


Frontiers	in	Physiology
Front	Physiol.	1:	12

http://www.ncbi.nlm.nih.gov/pmc/
http://www.frontiersin.org/physiology


Fractal	Physiology	and	the	Fractional	Calculus:	A
Perspective
Bruce	J.	West1*

1Information	Science	Directorate,	U.S.	Army	Research	OfficeResearch	Triangle	Park,	NC,	USA

Edited	by:	Gerhard	Werner,	University	of	Texas	at	Austin,	USA

Reviewed	by:	Ralf	Metzler,	Technical	University	of	Munich,	Germany;	Gerhard	Werner,	University	of	Texas	at
Austin,	USA

*Correspondence:	Bruce	J.	West,	Information	Science	Directorate,	U.S.	Army	Research	Office,	Research
Triangle	Park,	NC	27709,	USA.	e-mail:	bwest@nc.rr.com

This	article	was	submitted	to	Frontiers	in	Fractal	Physiology,	a	specialty	of	Frontiers	in	Physiology

Copyright	Â©	2010	West.

DOI:	10.3389/fphys.2010.00012

Published	online:	14	October	2010



Abstract

This	paper	presents	a	restricted	overview	of	Fractal	Physiology	focusing	on
the	complexity	of	the	human	body	and	the	characterization	of	that
complexity	through	fractal	measures	and	their	dynamics,	with	fractal
dynamics	being	described	by	the	fractional	calculus.	Not	only	are
anatomical	structures	(Grizzi	and	Chiriva-Internati,	2005),	such	as	the
convoluted	surface	of	the	brain,	the	lining	of	the	bowel,	neural	networks
and	placenta,	fractal,	but	the	output	of	dynamical	physiologic	networks	are
fractal	as	well	(Bassingthwaighte	et	al.,	1994).	The	time	series	for	the	inter-
beat	intervals	of	the	heart,	inter-breath	intervals	and	inter-stride	intervals
have	all	been	shown	to	be	fractal	and/or	multifractal	statistical	phenomena.
Consequently,	the	fractal	dimension	turns	out	to	be	a	significantly	better
indicator	of	organismic	functions	in	health	and	disease	than	the	traditional
average	measures,	such	as	heart	rate,	breathing	rate,	and	stride	rate.	The
observation	that	human	physiology	is	primarily	fractal	was	first	made	in	the
1980s,	based	on	the	analysis	of	a	limited	number	of	datasets.	We	review
some	of	these	phenomena	herein	by	applying	an	allometric	aggregation
approach	to	the	processing	of	physiologic	time	series.	This	straight	forward
method	establishes	the	scaling	behavior	of	complex	physiologic	networks
and	some	dynamic	models	capable	of	generating	such	scaling	are
reviewed.	These	models	include	simple	and	fractional	random	walks,	which
describe	how	the	scaling	of	correlation	functions	and	probability	densities
are	related	to	time	series	data.	Subsequently,	it	is	suggested	that	a	proper
methodology	for	describing	the	dynamics	of	fractal	time	series	may	well	be
the	fractional	calculus,	either	through	the	fractional	Langevin	equation	or
the	fractional	diffusion	equation.	A	fractional	operator	(derivative	or	integral)
acting	on	a	fractal	function,	yields	another	fractal	function,	allowing	us	to
construct	a	fractional	Langevin	equation	to	describe	the	evolution	of	a
fractal	statistical	process.	Control	of	physiologic	complexity	is	one	of	the
goals	of	medicine,	in	particular,	understanding	and	controlling	physiological
networks	in	order	to	ensure	their	proper	operation.	We	emphasize	the
difference	between	homeostatic	and	allometric	control	mechanisms.
Homeostatic	control	has	a	negative	feedback	character,	which	is	both	local
and	rapid.	Allometric	control,	on	the	other	hand,	is	a	relatively	new	concept
that	takes	into	account	long-time	memory,	correlations	that	are	inverse
power	law	in	time,	as	well	as	long-range	interactions	in	complex
phenomena	as	manifest	by	inverse	power-law	distributions	in	the	network
variable.	We	hypothesize	that	allometric	control	maintains	the	fractal
character	of	erratic	physiologic	time	series	to	enhance	the	robustness	of
physiological	networks.	Moreover,	allometric	control	can	often	be	described
using	the	fractional	calculus	to	capture	the	dynamics	of	complex
physiologic	networks.



Introduction
The	theme	of	this	paper	is	to	indicate	the	necessity	for	a	fractal	view	of	physiology
that	explicitly	takes	into	account	the	complexity	of	living	matter	and	its	dynamics.
Complexity	in	this	context	incorporates	the	recent	advances	in	physiology
concerned	with	the	applications	of	the	concepts	from	fractal	geometry,	fractal
statistics	and	nonlinear	dynamics,	to	the	formation	of	a	new	kind	of	understanding
within	the	life	sciences.	A	parallel	development	has	been	the	understanding	of	the
dynamics	of	fractal	processes	and	how	those	dynamics	are	manifest	in	the	control
of	physiologic	networks.	For	a	number	of	years	the	study	of	fractals	and	its
application	to	physiology	was	restricted	to	the	determination	of	the	fractal
dimension	of	structure,	in	particular,	the	static	structure	of	objects	and	the	scaling
of	time	series.	However,	now	we	explore	the	dynamics	of	fractal	processes	using
the	fractional	calculus,	and	apply	this	dynamical	approach	to	both	regular	and
stochastic	physiologic	processes.	To	understand	the	need	for	such	an	approach	a
historical	perspective	is	useful.

Homeostasis
It	is	not	a	coincidence	that	the	modern	view	of	how	the	human	body	operates
mirrors	our	understanding	of	the	technological	society	in	which	we	live,	where	a
thermostat	controls	the	temperature	of	a	home,	the	sound	of	a	voice	can	turn	the
lights	on	and	off,	and	cruise	control	determines	the	speed	of	a	car.	It	is	not	clear
when	this	idea	of	how	the	body	works	began	to	permeate	society,	but	in	medicine
the	concept	was	introduced	by	the	nineteenth	century	scientist	Claude	Bernard
(1813â€“1878).	He	developed	the	notion	underlying	homeostasis	in	his	study	of
stability	of	the	human	body.	The	word	homeostasis	was	popularized	half	a	century
later	by	Walter	Cannon	(1871â€“1945)	in	his	book	The	Wisdom	of	the	Body
(Cannon,	1932).	Homeostasis	is	what	many	consider	to	be	the	guiding	principle	of
medicine,	whereby	every	human	body	has	multiple	automatic	inhibition
mechanisms	that	suppress	disquieting	influences	of	the	environment.
Homeostasis	is	the	evolutionary	strategy	selected	to	enable	the	human	body	to
maintain	an	internal	balance,	although	it	is	not	always	evident	how	a	particular
suppressing	response	is	related	to	a	specific	antagonism.	Biology	teaches	that
evolution	has,	over	the	millennia,	reduced	homeostatic	networks	to	the	bare
minimum,	so	that	in	the	spirit	of	parsimony,	every	internal	mechanism	of	a
physiological	network	is	necessary	to	maintain	either	the	structural	or	functional
integrity	of	the	organism.

But	why	should	physiologic	networks	be	homeostatic?	Why	has	nature
determined	that	this	is	the	â€œbestâ€​	way	to	control	the	various	complex
networks	in	the	human	body?	In	part,	nature’s	choices	have	to	do	with	the	fact
that	no	physiologic	network	is	isolated;	these	networks	are,	in	fact,	made	up	of	a
mind-numbing	number	of	subnetworks,	the	cells.	The	task	of	a	cell	is	simple	and
repetitive,	but	that	of	an	organ	is	not.	Therefore	a	complex	network	like	the



cardiovascular	is	made	up	of	a	variety	of	cell	types,	each	type	performing	a	given
different	function.	If	responses	to	changes	in	the	external	environment	were	at	the
cellular	level,	physiology	would	be	much	more	complicated	than	it	is	already,	and
organs	would	no	doubt	be	unstable.	But	nature	has	found	that	if	the	immediate
environment	of	the	cells	is	kept	within	certain	narrowly	defined	limits,	then	the
cells	can	continue	to	perform	their	specific	tasks	and	no	others,	even	while	organs
respond	to	sometimes	extravagant	external	disturbances.	As	long	as	the	internal
environment	stays	within	a	certain	operational	range	the	cells	continue	to	function
without	change.	Thus,	homeostasis	is	the	presumed	strategy	that	nature	has
devised	to	keep	the	internal	state	of	the	body	under	control.

The	level	of	sophistication	of	control	mechanisms	was	brought	to	light	with	the
centrifugal	fly-ball	governor	(1788)	constructed	by	J.	Watt	for	regulating	the	speed
of	the	rotary	steam	engine.	This	artificial	control	mechanism	heralded	the	onset	of
the	Industrial	Revolution.	The	first	mathematical	description	and	consequent
understanding	of	Watt’s	governor	was	constructed	by	the	English	physicist	J.	C.
Maxwell	in	1868,	when	he	linearized	the	differential	equations	describing	the
governor’s	dynamics.	The	solutions	to	the	linearized	differential	equations
(control)	are	stable	when	the	eigenvalues	have	negative	real	parts	(stabilizing
feedback)	and	in	this	way	the	language	for	the	control	of	dynamical	networks	was
introduced.

The	homeostatic	control	of	physiologic	networks	classifies	the	dynamics	as
negative	feedback,	because	such	homeostatic	networks	respond	in	ways	to
dampen	environmental	disturbances	including	fluctuations.	However	the	control	of
certain	networks	has	the	opposite	behavior,	that	is,	they	have	a	positive	feedback,
because	the	networks	respond	in	ways	to	amplify	perturbations.	Of	course,	such
responses	lead	to	unstable	behavior	in	general,	but	such	instability	is	sometimes
useful.	Consequently	feedback	can	either	amplify	or	suppress	disturbances
depending	on	the	network’s	dynamics.

The	picture	of	reducing	the	variability	in	the	size	of	widgets	coming	off	an
assembly	line	to	meet	specifications	and	the	suppression	of	physiologic	variability
by	homeostatic	control	remains	compatible.	However	the	scaling	of	physiologic
time	series	and	the	interpretation	of	that	scaling	in	terms	of	long-term	memory	and
fractal	dimensions	(Mandelbrot,	1977,	1982)	is	not	consistent	with	a	simple	view
of	the	world	in	general	or	of	physiology	in	particular.	Therefore	we	explore	some	of
the	ways	fractal	dynamics	has	required	modification	of	the	principle	of
homeostasis	(Goldberger,	2006)	and	how	allometric	control	(West,	2009)	may
replace	homeostatic	control.	Consequently	we	hypothesize	that	complex
physiologic	networks	require	allometric	control.

Another	important	hypothesis	that	developed	from	this	view	of	physiologic	time
series	is	that	disease	and	aging	are	associated	with	the	loss	of	complexity	and	not
with	the	loss	of	regularity	(Goldberger	et	al.,	1990).	This	hypothesis	could	be	a
consequence	of	a	loss	of	interactions	among	component	networks,	or	as	Pincus



(1994)	suggested	the	increased	isolation	of	network	elements	can	result	in	a
decrease	in	the	complexity	of	the	network’s	signal.	The	complexity	hypothesis
may	also	be	related	to	the	idea	that	disease	marks	a	departure	from	normal
physiologic	behavior	and	because	that	departure	may	be	either	more	or	less
irregular	it	has	been	called	â€œdynamic	diseaseâ€​	by	Glass	(2001)	and	is
caused	by	modifications	in	the	underlying	physiologic	control	network.

Fractals
The	fractal	concept	was	formally	introduced	into	the	physical	sciences	by	Beniot
Mandelbrot	over	20â€‰year	ago	in	his	monograph	(Mandelbrot,	1977),	which
brought	together	mathematical,	experimental,	and	physical	arguments	that
undermined	the	traditional	picture	of	the	physical	world.	It	had	been	accepted	that
celestial	mechanics	and	physical	phenomena	are,	by	and	large,	described	by
smooth,	continuous,	and	unique	functions,	since	before	the	time	of	Lagrange
(1736â€“1813).	This	belief	was	part	of	the	conceptual	infrastructure	of	the
physical	sciences.	The	changes	in	physical	processes	were	modeled	by	systems
of	dynamical	equations	and	the	solutions	to	such	equations	are	continuous	and
differentiable	at	all	but	a	finite	number	of	points.	Therefore	the	phenomena	being
described	by	these	equations	were	thought	to	have	these	properties	of	continuity
as	well	as	differentiability.

From	the	phenomenological	side,	Mandelbrot	called	into	question	the	fidelity	of
the	traditional	perspective	by	pointing	to	the	failure	of	the	equations	of	physics	to
explain	such	familiar	phenomena	as	turbulence	and	phase	transitions,	for
example,	the	melting	of	ice	and	the	clotting	of	blood.	In	his	books	(Mandelbrot,
1977,	1982)	Mandelbrot	catalogued	and	described	dozens	of	physical,	social,	and
biological	phenomena	that	cannot	be	properly	described	using	the	familiar	tenants
of	dynamics	from	physics.	The	functions	required	to	explain	these	complex
phenomena	have	properties	that	for	a	100â€‰years	had	been	thought	to	be
mathematically	pathological.	Mandelbrot	argued	that,	rather	than	being	septic;
these	functions	capture	essential	properties	of	reality	and	are	therefore	better
descriptors	of	the	real	world	than	the	traditional	analytic	functions	of	theoretical
physics.

SchrÃ¶dinger	(1943),	using	the	principles	of	equilibrium	statistical	physics,	laid	out
his	understanding	of	the	connection	between	the	world	of	the	microscopic	and
macroscopic.	In	that	discussion	he	asked	why	atoms	are	so	small	relative	to	the
dimension	of	the	human	body.	The	high	level	of	organization	necessary	for	life	is
only	possible	in	a	macroscopic	network;	otherwise	the	order	would	be	destroyed
by	microscopic	(thermal)	fluctuations.	A	living	network	must	be	sufficiently	large	to
maintain	its	integrity	in	the	presence	of	thermal	fluctuations	that	randomly	disrupt
its	constitutive	elements.	Thus,	macroscopic	phenomena	are	characterized	by
averages	over	ensemble	distribution	functions	characterizing	microscopic
fluctuations.	The	dynamics	of	macroscopic	variables	therefore	generally	do	not
contain	thermal	fluctuations;	the	fluctuations	typically	observed	in	physiologic	time



series	are	macroscopic	not	microscopic.	Consequently	any	strategy	for	modeling
physiology	must	be	based	on	an	understanding	of	the	statistical	properties	of
complex	macroscopic	phenomena,	and	as	we	shall	see,	on	our	understanding	of
fluctuating	phenomena	that	lack	characteristic	scales	and	are	therefore	fractal.

There	are	three	types	of	fractals	that	appear	in	the	life	sciences:	geometrical
fractals,	that	determine	the	spatial	properties	of	the	tree-like	structures	of	the
mammalian	lung,	arterial	and	venous	systems,	and	other	ramified	structures
(West	and	Deering,	1994);	statistical	fractals	(Mandelbrot,	1982),	that	determine
the	properties	of	the	distribution	of	intervals	in	the	beating	of	the	mammalian	heart
(Peng	et	al.,	1993),	breathing	(Altemeier	et	al.,	2000),	walking	(Hausdorff	et	al.,
1995;	West	and	Griffin,	1998,	1999;	Griffin	et	al.,	2000)	and	in	the	firing	of	certain
neurons	(Das	et	al.,	2003)	and	finally	dynamical	fractals	(West	et	al.,	2003a),	that
determine	the	dynamical	properties	of	networks	having	a	large	number	of
characteristic	time	scales.	In	complex	physiologic	networks	the	distinctions
between	these	three	kinds	of	fractals	often	blur,	and	herein	we	focus	our	attention
on	the	dynamics	rather	than	on	the	geometry	of	fractals;	although	in	this	journal
we	fully	expect	to	entertain	studies	involving	all	three	types	of	fractals.

Summary
We	have	made	three	interrelated	hypotheses	in	this	Introduction.	This	first	is	that
complex	physiologic	networks	require	allometric	control;	the	second	is	that
disease	is	the	loss	of	complexity;	and	finally	that	the	fractal	dimension	is	a
significantly	better	indicator	of	organismic	functions	in	health	and	disease	than	are
traditional	averages.	These	hypotheses	are	interrelated	due	to	the	fact	that
complex	physiologic	time	series	have	1/f	variability,	manifest	in	an	inverse	power-
law	spectrum,	an	inverse	power-law	probability	density	or	both.	The	power-law
index	is	related	to	the	fractal	dimension,	which	is	a	measure	of	the	complexity	of
the	underlying	process.

In	support	of	these	hypotheses	we	briefly	review	how	such	concepts	as
complexity,	fractals,	diverging	moments,	nonlinear	dynamics,	and	other	related
mathematical	topics	along	with	their	experimental	testing	are	used	to	understand
physiologic	networks.	Of	course,	a	number	of	books	have	been	written	about	any
one	of	these	ideas	â€“	books	for	the	research	expert	(Meakin,	1998),	books	for
the	informed	teacher	(Schroeder,	1991),	books	for	the	struggling	graduate	student
(West,	1999),	and	books	for	the	intelligent	lay	person	(Prigogine	and	Stengers,
1984).	Different	authors	stress	different	characteristics	of	complex	phenomena,
from	the	erratic	data	collected	by	clinical	researchers	(Dewey,	1997)	to	the
fluctuations	generated	by	deterministic	dynamical	equations	used	to	model	such
networks	(Ott,	1993).	Some	authors	have	painted	with	broad	brushstrokes,
indicating	only	the	panorama	that	these	concepts	reveal	to	us	(Briggs	and	Peat,
1971),	whereas	others	have	sketched	with	painstaking	detail	the	structure	of	such
phenomena	and	have	greatly	enriched	those	that	could	follow	the	arguments
(Rosen,	1991).	Herein	we	view	our	efforts	as	being	midway	between	the	two	since



Fractal	Physiology	is	itself	a	hypothesis	that	is	continually	being	tested.



(1)

Manifestations	of	Variability
Healthy	physiologic	network	give	rise	to	time	series	that	display	erratic	fluctuations
not	unlike	those	found	in	dynamical	systems	driven	from	the	vicinity	of	a	set	point,
or	from	an	equilibrium	state	(Stanley	et	al.,	1999).	The	statistical	properties	of
physiological	fluctuations,	such	as	found	in	the	time	series	for	heartbeat
dynamics,	respiration,	human	locomotion,	and	posture	control	(Collins	and
DeLuca,	1994),	have	been	the	focus	of	interdisciplinary	research	on	complex
networks	for	more	than	two	decades	(West,	1999).	The	rationale	for	this	persistent
interest	is	related	in	part	to	the	idea	that	unlike	the	thermal	fluctuations	found	in
physics,	which	perturb	a	system	but	do	not	contain	useful	information,	physiologic
fluctuations	are	often	the	result	of	internal	control	and	therefore	frequently	contain
useful	information.	The	goal	here	is	to	better	understand	self-regulatory	control
systems	for	complex	physiologic	phenomena	that	produce	such	fluctuations	and
to	describe	the	dynamics	of	such	phenomena	with	tools	capable	of	capturing	their
nonlinear	and	often	exotic	statistical	character	(Bassingthwaighte	et	al.,	1994).

One	outcome	of	the	research	into	the	properties	of	these	fluctuations	has	been	a
profound	change	in	our	understanding	of	the	significance	of	homeostasis	and	as
suggested	by	Stanley	et	al.	(1999)	the	possibility	of	their	existing	a	â€œnon-
homeostatic	physiologic	variabilityâ€​.	The	discovery	of	fractal	and	multifractal
properties	in	physiological	time	series	has	lead	to	the	suggestion	that	the	intrinsic
variability	of	many	physiological	phenomena	reflects	the	adaptability	of	the
underlying	control	networks	(West	and	Goldberger,	1987).	Consequently,	the
statistical	properties,	including	correlations	of	physiological	fluctuations,	may	be
more	important	in	the	control	of	health	and	disease	than	are	the	average
properties,	such	as	those	under	homeostatic	control.

Power	laws
Scale	invariance	is	the	property	that	relates	the	elements	of	time	series	across
multiple	time	scales	and	has	been	found	to	hold	empirically	for	a	number	of
complex	physiologic	phenomena	including	the	inter-beat	intervals	of	the	human
heart	(Ivanov	et	al.,	1999;	West	et	al.,	1999a),	switching	times	in	vision	(Gao	et
al.,	2006),	inter-stride	intervals	of	human	gait	(Jordan	et	al.,	2006),	brain	wave
data	from	EEGs	(West	et	al.,	1995)	and	inter-breath	intervals	(Szeto	et	al.,	1992),
to	name	a	few.	One	way	to	understand	scaling	in	these	and	other	experimental
data	is	by	means	of	a	renormalization	group	approach.	Consider	an	unknown
function	Z(t)	that	satisfies	a	relation	of	the	form

Z(bt)	=Â	aZ(t).

We	solve	this	equation	in	the	same	manner	that	differential	equations	are	solved,
by	assuming	a	trial	solution,	inserting	the	trial	solution	into	the	equation	of	motion
and	solving	for	the	appropriate	constants.	In	the	present	case	we	assume	a	trail
solution



(2)

(3)

(4)

(5)

(6)

(7)

Z(t)	=Â	A(t)tÎ¼.

Substituting	Eq.	2	into	both	the	lhs	and	the	rhs	of	Eq.	1	yields	the	condition	that
the	function	A(t)	is	periodic	in	the	logarithm	of	the	time	with	period	log	b,	that	is,
A(bt)â€‰=â€‰A(t),	and	the	power-law	index	has	the	value

In	the	literature	Z(t)	is	called	a	homogeneous	function	(Barenblatt,	1994).	Note
that	the	parameter	a	scales	the	amplitude	of	the	function	being	measured	and	the
parameter	b	scales	the	resolution	of	the	time	scale.	The	power-law	index	is	the
ratio	of	the	logarithms	of	these	two	scaling	parameters,	indicating	how	the
amplitude	of	the	function	is	modified	as	the	units	of	time	are	modified.

The	homogeneous	function	Z(t)	is	now	used	to	define	the	scaling	observed	in	the
moments	calculated	from	the	experimental	time	series	with	long-time	memory.
The	second	moment	of	a	time-dependent	stochastic	process	is	assumed	to	be
Z(t)â€‰=â€‰ã€ˆX(t)2â€‰ã€‰	so	that	it	has	a	long-time	memory	is	given	by
(Bassingthwaighte	et	al.,	1994)

âŒ©X(bt)2âŒª	=Â	b2HâŒ©X(t)2âŒª.

For	the	same	process	a	different	scaling	is	given	for	the	stationary	autocorrelation
function	Z(Ï„)â€‰=â€‰ã€ˆX(t)X(tâ€‰+â€‰Ï„)ã€‰â€‰=â€‰C(Ï„)	yielding
(Bassingthwaighte	et	al.,	1994)

C(bt)	=Â	b2Hâˆ’2C(t).

Finally,	the	spectral	density	for	this	time	series,	given	by	the	Fourier	transform	of
the	autocorrelation	function	and	therefore	in	terms	of	the	frequency	f	as	Z(f)â€
‰=â€‰S(f)	is	(Bassingthwaighte	et	al.,	1994)

S(bf)	=Â	b1âˆ’2HS(f).

The	solutions	to	each	of	these	three	scaling	equations	are	of	precisely	the
algebraic	form	implied	by	Eq.	2,	and	in	the	simplest	case	the	modulation
amplitude	A(t)	is	fixed	at	a	constant	(time-independent)	value.

The	above	renormalization	scaling	yields	a	mean-square	signal	level	that
increases	nonlinearly	with	time	according	to	Eq.	4	as

âŒ©X(t)2âŒªÂ	â ​̂Â	t2H,Â	

and	the	exponent	H	is	a	real	constant,	often	called	the	Hurst	exponent
(Mandelbrot,	1977).	In	a	complex	physiologic	network	the	response	X(t)	is
expected	to	depart	from	the	entirely	random	condition	of	a	simple	random	walk
model,	because	real	fluctuations	are	expected	to	have	memory	and	correlation
quantified	by	H.	In	the	physics	literature	anomalous	diffusion	(Hâ€‰â‰	â€‰0.5)
is	associated	with	phenomena	with	long-time	memory	such	that	the	two-time
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autocorrelation	function	is	(Bassingthwaighte	et	al.,	1994;	Beran,	1994)

C(t1,Â	t2)	=Â	âŒ©X(t1)X(t2)âŒªÂ	â ​̂Â	|t1âˆ’t2|Î².

Here	the	power-law	index	is	given	by	Î²â€‰=â€‰2Hâ€‰âˆ’â€‰2	in	agreement
with	Eq.	5.	Note	that	the	two-point	autocorrelation	function	is	assumed	to	depend
only	on	the	time	difference,	thus,	the	underlying	process	is	stationary.	The
autocorrelation	function	is	an	inverse	power	law	in	time	because	0â€‰â‰¤â€
‰Hâ€‰â‰¤â€‰1	implying	that	the	correlation	between	data	points	decreases	in
time	with	increasing	time	separation.	Note	that	inverse	power	law	loss	of	memory
is	much	slower	than	the	exponential	decay	that	is	often	assumed.	This	scaling
behavior	is	also	manifest	in	the	spectrum,	which	according	to	Eq.	6	is	a	power	law
in	frequency	f:

and	is	inverse	power	law	for	Hâ€‰>â€‰0.5,	a	superdiffusive	process.

These	three	properties,	the	algebraic	increase	in	time	of	the	mean-square	signal
strength	(Eq.	7),	the	inverse	power	law	in	time	of	the	stationary	autocorrelation
function	(Eq.	8)	and	the	inverse	power	law	in	frequency	of	the	spectrum	(Eq.	9),
are	typical	of	observed	physiologic	time	series.	These	properties	are	usually
assumed	to	be	the	result	of	long-time	memory	in	the	underlying	statistical
process.	Beran	(1994)	discusses	these	power-law	properties	of	the	spectrum	and
autocorrelation	function,	as	well	as	a	number	of	other	properties	for	discrete	and
continuous	time	series.	In	particular	he	points	out	that	the	interpretation	in	terms
of	how	to	generate	long-time	memory	in	complex	networks	is	not	unique	and
reviews	the	use	of	fractional	difference	random	walks.	Herein	we	extend	the
discussion	to	fractional	stochastic	differential	equations	(West,	1999)	and	the
dynamics	of	fractals.	But	first	we	note	the	long	history	associated	with	the	1/f
spectrum	(Eq.	9).

The	phenomenon	of	1/f	noise	was	discovered	by	Schottky	(1918)	at	the	turn	of	the
last	century	in	his	study	of	electrical	conductivity.	Between	then	and	now	this
spectral	form	has	been	found	in	biological,	economic,	linguistic,	medical,
neurological,	and	social	phenomena	as	well	as	in	physics	(West	et	al.,	2008).	The
spectra	of	such	complex	phenomena	are	given	by	Eq.	9	and	the	spectral	index
falls	within	the	interval	0.5â€‰<â€‰Î±â€‰<â€‰1.5.	Complex	phenomena	span
the	dynamic	range	from	the	macroscopic	behavioral	level	down	to	the	microscopic
level.	It	is	evident	that	1/f	variability	appears	in	body	movements	such	as	walking,
postural	sway,	and	movement	in	synchrony	with	external	stimulation	such	as	a
metronome;	also	such	variability	resides	in	physiologic	networks	as	manifest	in
heart	rate	variability	(HRV,	Task	Force	of	the	European	Society	of	Cardiology	and
the	North	American	Society	of	Pacing	and	Electrophysiolgy,	1996),	human	vision
(Alvarez-Ramirez	et	al.,	2008),	the	dynamics	of	the	human	brain	(Gilden,	2001;
Grigolini	et	al.,	2009),	and	in	human	cognition	(Van	Orden	et	al.,	2005;	Kello	et	al.,
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2007);	also	1/f	noise	is	measured	at	the	level	of	single-ion	channels	(Liebovitch
and	Krekora,	2002;	Roy	et	al.,	2008)	and	in	single	neuron	adaptation	to	various
stimuli	(Das	et	al.,	2003).	Each	of	these	psychophysical	phenomena	manifests	1/f
variability	(West	et	al.,	2008).	The	original	assertion	that	Î±â€‰=â€‰1	was	shown
in	these	subsequent	studies	to	extend	the	spectral	index	to	the	broader	range
indicated.

Allometric	relations
The	term	scaling	denotes	a	power-law	relation	between	two	variables	x	and	y

y	=Â	AxÎ±,Â	

and	as	Barenblatt	(1994)	explained	such	scaling	laws	are	not	merely	special
cases	of	more	general	relations;	they	never	appear	by	accident	and	they	always
reveal	self-similarity.	In	biology	Eq.	10	is	historically	referred	to	as	an	allometric
relation	between	two	observables.	Such	relations	were	introduced	into	biology	in
the	nineteenth	century.	Typically	an	allometric	equation	relates	two	properties	of	a
given	organism.	For	example,	the	total	mass	of	a	deer	y	is	proportional	to	the
mass	of	the	deer’s	antlers	x	raised	to	a	specific	power	Î±.	Huxley	summarized	the
experimental	basis	for	this	relation	in	his	1931	book	(Huxley,	1931)	and	developed
the	mathematics	to	describe	and	explain	allometric	growth	laws.	He	reasoned	that
in	biological	systems	two	parts	of	an	organism	grow	at	different	rates,	but	the
growth	rates	are	proportional	to	one	another.	Consequently,	how	rapidly	one	part
of	the	organism	grows	can	be	related	to	how	rapidly	the	other	part	of	the	organism
grows	and	the	ratio	of	the	two	rates	is	constant.	Another	such	application	has	y	as
the	body’s	metabolic	rate	with	x	the	body’s	mass	and	recent	theory	in	terms	of
fractal	transport	of	material	within	the	body	purports	to	explain	the	observed	value
of	the	power-law	index	Î±â€‰â‰ˆâ€‰0.75(West	et	al.,	1997).

The	notion	of	an	allometric	relation	has	been	generalized	to	include	measures	of
time	series.	In	this	view	y	is	interpreted	to	be	the	variance	and	x	the	average	value
of	the	quantity	being	measured.	The	fact	that	these	two	central	measures	of	a
time	series	satisfy	an	allometric	relation	implies	that	the	underlying	time	series	is	a
fractal	random	process	and	therefore	scales.	It	was	first	determined	empirically
that	certain	statistical	data	satisfy	a	power-law	relation	of	the	form	(Eq.	10)	by
Taylor	(1961)	and	this	is	where	we	begin	our	discussion	of	the	allometric
aggregation	method	of	data	analysis.

Taylor	was	interested	in	biological	speciation.	For	one	thing,	he	was	curious	about
how	many	species	of	beetle	can	be	found	in	a	given	area	of	land	and	he	therefore
sectioned	off	a	large	field	into	plots.	In	each	plot	he	sampled	the	soil	for	the	variety
of	beetles	that	were	present.	This	enabled	him	to	determine	the	distribution	in	the
number	of	new	species	of	beetle	spatially	distributed	across	the	field.	From	the
distribution	he	could	then	extract	the	average	number	of	new	species	 	and	the
variance	in	the	number	of	new	species	VarX.	After	this	first	calculation	he
partitioned	his	field	into	smaller	plots	and	redid	the	sampling,	again	determining
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the	mean	and	variance	in	the	number	of	species	at	this	increased	resolution.	This
process	was	repeated	a	number	of	times,	yielding	a	set	of	values	for	the	mean
and	variance.	In	the	ecological	literature	a	graph	of	the	logarithm	of	the	variance
versus	the	logarithm	of	the	average	value	is	called	a	power	curve,	which	is	linear
in	the	logarithms	of	the	two	variables	and	b	is	the	slope	of	the	curve.	The
algebraic	form	of	the	relation	between	the	variance	and	mean	is

where	the	two	parameters	a	and	b	determine	how	the	variance	and	mean	are
related	to	one	another.

Taylor	(1961)	exploited	the	curves	obtained	from	data	in	a	number	of	ways	using
the	slope	and	intercept	parameters.	If	the	slope	of	the	curve	and	the	intercept	are
both	equal	to	1,	aâ€‰=â€‰bâ€‰=â€‰1,	then	the	variance	and	mean	are	equal
to	one	another.	This	equality	is	only	true	for	a	Poisson	distribution,	which,	when	it
occurred,	allowed	him	to	interpret	the	number	of	new	species	as	being	randomly
distributed	over	the	field,	with	the	number	of	species	in	any	one	plot	being
independent	of	the	number	of	species	in	any	other	plot.	If,	however,	the	slope	of
the	curve	was	less	than	unity,	the	number	of	new	species	appearing	in	the	plots
was	interpreted	to	be	quite	regular.	The	spatial	regularity	of	the	number	of
species,	in	this	case,	was	compared	with	the	trees	in	an	orchard	and	given	the
name	evenness.	Finally,	if	the	slope	of	the	variance	versus	mean	curve	was
greater	than	1,	the	number	of	new	species	was	interpreted	as	being	clustered	in
space,	like	disjoint	herds	of	sheep	grazing	in	a	meadow.	This	clustering	is	a	form
of	spatial	intermittency.

Of	particular	interest	to	us	here	was	the	mechanism	that	Taylor	and	Taylor	(1977)
postulated	to	account	for	the	experimentally	observed	allometric	relation:

We	would	argue	that	all	spatial	dispositions	can	legitimately	be	regarded	as
resulting	from	the	balance	between	two	fundamental	antithetical	sets	of	behavior
always	present	between	individuals.	These	are,	repulsion	behavior,	which	results
from	the	selection	pressure	for	individuals	to	maximize	their	resources	and	hence
to	separate,	and	attraction	behavior,	which	results	from	the	selection	pressure	to
make	the	maximum	use	of	available	resources	and	hence	to	congregate	wherever
these	resources	are	currently	most	abundant.

Consequently,	they	postulated	that	it	is	the	tension	between	the	attraction	and
repulsion,	migration	and	congregation,	which	produces	the	interdependence
(scaling)	of	the	spatial	variance	and	the	average	population	density.	We	suggest
that	this	mechanism	is	generic	and	may	underlie	a	number	of	natural	phenomena
including	those	in	complex	physiologic	networks.

We	can	now	reinterpret	Taylor’s	observations	because	the	kind	of	clustering	he
observed	in	the	spatial	distribution	of	species	number,	when	the	slope	of	the
power	curve	is	greater	than	1,	is	consistent	with	an	asymptotic	inverse	power-law
distribution	of	the	underlying	data	set.	Furthermore,	the	clustering	or	clumping	of
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events	is	due	to	the	fractal	nature	of	the	underlying	dynamics.	Willis,	some	40â€
‰years	before	Taylor,	established	the	inverse	power-law	form	of	the	number	of
species	belonging	to	a	given	genera	(Willis,	1922).	Willis	used	an	argument
associating	the	number	of	species	with	the	size	of	the	area	they	inhabit.	It	was	not
until	the	decade	of	the	1990s	that	it	became	clear	to	more	than	a	handful	of
experts	that	the	relationship	between	an	underlying	fractal	process	and	its	space
filling	character	obeys	a	scaling	law	(Mandelbrot,	1977,	1982).	It	is	this	scaling	law
that	is	manifest	in	the	allometric	relation	between	the	variance	and	mean.

It	is	possible	to	test	the	allometric	relation	of	Taylor	using	computer-generated
data.	But	before	we	do	so,	we	note	that	Taylor	and	Woiwod	(1980)	were	able	to
extend	the	discussion	from	the	stability	of	the	population	density	in	space,
independent	of	time,	to	the	stability	of	the	population	density	in	time,	independent
of	space.	Consequently,	just	as	spatial	stability,	as	measured	by	the	variance,	is	a
power	function	of	the	mean	population	density	over	a	given	area	at	all	times,	so
too	the	temporal	stability,	as	measured	by	the	variance,	is	a	power	function	of	the
mean	population	density	over	time	at	all	locations.	With	this	generalization	in	hand
we	apply	Taylor’s	Law	to	time	series.

Scaling	time	series
Allometric	relations	such	as	Eq.	10	have	been	extended	to	include	measures	of
time	series.	In	this	extended	view	y	is	interpreted	to	be	the	variance	and	x	the
average	value	of	the	quantity	being	measured	as	in	Taylor’s	Law	(Eq.	11).	The
fact	that	these	two	central	measures	of	the	time	series	satisfy	an	allometric
relation	implies	that	the	underlying	time	series	is	a	fractal	random	process.	The
scaling	of	time	series	data	is	here	determined	by	grouping	the	data	into
aggregates	of	two,	three,	and	more	of	the	original	data	points	and	calculating	the
mean	and	variance	at	each	level	of	aggregation.	The	idea	is	that	if	the	data	are
fractal	in	nature	then	we	need	not	increase	the	resolution	as	Taylor	did.	We	should
be	able	to	determine	the	scaling	behavior	by	coarse	graining	or	aggregating	the
data.	In	this	spirit	the	variance,	for	a	monofractal	random	time	series,	is	given	by
(Bassingthwaighte	et	al.,	1994)

where	the	superscript	on	the	variable	indicates	that	it	is	determined	using	the
aggregation	of	n-adjacent	data	points.	It	is	well	established	(Mandelbrot,	1977;
Bassingthwaighte	et	al.,	1994)	that	the	exponent	in	a	scaling	equation	such	as	Eq.
12	is	related	to	the	fractal	dimension	D	of	the	underlying	time	series	by	the
relation	Dâ€‰=â€‰2â€‰âˆ’â€‰H.

The	allometric	aggregation	approach	has	been	applied	to	a	number	of	data	sets
implementing	linear	regression	analysis	to	the	logarithms	of	the	variances	and	the
averages	as	follows:
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Consequently	the	processed	data	from	self-similar	data	would	appear	as	straight
lines	on	logâ€“log	graph	paper.	For	example,	in	Figure	1	we	apply	Eq.	13	to	one
million	computer-generated	data	points	with	Gaussian	statistics.	The	far	left	dot	in
this	figure	contains	all	the	data	in	the	calculation	of	the	aggregated	mean	and
variance	so	that	nâ€‰=â€‰1	in	Eq.	13.	The	next	point	to	the	right	in	the	figure
contains	the	nearest-neighbor	data	points	added	together	to	define	a	data	set	with
a	half	million	data	points	from	which	to	calculate	the	mean	and	variance	and	so	on
moving	from	left	to	right.	Consequently,	this	process	of	aggregating	the	data	is
equivalent	to	decreasing	the	resolution	of	the	time	series	and	as	the	resolution	is
systematically	decreased,	the	adopted	measure,	the	allometric	relation	between
the	mean	and	variance,	reveals	an	underlying	property	of	the	time	series.	The
increase	in	the	variance	with	increasing	average	values	for	increasing	aggregation
number	shown	in	the	figure	is	not	an	arbitrary	pattern.	The	curve	indicates	that	the
aggregated	data	points	are	interconnected.	The	original	computer-generated	data
points	are	not	correlated,	but	the	adding	of	data	points	in	the	aggregation	process
induces	a	correlation,	one	that	is	completely	predictable.	The	induced	correlation
is	linear	if	the	original	data	is	uncorrelated,	but	the	induced	correlation	is	not	linear
if	the	original	data	is	correlated.

View	larger	version

Figure	1.	The	logarithm	of	the	variance	is	plotted	versus	the	logarithm	of	the
mean	for	the	successive	aggregation	of	106	computer-generated	random	data
points	with	Gaussian	statistics.	The	slope	of	the	curve	is	essentially	one,
determined	by	a	linear	regression	using	Eq.	13,	so	the	fractal	dimension	of	the	time

series	is	Dâ€‰=â€‰1.5.

The	aggregated	variance	versus	the	aggregated	mean	falls	along	a	straight	line	in
Figure	1	with	a	slope	of	1	for	the	uncorrelated	random	process	with	computer-
generated	Gaussian	statistics.	Therefore,	in	the	case	of	Gaussian	statistics,	we
obtain	from	the	slope	of	the	curve	bâ€‰=â€‰1,	so	that	the	fractal	dimension	is
given	by	Dâ€‰=â€‰2â€‰âˆ’â€‰b/2â€‰=â€‰1.5	corresponding	to	the	fractal
dimension	of	Brownian	motion	(Suki	et	al.,	2003).	In	the	same	way	a	completely
regular	time	series	would	have	bâ€‰=â€‰2,	so	that	Dâ€‰=â€‰1.	The	fractal
dimension	for	most	time	series	fall	somewhere	between	these	two	extremes;	the
closer	the	fractal	dimension	is	to	1,	the	more	regular	the	process;	the	closer	the
fractal	dimension	is	to	1.5,	the	more	it	is	like	an	uncorrelated	random	process.	The
data	analyzed	in	Figure	1	certainly	have	a	single	fractal	dimension	characterizing
the	entire	computer-generated	time	series.	If	the	power-law	index,	the	slope	of	the
above	curve,	is	1	then	the	data	are	from	an	uncorrelated	random	process.	If	the
index	is	greater	than	1	then	the	data	cluster,	indicating	correlations	in	the	random
process	as	interpreted	by	Taylor.



We	emphasize	that	the	allometric	aggregation	approach	is	just	one	of	many
procedures	designed	to	take	advantage	of	the	scaling	properties	of	the	central
moments	of	time	series.	We	refer	to	such	methods	collectively	as	finite	variance
statistical	methods	(FVSM).	However,	it	should	be	emphasized	that	not	all	time
series	that	scale	have	finite	variance.	Time	series	having	LÃ©vy	Î±-stable
statistics	exemplify	processes	with	diverging	variance,	but	they	are	described	by
probability	density	functions	that	scale	(West,	1999).	We	review	these	matters
after	some	discussion	of	the	scaling	properties	of	physiological	time	series.

Fractal	time	series
Let	us	consider	the	time	series	from	a	number	of	complex	physiologic	networks
such	as	the	cardiovascular,	the	respiratory,	and	the	motor	control.	In	each	case	a
time	series	associated	with	the	particular	physiologic	network	is	found	to	be	a
random	fractal	as	determined	by	scaling	behavior.	We	have	applied	the	allometric
aggregation	approach	to	these	time	series	and	others	as	reviewed	by	West
(2006a)	and	here	we	begin	the	discussion	with	the	observed	variability	of	the
inter-beat	intervals	of	the	heart.

The	mechanisms	producing	the	observed	variability	in	the	size	of	a	human	heart’s
inter-beat	intervals	apparently	arise	from	a	number	of	sources.	The	sinus	node
(the	heart’s	natural	pacemaker)	receives	signals	from	the	autonomic	(involuntary)
portion	of	the	nervous	system	that	has	two	major	branches:	the	parasympathetic,
whose	stimulation	decreases	the	firing	rate	of	the	sinus	node,	and	the
sympathetic,	whose	stimulation	increases	the	firing	rate	of	the	sinus	node
pacemaker	cells.	The	influence	of	these	two	branches	produces	a	continual	tug-
of-war	on	the	sinus	node,	one	decreasing	and	the	other	increasing	the	heart	rate.
It	has	been	suggested	that	it	is	this	tug-of-war	that	produces	the	fluctuations	in	the
heart	rate	of	healthy	subjects	in	direct	analogy	with	the	observations	of	Taylor	and
Woiwod	(1980),	but	alternate	suggested	mechanisms	are	pursued	subsequently.
Consequently,	HRV	provides	a	window	through	which	we	can	observe	the	heart’s
ability	to	respond	to	normal	disturbances	that	can	affect	its	rhythm.	The	clinician
focuses	on	retaining	the	balance	in	regulatory	impulses	from	the	vagus	nerve	and
sympathetic	nervous	system	and	in	this	effort	requires	a	robust	measure	of	that
balance	(West	et	al.,	2008).	A	quantitative	measure	of	HRV	time	series,	such	as
the	fractal	dimension,	serves	this	purpose.

Heart	rate	variability	time	series	have	been	used	as	a	quantitative	indicator	of
autonomic	activity.	Physicians	became	interested	in	developing	this	indicator	of
variability	because	experiments	indicated	a	relationship	with	lethal	arrhythmias.	A
task	force	was	formed	and	charged	with	the	responsibility	of	developing	the
standards	of	measurement,	physiological	interpretation	and	clinical	use	of	HRV.
They	published	their	findings	(Task	force	of	the	European	Society	of	Cardiology
the	North	American	Society	of	Pacing	Electrophysiolgy,	1996)	in	1996	after	which
time	the	importance	of	HRV	to	medicine	became	more	widely	apparent.

When	an	individual’s	heart	rate	is	not	typical	it	is	evident	that	quantifying	the



variation	in	heart	rate	is	consequential.	There	are	a	number	of	ways	to	calculate
measures	of	HRV,	some	sixteen	at	last	count,	each	related	to	scaling	in	one	way
or	another	and	most	being	in	the	FVSM	category.	However	it	would	not	be
productive	to	review	them	all	here.	Instead	we	identify	the	scaling	index	as	the
most	revealing	of	the	characteristics	of	HRV	and	use	the	allometric	aggregation
approach	relating	the	variance	and	mean	of	empirical	data	to	determine	the
scaling	index	or	equivalently	the	fractal	dimension.	We	apply	the	allometric
aggregation	approach	to	the	heart’s	RR-intervals	for	a	healthy	young	adult	male	in
Figure	2.

View	larger	version

Figure	2.	The	logarithm	of	the	standard	deviation	is	plotted	versus	the
logarithm	of	the	average	value	for	the	heartbeat	interval	time	series	for	a	young
adult	male,	using	sequential	values	of	the	aggregation	number	(West,	2006a).

The	solid	line	segment	is	the	best	fit	to	the	aggregated	data	points	and	yields	a	fractal	dimension	Dâ€
‰=â€‰1.24	midway	between	the	curve	for	a	regular	process	(Dâ€‰=â€‰1)	and	that	for	an
uncorrelated	random	process	(Dâ€‰=â€‰1.5)	as	indicated	by	the	dashed	curves.

In	Figure	2	the	logarithm	of	the	standard	deviation	is	plotted	versus	the	logarithm
of	the	mean	value	for	a	typical	HRV	time	series.	Note	that	we	use	the	standard
deviation	in	the	figure	and	not	the	variance	but	there	is	no	essential	difference	in
the	discussion.	At	the	left-most	position	the	data	points	indicates	the	standard
deviation	and	mean	using	all	the	data	points.	Moving	from	left	to	right	the	next
data	point	is	constructed	from	the	time	series	with	two	nearest-neighbor	data
points	added	together	and	the	procedure	is	repeated	moving	right	until	the	right-
most	data	point	has	20	nearest-neighbor	data	points	added	together.	The	solid
line	segment	is	the	best	linear	representation	of	the	scaling	obtained	using	a
mean-square	minimization	procedure	that	intercepts	most	of	the	data	points	with	a
positive	slope	of	0.76.	We	can	see	that	the	slope	of	the	HRV	data	is	midway
between	the	dashed	curves	depicting	an	uncorrelated	random	process	(slopeâ€
‰=â€‰1/2)	and	one	that	is	deterministically	regular	(slopeâ€‰=â€‰1).

We	emphasize	that	the	conclusions	we	draw	here	are	not	from	this	single	figure	or
set	of	data	presented,	but	are	representative	of	a	much	larger	body	of	work.	The
conclusions	are	based	on	a	large	number	of	similar	observations	(West,	1999;
Glass,	2001;	Suki	et	al.,	2003)	made	using	a	variety	of	data	processing
techniques,	all	of	which	yield	results	consistent	with	the	scaling	of	the	HRV	time
series	indicated	in	Figure	2.	So	we	conclude	that	the	heartbeat	intervals	do	not
form	an	uncorrelated	random	sequence.	Instead	we	see	that	the	HRV	time	series
is	a	statistical	fractal,	indicating	that	the	heartbeats	have	long-time	memory.	The
implications	of	this	long-time	memory	concerning	the	underlying	physiological
control	system	are	taken	up	in	the	subsequent	discussion	of	the	mathematical
models.

Scaling	phenomena,	such	as	shown	for	the	HRV	time	series	data	in	Figure	2,	are
said	to	be	self-similar.	The	fact	that	the	standard	deviation	and	mean	values



change	in	a	certain	way	as	a	function	of	aggregation	number	implies	that	the
magnitudes	of	these	measures	depend	on	the	size	of	the	ruler	used	to	measure
the	time	interval.	Recall	that	this	is	one	of	the	defining	characteristics	of	fractal
curves;	the	length	of	the	curve	becomes	infinite	as	the	size	of	the	ruler	goes	to	0.
The	dependence	of	the	mean	and	standard	deviation	on	the	ruler	size,	for	a	self-
similar	time	series,	implies	that	the	statistical	process	is	fractal	and	consequently
defines	a	fractal	dimension	for	the	HRV	time	series.

The	average	scaling	exponent	obtained	by	Peng	et	al.	(1993)	for	a	group	of	10
healthy	subjects	having	a	mean	age	of	44â€‰years,	using	10000	data	points	for
each	subject,	was	bâ€‰=â€‰0.19	for	the	difference	in	heartbeat	interval	time
series,	not	the	heartbeat	intervals	themselves.	They	interpreted	this	value	to	be
consistent	with	a	theoretical	value	of	bâ€‰=â€‰0,	which	they	conjectured	would
be	obtained	for	an	infinitely	long	time	series.	The	latter	scaling	implies	that	the
scaling	exponent	for	the	heartbeat	intervals	themselves	would	be	1.0.	However,
all	data	sets	are	finite	and	it	was	determined	that	the	asymptotic	scaling
coefficients	for	the	heartbeat	interval	time	series	of	healthy	young	adults	lie	in	the
interval	0.7â€‰â‰¤â€‰bâ€‰â‰¤â€‰1.0.	The	value	of	the	scaling	coefficient
obtained	using	much	shorter	time	series	and	the	relatively	simple	processing
technique	of	allometric	aggregation	is	consistent	with	these	results.

We	also	investigate	in	the	same	way	the	dynamics	of	breathing;	the	apparently
regular	breathing	as	you	sit	quietly	reading	this	paper.	Here	evolution’s	design	of
the	lung	may	be	closely	tied	to	the	way	the	lung	carries	out	its	function.	It	is	not	by
accident	that	the	cascading	branches	of	the	bronchial	tree	become	smaller	and
smaller,	nor	is	it	good	fortune	alone	that	ties	the	dynamics	of	our	every	breath	to
this	physiologic	structure.	We	argue	that,	like	the	heart,	the	lung	is	made	up	of
fractal	processes,	some	dynamic	and	others	now	static.	As	with	the	heart,	the
variability	of	the	breathing	rate	using	breath-to-breath	time	intervals	is	denoted	by
breathing	rate	variability	(BRV),	to	maintain	a	consistent	notation.	We	present	a
BRV	plot	in	Figure	3	and	obtain	a	figure	similar	to	that	in	Figure	2.	Both	kinds	of
processes	lack	a	characteristic	scale	and	a	simple	argument	establishes	that	such
lack	of	scale	has	evolutionary	advantages	(West,	1990).	Here	again	we	observe
that	the	data	fall	on	a	line	segment	midway	between	the	regular	and	the	random
with	a	fractal	dimension	of	Dâ€‰=â€‰1.14,	perhaps	tilting	more	toward	the
regular.	It	is	also	observed	that	as	we	age	the	fractal	dimension	increases	and	our
breathing	becomes	increasingly	random	â€“	a	loss	of	regularity	with	age	(West,
2006a).

View	larger	version

Figure	3.	A	fit	to	the	aggregated	standard	deviation	versus	the	aggregated
mean	for	a	typical	BRV	time	series	(West,	2006a)	is	depicted.	The	points	are
calculated	from	the	data	and	the	solid	curve	is	the	best	least-square	fit	to	the
processed	BRV	data	and	yields	a	fractal	dimension	Dâ€‰=â€‰1.14	midway	between
the	curve	for	a	regular	process	(Dâ€‰=â€‰1)	and	that	for	an	uncorrelated	random

process	(Dâ€‰=â€‰1.5)	as	indicated	by	the	dashed	curves.



Such	observations	regarding	the	self-similar	nature	of	breathing	time	series	have
been	used	in	a	medical	setting	to	produce	a	revolutionary	way	of	utilizing
mechanical	ventilators.	Historically	ventilators	have	been	used	to	facilitate
breathing	after	an	operation	and	have	a	built-in	frequency	of	ventilation.	The
single-frequency	ventilator	design	has	recently	been	challenged	by	Mutch	et	al.
(2000),	who	have	used	an	inverse	power-law	spectrum	of	respiratory	rate	to	drive
a	variable	ventilator.	They	demonstrated	that	this	way	of	supporting	breathing
produces	an	increase	in	arterial	oxygenation	over	that	produced	by	conventional
control-mode	ventilators.	This	comparison	indicates	that	the	fractal	variability	in
breathing	is	not	the	result	of	happenstance,	but	is	an	important	property	of
respiration.	A	reduction	in	variability	of	breathing	reduces	the	overall	efficiency	of
the	respiratory	system.

Altemeier	et	al.	(2000)	measured	the	fractal	characteristics	of	ventilation	and
determined	that	not	only	are	local	ventilation	and	perfusion	highly	correlated,	but
they	scale	as	well.	Finally,	Peng	et	al.	(2002)	analyzed	the	BRV	time	series	for	40
healthy	adults	and	found	that	under	supine,	resting,	and	spontaneous	breathing
conditions,	the	time	series	scale.	This	result	implies	that	human	BRV	time	series
have:	â€œlong-range	(fractal)	correlations	across	multiple	time	scales.â€​

Another	exemplar	of	the	many	fractal	time	series	is	that	for	walking.	Applying	the
allometric	aggregation	approach	to	stride	rate	variability	(SRV)	time	series	(West
and	Griffin,	1998,	1999;	Griffin	et	al.,	2000)	determines	the	scaling	index	as	shown
in	Figure	4.	Note	the	similarity	of	these	last	three	figures.	So,	as	in	the	cases	of
HRV	and	BRV	time	series,	we	again	find	an	erratic	physiological	time	series	to
represent	a	random	fractal	process	(West,	2006b).	In	the	SRV	context,	the	implied
clustering	indicated	by	a	slope	greater	than	the	random	dashed	line	means	that
the	intervals	between	strides	change	in	clusters	and	not	in	a	uniform	manner	over
time.	This	result	suggests	that	the	walker	does	not	smoothly	adjust	his/her	stride
from	step	to	step.	Rather,	there	are	a	number	of	steps	over	which	adjustments	are
made	followed	by	a	number	of	steps	over	which	the	changes	in	stride	are
completely	random.	The	number	of	steps	in	the	adjustment	process	and	the
number	of	steps	between	adjustment	periods	are	not	independent.	The	results	of
a	substantial	number	of	stride	interval	experiments	support	the	universality	of	this
interpretation.

View	larger	version

Figure	4.	A	fit	to	logarithm	of	the	aggregated	standard	deviation	versus	the
logarithm	of	the	aggregated	mean	of	SRV	data	for	a	typical	walker	(West,	2006a)
is	depicted.	The	points	are	calculated	from	the	data	and	the	solid	curve	is	the	best
least-square	fit	to	the	processed	SRV	data	and	yields	a	fractal	dimension	Dâ€‰=â€

‰1.3	midway	between	the	curve	for	a	regular	process	(Dâ€‰=â€‰1)	and	that	for	an	uncorrelated
random	process	(Dâ€‰=â€‰1.5)	as	indicated	by	the	dashed	curves.

The	SRV	time	series	for	sixteen	healthy	adults	were	downloaded	from	PhysioNet
and	the	allometric	aggregation	approach	carried	out.	Each	of	the	curves	looked



more	or	less	like	that	in	Figure	4,	with	the	experimental	curve	being	closer	to	the
indicated	regular	or	the	random	limits	(dashed	curves).	On	average	the	16
individuals	have	fractal	dimensions	for	gait	in	the	interval	1.2â€‰â‰¤â€‰Dâ€
‰â‰¤â€‰1.3	(West	and	Griffin,	2003).	The	fractal	dimension	obtained	from	the
analysis	of	an	entirely	different	dataset,	obtained	using	a	completely	different
protocol,	yields	consistent	results	(Jordan	et	al.,	2006).	The	narrowness	of	the
interval	around	the	fractal	dimension	suggests	that	this	quantity	may	be	a	good
quantitative	measure	of	an	individual’s	dynamical	variability.	We	suggest	the	use
of	the	fractal	dimension	as	a	quantitative	measure	of	how	well	the	motor	control
system	is	doing	in	regulating	locomotion.	Furthermore,	excursions	outside	the
narrow	interval	of	fractal	dimension	values	for	apparently	healthy	individuals	may
be	indicative	of	hidden	pathologies.

It	should	not	go	unnoticed	that	people	use	pretty	much	the	same	control	system
when	they	are	standing	still,	maintaining	balance,	as	they	do	when	they	are
walking.	This	observation	would	lead	one	to	suspect	that	the	body’s	slight
movements	around	the	center	of	mass	of	the	body,	would	have	the	same
statistical	behavior	as	that	observed	during	walking.	These	tiny	movements	are
called	postural	sway	in	the	literature	and	have	been	interpreted	using	random
walks	(Collins	and	DeLuca,	1994).	It	has	been	determined	that	postural	sway	may
well	be	chaotic	(Blaszczyk	and	Klonowski,	2001),	so	one	might	expect	that	there
exists	a	relatively	simple	dynamical	model	for	balance	regulation	that	can	be	used
in	medical	diagnosis.	Here	again	fractal	dynamics	can	be	determined	from	the
scaling	properties	of	postural	sway	time	series	and	it	is	determined	that	a
decrease	of	postural	stability	is	accompanied	by	an	increase	of	fractal	dimension.
Consequently,	it	has	been	conjectured	that	the	control	of	human	movement	and
postural	behaviors	occurs	as	a	scaling	process	(Hong	et	al.,	2006).



Control	of	Variability
The	physiological	time	series	processed	in	the	previous	section	clearly	show	that
the	complex	phenomena	supporting	life,	although	they	may	appear	to	be	random,
do	in	fact	scale	in	time	and	therefore	contain	information	about	the	underlying
dynamic	process.	This	scaling	indicates	that	the	fluctuations	that	occur	on	multiple
time	scales	are	tied	together	and	the	way	we	understand	such	interdependency	in
the	physical	sciences	is	through	underlying	mechanisms	that	are	coupled	one	to
the	other.	This	coupling	is	typically	done	through	the	equations	of	motion
governing	the	dynamical	description	of	the	process.	Unfortunately	we	generally	do
not	have	available	such	dynamic	equations	to	describe	physiologic	phenomena.
Therefore	we	must	take	a	more	phenomenological	approach	and	develop
mathematical	models	to	explain	the	patterns	in	the	data	based	on	heuristic
reasoning.

The	individual	mechanisms	giving	rise	to	the	observed	statistical	properties	in
physiological	networks	are	very	different,	so	we	do	not	attempt	to	find	a	common
source	to	explain	the	observed	scaling	in	walking,	breathing,	thinking,	and	the
heart	beating.	On	the	other	hand,	the	physiological	time	series	in	each	of	these
phenomena	scale	in	the	same	mathematical	way;	they	have	1/f	variability,	so	that
at	a	certain	level	of	abstraction	the	separate	mechanisms	cease	to	be	important
and	only	the	relations	matter	and	not	those	things	being	related.	Consider	that
traditionally	such	relations	have	been	assumed	to	be	linear,	and	their	control	was
assumed	to	be	in	direct	proportion	to	the	disturbance	through	negative	feedback.
Classical	control	theory	has	been	the	backbone	of	homeostasis,	but	it	is	not
sufficient	to	describe	the	full	range	of	variability	in	HRV,	SRV,	and	BRV	time
series,	and	the	variability	in	other	physiologic	networks,	since	it	cannot	explain
how	the	statistics	of	these	time	series	become	fractal,	or	how	the	fractal
dimension	changes	over	time	(West	and	Deering,	1994;	Ivanov	et	al.,	1998;	West
et	al.,	2008).

The	issue	we	address	in	this	section	is	control	of	variability.	Such	control	is	one	of
the	goals	of	medicine,	in	particular,	understanding	and	controlling	physiological
networks	in	order	to	insure	their	proper	operation.	We	distinguish	between
homeostatic	control	and	allometric	control;	the	former	is	familiar	and	has	a
negative	feedback	character,	which	is	both	local	and	rapid;	the	latter	is	a	relatively
new	concept	that	can	take	into	account	long-time	memory	(West,	2009).	The	long-
time	memory	is	manifest	in	correlations	that	are	inverse	power	law	in	time,	as	well
as,	long-range	interactions	in	complex	phenomena	as	manifest	by	inverse	power-
law	distributions	in	the	network	variable.	Allometric	control	introduces	the	fractal
character	into	otherwise	featureless	random	time	series	to	enhance	the
robustness	of	physiological	networks.	We	introduce	the	fractional	calculus	as	one
way	to	describe	the	control	of	physiologic	networks	(West	and	Griffin,	2003).

It	is	not	only	a	new	kind	of	control	that	is	suggested	by	the	scaling	of	physiologic
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time	series.	Scaling	also	suggests	that	the	historical	notion	of	disease,	which	has
the	loss	of	regularity	at	its	core,	is	inadequate	for	the	treatment	of	dynamical
diseases.	Instead	of	loss	of	regularity,	we	identify	the	loss	of	variability	with
disease	(Goldberger	et	al.,	1990),	so	that	disease	not	only	changes	average
measures,	such	as	heart	rate,	which	it	does	in	late	stages,	but	is	manifest	in
changes	in	HRV	at	very	early	stages.	Loss	of	variability	implies	a	loss	of
physiologic	control	and	this	loss	of	control	is	reflected	in	the	changing	of	the
scaling	index	of	the	corresponding	time	series	(Mutch	and	Lefevre,	2003;	West
and	Griffin,	2003),	that	is,	in	the	change	of	fractal	dimension.

The	well-being	of	the	body’s	network	of	networks	is	measured	by	the	fractal
scaling	properties	of	the	various	dynamic	networks	and	such	scaling	determines
how	well	the	overall	harmony	is	maintained.	Once	the	perspective	that	disease	is
the	loss	of	variability	(complexity)	has	been	adopted	the	strategies	presently	used
for	combating	disease	must	be	critically	examined.	For	example,	recent
experiments	(Yu	et	al.,	2005)	show	a	preference	in	the	response	of	physiologic
networks	to	1/f	signals	over	that	of	white	noise	indicating	a	sensitivity	of
physiologic	networks	to	scaling	control.

Fractional	random	walks	and	scaling
Let	us	begin	the	discussion	of	the	dynamics	of	fractals	with	a	brief	review	of	the
formal	generation	of	discrete	time	series.	We	define	the	variable	of	interest	as	Xj
where	jâ€‰=â€‰0,1,2,â€¦	indexes	the	time	step.	In	the	simplest	random	walk
model	a	random	step	is	taken	in	each	increment	of	time	and	for	convenience	we
set	the	time	increment	to	1.	The	shift	operator	B	lowers	the	index	by	one	unit	such
that

BXj	=Â	Xjâˆ’1,Â	

so	that	a	simple	random	walk	can	be	formally	written

(1Â	âˆ’Â	B)Xj	=Â	Î¾jâˆ’1,Â	

where	Î¾j	is	+1	or	âˆ’1	and	the	choice	of	values	is	made	by	flipping	a	coin.	The
solution	to	the	discrete	Eq.	15	is	given	by	the	position	of	the	walker	after	N	steps,
the	sum	over	the	sequence	of	steps

The	total	number	of	steps	N	can	be	interpreted	as	the	total	time	t	over	which	the
walk	unfolds,	since	we	have	set	the	time	increment	to	1.	Note	that	Eq.	16	is	also
equivalent	to	coarse	graining	a	sequence	of	discrete	measurements	by
aggregating	the	data.	For	N	sufficiently	large	the	sum	in	Eq.	16	can	be	replaced
by	an	integral	and	the	central	limit	theorem	proves	that	the	statistics	of	the
dynamic	variable	X(t)	are	Gaussian.	Consequently	such	sums	of	empirical	data
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are	often	assumed	to	be	Gaussian	when	closer	analysis	shows	they	are	not.	This
is	not	a	contradiction	because	the	real	world	often	does	not	satisfy	the
assumptions	necessary	for	the	proofs	of	mathematical	theorems.

In	the	simple	random	walk	the	steps	are	statistically	independent	of	one	another.
The	most	direct	generalization	of	this	model	is	to	make	each	step	dependent	on
the	preceding	steps	in	such	a	way	that	the	second	moment	of	the	walker
displacement	is

âŒ©X(t)2âŒª	=Â	2Dt2H.

The	brackets	in	Eq.	17	denote	an	average	over	an	ensemble	of	realizations	of	the
walk,	D	is	the	strength	of	the	fluctuations	(diffusion	coefficient)	and	when	Hâ€‰â
‰	â€‰1/2	the	underlying	process	is	called	anomalous	diffusion	in	the	physics
literature	(West	and	Deering,	1994).	A	value	of	Hâ€‰<â€‰1/2	is	interpreted	as
an	anti-persistent	process	in	which	case	a	random	step	in	one	direction	is
preferentially	followed	by	a	reversal	of	direction.	A	value	of	Hâ€‰>â€‰1/2	is
interpreted	as	a	persistent	process	in	which	case	a	random	step	in	one	direction	is
preferentially	followed	by	another	step	in	the	same	direction.	A	value	of	Hâ€‰=â€
‰1/2	is	interpreted	as	the	random	walk	model	of	classical	diffusion	in	which	case
the	steps	are	statistically	independent	of	one	another	(West,	1999).

One	way	of	introducing	long-term	memory	into	a	random	walk	model	is	by	means
of	fractional	differences.	Following	Hosking	(1982)	we	define	a	fractional
difference	process	as

(1âˆ’B)Î±Xj	=Â	Î¾j,Â	

and	the	exponent	Î±	is	not	an	integer.	As	it	stands	Eq.	18	is	just	a	formal	definition
without	physiologic	content	to	make	it	interesting.	To	make	this	equation	usable
we	must	determine	how	to	represent	the	operator	acting	on	Xj	as	reviewed	by
West	(1999)	to	obtain	the	formal	solution

A	formulation	of	this	process	in	terms	of	fractional	autoregressive	integrated
moving	average	models	(FARIMA)	applied	to	temporal	physiologic	signals	yields
similar	results	(Eke	et	al.,	2002).	The	solution	to	the	fractional	random	walk	is
clearly	dependent	on	fluctuations	that	have	occurred	in	the	remote	past;	note	the
time	lag	k	in	the	index	on	the	fluctuations	in	Eq.	19	and	the	fact	that	it	can	be
arbitrarily	large.	The	extent	of	the	influence	of	these	distant	fluctuations	on	the
present	time	network	response	is	determined	by	the	relative	size	of	the
coefficients	in	the	series.	Using	Stirling’s	approximation	on	the	gamma	functions
determines	the	size	of	the	coefficients	in	Eq.	19	as	the	fluctuations	recede	into	the
past,	that	is,	as	kâ€‰â†’â€‰âˆž
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since	kâ€‰â‰«â€‰Î±.	Thus,	the	strength	of	the	contributions	to	Eq.	20
decreases	with	increasing	time	lag	as	an	inverse	power	law	in	the	time	lag	as	long
as	Î±â€‰<â€‰1.	The	spectrum	of	the	time	series	(Eq.	20)	is	obtained	in	the	low-
frequency	limit	to	be	(West,	1999)

where	unlike	the	white	noise	spectrum	that	is	flat,	the	fractal	walk	spectrum	is
inverse	power	law.

Thus,	since	the	fractional-difference	dynamics	are	linear	the	network	response	is
Gaussian	and	from	these	analytic	results	we	conclude	that	Xj	is	analogous	to
fractional	Gaussian	noise.	The	analogy	is	complete	if	we	set	Î±â€‰=â€‰Hâ€
‰âˆ’â€‰1/2	so	that	the	spectrum	(Eq.	21)	can	be	expressed	as

Taking	the	inverse	discrete	Fourier	transform	of	the	exact	expression	for	the
spectrum	yields	the	correlation	coefficient	(West,	1999)

as	the	lag	time	increases	without	limit.	It	is	clear	that	for	the	power-law	index	in
the	interval	1â€‰â‰¥â€‰Hâ€‰â‰¥â€‰1/2	then	both	the	spectrum	and	the
correlation	coefficient	are	inverse	power	law.

The	probability	density	function	(pdf)	for	the	fractional-difference	diffusion	process
in	the	continuum	limit	satisfies	the	scaling	condition

where	Î´â€‰=â€‰Hâ€‰=â€‰Î±â€‰âˆ’â€‰1/2.	The	manifestation	of	complexity
is	indicated	by	two	distinct	quantities.	The	first	indicator	of	complexity	is	the
scaling	parameter	Î´	departing	from	the	familiar	value	Î´â€‰=â€‰0.5,	which	it
would	have	for	a	simple	diffusion	process.	But	for	fractional	diffusive	motion
considered	here	the	value	of	the	scaling	index	can	be	quite	different.	A	second
indicator	of	complexity	is	the	function	F(Â·)	in	Eq.	24	departing	from	the
conventional	Gaussian	form,	although	in	the	argument	presented	so	far	it	does
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not.

The	scaling	index	Î´	is	usually	determined	by	calculating	the	second	moment	of	a
time	series.	This	method	of	analysis	is	reasonable	only	when	F(y)	has	the
Gaussian	form,	or	some	other	distribution	with	a	finite	second	moment,	that	is,	the
process	is	a	member	of	the	FVSM	class.	If	the	scaling	condition	(Eq.	24)	is
realized	it	is	convenient	to	measure	the	scaling	parameter	Î´	by	the	method	of
diffusion	entropy	analysis	(DEA,	Scafetta	and	Grigolini,	2002)	that,	in	principle,
works	independently	of	whether	the	second	moment	is	finite	or	not.	The	DEA
method	affords	many	advantages,	including	that	of	being	totally	independent	of	a
constant	bias.

Fractional	rates
Fractal	functions	often	describe	complex	phenomena	characterized	by	fractal	time
series.	Such	functions	are	known	to	have	divergent	integer-valued	derivatives,
and	consequently	traditional	control	theory,	involving	integer-valued	differentials
and	integrals,	cannot	be	used	to	determine	feedback	in	fractal	phenomena.
However	a	fractional	operator	of	order	Î±	acting	on	a	fractal	function	of	fractal
dimension	D	yields	a	new	fractal	function	with	fractal	dimension	Dâ€‰+â€‰Î±,
where	Î±â€‰>â€‰0	for	a	derivative	and	Î±â€‰<â€‰0	for	an	integral.	Therefore
it	seems	reasonable	that	one	strategy	for	modeling	the	dynamics	and	control	of
complex	physiologic	phenomena	is	through	the	application	of	the	fractional
calculus	(West,	2009).	The	fractional	calculus	has	been	used	to	model	the
interdependence,	organization	and	concinnity	of	complex	phenomena	ranging
from	the	vestibulo-oculomotor	system,	to	the	electrical	impedance	of	biological
tissue	to	the	biomechanical	behavior	of	physiologic	organs,	see,	for	example
Magin	(2006)	for	an	excellent	review	of	these	applications	and	many	more.	Such
descriptions	can	also	be	obtained	from	the	continuum	limit	of	the	fractional
difference	equations	of	the	previous	section.

We	can	relate	the	allometric	aggregation	approach	to	this	recently	developed
branch	of	control	theory	involving	the	fractional	calculus.	The	generalization	of
control	theory	to	include	fractional	operators	enables	the	designer	to	take	into
account	memory	and	hereditary	properties	that	are	traditionally	neglected	in
integer-order	control	theory	(Podlubny,	1999),	such	as	in	traditional	homeostasis.
A	fractional	time	integral	is	defined	(West	et	al.,	2003a;	West,	2006b)

and	the	corresponding	fractional	time	derivative	is	defined



(27)

(28)

(29)

where	[Î±]â€‰+â€‰1â€‰â‰¥â€‰nâ€‰â‰¥â€‰[Î±]	and	the	bracket	denotes
the	integer	value	n	closest	to	Î±.	Consequently	for	Î±â€‰<â€‰1	we	have	nâ€
‰=â€‰0	and	Eq.	25	is	the	Riemannâ€“Liouville	(RL)	formula	for	the	fractional
integral	operator	when	Î±â€‰>â€‰0	and	Eq.	26	is	the	corresponding	RL-
fractional-differential	operator.

Fractional	langevin	equation
Of	course,	the	fractional	calculus	does	not	in	itself	constitute	a	physical/biological
theory,	but	requires	such	a	theory	in	order	to	interpret	the	fractional	derivatives
and	integrals	in	terms	of	physical/biological	phenomena	(West	et	al.,	2003a).	For
example	how	is	the	negative	feedback,	so	central	to	homeostasis,	included	in	the
fractional	calculus	modeling?	The	generalization	of	a	relaxation	equation	to
fractional	form	is	given	by	(Nonnenmacher	and	Metzler,	1995)

and	the	initial	value	becomes	an	inhomogeneous	term	in	this	fractional	relaxation
equation	of	motion.	Note	that	the	dissipation	parameter	is	positive	definite	and	is
Î»Î±	has	the	same	units	as	the	fractional	derivative.	Equations	of	the	form	(Eq.	27)
are	mathematically	well	defined,	and	strategies	for	solving	such	equations	have
been	developed	by	a	number	of	investigators,	particularly	the	book	by	Miller	and
Ross	(1993)	that	is	devoted	almost	exclusively	to	solving	such	equations	when
the	index	is	rational.	Here	we	allow	Î±	to	be	irrational	and	consider	the	Laplace
transform	of	Eq.	27	to	obtain

whose	inverse	Laplace	transform	is	the	solution	to	the	fractional-differential
equation.	Nonnenmacher	and	Metzler	(1995)	inverted	the	Laplace	transform	in
Eq.	28	using	Fox	functions.	The	solution	to	the	initial	value	problem	for	the
fractional	relaxation	equation	is	given	by	the	series	for	the	standard	Mittag-Leffler
functionâ€‰(MLF)

which	in	the	limit	Î±â€‰â†’â€‰1	yields	the	exponential	function

as	it	should,	since	under	this	condition	Eq.	27	reduces	to	the	usual	relaxation	rate
equation.	Note	that	in	this	limit	the	initial	value	term	on	the	rhs	of	Eq.	27	vanishes
because	the	gamma	function	of	zero	diverges.
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The	MLF	has	interesting	properties	in	both	the	short-time	and	the	long-time	limits.
In	the	short-time	limit	it	yields	the	Kohlrauschâ€“Williamsâ€“Watts	Law	from	stress
relaxation	in	rheology	(West	et	al.,	2003a)	given	by

also	known	as	the	stretched	exponential.	In	the	long-time	limit	it	yields	the	inverse
power	law,	known	as	the	Nutting	Law	(West	et	al.,	2003a),

clearly	an	inverse	power	law	in	time.	Figure	5	displays	the	MLF	as	well	as	its	two
asymptotes,	the	dashed	curve	being	the	stretched	exponential	and	the	dotted
curve	the	inverse	power	law.	What	is	apparent	from	this	figure	is	that	the	long-time
memory	associated	with	fractional	relaxation	processes	is	inverse	power	law
rather	than	being	the	exponential	of	ordinary	relaxation.	The	MLF	smoothly	joins
these	two	empirically	determined	asymptotic	distributions.

View	larger	version

Figure	5.	The	solid	curve	is	the	MLF,	the	solution	to	the	fractional	relaxation
equation	(Eq.	29).	The	dashed	curve	(Eq.	30)	is	the	stretched	exponential
(Kohlrauschâ€“Williamsâ€“Watts	Law)	and	the	dotted	curve	(Eq.	31)	is	the	inverse

power	law	(Nutting	Law).

We	can	now	generalize	the	fractional-differential	equation	to	include	a	random
force	Î¾(t)	and	in	this	way	obtain	a	fractional	stochastic	differential	equation,	such
as	we	did	in	the	last	section.	In	physics	nomenclature	such	a	fractional	stochastic
differential	equation	is	a	called	a	fractional	Langevin	equation	(West	et	al.,	2003a)

The	average	response	of	the	network	is	given	by	the	fractional	relaxation	equation
for	a	random	force	that	is	zero-centered,	which	is	to	say,	by	averaging	over	Eq.	32
we	obtain	Eq.	27	for	the	average	network	response.	The	solution	to	Eq.	32	is
obtained	using	Laplace	transforms	as	done	previously

Note	the	difference	in	the	s-dependence	of	the	two	coefficients	of	the	rhs	of	Eq.
33.	The	inverse	Laplace	transform	of	the	first	term	yields	the	MLF	as	found	for	the
homogeneous	fractional	relaxation	equation,	whereas	the	inverse	Laplace
transform	of	the	second	term	is	the	convolution	of	the	random	force	and	a
stationary	kernel.	The	stationary	kernel	is	given	by	the	series	(West	et	al.,	2003a)
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which	is	a	generalized	MLF.	The	function	defined	by	Eq.	34	reduces	to	the	usual
MLF	when	Î²â€‰=â€‰1,	so	that	both	the	homogeneous	and	inhomogeneous
terms	in	the	solution	to	the	fractional	Langevin	equation	can	be	expressed	in
terms	of	these	series.

The	explicit	inverse	of	Eq.	33	yields	the	solution	(West	et	al.,	2003a)

In	the	case	Î±â€‰=â€‰1,	the	MLF	becomes	the	exponential,	so	that	the	solution
to	the	fractional	Langevin	equation	reduces	to	that	for	an	Ornsteinâ€“Uhlenbeck
process

as	it	should.	The	analysis	of	the	autocorrelation	function	of	Eq.	35	can	be	quite
daunting	and	so	we	do	not	pursue	it	further	here,	but	refer	the	reader	to	the
literature	(Kobelev	and	Romanov,	2000;	West	et	al.,	2003a).	However	it	is	useful
to	point	out	that	Eq.	35	is	the	kind	of	formal	expression	that	is	necessary	to
investigate	when	the	physiologic	phenomenon	is	not	stationary.

Monofractal	solutions
A	somewhat	simpler	problem	than	Eq.	32	is	the	fractional	Langevin	equation
without	dissipation,	that	is,	the	solution	to	the	fractional-dynamic	stochastic
equation	with	Î»â€‰=â€‰0.	The	solution	to	this	equation	expressed	in	terms	of
the	fractional	integral	is

and	the	kernel	can	also	be	interpreted	as	a	filter.	Here	we	see	that	if	the	stochastic
driver	has	fractal	Gaussian	statistics	it	scales	as

Î¾(Î³t)	=Â	Î³hÎ¾(t),

which	for	a	Wiener	process	would	have	hâ€‰=â€‰1/2,	but	for	a	more	general
fractal	statistical	process	1â€‰â‰¥â€‰hâ€‰>â€‰0.	This	property	can	be	used
to	express	the	scaled-time	solution	to	the	fractional-dynamicalâ€‰equation	as
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which	given	its	linear	form	also	has	Gaussian	statistics.	Using	the	strategy	of
writing	the	scaling	parameter	as	Î³â€‰=â€‰1/t	we	can	express	the	solution	(Eq.
38)	in	the	scaling	form

Y(t)âˆ’Y(0)	=Â	th+Î±[Y(1)âˆ’Y(0)],Â	

so	that	the	second	moment	can	be	expressed	as

âŒ©(Y(t)âˆ’Y(0))2âŒª	=Â	âŒ©(Y(1)âˆ’Y(0))2âŒªt2Î±+2h.

The	time-dependence	of	the	second	moment	(Eq.	40)	agrees	with	that	obtained
for	anomalous	diffusion	where	we	identify	Hâ€‰=â€‰Î±â€‰+â€‰h.	If	the
stochastic	force	is	that	of	classical	diffusion,	that	is,	hâ€‰=â€‰1/2	and	1â€‰â‰
¥â€‰Hâ€‰>â€‰0	then	the	interval	of	values	for	the	fractional	operator	in	Eq.	36
is	given	by	âˆ’1/2â€‰â‰¤â€‰Î±â€‰â‰¤â€‰1/2.	Consequently	the	process
described	by	the	dissipation-free	fractional	Langevin	equation	can	cover	the	full
range	of	values	1â€‰â‰¥â€‰Hâ€‰>â€‰0.

The	interval	1/2â€‰â‰¥â€‰Hâ€‰>â€‰0	has	in	the	past	been	interpreted	in
terms	of	an	anti-persistent	random	walk.	An	anti-persistent	explanation	of	time
series	was	made	by	Peng	et	al.,	(1993).	for	the	differences	in	time	intervals
between	heart	beats.	They	interpreted	their	time	series,	as	did	a	number	of
subsequent	investigators,	in	terms	of	random	walks	with	Hâ€‰<â€‰1/2.	In	this
model	the	anti-persistent	behavior	lead	to	an	avoidance	of	the	extremes,	so	that
the	time	intervals	did	not	become	too	large	nor	too	small.	However,	we	can	see
from	Eq.	40	that	the	fractional	Langevin	equation	without	dissipation	is	an
equivalent	description	of	the	underlying	dynamics.	The	scaling	behavior	alone
cannot	distinguish	between	these	two	models,	what	is	needed	is	a	complete
statistical	distribution	and	not	just	the	time-dependence	(scaling	behavior)	of	the
central	moments.

There	are	a	number	of	ways	to	test	the	interpretation	of	the	scaling	behavior
observed	in	Eq.	40.	Podlubny	(1999	showed	that	if	reality	has	the	dynamics	of	a
fractional-differential	equation,	then	attempting	to	control	it	with	an	integer-order
feedback	leads	to	extremely	slow	convergence,	if	not	divergence,	of	the	network
output.	On	the	other	hand,	a	fractional-order	feedback,	with	the	indices
appropriately	chosen,	leads	to	rapid	convergence	of	output	to	the	desired	signal.
Thus,	we	anticipate	that	dynamic	physiologic	networks	with	scaling	properties,
because	they	can	be	described	by	fractional	dynamics,	would	have	fractional-
differential,	which	is	to	say,	allometric	controls	(West,	2009).

Mulifractal	solutions
The	solution	to	the	fractional	Langevin	equation	(Eq.	37)	is	monofractal	if	the
fluctuations	are	monofractal,	which	is	to	say,	the	time	series	given	by	the	trajectory
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Y(t)	is	a	fractal	random	process	if	the	random	force	is	a	fractal	random	process.
However,	the	model	presented	is	not	adequate	as	it	stands	for	describing
multifractal	statistical	processes.	A	number	of	investigators	have	recently
developed	multifractal	random	walk	models	to	account	for	the	multiple	fractal
character	of	various	physiological	phenomena	and	here	we	introduce	a	variant	of
those	discussions	based	on	the	fractional	calculus.	The	most	recent
generalization	of	the	Langevin	equation	incorporates	memory	into	the	network’s
dynamics	and	has	the	simple	form	of	Eq.	33	with	the	dissipation	parameter	set	to
0.	Equation	37	could	also	be	obtained	from	the	construction	of	a	fractional
Langevin	equation	by	Lutz	(2001)	for	a	free	particle	coupled	to	a	fractal	heat	bath,
when	the	inertial	terms	is	negligible.	The	analysis	of	the	previous	section	provides
us	with	Eq.	40	as	the	starting	point	for	the	present	discussion.

One	way	to	make	the	solution	to	the	fractional	Langevin	equation	a	multifractal	is
to	assume	that	the	parameter	Î·â€‰=â€‰1â€‰âˆ’â€‰Î±	in	the	kernel	of	Eq.	36
is	a	random	variable.	To	construct	the	traditional	measures	of	multifractal
stochastic	processes	we	calculate	the	qth	moment	of	the	solution	(Eq.	40)	by
averaging	over	both	the	random	force	Î¾(t)	and	the	random	parameter	Î·	to	obtain

The	scaling	relation	in	Eq.	41	determines	the	qth	order	structure	function	exponent
Ï​(q).	Note	that	if	Ï​(q)	is	linear	in	q	the	underlying	process	is	monofractal,	whereas,
when	it	is	nonlinear	in	q	the	process	is	multifractal.	We	can	relate	the	structure
function	to	the	mass	exponent	(Rajagopalon	and	Tarboton,	1993)

Ï​(q)	=Â	2Â	âˆ’Â	Ï„(q).

Consequently	we	have	that	Ï​(0)â€‰=â€‰h	so	that	Ï„(0)â€‰=â€‰2â€‰âˆ’â€‰h,
as	it	should	because	of	the	well	known	relation	between	the	fractal	dimension	and
the	global	Hurst	exponent	D0â€‰=â€‰2â€‰âˆ’â€‰H.

A	monofractal	time	series	is	characterized	by	a	single	fractal	dimension.	In
general,	time	series	have	a	local	HÃ¶lder	exponent	h	that	varies	over	the	course
of	the	trajectory	and	is	related	to	the	fractal	dimension	by	Dâ€‰=â€‰2â€‰âˆ’â€
‰h	(Falconer,	1990).	Note	that	for	an	infinitely	long	time	series	the	HÃ¶lder
exponent	h	and	the	Hurst	exponent	H	are	identical,	however,	for	a	time	series	of
finite	length	they	need	not	be	the	same.	We	stress	that	the	fractal	dimension	and
the	HÃ¶lder	exponent	are	local	quantities,	whereas	the	Hurst	exponent	is	a	global
quantity,	consequently	the	relation	Dâ€‰=â€‰2â€‰âˆ’â€‰H	is	only	true	for	an
infinitely	long	time	series.	The	function	f(h),	called	the	multifractal	or	singularity
spectrum,	describes	how	the	local	HÃ¶lder	(fractal)	exponents	contribute	to	such
time	series.	Here	h	and	f	are	independent	variables,	as	are	q	and	Ï„.	The	general
formalism	of	Legendre	transform	pairs	interrelates	these	two	sets	of	variables	by
the	relation	(Feder,	1988),
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f(q)	=Â	qh	+Â	Ï„(q).

The	local	HÃ¶lder	exponent	h	varies	with	the	q-dependent	mass	exponent
through	the	equality

so	the	singularity	spectrum	can	be	written	as

f(h(q))	=Â	âˆ’qÏ„â€²(q)	+Â	Ï„(q),Â	

where	the	mass	exponent	Ï„(q)	and	its	derivative	are	determined	by	data	or	from
theory	as	in	Eq.	42.

To	determine	the	mass	exponent	in	Eq.	45	we	assume	the	statistics	of	the
parameter	Î¼	are	generated	by	a	stable	LÃ©vy	process	with	index	Î²	the	structure
function	exponent	can	be	shown	to	be	(Feder,	1988)

Ï​(q)	=Â	(q	+Â	1)HÂ	âˆ’Â	b|q|Î².

Therefore	the	solution	to	the	fractional	Langevin	equation	corresponds	to	a
monofractal	process	only	in	the	case	Î²â€‰=â€‰1	and	qâ€‰>â€‰0,	otherwise
the	process	is	multifractal.	We	restrict	the	remaining	discussion	to	positive
moments.

Thus,	we	observe	that	when	the	exponent	in	the	memory	kernel	in	the	fractional
Langevin	equation	is	random,	the	solution	consists	of	the	product	of	two	random
quantities	giving	rise	to	a	multifractal	process.	We	apply	this	approach	to	the	SRV
time	series	data	previously	discussed	and	observe,	for	the	statistics	of	the
multiplicative	exponent	given	by	LÃ©vy	statistics,	the	singularity	spectrum	as	a
function	of	the	positive	moments	shown	by	the	points	in	Figure	6.	The	solid	curve
in	this	figure	is	obtained	from	the	analytic	form	of	the	singularity	spectrum

View	larger	version

Figure	6.	The	singularity	spectrum	for	qâ€‰>â€‰0	obtained	through	the
numerical	fit	to	the	human	gait	data.	The	curve	is	the	average	over	the	ten	data
sets	obtained	in	the	experiment	(Peng	et	al.,	1993).

f(q)	=Â	2Â	âˆ’Â	HÂ	âˆ’Â	(Î²âˆ’1)bqÎ²,Â	

which	is	determined	by	substituting	Eq.	46	into	the	equation	for	the	singularity
spectrum	(Eq.	45),	through	the	relationship	between	exponents	(Eq.	42).	It	is	clear
from	Figure	6	that	the	data	are	well	fit	by	the	solution	to	the	fractional	Langevin
equation	with	the	parameter	values	Î²â€‰=â€‰1.45	and	bâ€‰=â€‰0.1,
obtained	through	a	mean-square	fit	of	Eq.	47	to	the	SRV	time	series	data.

The	nonlinear	form	of	the	mass	exponent	obtained	from	the	fit	in	Figure	6	is
evidence	that	the	inter-stride	interval	time	series	are	multifractal.	This	analysis	is
further	supported	by	the	fact	that	the	maxima	of	the	singularity	spectra	coincide



with	the	fractal	dimensions	determined	using	the	scaling	properties	of	the	time
series	using	the	allometric	aggregation	approach.

Of	course,	different	physiologic	processes	generate	different	fractal	time	series,
because	the	long-time	memory	of	the	underlying	dynamical	processes	can	be
quite	different.	Physiological	signals,	such	as	cerebral	blood	flow	(CBF),	are
typically	generated	by	complex	self-regulatory	systems	that	handle	inputs	with	a
broad	range	of	characteristics.	Ivanov	et	al.	(1999)	established	that	healthy
human	heartbeat	intervals,	rather	than	being	fractal,	exhibit	multifractal	properties
and	uncovered	the	loss	of	multifractality	for	a	life-threatening	condition	of
congestive	heart	failure.	West	et	al.	(2003b)	similarly	determined	that	CBF	in
healthy	humans	is	also	multifractal	and	this	multifractality	is	severely	narrowed	for
people	who	suffer	from	migraines.

Migraine	headaches	have	been	the	bane	of	humanity	for	centuries,	afflicting	such
notables	as	Caesar,	Pascal,	Kant,	Beethoven,	Chopin,	and	Napoleon.	However,
its	etiology	and	pathomechanism	have	to	date	not	been	satisfactorily	explained.	It
was	demonstrated	(West	et	al.,	2003b)	that	the	characteristics	of	CBF	time	series
significantly	differs	between	normal	healthy	individuals	and	migraineurs.
Transcranial	Doppler	ultrasonography	(TCD)	enables	high-resolution
measurement	of	middle	cerebral	artery	blood	flow	velocity.	Like	the	HRV,	SRV,
and	BRV	time	series	data,	the	time	series	of	CBF	velocity	consists	of	a	sequence
of	waveforms.	These	waveforms	are	influenced	by	a	complex	feedback	system
involving	a	number	of	variables,	such	as	arterial	pressure,	cerebral	vascular
resistance,	plasma	viscosity,	arterial	oxygen,	and	carbon	dioxide	content,	as	well
as	other	factors.	Even	though	the	TCD	technique	does	not	allow	us	to	directly
determine	CBF	values,	it	helps	clarify	the	nature	and	role	of	vascular
abnormalities	associated	with	migraine.

The	dynamical	aspects	of	CBF	regulation	were	recognized	by	Zhang	et	al.	(1999).
Rossitti	and	Stephensen	(1994)	used	the	relative	dispersion,	the	ratio	of	the
standard	deviation	to	mean,	of	the	middle	cerebral	artery	flow	velocity	time	series
to	reveal	its	fractal	nature;	a	technique	closely	related	to	the	allometric
aggregation	approach.	West	et	al.	(1999b)	extended	this	line	or	research	by
taking	into	account	the	more	general	properties	of	fractal	time	series,	showing	that
the	beat-to-beat	variability	in	the	flow	velocity	has	a	long-time	memory	and	is
persistent	with	the	average	scaling	exponent	0.85â€‰Â±â€‰0.04,	a	value
consistent	with	that	found	earlier	for	HRV	time	series.	They	also	observed	that
CBF	was	multifractal	in	nature.

In	Figure	7	we	compare	the	multifractal	spectrum	for	middle	cerebral	artery	blood
flow	velocity	time	series	for	a	healthy	group	of	five	subjects	and	a	group	of	eight
migraineurs	(West	et	al.,	2003b).	A	significant	change	in	the	multifractal	properties
of	the	blood	flow	time	series	is	apparent.	Namely,	the	interval	for	the	multifractal
distribution	on	the	local	scaling	exponent	is	greatly	constricted.	This	is	reflected	in
the	small	value	of	the	width	of	the	multifractal	spectrum	for	the	migraineurs	0.013,
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which	is	almost	three	times	smaller	than	the	width	for	the	control	group	0.038	for
both	migraineurs	with	and	without	aura	the	distributions	are	centered	at	0.81,	the
same	as	that	of	the	control	group,	so	the	average	scaling	behavior	would	appear
to	be	the	same.

View	larger	version

Figure	7.	The	average	multifractal	spectrum	for	middle	CBF	time	series	is
depicted	by	f(h).	(A)	The	spectrum	is	the	average	of	ten	time	series	measurements
from	five	healthy	subjects	(filled	circles).	The	solid	curve	is	the	best	least-squares	fit	of
the	parameters	to	the	predicted	spectrum	using	Eq.	48.	(B)	The	spectrum	is	the
average	of	14	time	series	measurements	of	eight	migraineurs	(filled	circles).	The	solid
curve	is	the	best	least-squares	fit	to	the	predicted	spectrum	using	Eq.	48.

However,	the	contraction	of	the	spectrum	for	migraineurs	suggests	that	the
underlying	process	has	lost	its	flexibility.	The	biological	advantage	of	multifractal
processes	is	that	they	are	highly	adaptive,	so	that	in	this	case	the	brain	of	a
healthy	individual	adapts	to	the	multifractality	of	the	inter-beat	interval	time	series.
Here	again	we	see	that	disease,	in	this	case	migraine,	may	be	associated	with	the
loss	of	complexity	and	consequently	the	loss	of	adaptability,	thereby	suppressing
the	normal	multifractality	of	CBF	time	series.	Thus,	the	reduction	in	the	width	of
the	multifractal	spectrum	is	the	result	of	excessive	dampening	of	the	CBF
fluctuations	and	is	the	manifestation	of	the	significant	loss	of	adaptability	and
overall	hyperexcitability	of	the	underlying	regulation	system.	West	et	al.	(2003b)
emphasize	that	hyperexcitability	of	the	CBF	control	system	seems	to	be
physiologically	consistent	with	the	reduced	activation	level	of	cortical	neurons
observed	in	some	transcranial	magnetic	simulation	and	evoked	potential	studies.

Regulation	of	CBF	is	a	complex	dynamical	process	and	remains	relatively
constant	over	a	wide	range	of	perfusion	pressure	via	a	variety	of	feedback	control
mechanisms,	such	as	metabolic,	myogenic,	and	neurally	mediated	changes	in
cerebrovascular	impedance	response	to	changes	in	perfusion	pressure.	The
contribution	to	the	overall	CBF	regulation	by	different	areas	of	the	brain	is
modeled	by	the	statistics	of	the	fractional	derivative	parameter,	which	determines
the	multifractal	nature	of	the	time	series.	The	source	of	the	multifractality	is	over
and	above	that	produced	by	the	cardiovascular	system.

The	multifractal	nature	of	CBF	time	series	is	here	modeled	using	a	fractional
Langevin	model.	We	again	implement	the	scaling	properties	of	the	random	force
and	the	memory	kernel	to	obtain	Eq.	41	as	the	scaling	of	the	solution	to	the
fractional	Langevin	equation.	Here	when	we	calculate	the	qth	moment	of	the
solution	we	assume	Gaussian,	rather	than	the	more	general	LÃ©vy	statistics.
Consequently	we	obtain	the	quadratic	function	for	the	singularity	spectrum

f(q)	=Â	2Â	âˆ’Â	HÂ	âˆ’Â	bq2,Â	

which	can	be	obtained	from	Eq.	47	by	setting	Î²â€‰=â€‰2.	Another	way	to
express	Eq.	48	is
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where	we	have	used	the	fact	that	the	fractal	dimension	is	given	by	2â€‰âˆ’â€‰H,
which	is	the	value	of	the	function	at	hâ€‰=â€‰H.

It	seems	that	the	changes	in	the	cerebral	autoregulation	associated	with	migraine
can	strongly	modify	the	multifractality	of	middle	cerebral	artery	blood	flow.	The
constriction	of	the	multifractal	to	monofractal	behavior	of	the	blood	flow	depends
on	the	statistics	of	the	fractional	derivative	index.	As	the	distribution	of	this
parameter	narrows	down	to	a	delta	function,	the	nonlocal	influence	of	the
mechanoreceptor	constriction	disappears.	On	the	other	hand,	the	cerebral
autoregulation	does	not	modify	the	monofractal	properties	characterized	by	the
single	global	Hurst	exponent,	presumably	that	produced	by	the	cardiovascular
system.



Conclusions	and	Summary
We	now	draw	a	number	of	conclusions.	First	of	all,	physiologic	time	series	are
often	erratic	and	have	scaling	properties.	The	second	moment	is	determined	to
scale	algebraically	in	time,	the	autocorrelation	function	is	found	to	be	an	inverse
power	law	in	time	and	the	power	spectrum	is	an	inverse	power	law	in	frequency.
The	power-law	nature	of	these	second-order	measures	is	the	signature	of	fractal
random	processes.	So	we	surmise	that	HRV	is	a	fractal	random	point	process,	as
are	SRV	and	BRV,	among	dozens	of	other	complex	physiologic	phenomena.
Consequently,	the	dynamics	of	traditional	stochastic	processes	described	by
differential	equations	for	the	dynamic	variables,	or	in	phase	space	for	the
probability	densities,	are	not	sufficient	to	describe	the	properties	of	complex
physiologic	networks.	The	fractional	calculus	can	describe	at	least	one	class	of
complex	phenomena	for	which	other,	more	traditional,	methods	do	not	suffice.	As
mentioned	the	fractional	calculus	has	been	used	to	model	the	interlinking	of
elements	and	harmony	of	complex	phenomena	ranging	from	the	electrical
impedance	of	biological	tissue	to	the	biomechanical	behavior	of	physiologic
organs;	see,	for	example,	Magin	(2006)	for	an	excellent	review	of	such
applications.

The	empirical	evidence	supports	the	interpretation	that	physiologic	time	series	are
described	by	fractal	stochastic	networks.	Furthermore,	the	fractal	nature	of	these
time	series	is	not	constant	but	may	change	with	the	vagaries	of	the	interaction	of
the	network	with	its	environment	and	internal	dynamics;	therefore,	physiologic
phenomena	are	often	weakly	multifractal.	The	scaling	index	or	fractal	dimension
marks	a	physiologic	network’s	response	and	can	be	used	as	an	indicator	of	the
state	of	health.

We	reiterate	that	controlling	physiological	networks	in	order	to	ensure	their	proper
operation	is	one	of	the	goals	of	medicine.	We	have	emphasized	the	difference
between	homeostatic	and	allometric	control.	Homeostatic	control	is	familiar	and
has	as	its	basis	a	negative	feedback	character,	which	is	both	local	and	relatively
fast.	Allometric	control,	on	the	other	hand,	can	take	into	account	long-time
memory,	correlations	that	are	inverse	power	law	in	time,	as	well	as	long-range
interactions	in	complex	phenomena	as	manifest	by	inverse	power-law
distributions	in	network	variables.	An	allometric	control	network	achieves	its
purpose	through	scaling,	enabling	a	complex	network	such	as	one	performing
physiologic	regulation	to	be	adaptive	and	accomplish	concinnity	of	its	many
interacting	subnetworks.	Allometric	control	is	a	generalization	of	the	idea	of
feedback	regulation	implicit	in	homeostasis.	The	basic	notion	is	to	take	part	of	the
network’s	output	and	feed	it	back	into	the	input,	thus	making	the	network	self-
regulating	by	minimizing	the	difference	between	the	input	and	the	sampled	output.
More	complex	networks,	such	as	autoregulation	of	the	heartbeat	variation,	human
gait	variability,	and	cognition	have	more	intricate	feedback	arrangements.	In
particular,	because	each	sensor	responds	to	its	own	characteristic	set	of



frequencies,	the	feedback	control	must	carry	signals	appropriate	to	each	of	the
interacting	subnetworks.	The	coordination	of	the	individual	responses	of	the
separate	subnetworks	is	manifest	in	the	scaling	of	the	time	series	in	the	output
and	the	separate	subnetworks	select	that	aspect	of	the	feedback	to	which	they
are	the	most	sensitive.	In	this	way	an	allometric	control	network	not	only
regulates,	but	also	adapts	to	changing	environmental	and	biophysical	conditions.

It	is	not	merely	a	new	kind	of	control	that	is	suggested	by	the	scaling	of
physiologic	time	series.	Scaling	also	implies	that	the	historical	notion	of	disease,
which	has	the	loss	of	regularity	at	its	core,	is	inadequate	for	the	treatment	of
dynamical	diseases.	Instead	of	loss	of	regularity,	the	loss	of	variability	is	identified
with	disease,	so	that	a	disease	not	only	changes	an	average	measure,	such	as
heart	rate	or	breathing	rate,	but	is	manifest	in	changes	in	variability	at	very	early
stages.	Loss	of	variability	implies	a	loss	of	physiologic	control,	and	this	loss	of
control	is	reflected	in	the	change	of	fractal	dimension,	that	is,	in	the	scaling	index
of	the	corresponding	time	series.	The	change	in	fractal	dimension	with	age	and
with	disease	suggested	the	new	definition	of	disease	as	a	loss	of	complexity,
rather	than	the	loss	of	regularity	(Goldberger	et	al.,	1990;	West,	1990,	2009;	Van
Orden	et	al.,	2005).	However	this	new	definition	has	not	been	universally
embraced	(Shiau,	2008).

The	well-being	of	the	body’s	network	of	networks	is	measured	by	the	fractal
scaling	properties	of	the	various	dynamic	networks,	and	such	scaling	determines
how	well	the	overall	harmony	is	maintained.	Once	the	perspective	that	disease	is
the	loss	of	complexity	has	been	adopted,	the	strategies	presently	used	in
combating	disease	must	be	critically	examined.	Life-support	equipment	is	one
such	strategy,	but	the	tradition	of	such	life-support	is	to	supply	blood	at	the
average	rate	of	the	beating	heart,	to	ventilate	the	lungs	at	their	average	rate,	and
so	on.	So	how	does	the	new	perspective	regarding	disease	influence	the
traditional	approaches	to	assisting	the	healing	of	the	body?

Alan	Mutch	applied	the	lessons	of	fractal	physiology	to	point	out	that	blood	flow
and	ventilation	are	delivered	in	a	fractal	manner	in	both	space	and	time	in	a
healthy	body.

However,	he	argues,	during	critical	illness,	conventional	life-support	devices
deliver	respiratory	gases	by	mechanical	ventilation	or	blood	by	cardiopulmonary
bypass	pump	in	a	monotonously	periodic	fashion.	This	periodic	driving	overrides
the	natural	aperiodic	operation	of	the	body.	Mutch	speculates	that	these	devices
result	in	the	loss	of	normal	fractal	transmission	and,	consequently,	life	support
winds	up	doing	more	damage	the	longer	it	is	required	and	becomes	more
problematic	the	sicker	the	patient	(Mutch	et	al.,	2000).	In	this	perspective,	the	loss
of	complexity	is	the	loss	of	the	body	as	a	cohesive	whole;	the	body	can	be
reduced	to	a	disconnected	set	of	organ	systems.

One	of	the	traditional	views	of	disease	is	what	Tim	Buchman	calls	the	â€œfix-the-
numberâ€​	imperative	(Buchman,	2006).	He	argues	that	if	the	bicarbonate	level	is



low,	then	give	bicarbonate;	if	the	urine	output	is	low,	then	administer	a	diuretic;	if
the	bleeding	patient	has	a	sinking	blood	pressure,	then	make	the	blood	pressure
normal.	He	goes	on	to	say	that	such	interventions	are	commonly	ineffective	and
even	harmful.	For	example,	sepsis,	which	is	a	common	predecessor	of	multiple
organ	dysfunction	syndrome	(MODS),	is	often	accompanied	by	hypocalcemia;	in
controlled	experimental	conditions,	administering	calcium	to	normalize	the
laboratory	value	increases	mortality.	Consequently,	one’s	first	choice	of	options,
based	on	an	assumed	simple	linear	homeostatic	relationship	between	input	and
output,	is	probably	wrong	and	a	more	circumspective	intervention	based	on	a
fractal	perspective	is	warranted.
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Figure	1.
The	logarithm	of	the	variance	is	plotted	versus	the	logarithm	of	the	mean	for	the	successive
aggregation	of	106	computer-generated	random	data	points	with	Gaussian	statistics.	The	slope
of	the	curve	is	essentially	one,	determined	by	a	linear	regression	using	Eq.	13,	so	the	fractal	dimension
of	the	time	series	is	Dâ€‰=â€‰1.5.
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Figure	2.
The	logarithm	of	the	standard	deviation	is	plotted	versus	the	logarithm	of	the	average	value	for
the	heartbeat	interval	time	series	for	a	young	adult	male,	using	sequential	values	of	the
aggregation	number	(West,	2006a).	The	solid	line	segment	is	the	best	fit	to	the	aggregated	data
points	and	yields	a	fractal	dimension	Dâ€‰=â€‰1.24	midway	between	the	curve	for	a	regular	process
(Dâ€‰=â€‰1)	and	that	for	an	uncorrelated	random	process	(Dâ€‰=â€‰1.5)	as	indicated	by	the
dashed	curves.
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Figure	3.
A	fit	to	the	aggregated	standard	deviation	versus	the	aggregated	mean	for	a	typical	BRV	time
series	(West,	2006a)	is	depicted.	The	points	are	calculated	from	the	data	and	the	solid	curve	is	the
best	least-square	fit	to	the	processed	BRV	data	and	yields	a	fractal	dimension	Dâ€‰=â€‰1.14
midway	between	the	curve	for	a	regular	process	(Dâ€‰=â€‰1)	and	that	for	an	uncorrelated	random
process	(Dâ€‰=â€‰1.5)	as	indicated	by	the	dashed	curves.
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Figure	4.
A	fit	to	logarithm	of	the	aggregated	standard	deviation	versus	the	logarithm	of	the	aggregated
mean	of	SRV	data	for	a	typical	walker	(West,	2006a)	is	depicted.	The	points	are	calculated	from	the
data	and	the	solid	curve	is	the	best	least-square	fit	to	the	processed	SRV	data	and	yields	a	fractal
dimension	Dâ€‰=â€‰1.3	midway	between	the	curve	for	a	regular	process	(Dâ€‰=â€‰1)	and	that	for
an	uncorrelated	random	process	(Dâ€‰=â€‰1.5)	as	indicated	by	the	dashed	curves.
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Figure	5.
The	solid	curve	is	the	MLF,	the	solution	to	the	fractional	relaxation	equation	(Eq.	29).	The	dashed
curve	(Eq.	30)	is	the	stretched	exponential	(Kohlrauschâ€“Williamsâ€“Watts	Law)	and	the	dotted	curve
(Eq.	31)	is	the	inverse	power	law	(Nutting	Law).
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Figure	6.
The	singularity	spectrum	for	qâ€‰>â€‰0	obtained	through	the	numerical	fit	to	the	human	gait
data.	The	curve	is	the	average	over	the	ten	data	sets	obtained	in	the	experiment	(Peng	et	al.,	1993).
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Figure	7.
The	average	multifractal	spectrum	for	middle	CBF	time	series	is	depicted	by	f(h).	(A)	The
spectrum	is	the	average	of	ten	time	series	measurements	from	five	healthy	subjects	(filled	circles).	The
solid	curve	is	the	best	least-squares	fit	of	the	parameters	to	the	predicted	spectrum	using	Eq.	48.	(B)
The	spectrum	is	the	average	of	14	time	series	measurements	of	eight	migraineurs	(filled	circles).	The
solid	curve	is	the	best	least-squares	fit	to	the	predicted	spectrum	using	Eq.	48.
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