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Preface

The invention of lasers in the early 1960s enhanced the rapid development of
optoelectronics which had introduced various optical measurement methods.
A typical example of the methods is found in measurements of velocity. It
is well recognized that optical velocity measuring methods have important
advantages, such as noncontacting and nondisturbing operations, over con-
ventional methods employed previously. These fundamental advantages are
indicated by the enormous research effort which has gone into their develop-
ment for many years. One of the optical methods proposed and studied to
measure the velocity is laser Doppler velocimetry which was proposed in the
early 1960s and extensively studied by many investigators and is at present
applied to practical uses. Another is spatial filtering velocimetry which was
also proposed in the early 1960s and studied by a number of investigators. In
comparison with laser Doppler velocimetry, spatial filtering velocimetry had
not received much attention from investigators but was studied steadily by
several research groups mainly in Japan and is now practically used in various
fields of engineering.

Several important books on laser Doppler velocimetry have already been
published, but there has been no book on spatial filtering velocimetry. This
book is the first contribution to spatial filtering velocimetry. Therefore, the
Introduction of Chapter 1 provides in detail a historical review of spatial
filtering velocimetry, relating it to other optical methods and discussing its
practical relevance. In the book following Chap. 1, the most important results
on the subject both from our own papers and from publications by other
authors have been collected together and presented in a concise and easily
readable form. Special emphasis has been placed on the fundamental content
of spatial filtering velocimetry in a general form and on a wide range of systems
and applications of this velocimetry. By following this emphasis, the contents
of this book consisting of six chapters may be divided into two main parts:
the fundamentals given in Chaps. 2–4 and the systems and applications in
Chaps. 5 and 6.



VIII Preface

Since the subject matter of this book is interdisciplinary, we have tried to
make the book self-contained and easily understandable to readers in various
fields. Considering the wide-ranging backgrounds of readers, we have also
attempted to give a comprehensive list of the most pertinent references at the
end of the book.

The authors wish to express their thanks to Prof. A. Kobayashi formerly at
the Tokyo Institute of Technology for kindly supplying reprints of his papers
on spatial filtering velocimetry, which were very helpful in the preparation of
fundamental parts in this book. We are also grateful to several researchers who
provided us useful information on their works in spatial filtering velocimetry,
especially Dr. K. Michel at the Jena-Optronik GmbH, Prof. S.G. Hanson at the
Risø National Laboratory, and Prof. K. Oka at Hokkaido University. Y. Aizu is
thankful to Prof. Y. Itakura at Shiga University for kind correspondence which
began with discussions on spatial filtering velocimetry. Finally, we would like
to thank Mr. T. Ushizaka for his valuable cooperation in various studies on
spatial filtering velocimetry which were performed formerly by our group at
Hokkaido University.

Muroran and Sapporo, Hokkaido, Yoshihisa Aizu
May 2005 Toshimitsu Asakura
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Introduction

1.1 Survey of Optical Velocimetry

The development of optics and electronics has established the great impor-
tance of optical metrology in various fields of science and engineering. In
particular, the invention of high-intensity coherent light sources known as
lasers has introduced many optical measurement techniques that had pre-
viously been unavailable. A typical example of such techniques is found in
velocity measurements. In comparison with conventional velocity measure-
ment techniques such as pitot tubes and hot-wire devices, optical techniques
have important and practical advantages of noncontacting and nondisturb-
ing operations. Therefore, a large amount of research effort has been made
to develop techniques for practical uses in the world. Today, there are many
commercial instruments provided in the market, which are widely used in
laboratory and industrial applications, for example, fluid mechanics, aerosol
science, biomedical engineering, and remote sensing.

A variety of optical techniques have been proposed and studied for mea-
surements of velocity. For convenience of a survey, let us divide them into two
types incoherent and coherent techniques. Note that these types do not nec-
essarily mean the use of incoherent or coherent light sources. The incoherent
technique uses information on the light intensity of the image of an object,
whereas the coherent technique uses information on the amplitude and phase
of the light. The difference between these types is generally recognized by
“images” and “interference patterns.” Some representative techniques cate-
gorized in the two types are concisely reviewed in the literature [1]. The type
of incoherent techniques contains photography and cinematography used in
the early stages of the development of optical velocimetry. Simply observing
or photographing the motion path of an object is primitive but an easy and
convenient means for measuring velocity. A photograph recording the trace of
a particle image allows us to determine the velocity with knowledge of both
the exposure time and the trace length. Alternatively, the velocity can be de-
termined by measuring the time for the passing of a particle image through
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a window area with known dimensions. This scheme may be realized by re-
placing the photographic film and the measuring scale with a photodetector
having the detecting window and an oscilloscope, which records the temporal
signal of the light intensity of images passing through the window. A similar
method to this approach uses two detecting slits with a known separation
instead of the detecting window. In this case, the velocity is determined by
measuring the transit time of particle images across the two slits. This method
is also realized by using two laser beams focused in the object plane with a
known separation and removing the two slits. This technique is referred to
as the time-of-flight method or the two-beam cross-correlation method [2].
By following the method using two slits in the image plane, it is natural to
analogize the use of multiple slits since it sequentially gives multiple data
of the transit time, and, thus, improvement of the measurement accuracy is
expected. For example, passage of particle images on periodically arrayed par-
allel slits yields electric signals with periodic variations of light intensity. The
instantaneous velocity of particles is determined by measuring the frequency
of the variation with a known pitch of slits. This approach was historically
referred to as the photoelectric image-tracing technique [1] and is currently
called the spatial filtering technique, which is the subject of this book.

Cinematography records images of moving particles on cine films and,
then, particle positions on successive frames, and the time interval between
the frames allows the velocity to be determined. This technique provides us
with a two-dimensional velocity distribution if each of the particle images
on the frames is analyzed individually. In principle, the velocity is obtained
from just two successive frames. A double-exposure photograph obtained by
using two successive laser pulses records two instantaneous distributions of
particle images at two successive instants. Each pair of particle images is used
to analyze the moving direction and velocity of each particle with the known
time interval of pulses, and, thus, analyzing the whole pairs on the photograph
gives a two-dimensional visualization of the velocity-vector distribution. This
analysis involves finding the motion loci of a large number of particles, which
becomes possible on a practical level with the aid of a fast computer. This
technique is currently known as particle image velocimetry (PIV) and is widely
used in the fields of fluid dynamics and aerosol science [3]. In measurements of
flow systems with refractive-index gradients, shadowgraphy and schlieren are
familiar optical methods. Although these methods give us the two-dimensional
distribution of a shadow which is related to the flow condition, the velocity is
obtained indirectly.

The coherent technique uses the principle of interferometry, which is real-
ized by interference of mutually coherent light beams. Generally, interference
is observed in the forms of fringe patterns or speckle patterns. The interfer-
ence fringes are used to determine the particle velocity by observing the transit
time of a particle moving across the fringes. This concept is well known as
laser Doppler velocimetry (LDV) [1,2,4–6], which is realized in some different
ways and widely used in various fields of science and engineering. In a typical
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model of the LDV, a light beam from a laser source is split into two beams,
which cross in their focused position to form an interference fringe pattern in
a probing volume. Since the beams are generally focused to several to several
tens of microns in diameter, LDV measurements enable us to determine the
local velocity in a small volume having such a dimension. This high spatial
resolution is a very powerful advantage of the LDV technique. When a scat-
tering object is, for example, a diffusing plate or rough surface, the scattered
light forms a speckle pattern as a result of the interference of many scattered
waves having mutually random phases. Motion of the object causes the tem-
poral and spatial variations of interference intensity in the speckle pattern,
and, thus, the velocity information can be extracted. Frequency or correlation
analysis is applied to photoelectric signals of the speckle intensity variation,
and the velocity of the object can be determined. This technique is referred
to as laser speckle velocimetry (LSV) [7]. Although there are different ways
for frequency analysis in LSV, one of them uses the spatial filtering technique
described in this book. The speckle pattern recorded in an image plane poten-
tially contains the two-dimensional velocity information of an object plane.
Thus, photographic or computer image analysis is applied to the speckle pat-
tern to visualize the velocity distribution. This approach may be regarded as
velocimetric application of laser speckle photography [8].

Among the various above-mentioned incoherent and coherent techniques,
the laser Doppler method has been most extensively studied by a number
of researchers because of its high spatial resolution and high measurement
accuracy. On the other hand, the spatial filtering method has not received
much attention from investigators at the beginning stage of research, although
its measurement performance is similar to that of the Doppler method. In
addition to this, the spatial filtering method has practical advantages such
as simplicity and stability of optical and mechanical systems and a choice of
light sources. By appreciating the value of these features, the spatial filtering
method has been studied for the development of practical instruments as well
as laser Doppler velocimeters.

To the authors’ knowledge, the basic concept that leads to spatial filtering
velocimetry was developed from aerial camera-control techniques [9] and in-
frared optical tracking techniques [10,11] which used gratings or reticles. The
definite proposal of the spatial filtering method for velocity measurements is
found in the study of Ator [12]. He showed conceptually the principle of the
method by simulating the operation of a parallel-slit reticle as the spatial filter.
Ator [13] also provided the interpretation of the method from the standpoint
of correlation theory. The first experimental demonstration of the method was
made by Gaster [14] for the study of fluid flows. The theoretical basis of the
method was given by Naito et al. [15] and Tsutsumi [16], separately. As an
example of the spatial filter, they treated a transmission grating and analyzed
the power spectral density function of its transmittance in a space domain.
The results successfully demonstrated that the transmission grating acted as
a spatial filter which was available for velocity measurements. To improve the
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selectivity of the spatial filter, Kobayashi and Naito [17] discussed the optimiz-
ing problem of a narrow-band-pass spatial filter. On the basis of these funda-
mental studies, the group of Kobayashi [18,19] developed the spatial filtering
detector which was a photodetector having the function of a spatial filter.
Tsutsumi [20] studied theoretically the filtering characteristics of a parallel-
slit reticle by developing conventional filtering theory in the time domain. Ac-
cording to these fundamental characteristics, Itakura et al. [21] constructed
a new type of spatial filter using a liquid crystal cell array, which enabled
two-dimensional velocity components to be measured. To improve the filter-
ing characteristics in a lower spatial frequency region, Tsudagawa et al. [22]
modified the spatial filter by introducing the field-of-view of a parallelogram.
Asakura and his co-workers [23–28] extensively studied the method using a
transmission grating based on Gaster’s proposal. Ushizaka and Asakura [23]
developed an optical imaging system with a microscope for spatial filtering
velocimetry and applied the system to measurements of the flow velocity dis-
tribution in small glass tubes having diameters of 130 µm to 3.5 mm. Aizu
et al. [25] constructed a differential-type transmission grating velocimeter to
improve the ability of removing undesirable low-frequency components and
showed its usefulness for measurements of flow velocity in microscopic re-
gions. This type of spatial filtering velocimeter was used by some researchers
separately, to measure blood flow velocity: Koyama et al. [24], Aizu et al. [28],
Borders and Granger [29], and Reuter and Kratzer [30]. Using this method,
Delatour and Hanss [31] measured the electrophoretic mobility distribution.

In addition to the transmission grating or parallel slit reticle, other optical
elements are also available for spatial filters. Hayashi and Kitagawa [32–35]
constructed a novel spatial filter with an optical fiber array and applied to
measurements of two-dimensional velocity components and distance with di-
rectional determination. Mitsuhashi and Mochizuki [36] studied a type of spa-
tial filtering method using an image sensor by which the spatial filter was
electronically realized. The prism grating is an interesting example of optical
elements that are available for spatial filters. Using this, researchers such as
Röckemann and Plesse [37], Slaaf et al. [38,39], Reuter and Talukder [40], and
Kiesewetter et al. [41] measured blood flow velocity. Ushizaka et al. [42] studied
the imaging and deflection properties of light rays of a lenticular grating and
showed that it acted as a spatial filter similar in principle to the prism grating.

The principle of spatial filtering velocimetry is applied in different ways to
measurements of moving objects and their motion. With an analogy to the
dual-beam LDV system, Ballik and Chan [43–45] studied theoretically and
experimentally a fringe image technique in which a grating-like illumination
was made on a moving object and the intensity-modulated scattered light
was received by a photodetector without a grating in front. Aizu et al. [46]
developed the spatial filtering method so that it enabled us to determine a ve-
locity gradient. Using the spatial filtering detector, Ohno et al. [47] proposed
a method for measurements of random motion in two dimensions, such as the
average velocity, number, and size of moving objects. Kobayashi et al. [48]
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investigated the fluctuation of a rotating velocity obtained by using a spatial
filtering detector. Wang and Tichenor [49] proposed a new type of transmission
grating constructed with gradually varying pitches, which enables the diame-
ter of a moving particle to be measured. Based on optical imaging properties,
the spatial filtering method was also applied to measurements of focusing er-
rors [16, 50], distance, and displacement [51, 52]. There are other studies of
spatial filtering devices and systems, and their applications, which will be
described in this book.

1.2 Spatial Filtering Velocimetry

The principle of spatial filtering velocimetry (SFV) will be described by the
narrow-band-pass spatial filtering effect of spatially periodic transmittance.
However, it may be readily and intuitively understood from the light intensity
modulation of a moving image caused by the transmittance. Figures 1.1 and
1.2 show schematically the basic optical system and the principle of spatial
filtering velocimetry. The basic operation of this velocimetry is to observe the
optical image of a moving object through the spatial filter such as a set of
parallel slits or a transmission grating. The illuminating light is scattered by
an object, such as a small particle, moving with velocity v0 in the direction
x0. A lens L forms an image of the object onto a spatial filter (SF) that has
spatially periodic transmittance in the moving direction (x axis) of the object,
or onto grating lines set perpendicularly to the direction of motion. The light
passing through the spatial filter is received by a photodetector (PD). The
total intensity of the light detected by the PD varies periodically because of
the image movement with constant velocity v and the periodic transmittance
having a pitch p, as shown in Fig. 1.2. Thus, the output from the PD provides
a periodic signal containing a period T0 = p/v. By measuring the frequency
f0 = 1/T0 of this signal, the object velocity v0 is determined from

v0 =
p

M
f0 , (1.1)

Illumination

Moving
objects

L
Spatial filter (SF)

Signal

Photodetector (PD)
v0

y

x

x0

y0

Fig. 1.1. Basic optical system of spatial filtering velocimetry
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Fig. 1.2. Principle of spatial filtering velocimetry

where M is the optical magnification of the imaging system with lens L and,
thus, v = Mv0. As depicted in Fig. 1.2, the output signal has a periodic wave-
form characterized by frequency f0, which is usually sinusoidal, and then the
frequency is simply measured by a frequency counter or a spectrum analyzer,
at least in principle. Thus, a simple construction of a velocity-measuring sys-
tem can be realized by spatial filtering velocimetry.

The principle of spatial filtering velocimetry may be compared with that
of differential-type LDV. As illustrated in Fig. 1.3, the operation of this type
of LDV can be understood in terms of interference fringes that exist in the
cross-over region of two illuminating beams. The pitch pd of these fringes is
given by the equation [5]

pd =
λ

2 sin
α

2

, (1.2)

where λ is the wavelength of the illuminating laser light and α is the angle
between the two beams. When a particle crosses light and dark fringes per-
pendicularly with velocity v0 in that region, modulation of the intensity at the
photodetector arises from the variation in the light illuminating the particle.
The frequency fd of this modulation is, thus, given by

fd =
v0

pd
, (1.3)

and the velocity v0 is determined by the relation

l

l

a

Fig. 1.3. Basic configuration of the differential-type LDV
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v0 = fd pd =
λ

2 sin
α

2

fd . (1.4)

In both velocimetric methods of spatial filtering and differential LDV, a com-
bination of the moving scattering object having a constant velocity and the
spatial periodicity of a transmission grating or interference fringes produces
periodic output signals. This similarity may help in understanding signal char-
acteristics, signal analysis, system design, and applications of the spatial fil-
tering method through this book.

1.3 The Book

The intention of this book is to present the fundamental content of spatial
filtering velocimetry in a general form and to review a wide range of systems
and applications of this velocimetry. The book consists of six chapters, which
may be divided into two main parts: the fundamentals described in Chaps. 2–4
and the systems and applications in Chaps. 5 and 6.

Chapter 2 introduces the principle and the fundamental properties of spa-
tial filtering velocimetry in theoretical expressions. Here, a transmission grat-
ing having parallel slits is considered a typical example of the spatial filter. The
theory will be developed on the basis of narrow-band-pass filtering character-
istics in the space domain in relation to geometric parameters of the spatial
filter. The effects of various scattering objects on the filtering performance are
also discussed for consideration of the basic accuracy in this velocimetry.

Chapter 3 reviews some key matters in the framework of the general imag-
ing theory, which are useful for interpreting and designing the optical system
of spatial filtering velocimetry. They include resolution, transfer function, and
lens aberrations. Imaging properties are also discussed in connection with the
focusing depth, probe volume, and illumination which are rather unique to this
velocimetry. In Chap. 4, signal-analyzing techniques are discussed for reliable
determination of the central frequency of photodetector outputs. Since the ve-
locity of objects is determined directly from the frequency measurement, the
signal analysis should be made with better accuracy in measurement. For this
purpose, the chapter briefly introduces various techniques available for spatial
filtering velocimetry and gives some guidelines for choosing the appropriate
technique under given conditions.

Spatial filtering velocimeters are constructed with a spatial filtering de-
vice as the key component, together with proper optical and signal-analyzing
systems. Then, the performance and specification of instrumental systems de-
pend on the spatial filtering device being employed. Chapter 5 introduces a
variety of spatial filtering devices and presents the corresponding instrumental
systems using such devices. For better understanding, the devices and systems
are divided into eight categories in this book according to differences in the
operation of spatial filtering. They are briefly summarized and compared in
the last section of this chapter.
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Chapter 6 is devoted to various applications of spatial filtering velocime-
try. The well-known LDV technique is generally applicable to local-velocity
measurements because of the use of focused laser beams. As contrasted with
this, the spatial filtering technique has a wide range of scaling flexibility for
objects being measured, for instance, from microscopic flows to large aircraft.
The simplicity of the measuring principle and configuration is another key
factor that supports applicability. This chapter outlines interesting examples
of these applications ranging from laboratory experiments to industrial mea-
surements. Spatial filtering velocimetry can be used for measurements of some
physical quantities besides velocity, which are also briefly included with other
related velocity-measuring techniques in the last sections of this chapter.



2

Principle and Properties of the Spatial
Filtering Method

The basic operation of spatial filtering velocimetry (SFV) is observing the op-
tical image of a moving object such as a small particle through a set of parallel
slits or a transmission grating. When the light from the moving image passes
through the grating, it acts as a narrow-band-pass spatial filter which picks
up particular spatial frequency components from the image intensity distribu-
tion. Therefore, the principle of the spatial filtering method is mathematically
described by power spectral density functions of the image and the grating in
the spatial frequency domain. Since the intuitive operation in SFV can simply
be interpreted by (1.1), the mathematical treatment of spatial filtering might
be considered unessential. However, the signal quality and measurement accu-
racy depend directly on both the filtering characteristics of the grating and the
spatial distribution of the image intensity. Thus, the theoretical background
of the spatial filtering method is necessary for the design of the spatial filter,
the configuration of the optical system, and application to various objects.

In this chapter, the principle and fundamental properties of the spatial
filtering method are theoretically described. In Sect. 2.1, the spatial filtering
effect of a grating is given in terms of the convolution integral in the spatial
frequency domain. Section 2.2 theoretically reveals that a spatially periodic
transmittance realizes narrow-band-pass filtering in the space domain. Quan-
titative descriptions of the spatial filtering effect and its characteristics are
presented in Sects. 2.3 and 2.4 based on power spectral analysis for some pos-
sible transmission gratings. Section 2.5 gives briefly a design program of the
spatial filter for realizing desirable filtering characteristics. In Sect. 2.6, effects
of scattering objects on output signals are discussed from the standpoint of
particle sizes. Finally, properties required for objects being measured in SFV
are discussed in three examples of small particles, rough surfaces, and a speckle
pattern in Sect. 2.7.
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2.1 Spatial Filtering Effect

In this section, a brief conception is described for the spatial filtering effect
on the image intensity distribution. Figure 2.1 schematically shows the basic
optical system of the spatial filtering method for velocity measurements. The
image plane in which a spatial filter is placed is designated by a coordinate
system (x, y), and the direction of the transmitted light is denoted by the z
axis. The image quality is one of the factors that characterize output signals.
For simple treatments, however, it is assumed here that an ideal image is
formed on the spatial filter. The influences of image quality on signals will be
discussed in Sect. 2.7. Let f(x, y) and h(x, y) be the light intensity distribution
of the moving image in the x–y plane and the light intensity transmittance of
the spatial filter, respectively. All light passing through the spatial filter is
assumed to be received by the photodetector. When the image moves with
velocity components vx and vy in directions x and y, respectively, the output
signal g(xr, yr) obtained from the photodetector is given by the convolution
integral (Appendix A.4) as

g (xr, yr) =
∫∫ ∞

−∞
f (xr − x, yr − y) h (x, y) dxdy , (2.1)

where xr = vxt + c1, yr = vyt + c2, and c1 and c2 are constants. The function
h(x, y) in (2.1) corresponds to the impulse response in electric communica-
tion theory. Generally, the image intensity distribution f(x, y) is considered
to follow a random process in time and space. A typical example is imaging of
scattering particles randomly distributed in a measuring volume. Then, a sta-
tistical treatment is introduced for f(x, y) in the following analysis. With the
assumption that the intensity distribution f(x, y) follows a stationary, random
ergodic process in two dimensions, the autocorrelation function R(τx, τy) of
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objects 
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Moving images

f(x, y)

Spatial filter
h(x,y)
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y

z

x

y0

x0

Fig. 2.1. Basic optical system of the spatial filtering method for velocity measure-
ments
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the signal is written as

R (τx, τy) = E [g (xr + τx, yr + τy) g∗ (xr, yr)] , (2.2)

where the notation E[· · ·] means the expectation operation [53]. Apart from
a constant factor, the spatial power spectral density function Gp(µ, ν) of the
function g(xr, yr) is derived by the Fourier transform of the correlation func-
tion R(τx, τy) as [15]

Gp (µ, ν) = Fp (µ, ν) Hp (µ, ν) , (2.3)

where Fp(µ, ν) and Hp(µ, ν) stand for power spectral density functions of the
image intensity f(x, y) and the transmittance h(x, y), respectively, both in
the spatial frequency domain. These functions are expressed with f(x, y) and
h(x, y) as follows:

Fp (µ, ν) = lim
Tx,Ty→∞

1
4TxTy

·
∣∣∣∣∣
∫ Tx

−Tx

∫ Ty

−Ty

f (x, y) exp [−i2π (µx + νy)] dxdy

∣∣∣∣∣
2

, (2.4)

Hp (µ, ν) = |H (µ, ν)|2

=
∣∣∣∣
∫∫ ∞

−∞
h (x, y) exp [−i2π (µx + νy)] dxdy

∣∣∣∣
2

, (2.5)

where H(µ, ν) is the Fourier spectrum of the function h(x, y) and µ and ν
denote the spatial frequencies in the x and y directions, respectively.

If the image intensity distribution f(x, y) is not random but periodic or
nonperiodic (transient) [54], the power spectrum Fp(µ, ν) can be given by

Fp (µ, ν) = |F (µ, ν)|2

=
∣∣∣∣
∫∫ ∞

−∞
f (x, y) exp [−i2π (µx + νy)] dxdy

∣∣∣∣
2

, (2.6)

where F (µ, ν) is the Fourier spectrum of the function f(x, y). The power
spectrum Gp(µ, ν) in this case is expressed as

Gp (µ, ν) = |G (µ, ν)|2
= |F (µ, ν) H (µ, ν)|2 = |F (µ, ν)|2 |H (µ, ν)|2 , (2.7)

where G(µ, ν) is the Fourier spectrum of the output signal g(xr, yr), and is
given by the convolution theorem as

G (µ, ν) =
∫∫ ∞

−∞
g (xr, yr) exp [−i2π (µxr + νyr)] dxr dyr . (2.8)
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In (2.3), the power spectrum Gp(µ, ν) is represented by multiplication of two
power spectra Fp(µ, ν) and Hp(µ, ν). This relation indicates that the output
signal is given by the input image modified by the spatial filter. According
to linear filtering theory, (2.3) shows that Hp(µ, ν) operates as a linear filter
on the input Fp(µ, ν) in the spatial frequency domain. The essentials for the
expression of power spectra are given in Appendix B.

As described in the next section, the spatial filter is required to have a
periodic transmittance in the moving direction of the images being measured.
For mathematical simplicity, it is assumed that the image moves along the x
axis with velocity vx = v, and vy = 0. In this case, the transmittance h(x, y)
of the spatial filter should be periodic only in the x direction and should be
uniform in the y direction. The power spectral density function Gp(f) in the
time domain is derived, by integration of (2.3) with respect to the spatial
frequency ν, as

Gp (f) =
1
v

∫ ∞

−∞
Fp

(
f

v
, ν

)
Hp

(
f

v
, ν

)
dν , (2.9)

where the relation

µ =
f

v
(2.10)

was used and f is the frequency in the time domain. A scaling factor 1/v on
the right-hand side of (2.9) arises from the nature of the density function. This
spectrum Gp(f) corresponds to that of output signals actually observed by a
spectrum analyzer. The case of an image moving with a velocity component
vy in the y direction will be treated in Sect. 2.4. Equation (2.9) indicates again
that the power spectrum Hp(f/v, ν) works as a filtering function on the input
function Fp(f/v, ν). If the sizes of scattering objects such as particles are
sufficiently small compared with the size of the probing volume, the power
spectrum Fp(µ, ν) is considered nearly constant, or Fp(µ, ν) ∼= 1 under the
white-noise approximation. On the other hand, the power spectrum Hp(µ, ν)
of the spatial filter having a periodic transmittance in the x direction contains
a narrow-band spectral component centered at the spatial frequency µ = µ0.
Figure 2.2 illustrates a typical distribution of the power spectra Fp(µ, ν) and
Hp(µ, ν) at ν = 0. The product of the two spectra, thus the power spectrum
Gp(µ, ν) is, then, dominantly characterized by the power spectrum Hp(µ, ν),
and the temporal power spectrum Gp(f) may contain a frequency peak at
f = f0 = µ0v. Therefore, the image velocity may be determined by measuring
the central frequency f0 and using the relation v = p f0 in (1.1). In this
way, narrow-band-pass spatial filtering by periodic transmittance provides
the principle of velocity measurements and, therefore, the present technique
is generally called “spatial filtering velocimetry.”
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Spectrum 

Spatial frequency µ (ν = 0) 
-µ0 µ00

Hp(µ, ν)

Fp(µ, ν) 1

Fig. 2.2. Typical forms of power spectra Fp(µ, ν) and Hp(µ, ν) at ν = 0

2.2 Transmittance Functions

To realize narrow-band-pass filtering in the space domain, the spatial filter for
velocimetry is required to have a spatially periodic transmittance in the direc-
tion of object movements. By this transmittance, the moving image intensity
is periodically modulated relative to the object’s velocity, and periodic signals
are obtained from the photodetector. A typical example of a spatial filter is
a transmission grating or a set of parallel slits. This section shows how this
kind of transmittance contributes to narrow-band-pass spatial filtering char-
acteristics. Figure 2.3 shows a schematic model of a typical spatial filter and
the (x, y) coordinate system. This model has periodic transmittance with a
period p only in the x direction, and its area is restricted by a rectangular
window having sizes X and Y in the x and y directions, respectively. The
spatial filter having this form of window will be referred to as a “rectangular
type” in this book. The transmittance function is given by

h (x, y) = h (x) = h (x + mp) , (2.11)

x

p  y 

X

Y

w

Fig. 2.3. Schematic model of a typical spatial filter (a rectangular-type transmission
grating)
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where m is an integer. Substitution of (2.11) in (2.5) yields the power spectrum
of the transmittance. The Fourier integral becomes finite in the ranges −X/2
to X/2 and −Y/2 to Y/2, and zero otherwise. Thus, the power spectrum is
derived as [15] (Appendix C)

|H (µ, ν)|2 = X2Y 2 |HY (ν)|2 |HX (µ)|2 |Hc (µ)|2 |Hs (µ)|2 , (2.12)

where

|HY (ν)|2 =
(

sin πνY

πνY

)2

, (2.13)

|HX (µ)|2 =
(

sin πµX

πµX

)2

, (2.14)

|Hc (µ)|2 =
(

πµp

sin πµp

)2

, (2.15)

|Hs (µ)|2 =
∣∣∣∣1p
∫ p

0

h (x) exp (−i2πµx) dx

∣∣∣∣
2

. (2.16)

In (2.12), X2Y 2 means the contribution of power due to the window area
of the spatial filter. The two functions |HY(ν)|2 and |HX(µ)|2 are given by
the form sinc(x) = sinπx/πx, which is called the “sinc function” [55], and
is derived as the Fourier transform of a rectangular function. They express,
thus, the contribution of the rectangular shape which forms the window area
of the spatial filter. The function |Hc(µ)|2 is due to periodicity in the inter-
val p. The last function |Hs(µ)|2 is obtained from the Fourier transform of
the transmittance h(x) over one period and indicates the contribution of the
transmittance function within one slit. The sinc function sinc(x) is depicted
in Fig. 2.4, in which the first zero-crossing occurs at x = ±1. Then, similarly,
HY(ν) and HX(µ) have the first zero-crossings at ν = ±1/Y and µ = ±1/X,
respectively. Thus, the center lobe around zero, which has a low-pass filtering
effect, becomes narrower with increasing sizes X and Y of the filter window.
The product X2Y 2|HY(ν)|2|HX(µ)|2 therefore represents the effects of the
size and shape that define the window area of the spatial filter.

As may easily be supposed by considering the behavior of 1/ sinc(x), the
function |Hc(µ)|2 of (2.15) periodically diverges with respect to µ, and it
is hard to understand the effect of periodicity simply. Alternatively, let us
consider a function |HXc(µ)|2 defined by

|HXc (µ)|2 = |HX (µ)|2 |Hc (µ)|2 =
(

sin πµnp

n sin πµp

)2

, (2.17)

where the relation X = np is used. The parameter n in this case represents
the number of slits included in length X. The function |HXc(µ)|2, depicted
in Fig. 2.5a, demonstrates periodic peaks at µ = 0, ±1/p, ±2/p, . . ., giving
selectivity in the spatial frequency domain of µ.
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Fig. 2.4. Behavior of a sinc function, sinc(x) = sin πx/πx

Fig. 2.5. Behaviors of the power spectra: (a) |HXc(µ)|2 given by (2.17), (b) |Hs2(µ)|2
given by (2.21) with (2.22), and (c) their product |HXc(µ)|2|Hs2(µ)|2

The behavior of |Hs(µ)|2 is estimated by specifying the transmittance
function h(x). Here we consider two types of transmittance (a) sinusoidal
transmittance h1(x) and (b) rectangular transmittance h2(x), illustrated in
Fig. 2.6, which are mathematically given by

h1 (x) =
1
2

(
1 + cos

2π

p
x

)
, (2.18)

h2 (x) =

{
1 ,

(
mp − w

2

)
≤ x ≤

(
mp +

w

2

)
,

0 , otherwise,
(2.19)

where w (0 < w < p) denotes the width of one slit, as shown in Fig. 2.3.
The power spectra |Hs1(µ)|2 and |Hs2(µ)|2 of the transmittance functions
h1(x) and h2(x) are derived by substituting (2.18) and (2.19) in (2.16) as,
respectively [15] (Appendix D),
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(a) Sinusoidal

(b) Rectangular 

x

x

h1(x)

h2(x)

1

1

0

0

Fig. 2.6. Two types of transmittance functions: (a) sinusoidal and (b) rectangular

|Hs1 (µ)|2 =
(

sin πµp

πµp

)2[ 1
2 (1 − µ2p2)

]2
, (2.20)

|Hs2 (µ)|2 =
(

sin πµw

πµp

)2

. (2.21)

These spectra are illustrated in Fig. 2.7 and demonstrate low-pass filtering
characteristics similar to the function in Fig. 2.4. Generally, rectangular trans-
mittance is easier in manufacturing the spatial filter than sinusoidal transmit-
tance. Comparison of the two spectra in Fig. 2.7 shows no significant difference
in their behavior, so rectangular transmittance may be used in normal situ-
ations instead of sinusoidal. On the other hand, rectangular transmittance
h2(x) in (2.19) is a function of the slit width w. Figure 2.8 shows the vari-
ation of the power spectrum |Hs2(µ)|2 for different values of w. The width

Fig. 2.7. Power spectra |Hs1(µ)|2 and |Hs2(µ)|2 given by (2.20) and (2.21) for the
sinusoidal and rectangular transmittance functions h1(x) and h2(x), respectively
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Fig. 2.8. Behavior of the power spectrum |Hs2(µ)|2 for different values of slit
width w

of the center lobe and the first zero point become small with increasing slit
width w. As will be described in the next section, the spatial filter should
be constructed so that the filter will select a spatial frequency component
specified by µ = 1/p. This condition requires that the value of the spectrum
|Hs2(µ)|2 at µ = 1/p be as large as possible. The optimum value of w for this
requirement is given by [15]

w =
p

2
, (2.22)

and with this slit width, the spectrum |Hs2(µ)|2 becomes zero at µ = 2(m +
1)/p, (m = 0, 1, 2, . . .). This behavior is depicted in Fig. 2.5b.

By assuming XY = 1 for simplicity, the total power spectrum |H(µ, ν)|2
in (2.12) at ν = 0 is then given by the product |HXc(µ)|2|Hs2(µ)|2 for the
rectangular-type spatial filter with rectangular transmittance, and illustrated
in Fig. 2.5c, where |HY(0)|2 = 1. This spectrum demonstrates narrow-band
peaks at µ = 0 and ±1/p. For actually observed temporal signals, the posi-
tive frequency domain makes sense in the power spectrum. Thus, the spatial
filter selects two spatial frequency components of µ = 0 and 1/p. The peak
at µ = 0 selects a low-frequency component that corresponds to slowly fluc-
tuating bias or pedestal components [5], but they are not useful for spatial
filtering velocimetry. Methods for eliminating low-frequency components will
be described in Sect. 5.1. The frequency component selected at µ = 1/p pro-
vides periodic signals having a temporal frequency f = µ v = v/p and, thus, is
used for determining the velocity. The power spectrum shown in Fig. 2.5c also
contains higher order frequency peaks at µ = ±3/p, ±5/p, . . ., but these peaks
are substantially attenuated and usually do not contribute to the generation
of periodic signals.

In consequence, the periodic transmittance generates narrow-band-pass
peaks distributed at intervals of 1/p in the power spectrum. The rectangu-
lar window having size X produces a low frequency peak at µ = 0. The
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Fig. 2.9. Power spectral distribution |H(µ, ν)|2 for a rectangular-type spatial filter
with rectangular transmittance

transmittance function within one slit yields a lower frequency passband which
covers mainly the range lower than 2/p and suppresses or attenuates high-
order peaks in the spectrum. On the other hand, the behavior of the power
spectrum |H(µ, ν)|2 with respect to the spatial frequency axis ν is simply de-
termined by the spectrum |HY(ν)|2 of (2.13), consisting of the sinc function
shown in Fig. 2.4. This is an effect of the rectangular window having size Y
in the y direction. Finally, a typical illustration of the power spectral distrib-
ution |H(µ, ν)|2 in axes µ and ν is depicted in Fig. 2.9 for a rectangular-type
spatial filter with rectangular transmittance.

2.3 Power Spectra for Typical Spatial Filters

The power spectrum for a rectangular-type spatial filter is given by (2.12) as
a product of component spectra which are characterized by each contribution
of geometric parameters specifying the spatial filter. In this section, alter-
native expressions of the power spectrum are given for some typical spatial
filters which have different shapes of filter window for sinusoidal or rectangu-
lar transmittance. For rectangular transmittance, the condition w = p/2 in
(2.22) is employed. The expressions obtained here will be used for discussions
of spatial filtering characteristics in Sect. 2.4.

Figure 2.10 illustrates transmission-grating spatial filters having (I) rec-
tangularly restricted, (II) circularly restricted, and (III) Gaussian-weighted
windows, each for (a) sinusoidal and (b) rectangular transmittance functions.
Transmittance functions and their power spectra for these spatial filters are
written below.
(1) Rectangular type with sinusoidal transmittance [(I) (a)]

From (2.18), the transmittance h(x, y) is expressed by
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Fig. 2.10. Three different types of spatial filters: (I) rectangular, (II) circular, and
(III) Gaussian, each for (a) sinusoidal and (b) rectangular transmittance functions

h (x, y) =

⎧⎨
⎩

1
2

(
1 + cos

2π

p
x

)
, −X

2
≤ x ≤ X

2
, −Y

2
≤ y ≤ Y

2
,

0 , otherwise.
(2.23)

Using (2.23) in (2.5) yields the power spectrum as (Appendix E.1)

|H (µ, ν)|2 =
X2Y 2

4
|HY (ν)|2

{
HX (µ) +

1
2
[
H−

X (µ) + H+
X (µ)

]}2

, (2.24)

where

H−
X (µ) =

sin π

(
µ − 1

p

)
X

π

(
µ − 1

p

)
X

,

H+
X (µ) =

sin π

(
µ +

1
p

)
X

π

(
µ +

1
p

)
X

.

(2) Rectangular type with rectangular transmittance [(I) (b)]
From (2.19), the transmittance h(x, y) is given by
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h (x, y) =

{
1 ,

(
mp − w

2

)
≤ x ≤

(
mp +

w

2

)
,

0 , otherwise,
(2.25)

for infinite ranges of x and y. This function is expressed by the Fourier series,
as

h (x, y) =
1
2

+
∞∑

m=1

2
mπ

sin
mπw

p
cos

2mπ

p
x , (2.26)

and if we substitute w = p/2 of (2.22) in (2.26), the transmittance is derived
as

h (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

+
∞∑

m=1

(−1)m−1 2
(2m − 1) π

cos
[
2 (2m − 1) π

p
x

]
,

−X

2
≤ x ≤ X

2
, −Y

2
≤ y ≤ Y

2
,

0 , otherwise.

(2.27)

The second term on the right-hand side in the above equation expresses a sum
of cosine functions with different amplitudes and spatial frequencies. For each
cosine function, an analogy to the derivation of (1) is applied. Therefore, the
power spectrum is obtained as

|H (µ, ν)|2 =
X2Y 2

4
|HY (ν)|2 [HX (µ) + HXm (µ)]2 , (2.28)

where

HXm (µ) =
∞∑

m=1

(−1)m−1 2
(2m − 1) π

[
H−

Xm (µ) + H+
Xm (µ)

]
,

and

H−
Xm (µ) =

sin π

(
µ − 2m − 1

p

)
X

π

(
µ − 2m − 1

p

)
X

,

H+
Xm (µ) =

sin π

(
µ +

2m − 1
p

)
X

π

(
µ +

2m − 1
p

)
X

.

(3) Circular type with sinusoidal transmittance [(II) (a)]
In this type, the sinusoidal transmittance is restricted by a circular window

having radius a, as shown in Fig. 2.10IIa. Thus, the transmittance function is
written as

h (x, y) =

⎧⎨
⎩

1
2

(
1 + cos

2π

p
x

)
, x2 + y2 ≤ a2 ,

0 , otherwise.
(2.29)
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By performing the integration of (2.5) with (2.29) over the circular window
area, the power spectrum is (Appendix E.2)

|H (µ, ν)|2 = π2a4

{
HJ (µ, ν) +

1
2
[
H−

J (µ, ν) + H+
J (µ, ν)

]}2

, (2.30)

where

HJ (µ, ν) =
J1

(
2πa
√

µ2 + ν2
)

2πa
√

µ2 + ν2
,

H−
J (µ, ν) =

J1

⎡
⎣2πa

√(
µ − 1

p

)2

+ ν2

⎤
⎦

2πa

√(
µ − 1

p

)2

+ ν2

,

H+
J (µ, ν) =

J1

⎡
⎣2πa

√(
µ +

1
p

)2

+ ν2

⎤
⎦

2πa

√(
µ +

1
p

)2

+ ν2

,

where J1 is a Bessel function of the first order.
(4) Circular type with rectangular transmittance [(II) (b)]

From (2.27), the transmittance in this case is written as

h (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

+
∞∑

m=1

(−1)m−1 2
(2m − 1) π

cos
[
2 (2m − 1) π

p
x

]
,

x2 + y2 ≤ a2 ,
0 , otherwise.

(2.31)

In the same way as the derivation of (3), the power spectrum is

|H (µ, ν)|2 = π2a4 [HJ (µ, ν) + HJm (µ, ν)]2 , (2.32)

HJm (µ, ν) =
∞∑

m=1

(−1)m−1 2
(2m − 1) π

[
H−

Jm (µ, ν) + H+
Jm (µ, ν)

]
,

H−
Jm (µ, ν) =

J1

⎡
⎣2πa

√(
µ − 2m − 1

p

)2

+ ν2

⎤
⎦

2πa

√(
µ − 2m − 1

p

)2

+ ν2

,
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H+
Jm (µ, ν) =

J1

⎡
⎣2πa

√(
µ +

2m − 1
p

)2

+ ν2

⎤
⎦

2πa

√(
µ +

2m − 1
p

)2

+ ν2

.

(5) Gaussian type with sinusoidal transmittance [(III) (a)]
The sinusoidal transmittance restricted by the Gaussian-weighted window

is written as

h (x, y) =
1
2

exp
(
−x2 + y2

2σ2

)
·
(

1 + cos
2π

p
x

)
, (2.33)

where σ is the effective radius (width 1/e) of the Gaussian window. Substitu-
tion of (2.33) in (2.5) yields the power spectrum (Appendix E.3)

|H (µ, ν)|2 = π2σ4

{
HG (µ, ν) +

1
2
[
H−

G (µ, ν) + H+
G (µ, ν)

]}2

, (2.34)

where
HG (µ, ν) = exp

[−2π2σ2
(
µ2 + ν2

)]
,

H−
G (µ, ν) = exp

{
−2π2σ2

[(
µ − 1

p

)2

+ ν2

]}
,

H+
G (µ, ν) = exp

{
−2π2σ2

[(
µ +

1
p

)2

+ ν2

]}
.

(6) Gaussian type with rectangular transmittance [(III) (b)]
Again from (2.27), the rectangular transmittance in the Gaussian type is

written as

h (x, y) = exp
(
−x2 + y2

2σ2

)

·
{

1
2

+
∞∑

m=1

(−1)m−1 2
(2m − 1) π

cos
[
2 (2m − 1) π

p
x

]}
.(2.35)

Thus, the power spectrum is obtained in the same way as the derivation of
(2.34) as

|H (µ, ν)|2 = π2σ4 [HG (µ, ν) + HGm (µ, ν)]2 , (2.36)

HGm (µ, ν) =
∞∑

m=1

(−1)m−1 2
(2m − 1) π

[
H−

Gm (µ, ν) + H+
Gm (µ, ν)

]
,

H−
Gm (µ, ν) = exp

{
−2π2σ2

[(
µ − 2m − 1

p

)2

+ ν2

]}
,

H+
Gm (µ, ν) = exp

{
−2π2σ2

[(
µ +

2m − 1
p

)2

+ ν2

]}
.
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The expression of (2.24) or (2.28) for the power spectrum is different from
that of (2.12) including (2.20) or (2.21), respectively, but they are mathemat-
ically equivalent to each other. Equations (2.24) and (2.28) may be useful for
estimating directly the total distribution of the spectrum |H(µ, ν)|2, whereas
(2.12) is helpful for understanding each contribution of geometric parameters
in the spatial filter to the spectrum. As seen from (2.24), the Fourier spectrum
H(µ, ν) consists of three frequency components. The first term HX(µ) inside
the brackets { . . . } indicates a low-frequency or pedestal component having
a peak at (µ, ν) = (0, 0), and the second term

[
H−

X (µ) + H+
X (µ)

]
describes

desired periodic signal components having peaks at (µ, ν) = (±1/p, 0). Thus,
the squared absolute of this spectrum or the power spectrum |H(µ, ν)|2 is
also expected to have three such peaks at the same frequencies. In rectangular
transmittance, the Fourier spectrum H(µ, ν) in (2.28) also contains higher fre-
quency components having peaks at (µ, ν) = (±3/p, 0), (±5/p, 0), . . . in addi-
tion to the three fundamental peaks at (µ, ν) = (0, 0) and (±1/p, 0). However,
the power of those higher order components is low enough to be neglected in
comparison with the power of the first-order component at (µ, ν) = (±1/p, 0).
Note that even-order higher frequency components disappear due to the na-
ture of the spectrum |Hs2(µ)|2 for w = p/2 in Fig. 2.8. Although rectangu-
lar transmittance is very often employed for actual measurements, sinusoidal
transmittance is convenient for theoretical treatments because of its simple
function. Actually, a case of m = 1 in (2.28) agrees with (2.24) apart from the
coefficient for periodic signal terms.

The same discussion as that in the above paragraph can be applied to
circular- and Gaussian-type spatial filters. Figure 2.11 illustrates computed
examples of the power spectra |H(µ, ν)|2 at ν = 0 for (a) sinusoidal and
(b) rectangular transmittance restricted by the three types of windows: rec-
tangular, circular, and Gaussian. The parameter n = X/p, which indicates
the number of grating lines in the x direction, is set at 5. All of the power
spectra show the lower frequency component at µ = 0 and the narrow-band-
pass frequency component having a peak at µ = 1/p. The former compo-
nent is unnecessary for velocity measurements and is usually removed by an
electric high-pass filter (HPF). The latter signal component means the desir-
able selectivity of frequency at µ = 1/p and, thus, all of the spatial filters
in the figure are available for velocity measurements. As to the behaviors of
the lower frequency and narrow-band-pass spectra, no significant difference is
found between (a) the sinusoidal and (b) the rectangular transmittance func-
tions. The spectra for the rectangular- and circular-type spatial filters show
subsidiary components having quite low power between µ = 0 and 1/p, but
these components hardly affect velocity measurements in normal cases. Since
the circular window is generally easy to construct in a range smaller than a
few millimeters, the circular-type spatial filter is often used in microscopic
measuring systems. The Gaussian-type spatial filter produces no subsidiary
component between µ = 0 and 1/p and, thus, is ideal. However, it is gen-
erally a difficult or complicated task to realize a Gaussian-weighted window.
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Fig. 2.11. Power spectra |H(µ, ν)|2 at ν = 0, which are normalized by values at
µ = ν = 0, for (a) sinusoidal and, (b) rectangular transmittance functions restricted
by the three types of windows: rectangular (Rect), circular (Circ), and Gaussian
(Gauss)

In comparison with the circular and rectangular types, the Gaussian type is
more convenient for mathematical and computational treatments. A possible
example of the Gaussian type may be that the probing area, which is de-
fined optically by the circular window of the spatial filter, is illuminated by a
Gaussian laser beam of TEM00 mode having a beam width smaller than the
probing area.

2.4 Filtering Characteristics

In the spatial filtering method, periodic output signals carrying velocity in-
formation are produced by the narrow-band frequency component selected
at µ = 1/p in the power spectrum of the filter’s transmittance. The ob-
ject’s velocity can be determined from the central frequency of such peri-
odic signals in the temporal frequency domain. Thus, the quality of output
signals is primarily regulated by the filtering characteristics of the narrow-
band-pass peak in the power spectrum. Here we investigate the spatial fil-
tering characteristics, particularly the spectral bandwidth and the central
frequency of the periodic signal component in the power spectra of spatial
filters.
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Fig. 2.12. Power spectra Hp (µ) = |H (µ)|2 for a circular-type grating with sinu-
soidal transmittance for different numbers of grating lines, n [25]

2.4.1 Spectral Bandwidth

Figure 2.12 [25] shows power spectra Hp(µ) = |H(µ)|2 for the circular-type
grating with sinusoidal transmittance, numerically computed for four different
numbers of grating lines, n. The spectrum Hp(µ) is obtained by integrating
the spectrum |H(µ, ν)|2 with respect to the spatial frequency ν and is more
rigorous than |H(µ, 0)|2 for estimating the spectral characteristics Gp(f) of
output signals obtained from the photodetector. The parameter n is defined
by the ratio of the window size (diameter 2a for the circular type) to the
period p of the grating lines as [25]

n =
2a

p
. (2.37)

It is seen from the figure that the spectral bandwidth of the signal compo-
nent centered at µ = 1/p becomes small with an increasing number of grating
lines, n. To evaluate the spectral bandwidth, we introduce a new parameter
D as

D =
B

µ0
= pB , (2.38)

where µ0 = 1/p and B are the fundamental spatial frequency given by a recip-
rocal of the grating line interval p and the half-value full width of the peak
at µ = µ0, respectively. The former value normally agrees with the central
frequency of the signal component. This parameter D denotes the bandwidth
of the peak spectrum normalized by the fundamental spatial frequency and
is called the specific bandwidth. For the circular-type sinusoidal-transmission
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grating shown in Fig. 2.10IIa, the specific bandwidth Dc is derived approxi-
mately as

Dc =
3.233
nπ

(circular) . (2.39)

The spectral bandwidth is inversely proportional to the number of grating
lines, n. The spectral broadening degrades the selectivity of the spatial filter
and limits the basic accuracy for measurements of the central frequency in
output signals. In addition, the broad peaks for small n make it difficult
to remove the lower frequency component with an electric HPF, since the
two components centered at µ = 0 and 1/p are closely distributed in their
tails. Therefore, large number, n, of grating lines is desired generally. In the
same way as above, expressions for the specific bandwidth of a rectangular-
and Gaussian-type sinusoidal-transmission gratings, shown in Figs. 2.10Ia and
IIIa, respectively, are also derived as

Dr =
2.783
nπ

, (rectangular) , (2.40)

Dg =
1.665
nπ

, (Gaussian) . (2.41)

Figure 2.13 illustrates the dependence of the specific bandwidth on the number
of grating lines, n, given in (2.39)–(2.41) for the three types of sinusoidal-
transmission grating spatial filters. With an increasing number of grating lines,
n, the specific bandwidth of the signal component decreases, and, then, the
selectivity becomes higher. Comparison of the three types indicates that the
specific bandwidth for the Gaussian type is smallest for a given number n.
Although this difference is due to the window shape of the spatial filter, it
may cause no significant defect in the determination of the central frequency.
Thus, the difference in the three types will not be an essential factor when we
choose the window shape.

Here we consider the basic accuracy for determination of the central fre-
quency on the basis of the specific bandwidth. The central frequency may be
assumed to be measurable within an error of ±B/2. Then, the basic accuracy
is estimated by the ratio ε of the error ±B/2 to the central frequency µ0 as

Fig. 2.13. Dependence of the specific bandwidth on the number of grating lines, n
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ε = ± B

2µ0
= ±D

2
. (2.42)

It should be noted, however, that the expected accuracy in actual measure-
ments is determined substantially by the ability of the signal-processing sys-
tem employed.

2.4.2 Central Frequency

As seen from Fig. 2.12, the central frequency of the peak spectrum deviates
from µ = 1/p when n = 2. The peak deviation becomes negligibly small for a
larger number of grating lines, n. If measuring circumstance or system config-
uration requires a small number of grating lines, this effect causes significant
errors in the measured frequency. The deviation is due to spectral distrib-
ution of the pedestal component centered at µ = 0. For a small number n
of grating lines, the spectral bandwidth of the pedestal component also be-
comes broad, and its tail is significantly overlapped by the signal component
around µ = 1/p. Figure 2.14 illustrates the power spectra for a circular-type
sinusoidal-transmission grating with n = 2, 2.6, and 3. In graphs (a) and
(c), the central frequency of the signal component deviates from µ = 1/p
to the higher and lower frequency regions, respectively, whereas in (b), the
central frequency almost agrees with µ = 1/p despite the small number n.
This difference in the behavior of the central frequency is due to the form
of superposition of the pedestal and signal components. In the lower three
graphs (a’), (b’), and (c’) of Fig. 2.14, the signal component is calculated and
plotted separately from the pedestal component (shown by the broken curve),
and the central frequency does not deviate at all. For a large number n of
grating lines, the tail of the pedestal component sufficiently attenuates in the
frequency region of the signal component and has no influence on it.

Here we consider a deviation error in percent defined by the frequency de-
viation ∆µ from the fundamental spatial frequency µ = µ0 = 1/p, normalized
by µ0 as

Error =
∆µ

µ0
× 100 . (2.43)

Figure 2.15 demonstrates the deviation error evaluated from computed power
spectra for a circular-type sinusoidal transmission grating as a function of
the number of grating lines, n. The error is large for small n, especially for
n < 5, and becomes small with increasing number n. From this evaluation,
the number n of grating lines larger than 10 is recommended to suppress the
deviation error to less than 1%.

The Gaussian-type transmission grating is free from this problem. The
pedestal component given by the Gaussian function in (2.34) rapidly attenu-
ates as the spatial frequency µ increases and no subsidiary oscillation appears
in its spectral distribution. Thus, the tail of the pedestal component does not
affect the signal component. By its nature, the Gaussian type is considered
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Fig. 2.14. Power spectra for a circular-type sinusoidal-transmission grating with
n = 2, 2.6, and 3. In the lower three graphs, the signal (solid curve) and pedestal
(broken curve) components are separately calculated and plotted
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Fig. 2.15. Deviation error of the central frequency from µ = 1/p as a function of
the number of grating lines, n [25]

ideal in spatial filtering characteristics. On the other hand, the rectangular
type as well as the circular type suffer from the central frequency deviation
for smaller n. Since the deviation is due to the presence of the pedestal tail
component, it should be removed. Generally, the pedestal component can be
eliminated by an electric HPF. Note, however, that, even if the pedestal com-
ponent is removed sufficiently in such a way, the electric HPF is unable to
eliminate the tail component of pedestal that is embedded in the signal com-
ponent and to avoid deviation of the central frequency. To suppress the effect,
a specific optical method may be employed to eliminate the pedestal compo-
nent before signal processing. For example, the differential detection method
is useful for this purpose and will be described in Sect. 5.1.2.
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2.4.3 Direction of Grating Lines

Up to this subsection, the grating lines of the spatial filter have been assumed
to be orthogonal to the direction of the object’s movement. Next we investigate
the effect of change in the moving direction, with respect to the grating lines,
on spatial filtering characteristics. Figure 2.16 illustrates the object moving
in the x′ direction at an angle θ to the x axis which is perpendicular to the
grating lines. By rotating the coordinate axes given by{

x′ = x cos θ + y sin θ ,
y′ = −x sin θ + y cos θ ,

(2.44)

the power spectrum H ′
p(µ, ν) for a circular-type sinusoidal-transmission grat-

ing is written as [25] (Appendix F)

|H (µ, ν)|2 = π2a4

{
HJ (µ, ν) +

1
2
[
H−

Jθ (µ, ν) + H+
Jθ (µ, ν)

]}2

, (2.45)

where HJ(µ, ν) is identical to that in (2.30) and

H−
Jθ (µ, ν) =

J1

⎡
⎣2πa

√(
µ − cos θ

p

)2

+
(

ν − sin θ

p

)2
⎤
⎦

2πa

√(
µ − cos θ

p

)2

+
(

ν − sin θ

p

)2
,

H+
Jθ (µ, ν) =

J1

⎡
⎣2πa
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cos θ

p

)2

+
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ν +
sin θ

p

)2
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⎦
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Fig. 2.16. Case of the object movement in the x′ direction at an angle θ to the x
axis which is perpendicular to the grating lines
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This equation indicates that the narrow band-pass spectrum of the signal
component appears at (µ, ν) = (± cos θ/p,± sin θ/p). The central frequency
f ′
0 of this spectrum in the temporal frequency domain is, then, given from

(1.1) and (2.10) by

f ′
0 =

Mv0

p
cos θ = f0 cos θ , (2.46)

and the measured velocity in this case is given by

v′
0 =

p

M
f ′
0 =

p

M
f0 cos θ = v0 cos θ . (2.47)

The two equations above express that a substantial decrease in the factor cos θ
affects the values of the central frequency and the velocity being measured.
As long as the angle θ is unknown, the real velocity v0 cannot be derived. The
measured value is the cosine component of v0 in the x direction. Figure 2.17a
[25] shows computed power spectra H ′

p(µ) for four different angles of θ in
the use of the circular-type sinusoidal-transmission grating. These spectra are
obtained by integrating H ′

p(µ, ν) with respect to ν. The number of grating
lines, n, is set at 4. A deviation error of the central frequency from µ = 1/p is
plotted in Fig. 2.17b. With increasing angle θ, the central frequency becomes
lower making the error larger and nearer the pedestal component. Since the
pedestal component in the spectra is not influenced by a change in angle θ,
it keeps the consistent spectral form. For a larger angle θ, thus, the signal
and pedestal component spectra overlap significantly. This creates difficulty
in the perfect removal of the pedestal component by using the electric HPF
without affecting the signal spectral component. To overcome this problem,
the pedestal component should be eliminated by the optical system after all.

The decrease of the central frequency in the signal component spectrum
means a substantial broadening of the spectral width. For a given central
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Fig. 2.17. (a) Power spectra H ′
p (µ) for four different angles θ using the circular-

type sinusoidal-transmission grating [25], and (b) the deviation error of the central
frequency from µ = 1/p
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Fig. 2.18. (a)Spectrum broadening of the signal component for four different angles
of θ and (b)the specific bandwidth as a function of the angle

frequency µ′
0 = (1/p) cos θ, the specific bandwidth in this case is written as

D′ =
B

µ′
0

=
pB

cos θ
=

D

cos θ
. (2.48)

Figures 2.18a and b demonstrate the spectrum broadening of the signal com-
ponent and the specific bandwidth as a function of angle θ. In graph (a), the
pedestal component is omitted, and the spatial frequency axis is normalized
with the deviated central frequency µ′

0 = (1/p) cos θ. Thus, the bandwidth in
this graph shows directly the specific bandwidth given by (2.48). An increase
in angle θ broadens the bandwidth and degrades the selectivity of the spatial
filter. The directional effect described above can be applied to measurements
of two-dimensional components of the object velocity, which will be described
in Sect. 5.1.5.

2.5 Parameters of the Spatial Filter

To realize required filtering characteristics in a given measurement circum-
stance, the physical parameters of the spatial filter should be appropriately
designed. This section provides some useful considerations for determining the
parameters that characterize the performance of spatial filtering velocimetry.
According to the characteristics discussed in the above sections, the required
spatial filter may be specified by considering the following parameters [56] :

1. transmittance function
2. filter window
3. interval of grating lines
4. number of grating lines.

These parameters are described in the following subsections.
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2.5.1 Transmittance Function

Section 2.2 described two typical transmittance functions: sinusoidal and rec-
tangular. Investigation of the power spectra in Sect. 2.3 reveals that the si-
nusoidal transmittance is better for filtering properties because it does not
generate higher order signal frequency components and gives mathematically
simple expressions. However, the exact realization of the sinusoidal transmit-
tance for a spatial filtering device is not easy and often costly. Most usual
measurements are satisfied by rectangular transmittance, though it generates
unwelcome higher order signal frequency components. These components have
negligibly low intensity and no significant effect on the fundamental frequency
component, as long as the number of grating lines, n, is about 10 or more.
Rectangular transmittance can easily be realized by photoprinting or pho-
toetching techniques and is also commercially available (Ronchi ruling, for
example). Measurements in microscopic regions often require a small number
n, with which the signal spectrum is broadened, and, thus, rectangular trans-
mittance may be problematic since the tails of neighboring spectral peaks
possibly overlap. Roughly for n < 4, sinusoidal transmittance should be used.
It may be possible to design other functions such as a triangular function
for transmittance. Though they are not general, they are used for alternative
spatial filtering devices, providing that the generation of higher order signal
components is carefully considered.

2.5.2 Filter Window

The filter window is an aperture which is usually attached to the transmission
grating to define the detecting area with a certain shape and size. Then, the
window defines the cross-sectional area of the probing volume by means of
optical imaging. The total power of light received by the photodetector is
determined by this window. However, the main consideration should be given
to the number of grating lines, n. With a given size X for the window in the
x direction, the number n is determined by X/p, in which p is the grating line
interval. On one hand, ensuring a large number n requires a large window. On
the other hand, high spatial resolution in velocity measurements requires a
small window. The window size is, thus, determined by a compromise between
the number, n, of grating lines and the spatial resolution.

The three representative shapes of the window are described in Fig. 2.10;
rectangular, circular, and Gaussian windows. Probably, the circular or rectan-
gular aperture is a general choice. These shapes are very easily designed and
constructed, and their properties are also sufficiently practicable as long as
the number n of grating lines is relatively large. The circular aperture is par-
ticularly favorable if a small window of a few millimeters or less is required,
since a small circular aperture or pinhole is more easily fabricated than a
rectangular one. The Gaussian aperture provides us with the best filtering
quality and mathematical simplicity, but it is not a simple task to realize an
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actual Gaussian filtering device. Thus, the Gaussian window may be suitable
for theoretical studies. Other shapes can also be used if there is a specific
requirement.

2.5.3 Intervals of Grating Lines

Usually, the intervals of grating lines may be appropriately selected from some
discrete values offered by manufacturers. The selection should be made by
considering the available number of grating lines for a given window size.
The upper limit of the interval is given by the minimum permissible number
of grating lines. The lower limit is determined by the image size of an object
such as a particle. From an estimation of the size effect which will be discussed
in Sect. 2.6, we recommend that the interval be larger than twice the image
size. In making the transmission grating, a line interval larger than hundred
microns is easily fabricated without particular difficulties, but an extremely
small interval may need advanced manufacturing techniques.

2.5.4 Number of Grating Lines

The number of grating lines, n, is the most important parameter of the spatial
filter that characterizes the performance of spatial filtering velocimetry. From
the investigation of filtering characteristics on the basis of power spectra, the
number n should be designed as large as possible to ensure high selectivity.
In Fig. 2.13, the specific bandwidth decreases with an increase in the number
n and the decreasing slope becomes nearly flat for n > 10. This property
indicates that further improvement in selectivity is not largely expected for
n > 20. The minimum permissible number of grating lines may be evaluated
from the basic accuracy ε given by (2.42). To ensure ε ≤ ±5%, the specific
bandwidth Dc for the circular-type of sinusoidal-transmission grating should
be ≤ 0.1, and this requires n > 10. Equation (2.42) often yields an overesti-
mation for restricting the available number n. With empirical knowledge [25],
even n = 5–10 can be used successfully for general purposes.

A typical example of a spatial filter may be provided by rectangular trans-
mittance restricted by a circular or rectangular window having the number of
grating lines, n = 10–20. The geometric sizes of the window and grating line
interval are, then, decided by considering the mean size of images of scattering
objects, the probing cross-sectional area, and the optical magnification.

2.6 Effects of Scattering Objects

As described in Sect. 2.1, the spatial power spectrum of output signals,
Gp(µ, ν), is characterized by the power spectrum Hp(µ, ν) for a spatial fil-
ter, assuming that the power spectrum Fp(µ, ν) for the scattering object is
almost uniform in the spatial frequency range up to around µ = ±1/p (see
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Fig. 2.2). This assumption holds when the mean size of images of scattering
objects such as particles is sufficiently small in comparison with the interval p
of the grating lines. Unless this is satisfied, properties of the spectrum Fp(µ, ν)
may affect the output spectrum Gp(µ, ν). In this section, the effects of the
spectrum Fp(µ, ν) on output signal characteristics are investigated.

2.6.1 Deviation of the Central Frequency

Let us first treat scattering particles as objects and consider the effect of
their mean size. A circular particle image having a diameter 2b is assumed
to move on a circular-type sinusoidal-transmission grating having interval p.
Figure 2.19a shows one-dimensional computed power spectra Hp(µ) for a spa-
tial filter with the number of grating lines, n = 4, and Fp(µ) for a particle
image having three different sizes, which are specified by the ratio of the
image diameter to the grating line interval, 2b/p. As the particle image is
comparable in size with the grating interval p such as 2b/p = 0.8 in Fig. 2.19a,
the power spectrum Fp(µ) for the particle image is no longer uniform in the
spatial frequency domain and attenuates considerably with increasing spa-
tial frequency µ. With an increase in the ratio 2b/p from 0.2 to 0.8, this
attenuation becomes noticeable. Thus, at the central frequency, µ = 1/p, of
a narrow-band-pass spatial filter, the power spectrum Fp(µ) for the larger
particle image is more reduced in power. Since the power spectrum Gp(µ)
of output signals is given by the product of Hp(µ) and Fp(µ), Gp(µ) is af-
fected by the decreasing characteristics of Fp(µ), as shown in Fig. 2.19b. In
this figure, the power spectrum Gp(µ) for a larger ratio of 2b/p becomes
lower, and the resultant central frequency deviates toward the lower fre-
quency. The significant slope of the power spectrum Fp(µ) around µ = 1/p
results in the central frequency deviation. If Fp(µ) is nearly uniform around

m m

(m)(m)(m)

Fig. 2.19. (a) Power spectra Hp (µ) for a spatial filter with the number of grating
lines, n = 4, and Fp (µ) for the particle image having three different sizes 2b relative
to the grating line interval p. (b) The corresponding power spectrum Gp (µ) obtained
by the product of Hp (µ) and Fp (µ)
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µ = 1/p, no deviation occurs, even if Fp(µ) is low in power. This devia-
tion may cause significant errors in the measured central frequency and, thus,
velocity.

To treat the frequency deviation quantitatively, a one-dimensional inten-
sity distribution f(x) of a circular particle image is assumed to take a Gaussian
form as

f (x) =
1√
2πbg

exp
(
− x2

2b2
g

)
, (2.49)

where bg is the standard deviation of f(x), corresponding to the effective
radius of the particle image. Then, the power spectrum Fp(µ) of the particle
image is derived by using (2.6) as

Fp (µ) = exp
(−4π2b2

gµ
2
)

. (2.50)

For mathematical simplicity, the Gaussian-type sinusoidal-transmission grat-
ing shown in Fig. 2.10IIIa is introduced here instead of the circular type. A
one-dimensional power spectrum Gp(µ) of output signals is derived by using
(2.34) and (2.50). The result is given in Appendix G. The central frequency,
giving a peak of the signal component, is derived in this case as

µ =
1
p
· n2(

2bg

p

)2

+ n2

. (2.51)

If the particle image is sufficiently small in comparison with the grating inter-
val p or the value of 2bg/p is negligibly small compared to the value of n, then
the central frequency agrees nearly with µ = 1/p. Figure 2.20 demonstrates
the dependence of the central frequency normalized with 1/p for the ratio
2bg/p. An increase in the ratio 2bg/p makes the normalized central frequency
µp lower. This tendency is quite remarkable for a small number of grating
lines, n. The frequency deviation due to the particle size should be taken into
account when the number n of grating lines is less than 10. A similar effect due
to scattering particle size has also been reported in studies of laser Doppler
velocimetry [57,58].

2.6.2 Visibility of Output Signals

Another significant effect due to scattering particle size, which is demonstrated
in Fig. 2.19b, is the reduction in power of the signal component in comparison
with the pedestal component. This reduction means a decrease in the contrast
of the periodic signal amplitude (ac component) to its average (dc component)
and, thus, degrades the signal quality. A signal from a small particle image
is fully modulated by the grating, as illustrated in Fig. 2.21a, whereas a large
particle image may give a fractionally modulated signal, as in Fig. 2.21b. The
large particle image extends over plural opaque bars and slits of the grating
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Fig. 2.20. Dependence of the normalized central frequency on the ratio of the
particle image diameter to the grating line interval, 2bg/p

(a)

(b) 

s(t)

2b (2bg)

t

t

p

s(t)

imin

imax

Fig. 2.21. Small and large particle images passing on the transmission grating and
their resultant signals (a) and (b), respectively

and, thus, averages a variation of the transmitted light intensity. The mod-
ulation of signals produced by the image passage on the grating is, then,
substantially reduced in Fig. 2.21b.

Figure 2.22 shows numerically simulated output signals obtained from
circular images having different diameters passing on a Gaussian-type
rectangular-transmission grating. Signals (a)–(f) are plotted for different ra-
tios, 2b/p, of the particle image diameter to the grating line interval. Signals
(a) and (b) for smaller particle images are fully modulated. The depth of
the modulation is reduced with an increasing ratio of 2b/p, and signal (e) is
almost averaged out. The degree of signal modulation may be evaluated by
“visibility” V that is defined as [5]

V =
imax − imin

imax + imin
=

ac amplitude
dc component

, (2.52)

where imax and imin are the maximum and minimum levels of the periodic
signal amplitude, as shown in Fig. 2.21b. In the following simplified cases,
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Fig. 2.22. Numerically simulated output signals from circular images having dif-
ferent diameters 2b passing on the Gaussian-type rectangular-transmission grating
with the line interval p

expressions for visibility are derived by specifying the intensity distribution
function f(x, y) of a single particle image and the grating transmittance
h(x, y).

(1) A circular image of diameter 2b passing on a sinusoidal-transmittance
filter

The two functions f(x, y) and h(x, y) are written as

f (x, y) =
{

I0 , x2 + y2 ≤ b2,
0 , otherwise, (2.53)

h (x, y) =
1
2

(
1 + cos

2π

p
x

)
. (2.54)

Substitution of these two functions in (2.1) yields the following result for the
modulated intensity of transmitted light(Appendix H.1):

g (t) =
I0πb2

2

[
1 + A1 cos

(
2πvx

p
t

)]
, (2.55)

A1 =
2J1

(
2πb

p

)
2πb

p

,
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where vx is the x component of the image velocity and J1 is a Bessel function
of the first order. If the light intensity received by the detector is assumed to
be proportional to g(t), visibility V1 is given by

V1 (b) = |A1| . (2.56)

In the same way above, the visibility may be calculated for other cases below.
For the following, then, only the resultant equations are given here.

(2) A circular image of diameter 2b passing on a rectangular-transmittance
filter:

g (t) =
I0πb2

2

[
1 + 2

∞∑
m=1

(−1)m−1 4
(2m − 1) π

A2Cm (t)

]
, (2.57)

A2 =
J1

(
2 [2m − 1] πb

p

)
2 [2m − 1] πb

p

,

Cm (t) = cos
[
2 (2m − 1) πvx

p
t

]
,

V2 (b) =

∣∣∣∣∣
∞∑

m=1

(−1)m−1 8
(2m − 1) π

A2

∣∣∣∣∣ . (2.58)

(3) An image having a Gaussian intensity profile with a standard deviation
bg, passing on a sinusoidal-transmittance filter (Appendix H.2):

g (t) = I0πb2
g

[
1 + A3 cos

(
2πvx

p
t

)]
, (2.59)

V3 (bg) = A3 = exp

(
−2π2b2

g

p2

)
. (2.60)

(4) An image having a Gaussian intensity profile with a standard deviation
bg, passing on a rectangular-transmittance filter:

g (t) = I0πb2
g

[
1 +

∞∑
m=1

(−1)m−1 4
(2m − 1) π

A4Cm (t)

]
, (2.61)

A4 = exp

[
−2 (2m − 1)2 π2b2

g

p2

]
,

V4 (bg) =

∣∣∣∣∣
∞∑

m=1

(−1)m−1 4
(2m − 1) π

A4

∣∣∣∣∣ . (2.62)
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Fig. 2.23. Visibility of output signals as a function of the ratio, 2b/p or 2bg/p, of
the particle image diameter to the interval of grating lines

The case for the rectangular-transmittance filter may be more realistic than
the sinusoidal one. A model of the Gaussian-shaped image is sometimes of
practical interest since it may correspond approximately to the defocused
image and to the edge-blurred image that is due to the point spread of an
optical imaging system, as will be described in Chap. 3.

Figure 2.23 shows plots of visibility V as a function of the ratio 2b/p or
2bg/p, of the particle image diameter to the interval of grating lines. Higher
visibility is obtained for the ratio 2b/p or 2bg/p equal to and less than about
0.5–0.6. With 2bg/p = 0.5, the error in the frequency deviation is estimated by
(2.51) or Fig. 2.20 at about 6% for n = 2, which is substantially the minimum
number of grating lines in the principle of spatial filtering velocimetry. Thus,
the effects of the particle image size may be negligible for 2b/p or 2bg/p ≤ 0.5–
0.6. Note that the amplitude of output signals g(t) is proportional to the value
of πb2V or πb2

gV . This means that extremely small particles may decrease the
light intensity received by the detector, even if the visibility is nearly unity.
The small amplitude of output signals degrades the signal-to-noise ratio in the
presence of electrical noises. Thus, the signal quality depends on both visibility
and the absolute signal amplitude as long as particle size is concerned. The
value of πb2V1 becomes maximum for 2πb/p = 1.841 and, then, the optimum
ratio of particle image diameter to grating line interval, 2b/p, is 0.586 in this
simplified case [5]. This is also permissible with respect to the above condition
of 2b/p ≤ 0.5–0.6 for suppressing the frequency deviation and producing high
visibility.

It may be interesting to note that the above problem of size effects is very
similar to laser Doppler velocimetry [59,60], in which visibility is described as
a function of the ratio of the scattering particle diameter to the fringe spacing.
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Spatial filtering velocimetry treats visibility as a function of the particle image
diameter for a given line interval. Then, visibility should also be an impor-
tant factor when the optical imaging system accompanies a focusing error. A
defocused image makes its effective size larger and reduces visibility. There-
fore, visibility is one of the factors that limit the focusing depth in the probe
volume. The optical imaging system and the probe volume will be described
in Chap. 3. Measurements of visibility can be used for determining particle
sizes and detecting of the focusing position. These topics will be discussed in
Sect. 6.5.

2.6.3 Light Scattering by Spherical Particles

In the above discussion, the particle image was assumed to have a circular
cross-section or a two-dimensional Gaussian profile. This model is, however,
sometimes not applicable to spherical scattering particles. The light scatter-
ing by a very large sphere compared to the wavelength of illuminating light
may be treated by a geometric optics approximation [61]. Figure 2.24 illus-
trates the imaging of a spherical particle under the illumination of a colli-
mated beam. The light scattered in the near forward direction is imaged onto
the plane of a transmission grating by a lens. According to the geometric
optics approximation, scattered light is expressed by the sum of reflected,
refracted, and diffracted rays. Under conditions of dark-field illumination,
diffracted rays are not used for imaging because the directions of illumina-
tion and detection are clearly different. Higher order refracted or internally
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Fig. 2.24. Imaging of a spherical particle illuminated by a collimated beam
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reflected rays are rather attenuated and their contribution is usually negligi-
ble. Thus, reflected and twice-refracted rays are considered here. The direc-
tion of reflected and refracted rays follows Snell’s law at the particle–medium
interface.

In Fig. 2.24, two refracted rays emerging from the sphere and direct-
ing toward the upper and lower edges P1 and P2 of the lens are denoted
by ra1 and ra2, respectively. In the same way, two reflected rays with the
same condition are rb1 and rb2. In this illustration, the refractive index of
the particle to medium is assumed to be larger than unity. The hatched
region between the two rays ra1 and ra2 represents the flux of refracted
rays that is received by the lens and contributes to the imaging. Since this
light flux emerges from a surface fraction A of the sphere, its image A′ be-
comes a cross section of A projected on the image plane. The flux of re-
flected rays defined by the region between rb1 and rb2 forms the image of
surface fraction B, denoted by B′ in the image plane. In usual measure-
ment circumstances, the scattering of ambient light by a sphere contributes
to forming a circular cross-sectional image of the whole sphere. Because
the ambient light is usually diffused and not collimated, emerging rays to
be imaged cover the whole cross section. This image is, however, consid-
erably weak in intensity unless sufficient diffuse illumination is actively in-
troduced. The images A′ and B′ of surface fractions may be observed as
bright spots. Therefore, output signals are produced mainly by the passage
of two bright spots on the grating rather than that of the whole sphere
image. In this case, the effects of particle size may be estimated more prop-
erly for the bright spot images of the surface fractions. Roughly speaking,
the size of the bright spot image may be 0.1–0.2 of the whole sphere-image
diameter, though the situation depends on the scattering condition and the
imaging optical system. In consequence, there is the possibility of extending
the size range of measurable spheres by spatial filtering velocimetry. How-
ever, the above phenomenon should be carefully considered when the mea-
surement of visibility is applied to the determination of spherical particle
sizes.

2.7 Requirements for Scattering Objects

The technique of spatial filtering velocimetry depends on the spatial distribu-
tion of the image intensity of the light scattered or radiated from the moving
object being measured. The suitability of the image intensity distribution
for spatial filtering velocimetry can be estimated by the spatial power spec-
trum of the distribution. As already shown in Fig. 2.2, the spatial filter se-
lects the narrow band spectral component centered at the spatial frequency
µ = µ0 = 1/p from the power spectrum Fp(µ, ν) of the image intensity dis-
tribution. Thus, Fp(µ, ν) must contain a substantial level of power around
µ = 1/p. Figures 2.25a and b show illustrations of possible power spectral
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Fig. 2.25. Possible distribution forms of the power spectrum Fp (µ) : (a) suitable
and (b) unsuitable for spatial filtering velocimetry. The dotted spectrum shows
Hp (µ) for the spatial filter

examples Fp(µ) suitable and unsuitable for spatial filtering velocimetry, re-
spectively. The dotted spectrum shows Hp(µ) for the spatial filter. Spectral
distributions in figure (a) have a comparable level of power at µ = 1/p with
the dc component at µ = 0, and the signal frequency spectrum selected by
the spatial filter may keep a measurable level of power. Some spectra in fig-
ure (b) have lower power at µ = 1/p in comparison with the dc component,
Fp(0). Periodic signals in this case are of low contrast (or visibility), and the
signal-to-noise ratio (SNR) may be poor. Other spectra in figure (b) show a
dramatic change in power around µ = 1/p, which causes the deviation error in
the resultant central frequency, as described in Sect. 2.6.1. In consequence, the
requirement for scattering objects is that the level of the spectrum Fp(µ, ν)
around µ = 1/p should be larger than a quarter to half of the dc component
Fp(0, 0) and should also be comparably uniform. Three typical examples of
objects are treated for this subject in the following subsections.

2.7.1 Small Particles

In spatial filtering velocimetry, measurements in fluids require small suspended
particles to scatter the illuminating or natural light for imaging. The up-
per limit in particle size is given by estimations of the frequency deviation
and the visibility lowering, as discussed in Sects. 2.6.1 and 2.6.2. The use-
ful criterion is that the diameter of particle images on the grating should
be smaller than about half of the grating line interval p. Particles smaller
than this may ensure successful measurements, but too small particles scat-
ter insufficient intensity of light for an acceptable signal-to-noise ratio in the
background of the ambient light. A recommendation from the practical point
of view is that the ratio of particle image diameter to grating interval, 2b/p,
should be in and around a range of 0.05–0.5. The shape and material of par-
ticles are less important factors for SFV measurements as long as particle
images are obtained with an acceptable contrast to the background. Images
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with insufficient contrast yield an unsuitable power spectrum, as illustrated
in Fig. 2.25b.

One of the factors influencing SFV measurements is the particle concen-
tration. In Sect. 2.6, output signals from a single particle image crossing the
grating lines in a plane were investigated. The situation treated here is that
many particles are present together in the probing volume. We assume that
all particles are moving with the same velocity in the same direction. Since
particles are distributed randomly in the fluid, the phases of periodic inten-
sity variations produced by the passing of their images on the grating must be
random. This leads to considerable mutual cancellation. The output intensity
signal resulting from the nth particle in the probing volume may be written
as

g (t) = an cos (2πf0t + ϕn) , (2.63)

where an and ϕn indicate the amplitude and phase of the intensity signal
from the nth particle, respectively, and f0 denotes the central frequency that
is proportional to vx/p. The values of ϕn are considered random and not
correlated with an, and, thus, averaging over a time long enough to include
contributions of many different particles may result in [5]

[g (t)]2 =
1
2

∑
n

a2
n . (2.64)

If N identical particles are sampled for averaging, this simple case yields

[g (t)]2 = Na2 , (2.65)

where a indicates a root mean intensity from the contribution of each particle.
Thus, the total root-mean-square intensity of signals, which is obtained by
the square root of (2.65), is proportional to the square root of the number
of particles,

√
N , in the probing volume. As seen from the expressions for

the intensity signal g(t) derived in Sect. 2.6.2, the level of the dc component
produced by a single particle is proportional to the cross-sectional area of the
particle. Then, dc levels due to many particles are directly additive, except
for extremely high concentration. Therefore, the ratio of a periodic signal
(ac component) to the mean detector output (dc component) decreases with
increasing number N of particles, and the signal quality deteriorates in a high
concentration of particles.

As the number of particles increases to infinity, the signal-to-noise ratio
approaches zero. If an extremely large number of small particles are imaged
on the grating plane, such a projected scene looks like a uniform cloud of
particles. In this case, the movement of the cloud is expected to yield no
periodic variation in the intensity of light transmitted through the grating
because the slits of the grating always contain the same number of particle
images statistically. The power spectrum of a uniform cloud of particle images
may have a dominant pedestal component whose tail attenuates dramatically
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as the frequency increases, such as one of the examples shown in Fig. 2.25b.
The problem of signal quality for many particles is almost the same as that for
laser Doppler velocimetry [5]. In LDV, however, the signal does not completely
disappear at high concentration since it is due to coherent signals from the
optical beating of light scattered from different particles. There is clearly no
possibility of using coherent signals in spatial filtering velocimetry. The effect
of particle number density on the signal-to-noise ratio was investigated by
Chan and Ballik [44] in a comparison study between the differential-type laser
Doppler velocimeter and the white light fringe image velocimeter. The joint
probability density of the amplitude and phase of SFV signals was studied by
Michel and his group [62] to increase the measurement accuracy when many
particles pass through the probe volume.

2.7.2 Rough Surfaces

If a rough surface illuminated with the white light is imaged and a randomly
varying light intensity distribution is observed on the grating, the velocity of
the surface may be measured with spatial filtering velocimetry. The suitabil-
ity of the surface for SFV measurements depends on the contrast and mean
lateral fluctuation of a random pattern on the surface image. A low-contrast
image decreases the ratio of the signal amplitude to the dc component and
degrades the signal quality. The mean lateral fluctuation of the random in-
tensity pattern is estimated by the correlation length τc. For simplicity, we
consider one-dimensional image intensity distribution f(x) in the spatial axis
x on a grating. Let the fluctuation of image intensity from its mean level be
expressed by

∆f (x) = f (x) − 〈f (x)〉 , (2.66)

where < · · · > stands for an ensemble average. The autocorrelation function
γ(τx) is given by

γ (τx) =
∫ ∞

−∞
∆f (x) ∆f (x + τx) dx . (2.67)

In usual cases, the function γ(τx) decreases as τx increases. The correlation
length τc is defined by the shifting length τx that gives 1/e or half of the
maximum correlation value γ(0). Since the length τc gives the mean lateral
extent of a correlated area in the random image, 2τc can be conveniently
regarded as the equivalent particle diameter. In consequence, the condition
for the suitability of randomness for SFV measurements may be expressed as

0.05 ≤ 2τc

p
≤ 0.5 (2.68)

from the discussion of size effects in Sect. 2.6.
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If the value of 2τc is larger than half of the grating line interval p, the
random fluctuation of image intensity is reduced with the lower spatial fre-
quency, and the signal quality is degraded. An extremely small value of τc

means that the random fluctuation is not resolvable by observation or detec-
tion and the resultant signal may lose the periodic intensity variation. The
situation is, then, nearly the same as that for a uniform cloud of small par-
ticles. There may be some resolutions for this problem. One is the use of
images magnified appropriately and another is the use of a speckle pattern
illuminated by coherent light or a laser. The latter possibility is described in
the next subsection. Cracks and sharp edges may also be possible objects for
SFV measurements since they contain higher spatial frequency components.
For these objects, however, attention should be given to errors from a sudden
change of the signal intensity in the signal processing system.

In relation to rough surfaces, various natural scenes are also considered
suitable objects to be measured by the SFV technique. Images of the sea,
sky, and land surfaces including forests and roads may be a kind of random
radiation intensity distribution. The spatial power spectra of those images,
which depend also on the observation optical system, generally contain spatial
frequency components to some extent. Then, the central frequency µ = 1/p of
the spatial filter being used can be placed in the frequency range of images, as
illustrated in (a) of Fig. 2.25. As a matter of fact, the spatial filtering method
has been studied since its beginning for sensing the velocity of an airplane
with respect to the ground surface by using terrain images [12, 13]. As for
the signal quality, the same discussion for the contrast and lateral correlation
length of images as rough surfaces can be applied to these natural scenes.

2.7.3 Speckle Pattern

A moving diffuse object illuminated by coherent light produces a dynamic
speckle pattern in the diffraction and image fields. Although there are two
typical speckle motions of “translation” and “boiling” [7], translational speck-
les can be used for velocity measurements based on the spatial filtering
method [63]. Boiling speckles are ineffective for SFV measurements because
of the nature of their motion. Since a speckle pattern has a random intensity
distribution, its translation on a grating produces a periodic variation in the
transmitted light intensity as well as the image of rough surfaces discussed
in the previous subsection. In speckle theory, the lateral correlation length
and contrast of the speckle intensity variation are referred to as “speckle size”
and “speckle contrast,” respectively. By evaluating these values, the quality
of SFV signals for a speckle pattern may be discussed in the same way as that
for a rough surface. Note that speckle contrast depends on the surface rough-
ness of the diffuse object [64]. Fully developed speckles result in a contrast
of almost unity and are good for the spatial filtering method. A low-contrast
speckle pattern leads to a decrease in the signal-to-noise ratio.
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Usually, the spatial filtering method is applied to moving images or mov-
ing intensity patterns in the image plane. For speckles, however, translation
in the diffraction field can also be detected by the spatial filtering method. In
this case, the relation between the object’s velocity and the speckle velocity
must be known for the optical system being used. A motion of speckles hav-
ing both translation and boiling simultaneously may degrade output signals.
Since one bright speckle grain may disappear before crossing all grating lines
within the entire spatial filter area, the effective number of grating lines that
experience translation of the speckle grain substantially decreases. This causes
broadening of the signal frequency spectrum and, thus, reduces measurement
accuracy. A detailed study [65] has been theoretically and experimentally car-
ried out for the relation between spectral broadening and speckle motion. For
an application of the spatial filtering method to a speckle pattern, the optical
system for producing speckles should be considered carefully to ensure pure
translational motion.
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Optical System

Since output signals in the SFV method are generated by an image moving on
a spatial filter, the image quality may have direct effects on signal quality and,
thus, on the performance of SFV systems. Imaging is one of the fundamental
optical phenomena and is well described in books on optics [66]. It is probably
true that the image formation used in SFV can be referred to the general
imaging theory in such books. Therefore, no specific study has been reported
on this subject in research on SFV so far. In fact, many optical instruments
such as the microscope and telescope are provided with high-quality imaging
systems that have been well designed for their purposes, and they may be used
for the optical system of SFV in some specified applications. A wide range
of applications, however, requires better understanding of the basic relation
between image formation and signal quality.

Optical systems used in the SFV method may be divided into illuminat-
ing and imaging parts. This chapter is devoted to some basic issues of optical
systems which should be considered to obtain clear or sharp, high-contrast,
and high-fidelity images. In Sect. 3.1, the resolution of imaging systems is dis-
cussed by using the point spread given by the Airy disk and also the transfer
function. Section 3.2 discusses the effects of lens aberrations on image per-
formance. Definitions for the depth of focus and the probe volume are next
described in Sect. 3.3 under the paraxial approximation. In Sect. 3.4, illumi-
nation is briefly considered and, finally, some additional matters for imaging
are presented in Sect. 3.5.

3.1 Resolution of Imaging Systems

If imaging is treated only by light rays that lie near the optical axis or are
restricted to the framework of paraxial approximation in geometric optics, a
point object is imaged to a point. However, a real optical system is accom-
panied by diffraction effects which form spread images and, thus, two closely
spaced point objects are often unresolved in their images. They are fractionally



48 3 Optical System

or mostly superposed and the image quality is reduced, which may influence
SFV measurements. Though the criterion for the two-point resolution or the
so-called Rayleigh criterion can be used as a quality factor for optical sys-
tems [55], the transfer function is more practical and informative in various
applications.

3.1.1 Point Spread

Generally, imaging is performed by a lens having a circular aperture, and the
image of an object is influenced by diffraction due to the aperture. The Fraun-
hofer diffraction pattern of a circular aperture under plane-wave illumination
is given by the two-dimensional Bessel function, which is mathematically pro-
portional to the Fourier transform of the circular transmittance function. The
diffraction pattern consists of a central bright spot known as the Airy disk
and surrounding rings with rather weak intensity. By this effect, the image of
a distant point source or small particle does not appear as a point, but as the
above-mentioned diffraction pattern, even if the optical system is perfectly
free from lens aberrations. Thus, this pattern represents the impulse response
of an ideal (aberration-free) lens and is called a point spread function. The
radius of the Airy disk is known as the Rayleigh criterion, which gives the min-
imum separation in the image plane by which two incoherent point sources
are “barely resolved.” The Rayleigh criterion has traditionally been used to
estimate the resolution of imaging systems. Figure 3.1a illustrates the Fraun-
hofer diffraction of a plane wave with a wavelength λ by a circular lens having
a diameter (or a pupil diameter) D and a focal length f . In this figure, the
radius ra of the Airy disk is given by

ra =
1.22λf

D
. (3.1)

For the surrounding medium with a refractive index of n �= 1, the correspond-
ing wavelength λn = λ/n may be used instead of λ. A small value of the
diameter D yields a large value for radius ra and reduces the imaging resolu-
tion. This can be a cause of blurred or low-contrast images and the resultant
signals are deteriorated.

The diameter of the Airy disk provides the smallest particle image that
can be obtained for a given imaging configuration. This diameter da is given
by using (3.1) as

da = 2ra =
2.44λf

D
= 2.44λF , (3.2)

where F = f/D is the F -number. The above expression corresponds to the
imaging of a sufficiently distant point object. In the usual imaging as shown
in Fig. 3.1b, the point spread varies with a imaging magnification M = l2/l1,
where l1 and l2 denote the distances between the object plane and the lens
plane (assumed to be a thin lens) and between the lens plane and the imaging
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Fig. 3.1. (a) Fraunhofer diffraction by a circular lens and (b) point spread in a
single lens imaging system

plane, respectively. The diameter di of the Airy disk then becomes a function
of the distance l2 and is given, by taking account of the well-known imaging
equation:

1
l1

+
1
l2

=
1
f

, (3.3)

as
di =

2.44λl2
D

=
2.44λf

D
(1 + M) = 2.44λFe , (3.4)

where Fe is the effective F -number given

Fe =
l2
D

=
f (1 + M)

D
= F (1 + M) . (3.5)

Typical calculated values for the diameter di of the Airy disk are given in
Table 3.1 with the wavelength of λ = 500 nm and magnifications of M = 0.5,
1, and 2. A large F -number (or a small lens aperture for a given focal length
f) and a large magnification generate a large point spread. However, note that
for a large magnification, the relative size of the point spread to the geometric
image is reduced because the geometric image itself is also magnified by M .
Table 3.1 shows that the influence of the point spread becomes significant for
imaging small particles having a diameter of a few micrometers with small
magnifications.

As will be described in Sect. 3.1.2, the imaging of finite-size particles is
given by the convolution of the geometric particle image with the point spread
function. This means that, as the particle becomes large, geometric imaging
becomes dominant and the effect of diffraction may be negligible. When as-
suming aberration-free imaging and the point spread in the form given by the
Bessel function, the image diameter 2b of a large particle can be estimated by
the following useful formula [3, 67]:
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2b =
√

(Mdp)2 + di
2 , (3.6)

where dp is the diameter of a scattering particle. Table 3.2 shows typical
values of the image diameter for three finite-size particles, calculated with
three different magnifications M = 1, 5, and 10, the F -number F = 2.8, and
a wavelength λ = 500 nm. The difference between the geometric diameter
Mdp and the estimated diameter 2b from (3.6) becomes insignificant with
increases in magnification and particle diameter.

If imaging is influenced by diffraction, the size of expected images is larger
than the geometric size and, in the worst case, the increased size of particle
images results in a decrease of signal visibility and deviation of the central
frequency, which were discussed in Sect. 2.6. A small lens aperture may also
decrease the power of scattered light received at a detector and reduce the
ratio of signal to background noise. Therefore, a smaller F -number is recom-
mended for SFV measurements of small particles in an order of micrometers.
This requires a larger lens aperture for a given focal length. Unfortunately, a
very large lens aperture generally increases aberrations since paraxial approx-
imation is not applied. However, it is not simple to evaluate quantitatively
the total effects of lens aberrations and, then, design of the F -number may be
made primarily by estimating the point spread in theory. When the maximum
permissible point spread or the diameter di of the Airy disk is given, a crite-
rion for the F -number can be determined by (3.4) with known wavelength λ
and necessary magnification M . For example, the maximum permissible point

Table 3.1. Calculated values for the diameter di of the Airy disk with λ = 500 nm

F di (µm)

M = 0.5 M = 1 M = 2

2 3.7 4.9 7.3

2.8 5.1 6.8 10.2

4 7.3 9.8 14.6

5.6 10.2 13.7 20.5

8 14.6 19.5 29.3

Table 3.2. Values of the image diameter 2b calculated from (3.6) for three different-
size particles with F = 2.8 and λ = 500 nm

M 2b (µm)

dp = 50 µm dp = 100 µm dp = 200 µm

1 50.5 100.2 200.1

5 250.8 500.4 1000.2

10 501.4 1000.7 2000.3
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spread of ∼ 10 µm in diameter requires an F -number F = 4 for λ = 500 nm
and M = 1 in Table 3.1. If some allowance is further desired for a safe de-
sign for unexpected sources of image deterioration, the above-determined F-
number may be reduced by 1/

√
2.

In the above discussion, the effects of point spread were treated in the
image plane. If an estimation of resolution is required for the object plane,
the following equation may be useful:

do =
di

M
=

1.22λl1
D

= 1.22λF

(
1
M

+ 1
)

, (3.7)

where do means the minimum diameter of a resolvable circular area in the
object plane.

There is a useful approximated expression for the point spread function of
a circular aperture, although it is originally given by the Bessel function. The
approximated point spread function may be given by a normalized Gaussian
distribution defined as [3]

p (x) = exp
(
− x2

2σ2

)
, (3.8)

where

σ =
√

2 λf

πD
(1 + M) . (3.9)

Equation (3.8) provides quite simple mathematical treatments in comparison
with the Bessel function, and is often convenient for practical use.

The Rayleigh criterion and point spread effects based on the Airy disk are
mainly used for estimation of the imaging on and near the optical axis and, for
example, are effective for microscope objectives, which form the image of an
object in a relatively small field around the optical axis. If a larger field must
be covered, the estimation should be made for the entire area of the image.
For this purpose, the following transfer function is more useful and reliable
than the estimation using the Airy disk.

3.1.2 Transfer Function

The point spread of optical imaging systems not only increases the diameter of
particle images but also reduces the ontrast of images. The previous discussion
reveals that the point spread is a serious problem for small particles. As may
easily be presumed from this fact, a spatially fine structure or details in an
object, which contain higher frequencies, may be more blurred in its image,
leading to a significant loss of image contrast. This property can be estimated
by a transfer function of the imaging system as a function of the spatial
frequency.

Let us briefly review the physical meaning of the transfer function. For
simple treatments, the description will be given by one-dimensional functions.
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Fig. 3.2. Schematic description of the concept of the transfer function in an optical
imaging system

In Fig. 3.2, if an object is assumed to have a spatially sinusoidal intensity
distribution f0(x0) defined by

f0 (x0) = a0 + b0 cos (2πµ0x0) (a0 ≥ b0)
= a0 [1 + m0 cos (2πµ0x0)] , (3.10)

the corresponding image intensity distribution f(x) may be written as

f (x) = a + b cos (2πµx − φ) (a ≥ b)
= a [1 + m cos (2πµx − φ)] , (3.11)

where µ0 and µ denote the spatial frequency in the object and image planes,
respectively, and m0 and m are modulation indexes of the object and image
intensity distributions, respectively, which are given by

m0 =
b0

a0
(0 ≤ m0 ≤ 1) (3.12)

m =
b

a
(0 ≤ m ≤ 1) . (3.13)

These indexes represent a contrast of the intensity variation. By this imaging,
the modulation index m0 for an object is transferred to m for the image. Thus,
a ratio of m to m0:
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M (µ) =
m

m0
(3.14)

indicates the quality in the transfer of modulation, which may vary with a
change in the spatial frequency, as shown in Fig. 3.2. Then, M(µ) is generally
referred to as a modulation transfer function (MTF). The phase shift φ is also
a function of the spatial frequency, and φ(µ) is referred to as a phase transfer
function (PTF) as well. With M(µ) and φ(µ), the function O(µ) is defined as
follows:

O (µ) = M (µ) exp[iφ (µ)] , (3.15)

which is commonly called an optical transfer function (OTF). In SFV measure-
ments, the MTF is an important factor for estimation of imaging properties
since it characterizes the reproduction of the contrast of images. The PTF
means an in-plane displacement of the intensity distribution as a function of
the spatial frequency. This effect may result in phase distortion of images and,
thus, the PTF is considered secondarily important. Of course, the MTF with
M(µ) = 1 is most desirable in any spatial frequency. Note that M(µ) = |O(µ)|
in (3.15).

Generally, optical imaging systems can be classified into any of two types
with incoherent illumination or coherent illumination. Here, we do not discuss
partially coherent illumination, which is beyond the scope of this book. The
transfer function is, thus, defined separately for the two imaging systems. For
the incoherent imaging system, the transfer function is given in an intensity
form, whereas it is treated in an amplitude form for the coherent imaging sys-
tem. In an incoherent imaging system, the image intensity distribution f(x, y)
is given by the convolution of the object intensity distribution f0(x0, y0) with
the point spread function t(x, y) of the system, written as

f (x, y) =
∫ ∞

−∞
f0 (x0, y0) t (x − x0, y − y0) dx0 dy0 . (3.16)

By Fourier transforming both sides of this equation, we obtain

F (µ, ν) = F0 (µ, ν) T (µ, ν) , (3.17)

where F (µ, ν), F0(µ, ν), and T (µ, ν) are the Fourier transforms of f(x, y),
f0(x, y), and t(x, y), respectively, and represent the intensity spectra. Equa-
tion (3.17) indicates that the input function F0(µ, ν) and the output function
F (µ, ν) are related in a linear system. The function T (µ, ν) operates as the lin-
ear filter and is exactly an optical transfer function of the incoherent system.
It is commonly known that the OTF for an incoherent system agrees with the
autocorrelation of the pupil function of the lens, which includes an amplitude
term and also a phase term. For a single thin-lens system as the simplest
case, the pupil function is given by the aperture transmittance function of the
lens. Thus, the OTF is always unity at zero frequency, and the MTF (or an
absolute of the OTF) at any frequency is always less than unity [55].
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In a coherent imaging system, the image amplitude distribution fa(x, y) is
given by the convolution of the object amplitude distribution fa

0 (x0, y0) with
the amplitude point spread function ta(x, y) of the system and is expressed as

fa (x, y) =
∫ ∞

−∞
fa
0 (x0, y0) ta (x − x0, y − y0) dx0 dy0 . (3.18)

This is the same form of expression as (3.16). Thus, the Fourier transform of
the above equation yields

F a (µ, ν) = F a
0 (µ, ν) T a (µ, ν) , (3.19)

where F a(µ, ν), F a
0 (µ, ν), and T a(µ, ν) denote the Fourier transforms of

fa(x, y), fa
0 (x, y), and ta(x, y), respectively. Equation (3.19) indicates again

a relation of the linear system for input F a
0 (µ, ν) and output F a(µ, ν). The

function T a(µ, ν) is known as a coherent transfer function (CTF) and is dis-
tinguished from the OTF for an incoherent system. It is also well known that
the CTF agrees directly with the pupil function of the lens. This means that
the design of a pupil function determines the properties of the CTF directly,
and this physical nature provides the conventional spatial filtering in optical
information processing. Use of this technique in SFV will be described briefly
in Sect. 3.5.

Figure 3.3 shows the OTF and the CTF of an aberration-free circular lens.
Note that a cutoff of the curve for an incoherent system occurs at frequency
µmax = 2µ0, whereas that for a coherent system occurs at µ0. However, this
does not mean that the incoherent system has twice the resolution of the co-
herent system [55]. The OTF decreases monotonically with increasing spatial
frequency. This means a decrease in the image contrast. The CTF is unity in
the entire passband up to µ0 and, then at µ0, suddenly drops to zero. The
CTF of unity means no amplitude distortion in the image. When the pupil
diameter is denoted by D, the cutoff frequency µmax is given by

µmax =
D

λf
=

1
λF

. (3.20)

Coherent imaging 

Spatial frequency µ
µ0 µmax0

OTF
CTF

1

0

Incoherent imaging 

Fig. 3.3. Optical transfer function (OTF) and coherent transfer function (CTF) of
an aberration-free circular lens
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Thus, a larger diameter of the lens pupil transfers higher frequency compo-
nents and gives higher resolution. As illustrated in Fig. 3.4, the movement of a
low-contrast image on the grating produces a small intensity modulation rel-
ative to the dc component and, then, the output signal is of low visibility. It
is found from Fig. 3.3 that this effect is motivated for higher spatial frequency
components in the incoherent system. The resolution should be carefully con-
sidered for incoherent imaging, for example, of small particles and/or with
small magnification. This is basically the same format as that discussed for
point spread based on the Airy disk in Sect. 3.1.1. The spatial frequency that
corresponds to the Rayleigh criterion or the radius of the Airy disk is written,
by using (3.1), as

µa =
1
ra

=
1

1.22λF
=

1
1.22

µmax , (3.21)

which is called resolving power. It is found that the resolving power based
on the Airy disk gives a cutoff frequency lower than the cutoff µmax of the
OTF by 18%. This means that the Rayleigh limit is a slightly more rigorous
criterion for the resolution than the cutoff of the OTF.

Let us consider an example of the F -number for the necessary resolution.
The discussion of the size of small particles in Sect. 2.7.1 shows that the min-
imum ratio of particle image diameter to grating line interval, 2b/p, is about
0.05. Then, the optical system should produce a particle image with a di-
ameter 2b = 0.05p at its smallest with acceptable contrast. The OTF for an
incoherent imaging system with an aberration-free lens having a circular pupil
function is zero at the cutoff frequency µmax = 1/λF , as shown in Fig. 3.3. To
ensure a certain degree of contrast, we should take µc = µmax/2, for exam-
ple, as the upper limit of the available frequency range. Analogously to the
Rayleigh criterion for resolution given by the radius of the Airy disk, we as-
sume that radius b of a minimum particle image is the resolution limit. Then,
a condition for obtaining the particle image may be written as

x

f(x)
high contrast 

� f �

Image SFV signal 

x

f(x)
low contrast 

t

g(t)
high visibility 

t

g(t)
low visibility 

� f �

Fig. 3.4. Relation between the image contrast and the intensity modulation or
visibility of output signals
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Table 3.3. Calculated values of the acceptable cutoff µc and the corresponding
F -number for a given line interval p of a grating with wavelength λ = 500 nm

p(µm) b(µm) µc (lines/mm) F

50 1.25 800 1.25

100 2.5 400 2.5

200 5 200 5

500 12.5 80 12.5

1000 25 40 25

C

Spatial frequency µ

OTF

1

0

A

B

D

Fig. 3.5. Typical curves of the optical transfer function (OTF)

µc =
µmax

2
=

1
2λF

=
1
b

=
2

0.05p
. (3.22)

Table 3.3 shows numerical examples of µc and F for given values of grating
line interval p with λ = 500 nm. For the use of a grating with p = 100 µm, the
formation of the minimum particle image with b = 2.5 µm requires a resolution
of µc = 400 lines/mm, which can be obtained from an F -number of 2.5.

The OTF is useful for understanding qualitatively the typical character-
istics of an imaging system. Figure 3.5 illustrates four different curves for the
OTF: curve A for high resolution and high contrast, curve B for low resolution
and high contrast, curve C for high resolution and low contrast, and curve
D for low resolution and low contrast. The OTF is also used for estimating
the effects of lens aberrations and defocusing in optical systems, which will
be described later in this chapter. Thus, the OTF is a better means than the
Rayleigh criterion if the optical system is required to have a high degree of
imaging performance in SFV measurements.

3.2 Lens Aberrations

In the above discussion on diffraction limited imaging, we assumed that the
optical system is free from lens aberrations. Now we discuss briefly the effects
of lens aberrations on SFV measurements. Aberrations mean departures of
the exit-pupil wavefront from the ideal spherical form [55], and it generally
becomes noticeable as the pupil diameter increases. When wavefront errors
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exist, light rays coming from a point in the object plane do not converge to an
ideal geometric point in the image plane. The resultant image may be blurred
or distorted, loses its sharpness and contrast and, thus, the signal visibility and
the SNR are reduced. Lens aberrations are divided into two types: primary
and chromatic aberrations. The primary aberrations are also called Seidel’s
five aberrations. The effects of these aberrations usually occur together.

3.2.1 Primary Aberrations

Primary aberrations include five different types: spherical, coma, astigmatic,
field curvature, and distortion. For a complete description of these aberrations,
readers may refer to textbooks on optics [66, 68, 69]. In Fig. 3.6, rp and y
indicate the radius of the exit pupil and the height of a point image on the
y axis of an ideal geometric image plane. The mathematical analysis relates
the five aberrations to rp and/or y as shown in Table 3.4, together with their
effects on image quality.

The spherical and coma aberrations are strongly influenced by pupil ra-
dius rp whereas the other three are affected by the image height y. For a large
pupil or small F -number, the effects of spherical and coma aberrations should
be carefully be considered on image formation. A combination of convex and
concave lenses is effective for reducing spherical aberration, and coma is im-
proved by following Abbe’s sine condition [66]. When the imaging system has
astigmatic aberration, meridional and sagittal rays are focused onto different
points along the optical z axis. There is usually the smallest cross-sectional
circle of the imaging light flux, which is called “a circle of least confusion,”

Image

a b

y0 y

z
y

Object

rp

Fig. 3.6. Single lens imaging system for consideration of primary aberrations

Table 3.4. Effects of the five primary aberrations

Five aberrations Dependence on rp and y Effects on image quality

Spherical ∝ r3
p Reduction of contrast and resolution

Coma ∝ r2
py Reduction of contrast and resolution

Astigmatic ∝ rpy2 Image deterioration

Field curvature ∝ rpy2 Reduction of contrast and resolution

Distortion ∝ y3 Nonuniform magnification
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Object

Lens Image

Fig. 3.7. Effect of distortion in an optical imaging system

between the two focusing points. The spatial filter may be placed at position
z where this circle appears, as a point of compromise if astigmatic aberra-
tion is influential. Field curvature defeats plane-to-plane imaging, and a set of
focused points result in a curved image. This curved surface causes focusing
errors on the geometric image plane. The above four aberrations may result
in a decrease in sharpness and contrast of images, unless their effects are
negligible.

With an aberration of distortion, the image is distorted in proportion to
y3 in the geometric image plane, though sharpness is maintained. By this
effect, the lateral magnification of imaging is more distorted in the area with
larger y (far from the optical axis) in the image plane. From this defect, a
linear movement of the point object with constant velocity may result in a
distorted locus of the point image as shown in Fig. 3.7. This means that the
image velocity is not observed constantly in the entire image area and causes
errors in the measured velocity. Therefore, distortion may have a direct effect
on the accuracy of SFV measurements, and it should be reduced preferentially
among the five aberrations. The quantity of distortion can be evaluated by
the expression

Dist =
y′ − y

y
× 100% , (3.23)

where y and y′ denote heights of the point of interest in the ideal geometric
and the corresponding distorted images, respectively. From the empirical point
of view, a distortion of ≤ ± 1–2% may be desired and that of < ±5% may
be acceptable as a moderate criterion.

3.2.2 Chromatic Aberrations

The refractive index of lens materials (usually glasses) depends on the wave-
length of light, and the focal length of lenses does also. The wave-front error
due to this wavelength dependence is called a chromatic aberration. For SFV
measurements using natural light or the illumination of white light, the chro-
matic aberration should be taken into consideration. As shown in Fig. 3.8a,



3.2 Lens Aberrations 59

Red

a b
bd

d

Blue

y

a b

y0

(a)

(b)
RedBlue

y

Fig. 3.8. Effects of (a) longitudinal and (b) lateral chromatic aberrations

the imaging on the optical axis is accompanied by a longitudinal chromatic
aberration in which focusing points are separated on the optical axis for dif-
ferent wavelength components of light. This aberration is evaluated by the
separation “δb” between two focusing points for the red and blue components.
Imaging off the optical axis involves not only a longitudinal chromatic aber-
ration but also a lateral chromatic aberration as shown by “δy” in Fig. 3.8b.
The longitudinal error δb can be the cause of a blurred image and reduces the
contrast, whereas the lateral error δy means a deviation of the lateral magni-
fication from the ideal value and leads directly to the dispersion of measured
velocity data.

The change δf in the focal length f of the lens due to a wavelength change
is expressed by

δf = − f

νd
, (3.24)

where νd is the quantity known as Abbe’s number and is given, for the visible
wavelength range, by

νd =
nd − 1
nF − nc

. (3.25)

In the above equation, nF, nd, and nc denote the refractive indexes at wave-
lengths of 486.1, 587.6, and 656.3 nm, respectively. Abbe’s number νd can
generally be referenced as one of the useful constants for characterizing op-
tical materials. By using δf in (3.24), the longitudinal and lateral chromatic
aberrations δb and δy are roughly estimated by simple geometric treatments
as follows:

δb =
(

b

f

)2

δf , (3.26)
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Table 3.5. Effects of the chromatic aberrations

Case a(mm) b(mm) M = b/a y0(mm) δb(mm) δy(mm) δM

(a) 200 200 1 10 6.23 0.01 0.001

(b) 110 1100 10 0.1 189 0.171 1.71

(c) 1100 110 0.1 10 1.88 0.0171 0.00171

δy = y0δM = y0
bM

f2
δf , (3.27)

where b is the distance between the lens and the ideal image plane without
aberration, y0 is the object height from the optical axis, M = b/a is the lateral
magnification of imaging, and δM is the deviation of lateral magnification due
to δf . For example, a lens of BK7 with nd = 1.5168 and νd = 64.2 involves
δf � 1.56 mm for a focal length of 100 mm. With this condition, typical values
for δb, δy, and δM are calculated in three simple cases, as given in Table 3.5.
It is found from (b) that a large magnification may cause significant influence
of chromatic aberrations. An appropriate color filter can be introduced to
reduce the effects of chromatic aberrations, though the light intensity detected
is decreased. Use of an achromatic lens usually gives better results.

According to empirical knowledge, SFV measurements are not significantly
influenced by primary and chromatic aberrations, apart from artificial defocus-
ing errors. Some special cases such as microscopic, telescopic, and wide-angle
imaging need countermeasure, to lens aberrations. A lens design using ray
tracing is required for an optical system for spatial filtering velocimetry.

3.3 Focusing Depth and Probe Volume

Even if the effects of diffraction and lens aberrations are negligible, an arti-
ficial focusing error is always a practical problem to be considered in SFV
measurements. This section treats defocusing effects in an ideal imaging sys-
tem under paraxial approximation, in which the depth of focus defines a probe
volume depth in the SFV imaging system.

3.3.1 Depth of Focus

In a paraxial approximation, point-to-point imaging is realized in the geomet-
ric focal plane. With a focusing error, however, the image of a point object is
spread to a circular spot. In SFV measurements, this problem appears when
the moving object has a velocity component in the direction along the optical
axis. In this case, the focal plane is displaced from the plane of the spatial
filter, and the imaging equation of (3.3) is not satisfied. The defocused image
is of low contrast and becomes a source of low SNR in output signals in the
same way as lens aberrations.
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Fig. 3.9. Depth of focus in the optical imaging system

Figure 3.9 shows a simple imaging system using a single lens having a
diameter Da and a focal length f . Let us assume that δ is the maximum
permissible diameter of the point spread due to an out-of-focus. The simple
geometry in the figure gives a certain longitudinal range along the optical axis
in which the defocused point spread is smaller than the maximum permissible
diameter δ. This range is acceptable for focusing and is referred to as the
depth of focus in an SFV optical imaging system. In Fig. 3.9, lf and lb denote
the forward and backward depths of focus, respectively, and are given by

lf = lb = δ
b

Da
= δFeff . (3.28)

Reducing the lens aperture Da increases the depth of focus. The focusing
depth obtained in a real imaging system usually becomes smaller than the
value estimated in (3.28) because of the lens aberrations involved. A large
focusing depth contributes to the capacity of the optical system for axial
movement of an object. A value of δ may be evaluated by considering the size
effects discussed in Sect. 2.6, and is given roughly, for the grating line interval
p by

δ � p

2
. (3.29)

This condition may guarantee both the acceptable visibility and the negligible
deviation of the central frequency in output signals. With a lens of Da =
25 mm, f = 100 mm, and p = 1 mm, the depth of focus l = lf = lb is calculated
as 4 mm for an imaging magnification M = 1.

In relation to the above-mentioned focusing, the design specifications of a
telecentric imaging system have been theoretically and experimentally inves-
tigated [70] for SFV measurements. The results give useful information on the
decision as to whether a single or a double telecentric system shall be used, the
choice of the optical magnification, and the dimensioning of the aperture stop.

3.3.2 Probe Volume

In an SFV optical configuration, the probe volume is defined by both the
illuminating light flux and the imaging system. Because the illumination will
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be described in the next section, this subsection treats the probe volume
specified by the imaging system in which the object space is assumed to be
uniformly illuminated.

On one hand, the cross-sectional area of the probe volume is defined by
the optical projection of the window of the spatial filter on the object plane.
For example, a circular window with a diameter of 2a in the image plane gives
a circular probe cross-sectional area with a diameter

dv =
2a

M
. (3.30)

A small probe area is advantageous for high spatial resolution, but with it the
light being detected becomes weak and the number of grating lines, n, in the
spatial filter can be limited to a small number.

On the other hand, the depth of the probe volume is defined by the focusing
capacity of the imaging system. In Fig. 3.10, the following imaging equation
holds with given notations,

1
a

+
1
b

=
1
f

, (3.31)

and the ratio M = b/a gives the lateral magnification. Any axial displacement
of the point object from the initial object plane (distance a from the lens)
produces a point spread due to defocusing in the initial image plane (distance
b from the lens). Thus, there is another longitudinal range along the optical
axis in the object space, in which the point is imaged as a point spread smaller
than the circular spot having a maximum permissible diameter δ in the initial
image plane. This range is an alternate to the focusing depth and is referred
to as the depth of field. The forward and backward depths of field, tf and tb,
in Fig. 3.10 are given geometrically by

tf =
δFeffa2

f2 + δFeffa
, (3.32)

tb =
δFeffa2

f2 − δFeffa
. (3.33)

Usually, the following approximation is practically convenient with an accept-
able error:

f f
tftb

a b

Object plane Image plane

d

Fig. 3.10. Depth of field in an optical imaging system
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tf ≈ tb ≈ t =
δFeff

M2
, (3.34)

where M2 expresses the longitudinal magnification. Since the value of δ given
by (3.29) may generate output signals with acceptable visibility in SFV, the
range of ±t around the initial object plane is considered effective as the object
space of the SFV imaging system. Thus, the probe volume depth VD can be
given by

VD = ±δFeff

M2
. (3.35)

The probe volume depth should carefully be considered in SFV mea-
surements of fluid flows in which scattering particles are distributed three-
dimensionally and also have three-dimensional velocity components. The large
depth of field makes the SFV system insensitive to the longitudinal movement
of particles. Conversely, axial resolution of the measuring position is obtained
by a small depth of field. Three-dimensional objects, surfaces with large rough-
ness or steps, and objects with mechanical vibration or fluctuation along the
optical axis may also be probed by enlarging the probe volume depth suffi-
ciently.

3.4 Illumination

Since the SFV technique processes the optical image of a moving object,
measurements may be done in principle under ambient or natural light. An
effective method of illumination, however, provides improvements in image
contrast and the definition of the probe volume. Measurements in a micro-
scopic region also require active illumination. Here we consider the illumina-
tion of SFV for two types of objects, particles in a fluid and rough surfaces,
with some additional descriptions of coherent and incoherent light.

3.4.1 Small Particles in a Fluid

For measurements of small particles in a fluid, it is desirable to detect only
the light scattered by particles and to suppress the background light. To real-
ize this, dark-field illumination is usually employed. Figure 3.11 schematically
shows the relation of the illuminating light flux and the optical imaging sys-
tem. The collimated light flux having a width wl illuminates the object with
an angle θ to the optical axis of the imaging system. For a smaller angle of θ,
the intensity of light scattered by particles is relatively large in the direction of
the imaging system because this direction lies in the near-forward scattering
scheme with respect to the illuminating light. However, a fraction of the illu-
minating light might directly come into the pupil of an imaging lens and result
in a source of dc noise. The minimum value of angle θ that is able to elimi-
nate this problem gives a lower limit of θ for dark-field illumination. From the
empirical point of view, angle θ is usually set at 30–60◦. The width wl of the
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Fig. 3.11. (a) Illuminating light flux having a width of wl with an angle θ to the
axis of the optical imaging system, and (b) the side illumination scheme

illuminating light flux is closely related to the definition of the probe volume.
From the geometry in Fig. 3.11a, the cross-sectional diameter dvi and depth
2ti of the illuminated volume with respect to the direction of the imaging
system are given by

dvi =
wl

cos θ
, (3.36)

2ti =
wl

sin θ
. (3.37)

There can be two approaches for the definition of probe volume: adjustments
of the illuminating and imaging systems. Usually, an adjustment of the op-
tical imaging system may be a primary means to define the probe volume,
because it is relatively easier and more deterministic than that of the illu-
minating system. In this case, the illuminated volume defined by (3.36) and
(3.37) should be larger than the probe volume defined by (3.30) and (3.34).
Thus, dvi > dv and 2ti > 2t are required. In some cases, the illuminating light
may be required to define primarily the probe volume. Then, dvi < dv and
2ti < 2t should be satisfied. If the probe volume depth and cross section must
be defined more precisely, side illumination or θ = 90◦, as shown in the illu-
mination geometry (b) of Fig. 3.11, is preferable. In this illumination scheme,
the depth of the probe volume is defined directly by width wl (< 2t) of the
illuminating light flux, whereas the probe cross-sectional area is defined by
the imaging magnification M and the window diameter 2a, or (3.30). In par-
ticular, the use of a light sheet in the side illumination, which is the standard
illuminating means in particle image velocimetry (PIV) [3], is quite effective
for high spatial resolution in depth.

In any case, it is desired that the intensity distribution in the illuminating
light flux be as uniform as possible. For this purpose, Köhler illumination [66],
which is often employed for microscopes, may be useful when white light is
used.
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Fig. 3.12. Scattering of light at a rough surface

3.4.2 Rough Surfaces

For measurements of light-diffusing or reflective objects and rough surfaces
in motion, the light reflected by the surface under illumination is usually
employed for imaging. In Fig. 3.12, the surface is illuminated with an incident
angle θ to the normal to the surface. The scattered light is diffused in all the
directions, but the specular component having a large intensity is reflected
toward the opposite direction at the same angle as incident angle θ. This
strong reflection usually reduces the contrast of the surface image. Thus, the
imaging optical axis should be taken out of the direction of the specular
component. Specular reflection arises in general cases since the surfaces of
reflective objects are not usually perfect diffusers. For rough surfaces, the
probe cross-sectional area is simply defined by the imaging magnification and
the window of the spatial filter.

3.4.3 Coherent and Incoherent Illumination

The SFV technique can employ both coherent and incoherent light sources for
illuminating an object being measured. This freedom is a practical advantage
in comparison with LDV. A choice of one source from the two light sources
may be made by considering various aspects of the measurements.

On one hand, the use of the coherent light or laser light generally has the
following merits for SFV measurements:

• Light collectivity with the high intensity is useful for measurements with
high spatial resolution such as microscopic probing.

• High directivity is effective for specifying the measuring point required in
remote sensing applications.

• Monochromaticity is advantageous for discriminating signal light from am-
bient or background white light and for improving image quality. It is also
favorable for designing lenses and optical systems without consideration
of the chromatic aberration.

• Polarization is effective for suppressing background light.
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• The compactness of a laser diode is favorable for the configuration of a
practical system.

• Coherent optical processing is available for modifying or improving image
quality.

Fluctuations in the wavelength and intensity of a laser diode due to tempera-
ture change are not considered to cause serious errors to SFV measurements.
On the other hand, the disadvantages of using laser light are as follows:

• High coherency causes a speckling phenomenon in the image of objects
and may reduce the image quality.

• Ringing may appear at sharp edges or knife edges in the image of objects
[55], resulting in an ambiguous border of the object in the image. The
ringing means an attenuating oscillation in the intensity distribution near
the edges and, then, a detection of the moving image containing the ringing
may produce an unwelcome higher harmonic noise.

• Highly coherent and strong illumination is quite sensitive to optical imper-
fections [55]. For example, tiny dust particles in an optical system may lead
to undesirable diffraction patterns and produce scattered dc light which is
superimposed on the image.

An incoherent source can be simply and widely used for general cases of
SFV measurements. It may be better than a laser source when a relatively
wide area should be illuminated. For SFV measurements with a microscope,
incoherent illumination is usually employed. Use of an incoherent source, how-
ever, means that the effects of chromatic aberrations should be considered for
some cases which require high accuracy in measurements.

As discussed with Fig. 3.3 in Sect. 3.1.2, a comparison of the OTF and
CTF does not simply mean that incoherent illumination will give higher qual-
ity in an image than coherent illumination. This comparison is generally far
more complex than one aspect of examinations suggested by the graph of
Fig. 3.3. Imaging with coherent illumination is largely influenced by the phase
distribution of the light scattered by the object, and the problem of whether
the image quality is better or worse than that with incoherent illumination
depends on the case. It is quite difficult to state which type of illumination is
to be desired in all cases. Therefore, it may be recommended that, for a choice
of one source from the two types of illumination, we should take account of
the above-mentioned features and estimate whether or not they satisfy the
requirements and circumstances for measurements.

3.5 Image Modification

3.5.1 Spatial Frequency Filtering

In coherent optical information processing, there is a well-known technique
for modifying the image, called spatial frequency filtering. This technique
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Fig. 3.13. (a) Two-lens imaging system for optical spatial frequency filtering, and
(b) a typical high-pass filter

is named by the same term “spatial filtering” as that of spatial filtering ve-
locimetry, the main subject of this book. It should be, thus, noted that spatial
filtering for coherent image processing described in this subsection is different
from that for velocity measurements giving the principle of the SFV, although
the optical effect or the filtering operation of an input image in the spatial
frequency domain is common between the above two cases of spatial filtering.

Figure 3.13a illustrates a two-lens imaging system for spatial filtering,
where an object is illuminated by a plane wave generated from a point source
on the optical axis. There is a Fourier-transform (FT) plane at the focal dis-
tance f1 forward from lens L1 and at the focal distance f2 backward from lens
L2. In the FT plane, we can observe an intensity pattern which is proportional
to the Fourier transform of the object intensity distribution. Lower spatial fre-
quency components of propagated light pass through the FT plane near the
optical axis or the center, whereas higher spatial frequency components pass
through the area far from the optical axis in the FT plane. Then, the use
of a mask in the FT plane realizes spatial frequency processing of the input
intensity pattern. For example, a simple opaque spot centered in the FT plane
shown in Fig. 3.13b functions as a high-pass filter, which suppresses dc and
low-frequency components of the object intensity pattern and, then, is often
effective for improving image contrast and for enhancing the edges of the im-
age. This image modification may improve the signal visibility. There are some
other spatial filters available for reducing noise, sharpening, and so on [71].
Note that monochromatic plane-wave illumination is important in using the
spatial filtering technique. Illumination by a collimated or focused laser beam
in the axial direction nearly satisfies this condition. Therefore, when this type
of illumination is used, the spatial filtering technique is potentially useful for
modifying the image in SFV measurements.
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3.5.2 Photographic Filters

In photography, various filter products are commercially available. They can
be generally used for controlling and compensating for color characteristics.
But they are also useful for removing surface-reflected light, for enhancing
image contrast, and for creating various artificial effects in the image. Al-
though these filters are basically designed on the assumption that images are
recorded on photographic films, some of them can also be useful for modifying
the image in an SFV optical imaging system. For example, a polarizing filter
is sometimes useful for suppressing background light and undesirable light re-
flected from surfaces. The polarizing filter transmits only the light component
in the polarizing direction of the filter and blocks its orthogonal component.
Thus, an appropriate orientation of the polarizing direction in the filter may
propagate light coming from the object and suppress the other unwelcome
light. There are other filters available for improving the image contrast in
SFV measurements.
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Signal Analysis

In the SFV technique, velocity information is derived from frequency mea-
surements of output signals from a photodetector. To transform the raw sig-
nals into velocity with better accuracy, appropriate electronic equipment is
required. As described in Chap. 2, the photodetector output in SFV is a
narrow-band random signal whose central frequency is proportional to the
object’s velocity. In principle, the central frequency may be measured by sim-
ple frequency counters or spectrum analyzers. But this equipment is often
unsatisfactory for real SFV signals, which contain random amplitude and
phase fluctuations, sometimes with a poor signal-to-noise ratio. Fortunately,
this type of signal is quite similar to that in the LDV technique, and various
equipment that has been developed for processing LDV signals is available for
SFV signals. This means that no special signal-analyzing instrument must be
newly developed at least for usual SFV measurements and, in this respect, the
SFV technique is favorably situated. Typical equipments for LDV measure-
ments and their related studies are well reviewed in the literature of Durst et
al. [1], Durrani and Greated [2], and Drain [5].

This chapter is devoted to the consideration of signal-analyzing tech-
niques used for SFV measurements. Types of output signal peculiar to SFV
measurements are first discussed in Sect. 4.1. In Sects. 4.2–4.5, typical signal-
analyzing techniques are briefly introduced, including spectrum analysis, fre-
quency tracking, counting techniques, and correlation analysis. Section 4.6
summarizes some guidelines for choosing an appropriate technique for given
conditions.

4.1 Types of SFV Signals

To choose an appropriate signal-analyzing technique, consideration must first
be given to the types of SFV signals. Continuous periodic signals with a
constant amplitude are easily processed by popular equipment such as simple
frequency counters or spectrum analyzers, if the signal-to-noise ratio is not
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Fig. 4.1. Two types of the pedestal-eliminated SFV signal; (a) continuous with a
random amplitude and (b) intermittent

poor. No significant discussion is needed in this case. However, this type of
signal is very rare in SFV measurements. The situation that produces such a
rather ideal signal must be that images with the same total intensities continue
indefinitely to pass through the spatial filter without interruption. Significant
consideration may be necessary for two other types of pedestal-eliminated
signals depicted in Fig. 4.1: (a) continuous periodic signals with a random
amplitude and (b) intermittent signals or burst-like periodic signals.

The signal of type (a) in Fig. 4.1 occurs when the surface pattern of a large
or long object, a speckle pattern, or many particles in a fluid are measured.
The contribution from each bright spot in the surface image or the speckle
pattern may be equivalently treated in the present discussion to that from a
particle image. The randomness of the amplitude envelope is due to the addi-
tion of contributions from individual particle images which are distributed in
a disordered manner over the spatial filter window in the image plane. Each
particle image passing over the window area yields a burst of periodic signal
lasting a time τT, the “transit time” in that area, as shown in Fig. 4.1b. The
time τT can be estimated by ≈ 2a/v, where 2a is the size of the spatial filter
window and v is the velocity of particle images. The addition of this type of
signal from many uncorrelated particle images produces random amplitude
and phase fluctuations. After passing of a certain particle image, the next
burst is generated from a completely different particle image. Therefore, the
amplitude and phase fluctuations statistically contain the timescale of the
transit time [1, 2, 4, 5]. This means that the corresponding frequency spec-
trum contains a broadening of ∆f ≈ 1/τT. The spectral broadening causes
ambiguity in frequency measurements and is often referred to as “ambiguity
noise” [72]. In this case, problems can occur in the small amplitude between
any two successive bursts of signals. The phase changes irregularly and the
signal-to-noise ratio is momentarily degraded in this part of a signal. Special
treatments may be necessary to deal with these problems.

When the particle concentration is low, output signals may be intermittent,
as shown in Fig. 4.1b. Each burst of periodic signals is produced from the
passage of each particle image through the window area of the spatial filter.
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Such bursts occur intermittently with certain periods of no signal, which are
sometimes referred to as “dropouts” [5, 73]. If equipment that is designed
for continuous signals is used, the dropout periods are erroneously recorded
as periods of signal oscillation, and the resultant frequency contains a large
amount of error. Signal processing techniques are, thus, required to detect
dropouts in their first stage and to operate only in the period when signals
are present. Another problem should also be considered with the type of signal.
If the interval of the signal bursts or the period of no signal is long compared
with the timescale of velocity fluctuations in the object’s movement, it is
hardly possible to measure the changes in velocity. Limited signal processing
instruments may have to be chosen for this case.

4.2 Spectral Analysis

One of the most popular techniques for frequency measurements is spectrum
analysis. The major types of spectrum analyzers were formerly the frequency
scanning and filter bank that were constructed mainly from analog circuits.
Frequency scanning was widely used as a general-purpose instrument for
processing LDV signals in the early development of LDV techniques. These
days, a type using the fast Fourier transform (FFT) is also very widely used
for spectrum analysis. Some books [1, 2, 5] on LDV techniques describe those
types of instruments well.

4.2.1 Frequency Scanning

The frequency scanning type basically operates in the heterodyne mode.
Figure 4.2 shows the block diagram of this type, which consists of a fre-
quency mixer, frequency-variable oscillator controlled by a sweep generator,
intermediate-frequency (IF) band-pass filter, and rectifier for squaring and
smoothing operations. The input signal having a frequency f0 is mixed with
the oscillator output containing a frequency fl which is variable with an ap-
plied voltage from the sweep generator. The output from the mixer, which
contains the frequency fl − f0, is fed into the IF filter tuned to a fixed inter-
mediate frequency fIF. The filtered output is, then, rectified and smoothed.
When the frequency fl of the oscillator is swept through a range of frequencies
from fIF to fIF + fs, the response of rectified output appears in the range of
frequencies from 0 to fs. This range is due to the frequency difference fl − f0

which passes through the IF filter. By recording this response as a function
of the variation of fl by an X–Y data set, the result presents a spectrum of
photocurrent signals, showing a peak at a particular frequency fs = f0, which
is proportional to the velocity of an object in SFV measurements.

This type of spectrum analyzer is still very popular as a standard instru-
ment for spectrum analysis. A typical frequency range is from a few kHz to
several GHz. The response bandwidth at a given frequency in the sweeping
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Fig. 4.2. Block diagram of a frequency-scanning type spectrum analyzer

band is determined by the passband properties of the IF filter. This is usually
adjustable and about 10 Hz is a typical commercial value for the minimum
of the response bandwidth. When the response bandwidth is given by ∆f , it
takes a time 1/∆f for the analyzer to respond. Thus, the problem with this in-
strument is that the time taken to sweep through the entire frequency range
must be long. It is a fatal disadvantage for measurements of velocity with
fluctuations. However, performance is being further improved by advanced
electronics. The practical advantage is that this type can be widely used as a
general-purpose instrument.

4.2.2 Filter Bank

Filter bank processing was developed to remove the necessity for frequency
scanning. Instead of scanning the oscillator frequency for the use of a single
band-pass filter, this type of instrument employs multichannel filters, i.e., a
bank of simple band-pass filters which are tuned to different frequencies in the
range. A spectrum of photocurrent signals can be built up from responses of
the multiple filter circuits operating in parallel. It is, thus, obtained much more
quickly than by frequency scanning. Generally, the frequency resolution of this
instrument is relatively low because the number of filters is limited practically.
The instrument also requires correct tuning of filters and uniform sensitivity
for associated circuits. Integration of the responses of all the filters is effective
for input signals with extremely poor SNR and intermittent signals. Since the
tuning frequencies of individual filters are fixed, this type is unsuitable for
general use.

4.2.3 Fast Fourier Transform

The photocurrent signal and its frequency spectrum are connected by a
Fourier transform relation. The power spectrum, which corresponds to the
result actually measured with a spectrum analyzer, is given by a squared
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absolute of the frequency spectrum. By executing the Fourier transform in-
strumentally, a different type of spectrum analyzer can be realized. For nu-
merical computation of the Fourier transform for finite-time input signals, an
extended version of the transform called “discrete Fourier transform” (DFT)
is available. When a signal function and its Fourier transform are denoted by
g(t) and S(f), respectively, the customary formulas giving their relation are
(see Appendix A.2)

S (f) =
∫ ∞

−∞
g (t) exp (−i2πft) dt , (4.1)

g (t) =
∫ ∞

−∞
S (f) exp (i2πft) df . (4.2)

The corresponding expressions in terms of DFT are

S (n) =
N−1∑
k=0

g (k) exp
(−i2πnk

N

)
, n = 0, 1, 2, . . . , N − 1 , (4.3)

g (k) =
1
N

N−1∑
n=0

S (n) exp
(

i2πnk

N

)
, k = 0, 1, 2, . . . , N − 1 , (4.4)

where n and k are a discrete frequency and discrete time for sampling the
spectrum and the signal, respectively. N is the total number of sampling data
for both signal and spectrum. If the sampling theorem is satisfied for the
discrete spectrum and signal, the DFT can be a good approximation to the
continuous Fourier transform.

Examination of (4.3) reveals that N2 complex multiplications and N(N −
1) complex additions are required to implement the computation of the spec-
trum. This means a dramatic increase computation time with a larger number
of samples N . In 1965, Cooley and Tukey presented a fast Fourier transform
(FFT) algorithm, which computes the discrete Fourier transform much more
rapidly than direct computation algorithms. For the details of the FFT algo-
rithm, readers may consult the books by Brigham [74] and Bracewell [75]. A
noticeable point of the FFT algorithm is that it can reduce the number of com-
plex multiplications from N2 to 2N log2 N by dividing the entire computation
into several steps.

A spectrum analyzer using the FFT is commercially available, usually
providing two channel simultaneous analysis of 1024 to 2048-point digitized
input signals containing frequencies from a few hundred kHz to several MHz.
Figure 4.3 shows a block diagram of a typical FFT spectrum analyzer (only
a single channel is shown). Input signals are amplified, filtered, and fed into
an analog-to-digital converter (ADC). Digitized signal data are stored in a
memory and, then, are sent to a digital signal processor (DSP), which ex-
ecutes the FFT under the control of a central processing unit (CPU). The
resultant spectrum is displayed and also can be fed into external units such
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as an external memory, computer, printer, and so on. The typical resolution
of current FFT processors is usually 16 or 32 bits. The real time operation
is limited to input signals containing a frequency up to a few kHz due to the
analog-to-digital conversion rate.

Due to the recent development of a high-speed microprocessor, FFT op-
eration can also be executed in a personal computer (PC). There are many
FFT source codes published in textbooks. In this case, the performance of
the FFT analysis is determined by the sampling rate, the resolution of the
ADC, and also the CPU rate and the memory size of the PC. There are
also one-board type FFT signal processors that have been developed for LDV
measurements. This type of processor can be used directly for treating SFV
signals due to quite similar types of photocurrent signals. The processor board
is inserted into a slot of the PC and, then, the PC is able to work as a con-
venient FFT-type signal processor without any additional instruments. The
photocurrent signal is fed directly into the PC, which computes the spectrum
and also offers postprocessing such as statistical analysis, graphic expression,
database construction, and network transfer in its own framework. Thus, the
one-board type offers compactness, convenience, and low cost with reasonable
performance for SFV signal processing systems.

4.2.4 Maximum Entropy Method

The FFT is a basic and practically useful tool in almost every aspect of
the spectral analysis of digital signals by computer. For accurate analysis,
however, it requires at least the data record of several times of the signal pe-
riod T0, which is 1/f0 or the inverse of the central frequency being measured
by the SFV principle described in Sect. 2.1. The Fourier transform of a short
data record of signals less than a few period results in a large broadening of
the spectrum, which means poor spectral resolution or an increase in errors
in determining of the central frequency f0. There is a nonlinear spectral an-
alyzing method known as the maximum entropy method (MEM) [76]. The
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MEM enables us to derive effective spectra from short data records and yields
much better spectral resolution than the FFT. The method assumes no data
outside the time interval specified [77].

In comparison with the FFT, the MEM generally enhances peak-like com-
ponents of the spectrum, but sometimes spectrum splitting and peak fre-
quency shifting happen for some types of signals. This is strongly dependent
on the order of the prediction-error filter, which must be specified in the MEM
computation. Some studies are useful for determination of the optimum order
in the prediction-error filter. One useful criterion is

m < (2 ∼ 3)
√

N , (4.5)

where m is the order of the prediction-error filter and N is the number of
sampled data [78, 79]. Improved MEMs have also been reported, including
Fougere’s nonlinear error minimization procedure [80]. The details of the
MEM are not presented here since it is beyond the aim of this book. Some
textbooks [77,81] describe the basic theory, related properties, algorithm, and
source codes for computer implementation of the MEM. Ingenious use of the
MEM provides us with high-resolution analysis of the central frequency f0 in
SFV measurements. It may be particularly effective for the case of the small
number n of grating lines in a spatial filter, with which the signal containing
only a few periodic cycles is generated. Note that dispersion or broadening of
the spectrum cannot be evaluated by the MEM, in principle.

4.3 Frequency Tracking

In measuring velocities with fluctuations, frequency tracking offers reliable
signal processing. This type of processing follows the velocity fluctuation by
monitoring the signal frequency itself. This means that the processing system
automatically tracks the signal. To maintain tracking continuously, periodic
signals must continue to appear. Thus, frequency tracking is good for moderate
to comparatively high particle concentrations.

4.3.1 Frequency Tracker

Figure 4.4 shows the block diagram of a typical frequency tracker. The input
signal containing a central frequency f0 is mixed with output having a fre-
quency fl of a voltage-controlled oscillator (VCO). The mixer output with
a frequency fl − f0 is applied to a band-pass filter tuned to a frequency fc

with a bandwidth of ∆fc. The output of this filter is fed into a frequency dis-
criminator, which is a kind of frequency-to-voltage converter. If the frequency
of the applied signal is exactly tuned to fc, the discriminator circuit yields
a zero output. Otherwise, the output contains a certain voltage e which is
proportional to the frequency difference between fc and fl − f0. This output
is then integrated and becomes the tracker output e0, which is used to control
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the frequency fl of the VCO so that the frequency fl − f0 agrees with fc. In
this way, the feedback loop is locked to the input signal. The output e0 is in
proportion to the input frequency f0. Thus, the velocity fluctuation can be
extracted from the frequency tracker as a continuous analog output.

Since this type of processing tracks the input signal, the feedback loop
drifts out of control once the signal breaks off or drops out. To protect the
circuit from dropout, usual trackers are designed to hold the preceding out-
put during the dropout period and to lock in again as the signal comes in.
However, this operation is often unsatisfactory for intermittent signals due
to long dropout periods between signal bursts. Use of the frequency tracker
may be problematic for low particle concentrations. The tracking performance
depends on the bandwidth ∆fc of the band-pass filter and the time constant
of the integrator. A good SNR is also desirable in the input signal for the
frequency tracker. Otherwise, the circuit tracks noises and then drops out.
This type of commercial equipment is available with various specifications to
manage the dropout problem.

4.3.2 Autodyne

The autodyne system [82, 83] is another useful type of frequency tracking.
In this system, a local oscillator is controlled so that its output frequency
approaches that of the input signal. When the system is tracking, the fre-
quency difference between the signal and the oscillator output is zero. This
corresponds to the special case where the central frequency fc of the band-
pass filter is effectively zero in the conventional frequency tracker described
in the previous subsection. To realize such a zero frequency difference, this
system needs a discriminator to determine the sign of the frequency differ-
ence between the input signal and the oscillator output. Then, the voltage
proportional to the frequency difference with its sign is fed back to control
the oscillator to decrease the difference. Also, an additional unit is usually
included to hold the oscillator output during signal dropouts.
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The autodyne system has some advantages in comparison with the conven-
tional frequency tracking system. The oscillator output can be used directly
for measuring the average value of the SFV central frequency when the ve-
locity fluctuates. Also because of the easily changeable integration time in
the feedback loop, the system is rather flexible for different types of input
signals. A narrow passband can be used to improve the output performance
for the input signal with a poor SNR, whereas a wide bandwidth enhances
the feedback response and is advantageous for quick recovery if the loop is
broken.

4.4 Counting Techniques

For continuous periodic signals with good quality, the counting technique is
the easiest way to determine the central frequency. If the signal burst can
be appropriately detected, it is satisfactory even for intermittent signals. The
pedestal or low frequency fluctuating component must be removed when this
technique is applied. Counting is usually done for several cycles of the periodic
amplitude oscillation in the signal. There is also an alternate technique to
count the period of just one cycle. The counting technique is generally superior
in processing time and accuracy to the spectrum analysis for determining the
central frequency, but it is sensitive to noise. A good SNR is an important
requirement for the input signal in applying the counting technique.

4.4.1 Frequency Counter

Originally, the frequency counter was equipment to count simply the number
of cycles of a continuous periodic signal in a prescribed time. One cycle can
be recognized by zero crossings of the signal amplitude. Thus, the equipment
actually counts the number of zero crossings in the time, and the accuracy
of one count is basically limited to ± a half cycle. The equipment may count
zero crossings of noises unless a substantial signal exists. The above counting
method is, therefore, inapplicable to intermittent signals when the time length
of a signal burst is shorter than the prescribed time for counting.

For intermittent signals, it is better to count the number of high-frequency
clocks in the period for the prescribed number of cycles within a single signal
burst. This is schematically shown in Fig. 4.5. An order of GHz is a general
example of clock frequency, which is very much higher than usual central fre-
quencies of SFV signals. To detect the arrival of a signal burst and start the
counting, it is usual to set a threshold at a certain nonzero level, as shown
in Fig. 4.5. The threshold level must be determined so that it can adequately
be above the noise level in the period of no signal. The counting is started as
the signal amplitude exceeds the threshold and is stopped after the prescribed
number of cycles is completed. The prescribed number should clearly be less
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than the number of cycles contained in a single signal burst, which basically
corresponds to the number of grating lines in the spatial filter. The total
number of counted clock pulses gives a period for the prescribed number of
cycles, and the average period obtained for one cycle is used to determine the
central frequency. With this method, counting accuracy is determined by
the clock frequency and, then, is substantially improved in comparison with
the counting of cycles.

To guarantee the reliability of counting, commercial equipment usually
employs some validation schemes [84] which reject the results of measurements
if their accuracy is suspect. A typical scheme is to compare the two results
of measurements obtained for different prescribed numbers of cycles. If the
two results agree with each other within a predetermined error limit, they are
accepted and, otherwise, rejected. For poor-quality signals, special attention
should be paid to the validation scheme, including the threshold level and the
prescribed number of cycles. A moderate application of validation may reduce
the counting accuracy, whereas the strict validation decreases the efficiency of
data acquisition. There may be a compromise between accuracy and efficiency.
Unless the compromise condition can be found and settled for a signal of
interest, it may be concluded that the quality of such a signal is insufficient
for applying the counting technique.

4.4.2 Wave-Period Measurements

The number of cycles in a single signal burst can be decreased to less than 10
when the velocity in a small probing area is measured or when the measure-
ment should be made with high spatial resolution. In this case, the counting
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techniques described above operate unsatisfactorily because the number of
data rejected may increase due to insufficient numbers of cycles, and, then, it
may take a long time to accumulate enough valid data to ensure the necessary
accuracy. Those techniques are also problematic if the velocity fluctuation is
contained during the single passage of a particle over the window area of the
spatial filter. In these situations, the wave-period measuring technique [85] is
an effective means to measure the instantaneous local velocity or the velocity
fluctuation in a small probing area. The basic treatment is to obtain one fre-
quency datum by measuring the period of one cycle. The signal burst having
n cycles can produce, in principle, the n number of the frequency data. This
processing is advantageous for increasing data acquisition efficiency and short-
ening measurement time. Because the instantaneous velocity is determined
every cycle, the velocity fluctuation is, thus, measurable with this technique.

To realize the wave-period measuring technique effectively, high-speed
processing circuits are required since, during the processing of data measured
from a certain cycle, the equipment has to pause to measure the next cycle.
The time for the processing results in dead time in measurements. Figure 4.6
shows a basic time chart of the wave-period measuring technique using the
time-to-pulse height converter and the pulse height analyzer [86, 87]. The in-
put photocurrent signal (a) is first amplified and fed into a band-pass filter
to remove higher frequency noises, including shot noise and the pedestal com-
ponent. The filtered signal (b) is then converted to the square wave form (c)
by the Schmitt trigger circuit. The flip-flop circuit is next used to double the
period of the square wave signal (c). During the period for a positive level of
the resultant square wave signal (d), which corresponds to the period of one
cycle of the input signal (a), a certain reference voltage is integrated. After the
period, the integrated voltage (e) is maintained in the hold circuit to settle
the reciprocal calculator, by which the inverse value of the integrated voltage

(a)

(b)

(c)

(d)

(e)

(f )

Fig. 4.6. Time chart of the wave-period measurement using the time-to-pulse height
converter and the pulse height analyzer
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is obtained. This output (f) is proportional to the central frequency of SFV
signals. Finally, this is sampled and converted to digital data. In this example,
the frequency measurement can be repeated every other period of the input
signal. Alternate processing with two channels of the same circuit can realize
measurements of all cycles in the burst.

Instead of using the time-to-pulse height analyzer, it is also possible to
count high-frequency clock pulses for determining the period of one cycle.
For this purpose, the clock frequency has to be much higher than the central
frequency of SFV signals being measured. Thus, this clock-counting type may
be ineffective for SFV signals containing a higher central frequency than a few
MHz, whereas it is advantageous for digital processing techniques.

In the usual wave-period measuring method, a number of frequency data
are fed into a statistical analyzer, from which a histogram of the frequency
data is produced. The most probable frequency of the histogram can be re-
garded as the central frequency of signals and is finally used to calculate the
objects velocity. The wave-period measuring technique is quite useful for in-
termittent signals and signals containing a small number of cycles (usually less
than 10) in one burst, but it is less satisfactory for deteriorated signals with
noise and/or phase fluctuations because measured results depend strongly on
the zero-crossing properties of signals and the zero-crossing intervals can eas-
ily be affected by noise and wave distortions. This problem is theoretically
investigated by the zero-crossing probability of signals [53,88,89]. The disper-
sion of measured frequency data decreases as the number n of grating lines
(or the number of cycles in a single signal burst) and the SNR increase, and
as the bandwidth of the band-pass filter becomes narrower [27].

A band-pass filter is a necessary device for the wave-period measuring
technique and should be used properly. The passband of the filter should
be narrower and its central frequency should be set as closely to the signal
frequency as possible. A tracking-type band-pass filter is a useful means for
following the variation of the signal frequency with a comparatively narrow
passband [87]. The pedestal component can also be removed by an optical
arrangement such as dual channel detection with a differential amplifier, which
will be described in the next chapter. This optical means may reduce the load
of the electric band-pass filter mentioned above.

4.5 Correlation Analysis

The correlation technique is another useful processing tool for determining
the central frequency of SFV signals. Although the technique was originally
effective for second-order statistical analysis of random variables, it is also
available for the frequency determination of periodic signals. Mathematically,
the temporal autocorrelation function R(τ) of photocurrent signal g(t) is de-
fined as
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R (τ) = lim
T→∞

1
T

∫ T/2

−T/2

g (t) g (t + τ) dt , (4.6)

where T denotes a specified integration time which is sufficiently long com-
pared to the period of a cycle of the signal. In general, the autocorrelation
function R(τ) is related to the power spectrum Gp(f) of the signal g(t) by a
Fourier transform relation (Wiener–Khintchine theorem, see Appendix A.4).
There are three typical methods for correlation analysis: the direct correlation
technique of photocurrent signals, the FFT of the power spectrum, and the
photon correlation technique. Generally, correlation analysis is quite effective
for noisy signals, but it necessitates a long integration time to accumulate
data sufficiently.

4.5.1 Autocorrelation of Photocurrent Signals

The basic processing in correlation analysis is to calculate the function R(τ) of
(4.6) directly from signal g(t). Let us consider a typical burst-signal model of
a sinusoidal function with a Gaussian envelope, as shown in Fig. 4.7a, in which
τT indicates the transit time of a particle image over the window of the spatial
filter and T0 is the signal period. The power spectrum Gp(f) of the signal (a)
takes the form of Fig. 4.7b having a peak centered at the frequency f0(= 1/T0).
A typical form of the autocorrelation function for signal(a) is depicted in
Fig. 4.7c. The oscillatory correlation function is gradually attenuated with the
Gaussian envelope as the delay time τ increases. The period of this oscillation
is T0, or that of the signal. The “lifetime” (usually e−1 width) of the oscillation
or the correlation time of the envelope function corresponds to τT, or the
transit time. Thus, the central frequency f0 may be determined by measuring
the period T0 of the autocorrelation function R(τ). Note that the period T0

should be measured from the oscillation having a larger amplitude in the
function R(τ), which means the range of a smaller τ because the positions
of the oscillation maxima and minima are erroneously shifted in the range
of rather attenuated oscillation or a larger τ . Unless the object’s velocity is
constant in the probing volume, the power spectrum of the periodic component
may be asymmetrical, and the spectrum peak does not correspond to the
central frequency f0. In this case, the distance between the first maximum (at
τ = 0) and the second maximum in the correlation function does not give the
true signal period. It is, therefore, advisable to measure distances between
any other two successive maxima and to average them for more accurate
measurements of f0 [4].

If the periodic signal has a continuous random amplitude consisting of
many bursts from the random passage of particles or from rough surfaces,
the contributions from particles or scattering centers are uncorrelated with
each other. Then, the autocorrelation function may be unchanged and used
to determine the central frequency as well as above. Also note that the rate of



82 4 Signal Analysis

       

             

(a) Signal 

t

g(t)
τT

Τ0

(b) Power spectrum 

Gp( f )

f0

δf0

Signal 
Pedestal 

f

(c) Autocorrelation 

R(τ )
τT

Τ0

τ
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attenuation in the correlation function, which can be specified by τT, is related
to the peak width δf0 of the periodic component in the power spectrum shown
in Fig. 4.7b. By assuming Gaussian broadening for the signal spectrum, the
width δf0 becomes

δf0 =
2

πτT
. (4.7)

If the oscillatory attenuation of the correlation function is slow or τT is rel-
atively large, the signal period T0 may be measured accurately from the dis-
tance between two successive maxima or minima. This corresponds to the
fact that the central frequency f0 can be determined more accurately from
a narrower signal spectrum. Measuring the period T0 of the autocorrelation
function R(τ) might be considered equal to determining the period T0 directly
from the signal g(t). However, this is not true because reading the period of the
signal is substantially influenced by noise and resultant period data potentially
involve errors. In the autocorrelation function, the effect of noise is consider-
ably reduced by integration long compared to the signal period included in
the correlation principle. Then, more accurate measurements of period T0 can
be made from the autocorrelation function than from the direct signal.

The instrument to calculate and display the correlation function of an
analog input signal is an electronic correlator. However, the analog correla-
tor is at present hardly employed for SFV signal processing systems. Recent
correlators operate mostly in digital circuits to speed up the calculation and
to improve the accuracy and the commercial cost. The input photocurrent,
thus, must be sampled and converted to digital values by the analog-to-digital
converter (ADC). The processing time is generally limited by the clock fre-
quency of the ADC and the number of data accumulated in processing. An-
other approach [90, 91] is to perform the digital correlation analysis of zero
crossings [53] obtained from the analog signal. Once the analog signal is digi-
tized, the further analysis in this approach is the same as that in the digital
operation in the framework of the photon correlation technique, which will be
described in Sect. 4.5.3.
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4.5.2 Fast Fourier Transform

In general, the power spectrum gives information necessary for velocity de-
termination in SFV measurements, that is, the central frequency f0 and, if
required, its dispersion for evaluating the velocity fluctuation. If, however, the
autocorrelation function is desired, it is another way to execute the Fourier
transform of the power spectrum obtained by spectrum analysis described in
Sect. 4.2 based on the Wiener–Khintchine theorem. For this process, the FFT
algorithm can be used favorably. Commercially available FFT processors are
usually equipped with this additional operation, and, thus, they can always
display both the power spectrum and the correlation function simultaneously,
obtained from one signal input. This approach is advantageous for shortening
the processing time in comparison with direct correlation computing.

4.5.3 Photon Correlation Technique

When SFV measurements are performed at very low light levels, the continu-
ous intensity signal cannot be detected due to its level below random photon
noise. Even in this case, the photoelectron pulses carry useful information
of the optical signal. These pulses appear in a discrete manner and can be
processed about directly in digital electronics. The photon correlation tech-
nique deals with the discrete correlation analysis of counts of photoelectron
pulses. Thus, it is particularly useful for low light levels. If the light level
increases and exceeds a certain limit, individual photoelectron emissions are
no longer isolated, and the result is a continuous intensity-fluctuating signal.
There is, thus, a limit on the maximum acceptable light level. The photon cor-
relation technique has been considerably well established [92], and commercial
instruments are available for SFV as well as LDV measurements.

As shown in Fig. 4.8, at very low light levels, the probability of occurrence
of photoelectron pulses or the number density of pulses at a given time is
proportional to the light intensity (a). The input pulse train (b) obtained
by the photon counting detector is sequentially counted within a prescribed
sampling interval δτ (usually a few µs, for example). The pulse counts mj

(j = 1–N) (c) are, then, used to calculate the autocorrelation function (d) in
a discrete manner. The discrete form of (4.6) is given by

R (qδτ) =
N∑

j=1

mjmj+q , (4.8)

where N is the total number of terms in the summation and q is an integer
giving a delay time increment and usually corresponds to the channel num-
ber of the digital correlator (typically 64–256 channels). This means that the
correlator executes q-channels of summations simultaneously . Detectors used
for photon counting are in general photomultipliers specifically designed to
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Fig. 4.8. Schematic illustration of the photon counting procedure for the photon
correlation technique

suppress dark current noise. In consequence of recent advances in semicon-
ductors, avalanche photodiodes (APDs) [93–96] may also be suitable devices
for building compact photon correlation systems. The detector output con-
tains signal pulses and dark current pulses. By analyzing these pulses with a
pulse height analyzer, the resultant distribution [93] generally demonstrates
that signal pulses are distributed in a larger range, whereas dark pulses are in
a lower range of their heights. To discriminate signal pulses from dark pulses
by using the criterion of pulse height, the photon counting unit has a pulse
height discriminator, which sets a certain threshold for the pulse height to trig-
ger signal pulse generation. The threshold level should be above the height of
dark pulses but as low as possible to ensure full use of the signal pulses.

The implementation of (4.8) is entrusted to digital operations [97, 98] in
the correlator and not described in this book. The main operation is the time-
sequential multiplications of photon counts and their q-channel summations
by using counters, shifting registers, and storage channels. To reduce oper-
ating time and to realize high-speed performance, practical correlators often
employ a “clipping” technique [99], in which the pulse counts are classified into
high (or “1”) and low (or “0”) levels by using a preset criterion or so-called
“clipping level.” After clipping, the processing is basically one-bit operation
and much simplified. The measured photon correlation function (d) in Fig. 4.8
shows the same oscillatory form as Fig. 4.7c, and the period T0 between the
two successive maxima or minima is read to determine the central frequency
f0. If necessary, the determination of the frequency f0 can also be made in
the power spectrum obtained by the Fourier transform of the resultant photon
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correlation function. The photon correlation technique is definitely advanta-
geous for a poor signal-to-noise ratio at low light levels, but it has a limitation
for real time operation. Modern digital electronics is improving the circum-
stances for correlation analysis. Real time monitoring of the velocity variation
at very low light levels may be realized by advanced photon correlators.

4.6 Choice of the Signal-Analyzing Technique

A variety of circumstances influence the signals in SFV measurements, and
the types of signals also vary: continuous and intermittent, strong and weak
in intensity, good and poor SNRs, and frequency-constant and variable. Ap-
plications often require the mean velocity and also the velocity fluctuation or
distribution and their real time recording. Since, however, there is no ideal
signal-analyzing technique that is suitable for all situations, a proper choice
is the key step to direct successful SFV measurements.

Providing that the velocity is almost constant and that the signal is con-
tinuous with a fair SNR, almost any technique is available for processing. In
general, the frequency tracker and the frequency counter may be reasonable
choices. If the signal frequency is lower than MHz, the FFT processor is very
convenient and economical. The spectrum analyzer of the frequency scanning
type is good for general purposes if sufficient time is given for processing. The
filter bank, wave-period measuring technique, and photon correlator usually
require elaborate hardware and are costly. Thus, use of these techniques should
be considered in the limited cases where any other technique is not available.
For intermittent signals at constant velocity, counting techniques are recom-
mended. If the signal is of poor quality, tracker and spectrum analyzers can be
used and, for extremely low light intensity, the photon correlation technique
may be an ultimate choice.

When the velocity fluctuation is of major significance, care has to be given
to performance on the timescale. It is, of course, true that the frequency
tracker is the best choice for continuous signals whose velocity fluctuates.
For intermittent signals, the tracker is still available as long as the timescale
for the velocity fluctuation is short compared with the mean period between
signal bursts. For very poor intermittent signals, the tracker no longer works
satisfactorily, and the frequency counter and the wave-period measuring tech-
nique may be alternate means. If the SNR is poor, the best choice can be the
filter bank, although the frequency resolution is degraded. The FFT processor
and the photon correlator may be possible for signals in the frequency range
lower than MHz. In this case, the integration time should be shorter than the
timescale of the velocity fluctuation. Otherwise, the result gives only a mean
value for the velocity fluctuation.

There is an alternative method for measuring velocity fluctuation, which
is described only briefly below. The method needs two simultaneous output
signals whose central frequencies are equal to each other and whose phases
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are orthogonal. One of the signals is treated as the real part and the other as
the imaginary part, and these outputs form an analytic signal. Instantaneous
amplitudes of the two phase-orthogonal signals produce the instantaneous
phase of the analytic signal and, thus, the time rate of the phase change gives
the instantaneous values of the central frequency and the object’s velocity.
To employ this method, the SFV system is required to output a set of phase-
orthogonal signals and, then, availability and implementation of the method
depend on the spatial filtering device and system used. Therefore, the method
will be described in Sect. 5.8 in relation to the introduction of imaging-type
spatial filtering devices.

Spectrum analyzers of the frequency scanning and FFT types, and the pho-
ton correlator for general uses are commercially-available instruments. Some
different types of frequency trackers and frequency counters are also provided
by manufacturers exclusively for LDV measurements and can be used for SFV
measurements. Probably, the filter bank processor and wave-period measuring
system have to be designed to meet required specifications. Table 4.1 summa-
rizes the performance of various processing techniques described above. The
estimates listed assume normal uses of typical instruments in each technique
and may be useful for rough and brief comparisons.

Table 4.1. General performance of processing techniques for SFV signals

Processing techniques Velocity
fluctua-
tions

Intermit-
tent
signals

Low
SNR

Freq.
range

Accuracy Temporal
resolu-
tion

Spectrum
analysis

Frequency
scanning

× � � ∼ GHz � ×

Filter bank � � � ∼ GHz × �
FFT � � � ∼ MHz � �

Frequency
tracking

Frequency
tracker

© × � several
tens of
MHz

� �

Counting
technique

Frequency
counter

� � × ∼ GHz © �

Wave-
period
measure-
ments

� © × ∼ MHz © ©

Correlation
analysis

Photon cor-
relation

� � © several
tens of
MHz

� �

© Excellent or very good; � good; � fair or not bad; × difficult or unavailable



5

Spatial Filtering Devices and Systems

Various types of velocimeters based on the principle of the spatial filtering
method, have been reported so far. Spatial filtering velocimeters are charac-
terized mainly by both the spatial filtering device and the measuring system
employed in each type of velocimeter. The signal quality depends primarily on
the spatial filtering characteristics. System performance, including measuring
functions, operations, and applicability, features various types of optical and
signal-analyzing systems. As described in Chap. 2, the basic type of spatial
filtering velocimeter is constructed from a transmission grating and an optical
imaging system with a single lens. To improve the performance, expand the
usefulness, and develop a practical system, a variety of spatial filtering devices
have been studied with suitable optical and signal-analyzing systems. Those
types may be roughly divided into eight categories.

Starting from the transmission grating as a basic type, this chapter
presents the eight categories of spatial filtering devices and systems. In
Sect. 5.1, the transmission grating type is described, including some deriv-
ative techniques to remove the pedestal component or the directional ambi-
guity and to measure two-dimensional velocity components. Sections 5.2–5.8
treat other advanced or specifically designed types: prism grating, lenticu-
lar grating, optical fiber array, liquid crystal cell array, integrated solar cell
array, one-dimensional detector array, and two-dimensional image sensor. Sec-
tion 5.9 summarizes these devices on the basis of measuring functions; pedestal
removal, directional discrimination, and two-dimensional velocity measure-
ments.

5.1 Transmission Grating

A transmission grating is a simple optical element consisting of a parallel-slit
reticle with opaque and transparent bars. A typical example is the Ronchi
grating (ruling), as shown in Fig. 5.1, which is generally used for investigating
the shapes of optical surfaces, known as the Ronchi test [100]. This grating is
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Fig. 5.1. A Ronchi grating (ruling) with a pitch of 508 µm

made by vacuum evaporation of chromium on a glass substrate, and the ruling
of 50 ∼ 500 lines per inch is quite popular [101]. This range of ruling pitch is
larger than that used for a diffraction grating and then causes no significant
diffraction effect. Use of a transmission grating in the imaging plane realizes
simply the most fundamental spatial filtering velocimeter.

5.1.1 Transmission Grating Velocimetry

The basic optical system of the velocimeter using a transmission grating is de-
picted in Fig. 5.2. The measuring principle was already described in Sect. 1.2.
A transmission grating G is attached with a mask M to define a probe vol-
ume in the object plane x0–y0 and is placed in the image plane x–y to realize
the spatial filter (SF). Light passing through the spatial filter is collected
by a lens L2 and received by a photodetector (PD). With the movement of
objects, periodic signals are observed and analyzed to derive the velocity of
moving objects according to the SFV principle (see Sects. 1.2 or 2.1). When
the moving direction of objects is known and constant, the spatial filter is
oriented so that its grating lines are normal to the moving direction. The
optical imaging system is chosen flexibly to fit measurement circumstances
and purposes, such as microscopic or telescopic imaging, and imaging with
camera lenses, including zoom lenses and wide-angle lenses. If a commercially
available Ronchi grating is to be used for the transmission grating, available
grating pitches limited to a certain range around 50–500 µm typically. Then,
adjustment of the imaging magnification gives freedom to design an optimum
spatial filter. A photodiode is typically used to detect signals and, for a low
light level, an avalanche photodiode or photomultiplier tube (PMT) may be
useful. Output signals are processed by typical signal-analyzing methods such
as spectrum analysis or frequency counting, as described in Chap. 4. When the
scattered light intensity is extremely low, a photon-counting type PMT is an
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Fig. 5.2. Basic optical system of a transmission grating velocimeter

effective choice for signal detection in the framework of the photon correlation
technique. The freedom of choice of an optical imaging system, transmission
grating, and photodetector type is a very attractive feature for practical uses.

Since the transmission grating itself is simple and easy to handle, a
compact and stable velocimeter can be constructed, that is flexible for mea-
surements in various practical situations, especially when other complicated
spatial filters are unavailable. Due to its basic typical feature, this type of
velocimeter is often referred to as a transmission grating velocimeter [28].
Historically speaking, the transmission grating velocimeter has already been
treated for application-oriented studies in the beginning stages of SFV de-
velopment. In 1964, Gaster [14] measured a liquid flow velocity lower than
0.5 cm/s using a transmission grating on a rotating disk. This technique was
then used to measure the flow velocity in various conditions, for instance, in
a microscopic region [23].

5.1.2 Differential Detection for Pedestal Removal

Figure 5.3 illustrates a typical model of output signals from a photodetec-
tor (PD) and the corresponding power spectrum. The signal consists of a
periodic component containing information about the object’s velocity and
a lower frequency component called the pedestal. The former component is
used for velocity measurements, whereas the latter is useless. To determine
the velocity, the central frequency f0 of the periodic component should be
measured accurately. The pedestal component decreases the signal-to-noise
ratio and causes derivation of the central frequency of periodic signals as de-
scribed in Sect. 2.4.2. The ambient light can be a source of the dc component,
which also reduces the signal-to-noise ratio. When counting-type techniques
are employed for signal processing, the pedestal component must be removed
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Fig. 5.3. Typical model of output signals and the corresponding power spectrum
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Fig. 5.4. (I) Computed power spectra of a spatial filter (solid curves) and an electric
HPF (dashed curves) and (II) the corresponding spectra after filtering

from the photodetector signal before it is processed because the zero or level
crossing is incorrectly counted if the pedestal is contained. Removing the
pedestal is generally done by using an electric high-pass filter (HPF) since the
pedestal consists of components with dc and lower frequencies than
the central frequency f0. The use of an electric HPF is a possible means
if the periodic and pedestal components are sufficiently separated from each
other in the spectral domain. This situation is realized when the number n
of grating lines given by (2.37) is relatively large, such as n ≥ 10. As shown
in Fig. 2.12, decreasing number n of grating lines results in spectral broad-
ening, and the resultant poor separations between the periodic and pedestal
components make it difficult to remove the pedestal by using electric HPF.

Figure 5.4 shows the computed power spectra of a spatial filter (solid
curves) and an electric HPF (dashed curves) in the upper part (I) and the
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Fig. 5.5. Basic optical system of a transmission grating velocimeter using differential
detection

corresponding spectra after filtering in the lower part (II). The spatial filter is
assumed to be the circular type with sinusoidal transmittance of the grating
number, n = 4. The frequency characteristics of the electric HPF are assumed
to follow the Butterworth of the fourth order. The horizontal axis represents
the spatial frequency µ that is normalized by 1/p, when p is the grating inter-
val. Then, µp = 1 corresponds to the central frequency f0 of output signals in
the temporal domain. In result (a), the normalized cutoff frequency µcp is set
small enough to pass the periodic component, and, then, the filtered spectrum
still contains a considerable pedestal component. Conversely, in (b), the cutoff
frequency is increased to remove the pedestal sufficiently, and the HPF cuts a
fraction of the periodic component, causing a serious deviation of the central
(or peak) frequency. Thus, the use of an electric HPF is unsuitable for a small
grating number n. Even if a value of n is not small, the periodic component
spectrum is close to the pedestal when an object moves in a direction oblique
to the grating lines, as described in Sect. 2.4.3. If the object’s velocity is tem-
porally variable, a choice of the cutoff frequency in the electric HPF is quite
difficult. This is a source to limit the dynamic range of velocity measurements.
In these circumstances, the pedestal should be removed in any other way.

A solution to this problem is the introduction of differential detection into
the optical system. The basic method of differential detection employs two
sets of spatial filters and photodetectors. Figure 5.5 schematically shows the
basic optical system of a transmission grating velocimeter using differential
detection. Two identical images of a moving object are formed on two trans-
mission gratings G1 and G2 via lenses L1 and L2 and a beam splitter (BS). By
placing a mask M in the first imaging plane, it is imaged with a lens L2 on two
gratings. This imaging gives completely identical windows to the two gratings
and guarantees definition of the same probe volume to two photodetectors
PD1 and PD2. Two output signals from the photodetectors are fed into the
positive and negative inputs of a differential amplifier (DA). The two gratings
G1 and G2 are placed so that their grating lines are parallel in an out-of-phase
manner, as shown in Fig. 5.6. Then the differential amplifier cancels out the
pedestal component, including the dc component due to the ambient light,
and at the same time doubles the amplitude of the periodic component. Since
the pedestal cancellation is made independently of the central frequency f0 of
periodic signals, a wide dynamic range of velocity can be obtained.
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Fig. 5.6. Two gratings placed in an out-of-phase manner for the differential
detection

The equivalent differential transmittance h(x, y) formed by using the
above-mentioned arrangement is expressed for the circular-type spatial filter
with sinusoidal transmittance by

h (x, y) = h1 (x, y) − h2 (x, y) , (5.1)

where h1(x, y) and h2(x, y) are transmittance functions of the two gratings
G1 and G2 with circular window images having a radius of a, respectively,
and are written as

h1 (x, y) =

⎧⎨
⎩

1
4

(
1 + cos

2π

p
x

)
, x2 + y2 ≤ a2 ,

0 , otherwise,
(5.2)

h2 (x, y) =

⎧⎨
⎩

1
4

[
1 + cos

(
2π

p
x − π

)]
, x2 + y2 ≤ a2 ,

0 , otherwise.
(5.3)

A factor of 1/4 on the right-hand side instead of 1/2 in (2.29) means the inten-
sity reduction by half due to the use of the beam splitter. The corresponding
power spectrum is derived by performing the integration of (2.5) with (5.1)
as

|H (µ, ν)|2 =
π2a4

4
[
H−

J (µ, ν) + H+
J (µ, ν)

]2
, (5.4)

where H−
J (µ, ν) and H+

J (µ, ν) are the same as in (2.30). Comparison of (2.30)
and (5.4) indicates that the pedestal component having a peak at (µ, ν) =
(0, 0) disappears and that only the two periodic components having peaks at
(µ, ν) = (±1/p, 0) are obtained in differential detection.

Figure 5.7 [25] presents power spectra Hp(µ) for four different numbers
n of grating lines, obtained by integrating (5.4) with respect to spatial fre-
quency ν. Comparison of Fig. 5.7 with Fig. 2.12 indicates that, in theory, the
pedestal component disappears completely and that the central frequency or
the peak of the periodic component appears correctly at µp = ±1 by using
differential detection, even for small numbers of n = 2 and 5. Differential de-
tection theoretically provides complete cancellation of the pedestal. To realize
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Fig. 5.7. Computed power spectra of the spatial filter in differential detection [25]

this operation actually, the out-of-phase positioning of two transmission grat-
ings should be exact. A balance of sensitivity is also required between the two
photodetectors. An error in these conditions may yield undesirable residual
components and higher order harmonic noise in the differential output. To
avoid this problem, an easier way [25] has been studied using a single spatial
filter. This is simply realized by removing the transmission grating G2 from the
optical system of Fig. 5.5. In this alternative arrangement, photodetector PD2

yields only the pedestal component as shown by the dashed curve in Fig. 5.3,
due to the lack of grating lines. When the sensitivity of PD2 is lowered to the
half that of PD1, the pedestal component is canceled out in the differential
output, although the periodic component is not doubled in amplitude. This
type of differential detection is, thus, advantageous for constructing a practical
transmission-grating-type SFV system, which may be used for measurements
of turbulent-flow velocity and the velocities in a microscopic region, for ex-
ample. Figure 5.8 [25] demonstrates typical output signals and corresponding
frequency histograms obtained by the wave-period measuring technique de-
scribed in Sect. 4.4.2 for n = 10. Results (a) and (b) were obtained with the
conventional-type arrangement of Fig. 5.2, whereas (c) was with the differen-
tial type using a single transmission grating. The pedestal component is re-
duced by an electric HPF with the cutoff frequency fc = 700 Hz in Fig. 5.8a,
whereas it is not removed in Fig. 5.8b due to fc = 50 Hz. In Fig. 5.8c, the
pedestal is almost canceled out although an electric HPF of fc = 50 Hz was
used to suppress residual components. Comparison of Figs. 5.8a and c indi-
cates that differential detection provides better results than the conventional
type does since a narrower peak was obtained in frequency histogram (c) than
in (a).
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Fig. 5.8. Typical output signals and corresponding frequency histograms obtained
by measurements with n = 10

5.1.3 Directional Discrimination — Frequency Shifting

A fundamental problem in SFV measurements is no sense of a velocity sign
or direction. A change in the sign of an object’s velocity gives no difference in
frequency of output signals, and it is not possible to tell in the which direction
the object is moving. This yields directional ambiguity, which is a common
defect with other velocimeters such as LDV. The defect may be insignificant
for some applications in which a moving direction is known or observable.
However, changes in the flow direction are involved in many flow situations
such as turbulent and recirculating flows and, thus, directional discrimination
should be made in SFV measurements.

Several methods which are available for this purpose are based mainly
on frequency shifting and phase shifting. The most popular methods involve
shifting the central frequency of SFV output signals. The frequency shifting
technique is commonly used for the same purpose in LDV where a frequency
modulator or shifter is used. A diffraction grating or an acousto-optic Bragg
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Fig. 5.9. Detection of an image motion with the moving transmission grating
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cell produces a moving system of interference fringes in the differential LDV
arrangement [5]. A similar effect is realized in SFV measurements by moving a
grating in its own plane. When a transmission grating of pitch p is moving with
velocity vg as shown in Fig. 5.9, a stationary image on the grating generates
a periodic signal of frequency fg = vg/p, which is the shift frequency due
to the grating movement. Movement (a) of the image with velocity v in the
direction opposite to the grating raises the signal frequency to fa = fg + f0,
(f0 = v/p), whereas movement (b) in the same direction lowers it to fb =
fg − f0. Thus, the direction of the velocity is determined. To ensure that the
lowered frequency fb does not change sign, the frequency shift fg must be
larger than the original signal frequency f0 corresponding to the maximum
velocity expected in measurements. This condition maintains an unambiguous
relation between the signal frequency and the velocity to be measured.

A mathematical expression for frequency shifting technique is briefly given
below for a circular-type transmission grating with sinusoidal transmittance
(see Fig. 2.10IIa). By assuming that the grating is moving with velocity vg

in the x direction, the transmittance function h(x, y) is written, instead of
(2.29), as

h (x, y) =

⎧⎨
⎩

1
2

[
1 + cos

2π

p
(x − vgt)

]
, x2 + y2 ≤ a2 ,

0 , otherwise.
(5.5)

Substitution of (5.5) in (2.5) yields the power spectrum of the spatial filter,

|H (µ, ν)|2 = π2a4

{
HJ (µ, ν) +

1
2
[
H−

Jk (µ, ν) + H+
Jk (µ, ν)

]}2

, (5.6)

where HJ(µ, ν) is the same as used in (2.30), and

H−
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)2
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,

where k = 1 − (vgt/x) = 1 − (vg/v) when the image is assumed to move in
the x direction with velocity v. Equation (5.6) indicates that periodic signal
components have peaks at (µ, ν) = (±[1 − (vg/v)]/p, 0). According to the
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discussion of converting a spatial-domain treatment to a temporal one as
described in Sect. 2.1, the frequency of periodic signal components that is
actually observed is given, with the condition fg > f0, by

f = µv =
vg − v

p
= fg − f0 = fb . (5.7)

An opposite sign of the image velocity v to the grating velocity vg makes
fg + f0 = fa, thus shifting the frequency up.

A simple means for moving grating lines is using the rotation of a disk
grating [14] or cylinder grating, as shown in Fig. 5.10. When a moving image
is formed on a specific circumferential area of radial grating lines in a rotating
disk, which is specified by radius r, the velocity vg of the grating lines in the
imaged area is given by 2πrN , where N is the number of rotations per second.
Then, the frequency shift fg results in 2πrN/p. A large value of radius r gives
a good approximation of rotating radial lines to translational parallel lines. If
a cylinder grating is considered, a photodetector unit may be installed inside
it. Movement of lines on a curved surface can be approximated well to in-plane
movement with a large cylinder radius. Generally, the cylinder type is more
convenient for constructing a compact and stable system than the disk.

Output signals can be processed in the same way as ordinary SFV signals.
For example, spectral analysis yields the result fg±f0, which is compared with
the shift frequency fg to recognize the direction of the object’s velocity. The
shift in frequency of the output signals means that the signal spectrum moves
away from the pedestal in the frequency spectral domain. Thus, it is also
advantageous for removing the pedestal with an electric HPF. For real time
monitoring of the direction, a frequency discriminator is more advantageous,
in which the central frequency for reference is tuned to the shift frequency
fg. Then, the discriminator output in voltage is linearly proportional to the
frequency of the applied signal. When an object is stationary, the photodetec-
tor output contains frequency fg and the discriminator yields a zero output.

(a) Disc (b) Cylinder

vg

r

Fig. 5.10. (a)Rotating disk and (b)cylinder gratings
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A higher or lower frequency than fg is responded to by a positive or negative
voltage in the discriminator output.

The frequency shifting technique is a simple and direct solution to direc-
tional discrimination, but realizing it with a rotating grating requires careful
treatment. The system needs mechanical operation, which is a source of in-
stability in output signals such as frequency noise due to the fluctuation of
rotation. The rotating grating is also disadvantageous for producing a large
frequency shift. This technique is therefore useful for relatively low velocity.

5.1.4 Directional Discrimination — Phase Shifting

Another method of determining whether an object’s velocity is positive or
negative is to detect SFV periodic signals in two channels having a phase dif-
ference of π/2 with each other and, then, to see which channel leads onto the
other [26]. An optical system which realizes this idea is the same as Fig. 5.5,
but two transmission gratings G1 and G2 for this purpose are placed in a phase
difference π/2 or p/4, as shown in Fig. 5.11. Two output signals from photode-
tectors PD1 and PD2 generate the phase difference of π/2 (as shown also in
Fig. 5.11), whose sign is determined by the direction of backward or forward
image movement, according to a predetermined convention. Therefore, the
velocity direction is revealed by detecting the sign of the phase difference. For
this system to work, it is important that each photodetector receives exactly
identical images in the same probe volume. Since this technique contains no
mechanically moving part, a stable system can be constructed, although the
initial arrangement of two gratings with the required phase difference and an
appropriate signal processing (described below) is necessary.
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Fig. 5.11. Phase shifting technique for directional discrimination



98 5 Spatial Filtering Devices and Systems

Electrical filter Electrical filter

D   CK

D-type flip-flop

Wave-period

measuring circuit

Microcomputer

system

Amplifier

Schmitt

Input(1) Input(2)

Amplifier

Schmitt

Input port

DAC

Output(A) Output(B)

Q

V1 V2

S1 S2
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Fig. 5.13. Timing chart of signal processing for directional discrimination [26]

Figure 5.12 [26] shows an example of a signal-analyzing block diagram
employed for the phase shifting technique. Two photodetector signals are fed,
respectively, into Input (1) and Input (2). Outputs V1 and V2 obtained via
electric filters and amplifiers are applied to Schmitt circuits by which square
waves S1 and S2 are produced, as shown in the timing chart of Fig. 5.13 [26].
The signal S1 is then sent to the wave-period measuring circuit (see Sect. 4.4.2)
by which the central frequency f0 is determined and used to derive the object’s
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velocity in the microcomputer. To detect the sign of the phase difference
between two input signals, output S1 is also fed into a data input (D) of a
D-type flip-flop (D-FF) circuit, whereas output S2 is into a clock input (CK).
In Fig. 5.13a, signal S2 leads onto signal S1 by π/2, which corresponds to the
image moving backward in Fig. 5.11. Now, if the moving direction changes
forward, the timing relation between the two photodetector signals turns over
and, thus, S1 leads onto S2, as shown in Fig. 5.13b. The D-FF is used to
determine this timing relation. In the example, the D-FF is triggered at every
positive edge of square wave S2 to output the logic state of square wave
S1. Thus, output Q of the D-FF is in logic state 0 (showing low level) for
Fig. 5.13a, whereas it is in state 1 (high level) for Fig. 5.13b. The output Q is
sent to a microcomputer by which the sign of the velocity is determined by
examining the level of Q and is added onto the corresponding data of central
frequency f0 that is obtained from the wave-period measuring circuit. In this
way, the system finally provides a negative or positive central frequency, which
corresponds to the velocity in the backward or forward direction. Figures 5.14a
and b demonstrate measured histograms of the central frequency f0 obtained
for image movement in the backward (–) and forward (+) directions, according
to the convention of Fig. 5.11, respectively. Most of the frequency data for the
backward direction appear in the negative frequency region, whereas those
for the forward one are in the positive region. The magnitude and directions
of the object’s velocity can therefore be simultaneously determined by this
processing.

In other ways, both tasks of measuring the central frequency and sensing
the moving direction are combined in a single procedure. In the framework
of the complex Fourier transform [102], the two periodic outputs V1 and V2

π/2 out of phase are treated as the complex (real and imaginary) input or
the analytic signal in a complex Fourier spectrum analyzer from which the
velocity as well as the direction of the object are obtained. Also, the in-
stantaneous amplitudes of the two phase-orthogonal outputs V1 and V2 are
used directly to obtain the instantaneous phase of the analytic signal. The

(a) Backward

1 0 1
f (kHz)

(b) Forward

f (kHz)
1 0 1

Fig. 5.14. Measured frequency histograms for images moving in backward and
forward directions [26]
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temporal changing rate or time differential rate of this phase gives us the in-
stantaneous frequency and thus the velocity. Since the rotational direction or
the increasing/decreasing of that phase is reflected in the sign of the instan-
taneous frequency, this is used for discriminating the moving direction. This
latter method will be described in Sect. 5.8.

5.1.5 Two-Dimensional Measurements

In the basic arrangement of transmission grating velocimetry, as shown in
Fig. 5.2, the velocity component perpendicular to the grating lines can be
measured. Any other component may be observed by suitable rotation of the
transmission grating in its own plane, but only one component is measured
at a time. If two velocity components are measured successively, correlations
between the two components being recorded may be degraded. A further
interesting variation of the basic transmission grating velocimeter is, thus, to
facilitate simultaneous measurements of two orthogonal velocity components.

An example of two-component measurements is introduced by using the
optical system shown again in Fig. 5.5, but with a change in aligning the two
gratings, that is an orthogonal orientation of the grating lines, as shown in
Fig. 5.15. In this configuration, the central frequencies fx and fy of the two
detector outputs are proportional to the two velocity components vx and vy,
respectively. The real magnitude and orientation of the object’s velocity are
obtained trigonometrically by using the two components. If the two signals
are known to contain different frequencies, the two output signals from the de-
tectors are processed, in principle, by using a single-channel analyzing system
such as an ordinary spectrum analyzer to determine the central frequency.
When the two frequencies are close to each other, they are not separated in
the spectral domain. Thus, practical uses require two channels of the signal-

Frequency fx

G1

G2

vy

v0

t

vx

v0

Frequency fy

t

Fig. 5.15. Orthogonal alignment of grating lines and two output signals for two-
dimensional measurements
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analyzing system. As described in Sect. 5.1.2, the mask M in Fig. 5.5 is used
to define the identical probe-cross sectional area for detectors PD1 and PD2.
This imaging system ensures measurements of two velocity components in the
same probe volume.

The measurement accuracy of each component vx or vy is highest in the
moving direction perpendicular to the lines of each grating, and in other di-
rections, it drops with an increase of the angle with respect to the direction
normal to the grating lines. Since grating lines of G1 and G2 are orthogonal
to each other, the measurable range of direction is limited to π/2. Velocities
in other directions entail a change of sign, and true values will be determined
with directional discrimination. Without using discrimination, improvement
of the accuracy and the range of direction may be possible to some extent
by using three or more transmission gratings. Figure 5.16 [103] illustrates an
example of three gratings placed in a triangle. A moving image is detected by
three photodetectors behind the gratings and the velocity and direction can
be determined, in principle, from any two of three outputs. However, the study
has shown that an estimation of the velocity and direction can be made more
accurately by a weighted summation of the three outputs under the criterion
of the least mean square error. This configuration enlarges the measurable
range of direction to 2π/3.

In the beginning study of the SFV by Ator [12], two-component measure-
ment was discussed for correcting the drift angle of an aircraft. By using two
gratings (reticles) in a herringbone pattern, as shown in Fig. 5.17 [12], two fre-
quency outputs are compared to detect the drift angle. A servomechanism can
be used to position the physical heading of the air plane automatically to the

A

va vb

B

C
vc

v

q

Fig. 5.16. Use of three transmission gratings for two-dimensional measurements
(re-drawn from [103])
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Fig. 5.17. Herringbone alignment of grating lines [12]

true line of flight by maintaining a zero-frequency difference. This technique
is used for directional control of various moving objects.

To determinate the velocity direction of a vector from two-component mea-
surements, it is necessary to perform directional discrimination for the two
components and to detect changes in sign. This is realized by introducing the
frequency shifting technique described in Sect. 5.1.3 to the two detection chan-
nels. The phase shifting technique is unsuitable for practical measurement sys-
tems since one-component measurement requires two detection channels and
two requires four. The frequency shifting in two-component measurements is
studied [104–106] with a single rotating disk having two transmission-grating
rings, as shown in Fig. 5.18 [106]. The two gratings are formed annularly with
different radii in the circumference of the disk, and their grating lines are
ruled perpendicularly to each other (±π/4 with respect to the x axis). Imag-
ing regions Gx and Gy are illustrated by circles on the two gratings and also
depicted in the magnified scale. Two axes x′ and y′ are defined with an an-
gle of π/4, respectively, against axes x and y. The inner and outer gratings
have the same line interval p. Lines in each imaging region may be assumed
to be parallel if the radii of two grating rings are much larger than those of
imaging regions. Two identical images of a moving object are formed in the
two grating regions Gx and Gy on the rotating disk. When the disk is rotated
clockwise, grating lines of Gx and Gy move toward positive x′ and negative
y′, producing shift frequencies fgx′ and fgy′ , (fgy′ > fgx′ > 0), respectively.
Then, the central frequencies fx′ and fy′ , (fx′ > 0, fy′ > 0) of the two periodic
signals from the photodetectors are given by the following equations:

fx′ = fgx′ − vix′

p
, (5.8)

fy′ = fgy′ +
viy′

p
, (5.9)

where vix′ and viy′ denote the x′ and y′ components of the image velocity vi.
By measuring fx′ and fy′ , vix′ and viy′ can be determined from (5.8) and (5.9)
with known values of fgx′ , fgy′ and p. The signs of vix′ and viy′ are determined
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Fig. 5.18. Use of a single rotating disk having two transmission-grating rings for
two-component measurements [106]

in accordance with the values of fx′ and fgx′ , and fy′ and fgy′ , respectively.
For example, fgx′ > fx′ gives vix′ > 0 and fgy′ < fy′ gives viy′ > 0, thus the
angle θ′ of the image velocity vi with respect to the x′ axis is in the range of
(0, π/2) in this case. The direction of the image velocity vi in (x, y) coordinates
is expressed by the polar angle θ with respect to the x axis as follows:

θ = tan−1

(
viy′

vix′

)
+

π

4
. (5.10)

The real magnitude of vi is given by the absolute value as

|vi| =
√

vix′2 + viy′2 . (5.11)

As described in Sect. 5.1.3, the frequency shifting technique usually re-
quires the grating velocity to be larger than the expected maximum velocity
of a moving object’s image. Then, the maximum grating velocity available in
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a measuring system determines the measurable velocity range. The grating
velocity may be controlled by the rotating speed and the size of the disk and,
thus, there is flexibility for varying the velocity range. The measurement ac-
curacy in this example may be determined by the precision of both the ruling
of the grating lines and the rotation of the disk.

5.2 Prism Grating

Light emerging from a prism is deflected in a direction different from that of
the incidence, unless the input and output faces of the prism are parallel. This
deflection effect can be used for the spatial filtering technique if it occurs in
a spatially periodic manner. A device which is available for this purpose is a
prism grating. There are two kinds of prism gratings which have been reported
as spatial filtering devices: two-stage [40, 41] and three-stage [38, 39] types.
Another device which is categorized as a prism type is the mirror grating [37].
No study has been reported in detail for investigating this device and, thus,
it is only conceptually introduced in this book.

5.2.1 Two-Stage Type

Figure 5.19 shows schematically a two-stage prism grating and its use as a
spatial filtering velocimeter [41]. An image of a moving object is formed on a
flat face of the prism grating (PG). Light emerging from the prism is deflected
in two different directions according to Snell’s law at two facets consisting of
periodic triangular ridges and, then, collected and received by photodetectors
PD1 and PD2. Due to the movement of the image on the prism face, the prism
grating deflects the emerging light alternately in the two directions. The two
detector outputs result in periodic signals with a phase difference of π, which

Object

Objective
PG

Collecting lens

PD1

PD2

Fig. 5.19. Spatial filtering velocimeter using a two-stage prism grating [41]
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are equivalent to the signals of Fig. 5.6 obtained by using two transmission
gratings via a beam splitter, as shown in Fig. 5.5. Using a differential amplifier,
the two outputs are differentially detected to enhance the signal modulation
and to remove the pedestal component together with other dc. noise such as
the ambient light.

In this way, a two-stage prism grating acts as two transmission gratings and
also as a beam splitter. The prism grating also has, in principle, no significant
loss of light due to opaque bars as in the use of a transmission grating. In
these respects, the prism grating is a suitable device for constructing SFV
systems. This grating can be introduced into various types of optical imaging
systems together with a variety of photodetectors, such as a microscope with
detection by a photomultiplier to measure blood flow velocity in microvessels.
Note, however, that a prism has wavelength dispersion. When white light is
used for illumination, the deflection angle of the light contains ranges, and
therefore, collecting lenses and photodetectors should be positioned carefully.
A laser source may be suitable for this device. It is probably difficult to obtain
various sizes and grating pitches of the prism device, since usually, limited
ranges are supplied by manufacturers. Pitches of 200 ∼ 400 µm are typical
examples [39–41].

5.2.2 Three-Stage Type

Although the two-stage prism grating is effective for removing the pedestal
component, the SFV system using this device is unable to resolve the direc-
tional ambiguity. In transmission grating velocimetry, both the phase-shifting
and frequency-shifting techniques are available for discriminating direction. In
using the prism grating, however, frequency shifting by mechanical rotation is
impractical. To realize directional discrimination by using the phase-shifting
technique, a three-stage type of the prism grating has been developed. Fig-
ure 5.20 [39] illustrates the basic principle of the SFV system using a three-
stage prism grating. As the object image moves on the flat face of the prism
grating, light passing through the grating is repeatedly deflected in three dif-
ferent directions in consecutive order due to the refraction of light at three
facets with different tilts. Such deflected light rays are received in three shifts
by photodetectors PD1, PD2, and PD3. For a shift of the deflected ray from
one photodetector to the next, a displacement of p/3 is required for the image
on the prism grating. Then, the time shift among the three photodetector out-
puts is one-third of a cycle, the phase difference 2π/3. The central frequencies
of the three signals are the same, and each of them is used to determine the
object’s velocity. Their phase relation reveals the direction of movement, for
example, since signal 1 precedes signal 2 and signal 2 precedes signal 3.

Direct outputs of the three photodetectors contain the pedestal component
and it should be eliminated. For this purpose, a method [39] using symmetry
at linear transformation is applied, in which three outputs S1(t), S2(t), and
S3(t) are appropriately added and subtracted with different weight factors a,
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Fig. 5.20. Spatial filtering velocimeter using a three-stage prism grating (re-drawn
from [39], Copyright 1981, with permission from Elsevier)

b, and c to generate two signals A(t) and B(t) with a phase difference of π/2.
This processing can be designed so that A(t) and B(t) contain no pedestal
component but keep the original central frequency. The weighting factors are
derived by using the following relations;

A (t) = aS1 (t) + bS2 (t) + cS3 (t) , (5.12)
B (t) = cS1 (t) + bS2 (t) + aS3 (t) , (5.13)

a + b + c = 0 , (5.14)

where A(t) is perpendicular to B(t) in phase angle. When S1(t), S2(t), and
S3(t) are assumed to be sine functions with equal amplitude, the above trans-
formation is easily realized, giving⎧⎨

⎩
a =
(−√

2 +
√

6
)
/6 ,

b =
√

2/3 ,

c = − (√2 +
√

6
)
/6 .

(5.15)

The sign of the π/2 phase difference is assessed by appropriate signal process-
ing, such as Fig. 5.12 in Sect. 5.1.4, to determine the direction of movement.
Also, the phase-orthogonal signal pair A(t) and B(t) is used to derive the
instantaneous frequency and velocity, whose sign gives the moving direction,
in terms of the analytic signal. This will be treated in Sect. 5.8.

For each of the three photodetectors, the three-stage prism grating acts
as a spatial filter having a slit width w = p/3 (p is the grating pitch, see
Fig. 2.3 in Sect. 2.2). As can be seen from plots of (2.21) in Fig. 2.8, the power
spectrum for w = p/3 becomes zero at the third-order harmonic, 3/p. Then,
all the third-order frequencies are absent in the three photodetector outputs.
This means that the second harmonic component is still important, which
could be absent if a spatial filter of w = p/2 is employed. Since the funda-
mental central frequency is used to determine the object’s velocity, a second
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Fig. 5.21. Spatial filtering velocimeter using a mirror grating

harmonic next to the fundamental in the spectral domain is an undesirable
component. If the number of grating lines, n, is small, the spectral bandwidth
broadens and the second harmonic spectrum may have an influence on the
fundamental frequency spectrum. This defect can cause the peak frequency
to deviate, producing errors in a measured velocity. For a three-stage prism
grating, therefore, a larger number of grating lines, at least more than 10, is
desired.

5.2.3 Mirror Grating

If the opaque bars of a transmission grating are made as reflecting or mir-
ror bars, the a moving image on such a grating is split into transmitted and
reflected parts. Then, the intensity of reflected light varies periodically as
that of transmitted light in the normal transmission grating velocimeter and
is used for SFV measurements. This type of device may be called a mirror
grating. Figure 5.21 shows an example of the SFV optical system using a mir-
ror grating. In this example, the mirror grating is formed by deposition of a
cube beam splitter on the exit plane, and the moving image is focused on this
plane. The light reflected by periodic mirror bars received by photodetector
PD2 whereas the transmitted light is received by PD1. The two periodic sig-
nals from PD1 and PD2 contain the same central frequency, but the phase
difference π. Thus, the differential output of the two signals has no pedestal
component. This system realizes SFV measurements with pedestal removal
by using a single optical device; a beam splitter with a mirror grating. Then,
the system is expected to be a little more compact and stable, but the mirror-
grating type of beam splitter or even just a simple mirror grating is not a
general optical component. This type of grating may have to be designed and
fabricated as occasion demands.

5.3 Lenticular Grating

A lenticular grating consists of an array of small cylindrical lenses, as shown
in Fig. 5.22. This optical device is commercially available as a lenticular lens, a
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Fig. 5.22. Lenticular grating

kind of Fresnel lens, and its typical ranges of grating pitch and the focal length
are about 200 ∼ 500 µm and 300 µm ∼ 2 mm, respectively. The lenticular lens
was used to process old color photographic films of Kodak and is now mostly
used in stereophotography or stereograms. The light incident on the flat face
of the lenticular lens is refracted at the exit interface due to the spherical
surface of cylindrical lenses. Thus, the lenticular lens is used for a spatial
filtering device based on a principle similar to that of the prism grating.

5.3.1 Lenticular Grating Velocimeter

Figure 5.23 [42] shows schematically the basic construction of a SFV system
using a lenticular grating. The light scattered by a moving object forms an
image of the object on the flat face of the lenticular grating (LG) by means of
lens L1. A mask M is attached to the flat face of the grating to define the probe
cross-sectional area. The light passing through the grating is deflected into a
range of angles from −θm to θm, as shown in Fig. 5.24 [42]. The deflection
angle θ varies continuously according to the image movement along the x axis
on the flat face of the grating. Since cylindrical lenses are arrayed on the x
axis with an equal pitch, a change in the deflection angle is periodically re-
peated as the image moves. Two collecting lenses L21 and L22 evenly share
the range of angles for receiving the light deflected from the grating and prop-
agate the light alternately into photodetectors PD1 and PD2. This operation
generates two periodic detector outputs of the same central frequency but
with a phase difference of π. Thus, differential detection of the two outputs
gives an SFV signal with the pedestal component removed, which can be used
for velocity measurements.

In the same way as the prism grating, the lenticular grating has no sig-
nificant loss of light for detection because of its almost transparent material.
In Fig. 5.24, the negative and positive ranges of the deflection, from −θm to
the z axis and from the z axis to θm are exactly symmetrical in angle only for
the cylindrical lens CL0 on the z axis. For other cylindrical lenses CLm|m�=0

off the z axis, the two ranges become asymmetrical and are not equal in an-
gle. Then, the time periods for which the photodetectors PD1 and PD2 receive
collected light become different, whereas the time intervals of the two periodic
signals are still the same. This effect may cause undesirable higher frequency
components in the differential output. Since the effect is due to the location
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Fig. 5.23. Basic construction of a lenticular grating velocimeter [42]

of cylindrical lenses out of the z axis, the width of each cylindrical lens or the
grating pitch p must be small enough to be neglected in comparison with the
two distances between the imaging lens L1 and the grating LG and the grating
LG and the plane of the collecting lenses L21 and L22 [42]. The number of
grating lines, n, is given by that of the cylindrical lenses included in the mask
M. An unnecessarily large number n may also cause the above effect.

The visibility of the output signals may depend on two conditions in the
lenticular grating velocimeter. One is the ratio of the image size 2b of an
individual object such as a particle to the interval p of cylindrical lenses or the
grating pitch. As described in Sect. 2.6.2, the ratio 2b/p is a primary factor
deciding signal visibility and is common to all types of SFV systems. High
visibility can be obtained for a smaller value of 2b/p, such as ≤ 0.5. Another
parameter is the ratio of the diverging angle θa of the light flux deflected from
the grating to the total deflection angle 2θm. This is because periodic signals
are generated by the fact that the light flux spread by θa scans two collecting
lenses L21 and L22 periodically within 2θm. Visibility as a function of the ratio
θa/2θm is derived in the same way as that for the ratio 2b/p in Sect. 2.6.2 and
is given for the one-dimensional case by [42]
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Fig. 5.24. Deflection of light by the lenticular grating [42]
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This equation is a well-known sinc function and it can be estimated that high
visibility is obtained for θa/2θm ≤ 0.5. This condition should be accounted
for in designing the optical system for lenticular grating velocimeter.

5.3.2 Directional Discrimination

In comparison with a prism grating, a specific feature of the lenticular grating
is flexibility in the number of detection channels. Although the prism grating is
followed by two or three detection channels according to the number of stages
(two or three, and possibly a few more), the detection channels for the lentic-
ular grating can be chosen by varying the number of collecting lens/detector
sets introduced in the deflection range of angles 2θm. Figure 5.25 illustrates
an example of four detection channels in a lenticular grating velocimeter by
using four identical sets of collecting lenses and photodetectors. In this ex-
ample, four outputs S1, S2, S3, and S4 from the detectors contain the same
central frequency proportional to the object’s velocity, with a phase difference
of π/2 between neighboring detectors. Note that these outputs also include a
pedestal component. However, a simple operation can be applied to the four
outputs to generate new signals Sa and Sb, as

Sa = (S3 + S4) − (S1 + S2) , (5.17)
Sb = (S4 + S1) − (S2 + S3) . (5.18)
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R

R

R

R

R

R

-

+

1

3

2

4

A

R

R

R

R

R

R

2

4

3

1

B
-

+

Fig. 5.26. Basic operating circuit for directional discrimination using four detection
channels

This processing is done by a basic operating circuit such as Fig. 5.26, in which
the numbers 1 to 4 denote four detector outputs S1 to S4, and A and B
indicate resultant signals Sa and Sb, respectively. The two signals Sa and Sb

still keep the original central frequency with a phase difference of π/2 and,
this time, their pedestal component has been removed by subtraction in the
above operations. Since the sign of the phase difference is decided by the di-
rection of a moving image on the lenticular grating, directional discrimination
can be done by comparing the two signals Sa and Sb, for instance, in the sig-
nal processing of Fig. 5.13, or by using a determination of the instantaneous
frequency of the analytic signal (see Sect. 5.8).
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Fig. 5.27. Concept of frequency shifting for directional discrimination in a lenticular
grating velocimeter

The above method is based on the phase shifting technique. Although
the lenticular grating itself cannot be moved, equivalent effect is produced by
an appropriate signal processing and, thus, the frequency-shifting technique
can also be realized to determine the direction of the object’s movement in
a lenticular grating velocimeter of Fig. 5.25. An example of such processing
is conceptually described in Fig. 5.27. Four detector outputs are fed into an
analog multiplexer, which switches two adjacent outputs on and the rest off
in the first period of time and, then, shifts the connection one by one in each
period in the successive timing states. Any two of the four outputs selected by
the multiplexer are added to produce the signal Sm. Figure 5.27b demonstrates
that the signal Sm equals S1 + S2 at time T1, S2 + S3 at T2, and so on. This
is equivalent to the transmittance of a moving grating as shown in Fig. 5.28.
In this way, the effect of a moving grating can be electronically realized for
a lenticular grating. In the example of Fig. 5.27, one cycle of the signal Sm

consists of four timing periods. Then, if the multiplexer shifts the connection
at a clock frequency fcl, the shift frequency fg of the equivalent moving grating
is given by fcl/4. Therefore, the direction of the object’s movement can be
determined by assessing whether the central frequency of the signal Sm is
higher or lower than the shift frequency fg, based on the principle of the
frequency-shifting technique described in Sect. 5.1.3.

5.3.3 Two-Dimensional Measurements

A further development of the lenticular grating velocimeter is to measure
velocity in two dimensions. Figure 5.29 shows the basic optical system for
measuring two-dimensional velocity components using two lenticular gratings
which are placed orthogonally in the image plane. The first lenticular grating
LG1 deflects the transmitted light into a range in the x direction with an
image movement along the x axis whereas the second grating LG2 deflects
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Fig. 5.28. Equivalent effect to the transmittance of a moving grating

the light in the y direction with the movement along the y axis. The light
deflected in both x and y is collected by a set of four collecting lenses L2

and received by photodetectors P1 to P4. In the same way as directional
discrimination using four detection channels, the detector outputs are again
fed into the operating circuit of Fig. 5.26, from which two periodic signals Sa

and Sb given by (5.17) and (5.18) are obtained, respectively. In the detector
configuration of Fig. 5.29, the signal Sa contains the central frequency fx that
is proportional to the x component of the object’s velocity, whereas Sb has
fy for the y component. The pedestal component is eliminated in Sa and Sb

by subtraction in (5.17) and (5.18). Therefore, measurements of two central
frequencies fx and fy provide two-dimensional velocity components. Although
ratio of the two components gives an argument of the object’s velocity, the
directional ambiguity of 180◦ still remains in the system of Fig. 5.29.

To perform directional discrimination or two-dimensional measurements,
four detectors are used in the above examples. If necessary, the number of
detectors can be increased in principle in the lenticular velocimeter. The use
of multiple detectors may cause additional problems in the system, such as
the need of balancing the sensitivity of all the detectors and making the sys-
tem compact. However, these may not be serious problems if, for example, a
quadrant-type photodiode or multianode photomultiplier is employed in the
construction of a practical system.

5.4 Optical Fiber Array

The end faces of optical fibers which are linearly arrayed at equal intervals
can be used as a spatial filtering device for velocity measurements. Since
an optical fiber is one of the wave guiding devices, it flexibly connects an
optical imaging system with a photodetector. In addition to this flexibility, the
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Fig. 5.29. Configuration of a lenticular grating velocimeter for two-dimensional
measurements

optical fiber has practical advantages such as electromagnetic noise tolerance
and high dielectric strength. In the SFV system using an optical fiber array,
the intensity of light must be propagated through the optical fiber, but the
phase information of the light field is not required, and, thus, various types
of commercial optical fibers are available at inexpensive prices for the spatial
filtering device.

5.4.1 Optical Fiber Array SFV

Figure 5.30 shows schematically the basic construction of the SFV optical
system using an optical fiber array [32]. The image of a moving object is
formed by lens L at the input faces of the fibers and is guided through the
fibers to two photodiodes PD1 and PD2. In a spatial filtering device of this
type, the transmittance as a spatial filter is decided by the pattern of the fiber
array being constructed, assuming that all fiber cores used have the same and
uniform transmittance. Although a variety of array patterns can be designed,
the basic pattern is the construction illustrated in Fig. 5.31 [32]. The input
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Fig. 5.31. Basic connection pattern of fibers and photodetectors [32]

faces of fibers having an equal diameter are linearly arrayed at intervals of p/2.
On their output sides, every other fiber is bundled, and their end faces look
toward photodetector surfaces. By this construction, the light from every other
fiber is collected and detected to produce two periodic detector outputs having
the same central frequency with a phase difference of π. The two outputs
are fed into a differential amplifier, from which the periodic signal without a
pedestal component is obtained. In this way, the fiber array of Fig. 5.31 acts as
a differential-type spatial filter, playing the roles of two transmission gratings,
beam splitter, and waveguides. The grating pitch is given by p in the above
example.

The linearly arrayed fibers sense the image velocity along the line of the
array. If an object moves in a direction tilted from this line, the moving image
is not detected by all fibers and output signals may deteriorate. It is quite
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easily imagined when one considers generally very small diameters of fiber
cores. To solve this problem, a cylindrical lens (CL) is inserted behind lens L
as shown in Fig. 5.30. By this imaging system, the image intensity distribution
is averaged in a direction perpendicular to the fiber array, and any sideways
motion of an object is effectively detected by all fibers.

The filtering characteristics of an optical-fiber-array spatial filter are de-
termined mainly by the fiber interval (grating pitch), core diameter, and the
number of fibers used in the array. They have been theoretically elucidated [32]
and may equivalently be estimated by those of the transmission grating which
are described in Chap. 2. Although there is difficulty in constructing an array
precisely in a micron order, it is a practical merit that the optical system and
the detector/signal-processing unit can be separated.

5.4.2 Directional Discrimination
and Two-Dimensional Measurements

Analogous to other spatial filtering devices, two developments in the opti-
cal fiber array can easily be made to achieve directional discrimination and
two-dimensional measurements in a SFV system. Figure 5.32 [35] illustrates
the configuration of an optical fiber array for velocity measurements having
directional discrimination. In this regime, the light from every fourth fiber is
collected and detected by four photodetectors, which produce four outputs
having the same central frequency with a phase difference of π/2, together
with the pedestal component. This situation is equivalent to that obtained
in the lenticular grating velocimeter with four detection channels, shown in
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- + -
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Fig. 5.32. Connection of fibers and photodetectors for the directional discrimina-
tion [35]



5.5 Liquid Crystal Cell Array 117

Light Moving object 

L CL

Optical fiber arrays

+
-

PDs

+
-

v vx

vy

fx

fy

x

y

Fig. 5.33. Configuration of two optical fiber arrays for two-dimensional measure-
ments

Fig. 5.25. Then, simple signal processing such as that given by (5.17) and
(5.18) or shown in Fig. 5.26 is used to sense the moving direction. The grating
pitch p in this type of fiber array is four times as long as the fiber interval.
When a smaller value of p is difficult to obtain because of the lower limit of
fiber diameters, the image of the moving object being measured may be magni-
fied according to requirements. By treating the phase-orthogonal output pair
as an analytic signal, the instantaneous phase, frequency, and, thus velocity
can also be obtained with the sign giving the moving direction.

Two-dimensional velocity components can be measured by a pair of optical
fiber arrays which are orthogonally placed in the image plane [33]. An example
of such a configuration is schematically shown in Fig. 5.33. Two cylindrical
lenses, which are inserted into the diffraction region of the imaging system,
share the imaging light flux and form two moving images having different
intensity distributions. One is averaged in the y direction to detect the x
component of the velocity and another is done in the x direction for the y
component. Each optical fiber array transmits light to two photodetectors
that are differentially connected and generates periodic signals whose central
frequency is proportional to the x or y velocity components. The range of
averaging in the image plane may be adjusted by the focal length and position
of the cylindrical lens to cover the extent of object distribution or the probe
cross-sectional area.

5.5 Liquid Crystal Cell Array

Liquid crystals (LCs) have long cigar-shaped molecules, which move like
liquids or solidly interact to form a structure like crystals. These physical
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properties between liquids and solids, which are controlled by applying a
voltage, show interesting optical phenomena such as changes in polarization,
phase, and transmittance and scattering. As a typical example, LCs are used
as optical devices that switch their transparent/opaque states by a control-
ling voltage. By using this optoelectric property, a new type of spatial fil-
tering device can be developed. Since there are potentially various schemes
for controlling voltage, this type of spatial filter possesses much flexibility in
its spatial and temporal filtering characteristics. Although LC spatial filters
require the application of voltage, the power consumption is generally low
enough for practical uses. The disadvantages of the LC cell array are its low
frequency response, low contrast and optical properties that are sensitive to
a temperature change.

5.5.1 Liquid Crystal Spatial Filter

When an ac electric field is applied to a transparent LC cell, it becomes opaque
due to its property of dynamic light scattering. This type of LC is able to al-
ternate its transparent and opaque states without polarizers. Figure 5.34 [21]
shows the construction of a LC spatiotemporal spatial filter developed by
Itakura et al., which realizes a time-varying spatial transmittance distribu-
tion. A thin nematic LC layer is enclosed between an optically flat transparent
electrode plate and an array of small strip electrode cells. Each strip cell can
be switched electrically and independently on or off by a driving circuit. Fig-
ure 5.35 [21] illustrates the principle of the time-varying transmittance distrib-
ution realized by the proposed LC spatial filter. In this example, four neighbor-
ing cells form one group which corresponds to a transparent or opaque bar of
the general type of parallel-slit reticle. The ac electric field is applied (switched
on) to every other group to construct equivalently a periodic arrangement
of opaque bars. Other groups to which the electric field is not applied (or
switched off) equivalently act as periodic transparent bars. By shifting the
cells forming the opaque and transparent groups electrically and sequentially

Glass support  

Mylar spacer

Liquid crystal

Glass support 

Strip transparent electrodes

..........  

Flat transparent electrodes

Fig. 5.34. Construction of the liquid crystal spatial filter (re-drawn from [21])
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Fig. 5.35. Principle of time-varying transmittance distribution realized by a LC
spatial filter (re-drawn from [21])

one by one with a time interval t0, the transparency/opaqueness pattern or
equivalent transmission grating pattern moves intermittently. Therefore, the
spatial filter is realized with time-varying spatial transmittance distribution,
which provides the frequency-shifting technique to determine the velocity di-
rection without any mechanical movement. In Fig. 5.35, the grating pitch p is
given by the width of eight strip cells. The number of cells within one group
may be changed by altering a driving scheme in the circuit according to re-
quirements. Therefore, pitch p is electrically variable. The shifting frequency
or moving velocity of the time-varying transmittance pattern is controllable
by the shifting time interval t0 in the circuit.

The shifting behavior of the LC spatial filter is not continuous but inter-
mittent, as mentioned above. This intermittence may affect the properties of
output signals. Theoretical investigations indicate that the effect is negligi-
ble for a larger number of grating lines and the number of cells within one
group larger than four [21]. This condition makes the effect of discrete group
movement rather unnoticeable. Another problem that should be addressed is
the finite response time of LC cells, which corresponds to the finite rise time
and fall time for the dynamic light scattering effect of the LC device caused
by switching the voltage supply on and off. This phenomenon indicates that
the contrast of a time-varying opaqueness/transmittance pattern is degraded
by a higher repetition rate of the voltage supply. Thus, the repetition period
must be set larger than the expected rise or fall time of the device being used.
On the other hand, the above phenomenon fortunately works to smooth out
the intermittent behavior of the LC spatial filter, and the defect is relieved.

5.5.2 Piled Construction for Velocity-Vector Measurements

When two LC spatial filters are piled orthogonally in the lines of their strip
cells, a two-dimensional velocity vector can be measured since each LC spatial
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filter discriminates the 180◦ velocity direction in its dimension. The glass sup-
port and MylarTM spacer are usually made thin enough to neglect thickness
of the piled LC cell arrays (1 mm for Itakura’s device [21]) in comparison with
the focusing depth of the moving image. Then, the light passing through the
first LC spatial filter enters the second filter straight within the imaging plane.
With this construction, two-dimensional measurements are realized in a single
optical imaging system with a single photodetector. The detector output is
processed by the spectrum analyzer since two periodic components of x and
y are mixed in it. To determine each central frequency of the two components
independently, the two shifting frequencies for the LC cell arrays should be
set to be different with sufficient separation in frequency.

Since the piled construction of LC spatial filters provides two-dimensional
velocity-vector measurements, it has potential for practical uses. Although
the frequency response, contrast, and spatial resolution limit its application,
recent developments in LC materials and devices are expected to improve the
prospects for LC spatial filters.

5.6 Integrated Solar Cell Array

The spatial filtering devices described so far in the previous five sections are
used as optical elements that are placed in the image plane between the imag-
ing lens and the photodetectors. This and the next sections treat a detector
type of spatial filtering device, which operate both as a spatial filter and as
a photodetector. The detector type usually contributes to simplification of
the optical system since the light is detected directly in the image plane and
the device requires no additional collecting optical system. However, photode-
tectors used for this purpose are generally sensors with insufficient sensitivity
and data rate. Thus, the detector-type spatial filter is effective for low-velocity
moving objects from which sufficient intensity of scattered light is obtained.
Recent developments in the array type of detectors may improve the outlook.

5.6.1 One-Dimensional Array

An integrated array of silicon solar cells having equal pitches is a typical
and primitive example of a detector-type spatial filtering device. Figure 5.36
[52, 107] shows schematically the construction and principle of a device built
on a ceramic substrate. This integrated array is made by etching a surface
pattern of p-type silicon on an n-type silicon base. The etched pattern forms
an array of minute p-type silicon cells as a parallel-slit reticle. Each minute
cell generates an electric current which is proportional to the light intensity
of the projected moving image. The current from each cell is collected by an
aluminum electrode connected electrically to a side of the cells and is led via a
load resistor to an amplifier. By this construction, the detector surface acts as
a photodetector and also as a spatial filter. The example of Fig. 5.36a contains
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Fig. 5.37. Radial-type solar cell array designed for measuring rotating velocity [19]

two channels A and B of solar cells, which are alternately arrayed to realize
differential detection, as shown in Fig. 5.36b. Thus, output signals from the
differential amplifier have no pedestal component and can be analyzed directly
in the signal processing system to determine the object’s velocity.

To fit the device to different types of object motion, some other etched pat-
terns have been developed. Figure 5.37 [19] shows the construction of a radial-
type solar cell array having equal angular pitches, which has been designed
for measuring rotating velocity. In this example, every sixth cell is electrically
connected to generate one output, and totally six channels of output signals
are obtained with a phase difference of π/3, which may be effectively used in
signal processing to eliminate the pedestal component and to discriminate the
direction of rotation. The central frequency f0r of each of six signals is given
theoretically by
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f0r =
ω0

pr
, (5.19)

where ω0 and pr denote the angular velocity (rad/s) of a rotating object and
the angular pitch (rad) of the radial cell array. Note that the angular pitch pr

of the example in Fig. 5.37 is given by the angle covered by six adjacent radial
cells. When the total number of cells in the radial cell array and the number
of detection channels are denoted by N and nch, respectively, the effective
number of grating lines, nr, for each output signal is expressed as

nr =
N

nch
. (5.20)

Then, the angular pitch pr is given by

pr =
2π

nr
=

2πnch

N
, (5.21)

and the central frequency f0r is rewritten as

f0r =
nr

2π
ω0 =

N

2πnch
ω0 . (5.22)

Equation (5.19) or (5.22) indicates that the central frequency f0r is indepen-
dent of the imaging magnification, and this is the unique feature of the radial
cell array.

A problem which is peculiar to the radial type of cell array is an error
in alignment between the two center axes of the radial cell array and the
projected image of the rotating object. The error reduces the intensity of the
periodic signal component having the central frequency f0r and, in exchange
for that, undesirable sidelobe components appear in the frequency spectrum.
Using outer areas of the radial cell array may moderate the above defect.

Another example of integrated solar cell patterns is the herringbone array
[52] shown in Fig. 5.38, which was originally proposed by Ator [12], as shown
in Fig. 5.17, to sense the drift of a moving direction. Two solar cell arrays (α
and β) tilted at angles, ±φ are symmetrically arranged with respect to the
centerline. Each array produces two outputs from the electric connection of
every other cell and realizes differential detection for removing the pedestal.

p

fa

b

q

-f. . . . .

. . . . .

Fig. 5.38. Herringbone pattern of the integrated solar cell array
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When the central frequencies of two resultant periodic signals from arrays α
and β are measured as fα and fβ , the object’s velocity v and the directional
angle θ from the centerline are determined by

v =
p

M

√
fα

2 + fβ
2 , (5.23)

θ = tan−1

(
fα − fβ

fα + fβ

)
. (5.24)

These equations are derived for the representative case that the angle φ is
assumed to be π/4 for mathematical simplicity. As seen from (5.24), fα =
fβ means that θ = 0, which corresponds to a moving direction along the
centerline. Thus, the herringbone array can be used for sensing the drift angle
of a moving object. If the angle |θ| approaches π/4, one of the two arrays
generates almost no periodic signal since the moving image does not cross
solar cells of the array but travels in parallel with them. For |θ| > π/4, the
array produces erroneous periodic signals, which do not give true values of v
and θ in (5.23) and (5.24). Thus, there is a range of drift angles that can be
measured with the device of Fig. 5.38.

5.6.2 Two-Dimensional Array

There is also an example different from the previous three cell arrays. Fig-
ure 5.39 [108] shows the basic construction of an integrated-cell-array spatial
filter with weighting variability. Although the device developed has 256 pix-
els of photodiode cells in a 16 × 16 arrangement on a silicon substrate of a
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Fig. 5.39. A two-dimensional array of integrated solar cells for a spatial filter [108]
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one-chip solid-state element, Fig. 5.39 illustrates part of four pixels in 2 × 2
for schematic simplicity. Each pixel consists of one photodiode cell, two FET
gates, and a 1-bit memory cell. An output from the photodiode cell is con-
nected via the two gates to two signal lines of positive (+) and negative (–)
outputs. According to the weighting data stored in the memory cell, one of
the two gates opens to transfer the photodiode output to the signal line and
the other closes. Writing the weighting data into the memory is done pixel by
pixel in terms of word and data lines which are connected with an external
circuit for setting the weighting function. The two signal lines (+) and (–) are
connected to a differential amplifier. Thus, pixels connected to the positive
line are weighted by +1, and those to the negative by −1. The weighting pat-
tern of total pixels can be changed electrically by controlling the weighting
data. If this device is used as a spatial filter, the effective pitch and direction
of grating lines become variable. Then, the device possesses adaptivity to the
image condition (moving direction and light intensity distribution) of an ob-
ject being measured. The device presented here is a beginning-stage example
of this type, and there are potentially various avenues for its development and
application in the future.

5.7 Line Sensor

In general, integrated solar-cell arrays are not commercially available and must
be designed and fabricated in compliance with requirements. This section
introduces the use of commercially available one-dimensional array devices
for detector-type spatial filters. In addition to this, two-dimensional or areal
sensors open new prospects for the detector-type spatial filter with advanced
electronic circuits and/or computer image processing. These approaches will
be presented in Sect. 5.8, separately from this section.

5.7.1 Linear Photodiode Array

An example of such devices is a linear photodiode array [109, 110] placed in
the image plane. For detecting translational speckles, the photodiode array
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Fig. 5.40. Spatial response function of a linear photodiode array and the photo-
current output (after [109])
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may also be set in the diffraction plane [111]. When a particle image, which
is assumed to be smaller than each diode cell, traverses a linear photodi-
ode array having a spatial response function [109], as shown in Fig. 5.40a, a
photocurrent output from each diode is read out sequentially by scanning all
diode cells electronically. If the weighting function is electronically arranged to
produce four periodic photocurrents, as shown in Figs. 5.40b and c, each cur-
rent consists of outputs from every fourth diode, and the four photocurrents
contain the same central frequency with a phase difference from each other.
Figure 5.41 [109] shows a schematic diagram of an electronic signal-processing
system for the device. The individual diodes are clocked into a demultiplexer
which generates the above-mentioned four current outputs A+, A−, B+, and
B−. Two pairs of A+, A− and B+, B− are differentially amplified to produce
two signals A and B, respectively, whose pedestal components cancel out. At
the end of scanning, signals A and B are used to discriminate the moving
direction since the two signals are ±π/2 out of phase. The object’s velocity
is determined by measuring the central frequency of signal A or B. In this
way, a detector-type spatial filter with pedestal removal and directional dis-
crimination is electronically realized by using a linear photodiode array. The
main advantage is that the weighting function can be flexibly designed in the
electronic system, so that the grating pitch is variable. A large number of
diode cells in the array increases the scanning time and, thus, imposes a limi-
tation on the velocity being measured. The detecting sensitivity of the diodes
becomes a problem for measurements at a low light level. In this condition,
multianode photomultiplier tubes can be considered.

The same type of device was studied [112] for laser speckle velocimetry
with a special relation to the statistical properties of amplitude and phase of
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SFV signals. In this study, the linear photodiode array was referred to as a
differential comb photodetector array.

5.7.2 CCD Line Sensor

In the same way as the photodiode array, a charge coupled device (CCD) can
also be used as a detector-type spatial filter [62,113–115]. From recent devel-
opments in faxes, scanners, and other imaging systems, CCDs have become
very popular as one- and two-dimensional (line and area, respectively) sen-
sors, and a variety of models are provided in the market. The use of a CCD
line sensor for a spatial filtering device is based on the same operation as the
linear photodiode array. As shown in Fig. 5.42 [114], outputs from pixels of the
CCD line sensor are divided into four channels in the sample-&-hold circuit
by clock pulses that are synchronized with the reading clock for the pixels.
The four channels of signals S1, S2, S3, and S4 are produced by contributions
from every fourth pixel and processed to make two differential outputs Sa

and Sb based on (5.17) and (5.18), apart from the order of subtraction. The
resultant Sa and Sb can be used for discriminating the moving direction as
well as determining the velocity. Unless the sense in the moving direction is
necessary, the system can be constructed for two channels of the signal, which
correspond to outputs from every other pixel and contain the phase difference
of π from each other. Then, differential detection can be performed to remove
the pedestal component.

The problem of readout time should be discussed in the use of CCDs.
Consider a simple case by assuming a CCD line sensor with 1024 pixels and
a maximum clock frequency of 1 MHz. To read out all pixels, it takes nor-
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Fig. 5.42. Signal processing of a CCD line sensor used as a spatial filter [114]



5.8 Area Sensor and Video Camera 127

mally 1024 µs, and, thus, the data rate in this case is only about 1 KHz at
most. The readout time limits the maximum detectable velocity. In driving
the CCD sensor, there is a useful operation, in which summations are carried
out by dynamic charge accumulation within the transport section of the CCD
line. This operation is known as “pixel binning” and can be achieved by so-
phisticated clocking [62,114]. By using pixel binning, a maximum data rate of
500 kHz can be achieved in the above case and the problem may be improved.

A two-dimensional or area-type CCD sensor is used in the same way as
an one-dimensional or line-type sensor when pixel binning is employed in a
direction perpendicular to the moving direction. Assume that the object image
is moving along the row of a CCD area sensor. Charges from the pixels of each
column are integrated and read out as the output of a single equivalent pixel
within the row. Thus the column acts as a single long pixel. This operation is
advantageous for moving objects having a certain width because, due to the
two dimensions, more light can be detected than that with the one-dimensional
sensor. Some recent models of the CCD area sensor are equipped with a
binning operation of this type.

5.8 Area Sensor and Video Camera

Sections 5.6 and 5.7 describe mainly the one-dimensional detector type of spa-
tial filtering device. This section presents a two-dimensional detector type, in
other words, an imaging type of spatial filtering device, which acts both as
a spatial filter supported by electronics/computer and as an image detecting
device. For this type of device, solid-state imaging devices as well as conven-
tional imaging cameras may be available. The use of this type simplifies the
measuring optical system since no specific optical component is required and
the spatial filtering operation is performed fully in electronic circuits or by
computer software. This implies that the parameters of the spatial filter, such
as the pitch and number of grating lines, are variable. Another useful advan-
tage of using the imaging type is that one can observe the images of moving
objects during measurements. The temporal resolution of velocity measure-
ments with the imaging-type spatial filter is determined by the frame rate and
is generally insufficient for measurements of high-velocity objects.

5.8.1 Image Sensor with Electronic Circuits

An image sensor placed in the image plane receives the two-dimensional image
intensity distribution of moving objects and converts it into sequential electric
signals as a series of outputs from all pixels. If the signals are multiplied by an
appropriate weighting function, which corresponds to a certain required spa-
tial filter, the spatial filtering effect can be realized electronically [116–119]. In
principle, this approach is the same as that used in one-dimensional sensors
described in the previous section. Figure 5.43 [119] shows a schematic diagram
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of an electronic spatial filter using an image sensor with electronic circuits.
The superposed weighting function, which is produced by a pattern generator,
gives a two-dimensional transmittance pattern of the spatial filter having the
same pixel numbers as those of the sensor image. Assume that the image in-
tensity distribution of moving objects detected by the image sensor is denoted
by f(vxt − x, vyt − y), where vx and vy are velocity components of the image
in the x and y directions, respectively. In the example of Fig. 5.43, the digital
sensor signal is divided into two identical channels, and they are multiplied by
two sinusoidal transmittance patterns cos(2πx/p) and sin(2πx/p) for intelli-
gent operations which are described below. Here, p denotes the grating pitch.
An accumulator then integrates the resultant signal in every frame and yields
output signal gc(t) or gs(t), which is a value corresponding to the summation
of all pixels in each frame time and expressed as

gc (t) =
∫∫

f (vxt − x, vyt − y) cos
(

2πx

p

)
dxdy , (5.25)

gs (t) =
∫∫

f (vxt − x, vyt − y) sin
(

2πx

p

)
dxdy . (5.26)

Due to these phase-orthogonal weighting functions, the two output sig-
nals gc(t) and gs(t) contain the phase difference of π/2, whereas their cen-
tral frequencies are identical. Then, the object’s velocity is determined by
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measuring the central frequency of gc(t) or gs(t) by usual signal-processing
techniques which are described in Chap. 4. The temporal resolution is deter-
mined by the frame rate in this case. The moving direction can be discrim-
inated, on the basis of the phase-shifting technique, due to the π/2 phase
difference.

The advantages of the electronic spatial filter using an image sensor are as
follows :

1. Various transmittance patterns for the spatial filter can be realized,
2. The parameters of the spatial filter such as the pitch and number of grating

lines are temporally variable, even during measurements,
3. For a single input image, multiple channels of identical or different spatial

filters can be arranged in parallel or simultaneously.

All these flexible features come from the fact that the patterns are generated
electronically. Some examples using these advantages are briefly introduced
here.

a Practical SFV systems usually employ rectangular transmittance for the
spatial filter, but sinusoidal transmittance is ideal because no higher harmonic
component appears, as discussed in Sect. 2.3. The electric spatial filter can
easily realize a sinusoidal pattern, although it is discrete in the pixel unit. A
negative transmittance is also easily made, so that the pedestal component
can be eliminated.

b A complex logarithmic mapping of input moving images transforms their
scaling and rotating motions to translating ones [120]. Then, these motions can
be measured by the spatial filter introduced in the transformed domain [121].
For simplicity of image processing, it should be better to multiply the input
image by the weighting function in the input image domain. The weighting
function in the transformed domain is inversely transformed into the input
image domain and the input image is multiplied by it pixel by pixel. It is
generally difficult to construct an actual spatial filter having such an inversely
transformed weighting function, but it is possible with the electric spatial
filtering system.

c Since the spatial filter picks up the specific spatial frequency component
of 1/p from the intensity pattern of a moving image being measured, the
output signal amplitude depends on the spectral distribution of spatial fre-
quency components contained in the image pattern. The example of Fig. 5.43
includes the pitch adjustment circuit [119] which analyzes the spatial fre-
quency spectrum of the input image, searches the spectrum peak, calculates
the optimum grating pitch, and then sends the control signal to adjust the
pitch to the pattern generator. To evaluate the adaptiveness of the adjusted
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grating pitch to the input image and follow its change, the power of output
signals ∣∣∣∣F

(
1
p

)∣∣∣∣
2

= 〈g2
c (t) + g2

s (t)〉 (5.27)

is monitored and returned as feedback signals into the pitch adjustment cir-
cuit. In (5.27), 〈· · ·〉 denotes a temporal average. The above operation can
be done at the same time with the frequency measurements for the velocity
determination. If necessary, two or more different signal processings can be
performed simultaneously for a single input image.

d The moving grating, which is used in the frequency-shifting technique for
directional discrimination, is also realized by the generation of a translation
or time-varying grating pattern in the pattern generator. Though this is a
possible approach, the example of Fig. 5.43 enables us to take a different ap-
proach to frequency shifting. When the grating is moving at velocity vg in the
x direction, the expected output signal is expressed by

gM (t) =
∫∫

f (vxt − x, vyt − y) cos
[
2π (x − vgt)

p

]
dxdy . (5.28)

By using (5.25) and (5.26), this equation is rewritten as

gM (t) = gc (t) cos
(

2πvgt

p

)
+ gs (t) sin

(
2πvgt

p

)
. (5.29)

By using the second generator that gives two sinusoidal signals cos(2πvgt/p)
and sin(2πvgt/p), multiplication in the first and second terms of (5.29) is done
for every frame, as shown in Fig. 5.44 [116,117]. Hence, the same effect as that
with the moving grating pattern is obtained by the simple multiplication of
signals in the frame rate instead of multiplication of the input pattern by the
moving grating pattern pixel by pixel.

e Two-dimensional velocity components can be measured by generating two
grating patterns that are orthogonal in the directions of the grating lines. If
the moving direction is discriminated for each velocity component in terms
of the above-mentioned approaches, a two-dimensional velocity vector is
determined.

The electronic spatial filtering system depicted in Fig. 5.43 yields two pe-
riodic signals gc(t) and gs(t) given in (5.25) and (5.26), respectively, having
the same central frequency with the phase difference of π/2. The complex
signal that contains gc(t) and gs(t) as its real and imaginary parts, respec-
tively, belongs to an analytic signal [66, 75], and gc(t) and gs(t) are a Hilbert
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Fig. 5.44. Use of a signal generator for directional discrimination in an electronic
spatial filter [116,117]

transform pair. By using the one-dimensional Fourier spectrum F (µ) of the
image intensity f(x, y) in the x direction, the two signals gc(t) and gs(t) are
expressed as

gc (t) =
∣∣∣∣F
(

1
p

)∣∣∣∣ cos
[
2πx

p
− φ

(
1
p

)]
, (5.30)

gs (t) =
∣∣∣∣F
(

1
p

)∣∣∣∣ sin
[
2πx

p
− φ

(
1
p

)]
, (5.31)

where

φ

(
1
p

)
= φ1/p (t) = tan−1 gs (t)

gc (t)
, (5.32)

which denotes the instantaneous phase φ(t) of the image at the spatial fre-
quency µ = 1/p and at time t. Since the time rate of a phase change of the
analytic signal gives an instantaneous frequency f0(t) as

f0 (t) =
1
2π

· d
dt

[
tan−1 gs (t)

gc (t)

]

=
gc (t) · g′s (t) − g′c (t) · gs (t)

2π [g2
c (t) + g2

s (t)]
, (5.33)

where g′c(t) and g′s(t) are the time derivatives of gc(t) and gs(t), respectively.
Without using spectral or correlation analysis, then, the instantaneous value
of the central frequency of the signal can be estimated. The instantaneous
amplitude or envelope of the analytic signal is given by

a (t) =
√

g2
c (t) + g2

s (t) , (5.34)



132 5 Spatial Filtering Devices and Systems

and the temporal average of the square of a(t) gives the mean power de-
scribed in (5.27). A change of 180◦ in the moving direction of the image yields
a reversal of the phase rotation and a change in the sign of the instanta-
neous frequency estimated by (5.33). Thus, directional discrimination can be
achieved by monitoring the sign of f0(t). Equation (5.33) indicates that an
estimation of the instantaneous frequency requires numerical differentiation
of gc(t) and gs(t), which may cause systematic errors due to frame rate sam-
pling. To improve this problem, the use of a discrete approximation has also
been studied [121]. This method has been proposed in the framework of the
present type of spatial filter. The temporal resolution of the electronic spatial
filter is limited to the frame rate and, thus, usual methods for frequency mea-
surements such as FFT or correlation analysis are inappropriate because they
require sufficient integration of data for precise measurements. Instantaneous
determination of the central frequency is effective for frame-rate measure-
ments.

Instantaneous frequency measurements of this type have also been exten-
sively studied and actively employed [62] in a spatial filtering system using
the CCD line sensor which is described in Sect. 5.7.2. The SFV system shown
in Fig. 5.42 is able to produce two phase-orthogonal output signals, which
are used for determination of the instantaneous frequency based on the same
principle mentioned above. This signal processing method may be referred to
as a phase angle measuring technique [122] and is effective for measurements
of velocity fluctuations and those with high temporal resolution [62,114]. An
example of the discrete approximation is simply described as [123]

∆φm = tan−1 gc (m) gs (m − 1) − gc (m − 1) gs (m)
gc (m) gc (m − 1) − gs (m) gs (m − 1)

, (5.35)

where ∆φm is the phase difference between two phase angles at the mth and
(m−1)th samplings and gc(m) and gs(m) are instantaneous amplitudes at the
mth sampling of gc(t) and gs(t), respectively. By using the sampling interval
∆t, the time rate of the phase change is expressed as

d
dt

[
tan−1 gs (t)

gc (t)

]
∼= ∆φm

∆t
(5.36)

and, then, the estimated central frequency f0(m) at the mth sampling is
expressed by

f0 (t) ∼= f0 (m) =
1
2π

· ∆φm

∆t
. (5.37)

Since the instantaneous phase and frequency are calculated directly from sam-
pled values of gc(t) and gs(t), they are sensitive to noise and signal quality.
In flow measurements, for example, the measuring volume is almost always
passed by more than one particle, and the output signal may include phase
discontinuity or jump and irregularity in a cycle. The resultant phase and
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frequency contain fluctuations and, thus, a statistical treatment may be nec-
essary, as discussed in the literature [62]. To increase the measurement accu-
racy, an averaging algorithm using squared amplitudes has been implemented
as [123]

f0 (m) =
1

2π∆t
·
∑q

m=1

[
g2
s (m) + g2

c (m)
]
∆φm∑q

m=1 [g2
s (m) + g2

c (m)]
, (5.38)

where q is the number of samples for averaging.

5.8.2 Computer Image Processing

The electronic spatial filter in the above subsection processes the sensor sig-
nal using exclusive electronic hardware. This method is used for real-time and
on-line measurements of relatively low velocity. If off-line treatments are ac-
cepted or rather low velocity is of interest, video signals are processed fully
by computer software to realize the spatial filtering effect [124–128]. Although
processing time should be considered due to the software computation, the
flexibility of data analysis is an attractive feature. In addition, the method
requires only a camera system and a desktop computer with appropriate soft-
ware, but no specific optical nor electronic device.

Basic signal processing in the method is equivalent to that used in the
electronic spatial filtering method in Sect. 5.7.1. Analog video signals from
the camera system are captured frame by frame and digitized into sequential
pixel images in the image-capture board/card on the computer. Direct dig-
ital outputs from the digital camera system are more favorably used in the
computer with better image quality. Consider a sequential scene with pixel
images f(vxt − x, vyt − y) of N frames in the pixel-coordinate (x, y) at time
t (or at frame number t). A sinusoidal transmittance pattern cos(2πx/p) of
the gray level, where p is the grating pitch, is generated by the software and
stored in the computer before starting the following processing. As shown
in Fig. 5.45, the software superposes the sinusoidal pattern on the image of
respective frames, and, then, the resultant image is expressed as

It (x, y) = f (vxt − x, vyt − y) cos
(

2πx

p

)
. (5.39)

A temporal output A(t) at time t is obtained by accumulating the gray value
in the image of frame number t as

A (t) =
∑

x

∑
y

It (x, y) . (5.40)

Then, the sequential output signal A(t) yields the results of calculating N
frames. Note that (5.40) with (5.39) is equivalent to the expression of (5.25).
According to the principle of spatial filtering velocimetry, the amplitude of
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Fig. 5.45. Principle of the image processing for electronic spatial filtering
velocimetry

A(t) is periodically modulated and its central frequency is proportional to the
velocity component vx. Thus, the object’s velocity is determined by measuring
the central frequency with appropriate signal processing techniques such as
spectral analysis, as described in Chap. 4.

Since the periodic transmittance pattern is generated by the software op-
eration in the computer, a change in the pattern is easily made, for example,
changes in the grating pitch and direction and even a choice of the trans-
mittance function from sinusoidal and rectangular patterns. As discussed in
Sect. 2.6, the grating pitch should be determined adaptively to the feature
of moving images, especially the image size of scattering objects or particles
and the correlation length of random image-intensity patterns. In the off-line
analysis, then, the correlation length of video images is calculated and an op-
timum value of the grating pitch is chosen [127]. During measurements, the
grating pitch is varied in accordance with a change in the correlation length.
Therefore, better measurement accuracy is expected by this adaptive opera-
tion than that using a fixed value for the grating pitch. If the two velocity
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components vx and vy be measured, two-channel parallel processings are used
with two transmittance patterns for the x and y directions. This is available
for off-line analysis of video images stored in memory media, but may be dis-
advantageous in real-time performance due to the increase in computation
time. The effect of a moving grating is also obtained by generating a transla-
tional pattern of the periodic transmittance and is used for discrimination of
the velocity direction on the basis of frequency shifting.

To obtain better performance in dynamic image processing, a computer
with faster CPU and larger memory capacity is generally desirable. With a
desktop personal computer, the number of frames which can be processed may
be small due to the size of the memory, and, then, the sequential output signal
A(t) may consist of short data records. This means that the recorded signal
A(t) contains insufficient periodic cycles by which the central frequency could
not be precisely measured by spectral or correlation analysis. In this case,
the maximum entropy method (MEM) (see Sect. 4.2.4) is a better choice for
spectral analysis. Usually, the MEM gives more realistic frequency estimates
with better resolution than other conventional methods such as the FFT for
short data records [128].

The present computer-based spatial filtering method provides another use-
ful application, that is, simulation studies of SFV. When video images of mov-
ing objects being measured are available, generation and processing of SFV
signals and the measurement procedure are simulated by the above-mentioned
software operation in the computer. If such a simulation is repeated with dif-
ferent parameters of the spatial filter and different signal processing methods,
the optimum condition is estimated for the spatial filter and signal processing.
Thus, this is used for optimum design of the SFV system without conducting
actual measurements by trial and error. In addition, if the moving image of
objects is also generated by computer simulation, the whole process of SFV
measurements is simulated within the computer for the object of interest [128].
Hence, various evaluations are made in advance for practical SFV measure-
ments, such as the optimum parameters of the spatial filter, optimum signal
processing, measurement accuracy, signal properties, and other problems and
solutions.

5.9 Survey of Spatial Filtering Devices

Several types of the device and system can be used for spatial filtering ve-
locimetry, as described in this chapter. In general, the optimum type is chosen
by considering measurement circumstances such as image intensity, contrast
and quality, size and concentration of scattering objects, time- and space-
varying characteristics of objects, environmental condition, velocity range of
object movement, scale of probing volume, and so on. Since each type of SFV
device and system has advantages and disadvantages, it is useful to survey
briefly their features in the last section of this chapter.
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Table 5.1. Spatial filtering devices and their usages for typical measurement oper-
ations

Device Type Pedestal Directional Two-dimensional Remarks
removal sensing measurement

Transmission Parallel 2 imaging FSc: moving 2 imaging General
grating slits planes with or rotating planes with purpose;

(basic) gratings grating; gratings low cost
PSd: 2 gratings
with π/2

Prism Beam 2 stages PS: 3 stages Piled gratings Simple opti-
grating deflector cal system

Lenticular Beam 2 deflection FS or PS: Piled gratings Simple opti-
grating deflector angles 4 deflection cal system;

angles low cost

Optical fiber Light 2 fiber FS or PS: 2 optical Flexible op-
array guide bundles 4 fiber imaging tical system

bundles systems

Liquid crys- Parallel Electric FS: moving Piled arrays Grating
tal cell array slits HPFa grating flexibility

Solar cell Detector 2 detection PS: 4 detec- 2 optical Simple
array channels tion channels imaging optics

systems

Line sensor Detector 2-channel FS or PS: 2 optical Grating
DMPb; 4-channel imaging flexibility;
weighting DMP systems simple
operation optics

Area sensor Imaging Weighting FS or PS: 2 weighting Grating
(camera) operation phase- operations flexibility;

orthogonal simple op-
operation; tics;
FS: time- object
shifting monitoring;
operation off-line

monitoring

a High pass filter b Demultiplexing c Frequency shifting d Phase shifting

The transmission grating is a basic, simple, and low-cost device for SFV.
Since the grating includes no additional operation in itself, the SFV system
using this device needs consideration in the optical and signal-processing sys-
tems for development of measuring functions: pedestal removal, directional
discrimination, and two-dimensional velocity measurements. From a different
point of view, however, the simplicity of the transmission grating is suitable
for wide use and general purposes. The prism grating serves as both a beam-
splitting optical element and a periodic grating and, thus, is advantageous for
differential detection to remove a pedestal component. As this grating is not a
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very popular optical element in the market, only limited ranges of grating pitch
and size are available. The wavelength dispersion of the prism material should
also be noticed if illumination by white light is used. The lenticular grating
is an inexpensive optical element which works as both a beam splitter and a
periodic grating. It is particularly useful for the configuration of more than
two detection channels, which are effective for directional discrimination as
well as pedestal removal. The optical fiber array is a light-propagating optical
element which serves simultaneously as both a beam splitter and a periodic
grating. Owing to the use of fibers, flexibility in the optical system comes
particularly between the imaging system and the photodetector with signal
processing units. This is advantageous for measurements under severe envi-
ronmental conditions. The fiber array is a homemade or custom-made optical
device and is inconvenient for general purposes. The liquid crystal cell array
is also a special device which must be designed and fabricated exclusively for
SFV measurements. Since it is a time- and space-variable transmission grating
driven by voltage application, the flexibility of the grating pitch and shifting
velocity is a main advantage. Low-frequency response and low contrast of the
LC cell array are problems that must be addressed for practical uses.

Although the above-mentioned five types of SFV devices need photodetec-
tors for a system, the detector and imaging types are photodetectors them-
selves and contribute to simplification of the optical system. For measurements
in an extremely low light level, specific detectors such as photomultipliers are
necessary, but the detector and imaging types are almost unavailable. The
solar cell array is a simple and compact SFV device which easily realizes dif-
ferential detection to eliminate the pedestal component, but its sensitivity
is insufficient for week-intensity images. The photodiode array, CCD linear
sensor, and area sensor are very favorable for SFV devices, since they are
commercially available and quite popular recently, and also their outputs are
conformable to digital electronics and computer. As a variety of measuring
functions are realized in electronic operations, the grating pattern including
its parameters is variable and such a flexibility is an attractive feature. The
one-dimensional type of device is advantageous for measurements of a single
velocity component, whereas two-dimensional velocity components should be
treated by the imaging type or area sensor. Another practical advantage of
the area sensor is its facility for monitoring the object during measurements.
Computer-based SFV systems using video images are very effective for off-
line measurements and repeatable analysis, but frame-rate limitation should
be considered. A list of SFV devices treated in this chapter is given in Table 5.1
in relation to the methods for realizing the three measuring functions.
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Applications

Spatial filtering velocimetry (SFV) is a practical tool and provides a measur-
ing system that can be compact, inexpensive, and easy to handle. It gives
the same order of accuracy as that obtained with laser Doppler velocimetry
(LDV). These features are due to its simplicity in measuring principle and
configuration. The LDV technique is well known for its high spatial resolu-
tion, but this feature inevitably involves the fact that the probe region is small
by focused laser beams and a larger macroscopic probe area cannot be covered
by its normal use. The SFV technique covers a wide range of scales of motion,
for example, from fluid flows in a microscopic region to the ground observed
from an airplane. Without difficulty, this is done by using the optical imaging
capability together with the spatial filter window and illuminating condition.
This scaling flexibility for objects being measured promotes applications of
the SFV technique to various fields of science, engineering, and biomedicine.
The principle of SFV is also used for measuring the length, distance, dis-
placement, and other quantities related to the velocity and for detecting the
focus of moving objects as a result of image formation. There are also other
techniques for velocity measurement that are similar or related to the SFV
technique.

In this chapter, various examples of applications of the SFV technique
are reviewed. Before learning the examples, the fundamental performance of
the SFV system is discussed in Sect. 6.1. Sections 6.2–6.4 are devoted to sev-
eral examples of SFV applications. SFV measurements except for the velocity
sensing are next presented briefly in Sect. 6.5. In Sect. 6.6, some related ve-
locimetric techniques that are based on a principle similar to that of the SFV
technique are described. Finally, Sect. 6.7 gives a brief comparison of SFV and
LDV techniques.

6.1 Performance

Although there are several aspects which describe the performance of a total
SFV system, the principal measures are accuracy, linearity, and resolution.
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They are influenced mainly by the optical system and the signal-processing
system. Note that, very often, the conditions of moving objects themselves and
measurement circumstances are also the factors which must be considered in
performance.

6.1.1 Accuracy

As described in Sect. 2.4.1, the fundamental accuracy of central frequency and
hence velocity measurements is determined by the number of grating lines in
the spatial filter. This number determines the maximum number of cycles
contained in the output signal of one burst from a particle passing through
the probe volume and, thus, the minimum width of a spectral peak at the
central frequency. This type of spectral broadening is equivalent to transit
time broadening, which is sometimes called also “ambiguity” broadening in
laser Doppler velocimetry [5]. In usual measurements, spectral broadening is
caused by different sources. The main sources of broadening in the spectra of
SFV signals are as follows:

1. number of grating lines
2. random fluctuation
3. defocus and aberration
4. velocity distribution in space
5. velocity variation in time.

The number of grating lines is the most elementary source of spectral broaden-
ing and the effect is inevitable in SFV measurements. Broadening from other
sources is added to elementary broadening, and accuracy is further degraded.
A basic approach is, thus, to have as large number of grating lines as possi-
ble in the system to make elementary broadening smaller. To follow this, a
smaller grating pitch and a larger window are desired in a spatial filter. There
is a lower limit for grating pitch owing to a signal visibility (see Sect. 2.6.2)
and geometric size. A large window for a spatial filter takes a risk of including
the velocity distribution as will be discussed later. Hence, a large filter win-
dow makes elementary broadening small, but broadening due to the range of
velocities comes in.

If a moving object is spatially continuous or presented for a sufficiently long
time (not like a small particle) in the probe volume without intermittence, the
oscillatory output may continue for a large number of cycles, even for a small
number of grating lines. Then, no spectral broadening might be expected.
However, such an output normally has randomness in the amplitude and phase
of oscillations, as shown in Fig. 4.1a. As described in Sect. 4.1, this type of
random fluctuation statistically contains a limited temporal correlation length
which is related to transit time τT or to the time for passage of a single particle
through the probe volume. Then, the number of cycles included in the transit
time, equivalent to one burst period, in the output makes sense of the spectral
width. As a result, the signal spectrum does not show a perfectly defined
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frequency but a distribution centered at the central frequency. The broadening
in this mechanism is sometimes called “random phase broadening” [5] and,
after all, it is due to the number of grating lines.

Errors in image formation often arise from defocus and aberration. Even
in an imaging system with well-defined magnification, defocus is caused by
the axial displacement of a moving object, owing to fluctuating motion or the
velocity component along the imaging optical axis. Use of an imaging lens
with a small diameter causes some aberrations which cannot be neglected. In
the presence of defocus and/or aberration, the image of a moving object is
blurred on the plane of the spatial filter. This results in the loss of contrast
and sharpness of the image, causing a decrease in the SNR and preventing
measurements from being accurate. The distortion impinges on the linearity
between the object’s velocity and the image velocity (see Fig. 3.7), directly
causing errors in the measured velocity.

The broadening mechanisms 1–3 are basically due to conditions in the
SFV optical system. Even for an optical system with ideal conditions, spec-
tral broadening occurs as an effect of the moving condition of an object,
resulting from variations of velocity in space and time. It is very usual in
measurements of the flow velocity in a fluid. In a tube or pipe, the flow has
a gradient of velocity, and a distribution of velocities of suspended particles
is contained in the probe cross-sectional area. A range of velocities produces
different central frequencies in SFV signals and gives spectral broadening. In
other words, different velocities result in different periods of cycles in signals
for the passage of particles through a probe volume. Then the phase rela-
tions of these cycles are not maintained but change in a shorter period than
the transit time. Consequently, the number of cycles included in one burst in
which the phase relation is maintained decreases and the spectrum broadens.
Of course, the use of a smaller probe volume reduces the effect of the spatial
velocity distribution.

A temporal variation of velocity also produces different central frequencies
during a measurement period, and the broadening of the spectrum occurs in
the same way in the presence of the spatial velocity distribution. The flow
velocity of a fluid is often applicable to this case because of turbulence or
pulsation. The problem of velocity variations with time can be solved by signal
processing techniques which treat real time or time-resolved measurements.
However, note that such techniques are often sensitive to noises which are
another source of lowering accuracy since they are not the technique that
reduces noises by time integration.

Finally, it may be mentioned that measurement accuracy is influenced by
electric noises in the photodetector and the signal processing system. This is
a common source of trouble in general electronic instruments. As described in
Chap. 4, signal processors that are based on time integration such as spectrum
analysis and correlation measurement reduce the effect of electric noises on
accuracy. The trouble becomes serious with the use of the counting technique
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and the phase angle measuring technique, since they process the signal am-
plitude directly.

6.1.2 Linearity

Linearity means a proportional relation between an object’s velocity and the
measured central frequency of the output signals, which is theoretically given
by (1.1). The SFV optical system puts no limit on linearity with the accuracy
mentioned above, but the signal processing system including the photodetec-
tor does not guarantee it in higher signal frequencies because of the system
bandwidth. If an expected central frequency or a given velocity exceeds the
upper cutoff frequency of the processor’s passband, the signal power at the
frequency is substantially attenuated. In this frequency range, the real central
frequency cannot be determined correctly but the estimated central frequency
may be lowered due to the decreasing frequency response of the system in the
cutoff range. Hence, the estimated value of the central frequency is saturated
as velocity increases and the relation of frequency to velocity becomes non-
linear. The system bandwidth is determined by the total frequency response
of the photodetector, amplifier, and other electronic instruments employed
in the signal processing system. The dynamic range of the SFV system for
velocity is therefore defined as the linear extent of the frequency response up
to the cutoff frequency of the total electronic system.

6.1.3 Resolution

In using spatial filtering devices provided by optical elements such as the trans-
mission grating, prism grating, lenticular grating, and fiber array, temporal
resolution is determined mainly by the signal processing system. Frequency
tracking and counting techniques give the high resolution so that they can
be better used for real time measurements than with the time-integration
type processing such as spectrum and correlation analysis. Statistical analysis
includes averaging, and the histogram, and probability density requires a sub-
stantial measurement period for acquiring sufficient data and, thus, is usually
not advantageous for temporal resolution. When the spatial filtering device
employed is of a type with electronic control such as a liquid crystal cell ar-
ray and 1-D or 2-D detector arrays, the temporal resolution is limited by the
maximum control frequency of SFV devices, rather than by the bandwidth of
a signal processing system.

Spatial resolution is determined by the sizes of the probe volume in both
the cross-sectional plane and the axial direction. To increase the spatial reso-
lution, the size of a spatial filter window should generally be reduced and the
imaging magnification enlarged while the required number of grating lines is
maintained. For high axial resolution, side illumination and a small focusing
depth are desirable. Note that one of the advantages of the SFV technique is
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covering probe section of a wide area such as a river, road, or ground, although
it is opposite in nature to spatial resolution.

6.2 Measurements of Flow Velocity

One of the most interesting applications is measurements of flow velocity and
its profile across a section of fluid. Optical access is advantageous for studies
of flows because a light beam does not disturb the flow and can be used as a
micron-size probe when focused. For this application, the LDV technique is
well known as a useful tool, but LDV instruments are generally expensive and
need accurate optical alignment. In many cases of flow measurements, SFV
can replace LDV. The flow velocity is obtained from measurements of small
scattering particles suspended in the fluid. Thus, it is assumed that particles
follow the fluid flow sufficiently .

6.2.1 Transmission Grating Velocimeter for a Microscopic Region

To measure the flow velocity in a microscopic region using the SFV technique,
laser light should be used as an illuminating source since it is advantageous
for focusing the light into a microscopic probe volume with sufficient inten-
sity. Imaging of small particles is done by a microscope with the necessary
magnification. In a case including such optical parts, the measuring system
should be constructed in a practical form so that it guarantees simple align-
ment and mechanical stability. Figures 6.1 and 6.2 show a schematic diagram
and a photograph of a differential-type transmission grating velocimeter for
a microscopic region [28]. The basic construction follows the optical system
shown in Fig. 5.5. The illumination system is separated from the detection
system, and the angle between their optical axes is determined in accordance
with the object being measured, for example, by considering whether it is
transmissive or reflective. For flow measurements in usual cases, an angle of
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Fig. 6.1. Configuration of the differential-type transmission grating velocimeter for
a microscopic region



144 6 Applications

Fig. 6.2. Photograph of a differential-type transmission grating velocimeter for a
microscopic region

around 30◦ may be convenient since it gives a near-forward scattering scheme
under dark-field illumination.

In the detection system, the light scattered by particles is received by a
microscope (MS). A polarizer (P) is used to reduce the undesirable ambient
or background light and improve the image contrast. A beam splitter BS1

is included to allow visual observation, which is necessary for focusing the
image and positioning the probing area. A small aperture of mask M defines
the probe cross-sectional area. When the position of this aperture must be
known on the object image, a lamp assembly is inserted between the mask
M and a lens L4, as shown in Fig. 6.1. The aperture is illuminated by this
lamp and imaged back onto the probe cross-sectional area in the object plane
as a small bright spot, which can be observed via the beam splitter BS1 by
the observation system. The lamp assembly is taken off while measurements
are being made. The received light is finally detected by photomultipliers. An
extremely large magnification is not available for imaging in the detection
system because of the limit in the working distance of the objective being
used. The upper limit of the imaging magnification is ∼200 X for this system.
This limit determines the spatial resolution of ∼5 µm when a 1-mm diameter
aperture is used. The total detection system is mounted on XYZ translation
stage with manipulators, as shown in Fig. 6.2. The system is rotatable around
the detecting optical axis so that the grating lines can be set perpendicularly
to the flow direction with an eyepiece of the observation system.

Figure 6.3 [25] demonstrates measured frequency histograms of the flow ve-
locity distribution of water along the cross-sectional axis of a cylindrical glass
tube having a 700-µm diameter. By using two different imaging magnifications
M = 14.4 and 36 with an aperture of 1-mm diameter, the probe area was set
at about 70 and 28 µm in diameter in figures (a) and (b), respectively. The
light source employed was a 10-mW He-Ne laser. By using a Ronchi grating
having a line interval of p = 254 µm as the spatial filter, the number n of grat-
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Fig. 6.3. Typical frequency histograms of the flow velocity along the cross-sectional
axis of a cylindrical glass tube having a 700-µm diameter. The probe area was
(a) 70 and (b) 28 µm in diameter [25]

ing lines was set at 4. Despite such a small number, a flow velocity distribution
was successfully obtained, giving good agreement between theory (assuming a
Newtonian flow) and measurements [25]. A large probe volume makes an error
due to the range of velocities in the distribution, which is especially noticeable
near the wall of the tube. Comparison of Figs. 6.3a and b indicates that result
(b) for the 28-µm diam probe volume gives better frequency histograms than
result (a) for the 70-µm diam probe volume at locations outside ±240µm from
the tube center. Thus, the size of the probe volume is particularly important
for measurements of the flow velocity distribution. Attention should also be
paid to strong scattered light from the wall, which may degrade the signal-to-
noise ratio. For measurements involving a cylindrical glass tube, note that the
tube having fluid inside has the effect of a cylindrical lens on the illumination
and detection geometry. To avoid this effect, the tube can be immersed in a
fluid-filled glass box having a plain surface.

Ushizaka and Asakura [23] carried out a comparison study of SFV with
LDV techniques for measurements of the flow velocity distribution in various
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small glass tubes having cylindrical and rectangular cross sections. They
observed that comparable accuracy could be obtained in both techniques.
Water usually contains a sufficient amount of naturally occurring parti-
cles for measurements. If the number of particles available for scattering is
small, a very small amount of scatterers such as milk, acrylic particles, or
polystyrene particles may be seeded into the water to increase the particle
concentration. However, one should be careful of the concentration since a
large number of particles in the probe volume causes intensity summation
of many periodic waveforms in random phases in the photodetector out-
put, and this can be a source of signal deterioration and an increase in shot
noise. The effect of particle concentration on spectral broadening was the-
oretically and experimentally studied [27], and a modified signal process-
ing method was proposed to improve the measurements in large particle
concentrations [28]. The phase-shifting technique, which is used for elimi-
nating directional ambiguity, as described in Sect. 5.1.4, is also influenced
by large particle concentration, since the signal phases are not consistent
in random addition and the desired phase difference of π/2 is not always
maintained [26]. A modified signal processing method was successfully em-
ployed to reduce the effect of large particle concentration on measuring the
temporal variation of flow velocity including a reversal of the flow direc-
tion [28].

Electrophoretic mobility distributions of suspended particles have also
been measured [31] by a transmission grating velocimeter. To achieve high
velocity resolution, specially designed optics consisting of a dark-field con-
denser and objective lenses and a rectangular vertical electrophoresis cuvette
were employed. The probe volume was set at 0.8 × 0.5-mm2 cross section with
a 10–20-µm depth positioned in the middle plane of the cuvette where the ve-
locity gradient is almost zero. Under the application of an electric current I,
the mean velocity v of diluted erythrocytes (red blood cells) suspensions was
determined by using the SFV principle and, then, the mean electrophoretic
mobility µ̄25 was deduced from the relation

µ̄25 = σ25
S

I
v , (6.1)

where σ25 denotes the conductivity of suspensions at 25◦C which was precisely
measured separately, and S is the cross section (1 × 12mm2) of the cuvette
used. The experimental results demonstrate a narrow frequency peak in the
power spectrum which achieves the specific bandwidth, defined by (2.38), of
D = 0.01, and high velocity resolution was realized in their measurements.
This performance was significantly better than with the LDV technique. Such
a remarkable resolution was due mainly to the use of a well-designed dark-
field optical system and a rectangular (not cylindrical) cuvette with reasonable
dimensions, together with the number of grating lines, n = 100.
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6.2.2 Two-Dimensional Vector Velocimeter

Two-dimensional vector components of a flow velocity distribution have been
measured by the frequency-shifting technique using a rotating disk with dual
ring gratings, which was already described in Sect. 5.1.5. The image of particles
suspended in the fluid flow is first formed on the mask M in the same way
as that in Fig. 6.1. By means of a relay lens, beam splitter, and prisms, two
identical images of particles spatially restricted by the mask M are formed
on gratings Gx and Gy. The configuration of the disk gratings is described in
Fig. 5.18 [106]. Alternatively, an optical system using an image fiber bundle
has also been reported and is shown in Fig. 6.4 [105]. The fiber bundle allows
the object and detecting fields to be set separately in different places. This
flexibility is advantageous for applications since rotation of the grating disk
by an electric motor may yield mechanical vibration which is unwelcome in
the microscopic probing in the object field. The bundle usually consists of
a periodic arrangement of several thousands of fiber elements, which causes
another undesirable spatial filtering effect on output signals [105, 106]. The
effect can be eliminated by using differential detection in the same way as
pedestal removal.

As described in Sect. 5.1.5, the central frequencies fx′ and fy′ of two de-
tector outputs vary according to the magnitude and direction of the image
velocity under given shift frequencies fgx′ and fgy′ of gratings Gx and Gy.
Figure 6.5 [106] shows power spectral distributions of two velocity compo-
nents vix′ and viy′ along the cross-sectional axis of a cylindrical glass tube
having a 3.4-mm diameter, for four different angles θ′ of the flow direction
with respect to the x′ axis or the moving direction of grating lines in Gx. The
diameter of the probe cross-sectional area was set at about 110 µm, and the
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Fig. 6.4. Transmission grating velocimeter using an image fiber bundle for measur-
ing two-dimensional velocity components (from [105], Masson 1989)
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Fig. 6.5. Typical power spectra of two velocity components vix′ and viy′ along the
cross-sectional axis of a cylindrical glass tube having a 3.4-mm diameter [106]

shift frequencies fgx′ and fgy′ were fixed at 4.3 and 5.175 kHz, respectively.
The results demonstrate that the central frequency of the velocity component
is shifted higher or lower from each shifting frequency due to a change in the
flow direction relative to the grating movement. The flow velocity distribution
and direction can be obtained from these spectra according to the relations
(5.10) and (5.11). Errors in measurements with the rotating disk gratings are
usually caused by inhomogeneity of the pitch of grating lines within the cir-
cular area restricted by the mask image. To reduce the errors, the ratio of the
circular area to the disk diameter should be small. Thus, the design and fab-
rication of the disk gratings should be carefully done for accuracy. Of course,
the precision of disk rotation is another important factor.

6.2.3 Blood Flow Velocity

One of the important applications of SFV in microscopic regions is measure-
ments of blood flow velocity. In this application, red blood cells flowing in
a vessel are imaged through a vessel wall onto a grating and their velocity
is determined. Thus, the blood vessel being measured must be exposed to
the SFV imaging system. Some examples of in vitro experiments have been
reported for measurements of blood flow velocity and its spatial distribution
in cylindrical glass tubes, by using a transmission grating [28, 30], a prism
grating [40, 41], and the CCD line sensor or CMOS camera [62, 129]. Also,
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various in vivo measurements have been performed for arterioles of the foot
web of frogs [24, 28], artery of the frog mesentery [37], arterioles and venules
of the rabbit mesentery [39], arteriole in a rat cremaster muscle [29], and
capillary at the human nail-fold (the skin overlapping the finger-nail at its
base) [41,62,130]. For in vivo measurements, particular treatment is often re-
quired for the low signal-to-noise ratio due to the high concentration of blood
cells and the temporal variation of velocity due to pulsations, physiological
condition, and other unexpected motions such as postural fluctuations. To im-
prove the quality of blood-cell images, an optical high-pass filter [30,40], which
eliminates dc light and enhances the edges of blood cells in the image, can
be used in an SFV imaging system. The time-varying velocity of blood flows
is effectively managed, for example, by using a narrow band-pass tracking fil-
ter [28] in the signal-analyzing system. The central frequency of the passband
of this filter is voltage-controlled in the frequency tracking circuit so that it
can follow the SFV signal frequency. Figures 6.6a and b [28] demonstrate the
recorded variation and the corresponding frequency histograms, which were
obtained by the transmission grating velocimeter of Fig. 6.1, of the blood flow
velocity in a 30-µm diam arteriole when noradrenaline was put on the foot
web. In result (a), the velocity clearly increases after an application of nora-
drenaline at time A and, then, begins to decrease at time B with the injection
of water. Frequency histograms in result (b) were obtained at times (1)–(8)
indicated in result (a). The central frequency of peaks of the histograms varies
reasonably from (1) to (8) according to the temporal velocity variation.

6.2.4 Applications to Fluid Mechanics

In the original work on the SFV technique by Gaster [14], the application was
already directed to free convection studies. By using the frequency-shifting
technique with a rotating disk grating, the instrument developed in the work
was capable of sensing the sign of flow and was used to measure the flow
velocity distribution, including the reverse of flow, along the cross-sectional
axis of a 2-inch diameter tube.

In some examples, specially devised spatial filtering probes have been de-
veloped to fit individual measuring circumstances. For measurements of an
air–solid two-phase flow in a horizontal pipe, a fiber-array type spatial filtering
probe [131] was constructed. The probe consists of 12 groups of graded-index
quartz fibers having a core diameter of 80 µm which are aligned alternately for
illumination and detection. The six groups of detecting fibers are differentially
connected to an amplifier to eliminate the pedestal component. Although the
number of grating lines results in n = 3 in this case, the probe was successfully
used to obtain distributions of the solid particle velocity and concentration
as contour lines over the cross section of the pipe. The particle concentra-
tion was determined by counting the number of particles passing through the
probe volume in terms of a pre-determined intensity threshold for detected
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of the blood flow velocity in a 30-µm diam arteriole when noradrenaline was put on
the foot web [28]

signals. A fiber probe is easy to vary in its measuring position owing to its
flexibility and, thus, it is generally advantageous for large-scale or fixed flow
channels.

A modified type of fiber-array spatial filtering probe [132] has been de-
veloped for measuring the local velocity of water flow in a horizontal pipe
and channel. These probes, which are called hydrometric rod probe and plate
probe in the literature, contain both a fiber illuminator and a fiber-array spa-
tial filter and are used by insertion into a flow being measured. Thus, they
are not nondisturbing devices and require calibration of the probe geometries
in the velocity range of interest. The probe contains a measuring channel in
itself, and end faces of the illuminator and the spatial filter are located flush
with each of two opposite side walls of the channel. The fiber illuminator
emits light via a fiber from an LED as a collimated beam with a graded-
index lens toward the spatial filter through the channel. There is no lens used
for imaging particles onto the spatial filter. Instead, the shadow of moving
particles is projected onto the filter due to the collimated beam. The spatial
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filter consists of a differential arrangement of multimode fibers with a core
diameter of 100 µm making the number of grating lines n = 8. Owing to the
simple and robust mechanical construction of the probes, they were success-
fully used to measure the mean flow velocities in a 49-mm diameter horizontal
pipe and in a horizontal channel with a cross section of 26×56mm2 both 3 m
long.

Measurement of particle velocities in two-phase flows with high solids load-
ings requires a probe reaching different positions inside the flow. A spatial fil-
tering probe using a CCD linear sensor [133], which is described in Sect. 5.7.2,
has been constructed to measure the local particle velocity in a pilot-scale cir-
culating fluidized bed riser with an inner diameter of 0.4 m and total height of
15.6 m, which is used for studies in fluid dynamics. The solid particles being
measured are quartz sand with a diameter range of 20–500 µm and fluidized
by air. The probe consists of a tube with an 8-mm outer diameter in which a
small illuminating/detecting tip connected with light-guiding fibers, a receiv-
ing/focusing lens unit, and a CCD linear sensor are installed. By putting this
probe into a lot of measuring holes at various heights of the riser alternately,
local particle-velocity distributions in the bed were effectively obtained with a
high measuring rate. Note that this probe also has the problem of disturbing
the flow due to insertion.

The SFV technique by computer image processing has been applied to
measurements of the oscillatory hydrodynamic flow in a nonlinear chemical
reaction (Belousov-Zhabotinsky reaction) [125]. The technique employs a flex-
ible change of pitch, shifting velocity and direction of the grating, and the
compression/conversion and preprocessing of image data in real time and,
thus, it successfully achieved increases in dynamic range, measurable time
length, and measurement accuracy.

6.2.5 Flow Velocity Gradient

An interesting modification of transmission grating velocimetry has been made
for measurements of the velocity gradient in a microscopic region [46]. Fig-
ure 6.7 shows schematically the principle of measuring a velocity gradient by
using the SFV technique. The use of a modified spatial filter having two
windows defines two probing cross-sectional areas in the object space. When
flow velocities in the two areas are v1 and v2, the intensities of light pass-
ing through the two spatial-filter windows are periodically modulated with
different frequencies f1 and f2, respectively, according to SFV principle. The
photodetector output containing these periodic components is fed into an elec-
tric high-pass filter (HPF) to remove its low-frequency pedestal components.
The filtered signal is then squared to produce four different periodic compo-
nents with frequencies 2f1, 2f2, f1 + f2, and f1 − f2. By using an electric
band-pass filter (BPF),the lowest frequency component f1−f2 is selected and
used to determine the velocity difference g between the two probe regions with
the relation
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g =
v1 − v2

2a
=

p (f1 − f2)
2aM

, (6.2)

where 2a is the distance between the centers of the two probe areas, p is the
grating pitch, and M is the imaging magnification. If the distance 2a is small
compared to the whole flow area, the value g can be approximated as the
velocity gradient.

Figure 6.8 [46] demonstrates measured distributions of the flow velocity
and the velocity gradient of water in a 700-µm diameter cylindrical glass tube,
obtained by using the transmission grating velocimeter shown in Fig. 6.1 where
the modified spatial filter was exchanged with the original one. The area of two
probed cross sections and their separation distance were set at 136 × 27 µm2

and 60 µm, respectively. Relatively good agreement was obtained between
experiment and theory assuming Newtonian flow for both the velocity and
the velocity gradient within errors of 2.1 and 11%, respectively. The errors
are probably due to the range of velocities in the probe volume. Reducing the
probe volume decreases the velocity range involved, but it may not guarantee
the simultaneous passage of particles through the two probe volumes. There
is a compromise between measurement accuracy and efficiency. The method
has also been applied to measurements on the tip face of the 6-mm diameter
rotating axis of a dc motor.
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Fig. 6.8. Measured distributions of the flow velocity and velocity gradient of water
in a 700-µm diameter cylindrical glass tube [46]

6.3 Measurements on Large Scales

The previous section describes SFV measurements in microscopic regions as
typical and successful applications, in the same way as LDV measurements.
Other examples of interesting SFV measurements are found in applications
to large-scale regions such as rivers, debris, the ground, and so on. The LDV
technique is generally unsuitable for velocity measurements in such wide re-
gions due to the active sensing using a focused beam illumination, although
some applications include airborne LDV and Doppler lidar. For these regions,
passive sensing is more practical since it needs no illumination in large probing
areas or beam scanning. This type of sensing can be realized with the SFV
technique.

6.3.1 River Flows

Since the surface flow of water in a river can be imaged with a telescopic optical
imaging system, the temporal intensity variation of the image is used for
measuring the velocity of a river flow by using the SFV technique. Generally,
the direction of a river flow is inconstant in time and space and, thus, the
velocity should be measured in a vector. On the other hand, the flow velocity
in a river yields a relatively low central frequency in the SFV system. By
assuming a velocity of 10 m/s, imaging magnification of 0.002, and grating
pitch of 0.25 mm, the central frequency is estimated at 80 Hz. Hence, a high-
frequency response is not required in the SFV system. By taking account of
these conditions, Itakura et al. [21] measured the flow velocity of a river surface
by using a piled-type LC spatial filter, which is described in Sect. 5.5.2. To
image a large area of the river surface onto the spatial filter on a bridge across
the river, a Cassegrainian-type telescope having a focal length of 750 mm and a
250-mm diameter aperture was employed as the imaging system. The number
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of grating lines in the LC spatial filter was set at 5. Because moving LC cell
arrays which were electrically driven produced undesirable shifting frequency
components, they were filtered out in the signal processor. The magnitude
and direction of the flow velocity were successfully measured, demonstrating
the effectiveness of the SFV technique for measuring river flows.

The flow velocity under the water surface of a river was measured with
the hydrometric plate probe [132] having a fiber-array spatial filter, which was
described in Sect. 6.2.4. Before performing field measurements, the probe was
calibrated with a test channel because it may disturb the flow being measured
due to insertion. The results of the absolute profile of the flow velocity vector
show the potential usefulness of the spatial filtering probe for measuring river
flow dynamics.

6.3.2 Debris Flows

Debris flow is one of the natural random flowing phenomena and should quan-
titatively be observed for the purpose of disaster prevention. To perform the
observation safely, the method employed should use remote sensing. Since
the surface velocity of a debris flow can be unsteady in time, measurements
must to be continuous. As one of the promising methods that meet these
conditions, the SFV technique based on computer image processing has been
studied [126–128], as illustrated in Fig. 6.9. A debris flow occurs unexpectedly
and, thus, video images of the surface flow are recorded in the event. A series
of frames are then analyzed by using appropriate processing software which
operates on the basis of the SFV principle, as described in Sect. 5.8.2. Thus,
field observation requires only the camera system and video recorder, and the
image-processing site can be placed far from the observation site.

In the studies [126,127], one velocity datum was extracted from the output
signals of every 45 frames (i.e., every 1.5 s), by using the maximum entropy
method (MEM). The processing software is able to optimize the parame-
ters of the spatial filter: the grating pitch, the number of grating lines, and
the window size to fit the intensity pattern of images being analyzed. The
time-sequential velocity data were then recorded for 5 minutes. The result
demonstrated the interesting finding that the debris flow velocity was ini-
tially low, was maximum approximately 1 minute after passage of the front,
and then decreased gradually. A comparison study, also carried out between
computer-based and hardware-based (such as a transmission grating) spatial
filters, showed better accuracy with the computer-based type [128].

6.3.3 Aircraft

In 1963, Ator [12] presented the SFV technique for sensing the velocity of
terrain images in the aerial photographic systems on aircraft. The velocity
sensing of terrain images means determination of the flying speed of aircraft
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Fig. 6.9. Use of the SFV technique based on computer image processing for debris
flows

with respect to the ground, assuming that the flight path of the aircraft is par-
allel to the terrain. Generally, the scattering of light by the ground produces a
spatially random intensity distribution and, thus, the spatial frequency spec-
trum of the ground image can contain a range of frequencies which covers the
central frequency of the spatial filter being used. Therefore, the terrain image
can be passively sensed by the SFV technique without active illumination [13].

To cancel out the pedestal component that is caused by ambient terrain
light conditions and atmospheric conditions, differential detection described
in Sect. 5.1.2 is highly desirable for this application. Due to wind drift, the
physical heading of an aircraft may not agree with the actual flight direction.
To cope with this situation, two-dimensional velocity measurements should be
performed, although directional discrimination may not be required because
of unambiguity in the flying direction.

6.3.4 Vehicle

In the design and development of the automobile, precise measurements of
the vehicle speed with respect to the ground are always indispensable. Normal
speedometers of cars are available only for usual driving but are insufficient
for various performance tests. In the antilock braking system, for example, the
wheel slipping ratio which is given as a function of the wheel rotating speed
and the ground speed of a vehicle is an important factor to be estimated
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[134]. Hence, a noncontact direct sensor which can be carried on a vehicle
is essential for determination of the ground speed. For these requirements,
the SFV technique has been studied [134,135] as a promising means. Optical
images of road or ground surfaces have usually a random intensity distribution
due to the surface irregularity whose spatial frequency spectrum extends over
a certain range continuously from the dc component [135]. Thus, those surfaces
can be sensed by the SFV technique under natural light.

There are specific treatments that are required for measurements of ground
speed. Variations of the height of the sensor position on a vehicle may be a
primary source of errors. To raise the robustness to height variation, a range of
working distance and, thus, a large focusing depth are required in the optical
imaging system, as discussed in Sect. 3.3. The use of a relatively large grating
pitch is also effective for occasionally defocused images. Because a defocused
image loses higher spatial frequency components but it may still contain lower
components, these can be selected by a spatial filter having a low-frequency
passband or a large grating pitch. A wide dynamic range of measurable speed
is desired for practical uses such as nearly zero to a few hundred kilometers
per hour. The temporal variation of the speed should also be recorded. To
satisfy these requirements, real-time signal processing is employed such as a
frequency counter together with a tracking filter or a frequency tracker, which
are described in Chap. 4. The ambient light can be a source of low-contrast
images and, thus, should be canceled out by using differential detection. The
sensor is required to cope with various types of road surfaces, such as asphalt,
concrete, sand, gravel, and snow. For this purpose, active illumination with
light sources having a certain wavelength range such as LEDs is effective.

A prototype sensor [134] employed 22 LEDs of a 850-nm center wavelength
for the illumination in a pulse mode driven at 60 kHz and synchronized de-
tection for the purposes of enlarging the light power and reducing the effect
of ambient light. In the sensor, the spatial filter was made with a slit array
and a two-stage prism grating for differential detection. This sensor was then
developed as a commercial product, which is called Ground View Sensor by
its manufacturer [136], for recognition of road surfaces simultaneously with
speed sensing [137, 138]. Figure 6.10 [137] depicts schematically the optical
system of this sensor. Light rays from LED1 and LED2 are scattered and
specularly reflected by the road surface, respectively, and the moving image
of the surface is formed on the slit array. The scattered light is used for veloc-
ity measurements while the reflected light is used for recognition of the surface
conditions among four different types: dry, wet, snow, and ice. The recogni-
tion is made by comparing the intensity of the pedestal component with that
of the signal component. This sensor has achieved a velocity range of 0.1–
120.0 km/h within an error of ±2% and a working distance of 300–350 mm.
Another example uses halogen-lamp illumination and a spatial filter consisting
of an integrated photodetector array [52], as shown in Fig. 6.11 [139].

Figure 6.12 [139] shows a photograph of the instrument setup on a car.
Its specification discloses a velocity range of 1.5–320 km/h within an error
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Fig. 6.11. Example of an instrument for measuring vehicle speed using halogen-
lamp illumination and a spatial filter constructed with an integrated photodetector
array [139]

of ±0.5 %, a working distance of 500 ± 100 mm within an error of ±0.1 %,
and a probe cross section of 46 × 60mm2. For instance, this instrument has
been employed for the fine speed control of vehicles accompanying runners in
marathon races.
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Fig. 6.12. Photograph of the instrument setup on a car [139]

6.3.5 Common Objects

Common moving objects including motorcars, bicycles, and pedestrians can
also be sensed by the SFV technique [140]. However, there are some spe-
cific matters to be considered for this application. The moving speed of an
object must be determined in only one pass through the detector’s field of
view. It is unavailable to improve the measurement accuracy in terms of any
integration or averaging process for output signals. Common objects have a
variety of shapes and sizes and, thus, the spatial frequency spectra of their
image-intensity distributions are also different from each other. A careful de-
sign is required for the grating pitch so that its spatial frequency will appear
within the frequency range of spectra of objects being measured. In images,
a contrast of objects against a background is required to obtain a good SNR
in output signals. The use of a polarizer can be effective in some cases. In
the literature [140], a pedestrian, jogger, and cyclist 17 m distant and moving
cars 52 m distant from the detector were probed for velocity determination
within 4–5 % errors, by using a transmission grating, a photomultiplier, and
a FFT-type spectrum analyzer. This application demonstrates the potential
usefulness of the SFV technique for single-ended remote sensing and noncon-
tact speed monitoring in production processes.

6.4 Potential Applications and Speckle Velocimetry

In principle, the SFV technique is able to measure the velocity of almost all
moving objects that have nonspecular surfaces and can be optically or visually
imaged with a certain contrast. Hence, there are various applications of the
SFV technique, which have not yet been used as established means in science,
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engineering, and industry. This section briefly describes some objects which
may be probed in SFV measurements and may be promising examples of the
application.

6.4.1 Production Process

On production lines in manufacturing factories, a variety of materials, parts,
and products run without intermittence. Precise control of the running speed
of these objects is indispensable for efficient and scheduled production. Since
some objects in a production process are easily imaged in an optical sys-
tem or video system, their moving speeds can be measured with the SFV
technique. Promising examples of such objects are iron plates, paper, cloth,
thread, rubber, conveyor belts [20], V-belts [70], and so on. Figure 6.13 de-
picts typical output signals obtained from six different rough surfaces: ground
glass, aluminum plate, wood, gum tape, white paper, and black paper, by
using the transmission grating velocimeter shown in Fig. 6.1. Each piece of
these materials was attached to a 120-mm disk rotating at constant velocity
under the illumination of a He-Ne laser light and measured with the number
of grating lines, n = 10 [28]. Burst-like periodic waveforms are successfully
obtained from all the six surfaces in (a)–(f). In result (f), higher frequency
noise is slightly larger than that in the others. This is due to the low contrast

(a)

Ground glass

(b)

(c)

(d)

(e)

(f)

Aluminum plate

Wood

Gum tape

White paper

Black paper

0.5 msec

Fig. 6.13. Typical output signals obtained from six different rough surfaces; ground
glass, aluminum plate, wood, gum tape, white paper, and black paper, by using a
transmission grating velocimeter
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of the image of the black paper. Therefore, the applicability depends on the
quality of the images. High-contrast images produce better SFV signals. As
discussed in Sect. 2.7 including Fig. 2.25, this means that the intensity distri-
bution pattern of images should contain a sufficient magnitude of spatial fre-
quency components around the fundamental frequency µ0 = 1/p of the spatial
filter being used. To satisfy this condition, the choice of the illuminating direc-
tion, light source, imaging magnification, and grating pitch may be effective
very often.

Some machines used in factories are in translational and rotational motion
which can also be probed by the SFV technique. The rotating velocity of a
motor axis has been measured at its tip face by using a transmission grating
velocimeter [28]. For measurements of rotating velocity, a radial-type spatial
filter as shown in Fig. 5.37 [52,107], is quite effective since the angular velocity
in rpm is obtained directly from the central frequency of the output signals
independently of the imaging magnification. Misalignment between the two
center axes of a radial spatial filter and a projected rotating image reduces the
amplitude of the periodic signal component having a desired frequency, and
it produces subsidiary frequency components which are undesired. However,
this is used for detecting the center position of a rotating axis.

6.4.2 Rain and Snow

As routine atmospheric phenomena, rain and snow are observed in natural
scenes because raindrops and snowflakes scatter light. Optical images of the
drops and flakes are sometimes of poor quality due to defocusing and low
contrast. Unless axial resolution is required in an object space, a large fo-
cusing depth is useful for moderating the defocusing effect. Since the light
intensity scattered by raindrops or snowflakes is weak, their images generally
tend to be obscured in a background scene. To obtain high-contrast images,
active illumination is necessary. When those scatterers are clearly imaged in
the background scene, their falling velocity may be measured by the SFV
technique. Thus, imaging is the key for this application.

As an object similar to the above, smoke ascending to the sky may also
be probed by the SFV technique. For example, smoke from a chimney stack
of a factory can be imaged without difficulty. Then the random intensity
fluctuation of smoke images is used for spatial filtering. Other potential objects
similar to those in the above application include dust, ashes, fire, spray, and so
on. For all these measurements, the key to success is imaging with the better
contrast against the background.

6.4.3 Micromachines and Biological Samples

In the technology of micromachines, motion must be precisely controlled on a
microscopic scale. Speed monitoring should be done in a nondisturbing manner
since such small machines are quite easily influenced by external forces and
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momentum. The SFV technique is a promising tool for monitoring the moving
velocity if the motion of micromachines can be imaged with the necessary
magnification. For example, the rotating velocity of micromotors and gears or
the velocity of micropumps may be determined by SFV measurements.

It is known that small dielectric particles can be manipulated by the radi-
ation pressure of laser light. In an optical manipulation experiment, a highly
focused laser beam is used to illuminate a particle for the manipulation and,
thus, the particle scatters the light beam with a rather high intensity. Using
a high-resolution optical microscope to receive this scattered light, the parti-
cle motion can be viewed while being manipulated, without the necessity of
additional illumination. By applying the SFV technique to the images of mov-
ing particles obtained by a microscope, the velocities of the particle motion,
including translation and rotation, can be measured. Micron-sized biological
samples such as bacteria operated by radiation pressure are also interesting
objects to which the SFV technique is applied in the same way. Note in this
kind of application that the laser light used for manipulating particles works
simultaneously as the illuminating light for imaging in SFV measurements. If
the LDV technique is applied to measurements of particle motion, the radi-
ation pressure is affected by the focused laser beam used in the LDV optical
system.

Recently, biological molecular motors are receiving much attention from
researchers in various fields. In studies of molecular motors, a quantitative
estimation of linear or rotational motion is necessary for the analysis of their
moving mechanism and energy metabolism. This experiment requires a mi-
croscopic observation system with high resolution and high magnification. To
keep biological samples from being optically damaged, the wavelength and the
intensity of the illuminating light should be carefully chosen. Thus, the imag-
ing of samples with necessary contrast and resolution promotes an application
of the SFV technique to motion measurements of molecular motors.

6.4.4 Laser Speckle Velocimeter

As described in Sect. 2.7.3, the SFV technique is used to determine the moving
velocity of a translational speckle pattern. With the known relation between
the velocities of a moving object and the corresponding moving speckle pat-
terns, the spatial-filtering-type laser speckle velocimeter can be constructed.
Stavis [63] first demonstrated the velocity determination of a moving diffuse
object through SFV measurements in which a simple transmission grating was
applied to translational speckles formed in the diffraction field. Komatsu et
al. [141] represented the velocity measurements using dynamic speckles pro-
duced in the image plane when the transmission grating was placed in the
diffraction field in front of the imaging lens. Instead of the grating, a lin-
ear photodiode array [111, 112] was also used to simplify the system and to
suppress the pedestal component by differential detection.
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Fig. 6.14. Use of the optical-fiber-array spatial filter for a fiber-type laser speckle
velocimeter

Using the optical-fiber-array spatial filter, which was described in Sect. 5.4,
Hayashi and Kitagawa [142] developed a fiber-type laser speckle velocime-
ter for moving diffuse objects, as shown in Fig. 6.14. The velocimeter
employs a graded-index fiber having an 80-µm core diameter for the illu-
mination and the spatial filter made with 20 step-index fibers of 90-µm core
diameter each. Translational speckles produced by the object are detected
in the diffraction field with the fiber array and processed by the differen-
tial connection. To employ the specific parameters for the illuminating and
observing geometry, velocity measurements with this velocimeter are insen-
sitive to fluctuations of the distance between the object and the velocime-
ter. Usually, the moving velocity of a translational speckle pattern depends
on the illuminating and observing geometry including the distance between
the object and the velocimeter [143]. By detecting the speckle motion at
two different positions with two fiber-array spatial filters, the object ve-
locity and distance can be determined simultaneously [144]. Instead of us-
ing two spatial filters, a set of two illuminating fibers giving different beam
propagations and one fiber-array spatial filter is also available for the same
purpose [145].

Recently, Jakobsen and Hanson [146] developed a lenticular-type laser
speckle velocimeter for measurements of in-plane translation or rotation of
solid structures. This velocimeter detects translational speckles in the image
plane by using a lenticular grating followed by a spherical lens and two photo
detectors for pedestal removal. The detailed design of an optical system in-
cluding the lenticular-type spatial filter is useful for implementation of a prac-
tial velocity sensor. The velocimeter was then elegantly miniaturized [147] by
the combination of a vertical cavity surface emitting laser (VCSEL) and a
microlenticular grating with a pitch of 15 µm. In this system, translational
speckles are detected in the diffraction plane, and no imaging optics is needed.
The well-designed optical configuration realizes an almost working-distance-
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invariant measurement. The system is low cost and robust, and, thus, it seems
to be advantageous for various industrial applications.

6.5 Derivative Measurements

Though the main theme of this book is velocity measurements by the spatial
filtering technique, the SFV technique is applied to measurements of some
other physical values that are important in science and engineering. This
section simply reviews particle sizing, focus detection, distance measurement,
and speckle displacement sensing, which are done derivatively or through the
spatial filtering detection of motion.

6.5.1 Particle Sizing

As described in Sect. 2.6, the visibility of output signals decreases as the ratio
of the particle diameter to the grating pitch increases. This visibility change
follows some different mathematical functions in accordance with the particle
shape and the grating transmittance function, as shown in Fig. 2.23. In any
case except for the Gaussian-shape image, there exist specific values of the
diameter-to-pitch ratio with which the visibility takes the first zero or mini-
mum. Wang and Tichenor [49] applied this property to particle size measure-
ments using a variable-pitch grating. For a circular image with the diameter
2b passing on the sinusoidal-transmittance grating, the visibility is given by
(2.56). The first null in J1 or the Bessel function of the first order occurs
where the argument of J1 equals 3.83. Then, the grating pitch p0 that makes
the first-null visibility for the given diameter 2b is simply expressed by

p0 =
2πb

3.83
=

2b

1.22
. (6.3)

Figure 6.15 illustrates the passing of a circular image on a varying-pitch grat-
ing [49]. Figure 6.16 shows a model of the signal waveform obtained with such
a grating in which a point of the first null is identified [49]. With the knowl-
edge of local grating pitches, the image diameter is determined by counting
the number of grid cycles before the first null in visibility and identifying

Fig. 6.15. Passing of a circular image on a varying-pitch grating
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Null point 

Fig. 6.16. Signal waveform simulated for the situation of Fig. 6.15

the grating pitch p0. In actual measurements, a point with null visibility is
often unclearly observed in signals due to noise. Therefore, a high SNR in
signal recording and statistical estimation in data processing are required in
applications. It seems rather difficult to fabricate a varying-pitch grating with
the required precision and chirping rate. Michel [62] realized electronically a
grating of this type by using a CMOS spatial filter in which the varying pitch
is flexibly arranged by gradually changing the number of pixel summations in
data processing.

There is another approach with the normal transmission grating having
a constant pitch. The visibility curves in Fig. 2.23 contain certain ranges of
the diameter-to-pitch ratio where the visibility monotonically decreases as the
ratio increases. In these ranges, measurements of the signal visibility provide
a means for particle size determination using a known grating pitch [148], si-
multaneously with velocity sensing. This method has already been introduced
in LDV for the same purpose [149,150]. Using (2.56), for example, a measured
value for the visibility specifies the corresponding value for the argument x of
the Besinc function, J1(x)/x. Then, the particle-image diameter is determined
by the relation of 2πb/p = x. Unfortunately, the measurable range of particle
size with a given grating pitch is rather limited because the diameter-to-pitch
ratio is a multivalued function of visibility over much of the range, as shown
in Fig. 2.23. Particle sizing with the SFV technique assumes the existence of
a single particle in the probe volume. Measurements of many particles may
be possible in some limited cases [148].

6.5.2 Focus Detection

In optical imaging systems, a focusing error increases the size of a particle im-
age and decreases its clearness or sharpness due to blurring of the edge. This
defocusing effect reduces higher frequency components of the image inten-
sity distribution in the spatial frequency domain. Then, the effect degrades
visibility since the relative intensity at the central frequency of the spatial
filter decreases with respect to that of the pedestal component. On the ba-
sis of this nature in the SFV technique, the focus position can be detected
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Fig. 6.17. Measured example of visibility as a function of the plate position shown
by the distance ∆z from the focus plane (from [148], Masson 1990)

by measuring visibility. Tsutsumi [16] found theoretically and experimentally
that searching the maximum average power of the periodic signal component
gives the focusing position for infrared aerial camera systems. The theoretical
investigation [50] was made to derive the optimum spatial filtering character-
istics and to propose the binary checkerboard reticle as a realized example.
Some experiments [23, 148] were performed to describe the effect of focusing
errors on visibility using a glass plate having small particles on the surface in
a microscopic region. Figure 6.17 [148] shows the measured visibility plotted
as a function of the plate position with the distance ∆z from the focus plane.
With an increasing distance ∆z or focusing error, visibility varies and seems
to follow a Besinc function. This result indicates that monitoring the max-
imum visibility gives the focus position of an object being measured at the
same time as the velocity determination.

6.5.3 Distance Measurement

Once the focus position is detected by the above-mentioned method, the dis-
tance from the principal plane of an imaging lens to the plane of a moving
object can be determined by the simple imaging equation (3.3), in which the
distance from the principal plane to the image plane and the focal length
of the lens are assumed known. A more realistic idea [51, 52] is to use a two-
channel imaging system with different magnifications, as depicted in Fig. 6.18.
A half mirror (HM) in an optical imaging system forms images of the moving
object onto the planes of transmission gratings G1 and G2 with magnifications
M1 = b1/(d+a1) and M2 = b2/(d+a2), respectively, in terms of notations in
the figure. When the grating pitches for G1 and G2 are p1 and p2, respectively,
and f1 and f2 are the central frequencies of detector outputs in channels 1
and 2, respectively, the velocity v of the object is expressed as

v =
(d + a1) p1f1

b1
=

(d + a2) p2f2

b2
. (6.4)
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Fig. 6.18. Use of a two-channel imaging system with different magnifications for
distance measurements

From this relation, the velocity v and the distance d from the position of the
half mirror to the object are derived as

v =
(a1 − a2) p1p2f1f2

b1p2f2 − b2p1f1
, (6.5)

d =
a1b2p1f1 − a2b1p2f2

b1p2f2 − b2p1f1
. (6.6)

A simple and practical example is the case of p1 = p2 = p and b1 = b2 = b,
which gives equations

v =
(a1 − a2) pf1f2

b (f2 − f1)
, (6.7)

d =
a1f1 − a2f2

f2 − f1
. (6.8)

Since the distances a1, a2, and b are usually known, measurements of the two
frequencies f1 and f2 provide a simultaneous determination of the velocity and
distance. This method is effective for SFV measurements in remote sensing
such as flying objects and atmospheric observations.

Instead of using an imaging system, this idea can be realized with speckle
translations in two different diffraction planes [151]. The velocity of speckle
motion depends on the distance between a moving object and an observation
plane. By placing the two transmission gratings G1 and G2 in diffraction
planes with different distances from the object, two different-frequency SFV
outputs are obtained, which are used to measure the distance to the object.
The optical system configuration makes measurements independent of the
object’s velocity.
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6.5.4 Displacement Sensing by Speckle

Spatial filtering detection of translational speckles can be used for velocity
measurements, as described in Sect. 6.4.4, and also for other dynamics includ-
ing displacement, deformation, and vibration. When the diffuse object under
the illumination of laser light is subjected to displacement, the speckle pattern
produced by the object is also displaced. Since the displacement is a position
change due to translational motion for a finite time, the definite integral of
the motion velocity determined by SFV measurements gives the displacement.
In practice, however, it is more convenient to count the number k of cycles
in SFV periodic signals after pedestal removal during the displacement. With
the known grating pitch p and imaging magnification M , the displacement
∆s is simply obtained as

∆s =
kp

M
, (6.9)

regardless of the object’s velocity in the displacement. Yamaguchi et al.
[152,153] used this method for their laser speckle strain gauge, in which a pho-
todiode array was used as the spatial filter to realize electronically differential
detection and frequency shifting. They applied the gauge to strain measure-
ments of high-polymer films in various directions under loading and evaluated
their Poisson ratios. This type of displacement sensing can also be applied to
any movement or displacement of linear interference fringes. Then, the SFV
technique is potentially useful for various interferometric measurements such
as length, vibration, temperature [154], and even in Fourier transform spec-
troscopy. Jakobsen et al. [155] applied their lenticular-type spatial filtering
velocimeter to submicron in-plane vibration measurements. In their system,
two differential output signals with a mutual phase shift of π/3 provide the
phase information, which is used for monitoring real-time vibration.

6.6 Related Techniques

This section is devoted to describing some similar velocimetric techniques
that are not usually categorized in spatial filtering velocimetry. There are
possible methods which can make the spatial filtering effect to produce the
same periodic signal as obtained in the SFV technique. They employ a grating-
like illumination, Young’s fringes, and laser diode array, instead of a spatial
filter. Mention should also be made of a modified type of spatial filtering effect
which detects the entire spectral width of frequency components generated by
random motion.

6.6.1 Grating Illumination

When a particle image with constant velocity crosses the lines of a transmis-
sion grating, the intensity of the transmitted light is periodically modulated
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to yield SFV output signals. The same mechanism as this intensity modula-
tion in the image plane is realized in the object plane where a particle with
constant velocity crosses the lines of some types of fringes, but not “Doppler”
interference fringes. Such fringes can be formed in white light by projecting
the image of a transmission grating into the probe volume. Thus, the illu-
mination consists of alternate bright and dark bands. The light scattered by
moving particles shows a periodic intensity modulation and is simply received
by a photodetector without the grating in front, yielding quite the same type
of output signals as in the SFV technique. This method, called the “fringe
image technique,” was first proposed and studied by Ballik and Chan [43].
The scheme of fringes in the probe volume is quite similar to the real-fringe
interpretation of the LDV or the differential LDV technique. Then, stud-
ies [5, 43–45] were mainly comparison with LDV. Geometric light scattering
by particles under grating illumination was theoretically and experimentally
investigated [156–158], aiming at velocity and/or size measurements of bub-
bles and drops in dispersed two-phase flows.

The fringe image technique does not require, in principle, imaging of
particles in front of the photodetector, and the scattered light may straight-
forwardly be received in any direction. The disadvantages of using grating
illumination are that it is difficult to define clearly a depth of the probe vol-
ume and that the line spacing is not consistent over the entire probe volume
due to the imaging properties of grating lines. The fringe image technique is
a type of “active sensing” which means that measurements are made by illu-
minating a target with light. Thus, this technique is unavailable for extremely
small particles in a microscopic region and natural objects on large scales such
as river and ground, since it is practically difficult or impossible to employ
grating illumination.

Chan and Ballik [159] also studied an application of Fourier images to
the formation of real fringes in a probe volume. When a periodic object (e.g.
Ronchi grating) is illuminated by a collimated monochromatic light beam,
Fourier images with spatial periodicity are obtained as a result of Fresnel
diffraction from the periodic object. Thus, the grating-like illumination is re-
alized in the probe volume and used for velocity measurements by the principle
of the fringe image technique. Note that Fresnel diffraction gradually changes
to Fraunhofer diffraction as the object-to-image distance becomes sufficiently
large. The major property of the Fourier image is its wide range in both depth
and cross-sectional area because of Fresnel diffraction. An equivalent illumi-
nation method was used for measuring the velocities of tennis balls and cars
by different researchers [160].

6.6.2 Double-Exposure Specklegram

There is an alternative way to produce fringes in the probe volume. Kadono
et al. [161,162] proposed a velocimeter using a double-exposure specklegram.
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In speckle photography or single beam speckle interferometry [163], a double-
exposure specklegram is made by taking a doubly exposed photograph of two
speckle patterns, one the original and another obtained by shifting the posi-
tion of a recording film with a certain distance. Then, the specklegram has a
number of pairs of two identical speckle grains which act as a double-pinhole
pattern. By illuminating the specklegram with laser light, the diffraction pat-
tern of the specklegram obtained is a form of Young’s fringes in the probe
volume. The intensity of light scattered by particles moving across the fringes
is sinusoidally modulated in the same way as using grating illumination. Re-
ceiving the scattered light produces output signals whose central frequency is
proportional to the moving velocity of the particles.

The spacing of Young’s fringes is flexibly varied by changing the position
of a specklegram placed in the illuminating optical system. It is also easy
to make double-exposure specklegrams in laboratories. A problem with this
method is the speckle noise that is superposed onto Young’s fringes. Speckle
grains in the pattern of Young’s fringes result directly in noise in the output
signals which degrade the quality of sinusoidal waveforms and broaden the
frequency spectrum. To reduce the effect of speckle noise, the fringe spacing
should be sufficiently made larger than the average size of the speckle grains.

6.6.3 Diode Array Velocimetry

A different and more direct way to form a spatially periodic illumination pat-
tern is the use of a laser diode array [164], which generates multiple (four
or more) discrete laser spots separated by short distances (20–100 µm) in the
probe volume. The passing of particles through the multiple spots produces
intensity-modulated periodic signals in the photodetector output. The cen-
tral frequency of the output signals and the separation of laser spots in the
probe volume determine the particle velocity. This technique, discussed un-
der comparison with LDV in aiming at flow velocity measurements, is called
diode array velocimetry (DAV) by the authors. Two basic types of laser
diode arrays are used for this technique: phase-coupled stripe laser diode
and individually addressable laser diode arrays. Although both types have
advantages and disadvantages, the latter type is desirable for applications
due to electric controllability of each of the outputs in the multiple laser
spots.

In comparison with grating illumination or the specklegram, the laser diode
array is attractive in illuminating light power. The Gaussian intensity distrib-
ution of each spot in the probe volume is also advantageous since theoretically
it causes no high-frequency harmonics in output signals. A drawback of this
technique may be difficulty in defining the probe volume. All spots should be
formed in a line in the moving direction of particles. Thus a focusing lens with
high quality is required. A probe volume depth is determined by the focusing
depth of each beam spot and, thus, its clear definition seems difficult.
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6.6.4 Random Pattern Velocimetry

There are modified types of the spatial filter which do not generate a periodic
signal oscillating at a specified central frequency but a random signal having a
range of frequencies from the dc to the cutoff region. In this case, the range of
frequencies is related to an overall estimation of various velocity components
or random motion. Three types of filters have been proposed and studied for
sensing random motions: two-dimensional M-sequence random pattern [107],
randomly distributed multiaperture pattern [165], and photographic speckle
pattern [165].

M-sequence functions can be used for generating pseudorandom vari-
ables [166, 167]. Using M-sequences, a two-dimensional ternary random pat-
tern weighted with three levels of −1, 0, and +1 has been proposed and
realized by a two-dimensional silicon photodiode array as a spatial filtering
detector. Pixels of the detector array are electrically connected to an elec-
tronic circuit via aluminum electrodes and load resistors so that the array
will contain a spatial weight pattern which is predetermined according to a
two-dimensional ternary M-sequence. When the random motion of small ob-
jects such as particles or bacteria is imaged onto the 2-D random pattern
detector, randomly modulated intensity signals are generated by assuming
that the motions of objects are statistically independent of each other. As the
moving velocity of objects increases, frequency components of this modulation
become higher. Thus, the range or spread width of a power spectrum gives a
“mean velocity” or activity of the random motion.

Similar random signals can also be produced by detecting the image of
random motion through a random pattern which has spatially random trans-
mittance. Two examples of the random pattern were studied: a pattern of
randomly distributed multiple apertures and photographic film of a speckle
pattern. Although the above-mentioned three kinds of random patterns are
expressed by functions mathematically different from each other, the principle
of estimating the random motion is the same. Instead of the power spectrum,
the autocorrelation function of output signals is also analyzed for the esti-
mation. To estimate the mean velocity, the average frequency or the cutoff
frequency of the power spectrum and the correlation time of the autocor-
relation function are used. This type of velocimetry is useful for overall or
macroscopic measurements of random movements such as the motion of small
animals and micro organisms such as bacteria, the Brownian motion of
small particles in a liquid, and pedestrian motion on a road.

6.7 Brief Comparison with Laser Doppler Velocimetry

Among optical velocimetric techniques, the SFV technique closely compares
with the differential-type LDV technique due to their similar methods of mea-
surement. The differential-type LDV system is very often interpreted by the
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real fringe model [5], in which the measuring principle seems to be almost the
same as that of the SFV technique. However, note that SFV uses the spatial
filtering effect of moving images whereas LDV is based on the Doppler effect
on laser light scattered by moving objects. The basic operations, for producing
signals, are image detection with a transmission grating in SFV and interfer-
ence with laser light under the coherence condition [5] in LDV. They have
different results in some situations. For example, as the number of scattering
particles approaches infinity such as in a uniform cloud of particles, SFV pro-
duces almost no periodic variation in the intensity of the detected light but
LDV keeps some residue of signals due to the interference of light fields scat-
tered from different particles. LDV periodic signals are sinusoidal, but SFV
signals sometimes contain higher harmonics due to the binary transmittance
of a grating.

Though LDV requires a coherent light source due to the principle, SFV
holds a choice of coherent and incoherent light sources. Focused laser beams
are advantageous for high-intensity illumination but unavailable for large-
angle illumination. For the latter purpose, conventional incoherent light
sources are rather convenient. For SFV, it is possible to select an appropri-
ate light source in accordance with measurement circumstances. Wavelength
fluctuations in the light source are an essential problem with the LDV but are
insignificant for SFV. Because there is no requirement of coherency for the
source, SFV works in a passive mode or a condition with no active illumina-
tion. If a moving object is imaged with a reasonable contrast under natural
light, sunlight, or ambient light, SFV signals are obtained and the velocity is
determined. This is quite different from LDV and makes SFV available for a
wide range of applications.

It is well known that high spatial resolution is one of the useful advantages
of LDV. By using a microscopic imaging system together with a well-designed
focusing depth and a spatial-filter window, SFV may approach the same order
of resolution as LDV. Conversely, for a large probe-sectional area, SFV is eas-
ily available with a telescopic imaging system but LDV has difficulty such as
in high-speed two-dimensional scanning. Theoretical and experimental studies
show that SFV has measuring accuracy comparable with LDV in general cases.
The choice between SFV and LDV for accuracy should be determined by the
objects being measured and the measurement conditions. The quality of imag-
ing is the primary factor for deciding the accuracy of SFV measurements. For
signal processing, there is little difference between SFV and LDV techniques.
In fact, most LDV signal processors can be used straightforwardly for SFV.
However, a wrong choice of processing method causes substantial errors in the
results. Note that different types of signals require different signal-processing
methods.

The most practical advantages of the SFV technique are that the optical
system is simple and mechanically stable and, thus, robust and easy to oper-
ate. The instrumental system is usually inexpensive, and commercialization
is expected without high cost. Although LDV is widely known as the most
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Table 6.1. Comparison of SFV and LDV techniques

SFV LDV

(real-fringe type)

Principle Spatial filtering Doppler effect

Light source Incoherent or coherent Coherent only

Optical system Imaging Interferometry

Requirement Focusing Coherence condition

Basic operation Image detection Interference detection

Sensing scheme Passive or active Active only

Advantages Simple and easy, High spatial resolution

inexpensive,

wide-area probing

Disadvantages Higher harmonics Complicated alignment,

contained skill required

representative optical velocimetric technique, its optical system is relatively
complicated, costly, and sensitive to mechanical disturbance, and the optical
alignment and measuring operation require skill and experience. Many mea-
surements that are conventionally made by LDV may be favorably and more
efficiently done by SFV. There are also many situations where SFV shows bet-
ter performance or LDV is unavailable. Therefore, spatial filtering velocimetry
has enormous potentialities for both laboratory and industry applications in
various fields of science and engineering. Table 6.1 briefly compares the SFV
and LDV techniques in some fundamental items.



A

Fourier Analysis

Fourier analysis is a useful and universal mathematical tool for studies of
linear phenomena and is widely used in science and engineering. This tool is
able to decompose a complicated system input into elementary inputs and to
analyze the total response of the system in terms of a linear combination of
the individual known responses to those inputs.

A.1 Fourier Series

A periodic function f(t) of a period T and a fundamental frequency u0(= 1/T )
is expressed as

f (t) =
a0

2
+

∞∑
n=1

[an cos (2πnu0t) + bn sin (2πnu0t)] , (A.1)

where t is one independent variable and n is an integer, and

an =
2
T

∫ T/2

−T/2

f (t) cos (2πnu0t) dt , n = 0, 1, 2, . . . , (A.2)

bn =
2
T

∫ T/2

−T/2

f (t) sin (2πnu0t) dt , n = 1, 2, 3, . . . . (A.3)

In the expression using a complex-valued function, the above expansion is
written as

f (t) =
∞∑

n=−∞
cn exp (i2πnu0t) , (A.4)

c0 =
a0

2
, (A.5)

cn =
1
T

∫ T/2

−T/2

f (t) exp (−i2πnu0t) dt . (A.6)
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An example of the rectangular function defined by

f (t) =

⎧⎨
⎩A ,

(
n − 1

4

)
T ≤ t ≤

(
n +

1
4

)
T ,

0 , otherwise
(A.7)

is given by

f (t) =
A

2
+

2A

π

·
[
cos (2πu0t) − 1

3
cos (2π3u0t) +

1
5

cos (2π5u0t) − · · ·
]

. (A.8)

A.2 Fourier Transform

The Fourier series expansion of a periodic function can be extended to a non-
periodic function with the operation of the period T → ∞. Here, cn given by
(A.6) is expressed as

cn =
1
T

F (un) , (A.9)

where un = nu0 and

F (un) =
∫ T/2

−T/2

f (t) exp (−i2πunt) dt . (A.10)

Then, (A.4) is rewritten as

f (t) =
∞∑

n=−∞

1
T

F (un) exp (i2πunt) . (A.11)

By making T → ∞ or u0 = 1/T → 0, the discrete variable un = nu0 turns
out to be a continuous frequency u. Thus, (A.10) is converted to

lim
T→∞

F (un) = F (u) =
∫ ∞

−∞
f (t) exp (−i2πut) dt , (A.12)

where F (u) is generally called a frequency (or Fourier) spectrum. By taking
also account of

∑ → ∫
and 1/T = u0 = u/n → du with the operation of

T → ∞, (A.11) is written as

f (t) =
∫ ∞

−∞
F (u) exp (i2πut) du . (A.13)

Equations (A.12) and (A.13) indicate that the spectrum F (u) is the Fourier
transform of the signal f(t) and that f(t) is the inverse Fourier transform of
F (u). It is usually said that the two functions f(t) and F (u) have the relation
of a Fourier transform pair.
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A.3 Two-Dimensional Expression

In various optical phenomena, the propagation of light is naturally treated by
light distributions in space, especially in a plane normal to the optical axis.
Then, Fourier analysis is applied to functions of two independent variables in
optics. The Fourier transform of a complex two-dimensional function f(x, y)
is defined by

F (µ, ν) =
∫∫ ∞

−∞
f (x, y) exp [−i2π (µx + νy)] dxdy , (A.14)

where µ and ν denote frequencies in the space domain (x, y), which are called
spatial frequencies, and F (µ, ν) is a frequency spectrum in two dimensions.
The inverse Fourier transform of the function F (µ, ν) is given by

f (x, y) =
∫∫ ∞

−∞
F (µ, ν) exp [i2π (µx + νy)] dµdν . (A.15)

For a brief discussion of the existence conditions in the above two definitions,
see the book by Goodman [55].

A.4 Fourier Transform Theorems

The definition (A.14) of the Fourier transform gives some useful mathemati-
cal theorems. In the following, the Fourier transform and the inverse Fourier
transform are represented by notations F [· · ·] and F−1[· · ·], respectively.
Also, the Fourier spectra of two-dimensional functions f(x, y) and h(x, y) are
expressed by F (µ, ν) and H(µ, ν), respectively.

1. Fourier integral theorem

FF−1 [f (x, y)] = F−1F [f (x, y)] = f (x, y) . (A.16)

2. Linearity theorem

F [af (x, y) + bh (x, y)] = aF [f (x, y)] + bF [h (x, y)] . (A.17)

The linear combination of functions holds in the transform.
3. Similarity theorem

F [f (ax, by)] =
1

|ab|F
(µ

a
,
ν

b

)
. (A.18)

A stretching of the space coordinates (x, y) leads to a contraction of
the frequency coordinates (µ, ν) with a change in the amplitude of the
spectrum.
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4. Shift theorem

F [f (x − a, y − b)] = exp [−i2π (µa + νb)]F (µ, ν) . (A.19)

Translation of a function in space coordinates introduces a linear phase
shift in its spectrum.

5. Parseval’s theorem∫∫ ∞

−∞
|f (x, y)|2 dxdy =

∫∫ ∞

−∞
|F (µ, ν)|2 dµdν . (A.20)

This theorem presents the conservation of energy, that is, the total en-
ergy of a function in the space domain equals that of its spectrum in the
frequency domain.

6. Convolution theorem The following mathematical operation of two func-
tions f(x, y) and h(x, y)

g (x, y) =
∫∫ ∞

−∞
f (ξ, η) h (x − ξ, y − η) dξdη (A.21)

is generally called a two-dimensional convolution integral [168]. For this
integral, we have the property expressed by

F

[∫∫ ∞

−∞
f (ξ, η) h (x − ξ, y − η) dξdη

]

= F

[∫∫ ∞

−∞
h (ξ, η) f (x − ξ, y − η) dξdη

]
= F (µ, ν) H (µ, ν) . (A.22)

The convolution of two functions in the space domain corresponds to the
simple multiplication of their spectra in the frequency domain. Similarly,

F [f (x, y) h (x, y)] =
∫∫ ∞

−∞
F (α, β) H (µ − α, ν − β) dαdβ . (A.23)

7. Autocorrelation theorem The cross-correlation of two functions f(x, y) and
h(x, y) is defined by [168]

Rc (x, y) =
∫∫ ∞

−∞
f (ξ, η) h∗ (ξ − x, η − y) dξdη

=
∫∫ ∞

−∞
f (ξ + x, η + y) h∗ (ξ, η) dξdη . (A.24)

If h(x, y) = f(x, y), the above equation is written as

Ra (x, y) =
∫∫ ∞

−∞
f (ξ, η) f∗ (ξ − x, η − y) dξdη

=
∫∫ ∞

−∞
f (ξ + x, η + y) f∗ (ξ, η) dξdη . (A.25)
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This integral is called a two-dimensional autocorrelation, and the relation
is as follows:

F

[∫∫ ∞

−∞
f (ξ, η) f∗ (ξ − x, η − y) dξdη

]
= |F (µ, ν)|2 . (A.26)

The Fourier transform of an autocorrelation function results in a power
spectrum, and this theorem is generally known as the Wiener–Khintchine
theorem [168]. Similarly,

F
[
|f (x, y)|2

]
=
∫∫ ∞

−∞
F (α, β) F ∗ (α − µ, β − ν) dαdβ . (A.27)

A.5 Examples of Fourier Transform Pairs

1. Rectangle function and sinc function For the rectangle function, rect(x),
and the sinc function, sinc(x), defined by

rect (x) =

{
1 , −1

2
≤ x ≤ 1

2
,

0 , otherwise,
(A.28)

and
sinc (x) =

sin πx

πx
, (A.29)

we obtain the transform pairs

f (x, y) = rect (x) rect (y) , (A.30)
F [f (x, y)] = sinc (µ) sinc (ν) , (A.31)

and

h (x, y) = sinc (x) sinc (y) , (A.32)
F [h (x, y)] = rect (µ) rect (ν) . (A.33)

2. Dirac delta function

δ (x, y) = lim
k→∞

k2 exp
[−k2π

(
x2 + y2

)]
, (A.34)

F [δ (x, y)] = 1 , (A.35)

and

f (x, y) = 1 , (A.36)
F [f (x, y)] = δ (µ, ν) . (A.37)
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3. Comb function A comb function, comb(x), is defined by

comb (x) =
∞∑

n=−∞
δ (x − n) , (A.38)

and for this function,

f (x, y) = comb (x) comb (y) , (A.39)
F [f (x, y)] = comb (µ) comb (ν) . (A.40)

4. Gauss function

f (x, y) = exp
[−π
(
x2 + y2

)]
, (A.41)

F {f (x, y)} = exp
[−π
(
µ2 + ν2

)]
. (A.42)

5. Circle function A circle function, circ(r), is defined by

circ (r) =
{

1 , r =
√

x2 + y2 ≤ 1,
0 , otherwise,

(A.43)

and for this function,

f (x, y) = circ (r) , (A.44)

F [f (x, y)] =
J1

(
2π
√

µ2 + ν2
)

√
µ2 + ν2

,

=
J1 (2π�)

�
, (A.45)

where J1 is a Bessel function of the first kind, the first order, and

� =
√

µ2 + ν2 . (A.46)
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Power Spectral Density of the Signal

The autocorrelation function R(τx, τy) of the output signal g(xr, yr) given in
(2.1) is written by using formula (A.25) as

R (τx, τy) = E [g (xr + τx, yr + τy) g∗ (xr, yr)]

=
∫∫ ∞

−∞
g (xr + τx, yr + τy) g∗ (xr, yr) dxr dyr . (B.1)

Then, the power spectral density function Gp(µ, ν) of g(xr, yr) is obtained as
the Fourier transform of R(τx, τy) by using the Wiener–Khintchine theorem
of (A.26):

Gp (µ, ν) = |G (µ, ν)|2

=
∫∫ ∞

−∞
R (τx, τy) exp [−i2π (µτx + ντy)] dτx dτy . (B.2)

By using (A.14), the Fourier spectrum G(µ, ν) of the signal g(xr, yr) can be
expressed as

G (µ, ν) =
∫∫ ∞

−∞
g (xr, yr) exp [−i2π (µτx + ντy)] dτx dτy , (B.3)

where the function g(xr, yr) is given by the convolution integral of f(x, y) and
h(x, y), as described in (2.1). By using the convolution theorem of (A.22), the
Fourier spectrum G(µ, ν) is written as

G (µ, ν) = F (µ, ν) H (µ, ν) , (B.4)

where F (µ, ν) and H(µ, ν) are the Fourier spectra of f(x, y) and h(x, y),
respectively. Then, the power spectrum Gp(µ, ν) is expressed by

Gp (µ, ν) = |G (µ, ν)|2
= |F (µ, ν)|2 |H (µ, ν)|2
= Fp (µ, ν) Hp (µ, ν) , (B.5)
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where Fp(µ, ν) and Hp(µ, ν) are the power spectra of f(x, y) and h(x, y) given
by (2.6) and (2.5), respectively. If f(x, y) is a random function, it cannot be
treated as a deterministic variable, and the power spectrum Fp(µ, ν) cannot
be written in (2.6). What makes sense in this case is a statistical property such
as an autocorrelation. The autocorrelation function RF(τx, τy) of the random
process f(x, y) is defined by [54]

RF (τx, τy) = E [f (xr + τx, yr + τy) f∗ (xr, yr)]

= lim
Tx,Ty→∞

1
4TxTy

·
∫ Tx

−Tx

∫ Ty

−Ty

f (xr + τx, yr + τy) f∗ (xr, yr) dxr dyr . (B.6)

Then, the power spectrum Fp(µ, ν) is written, by using the Wiener–Khintchine
theorem, as

Fp (µ, ν) =
∫∫ ∞

−∞
RF (τx, τy) exp [−i2π (µτx + ντy)] dτx dτy

= lim
Tx,Ty→∞

1
4TxTy

·
∣∣∣∣∣
∫ Tx

−Tx

∫ Ty

−Ty

f (x, y) exp [−i2π (µx + νy)] dxdy

∣∣∣∣∣
2

. (B.7)
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Derivation of (2.12)

For the spatial filter shown in Fig. 2.3, the Fourier integral is carried out over
the ranges of 0–X and 0–Y , instead of −X/2 to +X/2 and −Y/2 to +Y/2 for
mathematical simplicity. This change introduces phase shifts but no influence
on the result of the power spectrum |H(µ, ν)|2. The Fourier spectrum H(µ, ν)
is calculated as

H (µ, ν) =
∫∫ ∞

−∞
h (x, y) exp [−i2π (µx + νy)] dxdy

=
∫ Y

0

exp (−i2πνy) dy ·
∫ X

0

h (x) exp (−i2πµx) dx

=
1 − exp (−i2πνY )

i2πν
H (µ) , (C.1)

where

H (µ) =
∫ X

0

h (x) exp (−i2πµx) dx

=
∫ p

0

h (x) exp (−i2πµx) dx +
∫ 2p

p

h (x) exp (−i2πµx) dx

+ · · · +
∫ np

(n−1)p

h (x) exp (−i2πµx) dx , (C.2)

with the use of (2.11). By setting

Hs0 (µ) =
∫ p

0

h (x) exp (−i2πµx) dx , (C.3)

(C.2) becomes

H (µ) = Hs0 (µ) + [exp (−i2πµp)]Hs0 (µ)

+ [exp (−i2πµp)]2 Hs0 (µ) + · · · + [exp (−i2πµp)]n−1
Hs0 (µ)

=
1 − exp (−i2πµnp)
1 − exp (−i2πµp)

Hs0 (µ) , (C.4)
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following the nature of a geometric series. Substitution of (C.4) in (C.1) with
the use of

sin θ =
exp (iθ) − exp (−iθ)

i2
(C.5)

yields

H (µ, ν) =
1 − exp (−i2πνY )

i2πν
· 1 − exp (−i2πµnp)

1 − exp (−i2πµp)
Hs0 (µ)

=
sin πνY

πν
· [exp (−iπνY )] · sin πµnp

sin πµp

· {exp [−iπµ (n − 1) p]}Hs0 (µ) . (C.6)

Then, the power spectrum is expressed by

|H (µ, ν)|2 = H (µ, ν) H∗ (µ, ν)

=
(

sin πνY

πν

)2

·
(

sin πµnp

πµnp

)2

· n2(
sin πµp

πµp

)2 · p2

∣∣∣∣1pHs0 (µ)
∣∣∣∣
2

= X2Y 2

(
sin πνY

πνY

)2

·
(

sin πµX

πµX

)2

·
(

πµp

sin πµp

)2

· |Hs (µ)|2 , (C.7)

where np = X was used and

Hs (µ) =
1
p

∫ p

0

h (x) exp (−i2πµx) dx . (C.8)
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Derivation of (2.20) and (2.21)

For the sinusoidal transmittance h1(x), the integral is performed as follows:

Hs1 (µ) =
1
p

∫ p

0

h1 (x) exp (−i2πµx) dx

=
1
2p

∫ p

0

(
1 + cos

2π

p
x

)
exp (−i2πµx) dx

=
1
2p

∫ p

0

exp (−i2πµx) dx +
1
4p

∫ p

0

exp
[
−i2π

(
µ − 1

p

)
x

]
dx

+
1
4p

∫ p

0

exp
[
−i2π

(
µ +

1
p

)
x

]
dx

=
1
2p

· exp (−i2πµp) − 1
−i2πµ

+
1
2p

exp (−i2πµp) exp (i2π) − 1

−i4π
(

µ − 1
p

)

+
1
2p

exp (−i2πµp) exp (−i2π) − 1

−i4π
(

µ +
1
p

)

=
exp (−i2πµp) − 1

2p

⎡
⎢⎢⎢⎣ 1
−i2πµ

+
−i2πµ

− (2πµ)2 +
(

2π

p

)2

⎤
⎥⎥⎥⎦

=
−i exp (−iπµp)

p
· sin (πµp) · 1

−i2πµ
· 1
1 − µ2p2

, (D.1)

where the relation

cos θ =
exp (iθ) + exp (−iθ)

2
(D.2)

and (C.5) are used. Note also that | exp(i2π)| = | exp(−i2π)| = 1. Then, the
squared absolute of Hs1(µ) is obtained as
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|Hs1 (µ)|2 =
(

sin πµp

πµp

)2 [ 1
2 (1 − µ2p2)

]2
. (D.3)

For the rectangular transmittance h2(x), the integral is simply performed
over the range −p/2 to +p/2.

|Hs2 (µ)|2 =

∣∣∣∣∣1p
∫ p

2

− p
2

h2 (x) exp (−i2πµx) dx

∣∣∣∣∣
2

=

∣∣∣∣∣1p
∫ w

2

−w
2

exp (−i2πµx) dx

∣∣∣∣∣
2

=
∣∣∣∣ 1
πµp

· exp (iπµw) − exp (−iπµw)
i2

∣∣∣∣
2

=
(

sin πµw

πµp

)2

. (D.4)
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Power Spectra for Spatial Filters in Sect. 2.3

E.1 Derivation of (2.24)

H (µ, ν) =
∫ X

2

−X
2

∫ Y
2

−Y
2

1
2

(
1 + cos

2π

p
x

)
exp [−i2π (µx + νy)] dxdy

=
1
2
Iy (Ix1 + Ix2) , (E.1)

where

Iy =
∫ Y

2

−Y
2

exp (−i2πνy) dy = Y · sin πνY

πνY
, (E.2)

and

Ix1 =
∫ X

2

−X
2

exp (−i2πµx) dx = X · sin πµX

πµX
, (E.3)

Ix2 =
∫ X

2

−X
2

cos
2π

p
x · exp (−i2πµx) dx

=
1
2

∫ X
2

−X
2

{
exp
[
−i2π

(
µ − 1

p

)
x

]
− exp

[
−i2π

(
µ +

1
p

)
x

]}
dx

=
X

2

⎡
⎢⎢⎣

sin π

(
µ − 1

p

)
X

π

(
µ − 1

p

)
X

+
sin π

(
µ +

1
p

)
X

π

(
µ +

1
p

)
X

⎤
⎥⎥⎦ . (E.4)

Substitution of (E.2)–(E.4) in (E.1) and taking the squared absolute yield

|H (µ, ν)|2 =
X2Y 2

4
|HY (ν)|2

{
[HX (µ) +

1
2
[
H−

X (µ) + H+
X (µ)

]}2

, (E.5)
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where

HY (ν) =
sin πνY

πνY
,

HX (µ) =
sin πµX

πµX
,

H−
X (µ) =

sin π

(
µ − 1

p

)
X

π

(
µ − 1

p

)
X

,

H+
X (µ) =

sin π

(
µ +

1
p

)
X

π

(
µ +

1
p

)
X

.

E.2 Derivation of (2.30)

H (µ, ν) =
∫∫

x2+y2≤a2

1
2

(
1 + cos

2π

p
x

)
· exp [−i2π (µx + νy)] dxdy . (E.6)

By setting x = r cos φ and y = r sin φ in polar coordinates (r, φ), (E.6) is
written as

H (µ, ν) =
1
2

∫ a

0

∫ 2π

0

exp [−i2πr (µ cos φ + ν sin φ)] r dr dφ

+
1
2

∫ a

0

∫ 2π

0

cos
(

2π

p
r cos φ

)
· exp [−i2πr (µ cos φ + ν sin φ)] r dr dφ

= I1 + I2 . (E.7)

Setting ψ = tan−1(µ/ν) gives the transformation,

µ cos φ + ν sin φ =
√

µ2 + ν2 sin (φ + ψ) = � sin φ′ , (E.8)

where � =
√

µ2 + ν2 and φ′ = φ + ψ . By using the two Bessel-function
identities,

J0 (u) =
1
2π

∫ 2π

0

exp (−iu sin θ) dθ , (E.9)

�J1 (�) =
∫ �

0

uJ0 (u) du , (E.10)
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where J0(u) and J1(�) are Bessel functions of the first kind, zero and first
orders, respectively, the following derivations are obtained:

I1 =
1
2

∫ a

0

∫ 2π+ψ

ψ

exp [−i2πr� sin φ′] r dr dφ′

= π

∫ a

0

J0 (2πr�) r dr

= πa2 J1 (2πa�)
2πa�

. (E.11)

I2 =
1
4

∫ a

0

∫ 2π

0

[
exp
(

i
2π

p
r cos φ

)
+ exp

(
−i

2π

p
r cos φ

)]
· exp [−i2πr� sin (φ + ψ)] r dr dφ

=
1
4

∫ a

0

∫ 2π

0

exp
{
−i2πr

[
� sin (φ + ψ) − 1

p
cos φ

]}
r dr dφ

+
1
4

∫ a

0

∫ 2π

0

exp
{
−i2πr

[
� sin (φ + ψ) +

1
p

cos φ

]}
r dr dφ

= I21 + I22 . (E.12)

I21 =
1
4

∫ a

0

∫ 2π

0

exp [−i2πrC1 sin (φ + Φ1)] r dr dφ , (E.13)

where

C1 =

√
(� cos ψ)2 +

(
� sin ψ − 1

p

)2

=

√(
µ − 1

p

)2

+ ν2 (E.14)

with the use of the relations µ = � sin ψ and ν = � cos ψ, and

Φ1 = tan−1

{
� sin ψ − (1/p)

� cos ψ

}
. (E.15)

In the same way as I21,

I22 =
1
4

∫ a

0

∫ 2π

0

exp [−i2πrC2 sin (φ + Φ2)] r dr dφ , (E.16)

C2 =

√(
µ +

1
p

)2

+ ν2 , (E.17)

Φ2 = tan−1

[
� sin ψ + (1/p)

� cos ψ

]
. (E.18)

Then,

I2 =
1
4

∫ a

0

∫ 2π+Φ1

Φ1

exp (−i2πrC1 sin α1) r dr dα1
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+
1
4

∫ a

0

∫ 2π+Φ2

Φ2

exp (−i2πrC2 sin α2) r dr dα2

=
π

2

∫ a

0

J0 (2πrC1) r dr +
π

2

∫ a

0

J0 (2πrC2) r dr

=
π

2
· a

2πC1
J1 (2πaC1) +

π

2
· a

2πC2
J1 (2πaC2) , (E.19)

where α1 = φ+Φ1 and α2 = φ+Φ2. Finally, the following equation is obtained;

|H (µ, ν)|2 = |I1 + I2|2

= π2a4

{
HJ (µ, ν) +

1
2
[
H−

J (µ, ν) + H+
J (µ, ν)

]}2

, (E.20)

where

HJ (µ, ν) =
J1

(
2πa
√

µ2 + ν2
)

2πa
√

µ2 + ν2
,

H−
J (µ, ν) =

J1

⎡
⎣2πa

√(
µ − 1

p

)2

+ ν2

⎤
⎦

2πa

√(
µ − 1

p

)2

+ ν2

,

H+
J (µ, ν) =

J1

⎡
⎣2πa

√(
µ +

1
p

)2

+ ν2

⎤
⎦

2πa

√(
µ +

1
p

)2

+ ν2

,

E.3 Derivation of (2.34)

H (µ, ν) =
∫∫ ∞

−∞

1
2

exp
(
−x2 + y2

2σ2

)
·
(

1 + cos
2π

p
x

)
· exp [−i2π (µx + νy)] dxdy

=
1
2
Iy (Ix1 + Ix2) , (E.21)

where

Iy =
∫ ∞

−∞
exp
(
− y2

2σ2

)
· exp (−i2πνy) dy ,
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Ix1 =
∫ ∞

−∞
exp
(
− x2

2σ2

)
· exp (−i2πµx) dx ,

Ix2 =
1
2

∫ ∞

−∞

[
exp
(

i
2π

p
x

)
+ exp

(
−i

2π

p
x

)]

· exp
(
− x2

2σ2

)
exp (−i2πµx) dx .

Note that the three integrals Iy, Ix1, and Ix2 above are the Fourier transforms
of Gaussian functions and, then,

Iy =
√

2πσ exp
(−2π2σ2ν2

)
, (E.22)

Ix1 =
√

2πσ exp
(−2π2σ2µ2

)
, (E.23)

Ix2 =
1
2

∫ ∞

−∞
exp
(
− x2

2σ2

)
exp
[
−i2π

(
µ − 1

p

)
x

]
dx

+
1
2

∫ ∞

−∞
exp
(
− x2

2σ2

)
exp
[
−i2π

(
µ +

1
p

)
x

]
dx

=
√

π

2
σ

{
exp

[
−2π2σ2

(
µ − 1

p

)2
]

+ exp

[
−2π2σ2

(
µ +

1
p

)2
]}

.

(E.24)

Finally, the power spectrum is obtained as

|H (µ, ν)|2 = π2σ4

{
HG (µ, ν) +

1
2
[
H−

G (µ, ν) + H+
G (µ, ν)

]}2

, (E.25)

where
HG (µ, ν) = exp

[−2π2σ2
(
µ2 + ν2

)]
,

H−
G (µ, ν) = exp

{
−2π2σ2

[(
µ − 1

p

)2

+ ν2

]}
,

H+
G (µ, ν) = exp

{
−2π2σ2

[(
µ +

1
p

)2

+ ν2

]}
.



F

Derivation of (2.45)

The rotation by an angle θ in the moving direction of the object in Fig. 2.16
can be treated equivalently by rotation of the spatial filter by the same angle
for mathematical simplicity. In this case, the function h(x, y) for the circular
type with sinusoidal transmittance is written, by using (2.44), as

h (x, y) =

⎧⎨
⎩

1
2

{
1 + cos

[
2π

p
(x cos θ + y sin θ)

]}
, x2 + y2 ≤ a2 ,

0 , otherwise.
(F.1)

The power spectrum is, then, written in polar coordinates (r, φ) as

H (µ, ν) =
1
2

∫ a

0

∫ 2π

0

{
1 + cos

[
2πr

p
(cos φ cos θ + sin φ sin θ)

]}
· exp [−i2πr (µ cos φ + ν sin φ)] r dr dφ

= I1 + I+
2 + I−2 , (F.2)

where

I1 =
1
2

∫ a

0

∫ 2π

0

exp [−i2πr (µ cos φ + ν sin φ)] r dr dφ ,

I+
2 =

1
4

∫ a

0

∫ 2π

0

E+ exp
[
−i2πr

√
µ2 + ν2

]
sin (φ + ψ) r dr dφ ,

I−2 =
1
4

∫ a

0

∫ 2π

0

E− exp
[
−i2πr

√
µ2 + ν2

]
sin (φ + ψ) r dr dφ ,

and

E+ = exp
[
i
2πr

p
(cos φ cos θ + sin φ sin θ)

]
,

E− = exp
[
−i

2πr

p
(cos φ cos θ + sin φ sin θ)

]
.
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In the above derivation, (E.8) has been used. The integral I1 above is identical
to I1 in (E.7) and, thus,

I1 = πa2
J1

(
2πa
√

µ2 + ν2
)

2πa
√

µ2 + ν2
. (F.3)

On the other hand,

I+
2 =

1
4

∫ a

0

∫ 2π

0

exp
{
−i2πr

[
� sin (φ + ψ) − 1

p
cos (φ − θ)

]}
r dr dφ

=
1
4

∫ a

0

∫ 2π

0

exp
[
−i2πr

√
A2 + B2 sin (φ + Φ)

]
r dr dφ

=
πa2

4
· 2J1

(
2πa

√
A2 + B2

)
2πa

√
A2 + B2

, (F.4)

and

I−2 =
1
4

∫ a

0

∫ 2π

0

exp
{
−i2πr

[
� sin (φ + ψ) +

1
p

cos (φ − θ)
]}

r dr dφ

=
1
4

∫ a

0

∫ 2π

0

exp
[
−i2πr

√
A′2 + B′2 sin (φ + Φ′)

]
r dr dφ

=
πa2

4
·
2J1

(
2πa
√

A′2 + B′2
)

2πa
√

A′2 + B′2
. (F.5)

Thus,

I+
2 + I−2 =

πa2

4

⎡
⎣2J1

(
2πa

√
A2 + B2

)
2πa

√
A2 + B2

+
2J1

(
2πa
√

A′2 + B′2
)

2πa
√

A′2 + B′2

⎤
⎦ , (F.6)

where

A = � cos ψ − 1
p

sin θ , (F.7)

A′ = � cos ψ +
1
p

sin θ , (F.8)

B = � sin ψ − 1
p

cos θ , (F.9)

B′ = � sin ψ +
1
p

cos θ , (F.10)

� =
√

µ2 + ν2 ,

Φ = tan−1 B

A
,

Φ′ = tan−1 B′

A′ .
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Use of (F.7)–(F.10) yields

A2 + B2 =
(

µ − cos θ

p

)2

+
(

ν − sin θ

p

)2

, (F.11)

A′2 + B′2 =
(

µ +
cos θ

p

)2

+
(

ν +
sin θ

p

)2

. (F.12)

Finally, the power spectrum is derived as

|H (µ, ν)|2 = π2a4

{
HJ (µ, ν) +

1
2
[
H−

Jθ (µ, ν) + H+
Jθ (µ, ν)

]}2

, (F.13)

where

HJ (µ, ν) =
J1

(
2πa
√

µ2 + ν2
)

2πa
√

µ2 + ν2
,

H−
Jθ (µ, ν) =

J1

⎡
⎣2πa

√(
µ − cos θ

p

)2

+
(

ν − sin θ

p

)2
⎤
⎦

2πa

√(
µ − cos θ

p

)2

+
(

ν − sin θ

p

)2
,

H+
Jθ (µ, ν) =

J1

⎡
⎣2πa

√(
µ +

cos θ

p

)2

+
(

ν +
sin θ

p

)2
⎤
⎦

2πa

√(
µ +

cos θ

p

)2

+
(

ν +
sin θ

p

)2
.



G

One-Dimensional Power Spectrum of the Signal

With reference to the derivation of (2.34) in Appendix E.3, the one-dimensional
power spectrum Hp(µ) = |H(µ)|2 of the spatial filter is derived as

Hp (µ) =
πσ2

2

{
HG (µ) +

1
2
[
H−

G (µ) + H+
G (µ)

]}2

, (G.1)

where
HG (µ) = exp

(−2π2σ2µ2
)

,

H−
G (µ) = exp

[
−2π2σ2

(
µ − 1

p

)2
]

,

H+
G (µ) = exp

[
−2π2σ2

(
µ +

1
p

)2
]

.

Then, the power spectrum Gp(µ) is derived with (2.50) as

Gp(µ) = Hp(µ)Fp(µ)

=
πσ2

2
[G1 + G2 + G3] , (G.2)

where

G1 =
[
1 +

1
2

exp
(
−4π2σ2

p2

)]
exp
(−c2µ2

)
,

G2 = E2

{
exp

[
−c2

(
µ − d2

2p

)2
]

+ exp

[
−c2

(
µ +

d2

2p

)2
]}

,

G3 = E3

{
exp

[
−c2

(
µ − d2

p

)2
]

+ exp

[
−c2

(
µ +

d2

p

)2
]}

,

and
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E2 = exp
[
−π2σ2

p2

(
2 − d2

)]
,

E3 =
1
4

exp
[
−4π2σ2

p2

(
1 − d2

)]
,

c2 = 4π2
(
b2
g + σ2

)
, (G.3)

d2 =
σ2

b2
g + σ2

. (G.4)

In (G.2), the following two terms become sufficiently small in comparison with
unity for usual spatial filters:

1
2

exp
(
−4π2σ2

p2

)

and

exp
[
−π2σ2

p2

(
2 − d2

)]
.

Then, Gp(µ) is derived approximately as

Gp(µ) � πσ2

2
exp
[−4π2

(
b2
g + σ2

)
µ2
]

+
πσ2

8
exp
[
−4π2σ2

p2

(
1 − σ2

b2
g + σ2

)] (
G−

p + G+
p

)
, (G.5)

where

G−
p = exp

[
−4π2

(
b2
g + σ2

)(
µ − 1

p
· σ2

b2
g + σ2

)2
]

,

G+
p = exp

[
−4π2

(
b2
g + σ2

)(
µ +

1
p
· σ2

b2
g + σ2

)2
]

.

The central frequency of the signal component is obtained from the above
equation as

µ = ±1
p
· σ2

b2
g + σ2

= ±1
p
·

4σ2

p2

4b2
g

p2
+

4σ2

p2

= ±1
p
· n2(

2bg

p

)2

+ n2

. (G.6)



H

Derivation of Output Signals for Visibility
Analysis

For mathematical simplicity, the convolution integral of (2.1) is performed in
a modified manner as

g (t) =
∫∫ ∞

−∞
f (x, y) h (x − vxt, y) dxdy . (H.1)

This modification makes no change in the results in the expression of output
signals due to the relative displacement between f(x, y) and h(x, y) in the
convolution integral.

H.1 Derivation of (2.55)

Use of (2.53) and (2.54) in (H.1) and conversion of the result into polar coor-
dinates (r, φ) yield

g (t) =
∫∫

x2+y2≤b2

I0

2

{
1 + cos

[
2π

p
(x − vxt)

]}
dxdy

=
I0

2

∫ b

0

∫ 2π

0

r dr dφ

+
I0

2

∫ b

0

∫ 2π

0

r cos
[
2π

p
(r cos φ − vxt)

]
dr dφ

= I1 + I2 , (H.2)

where

I1 =
I0

2

∫ b

0

∫ 2π

0

r dr dφ =
I0b

2

4

∫ 2π

0

dφ =
I0πb2

2
, (H.3)

and

I2 =
I0

2

∫ b

0

∫ 2π

0

r cos
[
2π

p
(r cos φ − vxt)

]
r dr dφ

= I2c + I2s , (H.4)
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where

I2c =
I0

2
cos
(

2πvx

p
t

)
·
∫ b

0

∫ 2π

0

r cos
(

2π

p
r cos φ

)
dr dφ ,

I2s =
I0

2
sin
(

2πvx

p
t

)
·
∫ b

0

∫ 2π

0

r sin
(

2π

p
r cos φ

)
dr dφ .

With the use of the Bessel function’s formulas∫ 2π

0

cos (t cos φ) dφ = 2πJ0 (t) , (H.5)
∫ 2π

0

sin (t cos φ) dφ = 0 , (H.6)

the integral I2 is written as

I2 =
I0

2
cos
(

2πvx

p
t

)
·
∫ b

0

2πrJ0

(
2πr

p

)
dr + 0

=
I0

2
cos
(

2πvx

p
t

)
· 2πb2

J1

(
2πb

p

)
2πb

p

, (H.7)

where the relation of (E.10) has been used. Then, the output signal is derived
as

g (t) =
I0πb2

2

⎡
⎢⎢⎣1 +

2J1

(
2πb

p

)
2πb

p

cos
(

2πvx

p
t

)⎤⎥⎥⎦ . (H.8)

For a rectangular-transmittance filter, the same procedure as above can
be applied to each of the fundamental and higher harmonic cosine functions
of h(x, y);

h (x, y) =
1
2

+
∞∑

m=1

(−1)m−1 2
(2m − 1) π

cos
[
2 (2m − 1) π

p
x

]
. (H.9)

Then, (2.57) is simply derived.

H.2 Derivation of (2.59)

Using the expression for f(x, y) as

f (x, y) = I0 exp
(
−x2 + y2

2b2
g

)
, (H.10)
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g (t) =
I0

2

∫∫ ∞

−∞

{
1 + cos

[
2π

p
(x − vxt)

]}
exp
(
−x2 + y2

2b2
g

)
dxdy

= I1 + I2 , (H.11)

where

I1 =
I0

2

∫ ∞

−∞
exp
(
− x2

2b2
g

)
dx ·
∫ ∞

−∞
exp
(
− y2

2b2
g

)
dy

= I0πb2
g , (H.12)

I2 =
I0

2

∫ ∞

−∞
cos
[
2π

p
(x − vxt)

]
exp
(
− x2

2b2
g

)
dx ·
∫ ∞

−∞
exp
(
− y2

2b2
g

)
dy

=
I0bg

√
π√

2

∫ ∞

−∞
cos
[
2π

p
(x − vxt)

]
exp
(
− x2

2b2
g

)
dx

=
I0bg

√
π√

2
· 1
2

exp
(

i
2πvx

p
t

)∫ ∞

−∞
exp
(
− x2

2b2
g

)
exp
(
−i

2π

p
x

)
dx

+
I0bg

√
π√

2
· 1
2

exp
(
−i

2πvx

p
t

)∫ ∞

−∞
exp
(
− x2

2b2
g

)
exp
(

i
2π

p
x

)
dx

=
I0bg

√
π√

2

[
1
2

exp
(

i
2πvx

p
t

)
+

1
2

exp
(
−i

2πvx

p
t

)]

·
√

2πbg exp

(
−2π2b2

g

p2

)

= I0πb2
g cos

(
2πvx

p
t

)
· exp

(
−2π2b2

g

p2

)
. (H.13)

Finally, the output signal is obtained as

g (t) = I0πb2
g

[
1 + exp

(
−2π2b2

g

p2

)
cos
(

2πvx

p
t

)]
. (H.14)

By applying the above procedure to the rectangular-transmittace filter given
by (H.9), (2.61) can be obtained.
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Abbe’s number, 59
Abbe’s sine condition, 57
aberration, 141
accuracy, 26, 33, 140
Airy disk, 48, 55
ambiguity broadening, 140
ambiguity noise, 70
analytic signal, 86, 99, 106, 111, 117,

130
area sensor, 127
autocorrelation, 177
autocorrelation function, 10, 44, 80, 83,

170, 177, 179
autodyne, 76
avalanche photodiode (APD), 84

bacteria, 170
basic operation, 5
basic optical system, 5
Bessel function, 21, 38, 178, 187
Bessel function’s formulas, 198
Bessel-function identities, 186
biological sample, 161
blood flow velocity, 148
boiling, 45
burst, 70, 77

CCD line sensor, 126
CCD linear sensor, 151
central frequency, 26, 27, 30, 34, 80,

122, 140, 196
chromatic aberration, 58
cinematography, 2
circle of least confusion, 57

circular aperture, 32
circular image, 37
circular type, 20, 25, 27, 29, 34, 92, 95
circular window, 20, 23, 32, 62
clipping level, 84
cloud of particles, 43
CMOS spatial filter, 164
coherent illumination, 65
coherent imaging system, 53
coherent transfer function (CTF), 54
common objects, 158
comparison with LDV, 170
complex Fourier transform, 99
computer image processing, 133, 151,

154
contrast, 35, 42, 44, 51, 60, 65, 141
convolution, 49, 53
convolution integral, 10, 176
convolution theorem, 11, 176
correlation function, 11
correlation length, 44, 140
correlation time, 81
cross-correlation method, 2
cutoff frequency, 54, 91, 142
cylinder grating, 96

dark current noise, 84
dark-field illumination, 63
dc component, 35, 42, 43, 91
debris flow, 154
defocus, 141
depth of field, 62
detector type, 120, 124, 127
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deviation error, 27, 30
differential detection, 91, 126
differential type, 115
differential-type LDV, 6
diode array velocimetry, 169
direction of grating lines, 29
directional ambiguity, 105
directional discrimination, 94, 97, 102,

105, 110, 116, 125, 130
discrete Fourier transform (DFT), 73
disk grating, 96, 147, 149
displacement sensing, 167
distance measurement, 165
distortion, 58
double-exposure specklegram, 168
dropout, 71, 76

electric high-pass filter (HPF), 23, 28,
30, 90

electronic spatial filter, 129
electrophoretic mobility, 146
ensemble average, 44
ergodic process, 10

F -number, 48
fast Fourier transform (FFT), 71, 72, 83
fiber array, 149, 154, 162
filter bank, 72
filter window, 32, 140
flow direction, 94, 147
flow velocity, 141, 143
flow velocity distribution, 144
focus detection, 164
focusing depth, 40, 60
focusing error, 40, 60
focusing position, 40
Fourier series, 20, 173
Fourier spectrum, 11, 174
Fourier transform, 11, 14, 53, 83, 84,

174
Fourier-transform plane, 67
frequency counter, 77
frequency deviation, 27, 35
frequency discriminator, 75, 96
frequency scanning, 71
frequency shifting, 94, 102, 112, 119,

130
frequency spectrum, 174
frequency tracker, 75

frequency tracking, 75, 76
fringe image technique, 168
fundamental peaks, 23
fundamental spatial frequency, 27

Gauss function, 178
Gaussian aperture, 32
Gaussian distribution, 51
Gaussian form, 35
Gaussian function, 189
Gaussian intensity profile, 38
Gaussian type, 22, 24, 26, 27, 35
Gaussian window, 32
geometric optics approximation, 40
grating illumination, 167
grating line interval, 45
grating pitch, 140

half-value full width, 25
herringbone alignment, 101
herringbone array, 122
higher frequency components, 23
Hilbert transform pair, 131

image contrast, 68
image fiber bundle, 147
image intensity distribution, 10
image quality, 57
image sensor, 127
image-tracing technique, 2
impulse response, 10
incoherent illumination, 65
incoherent imaging system, 53
instantaneous frequency, 106, 111, 131
integrated solar cell array, 120
interferometric measurement, 167
intermittent signal, 70, 77, 80, 85
interval, 14
interval of grating lines, 33
inverse Fourier transform, 175

Köhler illumination, 64

laser diode array, 169
laser Doppler velocimetry (LDV), 2
laser speckle photography, 3
laser speckle velocimeter, 161
laser speckle velocimetry (LSV), 3
lateral magnification, 62
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lens aberration, 56
lenticular grating, 107, 162
lenticular type, 167
line sensor, 124
linear filter, 12, 53
linear photodiode array, 124, 161
linearity, 142
liquid crystal cell array, 117
liquid crystal spatial filter, 153
longitudinal magnification, 63
low-pass filtering, 14

M-sequence random pattern, 170
maximum entropy method (MEM), 74,

135, 154
micromachine, 161
microorganisms, 170
microscopic region, 143, 151
mirror grating, 107
modulation index, 52
modulation transfer function (MTF), 53
moving direction, 29, 94, 99, 106, 117,

125
moving grating, 112, 130
multiaperture pattern, 170
multichannel filter, 72

narrow-band-pass spatial filtering, 12
natural scene, 45
negative transmittance, 129
number of grating lines, 23, 25, 27, 32,

33, 35, 78, 109, 129, 140

optical manipulation, 161
optical transfer function (OTF), 53

parallel slits, 13
parallel-slit reticle, 87, 120
paraxial approximation, 47, 60
particle concentration, 43, 70, 146
particle image size, 39
particle image velocimetry (PIV), 2, 64
particle size, 35, 39, 42
particle sizing, 163
pedestal, 17, 23, 27, 30, 89, 105, 107,

115, 121, 125, 129
period, 13
periodic signal component, 23
periodic transmittance, 12, 13

periodicity, 14
phase shifting, 97, 105, 112, 129
phase transfer function (PTF), 53
phase-orthogonal signal, 86, 106
photodiode array, 167
photon correlation, 83
pixel binning, 127
point spread, 39, 48, 62
point spread function, 48, 53
polarizing filter, 68
power spectral density function, 11
prediction-error filter, 75
primary aberration, 57
prism grating, 104
probe cross-sectional area, 101
probe volume, 61, 64
probe volume depth, 63, 64
production process, 159
pulse height analyzer, 79, 84
pulse height discriminator, 84
pupil function, 53

radial-type solar cell array, 121
random motion, 170
random pattern, 170
random phase broadening, 141
Rayleigh criterion, 48, 55
rectangular aperture, 32
rectangular transmittance, 15, 19, 32,

38, 184
rectangular type, 13, 18, 26, 28
rectangular window, 13, 32
remote sensing, 158
resolution, 56, 142
resolution limit, 55
resolving power, 55
river flow, 153
road surface, 156
Ronchi grating, 87, 144
Ronchi ruling, 32, 87
rotating velocity, 121, 160
rough surface, 44

scattering particles, 34
Seidel’s five aberrations, 57
selectivity, 14, 23, 26, 31, 33
side illumination, 64
signal quality, 44
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signal-to-noise ratio, 39, 42, 43, 45, 60,
69, 80, 85, 141

sinc function, 14, 110, 177
sinusoidal transmittance, 15, 18, 25, 32,

37, 92, 95, 129, 133, 183
slit width, 16, 106
spatial filtering characteristics, 24, 29
spatial filtering effect, 10
spatial frequency, 11, 52, 175
spatial frequency domain, 11
spatial resolution, 32, 62, 142
specific bandwidth, 25, 31, 33
speckle, 161
speckle contrast, 45
speckle pattern, 45, 70
speckle size, 45
spectral bandwidth, 25
spectral broadening, 46, 70, 90, 140
spectrum analysis, 71
spectrum analyzer, 73
spectrum analyzers, 71
spectrum broadening, 31
specular reflection, 65
spherical scattering particle, 40
strain gauge, 167

temporal frequency domain, 30
temporal power spectrum, 12
temporal resolution, 129, 142
terrain image, 45, 154
time domain, 12

time-of-flight method, 2
transfer function, 51
transit time, 70, 81, 140
transit time broadening, 140
translation, 45
translational speckles, 124, 166, 167
transmission grating, 18, 87, 161
transmission grating velocimeter, 143,

159
transmission grating velocimetry, 151
transmittance, 10, 11
transmittance function, 13, 18, 32
two-dimensional array, 123
two-dimensional measurement, 100,

112, 116, 120
two-dimensional vector, 147

variable-pitch grating, 163
vehicle speed, 155
velocity fluctuation, 79, 85
velocity gradient, 151
vibration measurement, 167
visibility, 35, 42, 55, 67, 109, 140, 163,

164
voltage-controlled oscillator (VCO), 75

wave-period measurement, 78, 98
Wiener–Khintchine theorem, 83, 177

Young’s fringes, 169

zero crossing, 77, 80
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