
w(−1,1) ≤ C

(
‖v‖L2

w(−1,1) + N−1‖v′‖L2
w(−1,1)

)
(5.6.21)

for all v ∈ H1
0,w(−1, 1), where IN is the interpolation operator at any of the

families of Gaussian points. Next, one applies this bound to the function v =
u − uN ∈ H1

0,w(−1, 1), where uN is any polynomial matching the boundary
values of u and providing an optimal approximation to u in the H1

w(−1, 1)-
norm, i.e.,

‖u− uN‖Hk
w(−1,1) ≤ CNk−m|u|Hm;N

w (−1,1) , 0 ≤ k ≤ 1 , m ≥ 1 .

Such a polynomial exists, as indicated in Sects. 5.4.2 and 5.5.2. Noting that
INuN = uN , we obtain the desired estimates via the triangle inequality

‖u− INu‖L2
w(−1,1) ≤ ‖u− uN‖L2

w(−1,1) + ‖IN (u− uN )‖L2
w(−1,1) .

��

Proof of (5.4.35) and (5.5.25). Invoking again the triangle inequality
as in the above proof, it is enough to estimate ‖(INu)′ − (uN )′‖L2

w(−1,1). At
first, one applies the inverse inequality (5.4.7) or (5.5.6) to the polynomial
INu− uN ∈ P

0
N . Next, one uses, with v = INu− uN , the bound

‖ (INv)/
√
η ‖L2

w(−1,1) ≤ C
(
‖ v/√η ‖L2

w(−1,1) + N−1‖v′‖L2
w(−1,1)

)

for all v ∈ H1
0,w(−1, 1), whose proof can be found again in Bernardi and

Maday (1997), Chapter 3. Finally, the resulting right-hand side is bounded
in the desired way, thanks to the approximation results for uN . ��

Proof of (5.5.22) and (5.5.23). We give here a self-contained proof of
these results. We consider the Gauss-Lobatto interpolation points xj =
cos(πj/N), for j = 0, . . . , N . The proof for the other two sets of points
(Gauss and Gauss-Radau one) is similar. We still make use of the mapping
(5.6.2). We define

S̃N =

{
v : (0, 2π) −→ C

∣∣∣∣∣v(θ) =
N∑

k=−N

v̂ke
ikθ, v̂N = v̂−N

}
,



5.7 Other Polynomial Approximations 309

and, for every v ∈ C0([0, 2π]), we denote by I∗Nv the unique function of S̃N

that interpolates v at the points θj = πj/N , for j = 0, . . . , 2N . Note that
these points are symmetrically distributed around the point θ = π. Moreover,
for each continuous function u : [−1, 1] → R, both u∗ and (INu)∗ are even
functions with respect to the point θ = π. Therefore,

(INu)∗ = I∗Nu∗ ∈ S̃N . (5.6.22)

Now we use the error estimate (5.1.16) for the Fourier interpolation and we
obtain, by (5.6.3) and (5.6.4),

‖u−INu‖L2
w(−1,1) =

1√
2
‖u∗−I∗Nu∗‖L2(0,2π)≤CN−m‖u‖Hm

w (−1,1) , (5.6.23)

i.e., (5.5.22). For m ≥ 1, the inverse inequality (5.5.4) yields

‖u− INu‖Hl
w(−1,1) ≤ ‖u− PNu‖Hl

w(−1,1) + CN2l‖PNu− INu‖L2
w(−1,1) .

Now (5.5.23) follows using (5.5.9) and (5.6.23). ��

5.7 Other Polynomial Approximations

The orthogonal systems described so far have been the ones most commonly
used in building up spectral approximations to partial differential equations.
However, other relevant sets of orthogonal polynomials guarantee spectral
accuracy as well.

5.7.1 Jacobi Polynomials

The Jacobi polynomials {Pα,β
k (x), k = 0, 1, 2, . . . } have been introduced in

Sect. 2.5. They are the eigenfunctions of the singular Sturm-Liouville problem
(2.2.1) where p(x) = (1 − x)α+1(1 + x)β+1 (α and β > −1), q(x) ≡ 0 and
w(x) = (1 − x)α(1 + x)β . The eigenvalue whose eigenfunction is P

(α,β)
k is

λk = k(k + α + β + 1). The Legendre polynomials correspond to the choice
α = β = 0, while the Chebyshev polynomials of the second kind correspond
to α = β = −1/2.

Jacobi polynomials for other choices of α and β have asymptotic approx-
imation properties similar to those of Legendre or Chebyshev polynomials.
Although a fast transform is not available for them, they can lead to small
matrix bandwidths in Galerkin methods (see Sect. 3.4.3). The mathemati-
cal difficulties in the analysis of the Chebyshev methods that arise from the
singularity of the Chebyshev weight are shared by the Jacobi methods.

We anticipate that some Chebyshev approximations to hyperbolic prob-
lems (see Sect. 7.6.2) are stable in some weighted norms corresponding to
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a Jacobi weight. Furthermore, Jacobi polynomials enter into the construc-
tion of polynomial bases on triangles and related domains (see Sect. 2.9).

The best approximation and interpolation error estimates given in Sect. 5.5
for the Chebyshev case hold unchanged when w denotes a Jacobi weight. We
refer to Bernardi and Maday (1997) (see also Bernardi and Maday (1992a)
for the details of proofs in the ultraspherical case). Most of the results hold
for −1 < α, β < 1, as their proofs require the integrability of both w and w−1.
However, the inverse inequalities (5.5.9) or (5.5.14) with k = 1 hold for all
α, β > −1. On the other hand, (5.5.25) holds under the stronger assumption
m ≥ 2 if α or β are strictly positive.

Sharper estimates that involve sophisticated weighted Sobolev spaces and
that exhibit the explicit dependence on the Jacobi parameters α and β have
been given by Guo and Wang (2004).

5.7.2 Laguerre and Hermite Polynomials

The Laguerre and Hermite polynomials have been introduced in Sect. 2.6.
The Laguerre polynomials {lk(x) = l

(0)
k (x), k = 0, 1, . . . } are the eigen-

functions of the singular Sturm-Liouville problem (2.2.1) on the semi-infinite
interval R+ = (0,+∞) with p(x) = xe−x, q(x) ≡ 0 and w(x) = e−x.
The eigenvalue corresponding to lk is λk = k. The Hermite polynomials
{Hk(x), k = 0, 1, . . . } are the eigenfunctions of (2.2.1) on the real line
R = (−∞,+∞) with p(x) = e−x2

, q(x) ≡ 0 and w(x) = e−x2
. The eigenvalue

corresponding to Hk is λk = 2k.
By adapting the arguments of Sect. 5.2 to the case of an unbounded

interval, one can prove that the coefficients of the Laguerre (or Hermite, resp.)
expansion of a smooth function defined over R+ (over R, resp.) decay faster
than algebraically, provided all the derivatives of the function are square-
integrable with respect to the weight w.

Laguerre approximations in weighted Sobolev spaces on the half-line R+

were first investigated by Maday, Pernaud-Thomas and Vandeven (1985),
Coulaud, Funaro and Kavian (1990), Funaro (1991). The basic weighted space
is

L2
w(R+) =

{
v : R+ → R measurable | ‖v‖L2

w(R+) < +∞
}

, (5.7.1)

where

‖v‖L2
w(R+) =

(∫

R+

v2(x)e−xdx

)1/2

.

It generates the family of weighted Sobolev spaces

Hm
w (R+) =

{
v ∈ L2

w(R+) | ‖v‖Hm
w (R+) < +∞

}
, m ≥ 0 , (5.7.2)

where
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‖v‖Hm
w (R+) =

⎛

⎝
m∑

j=0

‖v(j)‖2L2
w(R+)

⎞

⎠
1/2

.

A related family of weighted Sobolev spaces is useful, namely,

Hm
w;α(R+) =

{
v ∈ L2

w(R+) | (1 + x)α/2 ∈ Hm
w (R+)

}
, m ≥ 0 , (5.7.3)

equipped with the natural norm ‖v‖Hm
w;α(R+) = ‖(1 + x)α/2v‖Hm

w (R+).
For each u ∈ L2

w(R+), let PNu ∈ PN be the truncation of its Laguerre
series, i.e., the orthogonal projection of u upon PN with respect to the inner
product of L2

w(R+):
∫

R+

(u− PNu)φ e−x dx = 0 for all φ ∈ PN .

The following error estimate holds for any m ≥ 0 and 0 ≤ k ≤ m:

‖u− PNu‖Hk
w(R+) ≤ CNk−m

2 ‖u‖Hm
w;m(R+) . (5.7.4)

For the orthogonal projection P 1
N upon PN in the norm of H1

w(R+), the
following estimate holds for m ≥ 1:

‖u− P 1
Nu‖H1

w(R+) ≤ CN
1
2−

m
2 ‖u‖Hm

w;m−1(R+) ; (5.7.5)

the same result holds for the projection P 1,0
N upon P

0
N (Guo and Shen (2000)).

Concerning interpolation, let us consider the N + 1 Gauss-Radau points
xj , j = 0, . . . , N , where x0 = 0 and xj , for j = 1, . . . , N , are the zeros
of l′N+1(x), the derivative of the (N + 1)-th Laguerre polynomial. For each
continuous function u on R+, let INu ∈ PN be the interpolant of u at the
points xj . In order to estimate the interpolation error, let us introduce the
the space Hm

w;∗(R+) of the functions such that

‖v‖Hm
w;∗(R+) =

⎛

⎝
m∑

j=0

‖xj/2v(j)‖2L2
w(R+)

⎞

⎠
1/2

(see Monegato and Mastroianni (1997), who give an equivalent definition,
meaningful also for non-integer m). Then, for any m ≥ 1, 0 ≤ k ≤ m and
0 < ε < 1, one has

‖u− INu‖Hk
w(R+) ≤ CεN

k+ 1
2 +ε−m

2

(
‖u‖2Hm

w;m(R+) + ‖u‖2Hm
w;∗(R+)

)1/2

(5.7.6)

for all functions u ∈ Hm
w;m(R+) ∩Hm

w;∗(R+) (see Xu and Guo (2002), where
additional approximation results can be found). Examples of applications
to spectral Laguerre discretizations of boundary-value problems in R+ are
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provided in the above references. Usually, an appropriate change of unknown
function is needed to cast the differential problem into the correct functional
setting based on Laguerre-weighted Sobolev spaces.

Hermite approximations can be studied in a similar manner. The basic
weighted space L2

w(R) involves the norm

‖v‖L2
w(R) =

(∫

R

v2(x)e−x2
dx
)1/2

.

The Sobolev spaces Hm
w (R) are defined as above, with respect to this norm.

The L2
w-orthogonal projection operator PN upon PN satisfies the estimate

‖u− PNu‖Hk
w(R) ≤ CN

k
2 −

m
2 ‖u‖Hm

w (R) (5.7.7)

for all m ≥ 0 and 0 ≤ k ≤ m (Guo (1999)). Interestingly, all H�
w-orthogonal

projection operators P �
N upon PN , for  ≥ 0, coincide with PN , due to prop-

erty (2.6.12) of Hermite polynomials. For the interpolation operator IN at
the Hermite-Gauss nodes in R, Guo and Xu (2000) proved the estimate

‖u− INu‖Hk
w(R) ≤ CεN

1
3 +k−m

2 ‖u‖Hm(R) , (5.7.8)

for m ≥ 1 and 0 ≤ k ≤ m.
When dealing with the unbounded intervals R+ and R, an alternative to

polynomials as approximating functions is given by functions that are the
product of a polynomial times the natural weight for the interval. Thus, one
uses the Laguerre functions ψ(x) = φ(x)e−x in R+ or the Hermite functions
ψ(x) = φ(x)e−x2

in R, where φ is any polynomial in PN . The behavior at
infinity of the function to be approximated may suggest such a choice. We
refer, e.g., to Funaro and Kavian (1990) and to Guo and Shen (2003) for the
corresponding approximation results and for applications.

5.8 Approximation in Cartesian-Product Domains

We shall now extend to several space dimensions some of the approximation
results we presented in the previous sections for a single spatial variable. The
three expansions of Fourier, Legendre and Chebyshev will be considered.
However, we will only be concerned with those Sobolev-type norms that are
most frequently applied to the convergence analysis of spectral methods.

5.8.1 Fourier Approximations

Let us consider the domain Ω = (0, 2π)d in Rd, for d = 2 or 3, and denote an
element of R

d by x = (x1, . . . , xd). The space L2(Ω), as well as the Sobolev
spaces Hm

p (Ω) of periodic functions, are defined in Appendix A (see (A.9.h)
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and (A.11.d)). Since Ω is the Cartesian product of d copies of the interval
(0, 2π), it is natural to use, as an orthogonal system in L2(Ω), the tensor
product of the trigonometric system in L2(0, 2π). Thus, we set

φk(x) = ei k·x , with k · x = k1x1 + · · ·+ kdxd , (5.8.1)

by analogy with (2.1.1), and

SN = span{φk(x) | −N ≤ kj ≤ N − 1 for j = 1, . . . , d} . (5.8.2)

Moreover, we still denote by PN the orthogonal projection operator from
L2(Ω) upon SN . Then, for any u ∈ L2(Ω) we have

PNu =
∑

‖k‖�N

ûkφk , ûk =
(

1
2π

)d ∫

Ω

u(x)φk(x) dx , (5.8.3)

where the above summation is extended to all k ∈ Zd such that −N ≤
kj ≤ N − 1, for j = 1, . . . , d. The following result provides an estimate in all
Sobolev norms for the remainder of the Fourier series of u:

‖u− PNu‖Hl(Ω) ≤ CN l−m|u|Hm(Ω) for 0 ≤ l ≤ m , (5.8.4)

where |u|Hm(Ω) =
(∑d

j=1 ‖Dm
j u‖2L2(Ω)

)1/2

. It can be obtained for all u ∈
Hm

p (Ω) by a proof that mimics the one of (5.1.10).
Concerning interpolation, let us introduce the (2N)d points

x = (xj1 , . . . , xjd) where xj =
π

N
j , (5.8.5)

with 0 ≤ jm ≤ 2N − 1 for m = 1, . . . , d. For every function u continuous
in the closure of Ω, we denote by INu the function of SN interpolating u at
the points (5.8.5). By analogy with the one-dimensional case (cf. (2.1.28) and
(2.1.32)) one has

INu =
∑

‖k‖�N

ũkφk , ũk =
(

1
2N

)d∑

j

u(xj)φk(xj) , (5.8.6)

where ũk is the k-th discrete Fourier coefficient of u. The error estimate for
this interpolation is

‖u− INu‖Hl(Ω) ≤ CN l−m|u|Hm(Ω) for 0 ≤ l ≤ m . (5.8.7)

It holds for all u ∈ Hm
p (Ω) with m > d/2. For l = 0 the proof can be done as

for (5.1.16) by mapping Ω onto the reference domain ΩN = (0, 2πN)d. For
l > 0 the estimate (5.8.7) is obtained using the corresponding one for l = 0,
the estimate (5.8.4), and the following inverse inequality: for 0 ≤ k ≤ m,

‖φ‖Hm(Ω) ≤ CNm−k‖φ‖Hk(Ω) for all φ ∈ SN , (5.8.8)

which extends (5.1.5) for p = 2.
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5.8.2 Legendre Approximations

We consider now the domain Ω = (−1, 1)d in R
d with d = 2 or 3, and we

still denote an element of Rd by x = (x1, . . . , xd). We denote by L2(Ω) the
space of square-integrable functions in Ω and by Hm(Ω) the corresponding
Sobolev space of order m (see (A.9.h) and (A.11.a)). The tensor products of
the Legendre polynomials,

φk(x) = Lk1(x1) · · ·Lkd(xd) for k = (k1, . . . , kd) ∈ N
d , (5.8.9)

form an orthogonal basis for L2(Ω). Let PN = PN (Ω) be the space of all
algebraic polynomials of degree up to N in each variable xi for i = 1, . . . , d.
Denote by PN the orthogonal projection operator from L2(Ω) upon PN , so
that (see (2.3.9))

PNu =
∑

‖k‖≤N

ûkφk, ûk =
d∏

i=1

(
ki +

1
2

)
·
∫

Ω

u(x)φk(x) dx (5.8.10)

for all u ∈ L2(Ω). We set here and in the sequel ‖k‖ = max1≤i≤d ki .
Concerning the truncation error, the following estimate holds for all u ∈

Hm(Ω),m ≥ 0:

‖u− PNu‖Hl(Ω) ≤ CNσ(l)−m|u|Hm;N (Ω) 0 ≤ l ≤ m , (5.8.11)

where σ(l) = 0 if l = 0 and σ(l) = 2l − 1
2 for l > 0. The seminorm on the

right-hand side is defined as

|u|Hm;N (Ω) =

⎛

⎝
m∑

k=min(m,N+1)

d∑

i=1

‖Dk
i u‖2L2(Ω)

⎞

⎠
1/2

(5.8.12)

(compare with (5.4.10)). Note that only pure derivatives in each spatial di-
rection appear in this expression.

We consider now the operators of orthogonal projection for the inner
product of the Sobolev spaces H1(Ω) and H1

0 (Ω) (the latter space being
defined in (A.11.c)). By analogy with (5.4.20), we set

P 1
N : H1(Ω) −→ PN such that

((P 1
Nu, φ)) = ((u, φ)) for all φ ∈ PN ,

(5.8.13)

where ((u, v)) =
∫

Ω
(∇u·∇v+uv) dx is the inner product of H1(Ω). Moreover,

denoting by P0
N the subspace of PN of those polynomials vanishing at the

boundary of Ω, we set, by analogy with (5.4.29),

P 1,0
N : H1

0 (Ω) −→ P
0
N such that

[P 1,0
N u, φ] = [u, φ] for all φ ∈ P

0
N ,

(5.8.14)
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where [u, v] =
∫

Ω
∇u ·∇v dx is the inner product of H1

0 (Ω) (see (A.11.c)). For
all u ∈ Hm(Ω) (respectively, Hm(Ω) ∩H1

0 (Ω)) with m ≥ 1, set uN = P 1
Nu

(respectively P 1,0
N u). Then the following estimates hold:

∥∥u− uN
∥∥

Hk(Ω)
≤ CNk−m|u|Hm;N (Ω) , 0 ≤ k ≤ 1 . (5.8.15)

These estimates are optimal and generalize to more dimensions those given
in Sect. 5.4.2 for a single spatial variable. They can be extended to higher
order Sobolev norms and to cover different kinds of boundary behavior of u.
This very general result reads as follows:

Let l and m be two integers such that 0 ≤ l ≤ m, and let λ be another
integer so that 0 ≤ λ ≤ l. Let u be a function of Hm(Ω) such that, if λ ≥ 1,
u vanishes at the boundary together with its derivatives of order up to λ−1.
Then there exists a polynomial uN ∈ PN having the same boundary behavior
as u such that

‖u− uN‖Hk(Ω) ≤ CNk−m|u|Hm;N (Ω) for 0 ≤ k ≤ l . (5.8.16)

We refer to Bernardi, Dauge and Maday (1992) for the case of non-homo-
geneous boundary conditions.

Finally, we consider multidimensional Legendre interpolation. Let {xj ,
0 ≤ j ≤ N} denote one of the Gauss Legendre quadrature families (2.3.10),
(2.3.11), or (2.3.12) on the interval (−1, 1). Let us introduce the points in Ω̄:

xj = (xj1 , . . . , xjd) for j = (j1, . . . , jd) ∈ N
d, ‖j‖ ≤ N , (5.8.17)

and let us denote by IN the interpolation operator at these points, i.e., for
each continuous function u, INu ∈ PN satisfies

(INu)(xj) = u(xj) for all j ∈ N
d, ‖j‖ ≤ N . (5.8.18)

We can represent INu as follows:

INu =
∑

‖k‖≤N

ũkφk , (5.8.19)

with

ũk = (γk1 · · · γkd)
−1
∑

j

u(xj)φk(xj)wj1 · · ·wjd ,

where the γk’s are defined in (2.3.13), and the wm’s are one of the weights
(2.3.10)–(2.3.12), according to the choice of the interpolation points. The
interpolation error estimate in the L2(Ω)-norm is

‖u− INu‖L2(Ω) ≤ CN−m|u|Hm;N (Ω) , (5.8.20)
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for all u ∈ Hm(Ω), with m > d/2. The same result holds if we blend different
Gauss Legendre quadrature families along different space directions (e.g.,
Gauss points in the x1-direction but Gauss-Radau points in the x2-direction).

Estimate (5.8.20) is optimal, since the interpolation error behaves as the
best approximatoin error in PN for the L2(Ω)-norm. However, similarly to
(5.8.11), the interpolation error is suboptimal in higher Sobolev norms, with
one significant exception that occurs when Gauss-Lobatto points are used in
all space directions. In this case, we have the optimal estimate

‖u− INu‖H1(Ω) ≤ CN1−m|u|Hm;N (Ω) (5.8.21)

for all u ∈ Hm(Ω) with m ≥ (d + 1)/2. This result is quite important, par-
ticularly for the multidomain spectral setting discussed in CHQZ3, Chaps. 5
and 6. Indeed, it allows one to construct a global approximation operator that
is optimal in the H1(Ω)-norm and that appears naturally in second-order
boundary-value problems, by simply glueing together local interpolation op-
erators defined on the subdomains.

Finally, let us introduce the bilinear form

(f, g)N,Ω =
∑

j

f(xj)g(xj)wj1 · · ·wjd ,

which approximates the L2(Ω)-inner product, (f, g)Ω =
∫

Ω
fg, and which

is indeed a discrete inner product in PN . The one-dimensional estimates
(5.3.4a)-(5.3.4b) imply the following general estimate: for all u ∈ C0(Ω̄) and
φ ∈ PN , one has

|(u, φ)Ω − (u, φ)N,Ω | ≤ C(‖u− PN−1u‖L2(Ω)

+ ‖u− INu‖L2(Ω))‖φ‖L2(Ω) .
(5.8.22)

5.8.3 Mapped Operators and Scaled Estimates

The approximation operators considered above act on functions defined in
the Cartesian-product domain [−1, 1]d, d = 2, 3; we will refer to this domain
as to the reference domain and we will indicate it by Ω̂. A smooth, invertible
mapping F between Ω̂ and a bounded domain Ω ⊂ R

d (see Sect. 2.8.1 for
examples of such transformations) induces a mapping between functions de-
fined in Ω̂ and functions defined in Ω; consequently, approximation operators
can be defined in Ω as images of those defined in Ω̂.

To be precise, let F : Ω̂ → Ω be an m-times differentiable, invertible
mapping such that the determinant |JF | of its Jacobian matrix JF satisfies
|JF | ≥ γ in T̂ , for some constant γ > 0. This implies that the inverse mapping
F−1 is m-times differentiable as well. Any real-valued function v̂ defined in Ω̂
gives rise to a function v defined in Ω by setting v(x) = v̂(F−1(x)) for all
x ∈ Ω; the inverse transformation is v̂(x̂) = v(F (x̂)) for all x̂ ∈ Ω̂. The



5.8 Approximation in Cartesian-Product Domains 317

assumptions on F imply that v is just as differentiable as v̂, up to derivatives
of order m. Now, let P̂N : W(Ω̂) → XN (Ω̂) be one of the approximation
operators introduced in the previous subsection; here, W(Ω̂) is a space of
sufficiently smooth functions defined in Ω̂, whereas XN (Ω̂) is the subspace
of the polynomial space PN (Ω̂) defined by the boundary conditions enforced
by P̂N . We set W(Ω) = {v : v̂ ∈ W(Ω̂)} and XN (Ω) = {v : v̂ ∈ XN (Ω̂)},
and we define the approximation operator PN :W(Ω)→ XN (Ω) by setting,
for all v ∈ W(Ω),

(PNv)(x) = (P̂N v̂)(x̂) , x̂ = F−1(x) , for all x ∈ Ω .

The simplest situation occurs when F is an affine mapping, F (x̂) = Bx̂ + b,
with |B| 	= 0. In this case, XN (Ω) is a subspace of the space PN (Ω) of all
polynomials of degree at most N in each variable, restricted to Ω. It is easily
seen that if P̂N = P̂N is the L2(Ω̂)-orthogonal projection operator upon
PN (Ω̂), then PN = PN is the L2(Ω)-orthogonal projection operator upon
PN (Ω). Similarly, if P̂N = ÎN is the interpolation operator at a set of tensor-
product Gaussian nodes in Ω, then PN = IN is the interpolation operator at
the set of mapped nodes in Ω.

Let us assume that, for all û ∈ Hm(Ω̂) ∩W(Ω̂), an error bound for P̂N

holds in the following form:

|û− P̂N û|Hk(Ω̂) ≤ ĈNσ(k)−m|û|Hm(Ω̂) , (5.8.23)

for some k ≤ m and under the condition N > m. Here, Ĉ is a constant
depending on k and m but independent of N , σ(k) is a given function of k,

and the seminorms are defined as |v̂|Hr(Ω̂) =
(∑d

j=1 ‖D̂r
j‖2L2(Ω̂)

)1/2

, with

D̂i = ∂/∂x̂i. All estimates presented in the previous subsection have this
form (if N > m), with σ(k) = k in the optimal cases.

We aim at deriving from (5.8.23) an error bound for PN . Let us start
with the case in which F performs a dilation in each direction, with arbitrary
dilation factors hi > 0; thus, B = diag(hi). Setting Di = ∂/∂xi, we have
D̂i = hiDi for all i. Using these relations in both sides of (5.8.23) and noting
that (u− PNu)∧ = û− P̂N û, we obtain

(
d∑

i=1

h2k
i ‖Dk

i (u− PNu)‖2L2(Ω)

)1/2

≤ ĈNσ(k)−m

(
d∑

i=1

h2m
i ‖Dm

i u‖2L2(Ω)

)1/2

(5.8.24)
for all u ∈ Hm(Ω) ∩W(Ω). This bound accounts for the possible anisotropy
of u (i.e., a significant variation in the order of magnitude of the partial
derivatives of u in the different directions) in the sharpest way. On the other
hand, if all dilation factors satisfy ch ≤ hi ≤ c′h for a suitable h > 0 and
constants c, c′ > 0 of order of magniture one, then the previous bound simpli-
fies to
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|u− PNu|Hk(Ω) ≤ Chm−kNσ(k)−m|u|Hm(Ω) ; (5.8.25)

the constant C depends only on Ĉ, c and c′. Such a bound is more appropriate
for an isotropic situation. If m ≤ N , then the seminorm |û|Hm(Ω̂) on the
right-hand side of (5.8.23) has to be replaced by the seminorm |û|Hm;N (Ω̂)

(see (5.8.12)). In this case, assuming without loss of generality that h ≤ 1,
(5.8.25) becomes

|u− PNu|Hk(Ω) ≤ Chmin(m,N+1)−kNσ(k)−m|u|Hm;N (Ω) . (5.8.26)

The isotropic condition on the dilation factors corresponds to the geo-
metric requirement that the aspect ratio(s) of the Cartesian-product domain
Ω be of order of magniture one. More generally, this is equivalent to the
condition that the ratio between the diameter of Ω and the diameter of the
largest ball contained in Ω be, again, of order of magniture one. (A general
mapping F for which Ω = F (Ω̂) satisfies this condition is termed a regular
mapping.) The error bound (5.8.26) can be derived from (5.8.23) for any do-
main which is the image of Ω̂ under a regular affine mapping; in this case, h
denotes the diameter of Ω. The proof, which is essentially based on sharply
estimating how seminorms in the mapped domain vary with h, is classical in
the analysis of the h-version of finite-element methods (see, e.g, Quarteroni
and Valli (1994), Chapter 3, for the details).

If the mapping F is not affine, the transformation of a seminorm induced
by F involves partial derivatives of order lower than the order of the semi-
norm. Therefore, for a regular mapping (5.8.26) takes the form

|u− PNu|Hk(Ω) ≤ Chmin(m,N+1)−kNσ(k)−m‖u‖Hm(Ω) . (5.8.27)

Again, the constant C is independent of h and N .
Summarizing, if Ω is a domain obtained from Ω̂ by a smooth, invertible

and regular mapping, then an optimal (i.e., with σ(k) = k) error bound of the
form (5.8.26) or (5.8.27) holds for the L2-orthogonal projection upon P(Ω)
(for k = 0, m ≥ 0), for the H1- and H1

0 -orthogonal projection (for k = 0, 1
and m ≥ 1) and for the interpolation operator at the mapped Gauss-Lobatto
nodes (for k = 0, 1 and m ≥ (d + 1)/2).

5.8.4 Chebyshev and Other Jacobi Approximations

Unless otherwise specified, we keep the notation of the previous section. In-
stead of (5.8.9) we set now

φk(x) = Tk1(x1) · · ·Tkd(xd) for k = (k1, . . . , kd) ∈ N
d .

This is an orthogonal basis of L2
w(Ω), the space of the measurable functions

on Ω that are square integrable for the multidimensional Chebyshev weight



5.8 Approximation in Cartesian-Product Domains 319

w(x) =
(∏d

i=1(1− x2
i )
)−1/2

(see (A.9.h)). For each u ∈ L2
w(Ω), the trunca-

tion of its Chebyshev series is given by

PNu =
∑

‖k‖≤N

ûkφk , (5.8.28)

with

ûk =
(

2
π

)d
(

d∏

i=1

1
cki

)∫

Ω

u(x)φk(x)w(x) dx ,

(see (2.4.10) and (2.4.11)). Denoting by Hm
w (Ω) the weighted Sobolev spaces

relative to the Chebyshev weight (see (A.11.b)), the remainder of the Cheby-
shev series of a function u ∈ Hm

w (−1, 1), m ≥ 0, can be bounded as follows:

‖u− PNu‖Hl
w(Ω) ≤ CNσ(l)−m|u|Hm;N

w (Ω) , 0 ≤ l ≤ m , (5.8.29)

where σ(l) = 0 if l = 0, and σ(l) = 2l − 1
2 if l > 0. The seminorm on the

right-hand side is defined as in (5.8.12), using now weighted L2-norms.
Concerning the projection errors in the higher order Sobolev norms, we

have essentially the same kind of results as for the Legendre expansion. For
instance, let us define the operator

P 1
N : H1

w(Ω) −→ PN such that

((P 1
Nu, φ))w = ((u, φ))w for all φ ∈ PN ,

(5.8.30)

where ((u, v))w =
∫

Ω
(∇u · ∇v + uv)w dx is the inner product of H1

w(Ω).
Moreover, we define the operator

P 1,0
N : H1

w,0(Ω) −→ P
0
N such that

[P 1,0
N u, φ]w = [u, φ]w for all φ ∈ P

0
N .

(5.8.31)

Here, [u, v]w =
∫

Ω
(∇u · ∇v)w dx is the inner product of H1

w,0(Ω) (see
(A.11.c)).

For each u ∈ Hm
w (Ω) (u ∈ H1

w,0(Ω) ∩Hm
w (Ω), resp.), with m ≥ 1, we set

uN = P 1
Nu (uN = P 1,0

N u, resp.). Then we have the estimate

‖u− uN‖H1
w(Ω) ≤ CN1−m|u|Hm;N

w (Ω) . (5.8.32)

Optimal approximation estimates that extend (5.8.16) to the Chebyshev case
are also available (see Bernardi and Maday (1997), Chapter 4).

Let us now deal with Chebyshev interpolation in Ω. Let the interpolation
points be defined as in (5.8.17), where now the xji belong to any of the families
(2.4.12), (2.4.13), or (2.4.14). The Chebyshev interpolation at these points is
defined as in (5.8.18) or (5.8.19), where the γk’s are defined in (2.4.18) and
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the wj ’s are defined in (2.4.12), (2.4.13) or (2.4.14). The interpolation error
estimate is

‖u− INu‖L2
w(Ω) ≤ CN−m|u|Hm;N

w (Ω) (5.8.33)

for all u ∈ Hm
w (Ω) with m > d/2. If interpolation is taken at the Chebyshev

Gauss-Lobatto points (2.4.14) in all space directions, we also have the optimal
estimate in the H1

w(Ω)-norm:

‖u− INu‖H1
w(Ω) ≤ CN1−m|u|Hm;N

w (Ω) (5.8.34)

for all u ∈ Hm
w (Ω) with m > (3d + 2)/4.

All the results concerning Chebyshev approximations mentioned in this
section hold unchanged for any Jacobi approximation, as defined in Sect. 2.5,
for the full range −1 < α, β < 1. Obviously, w is now the Jacobi weight,
w(x) = (1− x)α(1 + x)β . Again, we refer to Bernardi and Maday (1997) for
the details.

5.8.5 Blended Trigonometric and Algebraic Approximations

Several spectral approximations provide a numerical solution which is a finite
expansion in terms of trigonometric (Fourier) polynomials in some Cartesian
directions and of algebraic (Jacobi) polynomials in the others.

This is typically the case of those problems set in Cartesian geometry,
whose physical solution is periodic with respect to one (or more) variables,
and submitted to Dirichlet or Neumann boundary conditions in the direction
of the remaining variables.

We consider here for the sake of simplicity a two-dimensional domain,
say Ω = (−1, 1) × (0, 2π), but what we are going to present is extendable
in an obvious manner to a domain of the form Ω = (−1, 1)d1 × (0, 2π)d2 for
d1, d2 ≥ 1. We introduce first some notation. For each integer M we denote
by PM the space of algebraic polynomials in the variable x of degree up to
M . Moreover, for each integer N we denote by SN the space

SN = span
{
eiky | −N ≤ k ≤ N − 1

}
.

Then we define the space VM,N as the tensor product of PM and SN , i.e.,

VM,N =

{
φ(x, y) =

M∑

m=0

N−1∑

n=−N

amnpm(x)einy, amn ∈ C

}
,

where we use the notation pm(x) to indicate the m-th Jacobi polynomial with
respect to a given Jacobi weight w(x) = (1−x)α(1+x)β , with −1 < α, β < 1.
Let us denote by L2

y(Hk
w,x) the space of the measurable functions u : Ω → R

such that
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‖u‖k,0 =
(∫ 2π

0

‖u(·, y)‖2Hk
w(−1,1) dy

)1/2

< +∞ . (5.8.35)

For k = 0, this norm will be denoted briefly by

‖u‖0 =
(∫ 2π

0

dy

∫ 1

−1

|u(x, y)|2w(x) dx
)1/2

. (5.8.36)

Moreover, for any positive integer h we define

H�
y(L2

w,x) =
{
u ∈ L2(Ω)

∣∣∣∣
∂ju

∂yj
∈ L2

y(L2
w,x), 0 ≤ j ≤  

}
;

the norm is given by

‖u‖0,� =

⎛

⎝
�∑

j=0

∥∥∥∥
∂ju

∂yj

∥∥∥∥
2

0

⎞

⎠
1/2

. (5.8.37)

The space H�
p,y(L2

w,x) is the closure in H�
y(L2

w,x) of C∞
p (Ω), which is the

set of all functions that are continuous with all their derivatives up to the
boundary of Ω and 2π-periodic with all their derivatives with respect to the
y-direction.

For any function u ∈ L2
y(L2

w,x), let PM,Nu denote the projection of u upon
VM,N , i.e.,

PM,Nu =
M∑

m=0

N−1∑

n=−N

ûmnpm(x)einy , (5.8.38)

where

ûmn =
1

ckπ2

∫ 2π

0

∫ 1

−1

u(x, y)pm(x)e−inyw(x) dx dy .

The ck’s are given in (2.4.10). Then, for all k,  ≥ 0, we have

‖u− PM,Nu‖0 ≤ C1M
−k‖u‖k,0 + C2N

−�‖u‖0,� , (5.8.39)

for all u for which the norms on the right-hand side are finite. The proof of
this result can be done as follows. Denote by P J

M and PF
N the L2-orthogonal

projection operators upon PM and SN in the Jacobi and Fourier expansions,
respectively. Then,

u− PF
N P J

Mu = (u− PF
N u) + PF

N (u− P J
Mu) . (5.8.40)

Now (5.8.39) follows, noting that ‖u−PM,Nu‖0 ≤ ‖u−PF
N P J

Mu‖0 and using
(5.1.9) and (5.5.9), which, as mentioned in Sect. 5.7.1, holds for all Jacobi
weights.
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In higher order norms, the best approximation error can be estimated by
a splitting technique similar to the one used in (5.8.40). For instance, using
instead of P J

M the H1
w(−1, 1)-orthogonal projector P J,1

M defined in (5.5.13),
it follows that, for all k,  ≥ 1, we have

‖u− PF
N P J,1

M u‖1 ≤ C1M
1−k

(
‖u‖k,0 +

∥∥∥∥
∂u

∂y

∥∥∥∥
k−1,0

)

+ C2N
1−�

(
‖u‖0,� +

∥∥∥∥
∂u

∂x

∥∥∥∥
0,�−1

) (5.8.41)

for all u for which the norms on the right-hand side are finite, where we have
used (5.1.10) and (5.5.14). Obviously, a similar estimate holds if u and v are
assumed to vanish on the sides x = −1 and x = 1 of the boundary of Ω. It is
enough to take the operator defined in (5.5.17) and to use (5.5.19) instead of
(5.5.14). Best approximation error estimates in higher norms can be proven
similarly.

Concerning interpolation, let us consider the points

ξij =
(
ξi,

πj

N

)
, 0 ≤ i ≤M, 0 ≤ j ≤ 2N − 1 , (5.8.42)

where ξi denote the GL points for the Jacobi weight ω(x).
Then, denote by IJ

M the Jacobi interpolation operator with respect to
the points ξi and by IF

N the Fourier interpolation operator relative to the
points πj/N . Of course, IM,N = IJ

MIF
N = IF

NIJ
M is the interpolation operator

relative to the points ξij , i.e., for all u ∈ C0(Ω),

IM,Nu ∈ VM,N satisfies IM,Nu(ξij) = u(ξij) , (5.8.43)

for 0 ≤ i ≤M and 0 ≤ j ≤ 2N − 1.
Using the error bound (5.1.19) for Fourier interpolation and the bounds

(5.5.22) and (5.5.25) as well as the stability estimate (5.5.24) for Jacobi inter-
polation, one proves, with the same arguments as above, that for all k,  ≥ 2
and 0 ≤ r ≤ 1, we have

‖u− IF
NIJ

Mu‖r ≤ C1M
r−k

(
‖u‖k,0 +

∥∥∥∥
∂u

∂y

∥∥∥∥
k−1,0

)

+ C2N
r−�

(
‖u‖0,� +

∥∥∥∥
∂u

∂x

∥∥∥∥
0,�−1

) (5.8.44)

for all u for which the norms on the right-hand side are finite.
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Blended Fourier-Jacobi expansions were first studied by Quarteroni (1987)
in the Chebyshev case and by Bernardi, Maday and Métivet (1987) in the
Legendre case.

The coupling of Fourier and finite-element approximations, for instance
in a domain of the form Ω × (0, 2π), where Ω is a polygonal region of R

d

(d ≥ 2) and the solution is periodic with respect to the last variable, is of
interest as well. Early studies of this kind were made by Canuto, Maday and
Quarteroni (1982), and Mercier and Raugel (1982). More recent results can
be found in Belhachmi et al. (2006).

5.9 Approximation in Triangles and Related Domains

In this section we present a few approximation results for a function defined
in a simplicial domain by means of suitable algebraic polynomials. As usual,
we confine ourselves to those results that are useful in the analysis of spectral
methods.

Let us first consider the simplest situation of the reference triangle T =
{(x1, x2) ∈ R2 : −1 < x1, x2 and x1 + x2 < 0}, which is contained in the
reference square Q = {(ξ1, ξ2) ∈ R

2 : −1 < ξ1, ξ2 < 1}. For clarity, we
shall denote by PN (T ) the space of polynomials of total degree ≤ N in the
variables x1, x2, and by PN (Q) the space of polynomials of degree≤ N in each
of the variables ξ1, ξ2. A first set of results is as follows (as usual, C denotes
a constant independent of u and N , but depending on m):

L2-approximation. The orthogonal projection operator PN : L2(T )→ PN (T )
in the inner product (u, v) =

∫
T uv dx satisfies

‖u− PNu‖L2(T ) ≤ CN−m|u|Hm;N (T ) (5.9.1)

for all u ∈ Hm(T ), m ≥ 0.

H1-approximation. The orthogonal projection operator P 1
N : H1(T ) →

PN (T ) in the inner product ((u, v)) =
∫
T (∇u · ∇v + uv) dx satisfies

‖u− P 1
Nu‖Hk(T ) ≤ CNk−m|u|Hm;N (T ) , k = 0, 1 , (5.9.2)

for all u ∈ Hm(T ), m ≥ 1.

H1
0 -approximation. The orthogonal projection operator P 1,0

N : H1
0 (T ) →

P0
N (T ) = PN (T ) ∩ H1

0 (T ) in the inner product [u, v] =
∫
T ∇u · ∇v dx

satisfies

‖u− P 1,0
N u‖Hk(T ) ≤ CNk−m|u|Hm;N (T ) , k = 0, 1 , (5.9.3)

for all u ∈ Hm(T ) ∩H1
0 (T ), m ≥ 1.
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We sketch proofs of these results. Following Schwab (1998), we first recall
that, given any m ≥ 0 and u ∈ Hm(T ), there exists a function ũ ∈ Hm(Q)
that extends u to the whole square Q in a continuous way, i.e., ũ is such
that ũ|T = u and ‖ũ‖Hm(Q) ≤ C‖u‖Hm(T ). Denote by ũN/2 = P̃N/2ũ the
L2-orthogonal projection of ũ upon PN/2(Q), which by (5.8.11) satisfies
‖ũ − ũN/2‖L2(Q) ≤ CN−m‖ũ‖Hm(Q); set uN = (ũN/2)|T and note that
uN ∈ PN (T ). Then we have

‖u− PNu‖L2(T ) = inf
vN∈PN (T )

‖u− vN‖L2(T ) ≤ ‖u− uN‖L2(T )

≤ ‖ũ− ũN/2‖L2(Q) ≤ CN−m‖ũ‖Hm(Q)

≤ C ′N−m‖u‖Hm(T ) .

This estimate is refined further into (5.9.1) by an argument, already used in
the previous sections, based on the fact that PN is exact on PN (T ), i. e.,
PNv = v whenever v ∈ PN (T ).

In order to establish (5.9.2), we rather choose ũN/2 = P̃ 1
N/2ũ as de-

fined in (5.8.13), for which (5.8.15) holds. Proceeding as above, we arrive at
‖u − P 1

Nu‖H1(T ) ≤ ‖u − uN‖H1(T ) ≤ CN1−m‖u‖Hm(T ). The Aubin-Nitsche
duality argument, already used in Sect. 5.6, applies since the solution of
the boundary-value problem −∆ψ + ψ = g in T , ∂u/∂n = 0 on ∂T , satis-
fies ‖ψ‖H2(T ) ≤ C‖g‖L2(T ), as T is convex. This yields ‖u − P 1

Nu‖L2(T ) ≤
CN−1‖u− P 1

Nu‖H1(T ); whence, (5.9.2) follows.
At last, we consider (5.9.3). We choose again ũN/2 = P̃ 1

N/2ũ, but we
have to correct it on the boundary of T . To this end, we observe that
gN = (ũN/2)|∂T is a continuous function that is a polynomial of degree
≤ N on each side. Furthermore, we recall that the fractional H1/2-norm
of a function on the boundary of a domain can be bounded in terms of
its H1-norm in the domain (see (A.11.e)). Since u vanishes on the bound-
ary of T , we have ‖gN‖H1/2(∂T ) = ‖gN − u|∂T ‖H1/2(∂T ) ≤ C‖(ũN/2)|T −
u‖H1(T ) ≤ C‖ũN/2 − ũ‖H1(Q) ≤ CN1−m‖u‖Hm(T ). We now use a poly-
nomial lifting result (see, e.g., Schwab (1998), Theorem 4.84) that ensures
that there exists a polynomial GN ∈ PN (T ) such that (GN )|∂T = gN and
‖GN‖H1(T ) ≤ C‖gN‖H1/2(∂T ). Setting uN = (ũN/2)|T − GN ∈ PN (T ), we
have uN = 0 on ∂T and ‖u−uN‖H1(T ) ≤ C(‖ũ−ũN/2‖H1(Q)+‖GN‖H1(T )) ≤
CN1−m‖u‖Hm(T ). Then, we proceed as above. This concludes the proofs of
estimates (5.9.1)-(5.9.3).

Sharper estimates than those stated above could have been provided,
but only at the price of introducing a significantly heavier notation. As for
the one-dimensional case, a weaker seminorm can be put on the right-hand
side of (5.9.1)–(5.9.3), which makes the error bound true even for functions
that are less regular near the boundary. Owens (1998) derives an L2-error
estimate of this type using his orthogonal basis of PN (T ) that is formed
by eigenfunctions of a singular Sturm-Liouville problem in T . The estimate
stems from this property, following the same arguments given in Sect. 5.6
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for proving (5.4.11). Guo and Wang (2006) get L2- and H1-error estimates,
in which norms of sophisticated anisotropic weighted Sobolev spaces appear
on the right-hand side. They use the warped tensor-product basis (2.9.6),
allowing for a different maximal degree in each variable. For the proof, they
first map T onto the reference square Q via the singular transformation
(2.9.1); then, they combine suitable one-dimensional projection operators of
Jacobi type in a warped manner. Error estimates for such operators (Guo
and Wang (2004)), in which the dependence on the Jacobi indices α and β
is made explicit, are essential in their analysis. Indeed, some of the Jacobi
indices are functions on the polynomial degree, see (2.9.6), hence, they grow
unboundedly with N .

In view of the numerical analysis of G-NI and collocation methods, it is of
interest to estimate the error incurred by using the quadrature formula in T
based on the collapsed coordinates introduced in Sect. 2.9.1. Precisely, recall
(2.9.8) and denote by ξj , with j belonging to a suitable index set JN , the
tensorized Gaussian nodes in the square Q for the measure (1 − ξ2) dξ1 dξ2
mentioned therein; let w′

j denote the corresponding weights. If xj are the
mapped nodes in the triangle T , and if wj = 1

2w
′
j , we have

∫

T
f(x) dx =

1
2

∫

Q
F (ξ)(1− ξ2) dξ � 1

2

∑

j∈JN

F (ξj)w
′
j =

∑

j∈JN

f(xj)wj .

This formula is exact for all polynomials in P2N−1(T ). Furthermore, the
bilinear form (f, g)N,T =

∑
j∈JN

f(xj)g(xj)wj is a discrete inner product in
PN (T ) that approximates the L2-inner product (f, g)T =

∫
T f(x)g(x) dx.

By mapping T to Q and by tensorizing the results of Sect. 5.3 about the
uniform equivalence of discrete and continuous norms on the interval (−1, 1),
one easily checks that the same results hold for the discrete and continuous
L2-norms on T : there exist constants c1, c2 > 0 independent of N such that

c1‖φ‖L2(T ) ≤ ‖φ‖N,T ≤ c2‖φ‖L2(T ) for all φ ∈ PN (T ) . (5.9.4)

Furthermore, the following estimate, which extends (5.4.38), holds: for all
u ∈ Hm(T ) with m > 1, and for all φ ∈ PN (T ),

|(u, φ)T − (u, φ)N,T | ≤ CN−m|u|Hm;N−1(T )‖φ‖L2(T ) . (5.9.5)

For the proof, we apply the transformation (x1, x2) �→ (ξ1, ξ2) and we
introduce the weight w(ξ) = (1 − ξ2). Proceeding as in the proofs of
(5.3.4a)–(5.3.4b) and using the results of Sect. 5.8, we get, with obvious
notation,

|(u, φ)T − (u, φ)N,T | =
1
2

∣∣∣∣∣∣

∫

Q
U(ξ)Φ(ξ)(1− ξ2) dξ −

∑

j∈JN

U(ξj)Φ(ξ)w′
j

∣∣∣∣∣∣

≤ C(‖U − P̃N−1U‖L2
w(Q) + ‖U − ĨNU‖L2

w(Q)) ‖Φ‖L2
w(Q)

≤ CN−m‖U‖Hm
w (Q) ‖Φ‖L2

w(Q) .
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Next, we observe that
∂(x1, x2)
∂(ξ1, ξ2)

=
(

1
2 (1− ξ2) 1

2 (1 + ξ1)
0 1

)
, which easily im-

plies ‖U‖Hm
w (Q) ≤ C‖u‖Hm(T ); furthermore, ‖Φ‖L2

w(Q) = ‖φ‖L2(T ). Finally,
we refine the resulting estimate using the property that the error vanishes if
u ∈ PN−1(T ).

All previous results can be extended, with similar proofs, to three-
dimensional reference domains T , such as the tetrahedron, the pyramid or
the prism, already considered in Sect. 2.9.1.

Scaled error estimates are easily obtained from the previous ones if T is
now a two- or three-dimensional element that is the image of one of the ref-
erence simplicial domains T̂ under a smooth, invertible mapping F : T̂ → T .
Precisely, let hT denote the diameter of T and let us assume that the map-
ping is regular, in the sense that the diameter !T of the ball inscribed into T
satisfies !T ≥ chT for a constant c > 0 of order of magniture one. If the
mapping F is affine, then T is still a simplicial domain and the approximat-
ing functions in T are still polynomials of total degree at most N . Then the
estimates given above for the reference domain hold as well for T , with the
appearence of a power of h that accounts for the geometric scaling (as in the
tensor-product case; see Sect. 5.8.3). For instance, estimate (5.9.2) gives rise
to the following one:

‖u− P 1
Nu‖Hk(T ) ≤ Ch

min(m,N+1)−k
T Nk−m|u|Hm;N (T ) , k = 0, 1 , (5.9.6)

for all u ∈ Hm(T ), m ≥ 1; similarly, the counterpart of (5.9.5) is as follows:
for all u ∈ Hm(T ) with m > 1, and for all φ ∈ PN (T ),

|(u, φ)T − (u, φ)N,T | ≤ Ch
min(m,N)
T N−m|u|Hm;N−1(T )‖φ‖L2(T ) . (5.9.7)

Beyond the affine case, we may assume that F is m-times continuously dif-
ferentiable in T̂ and that the determinant |JF | of its Jacobian matrix JF
satisfies |JF | ≥ γ in T̂ , for some constant γ > 0. Then the estimates above
hold as well, provided the seminorm |u|Hm;N−1(T ) is replaced by the full norm
‖u‖Hm(T ).

The methods of proof for obtaining all these results are similar to those
for the mapped tensor-product domain (see again Sect. 5.8.3).
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In this chapter we present a fairly general approach to the stability and con-
vergence analysis of spectral methods. We confine ourselves to linear prob-
lems. Analysis of several nonlinear problems is presented in Chap. 7 and in
CHQZ3, Chap. 3. For time-dependent problems, only the discretizations in
space are considered. Stability for fully discretized time-dependent problems
is discussed in Appendix D by a classical eigenvalue analysis and in Chap. 7
by variational methods.

It may be worthwhile to specify precisely what is meant here by stability
of a spatial approximation based on a spectral method. A scheme will be
called stable if it is possible to control the discrete solution by the data
in a way independent of the discretization parameter N (the degree of the
polynomials used). This means that a suitable norm of the solution is bounded
by a constant multiple of a suitable norm of the data, and all the norms
involved, as well as the constant, do not depend on N . In other words, for
a fixed data, all the discrete solutions produced by the spectral scheme, as
N tends to infinity, lie in a bounded subset of a normed linear space.

The most representative methods of spectral type, i.e., Galerkin (with
or without numerical integration), collocation and tau, are considered. We
begin with a reexamination of some of the examples of Chap. 1. The aim
here is to introduce the salient aspects of the different methods of analysis.
We then proceed to the general theory with the objective of achieving a uni-
fied methodology. Time-independent problems are considered first, and then
both parabolic and hyperbolic equations are analyzed. All spectral schemes
can be obtained from some weak (or variational) formulation of the differ-
ential problem by restricting the function spaces to polynomials and possi-
bly by introducing some further approximation (e.g., numerical integration);
most of them can indeed be interpreted as projection methods over a finite-
dimensional space of polynomials with respect to a certain inner product. The
stability is proved either by the energy method or by a generalized variational
principle. The convergence analysis uses stability results and the results of
approximation theory given in Chap. 5 for several projection operators. Ap-
plications of these general results to the analysis of many pertinent examples
are given.
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6.1 Three Elementary Examples Revisited

Some basic aspects of the analysis of stability and convergence for spectral
methods can be illustrated by considering three of the examples already dis-
cussed in Sect. 1.2. Other aspects of the analysis will be highlighted in Sect.
6.4.3 by considering a multidimensional version of the remaining example,
presented in Sect. 1.2.4. The nature of the theory presented in this section
is deliberately pedestrian, since the purpose is to introduce the reader to the
more sophisticated and abstract mathematics in the remaining sections of
this chapter.

6.1.1 A Fourier Galerkin Method for the Wave Equation

The linear hyperbolic problem

∂u

∂t
− ∂u

∂x
= 0 , 0 < x < 2π , t > 0 ,

u(x, t) 2π-periodic in x, t > 0 ,

u(x, 0) = u0(x) , 0 < x < 2π ,

was approximated in Sect. 2.1 by the Galerkin scheme (1.2.3). For any t ≥ 0,
uN (x, t) is a trigonometric polynomial of degree N in x, i.e., uN (t) ∈ SN

where
SN = span{eikx| −N ≤ k ≤ N − 1} ,

(see (5.1.1)). (Note that in Chaps. 5–7 we are following the convention that
Fourier series are truncated at degree N rather than degree N/2, as this is
more convenient for the theoretical discussion.) The solution uN satisfies the
integral relation
∫ 2π

0

(
∂uN

∂t
(x, t)− ∂uN

∂x
(x, t)

)
v(x)dx = 0 for all v ∈ SN , t > 0, (6.1.1)

which is equivalent to (1.2.3) since the ψk’s are a basis in SN , and, by the
initial condition (1.2.11),

uN (0) = PNu0 =
N−1∑

k=−N

û0,ke
ikx .

For any t > 0, let us set v(x) = uN (x, t) in (6.1.1). An integration-by-parts
yields

Re
∫ 2π

0

∂uN

∂x
(x, t)uN (x, t)dx =

1
2
{
|uN (2π, t)|2 − |uN (0, t)|2

}
= 0

by the periodicity condition. It follows that
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1
2

d
dt

∫ 2π

0

|uN (x, t)|2dx = Re
∫ 2π

0

∂uN

∂t
(x, t)uN (x, t)dx = 0 ,

i.e., the L2-norm (in space) of the spectral solution is constant in time. There-
fore, for any t > 0,

∫ 2π

0

|uN (x, t)|2dx =
∫ 2π

0

|PNu0(x)|2dx ≤
∫ 2π

0

|u0(x)|2dx .

Since the right-hand side is a constant, the Galerkin scheme (1.2.3) is stable
in the L2-norm.

On the other hand, projecting the equation (∂u/∂t)−(∂u/∂x) = 0 on SN

yields the result that the truncated Fourier series PNu of the exact solution u
satisfies, at any t > 0,

∫ 2π

0

(
∂

∂t
PNu− ∂

∂x
PNu

)
(x, t)v(x)dx = 0 for all v ∈ SN .

This is the same variational relation that defines uN . Since uN = PNu at
time t = 0, it follows that

uN = PNu for all t ≥ 0 .

Since PNu converges to u as N tends to infinity, the approximation is conver-
gent. Moreover, (5.1.9) provides an estimate of the error between the exact
and the spectral solution. For all t > 0 we have

∫ 2π

0

|u(x, t)− uN (x, t)|2dx ≤ CN−2m

∫ 2π

0

∣∣∣∣
∂mu

∂xm
(x, t)

∣∣∣∣
2

dx .

6.1.2 A Chebyshev Collocation Method for the Heat Equation

Consider now the linear heat equation

∂u

∂t
− ∂2u

∂x2
= 0 , −1 < x < 1 , t > 0 , (6.1.2)

with homogeneous Dirichlet conditions

u(−1, t) = u(1, t) = 0 , t > 0 , (6.1.3)

and initial condition

u(x, 0) = u0(x) , −1 < x < 1 . (6.1.4)

A Chebyshev collocation scheme was considered for this problem in Sect. 1.2.2
(see (1.2.26)–(1.2.28)). For any t > 0, the spectral solution uN is an algebraic



330 6. Theory of Stability and Convergence

polynomial of degree N on the interval (−1, 1), vanishing at the endpoints.
It is defined through the collocation equations

∂uN

∂t
(xk, t)−

∂2uN

∂x2
(xk, t) = 0 , k = 1, . . . , N − 1 , (6.1.5)

and the initial condition

uN (xk, 0) = u0(xk) , k = 0, . . . , N .

The collocation points are given by xk = cos(kπ/N) (see (1.2.31) or (2.4.14)).
They are the nodes of the Gauss-Lobatto quadrature formula relative to the
Chebyshev weight, w(x) = 1/

√
1− x2, whose weights are given by w0 =

wN = π/2N and wk = π/N if k = 1, . . . , N − 1 (see (2.4.14)). This property
will be constantly used in the subsequent analysis of Chebyshev collocation
methods. Its relevance in the theory of spectral methods was first pointed
out by Gottlieb (1981).

Let us multiply the k-th equation of (6.1.5) by uN (xk, t)wk and sum
over k. We get

1
2

d
dt

N∑

k=0

[
uN (xk, t)

]2
wk −

N∑

k=0

∂2uN

∂x2
(xk, t)uN (xk, t)wk = 0 , (6.1.6)

where we are allowed to include the boundary points in the sum since uN

vanishes there. The product (∂2uN/∂x2)uN is a polynomial of degree 2N−2;
hence, by the exactness of the quadrature formula (see (2.2.17)),

−
N∑

k=0

∂2uN

∂x2
(xk, t)uN (xk, t)wk = −

∫ 1

−1

∂2uN

∂x2
(x, t)uN (x, t)w(x)dx .

In Sect. 7.1.2 it is proved, as a part of a general result, that the right-hand
side is positive and actually dominates a weighted “energy” of the solution,
i.e.,

−
∫ 1

−1

∂2uN

∂x2
(x, t)uN (x, t)w(x)dx ≥ 1

4

∫ 1

−1

[
∂uN

∂x
(x, t)

]2
w(x)dx .

Then from (6.1.6) it follows that

1
2

d
dt

N∑

k=0

[
uN (xk, t)2

]
wk +

1
4

∫ 1

−1

[
∂uN

∂x
(x, t)

]2
w(x)dx ≤ 0 ;

whence

N∑

k=0

[
uN (xk, t)2

]
wk +

1
2

∫ t

0

∫ 1

−1

[
∂uN

∂x
(x, s)

]2
w(x)dxds ≤

N∑

k=0

[u0(xk)]2wk .
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The sum on the left-hand side represents the discrete L2-norm of the solution
with respect to the Chebyshev weight. It does not coincide with the continu-
ous L2-norm

∫ 1

−1
[uN (x, t)]2w(x)dx since (uN )2 is a polynomial of degree 2N .

However, as pointed out in Sect. 5.3 (see (5.3.2)), it is uniformly equivalent
to this norm, i.e.,

∫ 1

−1

[
uN (x, t)

]2
w(x)dx ≤

N∑

k=0

[
uN (xk, t)

]2
wk ≤ 2

∫ 1

−1

[
uN (x, t)

]2
w(x)dx .

On the other hand, the sum on the right-hand side can be bounded, for
instance, by twice the square of the maximum of the data on the interval
[−1, 1]. We conclude that, for any t > 0,

∫ 1

−1

[
uN (x, t)

]2
w(x)dx+

1
2

∫ t

0

∫ 1

−1

[
∂uN

∂x
(x, s)

]2
w(x) dxds ≤ 2 max

−1≤x≤1
|u0(x)|2 .

This proves that the Chebyshev collocation scheme is stable. Note that this
stability estimate provides a bound for both the weighted L2-norm at any
given time and also the weighted “energy” norm integrated over the time
interval (0, t).

The convergence of the approximation can be proved by a simple, al-
though crude, argument. Assume the exact solution u to be smooth enough.
Its interpolant, ũ = INu, defined in Sect. 2.2.3, satisfies the collocation equa-
tions

∂ũ

∂t
(xk, t)−

∂2ũ

∂x2
(xk, t) = r(xk, t) , t > 0 , k = 1, . . . , N − 1 ,

with the truncation error r = (∂2/∂x2)(u − ũ). Hence, the difference e =
ũ−uN , which is a polynomial of degree N vanishing at the boundary points,
satisfies the equations

∂e

∂t
(xk, t)−

∂2e

∂x2
(xk, t) = r(xk, t) , t > 0 , k = 1, . . . , N − 1

and the initial condition, e(xk, 0) = 0, k = 0, . . . , N . The same analysis
previously used yields

1
2

d
dt

N∑

k=0

[e(xk, t)]2wk +
1
4

∫ 1

−1

[
∂e

∂x
(x, t)

]2
w(x)dx

≤
N∑

k=0

r(xk, t)e(xk, t)wk ≤
1
2

N∑

k=0

[r(xk, t)]2wk +
1
2

N∑

k=0

[e(xk, t)]2wk .

Here we have used the Cauchy-Schwarz inequality (see (A.2)). By the Gron-
wall lemma (see (A.15)) we get
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N∑

k=0

[e(xk, t)]2wk +
1
2

∫ t

0

∫ 1

−1

[
∂e

∂x
(x, s)

]2
w(x)dxds

≤ exp(t)
∫ t

0

N∑

k=0

[r(xk, s)]2wkds .

(6.1.7)

If we drop the second term on the left-hand side, we get an estimate of the
discrete L2-norm of the error u− uN at the collocation points:

N∑

k=0

[
u(xk, t)− uN (xk, t)

]2
wk ≤ exp(t)

∫ t

0

N∑

k=0

[r(xk, s)]2wkds .

Hence, the scheme is convergent provided the truncation error vanishes as N
tends to infinity. Now we have

N∑

k=0

[r(xk, s)]2wk =
N∑

k=0

[INr(xk, s)]2wk ≤ 2
∫ 1

−1

[INr(x, s)]2w(x)dx

= 2
∫ 1

−1

[(
IN

∂2u

∂x2
− ∂2

∂x2
(INu)

)
(x, s)

]2
w(x)dx

≤ 4
∫ 1

−1

[(
∂2u

∂x2
− IN

∂2u

∂x2

)
(x, s)

]2
w(x)dx

+ 4
∫ 1

−1

[
∂2

∂x2
(u− INu)(x, s)

]2
w(x)dx ,

where we have used the equivalence (5.3.2) between discrete and continuous
L2-norms. Applying the estimate (5.5.26) in evaluating the right-hand side,
we obtain the bound

(
N∑

k=0

[
u(xk, t)− uN (xk, t)

]2
wk

)1/2

≤ CN3−m exp
(

t

2

)(∫ t

0

|u(s)|2
Hm;N
w (−1,1)

ds

)1/2

,

(6.1.8)

where the norm on the right-hand side is defined in (5.5.8), and C is a constant
independent of N and u.

Using (6.1.7) once more, one can derive an estimate for the spatial deriva-
tive of the error, i.e.,
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(∫ t

0

∫ 1

−1

[(
∂u

∂x
− ∂uN

∂x

)
(x, s)

]2
w(x)dxds

)1/2

≤ CN3−m exp
(

t

2

)(∫ t

0

|u(s)|2
Hm;N
w (−1,1)

ds
)1/2

.

(6.1.9)

This inequality proves that the approximation is convergent and the error
decays faster than algebraically when the solution is infinitely smooth; the
issue of the smoothness of the exact solution will be addressed below.

The previous analysis allows us to prove the convergence of the method
in square mean norms by a transparent argument, namely, the comparison
between the spectral solution and the Chebyshev interpolant of the exact
solution at the collocation nodes. However, the rate of decay of the error
predicted by this theory is not optimal, i.e., it is slower than the one cor-
responding to the best approximation. According to the previous estimate,
the energy norm of the error decays at least like N3−m, while the error of
best approximation in the same norm decays like N1−m (see Sect. 5.5.2).
Furthermore, the right-hand side of (6.1.9) blows up exponentially in time.

A more careful analysis allows us to state that the error for the collo-
cation approximation considered here is actually asymptotic with the best
approximation error, i.e., the following estimate can be obtained:

(∫ 1

−1

[
(u−uN )(x, t)

]2
w(x)dx

)1/2

+

(∫ t

0

∫ 1

−1

[(
∂u

∂x
− ∂uN

∂x

)
(x, s)

]2
w(x)dxds

)1/2

≤ CN1−m

{∫ t

0

(∣∣∣∣
∂u

∂t
(s)
∣∣∣∣
2

Hm−2;N
w (−1,1)

+|u(s)|2
Hm;N
w (−1,1)

)
ds

}1/2

. (6.1.10)

The details of this analysis are given in Example 3 of Sect. 6.5.1.
The previous estimates show that the rate of convergence of uN to u as

N →∞ depends on how many times u is differentiable. Since in general the
solution is obviously not known explicitly, the issue of deriving the smooth-
ness of u from the smoothness of the initial condition u0 (which is the only
nonzero data of our problem) arises in a natural way. For quite general initial-
and boundary-value problems, analyzing how the smoothness of the data in-
fluences the smoothness of the solution may be a tremendously difficult task.
In the present case, however, simple arguments can be used, that neverthe-
less illuminate a subtlety of the question: the smoothness of u0 is a necessary
condition for the smoothness of u, yet it is not sufficient. In order for u(x, t)
to be k-times continuously differentiable in −1 ≤ x ≤ 1 and t ≥ 0, obviously
u0(x) = u(x, 0) has to be k-times continuously differentiable in −1 ≤ x ≤ 1.
On the other hand, the continuity of u at x = ±1, t = 0 and the boundary
condition (6.1.3) force u0 to vanish at x = ±1. If u is twice continuously dif-
ferentiable, (6.1.2) and again the fact that u is zero at x = ±1 for all times,
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force the second derivative of u0 to vanish at x = ±1; indeed,

d2u0

dx2
(±1) =

∂2u

∂x2
(±1, 0) =

∂u

∂t
(±1, 0) = 0 .

If u is four times continuously differentiable, then by differentiating the equa-
tion with respect to time we get

∂2u

∂t2
=

∂3u

∂t∂x2
=

∂2

∂x2

(
∂u

∂t

)
=

∂2

∂x2

(
∂2u

∂x2

)
=

∂4u

∂x4
,

which, as above, yields
d4u0

dx4
(±1) = 0. The argument can be iterated to prove

that u is infinitely differentiable (for all x and t) if so is u0 (for all x) and if
all the even derivatives of u0 vanish at x = ±1.

This is an example of compatibility conditions between the initial data u0

and the boundary data (here, identically zero), that have to be satisfied to
guarantee the smoothness of the exact solution. More general initial- and
boundary-value problems require more elaborated compatibility conditions.
Boyd (1999) provides a detailed discussion of this issue; a thorough mathe-
matical analysis can be found, e.g., in Brezzi and Gilardi (1987).

6.1.3 A Legendre Tau Method for the Poisson Equation

In Sect. 1.2.4 we considered the homogeneous Dirichlet problem for the Pois-
son equation in the square Ω = (−1, 1)× (−1, 1):

−∆u = f , −1 < x , y < 1 ,

u = 0 if x = ±1 or y = ±1 .

This problem was approximated by the following Legendre tau method.
Let PN denote the space of polynomials in two variables, x, y, of degree
at most N in each variable. The spectral solution uN belongs to PN and is
defined by

−
∫

Ω

∆uNφdxdy =
∫

Ω

fφdxdy for all φ ∈ PN−2 , (6.1.11)

and by the boundary condition

uN (x, y) = 0 if x = ±1 or y = ±1 . (6.1.12)

The last condition was imposed in (1.2.75) in an integral way, i.e., it was
translated into a set of linear relations among the Legendre coefficients. Since
the problem is intrinsically formulated in a variational way, it is natural to
try to derive the stability of the method from an appropriate choice of the
test function φ in (6.1.11). Both the choices φ = uN and φ = −∆uN – which
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would immediately give stability – are not allowed, since these functions
are polynomials of degree higher than N − 2. They could be projected onto
the space PN−2 of the admissible functions for (6.1.11). Instead, we adopt
a different strategy. Since uN vanishes at the boundary of the square (−1, 1)×
(−1, 1), it can be factored as

uN (x, y) = (1− x2)(1− y2)q(x, y) for a q ∈ PN−2 .

We choose φ = q in (6.1.11). Let us denote by b(x, y) the bubble function
(1−x2)(1−y2). Applying Green’s formula twice (in which ∂/∂n is the outward
normal derivative on the boundary ∂Ω of the square), we have

−
∫

Ω

∆uNq dxdy =
∫

Ω

∇(bq) · ∇q dxdy −
∫

∂Ω

∂(bq)
∂n

q dσ

=
∫

Ω

b|∇q|2 dxdy +
1
2

∫

Ω

∇b · ∇(q2)dxdy −
∫

∂Ω

∂b

∂n
q2 dσ

=
∫

Ω

b|∇q|2 dxdy − 1
2

∫

Ω

(∆b)q2 dxdy − 1
2

∫

∂Ω

∂b

∂n
q2 dσ .

(6.1.13)

Each term on the right-hand side is positive. On the other hand, the right-
hand side of (6.1.11) can be bounded by the Cauchy-Schwarz inequality as
follows:
∣∣∣∣
∫

Ω

fq dxdy
∣∣∣∣

=

∣∣∣∣∣

∫

Ω

f√
|∆b|

√
|∆b|q dxdy

∣∣∣∣∣ ≤
(∫

Ω

f2

|∆b|dxdy
)1/2(∫

Ω

|∆b|q2 dxdy
)1/2

≤
∫

Ω

f2

|∆b|dxdy +
1
4

∫

Ω

|∆b|q2 dxdy .

By (6.1.13) and this inequality one gets
∫

Ω

b|∇q|2dxdy +
1
4

∫

Ω

|∆b|q2 dxdy ≤
∫

Ω

f2

|∆b|dxdy . (6.1.14)

The integral on the right-hand side is certainly finite if f is bounded in Ω.
Finally, using the identity ∇uN = b∇q + q∇b, and noting that b ≤ 1 and
|∇b|2 ≤ 2|∆b|, we have

∫

Ω

|∇uN |2dxdy ≤ 2
∫

Ω

b2|∇q|2dxdy + 2
∫

Ω

|∇b|2q2 dxdy

≤ 2
∫

Ω

b|∇q|2dxdy + 4
∫

Ω

|∆b|q2 dxdy ;
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whence, by (6.1.14),
∫

Ω

|∇uN |2dxdy ≤ 16
∫

Ω

f2

|∆b|dxdy . (6.1.15)

This proves the stability of the Legendre tau method in the energy norm.
Indeed, (

∫
Ω
|∇uN |2dxdy)1/2 is a norm for uN since uN is zero on ∂Ω.

In order to derive the convergence of the scheme, let ũ denote a polynomial
of degree N vanishing on ∂Ω, to be chosen later as a suitable approximation
of the exact solution u. Then e = ũ− uN satisfies

−
∫

Ω

∆eφdxdy =
∫

Ω

∆(u− ũ)φdxdy for all φ ∈ PN−2 .

By the previous argument we get
∫

Ω

|∇e|2dxdy ≤ 16
∫

Ω

|∆(u− ũ)|2
|∆b| dxdy ;

whence, by the triangle inequality,
∫

Ω

|∇(u−uN )|2dxdy ≤ 2
∫

Ω

|∇(u−ũ)|2dxdy+C1‖∆(u−ũ)‖2L∞(Ω) , (6.1.16)

where C1 = 32C0, and C0 is the value of the integral of 1/|∆b| over Ω (C0 is
less than 3).

We now use a result about Sobolev spaces, which states that any function
in H2(Ω), where Ω is a two-dimensional domain, is bounded; furthermore,
there is a constant C > 0 such that ‖v‖L∞(Ω) ≤ C‖v‖H2(Ω) for all v ∈ H2(Ω).
Applying this result, we have ‖∆(u− ũ)‖L∞(Ω) ≤ ‖u− ũ‖H4(Ω), and we are
led to choose as ũ the polynomial that satisfies (5.8.16) for l = 4 and λ = 1.
Then, the square root of the right-hand side of (6.1.16) can be bounded
by CN4−m|u|Hm;N (Ω) . This, however, is not the best rate of convergence.
A more clever choice of ũ, involving orthogonal projections in Sobolev spaces
of high order, yields the estimate, for all real p > 4 and m < N ,
(∫

Ω

|∇(u− uN )|2dxdy
)1/2

≤ CN2−m

(∫

Ω

|Dmu|pdxdy
)1/p

. (6.1.17)

The details are given in Sacchi-Landriani (1988).
As for the previous example, we remark that the smoothness of u, which

determines the rate of convergence of the approximation, depends on the
smoothness of the internal and boundary data and on certain compatibility
conditions among them, which also involve the smoothness of the domain.
Note for instance that the boundary conditions considered here force the
Laplacian of a smooth solution u to vanish at the four corners of the domain,
requiring f to vanish there as well. We refer to Grisvard (1985) for a rigorous
mathematical treatment of the subject.
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6.2 Towards a General Theory

In the previous section a mathematical analysis was sketched for the stabil-
ity and convergence properties of three representative spectral methods. This
analysis relied in a fundamental way upon interpreting the schemes as pro-
jection methods over suitable subspaces with respect to the appropriate inner
products. The projection analysis is certainly natural for the Galerkin, G-NI
and tau methods. It appears, however, to be unnatural for the collocation
method, which is usually implemented in a pointwise manner. Unfortunately,
in all but the simplest cases, the pointwise analysis of collocation methods is
not only far more difficult than their projection analysis, it is also less precise,
i.e., the error estimates suggest a lower rate of convergence than is achieved
in practice. (The mathematical reasons for this are similar to those that make
optimal error estimates easier to obtain for finite-element methods than for
finite-difference methods.) An additional reason for preferring the projection
analysis of collocation methods is that it enables all spectral methods to be
discussed in terms of the same general theory.

As we noted in the introduction of Chap. 1, the finite-dimensional space on
which the equation is projected is not necessarily the same finite-dimensional
space in which the spectral solution lies. Galerkin methods invariably use the
same space for both purposes. The Legendre tau approximation discussed
in Sect. 6.1.3 is an example of a situation in which the two spaces differ.
Many familiar collocation methods also use two different spaces. It follows
that a unified approach to the theory must necessarily involve two families
of finite-dimensional spaces, one for the trial functions and the other for the
test functions.

The most straightforward technique for establishing the stability of the
spectral schemes – the so-called energy method – is based on choosing the
solution itself as the test function. This approach is successful if the spaces of
the trial and test functions coincide, and if the spectral operator is positive
with respect to a suitable inner product (as occurred in the first two examples
of the previous section). If either of these hypotheses is not satisfied, then
the energy method cannot be used. In an alternative strategy, which is often
invoked, stability is proven by building up a suitable test function that de-
pends in some way on the spectral solution. This was the strategy employed
in the last example of Sect. 6.1. Generally speaking, the inequality that is as-
sociated with the energy method and that ensures stability must be replaced
by a more general inequality. Mathematically, this inequality amounts to the
requirement that the spectral operator be an isomorphism (i.e., a continu-
ous invertible map) between the spaces of trial and test functions, and that
a suitable norm of its inverse be bounded independently of the discretization
parameter.

The convergence analysis given for the introductory examples of this chap-
ter used the standard technique of systematically comparing the spectral
solution with a projection of the exact solution onto the space of the trial
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functions. This strategy is essentially the same as that used in the proof
of the Lax-Richtmyer equivalence theorem (which states that for consistent
approximations, stability is equivalent to convergence).

The last two examples in Sect. 6.1 show that the error estimate (i.e., the
rate of decay of the error) predicted by this approach is extremely sensitive
to the approximation properties of the particular projection of the exact so-
lution that one chooses in this analysis. Both the truncated series and the
interpolant of the exact solution appear to be viable candidates for the projec-
tion. However, the rates of decay predicted by choosing these functions may
be asymptotically worse than the errors of best approximation in the same
norms. (This point has already been emphasized in Chap. 5.) Typically, one
chooses a projection of the exact solution that yields the same approximation
properties as the best approximation. Such projection operators were intro-
duced in Sects. 5.4.2, 5.5.2 and 5.8 and will play a key role in the subsequent
convergence analysis.

6.3 General Formulation of Spectral Approximations
to Linear Steady Problems

Let Ω be an open bounded domain in Rd, with piecewise smooth bound-
ary ∂Ω. We assume that we want to approximate the boundary-value prob-
lem

Lu = f in Ω , (6.3.1)

Bu = 0 on ∂Ωb , (6.3.2)

where L is a linear differential operator in Ω, and B is a set of linear boundary
differential operators on a part (or the whole) of ∂Ω that we call ∂Ωb.

We assume that there exists a Hilbert space X such that L is an un-
bounded operator in X (see (A.1) and (A.3)). We will denote by (u, v) the
inner product in X and by ‖u‖ = (u, u)1/2 the associated norm. Typically,
X will be a space of real or complex functions defined in Ω that are square
integrable with respect to a suitable weight function. Hereafter, by weight
function we shall mean a continuous and strictly positive function in Ω that
is properly or improperly integrable. The domain of definition of L, i.e., the
subset D(L) of those functions u of X for which Lu is still an element of X,
is supposed to be a dense subspace of X (see (A.6)). Thus, L is a linear
operator from D(L) to X.

The following elementary example will serve as a model for the theo-
retical presentation. Let us consider the second-derivative operator, L =
−d2/dx2, on the interval Ω = (−1, 1). If w denotes either the Legendre
weight, w(x) = 1, or the Chebyshev weight, w(x) = 1/

√
1− x2, we set X =

L2
w(−1, 1) = {v|

∫ 1

−1
v2(x)w(x)dx < ∞} with (u, v) =

∫ 1

−1
u(x)v(x)w(x)dx.

Then L is an unbounded operator in X whose domain is
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D(L) =
{
v ∈ C1(−1, 1)

∣∣∣∣
d2v

dx2
∈ L2

w(−1, 1)
}

,

where the derivative is taken in the sense of distributions (see (A.10)).
We assume that the boundary operators make sense when applied to

all the functions of the domain D(L). Prescribing the boundary conditions
(6.3.2) amounts to restricting the domain of L to the subspace DB(L) of
D(L) defined by

DB(L) = {v ∈ D(L) | Bv = 0 on ∂Ωb} ,

which again we assume to be dense in X. Hence, we consider L as acting
between DB(L) and X,

L : DB(L) ⊂ X −→ X ,

and problem (6.3.1)–(6.3.2) can be written as

u ∈ DB(L) ,

Lu = f ,
(6.3.3)

for f ∈ X (the equality is between two functions in X).
In the previous example, the operator L can be supplemented, for in-

stance, either with Dirichlet boundary conditions, Bu(±1) = u(±1) = 0, or
with Neumann boundary conditions, Bu(±1) = ux(±1) = 0. Notice that
in both cases the boundary conditions make sense, since the functions of
DB(L) are continuous with their first derivative. The density of DB(L) into
L2

w(−1, 1) is a consequence of the density of D(−1, 1) into L2
w(−1, 1) (see

(A.9)).
The second condition in (6.3.3) can be equivalently written as

(Lu, v) = (f, v) for all v ∈ X .

The left-hand side is a bilinear form on DB(L) × X (i.e., it is a real- or
complex-valued function that depends linearly on both arguments); we will
denote it by a(u, v). Similarly, the right-hand side is a linear form on X, that
will be denoted by F (v). Thus, (6.3.3) can be written as

u ∈ DB(L) ,

a(u, v) = F (v) for all v ∈ X .
(6.3.4)

The bilinear form a(u, v) can often be given an equivalent expression that
is defined on couples of spaces other than DB(L) × X, say W × V , that
are more appropriate for showing that (6.3.3) is well-posed and for defining
a numerical approximation. The space W contains functions that are less
regular than those in DB(L), whereas V contains functions that are more
regular than those in X. Usually, the equivalent expression is obtained by
applying some integration-by-parts and using the boundary conditions. For
instance, for the example above with w(x) = 1, we have
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(Lu, v) =
∫ 1

−1

−d2u

dx2
v dx =

∫ 1

−1

du
dx

dv
dx

dx = a(u, v) ,

provided dv/dx belongs to L2(−1, 1) and at each endpoint of the interval
either du/dx or v vanishes. Once the spaces W and V are introduced, the
formulation of the problem is

u ∈W ,

a(u, v) = F (v) for all v ∈ V .
(6.3.5)

Concerning the conditions that guarantee the well-posedness of the prob-
lem, the simplest case occurs when the operator L satisfies a coercivity con-
dition. Let us assume that there is a Hilbert space E densely contained
in X with norm ‖u‖E , for which there exists a positive constant C such
that ‖u‖ ≤ C‖u‖E for all u ∈ E; moreover, let DB(L) be densely contained
in E. We assume that the bilinear form a(u, v) is defined on E×E and there
exist constants α > 0 and A > 0 such that

α‖u‖2E ≤ a(u, u) for all u ∈ E , (6.3.6)

|a(u, v)| ≤ A‖u‖E‖v‖E for all u ∈ E and v ∈ E . (6.3.7)

Thus, the spaces W and V mentioned above coincide with E, which is the
subspace of the functions u ∈ X having “finite” energy, the energy being
precisely given by ‖u‖2E . Inequality (6.3.6) is the coercivity condition for
the bilinear form a(u, v); it states that L supplemented with the prescribed
boundary conditions is a positive operator, that is coercive over E. On the
other hand, (6.3.7) is a continuity condition for L (in the sense that (Lu, v)
depends continuously on u and v in the norm of E). Furthermore, the linear
form F (v) = (f, v) obviously satisfies the inequality |F (v)| ≤ ‖f‖ ‖v‖ ≤
C‖f‖ ‖v‖E , i.e., there exists a constant CF > 0 such that

|F (v)| ≤ CF ‖v‖E for all v ∈ E . (6.3.8)

Under conditions (6.3.6)–(6.3.8), the Lax-Milgram theorem (see (A.5)) as-
sures us that there exists a unique u that is a solution of the problem

u ∈ E ,

a(u, v) = F (v) for all v ∈ E .
(6.3.9)

Such a function depends continuously on f , namely, one has

‖u‖E ≤
C

α
‖f‖ , (6.3.10)

and actually u solves the original problem (6.3.3).
Going back to the example considered above, let us assume that Dirichlet

boundary conditions are prescribed for the operator L = −d2/dx2. Then con-
ditions (6.3.6) and (6.3.7) are satisfied with E = H1

w,0(−1, 1) (see (A.11.c)),
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which is a Hilbert space for the norm

‖u‖E =
(∫ 1

−1

|ux|2w dx
)1/2

.

This result is immediate if the Legendre weight is used, whereas it will be
proven in Chap. 7 (see Theorem 7.1) for the Chebyshev weight. Note that all
functions in E satisfy the boundary conditions. On the other hand, if Neu-
mann boundary conditions are prescribed for the operator L = −d2/dx2 + I,
and if we choose w(x) = 1, then conditions (6.3.6) and (6.3.7) are satisfied
with E = H1(−1, 1) (see (A.11.a)), which is a Hilbert space for the norm

‖u‖E =
(∫ 1

−1

(|u|2 + |ux|2) dx
)1/2

.

In this case, the functions in E need not satisfy the boundary conditions;
however, the solution of (6.3.9) will satisfy them, as it can be seen by coun-
terintegrating by parts and letting v vary in E.

The positivity condition (6.3.6) is the most immediate condition that
guarantees the well-posedness of problem (6.3.3). However, there are situ-
ations for which it is not fulfilled. In such cases, one can resort to a more
general condition, known as the inf-sup condition, which we now present.

Let W ⊆ X and V ⊆ X be Hilbert spaces, whose norms will be denoted
by ‖u‖W and ‖u‖V , respectively. We assume that the inclusion of V into X is
continuous, in the sense that there exists a suitable constant C > 0 such that
‖v‖ ≤ C‖v‖V for all v ∈ X. We suppose that DB(L) is densely contained
in W and that V is densely contained in X. Furthermore, we assume that
the bilinear form a(u, v) is defined in W × V , and that there exist constants
α > 0 and A > 0 such that

0 < sup
u∈W

a(u, v) for all v ∈ V , v 	= 0 , (6.3.11)

α‖u‖W ≤ sup
v∈V
v �=0

a(u, v)
‖v‖V

for all u ∈W , (6.3.12)

|a(u, v)| ≤ A‖u‖W ‖v‖V for all u ∈W and v ∈ V . (6.3.13)

Using an extended form of the Lax-Milgram theorem (see Nečas (1962)),
conditions (6.3.11)–(6.3.13) together with (6.3.8) assure that problem (6.3.5)
has a unique solution that depends continuously on the data, i.e.,

‖u‖W ≤
C

α
‖f‖ .

Again, the function u so defined is indeed the solution of (6.3.3).
Note that conditions (6.3.11) and (6.3.12) are implied by the coercivity

condition (6.3.6) by choosing V = W = E.
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As an example, consider a second-order operator of the form Lu =
−(a(x)ux)x in the interval Ω = (−1, 1), where a(x) is a smooth, strictly pos-
itive function. It will be supplemented by homogeneous Dirichlet boundary
conditions. The operator L can still be defined on X = L2

w(−1, 1), its domain
of definition once again being D(L) = {v ∈ C1(−1, 1) | vxx ∈ L2

w(−1, 1)}.
The coercivity condition (6.3.6) may not be satisfied with E = H1

w,0(−1, 1).
However, conditions (6.3.11)–(6.3.13) are fulfilled if we take W = V =
H1

w,0(−1, 1) (see the discussion in Example 3 of Sect. 6.4).
Another example is given by the operator Lu = −uxx + u supplemented

with homogeneous Neumann boundary conditions. For this problem, con-
ditions (6.3.11)–(6.3.13) are fulfilled with the choice V = L2

w(−1, 1) and
W = {u ∈ H2

w(−1, 1) | ux(±1) = 0} (see Example 4 of Sect. 6.4).

Spectral Approximations

We will describe in general terms the process that leads to the definition
of a spectral approximation of problem (6.3.3). The discussion of Galerkin,
collocation, G-NI and tau methods given in Sect. 6.4 will be based on the
framework we are going to state.

Keeping in mind the formulations (6.3.9) or (6.3.5) of Problem (6.3.3),
a spectral approximation will be cast in the form

uN ∈ XN ,

aN (uN , v) = FN (v) for all v ∈ YN ,
(6.3.14)

where XN and YN are finite-dimensional subspaces of X having the same
dimension, aN is a bilinear form defined in XN × YN that approximates
the bilinear form a, whereas FN is a linear form on YN that approximates
the linear form F . Depending on how the boundary conditions are enforced,
XN may be contained in DB(L), i.e., each function of XN satisfies exactly
the prescribed boundary conditions, or not; in the latter case, the spectral
solution will satisfy the boundary conditions in an approximate way only.

The Galerkin method consists of restricting both the trial and the test
function spaces for (6.3.9) or (6.3.5) to a finite-dimensional space XN ; thus,
a Galerkin scheme is defined by

uN ∈ XN

a(uN , v) = F (v) for all v ∈ XN .
(6.3.15)

The Galerkin with numerical integration (G-NI) method is obtained from
this formulation by replacing all the integrals that appear in the bilinear and
linear forms by high-precision (Gaussian) quadrature formulas. Appending
a suffix N to the resulting forms, a G-NI scheme can be written as

uN ∈ XN ,

aN (uN , v) = FN (v) for all v ∈ XN .
(6.3.16)
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Formulations (6.3.15) or (6.3.16) are quite general, as they account for the
possible weak imposition of boundary conditions, and even for the weak
enforcement of subdomain matching, in the multidomain form of spectral
methods discussed in Chaps. 5 and 6.

A more restricted setting often suffices in the single-domain form of spec-
tral methods, considered in this book. Indeed, in such a case all approximat-
ing functions are usually smooth in Ω (e.g., they are polynomials); hence, the
operator L is surely defined on XN . Whenever the trial functions in XN in-
dividually satisfy the boundary conditions, i.e., whenever XN ⊂ DB(L), the
bilinear form a can actually be written in the strong form a(u, v) = (Lu, v)
for all u ∈ XN . Then, the Galerkin method reads as

uN ∈ XN ,

(LuN , v) = (f, v) for all v ∈ XN .
(6.3.17)

The tau method is obtained by allowing the test functions to vary in a space
YN different from XN : it has the same dimension as XN , but its functions
need not individually satisfy the boundary conditions, as must those in XN .
A tau scheme is usually written as

uN ∈ XN ,

(LuN , v) = (f, v) for all v ∈ YN .
(6.3.18)

The collocation method can be written in a form similar to (6.3.17), namely,

uN ∈ XN ,

(LNuN , v)N = (f, v)N for all v ∈ XN .
(6.3.19)

Here, LN is an approximation of L, usually obtained by replacing exact
derivatives by interpolation derivatives (see Sects. 2.1.3, 2.3.2, and 2.4.2).
Furthermore, (u, v)N is a bilinear form, usually defined through the values
of u and v at the collocation points only, that is an inner product in XN .
This form is indeed defined on a subspace Z ⊂ X, composed of continuous
functions for which the pointwise value is meaningful; obviously, we assume
that LN maps XN into Z and that f ∈ Z.

Remark. Formulations (6.3.17)–(6.3.19) can be summarized in the abstract
form

uN ∈ XN ,

(LNuN − f, v)N = 0 for all v ∈ YN ,
(6.3.20)

with suitable definitions of LN , YN and (u, v)N which depend on the partic-
ular method. This form attests to the fact that a spectral scheme so defined
is actually a method of weighted residuals. The choice of the space YN and
the inner product (u, v)N in YN defines the way the residual LNuN − f is
minimized.
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An equivalent operational form of (6.3.20) is

uN ∈ XN ,

QNLNuN = QNf ,
(6.3.21)

where QN : Z ⊆ X −→ YN satisfies

(z −QNz, v)N = 0 for all v ∈ YN , (6.3.22)

i.e., it is the orthogonal projection upon YN in the inner product (u, v)N .
Fig. 6.1 represents the function spaces and the operators involved in the
formulation (6.3.21).

DB(L) ⊂ X
L−−−−−−→ X

XN ⊂ X
LN−−−−−−→ Z ⊆ X

⏐⏐⏐⏐9QN

YN ⊂ Z

Fig. 6.1. The spaces and the operators involved in the abstract formulation (6.3.21)
of a spectral method

6.4 Galerkin, Collocation, G-NI and Tau Methods

In this section, we will provide a general formulation of the fundamental
types of spectral methods. The formulation will be given in a way that fits
into the general framework introduced above and at the same time permits
the construction of an algorithm for the solution. The essential elements
for each method are the spaces of the trial and of the test functions, the
bilinear and linear forms aN (u, v) and FN (v), or, in a more restricted setting,
the projection operator QN and the inner product (u, v)N . Several examples
of approximations to steady boundary-value problems will be discussed for
each method. General theorems will be given that guarantee stability and
convergence results for each method. Some of the cumbersome details will be
omitted.

Galerkin, collocation, G-NI and tau methods are not the only schemes
of spectral type that can be conceived and that are actually used in appli-
cations. Indeed, for some problems a method that combines two or more of
these schemes may be the most flexible and efficient. An important example
is provided by certain algorithms for the incompressible Navier-Stokes equa-
tions, that couple a tau discretization of the diffusive term with a different
type of spectral method (Galerkin, collocation or pseudospectral) for the con-
vective term. Such combined schemes can be often analyzed using elements
of the theory presented separately here for the four fundamental schemes.
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The Space PolN (Ω)

In what follows we maintain the same notation used in Sect. 6.3. However,
we now specify that the domain Ω in which the problem (6.3.1) has to be
solved, is the product of the intervals (0, 2π) or (−1, 1) according to the type
of prescribed boundary conditions. Precisely, we set

Ω =
d∏

k=0

Ik ,

where Ik = (0, 2π) if periodicity is required in the xk-direction, and Ik =
(−1, 1) otherwise. Thus, Ω may be either the physical domain or the compu-
tational domain on which the original problem has been mapped, as is done
in many applications (see Sects. 2.5 and 2.8.1).

For each integer N the spectral approximation involves functions that
in each variable are either trigonometric or algebraic polynomials of degree
up to N . We shall denote by PolN (Ω) the set of these functions. Precisely,
PolN (Ω) is the space of the continuous functions u : Ω → C such that u is
a trigonometric polynomial of degree ≤ N in the variables xk for which Ik =
(0, 2π), and an algebraic polynomial of degree ≤ N in each of the remaining
variables. More generally, N could denote a multi-integer, N = (N1, . . . , Nd),
collecting the (possibly different) polynomial degrees in each space variable.
If there are no directions of periodicity, the functions of PolN (Ω) will be
real-valued.

It will always be assumed that PolN (Ω) is contained in the domain of
definition D(L) of the operator L.

The geometric and functional setting just described is the natural one
in classical spectral methods. As noted in Sect. 2.9, spectral expansions in
non-Cartesian domains Ω such as triangles, hexahedra, pyramids and prisms
can be defined as well, and indeed they have become popular in recent years.
In these cases, the definition of the space PolN (Ω) should be modified con-
veniently. For instance, if Ω = T is a tetrahedron, PolN (Ω) is the space
PN (T ) of the algebraic polynomials of total degree ≤ N in the variables x1,
x2 and x3.

Although we will not present specific examples, the reader is invited to
bear in mind that all the subsequent analysis applies to the non-Cartesian
situation as well.

6.4.1 Galerkin Methods

In this subsection, we confine ourselves to the conceptually simplest version
of a Galerkin method, the one in which trial and test functions individually
satisfy all prescribed boundary conditions. This is the natural approach for
handling the Dirichlet problem for a second-order operator. A different strat-
egy consists of using trial and test functions that fulfill only some, or even
none, of the boundary conditions; the remaining ones are incorporated into
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the weak (integral) formulation of the differential equation by manipulating
the boundary terms that appear after integration-by-parts. The latter ap-
proach, which allows for a natural treatment, e.g., of the Neumann or mixed
Dirichlet/Neumann problem for a second-order operator, can be analyzed by
the same tools as for the G-NI methods; hence, we refer to Section 6.4.3 for
its study.

Let XN be the subspace of PolN (Ω) of the functions that satisfy the
boundary conditions, so that XN ⊂ DB(L). Choose a basis {φk, k ∈ J} in
XN , where J is a set of indices. The φk’s need not be orthogonal in the inner
product of X. A Galerkin method is defined by the equations

uN ∈ XN ,

(LuN , φk) = (f, φk) for all k ∈ J .
(6.4.1)

Usually, the unknowns are the coefficients αk in the expansion uN =∑
k∈J αkφk. Equations (6.4.1) can be equivalently written as

uN ∈ XN ,

(LuN , v) = (f, v) for all v ∈ XN ,
(6.4.2)

which is nothing else than (6.3.17). It follows that with respect to the general
formulation (6.3.20), a Galerkin method is defined by the choices YN = XN

and (u, v)N = (u, v), the inner product of X. We note that QN is the orthog-
onal projection from X into XN in the inner product of X. Moreover, we
have assumed that LN = L, as occurs in most applications. A generalization
of the Galerkin method is the so-called Petrov-Galerkin method. With this
method, test functions differ from trial functions, though they individually
satisfy the boundary conditions. In this case, we have XN 	= YN , and (6.4.2)
is replaced by

uN ∈ XN ,

(LuN , v) = (f, v) for all v ∈ YN .

An example is given by Leonard’s method for the incompressible Navier-
Stokes equations (see CHQZ3, Sect. 3.4).

Stability and Convergence

We are now concerned with the stability and convergence properties of
Galerkin approximations. The simplest case occurs when the the bilinear
form a(u, v) = (Lu, v) satisfies the coercivity condition (6.3.6) and the conti-
nuity condition (6.3.7), and each XN is contained in E. Then we have

α‖u‖2E ≤ (Lu, u) for all u ∈ XN (6.4.3)

and
|(Lu, v)| ≤ A‖u‖E‖v‖E for all u, v ∈ XN . (6.4.4)
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If (6.4.3) holds, then the Galerkin approximation (6.4.2) is stable, in the
sense that the following estimate holds:

‖uN‖E ≤
C

α
‖f‖ . (6.4.5)

Actually, choosing as test function in (6.4.2) the solution itself, and using the
coercivity condition (6.4.3) on the left-hand side and the Cauchy-Schwarz
inequality on the right-hand side, one has

α‖uN‖2E ≤ (LuN , uN ) = (f, uN ) ≤ ‖f‖‖uN‖ .

Recalling that ‖uN‖ ≤ C‖uN‖E , we have (6.4.5). Note that this inequal-
ity is the same as the one satisfied by the exact solution (compare with
(6.3.10)). Inequality (6.4.5) also proves that (6.4.2) has a unique solution,
since the problem is linear (indeed, the only solution corresponding to f = 0 is
uN = 0).

When (6.4.3) is satisfied, the stability of the approximation (6.4.2) is
achieved by the energy method (and (6.4.5) is referred to as an energy in-
equality).

If stability is assured, convergence is a consequence of a consistency
hypothesis, according to the Lax-Richtmyer equivalence theorem. In the
Galerkin framework, the consistency hypothesis is expressed by the condi-
tion that X is well-approximated by the family of the XN ’s. More precisely,
assume that there exists a dense subspace W ⊆ DB(L), (W will be a space
of sufficiently smooth functions), and for all N > 0, a projection operator

RN :W −→ XN , (6.4.6)

such that for N →∞,

‖u−RNu‖E −→ 0 for all u ∈ W . (6.4.7)

Under this consistency hypothesis, the approximation (6.4.2) is convergent.
Actually, e = uN −RNu satisfies, by (6.4.2),

(Le, v) = (L(u−RNu), v) for all v ∈ XN .

Then by (6.4.3) and (6.4.4), it follows that

‖e‖E ≤
A

α
‖u−RNu‖E .

Since u− uN = u−RNu− e, we deduce the error bound

‖u− uN‖E ≤
(

1 +
A

α

)
‖u−RNu‖E . (6.4.8)

This inequality implies convergence for all u ∈ W due to the assumption
(6.4.7). (Note that convergence occurs even if u is just a function in E, pro-
vided W is dense in E.) The above equality states the well-known fact that
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the error of a Galerkin approximation behaves like the error of best approx-
imation in the norm for which stability is proven (Céa’s lemma).

In order to check the consistency hypothesis, one could choose as RN the
orthogonal projection operator onto XN with respect to the inner product
(u, v) of X. However, such orthogonal projection of an element u ∈ E is
generally less accurate than the best approximation of u in the energy norm
among the elements in XN . (This has been noticed throughout Chap. 5.)
Thus, this choice (that nevertheless allows us to prove convergence) is not
the best possible one from the point of view of the analysis of convergence:
the rate of decay of the error predicted by estimate (6.4.8) with such RNu is
generally slower than the real one.

To get an optimal error estimate, RNu is usually chosen as the best ap-
proximation of u in XN with respect to the E-norm, or as an element in
XN that asymptotically behaves like the best approximation in the E-norm,
namely,

‖u−RNu‖E ≤ C inf
v∈XN

‖u− v‖E

for a constant C independent of N . This error can be bounded according
to the estimates presented in Chap. 5. Spectral convergence is then a conse-
quence of the smoothness of the exact solution; as noted at the end of Sect.
6.1.3, this in turn follows from the smoothness of the data and possibly the
fulfillment of certain compatibility conditions among them.

We now consider some examples that illustrate the theory presented so far.

Examples

Example 1. The Helmholtz Equation in the Square with Periodic Boundary
Conditions. Let us consider the boundary-value problem

−∆u + λu = f in Ω = (0, 2π)× (0, 2π) ,

u periodic in Ω ,

with λ > 0 and f ∈ L2(Ω). Using the Fourier Galerkin approximation, the
solution uN belongs to XN = span{ei(kx+my) | −N ≤ k,m ≤ N − 1} and
satisfies, for −N ≤ k,m ≤ N − 1,

∫

Ω

(−∆uN + λuN )e−i(kx+my)dxdy =
∫

Ω

fe−i(kx+my)dxdy .

Equivalently, the Fourier coefficients ûN
km of uN are defined in terms of the

Fourier coefficients f̂km of f by the set of linear relations

(k2 + m2 + λ)ûN
km = f̂km , −N ≤ k,m ≤ N − 1 .

Thus, X = L2(Ω), and (u, v) =
∫

Ω
u(x, y)v(x, y)dxdy.
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Stability is established as follows. Using integration-by-parts and the pe-
riodicity condition we have

∫

Ω

(−∆u + λu)udxdy =
∫

Ω

(|∇u|2 + λ|u|2)dxdy

≥ min(λ, 1)
∫

Ω

(|∇u|2 + |u|2)dxdy ,

for all u ∈ XN . The integral on the right-hand side is precisely the square of
the norm ‖u‖H1(Ω) in the Hilbert space H1

p (Ω) defined in (A.11.d). Hence,
the stability condition (6.4.3) is verified with E = H1

p (Ω) and α = min(λ, 1),
and the approximation is stable according to (6.4.5). Condition (6.4.4) fol-
lows easily by integrating by parts and using the Cauchy-Schwarz inequality.
As regards the convergence analysis, the truncation operator PN defined in
(5.8.3) gives the best approximation error in the norm of any Hm

p (Ω), m > 0.
Therefore, we can choose this operator as RN in (6.4.6). Using the estimate
(5.8.4), we get the optimal error bound

‖u− uN‖H1(Ω) ≤ CN1−m|u|Hm;N (Ω), m ≥ 1 . ��

Example 2. The Poisson Equation in the Square with Dirichlet Boundary
Conditions. Let us consider the problem

−∆u = f in Ω = (−1, 1)× (−1, 1) ,

u = 0 on ∂Ω .

Denote by XN = {v ∈ PN | v = 0 on ∂Ω} the space of algebraic polynomials
of degree at most N in each variable, vanishing on the boundary of the square.
A modal basis for XN is given by

φkm(x, y) = φk(x)φm(y) , 2 ≤ k,m ≤ N ,

where

φk(x) =

{
L0(x)− Lk(x) , k even ,

L1(x)− Lk(x) , k odd ,
(6.4.9)

if the Legendre polynomials introduced in Sect. 2.3 are used (see also (2.3.33)
and (4.1.31)), or

φk(x) =

{
T0(x)− Tk(x) , k even ,

T1(x)− Tk(x) , k odd ,
(6.4.10)

if the Chebyshev polynomials introduced in Sect. 2.4 are used instead. With
any of these choices, the Galerkin equations to be satisfied by uN ∈ XN are
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−
∫

Ω

∆uNφkmw(x, y)dxdy =
∫

Ω

fφkmw(x, y)dxdy ,

where w(x, y) = w(x)w(y), and w(x) is either the Legendre or the Cheby-
shev weight according to whether (6.4.10) or (6.4.9) is used for the basis. In
the present example we choose X = L2

w(Ω) and (u, v) =
∫

Ω
uvw dxdy (see

(A.9.h)).

Let us discuss the stability of the approximation. In the Legendre case,
all u ∈ XN satisfy

−
∫

Ω

∆uudxdy =
∫

Ω

|∇u|2dxdy .

Since u is zero on ∂Ω, the L2-norm of its gradient controls the norm
‖u‖H1(Ω) = {

∫
Ω

(|u|2 + |∇u|2)dxdy}1/2 of H1(Ω), according to the Poincaré
inequality (A.13). We choose E to be the subspace H1

0 (Ω) of the functions
in H1(Ω) that vanish on ∂Ω (see (A.11.c)). E is a Hilbert space under the
same norm as H1(Ω). Thus, (6.4.3) is verified, and the scheme is stable.

In order to prove the convergence, RNu is chosen to be the best approx-
imation of u among the functions in XN in the norm of E. By (5.8.15) and
(6.4.8) we conclude that the following optimal error estimate holds:

‖u− uN‖H1(Ω) ≤ CN1−m|u|Hm;N (Ω), m ≥ 1.

In the Chebyshev case, it is not immediate that the quantity

−
∫

Ω

∆uuw dxdy =
∫

Ω

|∇u|2w dxdy +
∫

Ω

u∇u∇w dxdy

is positive, due to the presence of the Chebyshev weight. However (see Sect.
7.1), the right-hand side actually controls the norm

‖u‖H1
w(Ω) =

{∫

Ω

(u2 + |∇u|2)w dxdy
}1/2

of the weighted Sobolev space H1
w(Ω) (defined in (A.11.b)). Thus, we have

the same stability and convergence results as above, provided the Chebyshev
weight is inserted in all the norms. ��

So far we have assumed that the Galerkin approximation (6.4.2) satis-
fies the discrete coercivity condition (6.4.3). There are cases in which this
condition is not fulfilled (see Example 3). Another way of getting stability
and convergence results is to check a discrete form of the inf-sup condition
(6.3.11) and (6.3.12). This condition is also suitable for the analysis of Petrov-
Galerkin methods. We refer to the forthcoming subsection on tau methods
for the detailed description of this approach.
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6.4.2 Collocation Methods

To define a collocation method for approximating (6.3.1)–(6.3.2), one uses as
many distinct points

xk , k ∈ J (a set of indices), (6.4.11)

in the domain Ω or on its boundary ∂Ω as the dimension of the space PolN (Ω)
in which the spectral solution is sought. At a number of these points, located
on ∂Ω, the boundary conditions are imposed. The remaining points are used
to enforce the differential equation.

We assume that the set J is unisolvent for PolN (Ω), i.e., for any k ∈ J ,
there exists a polynomial φk ∈ PolN (Ω), necessarily unique, such that

φk(xm) =

{
1 if k = m ,

0 if k 	= m .
(6.4.12)

This is certainly true in all the applications, where the points (6.4.11) are
products of distinct points in each space variable. Consistently with the one-
dimensional definition of Chap. 1 (see (1.2.55)), the φk’s are called charac-
teristic Lagrange polynomials, or discrete delta-functions. They form a ba-
sis for the polynomials of degree N , since v(x) =

∑
k∈J v(xk)φk(x) for all

v ∈ PolN (Ω). A collocation method is obtained by requiring that the differ-
ential equation be satisfied at a number of points {xk} (those in the interior
of the domain, and possibly some on the boundary) and that the boundary
conditions (or, possibly, some of them) be satisfied at the remaining xk’s. To
be precise, let J be divided into two disjoint subsets, Je and Jb, such that if
k ∈ Jb, the xk’s are on the part ∂Ωb of the boundary where the boundary con-
ditions (6.3.2) are prescribed. Moreover, let LN be an approximation to the
operator L in which derivatives are taken via interpolation at the points xk’s
(see Sects. 2.1.3, 2.3.2, and 2.4.2). The collocation solution is a polynomial
uN ∈ PolN (Ω) that satisfies the equations

LNuN (xk) = f(xk) for all k ∈ Je , (6.4.13)

BuN (xk) = 0 for all k ∈ Jb . (6.4.14)

The unknowns in a collocation method are the values of uN at the points
(6.4.11), i.e., the coefficients of uN with respect to the Lagrange basis (6.4.12).
The set Jb is empty in Fourier approximations for periodic problems since
the trigonometric polynomials are themselves periodic. However, Jb may be
empty even in approximations to nonperiodic problems. In these cases, the
boundary conditions are taken into account implicitly in the definition of the
operator LN (see, e.g., Canuto (1986)), or via a penalty approach (such as
the one discussed in Sect. 3.7; see in particular (3.7.7)).
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We will now set the collocation method (6.4.13)–(6.4.14) into the frame-
work given in Sect. 6.3. To this end, we introduce a bilinear form (u, v)N on
the space Z = C0(Ω) of the functions continuous up to the boundary of Ω
by fixing a family of weights wk > 0 and setting

(u, v)N =
∑

k∈J

u(xk)v(xk)wk . (6.4.15)

The existence of the Lagrange basis (6.4.12) ensures that (6.4.15) is an inner
product on PolN (Ω). Consequently, we define a discrete norm on PolN (Ω)
as

‖u‖N =
√

(u, u)N for u ∈ PolN (Ω) . (6.4.16)

The basis of the φk’s is orthogonal under the discrete inner product (6.4.15).
We make the assumption that the nodes {xk} and the weights {wk} are

such that

(u, v)N = (u, v) for all u, v such that uv ∈ Pol2N−1(Ω) . (6.4.17)

This means that the discrete inner product (6.4.15) must approximate with
enough precision the inner product of X. Condition (6.4.17) introduces a con-
straint in the choice of the collocation points. In all the applications, this
assumption is fulfilled since the xk’s are the knots of quadrature formulas of
Gaussian type.

Let XN be the space of the polynomials of degree ≤ N that satisfy the
boundary conditions (6.4.14), i.e.,

XN = {v ∈ PolN (Ω) | Bv(xk) = 0 for all k ∈ Jb} . (6.4.18)

Then the collocation method is equivalently written as

uN ∈ XN ,

(LNuN , φk)N = (f, φk)N for all k ∈ Je .
(6.4.19)

If YN is the space spanned by the φk’s with k ∈ Je, i.e.,

YN = {v ∈ PolN (Ω) | v(xk) = 0 for all k ∈ Jb} , (6.4.20)

then (6.4.19) can be written as

uN ∈ XN ,

(LNuN , v)N = (f, v)N for all v ∈ YN .
(6.4.21)

This is precisely (6.3.20). Equivalently, (6.4.19) can be written in the form

QN (LNuN − f) = 0 (6.4.22)

(see (6.3.21)). For a collocation approximation, QNv is the polynomial of
degree N matching v at the interior points {xk, k ∈ Je} and vanishing at the
boundary points {xk, k ∈ Jb}.
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Note that in the special case where all the boundary conditions are of
Dirichlet type, i.e., if Bv ≡ v, one has XN = YN . In this case the collocation
method can be viewed as a G-NI method, i.e., as a Galerkin method in which
the continuous inner product (u, v) is replaced by the discrete inner product
(u, v)N (compare (6.4.21) with (6.3.17)).

Stability and Convergence

We consider now the stability and convergence properties of the collocation
approximation (6.4.13)–(6.4.14). As for the Galerkin approximation, the sim-
plest situation occurs when the operator L satisfies the coercivity condition
(6.3.6) and the continuity condition (6.3.7) with respect to a suitable energy
space, E.

Again we assume that XN is contained in E for all N > 0. Moreover,
we assume that for all u ∈ XN , ‖u‖N ≤ C‖u‖E with C > 0 independent
of N (see (6.4.16)). A coercivity condition for the approximation (6.4.21), by
analogy with condition (6.3.6), is as follows.

If there exists a constant α > 0 (independent of N) such that

α‖u‖2E ≤ (QNLNu, u)N for all u ∈ XN , (6.4.23)

then the approximation is stable, in the sense that the following estimate
holds:

‖uN‖E ≤
C

α
‖f‖N . (6.4.24)

Actually, one has

α‖uN‖2E≤(QNLNuN, uN)N =(QNf, uN)N ≤‖QNf‖N‖uN‖N ≤C‖f‖N‖uN‖E .

We use here the fact that QN is the projection operator upon YN with respect
to the discrete inner product (u, v)N .

We move now to the convergence analysis. Let RN be a projection op-
erator from a dense subspace W of DB(L) upon XN . For each u ∈ W, we
further require RNu to satisfy the exact boundary conditions, i.e.,

RN :W −→ XN ∩DB(L) . (6.4.25)

The following error bound between the exact and the collocation solutions
holds:

‖u− uN‖E ≤
(

1 +
A

α

)
‖u−RNu‖E +

1
α

|(LRNu, e)− (QNLNRNu, e)N |
‖e‖E

+
1
α

|(f, e)− (QNf, e)N |
‖e‖E

, (6.4.26)

with e = uN −RNu.



354 6. Theory of Stability and Convergence

Assume for the moment that (6.4.26) is proven. It follows that convergence
is assured if the following three consistency conditions are fulfilled :

‖u−RNu‖E −→ 0 (6.4.27a)

as N →∞, for all u ∈ W;

sup
v∈XN
v �=0

(LRNu, v)− (QNLNRNu, v)N

‖v‖E
−→ 0 (6.4.27b)

as N →∞, for all u ∈ W;

sup
v∈XN
v �=0

(f, v)− (QNf, v)N

‖v‖E
−→ 0 (6.4.27c)

as N →∞, for all f ∈ Z smooth enough.

Proof of (6.4.26). From (6.3.1) and (6.4.22) it follows that, for any v ∈
XN ,

(Lu, v) = (f, v) (6.4.28)

and
(QNLNuN , v)N = (QNf, v)N . (6.4.29)

On the other hand,

(QNLNe, v)N = (QNLNuN , v)N − (QNLNRNu, v)N .

Adding and subtracting (Lu, v) and using (6.4.28) and (6.4.29) we obtain

(QNLNe, v)N = (QNf, v)N − (f, v) + (L(RNu− u), v)

+(LRNu, v)− (QNLNRNu, v)N .

Taking v = e and using the hypotheses (6.3.7) and (6.4.23) it follows that

α‖e‖2E ≤ |(QNf, e)N − (f, e)|+ A‖RNu− u‖E‖e‖E
+|(LRNu, e)− (QNLNRNu, e)N | .

Now (6.4.26) follows using the triangle inequality ‖u−uN‖E ≤ ‖u−RNu‖E +
‖e‖E . ��

The positivity condition (6.4.23) is the most immediate condition that
guarantees the well-posedness of problem (6.4.21). However, there are situa-
tions where (6.4.23) is not fulfilled. This occurs, for instance, when the norms
involved in the stability and convergence analysis depend on weight functions
like the Chebyshev norms presented in Chap. 5. In these cases, the discrete
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analog of the inf-sup condition provides a more general criterion for checking
the stability of the scheme.

Let us assume that the operator L satisfies conditions (6.3.11) to (6.3.13).
Assume that for all N > 0, XN ⊂ W and YN ⊂ V . Moreover, assume that
‖v‖N ≤ C‖v‖V for all v in YN , with C > 0 independent of N . Then we have
the following inf-sup condition for problem (6.4.21).

If there exists a constant α > 0 independent of N such that

α‖u‖W ≤ sup
v∈YN
v �=0

(LNu, v)N

‖v‖V
for all u ∈ XN , (6.4.30)

then
‖uN‖W ≤

C

α
‖f‖N . (6.4.31)

The proof of (6.4.31) is a slight modification of the one of (6.4.67) pertaining
to tau approximations.

Concerning the convergence of the method, one can bound the error u−uN

according to the following formula:

‖u− uN‖W ≤
(

1 +
A

α

)
‖u−RNu‖W

+
1
α

sup
v∈YN
v �=0

|(LRNu, v)− (LNRNu, v)N |
‖v‖V

+
1
α

sup
v∈YN
v �=0

|(f, v)− (f, v)N |
‖v‖V

.

(6.4.32)

As in the previous case, RN is a projection operator from a dense subspace
W ⊆ DB(L) into XN ∩DB(L). The proof of (6.4.32) mimics that of (6.4.26).
The error, e = uN −RNu, satisfies

(LNe, v)N = (L(u−RNu), v) + (LRNu, v)− (LRNu, v)N + (f, v)N − (f, v) ,

for any v ∈ YN . We divide both sides by ‖v‖V and take the supremum over
all the functions in YN . Then, (6.4.32) follows from (6.4.30) and (6.3.13).

According to (6.4.32), the approximation is convergent if the three follow-
ing conditions hold true:

‖u−RNu‖W −→ 0 (6.4.33a)

as N →∞, for all u ∈ W;

sup
v∈YN
v �=0

(LRNu, v)− (LNRNu, v)N

‖v‖V
−→ 0 (6.4.33b)
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as N →∞, for all u ∈ W;

sup
v∈YN
v �=0

(f, v)− (f, v)N

‖v‖V
−→ 0 (6.4.33c)

as N →∞, for all f ∈ Z smooth enough.
These are precisely the conditions to be checked in any specific situation

in order to prove the convergence and to establish the rate of decay of the
error.

We emphasize that the stability and convergence estimates given for the
collocation problem include as special cases the ones for the Galerkin and
tau approximations, provided that the discrete inner product is replaced by
the continuous one. The last two terms appearing in the right-hand side of
the convergence estimate (6.4.32) for collocation are precisely due to the use
of quadrature formulas in the collocation scheme. Therefore, the conditions
(10.4.58) and (10.4.61) are the most general ones that assure stability and
convergence for the general spectral approximation (6.3.21).

We want to bring the attention of the reader to the concept of algebraic
stability , introduced by Gottlieb and Orszag (1977) for approximations by
spectral methods.

In both the stability criteria (6.4.23) and (6.4.30) we require that the
constant α be independent of N . This is not necessary for the convergence of
the method. The constant α may depend on N in an algebraic way, i.e., it may
be of the form α = O(N−r) for a suitable r > 0. In this case, convergence is
still assured, according to the estimates (6.4.26) and (6.4.32), provided that
the exact solution u is so smooth that the deviation u − RNu vanishes fast
enough. Precisely, convergence occurs if ‖u−RNu‖E (or ‖u−RNu‖W ) decays
as O(N−r′

) for an r′ > r. This is a slightly different form of the concept of
algebraic stability presented in Gottlieb and Orszag (1977, Sect. 5).

Examples

We now consider some examples that illustrate the theory presented above
for collocation methods.

Example 3. The Dirichlet Problem for a Variable-Coefficient Second-Order
Operator in the Interval (−1, 1). We consider the problem

−(aux)x = f , −1 < x < 1 ,

u(−1) = u(1) = 0 ,

where a(x) is continuously differentiable and satisfies a(x) ≥ α0 > 0 in [−1, 1],
and f is continuous.

For a fixed integer N > 0, set J = {0, 1, . . . , N} and choose as points
(6.4.11) the nodes {xk, k ∈ J} of the (N+1)-point Gauss-Lobatto quadrature
formula with respect to the Legendre or Chebyshev weight. If {wk, k ∈ J} are



6.4 Galerkin, Collocation, G-NI and Tau Methods 357

the corresponding weights, assumption (6.4.17) is satisfied. Denote by INv
the polynomial of degree N that interpolates a continuous function v at the
points xk, k ∈ J . The collocation approximation to u is a polynomial uN of
degree N that satisfies the equations

−
[
IN (auN

x )
]
x

(xk) = f(xk) , k = 1, . . . , N − 1 ,

uN (x0) = uN (xN ) = 0 .
(6.4.34)

Thus, the operator Lu = −(aux)x has been approximated by the operator
LNu = −[IN (aux)]x, in which the outer derivative has been replaced by
the interpolation derivative at the collocation points. Problem (6.4.34) corre-
sponds to (6.4.13)–(6.4.14), with Je = {1, . . . , N − 1} and Jb = {0, N}. The
space X can be chosen here as L2

w(−1, 1), where w is either the Legendre or
the Chebyshev weight function. The spaces XN and YN coincide in this case,
and one has

XN = YN = P
0
N (−1, 1) = {v ∈ PN | v(−1) = v(1) = 0} ,

where, as usual, PN denotes the space of algebraic polynomials of degree ≤ N
in the variable x.

The stability and convergence analysis is easy if the Legendre points
are used. In this case, the scheme satisfies a stability condition of the type
(6.4.23). To check this result, let us start by observing that

(QNLNu, u)N = (LNu, u)N for all u ∈ XN ,

since QN is now the orthogonal projection onto XN for the discrete inner
product (u, v)N . Furthermore, for all u ∈ XN ,

(LNu, u)N = −
∫ 1

−1

[IN (aux)]xudx =
∫ 1

−1

IN (aux)ux dx

=
N∑

k=0

a(xk)[ux(xk)]2wk ≥ α0

N∑

k=0

[ux(xk)]2wk

= α0

∫ 1

−1

[ux(x)]2dx .

Each change between integral and sum is allowed since the integrands are
polynomials of degree at most 2N − 1. Thus, (6.4.23) holds with E =
H1

0 (−1, 1) due to the Poincaré inequality (see (A.13) and (A.11.c)). We ob-
serve that the collocation scheme here considered for the Legendre nodes
coincides with a G-NI scheme (see the discussion in Sect. 1.2.3); hence it can
also be analyzed as described in Sect. 6.4.3.

Let us consider now the Chebyshev collocation points. If the coefficient a
in (6.4.34) is constant, say a ≡ 1, the scheme still fulfills the positivity con-
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dition (6.4.23), with E = H1
w,0(−1, 1) defined in (A.11.c). Actually,

(LNu, u)N = −
∫ 1

−1

uxxuw dx ,

which dominates the norm of H1
w,0(−1, 1) as shown in Sect. 7.1 (see (7.1.16)).

If a(x) is not constant in the interval (−1, 1), the operator LN may be
indefinite in the inner product (u, v)N . This can be seen by the following
heuristic argument (which, however, can be made mathematically rigorous).
For N large enough, (LNu, u)N approaches (Lu, u) =

∫ 1

−1
aux(uw)xdx. Now

ux(uw)x may be strictly negative in a region excluding the endpoints and the
origin, though its average on (−1, 1) is positive according to (7.1.16). Thus,
if a is large in this region and small elsewhere, (Lu, u) and consequently
(LNu, u)N are strictly negative. The argument in turn shows that the co-
ercivity condition (6.4.23) may not be satisfied in this case. However, it is
possible to prove that the collocation scheme (6.4.34) is stable according to
the more general inf-sup condition (6.4.30), where W = V = H1

w,0(−1, 1).
More precisely, for any polynomial u ∈ XN , it is possible to construct a poly-
nomial v ∈ XN , that depends on u but is different from it, such that
‖v‖H1

w(−1,1) ≤ C‖u‖H1
w(−1,1), and (LNu, v)N ≥ α̃‖u‖2H1

w(−1,1) for two pos-
itive constants C and α̃ independent of N . This clearly implies (6.4.34). The
proof is rather technical and can be found in Canuto and Quarteroni (1984).

The convergence of the approximation can be proved by checking the
conditions (10.4.55) for the Legendre points and the conditions (10.4.61) for
the Chebyshev points. In both cases an optimal error estimate is obtained
by choosing as RNu the best polynomial approximation of u in the norm of
H1

w,0, as defined in (5.4.29) or (5.5.17). The precise result is

‖u− uN‖H1
w(−1,1) ≤ CN1−m

(
|u|Hm;N

w (−1,1) + |f |Hm−1,N
w (−1,1)

)
,

where the seminorms on the right-hand side are defined in (5.4.10) or (5.5.8).
��

Example 4. The Neumann Problem for a Constant-Coefficient Elliptic Op-
erator in the Interval (−1, 1). The problem,

−uxx + u = f , −1 < x < 1 ,

ux(−1) = ux(1) = 0 ,
(6.4.35)

can be approximated by the following collocation method:

(−uN
xx + uN )(xk) = f(xk) , 1 ≤ k ≤ N − 1 ,

uN
x (−1) = uN

x (1) = 0 ,
(6.4.36)

where uN is an algebraic polynomial of degree N and {xk | k ∈ J} are the
points introduced in the previous example. Again, we set X = L2

w(−1, 1),
whereas now

XN = {v ∈ PN | vx(−1) = vx(1) = 0}
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and
YN = {v ∈ PN | v(−1) = v(1) = 0} .

Each v ∈ YN can be written as v(x) = z(x)(1−x2) with z ∈ PN−2. Thus,
YN can be identified with PN−2, in the sense that YN = (1 − x2)PN−2. In
this example, the formulation (6.4.21) reads as follows:

N∑

k=0

[
−uN

xx + uN
]
(xk)z(xk)

(
1− x2

k

)
wk =

N∑

k=0

f(xk)z
(
xk)(1− x2

k

)
wk

for all z ∈ PN−2 . (6.4.37)

Due to the relation (2.2.17), the higher order term on the left-hand side can
be integrated exactly, namely,

−
N∑

k=0

uN
xx(xk)z(xk)(1− x2

k)wk = −
∫ 1

−1

uN
xx(x)z(x)η(x)dx , (6.4.38)

where η(x) =
√

1− x2 is a Jacobi weight on the interval (−1, 1). So, one is
naturally led to establish the stability of (6.4.36) in a norm depending on
the weight η. Actually, if we choose z = −uN

xx in (6.4.37), then (6.4.38) is
precisely the square of the norm of uN

xx in L2
η(−1, 1), i.e.,

∫ 1

−1
[uN

xx(x)]2η(x)dx.
In view of the inf-sup condition (6.4.30), this observation suggests the choice
of the space W as

W = {v ∈ L2
η(−1, 1)

∣∣ vxx ∈ L2
η(−1, 1)} ,

with norm

‖v‖2W =
∫ 1

−1

[
v2(x) + v2

xx(x)
]
η(x)dx .

The natural norm for the test functions z is the norm of L2
η(−1, 1). In terms

of the original test functions, v = (1− x2)z, this norm reads as

∫ 1

−1

z2(x)η(x)dx =
∫ 1

−1

(
v(x)

1− x2

)2

η(x)dx = ‖v‖2V . (6.4.39)

Thus, V will be the space of those functions v for which the right-hand side
of (6.4.39) is finite.

Within this framework it can be shown that the stability and convergence
conditions (6.4.30) and (10.4.61) hold. The following error estimate can be
proven:

‖u− uN‖W ≤ CN2−m
(
|u|Hm;N

w (−1,1) + |f |Hm−1;N
w (−1,1)

)
, m ≥ 2 .

Details can be found in Canuto and Quarteroni (1984). ��
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6.4.3 G-NI Methods

In order to highlight the essential features of a G-NI method, we assume
that the operator L can be represented as Lu = −∇ · F + L0u, where L0

is a linear operator, and F = F(u) is a vector-valued function depending
linearly on u, that we call a flux. Furthermore, we assume that the boundary
conditions, Bu = 0, can be split into a set of linear homogeneous conditions
acting on u, say B0u = 0, that are enforced on a part Γ0 of ∂Ωb, and a set
of linear conditions acting on the flux F , say B1F = 0, that are enforced
on Γ1 = ∂Ωb \ Γ0. A typical example is a Dirichlet condition, u = 0, on
Γ0 and a no-flux condition, n ·F = 0, on Γ1, where n denotes the outward
normal vector to ∂Ω. We actually admit a more general situation than the one
considered in (6.3.2), namely, we allow for an inhomogeneous flux condition,
B1F = g, on Γ1. The case of inhomogeneous conditions on u, B0u = η,
can be reduced to the homogeneous case by the change of unknown function
u→ u0 = u−uη, where uη is any known function (called lifting or extension
of η) satisfying B0uη = η.

Denoting by (u, v) the inner product in X = L2(Ω) and by (u, v)Γ the
L2-inner product on a portion Γ of ∂Ω, after application of the divergence
theorem, we have (formally)

(Lu, v) = (−∇ ·F , v) + (L0u, v)

= (F ,∇v)− (n ·F , v)∂Ω + (L0u, v)

= (F ,∇v) + (L0u, v)

− (n ·F , v)Γ0 − (n ·F , v)Γ1 − (n ·F , v)∂Ω\∂Ωb .

(6.4.40)

Now let us assume that the test functions v satisfy the boundary conditions
B0v = 0 on Γ0; this information can be used to manipulate the boundary term
on Γ0. Similarly, we can use the prescribed boundary conditions, B1F = g,
on Γ1 to manipulate the boundary term on Γ1. For instance, if the boundary
conditions are Dirichlet on Γ0 and no-flux on Γ1, both boundary terms van-
ish. After these manipulations have been performed, the integral relations,
(Lu, v) = (f, v), that enforce the differential equation in Ω are transformed
into a set of relations of the form a(u, v) = F (v). Here, a(u, v) is defined
as (F ,∇v) + (L0u, v)+ the bilinear boundary terms on the right-hand side
of (6.4.40) after manipulation, whereas F (v) is defined as (f, v)+ the linear
boundary term on Γ1 depending on g (see (6.4.49) below for an example).

From now on, we assume that Γ0 and Γ1 are (possibly empty) unions of
sides (in 2D) or faces (in 3D) of Ω. Let XN be the subspace of PolN (Ω)
of the functions satisfying the boundary conditions, B0v = 0, on Γ0. Then,
a Galerkin approximation is defined as follows.

uN ∈ XN ,

a
(
uN , v

)
= F (v) for all v ∈ XN .

(6.4.41)
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Since the boundary conditions B1F = g are not enforced directly on the
functions of XN , uN need not satisfy them exactly. However, as the weak
formulation (6.4.41) has been obtained by integration-by-parts incorporat-
ing these conditions into the boundary terms, a counter-integration-by-parts
usually allows one to show that the flux conditions are satisfied by uN in an
approximate way, i.e., they are satisfied exactly in the limit as N → ∞ if
convergence occurs.

The next step is to make the integrals appearing in a(u, v) and F (v)
easily computable even in the presence of variable coefficients. To this end,
a tensor-product quadrature formula, based on Gaussian points, is introduced
to compute the integrals in Ω, and similar formulas are used to compute the
boundary terms. Functions in XN can often be identified by their values at
the quadrature points, taking also into account the boundary conditions they
satisfy on Γ0; this is accomplished by introducing a nodal basis associated
with the quadrature points. However, in certain cases a different nodal basis,
or a modal basis, is used instead (see Sects. 2.3.3, 2.8 and 2.9). Denoting by
aN (u, v) and FN (v) the forms obtained from a(u, v) and F (v) by numerical
integration, we end up with the following G-NI scheme:

uN ∈ XN ,

aN (uN , v) = FN (v) for all v ∈ XN .
(6.4.42)

Stability and Convergence

The stability and convergence analysis for G-NI approximations is similar
to the one given in the previous section for collocation methods. We assume
again that the operator L satisfies the coercivity condition (6.3.6) and the
continuity condition (6.3.7) with respect to a suitable energy space E; fur-
thermore, we assume that XN ⊆ E for all N > 0. A stability condition for
the approximation (6.4.42), by analogy with condition (6.3.6), is as follows.

If there exists a constant α > 0 (independent of N) such that

α‖v‖2E ≤ aN (v, v) for all v ∈ XN , (6.4.43)

and if there exists a constant CF > 0 (independent of N) such that

|FN (v)| ≤ CF ‖v‖E for all v ∈ XN , (6.4.44)

then the approximation is stable, in the sense that the following estimate
holds:

‖uN‖E ≤
CF

α
. (6.4.45)

Indeed, it is enough to choose v = uN in (6.4.42). The result implies exis-
tence and uniqueness of the solution of the G-NI scheme, since XN is finite
dimensional.
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As for the convergence analysis, let RN be a projection operator from
a dense subspace W of E upon XN . Setting e = uN − RNu, the following
error bound between the exact and the G-NI solutions holds:

‖u− uN‖E ≤
(

1 +
A

α

)
‖u−RNu‖E +

1
α

|a(RNu, e)− aN (RNu, e)|
‖e‖E

+
1
α

|F (e)− FN (e)|
‖e‖E

. (6.4.46)

The proof is similar to the one given for (6.4.26). It follows that convergence
is assured if the following three consistency conditions are fulfilled :

‖u−RNu‖E −→ 0 (6.4.47a)

as N →∞, for all u ∈ W;

sup
v∈XN
v �=0

a(RNu, v)− aN (RNu, v)
‖v‖E

−→ 0 (6.4.47b)

as N →∞, for all u ∈ W;

sup
v∈XN
v �=0

F (v)− FN (v)
‖v‖E

−→ 0 (6.4.47c)

as N →∞, for all sufficiently smooth data, f and g, appearing in F and FN .
Conditions (6.4.47b) and (6.4.47c) are often called Strang conditions and

estimate (6.4.46) is known as the Strang lemma (see, e.g., Quarteroni and
Valli (1994), Theorem 5.5.1).

The following example illustrates the theory described above.

Example 5. A Second-Order Operator in Divergence Form under Mixed
Boundary Conditions. Let Ω = (−1, 1)d be the square (d = 2) or the cube
(d = 3), and let us partition its boundary ∂Ω into the open side or face
Γ1 = {x = (x1, . . . , xd) |x1 = 1, |xj | < 1 for j = 2, . . . , d} and the remaining
part Γ0 = ∂Ω\Γ1. We consider the general second-order equation with mixed
Dirichlet and Neumann boundary conditions:

Lu ≡ −∇ ·F + γu = f in Ω ,

u = 0 on Γ0 ,

n ·F = g on Γ1 ,

(6.4.48)

where the flux is F = F(u) = α∇u + βu. The coefficients α (a symmetric
and positive-definite matrix), β (a vector) and γ are smooth functions defined
in Ω̄, whereas f , g are given data.
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Taking the inner product of Lu with a test function v vanishing on Γ0

and using the divergence theorem, we get

(Lu, v) =
∫

Ω

(∇v)T α∇u +
∫

Ω

u(β · ∇v) +
∫

Ω

γuv −
∫

Γ1

n · (α∇u + βu)v.

Next, in view of the discretization of the problem, we use the skew-symmetric
decomposition β ·∇v = 1

2β ·∇v + 1
2 (∇ · (βv)− (∇ · β)v) and the divergence

theorem again to write the second integral on the right-hand side as
∫

Ω

u(β · ∇v) = 1
2

∫

Ω

(u(β · ∇v)− (β · ∇u)v)− 1
2

∫

Ω

(∇ ·β)uv + 1
2

∫

Γ1

β ·nuv .

It follows that u solves the variational problem
∫

Ω

(∇v)T α∇u + 1
2

∫

Ω

(u(β · ∇v)− (β · ∇u)v)

+
∫

Ω

(−1
2∇ · β + γ)uv + 1

2

∫

Γ1

β · nuv =
∫

Ω

fv +
∫

Γ1

gv

(6.4.49)

for all v smooth enough and vanishing on Γ0. This suggests that we define
the bilinear form a(u, v) as the left-hand side of (6.4.49), and the linear form
F (v) as the right-hand side of (6.4.49). Both forms are naturally defined on
the (closed) subspace E of H1(Ω) of the functions vanishing on Γ0, endowed
with the norm ‖v‖E =

(∫
Ω
|v|2 +

∫
Ω
|∇v|2

)1/2 of H1(Ω). More precisely, the
form a(u, v) satisfies (6.3.7) whereas the form F (v) satisfies (6.3.8), provided
the components of α and γ are bounded in Ω̄, the components of β and its
divergence are bounded in Ω̄, f is square integrable in Ω, and g is square
integrable in Γ1. This can be seen by repeatedly applying the Cauchy-Schwarz
inequality (see (A.2)) and also using the fact that the H1-norm of a function
controls the L2-norm of its restriction on Γ1, i.e., there exists a constant
C > 0 such that ‖v‖L2(Γ1) ≤ C‖v‖E for all v ∈ E. Concerning the positivity
condition (6.3.6), we observe that the second integral on the left-hand side
of (6.4.49) vanishes for v = u (indeed, it is skew-symmetric). Thus, we have

a(u, u) =
∫

Ω

(∇u)T α∇u +
∫

Ω

(−1
2∇ · β + γ)u2 + 1

2

∫

Γ1

β · nu2 .

We now assume that the operator L is uniformly elliptic, i.e., there exists
a constant α0 > 0 such that ξT α ξ ≥ α0|ξ|2 in Ω for all ξ ∈ Rd; furthermore,
we assume that −1

2∇·β+γ ≥ 0 in Ω and that Γ1 ⊆ ∂Ω+ = {x ∈ ∂Ω | β ·n ≥
0}. As mentioned in Sect. A.13, there exists a constant C > 0 such that the
Poincaré inequality ‖v‖L2(Ω) ≤ C‖∇v‖(L2(Ω))d holds for all functions v in
H1(Ω) vanishing on Γ0 (this inequality is precisely (A.13.3) when Γ0 = ∂Ω).
Then (6.3.6) holds, since

a(u, u) ≥ α0

∫

Ω

|∇u|2 ≥ α0

C2 + 1
‖u‖2E for all u ∈ E . (6.4.50)

This implies the existence and uniqueness in E of the solution of (6.4.49).
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We now discretize the problem by the G-NI approach. Let XN ⊂ E be
the subspace of PolN (Ω) = PN (−1, 1)d of the polynomials vanishing on Γ0;
note that XN is obtained by tensorizing polynomials of degree ≤ N in the
x1-variable, vanishing at x1 = −1, with polynomials of degree ≤ N in each
of the remaining variables, vanishing at the endpoints of the interval (−1, 1).
Let {xj , wj}j=0,...,N denote the N + 1 nodes and weights of the Legendre
Gauss-Lobatto quadrature formula in [−1, 1]; by tensorization, we obtain the
(N + 1)d nodes and weights {xk, wk}k∈J (where J denotes the set of the
d-dimensional indices k) of the corresponding formula in Ω̄ = [−1, 1]d, that
satisfies

∫

Ω

ϕ(x) =
∑

k∈J

ϕ(xk)wk for all ϕ ∈ Pol2N−1(Ω).

Note that a polynomial v ∈ PolN (Ω) belongs to XN if and only if v(xk) = 0
for all quadrature points xk sitting on Γ0.

We also need a quadrature formula on Γ1. This is obtained in the obvious
manner by tensorizing d−1 times to get the nodes and weights {x′

k′ , wk′}k′∈J ′

in [−1, 1]d−1, then setting xk′ = (1,x′
k′) (here J ′ denotes the set of the (d−1)-

dimensional indices k′); the resulting formula satisfies
∫

Γ1

ψ(x) =
∑

k′∈J ′
ψ(xk′)wk′ for all ψ ∈ Pol2N−1(Γ1).

For simplicity, in the sequel we will write
∑

J

ϕ in lieu of
∑

k∈J

ϕ(xk)wk, as

well as
∑

J ′
ψ in lieu of

∑

k′∈J ′
ψ(xk′)wk′ . We will also set ‖ϕ‖N,Ω = (

∑

J

ϕ2)1/2

and ‖ψ‖N,Γ1 = (
∑

J ′
ψ2)1/2.

From now on we assume that all coefficients and data appearing in (6.4.49)
are continuous functions. The G-NI scheme is obtained from this formulation
by replacing integrals with quadrature formulas; precisely, uN ∈ XN is de-
fined as the solution of
∑

J

(∇v)T α∇u+1
2

∑

J

(
uN (β · ∇v

)
− (β · ∇uN )v) +

∑

J

(
−1

2∇ · β + γ
)
uNv

+ 1
2

∑

J ′
β · nuNv =

∑

J

fv +
∑

J ′
gv for all v ∈ XN .

(6.4.51)

We denote the left-hand side of (6.4.51) by aN (u, v) and the right-hand side
of (6.4.51) by FN (v), so that the scheme can be written as (6.4.42).

Let us discuss the stability of the method. To this end, we recall the fun-
damental equivalence (5.3.2) of discrete and continuous L2-norms of polyno-
mials, that by tensorization yields the following equivalences:
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c1‖ϕ‖L2(Ω) ≤ ‖ϕ‖N,Ω ≤ c2‖ϕ‖L2(Ω) for all ϕ ∈ PolN (Ω) , (6.4.52)

and

c′1‖ψ‖L2(Γ1) ≤ ‖ψ‖N,Γ1 ≤ c′2‖ψ‖L2(Γ1) for all ψ ∈ PolN (Γ1) , (6.4.53)

for suitable constants c1, c2, c
′
1, c

′
2 > 0. Then, (6.4.43) follows by observing

that, as for (6.4.50),

aN (u, u) ≥ α0

∑

J

|∇u|2 ≥ α0c
2
1‖∇u‖2L2(Ω) ≥

α0c
2
1

C2 + 1
‖u‖2E for all u ∈ XN .

The right-hand side FN (v) is estimated as follows:

|FN (v)| ≤
∑

J

|f | |v|+
∑

J ′
|g| |v| ≤ ‖f‖N,Ω‖v‖N,Ω + ‖g‖N,Γ1‖v‖N,Γ1

≤ c22d/2‖f‖L∞(Ω)‖v‖L2(Ω) + c′22
(d−1)/2‖g‖L∞(Γ1)‖v‖L2(Γ1) ,

where we have used the fact that the quadrature formula is exact on the
constants. Then, inequality (6.4.44) follows easily. We conclude that (6.4.45)
holds, which in turn – as already noted – implies the existence and uniqueness
of the solution uN of the G-NI scheme.

Finally, we establish the convergence of the approximation. Let N̄ denote
the largest integer ≤ N/2, and let us introduce a projection operator RN :
E → XN̄ ⊂ XN that yields an optimal approximation error in the H1-norm,
i.e.,

‖u−RNu‖H1(Ω) ≤ CN1−m|u|Hm;N̄ (Ω) (6.4.54)

for all u ∈ Hm(Ω)∩E, m ≥ 1; we refer to Sect. 5.8.2 for the construction of
such an operator. Then, (6.4.47a) is fulfilled by taking W = Hm0(Ω) ∩E for
an arbitrary m0 > 1. In order to prove (6.4.47b), we estimate each contribu-
tion to the error, a(RNu, v) − aN (RNu, v), separately. The first one comes
from the diffusion term

E =
∫

Ω

(∇v)T α∇RNu−
∑

J

(∇v)T α∇RNu. (6.4.55)

For each component α of α, let αN ∈ PolN̄ (Ω) be an approximation of α
such that ‖α − αN‖L∞(Ω) → 0 as N → ∞, provided α is smooth enough.
For instance, αN can be chosen as the best approximation of α in PolN̄ (Ω)
in the L∞-norm, for which one has the estimate (that generalizes (5.4.16))

‖α− αN‖L∞(Ω) ≤ CN t|α|W t;N̄,∞(Ω) , t > d/2 ,

with |α|W t;N̄,∞(Ω) = max
t̄≤k≤t

max
1≤i≤d

‖Dk
i u‖2L∞(Ω), t̄ = min(t, N̄ + 1). Then, we

add and substract αN from each term on the right-hand side of (6.4.55).
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Since (∇v)T αN ∇RNu belongs to Pol2N−1(Ω), the quadrature formula inte-
grates it exactly; hence,

|E| =
∣∣∣∣∣

∫

Ω

(∇v)T (α−αN )∇RNu−
∑

J

(∇v)T (α−αN )∇RNu

∣∣∣∣∣

≤ ‖α−αN‖L∞(Ω)(‖∇RNu‖L2(Ω)‖∇v‖L2(Ω) + ‖∇RNu‖N,Ω‖∇v‖N,Ω).

Using again the exactness of the quadrature formula for (RNu)2 ∈ Pol2N−2(Ω)
as well as (6.4.52), we get

|E| ≤ (1 + c2)‖α−αN‖L∞(Ω)‖∇RNu‖L2(Ω)‖∇v‖L2(Ω).

Finally, we note that ‖RNu‖H1(Ω) ≤ C‖u‖H1(Ω) by (6.4.54), so that we
obtain the following bound for the error term E :

|E| ≤ C‖α−αN‖L∞(Ω)‖u‖E‖v‖E .

All other terms appearing in a(RNu, v) − aN (RNu, v) can be handled simi-
larly, provided the coefficients appearing therein are smooth enough. Under
this assumption, we obtain (6.4.47b).

To conclude the consistency discussion, we establish (6.4.47c). We apply
estimate (5.8.22) to the internal error,

∫
Ω

fv −
∑

J fv, and the boundary
error,

∫
Γ1

gv −
∑

J ′ gv, separately. For all v ∈ XN , we get

|F (v)− FN (v)| ≤ C1(‖f − PN−1f‖L2(Ω) + ‖f − INf‖L2(Ω))‖v‖L2(Ω)

+C2(‖g − P ′
N−1g‖L2(Γ1) + ‖g − I ′Ng‖L2(Γ1))‖v‖L2(Γ1) ,

where P ′
N−1 and I ′N denote L2-projection and interpolation on Γ1, respec-

tively. Recalling that ‖v‖L2(Ω) + ‖v‖L2(Γ1) ≤ C‖v‖E for all v ∈ E, we obtain

|F (v)− FN (v)| ≤ C
(
‖f − PN−1f‖L2(Ω) + ‖f − INf‖L2(Ω)

+ ‖g − P ′
N−1g‖L2(Γ1) + ‖g − I ′Ng‖L2(Γ1)

)
‖v‖E .

Using the results of Sect. 5.8.2, we deduce that the right-hand side tends to 0
as N →∞, provided f and g are smooth enough, yielding (6.4.47c).

An estimate of the G-NI error ‖u−uN‖H1(Ω) can be obtained by (6.4.46).
If we assume suitable regularity for the solution u, the coefficients α, β and γ,
and the data f and g, then the approximation results of Chap. 5 together
with the error analysis sketched above allow us to bound each term appearing
on the right-hand side of (6.4.46). Precisely, let us assume that u ∈ Hm(Ω),
α ∈ (W t,∞(Ω))d×d, β ∈ (W τ,∞(Ω))d, γ ∈ W θ,∞(Ω), f ∈ Hµ(Ω) and g ∈
Hν(Γ1). Then, we end up with the following result:

‖u− uN‖H1(Ω) ≤ C1N
1−m|u|Hs;N̄ (Ω) + C2N

−t|α|(W t;N̄,∞(Ω))d×d

+ C3N
−τ |β|(W τ;N̄,∞(Ω))d + C4N

−θ|γ|W θ;N̄,∞(Ω)

+ C5N
−µ|f |Hµ;N−1(Ω) + C6N

−ν |g|Hν;N−1(Γ1) . ��
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6.4.4 Tau Methods

Tau methods are mostly used for constant-coefficient, nonperiodic problems.
The definition of these methods is particularly simple for problems in one
spatial dimension. We begin with this case, and then we consider the general
situation.

We assume that the differential problem (6.3.1) is defined in the interval
Ω = (−1, 1), and we recall that ∂Ωb is the set of the endpoints where the
boundary conditions (6.3.2) are imposed.

Let {φk, k = 0, 1, . . . } be a system of algebraic polynomials, orthogo-
nal with respect to the inner product

∫ 1

−1
u(x)v(x)w(x)dx, where w > 0 is

a weight function on (−1, 1). We assume that each φk is a polynomial of effec-
tive degree k. The tau solution is a polynomial of degree N , uN =

∑N
k=0 αkφk,

whose coefficients in the expansion according to this basis are the unknowns
of the problem. They are determined in the following way: denote by β the
number of boundary conditions prescribed at the endpoints of the interval
(for instance, β = 2 if L is a nondegenerate second-order operator). The dif-
ferential equation (6.3.1) is projected onto the space of polynomials of degree
N − β,

∫ 1

−1

LuNφkw dx =
∫ 1

−1

fφkw dx , k = 0, 1, . . . , N − β , (6.4.56)

and the boundary conditions (6.3.2) are imposed exactly on ∂Ωb:

N∑

k=0

αkBφk = 0 at the points of ∂Ωb . (6.4.57)

Conditions (6.4.57) are necessary since the basis functions do not automat-
ically satisfy the boundary conditions, unlike the basis used in a Galerkin
method as considered in Sect. 6.4.1.

In order to cast a tau method in the framework of Sect. 6.3, we set X =
L2

w(−1, 1),

XN = {v ∈ PN |Bv = 0 at the points of ∂Ωb} , (6.4.58)

and
YN = PN−β . (6.4.59)

Then the tau method is equivalent to

uN ∈ XN ,

(LuN , v) = (f, v) for all v ∈ YN .
(6.4.60)

With respect to the general setting (6.3.22), in a tau method the projector
QN is the orthogonal projection operator from X upon YN relative to the
inner product (u, v) of X.
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We consider now the d-dimensional case. The domain Ω is the product
of d copies of the interval (−1, 1) and the functions of PolN (Ω) are algebraic
polynomials in each variable. In the sequel, we will mean by “side” a (d− 1)-
dimensional subset of ∂Ω characterized by the equation xi = c for some i ∈
{1, . . . , d} and c ∈ {−1, 1}. We assume that on a given side of the boundary
the same kind of boundary conditions are given. We exclude, for example,
the use of Dirichlet boundary conditions on part of a side and Neumann
boundary conditions on the rest of it.

A basis in PolN (Ω) can be built as a product of the basis functions {φk}
in each variable. Define the lattice

J = {k = (k1, . . . , kn) | ki is an integer, 0 ≤ ki ≤ N for i = 1, . . . , d} ,

and set
φk(x) = φk1(x1) · · ·φkd(xd) .

Then {φk, k ∈ J} is a basis in PolN (Ω) that is orthogonal for the inner
product

(u, v) =
∫ 1

−1

w(x1)dx1 · · ·
∫ 1

−1

u(x)v(x)w(xd) dxd .

The solution of a spectral tau scheme is a polynomial in PolN (Ω) expanded
in this basis. Its coefficients in this expansion are determined by two sets
of linear equations. The first set is obtained by requiring that the residual
LNuN − f be orthogonal to a family of basis functions of reduced degree.
The φk’s that are retained as test functions are the ones whose degree in each
direction is at most N minus the number of boundary conditions prescribed
on the sides orthogonal to that direction. More precisely, for each i = 1, . . . , d,
denote by βi the total number of boundary conditions prescribed on the sides
xi = ±1. Define the sublattice

Je = {k = (k1, . . . , kd) ∈ J | 0 ≤ ki ≤ N − βi for i = 1, . . . , d} ,

where the subscript e stands for equation. (See Fig. 6.2 for an example.)
The differential equation is enforced by requiring that the tau solution uN ∈
PolN (Ω) satisfies the set of equations

(LuN , φk) = (f, φk) for all k ∈ Je . (6.4.61)

The remaining equations are obtained by imposing the boundary conditions.
These give a set of algebraic relations involving the coefficients of uN with
respect to the orthogonal basis {φk |k ∈ J}.

The most direct way of taking into account the boundary conditions in
a tau method consists of projecting, separately for each side upon the space
of polynomials of degree N , the equation to be satisfied at the boundary
(see, for instance, Example 1.2.4 in Chap. 1). This method may lead to an
overdetermined set of boundary equations due to possible continuity condi-
tions at the corners (in two dimensions) or edges (in three dimensions). In the
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N

N

k1

k2

Points in Jb

Points in Je

Fig. 6.2. The set J in frequency space for the tau approximation to the Dirichlet
boundary-value problem for the Laplace equation in the square (Example 8)

quoted example, the number of equations represented by (1.2.77) is 4N + 4,
while only 4N independent equations have to be added to (1.2.76) in order
to determine uN . The rank of the system is only 4N .

We describe hereafter a mathematically rigorous procedure of boundary
projection that leads to the correct number of linearly independent bound-
ary equations. To this end, define the inner product (u, v)∂Ωb between two
functions, u and v, on ∂Ωb as follows. If S is a side of ∂Ωb orthogonal to the di-
rection xi, let σ be the independent variable on S and let w̃(σ) =

∏d
j=1
j �=i

w(xj).

Then we set
(u, v)∂Ωb =

∑

sides of ∂Ωb

∫

S

u(σ)v(σ)w̃(σ)dσ . (6.4.62)

Next, we consider the set of indices Jb = J − Je and take into account the
boundary conditions (6.3.2) by requiring that the tau solution uN satisfy the
set of equations (

BuN , φk

)
∂Ωb

= 0 for all k ∈ Jb . (6.4.63a)

Condition (6.4.63a) involves the traces of the φk’s on ∂Ωb only, with k ∈ Jb.
These traces are linearly independent on ∂Ωb, and actually they generate the
space C0(∂Ωb;N) of all the continuous functions on ∂Ωb that are polynomials
of degree up to N on each side of ∂Ωb. The proof of this property is not
hard, but is rather technical and will be left to the reader. Thus, (6.4.63a) is
equivalent to(

BuN , ψ
)
∂Ωb

= 0 for all ψ ∈ C0(∂Ωb;N) . (6.4.63b)

Any convenient basis in C0(∂Ωb;N) can be used to enforce (6.4.63a), such
as a basis whose functions are nonzero on at most d contiguous sides of ∂Ωb.

We conclude that a multidimensional tau method is represented again by
(6.4.60), where now X = L2

w(Ω) (see (A.9.h)) and
XN = {v ∈ PolN (Ω) | (Bv, φk)∂Ωb = 0 for all k ∈ Jb} , (6.4.64)

YN = span{φk , k ∈ Je} . (6.4.65)
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Stability and Convergence

We are next concerned with the problem of stability and convergence for the
tau approximation (6.4.60). Since the space XN of basis functions is different
from the space YN of test functions, the natural approach now is the discrete
form of the inf-sup condition given in Sect. 6.3. We assume, therefore, that the
operator L is such that the associated bilinear form a(u, v) = (Lu, v) satisfies
(6.3.11)–(6.3.13). Moreover, we assume here that XN ⊂ W and YN ⊂ V for
all N > 0. Then, we have the following inf-sup condition, due to Babuška (see,
e.g., Babuška and Aziz (1972)), that is the discrete counterpart of (6.3.12).

If there exists a constant α > 0 independent of N such that

α‖u‖W ≤ sup
v∈YN
v �=0

(Lu, v)
‖v‖V

for all u ∈ XN , (6.4.66)

then the following estimate holds:

‖uN‖W ≤
C

α
‖f‖ , (6.4.67)

where the constant C, independent of N , satisfies ‖v‖ ≤ C‖v‖V for all v ∈ V .
Inequality (6.4.67) implies that (6.4.60) has a unique solution (since XN

and YN have the same dimension) and the approximation is stable. The
bound (6.4.67) is obtained by dividing each term in (6.4.60) by ‖v‖V , then
taking the supremum over all v ∈ YN and using (6.4.66) together with the
continuity of the inclusion of V into X.

Concerning the convergence of the method, as for the Galerkin approxi-
mation, let RN be a linear operator from a dense subspace W ⊆ DB(L) into
XN such that for N →∞,

‖u−RNu‖W −→ 0 for all u ∈ W . (6.4.68)

By an argument similar to that used for proving (6.4.8), the following error
bound between the solution of (6.3.3) and the tau solution of (6.4.60) can be
established:

‖u− uN‖W ≤
(

1 +
A

α

)
‖u−RNu‖W . (6.4.69)

Thus, the tau method is convergent.
A stability condition of type inf-sup can also be given for Galerkin ap-

proximations. Obviously, it is obtainable from (6.4.66) by replacing YN with
XN . The coercivity condition (6.4.3) is nothing but a particular form of this
condition, in which W = V = E. Actually, (6.4.66) can be written as

α‖u‖E ≤
(Lu, u)
‖u‖E

for all u ∈ XN , u 	= 0 , (6.4.70)

which is clearly implied by (6.4.3).
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A similarity can be established between collocation and tau methods.
Indeed, from the tau equations (6.4.61) and (6.4.63) one can obtain the col-
location equations (6.4.13) and (6.4.14) formally by replacing the continuous
inner product with the discrete one, and taking as φk the characteristic La-
grange polynomials (6.4.12). In both methods, the basis in which the solution
is expanded is orthogonal with respect to the inner product involved in the
scheme.

Examples

We now consider some examples that illustrate the theory described above.

Example 6. The Dirichlet Problem for a Second-Order Elliptic Operator in
the Interval (−1, 1). Consider the problem

Lu ≡ −uxx + λ2u = f , −1 < x < 1 , λ ∈ R ,

u(−1) = u(1) = 0 .

We look for a tau solution uN expanded in Chebyshev polynomials. Thus,
we assume that f ∈ L2

w(−1, 1) (w being the Chebyshev weight), and we
determine the solution uN (x) =

∑N
k=0 αkTk(x) by the conditions

∫ 1

−1

(
−uN

xx + λ2uN
)
(x)Tk(x)w(x)dx

=
∫ 1

−1

f(x)Tk(x)w(x)dx , for k = 0, 1, . . . , N − 2 ,

N∑

k=0

αk(−1)k =
N∑

k=0

αk = 0 .

In the present case, XN = {v ∈ PN | v(−1) = v(1) = 0} and YN = PN−2.
Let us now discuss the stability and convergence of the approximation.

Throughout this and the next example, we will use the simplified notation
‖u‖m,w instead of ‖u‖Hm

w (−1,1) for m ≥ 0 (see (5.5.7)). If u is any polynomial
of degree N that vanishes on the boundary, then v = −uxx is a polynomial
of degree N − 2, and

(Lu, v) =
∫ 1

−1

(uxx)2w dx + λ2

∫ 1

−1

ux(uw)x dx

≥ ‖uxx‖20,w +
λ2

4
‖u‖20,w ≥ C‖u‖22,w .

We have used (7.1.16) and the Poincaré inequality (A.13) (if λ = 0 this
inequality must be used twice). Therefore, the inf-sup condition (6.4.66) is
satisfied if we choose W = H2

w(−1, 1) and V = L2
w(−1, 1), and we have the

estimate
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‖uN‖2,w ≤ C‖f‖0,w (6.4.71)

for a constant C independent of N and λ. The convergence of the method can
be established as a consequence of (6.4.69) by defining the projection operator
RN as follows. Let u denote again the exact solution we want to approximate,
and let RNu be an algebraic polynomial of degree ≤ N that satisfies (5.5.15)
for l = 2 and vanishes at the boundary points. It can be easily constructed
in the form RNu = P 2

Nu − p1, where P 2
Nu is the orthogonal projection of u

upon PN in the H2
w-inner product, which itself satisfies (5.5.15), whereas p1

is the linear polynomial that matches P 2
Nu at the boundary points. Using the

inclusion H1
w(−1, 1) ⊂ C0([−1, 1]) (see (A.11.a)), one has

‖p1‖2,w ≤ C‖u− P 2
Nu‖2,w ≤ CN2−m|u|Hm;N

w (−1,1), m ≥ 2 .

Thus, we obtain the optimal convergence estimate

‖u− uN‖2,w ≤ CN2−m|u|Hm;N
w (−1,1), m ≥ 2 . (6.4.72)

Finally, we note that v = −uN
xx is not the only test function that allows us

to obtain a stability estimate for the scheme under consideration. Actually,
if u denotes here any polynomial in XN , and if we set v = PN−2u, we have

(Lu, v) = −
∫ 1

−1

uxxPN−2uw dx + λ2

∫ 1

−1

uPN−2uw dx

=
∫ 1

−1

ux(uw)xdx + λ2

∫ 1

−1

(PN−2u)2w dx .

Thus, taking v = PN−2u
N in the tau scheme yields the estimate

1
2
‖uN

x ‖0,w + λ‖PN−2u
N‖0,w ≤ C‖f‖0,w . (6.4.73)

If λ� 1, (6.4.73) contains the new information that the L2
w-norm of PN−2u

N

is O(1/λ). This kind of result has been used by Canuto and Sacchi-Landriani
(1986) in the analysis of the Kleiser-Schumann method for the Navier-Stokes
equations (see CHQZ3, Sect. 3.7). ��

Example 7. The Neumann Problem for a Second-Order Elliptic Operator in
the Interval (−1, 1). Consider the problem

Lu ≡ −uxx + u = f , −1 < x < 1 ,

ux(−1) = ux(1) = 0 .

Again, we look for a tau solution uN expanded in Chebyshev polynomials.
Thus, uN (x) =

∑N
k=0 αkTk(x) is determined by the conditions
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∫ 1

−1

(
−uN

xx + uN
)
(x)Tk(x)w(x)dx

=
∫ 1

−1

f(x)Tk(x)w(x)dx for k = 0, 1, . . . , N − 2 ,

N−1∑

k=0

βk(−1)k =
N−1∑

k=0

βk = 0 ,

(6.4.74)

where the βk’s are the coefficients of the Chebyshev expansion of the deriva-
tive uN

x (see (2.4.22)). We now have XN = {v ∈ PN | vx(−1) = vx(1) = 0}
and YN = PN−2.

Let us deal with the stability analysis. Note that for all u ∈ XN ,
PN−2Lu = Lu − (u − PN−2u), where PN−2 is the orthogonal projection
operator on PN−2. Hence,

(Lu, PN−2Lu) = ‖Lu‖20,w − (Lu, u− PN−2u)

≥ ‖Lu‖20,w − ‖Lu‖0,w‖u− PN−2u‖0,w .
(6.4.75)

Now, by (5.5.9), we have ‖u − PN−2u‖0,w ≤ C0N
−2‖u‖2,w. Moreover, it is

possible to prove the a priori estimate

‖u‖2,w ≤ C1‖Lu‖0,w ,

for a suitable constant C1 > 0. By (6.4.75) we get

(Lu, PN−2Lu) ≥ (1− C0C1N
−2)‖Lu‖20,w ≥ (2C2

1 )−1‖u‖22,w ,

provided N is so large that 1 − C0C1N
−2 ≥ 1/2. Since ‖PN−2Lu‖0,w ≤

C3‖u‖2,w, we conclude that the estimate

(Lu, PN−2Lu)
‖PN−2Lu‖0,w

≥ 1
2C2

1C3
‖u‖2,w , (6.4.76)

holds.
This proves that the scheme (6.4.74) satisfies the stability condition

(6.4.66), if we define W = {v ∈ H2
w(−1, 1) | vx(−1) = vx(1) = 0} and

V = L2
w(−1, 1).

The convergence analysis is straightforward, in view of (6.4.69). Define
the projector RN onto XN as

(RNu)(x) = u(−1) +
∫ x

−1

(
P 1,0

N−1ux

)
(ξ)dξ ,

where P 1,0
N−1 is the operator introduced in (5.5.17). Then it is easy to prove

that ‖u − RNu‖2,w ≤ CN2−m|u|Hm;N
w (−1,1); whence, by (6.4.69) we get the

optimal error estimate

‖u− uN‖2,w ≤ CN2−m|u|Hm;N
w (−1,1) .

��
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Example 8. A Legendre Tau Method for the Poisson equation. We consider
again the tau approximation introduced in Sect. 1.2.4 and analyzed in Sect.
6.1.3. The aim here is to incorporate this scheme in the previous general
framework.

The tau solution is expanded into Legendre polynomials, φk(x, y) =
Lk1(x)Lk2(y), namely, uN (x, y) =

∑N
k=0

∑N
m=0 ûkmLk(x)Lm(y). Thus, the

natural choice for the Hilbert space X is the space L2(Ω) (Ω being the
square (−1, 1)× (−1, 1)), with inner product

(u, v) =
∫ 1

−1

∫ 1

−1

u(x, y)v(x, y)dxdy .

The boundary conditions are prescribed over the whole boundary of Ω; hence
∂Ωb = ∂Ω and the boundary inner product takes the form

(u, v)∂Ω =
∫ 1

−1

u(x,−1)v(x,−1)dx +
∫ 1

−1

u(x, 1)v(x, 1)dx

+
∫ 1

−1

u(−1, y)v(−1, y)dy +
∫ 1

−1

u(1, y)v(1, y)dy .

Exactly one boundary condition is prescribed on each side of Ω; hence, we
have

Je = {(k1, k2) | 0 ≤ k1, k2 ≤ N − 2}
and

Jb = {(k1, k2) |N − 1 ≤ ki ≤ N, for at least one index i = 1, 2} .

Thus, equations (1.2.74) are nothing but (6.4.61), while equations (1.2.77)
clearly imply (6.4.63b). We look now for a basis of C0(∂Ωb;N), the space of
polynomials of degree N on each side of Ω that are continuous at the corners.
Define for k ≥ 2, lk(x) = Lk(x) − Lk(x), where k = k(mod 2) (i.e., k = 0
if k is even, k = 1 if k is odd). Thus, lk(+1) = lk(−1) = 0. Furthermore, set
l±(x) = LN (x)± LN−1(x), so that l±(±1) 	= 0 and l±(∓1) = 0. Each of the
functions

Ψ(k,+)(x, y) = lk(x)l+(y) , k ≥ 2 ,

is a linear combination of basis functions φk(x, y) with k ∈ Jb; hence, (6.4.63)
yields

(
uN , Ψ(k,+)

)
∂Ω

=
∫ 1

−1

uN (x, 1)lk(x)dx

=
N∑

m=0

[
ûkm + ûk,m

]
= 0 , 2 ≤ k ≤ N .

(6.4.77a)
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In the same way, the test functions Ψ(k,−)(x, y) = lk(x)l−(y) and Ψ(±,k)(x, y) =
l±(x)lk(y) yield, respectively, the relations

N∑

m=0

(−1)m
[
ûkm − ûk,m

]
= 0 , 2 ≤ k ≤ N , (6.4.77b)

N∑

k=0

[ûkm + ûk,m] = 0 , 2 ≤ m ≤ N , (6.4.77c)

N∑

k=0

(−1)k [ûkm − ûk,m] = 0 , 2 ≤ m ≤ N . (6.4.77d)

Finally, the test functions Ψ(±,±)(x, y) = l±(x)l±(y) give the remaining rela-
tions

N∑

m=0

[ûNm + ûN−1,m] +
N∑

k=0

[ûkN + ûk,N−1] = 0 , (6.4.78a)

N∑

m=0

(−1)m[ûNm + ûN−1,m] +
N∑

k=0

[ûkN − ûk,N−1] = 0 , (6.4.78b)

N∑

m=0

[ûNm − ûN−1,m] +
N∑

k=0

(−1)k[ûkN + ûk,N−1] = 0 , (6.4.78c)

N∑

m=0

(−1)m[ûNm − ûN−1,m] +
N∑

k=0

(−1)k[ûkN − ûk,N−1] = 0 . (6.4.78d)

Note that the functions Ψ(k,±), and Ψ(±,k) are nonzero on one side of Ω, while
Ψ(±,±) are nonzero on two contiguous sides of Ω. We conclude that (6.4.77)
and (6.4.78) are equivalent to (6.4.63b).

For the present scheme, one has XN = {v ∈ PN | v ≡ 0 on ∂Ω} and
YN = PN−2. Here, PN is the space of the algebraic polynomials of degree
≤ N in each variable.

Let us now discuss the stability and convergence of the method. In
Sect. 6.1.3 the test function designed to prove stability was q(x, y) =
uN (x, y)/[(1 − x2)(1 − y)2]. This appears to be a natural choice for tau ap-
proximations to homogeneous Dirichlet boundary-value problems. Actually,
any u ∈ XN can be split into the product u = bq where q is a polynomial of
the space YN , and b is a polynomial of minimal degree that vanishes on ∂Ωb.

If for a suitable choice of Hilbert spaces W and V , there exist positive
constants α1 and α2 independent of N such that

α1‖u‖2W ≤ (Lu, q) for all u ∈ XN , (6.4.79)

‖q‖V ≤ α2‖u‖W for all u ∈ XN , (6.4.80)

then (6.4.66) is satisfied with α = α1/α2.
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In the current example we set b(x, y) = (1 − x2)(1 − y2), and we define
the norms

‖u‖W =
(∫

Ω

b|∇q|2dxdy +
1
2

∫

Ω

|∆b|q2 dxdy
)1/2

, with q = u/b ,

and

‖v‖V =
(∫

Ω

|∆b|v2 dxdy
)1/2

(W and V being defined as the weighted Sobolev spaces of the functions
for which these norms, respectively, are finite). In the present example, how-
ever, the continuity condition (6.3.13) is not verified. Rather we have, by the
Cauchy-Schwarz inequality,

∣∣∣∣
∫

Ω

∆uv dxdy
∣∣∣∣ ≤
(∫

Ω

|∆u|2
|∆b| dxdy

)1/2(∫

Ω

|∆b| v2 dxdy
)1/2

.

Hence, the operator L turns out to be continuous with respect to a stronger
norm than the norm of W . More precisely, if we define ‖u‖W̃ to be the
maximum of the values attained in Ω by any derivative of u of order up
to 2 (mathematically, the Sobolev space W̃ for which such a norm is finite is
denoted by W 2,∞(Ω)), we have

|(Lu, v)| ≤ Ã‖u‖W̃ ‖v‖V for all u ∈ W̃ and v ∈ V ,

with Ã = (
∫

Ω
(1/|∆b|)dxdy)1/2 < +∞. The convergence estimate (6.4.69)

has to be modified into

‖u− uN‖W ≤ C‖u−RNu‖W̃ .

Using this inequality and a suitable projection operator, one gets the estimate
(6.1.17) given in Sect. 6.1. ��

6.5 General Formulation of Spectral Approximations
to Linear Evolution Problems

Our attention now turns to an abstract formulation of spectral approxima-
tions to time-dependent problems. It is based on the same mathematical set-
ting introduced in Sect. 6.3. We will retain the same notation here without
referring repeatedly to Sect. 6.3.

We will analyze semi-discrete approximations only; in particular, the time
variable will not be discretized. Some time-marching methods commonly used
in combination with spectral approximations are discussed in Appendix D;
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an example of analysis of a fully discrete scheme for the heat equation is
given in Sect. 7.5.

Consider the initial-boundary-value problem

ut + Lu = f in Ω × (0,+∞) , (6.5.1)

Bu = 0 on ∂Ωb × (0,+∞) , (6.5.2)

u = u0 in Ω for t = 0 . (6.5.3)

The initial value u0 is a function belonging to the space X, and the right-
hand side f is a continuous function of the variable t with values in X, i.e.,
f(t) ∈ X for each t > 0. A solution for this problem is an X-valued function
u(t) such that u is continuous for all t ≥ 0, du/dt exists and is continuous
for all t > 0, u(0) = u0, u(t) ∈ DB(L) for all t > 0, and (6.5.1) holds for all
t > 0. In compact notation:

u ∈ C1(0,+∞;X) , u(t) ∈ DB(L) , for t > 0 ,

du
dt

(t) + Lu(t) = f(t) for t > 0 ,

u(0) = u0 .

(6.5.4)

We assume that problem (6.5.4) is well posed. For a rigorous definition of
well-posedness and for conditions assuring the well-posedness, we refer, e.g.,
to Hille and Philips (1957) or to Richtmyer (1978), Chap. 16.

Any spectral approximation to the time-independent problem (6.3.3), as
defined in Sect. 6.3, yields in a natural way a semi-discrete spectral approx-
imation to the evolution problem (6.5.4). In the most general setting, the
time-dependent counterpart of (6.3.14) consists of looking for an approxima-
tion uN (t) satisfying

uN ∈ C1([0,+∞);XN ) ,

(
duN

dt
(t), v

)

N

+ aN (uN (t), v) = (f(t), v)N for all v ∈ YN , t > 0 ,

uN (0) = uN
0 , (6.5.5)

where (u, v)N denotes an approximation of the inner product (u, v) in
X and uN

0 is an approximation of u0. Galerkin and G-NI schemes, possibly in-
corporating the weak enforcement of boundary conditions, can be formulated
in this manner.

In the more restricted situation in which XN ⊂ DB(L), the second con-
dition in (6.5.5) can be replaced by
(

duN

dt
(t) + LNuN (t)− f(t), v

)

N

= 0 for all v ∈ YN , t > 0 , (6.5.6)
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which is the time-dependent counterpart of (6.3.20), or by its operational
form

QN

(
duN

dt
(t) + LNuN (t)− f(t)

)
= 0 for all t > 0 , (6.5.7)

which corresponds to (6.3.21).

Galerkin, Collocation, G-NI and Tau Approximations

The formulation (6.5.5) summarizes various spectral approximations to the
evolution problem (6.5.4). In particular, the Galerkin, collocation, G-NI and
tau schemes, that have been defined in Sect. 6.4 for steady problems, apply
in the present situation also. The time-derivative term duN/dt is treated for-
mally in the same way as the right-hand side f . Each of these procedures
transforms (6.5.7) into a system of ordinary differential equations whose un-
knowns are the coefficients of uN (t) with respect to the chosen (modal or
nodal) basis in XN . From a mathematical point of view, each of these methods
is defined by the same choice of the spaces XN and YN , the bilinear and linear
forms aN (u, v) and FN (v) (or the operator LN and the inner product (u, v)N )
made in Sect. 6.4. It is therefore straightforward to extend the material of
that section to the case of time-dependent problems.

6.5.1 Conditions for Stability and Convergence:
The Parabolic Case

In order to discuss questions of stability (in space) and convergence for
spectral approximations to time-dependent problems, we distinguish between
equations of parabolic and hyperbolic type. We start with the parabolic case,
which is characterized by the fact that the operator L is coercive (or weakly
coercive) with respect to a norm that is stronger than the one of X.

As for time-independent problems, the simplest stability condition arises
from an energy inequality. We will assume henceforth that all the hypotheses
made in Sect. 6.3 hold true; in particular we assume that the spatial operator L
satisfies the continuity condition (6.3.7) and the coercivity condition (6.3.6).

We consider first a Galerkin approximation, for which (6.5.5) takes the
form
(

duN

dt
(t), v

)
+ a(uN (t), v) = (f(t), v) for all v ∈ XN , t > 0 . (6.5.8)

Then, taking v = uN (t), we get, for each t > 0,

1
2

d
dt
‖uN (t)‖2 + α‖uN (t)‖2E ≤ (f(t), uN (t)) .
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Now, applying the algebraic inequality ab ≤ (1/4ε)a2 + εb2, with ε = α/2, to
the right-hand side, we can find a constant C depending on α but independent
of N such that we have, for all t > 0,

‖uN (t)‖2 + α

∫ t

0

‖uN (s)‖2E ds ≤ ‖uN
0 ‖2 + C

∫ t

0

‖f(s)‖2ds . (6.5.9)

This proves the stability (in space) of the Galerkin approximation.
Concerning its convergence, let us set e(t) = RNu(t) − uN (t), where RN

is the projection operator introduced in (6.4.6). Then, the error function e(t)
satisfies the inequality

1
2

d
dt
‖e‖2 + α‖e‖2E ≤ |(ut −RNut, e) + a(u−RNu, e)| . (6.5.10)

For any function g ∈ X, we can define the new norm

‖g‖E∗ = sup
v∈E
v �=0

(g, v)
‖v‖E

. (6.5.11)

This is the norm of g in the dual space E∗ of E (see (A.1.c)). Note that
‖g‖E∗ ≤ C‖g‖X , since ‖v‖X ≤ C‖v‖E for all v ∈ E. Then, using the above
definition and the continuity of the operator L (see (6.3.7)), it follows that

|(ut −RNut, e) + a(u−RNu, e)| ≤ C{‖ut −RNut‖E∗ + ‖u−RNu‖E}‖e‖E .

Therefore, for all t > 0 the following error bound can be inferred from (6.5.10):

‖e(t)‖2+ α

∫ t

0

‖e(s)‖2E ds ≤ ‖e(0)‖2

+C

{∫ t

0

‖(ut−RNut)(s)‖2E∗ ds+
∫ t

0

‖(u−RNu)(s)‖2E ds
}

,

(6.5.12)

where C is a constant independent of N .
We conclude that the approximation is convergent if each term on the

right-hand side tends to 0 as N → ∞ for u, ut, and u0 regular enough.
In particular, this is true if the hypothesis (6.4.7) holds uniformly in t for
time-dependent functions u = u(t) and ut = ut(t) in a suitable class. The
approximation results given in Chap. 5 guarantee this property. As discussed
at the end of Sect. 6.1.2, the smoothness of the solution follows from the
smoothness of the initial and boundary data and possibly the fulfillment of
certain compatibility conditions among them.

G-NI approximations, satisfying the assumptions of Sect. 6.4.3 (see in
particular (6.4.43)–(6.4.44) as well as (6.4.47a)–(6.4.47c)), can be analyzed
in a similar manner.
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Example 1. A Fourier Galerkin Method for the Heat Equation. Consider
the one-dimensional heat equation problem

ut − uxx = f , 0 < x < 2π, t > 0 ,

u(x, 0) = u0(x) , 0 < x < 2π ,

u(x, t) 2π-periodic in x for all t ≥ 0 .

(6.5.13)

Its Galerkin approximation consists of looking for a function uN (t) ∈ SN ,
where SN is the space of trigonometric polynomials defined in (5.1.1), that
satisfies

(
uN

t − uN
xx − f, v

)
= 0 for all v ∈ SN , t > 0 , (6.5.14)

and uN (0) = PNu0 (see (2.1.7)). In this case, the operator L = −∂2/∂x2

satisfies the following energy identity:

(Lu, u) = a(u, u) =
∫ 2π

0

|ux|2 dx .

The square root of the right-hand side is just a semi-norm for the space
E = H1

p (0, 2π) (see (A.11.d)). However, using the change of variable uN (t)→
wN (t) = e−tuN (t), (6.5.14) becomes

(
wN

t − wN
xx + wN − etf, v

)
= 0 for all v ∈ SN , t > 0 . (6.5.15)

The new operator L̃ = −∂2/∂x2 + I satisfies the coercivity estimate (6.3.6);
hence, stability and convergence follow by the previous general results. The
trick of the above change of variable is used each time the bilinear form a(u, v)
associated with the operator L is only weakly coercive on E, i.e., it satisfies
the inequality

α|u|2E ≤ a(u, u) for all u ∈ E , (6.5.16)

where |u|E is a seminorm on E such that (‖u‖2 + |u|2E)1/2 = ‖u‖E .
Continuing our analysis, we choose RN = PN in (6.5.10), and we observe

that for all v ∈ H1
p (0, 2π) we have, by (5.1.9),

|(ut−PNut, v)| = |(ut−PNut, v−PNv)| ≤ CN1−m|ut|Hm−2(0,2π)|v|H1(0,2π) ,

where |v|Hs(0,2π) = ‖v(s)‖L2(0,2π) is the seminorm of v of order s. Hence,
‖ut−RNut‖[H1

p(0,2π)]∗ ≤ CN1−m|ut|Hm−2(0,2π). Thus, we obtain the following
error estimate, which holds for all t > 0 and m ≥ 1:

‖u(t)− uN (t)‖L2(0,2π) +
(∫ t

0

‖
(
u− uN

)
(s)‖2H1(0,2π)ds

)1/2

≤ CN1−m

(∫ t

0

|ut(s)|2Hm−2(0,2π)ds +
∫ t

0

|u(s)|2Hm(0,2π)ds
)1/2

. ��
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We consider now tau approximations of problem (6.5.4). The tau method
has been introduced for steady problems in Sect. 6.4.4. When applied to the
evolution problem (6.5.4), it yields the scheme

(
duN

dt
(t) + LuN (t)− f(t), v

)
= 0 for all v ∈ YN , t > 0 . (6.5.17)

Thus, stability can be obtained provided the following inequality holds:

(Lu,QNu) ≥ α‖u‖2E for all u ∈ XN , (6.5.18)

where α is a positive constant, and QN is the orthogonal projection upon YN

in the inner product of X. Indeed, choosing v = QNuN (t) as test function,
for all t > 0, we obtain the following stability result:

‖QNuN (t)‖2 + α

∫ t

0

‖uN (s)‖2E ds ≤ ‖uN
0 ‖2 + C

∫ t

0

‖f(s)‖2 ds . (6.5.19)

Proceeding as done for the Galerkin approximation, the convergence inequal-
ity takes now the form

‖QNe(t)‖2 + α

∫ t

0

‖e(s)‖2E ds ≤ ‖e(0)‖2

+ C

∫ t

0

‖QN (ut −RNut)(s)‖2E∗ ds +
∫ t

0

‖QNL(u−RNu)(s)‖2E∗ ds .

(6.5.20)

This inequality, together with the approximation results of Chap. 5, allows
one to prove the convergence of the scheme.

Example 2. A Legendre Tau Method for the Heat Equation. We consider
the initial-boundary-value problem

ut − uxx = f , −1 < x < 1, t > 0 ,

u(−1, t) = u(1, t) = 0 , t > 0 ,

u(x, 0) = u0(x) , −1 < x < 1 .

The solution uN (x, t) of the Legendre tau approximation of this problem is
for all t ≥ 0 a polynomial of degree N in x, that is zero at x = ±1 and
satisfies for all v ∈ PN−2 the equations

∫ 1

−1

[
uN

t (x, t)− uN
xx(x, t)

]
v(x) dx =

∫ 1

−1

f(x, t)v(x) dx , t > 0 ,

∫ 1

−1

[
uN (x, 0)− u0(x)

]
v(x)dx = 0 . (6.5.21)
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It follows that this scheme conforms to the abstract form (6.5.7) if we set
X = L2(−1, 1), XN = {u ∈ PN |u(−1) = u(1) = 0}, YN = PN−2, LN = L =
−∂2/∂x2, and if the projection QN : L2(−1, 1) → PN−2 is the truncation
PN−2 of the Legendre series.

For all u ∈ XN we have

−
∫ 1

−1

uxxPN−2udx = −
∫ 1

−1

uxxudx =
∫ 1

−1

(ux)2dx .

It follows that the stability condition (6.5.18) is verified with E = H1
0 (−1, 1)

(see (A.11.c)), since ‖u‖E = (
∫ 1

−1
(ux)2dx)1/2 is a norm for this space

(see (A.13)). Hence, the Legendre tau approximation (6.5.21) is stable, and
(6.5.19) gives for all t > 0 the estimate

‖PN−2u
N (t)‖2L2(−1,1) +

∫ t

0

‖uN
x (s)‖2L2(−1,1)ds

≤ ‖u0‖2L2(−1,1) + C

∫ t

0

‖f(s)‖2L2(−1,1)ds .

A bound for the error u− uN can be derived from the estimate (6.5.20).
The operator RN is chosen as the orthogonal projection on XN in the
norm of H1

0 (−1, 1), as defined in (5.4.29). We bound each term on the
right-hand side of (6.5.20). The first term is bounded by the square of
C(‖u0 − PN−2u0‖L2(−1,1) + ‖u0 − RNu0‖L2(−1,1)). Concerning the second
term, we have, for each v ∈ H1

0 (−1, 1),

(PN−2(ut−RNut), v) = (ut −RNut, v)− (ut −RNut, v − PN−2v)

= ((ut−RNut)x, (φ−RNφ)x)−(ut−RNut, v−PN−2v) ,

where φ is the only function in H1
0 (−1, 1) satisfying −φxx = v. Then, using

the approximation results for the operators PN−2 and RN given in (5.4.11)
and (5.4.30), respectively, and recalling (6.5.11), we obtain

‖PN−2(ut −RNut)‖E∗ ≤ CN1−m|ut|Hm−2;N (−1,1) . (6.5.22)

For the last term of (6.5.20) we have, for all v ∈ H1
0 (−1, 1),

(PN−2(u−RNu)xx, v) = −((u−RNu)x, vx)−((u−RNu)xx, v−PN−2v)

= −((u−RNu)x, vx)−(uxx−PN−2uxx, v−PN−2v) .

Here we have used the fact that both PN−2uxx and (RNu)xx are orthogonal
to v − PN−2v. Using the same approximation results as before, we deduce

‖PN−2(u−RNu)xx‖E∗ ≤ CN1−m|u|Hm;N (−1,1) . (6.5.23)
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Combining the previous results we obtain the final error estimate, for all t > 0
and all m ≥ 2,

‖u(t)− PN−2u
N (t)‖L2(−1,1) +

(∫ t

0

∥∥(ux − uN
x

)
(s)
∥∥2

L2(−1,1)
ds
)1/2

≤ CN1−m

(∫ t

0

(
|ut(s)|2Hm−2;N (−1,1) + |u(s)|2Hm;N (−1,1)

)
ds
)1/2

.

(6.5.24)

��
Finally, let us consider collocation approximations to (6.5.4). We recall

that collocation methods for steady problems have been introduced in Sect.
6.4.2. For simplicity, we assume in (6.5.6) that YN = XN , which is the case
when the boundary conditions are of Dirichlet type. Moreover, we assume
that the discrete operator LN satisfies the coercivity inequality

(LNu, u)N ≥ α‖u‖2E for all u ∈ XN . (6.5.25)

The technique already applied to the other spectral schemes yields, for each
t > 0, the stability inequality

‖uN (t)‖2N + α

∫ t

0

‖uN (s)‖2E ds ≤ ‖uN
0 ‖2N + C

∫ t

0

‖f(s)‖2N ds . (6.5.26)

We recall here that the discrete norm ‖u‖N =
√

(u, u)N can be controlled by
C‖u‖X for all u ∈ PolN (Ω), with C independent of N (see Sect. 5.3).

Concerning the convergence of the approximation, the following estimate,
that is the counterpart of estimate (6.4.26) for evolution equations, holds for
all t > 0:

‖e(t)‖2N + 2α
∫ t

0

‖e(s)‖2E ds

≤ ‖e(0)‖2N + C

∫ t

0

‖ut −RNut‖2E∗ ds +
∫ t

0

‖u−RNu‖2E ds

+ C

∫ t

0

(
(RNut, e)− (RNut, e)N

‖e‖E

)2

ds

+
∫ t

0

(
(LRNu, e)− (LNRNu, e)N

‖e‖E

)2

ds

+
∫ t

0

(
(f, e)− (f, e)N

‖e‖E

)2

ds .

(6.5.27)

This estimate can be obtained by adapting to the present situation the proof
of estimate (6.5.20), taking into account the extra errors due to the discrete
inner product.
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Example 3. A Chebyshev Collocation Method for the Heat Equation with
Dirichlet Boundary Conditions. We consider again the scheme presented in
Sect. 1.2.2. This scheme is analyzed in Sect. 6.1.2, where it is actually proven
that the stability condition (6.5.25) holds in this case with E = H1

w,0(−1, 1)
defined in (A.11.b) and ‖u‖E = (

∫ 1

−1
|ux|2w(x) dx)1/2. Moreover, it is claimed

there that the optimal error bound (6.1.10) holds. Indeed, this estimate is an
immediate consequence of the general estimate (6.5.27).

We choose as RNu the orthogonal projection of u upon PN−1 rather
than PN with respect to the inner product of H1

w,0(−1, 1) (see (5.5.17)).
Then the three last terms of (6.5.27) are zero in the current situation, while
the two remaining ones can be handled as in Example 2. ��

6.5.2 Conditions for Stability and Convergence:
The Hyperbolic Case

The energy approach for equations of hyperbolic type takes the following
general form. It is assumed that there exists a Hilbert space E ⊂ X with
norm ‖v‖E such that DB(L) ⊂ E and ‖v‖ ≤ C‖v‖E for all v ∈ E. Moreover,
it is assumed that there exists a constant C̄ > 0 such that

‖Lv‖ ≤ C̄‖v‖E for all v ∈ DB(L) , (6.5.28)

and that the operator L satisfies the nonnegativity property

0 ≤ (Lv, v) for all v ∈ DB(L) . (6.5.29)

Considering discrete approximations, we refer again to the general setting
(6.5.5). Galerkin, G-NI and certain collocation approximations fit into this
scheme with the choice XN = YN , where XN is contained in E. In such cases
the natural discrete counterpart of condition (6.5.29) is

0 ≤ aN (v, v) for all v ∈ XN . (6.5.30)

If this assumption is fulfilled for all N > 0, the approximation scheme (6.5.5)
is stable (in space) in the norm ‖uN‖N associated with the inner product
(u, v)N . Indeed, taking v = uN (t) in (6.5.5) and using the Gronwall lemma
(see (A.15)), we obtain the following estimate:

‖uN (t)‖2N ≤ ‖uN
0 ‖2N + exp(t)

∫ t

0

‖f(s)‖2Nds for all t > 0 . (6.5.31)

In order to study the convergence of the approximation, we suppose that
the discrete and continuous norms are uniformly equivalent on XN , i.e.,

C1‖v‖ ≤ ‖v‖N ≤ C2‖v‖ for all v ∈ XN ,
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with two constants C1 and C2 independent of N . This condition is always
fulfilled in the cases of interest, as has been shown in Chap. 5 (see Sect. 5.3).
Indeed, we recall that (u, v)N does coincide with the inner product (u, v)
in X for Galerkin methods, whereas for G-NI and collocation methods it
takes the usual meaning of the discrete inner product defined by a Gaussian
quadrature formula.

To get a convergence estimate, we set as usual e(t) = RNu(t) − uN (t),
where RN is a suitable projection operator defined as in (6.4.6). The equation
satisfied by the error function e(t) is easily obtained from (6.5.4), which we
write in the equivalent variational form

(
du
dt

(t), v
)

+ a(u(t), v) = (f(t), v) for all v ∈ E, t > 0 ,

and from (6.5.5), in which we write uN = RNu − e. Assumption (6.5.30)
together with the Gronwall lemma, allow us to get a bound for ‖e‖N , that in
turn implies a bound for ‖e‖. Then, by the triangle inequality, ‖u − uN‖ ≤
‖u−RNu‖+ ‖e‖, we obtain the desired convergence estimate, that reads as
follows: for all t > 0,

‖u(t)− uN (t)‖2

≤ C

{
‖u(t)−RNu(t)‖2 + ‖uN

0 −RNu0‖2

+ exp(t)
[∫ t

0

(‖ut −RNut‖2 + ‖u−RNu‖2E) ds

+
∫ t

0

(
(RNut, e)− (RNut, e)N

‖v‖

)2

ds

+
∫ t

0

(
a(RNu, e)−aN (RNu, e)

‖e‖

)2

ds +
∫ t

0

(
(f, e)−(f, e)N

‖e‖

)2

ds

]}
.

(6.5.32)

The three last terms on the right-hand side are absent in a Galerkin ap-
proximation; they originate from the quadrature error in a G-NI method, or,
equivalently, from the aliasing error in a collocation method. Again, the con-
vergence of the methods is guaranteed if each term on the right-hand side of
(6.5.32) vanishes as N → ∞. This can be proven for regular solutions using
the approximation results given in Chap. 5.

It is worth noticing that if the bilinear form aN (u, v) not only satisfies
(6.5.30) but also is coercive with respect to the norm of X, i.e., if there exists
a constant ᾱ > 0 such that ᾱ‖v‖2 ≤ aN (v, v) for all v ∈ XN , then the
exponential term in the estimates (6.5.31) and (6.5.32) can be replaced by
a constant (in time) depending on ᾱ.
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Now we present some examples that illustrate the theory given above.

Example 4. Fourier Galerkin and Collocation Approximations to a Two-
Dimensional Advection Equation. We consider the advection problem in
skew-symmetric form

ut + β · ∇u +∇ · (βu) = 0 , x ∈ Ω = (0, 2π)2, t > 0 ,

u(x, 0) = u0(x) , x ∈ Ω ,

u(x, t) periodic in x , t > 0 .

(6.5.33)

We have set x = (x1, x2), and we assume that β = (β1(x), β2(x)) and u0

are given regular and periodic functions. Denote by k = (k1, k2) any couple
of integers (positive or negative). Then k · x = k1x1 + k2x2 denotes the
Euclidean inner product of R

2. Finally we denote by J the set of multi-
indexes k = (k1, k2) such that −N ≤ k1 ≤ N − 1 for i = 1, 2.

The Fourier Galerkin approximation to u is the function uN (x, t) =∑
k∈J αk(t)eik·x that satisfies the equations

∫

Ω

[uN
t + LuN ](x, t)e−ik·x dx = 0 for k ∈ J, t > 0 ,

αk(0) =
1
2π

∫

Ω

u0(x)e−ik·x dx for k ∈ J .

(6.5.34)

Here Lu = β · ∇u+∇ · (βu) is the linear operator associated to the problem
(6.5.33).

Problem (6.5.34) is a particular case of (6.5.5) corresponding to the choice
XN = YN = span{eik·x,k ∈ J}, (u, v)N = (u, v) =

∫
Ω

u(x)v(x) dx, and
aN (u, v) = a(u, v) = (Lu, v) = (β · ∇u, v)− (u,β · ∇v).

The continuity property (6.5.28) holds, taking as E the space H1
p (Ω),

defined in (A.11.d). Furthermore, we obviously have

(Lu, u) = 0 for all u ∈ H1
p (Ω) ; (6.5.35)

hence, (6.5.5) holds. From (6.5.31), it follows that (6.5.34) is a stable approx-
imation to (6.5.33), namely,

‖uN (t)‖L2(Ω) ≤ ‖PNu0‖L2(Ω) ≤ ‖u0‖L2(Ω) , (6.5.36)

where PN denotes the orthogonal projection from X = L2(Ω) onto XN .
Moreover, taking RNu = PNu, the convergence estimate (6.5.32) gives in the
present situation the following inequality for all t > 0 and m ≥ 1:

‖u(t)− uN (t)‖L2(Ω) (6.5.37)

≤ CN1−m exp
(

t

2

)(∫ t

0

(
|ut(s)|2Hm−1;N (Ω) + |u(s)|2Hm;N (Ω)

)
dt
)1/2

.
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Let us now introduce the 4N2 collocation points xjk = (xj , xk), 0 ≤ j,
k ≤ 2N − 1, with xj = πj/N , and denote by INu ∈ XN the interpolant of u
at these points. The Fourier collocation approximation to u is the function
uN (x, t) =

∑
jk uN (xjk, t)ϕjk(x) (where ϕjk are the characteristic Lagrange

trigonometric polynomials at the collocation points) satisfying the equations
[
uN

t + LNuN
]
(xjk, t) = 0 for t > 0 and 0 ≤ j, k ≤ 2N − 1 ,

uN (xjk, 0) = u0(xjk) for 0 ≤ j, k ≤ 2N − 1 . (6.5.38)

Here LNu = β ·∇u+∇·IN (βu) for all u ∈ XN ; it represents the interpolation
approximation of Lu (see Sect. 2.1.3). This scheme can be written in the
general form (6.5.5) by setting

(u, v)N =
( π

N

)2 ∑

0≤j, k≤2N−1

u(xjk)v(xjk)

(note that (u, v)N = (u, v) for all u, v ∈ XN , due to (2.1.33)) and

aN (u, v) = (LNu, v)N = (β · ∇u, v)N − (u,β · ∇v)N ,

which immediately implies aN (v, v) = 0 for all v ∈ XN . This proves that the
collocation scheme is quadratically conservative, as discussed in Sect. 4.5.
Moreover, since ‖v‖2N ≡ (v, v)N = ‖v‖2L2(Ω) for all v ∈ XN , the stability
estimate (6.5.31) gives

‖uN (t)‖L2(Ω) ≤ ‖INu0‖L2(Ω) ≤ max
x∈Ω
|u0(x)| .

Furthermore, the same convergence estimate as (6.5.37) can be proven for the
Fourier collocation solution, taking now RNu = INu in (6.5.32) and using
the approximation properties of this operator (see Sect. 5.1.3).

The stability and convergence analysis for the approximation schemes
(6.5.34) and (6.5.38) has been given first by Pasciak (1980). ��
Example 5. G-NI Approximations to a One-Dimensional Advection-Reaction
Equation in the Interval (−1, 1). We consider the one-dimensional, variable-
coefficient advection-reaction problem

ut + (βu)x + γu = f , −1 < x < 1, t > 0 ,

u(x, 0) = u0(x) , −1 < x < 1 ,
(6.5.39)

where β and γ are given smooth functions in [−1, 1]; for simplicity, we as-
sume them independent of t, although the subsequent analysis can be easily
adapted to the most general case. The boundary conditions for this prob-
lem must be prescribed at those points of the boundary where the flux,
F(u) = βu, is entering. Precisely, we introduce the sets B± = {xb ∈
{−1, 1} | ± β(xb)nb > 0}, with nb = xb. The set B− (B+, resp.) is the
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inflow (outflow , resp.) boundary of the domain (−1, 1). Then, we prescribe
the value of u at the inflow:

u(xb) = 0 at all xb ∈ B− . (6.5.40)

This example generalizes the initial-boundary-value problem (3.7.1) consid-
ered in Sect. 3.7.

We set Lu = (βu)x + γu, X = L2(−1, 1) and E = H1(−1, 1); then,
DB(L) = {v ∈ E | v satisfies (6.5.40) }, and (6.5.28) is easily checked. On the
other hand, the following skew-symmetric decomposition of the advection
term,

(βu)x = 1
2βux + 1

2βxu + 1
2 (βu)x ,

implies, after integrating by parts, the relation

(Lu, v) = 1
2 (βux, v)− 1

2 (u, βvx) +
((

1
2βx + γ

)
u, v
)

+ 1
2

∑

xb∈{−1,1}
β(xb)nbu(xb)v(xb) for all u, v ∈ E .

(6.5.41)

Thus, taking u = v ∈ DB(L), we get

(Lv, v) =
∫ 1

−1

(
1
2βx + γ

)
v2 dx + 1

2

∑

xb∈B+

β(xb)nbv
2(xb) .

The second term on the right-hand side is nonnegative by definition of B+;
thus, (6.5.29) is satisfied provided we assume that

1
2βx + γ ≥ 0 in (−1, 1) . (6.5.42)

(Note that, since βx and γ are bounded by assumption, this condition is al-
ways fulfilled after applying the change of dependent variable, u(t)→ w(t) =
e−ctu(t), for a suitable c > 0.)

In view of the numerical approximations, it is convenient to introduce the
bilinear form on E:

a(u, v) = 1
2 (βux, v)− 1

2 (u, βvx) +
((

1
2βx + γ

)
u, v
)

+ 1
2

∑

xb∈B+

β(xb)nbu(xb)v(xb) ,
(6.5.43)

so that
(Lu, v) = a(u, v) + 1

2

∑

xb∈B−

β(xb)nbu(xb)v(xb) (6.5.44)

and
(Lu, v) = a(u, v) if u or v belong to DB(L) . (6.5.45)
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Let us introduce the discrete inner product (u, v)N built by the quadrature
formula that uses the N -degree Legendre Gauss-Lobatto points introduced
in Sect. 2.2.3. A first G-NI method is obtained by enforcing the boundary
conditions exactly, i.e., by choosing XN = {v ∈ PN | v satisfies (6.5.40) }, and
by approximating the bilinear form a(u, v) as follows. For all u, v ∈ XN , we
set

aN (u, v) = 1
2 (βux, v)N − 1

2 (u, βvx)N +
((

1
2βx + γ

)
u, v
)
N

+ 1
2

∑

xb∈B+

β(xb)nbu(xb)v(xb) .
(6.5.46)

Taking u = v and using again (6.5.42), we immediately see that (6.5.30) is
fulfilled. Thus, the G-NI scheme: find uN (t) ∈ XN such that

(uN
t (t), v)N + aN (uN (t), v) = (f(t), v)N for all v ∈ XN , t > 0 ,

uN (0) = uN
0 = INu0 , (6.5.47)

is stable, i.e., it satisfies (6.5.31). This G-NI scheme is a particular collocation
scheme at the interior Legendre Gauss-Lobatto points and at the boundary
points not belonging to B−. Precisely, taking as v in (6.5.47) the characteristic
Lagrange polynomials centered at any of these points and counter-integrating
by parts, we immediately obtain that the condition

uN
t + 1

2βu
N
x + 1

2

(
IN

(
βuN

))
x

+
(

1
2βx + γ

)
uN = f (6.5.48)

holds therein. Note that the exact derivative (βuN )x has been approximated
by the interpolation derivative (IN (βuN ))x as discussed in Sect. 2.3.2.

An alternative approach, which has already been considered in Sect. 3.7
and which can be easily extended to more general situations, consists of
enforcing the boundary conditions in a weak manner. In order to better un-
derstand such a treatment, here we extend (6.5.40) to the nonhomogeneous
case, i.e., we assume that the boundary conditions are

u(xb) = ub at all xb ∈ B− . (6.5.49)

Now we set XN = PN , which in particular implies that we do not require
the G-NI solution uN (t) to satisfy exactly these conditions. The expression
of (Lu, v) given by (6.5.44) is approximated by

(Lu, v) � aN (u, v) + 1
2

∑

xb∈B−

β(xb)nbubv(xb) , (6.5.50)

where aN (u, v) is still given by (6.5.46), and we have incorporated the condi-
tions (6.5.49) in the boundary term on B−. The resulting G-NI scheme with



390 6. Theory of Stability and Convergence

weak imposition of the boundary conditions is as follows: find uN (t) ∈ PN

such that

(uN
t (t), v)N + aN (uN (t), v) = (f(t), v)N + 1

2

∑

xb∈B−

|β(xb)nb|ubv(xb)

for all v ∈ PN , t > 0 ,

uN (0) = uN
0 = INu0 . (6.5.51)

Obviously, (6.5.30) is still satisfied with the present choice of XN ; hence,
(6.5.31) holds (in the homogeneous case ub = 0). The scheme has the follow-
ing interpretation: at the interior Legendre Gauss-Lobatto points and at the
boundary points not belonging to B−, we still have (6.5.48), whereas at the
inflow boundary points we have

uN
t + 1

2βu
N
x + 1

2 (IN (βuN ))x +
(

1
2βx + γ

)
uN − f

+ 1
2wb
|β(xb)nb|

(
uN (xb)− ub

)
= 0 ,

(6.5.52)

where wb is the Legendre Gauss-Lobatto weight associated with the point xb.
As already noted in Sect. 3.7, since 1/wb ∼ cN2 as N →∞, eq. (6.5.52) shows
that the boundary condition is indeed enforced by a penalty method.

Finally, the convergence analysis of both G-NI schemes closely follows the
steps presented in Example 5 of Sect. 6.4.2, to which we refer for more details.
Denoting again by N̄ the largest integer ≤ N/2, it is convenient to choose as
RNu a polynomial in PN̄ matching the boundary values of u and satisfying

‖u−RNu‖Hk(−1,1) ≤ CNk−m|u|Hm;N (−1,1) , 0 ≤ k ≤ 1 ≤ m . (6.5.53)

Such an approximation can be built as indicated in Sect. 5.4.2. With this defi-
nition of RNu, we can apply the abstract estimate (6.5.32). Note that we have
‖ut−RNut‖ ≤ CN1−m|ut|Hm−1;N (−1,1), whereas (RNut, v)−(RNut, v)N = 0
for all v ∈ PN due to the exactness of the quadrature rule. The error
a(RNu, v) − aN (RNu, v) can be estimated as indicated in the Example 5
cited above, i.e., by interlacing an approximation of each coefficient, β,
βx or γ, in PN̄ with optimal convergence properties in L∞. In bounding
the error (βRNu, vx) − (βRNu, vx)N , we make use of the inverse inequal-
ity ‖vx‖ ≤ CN2‖v‖ for all v ∈ PN (see Sect. 5.4.1). Finally, the error
(f, v)− (f, v)N can be estimated by (5.5.29).

The convergence result is as follows. Let us assume that, for all t ≥ 0,
u ∈ Hm(−1, 1) and ut ∈ Hm−1(−1, 1); furthermore, let us assume that
β ∈ W τ,∞(−1, 1), γ ∈ Wϑ,∞(−1, 1) and f ∈ Hµ(−1, 1). Then, for both
versions of the G-NI scheme considered in the present Example, the following
error bound holds, for all t > 0:
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‖u(t)− uN (t)‖ ≤ C1N
−m
(
|u(t)|Hm;N̄ (−1,1) + |u0|Hm;N̄ (−1,1)

)

+ exp
(

t

2

)[
C2N

1−m

(∫ t

0

(|u(s)|2
Hm;N̄ (−1,1)

+ |ut(s)|2Hm−1;N̄ (−1,1)
) ds
)1/2

+ C2N
2−τ |β|W τ,∞;N̄ (−1,1)

(∫ t

0

(‖u(s)‖2H1(−1,1)) ds
)1/2

+ C3N
−ϑ|γ|Wϑ,∞;N̄ (−1,1)

(∫ t

0

(‖u(s)‖2L2(−1,1)) ds
)1/2

+C4N
−µ

(∫ t

0

|f(s)|2Hµ;N−1(−1,1) ds
)1/2

]
. (6.5.54)

��
Example 6. A Chebyshev Collocation Approximation to a One-Dimensional
Advection-Reaction Equation in the Interval (−1, 1). We consider here the
same boundary-value problem as in the previous example, but we focus on
Chebyshev collocation approximations.

At first, let us assume that B− = {−1}, i.e., the only inflow boundary
point is xb = −1. A Chebyshev collocation approximation can be defined as
follows. Let

xj = cos
(
−π +

2πj
2N + 1

)
, 0 ≤ j ≤ N ,

w0 =
π

2N + 1
, wj = 2w0, 1 ≤ j ≤ N ,

(6.5.55)

be, respectively, the nodes and the weights of the Chebyshev Gauss-Radau
quadrature formula having as prescribed boundary node x0 = −1 (see
(2.4.13), where the prescribed node is x = 1 instead). For all t ≥ 0, the
collocation approximation to u is the polynomial uN (t) ∈ PN satisfying

[uN
t + LNuN ](xj , t) = f(xj , t) , 1 ≤ j ≤ N, t > 0 ,

uN (xj , 0) = u0(xj) , 0 ≤ j ≤ N,

uN (x0, t) = 0 , t > 0 .

(6.5.56)

Here, LNuN = 1
2{βuN

x + [IN (βuN )]x} + [12 (INβ)x + γ]uN is the skew-
symmetric interpolation decomposition of LuN , since IN denotes the inter-
polation operator with respect to the nodes {xj}. We set XN = {u ∈ PN |
u(−1) = 0} and YN = XN . Moreover, we define a discrete inner product as
follows:

(u, v)N =
N∑

j=0

u(xj)v(xj)w̃j , w̃j = (1− x)wj . (6.5.57)
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Then (6.5.56) can be equivalently written in the form (6.5.6) taking uN
0 =

INu0. The stability and convergence analysis can be carried out according to
the theory of this section, setting

X = L2
w̃(−1, 1) , where w̃(x) = (1− x)

1√
1− x2

=
(

1− x

1 + x

)1/2

. (6.5.58)

The details of the analysis can be found in Canuto and Quarteroni (1982b).
For the other inflow conditions, B− = {+1}, or B− = {±1}, or B− = ∅,

the collocation scheme is still defined as in (6.5.56) with the appropriate
changes in the last equation. The collocation points are the nodes of the
Chebyshev Gauss quadrature formula including those boundary points where
boundary conditions are given. In the analysis, the weight w̃(x) becomes
w̃(x) = ε(x)(1/

√
1− x2), where ε(x) is (1+x), or 1, or (1−x2), respectively.

The same kind of stability and convergence results can be proven. ��

Going back to the general theory, we finally consider tau methods. They
usually assume that XN ⊂ DB(L) and YN 	= XN . We set (u, v)N = (u, v)
and aN (u, v) = (Lu, v) in (6.5.5), or, equivalently, LN = L in (6.5.6). The
discrete counterpart of condition (6.5.29) is now

0 ≤ (Lv,QNv) for all v ∈ XN , (6.5.59)

where QN denotes the orthogonal projection upon YN in the inner product
of X. Taking v = QNuN (t) in (6.5.6) and using again the Gronwall lemma
(see (A.15)), we obtain the following stability estimate:

‖QNuN (t)‖2 ≤ ‖uN
0 ‖2 + exp(t)

∫ t

0

‖f(s)‖2ds for all t > 0 . (6.5.60)

If we introduce a suitable approximation operator RN in XN , and we apply
this bound to the error e(t) = RNu(t) − uN (t), we obtain a convergence
estimate, that for tau methods reads as follows. For all t > 0,

‖u(t)−QNuN (t)‖2

≤ 2‖u(t)−QNRNu(t)‖2 + 2‖QN (uN
0 −RNu0)‖2

+ C exp(t)
∫ t

0

(‖(ut −RNut)(s)‖2 + ‖(u−RNu)(s)‖2E)ds .

(6.5.61)

Again, the exponential on the right-hand sides of (6.5.60) and (6.5.61) can be
dropped if (6.5.59) is replaced by the stronger condition ᾱ‖v‖2 ≤ (Lv,QNv)
for all v ∈ XN , for a suitable constant ᾱ > 0.
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The following examples serve as an illustration of this theory.

Example 7. A Legendre Tau Method for the Equation ut + ux = f . We
consider the initial-boundary-value problem

ut + ux = f , −1 < x < 1, t > 0 ,

u(−1, t) = 0 , t > 0 ,

u(x, 0) = u0(x) , −1 < x < 1 .

(6.5.62)

As usual, let Lk(x) denote the k-th Legendre polynomial. The Legendre tau
approximate solution, uN (x, t) =

∑N
k=0 αk(t)Lk(x), to this problem is defined

by the set of equations
∫ 1

−1

[
uN

t + uN
x

]
(x, t)Lk(x) dx =

∫ 1

−1

f(x, t)Lk(x) dx

for k = 0, . . . , N − 1, t > 0 ,
N∑

k=0

(−1)kαk(t) = 0 , t > 0 ,

αk(0) =
(
k + 1

2

) ∫ 1

−1

u0(x)Lk(x) dx , k = 0, . . . , N − 1 .

(6.5.63)

This scheme fits into the general formulation (6.5.6) provided one sets
X = L2(−1, 1), XN = {u ∈ PN | u(−1) = 0}, YN = PN−1, LN = L = ∂/∂x

and (u, v)N = (u, v) =
∫ 1

−1
u(x)v(x) dx. The projection QN is the orthogonal

projection PN−1 over the space of polynomials of degree up to N − 1 with
respect to this inner product (see (2.2.6)). The continuity condition (6.5.28)
holds with E = H1(−1, 1) (this space is defined in (A.11.a). Moreover, if
v ∈ DB(L), one has ∫ 1

−1

vxv dx = 1
2v

2(1) ,

which proves (6.5.29). On the other hand, if v ∈ XN , then vx is a polynomial
of degree ≤ N − 1; hence, again

∫ 1

−1

vxPN−1v dx =
∫ 1

−1

vxv dx = 1
2v

2(1) ,

and (6.5.59) is satisfied. It follows that the scheme is stable, namely, for all
t > 0, (6.5.60) yields the estimate

‖PN−1u
N (t)‖2L2(−1,1) ≤ ‖u0‖2L2(−1,1) +exp(t)

∫ t

0

‖f(s)‖2L2(−1,1)ds . (6.5.64)

We apply now the general convergence estimate (6.5.61) to the present sit-
uation. It is convenient to choose RNu as the best approximation of u in



394 6. Theory of Stability and Convergence

XN−1 ⊂ XN with respect to the norm of E = H1(−1, 1). In this case
QNRNu = RNu. It is possible to prove an error estimate for RN similar
to (5.4.30), namely,

‖u−RNu‖Hk(−1,1) ≤ CNk−m|u|Hm;N (−1,1) , k = 0 or 1 and m ≥ 1 .

(6.5.65)

Noting that QN (uN
0 −RNu0) = PN−1u0−RNu0, using (6.5.65) and (5.4.11)

we obtain from (6.5.61) that

‖u(t)− PN−1u
N (t)‖L2(−1,1) (6.5.66)

≤ CN1−m exp
(

t

2

)[∫ t

0

(
|ut(s)|2Hm−1;N (−1,1) + |u(s)|2Hm;N (−1,1)

)
ds
]1/2

,

which holds for all t > 0 and m ≥ 1. We have bounded |u0|Hm−1;N (−1,1) and
|u(t)|Hm−1;N (−1,1) by the last integral on the right-hand side of the previous
inequality. This is allowed by classical results of functional analysis (see, e.g.,
Lions and Magenes (1972)).

The stability and convergence analysis for the scheme (6.5.63) can be also
carried out using a test function different from QNuN (or QNe). Indeed, take
v(t) = (uN (t))/b as test function in (6.5.6) with b(x) = 1+x and define a new
inner product [u, v] =

∫ 1

−1
u(x)v(x)(dx/b(x)). Then, setting |||v||| = [v, v]1/2,

we have

1
2

d
dt
|||uN (t)|||2 + [uN

x (t), uN (t)] = [f(t), uN (t)], t > 0 .

Integrating by parts, we have

[
uN

x , uN
]

=
1
2

∫ 1

−1

v2 dx + v2(1) .

Moreover,

[
f, uN

]
=
∫ 1

−1

fv dx ≤ ‖f‖L2(−1,1)‖v‖L2(−1,1) ≤ 1
2‖f‖

2
L2(−1,1)+

1
2‖v‖

2
L2(−1,1) .

On the other hand, it is evident that |||uN (t)|||2 ≥ 1
2‖uN (t)‖2L2(−1,1). Therefore,

integrating in time we obtain

‖uN (t)‖2L2(−1,1) ≤ ‖uN
0 ‖2L2(−1,1) +

∫ 1

0

‖f(s)‖2L2(−1,1) ds, t > 0 . (6.5.67)

We stress that with this new stability estimate all frequencies of the solu-
tion uN are controlled. Moreover, the bound on the right-hand side of (6.5.67)
does not blow up in time, unlike the one in (6.5.64). Concerning convergence,
by the usual argument, one can obtain the following error estimate:
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‖u(t)− uN (t)‖L2(−1,1)

≤ CN1−m

{∫ t

0

(|ut(s)|2Hm−1;N (−1,1) + |u(s)|2Hm;N (−1,1) ds
}1/2

,

(6.5.68)

which improves (6.5.66). ��

Example 8. A Chebyshev Tau Method for the Equation ut − xux = f . We
consider the initial-boundary-value problem

ut + xux = f , −1 < x < 1, t > 0 ,

u(−1, t) = u(1, t) = 0 , t > 0 ,

u(x, 0) = u0(x) , −1 < x < 1 .

(6.5.69)

The Chebyshev tau solution uN (x, t) =
∑N

k=0 αk(t)Tk(x) of this problem is
defined by the conditions
∫ 1

−1

[
uN

t (x, t)− xuN
x (x, t)

]
Tk(x)w(x) dx =

∫ 1

−1

f(x, t)Tk(x)w(x) dx ,

k = 0, . . . , N − 2, and t > 0 ,

N∑

k=0

(−1)kαk(t) =
N∑

k=0

αk(t) = 0 , t > 0 ,

αk(0) =
2

ckπ

∫ 1

−1

u0(x)Tk(x)w(x) dx , k = 0, . . . , N − 2 . (6.5.70)

Here Tk(x) is the k-th Chebyshev polynomial, w(x) = (1 − x2)−1/2 is the
Chebyshev weight, and the ck’s are defined in (2.4.10).

Problem (6.5.70) can be expressed in the form (6.5.6) by setting X =
L2

w(−1, 1), XN = {u ∈ PN | u(−1) = u(1) = 0}, YN = PN−2, LN =
L = −x(∂/∂x) and (u, v)N = (u, v)w =

∫ 1

−1
u(x)v(x)w(x) dx. The projection

operator QN is the orthogonal projection operator PN−2 over PN−2 with
respect to the Chebyshev inner product (u, v)w.

The positivity condition (6.5.59) takes the form

−
∫ 1

−1

xuxPN−2uw dx ≥ 0 for all u ∈ XN .

It is satisfied in the current example since one has

−
∫ 1

−1

xuxPN−2uw dx =
∫ 1

−1

xux(u− PN−2u)w dx +
1
2

∫ 1

−1

u2(xw)x dx .



396 6. Theory of Stability and Convergence

The last term is positive since xw(x) is an increasing function. The other
term, using (2.4.4) and (2.4.22), equals 1

2Nû2
N + 1

2 (N−1)û2
N−1 (where ûN and

ûN−1 denote the two last Chebyshev coefficients of u); hence, it is positive.
The convergence analysis follows along the guidelines of the previous example.

A different approach consists of choosing v = u/b, where b(x) = 1 − x2,
as a test function. A straightforward calculation reveals that

(Lu, v)w = −
∫ 1

−1

xuxvw dx

=
1
2

∫ 1

−1

v2 1
w

dx +
3
2

∫ 1

−1

v2x2w dx

≥ 1
2

∫ 1

−1

u2w dx +
3
2

∫ 1

−1

v2x2w dx .

(6.5.71)

Then, proceeding as in the previous example, stability and convergence in-
equalities like (6.5.67) and (6.5.68) can be proven, relative to the weighted
Chebyshev norms. ��

6.6 The Error Equation

It has been shown in Sects. 6.3 and 6.5 that many spectral schemes are defined
through a projection of the differential equation onto a finite-dimensional
space of polynomials. For these schemes, the spectral solution is characterized
by a set of weighted residual, or weak, equations (see (6.3.20) and (6.5.6)).

It is also useful to characterize a spectral solution as the exact solution of
a suitable differential problem. This problem is of the same type as the origi-
nal problem to be discretized. It only differs in a forcing term that takes into
account the error committed by the spectral projection. The new differential
equation is called the error equation of the method.

The error equation can be exploited in deriving the stability and conver-
gence properties of spectral schemes. It was first used for this purpose by
M. Dubiner and by Gottlieb and Orszag (1977). Since the spectral solution
satisfies the error equation pointwise over the whole domain, it is also possible
to deduce from it local information on the qualitative behavior of the solution,
as opposed to the global information produced by variational methods. On
the other hand, the analysis based on the error equation is usually confined
to simple model problems, such as constant-coefficient problems.

For brevity, our discussion of the error equation will be limited to evo-
lution problems only. However, a similar discussion could be carried out for
steady or eigenvalue problems as well. In what follows, we refer for both
notation and hypotheses to the abstract formulation of spectral approxima-
tions for evolution problems, given in Sect. 6.5 (see (6.5.7)), that extends the
steady-state situation described in Sect. 6.3 (see (6.3.21)).
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In particular, we recall that for all t > 0, the spectral solution uN (t)
belongs to a finite-dimensional space XN and that the spectral operator LN

maps XN into a space Z that is either a space of square-integrable functions
or a space of continuous functions on the domain Ω. We have assumed that
XN ⊂ Z and the data f(t) ∈ Z for all t > 0. Hence, uN

t + LNuN − f is
an element of Z for all t ≥ 0. By definition, QN (uN

t + LNuN − f) = 0 (see
(6.5.7)), where QN is a projection upon a finite-dimensional space YN .

The error equation arises from the trivial decomposition

w = QNw + Q∗
Nw for all w ∈ Z ,

where
Q∗

Nw = w −QNw .

Taking into account (6.5.7), one has

uN
t + LNuN − f = Q∗

N

(
uN

t + LNuN − f
)

, (6.6.1)

or equivalently,

uN
t + LNuN = Q∗

N

(
uN

t + LNuN
)

+ QNf . (6.6.2)

This is precisely the error equation. The right-hand side of (6.6.1) represents
the error generated pointwise by the spectral approximation scheme. It is
precisely from the analysis of this error that one can infer information about
the spectral solution. In all the relevant schemes, the space Z contains the
space PolN (Ω) of the polynomials of degree N , introduced at the beginning
of Sect. 6.4. Thus, we make here the assumptions that XN and YN are con-
tained in PolN (Ω) and that the spectral operator LN actually maps XN

into PolN (Ω) ⊂ Z. The last assumption is certainly true if LN has constant
coefficients.

Under these hypotheses, Q∗
N (uN

t +LNuN ) is a polynomial in PolN (Ω) for
all t > 0. Hence, it can be expanded according to any basis {φk | k ∈ J}, in
PolN (Ω), as

Q∗
N

(
uN

t + LNuN
)

=
∑

k∈J

τk(t)φk , t ≥ 0 . (6.6.3)

This expression takes a simplified form in some relevant cases.

Full Fourier Approximations

If the boundary conditions are all periodic, PolN (Ω) is a space of trigono-
metric polynomials, and XN = YN = PolN (Ω). Thus, Q∗

Nv = 0 for all
v ∈ PolN (Ω), and the error equation becomes

uN
t + LNuN = QNf . (6.6.4)
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As a simple example, let us consider the Fourier Galerkin approximation to
the heat equation that has been presented in Example 1 of Sect. 6.5. In this
case the spectral solution uN satisfies the following error equation:

uN
t − uN

xx = PNf , 0 < x < 2π, t > 0 ,

where PNf is the truncation of order N of the Fourier series of f (see (2.1.7)).
For a collocation approximation to the same heat problem (6.5.13), the error
equation satisfied by the spectral solution uN would be

uN
t − uN

xx = INf , 0 < x < 2π, t > 0 ,

where now INf is the interpolant of f at the collocation points (see (2.1.28)).

Collocation and Tau Methods
for Nonperiodic Boundary Conditions

For collocation methods, the natural basis in PolN (Ω) is the nodal La-
grange basis associated to the collocation points, that has been introduced in
(6.4.12). This basis is orthogonal with respect to the inner product (u, v)N .
On the other hand, in tau methods, PolN (Ω) is represented in terms of the
modal orthogonal basis with respect to the inner product (u, v) of X.

Note that for all v ∈ PolN (Ω), Q∗
Nv is orthogonal to any polynomial in YN

in the inner product (u, v)N . This follows from the definition of Q∗
Nv. Hence

Q∗
Nv has no components along the elements in YN . In particular, (6.6.3)

becomes
Q∗

N

(
uN

t + LNuN
)

=
∑

k∈Jb

τk(t)φk , t ≥ 0 . (6.6.5)

This expansion, recalling the definition of the set Jb, shows that the error on
the left-hand side of (6.6.5) arises from the process by which the boundary
conditions are taken into account in the spectral scheme.

An explicit representation of the coefficients τk(t) can be derived from
(6.6.2) using the orthogonality of the basis functions in PolN (Ω). One imme-
diately has, for all t > 0,

τk(t) =
1

(φk, φk)N

(
d
dt

(uN , φk)N + (LNuN , φk)N

)
for all k ∈ Jb .

As an example, consider Chebyshev approximations to the heat equation
problem

ut − uxx = f , −1 < x < 1, t > 0 ,

u(−1, t) = u(1, t) = 0 , t > 0 ,

u(x, 0) = u0(x) , −1 < x < 1 .

(6.6.6)
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The error equation pertaining to the Chebyshev tau approximation of (6.6.6)
is

uN
t − uN

xx = τN (t)TN + τN−1(t)TN−1 + PN−2f . (6.6.7)

Here τk(t) = dak/dt for k = N,N − 1, where ak(t) are the Chebyshev coef-
ficients of the expansion of uN , and PN−2f is the truncation of order N − 2
of the Chebyshev series of f (see (2.2.16)).

The collocation approximation to (6.6.6) has the form

uN
t − uN

xx = {τ0(t)(1 + x) + τN (t)(1− x)}T ′
N + INf , (6.6.8)

where

τ0(t) =
2

N2
uN

t (1, t)− uN
xx(1, t),

τN (t) = (−1)N 2
N2

uN
t (−1, t)− uN

xx(−1, t) ,

and INf is the interpolant of f at the Chebyshev collocation points.
The error equation has been extensively used to derive stability estimates

for constant-coefficient equations in the 1977 monograph by Gottlieb and
Orszag (see Sects. 7 and 8) and in several subsequent papers by Gottlieb and
coworkers. In this book, examples of analysis based on the error equation are
reported in Sect. 7.2, where the stability in the maximum norm for solutions
of singular perturbation problems is investigated, and in Sect. 7.6.2, where
the tau method for the equation ut + ux = 0 is considered.



7. Analysis of Model Boundary-Value
Problems

In this chapter, we apply the techniques for the theoretical analysis of spectral
approximations to some differential operators and differential equations that
are representative building blocks of the mathematical modelling in contin-
uum mechanics. We first study the Poisson equation, followed by singularly
perturbed elliptic equations that model advection-diffusion and reaction-
diffusion processes featuring sharp boundary layers. Subsequently, we develop
an eigenvalue analysis for several matrices produced by spectral approxima-
tions to diffusion, advection-diffusion and pure advection problems. We ex-
tend our analysis to the closely related study of the low-order preconditioning
of spectral matrices.

In the second part of the chapter, we analyze time-dependent problems.
At first we consider the heat equation, and we provide an example of anal-
ysis for a fully discrete (in space and time) scheme. Linear scalar hyperbolic
equations are analysed next, with a particular emphasis on the issues of spa-
tial stability and the resolution of the Gibbs phenomenon for discontinuous
solutions through filtering, singularity detection and spectral reconstruction
techniques.

Finally, we provide theoretical results for spectral approximations to non-
linear problems. We describe the mathematical foundation of the spectral
viscosity method for scalar conservation laws, and we detail the analysis of
the approximation of a non-singular branch of solutions for the steady Burg-
ers equation.

7.1 The Poisson Equation

Numerous spectral algorithms for the numerical simulation of physical phe-
nomena require the approximate solution of one or more Poisson equations
of the type

−∆u = f (7.1.1)

in a bounded domain Ω ⊂ R
d (d = 1, 2, 3). Here ∆ =

∑d
i=1 ∂2/∂x2

i denotes
the Laplace operator in d space variables, u is the unknown function, and f
is the given data.



402 7. Analysis of Model Boundary-Value Problems

Among the boundary conditions that are more commonly associated to
the Poisson equation (7.1.1) are homogeneous Dirichlet conditions

u = 0 on ∂Ω . (7.1.2)

As usual in spectral methods, we assume that the computational domain is
the Cartesian product of d copies of the interval (−1, 1), i.e., Ω = (−1, 1)d.

In Chap. 6 we discussed from a general point of view conditions which
guarantee the convergence of spectral approximations to boundary-value
problems. These conditions concern on the one hand the properties of approx-
imation of the space of polynomials chosen to represent the discrete solution,
and on the other hand the fulfillment of suitable properties of coercivity by
the differential operator and by its spectral approximation.

Several examples have been given in Chap. 6 to illustrate the application
of the theory to specific problems. Some of those pertained to the Poisson
equation with Dirichlet boundary conditions, in one or more space dimen-
sions.

Hereafter, we collect the most relevant theoretical facts about the Laplace
operator submitted to homogeneous Dirichlet boundary conditions, and
about its approximations of spectral type. We show that the coercivity con-
ditions of Chap. 6 are fulfilled with a natural choice of the norms.

Nonperiodic boundary-value problems are usually approximated by Leg-
endre or Chebyshev methods. From a theoretical point of view, the analysis
of Chebyshev methods is more involved, due to the presence of the singular
weight. Thus, it is convenient to treat separately Legendre and Chebyshev
methods.

7.1.1 Legendre Methods

The natural norms in which to set the analysis of these methods are the
norms of the standard (non-weighted) Sobolev spaces Hm(Ω) (see (A.11.a)).
A central role is played by the Hilbert space H1

0 (Ω), defined in (A.11.c).
The operator L = −∆ is a linear unbounded operator in L2(Ω) (see

(A.3)). Supplemented with homogeneous Dirichlet boundary conditions, its
domain of definition is the dense subspace DB(L) = {v ∈ H2(Ω) : v|∂Ω = 0}.
If u ∈ DB(L) and v ∈ H1

0 (Ω), integration-by-parts yields

−
∫

Ω

∆uv dx =
∫

Ω

∇u · ∇v dx . (7.1.3)

The right-hand side, which defines a symmetric bilinear form a(u, v), is pre-
cisely the inner product of the Hilbert space H1

0 (Ω) (see (A.11.c)). It follows
that the coercivity and continuity assumptions (6.3.6) and (6.3.7) are satisfied
with the choice E = H1

0 (Ω).
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Using (7.1.3) the following weak (or variational) formulation of the
boundary-value problem (7.1.1)–(7.1.2) is obtained: one looks for a function
u ∈ H1

0 (Ω) such that
∫

Ω

∇u · ∇v dx =
∫

Ω

fv dx for all v ∈ H1
0 (Ω) . (7.1.4)

Here, we have assumed f ∈ L2(Ω). More general data f ∈ H−1(Ω) (the dual
space of H1

0 (Ω), (see (A.11.c)) is allowed, in which case the right-hand side has
to be replaced by the duality pairing 〈f, v〉 between H−1(Ω) and H1

0 (Ω). By
the Riesz representation theorem (see (A.1.d)), there exists a unique solution
of problem (7.1.4). If f ∈ L2(Ω), then one can prove that the second deriva-
tives of u are square integrable in Ω. Hence, we conclude that u ∈ DB(L).

Now we turn to the numerical approximations. Since the coercivity as-
sumption (6.4.3) is fulfilled, it follows that the Legendre Galerkin method for
(7.1.1)–(7.1.2) is stable (hence, convergent) in the H1

0 (Ω)-norm, or equiva-
lently, in the H1(Ω)-norm. The same conclusion holds for the G-NI method
based on the Gauss-Lobatto points (2.3.12) in each space direction. It has
been already observed that such a method, when applied with full Dirich-
let boundary conditions, coincides with the Legendre collocation method. To
study its stability, let us consider the discrete inner product

(u, v)N =
∑

j∈J

u(xj)v(xj)wj , (7.1.5)

where {xj | j ∈ J} denotes the tensor product of the one-dimensional Gauss-
Lobatto points and {wj | j ∈ J} are the corresponding weights. Then if u ∈
PN (Ω) and v ∈ P

0
N (Ω), the space of polynomials of degree N in each space

variable vanishing on ∂Ω, one has

(−∆u, v)N = (∇u,∇v)N = aN (u, v) . (7.1.6)

This follows by integration-by-parts, since in each direction of differentiation
the quadrature rule can be replaced by the exact integral, the integrand being
a polynomial of degree at most 2N − 1 in that direction. On the other hand,
by (5.3.2), the right-hand side of (7.1.6) is an inner product on P

0
N (Ω), which

induces a norm equivalent to the H1
0 (Ω)-norm. Thus, (6.4.43), or equivalently

(6.4.23), is fulfilled with E = H1
0 (Ω). The corresponding convergence esti-

mate, based on (6.4.8) or (6.4.46) and the approximation results of Sects. 5.4
and 5.8.2, is

‖u− uN‖H1(Ω) ≤ CN1−m|u|Hm;N (Ω), m ≥ 1, (7.1.7)

if uN is the Galerkin solution, or

‖u− uN‖H1(Ω) ≤ CN1−m{|u|Hm;N (Ω) + |f |Hm−1;N (Ω)}, m > 1 + d/2,
(7.1.8)

if uN is the G-NI (or, equivalently in this case, collocation) solution.
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For the analysis of the tau approximation to (7.1.1)–(7.1.2) we have to
resort to the generalized “inf-sup” condition (6.4.66). In the one-dimensional
case we endow XN = P

0
N with the norm of H2(−1, 1) and YN = PN−2 with

the norm of L2(−1, 1) and we choose as test function v = −uxx. This yields
the stability of the method in the norm of H2(−1, 1). The two-dimensional
case has been discussed in Example 8 of Sect. 6.4.4.

7.1.2 Chebyshev Methods

Let w(x) =
∏d

i=1(1−x2
i )

−1/2 be the Chebyshev weight in dimension d. Cheby-
shev methods are naturally studied in the norms of the weighted Sobolev
spaces Hm

w (Ω) (see (A.11.b)). Here we consider the operator L = −∆ as
a linear unbounded operator in L2

w(Ω). The domain of definition of L with
Dirichlet boundary conditions is the dense subspace DB(L) = {v ∈ H2

w(Ω) :
v|∂Ω = 0}. This result is immediate in one space dimension, whereas in more
space dimensions it requires a complex proof due to Bernardi and Maday
(1986).

Let u ∈ DB(L) and v ∈ H1
w,0(Ω) (see (A.11.c) for the definition of this

space). Integrating by parts in a formal manner we get

−
∫

Ω

∆uvw dx =
∫

Ω

∇u · ∇(vw) dx . (7.1.9)

The right-hand side is nonsymmetric in its arguments u and v, due to the
presence of the weight w. Let us set

a(u, v) =
∫

Ω

∇u · ∇(vw) dx . (7.1.10)

The bilinear form a(u, v) is defined, continuous and coercive on the product
space H1

w,0(Ω)×H1
w,0(Ω), as stated precisely in the following theorem:

Theorem 7.1.

(i) There exists a constant A > 0 such that for all u, v ∈ H1
w,0(Ω)

|a(u, v)| ≤ A‖u‖H1
w(Ω)‖v‖H1

w(Ω) ; (7.1.11)

(ii) there exists a constant α > 0 such that for all u ∈ H1
w,0(Ω)

α‖u‖2H1
w(Ω) ≤ a(u, u) . (7.1.12)

This result was proved by Canuto and Quarteroni (1981) in one dimension,
and was extended to higher space dimensions by Funaro (1981).

Hereafter, we give the proof for the one-dimensional case, since it already
contains all the essential elements of the analysis. The bilinear form (7.1.10)
becomes

a(u, v) =
∫ 1

−1

ux(vw)x dx , (7.1.13)

where w(x) = (1 − x2)−1/2 is the Chebyshev weight. Let us start with the
following inequality.
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Lemma 7.1. For all u ∈ H1
w,0(−1, 1)

∫ 1

−1

u2(x)w5(x) dx ≤ 8
3

∫ 1

−1

u2
x(x)w(x) dx . (7.1.14)

Proof. Let us split the left-hand side as
∫ 1

−1

u2(x)w5(x) dx =
∫ 0

−1

u2(x)w5(x) dx +
∫ 1

0

u2(x)w5(x) dx .

Since w(x) ≤ (1− x)−1/2 if 0 ≤ x ≤ 1,
∫ 1

0

u2(x)w5(x) dx ≤
∫ 1

0

u2(x)(1− x)−5/2dx

=
∫ 1

0

[
1

1− x

∫ 1

x

ux(s) ds
]2

(1− x)−1/2dx .

Now we apply Hardy’s inequality (A.14) with α = −1/2, and we get
∫ 1

0

u2(x)w5(x) dx ≤ 8
3

∫ 1

0

u2
x(x)w(x) dx .

The same inequality holds over the interval (−1, 0), whence the result. ��
Let us prove part (i) of Theorem 7.1. Precisely, we will prove that for all

u and v ∈ H1
w,0(−1, 1), the following inequality holds:

∣∣∣∣
∫ 1

−1

ux(vw)xdx
∣∣∣∣ ≤
(

1 +

√
8
3

)
‖ux‖L2

w(−1,1)‖vx‖L2
w(−1,1) . (7.1.15)

Indeed, by the identity
∫ 1

−1

ux(vw)xdx =
∫ 1

−1

uxvxw dx +
∫ 1

−1

ux(vwxw
−1)w dx ,

and the application of the Cauchy-Schwarz inequality (A.2) to both terms on
the right-hand side, one gets

|a(u, v)| ≤ ‖ux‖L2
w(−1,1)

{
‖vx‖L2

w(−1,1) +
(∫ 1

−1

v2w2
xw

−1dx
)1/2

}
.

Noting that wx = xw3, it follows using (7.1.14) that
∫ 1

−1

v2w2
xw

−1dx ≤
∫ 1

−1

v2w5dx ≤ 8
3
‖vx‖2L2

w(−1,1) ,

whence the result.
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Finally, we prove part (ii) of Theorem 7.1. Precisely, we shall prove that
for all u ∈ H1

w,0(−1, 1) the following inequality holds:

1
4
‖ux‖2L2

w(−1,1) ≤
∫ 1

−1

ux(uw)xdx . (7.1.16)

Then, (7.1.12) will follow from the Poincaré inequality (A.13). (Note that the
Poincaré inequality is implied by the inequality (7.1.12), since w(x) ≥ 1.)

To obtain (7.1.16), one uses partial integration (which is allowed by
(7.1.14)) and gets

a(u, u) =
∫ 1

−1

(ux)2w dx +
∫ 1

−1

uuxwxdx

=
∫ 1

−1

(ux)2w dx− 1
2

∫ 1

−1

u2wxxdx .

(7.1.17)

In order to estimate the last integral on the right-hand side, let us use another
expression for a(u, u), namely,

a(u, u) =
∫ 1

−1

[
(ux)2w2 + uuxwxw

]
w−1 dx

=
∫ 1

−1

[
(uxw)2 + 2uxwuwx + (uwx)2

]
w−1dx

−
∫ 1

−1

(
uuxwx + u2w2

xw
−1
)
dx

=
∫ 1

−1

[(uw)x]2w−1dx +
∫ 1

−1

u2
(wxx

2
− w2

xw
−1
)

dx .

(7.1.18)

By the identity wxx − 2w2
xw

−1 = w5 we obtain

1
2

∫ 1

−1

u2w5dx ≤ a(u, u) . (7.1.19)

On the other hand, since wxx = (1 + 2x2)w5,
∫ 1

−1

u2wxx ≤ 3
∫ 1

−1

u2w5dx ≤ 6a(u, u) .

Thus, recalling (7.1.17)

a(u, u) ≥
∫ 1

−1

(ux)2w dx− 3a(u, u) ,
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or, equivalently,

4a(u, u) ≥
∫ 1

−1

(ux)2w dx ,

whence the result.

Let us now turn to the general d-dimensional case. Theorem 7.1 essen-
tially states that the Laplace operator with homogeneous Dirichlet boundary
conditions fulfills the coercivity and the continuity conditions (6.3.6) and
(6.3.7) with respect to the Hilbert space E = H1

w,0(Ω). In Sect. 6.3 we made
the general claim that whenever these conditions apply to a boundary-value
problem, its well-posedness can be established. Let us check this statement
in the present situation. Problem (7.1.1)–(7.1.2) can be formulated in a weak
(or variational) form which involves the Chebyshev weight as follows: One
looks for a function u ∈ H1

w,0(Ω) such that
∫

Ω

∇u · ∇(vw)dx =
∫

Ω

fvw dx for all v ∈ H1
w,0(Ω) . (7.1.20)

(The data f is assumed to belong to L2
w(Ω).) By Theorem 7.1, we can

apply the Lax-Milgram Theorem (see (A.5)) to this problem; this assures
the existence of a unique solution. Finally, one can prove (this is technical)
that the solution not only belongs to H1

w,0(Ω), but also it is more regular,
i.e., u ∈ H2

w(Ω) (Bernardi and Maday (1986)). Thus, given arbitrary data
f ∈ L2

w(Ω), there exists a unique solution in DB(L) to the problem (7.1.1)–
(7.1.2).

Let us now consider the numerical approximation of this problem by
Chebyshev methods. The Galerkin method is proven to be stable in the norm
of H1

w,0(Ω) as a direct consequence of Theorem 7.1. Here, we apply it to func-
tions u and v, which are polynomials of degree N in each space variable and
which vanish on the boundary (i.e., u, v ∈ P0

N (Ω)). Theorem 7.1 ensures that
the assumptions (6.4.3) and (6.4.4) are satisfied. The corresponding conver-
gence estimate, based on (6.4.8) and the approximation estimates (5.5.19) or
(5.8.32), reads as follows:

‖u− uN‖H1
w(Ω) ≤ CN1−m|u|Hm;N

w (Ω) for m ≥ 1 . (7.1.21)

The two-dimensional case has been considered in Example 2 of Sect. 6.4.1.
The stability of the collocation method which uses the Gauss-Lobatto

points (2.4.14) for the Chebyshev weight in each space direction follows from
a specific version of Theorem 7.1. In dimension one, the stability is actually
a direct consequence of Theorem 7.1, since

N∑

j=0

uxx(xj)u(xj)wj =
∫ 1

−1

uxxuw dx for all u ∈ PN .
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Thus, condition (6.4.23) is fulfilled. This result has been applied in the second
example of Sect. 6.1. Let us now detail the stability analysis in dimension two.
The collocation solution of (7.1.1)–(7.1.2) is a polynomial uN ∈ P

0
N (Ω) (Ω is

the square (−1, 1)× (−1, 1)) satisfying

−∆uN = f at xij for 1 ≤ i , j ≤ N − 1 , (7.1.22)

where

xij =
(

cos
iπ

N
, cos

jπ

N

)
, 0 ≤ i , j ≤ N . (7.1.23)

Setting

(u, v)N =
N∑

i,j=0

u(xij)v(xij)wiwj , (7.1.24)

let us define the bilinear form on P
0
N (Ω)× P

0
N (Ω)

aN (u, v) = −(∆u, v)N . (7.1.25)

Then, (7.1.22) is equivalent to the variational equations

aN

(
uN , v

)
= (f, v)N for all v ∈ P

0
N (Ω) . (7.1.26)

Using the exactness of the Gauss-Lobatto formula and integration-by-parts,
one gets the identity

aN (u, v) = (∇u,∇(vw)w−1)N (7.1.27)

for all u and v ∈ P
0
N (Ω). Note that ∇(vw)w−1 ∈ PN (Ω)2. Although aN (u, v)

does not equal a(u, v) (the form defined in (7.1.10)) for all u, v ∈ P0
N (Ω), it

nonetheless retains the same continuity and coercivity properties of the form
a(u, v). Precisely, the following result has been proved by Funaro (1981):

Theorem 7.2.

(i) There exists a constant Ã > 0 independent of N such that for all u, v ∈
P

0
N (Ω)

|aN (u, v)| ≤ Ã‖u‖H1
w(Ω)‖v‖H1

w(Ω) ; (7.1.28)

(ii) there exists a constant α̃ > 0 independent of N such that for all u ∈
P0

N (Ω)
α̃‖u‖2H1

w(Ω) ≤ aN (u, u) . (7.1.29)

It follows that the stability condition (6.4.23) is satisfied with E = H1
w,0(Ω).

Thus, the energy method of Sect. 6.4.2 can be applied to obtain the stability
and the convergence of the scheme (7.1.22) (see (6.4.24) and (6.4.26)). More-
over, the approximation results of Sects. 5.5 and 5.8 yield the following error
estimate:

‖u− uN‖H1
w(Ω) ≤ CN1−m

{
|u|Hm;N

w (Ω) + |f |Hm−1;N
w (Ω)

}
(7.1.30)

provided m > 2.
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7.1.3 Other Boundary-Value Problems

So far we have discussed the Dirichlet boundary-value problem for the Poisson
equation. The analysis can be extended to cover other boundary conditions
(such as Neumann or Robin conditions) as well as more general second-order
elliptic operators.

Legendre Galerkin and G-NI approximations are based on the classical
weak formulation of these problems, in which non-Dirichlet boundary con-
ditions are accounted for in the boundary integral terms. Consequently, the
“energy method”, corresponding to the stability conditions (6.4.3) or (6.4.43),
is still the most appropriate tool for their analysis. On the other hand, for
most collocation or tau approximations, this method turns out to be inade-
quate, and one has to resort to the more general coercivity condition of the
type (6.4.66) or (6.4.30).

Examples of analysis for different elliptic boundary-value problems have
been given throughout Chap. 6. Example 3 of Sect. 6.4.2 contains a discussion
of the Dirichlet boundary-value problem for a second-order elliptic operator
in dimension one, with variable coefficients in the higher order term. The
Neumann problem with the strong enforcement of the boundary conditions
is considered in the subsequent Example 4. Both examples concern collocation
methods. A Chebyshev tau approximation to the one-dimensional Neumann
problem is analyzed in Example 7 of Sect. 6.4.4.

7.2 Singularly Perturbed Elliptic Equations

In this section, we provide some mathematical insight on the behavior of
spectral schemes for the approximation of second-order singular perturbation
problems. We consider the model boundary-layer problem

−νuxx + Lu = 0 , −1 < x < 1 , ν > 0 ,

u(−1) = 0 , u(1) = 1 ,
(7.2.1)

where Lu = u (Helmholtz equation) or Lu = ux (advection-diffusion equa-
tion). Both choices of the operator L are directly relevant to fluid dynamics
applications. The solution of Helmholtz problems like (7.2.1) is a major com-
ponent of several methods for the spectral simulation of an incompressible
flow in a channel (see CHQZ3, Sect. 3.4). On the other hand, the advection-
diffusion problem is a simple model of viscous flow near a wall.

The function u(x) = sinh((x + 1)/
√

ν)/ sinh(2/
√

ν) is the exact solution
of the Helmholtz problem; it has a boundary layer of width O(

√
ν) near

x = 1 as ν → 0. The exact solution of the advection-diffusion problem is
u(x) = (e(x−1)/ν−e−2/ν)/(1−e−2/ν), which again has a boundary layer near
x = 1, but now of width O(ν). Obviously, if we fix ν and let N tend to infinity,
any spectral approximation uN to (7.2.1) will eventually exhibit exponential
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convergence. For instance, in the Legendre Galerkin case, by applying the
abstract error estimate (6.4.8), one gets the bound

‖u− uN‖H1(0,1) ≤
C√
ν

inf ‖u− vN‖H1(0,1) ,

where the infimum is taken over all polynomials in PN that satisfy the same
boundary conditions as u. Next, applying an approximation error bound such
as (5.4.13) to the right-hand side, one gets the error bound

‖u− uN‖H1(0,1) ≤
C√
ν
N−s‖Ds+1

x u‖L2
s+1(0,1) ,

for all s ≥ 1; here, C is a constant depending on s but independent of ν and N ,
while the norm on the right-hand side is defined in (5.4.14). A simple argu-
ment based on writing the equation as uxx = ν−1Lu and successively differen-
tiating this relation, taking also into account that outside the boundary-layer
region u is basically zero whereas inside it the slope is inversely proportional
to the width of the region, proves that ‖Ds+1

x u‖L2
s+1(0,1) scales as C ′ν−s/4 for

the Helmholtz equation, and as C ′ν−s/2 for the advection-diffusion equation.
Therefore, we obtain the convergence estimate

‖u− uN‖H1(0,1) ≤
C ′′
√

ν

(
1

ν1/4N

)s

(7.2.2)

in the former case, and

‖u− uN‖H1(0,1) ≤
C ′′
√

ν

(
1

ν1/2N

)s

(7.2.3)

in the latter case. This proves the claimed result and, in particular, that
spectral convergence is achieved as soon as the boundary layer can be fully
resolved by the numerical scheme. From an alternative perspective, the be-
havior of the error becomes similar to that observed for the approximation
of a pure second-order, Poisson problem. This reflects the fact that, from
a mathematical point of view, the leading term in (7.2.1) is the second-order,
diffusion term, while the first- or zeroth-order terms are merely compact per-
turbations of it.

For the analysis of singular perturbation problems, the focus is upon
results which hold for any values of ν and N . (Uniformity, or robustness,
of the estimates with respect to the singular perturbation parameter is de-
sired.) Such results describe the behavior of the spectral solution also in those
regimes in which the boundary layer is either fully unresolved (this is of aca-
demic interest only, unless the boundary layer does not affect the essential
physics of the problem) or marginally resolved. (In this case, the full under-
standing of the phenomenon may provide insight that enables the design of
numerical devices that enhance the performance of spectral methods).
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Since the differential operator in (7.2.1) has constant coefficients, the ap-
proximations of Galerkin, collocation (equivalent to G-NI) and tau type can
be investigated by the error equation technique described in Sect. 6.6; the
analysis has been provided by Canuto (1988). In order to give a concrete
illustration of this analysis, we will consider Chebyshev schemes, and we will
represent the corresponding spectral solutions as uN (x) =

∑N
k=0 ûkTk(x);

however, results similar to the forthcoming ones hold for Legendre discretiza-
tions as well.

Let us consider the Helmholtz problem first. The error equation (see
Sect. 6.6) satisfied by uN is

−νuN
xx + uN = λΦN + µΦN−1 , −1 < x < 1 , (7.2.4)

where λ, µ are suitable constants depending on ν and N and determined by
the boundary conditions, whereas Φn (n = N or N − 1) are polynomials
depending only on the discretization method. More precisely, we have ΦN =
T ′

N+1 and ΦN−1 = T ′
N for the Galerkin method, ΦN = xT ′

N and ΦN−1 = T ′
N

for the collocation method, and ΦN = TN and ΦN−1 = TN−1 for the tau
method. A careful analysis of (7.2.4) shows that for all ν > 0 and all N > 0
the Chebyshev coefficients of uN satisfy the bounds

0 < ûk < 1
2 , 0 ≤ k ≤ N . (7.2.5)

This property can be viewed as a sort of “maximum principle” in transform
space, in the sense that all the Chebyshev coefficients of uN are strictly
positive. Note that the usual maximum principle in physical space (which
states that 0 ≤ u(x) ≤ 1 for −1 ≤ x ≤ 1) does not hold for the spectral
solutions to (7.2.1), as reflected by the onset of a Gibbs phenomenon near
x = 1 when ν becomes small compared with N−1.

An important implication of (7.2.5) is that uN is uniformly bounded in
the interval [−1, 1], independently of N and ν. In fact,

|uN (x)| ≤
N∑

k=0

ûk|Tk(x)| ≤
N∑

k=0

ûkTk(1) = uN (1) = 1 . (7.2.6)

Thus, the spectral solutions, although possibly highly oscillatory, are stable
in the maximum norm.

The error equation for the advection-diffusion problem is

−νuN
xx + uN

x = ηΦN−1 , −1 < x < 1 , (7.2.7)

with ΦN−1 as before (note that the Galerkin and collocation schemes coin-
cide due to the precision of the Gauss-Lobatto quadrature formula). For the
Galerkin scheme, it is proven in Canuto (1988) that, for all ν > 0 and N > 0,

ûk > 0 for k = 1, . . . , N , (7.2.8)
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which implies the bound uN (x) ≤ 1 for −1 ≤ x ≤ 1, with the same proof as
(7.2.6). Interestingly enough, in the “unresolved” regime (i.e., if νN2 → 0),
the asymptotic behavior of uN depends on the parity of N . If N is odd,
the first coefficient û0 is strictly positive, too, implying the uniform bound
|uN (x)| ≤ 1 for −1 ≤ x ≤ 1; more precisely, the analysis yields

uN � 1
2 + 1

2TN in [−1, 1] . (7.2.9)

If N is even, û0 is negative and one has

uN � û0 + ûNTN in [−1, 1] (7.2.10)

with |û0| � ûN � C(νN2)−1. Hence, in this case uN is not bounded from be-
low independently of ν. An illustration of these effects is provided in Fig. 7.1,
which displays solutions to (7.2.1) for the advection-diffusion case (Lu = ux).
The dominant highest and lowest frequency components of the numerical so-
lution are apparent in the figure, along with the striking difference between
solutions with odd N and even N .
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Fig. 7.1. Galerkin solutions uN of the advection-diffusion problem −νuxx+ux = 0,
−1 < x < 1, u(−1) = 0, u(1) = 1, for several values of ν for odd N (= 9) (left) and
even N (= 8) (right)

For the tau scheme, one has the asymptotic expansion

uN � ûN−2TN−2 + ûNTN in [−1, 1] (7.2.11)

with |ûN−2| � ûN � CN if N is odd, and ûN−2 � |ûN | � C(νN)−1 if N is
even. Again, uN is not bounded independently of ν.

Another consequence of the error equation analysis concerns the limit be-
havior of uN as ν → 0 and N →∞. It can be shown that the maximum error
‖u − uN‖L∞(−1,1) between the exact solution u of (7.2.1) and any spectral
approximation uN satisfies an estimate of the form

‖u− uN‖L∞(−1,1) ≤ C min
(

1,
1

νN4

)
(7.2.12)
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for the Helmholtz equation, and of the form

‖u− uN‖L∞(−1,1) ≤
C

νN2
(7.2.13)

for the advection-diffusion equation. Here C > 0 is a constant independent
of ν and N . A gain of a factor N−1/2 occurs if the maximum norm is re-
placed by the L2

w-norm. This proves again that the scaling of the resolution
requirements for a spectral method to accurately resolve a boundary layer is
that the number of modes be inversely proportional to the square root of the
boundary-layer width.

The highly localized structure of the solution to (7.2.1) calls naturally for
a multidomain strategy (see CHQZ3, Chaps. 5–6), in order to enhance the
resolution within the boundary layer and to avoid the propagation of spurious
oscillations in the outer region. We refer to Sect. 3.4 in Schwab (1998) for
a thorough investigation of such a strategy. By extending the Shishkin-mesh
approach (see, e.g., Roos, Stynes and Tobiska (1995)) to spectral methods,
it is shown that placing one domain in the outer region and one domain in
the boundary layer, with a properly chosen position of the interface point,
guarantees exponential decay of the error as ν → 0 and N → ∞ (since
the solution of the linear, constant-coefficient boundary-layer problem in one
dimension is obviously analytic). Schwab also provides additional robust and
sharp estimates on the global polynomial approximation to problem (7.2.1)
in a single domain.

7.2.1 Stabilization of Spectral Methods

The spurious oscillations that affect a spectral approximation to a singularly
perturbed problem in the “under-resolved” regime are globally spread over
the domain (or the subdomain, in a multidomain method). They are asso-
ciated with the highest frequency components in the truncated expansions,
as clearly documented by the asymptotic expansions (7.2.9)–(7.2.11) for the
model problems considered above; note, however, that in some cases, such as
(7.2.10), the lowest frequency component is affected too (see Fig. 4.17).

Several strategies can be invoked to cure such instabilities by controlling
the onset of spurious oscillations. A simple approach consists of applying
a filtering procedure (see Sect. 2.1.4), which damps the highest components
of the spectrum of the discrete solution. Obviously, this approach is particu-
larly well-suited for those methods that use a modal basis for the expansion;
the need to match the boundary conditions after filtering suggests indeed
a boundary-adapted basis (see Sect. 2.3.3). If a nodal basis is used instead,
as for collocation and G-NI methods, then one incurs the extra cost of trans-
ferring from physical to frequency space and back. In all cases, some a priori
knowledge of the structure of the spurious oscillations, which may be diffi-
cult to obtain except for model problems, seems required to properly tune
the filter.
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Other stabilization techniques are inspired by procedures that originated
in the framework of low-order schemes, such as the h-version of finite ele-
ments. For advection-diffusion problems, the use of a Petrov-Galerkin ap-
proach – in which test functions are different from trial functions, the former
being biased by the advection (or stream) direction – dates back to the mid
1970’s (Christie et al. (1976)). Melenk and Schwab (1999) consider spec-
tral and spectral-element versions (p- and hp-versions in their terminology)
of this approach. Another strategy for stabilization, quite popular in the
finite-element community, is known as the SUPG-stabilization (where SUPG
stands for streamline upwind Petrov-Galerkin (method)) after Brooks and
Hughes (1982), or – lately – as the bubble stabilization after Brezzi, Bristeau,
Franca, Mallet and Rogé (1992) and Brezzi and Russo (1994). The adaptation
of these ideas for spectral methods has been investigated by Canuto (1994),
Pasquarelli and Quarteroni (1994) and Canuto and Puppo (1994).

In order to illustrate the SUPG strategy, let us consider the model Dirich-
let problem for the advection-diffusion-reaction equation

Lu ≡ −νuxx + βux + γu = f , −1 < x < 1 ,

u(−1) = 0 , u(1) = 0 ,
(7.2.14)

where ν > 0 is a constant, and the coefficients β, γ are smooth functions
satisfying −1

2βx +γ ≥ σ0 in (−1, 1) for some constant σ0 ≥ 0. The associated
bilinear form a(u, v) =

∫ 1

−1
(νuxvx+βuxv+γuv) dx is continuous and coercive

in H1
0 (−1, 1); precisely we have a(v, v) ≥ ν‖vx‖2L2(−1,1) + σ0‖v‖2L2(−1,1) for

all v ∈ H1
0 (−1, 1). However, for the advection-dominated case – β is O(1)

but ν << 1 – only a poor control on the gradient of v is to be expected.
At the discrete level, this is reflected by the fact that the Legendre Galerkin
approximation of u, i.e., the function uN belonging to a polynomial subspace
VN of H1

0 (−1, 1) and satisfying

a(uN , v) = (f, v) for all v ∈ VN , (7.2.15)

may be polluted by spurious oscillations. Indeed, taking v = uN , one gets the
stability estimate (using the Cauchy-Schwarz and Poincaré inequalities)

ν‖uN
x ‖2L2(−1,1) + σ0‖uN‖2L2(−1,1) ≤ min(1/σ0, 4/ν) ‖f‖2L2(−1,1) . (7.2.16)

A similar situation occurs for the G-NI approximation. (The subsequent dis-
cussion will be based on the Legendre Galerkin method, but the implementa-
tion of the resulting stabilized schemes in a G-NI setting is straightforward.)

The structure of the discrete solution, in the limit ν → 0, N fixed, can
be easily understood in the constant-coefficient case β = 1, γ = 0 (for which
the Galerkin and G-NI approximations coincide). Indeed, uN can be written
as uN (x) = 1 + x − 2ũN (x), where ũN ∈ PN is the discrete approximation
to (7.2.1) with Lu = ux. The results of the theory developed above apply
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to such a function. In particular, if N is even, similarly to (7.2.10), we have
ũN (x) � û0 + ûNLN (x) in [−1, 1], with |û0| � ûN � C(νN2)−1. Therefore,
uN is not bounded from above independently of ν, and its highest and lowest
frequency components are predominant. Some plots of uN , for different values
of ν and N are shown in Fig. 4.17: the spurious dominant components of uN

are apparent.
A tighter control on the variation of the discrete solution is obtained by

modifying (7.2.15) in a strongly consistent way, i.e., by requiring that uN

satisfy

a(uN , v) + (LuN , βvx)τ = (f, v) + (f, βvx)τ for all v ∈ VN , (7.2.17)

where (g, w)τ denotes a weighted L2-inner product, with nonnegative weight τ
depending on the discretization but virtually independent of ν in the singular
perturbation limit. Formulation (7.2.17) is the prototype of any SUPG-like
stabilization method. It is strongly consistent, in the sense that the exact
solution u of (7.2.14) fulfills it; this implies, in particular, that the formal
infinite order of accuracy of the spectral Legendre method is preserved. The
added value over the standard Galerkin formulation comes from the extra
control on the quantity ‖βuN

x ‖2τ = (βuN
x , βuN

x )τ : it appears on the left-hand
side of an estimate like (7.2.16) after choosing as usual v = uN in (7.2.17) and
performing some manipulation. The norm ‖βuN

x ‖τ is called the SUPG-norm
of the streamline derivative βuN

x .
Let us now detail one particular realization of (7.2.17), proposed in Canuto

(1994), which marries the accuracy of global polynomial expansions with the
flexibility of local low-order finite elements. Let −1 = x0 <x1 <. . .<xN = 1
denote the Legendre Gauss-Lobatto points, and let Λj = [xj−1, xj ], j =
1, . . . , N , be the “elements”, or “cells”, of size hj = xj −xj−1 defined by two
consecutive Gauss-Lobatto points. We introduce two finite-element spaces on
the decomposition Λ = {Λj}j of the domain [−1, 1]: S

(0)
h is the space of the

piecewise-constant functions on Λ, whereas S
(1)
h is the space of the continuous,

piecewise-linear functions on Λ. Correspondingly, we introduce a projection
operator Jh from L2(−1, 1) or C0([−1, 1]) onto S

(0)
h , such as either the L2-

orthogonal projection operator or the interpolation operator at one selected
point in each cell; furthermore, we introduce the interpolation operator Ih

from C0([−1, 1]) onto S
(1)
h at the nodes of the decomposition Λ. Given any

polynomial vN ∈ PN (−1, 1), let vh = Ihv
N ∈ S

(1)
h be its piecewise-linear

interpolant; the mapping Ih : PN → S
(1)
h is obviously bijective. Remarkably,

the two polynomial functions vN and vh stay uniformly close to each other;
indeed, there exist constants Ci > 0 independent of N such that, for all
vN ∈ PN ,

C1‖vN‖L2(−1,1) ≤ ‖vh‖L2(−1,1) ≤ C2‖vN‖L2(−1,1) (7.2.18)
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and
C3‖vN

x ‖L2(−1,1) ≤ ‖vh
x‖L2(−1,1) ≤ C4‖vN

x ‖L2(−1,1) . (7.2.19)

We term this property the uniform low-order/high-order interpolation prop-
erty. An equivalent statement is that the bijection Ih : PN → S

(1)
h is an

isomorphism in both the L2-norm and the H1-norm. The proof, given in
Canuto (1994), exploits the property that each Gauss-Lobatto weight wj is
a good approximation to the local spacing 1

2 (hj+hj−1) of the mesh, uniformly
in j and N (see (7.4.5)–(7.4.6) below).

After choosing stabilization parameters τj > 0 in each cell according to
strategies that will be detailed shortly, we arrive at the following modified
form of (7.2.17): find uN ∈ VN = P

0
N (−1, 1) such that

a(uN , vN ) +
N∑

j=1

τj

∫

Λj

(LuN )hβhv
h
x

= (f, vN ) +
N∑

j=1

τj

∫

Λj

fhβhv
h
x for all vN ∈ VN

(7.2.20)

(here, for notational simplicity, given any function g, such as f and β, we set
gh ≡ Jhg). Note that it is fundamental that the same projection operator Jh

be applied to both LuN and f in order to preserve spectral accuracy.
We study the stability of this approximation under the assumption that

Jh is the L2-orthogonal projection upon S
(0)
h ; furthermore, we assume that

σ0 > 0 (we refer to Canuto and Puppo (1994) for the case σ0 = 0). For con-
venience, we denote by Dβu

h the piecewise-constant function βhu
h
x. Taking

vN = uN in (7.2.20), in each cell we have
∫

Λj

(LuN )hDβu
h =

∫

Λj

LuNDβu
h

= −ν

∫

Λj

uN
xxDβu

h +
∫

Λj

βhu
N
x Dβu

h +
∫

Λj

(β − βh)uN
x Dβu

h +
∫

Λj

γuNDβu
h

= S1j + S2j + S3j + S4j .

The terms S2j give the desired extra control; indeed, recalling the definition
of uh, we have

S2j = Dβu
h βh

∫

Λj

uN
x = Dβu

h βh

(
uN (xj)− uN (xj−1)

)

= Dβu
h βh

(
uh(xj)− uh(xj−1)

)
=
(
Dβu

h
)2

hj =
∫

Λj

(
Dβu

h
)2

.

By defining the SUPG-norm as ‖w‖2τ =
∑

j τj‖w‖2L2(Λj)
, we thus have

N∑

j=1

τjS2j = ‖Dβu
h‖2τ .
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Using among others the inequality

N∑

j=1

h2
j ‖vN

x ‖2L2(Λj)
≤ C‖vN‖2L2(−1,1) for all vN ∈ PN , (7.2.21)

where C > 0 is a constant independent of N , the other integral terms can be
bounded as follows (see (Canuto and Puppo (1994) for the details):
∣∣∣∣∣∣

N∑

j=1

τj (S1j + S3j + S4j)

∣∣∣∣∣∣
≤ C‖Dβu

h‖τ
{

max
j

(τ1/2
j ν1/2h−1

j )ν1/2‖uN
x ‖L2(−1,1)

+ max
j

[
τ

1/2
j

(
‖βx‖L∞(Λj) + ‖γ‖L∞(Λj)

)]
‖uN‖L2(−1,1)

}
.

We conclude that if the stabilization parameters τj are chosen in such a way
that the quantities

max
j

(τ1/2
j ν1/2h−1

j ) and max
j

(
τ

1/2
j (‖βx‖L∞(Λj)) + ‖γ‖L∞(Λj))

)
(7.2.22)

are small enough, we obtain the stability estimate

ν‖uN
x ‖2L2(−1,1) + ‖Dβu

h‖2τ + σ0‖uN‖2L2(−1,1) ≤ C‖f‖2L2(−1,1) (7.2.23)

for a constant C independent of ν and N .

We now discuss the choice of the weights τj . The classical SUPG recipe
proposed by Franca, Frey and Hughes (1992) gives

τj = min

(
hj

2‖β‖L∞(Λj)
,
h2

j

12ν

)
; (7.2.24)

a tuning parameter c0 can be placed in front of such an expression to enforce
the smallness of (7.2.22). (See also Pasquarelli and Quarteroni (1994) for
similar choices in the context of approximations like (7.2.17) using either the
SUPG method or the GaLS (Galerkin Least Squares) method.)

A different strategy of selection comes from identifying the SUPG-stabil-
ized scheme (7.2.20) as the one produced by a standard Galerkin method
in which the trial-test space VN is augmented by a space Bh of “bubbles”
(a bubble is a function which is nonzero only in one cell), and then the
bubble components are eliminated from the resulting block 2× 2-system. To
be precise, set WN = VN ⊕ Bh and split any wN ∈ WN as wN = vN + vb.
The standard Galerkin discretization of problem (7.2.14) based on the space
WN can be formulated in the split form: find uN ∈ VN and ub ∈ Bh such
that

a(uN , vN ) + a(ub, vN ) = (f, vN ) for all vN ∈ VN ,

a(uN , vb) + a(ub, vb) = (f, vb) for all vb ∈ Bh .
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These equations are then modified as follows:

a(uN , vN ) + ah(ub, vh) = (f, vN ) for all vN ∈ VN , (7.2.25)

(Jh(LuN ), vb) + ah(ub, vb) = (Jhf, v
b) for all vb ∈ Bh , (7.2.26)

where ah(u, v) = ν(ux, vx)+(βhux, v) (for simplicity, we consider now a pure
advection-diffusion problem). Next, we compute the bubble contributions
from (7.2.26) and eliminate them from (7.2.25). By virtue of the properties
of bubbles, we can accomplish this with a cell-by-cell procedure. Denoting
by Bh,j the space of bubbles on Λj and setting ub

j = ub
|Λj , (7.2.26) yields

ah(ub
j , v

b
j) =

(
Jh(f − LuN )|Λj , v

b
j

)
for all vb

j ∈ Bh,j .

Since Jh(f − LuN )|Λj is constant, we can introduce the bubble bj ∈ Bh,j

satisfying
ah(bj , v

b
j) = (1, vb

j) for all vb
j ∈ Bh,j , (7.2.27)

which allows us to write ub
j = Jh(f−LuN )|Λj bj . Substituting this expression

into (7.2.25) and working out some algebra (the complete details can be
found, e.g., in Canuto and Puppo (1994)), we end up precisely with (7.2.20)
with τj given by

τj =

(∫
Λj

bj

)2

hjν
∫

Λj
b2j,x

. (7.2.28)

Thus, the determination of the stabilization parameter in each cell is reduced
to the determination of the bubble function satisfying (7.2.27). The residual-
free bubble strategy (Brezzi and Russo (1994)) consists of choosing as Bh,j

not just a finite-dimensional space, but the largest admissible bubble space,
i.e., the infinite-dimensional space H1

0 (Λj). With such a choice, (7.2.27) is
nothing but the constant-coefficient advection-diffusion problem

{
−νbj,xx + βh,jbj,x = 1 , xj−1 < x < xj ,

bj(xj−1) = 0 , bj(xj) = 0 ,
(7.2.29)

with βh,j = βh|Λj . The solution to this problem satisfies ν
∫

Λj
b2j,x =

∫
Λj

bj , as
can easily be seen by multiplying the equation by bj and integrating over Λj ;
thus, (7.2.28) simplifies to

τj =
1
hj

∫

Λj

bj , (7.2.30)

and the stabilization parameter can be obtained in all regimes by integrat-
ing bj (exactly or in an approximate way) over the cell. In the present one-
dimensional situation, we actually have the analytical expression
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bj(x) =
1

βh,j
(x− xj−1)−

hj

βh,j

eβh,j(x−xj)/ν − e−βh,jhj/ν

1− e−βh,jhj/ν
.

In the singular perturbation limit ν << |βh,j |, one has bj(x) � (x−xj−1)/βh,j

if βh,j > 0 or bj(x) � (xj − x)/βh,j if βh,j < 0; whence we obtain τj �
hj/(2βh,j), consistent with (7.2.24).

With the prescribed choice of the stabilization parameters τj , the term
‖Dβu

h‖τ appearing on the left-hand side of (7.2.23) provides a uniform con-
trol on the variation of uN at the Gauss-Lobatto points, thereby preventing
the onset of spurious oscillations. Fig. 7.2 provides an example of the results
produced by the stabilization. Most of the spurious oscillations which would
affect the pure Galerkin solution are absent; yet, the extent of the boundary
layer is correctly confined to one cell. The values of the stabilized solution
at the LGL nodes are spectrally accurate, while a simple post-processing,
consisting of piecewise-linearly interpolating such values, suffices to produce
a graphically correct approximation of the true solution. An additional fea-
ture of the method is that it allows a natural definition of a preconditioner
for use in an iterative solution procedure for the resulting algebraic system.
Indeed, it is enough to take the linear finite-element scheme, set on the same
LGL mesh and stabilized by the same SUPG strategy. The spectra of the
resulting preconditioned operators, varying ν and N , are uniformly close to
the segment [0.5, 1] on the real axis. We refer to Fig. 4.28 for an example;
further results are given in Canuto and Puppo (1994).

Fig. 7.2. Solution of the advection-diffusion problem −νuxx +ux = 1, −1 < x < 1,
u(−1) = u(1) = 0, for ν = 10−4 and N = 32, by the stabilized scheme (7.2.20).
(left) Spectral solution uN , (right) finite-element interpolant, uh = Ihu

N , of the
spectral solution

The extension of the stabilized schemes described so far to the multidi-
mensional case is rather straightforward. The tensor-product domain Ω is
split into cells that are tensor products of intervals Λj . In each cell, Jh is still
an orthogonal projection over the constants, whereas Ih is the multilinear in-
terpolant at the vertices of the cell. The residual-free bubble strategy yields
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again the stabilization parameter as the average of the bubble over the cell,
as in (7.2.30). However, the multidimensional analog of problem (7.2.29) can
no longer be solved analytically; an efficient procedure for computing approx-
imate values of the stabilization parameter in each cell, based on a prepro-
cessing stage followed by extrapolation, can be found in Canuto, Russo and
van Kemenade (1998). Applications to the full Navier-Stokes equations are
also considered therein.

It is worth mentioning that a discretization-independent, functional in-
terpretation of the norm ‖Dβu

h‖τ can be given, relating it to the anisotropic
smoothness of fractional order 1/2 along the streamlines of the discrete solu-
tion; we refer to Canuto and Tabacco (2001) for the details.

7.3 The Eigenvalues of Some Spectral Operators

We shall give a brief theoretical discussion of the qualitative behavior of
the eigenvalues of some relevant spectral approximations to the following
differential operators: the pure second-derivative operator Lu = −uxx, the
advection-diffusion operator Lu = −νuxx + βux, and the first-order hyper-
bolic operator Lu = ux. All the operators are associated with nonperiodic
boundary conditions.

7.3.1 The Discrete Eigenvalues for Lu = −uxx

The boundary conditions we impose here are of Dirichlet type

u(−1) = u(1) = 0 (7.3.1a)

or of Neumann type
ux(−1) = ux(1) = 0 . (7.3.1b)

The exact eigenvalues for the Dirichlet boundary conditions are λm =
(πm/2)2, m = 1, 2, . . . , with eigenfunctions um(x) = sin(πm(x + 1)/2); the
eigenvalues for the Neumann boundary conditions include these plus λ0 = 0,
and the corresponding eigenfunctions are um(x) = cos(πm(x + 1)/2).

We will first consider the collocation method that uses the Gauss-Lobatto
points xj , j = 0, . . . , N , (see Sect. 2.2.3) with respect to the Chebyshev or
the Legendre weight w(x). The corresponding eigenvalues λN are defined by
the relations

−uN
xx(xj) = λNuN (xj) , j = 1, . . . , N − 1 , (7.3.2)

where uN is a non-trivial polynomial of degree N which satisfies the boundary
conditions (7.3.1a) or (7.3.1b).

It has been proved by Gottlieb and Lustman (1983) that for the Cheby-
shev points xj = cos(jπ)/N , the eigenvalues are all real, nonnegative, and
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distinct. Gottlieb and Lustman actually prove their result for a wider class
of boundary conditions than (7.3.1), namely for

αu(1) + βux(1) = 0 , γu(−1) + δux(−1) = 0 , (7.3.3)

with α, β, γ > 0 and δ < 0 (these conditions can be relaxed to allow α and γ,
or β and δ to be zero). Starting from the error equation associated with (7.3.2)
(see Sect. 6.6), their method consists of finding an explicit expression for the
characteristic polynomial of the collocation matrix. Next, they prove that
this polynomial satisfies an algebraic condition which implies that its roots
are real, nonnegative and simple. The method can be used to prove the same
kind of result when the collocation points are the Legendre Gauss-Lobatto
points defined in (2.3.12).

For the Dirichlet boundary conditions, it is easy to derive an upper- and
a lower-bound for the eigenvalues of the collocation operator. Multiplying
each equation (7.3.2) by uN (xj)wj – where wj is the j-th weight of the
Gauss-Lobatto formula (2.2.17) – and summing up we get

−
N∑

j=0

uN
xx(xj)uN (xj)wj = λN

N∑

j=0

(
uN (xj)

)2
wj .

By the exactness of the quadrature rule over P2N−1, we then have

λN =
−
∫ 1

−1
uN

xxu
Nw dx

‖uN‖2N
. (7.3.4)

Here ‖uN‖N denotes the discrete L2
w-norm of uN (see (2.2.24)), which is

uniformly equivalent to the standard norm ‖uN‖L2
w(−1,1) (see (5.3.2)). Inte-

grating by parts the numerator of (7.3.4) if w is the Legendre weight, or using
inequalities (7.1.11) and (7.1.12) if w is the Chebyshev weight, we obtain the
bounds

c1
‖uN

x ‖2L2
w(−1,1)

‖uN‖2L2
w(−1,1)

≤ λN ≤ c2
‖uN

x ‖2L2
w(−1,1)

‖uN‖2L2
w(−1,1)

for two constants c1 and c2 independent of N . Using the Poincaré inequality
(A.13.2) on the left-hand side, and the inverse inequality (5.4.5) or (5.5.4)
(with p = 2) on the right-hand side, we conclude that there exist two positive
constants c1, c2 independent of N such that

0 < c1 ≤ λN ≤ c2N
4 . (7.3.5)

This estimate is optimal, as can be observed from the results in Fig. 4.6.
From the theoretical point of view, having a smaller exponent of N in (7.3.5)
would imply a smaller exponent in the inverse inequality (5.4.5) or (5.5.4),
which is not possible.
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We now consider the Legendre Galerkin or G-NI methods. The discrete
eigenvalue problem consists of finding non-trivial polynomials uN ∈ VN ,
where VN = P

0
N (−1, 1) or PN (−1, 1), depending on whether Dirichlet or

Neumann conditions are enforced, such that

(uN
x , vx)L2(−1,1) = λN (uN , v)∗ for all v ∈ VN , (7.3.6)

where (u, v)∗ = (u, v)L2(−1,1) in the Galerkin case or (u, v)∗ = (u, v)N as
defined in (2.2.24) in the G-NI case.

At the algebraic level, the problem is formulated as the generalized eigen-
value problem

Ku = λNMu ,

where K is the stiffness matrix (symmetric and positive definite for Dirich-
let boundary conditions, symmetric and positive semi-definite for Neumann
conditions), whereas M is the mass matrix associated with the inner product
(u, v)∗ (invariably symmetric and positive definite). (See Sects. 2.3.3 and 3.8
for more details on these matrices.) Thus, the discrete eigenvalues are all real
and strictly positive, except for the zero eigenvalue when Neumann boundary
conditions are applied. Taking v = uN in (7.3.6), we get

λN =
‖uN

x ‖2L2(−1,1)

‖uN‖2∗
,

which leads to the same conclusions as for the collocation scheme discussed
above; in particular, a bound of the type (7.3.5) holds for all nonzero eigen-
values.

The extreme eigenvalues of the stiffness matrix K itself, defined by the
relation

Ku = λNu , (7.3.7)

are also of interest, particularly in the solution of the linear systems generated
by Galerkin and G-NI methods. Indeed, as discussed in Chap. 4, the 2-norm
condition number κ2(K) = λN

max/λ
N
min, which coincides with the iterative

condition number K(K) (see (C.1.10)) for the present symmetric problems,
influences both the sensitivity to round-off errors of a direct solution method,
and the rate of convergence of an iterative solution scheme.

We aim at bounding from below and from above the eigenvalues of
(7.3.7). We consider homogeneous Dirichlet boundary conditions. Let uN ∈
P

0
N (−1, 1) be the unique polynomial satisfying uN (xj) = uj , j = 1, . . . , N−1,

where u = (uj). From (7.3.7) we obtain

λN =
uTKu
uT u

=
‖uN

x ‖2L2(−1,1)

uT u
. (7.3.8)
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For any j, we have uj =
∫ xj
−1

uN
x (s) ds; whence by the Cauchy-Schwarz in-

equality we have

|uj | ≤
(∫ xj

−1

|uN
x (s)|2 ds

)1/2(∫ xj

−1

ds
)1/2

≤
√

2 ‖uN
x ‖L2(−1,1) .

Thus, uT u =
∑N−1

j=1 u2
j ≤ 2(N−1)‖uN

x ‖2L2(−1,1); inserting this inequality into
(7.3.8), we find the lower bound

1
2(N − 1)

≤ λN . (7.3.9)

In order to get an upper bound, we invoke the inverse inequality (5.4.7) to
obtain

‖uN
x ‖2L2(−1,1) ≤ CN2

∫ 1

−1

|uN (x)|2
1− x2

dx = CN2
N−1∑

j=1

|uN (xj)|2
1− x2

j

wj ,

where we have used the exactness of the LGL quadrature formula, which is
permissible since (uN )2/(1 − x2) ∈ P2N−2. The asymptotic behavior of the
nodes and weights of the LGL formula, (2.3.15) and (2.3.16), yields the bound
wj/(1 − x2

j ) ≤ C for all j; whence ‖uN
x ‖2L2(−1,1) ≤ CN2uT u. Therefore, we

obtain the upper bound
λN ≤ CN2 . (7.3.10)

It is possible to prove that both bounds (7.3.9) and (7.3.10) are sharp, i.e.,
λN

min ∼ cN−1 and λN
max ∼ c′N2 as N →∞. Thus, in particular,

κ2(K) = K(K) ∼ CN3 (7.3.11)

(see Bernardi and Maday (1997); see also Schwab (1998)). Similar results hold
for the homogeneous Neumann boundary conditions (after removing the null
eigenvalue). Such an asymptotic behavior is clearly documented in Fig. 4.7.

Let us finally consider the tau approximation for the second-derivative
operator. The corresponding eigenvalues are defined by

−û
(2)
k = λN ûk , k = 0, . . . , N − 2 , (7.3.12)

where ûk and û
(2)
k denote respectively the k-th coefficient of uN and of uN

xx in
the expansion according to the Chebyshev or the Legendre basis. As usual,
the two highest coefficients of uN are determined by the boundary conditions
(7.3.1). An equivalent formulation of (7.3.12) is

−
∫ 1

−1

uN
xxvw dx = λN

∫ 1

−1

uNvw dx for all v ∈ PN−2 . (7.3.13)
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For the Chebyshev method, the technique of Gottlieb and Lustman (1983)
can be adapted to prove that the eigenvalues of (7.3.12) and (7.3.1) are real,
nonnegative, and distinct. For the Dirichlet boundary conditions, the posi-
tivity of the eigenvalues is an easy consequence of their being real, since one
can choose v = −uN

xx in (7.3.13) and use inequalities (7.1.11)–(7.1.12) to get
the estimate

c1

∫ 1

−1
|uN

xx|2w dx
∫ 1

−1
|uN

x |2w dx
≤ λN ≤ c2

∫ 1

−1
|uN

xx|2w dx
∫ 1

−1
|uN

x |2w dx
.

Since uN is a polynomial vanishing at x = ±1, its first derivative uN
x van-

ishes for at least one point in the interval (−1, 1). Thus, we can apply to
the function uN

x the Poincaré inequality (A.13.2) and the inverse inequal-
ity (5.5.4) (with p = 2 and r = 1) to get an estimate of the type (7.3.5).
For both Dirichlet and Neumann boundary conditions, the largest computed
eigenvalue grows asymptotically as N4.

The theory is instead very easy for the Legendre method. By choosing
v = −uN

xx in (7.3.13) and integrating by parts, one proves that λN has to be
real and positive. The inverse inequality (5.4.5) ensures again that λN can
grow at most as O(N4). Furthermore, for Dirichlet boundary conditions, λN

is uniformly bounded away from 0.
The particular constants appearing in the O(N4) asymptotic growth of

the largest eigenvalues, for various discretization methods, are reported in
Table 4.2.

7.3.2 The Discrete Eigenvalues for Lu = −νuxx + βux

We assume that ν is a strictly positive constant, while β is a smooth real func-
tion of x. Hereafter, we shall submit u to the Dirichlet boundary conditions
(7.3.1a).

The exact eigenvalues of this operator are, in general, complex due to
the presence of the first-order, advection term. Moreover, multiplying the
equation Lu = λu by u and using a standard integration-by-parts argument
one gets

Re(λ) =
ν
∫ 1

−1
|ux|2dx− 1

2

∫ 1

−1
βx|u|2dx

∫ 1

−1
|u|2dx

. (7.3.14)

This shows that the real part of the eigenvalues need not be positive, whenever
ν is small and bx is strictly positive. However, the Poincaré inequality (A.13.1)
yields

∫ 1

−1
|ux|2dx ≥ c

∫ 1

−1
|u|2dx for all u ∈ H1

0 (−1, 1), with c = 1
4π

2 by direct
computation. Hence,

Re(λ) ≥ π2

4
ν − 1

2
β1 ,

with β1 = max{βx(x),−1 ≤ x ≤ 1}. This implies that only a finite number of
eigenvalues have negative real parts. In particular, Re(λ) > 0 if β is constant.
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Let us discuss first the behavior of the eigenvalues of the spectral Galerkin
operator. They are defined by the existence of a non-trivial polynomial uN ∈
P

0
N (−1, 1) such that

∫ 1

−1

(−νuN
xx + βuN

x )vw dx = λN

∫ 1

−1

uNvw dx for all v ∈ P
0
N (−1, 1) .

(7.3.15)
An estimate for Re(λN ) can be obtained by choosing v = uN . In the Legendre
case, we get exactly (7.3.14) satisfied by λN and uN ; whence

Re(λN ) ≥ π2

4
ν − 1

2
β1 , (7.3.16)

as for the exact eigenvalues. In the Chebyshev case, we have, by (7.1.16),

−Re
(∫ 1

−1

uN
xxu

Nw dx
)
≥ 1

4

∫ 1

−1

|uN
x |2w dx ,

while by the Cauchy-Schwarz inequality, assuming uN to be normalized by∫ 1

−1
|uN |2w dx = 1, we have

∣∣∣∣Re
(∫ 1

−1

βuN
x uNw dx

)∣∣∣∣ ≤ β0

(∫ 1

−1

|uN
x |2w dx

)1/2

,

where β0 = max{|β(x)|,−1 ≤ x ≤ 1}. Hence, Re(λN ) ≥ (ν/4)‖uN
x ‖2L2

w(−1,1)−
β0‖uN

x ‖L2
w(−1,1) which implies

Re(λN ) ≥ −β0

ν
. (7.3.17)

This proves that the real parts of the eigenvalues of the Galerkin method are
uniformly bounded from below.

For both the Legendre and the Chebyshev methods a bound for |λN | is
obtained by choosing again v = uN in (7.3.15) and taking the modulus of
both sides. One gets

|λN | ≤
cν‖uN

xx‖2L2
w(−1,1) + β0‖uN

x ‖L2
w(−1,1)‖uN‖L2

w(−1,1)

‖uN‖L2
w(−1,1)

,

whence, by the inverse inequality (5.4.5) or (5.5.4),

|λN | ≤ νO(N4) + β0O(N2) . (7.3.18)

The eigenvalues of the collocation operator for the advection-diffusion
problem are defined by the relation

−νuN
xx(xj) + β(xj)uN

x (xj) = λNuN (xj) , j = 1, . . . , N − 1 , (7.3.19)

where again uN is a non-trivial polynomial of degree N , zero at x = ±1.
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Equivalently, we have

−ν

∫ 1

−1

uN
xxvw dx + (βuN

x , v)N = λN (uN , v)N for all v ∈ P
0
N (−1, 1) ,

(7.3.20)
where (u, v)N is defined in (2.2.24).

The theoretical estimates (7.3.17) and (7.3.18) derived above hold for the
eigenvalues of (7.3.19) as well. It is enough to adapt the arguments previously
used, taking into account the exactness of the quadrature formula related
to the collocation nodes (see (2.2.25)), and the uniform equivalence of the
continuous and discrete norms over PN (see Sect. 5.3). In the Legendre case,
we obtain the bound (7.3.16) instead of (7.3.18) if the collocation method
is implemented using the skew-symmetric form of the advection term (see
Example 5 of Sect. 6.5.2):

−νuN
xx(xj) + 1

2β(xj)uN
x (xj) + 1

2

(
IN (βuN )

)
x

(xj)

− 1
2βx(xj)uN (xj) = λNuN (xj) , j = 1, . . . , N − 1 .

Numerical experiments for collocation approximations to the operators

Lu = −νuxx + ux and Lu = −νuxx + xux

support the estimates (7.3.16) or (7.3.17), as well as (7.3.18). In the former
case for Legendre approximations, all the eigenvalues have nonnegative real
parts, whereas for Chebyshev approximations, there are some eigenvalues
with negative real parts when ν and N are small. In the latter case for
Legendre approximations, the real parts of the eigenvalues are bounded from
below by −1

2 , whereas for Chebyshev approximations, the real parts of the
eigenvalues can have quite large negative values when ν and N are small.

At last, we consider the tau scheme, which reads as (7.3.15) except
that the test functions lie in PN−2. The estimate (7.3.17) on Re(λN ) can
be obtained in the same manner as for the Galerkin scheme, using now
v = PN−2u

N as a test function. For the Legendre tau method, it is pos-
sible to obtain a lower bound as close to (7.3.16) as desired, provided that N
is large enough. Indeed,

Re
(∫ 1

−1

βuN
x PN−2u

N dx
)

= Re
(∫ 1

−1

βuN
x uN dx

)
− Re

(∫ 1

−1

βuN
x (uN − PN−2u

N )dx
)

= −1
2

∫ 1

−1

βx|uN |2dx− Re
(∫ 1

−1

βuN
x (uN − PN−2u

N )dx
)

= −1
2

∫ 1

−1

βx|PN−2u
N |2dx− 1

2

∫ 1

−1

βx

[
|uN |2 − |PN−2u

N |2
]
dx

−Re
(∫ 1

−1

βuN
x (uN − PN−2u

N )dx
)

.
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The last two integrals on the right-hand side are easily shown to be bounded
by CN−1‖uN

x ‖2L2(−1,1), according to the estimate (5.4.11). Hence,

Re(λN ) ≥
(
ν − C

N

)
‖uN

x ‖2L2(−1,1) − β1/2‖uN‖2L2(−1,1)

‖uN‖2L2(−1,1)

.

By the Poincaré inequality, we conclude that

Re(λN ) ≥
(

π2

4
ν − 1

2
β1

)
− C

N

for a constant C > 0 depending on β but independent of ν.
For both the Legendre and the Chebyshev methods, the bound (7.3.18)

on |λN | is obtained by choosing v = −uN
xx as a test function in the tau scheme

and taking the modulus of both sides. One gets

|λN | ≤ c
ν‖uN

xx‖2L2
w(−1,1) + β0‖uN

x ‖L2
w(−1,1)‖uN

xx‖L2
w(−1,1)

‖uN
x ‖L2

w(−1,1)

and concludes again by the inverse inequality (5.4.5) or (5.5.4).

7.3.3 The Discrete Eigenvalues for Lu = ux

We associate to this operator the boundary condition

u(1) = 0 , (7.3.21)

instead of u(−1) = 0, to conform to the discussion and the numerical results
given in Sect. 4.3.2.

At first, we consider collocation methods. We choose here the collocation
points to be the Gauss-Lobatto points {xj}Nj=0 for the Chebyshev or the
Legendre weight, as defined in Sect. 2.2.3. Other choices of collocation points
are possible. The eigenvalues of the collocation operator are defined by the
set of equations

uN
x (xj) = λNuN (xj) , j = 0, . . . , N − 1 ,

uN (xN ) = 0 ,
(7.3.22)

provided uN is a non-trivial polynomial of degree N (we assume here that in
both cases the nodes are ordered left-to-right).

The eigenvalues of (7.3.22) are complex numbers, whose real parts are
all nonpositive. For the Chebyshev points, this sign property follows from
a stability result, due to Gottlieb and Turkel (1985), for the associated time-
dependent problem
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uN
t (xj , t) = uN

x (xj , t) , j = 0, . . . , N − 1 , t > 0 ,

uN (xN , t) = 0 , t > 0 ,

uN (xj , 0) = u0(xj) , j = 0, . . . , N .

(7.3.23)

They prove that, for each N > 0, there exists a spatial norm of uN which
remains bounded for all times t > 0. This clearly implies that the eigenvalues
of the spatial operator in (7.3.23) have nonpositive real parts. Moreover, an
estimate of the form

|λN | ≤ O(N2) (7.3.24)

for each eigenvalue follows easily from the identity

∫ 1

−1

uN
x uNw dx = λN

N∑

j=0

|uN (xj)|2wj , (7.3.25)

taking into account (5.5.4) and (5.3.2). This identity is obtained in the usual
way by multiplying the j-th equation in (7.3.22) by uN (xj)wj , summing over
j = 0, . . . , N and using (2.2.25). One can prove that estimate (7.3.24) is
sharp, as confirmed by numerical experiments (see Fig. 4.8).

The analysis for the Legendre collocation operator is easier. Equation
(7.3.25) (where now w ≡ 1) implies the nonpositivity of Re(λN ) (since
Re
(∫ 1

−1
uN

x uN dx
)

= −1
2 |uN (−1)|2 ≤ 0), as well as the growth estimate

(7.3.24).
Next, we consider the Legendre G-NI method, with the weak imposition

of the boundary conditions, that we have already considered in Sect. 3.7 (see
also Example 5 in Sect. 6.5.2). The discrete form of the eigenvalue problem
reads

(uN
x , v)N − uN (1)v(1) = λN (uN , v)N for all v ∈ PN , (7.3.26)

where uN ∈ PN and (·, ·)N is the LGL inner product in (−1, 1). Choosing
v = uN and using the exactness of the LGL quadrature formula, we get

Re
(
(uN

x , uN )N

)
= 1

2 |u
N (1)|2 − 1

2 |u
N (−1)|2 ;

whence

Re
(
λN
)

= −
1
2

(
|uN (1)|2 + |uN (−1)|2

)

‖uN‖2N
≤ 0 .

This proves the nonpositivity of the real parts of the discrete eigenvalues.
From (7.3.26) again with v = uN , we also have

|λN | ≤
‖uN

x ‖L2(−1,1)‖uN‖L2(−1,1) + |uN (1)|2
‖uN‖2N

;

applying the inverse inequalities (5.4.5) with r = 1 and p = 2, and (5.4.3)
with p = 2 and q =∞, to bound the numerator, and the equivalence (5.3.2)
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of discrete and continuous L2-norms in the denominator, we obtain again
a bound of the form (7.3.24) on the modulus of the eigenvalues.

Finally, the eigenvalues arising from the tau approximation of the advec-
tion operator L are defined by the existence of a non-trivial polynomial uN

of degree N vanishing at x = 1 and such that

û
(1)
k = λN ûk , k = 0, . . . , N − 1 , (7.3.27)

where ûk and û
(1)
k denote respectively the k-th coefficient of uN and of uN

x in
the expansion according to the Chebyshev or the Legendre basis. Equation
(7.3.27) is equivalent to the variational form

(uN
x , v)w = λN (uN , v)w for all v ∈ PN−1 . (7.3.28)

The real parts of the eigenvalues of (7.3.27) are all strictly negative. In order
to show this result, let us consider first the Chebyshev method. Equation
(7.3.28) yields the error equation (see Sect. 6.6)

uN
x = λNuN + αNTN , −1 < x < 1 ; (7.3.29)

by equating the coefficients of TN on both sides we get

αN = −λN ûN
π

2
.

Let us multiply equation (7.3.29) by (1 + x)uN
x (x)w(x) and integrate over

(−1, 1). It is easily checked using (2.4.22) that the N -th Chebyshev coefficient
of the function (1+x)uN

x is NûN . Thus, setting w̃(x) = (1+x)w(x) we have
∫ 1

−1

|uN
x |2w̃(x)dx = λN

[∫ 1

−1

uNuN
x w̃(x)dx−N

π

2
|ûN |2

]
.

Note that Re
(∫ 1

−1
uNuN

x w̃dx
)

= −1
2

∫ 1

−1
|uN |2w̃xdx < 0; whence it follows

that Re(λN ) < 0.
A bound for the modulus of λN can be obtained by setting v = PN−1u

N

in (7.3.28) and using the Cauchy-Schwarz inequality to get

|λN | ≤
‖uN

x ‖L2
w(−1,1)

‖PN−1uN‖L2
w(−1,1)

.

One can prove (following the argument used in Canuto and Quarteroni
(1982a) to obtain the inverse inequality (5.5.4)) that there exists a constant
C > 0 independent of N such that

‖vx‖L2
w(−1,1) ≤ CN2‖PN−1v‖L2

w(−1,1) for all v ∈ PN such that v(1) = 0 .

Thus, one obtains again the estimate (7.3.24).
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For the eigenvalues of the Legendre tau method, the nonpositivity
of the real parts follows immediately setting v = uN

x in (7.3.28), since
Re
(∫ 1

−1
uNuN

x dx
)

= −1
2 |uN (−1)|2 ≤ 0. On the other hand, the eigenvalues

of the Legendre tau method differ qualitatively from those of the Chebyshev
tau method, in that their largest modulus satisfies an estimate of the form

|λN | ≤ O(N) (7.3.30)

instead of (7.3.24). This rather surprising fact was proved by Dubiner (1991a),
using an asymptotic analysis. On the other hand, when the Legendre tau
method is applied to a system of hyperbolic equations, the corresponding
eigenvalues grow again at the rate of O(N2), as predicted by the inverse
inequality (5.4.5).

7.4 The Preconditioning of Spectral Operators

In this section, we review some of the theoretical results on the precondi-
tioning of spectral operators by low-order finite-difference or finite-element
operators.

The case of periodic boundary conditions is investigated in Sect. 4.4.2
for the most significant one-dimensional constant-coefficient operators. The
preconditioning properties of several low-order operators are easily derived
from the available analytical expression of the eigenvalues and eigenvectors
of the corresponding matrices. The one-dimensional results can be immedi-
ately extended to the multidimensional case by exploiting the tensor-product
structure of both the spectral and the finite-order operators, as indicated
below; obviously, this approach presumes that the exact preconditioner is
applied.

For the case of nonperiodic boundary conditions, the analytical expres-
sion of the eigenvalues of the preconditioned matrices is seldom available;
an example is given by (4.4.37). In general, one must be content either with
empirical results, such as those presented in Sect. 4.4, or with theoretical
bounds on the spectra of the preconditioned matrices, which show, e.g., that
their eigenvalues are bounded away from 0 and ∞ uniformly in N .

Results of the latter type can be easily provided for the Laplacian sub-
mitted to Dirichlet boundary conditions, when it is discretized by the Leg-
endre Galerkin or G-NI methods that use the nodal basis at the Legendre
Gauss-Lobatto nodes (thus, the G-NI method coincides with the collocation
method at these points) and preconditioned by (multi-)linear finite elements
based at the same points. The core of the analysis is furnished by the uniform
low-order/high-order interpolation property, expressed by the two equivalence
estimates (7.2.18)–(7.2.19); they state that interpolating a set of data given
at a Legendre Gauss-Lobatto grid in (−1, 1) either by a global polynomial or
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by a piecewise-linear function yields interpolants which have uniformly equiv-
alent L2- and H1- norms. For the analysis of the G-NI method, another tool
is the uniform equivalence between the continuous and discrete L2-norms of
a polynomial, given by (5.3.2).

In order to illustrate these results, let us start with the one-dimensional
problem

−d2u

dx2
= f , −1 < x < 1 ,

u(−1) = u(1) = 0 .

The Legendre Galerkin method which uses the nodal basis of P
0
N (−1, 1) at

the Gauss-Lobatto nodes yields the system

Ku = M f (u ∈ R
N−1) ,

where K (M , resp.) is the stiffness (mass, resp.) matrix associated with this
basis (for its general form, see (3.8.16)). The linear finite-element approxi-
mation of the same problem leads to a stiffness (mass, resp.) matrix denoted
by KFE (MFE , resp.); we refer to Sect. 4.4.2 for their definitions. Restricting
(7.2.18)–(7.2.19) to functions vN ∈ P0

N (−1, 1), these inequalities are equiva-
lently written as

c1vTMFEv ≤ vTMv ≤ c2vTMFEv , (7.4.1)

and
c3vTKFEv ≤ vTKv ≤ c4vTKFEv , (7.4.2)

for all v ∈ RN−1, for suitable constants independent of N .
If we consider the G-NI method, we rather have the system

KGNIu = MGNI f ,

with KGNI = K due to the exactness of the LGL inner product, whereas
MGNI is the diagonal matrix of the LGL weights (see (3.8.11)). By the equiv-
alence of norms (5.3.2), we have

c5vTMv ≤ vTMGNIv ≤ c6vTMv , (7.4.3)

for all v ∈ RN−1. We will also consider the lumped finite-element mass
matrix MFE,d introduced in Sect. 4.4.2. The explicit calculation of the matrix
elements and the application to the matrix (MFE,d)−1MFE of the classical
Gerschgorin theorem on the localization of eigenvalues yield

c7vTMFEv ≤ vTMFE,dv ≤ c8vTMFEv , (7.4.4)

for all v ∈ RN−1; again, all constants in the previous estimates are indepen-
dent of N .



432 7. Analysis of Model Boundary-Value Problems

Relation (7.4.2) immediately tells us that the eigenvalues of the symmet-
ric and positive-definite matrix K

−1/2
FE KK

−1/2
FE all lie in the interval [c3, c4].

Since this matrix is similar to the preconditioned matrix P1 = K−1
FEKGNI =

K−1
FEK, considered in (4.4.45) and corresponding to the weak form of the

finite-element preconditioning, we deduce that its iterative condition number
(see (C.1.10)), K(P1), is bounded by c4/c3 uniformly in N .

The eigenvalue analysis of the matrix P2 = (M−1
FEKFE)−1M−1

GNIKGNI ,
introduced in (4.4.46) and corresponding to the strong form of the finite-
element preconditioning, is less immediate. It relies again upon (7.4.2); in
addition, one needs a bound for the ratios

rj =
(MGNI)jj

(MFE,d)jj
=

wj
1
2 (hj + hj−1)

, (hj = xj+1 − xj) , (7.4.5)

between the LGL weights and the local spacing of the LGL grid. Note that
the numerator and denominator, respectively, are the elements of the diago-
nal spectral and (lumped) finite-element mass matrices, MGNI and MFE,d,
respectively, introduced in Sect. 4.4.2. The asymptotic expressions (2.3.15)
and (2.3.16) easily show that rj ∼ 1 for all j and N ; Parter (2001a) proves
indeed the sharp estimates

0.9 ≤ rj ≤ 1 (7.4.6)

for all ratios. Using these results, Parter (2001b) proves that the real parts of
the eigenvalues of P2 are uniformly positively bounded away from 0, and that
the eigenvalues are uniformly bounded in modulus. By the same technique,
one can easily prove that the eigenvalues of the matrix P3 defined in (4.4.46)
have the same properties. The same results hold for the finite-difference pre-
conditioning of the collocation matrix, H−1

FDLcoll (see Parter and Rothman
(1995) and Parter (2001a)). Similar results hold for the Chebyshev rather
than the Legendre method; they have been obtained by Kim and Parter
(1997). The extension from the Poisson equation to the Helmholtz equation
−∆u + γu = f , with a (possibly non-constant) coefficient γ ≥ 0, poses no
extra difficulty to the analysis.

The extension of the previous results to the multidimensional case

−∆u = f in Ω = (−1, 1)d ,
u = 0 on ∂Ω ,

relies upon the tensor-product structure of the matrices at hand. Considering
for instance the two-dimensional case, it is easily seen that the spectral mass
matrix M can be expressed as M = Mx ⊗My, where Mx, My denote the
one-dimensional mass matrices in each direction. Similarly, the bilinear finite-
element mass matrix MFE has (with obvious choice of notation) the structure
MFE = MFE,x ⊗MFE,y. The spectral and finite-element stiffness matrices
for the Laplacian operator, K and KFE , can be written as

K = Kx⊗My +Mx⊗Ky and KFE = KFE,x⊗MFE,y +MFE,x⊗KFE,y .
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The matrices involving the diagonal (lumped) versions of the mass matrices
have an analogous form.

Now, if Ai, Bi, i = 1, 2, are symmetric and positive-definite matrices of
order n satisfying

vTAiv ≤ c∗i vTBiv for all v ∈ R
n ,

then one has

vT (A1 ⊗A2)v ≤ c∗1c
∗
2 vT (B1 ⊗B2)v for all v ∈ R

n×n .

Using this property and the relations (7.4.1) and (7.4.2) in each direction, we
get, for all v ∈ Rn×n,

c1c3 vT (KFE,x ⊗MFE,y)v ≤ vT (Kx ⊗My)v ≤ c2c4 vT (KFE,x ⊗MFE,y)v

and a similar sequence of inequalities in which the roles of x and y are in-
terchanged; summing up the corresponding terms in the two sequences, we
obtain the two-dimensional version of (7.4.2), with left constant c1c3 and
right constant c2c4. As in the one-dimensional case, this immediately yields
that the eigenvalues of the preconditioned stiffness matrix P0 = K−1

FEK lie in
the interval [c1c3, c2c4], i.e., K(P0) ≤ c2c4/c1c3.

Replacing the exact mass matrices by their lumped diagonal approxima-
tions, we prove in the same way that the iterative condition numbers of the
matrices P1 = K−1

FEKGNI and P3 = K−1
FE,appKGNI , introduced in (4.4.64)

and (4.4.66), respectively, are uniformly bounded in N . We note that the
tight bounds (7.4.6) on the elements of the one-dimensional diagonal ma-
trix M−1

FE,dMGNI tell us that MFE,d is an extremely good approximation to
MGNI , better in fact than the exact mass matrix MFE . This explains why
the condition number of P3, which involves the former finite-element mass
matrix, is smaller than that of P1, which involves the latter matrix instead;
the behavior is clearly documented in Table 4.9. At last, concerning the pre-
conditioned matrix P2, defined in (4.4.65), Parter (2001b) proves, as in the
one-dimensional case, that the real parts of its eigenvalues are uniformly posi-
tively bounded away from 0, and that the eigenvalues are uniformly bounded
in modulus. The same results can be proven for the matrix P4 defined in
(4.4.67).

7.5 The Heat Equation

Semi-discrete (discrete in space, continuous in time) approximations to this
equation, submitted to Dirichlet, Neumann or Robin boundary conditions,
can be analyzed by the energy method presented in Sect. 6.5.1. The three ex-
amples of that section illustrate its application to one-dimensional schemes.
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The stability and convergence analysis of spectral schemes for the multidi-
mensional heat equation can be established in a similar manner, using the
continuity and coercivity results of Sect. 7.1 for the exact and discrete bilinear
forms associated with Laplace’s operator.

The aim of this section is to provide the reader with one example of
analysis of a fully discrete approximation. For simplicity, we consider the
one-dimensional heat equation submitted to Dirichlet boundary conditions:

ut − uxx = 0 , −1 < x < 1 , t > 0 ,

u(−1, t) = u(1, t) = 0 , t > 0 ,

u(x, 0) = u0(x) , −1 < x < 1 .

(7.5.1)

The analysis for the two-dimensional equation can be found in Bressan and
Quarteroni (1986). We will deal with the Chebyshev collocation method in
space; as usual, Fourier or Legendre methods would pose fewer difficulties
from the technical point of view. On the other hand, the time variable will
be discretized by a θ-method, defined in (D.2.11). This family of methods
includes, among others, both the forward and backward Euler methods (for
θ = 0 and θ = 1, respectively), and the Crank-Nicolson method (for θ = 1

2 ).
A θ-method is explicit for θ = 0, implicit for all other values of θ.

Let ∆t > 0 be the time-step, let tk = k∆t, and let φk
j denote the value of

the function φ for x = xj and t = tk, where xj = cosπj/N . The fully discrete
approximation to (7.5.1) reads as follows:

For any k ≥ 0, uN,k is a polynomial of degree N which satisfies

uN,k+1
j − uN,k

j −∆t
{
θ(uN

xx)k+1
j + (1− θ)(uN

xx)k
j

}
= 0 , 1 ≤ j ≤ N − 1 ,

uN,k+1
0 = uN,k+1

N = 0,

uN,0
j = u0(xj) , 0 ≤ j ≤ N .

(7.5.2)
The absolute stability region of a θ-method, as a function of θ, is described

in Sect. D.2.3. From the eigen-analysis of Sect. 7.3 (see, in particular, (7.3.5)),
it follows that for θ < 1

2 the method has a severe stability restriction on
the time-step ∆t of the form ∆t ≤ Cθ/N

4, where Cθ is a positive constant
monotonically increasing with θ. The more restrictive condition is for the
explicit backward Euler method (θ = 0); whereas the condition is more and
more alleviated as θ approaches 1

2 . To avoid any restriction, from now on θ will
be chosen to satisfy 1

2 ≤ θ ≤ 1, since in this case the method is A-stable (see
Appendix D). In general, implicit time-discretization methods are customary
for the heat equation.

By standard arguments, (7.5.2) can be restated as follows: for all k ≥ 0,
uN,k ∈ P0

N satisfies, for all v ∈ P0
N ,

(
uN,k+1−uN,k, v

)
N

+∆t a
(
θuN,k+1+(1−θ)uN,k, v

)
= 0 , (7.5.3)
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where a(u, v) is defined in (7.1.13) and coincides with −(uxx, v)N when
u and v are elements of P0

N . Furthermore, uN,0 = INu0 is the interpolant
of u0 at the (N + 1) Legendre-Gauss-Lobatto points.

For convenience of notation we denote here by ‖v‖0 the norm of v in
L2

w(−1, 1). To prove stability, let us take v = θuN,k+1 +(1−θ)uN,k in (7.5.3).
By (7.1.16), we get

θ‖uN,k+1‖2N + (1− 2θ)
(
uN,k+1, uN,k

)
N
− (1− θ)‖uN,k‖2N

+
∆t

4
‖θuN,k+1

x + (1− θ)uN,k
x ‖20 ≤ 0 .

(7.5.4)

Since 1− 2θ ≤ 0, the Cauchy-Schwarz inequality gives

(1− 2θ)
(
uN,k+1, uN,k

)
N
≥
(

1
2 − θ

) (
‖uN,k+1‖2N + ‖uN,k‖2N

)
.

Then from (7.5.4) it follows that

‖uN,k+1‖2N +
∆t

2
‖θuN,k+1

x + (1− θ)uN,k
x ‖20 ≤ ‖uN,k‖2N , (7.5.5)

and thus, for all k ≥ 0,

‖uN,k‖2N +
∆t

2

k−1∑

j=0

‖θuN,j+1
x + (1− θ)uN,j

x ‖20 ≤ ‖u0‖2N . (7.5.6)

This shows that the scheme (7.5.2) is unconditionally stable if θ ∈ [12 , 1]. From
(7.5.5) we deduce that ‖uN,k+1‖N ≤ ‖uN,k‖N for all k ≥ 0, which means that
the scheme is contractive (see (D.1.8)). The same conclusion could be derived
from the fact that the absolute stability region of the θ-method for θ ≥ 1

2
includes the negative real axis, and the eigenvalues of the spatial operator are
real and negative. The energy (or variational) argument used above to prove
(7.5.5) provides an alternative method of investigation, which yields the richer
information about the spatial derivative of the quantity uN,j+1 +(1−θ)uN,j .

We prove now that certain norms of the error u(tk)−uN,k tend to zero as
both ∆t and 1/N tend to zero. In the sequel, given a function v = v(x, t), we
will denote by v(t) the function of x such that (v(t))(x) = v(x, t); furthermore,
we will set v(tk) = vk to soften the notation. Using the function ũ(t) =
ΠNu(t) ∈ P0

N , a projection defined by the condition a(u(t)−ΠNu(t), v) = 0
for all v ∈ P

0
N (see (5.5.21)), we get

(
θũk+1

t + (1− θ)ũk
t , v
)
w

+ a
(
θũk+1 + (1− θ)ũk, v

)
=
(
δk, v

)
w

,

for all v ∈ P
0
N and k ≥ 0, where δk = θ(ũ − u)k+1

t + (1 − θ)(ũ − u)k
t . Then

setting ek = uN,k − ũk and using (7.5.3), we obtain

1
∆t

(
uN,k+1− uN,k, v

)
N
−
(
θũk+1

t +(1− θ)ũk
t , v
)
N

+ a
(
θek+1 + (1− θ)ek, v

)

= −
(
δk, v

)
w
− E

(
θũk+1

t + (1− θ)ũk
t , v
)

, (7.5.7)

where the bilinear form E is defined as E(φ, ψ) = (φ, ψ)w − (φ, ψ)N .
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Using the standard approximation results (7.1.21) and (5.3.4b), we obtain
∣∣(δk, v)w + E

(
θũk+1

t + (1− θ)ũk
t , v
)∣∣ ≤ C1‖γk(u)‖0‖v‖N , (7.5.8)

where γk(u) = ‖δk‖0 + ‖θũk+1
t + (1− θ)ũk

t ‖0 and

|γk(u)| ≤ C2N
−r
(
|uk

t |Hr;N
w (−1,1) + |uk+1

t |Hr;N
w (−1,1)

)
, r ≥ 1 . (7.5.9)

Now let z = z(t) be any continuously differentiable function in the semi-
infinite interval (0,+∞), and define

εk(z) =
1
∆t

(
zk+1 − zk

)
−
(
θzk+1

t + (1− θ)zk
t

)
.

If z ∈ C2(0,+∞), then using the Taylor formula with the integral form of
the remainder gives

εk(z) =
1
∆t

∫ tk+1

tk

(
s− (1− θ)tk+1 − θtk

)
ztt(s)ds ;

whence

|εk(z)| ≤ max(θ, 1− θ)
∫ tk+1

tk
|ztt(s)|ds ≤

∫ tk+1

tk
|ztt(s)|ds . (7.5.10)

If θ = 1/2 and z ∈ C3(0,+∞), then a better estimate is obtained from
a higher-order Taylor formula, namely

εk(z) =
1

2∆t

∫ tk+1

tk
(tk − s)(tk+1 − s)zttt(s)ds ;

whence

∣∣εk(z)
∣∣ ≤ ∆t

8

∫ tk+1

tk
|zttt(s)|ds . (7.5.11)

From (7.5.7) we obtain, using the above definition of εk,

1
∆t

(
ek+1 − ek, v

)
N

+ a
(
θek+1 + (1− θ)ek, v

)

= −
{
(εk(ũ), v)N + (δk, v)w + E(θũk+1

t + (1− θ)ũk
t , v)

}
.

Taking v = θek+1 +(1− θ)ek, proceeding in a manner similar to the stability
proof, using (7.5.8) and the Cauchy-Schwarz inequality, we obtain

‖ek+1‖2N − ‖ek‖2N +
∆t

2
‖θeN,k+1

x + (1− θ)eN,k
x ‖20

≤ 2∆t
(
‖εk(ũ)‖N + C1|γk(u)|

)
‖θek+1 + (1− θ)ek‖N .

(7.5.12)
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By the Poincaré inequality (see (A.13.2)) and the equivalence of continuous
and discrete norms (see (5.3.2)), there exists a constant cP > 0 such that
‖vx‖0 ≥ cP ‖v‖N for all v ∈ P

0
N . Hence, using the Young inequality ab ≤

1
2ηa

2 + η
2 b

2 for all a, b ∈ R and arbitrary η > 0, we get

‖ek+1‖2N +
cP

4
∆t‖θeN,k+1

x + (1− θ)eN,k
x ‖20

≤ ‖ek‖2N +
4
cP

∆t
(
‖εk(ũ)‖N + C1|γk(u)|

)2
;

applying the above estimate recursively yields

‖ek‖2N +
cP

4
∆t

k−1∑

j=0

‖θeN,j+1
x + (1− θ)eN,j

x ‖20

≤ ‖e0‖2N +
4
cP

∆t

k−1∑

j=0

(
‖εj(ũ)‖N + C1|γj(u)|

)2 ≡ RHS .

(7.5.13)

Since e0 = uN,0 − ũ(0) = INu0 −ΠNu0 from (7.1.21) and (5.5.22), it follows
using (5.3.2) that

‖e0‖N ≤ 2‖e0‖0 ≤ C2N
−r|u0|Hr;N

w (−1,1) , r ≥ 1 . (7.5.14)

We are going now to estimate the term ‖εj(ũ)‖N in the case θ = 1/2. Since
εj(ũ) ∈ P0

N , using (5.3.2), (7.5.11) and the Cauchy-Schwarz inequality yields

‖εj(ũ)‖2N ≤ 4‖εj(ũ)‖20 ≤
1
16

∆t2
∫ 1

−1

(∫ tj+1

tj
|ũttt(x, s)|ds

)2

w(x) dx

≤ ∆t3

16

∫ tj+1

tj
‖ũttt(s)‖20 ds ;

whence

k−1∑

j=0

‖εj(ũ)‖2N ≤
∆t3

16

∫ tk

0

‖ũttt(s)‖20 ds . (7.5.15)

Finally, from (7.5.9), (7.5.14) and (7.5.15), we see that the right-hand side of
(7.5.13) can be estimated as

RHS ≤ N−2r

⎛

⎝C2|u0|2Hr;N
w (−1,1)

+ C3

k∑

j=0

|uj
t |2Hr;N

w (−1,1)

⎞

⎠

+ C4∆t4
∫ tk

0

‖ũttt(s)‖20ds .
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We now recall that u(tk) − uN,k =
(
u(tk) − ΠNu(tk)

)
+ ek, and we use

the triangle inequalities for both the L2
w- and the H1

w-norms. This yields

‖u(tk)− uN,k‖L2
w(−1,1)

≤ N−r

⎛

⎝C2|u0|2Hr;N
w (−1,1)

+C5|u(tk)|2
Hr;N
w (−1,1)

+C3∆t
k∑

j=0

|uj
t |2Hr;N

w (−1,1)

⎞

⎠
1/2

+ ∆t2

(
C4

∫ tk

0

‖ũttt(s)‖2L2
w(−1,1)ds

)1/2

and
⎛

⎝∆t
k−1∑

j=0

‖θ(u(tj)− uN,j) + (1− θ)(u(tj+1)− uN,j+1)‖2H1
w(−1,1)

⎞

⎠
1/2

≤ N1−r

⎛

⎝C6|u0|2Hr−1;N
w (−1,1)

+C7|u(tk)|2
Hr;N
w (−1,1)

+C8∆t

k∑

j=0

|uj
t |2Hr−1;N

w (−1,1)

⎞

⎠
1/2

+ ∆t2

(
C4

∫ tk

0

‖ũttt(s)‖2L2
w(−1,1)ds

)1/2

.

We finally note that since ũt = ΠNut, the time derivatives of ũ can be
replaced with those of u, using (7.5.1) in a straightforward way.

The above convergence analysis has been carried out for θ = 1/2. If
θ ∈ ( 1

2 , 1], it is easily seen, using (7.5.10) instead of (7.5.11), that the previous
estimates still hold provided one replaces ∆t2 by ∆t and ũttt by ũtt on the
right-hand side.

The previous analysis can be adapted to cover the case of a full second-
order parabolic equation

ut − νuxx + βux + γu = f , (7.5.16)

when the bilinear form a(u, v) associated with the spatial part of the operator
satisfies the coercivity condition a(v, v) ≥ α‖v‖2H1

w(−1,1) for all v ∈ H1
w(−1, 1),

for some α > 0. Proceeding as above, one obtains similar results, in which
the coercivity constant α appears in the denominator on the right-hand side.
Should α be small, as in a singular perturbation problem, one can get esti-
mates which do not depend explicitly on α, by replacing the bound (7.5.12)
with the bound

‖ek+1‖2N − ‖ek‖2N + 2α∆t‖θeN,k+1
x + (1− θ)eN,k

x ‖20
≤ 4∆t

(
‖εk(ũ)‖N + C1|γk(u)|

)2
+ 2∆t

(
‖ek+1‖2N + ‖ek‖2N

)
,
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and then proceeding with the discrete form of the Gronwall lemma (see Sect.
A.15). In this case, an exponential term eσt (for some σ > 0) multiplies
the norms on the right-hand sides of the final estimates. Obviously, these
estimates become of little interest when the equation is integrated over long
time intervals.

7.6 Linear Hyperbolic Equations

In this section, we present the numerical analysis of a number of spectral
methods for linear hyperbolic problems. The discussion will be mainly con-
fined to the one-dimensional case. We will consider the model scalar problem

ut + a(x)ux = 0 for t > 0 ,

u(x, 0) = u0(x) ,
(7.6.1)

in a suitable space interval, supplemented with proper boundary conditions.
The real functions a and u0 are assumed to be smooth. (Note that elsewhere
in the book the velocity coefficient a was indicated by β; we prefer to adopt
the alternative symbol here in order to conform to a classical notation in the
context of pure hyperbolic equations.) As in the previous section, for each t
we denote by u(t) the function of x such that (u(t))(x) = u(x, t). Since both
periodic and nonperiodic boundary conditions are relevant in applications,
but require different techniques in the analysis, they will be considered in
separate subsections. We also review some theoretical results about the reso-
lution of the Gibbs phenomenon; subsequently, we deal with the challenge of
recovering the exponential decay of the error from spectral approximations
to discontinuous solutions of hyperbolic equations.

Spectral discretizations of hyperbolic systems of equations will be consid-
ered in CHQZ3, Sect. 4.2. The investigation of their mathematical properties,
focused on the assumptions on the boundary conditions which ensure the sta-
bility of the approximations, is therefore deferred to CHQZ3, Sect. 4.2.4.

7.6.1 Periodic Boundary Conditions

In (7.6.1), u, u0 and a are supposed to be 2π-periodic functions. Let us first
recall that the solution u is defined by the formula

u(x, t) = u0(X(0;x, t)) , (7.6.2)

where X(τ ;x, t) denotes the solution of the backward initial-value problem

dX
dτ

= a(X) , 0 ≤ τ ≤ t ,

X(t) = x .

(7.6.3)
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According to (7.6.2), the maximum norm of u on the interval (0, 2π) (see
(A.9.f)) is constant in time, i.e.,

‖u(t)‖L∞(0,2π) = ‖u0‖L∞(0,2π) for all t > 0 . (7.6.4)

On the other hand, the L2-norm of u, although finite for all t > 0, may
grow exponentially in time with respect to its value at t = 0 (i.e., the ra-
tio ‖u(t)‖L2(0,2π)/‖u0‖L2(0,2π) may grow exponentially). Indeed, multiplying
(7.6.1) by u and integrating by parts over (0, 2π), we get

d
dt

∫ 2π

0

u2dx−
∫ 2π

0

axu
2dx = 0 ;

whence, setting α = max
0≤x≤2π

ax(x), we obtain

‖u(t)‖2L2(0,2π) ≤ eαt‖u0‖2L2(0,2π) , t > 0 . (7.6.5)

This estimate is sharp in describing the behavior of the L2-norm of the solu-
tion on a finite time interval. Take for instance the case a(x) = x and choose
the initial data u0 such that u0(x) = 1 if |x| ≤ η, u0(x) = 0 elsewhere (this
example is nonperiodic, but if η is chosen small enough compared to t, it
is equivalent to a periodic problem; furthermore, u0 is not smooth, but one
can easily regularize it.) A direct computation yields u(x, t) = 1 if |x| ≤ ηet,
u(x, t) = 0 elsewhere, whence ‖u(t)‖2L2(R) = et‖u0‖2L2(R).

However, the L2-norm of u is bounded independently of t when a is of
one sign. In fact, in this case (7.6.1) is equivalent to

1
a
ut + ux = 0 ,

which, by multiplication by u and integration-by-parts, yields

d
dt

∫ 2π

0

1
a(x)

u2(x, t)dx = 0 ,

and therefore

‖u(t)‖2L2(0,2π) ≤
max

0≤x≤2π
|a(x)|

min
0≤x≤2π

|a(x)| ‖u0‖2L2(0,2π) . (7.6.6)

Finally, we recall that if the functions a and u0 are globally smooth, then
so is u; this follows from (7.6.2)–(7.6.4). Nevertheless, u develops gradients
(in space) which grow exponentially in time at each point ξ where a changes
sign with strictly negative derivative. Indeed, let us differentiate (7.6.2) at
x = ξ by the chain rule, using the facts that X(τ ; ξ, t) = ξ for all τ and that
Y = ∂X/∂x is the solution of the backward initial-value problem
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dY
dτ

= ax(X)Y , 0 ≤ τ ≤ t ,

Y (t) = 1 ,

obtained by differentiating (7.6.3) with respect to x. We arrive at the formula

ux(ξ, t) = e−ax(ξ)tu0,x(ξ) , (7.6.7)

which demonstrates the exponential steepening of the solution near these
special points. Such a behavior poses a difficulty for any numerical approxi-
mation of (7.6.1).

Let us now consider spectral methods for this problem. A semi-discrete
Fourier approximation uN (t) is a trigonometric polynomial of degree N in x,
i.e., uN (t) ∈ SN where SN is defined in (5.1.1). It can be defined by a Galerkin
method :

ûk,t +
(
a uN

x

)
k

∧ = 0 , −N ≤ k ≤ N − 1 , t > 0 ,

ûk(0) = û0,k , −N ≤ k ≤ N − 1 .
(7.6.8)

Here ûk denotes the k-th Fourier coefficient of uN . Another way of defining uN

is by a collocation method :

uN
t (xj , t) + a(xj)uN

x (xj , t) = 0 , j = 0, . . . , 2N − 1 , t > 0 ,

uN (xj , 0) = u0(xj) , j = 0, . . . , 2N − 1 ,
(7.6.9)

where xj = jπ/N .
We discuss now the stability and convergence properties of these methods.

The Galerkin solution satisfies, by (7.6.8),
(
uN

t + auN
x , v
)

= 0 for all v ∈ SN , t > 0 ,

uN (0) = PNu0 ,
(7.6.10)

where (u, v) =
∫ 2π

0
uv̄ dx and PN is the L2-projection operator upon SN .

Setting v = uN we obtain

d
dt

∫ 2π

0

|uN |2dx−
∫ 2π

0

ax|uN |2dx = 0 ;

whence

‖uN (t)‖2L2(0,2π) ≤ eαt‖u0‖2L2(0,2x) , t > 0 . (7.6.11)

This estimate is the same as the one for the exact solution of (7.6.1) (see
(7.6.5)). Thus, the L2-norm of the Fourier Galerkin solution is bounded in-
dependently of N on every finite time interval [0, T ]. On the other hand, for
each fixed N the L2-norm of uN is allowed to grow exponentially as t→∞,
precisely as may the L2-norm of the exact solution, according to (7.6.5).
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There are examples in which ‖uN (t)‖L2(0,2π) does grow exponentially in
time as t→∞. This happens, e. g., for the equation ut + sin(δx− γ)ux = 0,
as reported in Gottlieb (1981), Sect. 3. Such a phenomenon is attributed
(see Gottlieb (1981), Gottlieb, Orszag and Turkel (1981)) to the eventual
insufficient resolution of the numerical scheme (for a fixed N), which surfaces
as soon as excessively steep gradients are developed in the solution. According
to the mechanism described by (7.6.7), oscillations which grow in time are
produced in the numerical solution. However, if resolution is improved, i.e.,
if N is increased, then the growth with time of ‖uN (t)‖L2(0,2π) is retarded.

The fact that oscillations are bounded independently of N on every fixed
time interval can also be established by investigating the behavior of higher
order Sobolev norms of the spectral solution. Setting v = −uN

xx in (7.6.10)
we get

1
2

d
dt

∫ 2π

0

|uN
x |2dx−

∫ 2π

0

a uN
x ūN

xxdx = 0 ;

whence

‖uN
x (t)‖2L2(0,2π) ≤ eαt‖u0,x‖2L2(0,2π) . (7.6.12)

This estimate together with (7.6.11) proves that uN (x, t) is bounded inde-
pendently of N for all fixed intervals 0 ≤ t ≤ T .

Finally, the convergence theory established in Sect. 6.5.2 and the approx-
imation estimate (5.1.10) allow us to derive the following error estimate from
the stability bound (7.6.11):

‖u(t)−uN (t)‖L2(0,2π)≤Ceαt/2N1−m max
0≤τ≤t

‖u(m)(τ)‖L2(0,2π) , (7.6.13)

provided u(τ) ∈ Hm
p (0, 2π) for 0 ≤ τ ≤ t, with m ≥ 1.

We turn now to the Fourier collocation method (7.6.9). If a(x) does not
vanish in [0, 2π], then (7.6.9) can be written as

1
a(xj)

uN
t (xj , t) + uN

x (xj , t) = 0 , j = 0, . . . , 2N − 1 .

Let us multiply each equation by ūN (xj , t)(π/N), and sum up over j. By the
exactness of the trapezoidal rule, based on the points xj , for all trigonometric
polynomials of degree ≤ 2N (see Sect. 2.1.2), and by the skew-symmetry of
the spatial operator, we get

d
dt

2N−1∑

j=0

1
a(xj)

|uN (xj , t)|2
π

N
= 0 ;

whence

‖uN (t)‖2L2(0,2π) ≤
max

0≤x≤2π
|a(x)|

min
0≤x≤2π

|a(x)| ‖INu0‖2L2(0,2π) , (7.6.14)
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where INu0 is the trigonometric interpolant of u0 at the collocation nodes.
This proves the stability of the method, provided that the initial data is
continuous or of bounded variation. Such a result was first established by
Gottlieb (1981). Again, the convergence of the method can be inferred using
the technique described in Sect. 6.5.2.

The analysis becomes much more involved when the coefficient a(x)
changes sign in the domain. Note that the equation degenerates into ∂u

∂t = 0
at points where a vanishes, leading to vertical characteristic lines and to the
decoupling of the problem set in (−1, 1) into independent subproblems set in
subintervals. A stability result such as (7.6.11), possibly with u0 replaced by
INu0 in the collocation case, cannot hold. Indeed, when a fixed resolution
(i.e., a fixed N) is used in the approximation of a solution in which steeper
and steeper gradients develop in time, then aliasing effects may eventually
become significant and adversely affect the stability. By carefully examin-
ing the interplay between aliasing, resolution and stability, Goodman, Hou
and Tadmor (1994) proved that the standard Fourier collocation method for
a general coefficient a is only algebraically stable (in the sense of Gottlieb
and Orszag (1977)), or weakly unstable, i. e., it satisfies

‖uN (t)‖2L2(0,2π) ≤ C(t)N‖INu0‖2L2(0,2π) , t > 0 . (7.6.15)

However, the weak instability stems only from the high, unresolved modes
through aliasing. In practice, well enough resolved computations keep the
aliasing error below the truncation error, and results appear as if they were
produced by a stable method.

L2-stability can be rigorously proven for two variants of the collocation
method – the skew-symmetric version and the filtered version. We begin by
considering a Fourier collocation approximation of (7.6.1) in which the spatial
term is discretized in a skew-symmetric way (see Gottlieb and Orszag (1977),
Kreiss and Oliger (1979), Pasciak (1980)). Since aux can be decomposed as

aux = 1
2 [aux + (au)x]− 1

2axu ,

one considers the scheme

uN
t (xj , t) + 1

2

[
auN

x +DN

(
auN

)]
(xj , t)− 1

2ax(xj)uN (xj , t) = 0 ,

j = 0, . . . , 2N − 1 ,
(7.6.16)

where DN represents the interpolation derivative operator at the collocation
points (see (2.1.44)). Since, by (2.1.33),

Re
((
DN (auN ), uN

)
N

)
= −Re

((
auN , uN

x

)
N

)
= −Re

((
auN

x , uN
)
N

)
,

we obtain, by multiplying (7.6.14) by ūN (xj , t)(π/N) and summing over j,

d
dt
‖uN (t)‖2L2(0,2π) ≤ α‖uN (t)‖2L2(0,2π), t > 0 ,
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where again α = max
0≤x≤2π

ax(x). Thus,

‖uN (t)‖2L2(0,2π) ≤ eαt‖INu0‖2L2(0,2π) , (7.6.17)

which proves stability. Again by the methods of Sect. 6.5.2 one can prove the
following convergence estimate (Pasciak (1980)):

‖u(t)− uN (t)‖L2(0,2π) ≤ Ceαt/2N1−m‖u(m)
0 ‖L2(0,2π), m ≥ 1 . (7.6.18)

(The two-dimensional version of this scheme is discussed in Sect. 6.5.2, Ex-
ample 4.)

The skew-symmetric decomposition costs twice as much as a standard
collocation method. Furthermore, although it provides an L2-stable solution,
it does not prevent the onset of oscillations near the points where sharp gra-
dients are developed. Alternatively put, stability is not guaranteed in norms
that yield control over the gradient of the spectral solution. Since oscilla-
tions, as well as the possible instability of the numerical solution, are due
to the growth of the higher order modes, an attractive alternative to the
skew-symmetric decomposition consists of inserting into the scheme (7.6.9)
a filtering or smoothing mechanism. This can be accomplished by using the
scheme

uN
t (xj , t) + a(xj)

(
SNuN

x

)
(xj , t) = 0 , j = 0, . . . , 2N − 1 , (7.6.19)

where SN : SN → SN is a smoothing operator acting in transform space (see
Sect. 2.1.4). The computational effort required by this process is generally
relatively modest.

The class of filters proposed by Kreiss and Oliger (1979) offers the theoret-
ical advantage of facilitating the derivation of a stability estimate in the L2-
norm. Here is a short description of their method. Fix three real, strictly pos-
itive constants m, s and j. Let M denote the largest integer ≤ (1− (1/m))N .
For each u =

∑N
k=−N ûke

ikx ∈ SN , define uM ∈ SM to be the truncation
of u of order M , i.e., uM =

∑
|k|≤M ûke

ikx. Then, the smoothing operator

SN is defined as SNu =
∑N

k=−N σkûke
ikx, where

σk =

⎧
⎪⎪⎨

⎪⎪⎩

1 if |k| ≤M or |ûk| ≤
γ‖uM‖L2(0,2π)

|2πk|s ,

γ‖uM‖L2(0,2π)

|2πk|s|ûk|
otherwise .

(7.6.20)

Note that SN is bounded in the L2-norm, i.e., ‖SNu‖L2(0,2π) ≤ ‖u‖L2(0,2π)

for all u ∈ SN , and it leaves unchanged the lower portion of the spectrum,
i.e., SNuM = uM . Moreover, SN leaves unchanged the functions in SN which
are “sufficiently smooth”, in the sense that
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∥∥∥∥
dsu

dxs

∥∥∥∥
L2(0,2π)

≤ δ‖u‖L2(0,2π) for a suitable constant δ > 0 ,

provided that m and j are properly chosen as functions of δ (see Kreiss and
Oliger (1979), Lemma 4.2).

The operator SN prescribes a minimal rate of decay of the higher order
coefficients, since |σkûk| ≤ O(|k|−s). Thus, according to (5.1.7), SN enforces
a minimal smoothing on the high-frequency component of u. This suggests
that the choice of the actual value of the parameter s should be based upon
a priori information on the regularity of the exact solution of (7.6.1).

Kreiss and Oliger prove that with their filter the solution of (7.6.19) sat-
isfies the estimate

d
dt
‖uN (t)‖2L2(0,2π)≤

{
max

0≤x≤2π
|(INa)x|+O(N2−s)

}
‖uN (t)‖2L2(0,2π) , (7.6.21)

provided that the k-th Fourier coefficient of a decays at least as fast as |k|−s.
Thus, if s > 2, (7.6.21) implies that the L2-norm of uN (t) is bounded inde-
pendently of N on every finite time interval.

Smoothing operators other than Kreiss and Oliger’s can be used in
(7.6.19) in order to stabilize the computation: for instance, those generated
by the class of filters introduced in Sect. 2.1.4, which include the exponential
filter considered by Majda, McDonough and Osher (1978) (see Sect. 7.6.4).
As for the skew-symmetric scheme, there are no practical examples which
indicate that the use of these filtering methods produces for linear problems
more stable results than the straightforward collocation method.

7.6.2 Nonperiodic Boundary Conditions

We now assume that (7.6.1) holds in the interval −1 < x < 1, and that the
value of u is prescribed for t > 0 at the inflow boundary points. This means
that u is required to satisfy the conditions

u(−1, t) = g−(t) if a(−1) > 0 ,
t > 0 ,

u(1, t) = g+(t) if a(1) < 0 ,
(7.6.22)

where g± are smooth data. Under these boundary conditions, problem (7.6.1),
(7.6.22) is well-posed in the L2-norm, since by multiplication of (7.6.1) by u
and partial integration we have

d
dt

∫ 1

−1

u2dx−
∫ 1

−1

axu
2dx + σ+a(1)g2

+ − σ−a(−1)g2
− ≤ 0 ,

where

σ− =

{
1 if a(−1) < 0 ,

0 if a(−1) ≥ 0 ,
σ+ =

{
0 if a(+1) ≤ 0 ,

1 if a(+1) > 0 .
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It follows that, setting α = max
−1≤x≤1

ax(x), one has

‖u(t)‖2L2(0,2π) ≤ eαt‖u0‖2L2(0,2π)

+
∫ t

0

eα(t−s)
{
−σ+a(1)g2

+(s) + σ−a(−1)g2
−(s)

}
ds .

(7.6.23)

This result predicts that the stability analysis of Legendre discretization
methods can be naturally accomplished by resorting to the energy approach.
This is indeed the case. Spectral Legendre methods for hyperbolic problems
have been introduced in Sect. 3.7; various strategies of enforcement of the
boundary conditions are discussed therein, and their L2-stability is estab-
lished. The complete stability and convergence analysis of the Legendre G-NI
scheme is detailed in the Example 5 of Sect. 6.5.2.

When we move to the analysis of Chebyshev methods, our road goes
immediately uphill. The most natural norm in which to seek the stability
of Chebyshev approximations seems to be the one involving the Chebyshev
weight w(x) = (1−x2)−1/2. However, as pointed out by Gottlieb and Orszag
(1977) and Gottlieb and Turkel (1985), the initial-boundary-value problem
(7.6.1), (7.6.22) need not be well-posed in such a norm. A simple counter-
example (Gottlieb and Orszag (1977)) is provided by the constant-coefficient
problem

ut + ux = 0 , u(−1, t) = 0 , (7.6.24)

with the initial condition

u(x, 0) = uε
0(x) =

⎧
⎨

⎩
1− |x|

ε
if |x| ≤ ε ,

0 if |x| > ε .
(7.6.25)

It is easily seen that the L2
w-norm of the solution satisfies the relations

‖uε
0‖L2

w(−1,1) = O(ε1/2) but ‖u(1)‖L2
w(−1,1) = O(ε1/4) .

Since ε is arbitrarily small, the problem is not stable in the L2
w-norm.

Greater freedom in the choice of the weighted norm in which to seek
stability is obtained by allowing the weight function w̃ to be of the form
w̃(x) = r(x)w(x) with r(x) = (1 − x)λ(1 + x)µ; the exponents λ and µ
equal 0 or 1 in such a way that r(x) vanishes at the outflow boundary points
for (7.6.1) (see Gottlieb and Orszag (1977), Gottlieb (1981), Canuto and
Quarteroni (1982b)). When the boundary conditions are homogeneous, the
stability in the L2

w̃-norm follows from the identity

d
dt

∫ 1

−1

u2w̃dx−
∫ 1

−1

{
ax + w̃−1(aw̃x)

}
u2w̃dx = 0
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by observing that the term in braces is bounded from above by a finite con-
stant. Note that now waves always propagate toward boundary points where
the weight vanishes. In the case of nonhomogeneous boundary conditions,
stability can be inferred from the homogeneous case, provided that g±(t) are
differentiable functions.

An account of the stability results for several Chebyshev schemes for prob-
lem (7.6.1) and (7.6.22), under particular assumptions on the coefficient a,
can be found in Sect. 12.1.2 of Canuto et al. (1988).

A compromise between the efficiency of Chebyshev methods (related to
the use of fast transform algorithms) and the ease of analysis of Legendre
methods are the so-called Chebyshev-Legendre methods introduced by Don
and Gottlieb (1994). The Chebyshev nodes are used to represent the discrete
solution, but the differential equation is enforced at the Legendre nodes.

7.6.3 The Resolution of the Gibbs Phenomenon

Sect. 2.1.4 is devoted to the Gibbs phenomenon, which occurs in the approx-
imation of discontinuous functions by spectral (and high-order) methods.
Therein we have investigated its structure, and we have discussed several
cures based on simple filtering (or smoothing) techniques. Hereafter, we com-
plete the treatment of those filters by reporting some theoretical results. Fur-
thermore, we review more sophisticated techniques that allow the reconstruc-
tion of the function with spectral accuracy away from the discontinuities, from
the knowledge of Gibbs-oscillating discrete approximations. These methods
have a wide application in the general field of signal and image processing.
They are relevant to the matter of the present chapter, as they can be ap-
plied in a post-processing stage to the output of spectral discretizations of
hyperbolic problems with discontinuous solutions. This particular issue will
be discussed in the next subsection.

Filters

An axiomatic definition of filters of order p ≥ 2 in Fourier space is given
in (2.1.79). Several results are known about the convergence to u of the
smoothed Fourier series SNu defined in (2.1.66) (see Vandeven (1991), Got-
tlieb and Shu (1997)). An example of such results is as follows. Let u be
a 2π-periodic function which is piecewise infinitely differentiable, i.e., there
exist r singularity points 0 ≤ x0 < x1 < · · · < xr−1 < 2π such that in each
interval [xm−1, xm] (with xr = x0 + 2π) u can be extended to a C∞-function
up to the boundary. Given a point x ∈ [0, 2π) different from each xm, let
d(x) > 0 denote the distance between x and the nearest singularity point
(taking into account the periodicity). Then, if SNu is defined as in (2.1.70)–
(2.1.71) through a filter σ (see (2.1.79)) of order p, there exists a constant
Cσ > 0 independent of u, x and N such that
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|u(x)− SNu(x)| ≤ CσN
1−pd(x)1−p|||u|||p , (7.6.26)

where |||u|||p is the so-called broken Sobolev norm

||u|||p =

(
r∑

m=1

‖u‖2Hp(xm−1,xm)

)1/2

.

This shows that the error decays at least as fast as N1−p at each point of
smoothness for u.

Among all filters of order p, the Vandeven filter (2.1.84) is optimal, in the
sense that it minimizes the L2-norm of the p-th derivative of σ in [0, π]. This
norm enters the estimate

|KN (ξ)| ≤ C ′
σN

1−p‖σ(p)‖L2(0,π){ξ−p + (2π − ξ)−p} (7.6.27)

of the decay of the smoothing kernel (2.1.71) away from the origin (mod 2π).
Obviously, the more concentrated the kernel, the better its approximation
properties.

The effects of various filters on the square wave (2.1.21) were illustrated
in Figs. 2.6, 2.8 and 2.9. Figure 7.3 now illustrates the convergence of the
pointwise errors for this function at the points x = 0.51π, x = 0.6π and
x = π, which are at increasing distance from the nearest discontinuity (at
x = π/2). (For ready comparison with the related figures from Chapter 2,
the Chapter 1-4 convention for N is employed on the abscissas.) The benefit
of a higher order filter is clearly in evidence.

Three straight lines are provided for each filtered result, with slopes one
order less, equal to, and one order greater than the order of the filter. Evi-
dently, for larger values of N the convergence is more rapid than the above
estimate (7.6.26). Moreover, the convergence behavior is more regular the
further one is from the discontinuity.

The “half-sine” function (2.1.22) exhibits more regular convergence, as
illustrated in Fig. 7.4 . But once again, the convergence estimate appears
overly pessimistic for large N .

Finally, we mention that if u is not only piecewise infinitely differentiable
but also piecewise analytic, an exponentially convergent approximation of
u(x) at any regular point x can be recovered, by letting the order, p, of the
Vandeven filter to grow with N . The precise relation is p = cNβ/4 where c is
a constant independent of N , whereas β is such that d(x) > N−1+β .
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Fig. 7.3. Pointwise convergence for various filters applied to the square wave
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Fig. 7.4. Pointwise convergence for various filters applied to sin(x/2)
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Spectral Reconstruction Methods

Several methods have been proposed that allow the reconstruction of a piece-
wise-smooth function up to the singularities starting from its truncated
Fourier series (or, more generally, from a truncated expansion in orthogonal
polynomials). Early results in spectral methods date back to Gottlieb, Lust-
man and Orszag (1981) and Abarbanel, Gottlieb and Tadmor (1986); they
were based on subtracting the truncated expansions of suitably chosen step
functions from the truncated expansion of the function of interest, and then
applying a filter to the difference. An account of subsequent reconstruction
methods can be found, e.g., in Gelb and Tanner (2006).

We briefly describe the class of reprojection methods initially proposed
by Gottlieb et al. (1992) and subsequently developed by Gottlieb and Shu
(1997, 1998). The idea underlying this approach is that the slowly convergent
truncated series of the discontinuous function can be re-projected, in each
interval of smoothness, onto an appropriate truncated orthogonal expansion
in this interval. If the new basis guarantees spectral accuracy in the expansion
of analytic functions, and if the projection of the high modes in the original
basis upon the low modes of the new basis is exponentially small, then the
reprojected expansion is spectrally convergent to the restriction of the original
function to the interval.

For the sake of definiteness, assume that u is a 2π-periodic, piecewise-
analytic function, whose truncated Fourier series is PNu =

∑N
k=−N ûkφk,

with ϕk(x) = eikx. Let [a, b] be an interval in which u is analytic, which is
mapped onto the reference interval [−1, 1] by the transformation

ξ(x) = −1 + 2
x− a

b− a
.

For any value of a parameter λ ≥ 0, let Ψλ = {ψλ
m(ξ)}m≥0 be an orthogonal

system for the inner product

(f, g)λ =
∫ 1

−1

f(ξ)g(ξ)wλ(ξ)dξ ,

where wλ is a weight function in (−1, 1), depending on λ; we assume that
the orthogonal system is a basis in L2

wλ
(−1, 1).

The family of bases Ψλ is termed a Gibbs complement for the basis Φ =
{φk}k∈Z if the two following conditions are satisfied:

i) Let

Pλv =
λ∑

m=0

1
γλ

m

(v, ψλ
m)λψ

λ
m , with γλ

m = (ψλ
m, ψλ

m)λ ,

be the diagonal orthogonal projection operator associated with the family
of bases Ψλ (diagonal means that both the truncation index and the
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weight index are varied at the same time). If v is analytic in [−1, 1], then
Pλv tends to v exponentially fast as λ→∞, i.e.,

‖v − Pλv‖L∞(−1,1) ≤ C1e
−c2λ .

ii) Given a function v defined in [a, b], denote by ṽ the function ṽ(ξ) =
v(x(ξ)) defined in [−1, 1]. Then, there exists α, β < 1 such that for
λ = βN

∣∣∣∣
1
γλ

m

(φ̃k, ψ
λ
m)λ

∣∣∣∣ ‖ψ
λ
m‖L∞(−1,1) ≤

(
αN

|k|

)λ

for all |k| > N, m ≤ λ .

Under these assumptions Gottlieb and Shu prove the following result: If u
is analytic in a disk of the complex plane containing the real interval [a, b],
and if λ = βN , then Pλ(P̃Nu) tends to ũ exponentially fast as N →∞, i.e.,

‖ũ− Pλ(P̃Nu)‖L∞(−1,1) ≤ C3e
−c4N . (7.6.28)

Note that the condition λ→∞ as N →∞ is necessary to achieve the ex-
ponential convergence in (7.6.28); choosing λ constant or uniformly bounded
with respect to N would only yield a finite-order convergence.

An example of a Gibbs complement (not only for the Fourier system but
also for the Legendre and Chebyshev systems) is provided by the Gegenbauer
polynomials ψλ

m(ξ) = Cλ
m(ξ) defined in (2.5.10). Boyd (2005) and Gelb and

Tanner (2006) propose alternatives to them with better numerical properties.

Singularity detection

The reconstruction methods mentioned above require the knowledge of the
location of the singularities of the piecewise-smooth function u in order to per-
form the reconstruction. Gottlieb, Lustman and Orszag (1981) were the first
to incorporate a singularity detection device into a spectral scheme for hy-
perbolic problems; they locate each discontinuity and determine its strength
by comparing the spectrum of the numerical solution with the spectrum of
a step function. Since then, several techniques have been developed to de-
tect these points starting from the truncated Fourier series of u; they find
application in the more general field of edge detection in signal and image
processing.

Gelb and Tadmor (2000a) elaborate a general framework for this problem,
which incorporates most of the techniques proposed in the literature. Assume
that the 2π-periodic function u is smooth except for a finite number of jump
discontinuities located at xj , where the one-sided limits u(x±

j ) = lim
x→x±

j

u(x)

exist and are finite. Define the jump function

[u](x) = u(x+)− u(x−) ,
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whose knowledge is equivalent to the knowledge of the position and the
strength of the jumps of u. An approximation of [u] is obtained by taking the
convolution, Kσ

N ∗ u = Kσ
N ∗ PNu, between the truncated Fourier series of u

and a so-called concentration kernel Kσ
N . This is defined as

Kσ
N (t) = −

N∑

k=1

σ

(
k

N

)
sin kt , (7.6.29)

where the concentration factors σ(ξ) = ξη(ξ) satisfy η ∈ C2([0, 1]) and the
normalization condition

∫ 1

0
η(ξ) dξ = 1. Then, setting

Kσ
N ∗ u(x) = Kσ

N ∗ PNu(x) = iπ
∑

|k|≤N

sign(k)σ
(
|k|
N

)
ûke

ikx ,

one has
‖Kσ

N ∗ u− [u] ‖L∞(0,2π) ≤ C
logN

N
,

with C depending on σ and u but not on N .
Examples of concentration factors are the trigonometric factors σ(ξ) =

Si(π)−1 sinπξ, with Si(π) =
∫ π

0
sin t

t dt, the polynomial factors σ(ξ) = αξα,
and the exponential factors σ(ξ) = Cξ exp(1/(ξ(ξ − 1))).

A nonlinear enhancement of the singularity detection is also possible. Let
us set ε = logN/N ; the above result shows that

Kσ
N ∗ u ∼

{
O(ε) at the smoothness points of u ,

[u] at the jumps of u .

Thus,

ε−p/2|Kσ
N ∗ u|p ∼

{
O(εp/2) at the smoothness points of u ,∣∣[u]
∣∣pε−p/2 at the jumps of u .

Letting p > 1 increase yields a better and better separation of scales. In-
troducing a critical threshold J , one can then select those jumps satisfying∣∣[u]
∣∣ > J1/p

√
ε by setting

Kσ
N,Ju(x) =

{
Kσ

N ∗ u(x) if ε−p/2|Kσ
N ∗ u(x)|p > J ,

0 otherwise .

Gelb and Tadmor (2000a) provide further theoretical results, as well as
a wealth of numerical demonstrations.

A different approach to edge detection, based on the minmod function
typically used in numerical conservation laws to reduce spurious oscillations,
is proposed by Archibald, Gelb and Yoon (2005).
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7.6.4 Spectral Accuracy for Non-Smooth Solutions

The convergence results presented in the previous subsections are meaningful
under the assumption that the exact solution be smooth enough, in the sense
that it belongs to a Sobolev space of sufficiently high order. In hyperbolic
problems, however, discontinuities in the data are propagated toward the
interior of the domain, and if the operator is nonlinear, discontinuities can
even develop in a finite time starting from smooth data.

If global convergence at a spectral rate is unattainable in such cases, at
least one can hope to achieve spectral accuracy in those regions where the
solution is smooth. The results of the analysis by Majda, McDonough and
Osher (1978) indicate that it is not realistic to expect spectral accuracy di-
rectly in the numerical solution obtained by a standard collocation scheme.
They consider problem (7.6.1) with a = 1, under periodic boundary condi-
tions and a discontinuous initial condition with a single jump discontinuity
located at a collocation point. If the Fourier collocation method is applied in
the conventional manner, then in a region which excludes the discontinuity,
the maximum error, for any t > 0, decays as N−2. However, it is possible to
achieve a convergence rate of infinite order by a proper filtering of the ini-
tial condition. This filtering is applied to the continuous Fourier coefficients
of u0(x). The application of this filtering to the discrete Fourier coefficients
of u0(x) still leads to second-order convergence. The filter has the structure
(2.1.79), and it is of infinite order, i.e., is perfectly flat in a neighborhood of
θ = 0 and θ = π.

The possibility of generating a spectrally accurate approximation of the
discontinuous solution of a hyperbolic problem relies on the following prop-
erty: a discretization method of spectral type (i.e., which guarantees spectral
accuracy on smooth solutions) produces a very accurate approximation of
a projection of the exact solution upon the finite-dimensional trial function
space, rather than of the solution itself. Using the information encoded in
this projection, one can accurately reconstruct the solution itself through
a post-processing stage.

For instance, we will prove below that any Fourier coefficient of a dis-
continuous, periodic solution is approximated within spectral accuracy by
a Fourier Galerkin method (obviously, provided the cut-off parameter is large
enough). This means that the discrete solution is an accurate approximation
of the truncated Fourier series of the exact solution. This, in turn, is a poorly
convergent approximation of the solution itself (whenever discontinuities ex-
ist). Yet, the techniques described in the previous subsection allow one to
detect the jumps and to reconstruct the solution up to the singularities,
starting from such information.

As opposed to global post-processing, one can post-process a collocation
or G-NI solution by a local smoothing, in order to recover spectral accuracy.
The idea is based on the observation that while the pointwise convergence
of a high-order polynomial approximation to a discontinuous solution is very
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slow, the convergence in a weighted mean – the weight being a smooth func-
tion – is very fast because oscillations kill each other on the average. Local
smoothing can be carried out by a convolution in physical space with a local-
ized function, and hence by a weighted mean which approximates exceedingly
well the exact value of the solution.

From a rigorous mathematical point of view, the convergence in the mean
can he measured in terms of a Sobolev norm of negative order. For simplicity,
let us confine ourselves to the case of periodic functions. Each function f ∈
L2(0, 2π) defines a continuous linear form on the space Hs

p(0, 2π) (s ≥ 0)
(introduced in (A.11.d)), given by the mapping φ→ (f, φ) =

∫ 2π

0
f(x)φ(x)dx.

Thus, f can be identified with an element in the dual space of Hs
p(0, 2π), here

denoted by H−s
p (0, 2π) (see (A.1.c)). Its norm in this space is given by

‖f‖−s = sup
φ∈Hs

p(0,2π)

|(f, φ)|
‖φ‖s

. (7.6.30)

For the remainder of this subsection ‖φ‖s denotes the norm of φ in Hs
p(0, 2π).

As usual, let PNf ∈ SN be the symmetric truncation of the Fourier series
of f to 2N + 1 modes. We want to estimate the error f − PNf in a negative
Sobolev norm. By definition of PN we have, for all φ ∈ Hs

p(0, 2π),

(f − PNf, φ) = (f − PNf, φ− PNφ) .

Hence,

|(f − PNf, φ)| ≤ ‖f − PNf‖0‖φ− PNφ‖0
≤ CN−s‖φ‖s‖f‖0 .

Here we have used (5.1.9). Thus, we obtain the estimate

‖f − PNf‖−s ≤ CN−s‖f‖0 , s ≥ 0 . (7.6.31)

Note that even though f is merely square integrable, the truncation error
in a negative Sobolev norm decays at a rate which depends solely upon the
order of the norm.

As first pointed out by Mercier (1981), the previous argument can be
extended to get an estimate in negative norms for the error between the exact
and the spectral solutions to a linear hyperbolic problem. Let L be a linear,
first-order hyperbolic operator with smooth periodic coefficients such that
(Lu, u) ≥ 0 for all u ∈ H1

p (0, 2π). Denote by u = u(t) the solution of the
following initial-boundary-value problem:

ut + Lu = 0 , 0 < x < 2π , t > 0 ,

u 2π-periodic in x ,

u(0) = u0 ∈ L2(0, 2π) .

(7.6.32)
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Let uN = uN (t) ∈ SN be the solution of the following Galerkin approximation
of (7.6.32):

(
uN

t + LuN , v
)

= 0 for all v ∈ SN , t > 0 ,(
uN (0)− u0, v

)
= 0 for all v ∈ SN .

(7.6.33)

We want to estimate the quantity (u(t)− uN (t), φ), where φ ∈ Hs
p(0, 2π). To

this end, let L∗ be the adjoint of L, i.e., (L∗w, v) = (w,Lv) for all v and
w ∈ H1

p (0, 2π). Define w = w(t) to be the solution of the hyperbolic problem

wt + L∗w = 0 , 0 < x < 2π , t > 0 ,

w 2π-periodic in x ,

w(0) = φ .

(7.6.34)

Next, consider the corresponding Galerkin approximation wN = wN (t) ∈ SN ,
which satisfies

(
wN

t + L∗wN , v
)

= 0 for all v ∈ SN , t > 0 ,(
wN (0)− φ, v

)
= 0 for all v ∈ SN .

(7.6.35)

For a fixed t > 0 we have
(
u(t)− uN (t), φ

)
=
(
u(t)− uN (t), w(0)

)

= (u(t), w(0))−
(
uN (t), wN (0)

)
.

Set w̃(s) = w(t− s). Then, for 0 < s < t,

d
ds

(u(s), w̃(s)) = (us, w̃) + (u, w̃s) = −(Lu, w̃) + (u,L∗w̃) = 0 .

Thus,

(u(t), w(0)) = (u0, w(t)) . (7.6.36)

Similarly,
(
uN (t), wN (0)

)
=
(
uN (0), wN (t)

)
=
(
u0, w

N (t)
)

. (7.6.37)

It follows from (7.6.36) that
(
u(t)− uN (t), φ

)
=
(
u0, w(t)− wN (t)

)
. (7.6.38)

Under the assumptions on L, if φ belongs to Hs
p(0, 2π), then the solution to

(7.6.34) belongs to Hs
p(0, 2π) for all times and ‖w(t)‖s ≤ C‖φ‖s (see, e.g.,

Taylor (1981)). Moreover, the theory of Sect. 6.5.2 yields the error estimate

‖w(t)− wN (t)‖0 ≤ CN−s‖φ‖s . (7.6.39)
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Thus, we obtain the error estimate in negative Sobolev norm

‖u(t)− uN (t)‖−s ≤ CN−s‖u0‖0 , s ≥ 0 . (7.6.40)

The previous proof can be suitably adapted to cover the case of a Fourier
collocation approximation.

A slight modification of the arguments above yield the desired esti-
mate for the Fourier coefficients. Take φ = φk = eikx in (7.6.38), so that(
u(t)− uN (t), φk

)
= 2π(ûk(t)− ûN

k (t)). Using (7.6.38), we get

|ûk(t)− ûN
k (t)| ≤ CN−s‖φk‖s‖u0‖0 .

Since ‖φk‖s ≤ C|k|s, we conclude that

|ûk(t)− ûN
k (t)| ≤ C

(
|k|
N

)s

‖u0‖0 . (7.6.41)

This proves the spectral convergence of each Fourier coefficient of the Galerkin
solution to the corresponding coefficient of the exact solution, even in the case
in which u0 (and consequently u) is a discontinuous function.

Finally, we are going to use (7.6.40) in order to show that it is possible
to use the information contained in uN (t) to approximate u(t) with spectral
accuracy at each point where u is smooth. The idea, already sketched in
Mercier (1981), has been developed independently by Gottlieb and coworkers,
both theoretically and computationally (see Gottlieb (1985), Gottlieb and
Tadmor (1985), Abarbanel, Gottlieb and Tadmor (1986)).

Let us drop the dependence upon time in all the functions which appear
hereafter. Assume that at time t > 0 the solution u of (7.6.32) is infinitely
smooth in an open neighborhood J of a point x0 ∈ [0, 2π]. Let us choose an
infinitely differentiable, periodic function ρ = ρ(x) such that ρ is identically
zero outside J , ρ is nonnegative everywhere, and ρ(x0) = 1. Thus, the func-
tion ρu is everywhere smooth and (ρu)(x0) = u(x0). For each fixed M > 0,
the maximum error between ρu and its Fourier truncation PM (ρu) can be
estimated according to (5.1.12)–(5.1.14):

‖ρu− PM (ρu)‖L∞(0,2π) ≤ C(1 + logM)M−s‖ρu‖s,∞ , (s ≥ 0) .

The norm ‖ρu‖s,∞ is the maximum modulus over (0, 2π) of all the derivatives
of ρu of order up to s. Such a quantity can be bounded by a constant,
depending upon ρ, times the maximum modulus over J of the derivatives
of u of order up to s. This latter quantity is finite by assumption and will be
denoted by ‖u‖s,∞,J . Thus,

|u(x0)− PM (ρu)(x0)| ≤ C(1 + logM)M−s‖u‖s,∞,J . (7.6.42)

On the other hand, we have the following representation of PM (ρu) as a con-
volution integral (see (2.1.55)):

PM (ρu)(x0) =
1
2π

∫ 2π

0

DM (x0 − y)ρ(y)u(y)dy , (7.6.43)
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where DM is the Dirichlet kernel, used here with the classical notation
(2.1.56) (with N replaced by 2M). For a fixed M , the function φ(y) =
DM (x0 − y)ρ(y) is an infinitely smooth, periodic function. Thus, we can
apply (7.6.40) and get

∣∣∣∣
∫ 2π

0

DM (x0 − y)ρ(y)u(y)dy −
∫ 2π

0

DM (x0 − y)ρ(y)uN (y)dy
∣∣∣∣

≤ CN−s‖u0‖0‖φ‖s .

(7.6.44)

The norm ‖φ‖s can be bounded by C(1 + M)s+1‖ρ‖s. Finally, we choose M
as an increasing function of N satisfying M(N) < N , and we denote by

RuN (x0) =
1
2π

∫ 2π

0

DM (x0, y)ρ(y)uN (y)dy , (7.6.45)

the regularized value of uN at the point x0. Note that this value can only be
evaluated exactly once the Fourier coefficients of φ are known; in practice,
in order to evaluate the integral in (7.6.45) one can use a trapezoidal rule
with sufficiently many points. If we choose M = Nβ with 0 < β < 1, then by
(7.6.42) and (7.6.44) we obtain the following error estimate:

∣∣u(x0)−RuN (x0)
∣∣ ≤ C1 (1 + logN)N−sβ + C2N

−s+β(1+s) , (7.6.46)

where the constants depend upon Sobolev norms of ρ and u over the inter-
val J . We conclude that u(x0) can he approximated with spectral accuracy
starting from the knowledge of the Galerkin approximation uN . An asymp-
totic balance of the errors in (7.6.46) is achieved, up to the logarithmic factor,
by choosing β = 1/2. Tadmor and Tanner (2002) suggest instead the choice
M = θN , where θ ∈ (0, 1) is proportional to the size of the interval J .

A number of generalizations of the previous results are possible. First,
one can consider a collocation approximation, in which case the integral in
(7.6.45) is replaced by the trapezoidal rule, and only the values of u in physical
space are needed. An extra error term due to aliasing is added, but the asymp-
totic behavior of the error is the same. The extension of the above results
to the two-dimensional case is considered by Gelb and Tadmor (2002). Next
one can consider Legendre or Chebyshev methods for nonperiodic problems.
An integral representation of the truncation operator, similar to (7.6.43), is
still available. The Dirichlet kernel has to be replaced by the kernel

KM (ξ) =
M∑

k=0

(
k + 1

2

)
Lk(ξ)Lk(0) (7.6.47)

in a Legendre method, and by the kernel

KM (ξ) =
2
π

M∑

k=0

Tk(ξ)Tk(0) (7.6.48)
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Table 7.1. Results of smoothing of the spectral approximation of u(x)
(from Gottlieb and Tadmor (1985))

xν = πν
8

|u(xν) − uN (xν)| |u(xν) −RuN (xν)|
ν equals N = 64 N = 128 N = 64 N = 128

2 6.4(−3) 3.2(−3) 4.8(−6) 5.8(−10)

3 1.0(−2) 5.2(−3) 5.9(−6) 7.9(−10)

4 1.5(−2) 7.8(−3) 7.7(−6) 6.3(−10)

5 2.3(−2) 1.1(−2) 12.9(−6) 1.1(−10)

in a Chebyshev method. For the details we refer to Gottlieb and Tadmor
(1985) and Abarbanel, Gottlieb and Tadmor (1986).

From a computational point of view, one has to choose a proper cut-off
function ρ whose support is in the region of smoothness of the solution, and
also choose a value for β. As usual, the method may require a fine-tuning of
the parameters for the problem at hand. Gottlieb and Tadmor (1985) consider
the piecewise-C∞ function

u(x) =

⎧
⎨

⎩
sin

x

2
, 0 ≤ x < π ,

− sin
x

2
, π ≤ x < 2π ,

(7.6.49)

and use an exponential cut-off function. Denoting by uN the truncation of
the Fourier series, the results listed in Table 7.1 have been reported. The
unsmoothed error decays linearly in N−1, whereas spectral accuracy is clearly
documented for the regularized approximation.

7.7 Scalar Conservation Laws

So far, our analysis has been confined to linear hyperbolic problems. Now we
consider a scalar nonlinear equation in the form of a conservation law

∂u

∂t
+

∂F(u)
∂x

= 0 , (7.7.1)

where F = F(u) is a flux smoothly depending on the real variable u.
An example is the inviscid Burgers equation, corresponding to the choice
F(u) = 1

2u
2. (Recall that the viscous Burgers equation is discussed in Sects.

3.1 and 3.3.) We assume 2π-periodic boundary conditions (which call for
Fourier discretization methods), although all the subsequent discussion can
be extended to the case of inflow boundary conditions (with Legendre or
Chebyshev discretizations). An initial condition u(0) = u0 completes the
problem.
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The most striking difference between the linear model (7.6.1) and the
current nonlinear model is that even if u0 is a smooth periodic function, the
solution u may develop jump discontinuities, called shocks, at a finite time.
This occurs whenever two characteristic curves, which are defined by the
condition

dx
dt

= F ′(u(x, t))

and which carry a constant value of u, intersect. For the Burgers equation,
the characteristics satisfy dx

dt = u(x, t), and since u is constant on them,
they are straight lines. When a shock appears, the strong form (7.7.1) of the
conservation law becomes meaningless, and one has to resort to the weak
form

∫ ∞

0

∫ 2π

0

(
u
∂ϕ

∂t
+ F(u)

∂ϕ

∂x

)
dxdt =

∫ 2π

0

u0(x)ϕ(0, t) dx , (7.7.2)

valid for all smooth functions ϕ, 2π-periodic in x and vanishing for t large
enough. From this form one can derive the speed s of the propagation of
a shock, given by the Rankine-Hugoniot condition

s =
[F(u)]

[u]
. (7.7.3)

The naive application of a spectral method to the discretization of a con-
servation law brings good news and bad news. The good news is that if
the sequence of discrete solutions uN produced by a Galerkin or a colloca-
tion method is bounded and converges almost everywhere, as N → ∞, to
a limit u, then u is a weak solution of the conservation law, i.e., it satis-
fies (7.7.2); consequently, any shocks that are present are propagated with
the correct speed. This result was proven, even for nonperiodic problems, by
Gottlieb, Lustman and Orszag (1981), following an argument due to Lax and
Wendroff (1960).

The somewhat bad news is that as soon as the solution u develops steep
gradients (and eventually shocks), the spectral solution uN exhibits a Gibbs
phenomenon, i.e., spurious oscillations appear. But the (partially offsetting)
good news is that the transition between the pre-shock and the post-shock
states always occurs within one mesh interval. Thus, a very accurate shock
position is inherent in a spectral solution. Furthermore, the spurious oscilla-
tions are not in themselves insurmountable, for according to a result of Lax
(1978) and as discussed in Sect. 7.6.3, they contain sufficient information to
permit the reconstruction of an exact solution within spectral accuracy.

The really bad news is that a naively generated spectral solution fails
to fulfill the entropy condition, which is appended to the conservation law in
order to select the physically relevant solution (the so called entropy solution).
Such a failure (which however is not peculiar to spectral methods), can be
easily seen by considering the Fourier Galerkin discretization of (7.7.1):
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uN ∈ SN :
(
uN

t + (F(uN ))x, v
)

= 0 for all v ∈ SN , t > 0 , (7.7.4)

where (u, v) =
∫ 2π

0
u(x)v(x) dx is the L2-inner product. Choosing v = uN

and assuming all variables to be real, we get

1
2

d
dt

∫ 2π

0

|uN |2 dx +
∫ 2π

0

(G(uN ))x dx = 0 ,

where G = G(u) satisfies G′(u) = uF ′(u) for all real u. Applying the pe-
riodic boundary conditions, the second integral vanishes. Thus, the energy
functional E(uN ), defined as

(E(uN ))(t) =
1
2

∫ 2π

0

|uN (x, t)|2 dx ,

is conserved for all times. This contrasts with the behavior of the entropy
solution because, assuming F convex, the entropy condition

∂

∂t

(
1
2
|u|2
)

+
∂G(u)
∂x

≤ 0

forces the entropy function 1
2 |u|2, and consequently the exact energy E(u),

to decay as soon as a shock is developed. The above discussion shows that
a dissipative mechanism should be inserted into the spectral scheme in order
to approximate the entropy solution; simply applying a post-processing at
the end of the computation will not suffice.

Viscosity is the paramount dissipative mechanism. Indeed, a result by
Kružkov (1970) states that any entropy solution is the limit of a sequence of
viscous solutions (solutions of the conservation laws augmented by a viscous
term) as the viscosity parameter tends to zero. Adding numerical (or artifi-
cial) viscosity is a classical device for stabilizing low-order numerical schemes,
as well as to guarantee in the limit the fulfillment of the entropy condition.
However, in spectral methods such a device must be applied very delicately,
for the injected dissipation should not destroy the potential spectral accu-
racy for smooth solutions. The spectral viscosity method was introduced by
Tadmor (1989) to provide a satisfactory answer to this issue: it damps the
higher order modes of the discrete solution while leaving the lower order
modes unchanged. A comparable effect, in practice, can be achieved by prop-
erly filtering the discrete solution during the time evolution (say, at regular
time intervals) using a spectral filter which leaves the lower portion of the
spectrum unaffected. However, the spectral viscosity approach offers the ad-
vantage of allowing a rigorous stability and convergence analysis.

The Fourier Galerkin version of the spectral viscosity method is as follows:
(
uN

t +
(
F(uN )

)
x
, v
)
+ εN,s

(
QMDs

xu
N ,Ds

xv
)

= 0 for all v ∈ SN , t > 0 .
(7.7.5)
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Here, s ≥ 1 defines the order, 2s, of the added (super-)viscosity, whereas
εN,s > 0 is the artificial (super-)viscosity coefficient, which scales as εN,s ∼

Cs

N2s−1
, for a suitable positive constant Cs. Classical second-order viscosity

corresponds to the choice s = 1; superviscosity effects (see below) are ob-
tained for s > 1. The low-pass filter operator QMv is defined as

QMv(x) =
∑

M<|k|≤N

qkv̂ke
ikx ,

where the cut-off parameter M < N is linked to N by the relations

M ∼ Nϑ for ϑ <
2s− 1

2s
, (7.7.6)

whereas the smoothing factors satisfy

1−
(

M

|k|

) 2s−1
ϑ

≤ qk ≤ 1 , |k| > N . (7.7.7)

Note that the extra term appearing in (7.7.5), with respect to the standard
Fourier Galerkin formulation (7.7.4), only depends on uN − PMuN . This,
together with relation (7.7.6), guarantees that spectral accuracy is preserved
for smooth solutions.

The choice of the superviscosity dissipation, as opposed to the standard
viscosity, is motivated by the aim of concentrating the viscosity effects on
the higher modes, since in the former case M can be chosen closer to N
(see (7.7.6)). This leads to sharper profiles near shocks. It is even possible to
choose s depending on N , as s ∼ Nµ, µ < 1

2 (see Tadmor (1998)).
The analysis, initiated by Tadmor (1989) and Maday and Tadmor (1989)

(see also Tadmor (1998) for a review of the subject), establishes the entropy
dissipation bound

‖uN (t)‖2L2(0,2π) + εN,s

∫ t

0

‖Ds
xu

N (τ)‖2L2(0,2π) dτ ≤ C‖u0‖2L2(0,2π) . (7.7.8)

Using a compensated compactness argument due to Murat (1978), this es-
timate allows one to prove that if the sequence uN is uniformly bounded in
the L∞-norm (this property can be rigorously proven for s = 1), then it con-
verges to the unique entropy solution of the conservation law in the Lp-norm
on any bounded set in the (x, t)-plane for any p < +∞.

Let us stress the practical implication of this convergence result. If the
solution u is not smooth, then the convergence of uN to u is slow. In this
case, however, the formal spectral accuracy assured by the spectral viscosity
method manifests itself in the fact that the convergence of uN to the trun-
cation PNu is fast. Consequently, a post-processing stage, such as the one
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described in Sect. 7.6.3, can be successfully applied to reconstructing an ac-
curate approximation of u from the knowledge of uN . An example is given
by Gelb and Tadmor (2000b).

The spectral viscosity method has been extended to the nonperiodic case
by Maday, Ould Kaber and Tadmor (1993) using Legendre expansions; see
also Tadmor (1998). The low-pass filter QM which appears in the artificial
viscosity term now becomes

QMv(x) =
∑

M<k≤N

qkv̂kLk(x) ,

where the smoothing factors satisfy

1−
(

M

k

)4

≤ qk ≤ 1 , k > M .

Note the power 4 as opposed to the power close to 2 appearing in the equiv-
alent Fourier condition (7.7.7) for s = 1; the difference can be understood by
recalling the inverse inequalities in Sobolev norms for Legendre and trigono-
metric expansions; see (5.4.5) and (5.1.5). Furthermore, since QM operates
in transform space, the enforcement of the boundary condition(s) is more
conveniently accomplished via a weak, or penalty, formulation, as described
in Sect. 3.7.1. Several forms of the dissipative term are possible; see Guo, Ma
and Tadmor (2001).

The spectral viscosity method in the multidimensional case has been intro-
duced by Chen, Du and Tadmor (1993). Further developments and numerical
results are discussed in Tadmor (1998).

The spectral viscosity method is not the only technique of spectral type
developed for conservation laws. The spectral cell-averaging method (Cai,
Gottlieb and Shu (1989), Cai, Gottlieb and Harten (1990)) is based on the
cell-averaged, or finite-volume, formulation of the conservation law. A recon-
struction stage produces the fluxes at the cell interfaces from the spectrally
accurate cell averages. This stage is accomplished via a global interpolat-
ing polynomial, using reconstruction techniques similar to those described in
Sect. 7.6.3. A short account of the method can be found, e.g., in Bernardi
and Maday (1997), Sect. 30. (This method uses a staggered grid; for some
discussions of a staggered grid in the context of spectral methods see Sects.
3.7.1 and 4.4.2 and CHQZ3, Chap. 4.)

7.8 The Steady Burgers Equation

We consider here the nonlinear problem

−νuxx + uux = f , −1 < x < 1 ,

u(−1) = u(1) = 0 .
(7.8.1)
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We intend to show that Chebyshev (Galerkin and collocation) approximations
to this problem are stable and convergent for all positive values of ν. This is
the simplest example of the rigorous results that can be obtained for nonlinear
problems. We choose to outline the analysis in the general framework that
has been used for more difficult nonlinear problems such as the Navier-Stokes
equations. Legendre approximations, including those produced by the G-NI
approach, can be analysed along the same lines, with the benefit of avoiding
the technical difficulties related to the Chebyshev weight. For this reason, we
focus on Chebyshev approximations.

We assume that f ∈ L2
w(−1, 1), where w is, as usual, the Chebyshev

weight. Let a(u, v) denote again the bilinear form (7.1.13) defined on the
product space H1

w,0(−1, 1) × H1
w,0(−1, 1) and associated with the second-

derivative operator with Dirichlet boundary conditions. Moreover, let us set

λ = ν−1 , G(λ, u) = λ(uux − f) . (7.8.2)

Each u ∈ H1
w,0(−1, 1) is bounded in [−1, 1] (see (A.11.a)); hence, G(λ, u) ∈

L2
w(−1, 1). Thus, we can consider the following weak formulation of problem

(7.8.1):

u ∈ H1
w,0(−1, 1) ,

a(u, v) + (G(λ, u), v)w = 0 for all v ∈ H1
w,0(−1, 1) .

(7.8.3)

Here (z, v)w denotes the inner product in L2
w(−1, 1). For each positive λ and

each u ∈ H1
w,0(−1, 1), the linear form v → (G(λ, u), v)w is continuous on

H1
w,0(−1, 1). Hence, G(λ, u) can be regarded as an element of the dual space

H−1
w (−1, 1) of H1

w,0(−1, 1) (see (A.1.c)), so that (G(λ, u), v)w = 〈G(λ, u), v〉
for all v ∈ H1

w,0(−1, 1). (The symbol 〈·, ·〉 denotes the duality pairing between
H−1

w (−1, 1) and H1
w,0(−1, 1).)

Let T : H−1
w (−1, 1)→ H1

w,0(−1, 1) be the linear operator which associates
to an element g ∈ H−1

w (−1, 1) the solution T g ∈ H1
w,0(−1, 1) of the problem

a(T g, v) = 〈g, v〉 for all v ∈ H1
w,0(−1, 1) . (7.8.4)

This problem has indeed a unique solution since the bilinear form a(u, v)
satisfies the assumptions of the Lax-Milgram Theorem (A.5), as shown in
Sect. 7.1. It follows that problem (7.8.3) can be written equivalently in the
form

u ∈ H1
w,0(−1, 1) ,

E(λ, u) ≡ u + T G(λ, u) = 0 .
(7.8.5)

Many nonlinear problems depending upon a parameter can be formu-
lated in a manner similar to (7.8.5). A remarkable instance is provided
by the Navier-Stokes equations for steady viscous incompressible flows (see
CHQZ3, Sect. 3.1), in which case λ is the inverse of the kinematic viscosity ν.
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In general, the linear operator T acts between the dual space V ′ of a Banach
space V (see (A.1)) and the Banach space V itself, i.e.,

T : V ′ −→ V . (7.8.6)

It represents the inverse of the linear part of the differential problem (for
instance, the inverse of the Stokes operator in the steady incompressible
Navier-Stokes equations). The operator G maps R×V into the dual space V ′

in a continuously differentiable way:

G : R× V −→ V ′ , (7.8.7)

and represents the nonlinear part of the problem. The full problem can be
written as a nonlinear equation in V , in the form

u(λ) ∈ V ,

E(λ, u(λ)) ≡ u(λ) + T G(λ, u(λ)) = 0 .
(7.8.8)

Here we have stressed the dependence of the solution upon the parameter λ,
which is usually restricted to vary in a closed, bounded interval Λ of the real
line.

Let us make the technical assumption that there exists a Banach space
W ⊂ V ′ such that

G(·, ·) is a continuous mapping from R
+ × V into W , (7.8.9)

and

T is a compact operator (see (A.3)) from W into V . (7.8.10)

For the Burgers problem (7.8.1), these hypotheses are fulfilled, for instance,
with the choice W = L2

w(−1, 1). In fact, if g ∈ L2
w(−1, 1), the solution ξ = T g

of (7.8.4) (i.e., the solution of the boundary-value problem −ξxx = g in −1 <
x < 1, with ξ(−1) = ξ(1) = 0) belongs to H2

w(−1, 1), which is compactly
imbedded in H1

w(−1, 1).
We shall confine our analysis to the case of a nonsingular branch of solu-

tions {(λ, u(λ)) : λ ∈ Λ} of (7.8.8), i.e., to a branch of solutions along which
the Fréchet derivative (see (A.4)) DuE(λ, u) of the map E with respect to the
variable u is invertible. More precisely, we assume that there exists a positive
constant α > 0 such that

‖v + T DuG(λ, u(λ))v‖V ≥ α‖v‖V for all v ∈ V and all λ ∈ Λ . (7.8.11)

Here the symbol DuG(λ0, u0) denotes the Fréchet derivative of G(λ, u) with
respect to the variable u, computed at the point (λ0, u0). For problem (7.8.1),
condition (7.8.11) amounts to the requirement that for all g ∈ H−1

w (−1, 1)
and all λ ∈ Λ, the problem
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v ∈ H1
w,0(−1, 1) ,

−vxx + λ(u(λ)vx + ux(λ)v) = g
(7.8.12)

has a unique solution, which satisfies the inequality

‖v‖H1
w,0(−1,1) ≤ C‖g‖H−1

w (−1,1) .

We are going now to introduce a general approximation to any problem
which can be written in the form (7.8.8), provided the assumptions (7.8.9)–
(7.8.11) are satisfied. Further, we shall state a general theorem to be used for
the analysis of stability and convergence of such approximations. As a partic-
ular case, this theorem will be used to infer stability and convergence of both
Galerkin and collocation Chebyshev approximations to the Burgers problem
(7.8.1), which was previously written in the form (7.8.5).

For any integer N , let VN be a finite-dimensional subspace of V , and
let GN : R

+ × VN → V ′ be a suitable approximation to G. Further, let
TN : V ′ → VN be a linear operator which approximates T . The following is
a finite-dimensional approximation to problem (7.8.8):

uN (λ) ∈ VN ,

EN (λ, uN (λ)) ≡ uN (λ) + TNGN (λ, uN (λ)) = 0 .
(7.8.13)

The next theorem, due to Maday and Quarteroni (1982), is concerned with
the convergence of the discrete solutions {(λ, uN (λ)), λ ∈ Λ} (problem
(7.8.13)) to the nonsingular branch of the exact solutions {(λ, u(λ)), λ ∈ Λ}
(problem (7.8.8)).

Theorem 7.3. Assume that (7.8.9)–(7.8.11) hold. Moreover, assume that
for some integer m ≥ 2, G : Λ × V → W is a Cm mapping, and DmG is
bounded over any bounded subset of Λ×V . Concerning the discrete problem,
we assume that

lim
N→∞

‖T − TN‖L(W,V ) = 0 . (7.8.14)

(See (A.3) for the definition of the norm of a linear operator.) About GN , we
assume that it is a Cm mapping from Λ × VN → V ′, and that there exists
a positive function K : R+ → R+ such that

‖DlGN (λ, v)‖Ll(Λ×VN ,W ) ≤ K(|λ|+ ‖v‖V ) , l = 1, . . . ,m . (7.8.15)

(See again (A.3) for the definition of the norm of a multilinear operator.)
Further, we assume that there exists a projection operator ΠN : V → VN

satisfying
lim

N→∞
‖v −ΠNv‖V = 0 for all v ∈ V , (7.8.16)

and such that

lim
N→∞

sup
λ∈Λ
‖Du(G − GN )(λ,ΠNu(λ))‖L(VN ,V ′) = 0 . (7.8.17)
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Then there exists a neighborhood Θ of the origin in V , and for N large
enough, a unique Cm mapping λ ∈ Λ → uN (λ) ∈ VN such that for all
λ ∈ Λ

EN
(
λ, uN (λ)

)
= 0 , uN (λ)− u(λ) ∈ Θ , (7.8.18)

and the following estimate holds:

‖u(λ)− uN (λ)‖V ≤C(‖u(λ)−ΠNu(λ)‖V +‖(T − TN )G(λ, u(λ))‖V
+ ‖TN (G − GN )(λ,ΠNu(λ))‖V ) ,

(7.8.19)

with a positive constant C independent of λ and N .

A qualitative interpretation of this theorem is in order. There are several
assumptions on the approximations to the linear and nonlinear components
of the problem. Assumption (7.8.16) means that V is well-approximated by
the sequence of subspaces VN , and (7.8.14) means that the linear operator T
is well-approximated by the sequence of operators TN . Naturally enough,
stricter requirements are placed on the approximation to the nonlinear oper-
ator G. Assumption (7.8.15) means that the derivatives of GN up to order m
are locally Lipschitz continuous, and (7.8.17) states that the Fréchet deriva-
tive of GN approximates that of G as N →∞.

The first conclusion, (7.8.18), is that, for fixed N , there is a unique branch
of nonsingular solutions and that these solutions are bounded uniformly with
respect to N . Finally, inequality (7.8.19) exhibits the dependence of the error
on the approximation properties of ΠN , TN and GN .

Chebyshev Galerkin Approximation

We return now to problem (7.8.1), and its equivalent formulation (7.8.5), with
G and T defined in (7.8.2), (7.8.4). For any λ ∈ R

+, we look for a polynomial
uN (λ) ∈ VN = {v ∈ PN (−1, 1)|v(±1) = 0} which satisfies

a
(
uN (λ), v

)
+
(
G
(
λ, uN (λ)

)
, v
)
w

= 0 for all v ∈ VN . (7.8.20)

This is a Chebyshev Galerkin approximation. We define the operator TN :
V ′ → VN by

a(TNg, v) = 〈g, v〉 for all v ∈ VN . (7.8.21)

Then it follows that TN = ΠNT , where ΠN : V → VN is the operator defined
in (5.5.21), namely:

a(ΠNu− u, v) = 0 for all v ∈ VN . (7.8.22)

Owing to (7.8.21), the Chebyshev Galerkin approximation to (7.8.1) can be
restated as follows:

uN (λ) ∈ VN ,

EN
(
λ, uN (λ)

)
≡ uN (λ) + TNG

(
λ, uN (λ)

)
= 0 .

(7.8.23)
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This is precisely the form (7.8.13); in the current situation, however, GN ≡ G.
To apply Theorem 7.3, we need to check that the assumptions (7.8.14)–
(7.8.17) are fulfilled.

Property (7.8.16) follows from the fact that each function v ∈ H1
w,0(−1, 1)

can be approximated in the norm of H1
w(−1, 1) by a sequence of more regular

functions ṽn ∈ Hm
w (−1, 1) ∩ H1

w,0(−1, 1), with m > 1. Then one applies to
each such ṽn the convergence estimate (7.1.21) for the Chebyshev Galerkin
approximation (where ṽN

n is indeed ΠN ṽn). In order to check (7.8.14), let us
choose W = L2

w(−1, 1). Recalling that TN = ΠNT we have

‖T − TN‖L(W,V ) = sup
g∈L2

w(−1,1)

‖T g −ΠNT g‖H1
w(−1,1)

‖g‖L2
w(−1,1)

.

Using again (7.1.21) and the definition of the operator T , we have

‖T g −ΠNT g‖H1
w(−1,1) ≤ CN−1‖T g‖H2

w(−1,1) ≤ C ′N−1‖g‖L2
w(−1,1) ;

whence (7.8.14) follows. Moreover, both (7.8.15) and (7.8.17) are trivially
verified for all integers m ≥ 0.

By (7.8.18) and (7.8.19) we conclude that for any branch {(λ, u(λ)),
λ ∈ Λ}, Λ ⊂ R+, of nonsingular solutions of(7.8.1), there exists a C∞ map-
ping: λ ∈ Λ → uN (λ) ∈ VN , such that uN (λ) is the only solution of the
Chebyshev Galerkin approximation (7.8.20) in a neighborhood of u(λ). More-
over, one has the estimate

‖u(λ)− uN (λ)‖H1
w(−1,1) ≤ C‖u(λ)−ΠNu(λ)‖H1

w(−1,1)

+ ‖T G(λ, u(λ))−ΠNT G(λ, u(λ))‖H1
w(−1,1) .

Noting that from (7.8.5), T G(λ, u(λ)) = −u(λ), and using again (7.1.21) we
get the convergence estimate

‖u(λ)− uN (λ)‖H1
w(−1,1) ≤ CN1−m|u(λ)|Hm

w (−1,1), m ≥ 1 , (7.8.24)

for a constant C which depends only upon the parameter interval Λ.

Chebyshev Collocation Approximation

Let xj = cos(πj/N), j = 0, . . . , N , be the Chebyshev Gauss-Lobatto points
(see (2.4.14)), and let INv be the interpolant of v at these points (see Sect.
2.2.3). We look now for a polynomial uN = uN (λ) of degree N which satisfies

−uN
xx + λ

(
1
2

(
IN

(
uN
)2)

x
− f
)

at x = xj , 1 ≤ j ≤ N − 1

uN (x0) = uN (xN ) = 0 .
(7.8.25)

Introducing the discrete inner product (u, v)N associated with the Chebyshev
points {xj} (see (2.2.24)), we can restate this collocation problem as follows:
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uN ∈ VN ,

a
(
uN , v

)
+ λ
(

1
2

(
IN (uN )2

)
x
− f, v

)
N

= 0 for all v ∈ VN .
(7.8.26)

We have used (2.2.25) to replace −(uN
xx, v)N by a(uN , v). We define the op-

erator GN : R+ × VN → V ′ by setting

〈GN (λ, v), φ〉 = λ
(

1
2

(
IN (v2)

)
x
− f, φ

)
N

for all φ ∈ V .

Note that again by (2.2.25) we have

〈GN (λ, v), φ〉 = λ
{(

1
2

(
IN (uN )2

)
x
, φ
)
w
− (f, φ)N

}
for all φ ∈ VN .

If we define TN : V ′ → VN as in (7.8.21), then problem (7.8.25) fits into
the general form (7.8.13).

The assumptions of Theorem 7.3 can be checked by very technical argu-
ments, which will not be reported here. The interested reader can refer to
the paper by Maday and Quarteroni (1982). The conclusion of the analysis
is that there exists a C∞ mapping λ ∈ Λ → uN (λ) ∈ VN such that uN (λ)
is the only solution of the Chebyshev collocation approximation (7.8.25) in
a neighborhood of u(λ), and such that the error estimate (7.8.19) holds.

Let us briefly work out this estimate in our particular case. The first two
terms on the right-hand side can be handled as they were for the Chebyshev
Galerkin approximation; we concentrate on the last term. For the sake of
(notational) simplicity, we drop the dependence of u on λ. Moreover, let us
set φ = ΠNu and ψ = TN (G − GN )(λ,ΠNu). By (7.8.21) and (7.1.16) we
have

γ‖ψ‖2H1
w(−1,1) ≤ a(ψ,ψ) = 〈(G − GN )(λ, φ), ψ〉

= λ
2

([
φ2 − IN (φ2)

]
x
, ψ
)
w

+ λ [(f, ψ)− (f, ψ)N ] .
(7.8.27)

Integrating by parts and using the Cauchy-Schwarz inequality together with
inequality (7.1.14) yields

|([φ2 − IN (φ2)]x, ψ)w| =
∣∣∣∣
∫ 1

−1

[φ2 − IN (φ2)](ψw)xdx
∣∣∣∣

≤ C‖φ2 − IN (φ2)‖L2
w(−1,1)‖ψ‖H1

w(−1,1) .

Now, by the triangle inequality,

‖(I − IN )(φ2)‖L2
w(−1,1) ≤ ‖(I − IN )(u2)‖L2

w(−1,1)

+‖(I − IN )(u2 − φ2)‖L2
w(−1,1) .

Assuming that f ∈ Hm−1
w (−1, 1) for some m ≥ 2, it is easily seen using

equation (7.8.1) that u ∈ Hm
w (−1, 1). Thus, by (5.5.23) we have

‖(I − IN )(u2)‖L2
w(−1,1) ≤ CN−m|u|2

Hm;N
w (−1,1)

,
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while again by (5.5.23) and the estimate (7.1.21) for uN = ΠNu = φ it follows
that

‖(I − IN )(u2 − φ2)‖L2
w(−1,1) ≤ C1N

−1‖u2 − φ2‖H1
w(−1,1)

≤ C1N
−1‖u+ΠNu‖H1

w(−1,1)‖u−ΠNu‖H1
w(−1,1)

≤ C2N
−m‖u‖H1

w(−1,1)|u|Hm;N
w (−1,1) .

Finally, the error on the forcing term in (7.8.27) can be handled as shown in
Sect. 5.3 (see formula (5.3.4b)), to give

|(f, ψ)w − (f, ψ)N | ≤ CN1−m|f |Hm−1;N
w (−1,1)‖ψ‖L2

w(−1,1) .

The final result of the convergence analysis, here just summarized, is
the following error estimate for the Chebyshev collocation approximation
(7.8.25):

‖u(λ)− uN (λ)‖H1
w(−1,1) ≤ CN1−m

{
|u(λ)|2

Hm;N
w (−1,1)

+ |f |Hm−1;N
w (−1,1)

}
,

(7.8.28)

for a constant C which depends only upon the parameter interval Λ.



Appendix A. Basic Mathematical Concepts

A.1 Hilbert and Banach Spaces

(a) Hilbert Spaces

Let X be a real vector space. An inner product on X is a function X×X → R,
denoted by (u, v), that satisfies the following properties:

(i) (u, v) = (v, u) for all u, v ∈ X;
(ii) (αu + βv,w) = α(u,w) + β(v, w) for all α, β ∈ R and all u, v, w ∈ X;
(iii) (u, u) ≥ 0 for all u ∈ X;
(iv) (u, u) = 0 implies u = 0.

Two elements u, v ∈ X are said to be orthogonal in X if (u, v) = 0. The inner
product (u, v) defines a norm on X by the relation

‖u‖ = (u, u)1/2 for all u ∈ X .

The distance between-two elements u, v ∈ X is the positive number ‖u− v‖.
A Cauchy sequence in X is a sequence {uk | k = 0, 1, . . . } of elements of X
that satisfies the following property:

for each positive number ε > 0, there exists an integer N = N(ε) > 0
such that the distance ‖uk − um‖ between any two elements of the
sequence is smaller than ε provided both k and m are larger than
N(ε).

A sequence in X is said to converge to an element u ∈ X if the distance
‖uk − u‖ tends to 0 as k tends to ∞.

A Hilbert space is a vector space equipped with an inner product for which
all the Cauchy sequences are convergent.

Examples

(i) Rn endowed with the Euclidean product

(u,v) =
n∑

i=1

uivi

is a finite-dimensional Hilbert space.
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(ii) If [a, b] ⊂ R is an interval, the space L2(a, b) (see (A.9.f)) is an infinite-
dimensional Hilbert space for the inner product

(u, v) =
∫ b

a

u(x)v(x) dx .

If X is a complex vector space, the inner product on X will be a complex-
valued function. Then condition (i) has to be replaced by

(i′) (u, v) = (v, u) for all u, v ∈ X .

(b) Banach Spaces

The concept of Banach space extends that of Hilbert space. Given a vector
space X, a norm on X is a function X → R, denoted by ‖u‖, that satisfies
the following properties:

‖u + v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ X ;
‖λu‖ = |λ|‖u‖ for all u ∈ X , and all λ ∈ R ;
‖u‖ ≥ 0 for all u ∈ X ;
‖u‖ = 0 if and only if u = 0 .

A Banach space is a vector space equipped with a norm for which all the
Cauchy sequences are convergent.

Examples

(i) Rn endowed with the norm

‖u‖ =

(
n∑

i=1

|ui|p
)1/p

(with 1 ≤ p < +∞) is a finite-dimensional Banach space.
(ii) If [a, b] ⊂ R is an interval and 1 ≤ p < +∞, the space Lp(a, b) (see

(A.9.f)) is an infinite-dimensional Banach space for the norm

‖u‖ =

(∫ b

a

|u(x)|pdx
)1/p

.

(c) Dual Spaces

Let X be a Hilbert or a Banach space. A linear form F : X → R is said to
be continuous if there exists a constant C > 0 such that

|F (u)| ≤ C‖u‖ for all u ∈ X .
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The set of all the linear continuous forms on X is a vector space. We can
define a norm on this space by setting

‖F‖ = sup
u∈X
u �=0

F (u)
‖u‖ .

The vector space of all the linear continuous forms on X is called the dual
space of X and is denoted by X ′. Endowed with the previous norm, it is itself
a Banach space.

The bilinear form from X ′ ×X into R defined by

〈F, u〉 = F (u)

is called the duality pairing between X and X ′.

(d) The Riesz Representation Theorem

If X is a Hilbert space, the dual space X ′ can be canonically identified with
X (hence, it is a Hilbert space). In fact, the Riesz representation theorem
states that for each linear continuous form F on X, there exists a unique
element u ∈ X such that

〈F, v〉 = (u, v) for all v ∈ X .

Moreover, ‖F‖X′ = ‖u‖X .

A.2 The Cauchy-Schwarz Inequality

Let X be a Hilbert space, endowed with the inner product (u, v) and the
associated norm ‖u‖ (see (A.1.a)). The Cauchy-Schwarz inequality states
that

|(u, v)| ≤ ‖u‖ ‖v‖ for all u, v ∈ X .

Of particular importance in the analysis of numerical methods for par-
tial differential equations is the Cauchy-Schwarz inequality in the weighted
Lebesgue spaces L2

w(Ω), where Ω is a domain in Rn and w = w(x) is a weight
function (see (A.9.h)). The previous inequality becomes:

∣∣∣∣
∫

Ω

u(x)v(x)w(x) dx
∣∣∣∣ ≤
(∫

Ω

u2(x)w(x) dx
)1/2(∫

Ω

v2(x)w(x) dx
)1/2

for all functions u, v ∈ L2
w(Ω).
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A.3 Linear Operators Between Banach Spaces

Let X and Y be Banach spaces (see (A.1.b)). A linear operator L defined on
X and taking values in Y , L : X → Y , is said to be bounded , or continuous,
if there exists a constant C > 0 such that

‖Lv‖Y ≤ C‖v‖X for all v ∈ X .

The smallest constant C for which the inequality holds is denoted by ‖L‖,
i.e.,

‖L‖ = sup
v∈X
v �=0

‖Lv‖Y
‖v‖X

.

The vector space of all the linear bounded operators between X and Y is
denoted by L(X,Y ). It is a Banach space for the norm ‖L‖ just defined.

In the formulation of differential problems, it may be convenient to con-
sider linear operators that are only defined on a subset of a Banach space X
(say, with values in X). The domain D(L) of a linear operator L : X → X
is the largest subset of X on which L is defined, i.e., v ∈ D(L) if and only if
there exists g ∈ X such that Lv = g. We say that L is an unbounded operator
if

sup
v∈D(L)

v �=0

‖Lv‖X
‖v‖X

= +∞ .

Example Consider the linear differential operator Lv = d2v/dx2, where v
is a function on the interval (a, b) of the real line. L can be considered as
a bounded operator between the Banach spaces X = C2([a, b]) and Y =
C0([a, b]) (see (A.7)), or as an unbounded operator in X = C0([a, b]). In the
former case, the numerator is ‖Lv‖Y , which measures the second derivative
of v, and the denominator is ‖v‖X , which measures all the derivatives of v
up to order 2. The ratio of these norms is bounded. In the latter case, the
domain of L is D(L) = C2([a, b]), considered now as a subspace of C0([a, b]).
Here the numerator is again the maximum norm of the second derivative,
but the denominator is the weaker norm which measures only the function
itself. Taking bounded, but rapidly oscillatory functions, this ratio can be
arbitrarily large.

A linear continuous operator L : X → Y is said to be compact if for
each sequence {vn ∈ X | n = 0, 1, . . . } such that ‖vn‖X ≤ C, one can find
a subsequence {vnk | k = 0, 1, . . . } and an element v ∈ X such that

‖Lvnk − Lv‖Y −→ 0 as nk −→∞ .

Finally an operator L : X l → Y is said to be multilinear if it is linear in each
of its variables. A multilinear operator L is continuous if the quantity

‖L‖ = sup
v1,...,vl∈X

‖L(v1, . . . , vl)‖Y
‖v1‖X . . . ‖vl‖X
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is finite. The space of the multilinear operators L : X l → Y is denoted by
Ll(X,Y ) and is a Banach space for the norm just introduced.

A.4 The Fréchet Derivative of an Operator

Let A be a mapping between a Banach space X and a Banach space Y , i.e.,
A : X → Y . We say that A is Fréchet differentiable at a point u0 ∈ X if
there exists a linear continuous operator L ∈ L(X,Y ) such that

lim
w∈X

‖w‖X→0

‖A(u0 + w)−A(u0)− Lw‖Y
‖w‖X

= 0 .

If this happens, the linear operator L is unique. It is termed the Fréchet
derivative of A at the point u0, and is denoted by A′(u0).

A.5 The Lax-Milgram Theorem

Let V be a real Hilbert space (see (A.1.a)). Let a : V × V → R be a bilinear
continuous form on V , i.e., a satisfies

(i) a(λu + µv,w) = λa(u,w) + µa(v, w) and
a(u, λv + µw) = λa(u, v) + µa(u,w)
for all u, v, w ∈ V and all λ, µ ∈ R;

(ii) there exists a constant β > 0 such that

|a(u, v)| ≤ β‖u‖V ‖v‖V for all u, v ∈ V .

(iii) there exists a constant α > 0 such that

a(u, u) ≥ α‖u‖2V for all u ∈ V ,

i.e., the form a is V -coercive, or V -elliptic.
Then for each form F ∈ V ′ (the dual space of V , see (A.1.c)), there exists

a unique solution u ∈ V to the variational problem

a(u, v) = F (v) for all v ∈ V .

Moreover, the following inequality holds:

‖u‖V ≤
β

α
‖F‖V ′ .

Note that the Riesz representation theorem (A.1.d) follows from the Lax-
Milgram theorem applied to the inner product (u, v). This is indeed a sym-
metric bilinear form, for which (ii) is nothing but the Cauchy-Schwarz in-
equality (A.2), and (iii) follows from the definition of Hilbertian norm.
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A.6 Dense Subspace of a Normed Space

Let X be a Hilbert or a Banach space with norm ‖v‖. Let S ⊂ X be a sub-
space of X. S is said to be dense in X if for each element v ∈ X there exists
a sequence {vn | n = 0, 1, . . . } of elements vn ∈ S, such that

‖v − vn‖ −→ 0 as n −→∞ .

Thus, each element of X can be approximated arbitrarily well by elements
of S, in the distance induced by the norm of X.

For example, the subspace C0([a, b]) of the continuous functions on
a bounded, closed interval [a, b] of the real line, is dense in L2(a, b), the
space of the measurable square-integrable functions on (a, b). Indeed, for each
function v ∈ L2(a, b) and each n > 0, one can find a continuous function
vn ∈ C0([a, b]) such that

∫ b

a

|v(x)− vn(x)|2dx ≤ 1
n2

.

A.7 The Spaces Cm(Ω), m ≥ 0

Let Ω = (a, b)d ⊂ Rd, with d = 1, 2 or 3. Let us denote by Ω the closure of Ω,
i.e., the closed poly-interval [a, b]d. For each multi-index α = (α1, . . . , αd) of
nonnegative integers, set |α| = α1 + · · ·+αd and Dαv = ∂|α|v/∂xα1

1 . . . ∂xαd
d .

We denote by Cm(Ω) the vector space of the functions v : Ω → R such
that for each multi-index α with 0 ≤ |α| ≤ m, Dαv exists and is continuous
on Ω. Since a continuous function on a closed, bounded (poly)-interval is
bounded there, one can set

‖v‖Cm(Ω) = sup
0≤|α|≤m

sup
x∈Ω

|Dαv(x)| .

This is a norm for which Cm(Ω) is a Banach space (see (A.1.b)).
The space C∞(Ω) is the space of the infinitely differentiable functions on

Ω. Thus, a function v belongs to C∞(Ω) if and only if it belongs to Cm(Ω)
for all m > 0.

A.8 Functions of Bounded Variation
and the Riemann(-Stieltjes) Integral

Let [a, b] ⊂ R be a bounded interval of the real line, and let u : [a, b]→ R be
a given function. The total variation of u on [a, b] is defined by

V (u) = sup
a=x0<x1<···<xn=b

n∑

i=1

|u(xi)− u(xi−1)| ,
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where the supremum is taken over all the partitions of [a, b] by a finite number
of points, i.e. over all the sets of n + 1 points such that a = x0 < x1 < · · · <
xn = b, n being arbitrary.

A function is said to be of bounded variation in [a, b] if V (u) is finite. Note
that a function of bounded variation is certainly bounded.

A continuously differentiable function u in [a, b] is of bounded variation;
its total variation can be equivalently expressed as

V (u) =
∫ b

a

|u′(x)|dx .

The same is true for an absolutely continuous function in [a, b], i.e., a continu-
ous function that admits an integrable derivative in the sense of distributions
(see (A.10.b)). However, a function of bounded variation need not be contin-
uous. For instance, the step function

u(x) =

{
0 if x < 0 ,

1 if x ≥ 0 ,

is of bounded variation on each interval [a, b] of the real line. On the con-
trary, u(x) = x sin(1/x) is an example of a continuous function that is not of
bounded variation in any interval containing the origin.

A function u of bounded variation can be split into the difference

u(x) = α(x)− β(x) ,

where α and β are monotonically increasing functions. This property makes
possible the definition of the Riemann-Stieltjes integral with respect to a func-
tion ∫ b

a

f(x) du(x) .

of bounded variation. We start by defining the Riemann-Stieltjes integral
of a bounded function on [a, b] with respect to a monotonically increasing
function α(x). Given a partition P = {a = x0 < x1 < · · · < xn = b}, let us
set Mi = sup{f(x)|xi−1 ≤ x ≤ xi} and mi = inf{f(x)|xi−1 ≤ x ≤ xi}. Next
we define ∫ b

a

f(x) dα = inf
P

n∑

i=1

Mi(α(xi)− α(xi−1))

and ∫ b

a

f(x) dα = sup
P

n∑

i=1

mi(α(xi)− α(xi−1)) ,

the infimum and the supremum being taken over all the partitions P of [a, b].
If the two numbers just defined are equal, we denote their common value by
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∫ b

a

f(x) dα ,

and we say that f is Riemann-Stieltjes integrable with respect to α.
If α(x) ≡ x, the previous integral coincides with the classical Riemann

integral .
The Riemann-Stieltjes integral of a bounded function on [a, b] with respect

to a function of bounded variation u is defined as
∫ b

a

u(x) du =
∫ b

a

u(x) dα−
∫ b

a

u(x) dβ ,

where u = α− β is any decomposition of u into the difference of two mono-
tonically increasing functions. This definition is independent of the particular
decomposition.

The following integration-by-parts rule for functions of bounded variation
holds. Let u and v be continuous functions of bounded variation on [a, b].
Then, ∫ b

a

u(x) dv = u(b)v(b)− u(a)v(a)−
∫ b

a

v(x) du .

A.9 The Lebesgue Integral and Lp-Spaces

Let us start with a schematic account of the Lebesgue measure on a hounded
interval (a, b) of the real line. A complete introduction to the Lebesgue inte-
gration theory can be found, e.g., in Royden (1968) or Rudin (1966).

(a) The Lebesgue (Outer) Measure

Each set A contained in (a, b) can be covered by a countable union of open
intervals IN , i.e. A ⊂

⋃∞
n=0 In. Taking into account this property, the Lebesgue

outer measure µ(A) of the set A is defined as

µ(A) = inf
∑

n

|In| ,

where |In| denotes the length of the interval In, and the infimum is taken
over all the coverings of A by open intervals. Note that the measure of an
interval is its length. Each countable set has zero measure.

(b) Measurable Sets

For each set A ⊆ (a, b), let Ã denote the complementary set of A in (a, b),
i.e. Ã = {x ∈ (a, b) : x 	∈ A}.

A set A ⊆ (a, b) is said to be measurable if

µ(A) + µ(Ã) = µ((a, b)) = b− a .

In Lebesgue’s measure theory only measurable sets are of interest.
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(c) Simple Measurable Functions

A function s : (a, b)→ [0,+∞) is a simple measurable function if it assumes
only a finite number of values {s0, . . . , sn}, and if each set Ai = {x ∈ (a, b) :
s(x) = si} is measurable.

(d) Measurable Functions

A positive function u : (a, b) → [0,+∞) is measurable if it is the pointwise
limit of simple measurable functions – more precisely, if there exist simple
measurable functions s(k) such that

(i) 0 ≤ s(1) ≤ s(2) ≤ · · · ≤ u

(ii) s(k)(x)→ u(x) as k →∞, for all x ∈ (a, b).

A real function u : (a, b) → R is measurable if both its positive and
negative parts, u+ = max{u, 0} and u− = max{−u, 0}, are measurable.

(e) The Lebesgue Integral

If s is a simple measurable function on (a, b), we set

∫ b

a

sdµ =
n∑

i=0

siµ(Ai) .

If u is a positive measurable function on (a, b), we set

∫ b

a

udµ = sup
∫ b

a

sdµ ,

the supremum being taken over all the simple measurable functions such that
0 ≤ s ≤ u. The value of the right-hand side is a nonnegative number or +∞.
We call it the Lebesgue integral of u on (a, b).

A positive measurable function u is said to be Lebesgue integrable on (a, b)
if ∫ b

a

udµ < +∞ .

A real measurable function u on (a, b) is said to be Lebesgue integrable if
both its positive and negative parts, u+ and u−, are Lebesgue integrable. In
this case we define the Lebesgue integral of u on (a, b) as

∫ b

a

udµ =
∫ b

a

u+ dµ−
∫ b

a

u− dµ .
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(f) The Spaces Lp(a, b), 1 ≤ p ≤ ∞
Let us now define several spaces of integrable functions in the sense of
Lebesgue. Hereafter we will use the more conventional notation

∫ b

a
u(x)dx,∫

Ω
u(x) d(x), etc. to denote Lebesgue integrals. Since two integrable func-

tions that differ on a set of zero measure have the same integral, they can be
identified from the point of view of the Lebesgue integration theory, i.e., they
belong to the same equivalence class. This identification is always presumed
here and in the sequel.

Let (a, b) be a bounded interval of R, and let 1 ≤ p < +∞. We denote
by Lp(a, b) the space of the measurable functions u : (a, b) → R such that∫ b

a
|u(x)|pdx < +∞. Endowed with the norm

‖u‖Lp(a,b) =

(∫ b

a

|u(x)|pdx
)1/p

,

it is a Banach space (see (A.1.b)).
For p = +∞, L∞(a, b) is the space of the measurable functions u : (a, b)→

R such that |u(x)| is bounded outside a set of measure zero. If M denotes
the smallest real number such that |u(x)| ≤M outside a set of measure zero,
we define a norm on L∞(a, b) by setting

‖u‖Lp(a,b) = ess sup
x∈(a,b)

|u(x)| = M .

(If u is continuous on [a, b], then ‖u‖L∞(a,b) is the maximum of the absolute
value of u on [a, b].) Again L∞(a, b) is a Banach space.

The index p = 2 is of special interest because L2(a, b) is not only a Banach
space but also a Hilbert space (see (A.1.a)). The inner product is

(u, v) =
∫ b

a

u(x)v(x)dx ,

which induces the norm

‖u‖L2(a,b) =

(∫ b

a

|u(x)|2dx
)1/2

.

It is also possible to define Lp-spaces of complex measurable functions.
The previous definitions and norms hold unchanged provided the absolute
value of u is replaced by the modulus of u. The inner product of the complex
L2(a, b)-space is

(u, v) =
∫ b

a

u(x)v(x)dx .
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(g) The Weighted Spaces Lp
w(−1, 1), 1 ≤ p ≤ +∞

Let w(x) be a weight function on the interval (−1, 1), i.e., a continuous,
strictly positive and integrable function on (−1, 1). For p < +∞, we denote
by Lp

w(−1, 1) the Banach space of the measurable functions u : (a, b) → R

such that
∫ b

a
|u(x)|pw(x)dx < +∞. It is endowed with the norm

‖u‖Lpw(−1,1) =

(∫ b

a

|u(x)|pw(x)dx

)1/p

.

For p =∞ we set L∞
w (−1, 1) = L∞(−1, 1).

The space L2
w(−1, 1) is a Hilbert space for the inner product

(u, v)w =
∫ b

a

u(x)v(x)w(x)dx ,

which induces the weighted norm

‖u‖L2
w(a,b) =

(∫ b

a

|u(x)|2w(x)dx

)1/2

.

(h) The Spaces Lp(Ω) and Lp
w(Ω), 1 ≤ p ≤ +∞

The previous definitions can be extended in a straightforward way to more
than one space dimension. Let Ω denote a bounded, open domain in R

d, for
d = 2 or 3 (for instance, Ω = (0, 2π)d or Ω = (−1, 1)d), and let dx be the
Lebesgue measure on R

d.
For p < +∞, we denote by Lp(Ω) the space of the measurable functions

u : Ω → R such that
∫

Ω
|u(x)|pdx < +∞. It is a Banach space for the norm

‖u‖Lp(Ω) =
(∫

Ω

|u(x)|pdx
)1/p

.

L∞(Ω) is the Banach space of the measurable functions u : Ω → R that are
bounded outside a set of measure zero, equipped with the norm

‖u‖L∞(Ω) = ess sup
x∈Ω

|u(x)| .

The space L2(Ω) is a Hilbert space for the inner product

(u, v) =
∫

Ω

u(x)v(x)dx ,

which induces the norm
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‖u‖L2(Ω) =
(∫

Ω

|u(x)|2dx
)1/2

.

Again one can consider Lp(Ω) spaces of complex functions in a straight-
forward manner.

If w(x) denotes a weight function on Ω, the weighted spaces Lp
w(Ω) can

be defined, by analogy to Lp
w(a, b), as the Banach spaces of the measurable

functions u : Ω → R such that the function x → |u(x)|pw(x) is Lebesgue
integrable on Ω. In particular, the space L2

w(Ω) is a Hilbert space for the
inner product

(u, v)w =
∫

Ω

u(x)v(x)w(x)dx ,

which induces the weighted norm

‖u‖L2
w(Ω) =

(∫

Ω

|u(x)|2w(x)dx
)1/2

.

A.10 Infinitely Differentiable Functions
and Distributions

Let Ω be a bounded, open domain in Rd, for d = 1, 2 or 3. If α = (α1, . . . , αd)
is a multi-index of nonnegative integers, let us set

Dαv =
∂α1+···+αdv

∂xα1
1 · · · ∂xαd

d

.

We denote by D(Ω) the vector space of all the infinitely differentiable func-
tions φ : Ω → R, for which there exists a closed set K ⊂ Ω such that φ ≡ 0
outside K.

We say that a sequence of functions φn ∈ D(Ω) converges in D(Ω) to
a function φ ∈ D(Ω) as n→∞, if there exists a common closed set K ⊂ Ω
such that all the φn vanish outside K, and Dαφn → Dαφ uniformly on K as
n→∞, for all nonnegative multi-indices α.

(a) Distributions

Let T be a linear form on D(Ω), i.e., a linear mapping T : D(Ω) → R. We
shall denote the value of T on the element φ ∈ D(Ω) by 〈T, φ〉. T is said
to be continuous if for each sequence φn ∈ D(Ω) that converges in D(Ω) to
a function φ ∈ D(Ω) as n→∞, one has

〈T, φn〉 −→ 〈T, φ〉 as n −→∞ .

A distribution is a linear continuous form on D(Ω). The set of all the distri-
butions on Ω is a vector space denoted by D ′(Ω).
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Examples

(i) Each integrable function f ∈ L1(Ω) (see (A.9.f)) can be identified with
the distribution Tf defined by

〈Tf , φ〉 =
∫

Ω

f(x)φ(x)dx for all φ ∈ D(Ω) .

(ii) Let x0 ∈ Ω. The linear form on D(Ω),

〈δx0 , φ〉 = φ(x0) for all φ ∈ D(Ω) ,

is a distribution, which is commonly (but improperly) called the “Dirac func-
tion”.

We notice that if T1 and T2 are two distributions, then they are “equal in
the sense of distributions” if

〈T1, φ〉 = 〈T2, φ〉 for all φ ∈ D(Ω) .

(b) Derivative of Distributions

Let α be a nonnegative multi-index and set m = α1 + · · · + αd. For each
distribution T ∈ D ′(Ω) let us consider the linear form on D(Ω):

〈DαT, φ〉 = (−1)m〈T,Dαφ〉 for all φ ∈ D(Ω) .

This linear form is continuous on D(Ω); hence, it is a distribution, which is
called the α-distributional derivative of T .

It follows that each integrable function u ∈ L1(Ω) is infinitely differen-
tiable in the sense of distributions, and the following Green’s formula holds:

〈Dαu, φ〉 = (−1)m

∫

Ω

u(x)Dαφ(x)dx for all φ ∈ D(Ω) .

If u is m-times continuously differentiable in Ω, then the α-distributional
derivative of u coincides with the classical derivative of index α. In general,
a distributional derivative of an integrable function can be an integrable
function or merely a distribution. We say that the α-distributional derivative
of an integrable function u ∈ L1(Ω) is an integrable function if there exists
g ∈ L1(Ω) such that

〈Dαu, φ〉 =
∫

Ω

g(x)φ(x)dx for all φ ∈ D(Ω) .

Examples

(i) Consider the function u(x) = 1
2 |x| in the interval (−1, 1). Note that u

is not classically differentiable at the origin. The first derivative of u in the
distributional sense is represented by the step function
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v(x) =

{
1/2 if x > 0 ,

−1/2 if x < 0 .

(ii) Consider the function v now defined. Note that the classical derivative
is zero at all the points x 	= 0. The first derivative of v in the sense of
distributions is the “Dirac function” δ0 at the origin. This distribution cannot
be represented by an integrable function.

Functions having a certain number of distributional derivatives that can be
represented by integrable functions play a fundamental role in the modern
theory of partial differential equations. The spaces of these functions are
named Sobolev spaces (see (A.11)).

(c) Periodic Distributions

Let Ω = (0, 2π)d, for d = 1, 2 or 3. We define the space C∞
p (Ω) as the

vector space of the functions u : Ω → C that have derivatives of any order
continuous in the closure Ω of Ω, and 2π-periodic in each space direction.
A sequence φn ∈ C∞

p (Ω) converges in C∞
p (Ω) to a function φ ∈ C∞

p (Ω) if
Dαφn → Dαφ uniformly on Ω, as n→∞ for all nonnegative multi-indices α.

A periodic distribution is a linear form T : C∞
p (Ω)→ C that is continuous,

i.e., such that
〈T, φn〉 −→ 〈T, φ〉 as n −→∞ ,

whenever φn → φ in C∞
p (Ω).

The derivative of index α of a periodic distribution T is the periodic
distribution DαT defined by

〈DαT, φ〉 = (−1)m〈T,Dαφ〉 for all φ ∈ C∞
p (Ω)

(where m = α1 + · · ·+ αd).
Note that each function in D(Ω) also belongs to C∞

p (Ω). Thus, it is easily
seen that each periodic distribution is indeed a distribution in the sense of
(A.10.a).

A.11 Sobolev Spaces and Sobolev Norms

We introduce hereafter some relevant Hilbert spaces, which occur in the
numerical analysis of boundary-value problems. They are spaces of square-
integrable functions (see (A.9)), which possess a certain number of derivatives
(in the sense of distributions, see (A.10.b)) representable as square-integrable
functions.
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(a) The Spaces Hm(a, b) and Hm(Ω), m ≥ 0

Let (a, b) be a bounded interval of the real line, and let m ≥ 0 be an integer.
We define Hm(a, b) to be the vector space of the functions v ∈ L2(a, b)

such that all the distributional derivatives of u of order up to m can be
represented by functions in L2(a, b). In short,

Hm(a, b) =
{
v ∈ L2(a, b) : for 0 ≤ k ≤ m,

dku

dxk
∈ L2(a, b)

}
.

Hm(a, b) is endowed with the inner product

(u, v)m =
m∑

k=0

∫ b

a

dku

dxk
(x)

dkv

dxk
(x)dx

for which Hm(a, b) is a Hilbert space. The associated norm is

‖v‖Hm(a,b) =

(
m∑

k=0

∥∥∥∥
dkv

dxk

∥∥∥∥
2

L2(a,b)

)1/2

.

The Sobolev spaces Hm(a, b) form a hierarchy of Hilbert spaces, in the sense
that . . . Hm+1(a, b) ⊂ Hm(a, b) ⊂ · · · ⊂ H0(a, b) ≡ L2(a, b), each inclusion
being continuous (see (A.3)). Clearly, if a function u has m classical con-
tinuous derivatives in [a, b], then u belongs to Hm(a, b) – in other words,
Cm([a, b]) ⊂ Hm(a, b) with continuous inclusion. Conversely, if u belongs to
Hm(a, b) for m ≥ 1, then u has m−1 classical continuous derivatives in [a, b],
i.e., Hm(a, b) ⊂ Cm−1([a, b]) with continuous inclusion. This is an example
of the so-called “Sobolev imbedding theorems”. As a matter of fact, Hm(a, b)
can be equivalently defined as

Hm(a, b) =
{
v ∈ Cm−1([a, b]) :

d
dx

v(m−1) ∈ L2(a, b)
}

,

where the last derivative is in the sense of distributions.
Functions in Hm(a, b) can be approximated arbitrarily well by infinitely

differentiable functions in [a, b], in the distance induced by the norm of
Hm(a, b). In other words,

C∞([a, b]) is dense in Hm(a, b)

(see (A.6) for the definition of density of a subspace).
Set now Ω = (a, b)d, for d = 2 or 3. Given a multi-index α = (α1, . . . , αd)

of nonnegative integers, we set |α| = α1 + · · ·+ αd and

Dαv =
∂|α|v

∂xα1
1 · · · ∂xαd

d

.
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The previous definition of Sobolev spaces can be extended to higher space
dimensions as follows. We define

Hm(Ω)={v∈L2(Ω) : for each nonnegative multi-index α with |α| ≤ m,

the distributional derivative Dαv belongs to L2(Ω)}.

This is a Hilbert space for the inner product

(u, v)m =
∑

|α|≤m

∫
Dαu(x)Dαv(x)dx ,

which induces the norm

‖v‖Hm(Ω) =

⎛

⎝
∑

|α|≤m

‖Dαv‖2L2(Ω)

⎞

⎠
1/2

.

Functions in Hm(Ω) for m ≥ 1 need not have the derivatives of order m− 1
continuous in Ω. However, the weaker Sobolev inclusion Hm(Ω) ⊂ Cm−2(Ω)
(m ≥ 2) holds. On the other hand, as in the one-dimensional case

C∞(Ω) is dense in Hm(Ω) .

(b) The Spaces Hm
w (−1, 1) and Hm

w (Ω), m ≥ 0

In the definition of a Sobolev space, one can require that the function as well
as its distributional derivatives be square integrable with respect to a weight
function w (see (A.9)). This is the most natural framework in dealing with
Chebyshev methods.

Let now (a, b) be the interval (−1, 1). We choose the weight function w
to be the Chebyshev weight w(x) = (1 − x2)−1/2 (although the following
definitions can be given for an arbitrary weight function). We set

Hm
w (−1, 1) =

{
v ∈ L2

w(−1, 1) : for 0 ≤ k ≤ m, the distributional

derivative
dku

dxk
belongs to L2

w(−1, 1)
}

.

Hm
w (−1, 1) is a Hilbert space for the inner product

(u, v)m,w =
m∑

k=0

∫ 1

−1

dku

dxk
(x)

dkv

dxk
(x)

dx√
1− x2

,

which induces the norm

‖u‖Hm
w (−1,1) =

(
m∑

k=0

∥∥∥∥
dkv

dxk

∥∥∥∥
2

L2
w(−1,1)

)1/2

.
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For Ω = (−1, 1)d (d = 2 or 3) and w = w(x) =
∏d

i=1(1 − x2
i )

−1/2 (the
d-dimensional Chebyshev weight), we define Hm

w (Ω) by analogy to Hm(Ω).
Precisely we set

Hm
w (Ω) = {v ∈ L2

w(Ω) : for each nonnegative multi-index α with
|α| < m, the distributional derivative Dαv

belongs to L2
w(Ω)} .

This space is endowed with the Hilbertian inner product

(u, v)m,w =
∑

|α|≤m

∫

Ω

Dαu(x)Dαv(x)w(x)dx

and the associated norm

‖v‖Hm
w (Ω) =

⎛

⎝
∑

|α|≤m

‖Dαv‖2L2
w(Ω)

⎞

⎠
1/2

.

The properties of inclusion and density previously recalled for Hm(a, b) and
Hm(Ω) hold for Hm

w (−1, 1) and Hm
w (Ω) as well. Moreover, we note that

Hm
w (Ω) ⊂ Hm(Ω) for all m ≥ 0.

(c) The Spaces H1
0(a, b), H1

w,0(−1, 1) and H1
0 (Ω), H1

w,0(Ω)

Dirichlet conditions are among the simplest and most common boundary con-
ditions to be associated with a differential operator. Therefore, the subspaces
of the Sobolev spaces Hm spanned by the functions satisfying homogeneous
Dirichlet boundary conditions play a fundamental role.

Since the functions of H1(a, b) are continuous up to the boundary by
the Sobolev imbedding theorem, it is meaningful to introduce the following
subspace of H1(a, b):

H1
0 (a, b) = {v ∈ H1(a, b) : v(a) = v(b) = 0} .

This is a Hilbert space for the same inner product of H1(a, b). It is often
preferable to endow H1(a, b) with a different, although equivalent, inner prod-
uct. This is defined as

[u, v] =
∫ b

a

du
dx

(x)
dv
dx

(x)dx .

By the Poincaré inequality (A.13), it is indeed an inner product on H1
0 (a, b).

The associated norm, denoted by

‖v‖H1
0 (a,b) =

(∫ b

a

∣∣∣∣
dv
dx

∣∣∣∣
2

dx

)1/2

,
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is equivalent to the H1
0 (a, b)-norm, in the sense that there exists a constant

C > 0 such that, for all v ∈ H1
0 (a, b),

C‖v‖H1(a,b) ≤ ‖v‖H1
0 (a,b) ≤ ‖v‖H1(a,b) .

Again, this follows from the Poincaré inequality.
The subspace H1

w,0(−1, 1) of H1
w(−1, 1) is defined similarly, namely, we

set
H1

w,0(−1, 1) = {v ∈ H1
w(−1, 1) : v(−1) = v(1) = 0} .

Again, it can be endowed with the weighted inner product

[u, v]w =
∫ 1

−1

du
dx

(x)
dv
dx

(x)
dx√

1− x2
.

The associated norm

‖v‖H1
w,0(−1,1) =

(∫ 1

−1

∣∣∣∣
dv
dx

∣∣∣∣
2 dx√

1− x2

)1/2

is equivalent to the norm of H1
w(−1, 1), due to the Poincaré inequality.

The functions of H1
0 (a, b) can be approximated arbitrarily well in the norm

of this space not only by infinitely differentiable functions on [a, b], but also
by infinitely differentiable functions that vanish identically in a neighborhood
of x = a and x = b. In other words,

D((a, b)) is dense in H1(a, b)

(see (A.10) and (A.6)). A similar result holds for H1
w,0(−1.1), i.e.,

D((−1, 1)) is dense in H1
w,0(−1, 1) .

We turn now to more space dimensions. If Ω is the Cartesian product
of d intervals (d = 2 or 3), the functions of H1(Ω) need not be continuous
on the closure of Ω. Thus, their pointwise values on the boundary ∂Ω of Ω
need not be defined. However, it is possible to extend the trace operator
v �→ v|∂Ω (classically defined for functions v ∈ C0(Ω)) so as to be a linear
continuous mapping between H1(Ω) and L2(Ω), the space of the square-
integrable functions on ∂Ω (see Lions and Magenes (1972), Chapter 1, for
the rigorous definition of the trace of a function v ∈ H1(Ω)). With this in
mind, it is meaningful to define H1

0 (Ω) as the subspace of H1(Ω) of the
functions whose trace at the boundary is zero. Precisely we set

H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0} .

This is a Hilbert space for the inner product of H1(Ω), or for the inner
product

[u, v] =
∫

Ω

∇u(x) · ∇v(x) dx .
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The associated norm is denoted by

‖v‖H1
0 (Ω) =

(∫

Ω

|∇v|2dx
)1/2

and is equivalent to the H1(Ω)-norm, by the Poincaré inequality (A.13).
In a completely similar manner we introduce the space

H1
w,0(Ω) = {v ∈ H1

w(Ω) : v|∂Ω ≡ 0}

endowed with the inner product

[u, v]w =
∫

Ω

∇u(x) · ∇v(x)w(x)dx

and the norm

‖v‖H1
w,0(Ω) =

(∫

Ω

|∇v|2w(x)dx
)1/2

.

Concerning the approximation of the functions of H1
0 (Ω) by infinitely smooth

functions, the following result holds:

D(Ω) is dense in H1
0 (Ω) (respectively in H1

w,0(Ω)) .

The dual spaces (see (A.1.c)) of the Hilbert spaces of type H1
0 now defined

are usually denoted by H−1. Thus, H−1(a, b) is the dual space of H1
0 (a, b).

H−1
w (−1, 1) is the dual space of H1

w,0(−1, 1), and so on.
Finally let us mention that for m ≥ 2, one can define the subspaces

Hm
0 (a, b) of Hm(a, b) (and similarly for Hm

w (−1, 1), etc.) of the functions of
Hm(a, b) whose derivatives of order up to m − 1 vanish on the boundary of
the domain of definition. Again, these spaces are Hilbert spaces for the inner
product of Hm(a, b), or for an equivalent inner product that only involves
the derivatives of order m.

(d) The Spaces Hm
p (0, 2π) and Hm

p (Ω), m ≥ 0

In the analysis of Fourier methods, the natural Sobolev spaces are those of
periodic functions. In this framework, functions are complex valued, and their
derivatives are taken in the sense of the periodic distributions (see (A.10.c)).
We set

Hm
p (0, 2π) =

{
v ∈ L2(0, 2π) : for 0 ≤ k ≤ m, the derivative

dkv

dxk
in the

sense of periodic distribution

belongs to L2(0, 2π)
}

.
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Hm
p (0, 2π) is a Hilbert space for the inner product

(u, v)m =
m∑

k=0

∫ 2π

0

dku

dxk
(x)

dkv

dxk
(x)dx ,

whose associated norm is

‖v‖Hm
p (0,2π) =

(
m∑

k=0

∥∥∥∥
dkv

dxk

∥∥∥∥
2

L2(0,2π)

)1/2

.

The space Hm
p (0, 2π) coincides with the space of the functions v : [0, 2π]→ C

that have m−1 continuously differentiable, 2π-periodic derivatives on [0, 2π],
and such that the periodic distributional derivative (d/dx)v(m−1) can be
represented by a function of L2(0, 2π).

The space C∞
p ([0, 2π]) introduced in (A.10.c) is dense in Hm

p (0, 2π). If
Ω = (0, 2π) for d = 2 or 3, we set

Hm
p (Ω) = {v ∈ L2(Ω) : for each integral multi-index α with |α| ≤ m,

the derivative Dαv in the sense of periodic

distributions belongs to L2(Ω)}.

This is a Hilbert space for the inner product

(u, v)m =
∑

|α|≤m

∫

Ω

Dαu(x)Dαv(x)dx ,

with associated norm

‖v‖Hm
p (Ω) =

⎛

⎝
∑

|α|≤m

‖Dαv‖2L2(Ω)

⎞

⎠
1/2

.

The space C∞
p (Ω) is dense in Hm

p (Ω). Note that since a periodic distribution
is also a distribution (see (A.10.c)), each space Hm

p (0, 2π) (resp. Hm
p (Ω)) is

a subspace of the space Hm(0, 2π) (resp. Hm(Ω)).

A.12 The Sobolev Inequality

Let (a, b) ⊂ R be a bounded interval of the real line. For each function
u ∈ H1(a, b) (see (A.11.a)) the following inequality holds:

‖u‖L∞(a,b) ≤
(

1
b− a

+ 2
)1/2

‖u‖1/2
L2(a,b)‖u‖

1/2
H1(a,b) .
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A.13 The Poincaré Inequality

Let v be a function of H1(a, b) (see (A.11.a)). We know that v is continuous on
[a, b]. Assume that at a point x0 ∈ [a, b], v0(x0) = 0. The Poincaré inequality
states that there exists a constant C (depending upon the interval length
b− a) such that

‖v‖L2(a,b) ≤ C‖v′‖L2(a,b) , (A.13.1)

i.e., the L2-norm of the function is bounded by the L2-norm of the deriva-
tive. The Poincaré inequality applies to functions belonging to H1

0 (a, b) (see
(A.11.c)), for which x0 = a or b, and also to functions of H1(a, b) that have
zero average on (a, b), since necessarily such functions change sign in the
domain.

A similar inequality holds if we replace H1(a, b) with H1
w(a, b) (see

(A.11.b)). Precisely, there exists a constant C > 0 such that, for all v ∈
H1

w(a, b) vanishing at a point x0 ∈ [a, b],

‖v‖L2
w(a,b) ≤ C‖v′‖L2

w(a,b) . (A.13.2)

In space dimension d ≥ 2, the functions to which the Poincaré inequality
applies must vanish on a manifold of dimension d − 1. Confining ourselves
to the case of functions vanishing on the boundary ∂Ω of the domain of
definition Ω, one has

‖v‖L2(Ω) ≤ C‖∇v‖(L2(Ω))d for all v ∈ H1
0 (Ω) (A.13.3)

and
‖v‖L2

w(Ω) ≤ C‖∇v‖(L2
w(Ω))d for all v ∈ H1

w,0(Ω) . (A.13.4)

(See (A.11.c) for the definition of the spaces H1
0 (Ω) and H1

w,0(Ω).) The same
results hold if the domain Ω is simply connected and v only vanishes on
a portion of ∂Ω of positive measure.

A.14 The Hardy Inequality

Let a < b be two real numbers, and let α < 1 be a real constant. The following
inequalities hold for all measurable functions φ on (a, b):

∫ b

a

[
1

t− a

∫ t

a

φ(s)ds
]2

(t− a)αdt ≤ 4
1− α

∫ b

a

φ2(t)(t− a)αdt

and, similarly,

∫ b

a

[
1

b− t

∫ b

t

φ(s)ds

]2

(b− t)αdt ≤ 4
1− α

∫ b

a

φ2(t)(b− t)αdt .
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A.15 The Gronwall Lemma

Let φ = φ(t) be a continuous function in the interval [0, t∗] that is differen-
tiable on (0, t∗). If there exists a constant α ∈ R and a continuous function
g(t) such that for 0 < t < t∗, φ satisfies the inequality

φ′(t) ≤ αφ(t) + g(t)

(or equivalently,

φ(t) ≤ φ(0) +
∫ t

0

[αφ(s) + g(s)]ds) ,

then φ satisfies the inequality

φ(t) ≤ eαtφ(0) +
∫ t

0

g(s)eα(t−s)ds .



Appendix B. Fast Fourier Transforms

Basics

The Fast Fourier Transform (FFT) is a recursive algorithm for evaluating the
discrete Fourier transform and its inverse. The FFT is conventionally written
for the evaluation of

ũk =
N−1∑

j=0

uje
+2πijk/N , k = 0, 1, . . . , N − 1 , (B.1.a)

ũk =
N−1∑

j=0

uje
−2πijk/N , k = 0, 1, . . . , N − 1 , (B.1.b)

where uj , j = 0, 1, . . . , N − 1, are a set of complex data. The FFT quickly
became a widely used tool in signal processing after its description by Cooley
and Tukey (1965). (As noted later by Cooley, Lewis and Welch (1969), most
essential components of the FFT date back to the 1920s.) The Cooley-Tukey
algorithm enables the sums in (B.1) to be evaluated in 5N log2 N real opera-
tions (when N is a power of 2), instead of the 8N2 real operations required by
the straightforward sum. Moreover, calculation of (B.1) via the FFT incurs
less error due to round-off than the direct summation method (Cooley, Lewis
and Welch (1969)).

Many versions of the FFT are now in existence. The review by Temperton
(1983) contains an especially clear description of a simple yet efficient one. It
allows N to be of the form

N = 2p3q4r5s6t (B.2)

and has the operation count

N(5p + 9 1
3q + 8 1

2r + 13 3
5s + 13 1

3 t− 6) . (B.3)

No additional flexibility is gained by the inclusion of the factors 4 and 6. The
algorithm is, however, more efficient when these factors are included. Not
only is the operation count lower – for example, by 15% when N = 64 – but,
due to the higher ratio of arithmetic operations to memory accesses, most
Fortran compilers generate more efficient code for the larger factors. For the
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sake of simplicity, however, throughout this book we shall use (5 log2 N−6)N
as the operation count for the complex FFT; moreover, the lower order term
linear in N will usually be omitted.

We should also mention the book by Brigham (1974) which is devoted
entirely to the Fast Fourier Transform and the FFTW package by Frigo
and Johnson (2005), which received the 1999 Wilkinson Prize for Numerical
Software. (The FFTW software is available at http://www.fftw.org/.)

Use in Spectral Methods

In applications of Fourier spectral methods, the sums that one must evaluate
are

ũk =
1
N

N−1∑

j=0

uje
−2πijk/N , k = −N

2
,−N

2
+ 1, . . . ,

N

2
− 1 , (B.4)

and

uj =
N/2−1∑

k=−N/2

ũke
2πijk/N , j = 0, 1, . . . , N − 1 (B.5)

(see (2.1.25) and (2.1.27)). From (B.4) it is apparent that, for integers p
and k,

ũk+pN = ũk . (B.6)

When the array (u0, u1, . . . , uN−1) is fed into a standard FFT for evaluating
(B.1.b) it returns, in effect, the array

(Nũ0, Nũ1, . . . , NũN/2−1, Nũ−N/2, Nũ−N/2+1, . . . , Nũ−1) .

Conversely, when this array (without the factor N) is fed into the standard
FFT for evaluating (B.1.a) (with the plus sign), the array (u0, u1, . . . , uN−1)
is returned.

In most applications of spectral methods the direct use of the complex
FFT (B.1) is needlessly expensive. This is true, for example if the function uj

is real or if a cosine transform (for a Chebyshev spectral method) is desired.
These issues have been addressed by Orszag (1971a, Appendix II) and by
Brachet et al. (1983, Appendix C). A summary of some of the relevant trans-
formations follows.

Real Transforms

The simplest case occurs when many real transforms are desired at once,
as arises for multidimensional problems. They can be computed pairwise.
Suppose that u1

j and u2
j , j = 0, 1, . . . , N − 1, are two sets of real data.
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Then one can define
vj = u1

j + iu2
j (B.7)

and compute ṽk according to (B.4) by the standard N -point complex FFT.
Then the transforms ũ1

k and ũ2
k can be extracted according to

ũ1
k =

1
2
(ṽk + ṽ−k)

ũ2
k = − i

2
(ṽk − ṽ−k)

, k = 0, 1, . . . ,
N

2
− 1 . (B.8)

(The Fourier coefficients of real data for negative k are related to those for
positive k by ũ−k = ũk.) This process is readily reversed. In fact, if one is
performing a Fourier collocation derivative, one need not even bother with
the separation (B.8) in Fourier space, since

du1

dx

∣∣∣∣
j

+ i
du2

dx

∣∣∣∣
j

=
N/2−1∑

k=−N/2

ikṽk . (B.9)

If only a single real transform is desired, then one may follow the pre-
scription given by Orszag (1971a). Let M = N/2 and define

vj = u2j + iu2j+1 , j = 0, 1, . . . ,M − 1 . (B.10)

Then take an M -point transform of vj , set ṽM = ṽ0, and extract the desired
coefficients via

ũk =
1
2
(ṽk+ṽM−k)− i

2
e2πik/N (ṽk−ṽM−k) , k = 0, 1, . . . ,M−1 . (B.11)

For both of these approaches the cost of a single, real-to-half-complex
transform is essentially (5/2)N log2 N .

Chebyshev Transforms

The discrete Chebyshev transforms based on the Gauss-Lobatto points
(2.4.14) are given by

ũk =
2

Nck

N∑

j=0

1
cj

uj cos
πjk

N
, k = 0, 1, . . . , N , (B.12)

(see (2.2.22) and (2.4.15)) and

uj =
N∑

k=0

ũk cos
πjk

N
, j = 0, 1, . . . , N (B.13)
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(see (2.2.21) and (2.4.17)). Suppose that the transform (B.12) is desired for
two real sets of data u1

j and u2
j . Then define the complex data vj by

vj =

{
u1

j + iu2
j , j = 0, 1, . . . , N ,

v2N−j , j = N + 1, N + 2, . . . , 2N − 1 ,
(B.14)

and by periodicity (with period 2N) for other integers j. Next, define ṽk,
k = 0, 1, . . . , N , by (B.12) and define Ṽk, k = 0, 1, . . . , 2N − 1, by (B.1.a)
with N replaced by 2N . It is readily shown that

Ṽk =
1

Nck
ṽk , k = 0, 1, . . . , N , (B.15)

and that

Ṽk =
N−1∑

l=0

v2le
2πikl/N + eπik/N

N−1∑

l=0

v2l+1e
2πikl/N . (B.16)

Now, define wj by

wj = v2j + i(v2j+1 − v2j−1) , j = 0, 1, . . . , N − 1 , (B.17)

and compute w̃k according to the complex FFT (B.1.a). We have

w̃k =
N−1∑

l=0

v2le
2πikl/N + i(1− e2πik/N )

N−1∑

l=0

v2l+1e
2πikl/N ,

w̃N−k =
N−1∑

l=0

v2le
2πikl/N − i(1− e2πik/N )

N−1∑

l=0

v2l+1e
2πikl/N .

(B.18)

Consequently,

ṽ0 =
1
N

N∑

j=0

1
cj

vj ,

ṽk =
1
N

⎡

⎢⎣

⎛

⎜⎝
1
2

+
1

4 sin
πk

N

⎞

⎟⎠ w̃k +

⎛

⎜⎝
1
2
− 1

4 sin
πk

N

⎞

⎟⎠ w̃N−k

⎤

⎥⎦ ,

ṽN =
1
N

N∑

j=0

(−1)j 1
cj

vj .

(B.19)

The desired real coefficients ũ1
k and ũ2

k are the real and imaginary parts,
respectively, of the ṽk. Thus, the discrete Chebyshev transform (B.12) can
be computed in 5

2N log2 N + 4N real operations per transform, assuming
that a large number of such transforms are computed. The inverse discrete
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Chebyshev transform (B.13) can be evaluated with only minor modifications
to the algorithm given by (B.14), (B.17) and (B.19).

Discrete sine transforms can be handled in a similar manner: (B.14) (with
v2N−j replaced by −v2N−j) and (B.17) are retained as is the central equation
in (B.19) with the coefficient of w̃N−k having the opposite sign; the entire
ṽk term is multiplied by i and one sets ṽ0 = ṽN = 0. Swarztrauber (1986)
described how real cosine and sine transforms can be computed without the
pre- and post-processing costs incurred by (B.17) and (B.19).

Other Cosine Transforms

In some applications, such as the use of a staggered grid in Navier-Stokes
calculations (see CHQZ3, Sect. 3.4) and in simulations of flows with special
symmetries (Brachet et al. (1983)), discrete Chebyshev transforms with re-
spect to the Gauss points (see (2.4.12) but with N − 1 in place of N) are
required. Consider

ũk =
2
N

N−1∑

j=0

uj cos
(2j + 1)πk

2N
, k = 0, 1, . . . , N − 1 . (B.20)

Brachet et al. (1983) have provided prescriptions for computing efficiently
this and related sums. Put

vj =

⎧
⎪⎨

⎪⎩

u2j , j = 0, 1, . . . ,
N

2
− 1 ,

u2N−2j−1 , j =
N

2
,
N

2
+ 1, . . . , N − 1 ,

(B.21)

and compute ṽk according to (B.1.a). Then ũk may be extracted via

ũk =
1
N

[
e2πik/2N ṽk + e−2πik/2N ṽN−k

]
, k = 0, 1, . . . , N − 1 . (B.22)

The corresponding inverse Chebyshev transform

uj =
N−1∑

k=0

ũk cos
(2j + 1)πk

2N
(B.23)

can be evaluated by reversing these steps.
For some problems the Chebyshev expansion may be over the interval

[0, 1] instead of [−1, 1]. Moreover, it may also be useful to use only the odd
(or even) polynomials (Spalart (1984); see also Sect. 2.7.1). Spalart (1986,
private communication) explained how to employ the FFT for an expansion
over [0, 1] in terms of just the odd Chebyshev polynomials. The collocation
points are

xj = cos
(2j + 1)π

2N
, j = 0, 1, . . . , N − 1 , (B.24)
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the series expansion is

uN (x) =
N−1∑

k=0

ũkT2k+1(x) , (B.25)

and the discrete transforms are

ũk =
2
N

N−1∑

j=0

uj cos
(2k + 1)(2j + 1)π

4N
, k = 0, 1, . . . , N − 1 , (B.26)

and

uj =
N−1∑

k=0

ũk cos
(2k + 1)(2j + 1)π

4N
, j = 0, 1, . . . , N − 1 . (B.27)

(In order for a half-interval Chebyshev expansion to be spectrally accurate,
one needs u(x) and all of its derivatives to vanish at x = 0.) Spalart’s trick
for evaluating (B.27) is to define

ṽk =
ũk + ũk−1

2 cos
(

kπ

2N

) , k = 0, 1, . . . , N , (B.28)

where ũ−1 = ũN = 0, to compute vj according to (B.13), and then to extract
uj via

uj =
ṽj + ṽj+1

2 cos
(2j + 1)π

4N

, j = 0, 1, . . . , N − 1 . (B.29)

(Note however, that this transform is not suitable for use with the Gauss-
Lobatto points.)



Appendix C.
Iterative Methods for Linear Systems

In this appendix, we review some of the most important iterative methods
for the solution of a linear system of the same form,

Lu = f , (C.0.1)

as the one considered in (4.8). The discussion will be at a tutorial level. For
an extensive presentation and a thorough analysis the reader may refer to
Golub and Van Loan (2003), Saad (1996), Greenbaum (1997), Van der Vorst
(2003), and to the ample literature cited therein.

C.1 A Gentle Approach to Iterative Methods

A particularly simple iterative scheme is the Richardson (1910) method .
Given an initial guess v0 to u, subsequent approximations are obtained via

vn+1 = vn + ωrn , (C.1.1)

where ω is a relaxation parameter and

rn = f − Lvn (C.1.2)

is the residual associated with vn. The error obeys the relation

(
vn+1 − u

)
= G (vn − u) , (C.1.3)

where the iteration matrix G of the Richardson scheme is given by

G = I − ωL . (C.1.4)

The iterative scheme is convergent if the spectral radius ρ of G is less than 1.
In the case of the Richardson scheme this condition is equivalent to

|1− ωλ| < 1 , (C.1.5)
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for all the eigenvalues λ of L. The simultaneous fulfilment of these inequal-
ities is possible only if all the eigenvalues of L have nonzero real parts of
constant sign. A particularly relevant case is that of a matrix with all real
and strictly positive eigenvalues; symmetric and positive-definite matrices
enjoy this property, but these are not necessary conditions. For example,
the matrices generated by Chebyshev or Legendre collocation discretizations
of second-order problems have all real and strictly positive eigenvalues. In
such a situation, we have 0 < λmin ≤ λmax, where λmin and λmax are the
extreme eigenvalues of L. The convergence condition (C.1.5) is satisfied for
0 < ω < ωmax, where

ωmax = 2/λmax . (C.1.6)

The best choice of ω is that which minimizes ρ. It is obtained from the
relation

(1− ωλmax) = − (1− ωλmin) , (C.1.7)

for then the largest values of 1−ωλ are equal in magnitude and have opposite
sign (see Fox and Parker (1968), Quarteroni and Valli (1994)). The optimal
relaxation parameter is thus

ωopt =
2

λmax + λmin
. (C.1.8)

It produces the spectral radius

ρ =
λmax − λmin

λmax + λmin
. (C.1.9)

Note that the dependence upon the extreme eigenvalues enters only in the
combination

K =
λmax

λmin
. (C.1.10)

We shall call this ratio the iterative condition number of L to distinguish it
from the spectral condition number defined in (4.3.2). Obviously, for a sym-
metric and positive-definite matrix L, the iterative and spectral condition
numbers coincide. However, for some nonsymmetric discretization matrices
that have real positive eigenvalues, such as those mentioned above, the spec-
tral and the iterative condition numbers might differ. In terms of this ratio,
(C.1.9) becomes

ρ =
K − 1
K + 1

. (C.1.11)

Define the rate of convergence R to be

R = − log ρ , (C.1.12)
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and denote its reciprocal by J . The latter quantity measures the number
of iterations required to reduce the error by a factor of e. This immediately
follows from the error bound

‖vn − u‖L ≤ ρn‖v0 − u‖L ,

which holds with ‖v‖L = (vTLv)1/2. Clearly, the larger the convergence rate
that a method has for a problem, the fewer iterations that are required to
obtain a solution to a given accuracy. For the Richardson method described
above, the number of iterations increases as

J ∼=
1
2
K . (C.1.13)

The basic Richardson method (C.1.1) can be improved and extended in
several ways. The discussion thus far concerned only the stationary Richard-
son method. In a non-stationary Richardson method, the parameter ω in
(C.1.1) is allowed to depend on n, i.e. to change in the course of iterations,
in order to speed up the convergence.

For a static non-stationary Richardson (NSR) method one cycles through
a fixed number k of parameters. Using the minimax property of Chebyshev
polynomials, one derives the following expressions for the optimal parameters
(Young (1954)):

ωj =
2/λmin

(K − 1) cos
(2j − 1)π

2k
+ (K + 1)

, j = 1, . . . , k , (C.1.14)

and the effective spectral radius

ρ =
1

[
Tk

(
K + 1
K − 1

)]1/k
. (C.1.15)

Both ωj (for all j) and ρ depend on K. However, this approach suffers from
the same limitation as the basic Richardson method – information must be
available on the eigenvalues of L in order to compute K.

A broad family of dynamic non-stationary Richardson methods are based
on an optimality strategy that does not require the knowledge of the ex-
treme eigenvalues. We address dynamic non-stationary Richardson methods
in Sects. C.2 and 4.5.2.

The primary cause of the inefficiency of the Richardson method is that
the convergence rate decreases as the iterative condition number increases; in
spectral methods, the condition number typically increases with the approxi-
mation parameter N . This can be alleviated by preconditioning the problem,
in effect solving

H−1Lu = H−1f
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rather than (C.0.1). (This is called left preconditioning. Other options are
available as well, such as right preconditioning or symmetric preconditioning ;
see (C.2.15) and (C.2.18), respectively.)

A preconditioned version of (C.1.1) is

H
(
vn+1 − vn

)
= ωrn . (C.1.16)

One obvious requirement for H is that this equation can be solved inex-
pensively, i.e., in fewer operations than are required to evaluate Lvn. The
effective iteration matrix is now

G = I − ωH−1L . (C.1.17)

The second requirement on the preconditioning matrix is that H−1 be a good
approximation to L−1, i.e., that the new iterative condition number K(H−1L)
be much smaller than K(L). In such circumstances, the new spectral radius ρ
is much smaller than that of the non-preconditioned Richardson method. This
property can be rigorously justified whenever L and H are both symmetric
and positive definite. Indeed, denoting by H1/2 the square root of H, (C.1.16)
can be written equivalently as

wn+1 = wn + ω(H−1/2f −H−1/2LH−1/2wn)

with wn = H1/2vn, showing that (C.1.16) is nothing but a Richardson iter-
ation applied to the symmetric and positive-definite matrix H−1/2LH−1/2.
Since this matrix is similar to H−1L, we have

K(H−1/2LH−1/2) = K(H−1L).

The discussion so far has presumed that the eigenvalues of H−1L are
confined to the interval [λmin, λmax] on the positive real axis. However, the
Richardson iteration schemes can work on problems for which the eigenvalues
are complex but have positive real parts. If we still use a real ω, then it should
obey the following restriction for convergence:

ω < 2
Re (λi)
|λi|2

,

for all eigenvalues λi of H−1L (see, e.g., Quarteroni and Valli (1994), Sect.
2.4). One could also use a complex ω, in which case the iterations can be
performed entirely in real arithmetic according to

vn+1 =vn+2Re{ω}H−1rn+|ω|2H−1LH−1rn . (C.1.18)

The value of the optimal parameter ωopt is obtained by solving a minimax
problem in complex arithmetic.
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C.2 Descent Methods for Symmetric Problems

Unlike the stationary Richardson method discussed previously, descent
methods have no parameters such as ω that require knowledge of the ex-
treme eigenvalues λmin and λmax of the matrix L or of H−1L, where H is
a suitable preconditioner. The principle is to adjust the current guess vn via

H(vn+1 − vn) = αnrn , (C.2.1)

where rn = f−Lvn is the residual, and the scalar αn – the dynamic relaxation
parameter – is chosen according to some optimality criterium, as described
below. In this section we will assume that both L and H are symmetric and
positive-definite (but the reader should be aware that these iterative methods
may work even if this condition is not satisfied).

The most natural option for defining αn is to minimize the Euclidean
norm of the new residual rn+1; another option is to minimize the so-called
H-norm of the new preconditioned residual pn+1 = H−1rn+1, i.e., the quan-
tity ‖pn+1‖H = (Hpn+1,pn+1)1/2 = ‖rn+1‖H−1 . Both options are referred
to as preconditioned minimum residual Richardson (PMRR) methods and
will be denoted by PMRR2 and PMRRH , respectively. An additional option
is to minimize the L-norm of the new error en+1 = u−vn+1, i.e., the quantity
‖en+1‖L = (Len+1, en+1)1/2. This is referred to as a preconditioned steepest
descent Richardson (PSDR) method .

The corresponding algorithms can be written compactly as follows:

Preconditioned Richardson Methods

Initialize
v0, r0 = f − Lv0, Hp0 = r0 .

Iterate

αn defined according to one of the rows of table C.1 ,

vn+1 = vn + αnpn ,

rn+1 = rn − αnLpn ,

Hpn+1 = rn+1 .

(C.2.2)

Note that for non-preconditioned iterations, then H = I and pn = rn in
Table C.1. (In particular, PMRR2 and PMRRH coincide if P = I.)

For PMRRH iterations the following estimate holds for the preconditioned
residual:

‖pn‖H ≤
(
K − 1
K + 1

)n ∥∥p0
∥∥

H
, (C.2.3)
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Table C.1. The three different strategies for Richardson iterations (PMRR )

Name of method Acceleration parameter Method minimizes

PMRR2 αn =
(rn, Lpn)

(Lpn, Lpn)
‖rn+1‖

PMRRH αn =
(pn, Lpn)

(Lpn,H−1Lpn)
‖pn+1‖H

PSDR αn =
(pn, rn)

(pn, Lpn)
‖en+1‖L

whereK still denotes the iterative condition number of H−1L, while for PSDR
iterations we have

‖en‖L ≤
(
K − 1
K + 1

)n

‖e0‖L (C.2.4)

(see Quarteroni and Valli (1994), Sect. 2.4). Note that when H = I (no
preconditioning), the PSDR method reduces to the classical steepest descent
(or gradient) algorithm. Also note that, in both cases, the number of iterations
required for convergence is proportional to

J =
1
2
K . (C.2.5)

When the eigenvalues of the preconditioned matrix H−1L are complex
but with dominant real parts, a surrogate for K that is still representative of
the convergence behavior of the Richarson iterations is

K∗ =
maxj |λj |
minj |λj |

. (C.2.6)

A substantial improvement in convergence rate can be achieved by us-
ing conjugate direction methods in place of PMRR or PSDR. The two most
common conjugate direction methods are known as the conjugate gradient
method and the conjugate residual method. These methods were proposed
by Hestenes and Stiefel (1952) as a direct method for solving symmetric and
positive-definite linear systems. For such problems the conjugate direction
methods produce the exact answer (in the absence of round-off errors) in
a finite number of steps. In the late 1960s and early 1970s these methods
began to be considered seriously as iterative, rather than direct, solution
schemes that can produce a very accurate result in a small number of itera-
tions. The papers by Reid (1971) and by Concus, Golub and O’Leary (1976)
were particularly influential.
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In a non-preconditioned conjugate direction method the update of the
iterate is generalized from (C.2.1) to

vn+1 = vn + αnpn . (C.2.7)

In the conjugate gradient version, the directions satisfy the orthogonality
property

(
pn+1, Lpn

)
= 0 . (C.2.8)

The scheme is initialized with an initial guess v0. The initial direction vector
is chosen to be p0 = r0, where r0 is the initial residual. Subsequent iterations
are made according to the following formulas:

Conjugate Gradient (CG) Method

αn =
(rn, rn)

(pn, Lpn)
,

vn+1 = vn + αnpn ,

rn+1 = rn − αnLpn ,

βn =

(
rn+1, rn+1

)

(rn, rn)
,

pn+1 = rn+1 + βnpn .

(C.2.9)

In (C.2.9) the formula for the familiar scalar αn results from the requirement
that vn+1 minimize the energy norm of the error, and the formula for the
additional scalar βn follows from the requirement (C.2.8).

The following orthogonality properties hold:
(
rk, rl

)
= 0,

(
pk, Lpl

)
= 0 for k 	= l . (C.2.10)

The first of these implies that rm = 0 for some m ≤ nd, where nd is the order
of the matrix L. (Here we use the symbol nd to denote the dimension of the
linear system (C.0.1) instead of n as done in Chap. 4, given that n is a natural
symbol for the iteration index.) This explains the claim that the exact solution
is obtained in a finite number of iterations. However, the presence of rounding
errors leads to some contamination of the residual and direction vectors. The
second orthogonality relation shows that the CG method does far more than
the original requirement (C.2.8); indeed, we say that the directions {pk} are
L-conjugated.

The favorable convergence properties of this method are reflected by the
estimate for the energy error (which improves the one in (C.2.4)):

‖en‖L ≤ 2

(√
K − 1√
K + 1

)n

‖e0‖L . (C.2.11)
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The number of iterations required for convergence is therefore proportional
to

J =
1
2

√
K . (C.2.12)

This is a decided improvement over the result (C.2.5). Of course, the CG
method is more costly per iteration, both in CPU time and storage.

The conjugate residual method is similar, but now the orthogonality prop-
erty is

(
Lpn+1, Lpn

)
= 0 , (C.2.13)

and the requirement on vn+1 is that it minimize the Euclidean norm of the
residual.

Let us now include a symmetric preconditioning, denoted as usual by H,
in these descent methods. It is tempting to write (C.0.1) as either

L̃u = f̃ with L̃ = H−1L and f̃ = H−1f (C.2.14)

or
L̃ũ = f , where L̃ = LH−1 and ũ = Hu, (C.2.15)

and then apply the preceding formulas to either (C.2.14) or (C.2.15). How-
ever, L̃ is not necessarily symmetric and positive definite (unless L and H−1

commute). We can, however, choose Q such that

H = QQT , (C.2.16)

and use
L̃ũ = f̃ , (C.2.17)

with
L̃ = Q−1LQ−T , f̃ = Q−1f , ũ = QTu . (C.2.18)

We also use
ṽ = QT v, p̃ = QTp, r̃ = Q−1r . (C.2.19)

This ensures that the matrix L̃ is symmetric and positive definite. After
inserting (C.2.18) into the preceding schemes and then manipulating the
expressions into computationally convenient forms, we arrive at the following:

Preconditioned Conjugate Gradient (PCG) Method

Initialize
v0, r0 = f − Lv0, Hz0 = r0, p0 = z0 .
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Iterate

αn =
(rn, zn)

(pn, Lpn)
,

vn+1 = vn + αnpn ,

rn+1 = rn − αnLpn ,

Hzn+1 = rn+1 ,

βn =
(rn+1, zn+1)

(rn, zn)
,

pn+1 = zn+1 + βnpn .

(C.2.20)

Preconditioned Conjugate Residual (PCR) Method

Initialize
v0, r0 = f − Lv0, Hz0 = r0, p0 = z0 .

Iterate

αn =
(rn, Lpn)

(Lpn, Lpn)
,

vn+1 = vn + αnpn ,

rn+1 = rn − αnLpn ,

Hzn+1 = rn+1 ,

βn = − (Lzn+1, Lpn)
(Lpn, Lpn)

,

pn+1 = zn+1 + βnpn .

Lpn+1 = Lzn+1 + βnLpn .

(C.2.21)

The preconditioned conjugate gradient method minimizes the L-norm of
the error; thus, the associated error satisfies (C.2.11). However, now the rel-
evant condition number is that of Q−1LQ−T (which coincides with that of
H−1L) rather than that of L.

For the CG and CR methods, their orthogonality properties are lost when
applied to nonsymmetric problems. In this case they are more properly called
the truncated conjugate gradient (TCG) and truncated conjugate residual
(TCR) methods. Their preconditioned versions are abbreviated as the PTCG
and PTCR methods, and they are given by (C.2.20) and (C.2.21), respec-
tively.

Although the descent methods described in this section may work for
nonsymmetric problems, the methods in the following section are usually
preferable for the general case.
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C.3 Krylov Methods for Nonsymmetric Problems

The subject of iterative schemes for nonsymmetric problems has received
much attention since the 1980’s. The descent methods that we discuss in this
subsection are but a small subset of the schemes that have been proposed.

Since the matrix L is not symmetric, we can use either one of the transfor-
mations (C.2.14)–(C.2.15) or (C.2.16)–(C.2.19). The preconditioned matrix
L̃ determines the performance of Krylov methods.

When the Richardson method (C.1.1) is applied to the solution of the
linear system (C.0.1), the residual, rn = f − Lvn, at the n-th iteration can
be related to the initial residual as

rn =
n−1∏

j=0

(I − ωjL)r0 = pn(L)r0 , (C.3.1)

where ωj is the relaxation parameter at the j-th step, while pn(L) indicates
a polynomial in L of degree n.

Let us introduce the space

Km(L;w) = span{w, Lw, . . . , Lm−1w} , m ≥ 1 , (C.3.2)

called the Krylov space of order m associated with the matrix L and the
vector w. Then, rn ∈ Kn+1(L; r0). From (C.1.1) we obtain

vn = v0 +
n−1∑

j=1

ωjrj ;

thus,
vn − v0 ∈ Kn(L; r0)

and
vn − v0 = pn−1(L)r0.

More generally, methods can be devised in such a way that

vn − v0 = qn−1(L)r0 , (C.3.3)

where qn−1 is a polynomial chosen so that vn represents the “best” approxi-
mation of the solution u in K̃n = v0 +Kn(L; r0). Any such method is called
a Krylov method.

For any fixed m ≥ 1, an orthonormal basis {wi} for Km(L;w) can be
computed using the so-called Arnoldi algorithm. Setting w1 = v/‖w‖, we
apply the Gram-Schmidt procedure: for k ≥ 1,

gik = wT
i Lwk , i = 1, . . . , k , (C.3.4)

zk = Lwk −
k∑

i=1

gikwi , (C.3.5)

gk+1,k = ‖zk‖ . (C.3.6)
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Should zk = 0 the process terminates, and we say that a breakdown of the
algorithm has occurred. Otherwise, we set

wk+1 =
zk

‖zk‖
, (C.3.7)

and the algorithm continues, incrementing k by 1.
If the algorithm terminates at the step m, then {w1, . . . ,wm} forms a ba-

sis for Km(L;v). In such a case, denoting by Wm ∈ Rn×m the matrix whose
columns are the vectors wi, we obtain

WT
mLWm = Gm, WT

m+1LWm = Ĝm , (C.3.8)

where Ĝm ∈ R(m+1)×m is an upper-Hessenberg matrix whose entries are the
gij , while Gm ∈ R

m×m is the restriction of Ĝm to the first m rows and m
columns. In our application the Krylov space will be invariably constructed
for v = r0.

This algorithm for generating an orthonormal basis for a Krylov space of
any order is the foundation for solving the linear system (C.0.1) by a Krylov
method. The most natural approach would be to search for vn as the vector
that minimizes the error ‖vn − u‖ in K̃n. However, since u is unknown,
this method would not work in practice. Two alternative strategies that are
workable are

1. Compute vn by enforcing that the residual rn be orthogonal to any vector
in Kn(L; r0), i.e.,

vT (f − Lvn) = 0 ∀v ∈ Kn(L; r0) . (C.3.9)

This leads to the so-called full orthogonalization method (FOM).

2. Compute vn ∈ K̃n by minimizing the norm of the residual rn, i.e.,

‖f − Lvn‖ = min
v∈K̃n

‖f − Lv‖ , (C.3.10)

which yields the generalized minimum residual method (GMRES).

Note that
vn = v0 + Wnqn, (C.3.11)

where qn has to be chosen according to the selected optimality criterion
((C.3.9) or (C.3.10)).

Then,
rn = r0 − LWnqn ,

since r0 = w1‖r0‖. From (C.3.8) it follows that

rn = Wn+1(‖r0‖e1 − Ĝnqn) , (C.3.12)
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where e1 is the first unit vector of the canonical basis of R
n+1. Thus, in the

GMRES method the solution at step n is computed through (C.3.11) where

qn minimizes ‖ (‖r0‖e1 − Ĝnq) ‖ with respect to q. (C.3.13)

Note that the matrix Wn+1 appearing in (C.3.12) does not change the value
of ‖r0‖ since it is an orthogonal matrix.

Clearly, the GMRES method will be the more effective the smaller the
number of iterations, particularly since at each step one has to solve a least-
squares problem (C.3.13). The GMRES method in exact arithmetic enjoys
the so-called finite-termination property, i.e., it terminates after at most nd
iterations, where again nd denotes the order of the matrix L. Premature
stops are due to a breakdown in the Arnoldi orthonormalization algorithm.
This breakdown occurs only if the computed solution vn coincides with the
exact solution u for some n < nd. However, unless acceptable convergence is
reached after just a few iterations, the GMRES method requires prohibitive
computational costs for the orthogonalization and excessive storage for the
retention of the Krylov subspace bases.

A popular variant consists of restarting GMRES after each m iteration
steps. This algorithm is referred to as GMRES(m); the nonrestarted version
is sometimes called full GMRES . As pointed out in van der Vorst (2003),
there is no simple rule to determine a suitable value of m; in fact, the speed
of convergence of GMRES(m) may vary drastically for nearby values of m. In
some cases, a superlinear convergence behaviour of the full GMRES iterations
is observed.

The convergence analysis of GMRES is not trivial, and we report just
some of the more elementary results here. If L is positive definite, i.e., its
symmetric part LS has positive eigenvalues, then the n-th residual decreases
according to the following bound:

‖rn‖ ≤ sinn(β)‖r0‖ , (C.3.14)

where cos(β) = λmin(LS)/‖L‖ with β ∈ [0, π/2). As usual, ‖ · ‖ denotes the
Euclidean vector or matrix norm. Moreover, GMRES(m) converges for all
m ≥ 1. In order to obtain a bound on the residual at a step n ≥ 1, let us
assume that the matrix L is diagonalizable:

L = TΛT−1 ,

where Λ is the diagonal matrix of eigenvalues, {λj}j=1,...,nd, and T =
(ω1, . . . ,ωN

d

) is the matrix whose columns are the right eigenvectors of L.
Under these assumptions, the residual norm after n steps of GMRES satisfies

‖rn‖ ≤ κ2(T )δ‖r0‖ ,

where κ2(T ) = ‖T‖2‖T−1‖2 is the condition number of T defined in (4.3.2),
and

δ = min
p∈Pn,p(0)=1

max
1≤i≤nd

|p(λi)| .
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Moreover, suppose that the initial residual is dominated by m eigenvectors,
i.e., r0 =

∑m
j=1 αjω

j + e, with ‖e‖ small in comparison to ‖
∑m

j=1 αjω
j‖,

and assume that if some complex ωj appears in the previous sum, then its
conjugate ωj appears as well. Then

‖rn‖ ≤ κ2(T )cn‖e‖ ,

cn = max
p>n

n∏

j=1

∣∣∣∣
λp − λj

λj

∣∣∣∣ .

Very often, cn is of order one; hence, n steps of GMRES reduce the residual
norm to the order of ‖e‖ provided that κ2(T ) is not too large.

In general, as highlighted from the previous estimate, the eigenvalue
information alone is not enough, and information on the eigensystem is
also needed. If the eigensystem is orthogonal, as for normal matrices, then
κ2(T ) = 1, and the eigenvalues are descriptive for convergence. Otherwise,
upper bounds for ‖rn‖ can be provided in terms of both spectral and pseu-
dospectral information, as well as the so-called field of values of L:

F(L) = {v∗Lv | ‖v‖ = 1}.

If 0 /∈ F(L), then the estimate (C.3.14) can be improved by replacing
λmin(LS) with dist(0,F(L)).

An extensive discussion of convergence of GMRES and GMRES(m) can
be found in Saad (1996), Embree (1999) and van der Vorst (2003).

The GMRES method can of course be implemented for a preconditioned
system. We provide here an implementation of the preconditioned GMRES
method with a left preconditioner H.

Preconditioned GMRES (PGMRES) Method

v0, Hr0 = f − Lv0, β = ‖r0‖, v1 = r0/β.

Iterate

For j = 1, . . . , n Do
Compute Hwj = Lvj

For i = 1, . . . , j Do
gij = (vi)T wj

wj = wj − gijvi

End Do
gj+1,j = ‖wj‖
(if gj+1,j = 0 set n = j and Goto (1))
vj+1 = wj/gj+1,j

End Do

Wn = [v1, . . . ,vn], Ĝn = {gij}, 1 ≤ j ≤ n, 1 ≤ i ≤ j + 1;

(C.3.15)
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(1) Compute qn , the minimizer of ‖βe1 − Ĝnq‖
Set vn = v0 + Wnqn

More generally, as proposed by Saad (1996), a variable preconditioner
Hn can be used at the n-th iteration, yielding the so-called flexible GMRES
method. The use of a variable preconditioner is especially interesting in those
situations where the preconditioner is not explicitly given, but implicitly de-
fined, for instance, as an approximate Jacobian in a Newton iteration or by
a few steps of an inner iteration process. Another meaningful case is the one
of domain decomposition preconditioners (of either Schwarz or Schur type)
where the preconditioning step involves one or several substeps of local solves
in the subdomains (see CHQZ3, Chap. 6).

Several considerations for the practical implementation of GMRES, its
relation with FOM, how to restart GMRES, and the Householder version of
GMRES can be found in Saad (1996).

A different approach to iterative methods for nonsymmetric matrices con-
sists of generalizing the conjugate gradient method through a specific char-
acterization of the properties satisfied by the residual.

The property that the residual vectors rn generated by the CG method
satisfy a three-term recurrence is lost when L is not symmetric. The bi-
conjugate gradient (Bi-CG) method introduced by Fletcher (1976) constructs
a residual rk orthogonal to another row of vectors r̃0, r̃1, . . . , r̃n−1, and, vice
versa, r̃n is orthogonal with respect to r0, r1, . . . , rn−1. This method enjoys
the finite-termination property, but there is no minimization property as in
CG or GMRES for the intermediate steps. When this method converges, both
{rn} and {r̃n} converge towards zero but only the convergence of the {r̃n} is
exploited. Based on this observation, Sonneveld (1989) proposed a modifica-
tion called the conjugate gradient-squared (CGS) method that focuses more
strongly on the {rn} vectors. CGS generates residual vectors rn given by

rn = p2
n(L)r0 ,

where pn(L) is that n-th degree polynomial in L for which pn(L)r0 is equal
to the residual at the n-th step obtained by means of the Bi-CG method.

In the Bi-CGStab method , introduced by van der Vorst (1992), instead of
simply squaring the Bi-CG polynomial, as in CGS, the more general form

rn = qn(L)pn(L)r0 , (C.3.16)

is used, where now qn(x) =
∏n

i=1(1 − ωix), and ωi are suitable constants
chosen in such a way that ‖rn‖ is minimized with respect to ωi.
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The preconditioned algorithm can be described as follows:

Preconditioned Bi-CGStab (PBi-CGStab) Method

Initialize

v0, r0 = f − Lv0, choose r̃0 s.t. (r̃0, r0) 	= 0, (e.g., r̃0 = r0)

Iterate

ρn−1 = (rn−1, r̃0)
if ρn−1 = 0

then the method fails
end if
if n = 1

then pn = rn−1

else βn−1 = (ρn−1/ρn−2)(αn−1/ωn−1)
pn = rn−1 + βn−1(pn−1 − ωn−1wn−1)

end if
Hp̂ = pn

wn = Lp̂
αn = ρn−1/(wn, r̃0)
s = rn−1 − αnwn

if ‖s‖ small enough
then vn = vn−1 + αnp̂; quit

end if
H ŝ = s
t = Lŝ
ωn = (t, s)/(t, t)
vn = vn−1 + αnp̂ + ωnŝ
if vn is accurate enough

then quit
end if
rn = s− ωnt
For continuation it is necessary that ωn 	= 0.

(C.3.17)

For an unfavorable choice of r̃0, ρn or (wn, r̃0) can be 0 or very small.
In this case one has to restart, e.g., with r̃0 and v0 given by the last avail-
able values of rn and vn. In exact arithmetic, Bi-CGStab is also a finite-
termination method (i.e., vn = u for some n ≤ nd). Its theoretical con-
vergence properties are similar to those of CGS; however, it converges more
smoothly, i.e., the oscillations of the residuals (with n) of Bi-CGStab are in
general less pronounced than those of CGS.
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It is clear from the previous algorithm description that a weakness of Bi-
CGStab is that a breakdown occurs if an ωn is equal to zero (but also a very
small ωn may be troublesome).

Another non-ideal property is that the qn polynomial in (C.3.16) has
only real roots by construction, whereas optimal reduction polynomials for
matrices with complex eigenvalues may also have complex roots. These con-
siderations have led to the introduction of a variant, called Bi-CGStab(2), in
which qn is constructed as a product of quadratic factors. For its derivation
and analysis the reader is referred, e.g., to van der Vorst (2003).

Unfortunately, for a general nonsymmetric matrix, Krylov methods are
not guaranteed to converge. But neither are any other known iterative
methods. As noted earlier, GMRES(m) does have a convergence guarantee
if LS has positive eigenvalues.
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In this appendix we will make some general comments about time discretiza-
tions, survey standard methods for ODEs and their stability regions, discuss
integrating factors for Fourier spatial discretizations, and highlight some low-
storage time-discretization formulas that have been widely used in conjunc-
tion with spectral methods.

D.1 Notation and Stability Definitions

The typical evolution equation can be written

∂u

∂t
= f(u, t) , t > 0,

u(0) = 0 ,

(D.1.1)

where the (generally) nonlinear operator f contains the spatial part of the
PDE. Following the general formulation of Chap. 6, the semi-discrete version
is

QN
duN

dt
= QNfN (uN , t) ,

where uN is the spectral approximation to u, fN denotes the spectral ap-
proximation to the operator f , and QN is the spatial projection operator
which characterizes the scheme. Let us denote by u(t) the vector of the spa-
tial unknowns which determine uN (t). For example, in a collocation method
for a Dirichlet boundary-value problem, u(t) represents the set of the interior
grid-point values of uN (t). Then the previous discrete problem can be written
in the form

du
dt

= f(u, t) , t > 0,

u(0) = u0 ,

(D.1.2)

where f is the vector-valued function governing the semi-discrete problem. For
Galerkin and G-NI methods, f may incorporate the matrix M−1, where M
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denotes the mass matrix which expresses the projection QN
duN

dt
algebraically

as M
du
dt

. For time-dependent, linear PDEs, (D.1.2) reduces to

du
dt

= −Lu + b , t > 0,

u(0) = u0 ,

(D.1.3)

where L is the matrix representing the spatial discretization by the chosen
spectral method. (The use of the negative sign in front of L in (D.1.3) is
consistent with the notation of Chap. 4 – see (4.8) – for describing the dis-
cretization of a time-independent boundary-value problem. In that chapter,
we introduced and analyzed some representative spectral discretization ma-
trices.) This is also called a method-of-lines approach or a continuous-in-time
discretization. In describing the time discretizations, we denote the time-step
by ∆t, the n-th time-level by tn = n∆t, the approximate solution at time-
step n by un, and use fn = f(un, tn).

The corresponding (linear, scalar) model problem is

du
dt

= λu , (D.1.4)

where λ is a complex number, which for (D.1.2) is “representative” of the
partial derivative of f with respect to u (in the scalar case) or of the eigen-
values of the Jacobian matrix (∂fi/∂uj)i,j in the vector case, and which for
(D.1.3) is representative of the eigenvalues of −L.

In most applications of spectral methods to partial differential equations
the spatial discretization is spectral but the temporal discretization uses con-
ventional finite differences. (See, however, Morchoisne (1979, 1981) and Tal-
Ezer (1986a, 1989) for some exploratory work on methods using spectral dis-
cretizations in both space and time. See also Schötzau and Schwab (2000) for
high-order discontinuous Galerkin methods in time, albeit coupled with the
hp-version of finite elements rather than with spectral methods.) Some stan-
dard references from the extensive literature on numerical methods for ODEs
are the books by Gear (1971), Lambert (1991), Shampine (1994), Hairer,
Norsett and Wanner (1993), Hairer and Wanner (1996), and Butcher (2003).

If the spatial discretization is presumed fixed, then we use the term stabil-
ity in its ODE context. The time discretization is said to be stable (sometimes
called zero-stable) if there exist positive constants δ, ε and C(T ), indepen-
dent of ∆t, such that, for all T > 0 (perhaps limited by a maximal Tmax

depending on the problem) and for all 0 ≤ ∆t < δ,

‖un − vn‖ ≤ C(T )‖u0 − v0‖ for 0 ≤ tn ≤ T (D.1.5)

provided that ‖u0 − v0‖ < ε, where ‖un‖ is some spatial norm of un. The
constant C(T ) is permitted to grow with T . Here, vn is the solution obtained
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by the same numerical method corresponding to a (perturbed) initial data v0.
On a linear problem (hence in particular, for the problems (D.1.3) or (D.1.4)),
(D.1.5) can be equivalently replaced by

‖un‖ ≤ C(T )‖u0‖ for 0 ≤ tn ≤ T . (D.1.6)

For many problems involving integration over long time intervals, a method
which admits the temporal growth allowed by the estimate (D.1.5) is un-
desirable. As one example, take a problem of the form (D.1.2) for which
(∂f/∂u)(w, t) is negative for all w and t, or more generally, for which f
satisfies the right Lipschitz condition: there exists µ < 0 such that

〈f(u, t)− f(v, t), u− v〉 ≤ µ‖u− v‖2 for all u, v, t,

where 〈·, ·〉 is a suitable scalar product and ‖ · ‖ its associated norm. In these
cases,

‖u(t)− v(t)‖ ≤ eµt‖u(0)− v(0)‖ .

(Such problems are referred to as dissipative Cauchy problems in the ODE
literature.) The ODEs resulting from spectral spatial discretizations of the
heat equation (with homogeneous boundary data and zero source term) fall
into this category. In this case one desires that the time discretization be
asymptotically stable, i.e., that instead of (D.1.5) it satisfy the stronger re-
quirement

‖un − vn‖ → 0 as tn → +∞, (D.1.7)

or that it be contractive (or B-stable):

‖un − vn‖ ≤ C‖un−1 − vn−1‖ for all n ≥ 1, (D.1.8)

for a suitable constant C < 1 independent of n.
As another example for which the above notion of stability is too weak,

consider ODEs resulting from the spatial discretization of linear, spatially
periodic, purely hyperbolic systems. For these problems, asymptotic stability
for the time discretization is undesirable since the exact solution is undamped
in time. Instead we rather desire a time discretization which is temporally
stable, for which we merely require that

‖un‖ ≤ ‖u0‖ for all n ≥ 1 . (D.1.9)

The notion of weak instability is sometimes used in a loose sense for
schemes which admit solutions to periodic hyperbolic problems which grow
with time, but for which the growth rate decreases with ∆t. For example, the
constant C(T ) in (D.1.5) might have the form

C(T ) = eα(∆t)pT ,

where α > 0 and p is a positive integer. For such weakly unstable schemes,
the longer the time interval of interest, i.e., the larger is T , the smaller must
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∆t be chosen to keep the spurious growth of the solution within acceptable
bounds.

Another notion that is relevant to periodic, hyperbolic problems is that of
reversible (or symmetric) time discretizations. These are schemes for which
the solution may be marched forward from tn to tn+1 and then backwards
to tn with the starting solution at tn recovered exactly (except for round-off
errors).

Two final definitions are in order for our subsequent discussion. The ab-
solute stability region (often referred to just as the stability region), say A,
of a numerical method is customarily defined for the scalar model problem
(D.1.4) to be the set of all complex numbers α = λ∆t such that any sequence
{un} generated by the method with such λ and ∆t satisfies ‖un‖ ≤ C as
tn →∞, for a suitable constant C. Furthermore, a method is called A-stable
if the region of absolute stability includes the region Re(λ∆t) < 0. We warn
the reader that in some books the absolute stability region is defined as the
set of all λ∆t such that ‖un‖ → 0 as tn → ∞. This new region, say A0,
would not necessarily coincide with A. In general, if A0 is non-empty, A is
its closure. However, there are cases for which A0 is empty (e.g., the mid-
point or leap-frog method) and A is not (A = {z = αi, −1 ≤ α ≤ 1} for the
midpoint method). Finally, we note that zero-stable methods are those for
which A contains the origin z = 0 of the complex plane.

As noted by Reddy and Trefethen (1990, 1992), having the eigenvalue
scaled by the time-step ∆t falling within the absolute stability region of the
ODE method is not always sufficient for stability of the computation. They
present a stability criterion utilizing ε-pseudospectra. As noted in Sect. 4.3.2,
first-derivative (indeed, any odd-order derivative) matrices for nonperiodic
problems are nonnormal. However, as discussed by Trefethen (2000, Chapter
10), in almost all cases the “rule-of-thumb” condition involving the standard
eigenvalues is acceptable.

On the other hand, we may be interested in the behavior of the computed
solution as both the spatial and temporal discretizations are refined. We now
define stability by an estimate of the form (D.1.5) where C is independent of
∆t, ε and the spatial discretization parameter N , the norm is independent
of N , but δ will in general be a function of N . The functional dependence
of δ upon N which is necessary to obtain an estimate of the form (D.1.5) is
termed the stability limit of the numerical method. If δ is in fact independent
of N , then the method is called unconditionally stable. Clearly, a necessary
condition for the fully discrete problem to be stable is that the semi-discrete
problem be stable in the sense discussed in Sect. 6.5. Likewise, a temporal
stability limit for the fully discrete scheme for a hyperbolic system is the
functional dependence of δ upon N which is necessary to obtain an estimate
of the form (D.1.9).
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D.2 Standard ODE Methods

In this section we furnish as a convenience the basic formulas and diagrams
for the absolute stability regions for those time discretizations of (D.1.2)
that are most commonly used in conjunction with spectral discretizations in
space. Among the factors which influence the choice of a time discretization
are the accuracy, stability, storage requirements, and work demands of the
methods. The storage and work requirements of a method can be deduced in
a straight-forward manner from the definition of the method and the nature
of the PDE. The accuracy of a method follows from a truncation error anal-
ysis and the stability for a given problem is intimately connected with the
spectrum of the spatial discretization. In this section we will describe some
of the standard methods for ODEs and relate their stability regions to the
spectra of the advection and diffusion operators. Bear in mind that in many
problems different time discretizations are used for different spatial terms in
the equation. The illustrations of the spectra of the spectral differentiation,
mass and stiffness matrices furnished in Sect. 4.3 combined with the stabil-
ity diagrams in this section suffice for general conclusions to be drawn on
appropriate choices of time-discretization methods and time-step limits for
temporal stability.

For the reader’s convenience, Table D.1 provides the numerical values of
the intersections of the absolute stability regions with the negative real axis
and the positive imaginary axis for all methods discussed in this section.

D.2.1 Leap Frog Method

The leap frog (LF) method (also called the midpoint method) is a second-
order, two-step scheme given by

un+1 = un−1 + 2∆tfn . (D.2.1)

This produces solutions of constant norm for the model problem provided
that λ∆t is on the imaginary axis and that |λ∆t| ≤ 1 (see Table D.1). Thus,
leap frog is a suitable explicit scheme for problems with purely imaginary
eigenvalues. It also is a reversible, or symmetric, method. However, since it
is only well-behaved on a segment in the complex λ∆t-plane for the model
problem, extra care is needed in practical situations.

The most obvious application is to periodic advection problems, for the
eigenvalues of the Fourier approximation to d/dx are imaginary. The diffi-
culty with the leap frog method is that the solution is subject to a temporal
oscillation with period 2∆t. This arises from the extraneous (spurious) solu-
tion to the temporal difference equations. The oscillations can be controlled
by every so often averaging the solution at two consecutive time-levels.

Leap frog is quite inappropriate for problems whose spatial eigenvalues
have nonzero real parts. This certainly includes diffusion operators. Leap frog
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is also not viable for advection operators with nonperiodic boundary condi-
tions. The figures in Sect. 4.3.2 indicate clearly that the discrete spectra of
Chebyshev and Legendre approximations to the standard advection operator
have appreciable real parts.

D.2.2 Adams-Bashforth Methods

This is a class of explicit multistep methods which includes the simple forward
Euler (FE) method

un+1 = un + ∆tfn , (D.2.2)

the popular second-order Adams-Bashforth (AB2) method

un+1 = un + 1
2∆t

[
3fn − fn−1

]
, (D.2.3)

the still more accurate third-order Adams-Bashforth (AB3) method

un+1 = un + 1
12∆t

[
23fn − 16fn−1 + 5fn−2

]
, (D.2.4)

and the fourth-order Adams-Bashforth (AB4) method

un+1 = un + 1
24∆t

[
55fn − 59fn−1 + 37fn−2 − 9fn−3

]
. (D.2.5)

These methods are not reversible.
The stability regions A of these methods are shown in Fig. D.1 (left) and

the stability boundaries along the axes are given in Table D.1. Note that the
size of the stability region decreases as the order of the method increases. Note
also that except for the origin, no portion of the imaginary axis is included
in the stability regions of the first- and second-order methods, whereas the
third- and fourth-order versions do have some portion of the imaginary axis
included in their stability regions. Nevertheless, the AB2 method is weakly
unstable, i.e., for a periodic, hyperbolic problem the acceptable ∆t decreases
at T increases.

As is evident from Fig. D.1 (left), higher order AB methods are tempo-
rally stable for Fourier approximations to periodic advection problems. Let
the upper limit of the absolute stability region along the imaginary axis be
denoted by c. Then the temporal stability limit is

N

2
∆t ≤ c

or
∆t ≤ c

π
∆x . (D.2.6)

The limit on ∆t is smaller by a factor of π than the corresponding limit for
a second-order finite-difference approximation in space. The Fourier spec-
tral approximation is more accurate in space because it represents the
high-frequency components much more accurately than the finite-difference
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method. The artificial damping of the high-frequency components which is
produced by finite-difference methods enables the stability restriction on the
time-step to be relaxed.

Chebyshev and Legendre approximations to advection problems appear
to be temporally stable under all Adams-Bashforth methods for sufficiently
small ∆t; precisely, for ∆t ≤ CN−2 for a suitable constant C. As discussed in
Sect. 4.3.2, the spatial eigenvalues all have negative real parts. Thus, the fail-
ure of the AB2 method to include the imaginary axis in its absolute stability
region does not preclude temporal stability.

The temporal stability limits for Adams-Bashforth methods for Fourier,
Chebyshev and Legendre approximations to diffusion equations are easy to
deduce since their spatial eigenvalues (i.e., the eigenvalues of the matrix −L,
where L = B−1A is the matrix considered in Sect. 4.3.1) are real and nega-
tive (limited in modulus as indicated in Table 4.2), and the stability bounds
along the negative real axis are provided in Table D.1. In this case, ∆t should
be limited by a constant times N−2 for Fourier approximations, by a con-
stant times N−4 for Chebyshev or Legendre collocation approximations, by
a constant times N−3 for Legendre G-NI approximations. This follows from
the eigenvalue analysis that is carried out in Chap. 4.

D.2.3 Adams-Moulton Methods

A related set of implicit multistep methods are the Adams-Moulton methods.
They include the backward Euler (BE) method

un+1 = un + ∆tfn+1 , (D.2.7)

the Crank-Nicolson (CN) method

un+1 = un + 1
2∆t[fn+1 + fn] , (D.2.8)

the third-order Adams-Moulton (AM3) method

un+1 = un + 1
12∆t[5fn+1 + 8fn − fn−1] , (D.2.9)

and the fourth-order Adams-Moulton (AM4) method

un+1 = un + 1
24∆t[9fn+1 + 19fn − 5fn−1 + fn−2] . (D.2.10)

Forward Euler (FE) (see D.2.2), backward Euler (BE) and Crank-Nicolson
(CN) methods are special cases of θ-methods, defined as

un+1 = un + ∆t[θfn+1 + (1− θ)fn] , (D.2.11)

for 0 ≤ θ ≤ 1. Precisely, they correspond to the choice θ = 0 (FE), θ = 1 (BE)
and θ = 1/2 (CN). All θ-methods except for FE are implicit. All θ-methods
are first-order accurate, except for CN, which is second-order. For each θ < 1

2 ,
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Fig. D.1. Absolute stability regions of Adams-Bashforth (left) and Adams-Moulton
(right) methods
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Fig. D.2. Absolute stability regions of backwards-difference formulas (left) and
Runge-Kutta methods (right). The BDF methods are absolutely stable on the ex-
teriors (and boundaries) of the regions enclosed by the curves, whereas the RK
methods are absolutely stable on the interiors (and boundaries) of the regions en-
closed by the curves

the absolute stability region is the circle in the left half-plane Re(λ∆t) ≤ 0
with center z = (2θ− 1)−1 and radius r = (1− 2θ)−1. The stability region of
the CN method coincides with the half-plane Re(λ∆t) ≤ 0. For each θ > 1

2 ,
the absolute stability region is the exterior of the open circle in the right half-
plane Re(λ∆t) > 0 with center z = (2θ − 1)−1 and radius r = (2θ − 1)−1.
Thus, all θ-methods for 1

2 ≤ θ ≤ 1 are A-stable.
The absolute stability regions of the third- and fourth-order Adams-

Moulton methods are displayed in Fig. D.1 (right) and the stability bound-
aries along the axes are given in Table D.1. In comparison with the explicit
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Table D.1. Intersections of absolute stability regions with the negative real axis
(left) and with the positive imaginary axis (right)

Method A ∩ R− A ∩ iR+

Leap frog (midpoint) {0} [0, 1]

Forward Euler [−2, 0] {0}
Crank-Nicolson (−∞, 0] [0,+∞)

Backward Euler (−∞, 0] [0,+∞)

θ-method, θ < 1/2 [2/(2θ − 1), 0] {0}
θ-method, θ ≥ 1/2 (−∞, 0] [0,+∞)

AB2 (−1, 0] {0}
AB3 [−6/11, 0] [0, 0.723]

AB4 [−3/10, 0] [0, 0.43]

AM3 [−6, 0] {0}
AM4 [−3, 0] {0}
BDF2 (−∞, 0] [0,+∞)

BDF3 (−∞, 0] [0, 1.94)

BDF4 (−∞, 0] [0, 4.71)

RK2 [−2, 0] {0}
RK3 [−2.51, 0] [0, 1.73]

RK4 [−2.79, 0] [0, 2.83]

Adams-Bashforth method of the same order, an Adams-Moulton method has
a smaller truncation error (by factors of five and nine for second and third-
order versions), a larger stability region, and requires one fewer levels of
storage. However, it does require the solution of an implicit set of equations.
The CN method is reversible; the others are not.

The CN method is commonly used for diffusion problems. In Navier-
Stokes calculations, it is frequently applied to the viscous and pressure gra-
dient components. Although CN is absolutely stable for the former and tem-
porally stable for the latter, it has the disadvantage that it damps high-
frequency components very weakly, whereas in reality these components de-
cay very rapidly. Deville, Kleiser and Montigny-Rannou (1984) have noted
that this is undesirable in Navier-Stokes applications for which the solution
itself decays rapidly. One remedy is to resort to BE – it damps the high fre-
quency components rapidly. An alternative approach is to use the θ-method
(D.2.11) for θ = 1/2+α∆t, where α is a small positive constant. This method
damps all components of the solution, and although it is formally first-order
accurate in time (if α > 0) it is “effectively” second order if α 1.

The Adams-Moulton methods of third and higher order are only con-
ditionally stable for advection and diffusion problems. The stability limits
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implied by Fig. D.1 indicate that the stability limit of a high-order Adams-
Moulton method is roughly ten times as large for a diffusion problem as the
stability limit of the corresponding Adams-Bashforth method. In addition,
AM3 and AM4 are weakly unstable for Fourier approximations to advection
problems, since the origin is the only part of the imaginary axis which is
included in their absolute stability regions.

D.2.4 Backwards-Difference Formulas

Another class of implicit time discretizations is based upon backwards-
difference formulas . These include the first-order backwards-difference scheme
(BDF1), which is identical to backward Euler, the second-order backwards-
difference scheme (BDF2)

un+1 = 1
3 [4un − un−1] + 2

3∆tfn+1 , (D.2.12)

the third-order backwards-difference scheme (BDF3)

un+1 = 1
11 [18un − 9un−1 + 2un−2] + 6

11∆tfn+1 , (D.2.13)

and the fourth-order backwards-difference scheme (BDF4)

un+1 = 1
25 [48un − 36un−1 + 16un−2 − 3un−3] + 12

25∆tfn+1 . (D.2.14)

The absolute stability regions of these methods are displayed in Fig. D.2
(left) and the stability boundaries along the axes are given in Table D.1.
The stability regions are much larger than those of the corresponding AM
methods, but for orders higher than 2, BDF methods are unstable in a (small)
region to the left of the imaginary axis.

D.2.5 Runge-Kutta Methods

Runge-Kutta methods are single-step, but multistage, time discretizations.
The modified Euler version of a second-order Runge-Kutta (RK2) method
can be written

un+1 = un +
1
2
∆t[f(un, tn) + f(un + ∆tf(un, tn), tn + ∆t)] . (D.2.15)

A popular third-order Runge-Kutta (RK3) method is

k1 = f(un, tn)

k2 = f(un + 1
2∆t k1, tn + 1

2∆t)

k3 = f(un + 3
4∆t k2, tn + 3

4∆t)

un+1 = un + 1
9∆t[2k1 + 3k2 + 4k3] .

(D.2.16)



D.3 Integrating Factors 525

The classical fourth-order Runge-Kutta (RK4) method is

k1 = f(un, tn)

k2 = f(un + 1
2∆t k1, tn + 1

2∆t)

k3 = f(un + 1
2∆t k2, tn + 1

2∆t)

k4 = f(un + ∆t k3, tn + ∆t)

un+1 = un + 1
6∆t[k1 + 2k2 + 2k3 + k4] .

(D.2.17)

All Runge-Kutta methods of a given order have the same stability properties.
The absolute stability regions are given in Fig. D.2 (right) and the stability
boundaries along the axes are given in Table D.1. Note that the stability
region expands as the order increases. Note also that RK2 methods are af-
flicted with the same weak instability as the AB2 scheme. When storage is
not an issue, then the classical RK4 method is commonly used. Otherwise,
the low-storage versions of third- and fourth-order methods, such as those
described in Sect. D.4, have been preferred.

In the event that f contains no explicit dependence upon t, the following
formulation, due to Jameson, Schmidt and Turkel (1981) applies:

Set

u = un

For k = s, 1, −1

u← un +
1
k
∆tf(u)

End For

un+1 = u .

(D.2.18)

It yields a Runge-Kutta method of order s (for linear problems) and requires
at most three levels of storage.

D.3 Integrating Factors

For some applications of spectral methods the use of an integrating-factor
technique is attractive. The Burgers equation (3.1.1) with periodic bound-
ary conditions will serve here as a simple illustration of handling constant-
coefficient linear terms via integrating factors. The semi-discrete Fourier
Galerkin formulation of this is given by (3.3.3), which we write here as

dûk

dt
+ ĝk(û) + νk2ûk = 0 , k = −N

2
, . . . ,

N

2
− 1 , (D.3.1)

where ĝk(û) is given by the right-hand side of (3.3.4). Equation (D.3.1) can
be written
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d
dt

[eνk2tûk] = −eνk2tĝk(û) .

The forward Euler approximation reduces to

ûn+1
k = e−νk2∆t[ûn

k−∆tĝk(ûn)] . (D.3.2)

The treatment of the linear term is both unconditionally stable and exact.
The accuracy and stability restrictions of the overall time-integration method
arise solely from the nonlinear term.

The Fourier collocation method can be handled in a similar, but not
equivalent manner:

un+1 = C−1ΛCun−∆tg(un) , (D.3.3)

where u represents the vector of unknowns at the collocation points, C rep-
resents the discrete Fourier transform matrix (see (2.1.25) and (4.1.9)), g(u)
represents the nonlinear advection term, and

Λ = diag
{
e−νk2∆t

}
. (D.3.4)

This approach was used by Fornberg and Whitham (1978) on the Korteweg-
de Vries equation

∂u

∂t
+ u

∂u

∂x
+

∂3u

∂x3
= 0 (D.3.5)

in their Fourier collocation-leap frog calculations. In this application, exact
integration enables the stability limit to be increased from ∆t < (1/π3)∆x3 to
∆t < (3/2π2)∆x3. This is a fivefold increase. Note, however, that the O(∆x3)
limit does not disappear entirely in favor of an O(∆x) limit, as it would for
a Fourier Galerkin method applied in conjunction with exact integration.
Chan and Kerkhoven (1985) discuss alternative time discretizations of the
Korteweg-de Vries equations. They show that, with the leap frog method for
the advection term and the Crank-Nicolson method for the linear term, the
stability limit is independent of ∆x for any finite time interval.

The integrating-factor technique has found extensive use in Fourier Galer-
kin simulations of homogeneous turbulence (Rogallo (1977); see also CHQZ3,
Sect. 3.3) and has also been used for the horizontal diffusion terms in cal-
culations of parallel boundary layers (Spalart (1986); see also CHQZ3, Sect.
3.4.5). The integrating factors are especially useful in these Navier-Stokes ap-
plications because they do not suffer from the weak or nonexistent damping
of the high-frequency components that arise in backward Euler or Crank-
Nicolson discretizations of the viscous terms. Maday, Patera and Rønquist
(1990) developed an integrating factor technique that is particularly useful
in splitting methods. See CHQZ3, Sect. 3.2.3 for additional discussion.
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D.4 Low-Storage Schemes

When high-order discretization schemes such as spectral methods are em-
ployed in space, the primary contributor to the error in the fully discrete
approximation is usually the temporal discretization error unless the time
discretization itself is at least third order or the time-step is very small.
When computations are constrained by memory limitations, a premium is
placed on minimizing storage demands. This has made special low-storage
Runge-Kutta methods very attractive for large-scale problems. Several pop-
ular low-storage Runge-Kutta methods are available that permit third-order
or fourth-order temporal accuracy to be obtained with only two levels of
storage. Such economies are not available for multistep methods.

We shall note here some of the low-storage Runge-Kutta methods that
have been widely used for large-scale spectral computations. The description
shall be given for the ODE

du
dt

= g(u, t) + l(u, t) . (D.4.1)

where g(u, t) is treated with a low-storage Runge-Kutta method and l(u, t) is
treated implicitly with the Crank-Nicolson method. Such mixed explicit/ im-
plicit time discretizations are very common for incompressible Navier-Stokes
computations, for which g(u, t) represents (nonlinear) advection and l(u, t)
(linear) diffusion.

The general representation of a low-storage Runge-Kutta/Crank-Nicolson
method requiring only 2 levels of storage (for u and h) is

h = 0

u = un

For k = 1 to K

tk = tn + αk∆t

tk+1 = tn + αk+1∆t

h← g(u, tk) + βkh

µ =
1
2
∆t(αk+1 − αk)

v − µl(v, tk+1) = u + γk∆th + µl(u, tk)

u← v

End For

un+1 = u

(D.4.2)
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(note that the penultimate instruction in the loop indicates that v is the
solution of the implicit equation on the left-hand side).

Table D.2 lists the values of these parameters for one third-order scheme,
due to Williamson (1980), and one fourth-order scheme from Carpenter and
Kennedy (1994). The stability limits (on the imaginary axis) for these schemes
are 1.73 for the third-order scheme and 3.34 for the fourth-order scheme. Both
of these have been widely used for the time discretization in applications of
spectral methods. Both references contain a family of low-storage methods.
Another low-storage family popular in the spectral methods community orig-
inated with A. Wray (unpublished), and was extended by Spalart, Moser and
Rogers (1993).

Table D.2. Coefficients of low-storage Runge-Kutta/Crank-Nicolson schemes

Williamson 3rd-order Carpenter-Kennedy 4th-order

α1 0 0

α2 1/3 0.1496590219993

α3 3/4 0.3704009573644

α4 1 0.6222557631345

α5 – 0.9582821306748

α6 – 1

β1 0 0

β2 -5/9 -0.4178904745

β3 -153/128 -1.192151694643

β4 – -1.697784692471

β5 – -1.514183444257

γ1 1/3 0.1496590219993

γ2 15/16 0.3792103129999

γ3 8/15 0.8229550293869

γ4 – 0.6994504559488

γ5 – 0.1530572479681
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2/3-rule, 135, 139
3/2-rule, 135

accuracy
– infinite-order, 47
– spectral, 39, 47, 454
advection equation, 214, 386
– Fourier collocation method, 387
– – convergence, 387
– – stability, 387
– Fourier Galerkin method, 386
– – convergence, 386
– – stability, 386
advection-diffusion equation, 168, 206,

418
– boundary layer, 409
– – Legendre Galerkin method,

convergence, 410
– direct methods examples
– – Legendre G-NI method, 263
– error equation, 411
– – convergence, 413
– – Galerkin method, 411
– – tau method, 412
– iterative methods examples
– – Legendre G-NI method, 263
– singularly perturbed, 409
advection-diffusion-reaction equation,

16, 168, 414
– fully discrete approximation
– – convergence, 438
– Legendre G-NI method, 16, 18
– Legendre Galerkin method, 18
– – stability, 414
– – SUPG, 414
– – SUPG, convergence, 417
advection-reaction equation, 387
– Chebyshev collocation method, 391
– – convergence, 392
– – stability, 392
– G-NI method, 387, 389
– – weak boundary conditions, 390

aliasing, 50
– control using conservation laws, 164
– error, 134, 385
– – for Chebyshev expansions, 87
– – for Fourier expansions, 51, 272
– – for orthogonal polynomials, 75
– for non-smooth solutions, 458
– instability, 443
– removal, see de-aliasing
– summary of theoretical results, 163
Arnoldi orthonormalization algorithm,

510
Aubin-Nitsche duality argument, 305,

307

backward initial-value problem, 440
basis
– Babuška-Shen, 84, 178, 180
– boundary-adapted, 82, 156
– Dubiner, 103
– global, 82
– hierarchical, 81
– Lagrange, 81
– local, 82
– localized, 82
– modal, 81, 158
– multidimensional
– – boundary-adapted, 99
– – collapsed Cartesian coordinates,

three dimensions, 108
– – electrostatic analogy, 111
– – Fourier, 98
– – Fourier-Chebyshev, 98
– – non-tensor-product, 110
– – tensor-product, 98, 186
– nodal, 81, 158
basis functions
– bubble, see function
– edge, 99, 106
– face, 99
– internal, 82
– multidimensional bubble, 99
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– vertex, 82, 99, 105
– warped tensor-product, 104
Bessel equation, 279
bilinear form, 475
– coercive, 475
boundary condition
– Dirichlet, 434
– inflow, 388
– numerical examples, 150
– outflow, 388
– penalty method, 20, 148, 351
– staggered grid, 149
– strong enforcement, 146
– weak enforcement, 18, 147
boundary layer, 419
branch of solution
– nonsingular, 465
Burgers equation, 118, 463
– Chebyshev collocation method, 129,

468
– – convergence, 470
– Chebyshev Galerkin method, 467
– – convergence, 468
– Chebyshev tau method, 127
– conservation form, 118
– exact solutions, 119
– Fourier collocation method, 123
– Fourier Galerkin method, 122
– inviscid, 140, 459
– – conservation properties, 141
– Legendre G-NI method, 130
– nonperiodic numerical examples, 132
– periodic numerical examples, 124
– strong form, 118
– weak form, 120

Cauchy sequence, 471
cell-averaging method, 463
characteristic Lagrange polynomial, 14,

17, 351
– barycentric form, 90
– tensor-product, 99
Chebyshev
– best approximation
– – polynomial, 294
– characteristic Lagrange polynomial,

88
– coefficients, 180
– collocation points, see nodes
– derivative recursion relation, 87, 88
– expansion coefficients, see orthogonal

polynomials
– inner product, see orthogonal

polynomials

– interpolation, 319
– interpolation derivative, 88, 296
– interpolation derivative matrix, 89,

129
– interpolation error, 296, 297
– nodes
– – Gauss, 85, 296
– – Gauss-Lobatto, 13, 86, 320
– – Gauss-Radau, 86, 391
– norm, see orthogonal polynomials
– normalization factors, 86
– orthogonal projection, 294
– polynomial recursion relation, 85
– polynomials, 84
– projection derivative, 88
– projection error, 319
– quadrature rule
– – Gauss, 85, 392
– – Gauss-Lobatto, 86
– – Gauss-Radau, 86
– series
– – continuous, 85
– – truncated, 293, 303, 319
– transform derivative process, 14, 88
– transform matrix, 86
– truncation error, 293, 294
– weight, 304, 306
– – Gauss, 85
– – Gauss-Lobatto, 86
– – Gauss-Radau, 86
coercivity condition, 340, 341
collapsed coordinates, 104, 325
collocation method, 4, 25, 343, 351
– convergence, 353, 355
– stability, 353
compact differences
– boundary stencil, 15, 153
– fourth-order formula
– – first derivative, 10
– – second derivative, 15
– sixth-order formula
– – first derivative, 10
– – second derivative, 127
compatibility conditions, 334, 336
compensated compactness method, 462
condition number, 196
– iterative, 210, 220, 432
– iterative surrogate, 224
– multigrid, 244
– spectral, 196
conservation form
– Burgers equation, 140
– evolution equation, 143
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– hyperbolic equation, 443
– linear, skew-symmetric operators,

144
conservation law, 459
– flux, 459
– weak solution, 460
continuity condition, 340
convergence
– exponential, 47
– in the mean, 43
– infinite-order, 47
– scaled, 326
– spectral, 10, 457
convolution sum, 134, 136
– for Burgers equation, 123, 128

de-aliasing, 134, 137
– 2/3-rule, 135, 139
– 3/2-rule, 135
– by padding or truncation, 134
– by phase shifts, 135, 136
– for orthogonal polynomials, 136
delta-function
– Dirac, 12
– discrete, see characteristic Lagrange

polynomial
direct methods
– ad-hoc methods, 169
– – Chebyshev Galerkin, 180
– – Chebyshev tau, 173
– – Fourier collocation, 170
– – Fourier Galerkin, 170
– – Haidvogel-Zang algorithm, 184
– – Legendre Galerkin, 178
– – matrix diagonalization, 183
– – numerical examples in 1D, 181
– – numerical examples in 2D, 185
– – Schur decomposition, 182
– factorization algorithms
– – Cholesky, 193
– – frontal method, 194
– – Gaussian elimination, 192
– – incomplete Cholesky, 228
– – incomplete-LU, 228
– – inexact, 227
– – multifrontal method, 195
– memory requirements, 195, 259
– numerical examples, 251
direct numerical simulation, 27
distribution, 482
– derivative, 483
– periodic, 484, 490
– – derivative, 484

distributional solution, 120
DNS, see direct numerical simulation
duality pairing, 473

edge detection, 452
eigenvalues
– advection-diffusion matrices,

206
– – collocation method, 425
– – G-NI stiffness matrix, 206
– – Galerkin method, 425
– – generalized G-NI matrix, 206
– – tau method, 426
– first-derivative matrices, 200
– – collocation method, 200, 202,

427
– – G-NI method, 428
– – tau method, 429
– second-derivative matrices, 197
– – collocation method, 198, 420
– – G-NI method, 198, 422
– – G-NI stiffness matrix, 199
– – Galerkin method, 198, 422
– – tau method, 198, 423
elliptic equation, 342
– Chebyshev collocation method
– – convergence, 358
– collocation method, 358
– Dirichlet boundary conditions, 356
– – Chebyshev tau method, 371
– – Chebyshev tau method,

convergence, 372
– – Chebyshev tau method, stability,

371
– G-NI method, 357
– Jacobi collocation method
– – convergence, 359
– – stability, 359
– Legendre collocation method, 357
– – convergence, 358
– mixed boundary conditions, 362
– – G-NI method, 364
– – G-NI method, convergence, 365
– Neumann boundary conditions
– – Chebyshev tau method, 372
– – Chebyshev tau method,

convergence, 373
– – Chebyshev tau method, stability,

373
– Neumann condition, 358
– singularly perturbed, 409
energy method, 337, 347
entropy
– condition, 460
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– dissipation bound, 462
– function, 461
– solution, 460, 462
error equation, 396
– for collocation approximation, 398
– for Fourier approximation, 397
– for Helmholtz equation, 411
– – tau method, 411
– for tau approximation, 398
evolution equation, 376
– collocation method, 383
– – convergence, 383
– – stability, 383
– semi-discrete method, 376
– tau method, 381
– – convergence, 381
– – stability, 381
exponential cut-off function, 459

Fast Fourier Transform, see also
transform method

– comparison with matrix multiplies,
55

– for discrete Chebyshev series, 13
– – at Gauss points, 497
– – at Gauss-Lobatto points, 86, 495
– – for odd polynomials, 497
– – operation count, 88
– for discrete Fourier series, 48
– – for complex data, 493
– – for real data, 494
– – operation count, 48, 493
– preference for N even, 55
Fekete nodes, 112
FFT, see Fast Fourier Transform
field of values, 511
fill-in, 193
filter, see smoothing
finite differences
– fourth-order, 10
– second-order, 10
finite elements
– h-version, 3
– hp-version, 6
flux
– advection-diffusion, 17
– boundary
– – advection-diffusion-reaction

equation, 21
– – Burgers equation, 130
– conservation law, 459
– heat, 16
– numerical, 16

formulation
– integral, 120
– strong, 8, 120
– variational, 120
– weak, 8, 120
Fourier
– best approximation
– – error, 271
– – polynomial, 270, 271
– characteristic Lagrange polynomial,

49, 60
– collocation points, see nodes
– cosine transform, 41
– expansion coefficients, 7, 454
– – continuous, 41, 276, 454
– – discrete, 48, 454
– inner product
– – continuous, 43
– – discrete, 49
– interpolating polynomial, 48, 272
– interpolation, 322
– interpolation derivative, 52
– interpolation derivative matrix, 54
– interpolation differentiation error,

272
– interpolation error, 272
– interpolation operator, 49
– nodes, 48
– nodes for N odd, 55
– norm
– – continuous, 43
– – discrete, 50
– polynomials, 268, 313
– projection derivative, 52
– quadrature rule, 49
– series
– – continuous, 42, 276, 321
– – discrete, 48
– – truncated, 42, 269, 313, 454, 455
– sine transform, 41
– transform
– – continuous, 41
– – discrete, 48
– truncation error, 270, 313
Fourier method, 4
fourth-order equation
– Legendre Galerkin method, 179
Fréchet derivative, 465, 475
fringe method, 34, 35
function
– bubble, 82, 106, 178, 180, 417, 418
– Dirac, 484
– Lebesgue integrable, 479
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– measurable, 479
– of bounded variation, 477
– periodic, 42
– simple measurable, 479

G-NI method, 5, 25, 360
– convergence, 361, 362
– matrix construction
– – multidimensional, 187
– – one-dimensional, 154
– relationship to collocation method,

20, 140, 160
– relationship to collocation method on

triangles, 107
– stability, 361
Galerkin Least Squares (GaLS)

method, 417
Galerkin method, 4, 24, 342, 345
– convergence, 347, 348
– matrix construction
– – multidimensional, 187
– – one-dimensional, 154
– stability, 346
Galerkin with numerical integration

method, see G-NI method
generalized eigenvalue problem, 422
generalized G-NI matrix, 200
Gibbs
– complement, 451
– phenomenon, 53, 56, 125, 447

heat equation, 12, 329, 433
– Chebyshev collocation method, 11,

384
– – convergence, 333
– – stability, 331
– Fourier Galerkin method, 380
– – convergence, 380
– fully discrete method, 434
– – convergence, 438
– Legendre tau method, 381
– – convergence, 383
– – stability, 382
– weak coercivity, 380
Helmholtz equation, 167, 348
– boundary layer, 409
– – Legendre Galerkin method,

convergence, 410
– Chebyshev collocation method, 181
– Chebyshev Galerkin method, 180,

185
– Chebyshev tau method, 173
– error equation, 411

– – collocation method, 411
– – convergence, 413
– – Galerkin method, 411
– Fourier collocation method, 170
– Fourier Galerkin method, 170, 348
– – convergence, 349
– Legendre G-NI method, 182
– Legendre Galerkin method, 177, 184
– one-dimensional, 170
– self-adjoint form, 167
– separable form, 167
– singularly perturbed, 409
– two-dimensional, 181
– variable-coefficient
– – Fourier collocation method, 172
Hermite
– functions, 95
– polynomial recursion relation, 95
– polynomials, 95
– Rodriquez formula, 95
Hopf-Cole transformation, 119
hyperbolic equation, 145, 384, 439
– boundary conditions, see boundary

condition, 145
– Chebyshev method
– – stability, 446
– Chebyshev-Legendre method, 447
– collocation method, 146, 441
– Fourier collocation
– – filtering, stability, 445
– – stability, 443
– Fourier collocation method
– – convergence in negative norms, 457
– Fourier Galerkin method, 441, 456
– – convergence, 442
– – convergence in negative norms, 457
– – instability, 441
– – stability, 441
– Legendre G-NI method, 146
– Legendre method
– – stability, 446
– nonperiodic boundary condition, 445
– periodic boundary condition, 439
– semi-discrete method
– – convergence, 385
– – stability, 384
– skew-symmetric form, 443
– – Fourier collocation, 443
– – Fourier collocation, filtering, 444
– – Fourier collocation, stability, 444
– staggered-grid method, 149
– tau method, 392
– – convergence, 392
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– – stability, 392
– variable-sign coefficient
– – instability, 443

inequality
– Bernstein, 268, 272
– Cauchy-Schwarz, 405, 473
– energy, 347
– Hardy, 305, 405, 491
– inverse, 281, 282, 291–293, 313
– Lebesgue, 110
– Nikolski, 268
– Poincaré, 299, 363, 406, 437, 491
– Sobolev, 274, 490
– Young, 437
inf-sup condition, 341, 355, 359, 370,

404
inner product, 471
– discrete, 279, 280, 316, 352, 353, 389,

403
– of complex functions, 480
– periodic Sobolev space, 490
– Sobolev space, 485, 486
– weighted, 481, 487, 488
integral
– Lebesgue, 478, 479
– Riemann, 478
– Riemann-Stieltjes, 477
integration by parts, 478
interpolant
– polynomial, 73
– trigonometric, 48, 272
interpolation
– uniform low-order/high-order

property, 416, 430
iterative algorithms, 241
– bi-conjugate gradient (Bi-CG), 512
– bi-conjugate gradient stabilized

(Bi-CGStab), 220, 242, 512
– – preconditioned (PBi-CGStab), 513
– conjugate direction, 504
– conjugate gradient (CG), 220, 241,

505
– – preconditioned (PCG), 506
– conjugate gradient-squared (CGS),

512
– conjugate residual (CR), 241, 506
– – preconditioned (PCR), 507
– descent, 239
– generalized minimum residual

(GMRES), 242, 509
– – flexible, 512
– – full, 510

– – preconditioned (PGMRES), 511
– – with restart (GMRES(m)), 510
– Krylov, 242
– – full orthogonalization method,

509
– minimum residual Richardson

(MRR), 241
– – preconditioned (PMRR), 503
– residual smoothing (RSM), 247
– Richardson, 210, 499
– – non-stationary (NSR), 501
– – preconditioned, 502
– – stationary, 501
– steepest descent Richardson (SDR),

241
– – preconditioned (PSDR), 503
– truncated conjugate gradient (TCG),

507
– – preconditioned (PTCG), 507
– truncated conjugate residual (TCR),

241, 507
– – preconditioned (PTCR), 507
iterative methods
– iteration matrix, 499, 502
– numerical examples, 251
– optimal relaxation parameter, 500
– scaling, 242
– spectral radius, 499

Jacobi
– interpolation, 322
– orthogonal projection, 321, 323
– polynomial recursion relation, 92
– polynomials, 68, 92, 279, 309
– quadrature rule
– – Gauss-Lobatto, 72
– Rodriquez formula, 92
– series
– – continuous, 93, 321
– weight, 72, 310

kernel
– concentration, 453
– Dirichlet, 57, 458
– Fejér, 63
– Lanczos, 64
– raised cosine, 64
Kim-Moin-Moser method, 32
Kleiser-Schumann method, 30, 372

Lagrange
– basis, 351
– polynomial, see characteristic

Lagrange polynomial
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Laguerre
– functions, 94
– polynomial recursion relation, 94
– polynomials, 94, 310
– Rodriquez formula, 94
laminar flow, 25
large-eddy simulation, 33
Lebesgue
– constant, 110
– measure, 478
– points, 111
Legendre
– best approximation
– – error, 284, 286, 287
– – polynomial, 284
– characteristic Lagrange polynomial,

80
– collocation points, see nodes
– derivative recursion relation, 77, 78
– expansion coefficients, see orthogonal

polynomials
– inner product, see orthogonal

polynomials
– interpolation, 315
– interpolation derivative, 79, 290, 389
– interpolation derivative matrix, 80
– interpolation error, 289, 315
– – Gauss-Lobatto, 291
– interpolation operator, 289, 315
– nodes, 357
– – Gauss, 76, 290
– – Gauss-Lobatto, 76
– – Gauss-Radau, 76, 316
– norm, see orthogonal polynomials
– normalization factors, 76
– orthogonal projection, 288–291
– polynomial recursion relation, 75
– polynomials, 75
– projection derivative, 78
– quadrature error, 290
– quadrature rule, 315, 316
– – Gauss, 76
– – Gauss-Lobatto, 76
– – Gauss-Radau, 76
– series
– – continuous, 76
– – discrete, 76
– – truncated, 283, 314
– truncation error, 284, 289, 291, 314
– weight, 304, 306
– – Gauss, 76
– – Gauss-Lobatto, 76
– – Gauss-Radau, 76

lemma
– Céa, 348
– Deny-Lions, 298
– Gronwall, 384, 392, 439, 492
– Strang, 362
LES, see large-eddy simulation
linear operator
– bounded, 474
– compact, 474
– domain, 474
– unbounded, 474

mapping
– algebraic, 96, 98
– Cain-Ferziger-Reynolds, 97, 172
– conformal, 100
– exponential, 96, 98
– Gordon-Hall, 101
– infinite intervals, 97
– isoparametric, 102
– logarithmic, 96
– regular, 318
– semi-infinite intervals, 96
– with extended function, 97
mass matrix, 81
– finite-element, 235, 431, 432
– – lumped, 431, 433
– lumped, 158, 188
– multidimensional formulas, 188
– one-dimensional formulas, 157
– spectral, 431, 432
– warped tensor-product formulas, 191
matrix diagonalization, see direct

methods
matrix square root, 220
matrix-multiply method
– operation count, 55
matrix-vector product
– sparse matrix operation count, 240
– tensor-product algorithm, 240
– tensor-product operation count, 239
– warped tensor-product algorithm,

240
maximum principle
– for Chebyshev method, 411
min-mod function, 453
multi-index, 186
multigrid methods
– Chebyshev
– – coarse-grid correction operator, 249
– – condition numbers, 249
– – preconditioning, 249, 250
– – prolongation operator, 248
– – relaxation schemes, 250
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– – restriction operator, 248
– for inverting low-order precondition-

ers, 228, 243
– Fourier
– – coarse-grid correction operator, 246
– – prolongation operator, 245
– – restriction operator, 245, 246
– multigrid condition number, 244
– multigrid smoothing factor, 243
– spectral, 242
– V-cycle, 245
multilinear operator, 474

Navier-Stokes equations, 464
non-Cartesian domains, see simplicial

domains
norm, 471, 472
– Lp, 480
– discrete, 279, 352
– of a dual space, 473
– periodic Sobolev space, 490
– Sobolev, 269, 283, 293, 485, 486
– – broken, 448
– – negative order, 455
– SUPG, 415, 416
– weighted, 487, 488
– weighted Lp, 481
normal matrix, 202

ordering
– Cuthill-McKee, 193
– lexicographic, 186
– minimum-degree, 193
– reordering, 193
Orszag-Kells method, 30, 32
Orszag-Patera method, 32
Orszag-Patterson method, 27, 28
orthogonal polynomials, 69
– expansion coefficients
– – continuous, 69, 74
– – discrete, 73, 74
– inner product
– – continuous, 69
– – discrete, 74
– interpolating polynomial, 73
– interpolation derivative matrix
– – barycentric, 91
– norm
– – continuous, 69
– – discrete, 74
– transform
– – continuous, 39, 69
– – discrete, 40, 74

– truncated series, 69
orthogonal projection
– Fourier
– – continuous, 43
– – discrete, 49
– orthogonal polynomials
– – continuous, 69
– – discrete, 74

parabolic equation, 378
– Galerkin method, 378
– – convergence, 379
– – stability, 379
parabolized stability equations, 34
penalty method, see boundary

condition
Petrov-Galerkin method, 3, 414
physical space, 39, 73
Poisson equation, 21, 334, 349, 401
– Chebyshev collocation method, 407
– – convergence, 408
– – stability, 408
– Chebyshev Galerkin method, 350,

407
– – convergence, 350, 407
– direct methods examples
– – Legendre G-NI method, 256
– Dirichlet boundary conditions, 409
– G-NI method
– – convergence, 403
– iterative methods examples
– – Chebyshev collocation method, 253
– – Fourier collocation method, 251
– – Legendre G-NI method, 256, 257
– Legendre Galerkin method, 350, 403
– – convergence, 350, 403
– Legendre tau method, 21, 334, 374
– – convergence, 336, 376
– – stability, 336, 375
– Neumann boundary conditions, 409
– Robin boundary conditions, 409
polar coordinates, 40, 162
polynomial chaos, 41
polynomials
– Chebyshev, 84
– Gegenbauer, 93, 452
– Hermite, 95
– Jacobi, 92
– Laguerre, 94
– Legendre, 75
– trigonometric, 42
– ultraspherical, 93
preconditioning, 430
– by finite differences, 211
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– – Chebyshev collocation eigenvalues,
218, 219

– by finite elements, 212
– – Chebyshev collocation eigenvalues,

218
– – Legendre G-NI condition numbers,

222, 224, 235
– – Legendre G-NI eigenvalues, 222
– – Legendre G-NI matrices, 219
– – operation counts, 237
– – strong form, 212, 220
– – weak form, 213, 220
– by simpler spectral operators, 238
– by stabilized finite elements, 227
– for advection-diffusion equation, 217
– for first-derivative terms, 214
– – central differences, 214
– – high-mode cutoff, 215
– – one-sided differences, 215
– – staggered grid, 215
– for Helmholtz equation, 217, 432
– for low-order preconditioners, 228
– – incomplete-LU (ILU), 228, 229
– – alternating direction implicit

(ADI), 233
– – alternating line relaxation (ALR),

228, 232
– – alternating plane relaxation (APR),

228
– – alternating zebra line relaxation

(AZLR), 233
– – approximate factorization (AF),

233
– – inexact factorization, 227
– – row-sum-equivalence incomplete-

LU (IRS), 229
– for Poisson equation, 432
– for second-derivative erms
– – G-NI method, by finite elements,

431
– for second-derivative terms
– – collocation method, by finite

differences, 432
– – Legendre Galerkin method, 431
– Legendre G-NI alternatives
– – one dimension, 220
– – two dimensions, 235
projection, 454
PSE, see parabolized stability equations
pseudospectra
– advection-diffusion matrices, 208
– first-derivative matrices
– – Chebyshev collocation method, 202

pseudospectral method, 4, 134, 344
– relationship to collocation method,

138
pseudospectrum, 202

quadrature rule
– Gauss, 70, 280
– Gauss-Lobatto, 71, 280, 281, 416,

432
– Gauss-Radau, 70, 280
– Lagrange, 49
– on simplicial domains, 114
– on triangles, 106
– tensorized, 99, 325

Rankine-Hugoniot condition, 460
reconstruction, 67
residual-free bubble method, 418
Reynolds number
– based on the integral scale, 26
– based on wall shear velocity, 31
round-off error, 181, 256
– advection-diffusion matrices, 208
– first-derivative matrix eigenvalues,

200
– matrix-diagonalization method, 184
– tau method, 175

Schur decomposition, see direct
methods

Shishkin mesh, 413
simplicial domains, 103
– interpolation nodes, 113
– quadrature nodes, 113
– three-dimensional basis functions,

108
– two-dimensional basis functions,

103
singularity detection, 67
skew-symmetric
– decomposition, 388
– form, 426
– interpolation decomposition, 391
– operator, 54
smoothing, 61, 65, 413, 447
– by spectral reconstruction, 451
– Cesáro, 61
– exponential, 66
– Lanczos, 61
– methods, 61
– modified Cesáro, 65
– raised cosine, 61
– sharpened raised cosine, 65
– Vandeven, 65, 448
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space
– Lp, 480
– Banach, 472
– – finite-dimensional, 472
– – infinite-dimensional, 472
– dual, 473, 489
– Gevrey, 271
– Hilbert, 269, 471
– – finite-dimensional, 471
– – infinite-dimensional, 472
– normed
– – dense subspace, 476
– Sobolev, 485
– – periodic, 489
– weighted Lp, 481
– weighted Sobolev, 486
spectral approximation, 342
spectral method
– classical, 3
– multidomain, 6, 82
spectral viscosity method, 461, 463
– Fourier Galerkin, 461
spectral-element method, 6, 414
spherical coordinates, 40
stability
– algebraic, 356
– spatial, 327
– unconditional, 435
stabilization, 413
stabilization parameter, 419, 420
staggered grid, 149
stiffness matrix, 81, 422
– finite-element, 234, 431, 432
– multidimensional formulas, 187
– one-dimensional formulas, 156
– spectral, 431
– warped tensor-product formulas,

191
Stokes operator, 465
streamline derivative, 415
strongly consistent method, 415
Sturm-Liouville problem, 68, 299
– Chebyshev polynomials, 84
– eigenfunctions, 275, 278, 309, 310
– eigenvalues, 275, 277
– Hermite polynomials, 310
– Jacobi polynomials, 91, 309
– Laguerre polynomials, 310
– Legendre polynomials, 75
– regular, 275
– singular, 68, 277
– spectral accuracy, 68
SUPG method, 414

tau method, 4, 24, 343, 367
– convergence, 370
– integral version, 176
– stability, 370
tensor product
– function, 189
– of matrices, 186, 190
test function, 3
– tau method, 25
– Chebyshev collocation method, 12
– Fourier Galerkin method, 8
– Galerkin methods, 24
– Legendre G-NI method, 17
– Legendre tau method, 22
theorem
– Gerschgorin, 431
– Jackson, 271
– Lax-Milgram, 307, 340, 341, 475
– Lax-Richtmyer (equivalence), 338,

347
– Riesz, 278, 304, 403, 473
– Sobolev imbedding, 485, 487
time discretization
– contractive, 517
– formulas
– – Adams-Bashforth (AB) methods,

520
– – Adams-Moulton (AM) methods,

521
– – backward Euler (BE) method, 521
– – backwards-difference (BDF)

methods, 524
– – Crank-Nicolson (CN) method,

521
– – forward Euler (FE) method, 520
– – leap frog (LF) method, 519
– – low-storage Runge-Kutta/Crank-

Nicolson method, 527, 528
– – Runge-Kutta (RK) methods, 524
– integrating-factor technique, 525
– reversible, 518
– right Lipschitz condition, 517
– stability
– – absolute stability region, 518
– – A-stable, 518
– – asymptotic stability, 517
– – B-stable, 517
– – stability limit, 518
– – stability region, 518
– – stable, 516
– – temporal stability, 517
– – unconditionally stable, 518
– – weak instability, 517
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– – zero-stable, 516
– stability limit table, 523
– stability region plots, 522
– symmetric, 518
total variation, 476
trace operator, 488
transform method, 48
– for convolution sums, 133
– for discrete Chebyshev series, 86
– for discrete Fourier series, 48
transform space, 39, 73
trial function, 3, 7
– Chebyshev collocation method, 12
– Fourier method, 8
– Galerkin method, 24
– Legendre G-NI method, 17
– Legendre tau method, 22
– tau method, 24
triangular domains, see simplicial

domains
trigonometric, see Fourier
truncation error, 51
turbulence
– computational requirements, 26
– homogeneous, 26
– integral length scale, 26
– isotropic, 26
– Kolmogorov length scale, 26, 29

– Kolmogorov spectrum, 28
– temporal scale, 26
turbulent flow, 25

unbounded domains, 40

viscosity
– numerical, 461
– second-order, 462
– super, 462

wave equation, 7, 145, 328
– Fourier Galerkin method, 7, 328
– – convergence, 329
– – stability, 329
– Legendre tau method, 393
– – convergence, 394
– – stability, 393
– variable-coefficient
– – Chebyshev tau method, 395
– – Chebyshev tau method,

convergence, 396
– – Chebyshev tau method, stability,

396
wavenumber space, 39
weighted residual method, 3, 8, 343

Zang-Hussaini method, 32, 33
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1.3 Three-Dimensional Applications in Fluids: A Look Ahead 29

many results obtained from their high-resolution simulations was convincing
evidence that the scaled energy spectrum (where the wavenumber is scaled by
the inverse of the Kolmogorov length scale η = (ν3/ε̄)1/4, with ν the viscosity
and ε̄ the average dissipation rate) is not the classical Kolmogorov result of
k−5/3, but rather k−m with m � 5/3− 0.10.

Fig. 1.6. Direct numerical simulation of incompressible isotropic turbulence on
a 20483 grid by Y. Kaneda and T. Ishihara (2006): High-Resolution Direct Numer-
ical Simulation of Turbulence. Journal of Turbulence 7(20), 1–17. The figure shows
the regions of intense vorticity in a subdomain with 1/4 the length in each coordi-
nate direction of the full domain [Reprinted with kind permission by the authors
and the publisher Taylor & Francis Ltd., http://www.tandf.co.uk/journals]

Rogallo (1977) developed a transformation that permits Fourier spectral
methods to be used for homogeneous turbulence flows, such as flows with
uniform shear. Blaisdell, Mansour and Reynolds (1993) used the extension of
this transformation to the compressible case to simulate compressible, homoge-



5.7 Other Polynomial Approximations 311

‖v‖Hmw (R+) =

⎛
⎝
m∑
j=0

‖v(j)‖2L2w(R+)

⎞
⎠
1/2

.

A related family of weighted Sobolev spaces is useful, namely,

Hmw;α(R+) =
{
v ∈ L2w(R+) | (1 + x)

α/2v ∈ Hmw (R+)
}
, m ≥ 0 ,

(5.7.3)

equipped with the natural norm ‖v‖Hmw;α(R+) = ‖(1 + x)
α/2v‖Hmw (R+).

For each u ∈ L2w(R+), let PNu ∈ PN be the truncation of its Laguerre
series, i.e., the orthogonal projection of u upon PN with respect to the inner
product of L2w(R+):

∫

R+

(u− PNu)φ e
−x dx = 0 for all φ ∈ PN .

The following error estimate holds for any m ≥ 0 and 0 ≤ k ≤ m:

‖u− PNu‖Hkw(R+) ≤ CN
k−m2 ‖u‖Hmw;m(R+) . (5.7.4)

For the orthogonal projection P 1N upon PN in the norm of H
1
w(R+), the

following estimate holds for m ≥ 1, 1 ≤ k ≤ m:

‖u− P 1Nu‖Hkw(R+) ≤ CN
k+ 12−

m
2 ‖u‖Hmw;m−1(R+) ; (5.7.5)

the same result holds for the projection P 1,0N upon P0N (Guo and Shen (2000)).
Concerning interpolation, let us consider the N + 1 Gauss-Radau points

xj , j = 0, . . . , N , where x0 = 0 and xj , for j = 1, . . . , N , are the zeros
of l′N+1(x), the derivative of the (N + 1)-th Laguerre polynomial. For each
continuous function u on R+, let INu ∈ PN be the interpolant of u at the
points xj . Then, for any integer m ≥ 1, 0 ≤ k ≤ m and 0 < ε < 1, one has

‖u− INu‖Hkw(R+) ≤ CεN
k+ 12+ε−

m
2 ‖u‖Hmw;m(R+) (5.7.6)

(see Xu and Guo (2002), where additional approximation results can be
found). The result stems from the error analysis given by Mastroianni and
Monegato (1997) in the family of norms (r ≥ 0 real)

‖v‖Hrw;∗(R+) =

(
∞∑
k=0

(1 + k)r v̂2k

)1/2
,

where v̂k = (v, l
(0)
k )L2w(R+) are the Laguerre coefficients of v. For such norms,

one has ‖v‖Hrw;∗(R+) ≤ c‖v‖Hrw;r(R+) for any integer r. Examples of applica-
tions to spectral Laguerre discretizations of boundary-value problems in R+
are provided in the above references. Usually, an appropriate change of
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unknown function is needed to cast the differential problem into the correct
functional setting based on Laguerre-weighted Sobolev spaces.

Hermite approximations can be studied in a similar manner. The basic
weighted space L2w(R) involves the norm

‖v‖L2w(R ) =

(∫

R

v2(x)e−x
2

dx

)1/2
.

The Sobolev spaces Hmw (R) are defined as above, with respect to this norm.
The L2w-orthogonal projection operator PN upon PN satisfies the estimate

‖u− PNu‖Hkw(R ) ≤ CN
k
2−

m
2 ‖u‖Hmw (R ) (5.7.7)

for all m ≥ 0 and 0 ≤ k ≤ m (Guo (1999)). Interestingly, all H�w-orthogonal
projection operators P �N upon PN , for � ≥ 0, coincide with PN , due to prop-
erty (2.6.12) of Hermite polynomials. For the interpolation operator IN at
the Hermite-Gauss nodes in R, Guo and Xu (2000) proved the estimate

‖u− INu‖Hkw(R ) ≤ CN
1
3+

k
2−

m
2 ‖u‖Hmw (R ) , (5.7.8)

for m ≥ 1 and 0 ≤ k ≤ m.
When dealing with the unbounded intervals R+ and R, an alternative to

polynomials as approximating functions is given by functions that are the
product of a polynomial times the natural weight for the interval. Thus, one
uses the Laguerre functions ψ(x) = φ(x)e−x in R+ or the Hermite functions

ψ(x) = φ(x)e−x
2

in R, where φ is any polynomial in PN . The behavior at
infinity of the function to be approximated may suggest such a choice. We
refer, e.g., to Funaro and Kavian (1990) and to Guo and Shen (2003) for the
corresponding approximation results and for applications.

5.8 Approximation in Cartesian-Product Domains

We shall now extend to several space dimensions some of the approximation
results we presented in the previous sections for a single spatial variable. The
three expansions of Fourier, Legendre and Chebyshev will be considered.
However, we will only be concerned with those Sobolev-type norms that are
most frequently applied to the convergence analysis of spectral methods.

5.8.1 Fourier Approximations

Let us consider the domain Ω = (0, 2π)d in Rd, for d = 2 or 3, and denote an
element of Rd by x = (x1, . . . , xd). The space L

2(Ω), as well as the Sobolev
spaces Hmp (Ω) of periodic functions, are defined in Appendix A (see (A.9.h)
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