
Michał Śmiałek · Wiktor Nowakowski

From Requirements
to Java in a Snap
Model-Driven Requirements Engineering
in Practice

From Requirements to Java in a Snap

Michał Śmiałek • Wiktor Nowakowski

From Requirements
to Java in a Snap
Model-Driven Requirements Engineering
in Practice

123

Michał Śmiałek
Warsaw University of Technology
Warsaw
Poland

Wiktor Nowakowski
Warsaw University of Technology
Warsaw
Poland

ISBN 978-3-319-12837-5 ISBN 978-3-319-12838-2 (eBook)
DOI 10.1007/978-3-319-12838-2

Library of Congress Control Number: 2014955320

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

To Maria and Mieczysław who helped
to choose the right path, and to Grażyna,
Magda, Zosia and Wojtek who constantly
motivate to keep the right path.

—Michał Śmiałek

To my wife and children for being the true joy
of life.

—Wiktor Nowakowski

Foreword by Juan Llorens

Dear candidate reader, it is simple: read this book! As I am not the author, my duty
when writing these words is to describe the impressions I got when I read the
manuscript. And I have discovered that I have many positive impressions.

Software engineering is—slowly but steadily—converging with the rest of the
domain-specific “engineerings” (civil, industrial, aero-space, etc.). The convergence
is, of course, not based on the variability of the different domains, but on the
commonalty of the engineering processes applied to all of them. Even if it seems to
be a straightforward assertion, information systems are starting to be considered as
key elements within the other engineering disciplines. We can find large software
components in contemporary complex technical systems like aircrafts, trains, cars
or medical devices. The influence of software engineering in the development of
such systems is becoming clearer daily. The new standards for system development
and management include now the fundamentals of software engineering: separate
the problem from the solution, and test the solution with the needs described by the
problem statement.

More and more, engineering disciplines start to understand that in order to
develop a system (including information systems) it is necessary to declare and
describe what the stakeholder needs are. These needs allow to define stakeholder
requirements, which are turned into system requirements. And system requirements
are the basis for subsystem requirements. This decomposition in the specification
process should end only when the complexity of the system is properly “tamed”.

Thus: requirements, requirements and more requirements. They have to be
fulfilled by tracing them into design artefacts and code (in case of software); they
must satisfy higher level requirements; they must be verified from the product side;
they must be used for validation; they must be the means for certification purposes;
and, of course, they must be used to communicate humans with humans during the
software and system engineering life-cycle stages. Everything starts, and conse-
quently ends, in requirements.

On the other hand, it seems to be trendy in some sectors of the Software
Engineering community to attempt at producing software products by exclusively
applying models and model transformations. For its proponents, Model-Driven

vii

Engineering (MDE) seems to become equivalent with the whole Software Engi-
neering. Some want to define the silver bullet for modern software development by
drawing graphical models, assuming that smart computers will produce exactly the
software the customer wants. The real issue, the real problem, is to include
requirements in this trend of model-based Software Engineering. MDE offers real
benefits to increase traceability, quality control, defect reduction and explicit
automation, but still calls for requirements to properly define needs, capabilities,
operations, properties and restrictions.

This book deals with one of the real problems of today: how to apply require-
ments-based Software Engineering while not forgetting MDE. This is called Model-
Driven Requirements Engineering. Until now, requirements engineering has always
been outside the kernel of application for MDE; it was, perhaps, too complicated to
connect both worlds. But now, this book really contributes to change this situation,
by describing and presenting a clear methodology to tackle the problem. The
methodology includes definition of a process, concrete methods, technology and
also tools. This book has the attributes to offer a solution to existing problems under
research today, particularly regarding the integration of requirements engineering
within the discipline of automated software engineering.

Long live executable requirements, and enjoy your reading!

Madrid, September 2014 Juan Llorens, Ph.D.
Professor, Universidad Carlos III de Madrid

CTO, The REUSE Company
Technical Director, NCOSE Spanish Chapter

viii Foreword by Juan Llorens

Foreword by Audris Kalnins

Model-Driven Software Development (MDSD) is at crossroads now. In recent
years, the question asked at many major software engineering events is whether
MDSD—started in 2001 as Model-Driven Architecture (MDA)—has reached its
goals in providing a new road for industrial software development. The answer is
typically mixed—success stories are contrasted with observations that MDSD is
predominantly ignored by practitioners. This leads to tendencies to change the form
in which MDSD is practiced. The classical form of MDSD is a successive chain of
models, mainly in standard UML, finally leading to the system code. Intermediate
models are improved manually, which causes model synchronisation problems and
is seen as a key obstacle. In many successful cases, this form has given way to
approaches that use model-based Domain Specific Languages (DSL). DSLs with
their “one-stop” approach from initial model to the system code seem to have more
chance to be accepted in practice.

Fresh ideas in the area are sought eagerly—how to really proceed further. In that
sense, the book proposed by Michał Śmiałek is a real breakthrough. It originates in
the ReDSeeDS project, where the main innovative aspect was the introduction of a
suitable content for the first model in the MDSD chain—the CIM model. Specif-
ically, this involves requirements specified as use case models, refined with sce-
narios written in controlled natural language and linked to the conceptual data
model of the system to be built.

Now, in the book, this idea has reached its coherent and complete form. It offers
a consistent language RSL for requirements specification, which can be applied in
classical MDSD approach, or more precisely, in the step of Model-Driven
Requirements Engineering (MDRE). However, at the same time, this language can
be treated as a DSL. The book presents methods to transform automatically code for
the application layers from precise requirements. The language thus serves as a
broad domain-universal DSL for typical web-based systems—more precisely, for
the whole user-system interaction control aspects to be implemented in the Con-
troller layer of the MVC design pattern (or Presenter in the MVP pattern). RSL
covers also the basic elements of the screen forms (View in MVC) which then can
be extended for a specific framework. In addition, the language can easily be

ix

combined with a narrow-domain DSL for describing also the data processing
aspects of the system (Model in MVC), thus enabling complete code generation for
the system. As a result, the book is a very promising further development of the
ReDSeeDS project, initiated by Michał Śmiałek, where me and my colleagues
participated so enthusiastically.

Another especially interesting aspect of the book is the use of MOLA model
transformation language developed at the IMCS University of Latvia. The language
was intensively used throughout the ReDSeeDS project which was one of its major
use cases. Now, the book shows how to apply MOLA (and other similar languages)
to obtain even more interesting results than were achieved in ReDSeeDS: genera-
tion of Java code directly from RSL models. By presenting extensive and detailed
examples, the book can also very well play the role of a MOLA textbook. The
language is explained so clearly and precisely—all this based on M. Śmiałek’s
significant experience as an educator in the area of software development.

Riga, September 2014 Audris Kalnins, Ph.D.
Senior Researcher, IMCS University of Latvia

x Foreword by Audris Kalnins

Preface

Back in 1988, Gerald M. Weinberg, in his seminal book “Understanding the
Professional Programmer” [180] has formulated the following statement:
“…programming computers is by far the hardest intellectual task that human beings
have ever tried to do. Ever.” We can discuss this statement and argue with it but we
have to admit that software development is an extremely complex task, and this is
so for various reasons. Probably the most concise summary of these reasons was
given by Fred Brooks in his famous essay “No Silver Bullet” [26]. He has pointed
out that software is composed of two types of complexity: essential and accidental.
The essential aspect is inherent for the problem at hand and cannot be reduced. This
complexity has to “be there” in software so that it would be able to solve the actual
problem. The accidental aspect is associated with the computer technology and
includes things like programming language constructs, distributed calls, middle-
ware, UI technologies and so on. This kind of complexity resides within the soft-
ware systems due to the complexity of computer technologies themselves.

The general diagnosis might be that “it has to be complex and we cannot do
anything about it”. Or maybe we can? We certainly cannot reduce the essential
complexity, because the reality is complex and we need to solve complex problems
in our reality. However, what we can try to do is to “tame” the accidental com-
plexity, or more specifically—hide this complexity from the software developers.
How could this be done? The first step would be to define ways of specifying
precisely the essence of the solution to the problem at hand. The second step would
be to build programs that would transform this essence into a working software
system. The more we automate this transformation, the better we hide the accidental
complexity…

It can be noted that the essential complexity of software is closely related to
requirements for software. Requirements define the problem to be solved but often—
at a more detailed level—they also offer essential descriptions of this problem’s
solution. Let us assume that we have a notation that can describe the various aspects
of the essential solution with “high precision” (whatever this means). With enough
precision we would have the potential to transform these detailed requirements

xi

descriptions automatically into executable artefacts. In other words: we elaborate
requirements with fine precision, and in a “snap” we obtain working code.

This scenario has one important obstacle: we somehow need to cater for the
accidental complexity. To implement the “snap” we immediately face the question
of where this complexity goes. For hints on answering to this question we can refer
to the bygone era of the domination of assembly language programming. Assembly
language programmers needed to deal with the complexity of computer architec-
tures which included such elements like processor registers, arithmetic logic units,
memory locations and so on. This complexity was abstracted away with the advent
of Third Generation Languages (3GLs) like FORTRAN, Algol, Pascal, and later—
Java or C#. Compilers for such languages contain specific rules that are “injected”
into the 3GL code to produce equivalent assembly and machine code. By analogy,
we can thus imagine “injecting” technology-related aspects during transformation
from requirements into more detailed software artifacts and finally—executable
code.

The process of translating from a 3GL code to assembly/machine code (or other
executable code) through a compiler, is completely automatic. What is more, we
can also apply automatic translation (transformation) to higher-level artefacts, like
design specifications. The main idea is to be able to create precise artefacts (models)
at certain levels of abstraction (or: complexity) and transform them to artefacts
(models) that are more detailed and complex, which finally includes also code. This
idea was formally formulated around the year 2000 and led to the concept known as
Model-Driven Architecture (MDA) [111]. Later, somewhat more general names of
Model-Driven Software Development (MDSD) and Model-Driven Software
Engineering (MDSE) emerged. Currently, this concept can certainly claim maturity
with more and more tools supporting it.

Still, it has to be noted that practically all the tools concentrate on transforma-
tions between various design-level models and generating code from these design
models. Moreover, these transformations have to be interlaced with manual inter-
ventions of software developers. For example, high-level architectural models
cannot be translated directly into code. They need to be transformed into detailed
design models and then adapted manually to cater for certain aspects not covered by
the automatic transformation engines. Only then can they be transformed into code,
which can be compiled and executed.

Can the model-driven concepts be extended onto requirements? Requirements
are usually seen as much less subject to formalization and thus not really suitable
for model transformation. Despite this, recently a new area of MDSD has emerged
in the form of Model-Driven Requirements Engineering (MDRE). It concentrates
on defining ways to formulate requirements as precise models and transforming
these models into various more detailed models with technology details “injected”
(design models, test models, etc.). It can be noted that the ultimate goal would be to
be able to transform requirements directly and automatically to executable code.
Though the question arises whether we can make requirements precise enough to
reach this goal, yet retaining their comprehension by customers…

xii Preface

Purpose and Scope

There are many books that deal with issues of requirements engineering and the role
of requirements in the software engineering process [5, 13, 32, 93, 130, 136, 164, 173,
183]. Most of these books concentrate on eliciting and formulating requirements of
good quality (unambiguous, consistent, understandable, complete, verifiable,…).
Some of the books propose to use modelling notations like use case models, class
models or data flow models. Such requirements are then placed within a process in
which requirements are the basis for implementing a software system.

Furthermore, there are also several books on Model-Driven Software Devel-
opment/Engineering (MDSD/E) [18, 25, 66, 92, 106, 127, 167, 178]. These books
concentrate on defining models and transformations between them. This includes
explaining the precise meaning of models (semantics) and using this meaning to
develop automatic transformations to other, more precise models. These transfor-
mations are usually performed using various model transformation languages.
Some of the books present ways to define new modelling languages that can be
used to formulate problems in a specific domain. This particular area of MDSD is
called Software Language Engineering (SLE) [91].

This book is meant to provide the reader with a coherent approach to combine
both of the above worlds [187]. It presents systematic treatment of requirements
within the realm of modelling and model transformations [102], i.e. Model-Driven
Requirements Engineering. What is important as the aim of the book is to treat
MDRE as comprehensively as possible. The basic assumption in this comprehen-
sive treatment is that detailed requirements models are used as first-class artefacts
playing a direct role in constructing software. For this purpose, the book presents
the Requirements Specification Language (RSL) that enables precision and for-
mality, at the same time retaining end-user comprehensibility. This is important for
typical requirements engineering tasks like requirements elicitation, formulation
and usage.

In the book, we assume that requirements engineers use typical ways to elicit
requirements from the users and from the stakeholders, and we do not provide any
special guidelines in this respect. However, we provide the means to formulate
these elicited requirements in the form of precise RSL models. These models
facilitate assuring good quality of requirements, including coherence, unambiguity
(clarity) and completeness.

Good quality requirements models, expressed in RSL can be used in a standard
(“manual”) way, to produce design models and implementation. Yet, the book
offers a much broader use of requirements models. The ultimate goal of the book is
to give the reader the means to automate the process of turning requirements into a
working system. To achieve this, the book presents techniques to write and apply
model transformations and code generation to RSL. What is crucial, this is sup-
ported by a state-of-the-art tool suite that accompanies this book. The suite contains

Preface xiii

an RSL editor with an integrated transformation engine (code generator)1 and a
transformation development environment.2 Together with this set of tools, the book
supplies the reader with what it promises: the means to get very quickly from
requirements to code (i.e. “in a snap”).

The transformations described in this book focus on processing two main types
of requirements: functional requirements and vocabulary requirements (domain
definitions). The reader will notice that quality requirements (or: non-functional
requirements) are left aside. We do not provide a specific notation or semantic rules
for them, but we discuss their influence on the final system architecture [23]. This is
definitely a very interesting topic that deserves further intensive research [55, 90].
However, currently we need to assume that the quality requirements are specified
using informal natural language. Such specifications are taken into account by the
transformation developers when writing the transformation programs.

Who is this Book for?

When writing this book, we concentrated on presenting many technical details of
requirements modelling and model transformations for requirements. This should
make the book suitable for researchers, graduate students and practitioners from the
industry. Researchers will find insight into possible research directions that stem
from the presented approach to MDRE. Students and practitioners will find
knowledge and practical techniques in several areas, including general requirements
engineering, architectural design, software language construction and model
transformation.

Our main goal was to present a comprehensive approach to MDRE that leads
beyond the current state-of-the-art and state-of-practice. We are convinced that the
presented technologies form good grounds for a very interesting field of research
and innovation. This new field could concentrate on overcoming the accidental
complexity of software through moving development efforts from 3GL programs
towards formalised requirements models. The results presented in this book are
meant to encourage the readers to join the effort of building research fundaments for
such a next-generation development framework. This effort encompasses research
on new ways to code application and domain logic at much higher levels of
abstraction. The book already presents some of the solutions that involve seman-
tically precise scenario notations and coherent development of domain models.

The research efforts can lead to important innovations in the area of software
development tools. This area seems to be in stagnation in terms of innovative
features and support for software developers. This particularly pertains to

1 The ReDSeeDS tool is presented in Sect. 7.1 and can be downloaded fromhttp://www.redseeds.
eu/.
2 The MOLA Tool is presented in Sect. 6.1 and can be downloaded from http://mola.mii.lu.lv/.

xiv Preface

http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://www.redseeds.eu/
http://www.redseeds.eu/
http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://mola.mii.lu.lv/

requirements engineering tools [50]. Evaluations of such tools made more than 15
years ago [182] and recently [30] show little (or: practically no) progress in terms of
automatic handling of requirements and assuring their formal precision. In general,
it can be noted that software development tools generally do not form a coherent
framework that integrates requirements directly with implementation activities [71].
This is mainly because of clearly visible mismatch between representations for user
requirements and software requirements versus representations for architectural and
design models and code. This book aims at changing this situation, by proposing a
tooling environment that offers the means to bridge this gap through automatic
transformations.

Our second goal was to show how the techniques of MDRE could already now
support and increase productivity and quality in a typical software engineering
project. What is important, the presented techniques can be used in various con-
texts, for different purposes. Requirements engineers will certainly benefit from the
presented systematic approach to formulating requirements. RSL, as a notation, can
be used even without the tooling environment to keep high quality of requirements,
which includes precision, coherence and unambiguity. When the appropriate editor
is applied, the RSL notation gains additional support through syntax checking and
automatic domain model synchronisation. The editor can also support using
requirements-based patterns, thus increasing productivity in creating high quality
requirements models.

The presented techniques will also benefit software developers (architects,
designers, programmers). They will be able to work out their models and code at a
significantly higher level of abstraction—close to the problem domain. The
developers will be able to work on semantically precise (code-like) requirements
models in close cooperation with requirements engineers and end-users. This book
shows how they can be then relieved from caring about many of the “accidental”
aspects of software development which are encapsulated in the automatic trans-
formations from requirements to code. What is important is that the transformations
always generate high quality code with uniform architecture, well documented with
the generated UML models.

Apart from supporting these traditional roles in software engineering, the book
promotes the role of transformation engineer. This book provides the grounds for
readers interested in constructing and evolving model transformations, specifically
those operating on requirements. These skills are becoming very important in the
current world of changing software technologies. Having fast changing targets
of the transformations and code generation, we need skilled transformation
developers. The book concentrates on applying MDSD to requirements models but
the presented techniques can be used for any kind of model transformation task.

Finally, the book can benefit project managers through defining a clear path from
requirements to code. The managers receive guidelines on how to efficiently
organise software development effort around automatic model transformations from
requirements to code. This includes iterative development of software applications
with evolving functionality and with evolving implementation technology.

Preface xv

Recommended Prerequisites

This book assumes at least some basic to intermediate knowledge of various aspects
of software engineering. The overall goal was to maintain it accessible for those not
yet familiar with MDSD, SLE or requirements modelling. At the same time, the
book goes far beyond the basics and covers several research-level topics and shows
possible research directions.

Generally, it is assumed that the reader is familiar with the software development
process and its phases like requirements specification, design and implementation.
Thus, it is recommended that student readers have already taken a course in
Software Engineering Fundamentals or similar, or alternatively—study a good book
on that topic [132, 159]. The book frequently presents UML and UML-like dia-
grams. The reader is thus expected to understand some of the commonly used UML
notations: class and object models, interaction models, activity models and use case
models. Good understanding of UML syntax and semantics of these five model
types is highly recommended. This is part of any good course or book on UML [24,
52, 128].

The book includes many examples and specifications that use Java or Java-like
code. It is thus recommended that the reader knows at least fundamentals of Java
programming, accessible through various courses and books like the widely known
“Thinking in Java” [42]. Readers familiar with other similar languages like C# or
C++ should also find the code parts easy to understand. Knowledge of imperative
programming (like in Java or C#) will be also needed to understand model trans-
formation programs. These programs use graphical notation similar to UML’s
activity diagrams.

The book treats the topics of use case development, software language devel-
opment and metamodelling. Readers familiar with them should find certain parts
of the book easier to understand. However, the book aims at explaining these topics
also to unfamiliar readers.

Structure of this Book

The book is divided into eight chapters with two appendices. The first two chapters
present the main concepts and give an introductory guide to requirements modelling
in RSL. The next two chapters concentrate on presenting RSL in a formal way,
suitable for automated processing. Chapters 5 and 6 concentrate on model trans-
formations with emphasis on those involving RSL and UML. The transformations
are presented using the model transformation language called MOLA. Chapters 7
and 8 provide a summary in the form of a systematic methodology with a com-
prehensive case study. The book is supplemented with two appendices containing
short summaries of RSL and MOLA notation.

xvi Preface

http://dx.doi.org/10.1007/978-3-319-12838-2_5
http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_8

Chapter 1 introduces the main concepts of the book. It presents rationale for
formulating requirements as precise models and explains approaches to use such
models as “first-class citizens” in the software development process. This chapter
also gives an introduction to MDRE as a new but already established and promising
branch of Model-Driven Software Development.

Chapter 2 explains how to formulate precise requirements using RSL. It presents
all the relevant RSL constructs using an example specification. All the important
details of the RSL concrete syntax are outlined and its usage shown in practice.
Also, good practices in formulating requirements using RSL are given. The main
purpose of this chapter is to provide an RSL tutorial for requirements engineers and
software developers. It should also be read as an introduction to reading the next
chapter on the RSL metamodel.

Chapter 3 gives a more formal definition of RSL forming the basis for per-
forming transformations from RSL to other modelling languages (mostly UML)
and code. An important purpose of this chapter is to give the reader practical
introduction to metamodelling. Consecutive sections present the language’s abstract
syntax in the form of a metamodel. For each of the syntactic elements, concrete
(visual and/or textual) syntax is presented through examples. The explanation of the
syntax is supplemented by informally presented semantics (meaning) of the various
language elements. At this level, semantics is given in reference to the concepts of
business modelling and requirements engineering.

Chapter 4 presents the translational semantics of RSL using Java. This consists
in a set of rules that translate RSL constructs into equivalent Java constructs. In
order to construct the rules, a specific architectural framework (pattern) with spe-
cific technological assumptions (UI framework, data passing model, etc.) is chosen.
This framework is expressed in plain Java for all of its components. The selected
target code structure is used to explain RSL runtime semantics (semantics for
executing RSL specifications). Based on this, the translation rules are generalized in
order to be applicable to various technological contexts. This chapter should be read
by RSL developers to understand precisely RSL semantics for the working system.
Moreover, this chapter is important for transformation engineers. It shows the initial
steps in designing a transformation from RSL to a specific technology.

Chapter 5 presents an introduction to model transformations. It explains intri-
cacies of operating on models which are nonlinear graphs in contrast to text (cf.
programs) which is linear. The whole presentation in this chapter is accompanied by
various examples from the simple “Hello world” to more advanced transformations
using the MOLA model transformation language. This chapter should give the
reader the basis to understand model transformation and develop non-trivial
transformation programs.

Chapter 6 extend the previous introductory chapter with guidelines for devel-
oping complex transformations based on complex metamodels. The basis for this is
the RSL metamodel, the UML metamodel and the syntax of Java. This chapter thus
also gives some more details of the UML formal specification and the Java syntax.
For the chapter to be practical, the presentation is backed by a short introduction to
a MOLA development environment. After reading this chapter, the reader should be

Preface xvii

http://dx.doi.org/10.1007/978-3-319-12838-2_1
http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_5
http://dx.doi.org/10.1007/978-3-319-12838-2_6

able to understand the rules for developing complex transformations originating in
requirements models, and be able to tailor them to specific target technologies
(including those emerging in the future).

Chapter 7 summarizes the book by offering a methodology and tools to apply its
contents in practice. It gathers all the presented elements and places them in a
coherent software development framework. This framework complies with modern
iterative approaches, including agile software development. Software project
managers and software developers will benefit from this chapter by organizing
MDRE-based software projects according to its guidance.

Chapter 8 presents a comprehensive case study. Within the study, a specific
target platform with detailed technology solutions is applied. The case study
involves an example requirements model in RSL. The chapter presents some details
of the model and the system (UML, Java code, UI layouts) generated from this
model. It also discusses important details of the transformations that lead to gen-
erating this system.

Finally, there are two appendices. Appendix A offers a short reference of the
RSL concrete syntax and Appendix B does the same for MOLA. Each of the
syntactic elements is shortly summarized and an example given. The aim of the
appendices is to provide the language users (requirements engineers, software
developers) with an easily accessible and complete reference of the syntax.

Acknowledgments

The tool suite that accompanies this book has been developed within two projects
partially funded by the European Union: ReDSeeDS3 and REMICS.4 We would
like to thank all the Partners that have cooperated with us within these projects,
especially in developing the RSL language and the ReDSeeDS tool.

Warsaw, August 2014 Michał Śmiałek
Wiktor Nowakowski

3 http://www.redseeds.eu/.
4 http://www.remics.eu/.

xviii Preface

http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_8
http://www.redseeds.eu/
http://www.remics.eu/

Contents

1 Introducing Requirements-Driven Modelling 1
1.1 Why Model Requirements? . 2
1.2 Making Requirements Precise . 9

1.2.1 Writing Good Stories . 9
1.2.2 Writing Stories About Software 10
1.2.3 How About Quality Issues?. 15

1.3 What Is the Meaning of Requirements Models? 16
1.3.1 Requirements Explained Through Observable

Behaviour . 16
1.3.2 Requirements Explained Through Translation

into Java . 20
1.4 Towards Model-Driven Requirements Engineering 22

1.4.1 “Traditional” Software Development 22
1.4.2 Model-Driven Software Development 24
1.4.3 Software Development with DSLs

and Model-Driven Requirements 27

2 Presenting the Requirements Specification Language 31
2.1 How to Define a Modelling Language? 31
2.2 Structuring Requirements Specifications 33

2.2.1 Basic Concepts . 34
2.2.2 Packaging and Presenting Requirements 36

2.3 Specifying the Problem Domains and Their Rules 39
2.3.1 Defining the Problem Domain 40
2.3.2 Defining the Application Domain. 43
2.3.3 Defining the Domain Rules . 45

2.4 Specifying Functional Requirements. 48
2.4.1 Use Cases and Relationships . 49
2.4.2 Sentence Types . 55
2.4.3 Scenarios . 59

xix

http://dx.doi.org/10.1007/978-3-319-12838-2_1
http://dx.doi.org/10.1007/978-3-319-12838-2_1
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec10
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec10
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec11
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec11
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec12
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec12
http://dx.doi.org/10.1007/978-3-319-12838-2_1#Sec12
http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec10
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec10
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec11
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec11
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec12
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec12
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec13
http://dx.doi.org/10.1007/978-3-319-12838-2_2#Sec13

3 Defining RSL . 67
3.1 Introduction to Metamodelling. 67
3.2 Overview of the RSL Metamodel. 72
3.3 Terms and Phrases . 74
3.4 Domain Elements and Relationships. 78
3.5 Constrained Language Sentences and Scenarios 82
3.6 Requirements and Use Cases. 86
3.7 Domain and Requirements Specifications 91
3.8 Summary of Metamodelling . 95

4 Explaining RSL with Java . 101
4.1 Translational Framework. 101
4.2 Semantics Involving the General Structure 113
4.3 Semantics Involving the View Layer . 119
4.4 Semantics Involving the Presenter and Model Layers 127
4.5 Summary Example. 140

5 Understanding Model Transformations . 149
5.1 Overview . 149
5.2 “Hello World” in MOLA—Declarative Processing 153
5.3 Variables and Procedures in MOLA—Imperative Processing 157
5.4 More Advanced MOLA Constructs . 162
5.5 End-to-End Transformation Example . 169
5.6 Which Language to Choose? . 181

6 Writing Model Transformations for Requirements. 185
6.1 Using the MOLA Tools . 185

6.1.1 Specifying the Metamodel. 186
6.1.2 Specifying and Compiling Transformation Programs . . . 188
6.1.3 Debugging Transformation Programs 191

6.2 Transformation Overview . 194
6.3 Generation of the Basic Structure. 197
6.4 Generation of Data Transfer Objects. 204
6.5 Parsing of Use Case Scenarios. 210
6.6 Generation of the Presenter Layer Details 215

7 Applying MDRE in Practice . 225
7.1 Using the ReDSeeDS Tool . 225
7.2 Introducing the ReDSeeDS Methodology 232

7.2.1 Overview of the ReDSeeDS Process. 233
7.2.2 Software System Evolution Process 236
7.2.3 Technology Evolution Process 241

xx Contents

http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_3#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_4#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_5
http://dx.doi.org/10.1007/978-3-319-12838-2_5
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_5#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_6#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec5

7.3 Reuse Approaches with Requirements Models 243
7.3.1 Applying MDRE to Existing (Legacy) Systems 243
7.3.2 Reusing Requirements Models Through Patterns 249

7.4 Summary: Is MDRE for Me? . 254

8 Case Study . 257
8.1 Study Assumptions and Context . 257
8.2 Source Model in RSL. 259

8.2.1 General Structure . 259
8.2.2 Use Case Representation Details 262

8.3 General Architecture of the Generated System 272
8.4 User Interface Code . 280
8.5 Application Logic Code . 288
8.6 Discussion . 293

Appendix A: Summary of RSL Syntax . 297

Appendix B: Summary of MOLA Syntax . 317

Literature . 333

Index . 343

Contents xxi

http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_7#Sec9
http://dx.doi.org/10.1007/978-3-319-12838-2_8
http://dx.doi.org/10.1007/978-3-319-12838-2_8
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec1
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec2
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec3
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec4
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec5
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec6
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec7
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec8
http://dx.doi.org/10.1007/978-3-319-12838-2_8#Sec8

Acronyms

3GL Third Generation Language
CASE Computer Aided Software Engineering
CMOF Complete MOF
CRUD Create-Read-Update-Delete
DAO Data Access Object
DSL Domain Specific Language
DTO Data Transfer Object
EMOF Essential MOF
IDE Integrated Development Environment
MDA Model-Driven Architecture
MDRE Model-Driven Requirements Engineering
MDSD Model-Driven Software Development
MOF Meta Object Facility
MOLA MOdel transformation LAnguage
MVC Model-View-Controller
MVP Model-View-Presenter
OMG Object Management Group
QVT Query/View/Transformations
RDB Relational DataBase
RSL Requirements Specification Language
SPEM Software and Systems Process Engineering Metamodel
SPL Software Product Line
SQL Sequence Query Language
SVO Subject-Verb-Object
UI User Interface
UML Unified Modelling Language

xxiii

Chapter 1
Introducing Requirements-Driven Modelling

Requirements play a pivotal role in software development because they express the
needs of the customer. A quality software system can emerge only when the real
needs of the client are discovered. However, this is not enough. A typical software
development project faces the problem of translating the user needs into a working
system. These problems are dealt with by hundreds of books on various aspects of
software design and pertaining to the plethora of software development technologies
we can choose from. Related activities produce important artefacts that are treated
as primary in software development: design models and code. Software design and
coding directly contributes to the final system, and thus their results are treated as
first-class citizens in the world of software development.

By contrast, requirements engineering is treated as a much less crisp and precise
field of software development [33]. Requirements are treated as secondary artefacts
for software developers as they cannot be translated directly into code. They are
formulated as paragraphs of text structured to some extent, but still usually quite
ambiguous and necessitating disambiguation during the later stages of development.
They are obviously important but they do not contribute directly to the final effect.
Their contribution is indirect and is treated like a craft rather than as a discipline
of engineering. Various books on requirements engineering concentrate a lot on
communication with the client and the psychological aspects of requirements elici-
tation (which is obviously good). This also includes notations (languages, templates,
guidelines) with different levels of precision. However, there can be seen a lack of
approaches to formulate requirements in a way that would allow for automation in
their translation into code.

In this chapter, we introduce an approach to requirements engineering where
requirements are treated as first-class citizens [70], contributing directly to the pro-
duction of the final code. In this approach, requirements are formulated as models
[17]. Thesemodels are intended to be comprehensible even by “ordinary” people (not
software developers). At the same time, these models are formulated in a language
that is precise enough (has precise semantics) to be able to generate meaningful and
usable design models and code.

© Springer International Publishing Switzerland 2015
M. Śmiałek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_1

1

2 1 Introducing Requirements-Driven Modelling

1.1 Why Model Requirements?

If we could try to imagine an ideal dream of a software project manager, it would
most likely look as in Fig. 1.1. In this dream, requirements agreed-upon with the user
and written down in whatever format, would automatically transform themselves
into ready executable code of the target system [37, 148, 155, 179]. All that is
needed is an automaton that would encapsulate all the knowledge on the target
executable environment, logical and physical architecture, user interface design and
so on. Moreover, this automaton would need to be able to process natural language
and disambiguate it. Having such a tool, wewould only need to press a button (“make
a snap”) and voilà—here come the executables of the system.

Of course, this is just a dream. . . Or maybe not? Maybe we can bring this dream
closer to reality? First, let us take a look at Fig. 1.2. It shows a similar situation
but at a much lower level of abstraction. Here we transform a program written in a
3rd Generation Language (3GL; like C++, Java or C#) into executable code. This is
done by an automaton known to all programmers and is called the compiler [3]. This
automaton encapsulates the knowledge about the hardware and the execution plat-
form (machine code, bytecode, registers, memory access, basic I/O access and so on).
During compilation, this knowledge is automatically “injected” into the executable
program and merged with the programming constructs that could be expressed in
the specific 3GL. The resulting code can be executed directly by the execution envi-
ronment (in a specific operating system, processor type, virtual machine, etc.). The
knowledge of this execution environment is to a large extent abstracted away in the
3GL code. As a result, the source code is significantly less complex (or: easier to
comprehend) than the machine code.

We can argue that the two situations are different. The 3GL code has precise syn-
tax and semantics (meaning) that determines its interpretation for execution (during
runtime). By contrast, the requirements are too ambiguous. They do not use a syn-

Fig. 1.1 From requirements
to code: ideal scenario

Fig. 1.2 From 3GL code to
executable code

1.1 Why Model Requirements? 3

Fig. 1.3 From requirements to code: a more realistic scenario

tactically and semantically precise language. Thus, it is not possible to develop an
automaton that would be able to process requirements and produce executable code.
Obviously, this is true for requirements written in natural language and using semi-
formal diagrams, even when certain templates and constraints on the requirements
structure are applied. However, we can think of a much more realistic scenario, as
illustrated in Fig. 1.3.

In this scenario, the less structured user requirements are manually transformed
into syntactically and semantically precise requirements models. These models cap-
ture the complexity of the problem using a high-level modelling language. This
includes the desired functionality of the system (application logic, user interface)
and a detailed description of the problem domain. The main issue here is to be able
to capture all such knowledge using this high-level language with “enough” preci-
sion. Provided that the precision is satisfactory, we will be able to develop a model
transformation engine (cf. a compiler) that produces a full code of the desired system.
This engine, by analogy to the compiler, would encapsulate the technological details
of the target programming platform. This includes the target architectural solutions,
detailed design decisions and intricacies of specific coding guidelines. Such techno-
logical knowledge is injected during translation and is combined with the description
of the problem (the requirements models) to produce fully operational code.

This last scenario (see again Fig. 1.3) refers to a clear separation of two kinds of
software complexity formulated by Fred Brooks [26, 27]. Back in the 1980s, Fred
Brooks distinguished the “essence” from “accidents” in programming. His definition
was that “the essence of a software entity is a construct of interlocking concepts: data
sets, relationships among data items, algorithms, and invocations of functions” and
“accidental tasks arise in representing the construct in language”. In our case, the
essential complexity is expressed through the requirements models. These models
contain the definition of the problem domain (data and relations) and the desired

4 1 Introducing Requirements-Driven Modelling

functionality (application and domain logic algorithms with their invocations). The
accidental complexity is expressed through the model transformation engine and
contains all the details of the target software and hardware platform.

The distinction made by Fred Brooks gives us a hint of the direction in which
we should move in our approach to software development. We should hide as much
accidental complexity as possible and promote the essential complexity. Compilers
(Fig. 1.2) indeed hide some of the accidental complexity. In the later parts of this
book,we provide an introduction to how to tackle the problemof hiding the remaining
“accidents” through constructingmodel transformation engines (Fig. 1.3). Todevelop
such an engine seems amuchmore complex task than to develop a compiler.However,
these two tasks have much in common. In both cases, we need a source language
which has a formal syntax. We also need translation rules that are based on the
semantics of the source language. This semantics defines how to express the (high
level) constructs of the source language through the (low level) constructs of the
target language.

3GL compilers allow us to express programming constructs at a significantly
higher level than machine/assembly code. However, this is done at a cost of less
programming freedom and usually worse performance. This is because the compilers
apply uniform translation rules to all the 3GL constructs and produce uniformly
structured and often not perfectly optimised output code. All the detailed decisions
on how to structure the output code were made by the compiler constructors. Despite
this, we do not really want to go back to the era of assembly language programming.
The advantage of abstracting away the complexity of the execution platform is much
higher than the minor disadvantages that were mentioned. Though, in some cases,
whenever it is necessary (e.g. for performance reasons), some subroutines can be
programmed in assembly language.

Still, we can try to move up the ladder of abstraction in software development. We
would like to define a language that abstracts away not only the execution platform
but the whole software technology platform. This includes the architectural design
(physical and logical architecture), approaches to persist data, ways to exchange data
through the user interface, divisions into programming units (packages, classes),
approaches to pass control between programming units (class dependencies) and so
on. The appropriate translator for this language would need to capture and unify
specific decisions in these areas. Thus, the developers that would use the new high-
level language would have a lot less freedom in making these decisions than when
they would program in Java or other 3GL. This would be the cost of “programming”
at the level of the problem domain (or: requirements [31, 69, 150]). The question
would be whether this cost would pay off just like in the case of 3GL to machine
code translators. Another question is how to develop such new translators and this is
what we want to answer in this book.

In the meanwhile, the reader would probably appreciate some more concrete
justification onwhywe should bother aboutmodelling requirements in a semantically
precise way. Let us illustrate what we mean, through an elementary example. In
Fig. 1.4, we can see a tiny requirements model. This model uses a notation that
should be familiar to many requirements engineers. It contains a single use case

1.1 Why Model Requirements? 5

Fig. 1.4 Tiny example: source requirements model

Fig. 1.5 Tiny example: target code structure model

(the oval) and a single actor (the sticky figure). This simple notation was invented by
Ivar Jacobson and dates back to the beginning of the 1990s [2, 12, 34, 44, 78, 96, 137,
141]. The use case diagram is supplemented by a textual scenario (sentences 1–5)
and a single definition of the domain notion (“user account”) used in this scenario.
The notion definition uses standard UML class notation [24, 52] and contains four
attributes (information components) of the notion.

The diagram in Fig. 1.4 is a requirements model that we claim is precise enough
to generate working code. Obviously, this generated code should be governed by
certain design decisions that would be uniformly and automatically applied. Here
we do not explain these rules in detail, instead we describe code that we would like
to have as an implementation of the source requirements model. The structure of this
code is presented in Fig. 1.5. This is a UML class diagram that depicts four classes
with their operations and relationships between them. A careful reader might notice
right away that we have applied an architectural pattern to this code structure.1 It is
the Model-View-Presenter (MVP) pattern that is becoming more and more popular

1 The examples in this chapter use very simplified Java with an imaginary programming framework.
Here we want to abstract away from any specific Java technology.

6 1 Introducing Requirements-Driven Modelling

in contemporary programming frameworks. This pattern consists of three layers. The
view layer (classes starting with a “V”) contains code responsible for exchanging
data and commands with the user through the user interface. The classes in this layer
specialise in more general window frames. The presenter layer (classes starting with
a “P”) handles the application logic in terms of sequences of events happening in the
dialogue between the user and the system (including internal actions of the system).
Themodel layer (classes startingwith an “M”) handles the domain logic that includes
data processing algorithms and storing (persisting) the data.

The code structure in Fig. 1.5 should be substantial enough to handle the simple
functionality defined in Fig. 1.4. Moreover, we may intuitively feel that there can
be specific rules determined for obtaining this code structure from the requirements
model. There can be seen specific traces from the elements of the requirements
model to the elements of the code model. For instance, the notion of “user account”
is reflected in two classes in code: VUserAccountForm and MUserAccount.

Of course, the structure alone is not enough to implement the functionality (sce-
nario) from Fig. 1.4. We need some dynamic code. This dynamics can be presented
using a UML sequence diagram as in Fig. 1.6. This diagram is a translation of the
scenario into a sequence of messages passed between objects in a running system.
These messages are equivalent to calling class methods either synchronously or
asynchronously. The current diagram reflects design decisions on how to structure

Fig. 1.6 Tiny example: target code dynamics model

1.1 Why Model Requirements? 7

code within individual methods in code. For instance, the method “start_selected”
in PShowUserAccount contains a call to “fetch”, a constructor call for VUserAc-
countForm and a call to “show”. Similarly to the case of the code structure, we can
intuitively see certain traces from the sequence of sentences in our example use case
scenario to the sequence of messages in the sequence diagram. For instance, the
sentence “User selects ‘show user account”’ can be traced to the sequence of two
messages: “on_click” and “start_selected”.

The class diagram from Fig. 1.5 and the sequence diagram from Fig. 1.6 already
contain much of the target complexity. However, the final code has more details, as
presented in Fig. 1.7. The presenter (“PShowUserAccount”) code is a direct transla-
tion of the dynamics from the sequence diagram. However, the other class methods
contain code that adds more details. The view classes have specific code to show
individual widgets on the screen (here: a very simplified widget rendering frame-
work). The model class contains code to fetch persisted data from the database (here:
a very simplified inline SQL). In reality, this code would be significantly more com-
plex but we have removed much of the technical details for the sake of simplifying
this example. Despite this simplification, it can be seen that at this stage, the target
platform (technology) details were introduced. However, the individual instructions
in code can be intuitively traced back to the initial requirements model.

In the remainder of this book, we show that it is possible to automate the path
sketched in this simple example. The main prerequisite for this automation is the
ability to define the source requirements models precisely. This means using precise
syntax that allows to assure the coherence of the models similar to the coherence of
code. Moreover, we need a precise definition of the semantics that would explain the

Fig. 1.7 Tiny example: target code

8 1 Introducing Requirements-Driven Modelling

translation of requirements elements into specific code constructs. Assuring strict
precision of requirements involves additional effort in this phase of software devel-
opment. However, this effort should pay off with the possibility to apply automatic
translation into fully working code. In the above example, we have not considered
many other aspects of this translation which are explained in detail in the subsequent
chapters. Thus, although considerable effort is needed to develop the transformation,
this transformation can be reused many times similar to how we “reuse” transforma-
tions into machine code within compilers.

So, how do we answer the question “why model requirements?” There can be at
least two reasons (see Fig. 1.8). First, requirements models have very good commu-
nication capabilities. Using visual models, we can make requirements more compre-
hensible to the business people who order and use software. Visual models can thus
be used by less formal human readers. The second reason is more important, as its
effects can have a significant impact on the productivity of the developers. Require-
ments models can bemade formal enough to be able to transform them automatically
into other artefacts like design models and code. Also, we can assure their coherence
through implementing certain automated validation mechanisms. The possibility to
generate code directly from requirements means a significant rise in abstraction for
activities that produce running code. This rise of abstraction is similar to that of 3GL
programming in relation to assembly language programming.

However, a significant problem we face is to design a language that is compre-
hensible to “ordinary people” and at the same time gives enough “power” to serve
as high-level code for software developers. This language must have a precise but
understandable syntax (grammar) and its constructs must possess strict meaning
(semantics) in terms of code generated from them. The following two sections pro-
vide an overview of these two aspects.

Fig. 1.8 Combining good communication with precision

1.2 Making Requirements Precise 9

1.2 Making Requirements Precise

1.2.1 Writing Good Stories

To answer the question of how tomake requirements precise we start with an analogy
that may look odd at first sight. We start by explaining how to write a good adventure
novel. First, we have to have a good story. It should have an exciting action with
many possible resolutions. Preferably, the story should end with a happy ending but
there always has to be a possibility of the story ending sadly. Moreover, we should
place this action in an interesting environment. This should include the characters
that take part in the story, placed within the nature (forests, animals, etc.) and the
products of technology (buildings, vehicles, etc.) that surround them. The best novel
writers try to create a coherent new (future, alternative, sci-fi) environment, or try to
reflect the real environment existing some time in history or at the present.

One of the best examples of a coherent environment created by a talented writer
is the Middle-earth. J.R.R. Tolkien has described it in much detail throughout sev-
eral of his works like “Hobbit”, “The Lord of the Rings” and “Silmarillion”. The
environment of the Middle-earth consists of many different intelligent species (men,
hobbits, dwarfs and so on), a specific landscape with different landmarks (cities,
mountains, rivers), specific technical capabilities (weapons, means of transport, etc.)
and other features of the characters like their extra-natural capabilities. Being a good
novel writer, Tolkien gradually reveals to us the whole environment of the Middle-
earth. This is done along with the different stories being told. A good novel is thus a
balanced combination of stories and the description of a coherent environment. This
is illustrated in Fig. 1.9 where the descriptions of various events (forming the story)
are interweaved with the descriptions of the environment.

In order to be able to understand the environment of the Middle-earth better,
Tolkien provides us also with a sketch of its map. However, his text is so precise and

Fig. 1.9 Story and environment combined in a novel

10 1 Introducing Requirements-Driven Modelling

Fig. 1.10 Making the environment coherent with the story

coherent that many other authors have developed various other descriptions of the
Middle-earth. This includes atlases with detailed maps of various areas of Middle-
earth, encyclopaedias explaining all the notions, and vocabularies explaining all the
terms in variousMiddle-earth languages. In fact, fromTolkien’s various works on the
Middle-earth, there has been “extracted” a coherent (quasi-historical) description of
thewhole environment. This can be generalised in that a good adventure novel should
provide an environment that can be described with a coherent conceptual framework,
e.g. using a map. An illustration of this can be found in Fig. 1.10. Now, all the events
from Fig. 1.9 are extracted to form the story. The events refer to specific places on
a coherent map of the territory. Each of the places is described in a vocabulary of
places (rivers, mountains, dwellings, …). What is also important is that different
events happening at the same place should be positioned correctly in relation to
other events.

1.2.2 Writing Stories About Software

After this short digression on adventure stories, let us get back to dull business sys-
tems. With the above example, it is possible to write a story that is understandable
and at the same time—coherent and precise [147, 181]. Stories themselves are under-
standable because this is the most fundamental way in which people have been com-
municating for ages. Furthermore, stories about reality (testimonies, history reports)
can be verified by cross-checking their coherence with the environment (domain).
Thus, a natural choice for making requirements for business systems understandable

1.2 Making Requirements Precise 11

Fig. 1.11 Sentences in a story

and precise would be to base them on stories. How can we write such stories for
software [7, 147]?

We can write them from the point of view of the system’s user. Then, the story
should tell about the dialogue between the user and the system. The story can consist
of simple sentences, as those shown in Fig. 1.11 [20, 61]. These sentences are indica-
tive and contain a subject, a verb and an object. We call them Subject-Verb-Object
(SVO) sentences. The SVO structure should be sufficient to present the interactions
between the users (when the subject is a user) and the system (when the subject is
the system). However, it is obviously not sufficient to explain the context for the
interactions. Thus, requirements specifiers often tend to insert such explanations as
continuations of sentences with such (or similar) structure. For instance, we receive
a complex sentence like, “The user enters book data, where book data contains the
book title and the author”. This can be compared to writing an adventure novel where
the story is interweaved with the descriptions of the environment. In another part of
the story (e.g. 20 pages later in the requirements document), we can have a sentence
like, “The system validates book data (author, title, issue date) by comparing the
issue date with the author’s lifespan”. This leads to significant confusion when we
want to define “book data”. Both definitions do not match—is it the same kind of
data we are talking about in both cases? To make things coherent, we need to use
the same technique as Tolkien and his followers did—create a detailed map of the
territory, coherent with the story.

Note that we have clearly emphasised the three sentence parts—the subject is in
bold, the verb is in italic and the object is underlined. This emphasis is important,
because we want to relate the verbs and the nouns to their centralised definitions.
This will make the “environment” coherent with the “story” as in our discussion on
the Middle-earth, as illustrated in Fig. 1.12. It can be seen that both sentence objects

Fig. 1.12 Extending story sentences with domain definitions

12 1 Introducing Requirements-Driven Modelling

refer to one centrally defined domain element (here: “book data”). Moreover, the
sentence verbs refer to appropriate domain statements (here: “enter book data” and
“validate book data”) contained in the domain element (verb phrases). The domain
element definition is complemented by aggregated attributes (here: “author”, “title”
and “issue date”). The references from the SVO sentences can be seen as hyperlinks
[82] leading to a central “wiki” definition. We should note that this “wiki” contains
definitions of not only the nouns (“book data”) but also the verb phrases associated
with the nouns (“validate book data”).

Several SVO sentences can be formed into a story which we can also call a
scenario. An example can be found in Fig. 1.13. There we find in fact two scenarios.
One of them ends with a “happy end” (the book data are saved) while the other
one ends with a failure (an error message is shown). Both scenarios have the same
beginning (sentences 1–5) and what distinguishes them are the condition sentences
(book data either valid or invalid). These condition sentences can be compared to the
dilemma of a scenario writer for a TV “soap opera” (or an adventure novel writer).
She might wonder how to resolve a specific key scene in an episode. Depending
on this resolution, the plot might go into several different directions. The issue for
software system scenarios is that we need to specify all the possible “plots”…

When writing scenarios, we maintain their coherence with the domain definition
[10, 20–22, 152, 165]. This definitiongrows throughaddingnewnotions andnewverb
phrases. The notions are taken not only from the problem domain (like “book data”)
but also from the domain of the user-system dialogue [177], which includes window
frames (see «frame» in Fig. 1.13), button triggers (see «trigger») and message boxes
(see «message»). This forms a vocabulary of notions to be used coherently within

Fig. 1.13 The stories and their vocabulary

1.2 Making Requirements Precise 13

various scenarios throughout the whole requirements model. This is illustrated in
Fig. 1.13 by showing another (perhaps distant) scenario (at the bottom) which also
refers to the same domain notion as that referred to from the first two scenarios.
We can associate the various notions through relationships which makes also the
vocabulary internally coherent. For instance, we can indicate which of the domain
data elements (here: “book data”) should be presented inwhich of thewindow frames
(here: “new book window”).

Several similar scenarios can be combined to form a use case. Use cases were
introduced earlier in an example in the previous section but here we present them
more formally. There can be found many definitions of what use cases are in the
literature. Our definition tries to summarise them and concentrates on three main
features of use cases.

Definition A use case is a complete piece of functionality that possesses the follow-
ing characteristics:

1. It starts with the interaction of an outside actor with the system or assumes the
possibility of such an interaction to start it.2

2. It contains several scenarios that constitute sequences of interactions of an outside
actor (or actors) with the system, and replies (or requests) of the system.

3. It ends by reaching a goal of some value to the outside actor or failing to reach
that goal (despite trying).

Use cases are defined in relation to outside actors. Outside actors represent roles
that groups of people or outside systems play in relation to the currently considered
(specified) system. A representative of an outside actor can come into interaction
with the current system in accordance with the use cases related to this outside
actor. Note that the definition speaks of “outside actors” and not simply “actors” (as
is done in the literature and software engineering practice). This is due to certain
confusion that can occur for less-experienced modellers. They sometimes model
actors as internal elements within the modelled system (or even as the system itself).
The word “outside” makes it unambiguous that actors are never part of the current
system.

This definition can be analysed through the example found in Fig. 1.13.We did not
name the use case in the figure, but it is obvious that the name could read as “Add new
book”. This name also specifies its goal. The use case (all of its possible scenarios)
starts with a specific interaction (selecting the “add book” button). It contains several
SVOsentences forming a sequence of interactions between the user (cf. outside actor)
and the system. It ends either by reaching the goal (saving “book data”) or failing to
reach it (presenting an error message). Note that after reaching the goal, the system
is in a stable state from the point of view of the user interface and internal system
transactions. This means that—for instance—the user can start the use case again.

2 The assumption of possible initial actor interaction is explained in Chaps. 2 and 4. This pertains
to use cases invoked from within other use cases (see Fig. 2.27 and rules P9 and P10).

http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_2

14 1 Introducing Requirements-Driven Modelling

Fig. 1.14 Use cases: stories forming the application logic that refers to domain logic

The functionality defined through use case scenarios can be also called the
application logic. This is in contrast to the domain logic illustrated in Fig. 1.14.
The application logic contains all the possible alternative scenarios of user–system
interaction. Actions in the application logic refer (“hyperlink”) to specific actions in
the domain logic. The domain logic is organised around the vocabulary of notions as
presented above. The verb phrases (actions) that are contained in the notions can be
defined in more detail to form the domain logic. This includes specific notations to
denote data processing algorithms (e.g. how to “validate book data” or how to “cal-
culate mean book price”). We do not discuss these notations in detail here because
they are specific to the considered domains (cf. domain-specific notations mentioned
in the next section).

It should be emphasised that the presented notation for the requirements models
is domain agnostic. This means that it can be applied to any typical business domain,
thus making it universal. The domain vocabulary is constructed within the specifi-
cation and is then used to define the domain logic [47]. The notation is simple and
understandable by a “layman” (not proficient in software engineering, e.g. a business
person). It consists mainly of simple SVO sentences and domain element definitions.
Its main characteristic is strict relation between the application logic (use case sce-
narios) and the domain logic (verb phrases). We call this notation the Requirements
Specification Language (RSL) [83, 118].3 This language allows us to implement
the “realistic” code translation scenario described in the previous section. For this
purpose, we need to define the meaning of RSL constructs in terms of application
logic and equivalent code. This is introduced in the next section.

3 The idea of requirements modelling started with the Requirements Modelling Language proposed
by Greenspan et al. [63, 64]. More recently, Helming et al. proposed the Unified Requirements
Modelling Language [16, 68]. Yet another approach was proposed by Beatty and Chen [13].

1.2 Making Requirements Precise 15

1.2.3 How About Quality Issues?

Note that use cases and the vocabulary identify two types of requirements: functional
requirements and vocabulary requirements (domain definitions). For a requirements
specification to be complete, we need to define quality requirements (known also as
non-functional requirements). The first two types of requirements define the way the
system functions, as seen by the outside user and defines what data are processed
and exchanged with the user. The quality requirements influence the internals of the
system. Architects use specific design solutions based on the required performance,
reliability or security. Moreover, they might need to apply certain constraints to the
target technology (e.g. a specific operating system or UI framework has to be used).

Quality requirements may highly influence the “accidental” aspects of the target
code. Thus, they need to be carefully consideredwhendeveloping translation rules for
functional and vocabulary requirements. For some of the quality requirement types,
we can determine precise guidelines as to which architectural patterns or specific
software development frameworks should be applied. For instance, the requirement
that the application should be used on mobile devices determines many elements of
its architecture and various detailed design solutions. In case of other types, some
general guidance can be applied, and only later verifiedwhen someparts of the system
are ready. This is typically the case for performance requirements. Experienced
architects can use specific design solutions that are known to fulfil the desired system
performance (e.g. response time). However, there is no way to assure this in advance
at design time.

In this book, we assume the average quality requirements that influence the trans-
lation from requirements models to code. In particular, we assume that the system is
available through the Internet and thus a web application is needed. We also assume
that the response time can be average, and typical architectural solutions for web
application will be satisfactory. In case there are special quality constraints set on
the target system, the translation rules presented throughout this book should be
updated. This may, for instance, influence the code structure and its distribution
between processing nodes (physical/virtual machines). It may also involve develop-
ing code for different UI platforms or using a certain security framework.

In general, this may be reflected in several variants of translation programs that
produce code from requirements, selectable dependingon the specific quality require-
ments. We may also think about automating this process, and selecting appropriate
transformation procedures depending on the values of the quality requirements. For
this purpose, we would need a precise modelling language for quality metrics and a
schema for parameterising code generation depending on these metrics. This topic
is still well beyond the current state-of-the-art and thus we will not elaborate on it
in this book. However, it seems a promising direction worth a significant research
effort in the future.

16 1 Introducing Requirements-Driven Modelling

1.3 What Is the Meaning of Requirements Models?

Being a language (and specifically—a modelling language), RSL communicates
some meaning. To understand this meaning we need to define its semantics. Seman-
tics is a necessary complement of the indexsyntax syntax (grammar) for any language
(including natural languages). To explain the semantics of a software language, we
can use various methods. In all of these methods, we need to specify the given lan-
guage in terms of simple concepts which have a known meaning (semantics). For
instance, to explain the semantics of a programming language, we can introduce a
simple automaton (with memory, processing capabilities, etc.). Then we can show
how specific constructs of the given language work during runtime in terms of oper-
ations of this automaton (called operational semantics). However, this approach—
although precise and formal—is usually hard to understand and use in practice.

A practical way of defining the semantics of a language is to specify the rules of
translating specifications (programs) in this language into specifications (programs)
in another language. Obviously, this other language has to have its semantics already
defined. This way of defining semantics is called translational semantics [91, 146].
We use this approach to specify the semantics of RSL in Chap.4. We offer rules
for translating RSL into Java (also explaining some constructs using UML). This is
helpful for constructing language translators.At the same time, it allows to understand
the meaning of specific language constructs by software engineers proficient in 3GL
programming.

However, it is also important to explain the meaning of RSL to domain experts
not proficient in software development. In this case, we should provide some account
on RSL constructs in terms of the behaviour of the specified systems as seen from
the outside. This would include the navigation and appearance of the user interface
and changes in the system state related to the domain (business) model. Again, these
semantics can be defined through some target language understandable to the reader
of the semantics definition (translational semantics). Yet, this definition might not
necessitate the level of precision as that for translating into, e.g. Java.

1.3.1 Requirements Explained Through Observable Behaviour

In this introduction to semantics, we start with the approach based on defining the
system’s observable behaviour. It allows us to be less formal. We explain use cases,
scenarios and vocabulary elements by translating them into sequences of user inter-
face elements that would appear to the user and changes in domain objects handled by
the system. A summary of this approach can be found in Fig. 1.15. It consists of three
parts: (1) control flow semantics, (2) individual sentence semantics and (3) vocab-
ulary element semantics. The first two parts pertain to the application logic of the
system to be built. The third pertains to the domain logic (see the previous section for
explanation of the distinction between application logic and domain logic). Control

http://dx.doi.org/10.1007/978-3-319-12838-2_4

1.3 What Is the Meaning of Requirements Models? 17

Fig. 1.15 Software language semantics explained through observable behaviour

flow semantics defines the sequence in which the individual interactions are to be
executed. In Fig. 1.15, it is depicted with a series of dots along a line, ending with
a “stop bar”. In our simple example, we have only one straight line because there
are no alternatives: we have a single scenario. Each of the dots represents a single
action equivalent to a single sentence in a scenario. Each of these sentences has a
specific meaning, which can be a user-triggered event, a UI rendering action or a data
processing action. Detailed semantics of each of the actions can be determined by
examining the vocabulary elements linked from the associated scenario sentences.
These details include, e.g. the specific button to be pressed, the layout of a window
frame to be displayed or the specific data processing algorithm to be executed.

The semantics of use cases and especially their control flow semantics was not
the first concern of the literature on this subject [143, 170]. This is because use
cases were not intended for automatic translation into design and code. However, for
our purposes we need to be clear about this. The “use case language” has to define
precisely how a set of use cases may be “executed” in a running system. This is
illustrated in significant detail in Fig. 1.16. We can see two use cases related through
a relationship denoted with «invoke». This is complemented by two scenarios of the
first of the two use cases (“Show book list”). The second use case is the already
presented “Add new book”. Note that we do not use the well-known «include» and
«extend» relationships because of their ambiguous control flow semantics, criticised
in the literature [57, 97, 108–110, 143]. Instead, we use a new kind of relationship
for which we introduce precise control flow semantics.

The control flow of this RSL model is explained through the diagram on the right
of Fig. 1.16. It shows how the individual scenario actions can be executed. There are
two alternative paths for “Show book list” starting after sentence 3 (see the left part of
the diagram). Two SVO sentences denote two alternative decisions by the actor—to

18 1 Introducing Requirements-Driven Modelling

Fig. 1.16 Control flow semantics of use cases

either select “close” or “filter”. In “Add new book”, there are also two possible paths
(compare with Fig. 1.13) but the alternative is of a different kind. This time it does
not depend on the user’s decision but on the system’s state and data processing. This
is denoted by the black dot in the right part of the control flow diagram. The dot can
be expanded into several (here: two) alternative conditions (here: data are valid or
invalid) leading to selection of one of the outgoing paths.

The control flow diagram in Fig. 1.16 also presents the semantics of «invoke».
An invocation relationship exists between two use cases whenever an appropriate
«invoke» sentence is present in a scenario. In our example, “Add new book” is
invoked within sentence 3 of “Show new book”. The control flow semantics of this
RSL construct resembles a procedure call. Control is first passed to the first sentence
of the invoked use case. After reaching one of the final sentences of the invoked use
case, control is passed back to the invoking use case. However, the return of control
repeats the action associated with the invocation sentence. In our example, the action
to “show book list window” is performed after returning from “add new book”.

Having explained the control flow, we need to explain the meaning of individual
actions, associated with SVO sentences. In general, we can distinguish four types of
sentences as presented in Fig. 1.17. Their general meaning depends on their subject
and their object. Syntactically, the subject of an SVO sentence can be either one of
the outside actors or the system. Moreover, the object of an SVO sentence can be a
trigger or a domain element. Based on this division, we can define the four types of
SVO sentences.

1. User-to-system-event. These sentences denote interactions of an actor that passes
control to the system. This includes selecting menu options, pressing buttons or
other such events.

1.3 What Is the Meaning of Requirements Models? 19

Fig. 1.17 SVO sentence semantics

2. User-to-system-input. These sentences denote passing data from the user to the
system. These data are compliant with some domain element and its components
(attributes).

3. System-to-user. These sentences denote presenting some message or data to the
user. Most often, these data are rendered through some graphical user interface.
These data can be read-only or editable in some part (subject to a further user-to-
system-input sentence).

4. System-to-system. These sentences denote performing some processing related
to specific domain elements that may include performing calculations, changing
system state or retrieving persistent data.

The exact meaning of a specific SVO sentence depends on the actual vocabulary
elements that are linked from this sentence. This is illustrated for system-to-user
sentences in Fig. 1.18. This example shows the effect of executing “System shows
new book form”, having a specific definition of “new book form”. This «frame» has
an associated domain element (“book data”) and a «trigger» (“save”). These two
elements are rendered on the window frame as shown on the right.

Fig. 1.18 Vocabulary element semantics

20 1 Introducing Requirements-Driven Modelling

Two other types of SVO sentences are quite easy to explain without a separate
illustration. A user-to-system-event sentence is a reaction to interacting with the
specific «trigger» (e.g. “save” in our example) rendered on a window frame in a
preceding system-to-user sentence. In turn, a user-to-system-input sentence denotes
editing the fields rendered on a window frame, based on the associated domain
element (e.g. “book data”). Care should be taken to assure coherence of user-to-
system sentences with the vocabulary. The previously rendered window frame must
have the necessary elements available for editing or triggering.

Finally, the system-to-system sentences have their meaning dependent on the
actual contents of appropriate verb phases. The contents should specify appropriate
algorithms for processing, accessing and changing the state of data within the sys-
tem. This is the domain-specific part of a requirements model. For this purpose, a
domain-specific language can be developed or some general-purpose language with
known semantics can be used. In case of a lack of such language, we are left with
specifying the domain logic algorithms informally and leave them out of the auto-
matic transformation path. This is a very broad topic of domain-specific languages
and is out of the scope of this book. However, all the techniques for defining soft-
waremodelling languages that we describe can be used also for such domain-specific
languages.

1.3.2 Requirements Explained Through Translation into Java

So far, we have used elements observable by the user to explain the meaning of
requirementsmodels. Now let us get back to the idea of defining requirements seman-
tics by offering equivalent 3GL (Java) code. This approach is fully formal and can
be used directly to construct automatic transformation engines. In this introductory
section we present the basics of the approach, and the details are given in Chap.4.

The first step is to define the translational framework, illustrated in Fig. 1.19. The
translational framework assumes a certain code structure to which the requirements

Fig. 1.19 General translational framework for RSL

http://dx.doi.org/10.1007/978-3-319-12838-2_4

1.3 What Is the Meaning of Requirements Models? 21

models are translated.Herewechoose a standard three-layered architecture consisting
of Presentation, Application Logic and Domain Logic. This division is equivalent to
the architectural patterns of Model-View-Controller (MVC), Model-View-Presenter
(MVP), etc. This approach was earlier informally introduced in Sect. 1.1. The pre-
sentation layer is responsible for accepting and presenting data to the user. The
application logic layer contains code that pertains to the workflow of the application
which includes different flows of user-system interaction. The domain logic contains
code that does the actual data processing (algorithms) and accesses persistent data.

Figure1.19 shows that use cases with their scenarios are translated mostly into the
code within the application logic layer. This is obvious in the face of what we have
already explained about the semantics of use cases. Use case scenarios can serve as
good controllers of the application logic. In turn, the vocabulary requirements influ-
ence mostly the other two layers. This is also obvious from the previous descriptions
of their semantics. The domain logic layer reflects the realisation of verb phases
with the associated algorithms. These algorithms process data as defined by domain
elements and their attributes. The presentation layer reflects the visualisation of the
same data to the user. The data are shown within specific UI elements that are also
defined in the vocabulary and relate to the domain elements.

Figure1.19 provides an informal overview of the translation; more details are
required. A summary of several formal translation rules is presented in Fig. 1.20.
Here we use a UML class diagram to present the code structure. Moreover, the class
operation methods are expanded to show their code (in this example—only one of
the methods). The arrows with numbers show howRSL constructs are translated into
code constructs.

1. Use cases are translated into classes of the Presenter (application logic) layer.
2. User-to-system-trigger sentences are translated into operations of the Presenter

class translated from the current use case.

Fig. 1.20 Use case translational semantics

22 1 Introducing Requirements-Driven Modelling

3. System-to-system sentences are translated into operations of the Model (domain
logic) class associated with the given domain element.

4. System-to-user sentences are translated into operations of the View (presentation)
class associated with the given UI element.

5. System-to-system sentences are translated into procedure calls referring to appro-
priate operations in the Model layer. These calls are generated within the method
generated with rule 2.

6. Stem-to-user sentences are translated into procedure calls referring to appropri-
ate operations in the View layer. These calls are generated within the method
generated with rule 2.

Note that the presented translational framework uses simple programming con-
structs. It is not scalable for larger systems and was meant only for these introductory
notes. Our rules were also not presented in full detail and precision. In the actual
detailed presentation in Chap. 4, we use a more sophisticated framework, which will
also contain more rules and consider various configurations of RSL scenario sen-
tences and domain elements. However, even with the current simple introduction,
we can see that the intuitions from Sect. 1.1 can be substituted with very specific
translation rules.

1.4 Towards Model-Driven Requirements Engineering

All the elements presented in the previous sections lead to constructing a new
approach to software engineering. We call this approach Model-Driven Require-
ments Engineering (MDRE) [15, 114–116], although perhaps it would be more apt
to call it Requirements-Oriented Programming. The first name emphasises the way
we specify requirements—through constructing requirements models. The second
name concentrates on direct contribution of requirements (models) to the final code.
It also indicates that programming activities can be shifted closer to the level of
precisely specified requirements. Let us now analyse how this new approach may
change the way in which software is built.

1.4.1 “Traditional” Software Development

We will start with a typical (“traditional”) software development process [103, 132,
159], as illustrated in Fig. 1.21. This process is far from the “dream scenario” of
Fig. 1.1. However, the goal is the same—to get from the user requirements (top
left) to executable code (bottom left). To reach this goal, we need to go through
several steps. First, we need to determine the detailed functionality of the system
and describe the problem domain in terms of the data that need to be handled by the
system. This forms the detailed software requirements. Having these details, we can

http://dx.doi.org/10.1007/978-3-319-12838-2_4

1.4 Towards Model-Driven Requirements Engineering 23

Fig. 1.21 Traditional software development

start design activities.We develop the high-level architectural specifications, and then
determine the details of the individual components. This detailed design can then
be implemented in 3GL code. Finally, we obtain the executables through compiling
this code. This ends a typical path—user requirements to software requirements to
architectural design to detailed design to 3GL code to executable code. The cycle
can be repeated several times throughout a single project resulting in an iterative
lifecycle. Of course, we have greatly simplified the lifecycle, leaving out important
activities like quality assurance (testing) and deployment. Instead we concentrate
on representing a gradual shift from artefacts at a high level of abstraction (user
requirements) to those at the lowest level of abstraction (executable code).

This briefly sketched process involves various roleswhich use different techniques
and tools to produce intermediate and final artefacts. Software requirements are
normally created by analysts that cooperate with the users. This is usually a manual
transition from less precise user requirements. Often, some elements of modelling
are used, like use case diagrams to denote units of functional requirements and class
diagrams to denote domain elements. However, most often such specifications rely
on standard templates and natural language descriptions with some rigour in terms of
the structure of use case descriptions. Moreover, it is not often that the vocabularies
aremade fully consistent with the functional specifications. Themost frequently used
tools to specify requirements are traditionally word processors. In many cases, this is
supported by special-purpose CASE (Computer Aided Software Engineering) tools
for requirements management [29, 30]. These tools can facilitate the management
of requirements units, assigning attributes to requirements and tracing between user
requirements and software requirements. To draw use case diagrams, another group
of CASE tools is used—UML modelling tools [184].

The software requirements are taken by architects and turned into architectural
specifications [40]. This is again traditionally a manual process. During this step,
architects “inject” their knowledge on architectural frameworks and technological
solutions. This knowledge turns use cases and domain elements into, e.g. components

24 1 Introducing Requirements-Driven Modelling

and interfaces according to a chosen architectural framework. It can be noted that
the architectural decisions are to an important extent influenced by the quality (non-
functional) requirements. For instance, the choice of a specific UI framework can
depend on the usability and portability requirements.

Architectural specifications can be developed using various tools. Often, these are
simple graphical applications chosen ad hoc to draw diagrams showing the deploy-
ment of components or relationships between interfaces. Sometimes, amore rigorous
approach is taken and a UML modelling tool is used to draw deployment and com-
ponent diagrams.

The architectural specification is then subject to further design activities per-
formed by the designers. They specify the details of individual components (sub-
systems). This mainly consists of dividing component code into units (classes) that
realise the component interfaces. Sometimes, the component, internal dynamics in
terms of interactions between runtime objects is specified. This also includes the
design of detailed algorithms for especially complex data processing code. Detailed
design specifications are more and more often developed using UML CASE tools
[129]. This is due to their capability of generating code skeletons from class models.
Class diagrams are used for documentation purposes (as a visual “map of code”) and
thus their role becomes significant.

Designers are often the same people as the programmers. Thus, they often simul-
taneously design and program their components. This is obviously done using typical
IDEs (Integrated Development Environments) [88] that contain code editors, com-
pilers, debuggers and execution environments. The compilers form the final, most
automated step in “traditional” software development. Sometimes, the IDEs are inte-
grated with UML editors and generators. In this way, design models and code can
be developed hand-in-hand, thus making code more visual and understandable.

1.4.2 Model-Driven Software Development

Typical software development can be seen as mainly a manual process. There
exist some elements of code generation but we would certainly desire much more
automation. This has changed with the advent of Model-Driven Software Devel-
opment/Engineering (MDSD/E) [18, 25, 178]. Originally, the idea of MDSD was
launchedby theObjectManagementGroup (OMG)4 and calledModel-DrivenArchi-
tecture (MDA)5 [56, 66, 92, 106, 111, 127, 167]. The underlying principle is that
the intermediate artefacts in the software development process are models that are
transformed to produce other, more detailed models. For example—generating the
user interface models from higher-level domain model [73]. MDA introduces three
basic levels at which models are produced.

4 http://www.omg.org/.
5 http://www.omg.org/mda/.

http://www.omg.org/
http://www.omg.org/mda/

1.4 Towards Model-Driven Requirements Engineering 25

• Computation-Independent Model (CIM). “A computation-independent model is
a view of a system from the computation-independent viewpoint. A CIM does
not show details of the structure of systems. A CIM is sometimes called a domain
model and avocabulary that is familiar to the practitioners of the domain in question
is used in its specification”.

• Platform-Independent Model (PIM). “A platform-independent model is a view of
a system from the platform-independent viewpoint. A PIM exhibits a specified
degree of platform independence so as to be suitable for use with a number of
different platforms of similar type”.

• Platform-Specific Model (PSM). “A platform-specific model is a view of a sys-
tem from the platform-specific viewpoint. A PSM combines the specifications in
the PIM with the details that specify how that system uses a particular type of
platform”.

MDA in its specification is not precise as to what the exact boundaries are between
these layers. This also pertains to definingwhat a “platform” is. The definition offered
by the MDAGuide [111] is rather imprecise, although it gives some important hints.
“A platform is a set of subsystems and technologies that provide a coherent set of
functionality through interfaces and specified usage patterns, which any applica-
tion supported by that platform can use without concern for the details of how the
functionality provided by the platform is implemented”. It can be argued that the
division between platform-independent and platform-specific design is quite foreign
to “traditional” software developers. Thus, the postulate to create an artefact that is
“platform-independent” sounds somewhat artificial to them. This might be the rea-
son that MDA did not really spread widely in software engineering (at least not as
widely as it was initially expected and hoped for).

Nevertheless, the MDA approach introduces a fundamental concept of gradual
and automated transition from models that are close to the problem domain to mod-
els that are close to the target code. This transition is made by means of model
transformation, as illustrated in Fig. 1.22. The less detailed (general) models (e.g.
at the PSM level) can be transformed to more detailed (specific) models (e.g. at the
PIM level) by adding certain details inserted through the transformation. What is
important is that these inserted additional details can be configured to some extent—
the models can be marked with additional information. If several PSMs are the

Fig. 1.22 General model
transformation scheme

26 1 Introducing Requirements-Driven Modelling

Fig. 1.23 Model-driven software development

potential targets of the transformation, it can be configured based on these mark-
ings. This configuration determines the kinds of mappings to the target platform
elements that will be used in the transformation. In this way, models leading to code
for different target platforms can be produced.

MDA transformations can be used in the software development process and thus
form theMDSD lifecycle as shown in Fig. 1.23. We retain the same process structure
as in Fig. 1.21. TheMDA layers of CIM, PIM and PSM can bemapped onto Software
Requirements, Architectural Design and Detailed Design respectively. This is not an
exact mapping but such division into layers and phases is familiar to software devel-
opers not acquainted with MDA. In the MDSD approach, we concentrate on using
models during all of these threemain phases of software development. However, note
thatwehave not introduced any automation in the transition fromRequirementsMod-
els (cf. CIM) to Architectural Models (cf. PIM). Such transitions are not supported
in industrial reality. Practically all of model transformation approaches concentrate
on transitions from PIMs to PSMs. This means shifting between design-level models
and not reaching as far back as the requirements models.

MDSD activities are performed by Architects and Designers. However, the role
of designers is significantly reduced because the design models are to a large extent
generated automatically. Instead, there needs to be introduced the role of theTransfor-
mation Engineer who is responsible for developing and maintaining transformation
programs executed within Transformation Engines. The role of the Architects is to
develop a general (platform independent) model and mark it with platform-specific
decisions. Then, the transformation should generate a platform-specific detailed
design model. Using MDA transformations we can also generate code. This can
add to standard CASE tool code generation capabilities and relieve Programmers
from developing many standard and repeatable code fragments.

1.4 Towards Model-Driven Requirements Engineering 27

MDSD can be practiced using various tooling environments. The most popular
are probably the various model transformation engines embedded into UML mod-
elling environments. Being the most widely used modelling language, UML is the
obvious choice for developing models also in the MDSD process. Thus, UML tool
producers have developed various model transformation modules. They introduce
model transformation languages usually specific to a given tool. Moreover, there can
be found several model transformation environments that are based on standardised
model transformation languages [38]. These environments are external to modelling
tools but interface with their model repositories [168]. We discuss this in detail in
Chap.5.

When discussing the applicability ofMDSD in practice, we can compare Fig. 1.23
with Fig. 1.21. The complexity of both processes is similar or one may even infer
that MDSD is in fact more laborious. This impression can be argued as incorrect
[112, 113] but it may be one of the reasons for the limited success of typical MDSD
approaches. MDSD would need to remove some phases in software development in
order for software developers to see the real benefits. This necessitates much more
automation and transformations coming right from requirements.

1.4.3 Software Development with DSLs and Model-Driven
Requirements

To shorten the path from requirements to code, we can try to remove or simplify
some of the phases. This is usually done when agile methodologies are applied.
Often, the detailed requirements are simplified to informal user stories combined
with sketched domain models as the exact requirements are worked out during an
iterative development process when the actual system is examined by the users.
Moreover, the design activities are also reduced and most of the design decisions
are made directly during coding. The great advantage is that we result with a system
that is developed precisely according to what the user needs—this is verified on-
the-go in very short validation cycles. However, this approach certainly influences
scalability and maintainability of systems. Further maintenance and extensions are
compromised due to lack of proper documentation and diagrams showing the code
structure and “how it works”.

Software developers consider detailed requirements and design documentation as
overhead. Writing code directly contributes to the final effect, while writing models
does not. However, it is obvious that for large systems to be maintainable, we need
design documentation. Themodel-driven approach brings a solution to this dilemma,
where the design models become first-class artefacts and not overhead. Developing a
model pays off through automatic transformation down to code. But, we would like
to have even more: to be able to construct a single model at a high level of abstraction
(as close to requirements as possible) and translate it directly into code.

http://dx.doi.org/10.1007/978-3-319-12838-2_5

28 1 Introducing Requirements-Driven Modelling

Fig. 1.24 DSL-based software development

The desire to shorten the software development path is reflected in the idea of
Domain-Specific Languages (DSL) [36, 54, 89]. Such languages allow us to create
models that are specific to a given problem domain and quickly transform into work-
ing code. This significantly reduces the number of steps in the process, as illustrated
in Fig. 1.24. We no longer need architects and designers, instead, we have only the
Developer role that cooperates with the User to produce DSL models. Also, the role
of 3GL programmers is significantly reduced or even not needed as most or all of
the target code is generated automatically through the transformation engine.

In the DSL-driven process, two additional roles are important. This is the Trans-
formation Engineer and the Language Engineer. We have already discussed the first.
The second role is necessary to develop and maintain the language in which the
users and developers create their domain-specific models. This is crucial because
the language has to be expressive and understandable but also formally precise (cf.
language semantics). Such languages are distinct for specific problem domains and
develop together with these domains. Moreover, they usually combine elements of
domain logic and application logic. A specific DSL may be created for only a single
system, and within the domain of a single business organisation.

The greatest advantage of the DSL approach is that in the realm of a suitable prob-
lem domain, significant productivity gains can occur [62]. This is mainly achieved
when a family of similar systems is needed (e.g. for different clients), leading to the
idea of Software Product Lines (SPL) [60, 131, 138, 171]. A fast process to generate
similar (variable) systems can be established through defining similar source models
based on a DSL. For isolated systems, productivity gains are not very impressive as
additional effort is needed to develop aDSL (LanguageEngineer) and then to develop
model transformations to the target platform (Transformation Engineer). This effort
pays off significantly only when several similar systems using the same DSL and

1.4 Towards Model-Driven Requirements Engineering 29

transformation are developed. To develop a DSL and associated transformations is
also a significant investment which forms a barrier for using this approach.

For the above reasons, it would be beneficial if we had a general-purpose (uni-
fied) language that would be able to substitute the plethora od domain-specific ones.
This language could be used in a wide range of domains and for various applica-
tion types. Moreover, we could develop many transformation variants for different
target platforms. These transformations could be reused many times and thus a unit
cost of their development could be spread among many projects throughout many
business organisations. This idea finally brings us to Model-Driven Requirements
Engineering. In this approach, we want to develop models in a unified Requirements
Specification Language and transform them directly to code.

Figure1.25 illustrates this kind of process. It is similar to the previous one,
driven by DSLs. This time RSL is the source language for automatic transfor-
mations. Moreover, the Language Engineer is not needed because RSL is a uni-
fied language and is maintained across many projects and many organisations. The
main consequence of using RSL is that not all the code is generated from require-
ments models. This is due to lack of constructs to express the domain logic (data
processing). In DSLs, these constructs were developed as part of a specific lan-
guage. As a result, three possible scenarios for data processing formulation are pos-
sible: (1) it is coded directly in 3GL; (2) it is expressed using a DSL integrated
with RSL; (3) it is formulated in an RSL algorithmic extension (which necessitates
additional research). These three scenarios are discussed in detail in Chap.7. In this
book, we mostly concentrate on the first one, where the generated code is clearly
marked with places where data processing code should be supplied by 3GL program-
mers. The marking can be performed using detailed design models showing the map
of necessary updates. Thismeans a compromise between full code generation, limited

Fig. 1.25 Model-driven requirements software development

http://dx.doi.org/10.1007/978-3-319-12838-2_7

30 1 Introducing Requirements-Driven Modelling

Fig. 1.26 RSL to code
transformation scheme

to specific domains (DSLs) and universality of approach with a more sophisticated
process (standard MDSD).

Technically, an RSL-based MDRE transformation can be implemented as a typ-
ical MDA transformation according to Fig. 1.22. The big shift however is that the
transformation source is equivalent to a CIM. A PSM together with working code is
thus generated directly from the CIM. This was not even present in the DSL-based
approach where the source models expressed in a DSL should be placed somewhere
between aCIMand aPIM (they are predominantly too technical to call them“require-
ments”). Instead of model marking and platform mapping, the transformation can
be controlled with quality requirements models as indicated in Fig. 1.26. This is an
important characteristic of this transformation. The architectural and detailed design
decisions pertaining to the target platform are embedded in the transformation and
marked through the values of quality metrics. For instance, a different target platform
may be chosen by the transformation if a mobile interface is required and a different
one for a web-based interface.

Both the DSL-based and the RSL-based approach promise significant gains in
productivity. However, in the first case, each specific problem domain has to be
equipped with a Domain-Specific Language. Moreover, model transformations have
to be developed that transform from the DSL-compliant models to the target plat-
form code. In the second case, both the language (RSL) and the transformations are
developed for various problem domains and various target platforms independent
of the potential problem domains. This obviously reduces the effort in a specific
software project or for a specific software product line. However, regardless of the
approach, several new competences are needed. First, we need to understand how
software modelling languages are constructed in terms of their syntax and seman-
tics. Second, we need to know how to develop model-to-model and model-to-code
transformations. The remainder of this book provides detailed guidelines in these
two areas.

Chapter 2
Presenting the Requirements Specification
Language

The key to any modelling activity is a modelling language. For a model-driven
approach that involves model transformations, we need to define this language pre-
cisely. Here, we present such language specific for requirements modelling, called
the Requirements Specification Language (RSL). In the previous chapter, we have
given some glimpses of its syntax and semantics and in this chapter we present it in
detail.

2.1 How to Define a Modelling Language?

For a language definition to be complete, it should consist of three parts: (1) the
abstract syntax, (2) the concrete syntax and (3) the semantics. The abstract syntax
specifies the possible language constructs and their correct arrangements and thus
determines the language grammar. Note that the grammars for visual modelling
languages have to be defined differently from the grammars for natural languages or
programming languages. Generally, models are graphs and they need to be defined as
such.Amodel normally consists ofmodel nodes (e.g. classes in aUMLclass diagram)
and model edges (e.g. associations between classes) that can be arranged spatially in
various ways. Thus, a modelling language grammar is graph-based and determines a
possible arrangement of nodes, connected through edges. Compared with grammars
for typical textual languages (e.g. context-free grammars), in this case, the language
constructs (lexemes, e.g. keywords, identifiers) are arranged linearly (in a sequence).
The grammars for such languages determine the possible linear sequences of these
elements.

The abstract syntax of a modelling language defines all the possible graphs that
would form correct models in this language. It is called abstract as it abstracts away
the visible (graphical, textual) elements of the language. Using the abstract syntax
we could build the persistent storage (repository) for models but not necessarily their
editors for which, we need the concrete syntax. This part of a language definition
defines the language constructs in terms of their visual appearance.

© Springer International Publishing Switzerland 2015
M. Śmiałek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_2

31

32 2 Presenting the Requirements Specification Language

• For graphical language elements, the concrete syntax defines arrangements of
boxes, lines and other graphical shapes that are visible to the language user. For
instance, the concrete syntax for classes in UML is a rectangle with a textual name
inside.

• For textual language elements, the concrete syntax defines arrangements of tex-
tual units (lexemes) that form larger structures (sentences, expressions, etc.). For
instance, the concrete syntax for class attributes in UML is a sequence consist-
ing of a visibility marking, an attribute name, a colon and an attribute type (e.g.
“- name : String”).

The difference between abstract and concrete representation is illustrated in
Fig. 2.1. It shows a typical class diagram in its concrete form (see right), contain-
ing two classes (one with an attribute) and an association between them. The same
model is presented in an abstract form through a UML object diagram (see left).1 The
abstract version shows the possible arrangement (connections) between elements and
their information contents, and is suitable for data storage. The concrete version is
suitable for rendering it to users through, e.g. an editor.

In this chapter, we concentrate on presenting the RSL concrete syntax. We give
examples of various language constructs as seen by its users. We also present the
abstract syntax of RSL models, but only informally, through examples of possible
RSL element arrangements. The formal definition of the abstract syntax is discussed
in the next chapter.

For many of the RSL elements we also explain their semantics (meaning). As
indicated earlier, this can be done in different ways. At this initial stage, we do this
rather informally. Having a requirements language to explain, we concentrate on
presenting how the system should behave or how it should look for its users. We
can call this the “observational semantics”. For requirements engineers, this is the
most fundamental element in a requirements language. They need to assure that their
specifications will mean to everyone precisely what they want to express in terms of
the desired observable system behaviour. For instance, it has to be clear how use case

Fig. 2.1 Abstract versus concrete model

1 This object diagram is a simplification for illustrative purposes. The official definition of UML
would necessitate a slightly more complex arrangement of objects.

2.1 How to Define a Modelling Language? 33

scenarios and domain elements translate into sequences of user interface forms and
data presented in these forms. In Chap.4 we introduce the formal way of defining
semantics by translating RSL constructs into well-understood Java constructs.

When presenting RSL, we show examples of the various RSL constructs. For the
examples to be consistent and comprehensible, we use the library domain, which
should be familiar to all readers. We assume a simple Library Management System
that consists of functionalities like catalogue management, reader management and
loan management. The system handles the library collection and the reader data.
It also records loans. We want the system to work in a web environment and have
typical application logic with menus and forms.

This simple library system is presented in small fragments throughout this chapter
to Chap.4. It is not meant to form a complete case study, instead, we offer a full
summary example in Chap.8. The reader can refer to this example when studying
the consecutive RSL constructs and their semantics.

2.2 Structuring Requirements Specifications

Any rigorously written requirements specification has to conform to certain rules.
Often, these rules are codified through requirements document templates. In the
modelling world, an equivalent of a document template is a model structure template.
Having awell-structuredmodelwe shouldbe able to easilymove around it. Themodel
organisation is usually done within well-familiar tree browsers. If necessary (and it
most often is), the model can be turned into a linear document for documentation
and legal purposes. Many modelling tools allow for quick generation of documents
and thus working on models does not conflict with typical habits of average business
readers.

Analysis of typical requirements specification templates shows that they gen-
erally concentrate on two main issues: (1) how to determine and specify require-
ments units and (2) how to group and classify requirements units. Compliance with
such a template can be assured using minimum tooling with only a word processor
in place. However, quality of requirements specifications does not only consist in
compliance with the templates. An important aspect is that of coherence, which is
usually assured through maintaining relationships between requirements units. The
most effective way to assure coherence is to use specialised requirements manage-
ment tools or general-purpose modelling tools as it is difficult to trace relationships
between requirements using only a linear word processor. We need mechanisms to
visualise the links and to trace them. Also, keeping coherence using even specialised
tools is laborious, as the links need to be maintained and analysed manually.

RSL goes beyond the above typical approach to assure the requirements quality.
Unlike for most typical requirements modelling approaches, it introduces a mech-
anism to assure coherence of requirements automatically by introducing a central

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_8

34 2 Presenting the Requirements Specification Language

domain vocabulary. Unlike for manually maintained links between requirements
units, the vocabulary is created and attached automatically. For this reason, RSL
models distinguish between requirements specifications and domain specifications
in a precise way.

2.2.1 Basic Concepts

Any RSL model consists of two distinct parts: a requirements specification and a
domain specification. Requirements specifications can be composed of requirements
packages and domain specifications—of domain element packages. The notation is
similar to that found in UML and uses familiar folder icons. Figure2.2 presents the
specifics of this notation. The icon for a requirements specification is adorned with a
thick line on the left side (a), and the icon for a requirements package—with a double
line (b). The domain specification has an additional rectangle inside the icon (c) and
the domain elements package is denoted with a plain folder icon (d). Obviously, each
of the packaging elements has its name placed inside or near the package icon.

Packages can contain other packages of the same type and thus form a tree struc-
ture. The leaves of the tree are the requirements and domain elements. Requirements
can be placed only inside requirements packages while domain elements can
be placed only in domain element packages. The notation for generic requirements
shown in Fig. 2.2e is a rectanglewith a double line on the left side. Requirements have

Fig. 2.2 Notation for
a requirements specifications,
b requirements packages,
c domain specifications,
d domain packages,
e requirements,
f use cases, g domain
elements and h actors

2.2 Structuring Requirements Specifications 35

short names and can have identifiers. The most important special type of require-
ments are use cases. Their notation is taken from UML and use familiar oval icons
(Fig. 2.2f). Also, similar to that in UML is the notation for domain elements. The
rectangles with names (Fig. 2.2g) resemble UML classes. A special kind of domain
elements are actors (Fig. 2.2h) whose notation is also taken from UML.

In RSL, requirements “as such” have just short names and identifiers and
their purpose is to divide the specifications into distinguishable units suitable
for handling. For project management, they can be additionally adorned with
attributes. Attributes are name–value pairs that specify project-specific informa-
tion. For instance, they can specify who is responsible for a particular requirement
(responsible = “John”), what is the version (version = 5) or what is the importance
(importance = HIGH)? Attributes can be placed inside notes attached to require-
ments icons, as illustrated in Fig. 2.3 (see left). The requirements attributes do not
have any effect on the target system code. In this book we will not go into the details
of this aspect of RSL.

Requirements “as such” with their attributes are good for dividing work and man-
aging projects. However, we need to specify the details. This is done within detailed
specifications of requirements which in RSL are called “requirement representa-
tions”. The basic form of requirements representation is simply a piece of natural
language text attached to the given requirement. Figure2.3 (see right) gives a couple
of examples—one for a quality requirement and another for a functional requirement
(use case). Note that also domain elements can have their representations.

So far, the basic constructs of RSL seem standard allowing for specifying typical
text-based requirements specifications with some graphical elements. The specificity
of RSL begins at the level of requirements representations. The language offers con-
structs which provide much more precision than the natural language. The first step
towards precision constitute the so-called “natural language hypertext” representa-
tions. The relevant syntax is illustrated in Fig. 2.4 using an example of a use case
textual representation.

Note that the illustrated representation contains hyperlinks to domain elements.
This includes an actor (“User”), a business domain element (“book”) and a system

Fig. 2.3 Requirements, their representations and attributes

36 2 Presenting the Requirements Specification Language

Fig. 2.4 Relationships at the requirements level versus hyperlinks in requirements representations

domain element (“book form”). Moreover, one of the hyperlinks points to a verb
phrase (“validate book”). To make text consistent with the domain model (because
of using the specific verb phrase), it had to be changed slightly in comparison to
that in Fig. 2.3. However, it still retains the characteristics of unconstrained natural
language.

The hyperlinks to domain elements contained in a requirement representation can
be reflected also in a diagram at the requirements level. In Fig. 2.4, the hyperlink to
the actor has its counterpart in the actor-to-use case relationship (a solid line arrow).
Similarly, the hyperlinks to domain elements and phrases can be summarised through
relationships between the given requirement (here: the use case) and domain elements
(a dashed arrow).

The hyperlinksmake requirements specificationmore coherent through consistent
use of domain terminology. This is similar to structuring hyperlink-based knowledge
bases like wiki dictionaries or theWikipedia. This feature of RSL can be easily intro-
duced into its editor environments. However, hypertext still does not offer enough
precision. We cannot apply techniques of model transformation on natural language
text even when it is adorned with some hyperlinks. For this reason, RSL introduces
requirements representations with strictly controlled grammar. In addition to struc-
tured text, they also include graph-based notations. These representations are mainly
related to use cases which we present later in this chapter.

2.2.2 Packaging and Presenting Requirements

As we can see, the requirements specifications in RSL form a coherent, interlinked
structure. This structure needs to be organised into packages and presented in dia-
grams. The division into packages has its consequences when an RSL model is
transformed down to code. Thus, it is important to take care while determining
packages that should reflect logical groups of functionality or fragments of the prob-
lem domain. Experienced requirements engineers have their worked-out rules. In
a traditional setting, the task of structuring a requirements specification is done

2.2 Structuring Requirements Specifications 37

through determining document chapters and sections and this is captured in document
templates. In RSL this is very similar but chapters and sections are substituted by a
hierarchy of packages. As we have already seen, the fundamental division between
requirements and domain elements is made at the level of language definition. Thus,
the two top level elements of the hierarchy are the requirements specification and the
domain specification. Underneath these two major specification-level packages, the
requirements specifiers are free to define their own package structure.

Here, we present simple rules that assure good structuring of the model, neces-
sary for future model transformations. Of course, this structuring is meant not only
for facilitating MDRE but follows the best practices for structuring requirements
specifications as such. An example of our library system is shown in Fig. 2.5. The
requirements specification package (“Library SystemRequirements”) is divided into
“Vision” and “Software Requirements”. The vision part is not meant for model trans-
formation as it contains only generic requirements with natural language representa-
tions. It contains generally formulated features of the system, describing its overall
functionality and quality characteristics. The details of how these features should be
included in the target system are provided by detailed software requirements.

Following the typical classification of requirements we can divide software
requirements into two packages: “Functional Requirements” and “Quality Require-
ments” (also called: non-functional requirements). The functional requirements
package contains all the use cases that define individual units of functionality as
seen by the outside actors (users). This functionality is usually complex and needs
further division into sub-packages. In case of our library system we decided to intro-
duce three packages of functionality (see again Fig. 2.5): “Catalogue Management”,
“Reader Management” and “Loan Management”. This division can be done using
various criteria. Here, we have concentrated on identifying crisp areas of application
logic centering around themanagement of certain types of data. Othermethodsmight

Fig. 2.5 Typical division into packages in a requirements model

38 2 Presenting the Requirements Specification Language

concentrate on division from the point of view of actors (user types) or menus in the
user interface. Each of the packages in our example do not contain more than 7–10
use cases and this is seen as a general rule-of-thumb. Packages containing more they
10–15 elements tend to become less manageable and understandable.

The quality requirements package contains all the aspects of a system that define
the criteria to evaluate the way it operates, but not its functionality (application logic
or domain logic). These requirements are important from the point of view of the
requirements model transformation as they influence the quality characteristics of
the target code. Such requirements can be further divided into more detailed classes.
A good way to approach this is to use a standard like the ISO 9126 [74] or ISO
25010 [76]. According to ISO 9126, quality requirements are divided into Func-
tionality (not to be confused with functional requirements), Reliability, Usability,
Efficiency, Maintainability and Portability. A similar classification is offered by the
FURPS model (Functionality, Usability, Reliability, Performance, Supportability).
As in packages containing use cases, quality requirements can be placed in pack-
ages under the main Quality Requirements package. For brevity, this is not shown in
Fig. 2.5.

The second part of every RSL specification is the domain model. For our example
system, this model was called the “Library System Domain”. Every such model
should be divided into three main packages: “Actors”, “Domain Notions”, and “UI
Elements”; the names indicate clearly the purpose. The Actors package is distinct in
that it can only contain actors. The other packages can contain domain elements of
various kinds which are introduced later in this chapter. They can be further divided
into sub-packages as illustrated in Fig. 2.5.

With a well thought-over model structure we can easily transform an RSL model
into a linear document. As shown in Fig. 2.5, the package hierarchy is a good basis
for structuring the chapter and section headings in the document. The contents are
filled with diagrams, requirement representations and domain element representa-
tions contained in the respective packages. From this point of view, let us now analyse
a fragment of the library system specification presented in Fig. 2.6. When working
with the specification, each of the presented elements can be accessed from the

Fig. 2.6 Example requirements specification with requirements relationships

2.2 Structuring Requirements Specifications 39

project tree. Moreover, the individual requirement representations can be accessed
and traversed by following the various links between requirements and hyperlinks
contained within their text. When some version of the model is ready, it can be
“frozen” and transformed into a document that can serve legal or other purposes.

Relationships between requirements, seen in Fig. 2.6 are not yet introduced. In
Fig. 2.4 we have seen relationships at the requirements level but they connected
requirements with domain elements. Here, we notice that requirements can also refer
to each other. In our example, two use cases trace back to a vision-level requirement
and two other use cases “operationalise” a quality requirement. Such relationships
can be visualised in generic requirements diagrams as in Fig. 2.6.

2.3 Specifying the Problem Domains and Their Rules

As indicated in Chap.1, the key to assuring coherence of requirements is to define
their domain with precision. We need to express all the relevant domain vocabulary
elements and relationships between them. This should form a model that expresses
the “map” (some might say: an ontology) of the reality of the problem domain and
of the application that is supposed to support this problem domain. Moreover, it is
important that we can easily refer to these coherently related domain elements from
within the functional and quality requirements.

For requirements on software, the domain consists of two connected areas: (1)
the problem (business) domain and (2) the application domain. This distinction is
important, because the problem domain is independent of the actual application to be
built. It should have the same properties regardless of the characteristics of various
systems that support it. The problem domain is stable, and it changes along with the
changes of the reality. The application domain can (and should) be quite dynamic
and changes whenever new ideas emerge regarding the properties of the applications.

In RSL, the problem domain consists of domain notions (e.g. “book”, “publisher”)
that can have attributes (e.g. “title”, “name”). This is similar to other notations that
can serve domain modelling (e.g. UML class models). However, RSL introduces
other important elements like verb phrases and data views. Moreover, attributes are
treated in RSL as distinct from notions and can be referred to by other elements. This
is important for defining the application domain which—in RSL—is composed of UI
elements which can present values of individual attributes and a specific combination
of such values. Thus, we need ways to organise attributes not only from the point of
view of concrete domain notions but also their arrangements within the UI. In this
section, we present these various elements of RSL’s domain specification.

http://dx.doi.org/10.1007/978-3-319-12838-2_1

40 2 Presenting the Requirements Specification Language

2.3.1 Defining the Problem Domain

The problem domain is the actual reality that the software system supports and/or
reflects. The examples in this section pertain to the library business domain and show
the suitability of RSL to define all kinds of business domains. However, we can also
define the problem domains for physical phenomena (e.g. the physics of airplanes) or
social relationships (e.g. family life). Regardless of the domain, we need to specify
a set of related concepts and the possible ways to view and process data related to
these concepts. This constitutes the so-called domain logic (or business logic) of the
system to be built.

The basic element of the domain model expressed in RSL is thus a Concept. Its
notation is simple and resembles that of a UML class. Figure2.7 shows variants of the
Concept’s notation (see left). It is a rectangle with a name and the “Concept” tag or
the «concept» stereotype.2 Concepts can also have no tag. The second type of domain
elements is Attributes. They are denoted with the “Attribute” tag or stereotype (see
Fig. 2.7—centre).Attributes can hold elementary data and thus their notation includes
additional information about the data type (included in brackets). The data types are
not limited by RSL but have to be specified in advance when a transformation from
RSL is planned. In our examples we use the following set of data types:

• “text”—string of text;
• “whole number”—an integer number (negative or positive);
• “real number”—any number with a possible decimal;
• “true/false”—a boolean value;
• “date”—a value containing date and/or time;
• “secret text”—encrypted string of text.

Depending on the problem domain, this basic set of data types can be extended
with, e.g. sound, graphics and binary data. Of course, for any new data type to be used
for code generation, the semantics during runtime have to be defined, as explained
in Chap.4. Also note that attributes are not graphically contained in Concepts, in
contrast to how it is done in UML. This has to do with the third type of domain
elements—Data views.

Fig. 2.7 Domain notion types

2 In future examples we will use the tag notation.

http://dx.doi.org/10.1007/978-3-319-12838-2_4

2.3 Specifying the Problem Domains and Their Rules 41

Data views are denoted with two types of tags/stereotypes: “Simple data view”
and “List data view” (see Fig. 2.7—right). They do not contain attributes but can
refer to attributes contained in different concepts thus allowing to present attributes
in various configurations. Simple data views serve presenting single instances of
combined attributes. List data views, as expected, can present lists, containing many
such instances. The exact meaning of data views is explained in further examples
below.

The above three types of domain elements should be connected through appro-
priate relationships as illustrated in Fig. 2.8. The most obvious relationship is the
association between concepts. RSL allows for any two concepts to be associated,
and the concrete notation of associations is similar to that in UML. Associations can
havemultiplicities, with notation also taken fromUML. In the example in Fig. 2.8 we
can see two associations with appropriate multiplicities. The concept ‘book’ is asso-
ciated with two other concepts—‘author’ and ‘publisher’. The book should have at
least one author and can havemany authors (‘1..*’). On the other hand, it should have
exactly one publisher (‘1’). Both the publishers and the authors can be associated
with any number of books (‘*’).

The second type of relationship is containment of attributes within concepts. Its
notation is taken from UML’s aggregations, where the diamond is placed on the side
of the concept (the ‘whole’ containing the attribute). In the example in Fig. 2.8, the
‘book’ contains the ‘title’. This example also explains why the attributes are graph-
ically placed outside of concepts. This is associated with the attribute relationships
with data views. These relationships are denoted with arrows pointing always from
the data views to the attributes. Note that the relationships to attributes can have
multiplicities on the attribute side. Usually, this multiplicity is ‘1’ but sometimes it
might be necessary to indicate that more than one attribute of some type is contained
in a concept or referred to from a data view.

A more elaborate (although still quite simple) example of relationships for
attributes is presented in Fig. 2.9. From the conceptual point of view, the problem
domain consists of three concepts: ‘book’, ‘author’ and ‘publisher’. These concepts
are explained in detail through the attributes they contain. For instance, the ‘book’
concept is composed of the ‘title’, the ‘issue date’, the ‘number of pages’ and contains
information whether it has ‘hard cover’. This conceptual model of the domain can
be viewed from different perspectives. Different applications (software systems) can
view different attributes in different settings and through different user interfaces.

Fig. 2.8 Domain notion relationships

42 2 Presenting the Requirements Specification Language

Fig. 2.9 Concepts, their attributes and data views

This can be represented by the data views. They can point to attributes taken from
different (but related) concepts and group them together. In other words, a data view
groups several attributes under one name that can be used to describe the application
logic.

In our example in Fig. 2.9, we have two data views that can be used, e.g. in
some user interface that searches through and presents lists of books. The ‘book
search criteria’ view groups three attributes (‘title’, ‘last name’ and ‘name’) that are
contained in the three presented concepts. Although the attributes are part of different
concepts, from the perspective of the user interface they can be presented together as
a single entity. The same situation is for the ‘book list’ data view. This time it groups
four attributes from two different concepts. These attributes can—for instance—form
columns in a table listing several books. The specific table will contain four columns
associated with the four attributes.

The presented example illustrates the two distinct areas that define the problem
domain. One area defines the stable conceptualmodel. It is unlikely that the presented
concepts (‘book’, ‘author’, ‘publisher’), their relationships and attributeswill change.
They are tightly associated with how the outside world (reality) is structured. On the
other hand, the second area is the data view model which is quite volatile. The
attributes to which various data views point depend highly on how the users would
like to view the data. In some cases, they would like to view four attributes in a book
list (as in the example), and perhaps in some applications this would change to show
more data.

From a practical point of view, the conceptual part of the domain model can
be developed independently of any application logic. We can discuss the concepts
within the currently analysed domain with the domain experts, abstracting away any

2.3 Specifying the Problem Domains and Their Rules 43

software systems. For the data view part, we need to consider the application logic.
Thus, in practise, the data views emerge along writing the functional requirements—
the use case scenarios. This is discussed in detail in Sect. 2.4.

2.3.2 Defining the Application Domain

In most software applications, the problem domain is presented through the User
Interface. The UI elements thus form the application domain. Through these UI
elements, the application!logic is expressed to the users (in general—to the objects
outside of the software system). The application logic is tightly related to the domain
logic. For this reason, the UI elements have to be related to domain elements.

RSL offers four types of UI elements, as illustrated in Fig. 2.10. Three of them
are associated with presenting and handling data, and one is related to handling
various interactions from the user. The most comprehensive of the UI elements is
the Screen. These elements can be presented to the users, who can interact with
them. They can contain various data elements and can also serve updating these data
elements. Screens can represent various elements in the actual user interface like
data forms, list windows or media presentation windows. Screens do not specify the
way data are to be communicated to the users. This can be in the form of a graphical
user interface or using other methods (e.g. actuators in building/factory automation,
printers, light and sound devices and so on).

Screens can contain another type of UI elements—Triggers. Triggers are associ-
ated with interactions of the user with the system. The most obvious kind of triggers
represent buttons in graphical user interfaces. However, they can represent all the
elements that the user can interact with like menu items, editable fields, physical but-
tons or sensors in automation systems. Whenever a trigger is accessed, some appli-
cation logic—controlled by the software system—is executed. A typical Screen can
contain several Triggers that determine various paths through the application logic,
depending on the choices of the user.

Fig. 2.10 UI element types

44 2 Presenting the Requirements Specification Language

In addition to Screens, RSL offers two other types of presentation elements
— Messages and Confirmations. These elements are included for convenience pur-
poses as their functionality could be realised with Screens and Triggers. These two
elements offer simple functionality for presenting information and accepting deci-
sions from the user. The Message element by default has only one option to choose
(equivalent to a single associated Trigger, like the ‘OK’ button) while the Confirma-
tion has more possible options (like ‘Yes’ and ‘No’ buttons). In both cases, we can
specify the message text as part of the element definition, as shown in Fig. 2.10.

Screens and Triggers should be associated with the problem domain elements.
This is done through arrow relationships, as presented in Fig. 2.11. In general, any
Screen can relate to one or more Data views (simple or list). There are two kinds
of relationships between Screens and Data views. The «present» relationship (arrow
pointing towards the Data view) means that a given view (i.e. the grouped attributes)
is shown within the given Screen for viewing by the user. This consist in rendering
appropriate screen elements to hold the data and showing the actual data values
(as retrieved from the system’s storage). The «update» relationship (arrow pointing
towards the Screen) means that the given view is shown to the user for editing
individual values of the grouped attributes and eventually—updating the system’s
storage. This also means rendering appropriate screen elements but leaving them
blank for editing. It is also possible to have both relationships between the same
Screen and Data view. In such cases, the system presents the actual retrieved data
values of the attributes and at the same time makes them available for editing.

The example in Fig. 2.11 presents two Screens that can handle attributes contained
in the associated Data views. The ‘book list window’ screen can present attributes

Fig. 2.11 Relations between UI elements and data views

2.3 Specifying the Problem Domains and Their Rules 45

grouped into two data views—‘book search criteria’ and ‘book list’. To determine
exactly what data is to be presented within the screen, we can refer to Fig. 2.9.
Namely, the screen will show the values of the three attributes grouped by the ‘book
search criteria’ and will contain a list with four columns indicated by the attributes
grouped by the ‘book list’. The same situation is for the ‘new book form’ screen.
This screen presents the ‘book data’ view that was not yet introduced (not present in
Fig. 2.9) but we can assume that it includes all the attributes found in Fig. 2.9.

Note that the data in the ‘book list window’ screen is only shown and is not
available for editing. If, for example, we would like to change this and allow edit-
ing of the ‘book search criteria’—we would need to add an «update» relationship.
This editing capability is available for ‘book data’ in the ‘new book form’. What is
important to observe is that editable data should be associated with triggers. This
is because editing causes data to be updated in the system’s storage and this update
has to be somehow triggered. In Fig. 2.11 we can see one trigger associated with the
‘book list window’ and two triggers—with the ‘new book form’. The RSL notation
is simple—triggers are pointed at by arrows coming from screens.

To indicate data that need to be updated when a trigger is evoked, it can point to a
data view or to an attribute. In our example, the ‘save button’ points to ‘book data’.
This means that pressing this button causes ‘book data’ to be transferred from the
relevant screen for further processing (and possibly—for storage). A similar situation
is for the ‘check author button’. However, this trigger points only to a single attribute.
The meaning is similar to when a whole data view is pointed at by the trigger. Only
this time, the single data element is passed for processing.

The bestway to explain the semantics of screens and triggers is to translate theRSL
constructs into concrete UI elements. This is shown in Fig. 2.12. It shows two forms
that are equivalent to the UI elements from Fig. 2.11. The upper form is the ‘book
list window’. It presents the ‘book search criteria’ (three attributes) and the ‘book
list’ (four columns). Also, it contains the ‘close’ button. A similar situation is for
the lower form, presenting the ‘new book form’. Comparison with Figs. 2.9 and 2.11
shows howRSL constructs can be represented in a real system. It must be emphasised
that RSL models are technology-independent and these technological details can be
added during transformation into design models and code, as presented in further
chapters. The actual type of the user interface (web-based, mobile, desktop, . . .) can
be determined through non-functional (quality) requirements and constraints.

2.3.3 Defining the Domain Rules

Concepts, data views and attributes define the structure of the problemand application
domains. For the description to be complete, we need to define the domain rules.
Here, by domain rules wemean the ways in which the data elements are processed. In
RSL, this data processing is organised through verb phrases contained within domain
elements as illustrated in Fig. 2.13.

46 2 Presenting the Requirements Specification Language

Fig. 2.12 Semantics of UI elements with data views

Fig. 2.13 Verb phases within domain elements

A verb phrase consists of a verb (“show”, “validate”, “calculate”) and a noun
(more precisely: a noun phrase). The noun reflects the actual domain element that
contains the particular phrase. So, for instance, all the phrases with the noun “book
data” are contained in the domain element ‘book data’. Verb phrases to some extent
resemble class operations in UML, the main difference is that the phrases have the
defined verb-noun grammar and they have no parameters.

Verb phrases can be contained in most of the domain element types: Screens,
Messages, Confirmations, Data views, Triggers and Concepts. There is no limitation
as to which verbs and nouns can be used within verb phrases; however, certain

2.3 Specifying the Problem Domains and Their Rules 47

standard verbs can be used to denote typical types of domain rules. This reflects
typical actions within application and domain logic. The types of predefined actions
dependon the types of domain elements. For Screens,weuse three predefined actions:
SHOW, CLOSE and REFRESH. Messages and Confirmations are limited and only
the SHOW action has a defined meaning. Also, the triggers can contain only one
type of predefined action: SELECT.

• SHOW—render a UI element in the user interface and (if relevant) present the
data view attribute values. The following verbs can be used as keywords for the
SHOW action: ‘show’, ‘display’, ‘present’.

• CLOSE—remove the UI element from the user interface. The following verbs can
be used as keywords for the CLOSE action: ‘close’, ‘shut’, ‘remove’.

• REFRESH—presents updated values of the data view attributes associatedwith the
given UI element. The following verbs can be used as keywords for the REFRESH
action: ‘refresh’, ‘renew’, ‘repaint’, ‘update’.

• SELECT—evoke some application logic associated with selecting a trigger. The
following verbs can be used as keywords for the SELECT action: ‘select’, ‘press’,
‘push’, ‘choose’, ‘click’.

A different set of predefined actions is available for the problem domain elements
(Data views and Concepts). They include the popular CRUD operations (CREATE,
READ, UPDATE, DELETE) and validation (VALIDATE). Note that these actions
cover a vast majority of domain logic in typical business systems.

• CREATE—add new data items to the system’s storage, containing values of the
given domain element’s attributes. The following verbs can be used as keywords
for the CREATE action: ‘create’, ‘save’, ‘add’, ‘write’.

• READ—retrieve values from data items in the system’s storage, according to the
definition of the given domain element’s attributes. The following verbs can be
used as keywords for the READ action: ‘read’, ‘fetch’, ‘get’, ‘build’, ‘retrieve’,
‘search’.

• UPDATE—substitute data item values in the system’s storage with new values, in
accordance with the given domain element. The following verbs can be used as
keywords for the UPDATE action: ‘update’, ‘modify’, ‘edit’, ‘override’.

• DELETE—removes data items from the systems’s storage, in accordance with
the given domain element. The following verbs can be used as keywords for the
DELETE action: ‘delete’, ‘remove’, ‘destroy’, ‘erase’.

• VALIDATE—check the values of the given domain element’s attributes according
to specified validity rules. The following verbs can be used as keywords for the
VALIDATE action: ‘validate’, ‘verify’, ‘examine’, ‘inspect’, ‘check’.

Setting one of the above action types, or using one of the keywords has certain
consequences for the meaning of a given verb phrase. This meaning is used by the
code generation engine, as explained in Chap. 6. If the action type is not specified,
the domain logic needs to be specified trough additional means. Namely, some data
processing algorithm has to be given. In the current version of RSL, there are no
facilities to specify such algorithms. In such situations, the verb phrases serve as

http://dx.doi.org/10.1007/978-3-319-12838-2_6

48 2 Presenting the Requirements Specification Language

Fig. 2.14 Verb phrases having domain (business) rules

placeholders for specifying the algorithms externally. One possible solution is to
use an existing Domain-Specific Language, or to develop one that is suitable for the
given problem domain. All the techniques in this book pertaining to defining RSL
can be used to define a suitable extension in the form of a DSL.

An elementary example of such an extension to RSL is given in Fig. 2.14. We
can see an example activity-based notation for specifying algorithms that involve
numerical calculations. In this particular case, a language is developed where one of
its capabilities is to calculate mean values. This language uses specific notations to
access and set the attribute values and each of the activity-based models is attached
to a specific verb phrase.

2.4 Specifying Functional Requirements

Functional requirements in RSL are defined mostly through use case models. RSL’s
use cases are derived from UML but RSL introduces several new and changed fea-
tures. There are important modifications made at the level of use cases as such and
relationships between use cases and actors. These modifications are associated with
ambiguous semantics of the use case model, as defined in the UML specification.
RSL still maintains the overall semantics of use cases and actors but introduces much
more precision. This precision, at the level of use case units, is realised through new
relationships: «invoke», «use» and «participate».

The fundamental enhancement of RSL is that of use case representations (con-
tents). RSL introduces a comprehensive language to model use case scenarios and
links them to the domain model elements. This extended language is based on con-
strained natural language sentences that have strict and simple syntax complyingwith
the syntax of verb phrases described in Sect. 2.3.3 andwith the «invoke» relationship.
Individual sentences are organised into scenarios and several scenarios form a use
case.

Note that the RSL constructs for use cases allow to define the whole appli-
cation logic of the considered software system. By application logic we mean
the observable behaviour of the application as seen by its users (outside actors).

2.4 Specifying Functional Requirements 49

It covers all the user-system interactions through the user interface, system responses
and actions of the system with results that affect its users. In this section, we present
the detailed RSL constructs that allow specifying the application logic through
detailed use case models.

2.4.1 Use Cases and Relationships

According to the definition provided in Sect. 1.2.2, use cases are pieces of observable
functionality that lead to goals of some value to outside actors. This general definition
is reflected in various RSL constructs. We start with the top level of use cases and
their relationship with actors and between themselves. An example notation at this
level is presented in Figs. 2.15 and 2.16.

Figure2.15 illustrates two types of relationships between use cases and actors.
The «use» relationship is denoted with an arrow pointing from an actor towards a
use case. The «participate» relationship is denoted with an arrow pointing in the

Fig. 2.15 Relationships between use cases and actors

Fig. 2.16 Example use case diagram with use case relationships

http://dx.doi.org/10.1007/978-3-319-12838-2_1

50 2 Presenting the Requirements Specification Language

opposite direction. We can also use an alternative notation without the arrows but
with simple lines adorned with the above stereotypes.

The «use» relationship means that a particular actor initiates execution of a given
use case (or: of its scenarios). This actor is also the one who wants to reach the final
goal associatedwith the use case. The use cases that are in the «use» relationship with
some actor are accessible from some central place in the user interface for that actor.
Normally, in a graphical user interface, this is equivalent to choosing some option
in the main menu. Thus, in our example in Figs. 2.15 and 2.16, the actor ‘Librarian’
will have three options available in the main menu: ‘lend a book’, ‘add new book’
and ‘show book list’.

The «participate» relationship means that a particular actor is prompted and
responds to the system during the actual execution of the use case scenarios. It
is important to observe that this interaction has to occur before the use case goal is
reached or—in general—before the use case execution terminates. It is a common
mistake of inexperienced use case modellers to model a «participate» relationship
in situations where the actor is informed about something already after the use case
terminates. An example of such an error would be the situation where the use case
execution ends with sending some SMS or email message to an actor. Here, the “par-
ticipating” actor does not interact with the system in any way during the execution
of this use case.

In Fig. 2.15 we can see two «participate» relationships. The first one is for the
‘Lend a book’ use case. The use case is initiated by the ‘Librarian’ but the ‘Reader’
has to participate by swiping her library card during the course of use case execution
(in some of its scenarios). The second situation is for the ‘Pay for overdue loans’
use case. In this case, it is the ‘Reader’ that starts the use case and the actor that
participates is the ‘Car Payment System’. We can infer from this diagram that this
other system is contacted by our system to settle a card payment by the reader. This
example also shows how non-human actors can participate in use cases.

Figure2.16 also illustrates the «invoke» relationship. The notation is simple with
a dashed arrow pointing towards the invoked use case, adorned with the «invoke»
stereotype. In the example, three use cases can be invoked from the ‘Show book
list’ use case. Note that the ‘Add new book’ use case can be directly «use»d by
the librarian (e.g. started from some main menu) or it can be invoked from ‘Show
book list’. The invocation relationships clearly indicate navigation through the user
interface as part of the application logic. From the diagram we can infer that the
‘Show book list’ use case will include actions (cf. triggers in the domain model) that
would start the other three use cases.

The indexinvoke «invoke» relationship substitutes the UML’s «include» and «ex-
tend» relationships. This slight change in notation seems unimportant but the impor-
tant issue is the shift in semantics which we explain below. The difference in notation
in illustrated in Fig. 2.17. As we can see, «invoke» can substitute «include» and does
not change the direction of the arrow. Whenever we would need to use an «include»
relationship in UML, we ca use «invoke» in RSL in the same manner.

2.4 Specifying Functional Requirements 51

Fig. 2.17 Comparison of «invoke» with «extend» and «include»

Adifferent situation is for theUML’s «extend» relationship.We can also substitute
it with «invoke» but we need to change the direction of the arrow. In UML, it is the
extending use case that points at the extended one. In RSL we cannot extend use
cases but we can invoke them. Invocation is directed opposite because the invocation
has call semantics in contrast to the extension which has specialisation semantics.

To explain these changes introduced byRSLwe need to refer to the official seman-
tics defined within the UML specification. For the «include» relationship it says: “An
include relationship between two use cases means that the behaviour defined in the
including use case is included in the behaviour of the base use case. The include
relationship is intended to be used when there are common parts of the behaviour of
two or more use cases. This common part is then extracted to a separate use case, to
be included by all the base use cases having this part in common.” and “Execution
of the included use case is analogous to a subroutine call. All of the behaviour of
the included use case is executed at a single location in the included use case before
execution of the including use case is resumed.”

From this definition we infer that inclusion has macro-like semantics. In other
words, all the contents of the included use case are inserted at one point in the
including case. This contents can then be executed like if the including use case had
all the included use case behaviour substitute the “inclusion point”. Unfortunately,
the UML’s specification of use cases does not specify “inclusion points”. Thus, to
determine precise semantics of UML’s inclusion we need to go beyond the official
UML specification as shown in Fig. 2.18.

The including use case (here: ‘Discontinue a book’) contains an inclusion point.
This point is a distinguished action within the use case’s scenarios. The behaviour
defined by the use case starts when an actor interacts with the system in a specific
way (cf. ‘initial actor interaction’). Then, consecutive actions occur with possible
different paths that lead either to reaching the use case goal or failing to do so. On

52 2 Presenting the Requirements Specification Language

Fig. 2.18 Semantics of the «include» relationship in UML

one of these paths resides the inclusion point (see Fig. 2.18). In a running system
(derived from this use case model), this inclusion point is substituted by all the paths
definedwithin the included use case (here: ‘Showbook loan history’). This resembles
macros available in various programming language environments. We can specify a
macro as a piece of generic code suitable for inclusion into some other code (cf. an
included use case). Before compilation, this code is preprocessed and inserted into
the other places in code where the macro is used (cf. inclusion points).

Note that the included use case is usually not fully defined—it lacks the initial
user interaction. This is because when the inclusion point is reached, the including
use case is usually in the middle of some processing or after some user interaction.
Thus, it does not make sense to start the included use case with a user interaction,
but rather—begin with some actions performed by the system.

While the semantics of the «include» relationship seems straightforward, the
semantics of «extend» defined in the UML specification is much more twisted. The
specification says that: “Usually, a use case with extension points consists of a set
of finer-grained behavioural fragment descriptions, which are most often executed
in sequence. This segmented structuring of the use case text allows the original
behavioural description to be extended by merging in supplementary behavioural
fragment descriptions at the appropriate insertion points between the original frag-
ments (extension points). Thus, an extending use case typically consists of one or
more behaviour fragment descriptions that are to be inserted into the appropriate
spots of the extended use case. An extension location, therefore, is a specification
of all the various (extension) points in a use case where supplementary behavioural
increments can be merged. If the condition of the extension is true at the time the
first extension point is reached during the execution of the extended use case, then
all of the appropriate behaviour fragments of the extending use case will also be
executed.”

This leads to interweaving of scenarios of the extended and the extending use case,
as illustrated in Fig. 2.19. The extended use case can have several extension points
where the functionality of the extending use case is to be merged. The extensions
are merged under certain conditions. In the figure, the condition is shown in a note

2.4 Specifying Functional Requirements 53

Fig. 2.19 Semantics of the «extend» relationship in UML

attached to the arrow. If the condition ismet at thefirst point, the appropriate extending
actions are merged at this point. The same situation is for any other extension point.

In contrast to inclusion points, extension points are part of the official UML defi-
nition. Their notation is shown in Fig. 2.20. Each extension point is defined through
its name and place of extension. Note that this place is not formally associated with
any specific step within a use case. The illustration in the figure is only for compre-
hension purposes. UML does not offer any constructs to link extension points with
the use case “contents”.

Figure2.20 explains the actual extension example. The ‘Add new book’ use case
has two extension points. The first extension can bemade after the ‘main entry screen’
is displayed. If the scanner is available (see the condition in Fig. 2.19), then the
appropriate steps from ‘Scan book data’ are performed (the title pages is scanned).
Later, when an ‘optional data screen’ is displayed (and the condition was met at

Fig. 2.20 Extension points in UML

54 2 Presenting the Requirements Specification Language

the first extension point), the second group of steps from ‘Scan book data’ can
be performed (library data is scanned). Note that when the condition is not met, the
extended use case (‘Add newbook’) is executedwithout the steps of the extending use
case (‘Scan book data’). Thus, the extended use case should be written independent
of any extensions (although the extension points are defined within it).

As can be observed, the semantics of the «extend» relationship is difficult to
understand and follow [170]. In use case models that use extensions, the flow of
control is not easy to grasp. The extension points are presented independently of the
conditions (which control them). Moreover, the flow of control of the extended use
case is interwoven with the flow of control of the extending use case. This is close
to having several GOTO statements, which is always a source of confusion. Finally,
the UML’s definition does not make it clear as to how extension points should be
linked to the actual steps forming the flow of control of a use case.

For these reasons, RSL has dropped the «extend» relationship and substituted it
with «invoke». This move results in removing the possibility to interweave use cases.
Instead, the typical procedure call semantics is applied. In some cases, this necessi-
tates some changes in the use case model. However, situations as in Figs. 2.19 and
2.20 are rare and can easily be modified. What is retained from the «extend» rela-
tionship is the possibility to define conditions. However, the actual flow of control is
organised differently for extensions. Certain instances of «invoke» can behave sim-
ilarly to «include». However, again, the macro semantics of «include» is substituted
by the procedure call semantics of «invoke».

The call semantics of «invoke» is explained through the example in Fig. 2.21. It
shows three cases of invocation where two of them can be seen as partially equivalent
to UML’s extension and one—to UML’s inclusion. The ‘Show book list’ use case
contains two invocation points associated with two «invoke» relationships it has

Fig. 2.21 Semantics of the «invoke» relationship in RSL

2.4 Specifying Functional Requirements 55

with the two other use cases. Similarly, the ‘Discontinue a book’ use case has one
invocation point.

The presented diagram shows an overview of control flow for the invocation
points. Two situations can be distinguished. The first situation is present in both
inclusion points of the ‘Show book list’ use case. The invocation point is associated
with some step in use case execution.When control flow reaches this step, a condition
associated with the inclusion point is evaluated. This makes the invoked use case
available to the user. The user (more generally: the actor) can then select to start the
invoked use case. This is equivalent to performing the first step in the invoked use
case (see the hand icons in the diagram), i.e. performing the initial user-to-system
interaction. Then, the control flow continues through the steps of the invoked use
case until it reaches one of its final points. After the invoked use case finishes its
execution, the control returns to the initial step of the invoking use cases with which
the invocation point is associated.

To illustrate this in Fig. 2.21, we assume that ‘Show book list’ reaches some point
in one of its scenarios where a list of books is displayed. At this point, some condition
is evaluatedwhich is associatedwith a switch that allows to discontinue books (which
normally is not allowed). With this switch on, the window that displays the list of
books presents a relevant button. By pressing the button, the user in fact “executes”
the first sentence in the ‘Discontinue a book’ use case. After this second use case
finishes (with success or perhaps with failure), the execution flow goes back to the
‘Show book list’ use case and returns to the step of displaying the list of books. A
similar situation is for the invocation of the ‘Show book loan history’ use case from
‘Show book list’.

A different situation is presented in the inclusion point contained in the ‘Dis-
continue a book’ use case. This time, the inclusion point is reached directly and
unconditionally as one of the steps in the use case control flow. After reaching this
step, control goes to the invoked use case (here: ‘Show book loan history’). Unlike
the previous cases of invocation, this time the user need not select any button. Thus,
the first sentence of the invoked use case is not “executed”. Control flow goes directly
to the second sentence. When the execution of the invoked use case finishes, control
goes to the next step after the initial invocation point.

The above explanation of invocation semantics does not go into the details of
particular use case steps and their individual semantics. To understand this issue
better we need to present more information about structuring individual steps in use
case logic and forming complete scenarios out of these individual steps. This includes
conditions for invocations that—as it can be noted—are not present at the use case
level. These issues are presented in the subsections that follow.

2.4.2 Sentence Types

In contrast to UML, RSL precisely defines the use case contents and provides appro-
priate notation.We start to present this notation from the basic building blocks, which
are individual sentences. In general, RSL uses constrained natural language for the

56 2 Presenting the Requirements Specification Language

Fig. 2.22 Scenario sentence types

sentences. Each sentence denotes either an individual step in the use case logic or
controls the flow of steps. In Fig. 2.22, sentences were divided from the point of view
of their position within the use case contents. We can distinguish Initial sentences,
Body sentences and Final sentences.

A use case can be initiated with one type of sentences: Preconditions. Their
syntax is simple and starts with the keyword ‘Pre:’ which is followed by free text
describing the actual condition. Themeaning of this sentence is to provide a condition
for executing the given use case. If the condition is met, the use case is ready for
execution. If it is not met, the use case cannot be executed. In the context of the
invocation sentence (see the previous subsection), the precondition is the condition
that is checked when a sentence with an associated invocation point is reached.

The precondition sentence in Fig. 2.22 refers to the example in Fig. 2.21. In the
‘Show book list’ use case, a sentence showing a book list is reached. This sentence
has an associated invocation point which refers to the ‘Discontinue a book’ use case.
The condition that is checked at that point is the precondition of ‘Discontinue a book’
presented in Fig. 2.22. If the precondition is not met (collection maintenance turned
off), the option to discontinue a book is ‘greyed out’ or not visible. If the precondition
is met, the user has an appropriate button available and can (if she wishes) start the
invoked use case. In case the precondition sentence is not present in the invoked use
case, it is assumed that the precondition is always met.

In the current version of RSL, preconditions have no defined syntax for their con-
dition parts. Thus, the appropriate code, checking the condition will not be generated
and will need to be updated by hand. This is explained in Chap.6. However, the con-
dition text can be transferred to code as a comment and thus should be meaningful.
We should assume that the precondition specifies some system state and refers to the
domain elements.

http://dx.doi.org/10.1007/978-3-319-12838-2_6

2.4 Specifying Functional Requirements 57

The precondition sentence can be followed by various sentences that form the
use case body. There are three types of such sentences: SVO sentences, condition
sentences and invocation sentences. Again, the syntax of these sentences is simple
and consists of only a few elements (see again Fig. 2.22). The SVO sentences are
normally composed of three parts: the Subject (S), the Verb (V) and theObject (O). In
some cases, a more elaborated syntax can be used with an additional (indirect) object
together with a preposition. In general, the simple SVO(O) sentences have proved
to serve as satisfactory means to express all the possible actions of the application
logic.

While SVO sentences define individual actions, the condition sentences and the
invocation sentences allow for controlling the flow of these actions. The syntax
for conditions sentences starts with the ‘–>cond:’ keyword followed by free text,
specifying the actual condition. Whenever a condition sentence is reached, the actual
condition is checked and if it is met, the flow of control goes to the sentence that
follows. If the condition is not met, the flow of control moves to another scenario,
which will be explained in the next subsection.

As in the case of preconditions, the conditions sentences in RSL have no specific
syntax for the part that follows the keyword. Despite this, code can be meaningfully
generated from several corresponding condition sentences. Again, the condition text
can be copied into code as a comment.

The syntax for the invocation sentence is also straightforward and consists of
the ‘–>invoke:’ keyword followed by the name of the specific invoked use case.
The meaning of invocation sentences was already initially explained in the previous
subsection and when explaining the precondition sentences. More information is
given in the next subsection.

The body of each use case scenario has to be ended with one of the final sentences.
There are three types of such sentences where two of them can be followed by a
postcondition sentence (see Fig. 2.22). The actual final sentences are denotedwith the
‘–>final’ keyword which is followed either by the ‘success’ or the ‘failure’ keyword.
Themeaning of these sentences is quite obvious.Whenever such sentence is reached,
the use case terminates its execution and passes control to where it was called from.
The additional keyword signals to the caller the final status of processing within
the current use case (whether the use case goal was reached or not). In addition to
this, the postcondition sentence can specify the state in which the system should be
at the end of the given scenario. The notation for postconditions is similar to that
of preconditions and differs in the keyword ‘Post:’. The postcondition text can be
copied to code similarly to how it is copied for preconditions.

In addition to the actual final sentences, RSL has a third final sentence which is
the rejoin sentence. Its syntax starts with the ‘–>rejoin:’ keyword followed by the
identification of the rejoin point. This point is determined by giving the name of
the scenario and the SVO sentence at which the other scenario has to be rejoined.
Rejoining can be made only within the current use case. No ‘goto’ rejoins to other
use cases are allowed. Rejoin sentences facilitate writing scenarios which “detour”
from some main course of action but after some alternative steps—return control

58 2 Presenting the Requirements Specification Language

to that main course. Whenever a rejoin sentence is reached, control is passed to the
sentence which is pointed at through the rejoin.

After presenting all the sentence types we now return to SVO sentences. Their
syntax, despite being simple, allows for various combinations of the three sentence
parts leading to their various types. This variety allows to construct complex applica-
tion logic describing the dialogue between the actors and the system, with references
to the domain logic. In Fig. 2.23 we see all the possible SVO configurations.

The main division is between sentences where the subject points to one of the
actors, and sentences where the subject points to the system. These are either ‘Actor-
to-’ or ‘System-to-’ sentences. Obviously, the actor sentences specify possible actor
interactions with system—triggering events or entering data. The system sentences
specify the system’s reactions to the actor’s interactions. These various interactions
and reactions are specified through the VO (Verb-Object) part of each sentence. Note
that these predicates are equivalent to the verb phrases that are part of the domain
model as illustrated in Fig. 2.23. We can recall from the previous sections that verb
phrases are contained in domain elements. Each SVO sentence predicate is in fact
a hyperlink to such a verb phrase. The sentence object indicates the actual domain
element, and the sentence verb selects the appropriate verb phrase. In an RSL editor
environment, these links should be maintained automatically. Whenever an SVO
sentence is created, its parts should be hyperlinked to appropriate phrases in the
domain model. If the domain models lacks a phrase—it should then be created.

Fig. 2.23 SVO sentence types

2.4 Specifying Functional Requirements 59

Figure2.23 shows six types of SVO sentences where two are the actor sentences
and four are the system sentences. The classification is straightforward and does
not need more elaborated explanation. Note that in general, the sentence subject
determines the allowed domain elements that can be hyperlinked by the sentence
predicate. The actor sentences can pertain to triggers and data views. The system
sentences can also pertain to data views but additionally—to concepts, dialogue ele-
ments (messages and confirmations) and screens. The example sentences in Fig. 2.23
show the rationale behind such classification of sentences. It is also obvious that these
sentences should be combined in a certain order. The rules for ordering sentences
lead to forming use case scenarios, which are presented in the following subsection.

The reader has probably noticed that SVO sentences do not contain any articles
(‘a/an’ or ‘the’). This can be explained by the desire to simplify the constrained
grammar and to concentrate on links with the domain vocabulary and not on specifics
of a concrete natural language (here: English). With this approach, various national
languages with similar grammar can be used.

2.4.3 Scenarios

Every use case should have at least one scenario that leads to successful reaching
of its goal. Use cases with just one scenario are quite seldom and usually there are
alternative scenarios that either lead to failure or reach the final goal in a different way
than in the main scenario. Before we present example scenarios, we need to explain
various rules for putting individual scenario sentences together in sequences. These
rules are based on the fundamental notion of dialogue state.

The notion is explained in Fig. 2.24. The dialogue can be in one of two states:
‘Actor’ or ‘System’. In the figure, these states are shown as lifelines in a UML-like
sequence diagram [6, 152]. The dialogue state is propagated and changed along the
scenario sentences. Each of the six SVO sentence types can be placed in a scenario in
places where the dialogue state is suitable for this sentence. The ‘Actor-to-’ sentences
can be placed when the dialogue state is ‘Actor’. Similarly, the ‘System-to’ sentences
can be placed when the dialogue state is ‘System’.

The ‘Actor-to-Trigger’ sentences shift the dialogue state from ‘Actor’ to ‘System’,
and the ‘System-to-Screen’ sentences shift in the opposite direction. Note that the
‘System-to-Dialogue’ sentences do not shift the dialogue state. This is for conve-
nience reasons. Such sentences relate to either messages or confirmations. The user
interactions for theseUI elements are limited to selecting a trigger. Thus, it is assumed
that the user must select some trigger and this is ‘built into’ the ‘System-to-Dialogue’
sentence. This approach saves some work on writing obvious ‘Actor-to-Trigger’ sen-
tences.

SVO sentences change the dialogue state but cannot change the control flow.
With only SVO sentences, the control would go from one sentence to another and
only one scenario for a use case could be written. Thus, we need to use condition
sentences. These sentences need to be introduced in at least pairs. For every condition

60 2 Presenting the Requirements Specification Language

Fig. 2.24 SVO sentences: changing the dialogue state

sentence, at least one other associated condition has to exist forming a group of
alternative conditions. As shown in Figs. 2.25 and 2.26, there can be two situations
where conditions can be used.

The first situation (Fig. 2.25) is when a condition sentence group is placed at a
point where dialogue state is ‘Actor’. This means that the current actor should make
some decision leading to alternative paths through the use case. Thus, immediately
following each condition sentence in the groupwe need to place an ‘Actor-to-Trigger’
sentence. This situation is explained in the sequence diagram on the right of Fig. 2.25.
The two alternative paths of control are depicted with two sections of the ‘alt’ com-
bined fragment (please refer to UML’s combined fragments) equivalent to an ‘if’
statement in most programming languages. In both cases, some trigger is selected by

Fig. 2.25 Condition sentences: changing control flow (1)

2.4 Specifying Functional Requirements 61

Fig. 2.26 Condition sentences: changing control flow (2)

the actor and thus the state of dialogue is changed to ‘System’. However, normally,
the two triggers are different (e.g. pressing ‘Save’ or pressing ‘Cancel’) and thus the
following actions (SVO sentences represented by dots) define different steps.

The second situation (Fig. 2.26) happens when the dialogue state at which condi-
tion is situated—is ‘System’. Normally, this is equivalent to the system first perform-
ing some data validation, checking the state of some domain elements or executing
some data processing. This leads to several possible results (e.g. data valid or not
valid) which are guarded by several grouped conditions. These conditions can be
each followed by any possible ‘System-to-’ sentence. This might be some further
internal processing by the system (e.g. ‘System-to-DataView’) or presenting a UI
element to the user (‘System-to-Screen’). As for the previous case, this is illustrated
with a sequence diagram containing the ‘alt’ combined fragment in Fig. 2.26. Again,
depending on the result of some system operation (dialogue state = ‘System’), con-
trol within the use case logic can go through one of the alternative paths.

Having defined the notions of dialogue state and SVO sentences changing this
state, we can now proceed to explain how invocation sentences can be situated
in scenarios as illustrated in Fig. 2.27. As explained previously, there can be two
situations—the invocation is unconditional or the invocation is conditional and
depends on the user interaction. For the latter situation, the ‘–>invoke:’ sentence
has to be placed at a point in a scenario where dialogue state is ‘Actor’. In fact, we
can place several consecutive invocation sentences at such a place. These sentences
are not executed in sequence but are treated as parallel possibilities to start several
use cases.

This can be best explainedwith the example in Fig. 2.27. Somewhere in a scenario,
the dialogue state is changed to ‘Actor’ through the ‘System-to-Screen’ sentence
‘System shows book list window’. Sometimes, this sentence can be followed by
some ‘Actor-to-DataView’ sentences (e.g. ‘User enters book filter’) which do not
change the dialogue state.At this point,we canput one ormore ‘–>invoke:’ sentences.
In our example, one of these sentences invokes ‘Show book loan history’. Other

62 2 Presenting the Requirements Specification Language

Fig. 2.27 Invocation sentences: passing control to other use cases

examples which refer to Fig. 2.16 are ‘Add new book’ and ‘Discontinue a book’.
Initial triggers (e.g. buttons) for these three use cases have to be present in the ‘book
list window’.

When a running system reaches the point where invocations are situated, the
dialogue state is with the user, who may choose to start one of the use cases made
available for invocation. So, for example, when the user selects the available history
button, flow of control is taken by the first sentence of ‘Show book loan history’.
Then, this invoked use case ‘executes’ until it reaches one of its final points. Following
this, control is passed to the invoking use case. The point to which control is passed is
the last ‘System-to-Screen’ sentence before the ‘–>invoke:’ sentence. In our example,
this is ‘System shows book list window’ which results in returning control back to
the same window from which the last invocation call was made.

This simple standard control flow semantics can be extended to cater for more
complex situations. In such case, the invocation sentences have to be combined with
condition and rejoin sentences. Each of the invocation sentences in the situation
described above could be placed in a separate alternative scenario, guarded by a
condition sentence. Then, flow of control after returning from invocation would go
to the next sentence in the given alternative scenario. This sentence would normally
be a rejoin to the ‘System-to-Screen’ sentence as explained above. However, in some
situations this could involve other actions like refreshing the original window (here:
the ‘book list window’).

Figure2.27 presents an example of the second possible type of invocation, i.e.
the situation when the dialogue state is ‘System’. Note, in this situation, the invoked
use case is ‘executed’ beginning from its second sentence and the first ‘Actor-to-
Trigger’ sentence is omitted. This is a reasonable solution, considering that in the
dialogue state ‘System’ the actor has no control and cannot evoke a trigger event.

2.4 Specifying Functional Requirements 63

In this situation, it is the system that starts the invocation without any external actor
intervention. The invoked use case executes exactly the same as it would be triggered
by the user. The only difference lies in the initiating event.

It has to be stressed that at the final point of any use case the dialogue state has
to be ‘System’. This means that the invoked use case does not decide to which user
interface element control should be passed when it finishes. This is logical because
otherwise it would be impossible to invoke the same use case from several use cases.
Each of these invoking use cases might start invocation when a different window is
displayed. We would thus expect the invoked use case logic not to decide as to which
window should be displayed when it ends.

With control flow explained for individual sentences, we are finally ready to
assemble sentences of various types into full scenarios. In RSL we can use two
alternative notations. The first notation is purely textual, and the second notation
uses familiar activity notation taken from UML. These two notations are presented
in Fig. 2.28. The lower activity diagram is almost fully equivalent to the upper four
scenarios in textual format. The minor difference is that the textual scenarios can
have names (e.g. ‘Invalid reader id’).

Analysing the presented example it can be noted that all the scenarios start with
the same set of sentences from 1 to 4. In general, for all kinds of use cases, the first
two sentences have to be the same. The first sentence is always an ‘Actor-to-Trigger’
sentence. Then it needs to be followed by a ‘System-to-’ sentence as an invocation
sentence. Only after this second sentence, the first possible condition sentence group
can occur. In our example in Fig. 2.28 a condition group occurs after the fourth
sentence. This is the situation where the dialogue state is ‘Actor’, explained earlier
in this section. In the textual notation, presence of a condition group (here: two
alternative conditions) leads to having one scenario per indexcondition condition
(here: ‘Main scenario’ and ‘Main scenario with swiping’). In the activity notation,
the conditions are denoted as guards annotating the appropriate number of control
flows (arrows) leading from the previous sentence (here: sentence number 4).

It should be observed that the condition texts that are specified in the dialogue
state ‘Actor’ do not really matter. What matters are the ‘Actor-to-Trigger’ sentences
that follow (‘Librarian selects next button’ and ‘Reader swipes through card reader’).
These sentences determine which application logic (i.e. further steps in scenarios)
will execute after the specific alternative interactions of the user with the system.
A different situation is for the condition sentences that occur at the dialogue state
of ‘System’. These conditions matter because they directly refer to the preceding
sentence (‘System validates reader id’ in one case and ‘System validates reader card’
in another). So, the alternative scenarios execute depending precisely on the result
of this preceding sentence and evaluation of the following conditions.

The final observation for Fig. 2.28 is related to sentence numbers 8 and 7. We
assume that these sentences are ‘System-to-Dialogue’ and thus thefinal dialogue state
is ‘System’. The ‘OK message’ defined in the domain model is type of «message».
If it was a «screen», then sentence 8 would need to be followed by another sentence
like ‘Librarian selects OK button’. The usage of a «message» instead of a «screen»
simply saves some work.

64 2 Presenting the Requirements Specification Language

Fig. 2.28 Notation for scenarios: text and activity diagram

2.4 Specifying Functional Requirements 65

Fig. 2.29 Textual and activity notation for invocations

In Fig. 2.29 we have an example of alternative notations for the invocation sen-
tences. Again, we use both the textual and the activity notation. In the first case (the
upper part of the figure), we have the situation with a ‘System-to-Screen’ sentence
(‘System shows book list window’) followed by several invocation sentences. In
activity notation this can be represented as in the shown diagram. Each «invoke»
action can be reached through a control flow leading from the action containing the
‘System-to-Screen’ sentence. Another control flow points back to this initial action.
The second case in Fig. 2.29 (lower part) shows an unconditional invocation. The
notation is self-explanatory and needs no further comments.

This concludes the introduction to various RSL constructs. In this introduction,
we have presented the elements most relevant for further automatic processing and
code generation. However, the presented part of the language does not claim to
exhaust all the possible twists in the application logic. The language can be extended
by introducing other domain element types through adding new stereotypes. Also,
certain other configurations of scenario sentences can be introduced. These exten-
sions would then need to be explained in terms of their semantics that influence the
generated code. In the next two chapters, we approach RSL in a more formal way to
prepare for developing an automatic model transformation from RSL to code.

Chapter 3
Defining RSL

In the previous chapter we presented the various constructs of RSL as they are visible
to the language users. This concrete syntax is important for comprehensibility of
the language but does not offer enough formality. In order to represent this syntax
in a modelling tool, we need a formally precise version of the syntax that allows
for creating storage and processing of RSL models—the abstract syntax. We use a
model to represent RSLmodels [145, 153], and such amodel is called themetamodel
(“model of models”).

3.1 Introduction to Metamodelling

The notion of abstract syntax was introduced earlier in Sect. 2.1. We know that the
abstract syntax specifies the arrangement of model elements treating them as an
abstract graph. Being graphs, models are composed of nodes (vertices) and edges.
To handle models in a tool we need to be able to store and process the nodes, edges
and the ways in which edges connect the nodes. When storing these elements we
do not include the visual form of the nodes and edges, nor do we store the spatial
relations between these elements. This information is abstracted away and specified
elsewhere. The visual forms of nodes and edges form the concrete syntax. The spacial
relations are specified in concretemodel diagrams.Whenwe remove the visual forms
and the diagram-related information what is left is called the abstract syntax.

Individual models can form different abstract graphs. However, for models that
conform to a specific modelling language—these graphs have to obey specific rules.
To define these rules we can also use models. The individual abstract graphs become
instances of these models. We thus have now two levels of models: the “actual
models” and themodels that definepossible arrangements of elements of these “actual
models”. Models at this second level of modelling are called metamodels.

Experience shows that the above explanation of metamodels is not enough to
understand to start metamodelling. Thus, we attempt to explain by starting with an

© Springer International Publishing Switzerland 2015
M. Śmiałek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_3

67

http://dx.doi.org/10.1007/978-3-319-12838-2_2

68 3 Defining RSL

Fig. 3.1 Maps and their legends

analogy that is known to most readers. Although we all know and use various kinds
of maps we seldom realise that maps are models of reality. Maps use a specific
language to reflect the reality. For readers to understand the map, this language has
to be explained. Each “syntactic” element in a map has a definition. Moreover, for
a specific type of map, the language should be coherently used. A typical way to
present the “map language” definition is to use a legend.

In Fig. 3.1 we see an example of such a legend, defining the language for certain
kinds of topographical maps. Our “map language” is simple and consists of only four
elements: roads, rivers, bridges and buildings. Note that the legend is also a model
composed of these four elements. It is not a complete model, because it only enlists
the four syntactic elements of the “map language” and provides a mapping between
the abstract form (the element names) and the concrete form (the visual icons).

The legend lacks the information about possible arrangements of the map ele-
ments. This is assumed as obvious to the reader who knows the reality represented
by maps. However, in a language engineering context, we need to specify these rules
illustrated in Fig. 3.2. Here, the rules are expressed through graphical examples (left)
that are summarisedwith textual statements (right). If we remove the graphical exam-
ples we are left with abstract statements that specify how the syntactic elements can

Fig. 3.2 Syntactic rules for
maps

3.1 Introduction to Metamodelling 69

Fig. 3.3 Model representing a syntactic rule

be arranged. These statements abstract away the visual and spatial issues and con-
sist of only element names (‘bridge’, ‘road’) and relations between these elements
(‘connect’, ‘overlap’).

In defining the “map language” we can go a step further and present the above
rules through a model. For instance, to show that bridges can generally connect
to roads, we could write a simple diagram shown in Fig. 3.3. This diagram is an
elementary example of a metamodel. The advantage of using a metamodel is that it
can be made formally precise and can contain well-organised information on various
other elements of the language syntax.

Modelling languages in software engineering are to some extent similar to our
“map language”. They are meant to represent a specific domain and are often called
Domain Specific Languages. One such language is RSL, where the domain it covers
is requirements engineering. Yet, before explaining the metamodel of RSL let us
present some general rules for creating metamodels. For this purpose, we use a
simple language (‘VSL’) presented through an example in Fig. 3.4.

The figure contains an example model in its concrete (left) and abstract (right)
forms. We can see a circle and a pentagon connected with two arrows in opposite
directions. The circle and the pentagon contain three and two dots, respectively. The
diagram also contains a square. Note that the abstract form is in fact a UML-like
object diagram. The objects have names (e.g. ‘d1’, ‘a2’) and types (e.g. ‘Circle’,
‘Arrow’). The arrangements of objects are presented through links where each link
is equivalent to a physical connection between two model elements. For example,
the link between objects ‘p1’ and ‘a1’ is equivalent to the point where the outgoing
arrow touches the pentagon. This link is marked by an appropriate identifier (‘out’)

Fig. 3.4 Defining an elementary modelling language

70 3 Defining RSL

Fig. 3.5 Metamodel for the example modelling language

placed at one of its ends. In this way its role as the beginning of the arrow is clearly
determined. The other arrow object (‘a2’) is also clearly linked with the pentagon at
its incoming end (‘in’).

The presented example model is one of many possible configurations of the ele-
ments in ‘VSL’. To specify all the possibilities we need to generalise the object
diagram into a class diagram. As shown in Fig. 3.5. Each of the classes represent
one type of elements found in Fig. 3.4, so the presented set of classes can serve
as the “legend” for this model. The syntactic rules are defined through the various
relationships between classes—associations, aggregations and generalisations. This
class model is the definition of the model syntax in ‘VSL’. In other words—it is a
model of models, or a metamodel. The classes and associations in the metamodel
can be distinguished by calling them metaclasses and meta-associations.

As we can see, the models in ‘VSL’ generally consist of ‘Nodes’ and ‘Arrows’.
The nodes can have up to three ‘Dots’, but may also not have any dot (see the
multiplicity ‘0..3’). Every dot has to belong to exactly one node. There are three
kinds of nodes: ‘Circles’, ‘Pentagons’ and ‘Squares’, which is denoted through the
generalisation relationships. Nodes of any kind can be connected through arrows. It
can have a maximum of one incoming (see ‘in’) and a maximum of one outgoing
(see ‘out’) arrow (see the multiplicities ‘0..1’). On the other hand, any arrow must
have one beginning node (see ‘begin’) and one end node (see ‘end’).

Note that there is nothing that prevents an arrow to connect a node with itself
(i.e. the beginning node for an arrow is the same as the end node) as illustrated in
Fig. 3.6. It illustrates several models that conformwith (a, b) and are opposed to (c, d)
the metamodel in Fig. 3.5. The models that oppose the metamodel are syntactically
incorrect and should be rejected by appropriate tools like a Java or aC compilerwould
reject an invalid program in the respective language and issue an error message. Of
course, if we want to extend the language to encompass also the non-conformant
models we need to change its metamodel. In case of the models in Fig. 3.6 this is
very easy. We only need to change the multiplicities of the metaassociations for

3.1 Introduction to Metamodelling 71

Fig. 3.6 Model conformance to metamodels

‘Arrow’ from ‘0..1’ to ‘0..*’. Now the number of arrows coming out and into any
‘Node’ is unlimited.

Graph-based models can also have textual elements. For instance, the nodes in
‘VSL’ models can have names and other textual specifications. In Fig. 3.7 we see an
example node (a pentagon) with the name (‘Penta27’) and an additional descriptor
(‘FIRE’). The descriptor is composed of a keyword, a sequence number (here: ‘3’)
and a procedure identifier (here: ‘Proc12’).

Themetamodel for textual elements includes class attributes. These attributes rep-
resent atomic texts in the models. Figure3.7 presents three alternative approaches to
model names and descriptors. In the first approach (top) the ‘Node’ metaclass con-
tains attributes of ‘name’, ‘fire_seq’ (fire sequence) and ‘fire_proc’ (fire procedure).
In the second approach (middle) an additional metaclass ‘Fire’ models the descriptor
clearly distinguishing it from the containing node. In the third approach (bottom),
the descriptor is modelled simply as a single string metaattribute (‘fire’). In such
a case we need to supplement the meta-attribute with the definition of the string’s

Fig. 3.7 Example metamodels for textual elements

72 3 Defining RSL

syntax. This can be done using a formal context-free grammar [3]. We will not go
into details of context-free grammars as the presented example is self-explanatory.
The grammar defines that every ‘fire’ descriptor is composed of the ‘FIRE’ keyword
followed by consecutive tokens that form the descriptor. Note that while the first
two approaches are purely abstract—the third approach reveals some of the concrete
syntax. In the first two cases, we cannot determine the actual keyword and sequence
of tokens of the ‘FIRE’ descriptor by examining the metamodel alone. This would
need to be done separately in the concrete syntax definition. In the third approach,
the concrete syntax has to be partially specified in order for the definition of all the
descriptor elements to be complete.

This simple metamodelling approach covers much of the necessary expressive-
ness to define a modelling language. The definition consists of simple class dia-
grams, sometimes supplemented by additional elements like context-free grammar
expressions and constraints. This abstract syntax has to be matched with the concrete
syntax. There are numerous possibilities of how elements symbolised bymetaclasses
and metaattributes are presented graphically. They can overlap, touch each other, be
placed near each other and so on. In some cases, the elements can be hidden in a
diagram and shown in a separate descriptive element. In the following sections, we
see how this can be applied to RSL. We present the most important elements of its
metamodel and map it onto concrete models.

3.2 Overview of the RSL Metamodel

RSL is a complex modelling language and as such necessitates an elaborate meta-
model. If we analyse the RSL concrete syntax presented in the previous chapter, we
will come up with many dozens of metaclasses needed to represent the individual
RSL elements. To make the RSL metamodel manageable we need to divide it. Here,
we also use the familiar construct known fromUML—the package. Each of the pack-
ages contain a distinct part of the language definition, starting from the most detailed
constructs and ending with the whole specifications. The actual RSL definition [83]
contains more than 20 packages and more than 200 metaclasses. In this book, we
present a slightly simplified version containing the most important subset of RSL
which is substantial enough to demonstrate various metamodelling techniques and
use for developing RSL editors and transformation engines.

Figure3.8 shows seven packages that can be divided into those defining require-
ments specifications (four packages on the left) and those defining the domain
specifications (three packages on the right). The relationships between packages
denote usage (inclusion) of elements defined in one of the packages (pointed-at with
the arrow) within another package. For instance, the ‘Terms’ package uses meta-
classes from the ‘Phrases’ package to define metaassociations that link the various
terms with phrases within which they are used. In the actual definition of RSL,
we have various other packages that are not shown in Fig. 3.8. However, the pre-
sented division gives a good overall view of the language structure. In the detailed

3.2 Overview of the RSL Metamodel 73

Fig. 3.8 Structure of the RSL metamodel

descriptions in the following sections we refer to some other packages but they all
can be treated as sub-packages of the seven presented.

The highest level RSL constructs are defined in the ‘Requirements Specifications’
and ‘Domain Elements’ packages. ‘Requirements Specifications’ defines the most
general and structuring RSL elements like packages and requirements-as-such. Ele-
ments in this package also refer to domain specifications in ‘Domain Elements’.
Using the elements defined in these two packages we can build tree-like structures
familiar to all that use the variousmodelling tools and their “project browsers”.Within
the requirements specifications and domain specifications we can define packages,
sub-packages, requirements and domain elements.

Requirements and use cases have relationships and this is defined in the ‘Require-
ments Relationships’ package (with a sub-package ‘Use Case Relationships’). This
package uses the ‘requirements’ metaclasses from the ‘Requirements Specifications’
package and introduces additional metaelements that allow for connecting them, like
‘usage’ and ‘invocation’. In this way it allows for creating use case diagrams and
other graph-based diagrams composed of requirements units.

The next package—‘Requirements Representations’ introduces the modelling
levels that are below requirements as such. It contains top-level metaclasses for
defining requirements descriptions with varying precision. This includes simple tex-
tual representations but also structured language scenarios and activity models. The
more detailed representations are composed of sentences whose syntax is defined
in the ‘Representation Sentences’ package. This package contains constructs for
modelling SVO sentences and various control sentences.

74 3 Defining RSL

As we can see in Fig. 3.8, ‘Representation Sentences’ use constructs from the
‘Phrases’ package. This is the main link between requirements and domain elements.
Hyperlinked sentences (like SVO sentences) are in fact composed of hyperlinks to
phrases defined in the domain models. Phrases constitute the centralised pool of
possible constructs in the RSL’s constrained natural language syntax. These phrases
are composed of individual terms like verbs and nouns. Terms are the most atomic
constructs of RSL and are defined in the ‘Terms’ package. The existence of terms is
important for assuring coherence of the language that uses different linguistic forms
of the same terms.

Phrases are further grouped into domain elements and this is where we again
reach the ‘Domain Elements’ package. Each domain element can contain several
phrases, centralised around a single noun phrase. These domain elements can also
contain other elements as their attributes and can be linked through relationships.
This forms the complete syntax for domain models. Now, we explain the structure
of RSL starting with the domain model elements and its fundamentals which are the
terms and phrases.

3.3 Terms and Phrases

Complex scenarios and sentences in RSL are composed of simple building blocks.
The simplest of them are ‘Terms’ contained in a central ‘Terminology’. This part of
the metamodel is presented in Fig. 3.9 (up). Examples of concrete syntax are denoted
by numbers in circles referring to appropriate metaclasses. The terminology contains
many terms and can be filled with their names using various known terminology
databases like WordNet [49]. In this way, RSL users can consistently associate their

Fig. 3.9 Metamodel for basic terms

3.3 Terms and Phrases 75

specifications with the words available in a given natural language. If a given term
is not present it can be easily added to the terminology and extend it.

The term’s ‘name’ constitutes its value that is a string containing its basic linguistic
form. There are several types of terms represented by individual metaclasses that
specialise the ‘Term’ metaclass. The most commonly used types are ‘Nouns’ and
‘Verbs’ (examples for these types are shown in Fig. 3.9). Term names can consist of
several words, like in ‘book list’. Moreover, terms can have ‘keyword’ values that are
mostly used for the verbs. These keywords (like ‘READ’ or ‘VALIDATE’) can reflect
the predefined actions assigned to the specific verbs, as explained in Sect. 2.3.3.

Only one instance of each term can exist in a given RSL model, terms are thus
singletons. Whenever a term has to be used in a phrase, a hyperlink to it has to be
created. These hyperlinks are called ‘TermHyperlinks’, as presented in Fig. 3.10.
For each term type there is defined a separate class of hypelinks, where appropriate
metaclasses specialise from ‘TermHyperlink’. Term hyperlinks contain information
about the various possible forms of the hyperlinked term (case, gender, mood, num-
ber, person, tense). Not all of these form types exist in every natural language but
the metamodel is prepared to adapt to various natural languages (English, Polish,
German etc.). In the example in Fig. 3.10 we can see that the term ‘fetch’ is pointed-
at by two term hyperlinks. One of them is formulated in the second person, and the
other—in the third person.

Fig. 3.10 Metamodel for term hyperlinks

http://dx.doi.org/10.1007/978-3-319-12838-2_2

76 3 Defining RSL

Term hyperlinks are the building blocks for phrases. In fact, any phrase
consists of just a sequence of term hyperlinks. In the abstract syntax, a phrase does
not contain any meta-attributes within its text but is associated with term hyper-
links specific for the given phrase. The metamodel is presented in Fig. 3.11 and
defines two fundamental types of phrases:‘NounPhrases’ and ‘VerbPhrases’ which

Fig. 3.11 Metamodel for phrases

3.3 Terms and Phrases 77

specialise in general ‘Phrases’. ‘NounPhrases’ are always associated with a single
‘NounLink’ which constitutes the actual ‘noun’ of the phrase. Moreover, any noun
phrase can contain a ‘modifier’ and a ‘determiner’. This is denoted by appropriate
multiplicity (‘0..1’) in the meta-associations between ‘NounPhrase’ and ‘Modifier-
Link’ or ‘DeterminerLink’. Appropriate examples of noun phrases with their term
hyperlinks are presented in the lower part of Fig. 3.11. The noun phrase (1) ‘book
list’ is composed of a single noun link (6). Other two examples show phrases with
modifier links (5: ‘entered’ and ‘selected’) and a determiner link (4: ‘the’).

A more complex metamodel is introduced for the verb phrases. RSL defines
two types of verb phrases: ‘SimpleVerbPhrases’ and ‘ComplexVerbPhrases’. Their
concrete syntax shows that a simple verb phrase (2) consists of a phrase verb link (7)
and a noun phrase (1). A complex verb phrase (3) adds to this a preposition (8) and
a second phrase verb link (1). Both ‘VerbPhrases’ contain exactly one ‘NounPhrase’
in the role of the direct ‘object’. A ‘SimpleVerbPhrase’ contains a ‘PhraseVerbLink’
which has the role of the ‘verb’. Thus, in summary, the ‘SimpleVerbPhrase’ can be
composed of a ‘noun’ (possibly with a ‘modifier’ and a ‘determiner’) and a ‘verb’.

The definition of ‘ComplexVerbPhrases’ extends the syntax of ‘SimpleVerb
Phrases’. This is not realised through specialisation but through composition. Every
‘ComplexVerbPhrase’ aggregates one ‘SimpleVerbPhrase’ and adds a ‘preposition’.
Note that the ‘ComplexVerbPhrase’ contains an additional indirect ‘object’ inher-
ited from the ‘VerbPhrase’. Thus, in summary a ‘ComplexVerbPhrase’ contains one
‘verb’, two ‘objects’ (direct and indirect), one preposition and can contain a ‘modi-
fier’ and a ‘determiner’.

To explain how this works, let us analyse object relationships for an example
complex verb phrase (see the middle part of Fig. 3.11). The complex verb phrase
‘cvf’ contains the simple verb phrase ‘svf’. This contained phrase is composed of
a phrase verb hyperlink ‘vpl’ with the value of “fetches”. This hyperlink points to
the actual verb ‘v’ with the name of “fetch”. The simple verb phrase contains also
the noun phrase ‘np1’, because this link is inherited from the generic verb phrase.
The noun phrase in turn contains the noun link ‘o1’ with the value of “book list”. The
complex verb phrase object contains another noun phrase ‘n2’ as it also inherits it
from the generic verb phrase. Finally, the phrase preposition link ‘ppl1’ completes the
composition of the phrase. Altogether it results in the phrase containing the following
hyperlink values: “fetches”, “book list”, “according to”, “search criteria”.

We have presented the above values in the order that complieswith proper arrange-
ment of sentence parts. However, the abstract syntax (the metamodel) does not
enforce this order in any way. For this purpose we need to use another technique
which is a context-free grammar. The following expressions define such a grammar
for complex verb phrases:

• Start=ComplexVerbPhrase –> SimpleVerbPhrase preposition NounPhrase
• SimpleVerbPhrase –> verb NounPhrase
• NounPhrase –> determinermodifier noun | modifier noun | determiner noun | noun

78 3 Defining RSL

According to this grammar, every ‘ComplexVerbPhrase’ starts with a
‘SimpleVerbPhrase’. This ‘SimpleVerbPhrase’ starts with a ‘verb’ followed by a
‘NounPhrase’. The ‘NounPhrase’ can be in one of four possible configurations which
always end with a noun. After returning to the ‘ComplexVerbPhrase’ we reach a
‘preposition’ which is followed by a second ‘NounPhrase’.

Such grammars are typically used to formally define textual software languages
like Java. Here, we use this approach to support the metamodel and specify the
ordering of individual sentence parts in concrete syntax for verb phrases.

3.4 Domain Elements and Relationships

Having defined the syntax for terms and phrases we are ready to use this syntax to
formulate the domain elements. RSL distinguishes three types of domain elements:
‘Actors’, ‘SystemElements’ and ‘Notions’. As shown in Fig. 3.12, three correspond-
ing metaclasses specialise the ‘DomainElement’ metaclass. This general metaclass
provides the general characteristic of any domain element, to have a ‘name’ in the
form of a ‘NounPhrase’. Thus, the syntax of each of the three types of domain ele-
ments has to contain a hyperlink to a specific term in the terminology. In the concrete
syntax, this hyperlink is seen as the ‘value’ of the appropriate noun link contained
in the noun phrase. Let us take—for example—the “book data” notion shown in
Fig. 3.12 (bottom-right). In concrete syntax its name is a string of characters. To see
how it is stored we should examine the abstract objects that form this model (see the
middle part—left). Now we can see that in fact this string is contained as the ‘value’
of the ‘NounLink’ which is the ‘noun’ contained in the ‘NounPhrase’ in the role of
the actual ‘Notion’s’ ‘name’.

Apart from this textual syntax, each of the domain element types has a graphical
syntax. For actors (1) this is a stick-man icon, and for system elements (2) and
notions (3) this is a (slightly differing) rectangle. These graphical elements can
be represented in model browsers (Fig. 3.12, bottom-left) or in diagrams (bottom-
right). These two possible representations can differ in the arrangement of the domain
elements’ graphical layout andposition of the textual name. For instance, in diagrams,
the notion names are centred inside and at the top of the rectangle icon.

The presence of ‘Notions’ and ‘Actors’ in the domain model seems obvious,
however, the reader might wonder about ‘SystemElements’. In fact, normally we
have only a single system element which is the system under development. It is this
system’s name (e.g. in our ongoing example it is the “LibraryManagement System”)
that we use in all the relevant parts of the requirements models. Specifically, we can
use this name in scenario sentences like “Library Management System validates
book data”. Normally, we should specify system sub-components during design
phases. However, in some situationswe need to distinguish certain parts of the system
already at the level of the domain model. For this purpose RSL introduces this third
type of domain element—‘SystemElements’, which allows to construct more natural
sentences that use vocabulary more understandable to users. For instance, in some

3.4 Domain Elements and Relationships 79

Fig. 3.12 Metamodel for domain elements

contexts it would be more natural to say “Library Card Scanner displays scan
signal” instead of using “Library Management System”.

‘Notions’, apart from having names can contain ‘DomainStatements’. As the
metamodel (Fig. 3.12) shows, this is only the characteristic of notions—actors and
system elements do not contain domain statements. Each notion can contain many
(‘*’) such ‘statements’. A domain statement is basically composed of a single
‘Phrase’. The metamodel may suggest that any phrase will do, but in fact it is impor-
tant to observe an important constraint. The domain statements in a specific notion
must contain phrases that point to the same noun phrase as for the notion’s name. This

80 3 Defining RSL

can be seen in the concrete syntax example of the “book data” notion. It has three
domain statements where all the phrases have ‘objects’ that read ‘book data’. This
is not only because the appropriate ‘NounLink’ ‘values’ are the same but because
the actual ‘NounLinks’ are the same object, illustrated through the abstract object
example in Fig. 3.12. The example shows only one of the three domain statements
(‘ds’) but the rule is the same for all of them. The appropriate contained ‘Simple-
VerbPhrase’ is composed of a distinct ‘verb’ (here: “save”) but the ‘object’ is exactly
the same ‘NounPhrase’ that constitutes the ‘name’ of the containing ‘Notion’.

Having defined individual domain elements, we now introduce the metamodel for
relationships, presented in Fig. 3.13. ‘DomainElements’ can be connected through
‘DomainElementRelationships’. Each such relationship connects one domain ele-
ment with another. One of the elements is treated as the ‘source’ of this relationship
and another one—its ‘target’. The ‘directed’ metaattribute of ‘DomainElementRe-
lationship’ indicates whether the source and the target need to be distinguished. In
concrete notation (see (2)—bottom of the figure), this differentiates between a line
or an arrow connecting two domain elements.

Relationships between domain elements can have multiplicities, which is mod-
elled by setting the ‘sourceMultiplicity’ and ‘targetMultiplicity’ strings present in
the ‘DomainElementRelationship’metaclass. This abstract syntax for relationships is
very simple compared to the abstract syntax of relationships in UML. Readers famil-

Fig. 3.13 Metamodel for notion relationships

3.4 Domain Elements and Relationships 81

iar with the UML metamodel should remember that e.g. associations are connected
to classes through properties that have multiplicities. In RSL this is not necessary
because the domain model has sufficient expressiveness without the more complex
structures. As a result, the RSLmetamodel preserves comprehensibility and provides
simple examples for patterns in metamodelling.

Relationships can be modelled between any domain elements (actors, system ele-
ments, notions). However, only notions can have specialisations and attributes. The
‘NotionSpecialisation’ is modelled exactly as the ‘DomainElementRelationship’.
The ‘target’ side of the specialisation is denoted with a closed arrowhead (see (3)).
The semantics of specialisations are similar to that in UML. In the transformation
programs in Chap.6 we do not use specialisations, so we will not go into the details
on this kind of relationship.

On the other hand, attributes are very important for the transformations from RSL
to code. Attributes are defined in RSL as regular ‘Notions’ but with a ‘dataType’
attached. The data type is defined through the ‘PrimitiveDataType’ metaclass which
holds the ‘typeName’. This is an enumerated metaattribute whose possible values
can be seen in Fig. 3.13 (top-right). These values reflect the possibilities presented
in Sect. 2.3.

Notions can contain many other notions that serve as attributes. In the meta-
model in Fig. 3.13 this is defined through a metaaggregation that references from the
‘Notion’ metaclass to the same metaclass. The contained notions are in the roles of
‘notionAttributes’. The concrete notation for this containment is similar to an UML
aggregation (see (4)). However, this symbol is not reflected in any metaclass. It can
be seen as an extended “joining point” between the composite notion (here: “book”)
and the contained attribute(s) (here: “title”). This is different from ‘DomainElemen-
tRelationships’ and ‘NotionSpecialisations’which, despite similar concrete notation,
have their respectivemetaclasses in themetamodel. This shows different possibilities
in shaping the metamodel and its concrete notation.

For the language to be coherent this metamodel has to be extended with some
additional constraints. The first constraint says that when a notion is an attribute (has
a ‘dataType’ attached), it cannot contain other attributes. Attributes are atomic and
thus cannot be further decomposed into “smaller” attributes. The second constraint
says that a notion can have other notions as its ‘notionAttributes’ only when these
other notions are in fact attributes, i.e. have appropriate ‘dataTypes’ attached. These
constraints are obvious but formally have to be specified because the puremetamodel
does not prevent certain incoherent situations.

Notions can have attributes but this is often not satisfactory. Thus all the domain
elements (and notions) can have additional ‘DomainElementRepresentations’, as
shown in Fig. 3.14. A single domain element can have several separate represen-
tations if necessary. A representation is meant to provide detailed specification of
some domain element. In requirements specifications this is normally equivalent
to a vocabulary-like definition. RSL provides a special construct for this which
is the ‘NaturalLanguageHypertextSentence’. ‘DomainElementRepresentations’ are
sequences of such sentences, as a result they allow for formulating free textwith some
hyperlinks inside as shown in the example in Fig. 3.14 (see (2)). The hyperlinks can

http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://dx.doi.org/10.1007/978-3-319-12838-2_2

82 3 Defining RSL

Fig. 3.14 Metamodel for domain element representations

point to domain elements, which makes the whole domain model highly coherent.
Natural language hypertext sentences are not used in automatic transformations (see
Chap.6) because of their ambiguous nature associated with free text contents. For
this purpose we need more structured sentences which are described in the next
section.

3.5 Constrained Language Sentences and Scenarios

The domainmodel presented in the previous sections provides the building blocks for
the actual requirements. Actors, notions and associated phrases define a consistent
language which can be used in forming requirements representations. We want the
requirements representation language to be very precise, much more precise than the
hyperlinked sentences used to represent domain elements. The hyperlinks in these
sentences allowed for simple linking between domain elements providing informa-
tion on semantic relationships between various domain elements. For instance, when
a hyperlink to ‘book’ is used in the definition of ‘publication’, it necessitates some
relationship between these domain elements (see Fig. 3.14). However, the seman-
tics of such a hyperlink in the context of possible code generation is too weak as it
is placed within unstructured free text. Thus, appropriate transformation cannot be
developed.

For functional requirements representations we want to be able to produce oper-
ational code and thus we need strong semantics. This means that the abstract syntax
has to be highly structured.We need a constrained language consisting of constrained

http://dx.doi.org/10.1007/978-3-319-12838-2_6

3.5 Constrained Language Sentences and Scenarios 83

Fig. 3.15 Hyperlinked sentences and phrase hyperlinks

language sentences. RSL provides the necessary constructs through the introduction
of the ‘ConstrainedLanguageSentence’ metaclass, as presented in Fig. 3.15. These
sentences are also kind of ‘HyperlinkedSentences’. Unlike for ‘NaturalLanguage-
HypertextSentences’, they do not contain free text but their content is composed
of only ‘PhraseHyperlinks’ which form their ‘Subjects’ and ‘Predicates’. If we can
write our requirements using only constrained language, our functional requirements
specification would contain application logic which is completely defined using the
domain phrases contained in the domain model. This gives us good means to define
semantics that would translate this coherent RSL syntax into code, as described in
the next chapter.

To define the application logic we need several kinds of ConstrainedLanguage-
Sentences’. In Fig. 3.16 we can see a complete hierarchy of such sentences. These
types reflect the possible concrete constructs of RSL scenarios that we have already
presented in Sect. 2.4. Note that there is no separate metaclass for the final sentences.
These sentences are joined with postcondition sentences because a post-condition is
always associated with a final sentence.

All the constrained language sentences can have free text content. This is because
all the appropriate metaclasses specialise the ‘HyperlinkedSentence’ (see Fig. 3.15),
where we can find the ‘sentenceText’ metaattribute. In concrete syntax this free
sentence text is made visual for preconditions (see (6) in Fig. 3.16), postconditions
(see (7)) and condition sentences (see (3)). Since this is only free text it is not used
for code generation apart from copying it to only code for commentary purposes. For
other constrained language sentences this text is not used because their other syntax
contains all the necessary elements. For instance, ‘RejoinSentences’ (see (4)) need
only a reference to some other sentence to which control should be passed during
rejoining. This is reflected in the metamodel by the appropriate metaassociation

http://dx.doi.org/10.1007/978-3-319-12838-2_2

84 3 Defining RSL

Fig. 3.16 Metamodel for constrained language scenarios

connecting ‘RejoinSentence’ and ‘ConstrainedLanguageSentence’. The syntax for
SVO sentences and invocation sentences is explained later in this and the next section.

Constrained language sentences are grouped into ‘Scenarios’. The metamodel
in Fig. 3.16 shows that each scenario (see (1)) can have any number of ordered

3.5 Constrained Language Sentences and Scenarios 85

constrained language sentences. In concrete notation this is represented by a sequence
of textual sentences, where SVO sentences are numbered (see (2)). The numbers
serve better referencing and readability, but can also be used as labels for the rejoin
sentences. All other types of sentences start with a respective keyword. The con-
crete keyword syntax was presented in the previous chapter and can also be seen in
Fig. 3.16.

RSL does not specify the actual rules for structuring scenarios. However, for
the purpose of code generation, the rules specified in Sect. 2.4 have to be used as
constraints. These rules define the correct sequences of sentence, that can be checked
by the code generation tools. For practical reasons it is recommended that each
scenario contains pointers to all of its sentences. However, as the example in Fig. 3.16
shows, scenarios can share sentences. In this case the sentences up to number 5 are
identical for both scenarios. Depending on the tool preferences, we could ask to show
or hide the common part. Moreover, for storage optimisation purposes, the actual
sentence objects for sentences up to 5 could be stored once but referred-to by both
scenarios.

An example solution for storing scenarios is shown in the middle part of Fig. 3.16.
This object diagrampresents a fragment of the storage for the two scenarios presented
at the bottom in their concrete syntax. This fragment encompasses sentence 5, the
two condition sentences and sentences 6 and 6a. The object for sentence 5 (‘s5’)
is referred-to by both scenarios, and for the other sentences the scenarios split and
point to their own individual content.

The most often used type of sentence is the ‘SVOSentence’ (see (2) in Fig. 3.16).
Having all the necessary constructs available in other parts of the RSL metamodel,
the abstract syntax for SVO sentences is extremely simple. It is composed of only
two metaclasses: ‘Subject’ and ‘Predicate’, as presented in Fig. 3.17.

Both metaclasses represent phrase hyperlinks (see Fig. 3.15), one pointing at a
‘NounPhrase’ and the other at a ‘VerbPhrase’. These two hyperlinks do not provide
any text that could be combined into the sentence text. Instead, they point to phrases
that have the appropriate text included, illustrated in the middle part of Fig. 3.17. The
example refers to one of the sentences expressed in their-indexsyntax!concrete—
concrete syntax below (‘Librarian enters search criteria’). The actual sentence is
composed of the three objects highlighted in the figure with a darker background.
All the other objects in the figure are parts of the domain model. In order to construct
the sentence concrete text we need to follow the links to other objects. The ‘Subject’
points at a ‘NounPhrase’ which is the ‘name’ of an appropriate ‘Actor’ defined
in the domain model. This noun phrase has a ‘NounLink’ that contains the text
(“Librarian”) to be used in the relevant place in the SVO sentence. The ‘Predicate’
points at a ‘VerbPhrase’ that is contained as a ‘name’ of a ‘DomainStatement’ of some
domain ‘Notion’. This verb phrase points to a ‘VerbLink’ (containing “enters”) and
indirectly points to a ‘NounLink’ (containing “search criteria”). Concatenated texts
of these two links finally form the text for the predicate part of our SVO sentence.

http://dx.doi.org/10.1007/978-3-319-12838-2_2

86 3 Defining RSL

Fig. 3.17 Metamodel for SVO sentences

3.6 Requirements and Use Cases

Scenarios servedescribing requirements and they are called ‘RequirementsRepresent-
ations’ in the RSL metamodel. Figure3.18 shows the appropriate fragment of the
metamodel. The official RSL specification provides two groups of requirements rep-
resentations: ‘DescriptiveRequirementRepresentations’ and ‘ModelBasedRequire-
mentRepresentations’. For the purpose of this book we concentrate on only one of
the possible representations, presented earlier in the previous section—‘Constrained

3.6 Requirements and Use Cases 87

Fig. 3.18 Metamodel for requirements and use cases

LanguageScenarios’.Alternatively, the languageusers can create ‘ActivityScenarios’.
We omit this part of the metamodel for brevity and also because it is not used for
code generation. Figure3.18 shows concrete syntax of the two alternative representa-
tions (see (3) and (4)) which was presented in the previous sections. The metamodel
allows to formulate names for requirements representations. This is often used to
name individual scenarios (see (7)).

The ‘RequirementRepresentation’ metaclass finally brings us to the central ele-
ment of RSL which is the ‘Requirement’. It can be noticed in Fig. 3.18 that every
requirement must have at least one representation and possibly can have more (mul-
tiplicity ‘1..*’). There is no restriction on the types of representations and various
types can be mixed. Moreover, requirements can have names which are ‘NaturalLan-
guageHypertextSentences’ presented in the previous sections. In addition, require-
ments have identifiers which can be any strings of text (see ‘requirementId’). This

88 3 Defining RSL

simple abstract syntax reflects the concrete elements visible to the language user, as
presented in the example in Fig. 3.18 (see (6)). The requirement name (see (2)) can
contain hyperlinks to domain elements (here: “catalogue”).

Use cases in RSL are special types of requirements. This is reflected in the meta-
model in which the ‘RSLUseCase’ metaclass specialises from the ‘Requirement’
metaclass. Note that the metaclass for use cases is not named simply ‘UseCase’ to
avoid conflicts with the metamodel which we discuss further in this section. The
concrete notation for use cases is similar to that for requirements, because all the
elements (identifier, name) are inherited. The only difference is the shape of the use
case icon, aligned with the notation found in UML.

Use cases can also have different representations as illustrated in Fig. 3.18. The
example (see (3) and (4) in the bottom part) shows two representations that are stored
together with the presented use case. In tools they are normally not shown together
with the use case icon but can be accessed from separate diagrams or textual editor
windows, linked with the current use case.

Use cases are made distinct from generic requirements not only to change the
icon in concrete syntax. As we remember from the previous chapter, use cases can
be in «invoke» relationships between themselves and can be in relationships with the
actors. The metamodel that provides the abstract syntax for these features of RSL
is shown in Fig. 3.19. It introduces two additional metaclasses: ‘UsageRelationship’

Fig. 3.19 Metamodel for use case relationships

3.6 Requirements and Use Cases 89

and ‘InvocationRelationship’. The abstract syntax is simple and similar to the syntax
of relationships between domain elements. The metamodel defines that there can be
many invocation relationships (2) coming out or going into a particular use case. The
same situation is for the usage relationships (4). For the invocation relationships the
metamodel itself does not prevent from self-referencing relations (from a use case
to itself). Obviously, such a relationship is not valid and thus we have to explicitly
express a separate constraint to prevent this.

An important feature of the invocation relationship is that it is directly attached
to invocation sentences in scenarios. Every ‘InvocationRelationship’ must have at
least one corresponding ‘InvocationSentence’. On the other hand, every ‘Invocation-
Sentence’ must point to exactly one ‘InvocationRelationship’. This feature of the
metamodel enforces strict coherence of use cases and their representations. A single
use case can be invoked from several use cases and/or from several places of another
use case. This only depends on the other use case scenarios and howmany invocation
sentences are associated with the appropriate invocation relationship. Of course, the
metamodel has to be appended with a constraint stating that the invocation sentence
attached to a given invocation relationship has to be present in a scenario of the
invoking use case, and not of the invoked one.

The RSL’s metamodel for use cases and their relationships can be contrasted with
the similar metamodel in UML. The UML version is presented in Fig. 3.20. Themost
visible difference is the presence of the ‘Include’ and ‘Extend’ relationships. Note
that ‘include’ is owned by the ‘includingCase’. Thismeans that the information about
inclusion is definedwithin the use case that includes another use case. By contrast, the
‘extendedCase’ is not aware about which other use cases extend it. This information
is stored in the ‘extension’, i.e. in the use case that extends another use case. In
RSL, these ownership considerations at the level of use cases are not relevant. This is
because ‘InvocationRelationships’ have to be combined with ‘InvocationSentences’
which are always contained in the invoking use case.

Despite the extending use case not being aware of the extending use cases, it has to
contain appropriate ‘ExtensionPoints’. The role of extensionpoints is to denote places
where the behaviour of a use case can be extended through the ‘Extend’ relationships.
Extension points serve as ‘extensionLocations’. For unambiguous identification, they
need to have textual ‘names’. This is realised through the ‘ExtensionPoint’ metaclass
indirectly specialising from the ‘NamedElement’ metaclass. In general, most UML
constructs are named elements which is one of the reasons for having quite complex
specialisation hierarchies in the UML’s metamodel.

There has to be at least one extension point available for any ‘Extend’ to make
sense. Moreover, the extension points have to be ordered. This is necessary to unam-
biguously associate the extending behaviours with specific extension points. Unlike
for RSL’s invocations, the extension points need not be associated with any ‘Extend’
relationship and they can also be associated with more than one of them. By con-
trast, in RSL, an invocation sentence has to be identified with exactly one invocation
relationship.

Note from Fig. 3.20 that there is no equivalent for extension points related to the
‘Include’ relationship. There are no “inclusion points” in UML. This shows one of

90 3 Defining RSL

Fig. 3.20 Comparison: metamodel for use cases in UML

the several deficiencies of theUML’smetamodel in this area. UML lacks any notation
for locating the actual points in the use case logic at which the inclusions are to be
made. This makes it impossible to define any control flow semantics in this respect.

To have some level of runtime semantic precision, use cases in UML need to
be defined in terms of their application logic. UML gives some possibilities in this
area which are realised through the ‘UseCase’ metaclass specialising in the so-called
‘BehavioredClassifier’. This abstract metaclass provides a common ground for var-
ious UML constructs that should expose some behaviour. It allows to append ‘Clas-
sifiers’ (like classes, use cases and actors) with behavioural models (like activities,
interactions and state machines). However, there are no specific syntactic rules for
using these behaviours within the use case models. The UML users are free to define
any such model in any possible way. Moreover, there is no syntax for determining

3.6 Requirements and Use Cases 91

the flow of control between different use case behaviours. Although ‘Extension-
Points’ exist in UML, there is no semantically unambiguous way to relate them to
such behavioural constructs like actions, transitions or messages. In RSL this is pre-
cisely defined through associating invocations with invocation sentences. Invocation
sentences are precisely located within use case scenarios. In this way, control flow
semantics is very strict and can easily serve to generate operational code.

When examining the UML’s use case metamodel in Fig. 3.20, the reader may
notice three more issues. The first issue is the ‘Constraint’ metaclass associated with
the ‘Extend’ metaclass. Constraints are used in UML in various places to denote
statements that express some conditions. In this case, the extend relationship can have
an additional ‘condition’ which determines whether the particular extension instance
can take place or not. This again raises the question of control flow semantics. It is
not certain at which place (or places) in the extended use cases these conditions
would be checked and how control would flow within the use case behaviour. In
RSL, flow of control is unambiguously determined by condition sentences placed
within scenarios.

The second remaining issue is the lack of a metamodel element for relationships
between use cases and actors. This can be explained through both modelling ele-
ments specialising from ‘BehavioredClassifier’. Classifiers in general can be related
through association relationships. This part of the metamodel is defined elsewhere
and is not shown in this diagram. This however shows complexity of theUML’smeta-
model which necessitates traversing through complex hierarchies of metaclasses to
understand the full syntax.

The third issue is related with the ‘Classifier’ metaclass which is in two metarela-
tionswith the ‘UseCase’metaclass. This can be seen as equivalent towhat is available
in RSL’s scenarios and sentences. Every SVO sentence in RSL can have a subject
which refers to a ‘SystemElement’. This makes it unambiguous as to what system is
defined through the use case that contains this sentence as part of its representation. In
UML there is no such construct. Yet, we would want to denote which system “owns”
the given use case and is the “subject” of its behaviour. The solution in UML was to
introduce such relations at the use case level rather than at the use case representation
(behaviour) level.

3.7 Domain and Requirements Specifications

To organise and group its various constructs, RSL uses the notion of package, which
is used extensively in UML. However, RSL introduces several specialisations of
packages and thus provides much more rigour in structuring requirements-related
models. A the highest level, this rigour is assured by dividing the specification into
two parts: one part holds the domain elements and their representations, and the other
part—the requirements with their representations.

92 3 Defining RSL

Fig. 3.21 Metamodel for domain specifications

Figure3.21 shows the structure of the first part. The topmost construct is the
‘DomainSpecification’ which is normally represented as the root in the specification
tree (see (1)). The ‘DomainSpecification’ metaclass specialises the UML’s ‘Package’
metaclass thus providing one of the links between the two metamodels. The same
specialisations are present for other package-related metaclasses in RSL. UML’s
packages can have names (as they are also specialising ‘NamedElements’), and thus
also RSL’s packages can have names.

Domain specifications can contain several ‘DomainElementsPackages’. RSL pro-
vides specialised packages for actors (‘ActorsPackage’), notions (‘NotionsPackage’)
and system elements (‘SystemElementsPackage’). There are no restrictions on the
number of domain element packages that can be contained in the domain specifi-
cation. However, in a tool this can be restricted to just one of each kind. Each of
the kinds can contain ‘nested’ packages of the same kind. Thus, for instance, actors
packages can hold only other actors packages. This prevents from mixing concerns
and makes the whole specification coherent. Obviously, domain element packages
can hold respective domain elements (‘Actors’, ‘Notions’ and ‘SystemElements’).

3.7 Domain and Requirements Specifications 93

As for ‘nested’ packages, the type of the held elements matches the type of the pack-
age. As a result, we have a tree with three main branches holding domain elements
of the three types.

‘DomainSpecification’ pertains to a specific ‘systemUnderDevelopment’ (see
Fig. 3.21). This is the top level ‘SystemElement’ that represents the actual system
for which this specification is developed. Domain specifications are local to sys-
tems. Each system under development has its domain specification separate from
specifications for possible other systems under development. This is important for
organisations that develop many systems and prevents from confusing vocabularies.
For instance, the notion of “user account” can have varying meanings (and associ-
ated attributes) in different systems. On the other hand, the term “user account” can
be reused many times as such, in its generic sense. This observation led to intro-
ducing the separate global ‘Terminology’, presented in Sect. 3.3. The terminology
can be common for many systems, leading to possible reuse of notions associated
with specific terms. Moreover, it allows to compare different domain elements and
requirements for possible matching and reuse.

‘DomainSpecifications’ are tightly coupled with ‘RequirementsSpecifications’.
In fact, it is a one-to-one relationship, as shown in Fig. 3.22. Thus, for each system
under development we have a single domain specification and a single requirements

Fig. 3.22 Metamodel for requirements specifications

94 3 Defining RSL

specification. These two specifications form two roots in the specification tree
structure. Just like for their domain counterparts, ‘RequirementsSpecifications’ spe-
cialise packages. They can contain many ‘RequirementsPackages’ which are nested
structures. Finally, requirements packages can containmany ‘Requirements’ (includ-
ing ‘UseCases’), which makes the metamodel complete. This abstract syntax is
reflected in the concrete syntax presented at the bottom of Figs. 3.21 and 3.22. This
concrete syntax is familiar to all modelling tool users and was presented in detail in
the previous chapter.

With these top levelmodelling elementswe conclude the presentation of theRSL’s
metamodel. Generally, this metamodel reflects the overall philosophy of stacking
more and more complex constructs on top of simpler ones. Specifications are com-
posed of requirements and domain elements. Requirements and domain elements
contain representations which consist of sentences. These sentences refer to phrases
which link to individual (and atomic) terms as illustrated in Fig. 3.23 (generalised
and simplified metamodel to the right, concrete notation to the left). Note that the
connection between the domain specification and the requirements specification is at

Fig. 3.23 Summary of the RSL’s element stack

3.7 Domain and Requirements Specifications 95

the level of phrase hyperlinks. These links are a part of sentences in requirements rep-
resentations (mostly scenarios). The links point to phrases that are a part of domain
notions.

3.8 Summary of Metamodelling

When presenting the metamodel of RSL we have used class diagrams composed
of classes, associations, attributes and so on. We did this informally, assuming that
the reader is familiar with class diagrams. We have used a very limited subset of
what can be seen as the UML’s class model language. This subset is satisfactory for
developing metamodels and we call it a “metamodelling language”. As a modelling
language (suitable for modelling models), this language also needs to have its def-
inition. Obviously, we should also create a metamodel for this purpose which is a
level higher than the RSL metamodel, and we call it a meta-metamodel.

Because the language is simple, its metamodel is also simple. It contains only 7
metaclasses, as presented in Fig. 3.24. In fact, only four metaclasses in this meta-
model represent concrete modelling elements: ‘Class’, ‘Property’, ‘Generaliation’
and ‘Association’ (marked with numbers in circles). The other three metaclasses pro-
vide general typing and naming scheme. As we can see, the metamodel is structured
similarly to that for RSL, however, there are some interesting features that we explain
below.

The ‘Generalisation’ relationship (see (2)) can link two classes (the ‘general’ one
with the ‘specific’ one).We can thus notice that our language allows for single gener-
alisation only. Any ‘specific’ class can have at most one ‘generalisation’ (multiplicity
‘0..1’). When we examine all the metamodel diagrams in this chapter, we can notice
that single generalisation is followed throughout. Only the use case metamodel taken
from the UML specification uses multiple generalisations (e.g. the ‘Extend’ meta-
class specialises two metaclasses, as shown in Fig. 3.20). This metamodel is thus
not part of the RSL specification and it uses somewhat extended language. In our
meta-metamodel in Fig. 3.24 we could easily update this by changing multiplicity
for ‘generalisation’ to ‘0..*’.

Another interesting feature of our meta-metamodel is the way it handles asso-
ciations. The ‘Association’ metaclass is not connected to the ‘Class’ metaclass but
is connected to ‘Property’. To explain this we use the object diagram available in
Fig. 3.24. This diagram shows that classes (see ‘c1’) can contain “simple” proper-
ties and properties with associations. Simple properties serve as the class’ attributes.
Properties with associations serve as the roles of these associations. The object dia-
gram is equivalent to the respective part of the concrete syntax example in the bottom
part. The property ‘p1’ is contained in ‘c1’ and is connected to its counterpart ‘p2’
contained in ‘c2’ through the association ‘a’. In concrete notation, property ‘p1’
(“representation”) is visualised at the other end of the association. It also contains
the multiplicity string which is derived from twometaattributes: ‘lower’ and ‘upper’.
The upper limit is set to −1 which denotes infinity.

96 3 Defining RSL

Fig. 3.24 Metamodel for the metamodelling language

Associations in our simple meta-language are binary (have two ends) and not
navigable (do not have arrows). To introduce n-ary and navigable associations, we
would need to substitute the metaassociation between ‘Association’ and ‘Property’.
Instead of one metaassociation with multiplicity ‘2’ we would need two metaasso-
ciations with multiplicity ‘1..*’. In fact, this flexibility in shaping associations is the
main benefit of introducing the solution with associations linked through properties.
All the information about association ends (the ‘lower’ and the ‘upper’ value for
multiplicity, presence of the ‘composition’ diamond) can be contained in the prop-
erties instead of in some additional metaelements attached to associations.

3.8 Summary of Metamodelling 97

Fig. 3.25 Levels of metamodelling

A careful reader may notice that our meta-metamodel (i.e. the upper part of
Fig. 3.24) is also written in some language and this language would again neces-
sitate defining a metamodel (a meta–meta-metamodel?). This would lead us to an
infinite regression of metamodels. Fortunately, the meta-metamodel is written in
exactly the same language it defines, in other words, it is self-reflective. This limits
ourmeta-modelling hierarchy to only three levels, as illustrated in Fig. 3.25. LevelM1
contains individual models written in particular modelling languages (UML, RSL,
etc.). Level M2 contains metamodels defining the modelling languages. Models, in
order to be treated as correct have to comply with these metamodels. Metamodels
are written in a common metamodelling language (called “MOF” in the figure). This
common language also has a metamodel (level M3) that defines it and to which it
has to comply. This meta-metamodel is written in the same language (MOF) as the
metamodels it defines. So, the meta-metamodel complies with itself, providing a
“bootstrapping” mechanism.

The above hierarchy of metamodels defines a coherent framework for defining
variousmodelling languages. Using a singlemeta-languagewith itsmeta-metamodel
we can define many different languages that are defined using the same techniques.
This approach was developed as a continuation of the idea started in the first specifi-
cations of UML (versions 1.x). In these early days, UML was defined using UML’s
class diagrams in the same bootstrapping manner as the meta-modelling language
described above. Later, this class model language was extracted from UML and is
treated as a separate language dedicated to specifying metamodels—extending its
application from just UML to any other modelling language. This meta-language is
called Meta Object Facility (MOF, see again Fig. 3.25)1 [123] and is managed by the
Object Management Group. MOF in one of its earlier versions is also standardised
by ISO [75].

1 http://www.omg.org/mof/.

http://www.omg.org/mof/

98 3 Defining RSL

MOF is composed of two similar languages—EMOF (EssentialMOF) andCMOF
(Complete MOF). EMOF only slightly differs from the language we have used to
present RSL. The metamodel in Fig. 3.24 is a small simplification of EMOF. For
instance, EMOF allows for multiple generalisations and for class operations; it also
introduces other features like property ordering. The metamodel for UML use cases
in Fig. 3.20 is drawn using EMOF. Other metamodel diagrams in this chapter also
comply with EMOF because they use a subset of it.

The most significant counterpart of EMOF is Ecore. This language is extensively
used in the Eclipse world and is part of the Eclipse Modelling Framework (EMF)2

[28]. Ecore is similar to EMOF and both languages can be easily translated into one
another. Both languages offer serialisation facilities. This means that graph-based
metamodels can be turned into serial text for the purpose of exchanging data. Tools
that handle EMOF and Ecore can usually read and write serialized forms for both
languages. This serialised form is based on XML and is called XMI (XMLMetadata
Interchange) [124].

Official specifications of RSL3 [83] and UML4 [121, 122] use a somewhat
extended metamodelling language. This is CMOF, which has several additional fea-
tures. It provides constructs for the management of more complex metamodels, con-
structed bymergingmany packages at several levels in the generalisation hierarchies.
The additional constructs allow for subsetting and redefining metaclass properties.
This makes large metamodels more readable and manageable but at the same time
does not allow for direct implementation using typical object-oriented languages—
no direct mapping from CMOF exists. For this purpose, a metamodel in CMOF has
to be transformed into its EMOF or Ecore version. Sometimes (for instance in the
case of Java), an even simpler language (with single generalisation) has to be used.

Metamodelling languages are the basis for several tools that allow for creating
modelling language environments. Such tools are called language workbenches [46],
where the term was introduced by Martin Fowler [53]. There are many language
workbenches on the market. Some of them are embedded in modelling tools, while
some are stand-alone. Their main characteristic is that they allow for specifying the
abstract syntax in the form of a metamodel and the concrete syntax in the form of
graphical element designs. Many language workbenches offer capabilities to define
the syntax of textual language elements. Using context-free grammars, as in the
example for verb phrases in Sect. 3.3. In this sense, language workbenches can be
compared to compiler compilers that facilitate the development of compilers for
textual languages.

Apart from language workbenches, metamodels are used as a part of model
transformation languages and their tooling environments. In order to perform a
model transformation, we need to know the metamodels of the source and the tar-
get models. A model transformation language can use an external definition (e.g.
taken from the language workbench) or can allow to define the metamodel directly.

2 http://www.eclipse.org/modeling/emf/.
3 See the documentation section at http://www.redseeds.eu/.
4 http://www.uml.org/.

http://www.eclipse.org/modeling/emf/
http://www.redseeds.eu/
http://www.uml.org/

3.8 Summary of Metamodelling 99

Fig. 3.26 Process of developing a modelling language

A comprehensive solution to develop modelling languages should provide integra-
tion of the language workbench and model transformation tools as illustrated in
Fig. 3.26. To develop a new language (e.g. a Domain Specific Language) we need to
know its abstract syntax (metamodel) and concrete syntax (graphical symbols and
textual grammars). These two elements are input by the language engineers to the
language workbench which can automatically generate a model editor together with
model storage. The abstract syntax of our new language should be also input to a
model transformation tool (we also call it a “transformation workbench”). We would
also need the abstract syntax of the target language. Having these two metamodels,
the transformation engineers can develop transformation programs and then gener-
ate transformation engines for the new language that result in a tooling environment
that consists of the (DSL) Model Editor, Model Storage and Transformation Engine.
This can be compared to IDEs (Integrated Development Environments) for program-
ming languages which contain syntax-checking editors and compilers that transform
source languages (e.g. Java) into target languages (e.g. bytecode).

Figure3.26 lacks an important element which is necessary to build the transfor-
mation engine—the runtime semantics of the new language. Only having defined
this kind of semantics we can write a sensible model transformation that generates
code. The next three chapters are dedicated to this broad issue.

Chapter 4
Explaining RSL with Java

In Chaps. 2 and 3, we presented the concrete (visual) and abstract syntax of RSL.
Chapter 2 also contains the conceptual semantics of RSL, which explains it in terms
of observable system behaviour. This quite informal explanation is sufficient for
the understanding of end-users and domain experts. However, to develop formal
transformations from RSL to code we need a much more formal definition of the
requirements semantics [144] in relation to the system runtime [154]. This chapter
presents all the necessary details.

4.1 Translational Framework

There exist severalwell-establishedways to formally define the semantics of software
languages [98, 146, 186]. Many of these approaches use complex mathematical
frameworks which are hard to grasp by language implementers. We use an approach
that is more “user friendly” and uses a pragmatic engineering approach [174]. This
approach is to define the semantics of a language by translating it to the semantics
of another (simpler) language with already known semantics [48, 91].

We call this approach the translational semantics. Figure4.1 illustrates the over-
all concept. To explain a language (“Source language”) we introduce another lan-
guage (“Target language”) and define rules for translating from the source language
to the target language. Every construct of the source language syntax is translated
into certain constructs of the target language syntax. The whole translation involves
only the syntax.

The target language is usually a simple language whose semantics is well-defined
(using other formal methods or even informally). The semantics of the source lan-
guage can thus be derived from the semantics of the target language. This is because
every source model or program can be translated into a target model or program. This
translation changes syntax (from source to target) but does not change the semantics.

© Springer International Publishing Switzerland 2015
M. Śmiałek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_4

101

http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_2

102 4 Explaining RSL with Java

Fig. 4.1 Explaining a language through translation

A typical example of applying translational semantics is the definitionof high-level
imperative programming language. Such languages can be translated into a simple
assembly level language. Every instruction of a high-level language can be trans-
lated into several instructions of the assembly language. In this way, the meaning
of a particular instruction is well-defined through the meaning of the assembly lan-
guage instructions that substitute it. This approach is pragmatic in terms of its direct
application in compiler construction. The language engineers can take the language
semantics and use it directly to generate executable code. This is because the target
language in the definition of the translational semantics is easy to map onto the target
language of the particular compiler.

To apply translational semantics to RSL we only need to observe that it is a
higher level language than the current 3G languages like Java. We can thus propose
to translate RSL constructs into 3G language constructs [70]. Semantics of 3GLs is
well known and is applied daily bymillions of contemporary programmers. Thus, this
approach should make the semantics of RSL understandable to them. Explaining the
semantics of RSL in terms of a 3GL is also very pragmatic. Based on the translation
rules we can relatively easily construct a transformation program that would generate
3GL code and ultimately executable code. We thus do not need to translate RSL into
assembly language—it is enough to translate it to a 3GL.

The target language that we use for translation from RSL in this chapter will be
a hybrid one. It will partially consist of UML class models and partially of Java-like
code. This will allow us to present the code structure in a more comprehensible way
than by using only Java. Moreover, this approach is more compatible with model
transformations that we introduce in the following chapters. It allows us to define a
full transformation from RSL to Java code using largely the UML metamodel (see
Chap.6).

http://dx.doi.org/10.1007/978-3-319-12838-2_6

4.1 Translational Framework 103

Fig. 4.2 Translational framework structure

The language and its framework that we chose for the translational semantics
is arbitrary. The main rationale is pragmatics and further application of translation
rules in constructing an appropriate transformation from RSL to code. We chose
UML and Java as the overall approach because it is widely known to a vast majority
of software developers. However, we also need to decide on more detailed issues
like representing application and domain logic, and the user interface elements. This
is important because RSL has several constructs that necessitate translation into the
system’s logic and into the constructs that exchange data with the user through the
user interface.

The most appropriate architectural framework for code being the target of trans-
lation from RSL seems to be the Model-View-Presenter (MVP) pattern introduced
earlier in Sect. 1.1. The variant we use here is presented in Fig. 4.2. The classes in
the View layer represent UI screens and they specialise (inherit) from the standard
abstract class ‘VScreen’. By convention, the names of these classes start with the
letter ‘V’. Similarly, the classes in the Presenter layer represent use cases and spe-
cialise from the standard abstract class ‘PUseCase’. By convention, the names of
these classes start with the letter ‘P’. Finally, the classes in the Model layer represent
notions and their names start with the letter ‘M’.

Classes in the three layers are related through associations. Associations between
the Presenter layer and the View layer are bidirectional, and the associations from the
Presenter layer to theModel layer are unidirectional. This is due to the characteristics
of theMVPframeworkwhichuses the variantwith activePresenter. ThisMVPvariant
does not introduce any associations between the Model and the View layer classes.

Note that the framework we use refers to an abstract (non-existent) technology.
We assume that the View elements specialise from ‘VScreen’ and the Presenter
elements specialise from ‘PUseCase’ which do not in fact exist in any specific tech-
nology framework. Instead of using an arbitrarily chosen technology, we introduce a
simplified abstract framework which should be easy to comprehend and at the same
time easy to translate to specific frameworks like JavaFX, Echo3, GWT or similar.
In fact, the rules presented further in this chapter allow for relatively easy translation
into any framework that is based on the MVP (or MVC) pattern.

http://dx.doi.org/10.1007/978-3-319-12838-2_1

104 4 Explaining RSL with Java

Fig. 4.3 Attributes in Data Transfer Objects

Figure4.2 illustrates that the classes in all the three layers depend on certain
classes with their names starting with an ‘X’. These are special classes called Data
Transfer Objects (DTO). Instances of these classes are used to pass data between
layers—up from the user down to the database and vice versa. Each DTO has one or
more attributes that hold appropriate data values, as illustrated in Fig. 4.3.We assume
standard built-in data types like integer, float and boolean. Also, String andDateTime
are assumed as built-in. Every DTO class contains the standard ‘id’ attribute. This
attribute is a long integer and it holds the object’s unique identifier. These identifiers
are used to indicate objects within lists and can serve for organising object retrieval
from the database.

The target MVP classes have a specific structure as illustrated in Fig. 4.4. This
structure is assumed in the translation rules presented in the following sections. The
classes follow strict rules regarding the attributes and operations they possess.

Fig. 4.4 Operations in MVP classes

4.1 Translational Framework 105

All the View classes specialise from ‘VScreen’. This class defines one attribute,
two concrete operations and two abstract operations. The single attribute is of type
‘FieldList’ which is specific to our abstract UI framework. This is an ordered list of
data fields. Each field can represent data of one of the standard types (see Fig. 4.3).
The fields can be simple (holding one value) or column (holding many values). The
fields can be defined, written and read using operations that are presented further in
this section.

The ‘fields’ attribute is used by the ‘show()’ operation. This operation opens a
new window or page, renders all the fields and presents them to the user. If the
fields have their values set, these values are also presented. The actual layout of the
simple fields in a window is not determined as this is not covered by the presented
semantics definition. Consecutive column fields are presented as one list containing
rows with appropriate values taken from the value lists associated with the columns.
The opposite of the ‘show()’ operation is the ‘close()’ operation which removes the
window associated with the current View element. This operation also shows the
window that was shown previously. In general, ‘show()’ and ‘close()’ operate on a
stack of windows. The first operation places a window on the stack, and the second
removes a window, showing the one that is at the top of the stack.

The above two operations are concrete and are assumed to be already implemented
as part of the framework. The two other operations of ‘VScreen’ are abstract and
have to be implemented by the concrete specialising classes. The ‘init()’ operation
contains code that defines all the fields in a given window. This code should add
field definitions to the ‘fields’ attribute. The ‘onTrigger()’ operation is a standard
event handler operation that is called by the operating system whenever an event
occurs within a user interface. Normally, this means pressing a button in a window
or selecting a menu option. This operation has to be implemented in a specialising
classwith code that depends on the ‘trigger_id’ parameter. This parameter determines
the actual trigger (button, option) that was selected.

Each class that specialises from ‘VScreen’ has to implement the two abstract oper-
ations, but also to introduce some other operations and attributes. These operations
pertain to setting and getting field values based on DTO attribute values. Figure4.4
presents an example involving a simple DTO and a list DTO. For simple DTOs there
have to be defined two operations and one attribute. The first operation should write
the fields from the DTO (here: ‘setSimpleNotion()’) and the second should read the
fields (‘getSimpleNotion()’) and set the DTO attribute (‘tmpsimplenotion’). For list
DTOs, we also need two operations but no attribute is needed. The first operation
should write the column fields from a DTO table, while the second operation should
return only the identifier (cf. ‘id’ in Fig. 4.3) of oneDTO from the associated list—the
one currently selected by the user.

Also, the Presenter classes have a strict structure as they all specialise from ‘PUse-
Case’. This abstract class implements a generic invocation mechanism through two
attributes and three operations. This mechanism is in fact an invocation stack that
allows to control the flow of logic between the Presenter class instances. The attribute
‘returnSentence’ is used to remember the context in which the invocation was per-
formed. After returning from invocation, the context has to be restored and control

106 4 Explaining RSL with Java

flow should return to a particular “sentence”. The attribute ‘invokingUC’ is used
by the invoked Presenter class instance. It is tightly related to the ‘invoke()’ and
‘return()’ operations. The first one sets the invoking instance (a derivative of ‘PUse-
Case’) and the second returns control to this remembered invoking instance. Return
of control is done by calling the ‘returned()’ operation of the invoking instance. Its
‘res’ parameter passes the final state of the invoked use case. Every Presenter class
that is involved in invoking Presenter instances should implement the ‘returned()’
operation. We explain this mechanism in detail later in this section.

Invocation control is only part of the logic contained in the Presenter classes.
They must also implement event handlers that contain application logic. These event
handlers respond to triggers that are captured by the View classes. Figure4.4 shows
a typical example of such operations. Their names reflect the events of selecting
certain triggers in the user interface (buttons, options).Whenneeded, these operations
pass parameters. Two types of parameters are possible: simple DTOs or list DTO
identifiers. For each parameter in an event handler operation, a separate attribute
has to be declared in that class. These attributes are used as temporary storage for
exchanging data between the View layer and the Model layer. In addition to these
attributes, each Presenter class that calls operations of the Model layer should have
the ‘result’ attribute. This attribute is used to store the results of data processing
within the Model layer.

To explain the mechanism that uses the ‘result’ attribute, we use the sequence
diagram presented in Fig. 4.5. This diagram generally serves to explain the presented

Fig. 4.5 Typical MVP dynamics

4.1 Translational Framework 107

variant of MVP in terms of its dynamics. The sequence presented in the diagram
implements a couple of steps in a use case scenario. Full implementation of a use
case will necessitate several of such sequences.

A typical sequence of actions starts with selecting some trigger by the user and
finishes with presenting some screen. After selecting a trigger, the operating sys-
tem calls the ‘onTrigger()’ operation of the currently displayed screen (here: ‘sc1’).
Depending on the trigger ‘id’, an appropriate event handling operation is called from
one of the Presenter class instances (here: ‘uc’). In case some data need to be passed,
a ‘getNotion()’ operation has to be called first. This operation collects data from
the current screen’s fields and places them in a temporary DTO attribute. Then, this
attribute is passed as the parameter (here: ‘xn1’) of the event handling operation
(here: ‘selectsTrigger()’). Communication between the View and the Presenter is
asynchronous, so the ‘selectsTrigger()’ message does not have a return message;
‘onTrigger()’ does not wait for ‘selectsTrigger()’ to finish.

After a Presenter class instance takes control, the sequence depends on the par-
ticular logic that is needed. This logic can involve performing some reading, writing
or processing data by the Model layer. It also involves calling operations from the
View layer. In the example in Fig. 4.5 we see that this particular logic starts by
performing some domain logic action (‘actionNotion()’) on a Model class instance
(‘n’). The appropriate message is synchronous and thus can return a result. As we
can see in Fig. 4.4, the appropriate operations of the Model layer classes return
integer values. These values can serve to make certain decisions by the Presenter
and branching the flow of control. Our example sequence diagram does not show
alternative flows and concentrates on only one of them. After some data manipula-
tion is done by the Model layer instance (‘n’), the logic may involve retrieving some
data and this is done through an appropriate data passing operation (‘getNotion()’).
The data passed from the Model can then be transferred to the View through calling
the appropriate setter operation in the View layer (‘setNotion()’). It can be noted
that both the getter and the setter operations are synchronous because the Presenter
needs to wait for their completion before commencing other actions. In our particular
example, after setting the data within the appropriate View instance (‘sc2’), it is then
shown to the user. In one of the previous actions, the Presenter can ask the previous
screen element (‘sc1’) to close itself (‘close()’).

This general structure and dynamics is implemented with detailed code which we
denote in a Java-like language. Figures4.6 and 4.8 present typical implementations
of the operations described above. The figures contain only the method contents, and
the appropriate operation signature (parameters, return types) can be found in the
UML notation in Fig. 4.4.

Figure4.6 presents the field-related code of the View layer classes. The ‘init()’
method is called at the beginning and initialises the ‘fields’ attribute for a given
View class. All the instructions in the method’s code operate on ‘fields’ and add
respective elements. There are several possible instructions to add fields of various
basic types. For simple fields, we can also add an optional label. For example, line
1 in our example adds a new text field (containing a string) with the label “Text”.

108 4 Explaining RSL with Java

Fig. 4.6 Typical code for the View classes (init/get/set)

Other possibilities include adding integer fields (see line 2), floating point number
fields (Float), date/time fields and Boolean fields.

In addition to simple fields that hold single values, we can add column fields. The
respective instructions contain the ‘Cl’ infix, like in lines 3–5. Possible column types
are identical as for the simple fields. A column field can contain a list of values which
are ordered in the sequence in which they were set. Several column fields that are
initialised together form a list field. Each of the columns in the list has a header text
which is specified as a string in a parameter within the ‘Cl’ instructions. A special
type of column is the ID column (see line 3). This column holds object identifiers
that should match the ‘id’ attribute values of the respective list DTOs.

Finally, the screen can hold buttons and these can be added by the instruction
‘addButton()’ (see line 6). The sequence in which the fields are added determines
the layout of the screen. An example is shown in Fig. 4.7. This layout is consistent
with the code of the ‘init()’ method shown in Fig. 4.6. Note that the ID column is not
shown—it is only held internally for referencing selected rows in the list, which is
explained below.

The next method in Fig. 4.6 is ‘getSimpleNotion()’. It is an example implemen-
tation of an operation to produce a simple DTO from several fields contained in a
screen element. The presented code assumes that the containing class has an appro-
priate DTO attribute called ‘tmpsimplenotion’. The appropriate attributes of this
DTO are set with the values contained in consecutive fields. For instance, to get a

4.1 Translational Framework 109

Fig. 4.7 Example screen
layout

text field value, we need to use the instruction ‘getTextField(x)’. This instruction
has one parameter that determines the field sequence number. Fields are numbered
according to the sequence in which they were added to the ‘fields’ attribute in the
‘init()’ method.

Attribute values for simpleDTOs are retrieved from simple fields. Lists, composed
of several column fields are handled differently as shown in the ‘getListNotion()’
method. As we can see in Fig. 4.4, only one long integer value is returned in such
case. This value is taken from the appropriate ID field using the instruction ‘getId-
ClField(x)’. This instruction returns one value which is the ID value of the row
currently selected by the user within the current list element.

The remaining twomethods in Fig. 4.6 represent the field setters. The first method
(‘setSimpleNotion()’) is used to set the values of the simple fields associated with
a specific simple DTO. This method assumes a single parameter which is a DTO.
The fields are set with appropriate ‘set’ instructions (see lines 2 and 3) which are
analogous to the ‘add’ and ‘get’ instructions presented above. These instructions
have two parameters. The first parameter determines the field id number, like for the
‘get’ instructions, while the second parameter is the value to be set taken from an
appropriate attribute value of a DTO. This setting is supported by the class attribute
(here: ‘tmpsimplenotion’) which is assigned with the appropriate DTO parameter
(see line 1, compare with Fig. 4.4).

The second setter method (‘setListNotion()’) pertains to list DTOs. It uses the
same instructions as for the simple fields (see lines 3 and 4) but applied to the column
fields. These instructions are called in a ‘for’ loop which iterates over objects in a
DTO table which is the parameter of the method. The ‘set’ instructions applied to
column fields add consecutive values to value lists held within these column fields.
Of course, also the ID column needs to be set with an appropriate ‘set’ instruction
(see line 2).

Fields are read and written as a result of certain actions performed by the user.
These actions are handled by the View layer classes through the ‘onTrigger()’ meth-
ods. A typical structure of code in this method is presented in Fig. 4.8. It is a series
of ‘if’ statements which check the ‘trigger_id’ passed as the method’s parameter.

110 4 Explaining RSL with Java

Fig. 4.8 Typical code for event handling (View and Presenter)

For a particular trigger, an appropriate Presenter layer operation is called (here:
‘selectsTrigger()’). Of course, the appropriate role identifier (here: ‘psomeusecase’)
is used to determine the specific Presenter class instance on which the operation is
called. If the particular trigger is supposed to pass data to the Presenter, the appro-
priate local ‘get’ operation is called which collects data from the screen’s fields and
puts them into a DTO. Then, this DTO is used as the parameter of the call to the
Presenter layer.

Note that this code is consistent with the typical MVP dynamics presented in
Fig. 4.5. This also pertains to the method that implements the Presenter layer event
handler operation (‘selectsTrigger()’ in Fig. 4.8). This method contains varying code
which depends on the desired application logic. In our example, the first instruction
is to call a data processing and retrieval operation in the Model layer (‘actionOther-
Notion()’). This operation passes the DTO received from the View layer and returns
an integer result. Depending on this result, different actions can be taken. Our exam-
ple code follows the dynamics presented in Fig. 4.5 and performs a sequence of
calls. First, it retrieves data from the Model layer object (some result of previous
data retrieval/processing in the Model layer). Then it closes the current screen, sets
the data in some other screen and shows it to the user.

The above code is suitable for typical situations which involve a single Presenter
class instance. The situationwheremorePresenter classes are involved is illustrated in
Fig. 4.9. Such situations implement the invocation relationships and invocation/final
sentences in RSL use case models. Invocation is equivalent to passing control of the
application logic to the code of another Presenter layer class instance.

The initial sequence of messages for an invocation is similar to the already pre-
sented event handling. It involves the ‘onTrigger()’ method which calls the appro-
priate ‘getNotion()’ and ‘selectsTrigger()’ type methods. The difference is in the
contents of the ‘selectsTrigger()’ method. In the “invoking” class (here: ‘PSomeUse-
Case’), this method calls the ‘invoke()’ operation on the “invoked” class instance
(here: ‘POtherUseCase’) and passes reference to the current “invoking” instance

4.1 Translational Framework 111

Fig. 4.9 Typical invoke dynamics

(here: ‘uc1’). Then, it calls the ‘selectsTrigger()’ operation on the “invoked” class
instance. This second call passes control to the Presenter class instance associated
with the invoked use case. The contents of the second ‘selectsTrigger()’ operation is
consistent with the schema presented in Fig. 4.8 and implements appropriate appli-
cation logic.

When all the actions controlled by the “invoked” instance (here: ‘uc2’) are com-
pleted, control needs to be passed back to the “invoking” instance (here: ‘uc1’). This
is done in some event handler method which is related to the final sentences in a use
case scenario (e.g. pressing the final acknowledgement button). The last part of this
method’s code contains a return sequence. This consists of calling the local ‘return()’
method that in turn calls the ‘returned()’ method in the “invoking” instance. We may
remember that this is possible thanks to the ‘invoke()’ method which appropriately
sets the local ‘invokingUC’ attribute to point back to ‘uc1’ (see also Fig. 4.4).

Figure4.10 shows the details of the methods that implement the sequence in
Fig. 4.9. The first piece of code is the “proxy” event handler function that starts the
invocation sentence (here: ‘selectsTrigger()’). It first saves the identifier that marks
the place in the original use case scenario towhich control should be returned (see line
2). Later, this identifier is used to continue executing the correct application logic
after returning from the invocation. Further, the event handler calls the ‘invoke()’
method on the invoked Presenter class instance (here: ‘potherusecase’, see line 3).

112 4 Explaining RSL with Java

Fig. 4.10 Code for the invocations

It passes the pointer to the current instance (‘this’) which is saved in the invoked
instance (see the one line code for ‘invoke()’). Finally, the event handler calls the
actual event handler with the same name (see line 4). If the event necessitates passing
DTOs, they are set as parameters (previously assigned to the temporary attribute in
line 1).

For the return sequence the ‘return()’ method contains very simple code that sim-
ply calls the ‘returned()’ method. This is a convenience method to avoid repeating in
several places. If there is no invoking instance saved under ‘invokingUC’, the return
function does nothing which is equivalent to terminating the whole application. In
other cases the ‘returned()’ method of the invoking instance continues processing.
It determines the value of the ‘returnSentence’ (see line 1) and performs code that
is relevant for the scenario that follows the invocation. Note that there can be sev-
eral possible ‘returnSentences’ and thus the ‘return()’ method can have more ‘if’
conditions.

This completes our definitionof the translation framework.All the translation rules
presented in the following sections produce code that is compliant with this general
scheme. The scheme can be treated as a high-level “virtual machine” that would
execute models written in RSL. By translating RSL constructs into code compliant
with the scheme, we will define the runtime semantics of RSL. This is divided into
three parts, each related to a specific aspect of the translational framework. The
first part pertains to the general structural elements of the framework (classes and
associations) and the rules will be denoted with the letter ‘G’. The second part treats
the View layer code and the rules are denoted with ‘V’. Finally, the last part deals
with the Presenter layer and the rules are denoted with ‘P’.

In general, the rules should be applied in the above overall sequence and in the
sequence of their numbering. So first, the source RSL model should be subject to
translation according to the general rules from G0 to G7. Then the View layer ele-
ments should be created according to rules V1–V8, and the Presenter layer elements
according to rules P1–P13. All the rules that pertain to sequences of sentences should
be applied in accordancewith these sequences, observing sentence numbering in sce-
narios. The code for the sentences placed later in scenarios should be appended at
the end of the appropriate code for the sentences placed earlier.

4.2 Semantics Involving the General Structure 113

4.2 Semantics Involving the General Structure

The first part of our definition of RSL’s runtime semantics includes simple rules that
translate top-level RSL constructs into the MVP structure. For each rule we provide
a definition which includes (1) types and layout of the source RSL elements, (2)
types and layout of the target MVP elements. Each definition is illustrated with an
example diagram, where the left-hand side shows the source configuration and the
right-hand side the target configuration.

Rule G0. Every RSL model produces two top-level classes: ‘PUseCase’and
‘VScreen’. The PUseCase class contains two attributes: (1) ‘invokingUC’ of type
‘PUseCase’, (2) ‘returnSentence’ of type ‘String’. It also contains two concrete
operations: (1) ‘invoke()’ with parameter ‘pUC’ of type ‘PUseCase’, (2) ‘return()’
with parameter ‘ret’ of type ‘integer’, and one abstract operation ‘returned()’ with
the same parameter as ‘return()’. The VScreen class contains one parameter ‘fields’
of type ‘FieldList’. It also contains two concrete operations: (1) ‘show()’, (2)
‘close()’, and two abstract operations: (1) ‘init()’, (2) ‘onTrigger()’ with one para-
meter ‘trigger_id’ of type ‘integer’.

This rule, illustrated in Fig. 4.11, does not specify any source elements. It is applied
to any RSLmodel regardless of its contents. The two created classes are the basis for
other classes, created according to rules G1 and G2. The attributes and operations
of ‘VScreen’ and ‘PUseCase’ are used to control the screen-related logic and the
application logic, according to the descriptions in the previous section.

Rule G1. Every Use Case is translated into a Presenter class. The translated class
specialises from the ‘PUseCase’ class translated according to rule G0. The class
name is derived from the use case name by removing spaces, turning to upper camel
case notation and adding the ‘P’ prefix.

This simple rule is illustrated in Fig. 4.12. Translation according to rule G1 is
obvious. Use cases generally define the application logic of the system. Thus, it is
natural to turn them into Presenter classes which control the application logic in
terms of scheduling the sequences of actions involving the View and the Model. The
Presenter classes all specialise from the ‘PUseCase’ class which is shown as already

Fig. 4.11 Rule G0: PUseCase and VScreen

114 4 Explaining RSL with Java

Fig. 4.12 Rule G1: Use cases to Presenter classes

Fig. 4.13 Rule G2: Screen notions to View classes

existing (above the dashed line). Of course, their names have to be written without
spaces and the camel case notation is selected as one often used by programmers.1

Rule G2. Every Screen-type Notion is translated into a View class. The translated
class specialises from the ‘VScreen’ class translated according to rule G0. The
class name is derived from the notion name by removing spaces, turning to upper
camel case notation and adding the ‘V’ prefix. The class contains two concrete
operations: (1) ‘init()’, (2) ‘onTrigger()’ with one parameter ‘trigger_id’ of type
‘integer’.

This simple rule is illustrated in Fig. 4.13. As for G1, translation for rule G2
is obvious. Screen-type notions naturally translate into View layer classes which
handle individual screens in the user interface. The View classes all specialise from
the ‘VScreen’ class which is shown as already existing (above the dashed line). Due
to this specialisation the View layer classes need to obtain the necessary operations
that concretise the two abstract operations of the ‘VScreen’ class.

Rule G3. Every View-type Notion is translated into a Model class. The class name
is derived from the notion name by removing spaces, turning to upper camel case
notation and adding the ‘M’ prefix.

This rule is illustrated in Fig. 4.14. The example shows a Simple View notion but
the same rule applies to List View notions as well. Translation according to rule G3

1 Upper camel case consists in writing compound words so that each word begins with a capital
letter. Camel case differs from upper camel case in that the first letter is small.

4.2 Semantics Involving the General Structure 115

Fig. 4.14 Rule G3: Data Views to Model classes

assumes that data processing is divided between several classes and the division is
made according to the View notions. For each View notion, a class is defined that
can create, read, update and process data associated with this notion.

RuleG3 can also have its variant where theModel layer classes are translated from
Concept-type Notions instead of View-type Notions. In this variant, each Data View
Notion needs to be related to an appropriate “main” concept which determines the
Model layer class that will be used for data processing. This slightly complicates the
rules that involve the Presenter layer (see rules P5–P7) and thus we do not elaborate it
further in this chapter. The reader is encouraged to formulate the possible alternative
rules as an exercise.

Rule G4. Every View-type Notion with associated Attribute-type Notions is trans-
lated into a DTO class.The class name is derived from the notion name by removing
spaces, turning to upper camel case notation and adding the ‘X’ prefix. TheAttribute
Notions are translated into the attributes of the DTO class. The attribute names are
copied from the Attribute Notion names. The attribute types are translated from the
Attribute Notion types (‘text’ to ‘String’, ‘whole number’ to ‘integer’, ‘real num-
ber’ to ‘float’, ‘true/false’ to ‘boolean’, ‘date’ to ‘DateTime’). In addition, each
DTO class obtains the ‘id’ attribute of type ‘long’.

Rule G4 is illustrated in Fig. 4.15. The example shows a Simple View notion with
one Attribute but the same rule applies also to List View Notions and to all the View
Notions with many associated Attribute Notions. The purpose of this translation is to
provide constructs for passing data between the MVP layers. These data are grouped
into the various View Notions, thus it is natural to translate these elements into Data
Transfer Objects. Note that List Views also produce simple DTOs. However, in code,
these DTOs are further grouped into tables (e.g. XBookList[]).

Fig. 4.15 Rule G4: Data Views with attributes to DTO classes

116 4 Explaining RSL with Java

Fig. 4.16 Rule G5: Associations between Presenter and View classes

Rule G5. Every Use Case with a hyperlink to a Screen Notion is translated into
a View–Presenter association. The Use Case contains at least one SVO Sentence
where the Predicate is a hyperlink to a Verb Phrase contained in a Notion of type
‘Screen’. This configuration is translated into an association navigable in both direc-
tions. The association connects two classes. The first class is the class translated
from the Use Case according to rule G1. The second class is the class translated
from the Notion according to rule G2. The role identifiers for the association are
derived from the class names—with all letters turned to small case. The association
end multiplicities are ‘1’ (UML default).

Rule G5 is illustrated in Fig. 4.16. The presented sentence is an SVO Sentence,
where the Predicate (‘show new book form’) refers to a Screen Notion. This means
that the Presenter class code will call some operation of the View class (here: to show
the screen element). For this purpose, an association from the Presenter to the View
is needed. The association has to be also directed in the other direction as the View
class code normally contains event handler code that will call some operations of the
Presenter class.

Rule G6. Every Use Case with a hyperlink to a View Notion is translated into a
Presenter–Model association. The Use Case contains at least one SVO Sentence
where the Predicate is a hyperlink to a Verb Phrase contained in a Notion of type
‘Simple View’ or ‘List View’. This configuration is translated into an association,
navigable from a Presenter class to a Model class. The Presenter class is the class
translated from the Use Case according to rule G1. The Model class is the class
translated from theNotion according to ruleG3. The role identifier for the navigable
end is derived from the Model class name—with all letters turned to small case.
The association end multiplicities are ‘1’ (UML default).

Rule G6 is illustrated in Fig. 4.17. The presented sentence is an SVO Sentence
where the Predicate (‘validate book data’) refers to a Simple View Notion. Anal-
ogous examples could also be made for a List View notion. The situation here is
similar to that in rule G5. The Presenter class code will call some operation of the

4.2 Semantics Involving the General Structure 117

Fig. 4.17 Rule G6: Associations between Presenter and Model classes

Model class (here: to validate some data). For this purpose an association from the
Presenter to the View is needed. Unlike in rule G5, the Model class code does not
call any operation from the Presenter class, so navigability in the opposite direction
is not needed.

Rule G7. Every «invoke» relationship between two Use Cases is translated into a
Presenter–Presenter association and an invoke-related operation. The association
ismade between two classes that already exist andwere translated from the twoUse
Cases according to rule G1. The association is navigable in the direction consistent
with the direction of the «invoke» relationship. The role identifier for the navigable
end is derived from the respective class name—with all the letters turned to small
case. The class at the non-navigable end is appended with one operation: ‘returned’
with one parameter ‘ret’ of type ‘integer’.

Rule G7 is illustrated in Fig. 4.18. The purpose of the added association between
the Presenter classes is obvious, where the “invoking” class instances need to be able
to access the appropriate operations in the “invoked” class instances. The operation
created in the “invoking” class is the concretisation of the abstract operation defined in
the ‘PUseCase’ class (see rules G0 and G1). This operation is called by an “invoked”

Fig. 4.18 Rule G7: Associations between Presenter classes

118 4 Explaining RSL with Java

class instance whenever control should return to an “invoking” class instance. Note
that access to the “invoking” class from the “invoked” class is not realised through
the association (not navigable in this direction) but is made possible through the
‘invokingUC’ attribute inherited from the ‘PUseCase’ class.

Rule G8. Every usage relationship between an Actor and a Use Case is semantically
equivalent to an invoke relationship with an additional invoking Use Case. The
Actor is substituted by an additional Use Case which becomes the “main” use case
which is invoked at the start of the application. The usage relationship is substituted
by an «invoke» relationship. The substituting use case has a standard scenario
containing four sentences: (1) initial Actor-to-Trigger sentence, (2) System-to-
Screen sentence that shows the main application screen, (3) invocation sentence
that invokes the original Use Case that is in the relationship with the Actor, (3)
rejoin sentence that refers to sentence 2.

Rule G8 is illustrated in Fig. 4.19, where the RSL model to the right of the thick
double arrow is the original model. It contains an Actor (‘Librarian’) which uses
a Use Case (‘Show book list’). The Actor is semantically substituted by an appro-
priately named new Use Case (‘Start librarian app’) and the usage relationship is
substituted accordingly. The new use case contains a scenario that generally shows
the application’s main screen (‘librarian main screen’); showing of this main screen
is part of the application’s startup sequence (equivalent to pressing the ‘start’ button).
The main screen contains appropriate Trigger elements that result from the contents
of the invokedUseCase. This equivalent RSLmodel is subject to other semantic rules
which define the target code structure, for instance, from rule V6c we obtain code
that generates an appropriate button that starts the invoked use case. In this way, we
can simplify the other semantic rules by suppressing the variants that involve actors
and usage relationships.

Fig. 4.19 Rule G8: Equivalence of usage relationships

4.3 Semantics Involving the View Layer 119

4.3 Semantics Involving the View Layer

The next group of rules involves the RSL constructs that translate into the elements
of the View layer. The already presented general rules involved creatingUML classes
with attributes and operations and associations between them,while the current group
of rules mostly pertain to creating detailed Java code of the methods that implement
the operations defined in UML classes according to rules G0–G7. However, this also
involves appending certain new operations and attributes to the existing classes.

Rule V1. Every Simple View Notion related with a Screen Notion is translated
to field initialisation code. The relation between the Simple View Notion and
the Screen Notion can be directed in either direction. The translation creates
code as part of the method of the existing ‘init()’ operation of the View class
created using rule G2. For each Simple View, the respective code is appended
to this method. The code consists of the instructions ‘fields.addLabel()’ and
‘fields.Add. . .Field()’. For every Attribute Notion that the Simple View Notion
points to, a pair of these instructions is created. The parameter of the ‘addLa-
bel()’ instruction is taken from the Attribute name. The type of the ‘Add. . .Field()’
instructiondepends on the typeof theAttributeNotion: for ‘text—‘AddTextField()’,
for ‘whole number’—‘AddIntegerField()’, for ‘real number’—‘AddFloatField’,
for ‘true/false’—‘AddBooleanField()’ and for ‘date’—‘AddDateTimeField()’. The
translation also adds an attribute to the respective View class. The attribute is typed
as a DTO, created according to rule G4. The attribute name is derived from the
Simple View with spaces removed and ‘tmp’ added as prefix.

Rule V1 illustrated in Fig. 4.20 is straightforward. We can see the class ‘VNew-
BookForm’ with the ‘init()’ operation that was created from the Notion ‘new
book form’ according to rule G2. The method for ‘init()’ is appended with two
instructions that create a single field from the only Attribute of ‘book data’—the
‘title’. In addition, the ‘tmpbookdata’ attribute is added to the class definition.

Fig. 4.20 Rule V1: Screens with simple Views to field initiation

120 4 Explaining RSL with Java

It is typed with the appropriate DTO class (‘XBookData’), created with rule G4.
This attribute is used by the code created according to rules V3, V5 and V7.

Rule V2. Every List View Notion related with a Screen Notion is translated to
column initialisation code. The relation between the List View Notion and the
Screen Notion can be directed in either direction. The translation creates code
as part of the method of the existing ‘init()’ operation of the View class created
using rule G2. For each List View, the respective code is appended to this method.
The code consists of one instruction ‘fields.addIdClField()’ followed by one or
more instructions ‘fields.add. . .ClField()’. For every Attribute Notion that the List
View Notion points to, one of the ‘add. . .ClField()’ instructions is created. The
parameter of the instruction is taken from the Attribute name. The type of the
instruction depends on the type of the Attribute Notion and is analogous to that
in rule V1. The translation also adds an attribute to the respective View class. The
attribute is typed as a table of DTOs, created according to rule G4. The attribute
name is derived from the List Viewwith spaces removed and ‘tmp’ added as prefix.

RuleV2 illustrated in Fig. 4.21 is similar to the example for ruleV2. The difference
lies in that the field addition instructions (e.g. ‘addTextField()’) are substituted with
column addition instructions (e.g. ‘AddTextClField()’). Also, the respective attribute
is defined as a DTO table (‘XBookList[]’) instead of a single DTO.

Rule V3. Every Simple View Notion with a relation pointing at a Screen Notion
is translated to field setter code. The relation is in the direction from the Simple
View Notion to the Screen Notion. First, the translation creates an appropriate
setter operation. The operation’s name is derived from the Simple View name by
removing spaces, turning to upper camel case notation and adding the ‘set’ prefix.
The operation has one parameter which is of a DTO type, where the DTO is created
according to rule G4. The parameter’s name is the same as the type but with all
letters turned to small. Next, themethod for the setter is filledwith code that depends
on the Attributes that the Simple Notion points at. For each attribute, an appropriate
‘fields.set. . .Field()’ operation is added. These instructions are added in the same
sequence as the field initiation instructions according to rule V1. The types of
the ‘set. . .Field()’ instructions depend on the type of the given Attributes, and are
analogous to those listed in rule V1. These instructions have two parameters. The
first parameter is the field number, consistent with the field sequencing during their
addition in rule V1. The second parameter is the actual value, which is taken from
the appropriate DTO instance. The DTO instance is the temporary attribute created
according to rule V1. This attribute is initialised in the beginning of this code from
the setter operation’s parameter.

Figure4.22 provides illustration for rule V3. As we can see, the ‘book data’ notion
is turned into the ‘setBookData’ operation in the class created from the related Screen.
The only attribute of ‘book data’ is translated into the ‘setTextField()’ instruction
(see line 2). The field is set from the ‘title’ of the ‘tmpbookdata’ object. This object
is initialised in line 1 with the operation’s parameter. This usage of the temporary

4.3 Semantics Involving the View Layer 121

Fig. 4.21 Rule V2: Screens with List Views to column initiation

Fig. 4.22 Rule V3: Screens with Simple Views to field setters

variable (here: ‘tmpbookdata’) is used for convenience reasons and further potential
manual optimisation. It is not necessary in the scope of the current translation rules.

Rule V4. Every List View Notion with a relation pointing at a Screen Notion is
translated to column setter code. The relation is in the direction from the List
View Notion to the Screen Notion. First, the translation creates an appropriate
setter operation, with the name analogous to that in rule V3. The operation has
one parameter, analogous to that in rule V3 but the type is a DTO table. Next, the
method for the setter is filled with code that depends on the Attributes that the
List Notion points at. The code contains a ‘for’ loop that iterates through all the
elements of the DTO table. Within the loop, for each DTO attribute, an appropriate
‘fields.set. . .ClField()’ operation is added. These instructions are added in the same
sequence as the column initiation instructions according to rule V3. The types of
the ‘set. . .ClField()’ instructions depend on the type of the given Attributes, and
are analogous to those listed in rule V1. These instructions have two parameters,
analogous to those described in rule V3. The DTO table instance is initialised
analogously to rule V3.

122 4 Explaining RSL with Java

Fig. 4.23 Rule V4: Screens with List Views to column setters

Rule V4 is illustrated in Fig. 4.23. This example presents a List View Notion
(‘book list’) with two Attributes. The code that is produced involves the DTO class
(‘XBookList’) derived from this notion. A table of DTO instances is passed as the
parameter and then assigned to a temporary variable (‘tmpbooklist’). The ‘for’ loop
iterates over all the instances contained in the ‘tmpbooklist’ table. For each object,
three columns are appended with data. Note that these columns were created accord-
ing to rule V2 (see Fig. 4.21).

Rule V5. Every Data View Notion with a relation pointing from a Screen Notion
is translated to field getter code. The relation is in the direction from the Screen
Notion to the Data View Notion. First, the translation creates an appropriate getter
operation. The operation’s name is derived from the Data View name by removing
spaces, turning to upper camel case notation and adding the ‘get’ prefix. If the Data
View is a List View, then the getter returns a long integer, otherwise it has no return
value and no parameters. For a Simple View, the method code for the above oper-
ation consists of several assignment operations. Each assignment pertains to one
Attribute Notion pointed at by the Simple View. The assignment sets the attributes
of the temporary DTO which was created according to rule V1. The values for the
assignment are retrieved from the fields using the ‘fields.get. . .Field()’ instructions.
The instructions have one parameter—the field number, analogous to that in rule
V3. For the List View, the code for the operation consists of just one assignment—
the ‘return’ value is assigned with the ‘fields.getIdClField()’ instruction for the
appropriate column field number.

Rule V5 is illustrated in Fig. 4.24. This example presents a Screenwith two related
Data Views—‘book filter’ and ‘book list’. This produces two ‘get’ operations with
appropriate names derived from theDataView names. The code for the first operation
consists of one assignment, where the temporary DTO’s attribute ‘title’ is set with
the value of the appropriate text field, while the code for the second operation returns
the value of the respective ID column field.

4.3 Semantics Involving the View Layer 123

Fig. 4.24 Rule V5: Screens with Views to field getters

Rule V6. Every Trigger Notion in some relation with a Screen Notion is translated
into button initiation code. There can be three possible situations, (a) The Screen
directly points at the Trigger with a relationship, (b) The Trigger is hyperlinked
from an SVO sentence that directly follows an SVO sentence where the Screen is
hyperlinked, (c) The Trigger is hyperlinked from the first SVO sentence of a use
case and that use case is invoked directly after an SVO sentence where the Screen
is hyperlinked. For (b) and (c), the sentence that involves the Screen should shift
the dialogue state to “actor” and this state should not change until the sentence
with the Trigger is reached in control flow. The two sentences can be separated by
other sentences that do not change the dialogue state. For situations (a), (b) and (c),
the ‘init()’ operation of the class translated from the Screen notion (see rule G2) is
appended. For each relevant Trigger, a ‘fields.addButton()’ instruction is created
and added to the end of the current code. The instruction has one parameter—the
button name, which is derived from the Trigger name.

Rule V6 is illustrated in Figs. 4.25, 4.26 and 4.27. Figure4.25 shows the variant
(a). In this variant, the rule is elementary in terms of the source model—a Screen
(‘new book form’) points at a Trigger (‘save button’). This results also in a very
simple update of the target model—the ‘init()’ method is appended with one line
of code (line 1) which differs from case to case only with the parameter text (here
“Save”).

Exactly the same code as in Fig. 4.25 is translated from the example model in
Fig. 4.27. This situation pertains to version (b) of rule V6 and is more complex. We
have the same two domain elements, but the Screen (‘new book form’) does not
necessarily point directly to the Trigger (‘save button’). Their relation is determined
through the presence of hyperlinks to these two elements in a use case scenario.
The scenario has to contain a sentence which hyperlinks to the Screen element.
In our example, this is the sentence ‘System shows new book form’.This sentence

124 4 Explaining RSL with Java

Fig. 4.25 Rule V6a: Screens with Triggers to button initiation

Fig. 4.26 Scenario configuration with Screen and Trigger (for rules V6b, V7b and V8b)

Fig. 4.27 Scenario configuration with Screen, invoke and Trigger (for rules V6c, V7c, V8c)

is a System-to-Screen sentence and it shifts the dialogue state to ‘actor’.2 This is
equivalent to showing some window in the user interface. This sentence can be
followed by any number of sentences that do not shift the dialogue back to ‘system’.
These are Actor-to-DataView sentences, similar to ‘User enters book data’. Finally,
our scenario reaches an Actor-to-Trigger sentence (‘User selects save button’). This

2 Dialogue state is explained in detail in Chap.2, see Fig. 2.24.

http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_2

4.3 Semantics Involving the View Layer 125

means that the currently shown Screen element (‘new book form’) has to possess the
said ‘save button’.

This second variant of rule V6 allows to omit the relations between Screens and
Triggers.When developing an RSLmodel, the developers can concentrate on writing
precise scenarios that involve Triggers and do not care about linking these Triggers
with the Screen elements in an explicit manner. For the sake of coherence and better
comprehension, the links can be introduced into the source model. Moreover, we
suggest equipping the RSL editors with an appropriate mechanism to manage (add,
remove) these links based on the current configurations of sentenceswithin scenarios.

The same code as for variants (a) and (b) is produced also in variant (c) of rule
V6. This is illustrated in Fig. 4.27 which shows two use cases with an invocation
relationship. The configuration is somewhat similar to that in rule V6b. However, the
System-to-Screen and Actor-to-Trigger sentences are components of two different
use cases. The first sentence (‘System shows book list window’) has to be followed
by an invocation sentence. Then the second sentence (‘User selects history button’) is
the first sentence of the invoked use case. The appropriate Trigger (‘history button’)
should—obviously—be present in the current Screen element (‘book list window’)
for these scenarios to be possible. Thus, the appropriate button initiation code has to
be added according to the rule.

Rule V7. Every Trigger Notion (optionally pointing at one or more Simple Views) in
some relation with a Screen Notion is translated into event handler code. There can
be three possible situations: (a) The Screen directly points at the Trigger through
a relationship, (b) The Trigger is hyperlinked from an SVO sentence that directly
follows an SVO sentence where the Screen is hyperlinked, (c) The Trigger is hyper-
linked from the first SVO sentence of a use case which is invoked directly after an
SVO sentence where the Screen is hyperlinked. The event handling code is inserted
into the ‘onTrigger()’ method of the View class created according to rule G2 from
theScreen element. Thegenerated code is an ‘if’ statement checking the ‘trigger_id’
to be the name of the current Trigger. If it is, the appropriate operation is called
on the Presenter class instance in the form ‘instancename.operation(parameters)’.
The instance name is the name of the association role created according to rule
G5. The operation name refers to the operation created according to rule P4. The
parameters are optional and are created only if the Trigger points at one or more
Simple Views. The parameters are temporary (‘tmp. . .’) variables created from the
Simple Views according to rule V1. For each parameter, a getter operation (rule
V5) is called before the call to the Presenter class instance.

Rule V7 is illustrated in Figs. 4.26 and 4.28. Figure4.28 shows variant (a) and
Fig. 4.26 shows variant (b) where the source models are the same as in rule V6.
Figure4.27 refers to variant (c) but presents a situation with a List View element
and is discussed under rule V8. The example in Fig. 4.28 shows a configuration
extended from that in Fig. 4.25. The Screen element (‘newbook form’) and the related
Trigger element (‘save button’) are enough to create the appropriate ‘if’ instruction
and condition in the correct ‘onTrigger()’ method. To create the calls inside the

126 4 Explaining RSL with Java

Fig. 4.28 Rule V7a: Screens with Triggers (Simple View) to event handlers

‘if’ instruction, we need the remaining elements of the source model. The example
shows a single SimpleView element (‘book data’) pointed at by the Trigger. This tells
us which getter operation should be called (‘getBookData()’ and which temporary
variable (‘tmpbookdata’) to use as the parameter in the call to the Presenter layer. To
determine the Presenter instance name and the Presenter operation name, we need
to know the use case and the sentence in which the Trigger is hyperlinked. The use
case name (‘Add new book’) determines the instance name (‘paddnewbook’). The
sentence contents (the predicate ‘selects save button’) determine the operation name
(‘selectsSaveButton()’).

Exactly the same code is created for the sourcemodel presented in Fig. 4.26 which
relates to rule V7b. The discussion of thismodel wasmadewhen discussing rule V6b.
Here, we only need to assume the ‘book data’ element which is pointed at by ‘save
button’ as in Fig. 4.28.

Rule V8. Every Trigger Notion pointing at one or more List Views, in some relation
with a Screen Notion is translated into event handler code. There can be three
possible situations (a, b and c), which are exactly the same as for rule V7. The
event handling code is inserted into the ‘onTrigger()’ method of the View class
created according to rule G2 from the Screen element. The generated code is an
‘if’ statement checking the ‘trigger_id’ to be the name of the current Trigger.
If it is, the appropriate operation is called on the Presenter class instance in the
form ‘instancename.operation(getter1(),getter2(),. . .)’. The instance name and the
operation name are created as in rule V7. The getters are calls to the operations
created according to rule V5 from the List Views.

Rule V8 is illustrated in Figs. 4.26, 4.27 and 4.29. The situation is similar to that
illustrating rule V7. The difference is in the contents of the ‘if’ statement, and in
particular—in the parameter of the call to the Presenter operation. In rule V8, the

4.3 Semantics Involving the View Layer 127

Fig. 4.29 Rule V8a: Screens with Triggers (List View) to event handlers

parameter is always a call to the local getter operation. In our example, the getter
is derived from the ‘book list’ element. Similar code is created for the situations
illustrated in Figs. 4.26 (rule V8b) and 4.27 (rule V8c).

When we analyse rules V6, V7 and V8, we notice several constraints that must be
set on the source RSL model for the translated code to work. First, we need to make
sure that there are no two Triggers with the same name related to a given Screen
(in either of the situations a, b or c). Moreover, we need to assure that each Screen
element is used only in a specific use case. If it is used in another use case, then
the event handler code would have contradicting targets of the calls to the Presenter
layer operations. These and other similar restrictions can be removed by extending
the RSL definition. The problem of such an extension or RSL and its semantics can
be used by the reader as subject for an exercise.

4.4 Semantics Involving the Presenter and Model Layers

The last, and the largest group of rules involves the RSL constructs that translate
into the elements of the Presentation layer with some elements of the Model layer.
The Presentation layer code covers complete functionality of the application logic.
The Model layer is just a skeleton which can be later filled in with code of the
domain (business) logic. The presented rules create all the necessary operations of
both layers. For the Presentation layer, the rules cover also the method bodies for
these operations. As we remember, the classes for which the operations and methods
are introduced were created according to the general rules (G1, G3). We also assume
the existence of associations created according to rules G5–G7.

128 4 Explaining RSL with Java

Fig. 4.30 Rule P1: SVO sentences with Simple Views to DTO attributes

Rule P1. Every System-to-SimpleView and Actor-to-Trigger (SimpleView) sentence
is translated into a temporary DTO attribute in a Presentation class. The source
configuration involves a use case with a contained or related SVO sentences. There
can be three possibilities: (a) SVO sentence of type System-to-SimpleView con-
tained in a scenario of the use case, (b) SVO sentence of type Actor-to-Trigger,
where the trigger has a related Simple View, contained in a scenario of the use case,
(c) SVO sentence as in point ‘b’ but contained as the first sentence in a scenario
of a use case invoked from the considered use case. Any of these configurations is
translated into an attribute typed as the DTO class translated from the Simple View
element, according to rule G4. The name of the attribute is identical to that in rule
V1.

Rule P1 is illustrated in Fig. 4.30. It shows a use case (‘Add new book’) and a
Presenter class (‘PAddNewBook’) that was created previously from the use case.
We also have two sentences that are contained in some scenarios of this use case.
The upper sentence (‘System saves book data’) hyperlinks directly to a Simple View
element (‘book data’). The lower sentence (‘User selects save button’) hyperlinks
to a Trigger (‘save button’) that points to the same Simple View, as the previous
sentence. Existence of any of these sentences causes creation of the appropriate
attribute (‘tmpbookdata’) in the mentioned class.

The attribute created using rule P1 is used by some other code created using
various rules in this group. Note that System-to-SimpleView sentences necessitate
passing a DTO from the Presenter layer to the Model layer (or vice versa), and the
Actor-to-Trigger (SimpleView) sentences—passing a DTO from the View layer to
the Presenter layer. The temporary attribute can be used to temporarily preserve the
DTOs passed by the application logic, between different actions that involve calls to
the View layer and the Model layer.

4.4 Semantics Involving the Presenter and Model Layers 129

Rule P2. Every System-to-ListView and System-to-Screen (DataView) sentence is
translated into a temporary DTO attribute in a Presentation class. The source
configuration involves a use case with a contained SVO sentences. There can be
two possibilities: (a) SVO sentence of the type System-to-ListView contained in
a scenario of the use case and (b) SVO sentence of the type System-to-Screen,
contained in a scenario of the use case in which the screen is pointed at by a List
View or a Simple View. Any of these configurations is translated into an attribute
typed as the DTO class translated from the Data View element according to rule
G4. For the configurations that involve List Views, the attribute is a DTO table.
The name of the attribute is identical to that in rule V1.

Rule P2 is illustrated in Fig. 4.31. The configuration is somewhat similar to that
in rule P1. The figure illustrates two cases involving a List View. The first sen-
tence (‘System fetches book list’) hyperlinks element (‘book list’), while the second
sentence hyperlinks to a Screen (‘book list window’) pointed at by the same List
View. Existence of any of these sentences causes creation of the appropriate attribute
(‘tmpbooklist’), which is typed as a DTO table.

As in rule P1, the created attribute is used in some other code. The System-to-
ListView sentences necessitate passing a table of DTOs from the Model layer to the
Presenter layer. The System-to-Screen (DataView) sentences necessitate passing a
DTO (Simple View) or a table of DTOs (List View) from the Presenter layer to the
View layer. The temporary attribute can store these values between consecutive calls
within the application logic.

Rule P3. Every Actor-to-Trigger (ListView) sentence is translated into a temporary
ID attribute in a Presentation class. The source configuration involves a use case
with a contained SVO sentence. There can be two possibilities: (a) SVO sentence
of type Actor-to-Trigger, where the trigger has a related List View, contained in
a scenario of the use case and (b) SVO sentence as in point ‘a’ but contained as
the first sentence in a scenario of a use case invoked from the considered use case.
Any of these configurations is translated into an attribute typed as long integer.
The attribute name is derived from the List View name with spaces removed, ‘tmp’
added as the prefix and ‘id’ added as the postfix.

Rule P3 is illustrated in Fig. 4.32. This example is straightforward and involves
one sentence that hyperlinks to a Trigger (‘history button’). The Trigger points at
a List View (‘book list’) and thus an appropriate ID attribute (‘tmpbooklistid’) is
created. Note that the sentence can be contained in the actual use case, or in any
invoked use case. In the second case, it has to be the very first SVO sentence of that
invoked use case. The ID attribute can be used to pass information from the View
layer about the ID of the selected data object. This ID can then be passed to the
Model layer to be used, e.g. for retrieval. This is explained in detail when explaining
the code created using the remaining rules.

130 4 Explaining RSL with Java

Fig. 4.31 Rule P2: SVO sentences with List Views or Screens to DTO attributes

Fig. 4.32 Rule P3: SVO sentences with List Views to list ID attributes

Rule P4. Every Actor-to-Trigger sentence is translated into an event handler oper-
ation in a Presentation class. The source configuration involves a use case with a
related Actor-to-Trigger SVO sentence. The sentence can be contained directly in
the use case or as the first sentence of some use case invoked from the use case.
In both cases, an operation is created in the Presenter class translated previously
from the use case according to rule G1. The operation’s name is derived from the
SVO sentence’s predicate by removing spaces and turning to camel case notation.
The operation’s parameters depend on the Data Views pointed at by the Trigger
hyperlinked by the SVO sentence. If there is no related Data View, no parameters
are created. For a Simple View, a regular DTO parameter is created: the parameter’s
type follows rule G4 and the parameter’s name is the same as the type, but with all
the letters turned to small. For a List View, an ID parameter of type ‘long’ is created.
In addition, the method of the created operation is initialised with instructions that
assign the temporary attributes (see rules P1, P3) with the values of the parameters.

4.4 Semantics Involving the Presenter and Model Layers 131

Fig. 4.33 Rule P4: Actor-to-Trigger sentences (Simple View)

Rule P4 is illustrated in Fig. 4.33. The example shows one sentence which is
contained in a use case. The predicate part of the sentence (‘selects save button’) is
translated into the name of the operation (‘selectsSaveButton’). The Trigger hyper-
linked by the predicate (‘save button’) has a related Simple View (‘book data’). Thus,
the operation received one parameter whose name and type are derived from the Sim-
ple View’s name (‘xbookdata: XBookData’). This parameter is used in code (line
1) to set the value of the appropriate temporary variable (‘tmpbookdata’). This first
instruction initialises the variable that is used in the rest of the code for this method,
which should be translated according to the remaining rules.

Rule P5. Every ‘non-read ’ System-to-SimpleView sentence is translated into a call
to a Model layer operation. The sentence should involve an action which is not
of type READ (CREATE, VALIDATE, etc.). Each such sentence is translated into
a call to the operation whose name is derived from the name of the sentence’s
predicate by removing spaces and turning into camel case notation. The call is
made on the Model layer class instance which is accessed through the role name,
translated using ruleG6. The call has one parameterwhich is the temporary variable
associated with the Simple View (see rule P1). The call returns a result which is
assigned to the temporary variable ‘result’. The above code is appended at the end
of the operation translated using rule P4, from the last preceding Actor-to-Trigger
sentence. This code is synchronised with an operation in the appropriate Model
layer class which is created (if not yet created for some previous sentence).

Rule P5 is illustrated in Fig. 4.34. Here, we see a use case with two sentences.
The first of these sentences (‘User selects save button’) determines the operation
(‘selectSaveButton’) whose code will be appended. The second sentence (‘System
validates book data’) determines the code that will be created. We also see that
the code uses two attributes (‘result’ and ‘tmpbookdata’) created previously using
other rules. The created operation call is consistent with the actual operation created
in the Model layer class (‘MBookData’). The diagram does not show one element
necessary to fully understand the new code. We assume that there already exists a

132 4 Explaining RSL with Java

Fig. 4.34 Rule P5: System-to-SimpleView sentences (create, update, validate)

directed association between ‘PAddNewBook’ and ‘MBookData’, and the role at
the Model side is ‘mbookdata’. This allows to use this as the instance name for the
operation call.

Rule P6. Every ‘read’ System-to-ListView (SimpleView) sentence is translated into
a “getter” call to a Model layer operation. The sentence should involve an action
which is of type READ. It should contain two sentence objects (direct and indirect).
The first object hyperlinks to a List View and the second—to a Simple View. Each
such sentence is translated into a call to the operation whose name is derived
from the name of the sentence’s predicate up to the direct object (cf. List View),
by removing spaces and turning into camel case notation. The call is made on
the Model layer instance which is accessed through the role name derived from
the List View, translated using rule G6. The call has one parameter which is the
temporary variable associated with the Simple View (see rule P1). The call returns
a result which is assigned to the temporary variable ‘result’. It is followed by a
call to a getter operation on the same Model class instance. The name of the getter
operation is derived from the List View name by adding the ‘get’ prefix and turning
to camel case notation. The getter returns a table of DTOs derived from the List
View according to rule G4. The above code is appended at the end of the operation
translated using rule P4, from the last preceding Actor-to-Trigger sentence. This
code (two operation calls) is synchronised with two operations in the appropriate
Model layer class which are created (if not yet created for some previous sentence).

Rule P6 is illustrated in Fig. 4.35. The situation is similar to that illustrating rule
P5. The difference in the source model is that the second sentence is of type READ
(uses the verb ‘fetch’) and it has two objects (‘book list’ and ‘book search criteria’). In
code, this results in creating two operations and appropriate two operation calls. The
first call (‘fetchBookList()’) evokes appropriate domain logic that should retrieve the
data denoted by the direct object (‘XBookList[]’) based on the data denoted by the

4.4 Semantics Involving the Presenter and Model Layers 133

Fig. 4.35 Rule P6: System-to-DataView sentences (read, from Simple View)

indirect object (‘XBookSearchCriteria’). The second call (‘getBookList()’), passes
the retrieved data and stores it locally within the Presenter object.

Rule P7. Every ‘read’ System-to-SimpleView (ListView) sentence is translated into
a getter call to a Model layer operation. The sentence should involve an action
which is of type READ. It should contain two sentence objects (direct and indirect).
The first object hyperlinks to a Simple View and the second to a List View. Each
such sentence is translated into a call to the operation whose name is derived from
the name of the sentence’s predicate up to the direct object (cf. Simple View), by
removing spaces and turning into camel case notation. The call is made on the
Model layer instance which is accessed through the role name derived from the
Simple View, translated using rule G6. The call has one parameter which is the
temporary ID variable associated with the List View (see rule P3). The call returns
a result which is assigned to the temporary variable ‘result’. It is followed by a
call to a getter operation on the same Model class instance. The name of the getter
operation is derived from the Simple View name by adding the ‘get’ prefix and
turning to camel case notation. The getter returns a DTO derived from the Simple
View according to rule G4. The above code is appended at the end of the operation
translated using rule P4, from the last preceding Actor-to-Trigger sentence. This
code (two operation calls) is synchronised with two operations in the appropriate
Model layer class which are created (if not yet created for some previous sentence).

Rule P7 is illustrated in Fig. 4.36. At first sight, the example looks almost identical
to that illustrating rule P6. However, we need to note that the second SVO sentence
has reversed object types. The first object (‘book data’) hyperlinks to a Simple View,
and the second (‘book list’) to a List View. This results in creating a different call
to the domain logic. It passes an object identifier (‘tmpbooklistid’), instead of a
full object. The domain logic is supposed to retrieve the appropriate object (typed as

134 4 Explaining RSL with Java

Fig. 4.36 Rule P7: System-to-DataView sentences (read, from List View)

‘XBookData’). This object is then passed and stored in the current Presenter, through
the getter operation (‘getBookData()’).

The ‘result’ passed by the first call, translated with the rules
P5–P7 can be used for possible branching of application logic. Thus, the SVO sen-
tences from rule P6 can be followed by condition sentences that define alternative
scenarios depending on the result of processing or reading some data from the per-
sistent storage within the Model layer. The appropriate further code is determined
by the rule P13.

Rule P8. Every System-to-Screen sentence is translated into a call to a View layer
operation. The sentence object should hyperlink to a Screen element. Each such
sentence is translated into a call to ‘close()’ (for sentences of type CLOSE) or
‘show()’ (for other types of sentences), consistent with the rule G0. The call is
made on the View layer instance which is accessed through the role name derived
from the Screen, translated using rule G5. The call can be preceded by one or
more calls to setter operations of the same View layer instance (see rules V3 or
V4). Each setter is derived from a Simple View or a List View, that points at the
Screen element. The setter name is the same as in rule V3 or V4. The setter has
one parameter, and its name refers to the temporary variable created according to
rules P1 (Simple View) or P2 (List View). The above code is appended at the end
of the operation translated using rule P4, from the last preceding Actor-to-Trigger
sentence.

Rule P8 is illustrated in Fig. 4.37. The second sentence (‘System shows book
list’) refers to a Screen (‘edit book form’) which is pointed at by a Simple View
(‘book data’). This creates a call (see line 2) to the ‘show()’ operation of a View
layer instance (‘veditbookform’) which derives from the Screen. This call is inserted
into the method (‘selectEditButton()’) indicated by the first sentence (‘User selects
edit button’). It is preceded (see line 1) by a call to the setter operation derived from
the Simple View element (‘book data’).

4.4 Semantics Involving the Presenter and Model Layers 135

Fig. 4.37 Rule P8: System-to-Screen sentences

Rule P9. Every invocation sentence in dialogue state ‘system’ is translated into
control passing code within the current event handler method. The source config-
uration involves an invocation sentence preceded by an Actor-to-Trigger sentence
(and possible other sentences in between that do not change the dialogue state). The
translated code is inserted at the end of the method associated with the operation
created previously from the Actor-to-Trigger sentence using rule P4. The code first
sets the ‘returnSentence’ attribute (see rule G0) of the containing Presenter class
instance. This is set to the identifier of the sentence directly following the invoca-
tion sentence. Then the code calls the ‘invoke(this)’ operation on the instance of
the Presenter class derived from the invoked use case (see rule G7). Finally, the
code calls the operation associated with the first sentence of the invoked use case
(see rule P4). This call is made on the same instance as the call to ‘invoke()’.

Rule P9 is illustrated in Fig. 4.38. The source configuration contains several related
elements. Everything is centred around the invocation sentence (‘–>invoke: Show
book loan history’). The translated code is inserted into the method created from
the nearest preceding Actor-to-System sentence (‘User selects discontinue button’).
The first created statement marks the sentence following the invocation (‘7’) as the
returning point in the flow of control. Then, control is passed to the Presenter class
(‘PShowBookLoanHistory’) instance related with the invoked use case. First, the
pointer to the current Presenter instance (‘this’) is passed as the parameter of the
‘invoke()’ operation. Then the appropriate event handler (‘selectShowHistoryBut-
ton()’) of the other instance is called, thus definitely passing control to that other
instance. The parameters of this last call are derived from the Data Views associated
with the relevant Trigger. In our example, this is a List View (‘book list’) and thus
an ID value (‘tmpbooklistid’) is used.

136 4 Explaining RSL with Java

Fig. 4.38 Rule P9: Invocation sentences (dialogue state = system)

Rule P10. Every invocation sentence in dialogue state ‘actor ’ is translated into
control passing code within a dedicated event handler method. The source config-
uration involves an invocation sentence preceded by a System-to-Screen sentence
(and possible other sentences in between that do not change the dialogue state).
This is translated into an operation in the Presenter class derived from the current
use case (see rule G1). The operation name is derived from the first sentence of the
invoked use case, analogously to that in rule P4. This also pertains to the parameters
of this operation. The translated code is inserted at the end of the method associated
with this operation. The rules for the contents of this code are identical to those in
rule P9.

Rule P10 is illustrated in Fig. 4.39. This example extends the one to rule P9.
It involves the same invoked use case. Thus, the generated code is almost identical
(except for the return sentence number) to that found in Fig. 4.38. Themain difference
is in the method in which this code is placed. In rule P10, this is a method of a
newly created “proxy” event handler. This proxy (‘selectsShowHistoryButton()’)
calls the identically named operation with exactly the same ID parameter. As in rule
P9, this call is preceded with stack-related operations: saving the return sentence
(line 1) and setting the pointer to the current Presenter layer instance (line 2).

Rule P10′. The generated code is modified from rule P10 so that the ‘returnSen-
tence’ parameter is set to −1 (meaning: no return sentence).

Rule P10′ seems as a slight modification of P10 but it changes the way the invoca-
tion sentences for the dialogue state ‘actor’ are interpreted. Setting ‘returnSentence’

4.4 Semantics Involving the Presenter and Model Layers 137

Fig. 4.39 Rule P10: Invocation sentences (dialogue state = actor)

to −1 means that no code is executed after returning control from the invoked Pre-
senter class object (see rules P11 and P12). This in turn means that control goes back
to the window that was active before the invocation was started. For the example in
Fig. 4.39, the last window shown before the invocation is the ‘book list window’ (see
also rule P8).

Rule P11. Every final sentence is translated into return of control code. The final
sentence is contained in some invoked use case. Reaching this sentence translates
into a call to the local ‘return()’ operation (see rule G0). It has one parameter: for a
“success” final sentence, the value is ‘0’, and for a “failure” final sentence the value
is ‘1’. This call is placed at the end of the method derived from the nearest Actor-
to-Trigger sentence that precedes the final sentence (see rule P4). Furthermore, all
the invocation sentences that refer to the current use case need to be considered.
For each such situation, the ‘returned()’ method within a relevant Presenter class
derived from the invoking use case needs to be updated. The update consists in
adding an ‘if’ statement with a condition that checks the previously set value of
the ‘returnSentence’ attribute (see rules P9 and P10).

Rule P11 is illustrated in Fig. 4.40. The example consists of twouse cases related to
the «invoke» relationship. One of the use cases contains the final “success” sentence,
which is preceded by an Actor-to-Trigger sentence (‘User selects OK button’). This
configuration determines the method (‘selectsOKButton()’) in which the ‘return()’
call is created. The other use case contains the related invocation sentence. Since
the following sentence is numbered “9”, this number is checked in the ‘if’ statement
created in the relevant ‘returned()’ method.

138 4 Explaining RSL with Java

Fig. 4.40 Rule P11: Final sentences

Rule P12. Every rejoin sentence is translated to code according to the indicated
(rejoined) sentence and the following sentences. When a rejoin sentence is reached
it is translated into code that stems from the sentences starting at the point of rejoin-
ing. This code is inserted into the method of the Presenter class, into which code
was inserted for the sentence preceding the rejoin sentence (rules P4–P10). If this
preceding sentence is an invocation sentence, code is inserted into the appropriate
‘returned()’ method according to rule P11. The inserted code is created as if the
rejoin sentence was substituted with the sentence in the rejoining point and all the
sentences that follow this sentence until a System-to-Screen or Actor-to-Trigger
sentence is reached. This is done according to rules P4–P11.

Rule P12 is illustrated in Fig. 4.41. This example shows two situations involving
a rejoin sentence. In the first situation, a rejoin sentence follows an Actor-to-Trigger
sentence (‘User selects repeat button’). Thus, the current method for inserting code is

Fig. 4.41 Rule P12: Rejoin sentences

4.4 Semantics Involving the Presenter and Model Layers 139

the one that was derived from this sentence (‘selectsRepeatButton()’). In the second
situation, the rejoin sentence follows an invocation sentence. In this situation, the
place for inserting code is the ‘returned()’method (see ruleP11) inside the appropriate
‘if’ statement. In both cases the inserted code is derived from the sentence at which
the rejoin sentence points (‘System shows new book form’). According to rule P8
this creates a call to an appropriate ‘show()’ operation in a View layer instance
(‘vnewbookform’). This terminates processing the specific rejoin sentence because
it already points at a System-to-Screen sentence.

Rule P13. Every set of condition sentences for dialogue state ‘system’ is translated
into an ‘if-else’ statement. The condition sentences form a set that follows some
sentence which initiates and finishes in the dialogue state ‘system’ (usually, a
System-to-DataView sentence). For such a set an ‘if-else’ statement is created. The
number of branches in the statement equals the number of condition sentences in
the set. In each branch the condition checks for the value of the ‘result’ attribute
(set according to rules P5–P7). The above statement is appended at the end of
the operation translated using rule P4 from the last preceding Actor-to-Trigger
sentence.

Rule P13 is illustrated in Fig. 4.42. The presented configuration involves two SVO
sentences and a set of two conditions. The first sentence (‘User selects save button’)
determines the method (‘selectsSaveButton()’) into which the new code is to be
appended. The second sentence produces code that sets the ‘result’ attribute (not
shown here, see Fig. 4.34). Finally, the two condition sentences (‘book data valid’
and ‘book data invalid’) result in creating an ‘if-else’ statement with two branches.
The first branch contains code created from sentences that follow the first condition
sentence, and analogously—the secondbranch contains code for the second condition
sentence.

Relating to rule P13, note that condition sentences which occur in the dialogue
state ‘actor’ (usually after the System-to-Screen sentences) do not necessitate any
additional rule. This is because they need to be followed by several Actor-to-Trigger

Fig. 4.42 Rule P13: Condition sentences (dialogue state = system)

140 4 Explaining RSL with Java

Fig. 4.43 Rules P1′, P3′,
P4′, P9′ and P10′′: source
model variant

sentences which are already handled through rules V6b, V7b, V8b and P4. Condition
sentences in this situation simply allow to fork scenarios through creating several
buttons with appropriate handling code.

Rules P1′,P3′,P4′,P9′and P10′′. The source model structure in rules P1, P3, P4,
P9 and P10 is modified for Actor-to-Trigger sentences. The source model is struc-
tured so that the Actor-to-Trigger sentences are preceded by Actor-to-DataView
sentences. In such case, the Trigger notions do not need to point at the respective
Data View (List View of Simple View) notions. The relationships between the Trig-
gers and the Data Views are thus substituted by the respective Actor-to-DataView
sentences. The generated target model and code does not change from that in rules
P1, P3 and P4.

The sourcemodel for the rules P1′, P3′, P4′, P9′ and P10′′ is illustrated in Fig. 4.43.
This example refers to the example for rule P4, but the configuration for the other rules
is similar.Aswe can see, the configuration involves two sentences, ofwhich the first is
anActor-to-DataView sentence (‘User enters book data’) and the second is theActor-
to-Trigger sentence shown previously in Fig. 4.33. The first sentence hyperlinks to
the same Data View notion as in the example for rule P4. The difference in the
domain model is that the Trigger and the Data View need not be related explicitly.
This relationship is derived from the sequence of sentences in the scenario.

4.5 Summary Example

To summarise the presented semantic rules, and facilitate comprehension, we now
combine some of the examples shown in Figs. 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17,
4.18, 4.19, 4.20, 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28, 4.29, 4.30, 4.31, 4.32,
4.33, 4.34, 4.35, 4.36, 4.37, 4.38, 4.39, 4.40, 4.41 and 4.42. This creates a small but
coherent RSL model fragment and shows complete code translated from this model.

Figure4.44 presents the use case part of the RSL model fragment. It contains
three use cases, of which two have their scenarios present. This configuration of use
cases and scenarios can be treated as typical in many situations. An actor (here: the
“Librarian”) can select to show some list (here: the “book list”) and this can invoke
some use cases that involve the context of this list. The use cases that do not involve
selecting a list item (like ‘Add new book’) can also be started independently.

4.5 Summary Example 141

Fig. 4.44 Example use case model (simplified fragment)

The ‘Show book list’ use case has only one simple scenario. It basically involves
fetching the full book list and presenting a window that shows the list. This function-
ality can be extended to include filtering of the list and other such features. When the
window with the list is shown the user can invoke two use cases—‘Add new book’
and ‘Show book loan history’. Alternatively, she can select to close the window,
which ends the application. Of the two invoked use cases we present scenarios for
only one. To add a book the user has to select a button and this shows a form which
can be filled in. After pressing a button on this form the system validates book data
and if valid, saves it. If the data are not valid, the form is shown back again. Again,
this functionality is very basic and can be extended. One of the obvious extensions
would be to allow for cancelling of the operation. Despite this simplicity, our example
summarises most of the presented translation rules.

The presented scenarios refer to various domain elements shown in Fig. 4.45.
We see the two Screen elements (‘new book form’ and ‘book list window’) found
in the scenarios, with several associated Trigger elements. Note that the ‘add book
button’ Trigger is not related directly to ‘book list window’ and the appropriate
code is created using the appropriate configuration of scenario sentences. The ‘book
list button’ Trigger is also not related to any Screen, as this is out of the scope of
the functionality defined by the three use cases. The Screens and Triggers relate to
appropriate Data Views (‘book data’ and ‘book list’). These views point to Attributes
which should be presented to or entered by the user.

These RSLmodel elements translate into the code structure presented in Fig. 4.46.
All the classes, associations and DTO class attributes are translated using rules
G1–G7. We also see that the View layer classes specialise from ‘VScreen’, and
the Presenter layer classes specialise from ‘PUseCase’. These two general classes
are not shown as their content is constant and already shown in the definition of rule
G0.

142 4 Explaining RSL with Java

Fig. 4.45 Example domain model (simplified fragment)

Fig. 4.46 Class model translated from the example RSL model (partial)

The two View layer classes have one temporary attribute each. These were trans-
lated using rules V1 and V2. The same attributes are present in the two associated
Presenter layer classes as the result of applying rules P1 and P2. In addition, both
classes have the same ‘tmpbooklistid’ attribute which results from applying rule P3.
In one of the classes (‘PAddNewBook’) this is due to the basic variant (P3a), and in
the other class (‘PShowBookList’) due to the invocation variant (P3b).

4.5 Summary Example 143

Note (Fig. 4.45) that ‘book data’ is connected to ‘new book form’ with one rela-
tionship pointing from the Screen to the Simple View. This results in applying rule
V5 and producing the getter operation (‘getBookData()’) in ‘VNewBookForm’. The
other Data View element (‘book list’) is connected to ‘book list windows’ with two
relationships in both directions. This results in applying both ruleV5 andV4.Because
it is a List View, the setter accepts a table of appropriate DTOs (‘XBookList[]’) and
the getter returns a DTO id (long integer). Along with the getters and setters, appro-
priate ‘init()’ operations are created according to rules V1 and V2. Since the Screens
have associated Triggers the ‘onTrigger()’ operations are also created (rules V7, V8).

The operations in the Presenter layer classes are created using rules P4 and P10.
Each such operation reflects a single user-evoked event (selecting some Trigger in
a use case scenario—rule P4). For the events that involve use case invocations, two
identically named operations (one of them a proxy) are added (rules P4 and P10).
This is illustrated in Fig. 4.46 by the two ‘selectAddBookButton()’ operations.

The operations in the Model layer are created using rules P5–P7. Four of such
operations are shown in Fig. 4.46. Three of them reflect the appropriate System-to-
DataView sentences that indicate some domain logic actions. One of the operations
is a getter associated with the ‘fetchBookList()’ operation. The getter (‘getBook-
List()’) allows for transporting data from the Model layer up to the Presenter layer
after performing some data processing and retrieval within the ‘fetchBookList()’
operation.

The class model determines the code skeleton of the final code. This skeleton is
filled with code for the View and the Presenter layers. This is illustrated in Figs. 4.47,
4.48, 4.49 and 4.50 which present full code for the four main classes. The two View

Fig. 4.47 Code of VNewBookForm

144 4 Explaining RSL with Java

Fig. 4.48 Code of VBookListWindow

classes (Figs. 4.47 and 4.48) contain complete code for initiating the UI fields and
buttons (‘init()’) and handling user-evoked events (‘onTrigger()’) using the rules V1,
V3, V6 and V7, V8. This code can be compared with the RSL model in Fig. 4.45. It
contains all the field initiation for relevant Attribute elements and button initiation for
all the associated Trigger elements. The event handlers contain alternative processing
(‘if’ statements) for each of these initiated buttons.

The View layer code is completed with the contents of the setter and getter meth-
ods. Similar to the initiation methods, getters and setters are based on the relevant
Attributes in theRSLmodel. The ‘getBookData()’method assigns three fields, which
is equivalent to the three Attributes pointed at by ‘book data’. The ‘setBookList()’
method assigns an id column and two fields that are equivalent to the two Attributes
pointed at by ‘book list’. This code is controlled by the rules V3–V5.

The Presenter layer methods (see Figs. 4.49 and 4.50) are mostly event handlers
that contain logic evoked from theView layer’s ‘onTrigger()’methods. In ‘PAddNew-
Book’ there are two such methods, translated from two Actor-to-Trigger sentences
(‘Librarian selects add book button’ and ‘Librarian selects save button’) using rule

4.5 Summary Example 145

Fig. 4.49 Code of PAddNewBook

P4. The contents of these methods are determined by the sentences that follow these
two sentences. The first method (‘selectAddBookButton()’) is simple, because only
one sentence needs to be considered here (‘System shows new book form’). By
applying rule P8 we obtain the presented single call to the ‘show()’ operation.

The second method (‘selectsSaveButton()’) is significantly more complex as it
involves three SVO sentences, a set of condition sentences, a final sentence and a
rejoin sentence. The first SVO sentence (‘System validates book data’) is translated
into a call to theModel layer using rule P5. Then we have a set of condition sentences
translated to the ‘if-else’ statement according to rule P13. One of the two alternatives
involves two SVO sentences (‘System closes new book form’ and ‘System saves
book data’) and a final sentence. Thus, rules P8, P5 and P11 produce the appropriate
two external operation calls and a local call to ‘return()’ in the ‘if’ part. The other
alternative involves a rejoin sentence. This sentence points to sentence no. 2. Thus,
according to rule P12 we need to repeat code obtained from sentence 2, which
happens to be identical to that in ‘selectAddBookButton()’. This code is inserted
into the ‘else’ part.

If the rejoin sentence pointed to sentence 3 (‘Librarian enters bookdata’), the ‘else’
part of the condition statement would be empty. This would mean that nothing would
happen from the point of view of the user. The ‘new book form’ would still remain
open and waiting for user-evoked events. In the actual example, the ‘new book form’
is shown again. If we assume that ‘show()’ performed on an already open screen
element does nothing, then the two situations would be in fact equivalent.

146 4 Explaining RSL with Java

Fig. 4.50 Code of PShowBookList

In ‘PShowBookList’ there are four event handlers. Two of them (‘selectBook
ListButton()’ and ‘selectCloseButton()’) are very simple as they involve one or two
SVO sentences. Their contents are thus the result of consecutive application of rules
P7 and P8. Two other methods (‘selectAddBookButton()’ and ‘selectHistoryBut-
ton()’) are proxies related with use case invocation (rule P10). The second method
additionally involves passing a parameter (‘tmpbooklistid’). This is caused by the
‘history button’ Trigger (see Fig. 4.45) that points at the ‘book list’ element. This is
not the case for the ‘add book button’ and thus the first method does not involve any
parameter passing.

The ‘PShowBookList’ class contains one additional method—‘returned()’,
because it is involved in use case invocations in the role of the calling class (see
rule P11). The code checks for the ‘returnSentence’ that was set in the two above-
mentioned proxymethods. The contents of the condition statement are empty because

4.5 Summary Example 147

sentence no. 6 in the ‘Show book list’ use case is an Actor-to-Trigger. This means
that no code needs to be performed after returning from the invocation. This is quite
logical. After we perform the logic associated, e.g. with ‘Add new book’ (the invoked
use case), we should place it back in the situation where the ‘book list window’ is
displayed. Note that this is exactly the case when the ‘return()’ operation is called
in ‘PAddNewBook’. The ‘new book form’ element is closed and this retrieves back
‘book list window’ from the window stack. Thus, there is no need to perform any
operation in the ‘returned()’ method.

Note that the code for the ‘returned()’ method is not optimal. Also, in several
other places code is not optimised. However, with the presented rules we aim at
presenting semantics in a comprehensible way and not at producing optimised code.
Code optimisation can be the subject of specific transformation programs that would
retain this semantics while at the same time producing the actual working code.

Regardless of the above remarks on code optimality, the presented rules give a
coherent framework for translating RSL models into code. A careful reader may
note some issues not covered by the presented rules. This is caused by the limitations
in the presented RSL syntax. For instance, there is no way to order fields in the
translated UI elements. However, this can be easily resolved by extending RSL and
adding new, or more fine-tuned semantic rules. This chapter should give the basis
for doing this. Using the presented approach the reader can also create other similar
languages and develop his own translational semantic rules.

Chapter 5
Understanding Model Transformations

The previous chapter explained the rules for transformingmodels of one kind (written
in RSL) to models of another kind (written in UML), and code. In order to implement
these rules, we need to write transformation programs. For this purpose, we could
use any programming language assuming we can access the model repository and
traverse through the source models and create the target models. However, writing
a Java program for the purpose of model transformation would then become a quite
laborious task due to the lack of necessary constructs to represent model elements
that form sophisticated graphs. Thus, instead of a typical programming language, we
use a dedicated model transformation language.

5.1 Overview

The purpose of writing model transformations is to help software developers to
perform modelling activities. A transformation program can uniformly apply
transformation rules to the source model and thus relieve developers from bor-
ing, repetitive tasks. In a typical software project environment we have Model
Developers (Analysts, Requirements Engineers, Architects, Designers, . . .) that use
standard model editors. Most often, these are UML modelling tools, but editors for
other model-based languages are also used. This includes editors for special-purpose
Domain Specific Languages built to specify problems in specific application (busi-
ness) domains.

Model Developers create their models in these tools and then transform them
into—usually more complex—other models. This is illustrated in Fig. 5.1. As we
can see, a typical language environment consists of a Model Editor and a Model
Storage. If we want models in this language to be transformed, we also need an
integrated Transformation Engine. Both the Model Editor and the Transformation
Engine can access the Model Storage to update the models. Sometimes, we can
operate only within the base language environment. This is when the transformations
are endogenous, i.e. when they operate only on a single modelling language. In this

© Springer International Publishing Switzerland 2015
M. Śmiałek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_5

149

150 5 Understanding Model Transformations

Fig. 5.1 Using model transformations

case, the Model Developer uses a single Model Editor. She first enters the source
model manually and then selects and runs an automatic transformation. After this,
she can access and further modify the transformed (target) model through the same
Model Editor.

It is necessary to note that in many endogenous transformation problems, the
target model will overlap with the source model. This is when the purpose of a
transformation is to update the source model with additional elements or to change
the arrangements of the original elements.

A different situation is when we want to perform an exogenous transformation.
This kind of transformation turns models written in one language into models written
in another language. Thus, it is usual that the Model Developer uses two distinct
language environments (see Fig. 5.1), where the Transformation Engine has to have
access to the model storage of both environments. From the technical point of view,
it is often the case that the Engine operates on a local (unified) storage which is
interfaced with storage spaces of the individual language environments.

Performing an exogenous transformation is similar to the task of compiling a pro-
gram written in a contemporary programming language. We need to parse the input
program and then generate an equivalent program in another—more primitive—
language. Program parsing consists in lexical and syntactic analysis of linear text.
For graphical languages we cannot do linear parsing, instead we perform syntactic
analysis through traversing graphs. On output, compilers produce linear code that
complies with the operational semantics of the input program constructs. For model
transformations the output is not linear code but—again—a graph. Thus, “code gen-
eration” in this case consists in producing graph fragments and combining them into
the resulting bigger graph. To add to the complexity of this task, the input and output
graphs are often adornedwith textual elements. These elements can also exhibit some
structure and syntax that needs to be reflected when parsing and generating them.

Note that some transformations—especially the endogenous ones—go beyond
typical “compilation-type” processing. Namely, they can also modify the source
model, which is unlike for any typical compiler. During compilation, compilers build

5.1 Overview 151

certain internal structures (e.g. abstract syntax trees) that are distinct from the source
code, which is not modified. However, when performing graph transformations, we
can in fact use both the source and the target graph, and update their contents. As
a result, the transformation task is performed through consecutive modifications of
the overall graph space.

Both the source and the target graphs have to comply with the definitions of the
respective languages. Aswe know from the previous chapters, thismeans compliance
with the appropriate metamodels, which are also graphs. It would thus be natural
to write programs that transform graphs, also in the form of graphs as illustrated
in Fig. 5.2. The Transformation Engine runs programs that can traverse through
and update graphs stored in the model storage. This model storage is structured in
compliance with the appropriate metamodels. The programs use graphs to depict the
desired patterns in the source graph and in the target graph.

What is important is that the transformation programs have to comply with the
language metamodels. Based on the graphs that metamodels define, they have to
specify certain sub-graphs that need to be sought for or created to perform the trans-
formation. Hence, the transformation language syntax has to refer to the metamodel
elements and use them throughout most of its constructs. Thus, a crucial issue is how
the source and the target language are defined. This moves us back to Chap.3 and
the considerations about the modelling language infrastructures (see Fig. 3.25). For
a model transformation language to define its transformations uniformly, it is best to
have both the source and the target language defined using the same approach, or—
in other words—using the same meta-metamodel. The languages can be completely
different in terms of their syntax but the (meta)language to define this syntax has to
be the same. Only then will the transformations be able to refer to the source and
target graphs in a uniformway. Fortunately, most contemporarymodelling languages
have their metamodels that comply with this standard metamodelling infrastructure.

Fig. 5.2 Model transformation internals

http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_3

152 5 Understanding Model Transformations

Theirmetamodels are expressed inMOForMOF-compatible languages (like Ecore).
This allows model transformation languages to use these metamodels directly (or
after a simple adaptation) within their programming constructs.

In this book we present the model transformation language MOLA1 [85, 169].
This language has a graphical syntax for model (graph) querying and processing, and
uses theMOF2 notation, familiar to us from the previous chapters. What is important
for model-driven requirements is that MOLA can be easily interfaced with the model
storage of an RSL editor (ReDSeeDS Engine, see Chap. 7). At the same time, it can
produce models in UML and has satisfactory text processing capabilities.

MOLA, analogous to most model transformation languages, combines two pro-
gramming styles: declarative and imperative. The declarative part is used for querying
models and matching graph-based patterns. The imperative part is used for sequenc-
ing queries and defining steps for generating the target models.

In general, the purpose of declarative programming is to define the effect of
computations without defining its control flow. In other words, we define the “what”
instead of defining the “how”. For the task of graph transformations, the declarative
paradigm is realised through specifying patterns that need to be found or generated
in the model graphs. The programmer does not need to specify the algorithm for
matching the patterns, but instead the transformation environment does the task
internally. As a result of executing a declarative rule, certain objects in the model
graph are found and/or updated. These objects are then made available for further
processing through references (or variables).

The results of declarative processing can be used by the imperative elements of
the language. These elements can define sequences in which declarative rules are
to be executed. The imperative parts follow typical constructs of contemporary pro-
gramming languages. This means that a program is a sequence of statements that
change the state of the processing environment. In particular, for model transfor-
mations, these changes pertain to the state of the model graphs. The sequence of
changes depends on this state and it is thus also associated to conditional processing.
Moreover, the whole processing can be divided into smaller modules, or procedures
with parameters and local variables.

The combination of two programming paradigms results in a powerful environ-
ment for model/graph transformation. The programmer is flexible in constructing the
transformation algorithms, while abstracting away the issues associated with find-
ing and creating objects in the transformed models/graphs. In the following sections
we present all the MOLA programming constructs. This introduction uses examples
ranging from the simple to the advanced. These examples form typical problems
for model transformation systems [105], and are often used in model transformation
contexts [79, 133, 172]. At the same time, their gradually building complexity allows
for gradual introduction of programming elements, thus making it understandable
for a person new to this style of programming.

1 MOLA is developed at IMCS, University of Latvia and can be accessed at http://mola.mii.lu.lv/.
2 In fact,MOLA uses a dialect ofMOF, calledMOLA-MOF, which slightly varies from the standard
but this difference in negligible for our purposes.

http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://mola.mii.lu.lv/

5.2 “Hello World” in MOLA—Declarative Processing 153

5.2 “Hello World” in MOLA—Declarative Processing

We start our MOLA programming tour with the traditional “Hello world” example
[84]. This allows us to present the most basic declarative constructs of MOLA.
The task is to start with an empty model and result in a model that has a single
model element with the text “Hello world”. The desired effect is shown in Fig. 5.3
(middle). We assume that before our program executes, the model does not contain
any elements. In our example the empty boxes symbolise the empty diagramwindow
in the concrete syntax and the empty model repository in the abstract syntax. After
the program executes, the model gets updated with a single object of type ‘Greeting’
with its ‘text’ attribute set with the desired text. In concrete syntax, this can have the
effect of some specifically shaped (e.g. a cloud shape) model element to appear on
the diagram.

The respectiveMOLAprogram is shown in the upper part of Fig. 5.3. The program
consists of two parts—the metamodel part and the actual program part. As we can
see, the metamodel is elementary and contains only a single metaclass ‘Greeting’
with a single attribute ‘text’ of type ‘String’. ‘String’ is a predefined type in MOLA
and can hold strings of texts of varying size.

The actual program in MOLA in Fig. 5.3 is self-explanatory. A careful reader can
deduce its meaning by simply examining the MOLA syntax legend at the bottom of
the figure. Let us explain its individual parts. The program execution starts from the
‘start symbol’ and ends at the ‘end symbol’. The sequence of program execution is

Fig. 5.3 Basic “Hello world” example

154 5 Understanding Model Transformations

Fig. 5.4 Extended “Hello world” example

indicated by the ‘control flow’ arrows. The most common constructs in the program
sequence are ‘rules’ which form the declarative part of MOLA. Our “Hello world”
example contains only one rule. This particular rule contains a single ‘object’ element
which in this case is a ‘create object’.A stand-alone rule like this is executed only once
and in our case it will create a single object of type ‘Greeting’. The object name (‘g’)
is an important program element, as it defines the variable that can be referenced
in other rules. However, in this particular case it need not be used anymore. The
‘create object’ icon embeds an ‘attribute assignment’ statement that simply assigns
the famous “Hello world” to the ‘text’ attribute.

As we can see, the simplest MOLA program is easy to write and understand. As
wewill later see, allMOLA rules follow the “what you see is what you get” principle.
They actually show the arrangement of objects in the abstract syntax which conforms
to the given metamodel as seen in the next example, shown in Fig. 5.4.

5.2 “Hello World” in MOLA—Declarative Processing 155

The metamodel is now extended and is composed of two parts. The first part (top-
left of Fig. 5.4) is the source language which is defined through three metaclasses.
The ‘Greetings’ elements contain two components: ‘Person’ and ‘GreetingMessage’.
Both these elements contain appropriate textual attributes (‘name’ and ‘text’, respec-
tively). The second part (top-right) is the target metamodel containing only a single
metaclass called ‘StringResult’. The task is now to first produce a ‘Greeting’ com-
posite and then derive a ‘StringResult’ containing text (‘result’) concatenated from
the texts in the two components of ‘Greeting’.

The desired effect (in concrete syntax only) is presented in the “Execution” part of
Fig. 5.4. In an emptymodel, the transformationfirst creates a cloud-shaped ‘Greeting’
containing a ‘Person’ (here: “Michal”) and a ‘GreetingMessage’ (here: “Hello”).
Then, this is appendedwith another (scroll-shaped) element,which is a ‘StringResult’
containing concatenated text (here: “Hello Michal”).

This transformation is composed of two programs. The first program creates the
‘Greeting’ and its components, while the second creates the ‘StringResult’. This
task could be developed with only a single program but we have divided it into two
programs deliberately to make the description more gradual. To create ‘Greeting’
we have written a rule that contains several ‘object create’ constructs that we know
from the previous example. These were appended with ‘link create’ constructs to
define the connections between the created objects. Note that these link constructs
are always adorned with association end names, which comply with the respective
metaassociations in the metamodel.

The second program in Fig. 5.4 introduces query elements of MOLA. The rule
contains three ‘object queries’ linked through ‘link queries’ constituting a joint query
that seeks for elements that are exactly as in this arrangement. Here, the rule seeks
one ‘Greeting’ that is linked with one ‘GreetingMessage’ and one ‘Person’. Note that
this rule finds exactly one such pattern in the current model. If there weremoremodel
elements linked in this way they would not be considered for processing. Which of
the patterns are chosen is not determined, and might be random. Later, we see how
to process many patterns in a loop. In our current example we assume that there is
only one arrangement like this, so this rule is enough to find it.

After matching the objects, the rule creates a ‘StringResult’ object and sets its
‘result’ attribute. This assignment is similar to the one from the previous example
but contains a text processing statement that uses the object names from the ‘object
queries’. It takes the ‘gm’ object and its ‘text’ attribute, and the ‘p’ object and its
‘name’ attribute. These two texts are concatenated with some additional characters,
which produces the final ‘result’ (“Hello Michal!”). Objects in text processing state-
ments are referred to with the ‘@’ character, and text concatenation is performed with
the ‘+’ operator.

The above program assumes that there are only single objects of each kind (‘Greet-
ing’, ‘Person’ and ‘GreetingMessage’) in the original model. However, this is a rare
situation and thus we need constructs to process multiple elements. Forinstance,

156 5 Understanding Model Transformations

we may want to use a modification of the metamodel from Fig. 5.4, which is
presented in Fig. 5.5 (top). The only modification is the multiplicity for the ‘per-
son’ role. Now, any ‘Greeting’ can be composed of many ‘Persons’ (and still up to
one ‘GreetingMessage’). We would thus want to modify the previous transforma-
tion to process many ‘Persons’, as shown in the “Execution” part of Fig. 5.5. The
result would now includemany ‘StringResults’ derived from the appropriate ‘Person’
names.

To query for many objects in the model, MOLA introduces the for-each loop
construct. In concrete notation, it is a thick box drawn around the rules that need to
be executed for many model elements. Every for-each loop must have a single loop
head object, which is drawn like a query object but with a thick border.When starting
to execute a for-each loop the MOLA processor evaluates all the possible objects
that match the rule containing the loop head (i.e. the loop head rule). It selects all the
objects in the model with the type (metaclass) matching the type of the loop head
object. For these objects, it further selects only those that match the query object
configuration as specified in the rule. The loop is thus executed as many times as the
loop head object is found to be in the exact configuration with the other objects in
the model specified in the loop head rule.

Fig. 5.5 “Hello world” example with a loop

5.2 “Hello World” in MOLA—Declarative Processing 157

Fig. 5.6 Evaluation of objects in a for-each loop

In our example in Fig. 5.5, the for-each loop is executed twice. This is illustrated
in Fig. 5.6 which shows the four objects in the original model (a ‘Greeting’ with
a ‘GreetingMessage’ and two ‘Persons’). Each of the two iterations of the loop
execution retrieves three objects as indicated by the dotted aches. Note that within
the loop execution, some of the retrieved objects can overlap between loops; only
the loop head objects have to be different.

In a given loop, the retrieved objects are given names as determined by the loop
head rule. So, in one of the iterations the object referred to as ‘p’ (see the program in
Fig. 5.5) has text equal to “Michal”, and in the other—equal to “Wiktor”. This results
in creating two separate ‘StringResult’ objects in the final model, with appropriately
set ‘result’ strings.

When constructing MOLA for-each loops we need to remember that they are still
declarative programming elements. They do not determine the sequence in which the
loops are going to be executed. Thus, normally we should not assume this sequence.
Each of the iterations in a loop execution should be treated independently of other
iterations.

5.3 Variables and Procedures in MOLA—Imperative
Processing

Most non-trivial transformation problems necessitate some kind of sequencing in
terms of rule execution. Sometimes, the sequence in which declarative rules are
executed is not important. However, in many cases, processing relies on some of the
rules changing the state of the model which is then processed by other rules. This
leads us to typical imperative processingwith variables, control flows and procedures.

To illustrate imperative processing in MOLA, we introduce a more elaborate
example than the simple “Hello world”. We operate on graphs as defined through
the metamodel in Fig. 5.7. ‘Graphs’ consist of ‘Nodes’ and ‘Edges’. Any ‘Edge’
connects a source (‘src’) ‘Node’ with a target (‘trg’) ‘Node’ and thus are directed. In
concrete notation, we denote nodes as pentagons and edges as arrows connecting the
pentagons. Note that the metamodel allows for “dangling” edges that have missing
source and/or target nodes. This is due to the multiplicity of ‘0..1’ set for the ‘src’
and for the ‘trg’.

158 5 Understanding Model Transformations

Fig. 5.7 Graph example with node counting

In addition to the graph metamodel we also use the ‘IntResult’ metaclass (not
shown in Fig. 5.7). Objects of this type hold a single ‘result’ value of type ‘Integer’.
Their concrete syntax is a star with the integer value placed inside it. This model
element allows us to represent results of certain arithmetic calculations pertaining
to graphs.

Let us now introduce the first problem associated with the graphs. It is a simple
task to count all the nodes in a graph and create an element containing the result of
this counting. The expected effect is shown in the “Execution” part of Fig. 5.7.

To perform this calculation we need to use the for-each loop, but we also need an
integer type variable that would hold the number of nodes. The program in Fig. 5.7
contains the declaration of such a variable, called ‘sk’. As we can see, variable
declarations contain the ‘@’ prefix. Variables can be assigned values through text
statements with assignment clauses. Considering these explanations, the presented
program should be easy to understand. The program starts by setting the initial value
of the counter ‘sk’. Then control goes to the for-each loop. The loop runs for each of
the ‘Nodes’ contained in a ‘Graph’. For each node, the counter is incremented. After

5.3 Variables and Procedures in MOLA—Imperative Processing 159

all the loops execute, control is shifted to the last rule where an ‘IntResult’ object is
created and its attribute assigned the value of the ‘sk’ counter. Note that the for-each
loop finds any node in the model that is linked with any graph. So, regardless of the
number of independent graphs in the model, there will be created a single ‘IntResult’
with a summary value.

In this example, ‘sk’ is an explicit variable, which means that it is explicitly
declared through a variable declaration construct. In MOLAwe can also use implicit
variables. These variables are not declared but are introduced as parts of the rules.
Any object in a rule has a name (e.g. ‘n’ or ‘g’ in our example program). These names
can be used in further rules and refer to specific objects found through applying the
original rule. We will see how explicit variables can be used in further program
examples. Both the explicit and the implicit variables can be used in expressions
using the ‘@’ prefix (as in ‘sk := @sk + 1’).

The first graph problem was a simple one where we only had to count the nodes.
Now, we change the problem to count the edges instead of nodes. Furthermore, we
count only the edges that form “loops”, i.e. that connect nodes with themselves. We
also perform calculations separately for each distinct graph in the model. This prob-
lem is illustrated in the “Execution” part of Fig. 5.8. There, we can see two distinct
graphs, therefore transformation should produce two ‘IntResult’ objects containing
the counted numbers of “loop” edges in each of the graphs.

Fig. 5.8 Graph example with edge counting

160 5 Understanding Model Transformations

To handle the problem of separate graphs we introduce a new MOLA
construct—the procedure call. The main program (top-left of Fig. 5.8) contains a
simple for-each loop that queries for all the ‘Graph’ objects. Having found such
an object in a given loop, the program calls the “count_loops” procedure. This call
contains a parameter which is a reference to the found ‘Graph’ object. As expected,
the parameter refers (through the ‘@’ prefix) to the implicitly declared variable that
holds the reference to the found object (variable ‘g’).

The “count_loops” procedure has its parameter declared in a special MOLA con-
struct. The parameter icon contains the name of the parameter, its type (metaclass)
and its number. The number is necessary, as there can be more parameters than just
one and they need to be logically ordered—physical ordering through positioning in
the diagram is not available in MOLA.

As we can see, the structure of the “count_loops” procedure is similar to the
structure of the node counting program. The difference lies in the loop head rule.
The for-each loop runs through all the ‘Edge’ objects that connect a ‘Node’ object
with the same object. The rule is very clear that what needs to be found is a set of
two objects (a ‘Node’ and an ‘Edge’) connected through two links (an ‘src’ link and
a ‘trg’ link). It is also important that the ‘Edge’ has to be contained (see the ‘edges’
link) in a specific ‘Graph’ object. Namely, it has to be the very object that was passed
as the parameter of “count_loops”. This is again denoted with the ‘@’ prefix. Note
that without the ‘@’ in front of the ‘g’, the for-each loop would run through all the
‘Edges’ in any ‘Graph’, and not only in our given ‘Graph’.

For our example model with two graphs, the “count_loops” procedure is called
twice from the main programs for-each loop. In this way, two distinct ‘IntResult’
objects are created in the model. Also note that the program could be written without
the procedure. In this case, wewould need to insert all the contents of the procedure in
place of the procedure call. This would create a situation with a for-each loop within
a for-each loop, which would certainly cause the program to be less understandable.

The same program structure can be used in other problems with several graphs.
Figure5.9 shows two additional procedures. The first procedure calculates isolated
nodes, i.e. nodes that do not have any incoming nor outgoing edges. To find such
nodesweneed to use a newMOLAconstructwhich is the object querywith the ‘NOT’
clause. When used in a rule, this kind of object query is true when the appropriate
object is NOT found. In our example procedure (“count_isolated”), the rule seeks
for the situations where a ‘Node’ is not linked to any ‘Edge’ object, both as its target
(‘trg’) and its source (‘src’).

The second procedure in Fig. 5.9 (“count_dangling”) resolves a similar problem
but from the point of view of the ‘Edges’. It counts all the edges that are “dangling”,
i.e. that are not connected at one or both of its ends (source and target). The first
loop counts the ‘Edge’ objects that have no ‘Node’ object connected through the
‘src’ link. Note that this also covers the ‘Nodes’ that are not connected through both
the ‘src’ and the ‘trg’ link. In turn, the second loop counts all the ‘Edges’ that are

5.3 Variables and Procedures in MOLA—Imperative Processing 161

Fig. 5.9 Graph examples with missing edges or nodes

connected with a ‘Node’ in the role of its source (‘src’) but not connected to any
‘Node’ in the role of its target (‘trg’).

In some situations we would also want to create a rule that determines not the
missing objects but the missing links. For instance, we would like to count ‘Node’

162 5 Understanding Model Transformations

objects that are “orphans”, i.e. not contained in any graph. We would thus need
to construct a rule saying that a ‘Node’ is not linked to a ‘Graph’. An appropriate
program would look almost exactly as our first graph example program in Fig. 5.7;
the only difference would be the {NOT} clause attached to the link between the
objects ‘n’ and ‘g’.

5.4 More Advanced MOLA Constructs

Rules with objects, for-each loops, control flows, variables and procedures are the
fundamental building blocks of MOLA programs. Out of these elements we can
build complex model transformation algorithms. In this section we introduce more
advanced constructs of MOLA which increase its flexibility, allowing for construct-
ing more advanced query rules and for model manipulations that involve deleting
model elements.

We will still work on the graph metamodel introduced in the previous section.
The first example problem will be to count cycles. We define a cycle as a set of three
nodes connected with edges so that it is possible to traverse through the three nodes
along the edges. Since there can be many edges linking two nodes, any three nodes
can participate in more than one cycle. Thus, the program becomes non-trivial in
terms of its algorithm.

Weprovide two solutions to the problem.Thefirst solution is presented in Fig. 5.10
and is a brute-force counting of the edges involved in the cycles. The algorithm
necessitates three layers of for-each loops. In the outer layer, the program goes
through all the edges that participate in a cycle. The appropriate rule consists of three
‘Node’ objects and three ‘Edge’ objects connected through appropriately directed
links. Having found an edge that participates in a cycle, we need to determine all
the cycles that it participates in. For this purpose we enter the inner loop which now
finds all the edges that go out of the node being the target for the originally found
node. Having found a particular second edge in a cycle, we enter the innermost loop
which now searches for all the edges that close the cycle.

As we can see, the loops use references to implicit variables. The middle loop
uses references (‘@’) to the nodes (‘n1’ and ‘n2’) found in the outermost loop. The
objects for ‘n1’ and ‘n2’ are not determined through querying the model but are
simply taken as objects already found in the outermost loop head rule. Note that the
objects ‘n3’ and ‘e3’ are determined anew. The object ‘n3’ found in the middle loop
is then used directly in the innermost loop. In this loop, the only object queried from
the model is the loop head (‘e3’).

The innermost loop also increments the cycle counter ‘sk’. This algorithm in fact
counts all the edges in all the cycles and, thus, the counted number is three times
the number of the actual cycles (each cycle contains three edges). Thus, the last rule
which creates the ‘IntResult’ object divides the final result by 3.

5.4 More Advanced MOLA Constructs 163

Fig. 5.10 Graph example with cycle counting

To understand better the execution of this algorithm we use the example in
Fig. 5.11. This example shows one outermost iteration of the algorithm applied to a
specific graph. In this outermost iteration, an edge is found (denoted with a red bold
line) and two adjacent nodes (referred as ‘@n1’ and ‘@n2’, also denoted with a red
bold border). Of course, this edge and the two nodes are part of at least one cycle
(thus they comply with the loop head rule of the outermost loop).

164 5 Understanding Model Transformations

Fig. 5.11 Graph example with cycle counting—execution

With this arrangement found in the outermost loop, the program enters the middle
loop. In the first sub-iteration (1.1) the loop finds a second edgewith a connected node
(‘@n3’). Again, with this arrangement of objects the program enters the innermost
loop. In the sub-sub-iteration (1.1.1) the cycle is closed and the counter is incremented
(here: set to ‘1’). There are no other iterations of the innermost loop because there
are no other relevant edges between nodes ‘@n3’ and ‘@n1’. The middle loop iterates
another two times, because nodes ‘@n1’ and ‘@n2’ participate in three cycles. This is
illustrated with iterations 1.2 and 1.3. As in the first case (1.1), the innermost loops
(1.2.1 and 1.3.1) run only once.

In this way, we have found three cycles that contain the edge between the nodes
“@n1’ and ‘@n2’. Note that the same three cycles will be found two more times each.
In other iterations of the outermost loop, the other edges that participate in each of
the already counted cycles are selected. In this way, the resulting count will be three
times the number of cycles (i.e. 9).

A careful reader may have noticed that the rules in the outermost and in the
middle loop contained certain expressions as part of the query objects. This is a
MOLA construct that allows for constructing finer queries. In our case, we wanted
to make sure that the edge does not connect the same node. In a MOLA query,
different object variables can point to the same particular object in the models. So,
in case of looping edges (as e.g. in Fig. 5.8), variables ‘n1’ and ‘n2’ would point
to the same object (the same ‘Node’ is the source and the target for the ‘Edge’). To
prevent from counting this we have introduced an object constraint expression. In our
example, it refers to the current object (‘self’) and compares it with another object
(‘@n2’) making sure that they are different (‘<>’). Expressions can contain logical
operators (‘and’, ‘or’) like in the constraint from the middle loop. Expressions can
also refer to object attributes, with the syntax identical to that used by us already in
the assignment constructs (attributes referenced through the dot ‘.’ operator).

The above algorithm is certainly not optimal from the point of view of processing
time. Thus, we change the algorithm to consist of only one loop. This time, it is a

5.4 More Advanced MOLA Constructs 165

Fig. 5.12 Graph example with cycle counting—alternative solution with a while loop

‘while’ loop that can be constructed from theMOLA constructs we already know of.
However, to implement this new algorithm, we first need to update the metamodel
with an additional metclass as shown in Fig. 5.12. The additional metaclass ‘Circle’
is associated with the already known ‘Edge’ metaclass. This new metaclass is only
a temporary construct that will allow us to mark the cycles already found.

The program is centred around a single rule which uses objects of the newly
introducedmetaclass. The rule queries for ‘Node’ and ‘Edge’ objects that form cycles
as in the outermost rule in the previous program. However, in order for matching to
occur the ‘Edges’ in the cycle should not be attached to any ‘Circle’; if this is so, the
rule creates a new ‘Circle’ and attaches it to the found ‘Edges’.

As we can see, the main rule of this program is not a for-each loop. Thus, it is
executed once, whenever flow of control reaches it. When the program begins, the
rule finds a random set of objects that fulfil the rule and creates a new ‘Circle’ attached
to the ‘Edges’. Then control goes to the next statement which increments the cycle
counter ‘sk’. The program then loops back to the main rule and this time, some other

166 5 Understanding Model Transformations

arrangement of objects has to be found. The previous arrangement is already updated
with the new ‘Circle’ object and thus does not match the query rule anymore. This
implicit loop is executed until the rule is matched by any set of objects. If there are
no objects anymore that match the rule, control is passed through the control flow
arrow that is specially marked with the ‘{ELSE}’ keyword. This alternative control
flow moves us to the final rule that sets the ‘result’ of the counting.

In general, any rule in MOLA can have up to two outgoing control flows—the
main flow and the alternative flow. When the rule is not matched, control moves
through the alternative flow. When there is no explicit alternative flow, control goes
to the final node in the current procedure or finishes processing within the current
for-each loop.

Note that the last program has linear complexity. The number of the loop iterations
is equal to the number of cycles to be counted. This effectiveness has the price of
additional storage needed to hold the temporary ‘Circle’ objects. Moreover, we can
observe that the program cannot be repeated to count cycles again. To be able to
repeat the program and receive correct results we need to clean-up the model. The
way to do this is shown in Fig. 5.13. This is a simple for-each loop that finds all the
circles in the current model and then deletes them.

To delete objects in MOLA we use a delete object statement placed within a rule.
It can be noted that deleting an object also deletes all the connections of that object
with other objects. In our example, deleting a ‘Circle’ means also that all the links
of that ‘Circle’ with the ‘Edge’ objects are removed from the current model.

To illustrate the applications of element deletion we introduce a new example
problem around the graph metamodel. This problem reverses the directions of all
the ‘Edges’ in the graphs. The first solution to this problem is presented in the upper
part of Fig. 5.14. This procedure takes a graph as its parameter and loops over the
edges of this graph. The for-each loop head rule finds the ‘Edge’ objects that connect
nodes. For each of such objects it creates another ‘Edge’ object which is connected
to the two found ‘Node’ objects, but with reversed links. Of course, the new ‘Edge’
object is also being linked with the current ‘Graph’ object.

Note that the above described rule also covers the situation of looping edges, i.e.
‘Edge’ objects which are linked to the same ‘Node’ object as its source (‘src’) and
target (‘trg’). So, in some iterations the implicit variables ‘s’ and ‘t’ may point to the

Fig. 5.13 Element deletion example

5.4 More Advanced MOLA Constructs 167

Fig. 5.14 Edge reversal examples with element and link deletion

same object. In this case, the rule will still work correctly and will create a second
edge that connects this ‘Node’ object just like the given ‘Edge’ but in the opposite
direction.

After the new ‘Edge’ object is created, the old ‘Edge’ object is deleted. Note that
we perform this deletion within the same for-each loop as the old ‘Edge’ objects
are no longer needed. In the previous example with the ‘Circle’ objects, they could
be deleted only after the “while” loop has finished. This was because the ‘Circles’
were used within this loop to mark the already processed graph cycles. They could
be deleted only after the original cycle counting was done.

168 5 Understanding Model Transformations

The second approach to reversing edges is much more elegant. It uses a new
MOLA construct of link deletion. This construct allows us to delete only links
between objects and not the objects themselves. As we can see, this possibility
significantly simplifies the program. This time, we simply delete the links between
the ‘Edge’ object and the two ‘Node’ objects. This deletion is done together with
querying. The MOLA engine first finds the objects with the links, and when found,
immediately deletes the links.Within the same rule, new links are then created, which
connect the three objects in the opposite direction.

Our final example in the graph domain presents a typical problem of model copy-
ing. It is often the case that we need to copy a model which is represented using a
certain metamodel, to another model which is represented in a different metamodel.
Both models may have a similar concrete syntax but the source and target storage
spaces are different in terms of their structure.

The new metamodel for graphs is presented in Fig. 5.15 (top) and is a variation
of the original metamodel shown in Fig. 5.7. This metamodel contains an abstract
metaclass (‘GraphComponent’) that defines the ‘text’ attribute which allows to store
names for both the ‘Nodes’ and the ‘Edges’.

In model copying problems, it is usually necessary to maintain temporary links
between the old models and their copies. These links are used in the transformation
programs to create proper structure of the copy. In our example, the new metamodel
is associatedwith the oldmetamodel through the additional metaassociation between
the old ‘Node’ (from the ‘graph1’metamodel) and the new ‘Node’ (from the ‘graph2’
metamodel).

The copying program iterates over the graphs of the first kind ({graph1}) and for
each of them calls the procedure presented in Fig. 5.15. The procedure first creates a
new ‘Graph’ {graph2} object. Then it runs a for-each loop over the ‘Node’ {graph1}
objects contained in the given ‘Graph’ {graph1} object (‘@g’). For each node found, a
new ‘Node’ {graph2} is created and linkedwith the newly created ‘Graph’ {graph2};
the new node is also linked with the old node.

In the second for-each loop the edges are copied. For this purpose the loop iterates
over the ‘Edge’ {graph1} objects. For each of the edges, the rule finds the old nodes
they connect (‘sn’ and ‘tn’) and the new nodes that were created in the previous
for-each loop (‘g2sn’ and ‘g2tn’). This is where the temporary links between the
old and the new nodes are needed without which the program would not be able to
determine the structure of the new graph. The new ‘Edge’ {graph2} object is created
and linked with the new ‘Nodes’ that are temporarily linked to the old ‘Nodes’. In
this way, the new graph maintains the exact structure as for the old graph.

The new graph preserves the node names from the old graph in the first for-each
loop. The statement which creates new ‘Nodes’ also assigns the ‘text’ attributes by
copying them from the ‘name’ attributes of the old ‘Nodes’. Since the old graph does
not cover edge names, the new graph has the edge names set to empty strings. This
is done in the second loop when creating the new ‘Edge’ objects.

5.5 End-to-End Transformation Example 169

Fig. 5.15 Graph to graph transformation example

5.5 End-to-End Transformation Example

The example MOLA programs in the previous sections were simple and
consisted of a maximum of one main program and one additional procedure. Now
we present a more sophisticated problem. To solve it, we need to construct several

170 5 Understanding Model Transformations

procedures and—what is more—these procedures are used recursively. The example
also allows us to introduce certain MOLA constructs not yet presented previously.

Our new problem is a classical benchmark for model transformations and consists
in transforming aUMLclassmodel into a relational database (RDB) schema. The two
paradigms have several similar elements but there are also significant differences. The
main mismatch lies in the generalisation relationships present in the object-oriented
(class) models and that do not exist in the RDB paradigm. Thus, transformation will
need to resolve this issue through defining specific rules for turning generalizable
classes with their attributes to flatly structured tables with columns.

The UML and RDB metamodels used for our transformation are presented in
Figs. 5.16 and 5.17. Both the metamodels are significantly simplified to make the
transformation program simpler to comprehend and to fit into the scope of this
introduction to model transformations.

The UML metamodel (Fig. 5.16) is simplified even in comparison with the MOF
metamodel presented in Sect. 3.8. All ‘UMLElements’ have ‘names’ and ‘kinds’.
The topmost element is ‘Package’. Packages cannot be nested—there can be only
one level of packages. Every package can contain several ‘PackagableElements’—
‘Classifiers’ and ‘Associations’. ‘Classifiers’ are ‘Classes’ and ‘PrimitiveDataTypes’.
‘Classes’ can be linked through ‘Associations’, similar to how ‘Edges’ link ‘Nodes’
in the previous examples in this chapter. Associations are always directed—they link
a single ‘source’ and a single ‘destination’ class. ‘Classes’ can have ‘Attributes’.
Every attribute has its ‘type’ which is a ‘Classifier’, i.e. either a ‘Class’ or a ‘Prim-
itiveDataType’. A great simplification of this metamodel is a lack of a separate
metaclassfor the generalisation relationship. Instead, there is a metaassociation that

Fig. 5.16 Simplified UML class metamodel

http://dx.doi.org/10.1007/978-3-319-12838-2_3

5.5 End-to-End Transformation Example 171

Fig. 5.17 Simplified RDB metamodel

allows for “generalisation links” between classes. One of the classes is ‘specific’ and
the other is ‘general’.

The RDB metamodel (Fig. 5.17) is also very simple and consists of only six
metaclasses. At the top it defines the generic abstract ‘RDBElement’ metaclass.
Through this metaclass all other RDB elements have ‘names’ and ‘kinds’ as the
UML class model elements in the previous metamodel. The topmost RDB element
is the ‘Schema’ which consists of ‘Tables’. ‘Tables’ contain ‘Columns’, ‘Keys’ and
‘ForeignKeys’. The ‘Keys’ can be associated with ‘Columns’, and the ‘ForeignKeys’
link ‘Keys’ with ‘Columns’.

For the models to be well formed, this simple metamodel should also have some
constraints defined. The main constraint is that ‘ForeignKeys’ should link ‘Keys’
and ‘Columns’ contained in different ‘Table’ objects, otherwise the role of the ‘For-
eingKeys’ would not reflect their meaning in typical RDB systems.

Also note that the RDB metamodel is connected with the UML class metamodel.
Instances of these metaassociations are used as temporary helpers—traceability
links—in the transformation program. As expected, the metaassociations connect
the analogous elements in both metamodels. Packages relate to Schemas, Classes
to Tables, Columns to Attributes and Associations to Foreign Keys. This reflects
the basic transition of elements from the UML class models to the RDB models.
Of course, the detailed rules are more complex than this simple transition and we
formulate them along the consecutive parts of the presented program. An important

172 5 Understanding Model Transformations

observation pertains to the metamodel in Fig. 5.17, namely the multiplicity of ‘Col-
umn’ in association with ‘Attribute’ is “many” (‘*’). This means that an attribute
can be transformed into several columns, which is analogous to ‘Associations’ and
‘ForeignKeys’.

The “UML to RDB” transformation program is divided into several procedures.
At the top level it consists of three procedures being invoked in a sequence as shown
in Fig. 5.18. These procedures reflect the main links between the UML metamodel
and the RDBmetamodel shown in Fig. 5.17. The first procedure transforms packages
into schemas; the second deals with classes and their attributes and transforms them
into tables and columns; and the final procedure turns associations into foreign keys.

The first procedure, “PackageToSchema”, is simple and contains a single for-each
loop shown in Fig. 5.19. The loop seeks all the ‘Packages’ and creates a ‘Schema’
for each of them. The schema has its name copied from the package name and the
newly created object is linked to the preexisting package through the appropriate
link. This link is consistent with the appropriate metaassociation from Fig. 5.17 and
is used during further transformations.

The second procedure, “ClassToTable”, does the bulk of the work, together with
several procedures that are called from it. As shown in Fig. 5.20, the procedure
contains a single for-each loop that seeks for classes in the model. Note that the
loop head ‘c’ contains a constraint (kind=“Persistent”) that is applied to one of the
attributes, so only the classes of a specific ‘kind’ are found. For each such ‘Class’,
the rule retrieves also its containing ‘Package’ and the ‘Schema’ that was generated
in the previous step. Then the rule creates a ‘Table’ object and links it appropriately
with the ‘Schema’ object and also creates a temporary traceability link between the
‘Table’ and the ‘Class’.

In addition to generating the ‘Table’ itself, the rule generates also a primary key
and and an associated column. The primary key is an object of type ‘Key’ where

Fig. 5.18 UML to RDB transformation—main procedure

5.5 End-to-End Transformation Example 173

its name is a concatenation of the table name and the “_pk” postfix. The associated
‘Column’ object is typed as “NUMBER” and named with the “_tid” postfix.

To illustrate the execution of the rule,we use the classmodel presented in Fig. 5.21.
The model consists of four classes, where three of them are in generalisation rela-
tionships. The fourth class is used as the type of one of the attributes of another class.
The loop head rule in Fig. 5.20 runs through two of the classes—the ones that have
their ‘kind’ set to “Persistent”. In concrete syntax this is denoted with the stereotype
notation.

Figure5.22 shows the result of one of the iterations, where the class named “C”
produced a table with the same name. The table contains the primary key (“C_pk”)
and the column holding the table’s identifiers (“C_tid”). The primary key points to
the column. The figure shows both the concrete and the abstract versions of themodel

Fig. 5.19 Creating packages from schemas

Fig. 5.20 Creating tables from classes

174 5 Understanding Model Transformations

resulting from executing the loop head rule. In concrete syntax, the specific objects
are denoted with appropriate stereotypes («Table», «col» and «key»). The abstract
syntax shows the resulting arrangement of objects which matches the arrangement
of objects in the MOLA rule.

After producing the basic structure of the table the loop in “ClassToTable” calls
another procedure—“AttributeToColumn”. This procedure shown in Fig. 5.23 has
three parameters. These are: the class reference, the table reference and the prefix to
be appended to the attribute names. Prefixes are added to the column names derived
from attributes that are inherited through generalisation relationships and from the
classes used as attribute types. Initially, the prefix is set to an empty string (see
Fig. 5.20). The class reference is obviously set to the current class object (‘c’) and
the table reference is set to the newly generated table object (‘t’).

The “AttributeToColumn” procedure is in fact a sequence of calls to three other
procedures. The first step is to create columns from “primitive” attributes, i.e. the
attributes directly included in the respective class and typedwith primitive types. The
second step is to create columns fromattributeswith class types. The last step is to cre-
ate columns from attributes that the current class inherits through the generalisation

Fig. 5.21 Source class model for the transformation example

Fig. 5.22 Example for the “ClassToTable” loop head execution

5.5 End-to-End Transformation Example 175

Fig. 5.23 Creating columns
from attributes—main
procedure

hierarchy.Aswe can see, all the three calls pass the class reference, the table reference
and the prefix. Later, we will also notice that the “AttributeToColumn” procedure
is used in implicit recursion; it is called from within two of the three procedures it
calls.

The first of the three procedures—“PrimitiveAttributeToColumn” is not recursive,
as shown in Fig. 5.24. It processes only the attributes contained in the current class.
The procedure’s for-each loop seeks the attributes linked to the class passed as the
parameter. For each of these attributes it creates a column in the table that was
passed as the second attribute. After creating the column the procedure determines
the column’s ‘name’ and ‘type’. The ‘name’ is copied from the attribute’s name
(‘@a.name’) with the optional prefix added. Note that the procedure introduces a
new MOLA construct which is the text statement with a condition. Such conditions
(here: @prefix="") are evaluated and can determine the flow of control, using normal
and alternative (‘{ELSE}’) flows.

The column’s ‘type’ is determined within another procedure—“PrimitiveType
ToSQL”. This procedure accepts a stringwith the primitive data type name (@p.name)
and returns a string with the SQL column type. After this, the column’s attributes are
assigned the appropriate values in a separate simple rule that ends the loop’s internal
processing. Note that attribute values can be set also within normal query objects and
not only while the object is created. In our example, the object is accessed through
a reference (implicit variable ‘cl’) and then its attributes are set through appropriate
assignment statements.

The “PrimitiveTypeToSQL” procedure shown in Fig. 5.25 takes a string
(‘@primtype’) and returns a string (‘@sqltype’). The return values in MOLA can
be passed through in–out parameters. Normal parameters pass the actual values into
the procedure but are not changeable. The in–out parameters can change their val-
ues inside a procedure which can then be used outside of the procedure. Apart from

176 5 Understanding Model Transformations

Fig. 5.24 Creating columns from primitive attributes

introducing this newMOLAconstruct, “PrimitiveTypeToSQL” is very simple. It con-
tains three conditional text statements that set the output string based on the values
of the input string.

The last two procedures together produce columns in the current RDB table. To
illustrate this,we continue the example fromFig. 5.22. Figure5.26 shows the situation
after executing “PrimitiveAttributeToColumn”, applied to the example class “C” and
to the respective newly created table. The top-left part of the figure shows the original
situation in concrete syntax. In abstract syntax, we have the class (‘cl1’) and its two

5.5 End-to-End Transformation Example 177

Fig. 5.25 Determining column types

Fig. 5.26 Example for “PrimitiveAttributeToColumn” execution

178 5 Understanding Model Transformations

attributes (‘a1’ and ‘a2’ with their names “c1” and “c2”). Both attributes are linked
to the appropriate ‘PrimitiveDataType’ objects (‘pt1’ and ‘pt2’). Note that these two
data type objects are singletons and all the attributes with respective primitive types
are linked to these objects.

After running “PrimitiveAttributeToColumn” the table (‘t1’) is appended with
two additional ‘Column’ objects—‘co2’ and ‘co3’. Their ‘names’ and ‘types’ are
derived from the respective attribute names and their primitive types.

When all the primitive type attributes are processed, control returns to the
“AttributeToColumn” procedure. It then calls two procedures to process inherited
and class-typed attributes. The respective procedures are presented in Figs. 5.27 and
5.28. As we can see, they are similar in their structure. The first of them (“Complex-
AttributeToColumn”) iterates over ‘Attributes’ (‘a’) contained in the current ‘Class’
(‘c’). The attribute should be “complex”, i.e. it should be linked with a ‘Class’ as
its ‘type’. After finding this type class (‘tc’) it is passed as the first parameter to the
recursively called “AttributeToColumn” procedure. The second attribute is the cur-
rent table (‘t’); the prefix is set to contain the attribute name. In this way, the columns
generated from the complex attribute will have appropriately prefixed names.

The second procedure (“SuperAttributeToColumn”) iterates over ‘Class’ objects
(‘sc’) that are ‘general’ for the current class (‘c’). As in the previous case, after
finding the general class, it is passed as the first parameter to the “AttributeToColumn”
procedure. The prefix is not changed, as the inherited attributes are treated just like
the “owned” attributes.

Fig. 5.27 Creating columns from class-typed attributes

5.5 End-to-End Transformation Example 179

Fig. 5.28 Creating columns from inherited attributes

Both in the case of complex attributes and inherited attributes, the procedures use
indirect recursion. The “AttributeToColum” procedure is called for another class: the
attribute’s type or the super class. However, the table reference is maintained and
passed to the recurring procedures. Thus, the primitive attributes within the other
class are transformed into further columns of the current table. In case the other class
has complex attributes or super classes, the recursion goes even deeper. It ends when
there are only primitive attributes left in the class, at the given level of recursion.
For the columns generated from complex attributes, the column names have prefixes
whichmay sometimes bemultiplewhen the type classes also have complex attributes.

Finally, note that the set of “. . .AttributeTo . . .” procedures handles any situation
involving combinations of complex attributes and super classes. For instance, itwould
properly handle the situation where a super class has complex attributes in which the
respective type classes also have super classes with complex attributes, and so on.
This is illustrated in Fig. 5.29.

The final procedure is called directly from the main program procedure (see
Fig. 5.18). It covers the remaining issue of creating foreign keys from associations.
The procedure is called “AssocToFKey” and is presented in Fig. 5.30. It contains a
simple for-each loop which queries for all the ‘Association’ objects. It finds only
the associations between the ‘Classes’ (see ‘sc’ and ‘dc’) for which ‘Tables’ were
created in the previous procedures (see ‘srcTbl’ and ‘destTbl’). This eliminates the
associations involving classes that are not «Persistent», for which tables were not
created.

Recall that according to our simplified UML metamodel, all the associations
are directed. Thus the query is simple and can easily determine which ‘Class’ is
the ‘source’ and which is the ‘destination’ for a given ‘Association’. Whenever a

180 5 Understanding Model Transformations

Fig. 5.29 Example for “AttributeToColumn” execution

Fig. 5.30 Creating foreign keys from associations

5.5 End-to-End Transformation Example 181

Fig. 5.31 Transformation example with an association

match is found in the for-each loop, the ‘Table’ generated from the source ‘Class’
is appended with a ‘ForeignKey’ and a ‘Column’. The names of the new objects are
concatenated from the names of the source ‘Class’, the ‘Association’ and the target
‘Class’. Additionally, the newly created ‘ForeignKey’ is linked with the primary key
(‘pkey’) of the ‘Table’ generated from the destination ‘Class’.

This processing is illustrated in Fig. 5.31. We have extended our example UML
model to contain two additional associations (‘b2a’ and ‘b2c’). The result of the
transformation is shown on the right (showing only the table generated from class
‘B’; the table for class ‘C’ is not relevant here). The table has two additional elements
in relation to the previous example—the appropriately named foreign key («fkey»)
and column («col»). The foreign key points to the primary key of table ‘C’. Note that
there is no second pair of «fkey» and «col»because class ‘A’ is not «Persistent» and
thus generation of the respective foreign key is not desired.

Note that the “AssocToFKey” procedure neglects the issue of inherited associa-
tions generating foreign keys only for the associations coming directly from the given
class and not from the general classes (if any). This would necessitate introducing
recursion, as in the attributes. We will leave solving this problem as an exercise for
the reader.

With this we conclude the end-to-end example, which resolves a practical problem
of UML to RDB transformation. The problemwas solved for simplifiedmetamodels.
The reader is now encouraged to continue the exercise and modify the solution
to comply with the other UML/MOF class metamodels presented in the previous
chapters of this book.

5.6 Which Language to Choose?

MOLA is one of many model transformation languages. Besides MOLA, there
is a wide variety of model transformation languages to choose from. Generally,
these languages can be divided into textual and graphical. Obviously MOLA is a

182 5 Understanding Model Transformations

representative of the graphical kind.Other examples includeFujaba3 originating from
the University of Paderborn [51], QVT (Query/View/Transformations) Relations4

[120] which is a standard managed by the Object Management Group, GROOVE5

from the University of Twente [59] and Henshin6 which is an Eclipse-EMF project
[11]. Graphical languages use various graphical notations to represent object queries.
These notations resemble those found in MOLA and they also define certain nota-
tions to denote changes made to the model. Some approaches involve defining the
“before” and “after” patterns (as in QVT Relations), while some other approaches
denote changes along with the queries (like in MOLA, and also in GROOVE and
Henshin). Graphical languages use mostly declarative constructs.

Textual transformation languages have to represent queries and model updates in
the formof a serialised text. They also use standard imperative constructs known from
typical programming languages. Such languages include QVT-Operational managed
by the OMG [120], ATL (Atlas Transformation Language)7 which was originally
developed by INRIA [19, 80], GReTL from the University of Koblenz-Landau [41]
and VIATRA28 from the Budapest University of Technology and Economics [175].
Such languages offer varying notations to representmodel queries andmodel updates.
These notations are combinations of declarative rules and imperative procedures.

In this short overview we do not discuss the above listed languages in detail. The
reader is referred to websites and manuals of the respective languages. However, to
give the reader some directions we present some brief illustrations which allow for
comparison of MOLA with other languages.

Figure5.32 shows a brief rule written in ATL which creates Tables from Classes
[81]. This rule is part of a larger program that transforms a UML class model into
an RDB schema, generally an equivalent of the end-to-end example from Sect. 5.5.
The presented rule shows some of the syntax of the declarative constructs of ATL.
For a detailed comparison the interested reader can refer to the ATL documentation
and tutorials. We will not explain the notation of ATL but the current example is
self-explanatory when related to the equivalent MOLA rule. The example shows that
for simple problems the textual and graphical approaches can have similar expres-
siveness.

When the problem becomes larger and pertains to more than just single objects,
the textual notations have to use complex syntax to express graphs of objects as
illustrated in Figs. 5.33 and 5.34. These two examples present solutions to the graph
edge reversing problem, expressed in GReTL [72] and VIATRA2 [67]. The respec-
tive solution in MOLA can be found in Fig. 5.14(2). As we can see, the textual
transformations have to somehow represent the layout of the edges and the nodes to

3 http://www.fujaba.de/.
4 QVT Relations also has a textual syntax variant.
5 http://groove.cs.utwente.nl/.
6 http://www.eclipse.org/henshin/.
7 http://www.eclipse.org/atl/.
8 www.eclipse.org/viatra2.

http://www.fujaba.de/
http://groove.cs.utwente.nl/
http://www.eclipse.org/henshin/
http://www.eclipse.org/atl/
www.eclipse.org/viatra2

5.6 Which Language to Choose? 183

Fig. 5.32 Example rule in ATL versus an equivalent rule in MOLA

Fig. 5.33 Example transformation in GReTL for graph node reversing

Fig. 5.34 Example rule in VIATRA2 for graph node reversing

184 5 Understanding Model Transformations

5

Fig. 5.35 Example rule in GROOVE for graph node reversing

be transformed in serial syntax. They also need to define the changes to the graph
based on the directions of the edges and nodes. As in the ATL example we do not
explain these two languages as our purpose is only to illustrate expressiveness of
text versus graphics. The interested reader can refer to appropriate documentation
and tutorials. In general, the best way to understand these programs is to draw the
respective graphs when reading/writing the rules. By contrast, the MOLA rule in
Fig. 5.14 already offers such a graph drawing, simply as part of the language syntax.

To further understand differences between textual and graphical languages, take
a look at Fig. 5.35. It shows the solution to graph edge reversal problem written in
GROOVE [58] is to some extent similar to that written in MOLA. The for-each loop
is substituted by the ‘for-all’ operator (∀). Otherwise, the reader should be able to
understand this rule easily even without explaining the notation.

The transformation problems can be solved using different notations, however,
the main issue is to design the transformation rules. The language to express the
rules is a secondary issue and can be left to the preference of developers and other
factors—availability of tools (editor, transformation compiler), the transformation
compiler performance and the generated transformation performance. An important
factor is also the level of integration of the given transformation environment with
the modelling environments for the languages involved in the transformations. All
this needs to be evaluated before we choose the language and the environment to
solve our transformation problems.

MOLA is a natural choice for transformations that process RSLmodels and is also
used in the next chapter. Its graphical syntax complies very well with the complex
RSL metamodel and allows to solve complex transformation problems. It is also
well integrated with the RSL’s modelling environment (the editor and the model
repository). However, we need to be aware that graphical languages tend to produce
less efficient transformation code and the respective transformations are not well
optimised in terms of their performance. A general issue for most transformation
languages is their lack of high-level structuring like classes and components in object-
oriented and component-based programming. In the next chapter we show how to
develop a large model transformation with typical structural constructs like packages
and procedures.

Chapter 6
Writing Model Transformations
for Requirements

TheMOLA transformations presented in the previous chapter were quite elementary
and could solve only very simple problems. To fulfil the goal of this book we need
to construct a much more sophisticated transformation that operates on the RSL
metamodel. This transformation should implement all the rules of RSL semantics
presented in Chap.4. For this purpose, the appropriate MOLA program needs to
access RSL models and create UML constructs with embedded textual elements in
Java. This means that the MOLA rules in this program should contain various object
configurations consistent with the complex RSL and UML metamodels. The RSL
models need to be processed (“parsed”) in compliance with their runtime semantics
and the generated code should be compatible with many detailed aspects of a specific
implementation technology. All these issues result in very significant complexity
of necessary MOLA code. To assure manageability and comprehension, this code
should be properly organised, using typical approaches of structural programming.

6.1 Using the MOLA Tools

Before we start analysing how to approach writing considerably sized MOLA pro-
grams, we first need to approach the practical issue of the programming environment.
In some cases this may influence the way we structure our code, especially in view
of compilation efficiency and debugging.

TheMOLAdevelopment environment (MOLATool) is based on ametamodelling
tool development platform called METAclipse [87, 176], which is built on top of the
Eclipse framework. It offers a graphical MOLA editor and a MOLA compiler. The
environment also offers a debugging facility with a model graph browser, theMOLA
Tool offers the typical features of a software development environment. The main
difference is thatMOLA programs are graphical and operate on graph-based storage.

© Springer International Publishing Switzerland 2015
M. Śmiałek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_6

185

http://dx.doi.org/10.1007/978-3-319-12838-2_4

186 6 Writing Model Transformations for Requirements

It is interesting to note that the compiler produces code in another (simpler)
transformation language with purely textual syntax called L3 [160]. It is the L3
compiler that produces the final executable code.1 The type of the resulting executa-
bles depends highly on the source and target languages for transformation, and their
environments. These executables need to be able to access the model storages and
manipulate the models according to the source MOLA program.

6.1.1 Specifying the Metamodel

Before the compiler is executed we first need to enter the MOLA code. As we
know from the previous chapters this involves two elements: entering the metamodel
and entering the transformation procedures. If we wish to operate on some existing
languages (like RSL and UML), the metamodels should be already provided. In fact,
MOLA Tool can be installed equipped with a workspace, already containing the
metamodels for RSL and a subset of UML. These metamodels are consistent with
repositories and editors that handle concrete models. An appropriate environment,
compatible with MOLA Tool is presented in Sect. 7.1.

In case we need to transform some Domain Specific Language we develop, the
process is more complicated. Together with defining the language’s metamodel we
need to develop appropriate editors. A good choice forMETAclipse andMOLATool
is the EMF environment, introduced earlier in Sect. 3.8. This environment provides
facilities to develop our own graphical editors andmodel storage.We do not elaborate
on this issue further as our transformations operate only within an existing modelling
environment for RSL and UML.

Although we do not need to modify the metamodels, we will need to access the
metamodel editor frequently. The UML and RSL meatmodels need to be examined
when developing transformation procedures.Moreover, we sometimesmight want to
develop our own diagrams for comprehension purposes without changing the actual
metamodel. These diagrams could show some parts of the metamodel, relevant for
particular procedures that we develop.

The metamodel editor is shown in Figs. 6.1 and 6.2. The first figure presents a
fragment of the RSLmetamodel within the MOLA Tool environment. It is contained
in the ‘RSL’ package, which is, in turn, contained in the main ‘MetaModel’ package.
The RSL metamodel is divided into packages according to the division sketched
in Sect. 3.2. Within each of the packages we find metamodel diagrams and four
types of metamodel elements: metaclasses, metaassociations, generalisations and
enumerations. All the elements are visible in the project browser, shown on the left
of Fig. 6.1.

1 In fact, the whole process is even more complicated, with the L3 compiler producing code in an
intermediate language, called L0.

http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_3

6.1 Using the MOLA Tools 187

Fig. 6.1 RSL metamodel fragment in MOLA Tool

For the transformations to work correctly, the metamodel must not be changed.
However, this does not pertain to diagrams, which can be created and deleted as
needed. After creating a new diagram, or modifying an existing one, we can place the
existing metamodel elements by selecting them in the project browser and choosing
the option to add to the current diagram. When removing elements from being visu-
alised in the diagrams we need to make sure not to delete them from the metamodel.

The same rules for manipulating metamodel elements pertain to the UML meta-
model which is shown in part in Fig. 6.2. This part defines the UML’s kernel with
packages, classes, operations and properties (attributes). While examining the figure
we note (see the project browser on the left) that RSL and UML metamodels are
placed into two separate major packages and are accompanied by a third package
called ‘sclkernel’.2 This third package contains metamodel elements that “connect”
the two metamodels and enable their handling within a coherent framework. We use
certain elements from ‘sclkernel’ in the transformation procedures presented further
in this chapter.

2 The figure shows also a fourth major package called ‘EA’. This package contains a metamodel
for interfacing with an external UML tool that supports a significantly simplified UML metamodel
and necessitates a separate transformation, not covered in this book.

188 6 Writing Model Transformations for Requirements

Fig. 6.2 UML metamodel fragment in MOLA Tool

6.1.2 Specifying and Compiling Transformation Programs

The second part of a MOLA Tool project is called ‘MolaModel’ that contains all
theMOLA procedures grouped within a (potentially) hierarchical package structure.
One such procedure defined in the MOLA Tool environment is shown in Fig. 6.3.
A new procedure is created under a selected package and is shown as an empty
diagram. The procedure in Fig. 6.3 is already filled with content and can be further
edited if necessary. Editing is done using a standard modelling tool approach, where
the program elements are selected from the ‘Pallette’ box and dragged onto the
procedure diagram.

All the details of various MOLA constructs can be edited in the ‘Properties’ box
(see bottom). Depending on a specific construct type (procedure, object, text state-
ment, procedure call) the programmer can define or select the various properties like
names, assignment attributes or constraint expressions. In many cases, the program-
mer is assisted through selection lists that limit the possibility of making a syntax
error or prevents inconsistencies with the metamodel. However, all the expressions
(constrains, assignment expressions) need to be entered by hand and are checked
only during compilation.

6.1 Using the MOLA Tools 189

Fig. 6.3 MOLA procedure shown in MOLA Tool

Also note that MOLA Tool supports commenting. Comments can be placed as
stand-alone or they can be attached to specific elements within a given procedure.
The syntax for comments is similar to that in UML. Obviously, commenting on one’s
procedures is a good practice just like when using other programming languages.

Some of the procedures in ‘MolaModel’ constitute compilation units (separately
executed transformations). Every such unit has to possess exactly onemain procedure
(see the ‘is main’ checkbox in the ‘Properties’ tab in Fig. 6.3). This is the starting
procedure and all other procedures called (directly or indirectly) from here are linked
into the final executable program.

Compilation in MOLA Tool is a stepwise process as indicated at the beginning
of this section. For large programs it is also a lengthy process and it is thus advised
to compile only the packages that have been changed. For example, certain library
procedures can be placed in a separate package and precompiled. When used within
other units, these procedures do not need to be compiled again and can be linked
directly with the final executable.

The compilation process is illustrated in Fig. 6.4. We can prevent any procedure
from compiling by using the ‘do not compile’ checkbox. On the other hand, we
need to indicate the compilation unit to be compiled by selecting the ‘compile this’
checkbox. When this is done, we can select the compiler version depending on the
target environment. In our case we use ‘JGraLab’ as this is the standard repository

190 6 Writing Model Transformations for Requirements

Fig. 6.4 Compilation in MOLA Tool

type for the RSL environment (see Sect. 7.1). Another frequently used choice is
‘EMF’ for the modelling environments constructed using the Eclipse Modelling
Framework.

Detecting compilation errors might sometimes be tricky due to the graphical
nature of MOLA. The compiler cannot specify the line number in which an error has
occurred, instead it returns a set of compilermessages (see the bottomof Fig. 6.4), and
each of them is an active link to a specific MOLA procedure. Within the procedure
diagram the elements that cause errors are highlighted (see the upper part of Fig. 6.4).
The developer has to bear in mind that sometimes the highlighted elements might
not be visible. This is again due to the graphical nature of MOLA procedures—some
of the elements might be hidden behind other elements.

Obvious compilation errors associated with the control flow, object configuration
and assignments are detected by the upper level compiler, as described above. How-
ever, some of the errors are detected only at the level of the L3 compiler. These are
mostly errors associated with expressions and their evaluation. Practice shows that
detecting such an error is usually not easy because the compiler indicates only an
erroneous L3 (or even L0) construct and not the MOLA construct. The only solution
is to go through all the recently introduced expressions and seek for incorrect strings
or operands. This issue is characteristic of the current MOLA Tool environment and
might be improved in the future.

http://dx.doi.org/10.1007/978-3-319-12838-2_7

6.1 Using the MOLA Tools 191

The compilation normally results in producing a ‘jar’ file that is ready to be
transferred to the execution environment. We do not present detailed instructions
here because it is specific to the given transformation engine. In general, it consists
in copying (manually or automatically) the generated ‘jar’ into a specific place within
the transformation engine configuration. Then the transformation becomes available
as one of the options within the appropriate language–workbench interface. The
process for the RSL environment is outlined in Sect. 7.1.

6.1.3 Debugging Transformation Programs

Compiled MOLA programs need to be debugged just like programs in any other
language. The MOLA compiler offers a debugger feature that allows for producing
debug traces. In case some procedure needs to be debugged we need to turn on its
debugging by selecting the ‘debug on’ checkbox (see the bottom of Fig. 6.3).

With debugging turned on the MOLA transformation program produces a debug
trace file during its execution. This is illustrated in Figs. 6.5 and 6.6. The first figure
presents a fragment of aMOLA procedure and the second figure presents an example
trace through this fragment. For brevity, the figure shows only one execution of the
procedure, although the actual file contains traces for further executions.

Fig. 6.5 Debugging MOLA programs: example procedure

http://dx.doi.org/10.1007/978-3-319-12838-2_7

192 6 Writing Model Transformations for Requirements

Fig. 6.6 Debugging MOLA programs: debugger trace

The procedure accepts one parameter called ‘uc’ which is a reference to a use
case object. The presented trace shows that the actual execution was performed
for a specific object which is the ‘Show book list’ use case. The first step is to
determine the use case name, and then turn it to “Pascal case” (or upper camel
case). This is associated with calling appropriate utility (‘utl_’) procedures. These
procedures have their debug information turned off so that the debug trace contains
just information on their calling being performed, and no information on their internal
processing. The next lines in the trace present the result of assigning the derived
Pascal case name to a variable. As we can see, the name was calculated correctly
(‘ShowBookListPresenter’).

After this initial processingwe reach the first rule. This rule queries for the require-
ments package inwhich our use case is contained. For this package, it also determines
the UML package generated in some previous processing. This is possible due to the
existence of a special ‘IsAllocatedTo’ relationship with a specific stereotype added
(‘package2presenter’). The ‘Package’ metaclass is part of the UML metamodel (see
Fig. 6.2). The ‘IsAllocatedTo’ metaclass is part of the ‘sclkernel’ extension. This
example shows that this extension is necessary to construct appropriate links between
the source model in RSL and the target model in UML.

6.1 Using the MOLA Tools 193

Fig. 6.7 Browsing model repositories

Debugging of a rule consists in providing information about whether the rule’s
patternwasmatched or not. Further helpful information, whichwe can see in Fig. 6.6,
is the information on specific objects that were used for matching. The current trace
indicates the five objects that are part of the rule.3 The trace for the second rule
illustrates additional debugging element types, because this rule contains object and
link creation. The trace shows that an appropriate ‘Class’ object was created and its
‘name’ attribute set with the specific value.

In addition to analysing debugger traces it is often necessary to analyse the current
contents of the model repository. This pertains both to the initial (source) and the
generated (target) models. To browse the model repository we can use a standalone
model browser, which is a simple application illustrated in Fig. 6.7.

Note that the model browser gives much more information than a model editor.
The model editor shows only the elements in their concrete syntax which often hides
important details. The project browser shows all the elements in their abstract form,
including the metaattribute names and their values for specific objects.

3 Note that the trace was slightly abbreviated (marked with [...]), for brevity.

194 6 Writing Model Transformations for Requirements

To use the model browser we need to specify the model schema file containing the
metamodel definition and the actual model file. This is illustrated in the upper part
of Fig. 6.7. The browser then seeks all the metaclasses and lists them together with
the numbers of associated concrete objects in the given model. We can then seek a
metaclass that interests us and observe the individual model objects. Figure6.7 (mid-
dle) shows a fragment presenting the core RSL metamodel classes (‘RSLUseCase’,
‘InvocationRelationship’, etc.)

As we can see, the current model contains 10 use case objects, which we have
already listed in the browser. For each object we can determine its attribute and link
values. The links to other objects can be followed and their contents examined in
the same way. In many cases there is more than one link associated with a given
metaassociation. In the case of the use cases selected in Fig. 6.7 there are three links
to ‘invoke’ objects. This means that the use case invokes some three other use cases.
When we follow the link to the use case’s ‘name’, we see that it is the ‘Show book
list’ use case which we remember from the examples in previous chapters. The use
case is contained in a package together with five other use cases.

6.2 Transformation Overview

A full transformation from RSL to Java code needs to cover all the semantic rules,
presented in Chap.4. The number of these rules (almost 30) indicates that the trans-
formation program has to be highly structured to assure manageability and compre-
hension. We also need to remember that the semantic rules abstract away many of
the technology details, which need to be taken into account when writing a transfor-
mation that wants to be useful and produce working code.

The transformationwe present in this chapter4 consists of around 150MOLApro-
cedures. Our presentation includes some of the most important of these procedures,
which cover various techniques for dealing with complex RSL and UML models.
Obviously, presenting the full transformation program is out of the scope of this
book, as this would double its size and probably bore the reader.

The presented selection should provide enough examples for the reader to be
able to write and modify complex transformations involving requirements models. It
shows the challenges that have to be faced by the transformation developers. Note that
our experience shows that solving these challenges is a very interesting and creative
task, giving much satisfaction. The transformation problems at this level of com-
plexity often necessitate non-standard approaches and invention of new algorithms.

The general structure of our transformation is presented in Fig. 6.8. Themain com-
pilation unit is the ‘RSLtoCode’ procedure and processing starts from the ‘Main’
procedure contained in it. To optimise compilation time the transformation contains

4 The transformation originates from previous simpler transformations operating on RSL. They pro-
duced only general architectural (platform-independent) models in UML [86], and some embedded
simple code constructs [155, 157].

http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.2 Transformation Overview 195

Fig. 6.8 RSL to code transformation structure

several other compilation units external to ‘RSLtoCode’. This includes the trans-
formation parts that generate the DTOs and the View layer (the ‘Generator_’ pack-
ages). The transformation is prepared for generating the UI in different technologies
(Echo3,5 JavaFX,6 Swing7).

Other external compilation units contain library and utility procedures that are
used in many places within various procedures. These procedures are sometimes
quite complex as they traverse through the RSL or UMLmodels to perform standard
operations like creating classes and associations, retrieving RSL sentence parts or
processing text. An example of one of the simpler utility procedures is given in
Fig. 6.9. This procedure accepts a string containing a ‘name’ (the first parameter)
and returns (the second parameter) an object of type ‘PrimitiveType’ which has this
particular name. If the required object does not exist the procedure can create it, if
necessary (according to the third parameter). We will notice calls to this and other
similar utility procedures in many other places in this chapter.

Figure6.8 indicates two additional units—‘_ExportToEA’ and ‘_ImportFromEA’.
These are in fact separate transformations but are used in conjunction with
‘RSLtoCode’. These transformations are necessary to interface the ‘RSLtoCode’
transformation results with a standard UML editor (see Sect. 7.1). Often, such edi-
tors implement a different metamodel than the one used by our transformation pro-
gram (and compliant with the official UML specification [121, 122]). Thus, simple
“export” and “import” transformations are needed to switch from one metamodel
version to another. The reader might remember a similar problem solved in Sect. 5.4
which pertained to copying graph models, using two different graph metamodels.

5 http://echo.nextapp.com/site/echo3.
6 http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html.
7 http://docs.oracle.com/javase/tutorial/uiswing/.

http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_5
http://echo.nextapp.com/site/echo3
http://www.oracle.com/technetwork/java/javase/overview/javafx-overview-2158620.html
http://docs.oracle.com/javase/tutorial/uiswing/

196 6 Writing Model Transformations for Requirements

Fig. 6.9 Example utility procedure: ‘utl_GetPrimitiveTypeFromDesignModel’

We can find four sub-packages within the main unit of our transformation. We
will discuss their contents in detail in the following sections. The most complex is
the package responsible for generating the Presenter layer. The respective procedures
are divided into groups associated with particular RSL sentence types that produce
specific code according to the semantic rules from Chap.4.

The ‘Main’ procedure calls several major procedures contained in the above
presented packages as shown in Fig. 6.10. The procedure is a simple sequence
of five calls that evoke the main steps of the transformation process. These steps
are interrupted with four other calls to the procedure called ‘showMsg’. This
is a special MOLA construct called the external call, which allows to interface
with procedures written in C++. There are several external call procedures avail-
able by default. The one used here shows an interactive message box and waits

Fig. 6.10 Transformation main procedure

http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.2 Transformation Overview 197

for user intervention. Other available external procedures include a decision box
(‘yes-no’) and a facility to write text to files. Such procedures can be used for debug-
ging purposes or to allow for simple user control over the transformation process.

Transformation starts by initialising the target model. This includes resetting its
content after possible previous transformations and building the basic structure with
packages and standard classes. Initialisation is based on the general (‘G’)RSL seman-
tic rules presented in Sect. 4.2. This also pertains to the next step—generating the
Data Transfer Objects followed by generating the View layer classes. This part is
highly dependent on the specific UI technology and thus we will not present any
detail here. As a principle, all the procedures from this part follow the View layer
(‘V’) semantic rules given in Sect. 4.3.

The lastmajor step is to parse use cases and generate the Presenter andModel layer
classes. This part does not depend on a specific UI or database access technology but
complies with the standard MVP framework patterns. Analogously to the previous
steps, all the procedures in this step follow the ‘P’ rules, presented in Sect. 4.4. The
transformation ends by cleaning up the source model from the temporary constructs
introduced during processing.

In the following three sections we present some of the important details of three
of the above introduced steps. We discuss the various programming solutions and
provide some examples of the models produced using the presented procedures. To
understand the transformation we need to refer to the RSL and UML metamodels.
The RSL metamodel was presented in significant detail in Sect. 3.2., while we have
not yet introduced the UML metamodel. However, our transformation uses only a
small subset ofUMLmostly pertaining to classmodels. Inmost cases, theMOFmeta-
model, which comprises classes, should suffice as being a close enough explanation.
The reader can refer to Sect. 3.8 (see Fig. 3.24).8 In cases where the transformation
program refers to metaclasses outside of the presented metamodel we will provide
the necessary explanations in text.

6.3 Generation of the Basic Structure

Oneof thefirst tasks of transformation is to generate the package structure of the target
UML model (and eventually—code). Packages were not covered by the semantic
rules in Chap.4 but this is a crucial issue for more complex models that need to
group the various resulting classes to assure comprehension and navigability through
the generated model. The appropriate procedure (‘CreateMVPPackageStructure’) is
presented in Fig. 6.11 and is evoked as part of the target model initialisation process.

Thefirst rule creates a basic package hierarchy under the already existing ‘Detailed
Design’ model. This main package was created in another procedure, not presented
here. All the other packages are created as ‘packagedElements’ within the model
or its sub-packages. Note (see e.g. Fig. 6.2) that most of the UML’s metaclasses

8 The reader can also refer to Fig. 6.2 as containing a relevant fragment of the UML metamodel.

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_4

198 6 Writing Model Transformations for Requirements

Fig. 6.11 Procedure: ‘CreateMVPPackageStructure’

6.3 Generation of the Basic Structure 199

(including ‘Package’) specialise from the ‘PackagableElement’ metaclass. In this
way, most elements can be connected with a ‘Package’ element through the links
found in this first rule.

The structure generated in the first rule is constant for any source model. How-
ever, the model contents to be generated below this hierarchy depend on the
structure of the source RSL packages. This is implemented using two procedures
(‘RequirementsPackagesToUML’ and ‘NotionsPackagesToUML’) that are called
from ‘CreateMVPPackageStructure’. Each of the three calls to these two proce-
dures creates a variable package structure under the ‘presenter’, ‘model’ and ‘dto’
packages.

Before calling any of the three procedures our current procedure has to prepare the
parameters. This is done using two simple query rules. The rules find the appropri-
ate source packages specifically placed within the requirements specification or the
domain specification. Transformation assumes that all the use cases to be processed,
are placed under the ‘Use Cases’ requirements package. Similarly, it assumes that
concept-type and view-type Notions are placed under ‘Notions\Data Model’ and
‘Notions\Data Views’ respectively.

The three procedures are similar, so we concentrate our discussion on ‘Require-
mentsPackagesToUML’. The procedure’s code is presented in Fig. 6.12. The first
two parameters are obvious—they are the source RSL package and the destination

Fig. 6.12 Procedure: ‘RequirementsPackagesToUML’

200 6 Writing Model Transformations for Requirements

UML package. The third parameter is used to control the creation of a supportive
traceability link between the source and the target package. This is done right in the
first rule of the procedure. The rule creates a special object of type ‘IsAllocatedTo’
which links the source element with the target element. This new object is assigned
the stereotype passed as the procedure’s parameter.

Traceability links are created also in many other places throughout the transfor-
mation program. They play an important role in reflecting the structure of the source
model in the structure of the target model [185]. We will see this role in some of the
procedures discussed later in this chapter. The two relevant metaclasses (‘IsAllocat-
edTo’ and ‘Stereotype’) are part of the supportive ‘sclkernel’ metamodel, mentioned
earlier in Sect. 6.1.

After creating the traceability link, the ‘RequirementsPackagesToUML’ proce-
dure executes a for-each loop that iterates over all the sub-packages of the source RSL
package. For each such package, it creates a newUML sub-package that is contained
in the current main UML package. The name of the created UML sub-package is
derived from the nameof the relevantRSLpackage and turned into camel case format.

After finishing tasks at the current level of the source RSL package tree, the for-
each loop calls ‘RequirementsPackagesToUML’ in a recursive manner. This enables
processing of the next level of the tree. The result of this is a copy of the RSL pack-
age tree, reflected in the UML package tree. All the packages are linked through
traceability links with their respective copies.

An example result of running ‘CreateMVPPackageStructure’ is presented in
Fig. 6.13. It presents both the constant and variable parts. The tree fragments to the
left and in the middle show the structure generated using the first rule in Fig. 6.11.
The tree fragment to the right shows the structure of the ‘presenter’ package derived
from the use case packages found in the source model. We can see that it has con-
tained three packages called ‘Book reviews’, ‘Catalogue browsing’ and ‘Catalogue
management’.

We also notice other elements that were generated using other procedures. The
additional elements in the left part are related to the particular Java environment.
They reflect the actual structure of the specific Java libraries used as the technological
framework of the generated application. Appropriate classes within these libraries
are used from within the main application classes, generated into the ‘app’ package.

Fig. 6.13 Generation result for the MVP package structure

6.3 Generation of the Basic Structure 201

In order for the final ‘app’ code to contain proper references and specialisations, its
classes must have necessary relationships with the library classes. We discuss this in
detail further in this section.

The other additional elements in Fig. 6.13 include several default classes and an
interface in the ‘view’ and ‘presenter’ layers, together with appropriate diagrams that
visualise them. Some of these classes are generated in the next procedure, shown in
Figs. 6.14 and 6.15.

The ‘CreateAbstractPresenter’ procedure is generally responsible for creating
a quite elaborated structure of the ‘AbstractUseCasePresenter’ class. This class is
consistent with the semantic rule G0 and is equivalent to the ‘PUseCase’ class (see
Fig. 4.11). However, the contents and environment of ‘AbstractUseCasePresenter’
have to be extended and somewhat changed due to specific technologies used, and
in order to optimise the final code.

Let us now analyse the procedure that creates the generic presenter class. The
first part is a sequence of several calls to utility procedures of the kind presented
in Fig. 6.9. The first call (‘utl_GetClassFromDesignModel’) creates the actual class
object and places it under the ‘presenter’ package as illustrated in Fig. 6.13.

The next four calls are associated with the Spring framework used in the tar-
get application to manage dependencies between class objects. They create three
technology-specific classes referenced from within the definition of ‘AbstractUse-
CasePresenter’. It should be emphasised that these classes are created only to reflect
the contents of the appropriate parts of Spring. These classes will not have their code
generated during the transformation, instead the application code will refer to these
classes and link (‘#include’) appropriate library files.

In addition to creating the Spring classes the procedure creates themainView layer
interface, named ‘IView’. This interface is placed in the ‘view’ package. The interface
has also its implementation class (‘ViewImpl’) created, as presented in Fig. 6.13. This
is done in a similar way in another procedure within the transformation program,
which is not discussed here.

The features of the ‘AbstractUseCasePresenter’ class are generated within two
significantly sized rules. The first of the rules (see the bottom part of Fig. 6.15) creates
the properties (attributes) and all the properties have appropriate types defined. Also,
some of the properties have specific default values added.

Two of the properties reflect the properties present in the semantic rule G0. This
is ‘invokingPresenter’ and ‘resumeId’. The actual property names and their types are
slightly different than in the rule. The ‘resumeId’ property (cf. ‘returnSentence’) is
typed as an integer instead of as a String. This will be explained later (see Sect. 6.6)
when we discuss the processing of invocation sentences. The ‘invokingPresenter’
property is typed as ‘AbstractUseCasePresenter’ (cf. ‘PUseCase’), which is consis-
tent with the rule G0.

The ‘view’ property partially reflects the semantic rule G5. It links the Presenter
layer class with an element in the View layer. However, this element is not a specific
View layer class, but a common interface (‘IView’). It is this common interface, and
its implementation class that distributes responsibility between concrete View layer

http://dx.doi.org/10.1007/978-3-319-12838-2_4

202 6 Writing Model Transformations for Requirements

Fig. 6.14 Procedure: ‘CreateAbstractPresenter’ (part 1)

classes. However, the semantics contained in rule G5 is retained, but implemented
differently. This approach allows for good separation of the layers and facilitates
switching between different UI technologies.

6.3 Generation of the Basic Structure 203

Fig. 6.15 Procedure: ‘CreateAbstractPresenter’ (part 2)

The second major rule of the ‘CreateAbstractPresenter’ procedure (see the upper
part of Fig. 6.15) creates the operations of ‘AbstractUseCasePresenter’. Again, three
of these operations reflect the three operations of ‘PUseCase’ specified in semantic
rule G0. These are: ‘invoke’, ‘notifyInvokingUseCase’ and ‘resumeUseCase’. Apart
from changed names the procedures maintain parameters found in Fig. 4.11. The
only difference is that ‘notifyInvokingUseCase’ does not use any parameter, but uses
a relevant property of the main class (‘resumeId’).

http://dx.doi.org/10.1007/978-3-319-12838-2_4

204 6 Writing Model Transformations for Requirements

Fig. 6.16 Generation result for the AbstractUseCasePresenter

The procedure continues by creating the necessary getter and setter procedures
for some of the properties. The features of ‘AbstractUseCasePresenter’ have specific
visibility constraints defined. Since some of the private and protected properties need
to be accessed from outside of the class, the setters and getters are necessary. The
calls to the ‘utl_CreateGetterAndSetter’ procedure accept the properties for which
a getter and/or a setter needs to be generated, and two additional parameters that
respectively determine their creation.

The final sequence of four procedure calls creates method contents of some of the
previously created operations. Since these contents are constant, no text processing
is necessary. The appropriate code is simply added to the relevant methods through
directly specified strings of text. The ‘utl_AddOperationCode’ procedure appends a
particular operation object with an additional comment object. This comment holds
the actual method text expressed in Java.

The result of the ‘CreateAbstractPresenter’ procedure is presented in Fig. 6.16.
We can compare this result in concrete syntax with the procedure’s internals that
operate on the abstract syntax. Moreover, we can see the contents of two of the
operations, which are similar to those found in Fig. 4.10 (cf. ‘invoke’ and ‘return’)
which defines the basis for the semantic rule G0.

6.4 Generation of Data Transfer Objects

According to rule G4, Data Transfer Objects are translated from View-type notions
and associated Attributes. For practical reasons, our transformation program will
also generate DTOs for Concept-type notions. Such DTOs can be used to transfer
data within the Model layer and for exchanging data with the persistent storage.

The semantic rule G4 is not complex. However, the appropriate realisation of this
rule has to consider additionally the package structure generated as described in the
previous section. Moreover, we need to remember the good practices in structuring

http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.4 Generation of Data Transfer Objects 205

Fig. 6.17 Procedure: ‘CreateDTOClasses’

code, and thus the appropriate “getter” and “setter” operations should be also gener-
ated.

The first procedure for DTO generation is presented in Fig. 6.17. It contains a
single for-each loop which iterates over all the ‘Notions’ in the entire model. Since
determining the notion type is not a trivial task we need to call an appropriate utility
procedure (‘utl_GetNotionType’). Further processing within the iteration is done
only when the current notion turns out to be a concept or a data view.

The processing starts by determining the DTO name which is done by a call to a
simple text processing procedure. Then the procedure determines the UML package
in which the newly created DTO class will be placed using the ‘IsAllocatedTo’
objects (traces) introduced in the previous section. In this situation, we consider the
objects that are adorned with the ‘package2dto’ stereotype. They were created in one
of the previous procedures in a way similar to that discussed in the previous section.
As we can see, the role of traces is very important as they allow for easy access to
the target model structure from the particular source model elements.

206 6 Writing Model Transformations for Requirements

The next step is to create the actual DTO class which is done using an obvious
and simple MOLA rule. The class (‘packagedElement’) is placed inside the package
(‘owningPackage’) determined in the previous step. If the relevant UML package
was not created in some previous procedure, the DTO class is placed in the main
DTO folder (‘app.dto’).

After creating theDTO class we need to generate its contents—attributes with get-
ters and setters. This is done using several procedures, with the top-level one shown in
Fig. 6.18. This is a simple for-each loopwhich iterates again over the ‘Notion’ objects
and finds related ‘Class’ objects. Depending on the notion type, it calls either ‘cre-
ateClassMembersForConcept’ or ‘createClassMembersForDataView’. Both proce-
dures are similar, so we discuss the more interesting one which pertains to data
views.

The appropriate procedure contents are shown in Fig. 6.19. The procedure signif-
icantly extends the simple semantic rule G4 (see Fig. 4.15) and takes into account
several additional elements that make the generated code much more practical and
versatile.

The first for-each loop iterates over ‘Notion’ objects that serve as attributes and
are pointed-at from the current data view notion. If the loop-head rule was limited
to only this part it would be directly implementing semantic rule G4. However, the
rule is extended by also querying for another ‘Notion’ object, which is a concept
(‘parentNotion’) that contains this particular attribute (‘notionAttribute’). Moreover,
this concept is also related to the data view as its so-called “main concept”. Attributes
in such a configuration are then turned into the properties of the appropriate DTO
class by calling the ‘attributeToClassMembers’ procedure.

Fig. 6.18 Procedure: ‘CreateDTOClassMembers’

http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.4 Generation of Data Transfer Objects 207

Fig. 6.19 Procedure: ‘CreateClassMembersForDataView’

To better understand the reason for determining the “main concept”, let us analyse
Fig. 6.20. It shows a simple domain model with one simple data view (‘book search
criteria’) and two concepts (‘book’ and ‘author’). The data view relates to attributes
contained in both concepts. However, one of the concepts is distinguished by an
additional relationship from the data view. This additional semantic adornment pro-
vides information that can allow the generator to structure the DTO in a more fine-
tuned manner. The attributes contained in the main concept are always unary, i.e. are
included in the DTO class as properties with simple types. However, the attributes

208 6 Writing Model Transformations for Requirements

Fig. 6.20 DTO class generation example

contained in other (not main) concepts are treated depending on the multiplicity
between them and the main concept. If the multiplicity is greater than one, the DTO
class properties are created as lists of objects with the appropriate simple type.

The attributes contained in the “secondary” (non-main) concepts are handled
by the second and third for-each loops in the ‘CreateClassMembersForDataView’
procedure.Both loops are similar and differ only in the direction (‘target’ vs. ‘source’)
of the relationship between themain and the other concept in the loop-head rule. Thus,
we discuss only the first of the loops.

The loop-head rule is an extension of the loop-head rule from the first for-each
loop.9 This time there are two ‘Notion’ objects—one of them being the main concept
and the other being the related concept. The loop determines the multiplicity string
(‘targetMultiplicity’) in a text condition statement. Depending on the multiplicity,
the class property is created as a simple type (‘false’) or as a list (‘false’).

The creation of properties for attribute-type notions is presented in Fig. 6.21. The
procedure accepts a ‘Notion’ and a ‘Class’ as parameters. The first parameter is
the source attribute-type notion and the second attribute is the target class in which
the properties need to be generated. The third parameter determines whether the
generated property is to be a collection (list) or a simple element.

The first part of the procedure determines the appropriate names for the property
and its getter and setter operations. Then these elements are added to the DTO class
using appropriate object creation constructs. The added elements have their metaat-
tributes, like ‘visibility’, set according to typical programming practice. Moreover,
the newly created property is traced (‘IsAllocatedTo’) from the original attribute-type
notion. The third part of the procedure is a series of conditions and text statements
which determine the data type for the newly created property and for the parameters
of the getter and the setter. This data type depends on the type of the source attribute

9 The differences are clearly visible in the colour version of the procedure’s diagram. This is an
illustration of additional capability of theMOLAenvironment tomark objectswith different colours.
Colouring is an additional valuable way to comment MOLA diagrams for better comprehension.

6.4 Generation of Data Transfer Objects 209

Fig. 6.21 Procedure: ‘AttributeToClassMembers’

210 6 Writing Model Transformations for Requirements

and on the ‘isCollection’ switch. For lists, the Java environment uses the ‘List’ inter-
face which needs to be added to the appropriate package in the ‘java’ tree. For the
code to be properly generated in the UML tool, the DTO class has to be related with
the ‘List’ interface using a dependency relationship.

Two final statements of the procedure, generate the contents of the getter and the
setter. This code is obvious and consists of a ‘return’ statement for the getter and an
assignment statement for the setter. The resulting UML class with embedded code
fragments can be now used to generate the final code, ready to be accessed from
other parts of the generated code.

6.5 Parsing of Use Case Scenarios

Generating the basic structure and the DTOs is a straightforward part of the trans-
formation program. The ultimate and the most challenging task is to process use
cases. This part generally consists in going through use case scenarios and gener-
ating classes with code, according to semantic rules P1–P13 (see Sect. 4.4). The
top-level procedures of this process can be compared to a programming language
parser. However, it is difficult to distinguish a definite border between pure parsing
and model/code generation. Thus, this section will deal with the procedures where
RSL parsing dominates. The next section will present these parts of the transforma-
tion process which concentrate on generating the various target elements, and are to
a significant extent technology-specific.

The main use case processing procedure is presented in Fig. 6.22. In general, this
procedure processes all the ‘UseCase’ objects and their scenarios. The first for-each
loop implements one of the general semantic rules—rule G1. It loops (“parses”)
through all the use cases and for each use case it calls a procedure to generate the
appropriate Presenter layer class. This is a simple procedurewhich creates a classwith
certain default operations and a generalisation from the ‘AbstractUseCasePresenter’
class.

The next step in ‘ParseUseCases’ is to structure use case scenarios into simplified
activity models. This step is necessary because RSL scenarios are kept as linear
sequences of sentences.Wefirst need to turn these linear sequences into a graphwhere
common parts of the scenarios are joined and condition sentences form conditional
flows within the activity graph. We discuss this in detail further in this section.

The second for-each loop in ‘ParseUseCases’ assumes that scenarios are initially
processed. For each use case, it calls a procedure to parse the use case scenarios. The
details of this procedure are also explained later in this section.At this point it is worth
noting that an important element in scenario processing is the ‘currentOperation’.
This parameter indicates the operation into which relevant code needs to be inserted.
At the beginning, the ‘currentOperation’ is set to ‘invoke’. This operation is the first
to be called in the running application when the application logic for a given use
case is initiated. This approach is a modification and optimisation of the approach

http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.5 Parsing of Use Case Scenarios 211

Fig. 6.22 Procedure: ‘ParseUseCases’

described by the semantic rules P9 and P10. Two separate calls to ‘invoke’ and some
trigger operations are substituted by a single call to ‘invoke’. For this reason, the
‘invoke’ method contains also code for the first trigger operation and thus is the
‘currentOperation’ for the initial sentences in the use case scenarios.

Let us now discuss the procedure that preprocesses use case scenarios presented
in Fig. 6.23. The procedure is constructed as a set of three embedded for-each loops.
The outer loop iterates over use cases, the middle loop iterates over scenarios, and the
inner loop iterates over sentences. For each scenario sentence the inner loop creates
an activity node—an object of type ‘RSLActivityNode’.10 If the current sentence
was already parsed in another scenario, the node is not created again.

The main effect of the procedure is the creation of ‘RSLActivityEdge’ objects
that connect the activity nodes. To illustrate this effect we can refer to the example
presented in Fig. 2.28. The activity edges form the arrows that connect nodes that
contain sentences. The creation of edges is important for processing alternative flows
that result from condition sentences. They would not be necessary in case of only
linear processing, because sentences in scenarios are ordered in the repository and
thus can be processed in the right sequence by the for-each loop. As we will see, the
activity graph will be processed as a tree, in a recursive manner.

10 The RSL’s metamodel is extended with a simple activity notation. This part was not presented
in Chap.3 but is self-explanatory in the current context.

http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_3

212 6 Writing Model Transformations for Requirements

Fig. 6.23 Procedure: ‘ScenariosToSimplifiedActivities’

The recursive procedure to parse the activity graph is presented in Fig. 6.24. The
recursion is not evident because it is indirect and implemented using another pro-
cedure which will be discussed next. The ‘ParseUseCaseScenarios’ procedure tra-
verses through all the sentences and calls other procedures that perform appropriate
processing and generation for each sentence type.

6.5 Parsing of Use Case Scenarios 213

Fig. 6.24 Procedure: ‘ParseUseCaseScenarios’

When analysing ‘ParseUseCaseScenarios’ we need to observe certain issues. The
‘sentence’ parameter is an important factor in the recursion process. If it is set to
NULL, it means that the procedure is called at the beginning of scenario processing.
In this case, the precondition sentence needs to be processed first. In other cases, the
procedure starts processing from the currently passed ‘sentence’. Another important

214 6 Writing Model Transformations for Requirements

parameter is the ‘currentOperation’ discussed above. This parameter is used by the
various individual sentence parser procedures to control inserting code into the proper
method bodies within the presenter class.

For all the sentence types, except for condition sentences, processing is iterative.
Note that procedures for specific sentence types need appropriately typed objects.
For this reason the procedure calls necessitate appropriate type-casting for the cur-
rent ‘sentence’ which is typed as a generic ‘ConstrainedLanguageSentence’. After a
particular sentence is processed, the iterative process calls ‘getNextSentence’ which
traverses through the activity edge between the current sentence and the next one.
This is followed by a command to increment the ‘sentenceCounter’ variable. This
variable is used for generating invocation code which is discussed in the next section.

When a condition sentence is found (see the bottompart of Fig. 6.24), the recursive
process is initiated by calling ‘ParseConditionSentence’. This procedure is presented
(in a simplified form) in Fig. 6.25. Its content generally implements the semantic rule

Fig. 6.25 Procedure: ‘ParseConditionSentence’

6.5 Parsing of Use Case Scenarios 215

P13. The main goal is to generate an “if-else” statement with full contents, including
the conditions and logic for all the statement’s branches.

The first important action within the procedure is to determine the type of the
sentence that stands prior to the current condition sentence. This is in accordance
with rule P13 (see Fig. 4.42)which is applied onlywhen the dialogue state is ‘system’.
The next step is to iterate over all the condition sentences that follow the “previous”
sentence. This allows to generate all the branches of the “if-else” statement. In fact,
the loop-head rule iterates over ‘RSLActivityNode’ objects, but ultimately the related
condition sentences are found.

For each condition sentence in the current group of condition sentences, the pro-
cedure calls another procedure that generates the appropriate condition code. This
generated code is somewhat different for the various “previous” sentence types. Thus,
there are different individual procedures for sentences of such types as System-to-
Message or System-to-Simple View.

In any case, generation of a particular condition branch is followed by generation
of the branch contents. This is done by a recursive call to ‘ParseUseCaseScenarios’,
presented earlier. This time, the procedure is called with the sentence following the
current condition sentence, as its parameter. In thisway, the following codegeneration
actions will append code to the current “if-else” branch.

When a particular scenario finishes, ‘ParseUseCaseScenarios’ returns control to
the current for-each loop within ‘ParseConditionSentence’. The loop continues and
starts processing the next condition sentence. In this way, all the alternative scenario
branches are processed and the appropriate code generated are within the respective
branches of the “if-else” statement. It can be also observed that code is generated
within the current operation and the current “if-else”, only until the dialogue state
in the processed scenario is ‘system’. Whenever an Actor-to-Trigger sentence is
found, it changes the current operation and the code starts being generated elsewhere,
according to the appropriate semantic rules.

6.6 Generation of the Presenter Layer Details

In the previous section we avoided discussing the procedures that generate anything
in the targetmodel and code. Processing in the already discussed procedures involved
only the sourceRSLmodel and traversing through use case scenarios.Herewe go into
the details of how particular UML elements and Java statements are generated from
specific scenario sentence types. We concentrate on three sentence types: Actor-to-
Trigger sentences, System-to-Screen sentences and invocation sentences. This allows
us to show more details on implementing the semantic rules presented in Chap.4.

Each of the sentence types is handled by a separate procedure, called from
‘ParseUseCaseScenarios’ (see Fig. 6.24). The Actor-to-Trigger sentences are proc-
essed by ‘ParseActorToTriggerSentence’. This is a simple procedure shown in
Fig. 6.26 and it partially implements semantic rule P4.

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4

216 6 Writing Model Transformations for Requirements

Fig. 6.26 Procedure: ‘ParseActorToTriggerSentence’

The procedure accepts two parameters: the current sentence, and the current
Presenter layer class. Its main goal is to create and return an event handler oper-
ation within the said Presenter class. Note that the procedure does not create any
parameters of the new operation because a slightly different method of data pass-
ing is used for this implementation of rule P4. Instead of adding parameters to
the event handler, separate setter operations and their methods are created in the
Presenter class. The procedure for creating these setters is associated with Actor-
to-DataView sentences, according to rule P4′ (see Fig. 4.43). This other procedure is
quite simple and we do not discuss it here.

Returning to ‘ParseActorToTriggerSentence’, note that its main functionality is
associated with determining the new operation’s name and creating the actual oper-
ation’s object in the target model. Reference to this object is returned (‘out’) to the
calling procedure. In this way, the new operation is now ready to be used as the target
for the code generated according to all the other rules that refer to P4.

One of the procedures that generate code for the above new operation is the
‘ParseSystemToScreenSentence’ shown in Fig. 6.27. This procedure implements rule
P8 which covers code generated for System-to-Screen sentences. It needs only two
parameters: the current SVO sentence and the current operation (the one created
using ‘ParseActorToTriggerSentence).

The first part of the procedure determines the name of the procedure to be called
on the View layer. Recall from Sect. 6.3 that the View layer is accessible through the
‘view’ property which points to an ‘IView’ interface. Thus, the calls to this interface

http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.6 Generation of the Presenter Layer Details 217

Fig. 6.27 Procedure: ‘ParseSystemToScreenSentence’

have to distinguish between individual Screen elements. The actual code will look
like: ‘view.showEditBookForm()’ instead of ‘veditbookform.show()’. Note that this
approach to structure code is slightly different from the one presented in the semantic
rule definition, although it still preserves the actual semantics.

For the ‘show’ and ‘refresh’ type actions the call to theUI rendering procedure has
to be preceded by data passing—calls to setters with DTO parameters. This is done
in the ‘utl_AddSetterCalls’ procedure which is not discussed in detail. Generally,
this procedure analyses the sentence’s direct object and looks for all the Data Views
associated with the Screen Notion hyperlinked from the direct object. For each such
Data View, a call to a setter is generated, according to rule P8.

For the ‘show’ and ‘close’ actions the procedure generates calls to ‘pageOpened()’
and ‘pageClosed()’. These two operations control the window stack and change
the ‘numberOfOpenPages’ attribute in the Presenter class object. The appropriate
semantic framework for this was discussed in Sect. 4.1 (see the description of ‘show’
and ‘close’ in Fig. 4.4). In implementation, the stack is controlled mainly by the
Presenter classes.

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4

218 6 Writing Model Transformations for Requirements

Fig. 6.28 Procedure: ‘ParseInvocationSentence’

Somewhat more complex processing has to be done for invocation sentences cov-
ered mainly by the semantic rules P9 and P10 (alternatively P9′, P10′ or P10′′). The
main procedure is shown in Fig. 6.28. It starts by determining the target use case for
the current invocation sentence. Recall from Chap.3 that every ‘InvocationSentence’
object has a related ‘InvocationRelationship’ which points at an ‘RSLUseCase’. This
feature of the RSL’s metamodel is used in the introductory rule of ‘Parseinvocation-
Sentence’. Additionally, the appropriate Presenter class, traced from the target use
case (see ‘IsAllocatedTo’), is found.

After this the main procedure calls three other procedures. The first two are called
unconditionally and the third is called only for the invocation sentences that are in
the ‘system’ state.

The first procedure (‘CreatePresenterPropertyForInvocation’) updates the target
model with a property to access the ‘targetPresenter’ class object from the current
‘presenter’ class object. This in fact implements one of the general semantic rules,
namely—rule G7 (see Fig. 4.18). The rule is implemented by analysing the scenarios
rather than by analysing the use case relationships. In this way there is no need for
a separate iterative process that seeks all the ‘InvocationRelationship’ objects.

The actual procedure that implements G7 is simple and is presented in Fig. 6.29.
It first checks if the particular property (‘targetProp’) was already created when
processing someother invocation sentence. If not, then it creates the property together
with the respective ‘Association’ object. In this way the resulting UML model thus
becomesmore readable due to the existence of the appropriate visual association link

http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_4

6.6 Generation of the Presenter Layer Details 219

Fig. 6.29 Procedure: ‘CreatePresenterPropertyForInvocation’

between the two classes. Note that the code would be the same without the ‘Associ-
ation’ object, thus its creation is purely for documentation and readability purposes.

After creating the new property the procedure creates a traceability link
(‘IsAllocatedTo’) between the property and the invocation sentence that was the
source for its creation. This traceability link additionally explains the approach to

220 6 Writing Model Transformations for Requirements

generate properties according to rule G7 by analysing invocation sentences instead
of invocation relationships. For a given invocation relationship we can have several
invocation sentences (see Fig. 3.19) and thus several traces can be created. The traces
point to every invocation sentence that invokes a given use case and they later play
an important role in other areas of the transformation program.

The second procedure that processes invocation sentences is ‘CreatePresenter-
OperationForInvocation’. The previous procedure operated only on the Presenter
classes. This procedure needs also a reference to the target use case, as it needs to
analyse its first sentences. Thus, it accepts onemore parameter, as shown in Fig.6.30.

In general, the role of the procedure is to create an appropriate operation that
contains code similar to that presented in the definitions of the semantic rules, P9
and P10. The first few actions are dedicated to determining the new operation’s
name and making sure that the operation was not already created for a previously
processed invocation sentence. The operation’s name is derived from the name of
the target Presenter class (‘targetPresenter.name’) with the ‘invoke’ prefix added and
the ‘Presenter’ postfix removed.

Assuming that there is no operation with this name already created (see {ELSE}),
the procedure creates two overloaded operations with the same name. One of the
operations has a parameter called ‘resumeId’, while the second has no parameters.
Obviously, these two operations are attached to the current ‘presenter’ class. The
reason for creating two identically named operations is pragmatic. The one with the
parameter is used for situations compliant with semantic rule P9, and the other is
used for situations compliant with P10 (or, more precisely—with P10”).

This can be better explained when we analyse code generated in the last part of
the procedure. The first line of this code creates a new Presenter layer object using
the Bean Factory mechanism.11 This object is made accessible through the property
created in ‘CreatePresenterPropertyForInvocation’ (see again Fig. 6.29 and compare
‘targetPropName’).

The next lines of code are created within another MOLA procedure called ‘addIn-
vocationParameters’. This procedure (not presented in detail here) analyses the target
use case and generates the appropriate setter operations, and calls to these setter oper-
ations. This is done similar to the approach discussed for processingActor-to-Trigger
sentences above. However, the currently analysed Actor-To-Trigger (and Actor-to-
DataView) sentences are taken from the beginning of the invoked use case.

The final three actions of ‘CreatePresenterOperationForInvocation’ create the
code that prepares for returning control from the invoked Presenter object and even-
tually passes this control through calling the ‘invoke’ operation. The whole code is
inserted into the methods of the operations created a few steps earlier. Note that the
operation without the parameter simply calls the operation with the parameter, where
the actual value of the parameter is−1. This is equivalent to implementing rule P10”
which assumes that no resuming of control is necessary and everything is handled
by the window stack operations.

11 We will not go into the details of this technology-specific issue.

http://dx.doi.org/10.1007/978-3-319-12838-2_3

6.6 Generation of the Presenter Layer Details 221

Fig. 6.30 Procedure: ‘CreatePresenterOperationsForInvocation’

The third procedure called from ‘ParseInvocationSentence’ generates additional
code which is necessary to handle invocation sentences in the ‘system’ state. This
simple procedure presented in Fig. 6.31 usually generates two pieces of code (see two
‘utl_AddOperationCode’ calls). The first piece of code is generated in the ‘current-
Operation’. Note that when the ‘system’ invocation sentence is processed, the actual
invocation call has to be made from the current event handler procedure (i.e. the ‘cur-
rentOperation’) as defined in the semantic rule P9. In the presented implementation,

222 6 Writing Model Transformations for Requirements

Fig. 6.31 Procedure: ‘CreateMethodBodyForInvocationSentence’

the main code for the rules P9 and P10 is generated into a separate method (the
‘invokeOperation’), using the previously presented MOLA procedure (‘CreatePre-
senterOperationForInvocation’). The ‘currentOperation’ code contains just a call to
this generic method.

The ‘invokeOperation’ accepts a parameter which is then used to set the revoking
point after returning from invocation. The value for this parameter (see ‘resumeId’
in Fig. 6.30) is determined through the ‘sentenceCounter’ variable which is updated
successively when processing scenario sentences.

The parameter value is also used within the operation that resumes control
after invocation. The contents of this operation is the second piece of code gen-
erated by ‘CreateMethodBodyForInvocationSentence’. This code is generated into
the ‘resumeUseCase’ operation. Moreover, this operation becomes the ‘current
Operation’ and further code generation will be shifted there. Note that this approach
partially implements the semantic rule P11 for the final sentences. In fact, final sen-
tences have to be handled already when processing invocation sentences.

To summarise and better understand the procedures that generate the Presenter
layer we can use the simple example shown in Fig. 6.32. The example contains two
generated Presenter classes with their features. The classes, obviously, implement
the application logic for two use cases in an invocation relationship. We can see
the appropriate two invocation operations (‘invokeShowBookDetails’) generated in
the Presenter class for the invoking use case. The invocation involves passing data
to the invoking use case, so there were also generated appropriate setter operations

6.6 Generation of the Presenter Layer Details 223

Fig. 6.32 Presenter class generation example

(‘set...BookID’) and properties (‘...BookID’) both in the invoking and in the invoked
Presenter class. These features are used in the code of the ‘invokeShowBookDetails’
operation which is shown in the lower part of the figure.

Chapter 7
Applying MDRE in Practice

After reading the previous chapters of this book, the reader might wonder how to
apply the presented approach in the software engineering practice. It is obvious that
in order to use Model-Driven Requirements Engineering, developers will need to
update their everyday practices in software development [149]. They will also need
to use tools that enable the new and modified practices [153, 166]. In this chapter we
present a methodology that provides guidelines in this respect. It encompasses a tool
that implements the presented MDRE technology. It also presents necessary mod-
ifications to the roles, work products and tasks in a software development project,
and especially to standard approaches to requirements engineering [77, 104]. The
methodology generally treats the development of new systems, but it is also sup-
plemented with techniques to reuse legacy software and apply patterns to reuse
reoccurring behaviour.

7.1 Using the ReDSeeDS Tool

Practicing Model-Driven Requirements Engineering is inherently associated with
using a tool that implements the requirements language and the transformations
from this language down to code.1 The tool is fundamental for any method-
ology associated with applying MDRE in real-life projects. Thus, we start our
considerations on practicing MDRE by introducing such a tool. The tool is called
ReDSeeDS (Requirements-Driven Software Development System)2 [156, 158] and
it implements all the concepts presented in the previous chapters. Its overview is
presented in Fig. 7.1. The actual tool contains an RSL editor, a MOLA trans-
formation engine and a model repository. It also interfaces with MOLA Tool by

1 Note that such tools would significantly extend the capabilities of typical Requirements Engineer-
ing tools [29, 104].
2 http://www.redseeds.eu/.

© Springer International Publishing Switzerland 2015
M. Śmiałek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_7

225

http://www.redseeds.eu/

226 7 Applying MDRE in Practice

Fig. 7.1 ReDSeeDS overview

accepting compiled MOLA programs, and with an external UML editor to visualise
the generated models and to further generate code.

The ReDSeeDS model repository implements the RSL metamodel as described
in Chap.3. This serves as the storage for the RSL models used by the RSL Editor.
The editor provides extensive editing capabilities for RSLmodels and complies with
the RSL’s concrete syntax. It also supports RSL semantics by providing certain facil-
ities that help in structuring scenarios and domain models for better code generation.
The ReDSeeDS repository implements also much of the UML metamodel. It thus
allows for storing the results of the transformations as explained in Chap.6. It is
possible to store full class and component models, together with comments that can
hold method bodies.3

Apart from the capability to edit RSL models, the ReDSeeDS tool can visu-
alise the structure of the generated UML models and show the generated code.
It does not contain a full UML viewer/editor because it relies on the existing tools.
Currently, it interfaces with Enterprise Architect from Sparx Systems4 and Mode-
lio from Softeam.5 Modelio can be used in the open source version. The generated
UML models can be easily exported to one of the above UML editors for further

3 The ReDSeeDS repository can also store other UML models like activity models or interaction
models. However, these capabilities are not used by the presented transformations.
4 http://www.sparxsystems.com/.
5 http://modelio.org/.

http://dx.doi.org/10.1007/978-3-319-12838-2_3
http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://www.sparxsystems.com/
http://modelio.org/

7.1 Using the ReDSeeDS Tool 227

processing. Then, standard code generation facilities of the UML tools can be used
to generate the final code.

The ReDSeeDS tool is compatible with the executable transformation code,
generated fromMOLA Tool. The MOLA compiler turns MOLA programs into exe-
cutable files which form the MOLA Transformation Engine. This code can access
the current ReDSeeDS repository and perform all the queries and operations that
are available in the MOLA syntax. ReDSeeDS provides an environment to man-
age and run MOLA executable files (the MOLA Transformation Engine). There
are some standard transformations built into ReDSeeDS, available though context
menus. However, users can develop their own transformations in MOLA Tool, and
integrate them through a special transformation browser.

From the point of view of the tool user (software developer, domain expert), the
usage of ReDSeeDS is fairly simple (see again Fig. 7.1). First, we need to formulate
our RSLmodel. Then we select a transformation to execute. The transformation pro-
duces a UMLmodel with possible code embedded in comments. We can then export
this model to a UML tool and generate code using standard code generation capa-
bilities. For the standard (built-in) transformations, the process is simpler because
the UML model export and code generation is evoked from within ReDSeeDS auto-
matically. Following this, the developer can open one of the available programming
environments and use the generated code for producing the final system.

We now illustrate this generally presented process with the actual functionality
of the ReDSeeDS tool. Our aim here is not to provide a detailed user guide which
is already available from the ReDSeeDS website. Instead, we want to provide an
insight into the features that seem necessary for the tools that aim at implementing
the concepts of MDRE. The main goal for ReDSeeDS is to automate many of the
typical tasks and provide an environment that keeps the RSL models coherent.

Thefirst step is to create a newproject. InReDSeeDS, projects are called “software
cases”, sowe select File –> New and thenNew Software Case Project. After naming
the project we obtain the initial project structure. To define the RSL model we have
to fill-in the main Requirements Specification package, together with the contained
Domain Specification package.

Within theRequirements Specificationwe can performactions aswewould expect
froma typicalCASE tool.We can create new requirements packages and new require-
ments diagrams. This can be done from the context menu in the project browser tree.
In diagrams and in the project browser, we can define new elements like use cases and
actors. An example result of such actions is illustrated in Fig. 7.2, which shows an
initial use case diagram, created within a project tree. As we can see, we have created
a specification for a Library System with one requirements package (“Book man-
agement”) containing an identically named use case diagram. We have also started
creating a use case model.

Note that the actor (“librarian”) has been added by the tool to the “Actors” pack-
age. This is because according to RSL’s definition, actors are part of the Domain
Specification. Another observation is that the palette in the use case diagram does
not provide the means to add an invocation relationship between use cases. This is

228 7 Applying MDRE in Practice

Fig. 7.2 Starting a new ReDSeeDS project

because invocations have to be coherent with the use case scenarios. They appear
automatically, as we will show in further description. This is one of the aspects of the
tool, which assures coherence of the model and clear separation of concerns, right
from the beginning.

After introducing use cases, we can start entering their scenarios as
illustrated in Fig. 7.3.We can enter consecutive SVO sentences that are automatically
numbered by the editor. We can also introduce condition sentences by selecting the
“fork” icon that automatically creates a new scenario which forks from the current
scenario after the currently selected sentence. “Forking” a scenario creates its sibling
which has exactly the same initial sentences (1–5 in Fig. 7.3). The forked scenario
can be ended either with a final sentence or with a rejoin sentence that points to a
specific sentence in the original scenario (see sentence 2 in Fig. 7.3).

Directly after entering, the SVO sentences are “raw” and have to be additionally
marked. We need to determine the sentence parts (the subject, the verb and the
objects) and the sentence type. For some of the sentences we can also specify the
type of the action based on certain keyword verbs. As we can see in Fig. 7.3, each
SVO sentence can be marked with these two elements (sentence type and action
type) which are initially void.6

Sentencemarking is done semi-automatically.We should select andmark sentence
parts by selecting appropriate context menu options. The relevant phrases can be also
added to the domain specification if necessary (if not yet present). This can be done

6 The third element is “recipient” which is not used by the presented transformations and will not
be discussed.

7.1 Using the ReDSeeDS Tool 229

Fig. 7.3 Editing use case scenarios

Fig. 7.4 Organising SVO sentences

automatically after selecting the given phrase. An example result of such marking is
shown in Fig. 7.4. The SVO sentences are now appropriately divided into their parts.
Moreover, the domain specification (see the project tree to the left) is automatically
populated with appropriate domain notions and phrases.

230 7 Applying MDRE in Practice

The editor also automatically determines the notion types by using certain con-
textual information. For instance, it is assumed that the sentence object in the first
sentence in a scenario should be a Trigger element. The editor also analyses the
verbs. Based on certain standard keywords it is possible to determine the type of the
element associated with the noun phrase. For instance, the keywords “show” and
“close” indicate that the related noun phase is a Screen element. The same mecha-
nism is used to determine the sentence type and the action type (see the relevant two
columns in Fig. 7.4). As a result, the user needs to specify these elements by hand
only in some situations, and most of this work is done by the editor. If necessary,
every domain element can be edited (e.g. its type changed), which is shown in the
bottom right part of Fig. 7.4.

A distinct type of sentence is the invocation sentence. As we remember from
the RSL definition, every invocation sentence has to be attached to an invocation
relationship. Thus, adding such a sentence to a scenario automatically attaches it to
a relevant relationship. If the relationship is not present—it is automatically created.
The ReDSeeDS tool implements this feature of RSL, which is illustrated in Fig. 7.5.
The invocation relationships cannot be added manually. They are always derived
from appropriate invocation sentences, which assures strict coherence of the model
for invocations.

After specifying the scenarios we obtain an already populated domain specifica-
tion. However, not all the details can be derived from the scenarios and this includes
relationships between notions and attributes. The best way to specify these additional
elements is to create notion diagrams and drag the existing elements onto them as
illustrated in Fig. 7.6. The attributes need to be added manually. We can group them
into a separate package in the project browser (see top-left). Then we can create all
the necessary connections according to the desired characteristics of the system. To
produce correct code we need to observe the syntactic and semantic rules presented
in the previous chapters.

The RSL models are managed by the ReDSeeDS editor with all the hyperlink
characteristics stemming from the RSL’s metamodel. Thus, the actual scenario
sentences do not contain the actual phrases, but point to phrases in the domain

Fig. 7.5 Managing invocations

7.1 Using the ReDSeeDS Tool 231

Fig. 7.6 Defining the domain model

specification. This makes it easy to perform changes to the domain elements that get
propagated throughout the whole model. For instance, when we change the name of
a notion (e.g. from “book data” to “book details”), this change should be reflected in
all the SVO sentences that use this notion. The editor does this automatically because
the sentences contain hyperlinks that can be easily updated with the new name they
point to.

Whenever we judge the RSL model ready, we can run a MOLA program in the
transformation engine. This is as simple as selecting an appropriate option in the
context menu for the requirements specification. This runs the selected transforma-
tion program as that presented in Chap. 6. The target UML model with embedded
code is placed in the repository along the source RSL model. Then, the ReDSeeDS
system automatically transfers this model to one of the available UML tools. Finally,
it evokes the code generator which produces the final code. The result of this process
for our example model is presented in Fig. 7.7.

If the RSL model was formed correctly, the resulting code can be compiled and
run. The ReDSeeDS tool does not provide facilities to manage the generated UML
models and code. It can be used only for browsing the structure, as shown in Fig. 7.7.
We can see that the whole MVP structure, together with the DTOs and DAOs is
generated. We can update this code in a programming IDE (Integrated Development
Environment) of our choice. If we use the Eclipse IDE, ReDSeeDS can already place
this code in the right workspace and make it ready for instant compilation.

The ReDSeeDS tool is currently the only implementation of RSL and thus it
can be postulated to widen the selection of available tools. It can be noted that any
RSL editor would need to have several characteristics that are not present in typical
modelling tools. The main effort seems to be in implementing the scenario editor
with its grammar enforcement, and strict rules for hypelinking to domain elements.
Other RSL constructs should be possible to be implemented using standard profiling

http://dx.doi.org/10.1007/978-3-319-12838-2_6

232 7 Applying MDRE in Practice

Fig. 7.7 Generating the UML model and code

mechanisms present in many UML tools or standard metamodelling capabilities of
language workbenches and DSL environments.

These editing capabilities should be integrated with a model transformation
engine. Many UML tools have already implemented some form of such engine or
can be integrated with an external model transformation tool. However, we need to
make sure that the transformation language is powerful enough to be able to perform
complex transformations that involve both declarative and imperative elements. Hav-
ing assured this we need to implement the semantics of RSL according to the rules
presented in Chap.4.We can use the algorithms presented in Chap.6 as general guid-
ance. MOLA syntax provides visual documentation which can be easily translated
to any other model transformation language.

7.2 Introducing the ReDSeeDS Methodology

Having the necessary tooling environment, we can start applying MDRE in real
projects. However, we need to remember that the tool is not enough. This is especially
visible in larger projects with many use cases and vast domain models. We need

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_6

7.2 Introducing the ReDSeeDS Methodology 233

ways to organise the development effort, taking into account all the typical issues of
software engineering.

7.2.1 Overview of the ReDSeeDS Process

As we have noted in Chap.1 (see Sect. 1.4), MDRE can significantly shorten the path
from requirements to code and thus promises significant gains in productivity. This
book is dedicated to presenting the technology that makes it possible. However, this
does not mean an instant solution to all the possible problems. We still face imple-
menting solutions to problems with complex application and domain logic. What
is more, the problems and their domains constantly evolve, where this process can
often be quite rapid. This is related to quickly changing requirements of contempo-
rary business, industry and generally—the society.

We also need to face the constant development of software and hardware
technologies. Software developers can now choose from a plethora of technolo-
gies and frameworks where some of them pertain to the overall system architecture,
some deal with specific aspects like the user interface, data storage or distributed
processing. Moreover, it is often the case that it is necessary to deliver similar or
identical applications for different technological platforms. This is especially visible
in the case of mobile device applications.

As a result, software developers have to face two simultaneous processes, as
illustrated in Fig. 7.8. The first is the process of Software System Evolution. This
process involves the evolution of the software applications in terms of their appli-
cation logic and in terms of the problem domains. Of course, the source of this
evolution is new ideas and innovations that expand the user requirements [135]. The
second process is the process of Technology Evolution, which involves the evolu-
tion of the various technologies with which the software is implemented. The source
of this process is the obvious innovation on technological capabilities and features
constantly introduced by the technology suppliers.

Both processes overlap and thus are often not properly distinguished. This is
associated with distinguishing between the essential complexity and the acciden-
tal complexity of systems, mentioned earlier in Sect. 1.1. In MDRE (and often in
MDSD in general), this distinction is usually quite clear. This is especially visi-
ble in the approach presented in this book. The Software System Evolution process
is associated with evolving requirements models (written e.g. in RSL) that reflect
changes and innovation in the system’s functionality. The Technology Evolution
process is associated with evolving transformation programs (written e.g. in MOLA)
that transform requirements into code, compliant with the evolving technology.

As Fig. 7.8 illustrates, the two processes do not overlap all the time. Usually,
the evolution of a software system is based on a specific technology that is applied
constantly throughout some significant span of the system’s lifetime. However, at
certain moments in that lifetime, a decision needs to be taken to upgrade or even
completely change the technology that is applied. Thismay be associatedwith certain

http://dx.doi.org/10.1007/978-3-319-12838-2_1
http://dx.doi.org/10.1007/978-3-319-12838-2_1

234 7 Applying MDRE in Practice

Fig. 7.8 Two major processes of software development

restrictions of the current technology that prevents from implementing some desired
functionality. It may also be associated with the technology going out of date and
losing proper support from its supplier. At such moments, a Technology Evolution
cycle has to be executed to upgrade our development (tooling) framework to some
new technology. This upgrade then needs to be applied to the actual system with the
use of the upgraded development framework.

These considerations lead us to define more detailed guidelines on how to
implement MDRE in practice [101]. We will call this set of guidelines the ReD-
SeeDS Methodology [151]. The methodology is (obviously) model-driven and thus
it would be natural to present it using models. To do this, we use the Software and
Systems Process Engineering Metamodel (SPEM) [119]. It is a popular notation that
can be used do denote any kind of software (or system) development methodology.

We shall keep the description simple, and we will use only a subset of the SPEM
notation. We introduce SPEM along the actual descriptions as the notation is easy
to comprehend without extensive introductions. Using this notation, we present the
general guidelines for applying MDRE practices. These guidelines should be easily
adaptable to any kind of iterative methodology [8] and include agile methodologies
[99] like Scrum [35, 142] and XP [14] and more formal ones [100] like RUP [95]
and OpenUP7 [94].

Figure7.9 presents an overview of the ReDSeeDS Methodology in terms of the
roles, tools and work products. We can distinguish two major roles in the Software
System Evolution process: the Requirements Engineer and the Software Developer.
In turn, the Technology Evolution process encompasses a single major role of the
Transformation Engineer. In larger projects, each of these roles can be played simul-
taneously by several people, while in smaller projects, one person can play more
than one of the roles.

The three roles of the ReDSeeDS Methodology can be mapped onto the roles
found in other methodologies. The Requirements Engineer extends the skills of a
typical Software Analyst with knowledge of RSL’s syntax and semantics. In many
situations, also more skilled Domain Experts (End Users) can play the roles of
Requirements Engineers. However, the ReDSeeDS’ Requirements Engineer has to
be rigorous in defining the application logic and the problem domain. Thus, the skills

7 http://epf.eclipse.org/wikis/openup/.

http://epf.eclipse.org/wikis/openup/

7.2 Introducing the ReDSeeDS Methodology 235

Fig. 7.9 Methodology overview

involve some capabilities of a software programmer. This role can thus be played
collectively by people who would traditionally play the roles of Domain Experts,
Analysts and Programmers. In turn, the Software Developer is a combination of
the typical roles of Software Designer and Programmer. This role should be played
by people skilled in the specific technologies and who are capable to finalise the
system’s implementation.

Normally, the Requirements Engineer tightly cooperates with the Software
Developer using the ReDSeeDS tool. The Requirements Engineer is responsible for
creating and maintaining the RSL Model, while the Software Developer is respon-
sible for the UML Model and Code that is generated from the RSL Model. These
relationships are illustrated in Fig. 7.9 in the SPEM notation. The two work products
(RSL model, UMLModel and Code) are depicted as document-like icons. The tools
are depicted with hammer-like icons. As we can see, in addition to ReDSeeDS, the
Software Developer also needs a standard IDE to update, compile and debug code.

The most non-typical role in Fig. 7.9 is the Transformation Engineer. This role
should combine skills inmodel transformation programmingwith designing software
architectures and applying implementation technologies. The programming skills
are needed to produce MOLA Transformations using MOLA Tool. However, to
develop these transformations, the Transformation Engineer first needs to determine
the transformation rules. To do this, the role needs to have detailed knowledge of
the target implementation technology and of defining architectural guidelines. We
discuss this later in this section.

236 7 Applying MDRE in Practice

Fig. 7.10 Software System Evolution process with MDRE

7.2.2 Software System Evolution Process

Let us now concentrate on the Software System Evolution process. The sequence of
tasks in this process is illustrated in Fig. 7.10. We assume that the process is iterative
with two cycles. The larger cycle is based on major system increments like new
versions or major revisions and the smaller cycle is based on short-term (e.g. one or
two week) iterations that result in small increments of the system’s functionality.

The overall process consists in defining the major system increment and then
conducting consecutive iterations until that increment is implemented. As we will
see, each increment is defined through a set of use cases and domain elements. Each
iteration startswithwriting use case details and updating (refining) the domainmodel.
This is done for a selectedpart of the overall use case set.After the requirementsmodel
details are ready we can run the model transformation. This produces a compilable
and executable system that can be validated against the desired application logic.
This is only a rough validation to make sure that the source requirements model was
prepared correctly. In case of problems this allows for quick corrective actions—
returning back to the requirements model and correcting the use case scenario logic
and domain element details.

If the logic was defined correctly and the generated code behaves properly, the
next step is to update this code manually. As we know from the previous chapters,
this pertains mainly to the domain logic (e.g. the Model layer) and partially to the
presentation (e.g. the View layer). In an ideal situation, only the newly generated
methods within these two parts need to be written or modified. However, sometimes
the already implemented functionality could have been changed (due to unforeseen
changes in the project’s scope). This means that some of the already implemented

7.2 Introducing the ReDSeeDS Methodology 237

code may necessitate changes. Sometimes, the previously generated methods are
substituted by other methods. This can be controlled by the code generation and
versioning facilities of the UML tool.

After updating code the next obvious step is to validate it. This should mostly
consist in testing the domain logic, which was written manually (not generated).
Thus, it generally involves introducing test data, specifying expected results and
assuring that these results are correct.8 We do not go into the details of this part as
it should involve normal quality assurance practices, and their discussion is out of
the scope of this book. If the validation passed correctly the next iteration cycle can
be started. Alternatively, the next iteration may involve correcting code which has
caused the errors found during validation.

As we can see, the presented process is kept very simple. Its main purpose is
to be easily integrated with the processes of other methodologies, be it agile or
more formal. Thus, the process we present does not include the various tasks and
techniques found in a fully developed methodology but only provides guidelines on
how to integrate MDRE into a standard methodology. In the following paragraphs
we present more details, which refer to specific work products and their treatment
within the above presented tasks.

We start with explaining the task of defining a major system increment illustrated
in Fig. 7.11. By a “major system increment” wemean an increment specified through
a substantial set of use cases. This may involve specifying a completely new system
or extending the functionality of an existing system. In the second case we assume
that the system was already previously specified and developed using RSL. Legacy

Fig. 7.11 Defining a major system increment

8 It should be noted that this process can be also automated through generation of test cases directly
from requirements models [161, 162].

238 7 Applying MDRE in Practice

software systems (not developed using RSL) are dealt with in the next section of this
chapter.

Defining a major system increment is thus related to creating a new or extending
an existing RSL Model by the Requirements Engineer. However, at this stage we
do not need the full details. Instead, we only need to define the scope of the major
increment. Thus, we concentrate on enlisting use cases and sketching the problem
domain. This involves updating the Use Case Model, by adding new use cases or
modifying the existing ones without yet specifying the details of their scenarios.
Updates to the Domain Model should be limited to the Problem Domain Model. By
this we mean specifying the Concepts in the problem domain, their relationships and
maybe defining some of their important Attributes.

Defining a major system increment can be accompanied by the decision to update
the implementation technology. In the Software SystemEvolution processwe assume
that the new technology is already supported by an appropriate MOLA Transfor-
mation. Thus, the decision mainly consists in selecting this transformation by the
Software Developer, as illustrated in Fig. 7.11. Such a decision has its consequences
which need to be considered. It means that many parts of code that was previously
manually updatedwill need to be significantly changed. The new transformationmay
need to change the code structure to accommodate it to the new implementation tech-
nology. Thus, the following iterations will probably involve rewriting some of the
already implemented functionalities. The main advantage of the MDRE approach
is that the new structure and much of the application logic will be automatically
updated. Moreover, the places that need updating will be clearly visible in code and
this significantly lowers the barriers that prevent from shifting to the new technology.

After the use cases of the major increment are defined we should assign them to
consecutive iterations using various techniques. We do not discuss it in detail as this
is normally part of the main methodology. In general, the first iterations should treat
the use cases that are the most important and the most complex in terms of their
functionality and implementation difficulty.

In each iteration, work is generally divided between the Requirements Engineer
and the Software Developer according to the tasks presented in Fig. 7.10. Figure7.12
shows the responsibilities of the first of these roles. It consists in detailing the Use
Case Model and the Domain Model for their parts that are assigned to the cur-
rent iteration. Generally, this involves writing Use Case Scenarios and updating the
System Domain Model with the elements that are used in the scenarios. This, of
course, involves defining Screens, Data Views, Triggers, Attributes and so on.

The responsibilities of the Software Developer are presented in Fig. 7.13. First,
the developer transforms the RSL Model created by the Requirements Engineer,
into the UML Model and Code. This work product can be generally divided into
three work products associated with the three architectural layers, as discussed in
the previous chapters. The Application Logic should not necessitate any changes to
be made by the developer. However, it needs to be validated in terms of the desired
functionality. This means compiling and running the whole generated code. This
allows for checking if the overall behaviour is appropriate and to check that the RSL
Model does not contain any logical errors.

7.2 Introducing the ReDSeeDS Methodology 239

Fig. 7.12 Main responsibilities of the Requirements Engineer in an iteration

Fig. 7.13 Main responsibilities of the Software Developer in an iteration

Only after assuring that the application logic is correctly defined and generated, it
makes sense to update the remaining parts of code. For the Presentation part, it should
mainly consist in defining the layouts and look of the various generated windows.
In some cases, we would also need to change some of the functionality of the UI
elements, not catered for by the automatic transformation program. For the Domain
Logic, updates to code are much more substantial. They involve defining database
access, implementing necessary data processing, communication with external sys-
tems and so on. This forms the main part of the Software Developer’s activities.
Updates to code are performed within a standard IDE and obviously involves gener-
ating (compiler) and validating (debugger) the Executable Code.

240 7 Applying MDRE in Practice

In summary, the Software SystemEvolution process involves incremental delivery
of Executable Code highly supported by automatic transformations from the RSL
Model. The creation of an RSLModel within a major system increment is illustrated
in Fig. 7.14. The Use Case Model (top) and the Problem Domain Model (bottom)
define the scope of the major increment. Basically, these models should be treated
as stable but can be subject to changes during detailed work. The level of acceptable
changes to the major increment’s scope, obviously depends on the agreement (e.g. a
formal contract) between the clients (users) and the developers. In any case, the two
models constitute very good means to manage the project’s scope and to negotiate
changes in the scope.

The use casemodel drives the development process through assigning use cases to
iterations. This is also illustrated in Fig. 7.14 (middle part) which shows a schematic
view on the work products within four example iterations. A single iteration is equiv-
alent to defining the details and implementing the functionality of several selected
use cases. The details involve Use Case Scenarios and the associated SystemDomain
Model (Screens, Triggers, Data Views) consistent with the Problem Domain Model
(Concepts, Attributes). Each consecutive iteration fills the initial “skeleton” RSL
Model with the “muscles” in the form of use case scenarios and detailed domain
elements.

Directly after defining the use case details for a set of use cases assigned to
the given iteration, the developers start implementing them. This is illustrated in
Fig. 7.15. This step involves much more details and thus only two iterations are
shown schematically. The transformation engine of the ReDSeeDS tool produces
the appropriate class model with MVP classes. It also generates method code for the
P and V classes. The developers update the Presenter methods and write the Model

Fig. 7.14 Incremental delivery of RSL Models

7.2 Introducing the ReDSeeDS Methodology 241

Fig. 7.15 Incremental system delivery using RSL Models

methods. In the next iteration, the engine updates the class model with additional
classes (M2, P2, V2) with code for P2 and V2, and the process repeats. Throughout
the process, the developers have clear guidance as to where changes and extensions
should be performed. This is because of the clear structure of the generated UML
model which serves as the “map” of the generated code.

7.2.3 Technology Evolution Process

Note that the amount of additional work associated with updating the generated
code depends on the quality of the transformation from RSL to code. This book
presents many rules for assuring this quality. However, the details have to be worked
out for a given target technology and its specifics. In some cases, the basic RSL
syntax may not provide the necessary constructs for translation into a particular
technology. This means that the development of a good quality transformation might
also need to involve proposing certain extensions to RSL, like attaching tags or
defining stereotypes.

This needs to be taken care of by the Technology Evolution process, presented in
Fig. 7.16. The important first step is to analyse the target technology, which should
involve analysing the best practices for structuring code compliant with this technol-
ogy, possible ways to structure the user interface, accessing persistent storage and so
on. The next step is to define transformation rules from RSL to code in that particular
technology. In general, this can extend the set of rules presented in Chap.4.

Sometimes, in order to raise the quality of the rules, we may need to extend the
notation of RSL. For instance, the target technology may introduce several types of
Triggers (buttons, menu options, hyperlinks,…). It thusmight be helpful to introduce

http://dx.doi.org/10.1007/978-3-319-12838-2_4

242 7 Applying MDRE in Practice

Fig. 7.16 Technology Evolution process with MDRE

special tagging notation that would differentiate the Triggers and eventually cause
generation of code with support for the available UI elements.

Defining the set of transformation rules is important as it sets the scope for the
new transformation. It can be seen as a bad practice to jump right into the step
of writing a transformation (MOLA) program. Discovering the rules while writing
a transformation often leads to poor quality code caused by constant changes and
updates due to changing scope and target. In general, we should follow the practices
shown in Chap.6 where the individual procedures of the transformation reflect the
transformation rules.

The process of defining transformation rules and writing MOLA transformations
can take several iterations before a full transformation is ready. It obviously involves
validating the transformation program.We need to make sure that the transformation
rules are implemented correctly, mainly in terms of the correctness of the gener-
ated code. We need to make sure that the generated code compiles and produces
executables that can be instantly validated against typical source RSL Models.

The last step in the Technology Evolution process is to update the transformation
list available in the transformation tool (e.g. in ReDSeeDS). This step links the two
major processes of the ReDSeeDS Methodology. The new transformation can now
be used in the Software Evolution Process and it is up to the particular software
development project to decide to switch to using the new transformation. Note that
the switch can be associated with only reflecting some small modifications in the pre-
viously used technology or refining the transformation rules. It thusmay be relatively
easy to start using the new transformation. On the other hand, the new transformation
may completely change the target code structure due to using a completely new tech-
nology that significantly differs from the old one. This is most often associated with
making a strategic decision as the switch is associated with a significant investment.

Finally, we can observe that transformations for different technologies can be
used simultaneously. We can develop a single RSL Model and implement it using
several transformations at the same time. This should significantly facilitate porting
a given system onto several target environments, e.g. different operating systems. A
common example is the development of applications for mobile devices which could
operate on the various mobile platforms available on the market. With the MDRE

http://dx.doi.org/10.1007/978-3-319-12838-2_6

7.2 Introducing the ReDSeeDS Methodology 243

approach, all the versions share the same RSL Model. The differences between the
platforms are reflected through the transformations from RSL to code. The RSL
Model evolves along new ideas pertaining to the functionality of our mobile appli-
cation. The transformations evolve along the changes introduced by the producers
of the given platforms.

7.3 Reuse Approaches with Requirements Models

The base ReDSeeDS Methodology assumes that the system is developed using
MDRE throughout the whole project. So, it is suitable mostly for new systems,
for which requirements can be formulated with RSL and then translated automati-
cally into code. However, in most situations we would prefer not to start formulating
requirements models from scratch, but to reuse some behaviour from previous sys-
tems [156]. In this section we will present two possible extensions to the standard
MDRE process, that allow to deal with this issue.

7.3.1 Applying MDRE to Existing (Legacy) Systems

It is an obvious observation that many software systems still used nowadays were
created with old, obsolete technologies. They were developed using traditional meth-
ods for years, with many “work-arounds” and “eclectic” programming (to use an
euphemism). At some point, a decision has to be made to discontinue their further
evolution using the old technologies as it is not economically justified. It becomes
necessary to create a system with similar functionality but using new, efficient tech-
nologieswithmodern look-and-feel, acceptable to contemporary users. This includes
the rising trend to substitute classical desktop systems with their web-based versions.
Unfortunately, recovery of logic from such legacy software is difficult. This is caused
by the inability to comprehend and analyse code that became tangled and twisted
throughout the years of development. Thus, it is often easier to write the new system
from scratch instead of attempting to understand and modify the existing system.

In this section we present a method to recover important elements of legacy
software independently of their code structure and details. Instead of analysing and
reverse-engineering code, we propose to reverse-engineer the system’s user interface
[163]. In this solution, the information about the application logic can be extracted
from any legacy system by determining its observable behaviour [117]. It can then
be stored in the form of requirements (use case) models [134]. This opens all the
code generation possibilities that we have described throughout this book and which
is summarised in the ReDSeeDS Methodology.

The recovery process illustrated in Fig. 7.17 consists of three major steps: (1)
recording test scripts, (2) transforming scripts to RSL and (3) manually correct-
ing RSL models. In the first step, the legacy system is subject to “UI ripping”

244 7 Applying MDRE in Practice

[107] (recording the observable behaviour) as available in standard commercial test
automation tools. The legacy system users work with it as normal but also record
their activity, using the test tool that integrates with the user interface. This produces
processable test scripts (e.g. in the XML format). The scripts are then processed by a
dedicated module which is part of the ReDSeeDS tool. The module can process test
scripts and turn them automatically into RSLmodels, consisting of use case scenarios
and domain notions. These models can be further edited manually by merging sce-
narios and grouping them into use cases. The final step is to update the extracted RSL
models in the RSLEditor. This allows for correcting the domainmodel (naming etc.),
extending the models with new functionality, changing the existing functionality.

To capture the legacy application logic we need to process and store information
on all the significant paths through the user interface, including exceptional behavior
(e.g. entering invalid data, operation cancellation). Thus, the important requirement
of the new tool suite is to be able to record all the possible user-system interaction
paths of a legacy system. One of such paths is illustrated in Fig. 7.18. Here we can see
a short scenario for entering a new book entry using the JabRef reference manager
(jabref.sourceforge.net). We would like to “play-out” many such scenarios through
normal usage of the system and to record their steps and the data exchanged with the
user (cf. UI ripping). Note that such recording is present in typical test automation
tools.

Fig. 7.17 Legacy application logic recovery process

7.3 Reuse Approaches with Requirements Models 245

Fig. 7.18 Capturing functionality of a legacy user interface

In our examples we use Rational Functional Tester (RFT) [39] which is suitable
for our purposes. In RFT, capturing and simulation of user actions can be performed
for various user interface styles and technologies. The captured functionality (“test
scripts”) is editable and presented together with the UI screens. RFT can also export
the test scripts in its proprietary XML format. An example of such a script is pre-
sented in Fig. 7.19. The XML file contents reflect some elements of the scenario
(“Book” button, “New Book” window) and the data (the “Title” of the new book)
from Fig. 7.18.

Obviously, test scripts recorded by RFT need further processing to turn them into
RSLmodels. Their purpose is not to capture application logic units but to capture lin-
ear paths through the system behaviour for further repeated automatic test execution.
The ReDSeeDS tool has a plug-in called TALE (Tool for Application Logic Extrac-
tion) [139] that can automatically turn test scripts into use case scenarios and domain
models. The result of such translation for the scenario from Fig. 7.18 is illustrated
in Fig. 7.20. The XML file produced by RFT is turned into a scenario containing
five SVO sentences supplemented by a domain model containing information on the
windows (e.g. “NewBook window”) and the associated domain elements (e.g. “New
Book data” with “Title”).

Further processing has to be done manually. The recovered linear scenarios have
to bemerged into use cases with conditions, alternative paths and invocations as illus-
trated in Fig. 7.21. The recovered scenarios are displayed in the so-called Detached
scenario list. Any “detached scenario” can be attached to an existing use case. New

Fig. 7.19 Example script with UI recording

246 7 Applying MDRE in Practice

Fig. 7.20 RSL model translated from the recorded script

use cases can be created and freely edited. When attaching a scenario to a use case,
the user can choose a reference scenario and point to a correct joining place. This also
adds condition sentences to both scenarios. The previously (possibly erroneously)
attached scenarios can also be detached back to the unassigned scenario list. The
user can also delete scenarios from the list, join them or split them. It is also possible
to move scenarios between use cases, merge use cases or notions and automatically
find common scenario fragments.

After recovering and editing the legacy application logic and domain we can
proceed to generating the target system. For this purposewe can use all the techniques
presented in the previous chapters. Having a correct RSLmodelwe can automatically
obtain much of the application logic and presentation code. To illustrate the process

Fig. 7.21 Merging recovered scenarios

7.3 Reuse Approaches with Requirements Models 247

Fig. 7.22 Example of recorded UI behaviour

of recovery andmigration to a new technologywe use a real case. This is a non-trivial
commercial system in the bank loanmanagement domain. The systemwas developed
by a major Polish software provider and was discontinued from further development
in 2009, after nearly 10years of development and commercial usage. The system
became obsolete despite it being developed using technologies that are still in use:
Java 1.5, Swing9 for the user interface,WebSphere Application Server10 and JDBC11

with Hibernate12 for database access. The main problem with the system is its use
of Swing that is no longer treated as an ergonomic solution. Also, the architectural
structure of the system and related code became obsolete and impossible to evolve.

For this reason the only economic way to recover logic from SZOKwas to use the
TALE tool. The case study covered a significant part of the system’s functionality and
resulted in a model consisting of 50 full use cases, each with two or more scenarios.
The study startedwith recording test scripts using RFT, illustrated in Fig. 7.22 for one
example piece of functionality. This simple example shows two alternative scenarios
associated with searching for clients (pol. wyszukiwanie klienta13). Both scenarios
start with selecting an option (Klienci → Wyszukaj; Clients → Search), and then
show a search criteria window. One scenario results in showing a client list (pol. lista
klientow) and the other (when the list is empty) shows an info message.

In the next step of the recovery process, the TALE tool transforms the recorded
scripts into an initial RSL model. This model is then manually modified by adding
use cases to group the collected scenarios and merging alternative scenarios under
appropriate use cases. The result of this activity is illustrated in Fig. 7.23. It shows a
small fragment of the use case model with six use cases connected through the «in-

9 http://docs.oracle.com/javase/tutorial/uiswing/.
10 http://www.ibm.com/software/products/appserv-was/.
11 http://www.oracle.com/technetwork/java/javase/jdbc/index.html.
12 http://hibernate.org/.
13 The system’s user interface is entirely in Polish, so we provide some English translations in text.

http://docs.oracle.com/javase/tutorial/uiswing/
http://www.ibm.com/software/products/appserv-was/
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://hibernate.org/

248 7 Applying MDRE in Practice

Fig. 7.23 Fragment of the recovered use case model

Fig. 7.24 Fragment of the recovered domain model

voke»relationships. Two scenarios generated from the recording, shown in Fig. 7.22,
were manually assigned as the contents of the “Wyszukaj klienta” use case. The
scenarios were merged and appropriate condition sentences (‘cond:’) were added.
Finally, appropriate invocation sentences were introduced.

7.3 Reuse Approaches with Requirements Models 249

Fig. 7.25 Automatically generated web forms

Together with use case scenarios, also the user interface and domain notions were
automatically recovered as illustrated in Fig. 7.24. It shows notions related to two
of the windows shown in Fig. 7.22. The notion names reflect also the final step,
which is to refine the RSL model to cater for possible modifications and extensions
to the system’s functionality. Often, the domain model needs manual refactoring due
to required renaming of recovered notion names. Some notions were renamed and
several use cases “wired” to compose for consistent application logic and navigation
between various parts of the user interface.

This finally allowed us to migrate to a new technology using the ReDSeeDS
transformation engine. The result of this migration is shown in Fig. 7.25. The shown
forms were generated completely automatically from the presented domain model.
What is more, the generated system also followed the application logic according to
the presented use case scenarios. As part of the case study, the generated code was
updated with database access and some simple business logic (data processing).

7.3.2 Reusing Requirements Models Through Patterns

The previous approach to software reuse is based on reverse engineering of existing
software. Another widely practiced technique of software reuse is to use patterns.
Contemporary software systems present high repeatability in their structure and their
logic (behaviour). It is thus an obvious desire of software developers to be able to

250 7 Applying MDRE in Practice

Fig. 7.26 Finding patterns in observable system behaviour

reuse the reoccurring elements within the various artefacts they produce during the
software lifecycle. This follows the idea of Alexander et al. [4] “to describe the core
solution to problem, in such a way that you ca use the solution a million times over,
without ever doing it the same way twice”.

This idea was formulated in the context of building construction, but found wide
acceptance in software engineering. Everyone has heard of design patterns and
architectural frameworks. However, not much can be said about patterns at the level
of requirements and specifically—requirements models. The first inspiration came
from Alistair Cockburn who proposed the idea of “parameterised use cases” in his
seminal book “Writing Effective Use Cases” [34]. This idea consists in creating
use cases like “Find a whatever” but was not described in detail. The idea returned
in another seminal book “Use Cases: Patterns and Blueprints” by Overgaard and
Palmkvist [126]. This book proposes a set of reusable] requirements models, but
stops at the level of detail of what we can call the “use case interrelations”. It treats
arrangements of use cases in use case diagrams but does not go into the details of
the “use case contents”.

Lack of more detailed patterns can be caused by lack of standard notations for use
case internals. However, with the advent of RSL we obtain full capabilities in this
respect. In this section we thus present patterns that span all the levels covered by
RSL: use cases and their relationships, use case scenarios and domain models. This
is associated with capturing repeatable application logic flows, suitable for software
systems independent of their problem domains [9].

Figure7.26 presents an example, illustrating the general idea. It shows two
sequences of application logic expressed through two scenarios. The application
logic is identical despite the two problem domains being quite different (library vs.
e-shop). The two scenarios exhibit the same sequence of user-system interactions
and refer to similar domain actions (“validate”, “register”). Of course, the domain
logic is different (e.g. how to “validate”) and should be specified separately for the
two systems.

In order to be able to repeat such scenarios in various contexts we would need to
abstract over any specific problem domain, extracting pure application logic. This

7.3 Reuse Approaches with Requirements Models 251

creates patterns that define typical observable behaviour of software in terms of
sequences of user-system interactions. However, these patterns involve not only
abstract behaviour but also an associated abstract problem domain. This concept is
explained in Fig. 7.27. It refers to the already mentioned “Find a whatever” use case
concept formulated by Alistair Cockburn. The presented use case model is highly
parameterised. The parameters are placed in parentheses as part of actor and use case
names, and use case scenarios. Moreover, these parameters (“whatever”, used in the
use case name and sentence object) refer to specific elements in the domain model
(the “whatever” Simple View). This leads us to the following definition of what we
call “Software Behaviour Patterns”.

A Software Behaviour Pattern (SBP) is one or more closely related abstract
use cases together with their scenarios expressed in RSL notation. These scenarios
contain interactions between abstract actor(s) and an abstract system, and system
actions defining abstract observable behaviour of the system (abstract events). The
events are defined with sentences containing only references to an abstract problem
domain. Instantiation of a pattern is performed by substituting references to the
abstract domain with references to a specific one.

This definition contains an important characteristic of SBPs.We prefer them to be
associated with an abstract problem domain, easily substitutable by a concrete one.
This can be implemented within the ReDSeeDS tool wherein the developers are able
to quickly change the names in the domainmodel, and thus instantly “switching” from
one domain to another. In this way, patterns can be quickly created or instantiated.
Creation of a pattern consists in changing a concrete domain into an abstract one (e.g.
“Add book” –> “Add whatever”), where instantiation is changing in the opposite
direction (e.g. “Add whatever” –> “Add sales item”).

Based on this mechanism we can create a library of patterns, reusable in many
contexts.14 Here we present one example pattern which can serve as a starting point.
This is a classical pattern that uses the well-known CRUD (Create, Read, Update,
Delete) approach, presented also in the pattern book by Overgaard and Palmquist.

Fig. 7.27 Structure of Software Behaviour Patterns

14 Similarly, a library of anti-patterns can be built [43] and used as guidance to avoid certain
commonly made mistakes in use case modelling.

252 7 Applying MDRE in Practice

Fig. 7.28 “Manage resources” pattern: use case model

We call our version of the pattern “Manage resources”. After Cockburn we could
also call it “Manage whatever” but we prefer the more formal name.

The pattern is based on the use case model presented in Fig. 7.28. It involves an
abstract “(user)” and five abstract use cases with “(resource)” being the recurring
parameter in each of them. The central use case is “Show (resource) list”, which
invokes the four other use cases which provide the actual CRUD functionality. Note
that the “Create” use case is also accessible directly, and not only through an invo-
cation. This is due to creating a “(resource)” that does not necessitate the context
needed by the other three invoked use cases. To read, update or delete a “(resource)”
we first need to select that resource which is provided by the central use case.

The five use cases are further detailed with appropriate scenarios. Some of them
are illustrated in Fig. 7.29. These scenarios are similar to the scenarios found in the
examples in the previous chapters, and especially in Sect. 4.5. In fact, we can treat the
current “Manage resource” pattern as a generalisation and extension of the presented
use case models of the library domain (see e.g. Fig. 4.44).

In Fig. 7.29, the functionality is quite basic.We can think ofmore complex scenar-
ios with, e.g. the resource list being filtered or sorted. This can be subject to creating
more elaborated patterns and later selecting the ones that are most suitable for the
current problem at hand. Nevertheless, the scenarios are complete and coherent, with
the necessary four invocation sentences in “Show (resource) list” consistent with the
four invocation relationships.

The scenarios are attached to the abstract domain model presented in fragment
in Fig. 7.30. This is an important part of the overall pattern and defines all the
abstract Screens, Triggers and Data Views that need to be involved. It contains
all the relationships that determine the semantics of the individual domain ele-
ments within the whole model. For instance, note that “update (resource) button”
is related with the “(resource) list” while “create (resource) button” is not. This
is because the event associated with the first Trigger does not need any context
(a resource selected from the list), while the second one does. The model also

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_4

7.3 Reuse Approaches with Requirements Models 253

Fig. 7.29 “Manage resources” pattern: selected scenarios

Fig. 7.30 “Manage resources” pattern: domain model fragment

contains all the verb phrases (“validate (resource)” etc.) that provide placeholders
for the domain logic to be defined after instantiation. Note that the abstract domain
model does not contain any Attributes because they can be determined only for a
concrete domain.

254 7 Applying MDRE in Practice

7.4 Summary: Is MDRE for Me?

In order to answer the title question, we should go back to the introduction and
Sect. 1.1 which present the ideal dream of a software project manager. To judge if it
is worthwhile to apply MDRE in our projects, we need to assess how close it brings
us to fulfilling this dream. In making this judgment we should consider two major
factors: quality of the resulting software and productivity in delivering software to
the clients. In practice, this means answering the following two questions: (1) “How
close is my working code to the real user needs?”, and “How much more productive
are the development teams?”

To answer these questions we can consider the current state of practice. The
recent comprehensive market survey RE-Kompass [1] shows that 58% of companies
were able to improve the quality of their software products by approaching more
systematically to requirements. Thus, advancement in Requirements Engineering
practices alone, leads to advancement in the quality of working code. Here we can
identify two main areas of concern:

• Understanding the user’s needs and capturing them correctly in adequately precise
and complete descriptions of the intended capabilities of the system;

• Translating these (evolving) descriptions accurately into technical artefacts, and
finally to the executable code in a way that leads to software with consistently high
quality.

Unfortunately as the RE-Kompass survey shows, at least 70% of companies still
use ambiguous natural language requirements with little template support. At the
same time, according to another survey by El Emam andGünȩs Koru [45], “toomany
requirements and scope changes” is seen as one of the two main causes (at 33%)
of project failures. This is especially visible in case of long-term projects, aiming
at large, complex and data intensive systems. It is thus evident that the software
engineering industry struggles with poor quality of requirements.

Note that the current process is largely manual especially in the area of user
and software requirements. RE concentrates on managing largely textual paragraphs
text and linking them manually to design. This is why—as the RE-Kompass sur-
vey shows—only 35% companies have experienced productivity increase through
applying systematic RE. This causes a lack of stakeholder acceptance for making
requirements formally precise—it adds effort but does not result in shorter develop-
ment and evolution cycles.

To change this we need to turn software requirements into first-class citizens in
the software lifecycle. We need to seek ways to make them formally precise (but still
comprehensible to business domain experts) and to automate their conversion into
working code. MDRE assists us greatly in this quest through its techniques, tools
and methodology, as presented in this book.

By introducing automation right at the beginning of the software development
process, MDRE promises significant gains in productivity. Of course, this has its
limits and MDRE cannot be seen as the universal “silver bullet” from the famous

http://dx.doi.org/10.1007/978-3-319-12838-2_1

7.4 Summary: Is MDRE for Me? 255

Fred Brook’s paper [26]. There are always cases where high levels of automation
are not possible or difficult. However, a high degree of automatic requirements-
to-code generation for typical business systems seems perfectly achievable in the
wider practice. This includes mainly systems with intensive user-system interaction
and relatively standard structures of data processing and storage. For other types of
systems, certain aspects of code need to be left for semi-automatic generation and
manual completion.

The key to mitigating the problems of software development seems to be shifting
our efforts towards the essential complexity (cf. requirements), abstracting away the
“accidents”, i.e. the technological details. In MDRE, all these details are captured
within transformation programs capable of generating various target technological
environments (web/mobile/desktop interfaces, databasemanagement systems, archi-
tectural frameworks, etc.). With a library of such transformations at hand, the vari-
ous software project stakeholders can concentrate on providing semantically precise
functional requirements specifications. As a result, the level of complexity at which
developers need to operate decreases dramatically. This has two very significant
impacts especially for large and complex systems:

• Complex problems and their solutions have to be handled only at the conceptual
level (the essence). This allows for buildingmuchmore complex systems at amuch
lower cost associated with their unambiguous specification and implementation.

• The quality of complex systems rises significantly through applying automation in
generating code of repeatable high quality, from high-level requirements models.

What is important is that the amount of effort to achieve these impacts in a given
organisation might not be very significant. This mostly depends on the current prac-
tice in requirements specification. If the development teams have experience with
writing good quality use cases and domain models, the effort would mainly consist
in shifting to more semantically precise notations of RSL. In other cases, the effort
would be obviously higher because it would involve acquiring knowledge on the
fundamentals of use case and domain modelling. Of course, when implementing
MDRE in our organisation, we should follow the best practices of software process
improvement [125]. Generally, this should be a gradual process which improves our
practices and raises maturity. This process can go through several levels.

1. Level 1. No systematic practices in requirements modelling. At this level, the
organisation practices mainly textual requirements with perhaps some elements
of modelling like use case diagrams and class diagrams for domain models.

2. Level 2. Practicing precise requirements models. At this level, the organisation
has codified practices for documenting functional requirements with precise use
case models, including detailed use case scenario models. It also codifies prac-
tices in documenting domain models which are precisely linked to the functional
requirements models.

3. Level 3. Practicing RSL modelling. This level is associated with implementing
RSL to document all the requirements. It also involves using a dedicated RSL
editor to formulate syntactically and semantically precise RSLmodels. However,
no model transformation is yet practiced.

256 7 Applying MDRE in Practice

4. Level 4. Practicing RSL-based development. At this level, the RSL models are
treated as primary development artefacts. RSL models are transformed to code
using appropriate tools andmodel transformations. TheReDSeeDSMethodology
is applied and merged into standard practices. However, important parts of code
are developed using standard practices.

5. Level 5. Practicing requirements-level programming.This level is associated with
transferring all the essential development activity to creating requirements-level
models. No code is developed using traditional programming languages. Imple-
mentation technology is entirely encapsulated in automatic transformations from
requirements to executable code.

As we can see, reaching Level 2 is associated with applying general the best
practices of requirements modelling. Many organisations are already at this level.
Levels 3 and 4 consist of the elements presented in this book. Reaching Level 3
is associated with introducing an RSL Editor to practice, and reaching Level 4 is
associated with practicing the full methodology.

Finally, Level 5 goes significantly beyond the scope of this book, and generally
beyond the current state-of-the-art. However, we think that this is a good direction
of the future research and innovation for MDRE. Shifting from 3GL programming
to “requirements-level programming” could bring productivity gains similar to that
of shifting from assembly language programming to 3GL. This would lead to substi-
tuting traditional programming language compilers with requirements model trans-
formation engines. The challenges here seem to be much greater because of the
very large number of dimensions that need to be taken care of by the transformation
engines. This should also involve non-functional requirements which we did not
try to tackle in this book. This issue opens a vast area of potential future research.
Specifically, it may involve studying the influence of non-functional requirements
on requirements-to-code transformations.

Chapter 8
Case Study

So far, we have provided the reader withmany technical details on how to achieve fast
generation of code from precise requirements models. However, can we claim that
such transformations can be done “in a snap” as we promise in the title of the book?
In this chapter, wewant to demonstrate that this is possible, and a reasonable working
application prototype can be obtained very quickly after formulating requirements
in RSL. For this purpose, we will present an end-to-end case study example.

8.1 Study Assumptions and Context

As we have learned from Chaps. 2 to 4, in order to obtain working code, we need
to specify RSL models very precisely. This precision can be rewarded with instant
generation of the system’s structure and much of the application logic and user
interface code. Yet, an important question is about the efficiency of the approach.
How long does it take to formulate a considerably sized RSLmodel that can produce
working code? Can it be more efficient and increase productivity in relation to the
“traditional” approaches?

Wewill approach at answering these questions by presenting a case study example.
In this case study, we want to show how far we will get in a very short period of
time—in just one working day [148]. Of course, one day is not a “snap”. However,
in our case study, we will encompass all the steps that include also the formulation
of the source RSL model. The time to develop precise requirements is an important
factor in judging the effectiveness of our approach.

In the study, we thus make certain assumptions. We want the whole system
prototype to be developed by one person in one working day (8h; one man-day).
By a prototype, we mean a system with fully working and verifiable application
logic, but without the domain logic and data persistence.1 We also want to factor out

1 Generation of basic domain logic and data persistence can be made possible by developing an
extended transformation—see the discussion section.

© Springer International Publishing Switzerland 2015
M. Śmiałek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2_8

257

http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_4

258 8 Case Study

the effort to elicit the requirements from the user and to discuss all the possibilities,
including the time, to make the final decisions. We treat this as out of scope of our
approach and of this case study. Thus, we assume that the initial user requirements
are known and either written in natural language or well discussed and understood
by the (single) developer.

With well-understood user requirements, the developer has to write a complete
RSLmodel. We assume that the developer is proficient in writing RSL specifications
and understands its semantics. We also assume that the developer is proficient in
Java and the associated technology platform. This is necessary in order to update the
generated Model layer methods with some stub code needed for the prototype to be
verified.

Another assumption we make is that we will build a complete end-to-end
application during the one day. The application will not just be a part of a larger
system. For this reason, we need to keep its size rather modest. Moreover, we want
the application to be comparable to some existing demonstrator for a traditional soft-
ware development technology. Thiswill facilitate assessment of the systemgenerated
fromRSL and its comparisonwith the system developed using “traditional”methods.

A suitable example system is thePetClinic,whichwas used as anofficial example2

for the Spring Framework [65, 140]3 up to version 2.5. Although this example is no
longer maintained and is already over 10 years old, it seems to be well suited for
our purposes. We do not care about the actual technology in which it was originally
implemented.4 We want to have a well-defined functionality and problem domain,
with an already working system for comparison. The problem domain is a quite
standard business domainwhich is ideal to be specifiedusing theRSL’s domainmodel
notation. The functionality contains a significant amount of user–system interaction
which can be effectively defined with RSL’s scenario notation.

The functionality of the original Pet Clinic system is clear5 and consists of about
a dozen use cases which operate on a simple domain model. Generally, the system
is required to handle data of four types: pets, pet owners, veterinarians and visits.
The application’s functionality consists in browsing through and updating these data.
The use cases are interconnected, so browsing through one type of data (e.g. pets)
enables operations on some other types of data (e.g. visits for a specific pet).

Based on these general assumptions, the case study provides an RSL model that
defines the functionality of the Pet Clinic system. This model was developed within
the ReDSeeDS tool’s RSL editor and we present direct snapshots of the model made
within the tool. The presented model was subject to model transformation which is
discussed in Chap. 6. This finally resulted in Java code and UML models. The code
was slightly updated manually only by adding some stub code for the methods in the
Model layer. This code is clearlymarked in further descriptions. Finally, the resulting
code was compiled and run.

2 http://docs.spring.io/docs/petclinic.html.
3 http://spring.io/.
4 The original source code can be examined at https://github.com/spring-projects/spring-petclinic.
5 http://www.woehlke.org/p/javaee7-petclinic/.

http://dx.doi.org/10.1007/978-3-319-12838-2_6
http://docs.spring.io/docs/petclinic.html
http://spring.io/
https://github.com/spring-projects/spring-petclinic
http://www.woehlke.org/p/javaee7-petclinic/

8.2 Source Model in RSL 259

8.2 Source Model in RSL

8.2.1 General Structure

The RSL model created during the case study consists of 12 use cases, presented
in Fig. 8.1. As we can see, four of the use cases are connected to the actor through
usage relationships. These use cases should be available for invocation from the

Fig. 8.1 Pet Clinic use case model

260 8 Case Study

main screen of the generated application. Other use cases are interlinked with several
invoke relationships that show the overall navigability through the application. We
have to remember (see Sect. 7.1) that the invoke relationships are created only when
appropriate invocation sentences are present in scenarios. So, the presented diagram
shows the status after the scenarios were written (as described further in this section).

To analyse navigation through the use casemodel, let us start—for example—from
the ‘Find pet’ use case. When we invoke it from the main screen, we should (at some
point) obtain access to invoking three other use cases: ‘Add new pet’, ‘Show visits for
pet’, ‘Create new visit’. If we further select ‘Show visits for pet’, we obtain access to
two use cases: ‘Show visit details’ and ‘Edit visit’. This ‘forward’ navigation through
the application is accompanied by appropriate ‘backward’ navigation. Whenever a
use case finishes processing, we should return to some point in the invoking use
case. Of course, the navigation and the return points have to be consistent with the
semantic rules provided in Sect. 2.4 and Chap.4.

We also notice that several use cases are targets of the invoke relationship with
more than one use case. This means that there will be several places (e.g. screens)
fromwhere these use cases are to be accessible. Such a situationwill cause generation
of several identical trigger elements in appropriate places in code, generated from
the invoking use cases. Moreover, the ‘Add new pet’ use case is both the target of
an invoke relationship and a direct usage relationship with an actor. This means that
it should be accessible both from the main screen and from another use case (here:
‘Find pet’).

Observe that suchuse cases as ‘Addnewpet’ do not expect any context information
provided by the user. In this particular situation, to add a pet we do not need any
previously entered information, like selecting some other element in a window. Thus,
‘Add new pet’ can be invoked directly from themain screen. On the other hand, many
use cases necessitate context information at their invocation. For example, to invoke
‘Create new visit’ we first need to have a pet selected. This use case can be only
defined as a target of an invocation of another use case where the context information
(here: a pet identifier) is supplied. As we will see further, this context information
has to be defined as part of the use case’s detailed representation.

In addition to the use cases, we define the problem domain. It consists of six
concepts as presented in Fig. 8.2. As we can see, the conceptual domain model is
simple. It is centred around pets with their owners and visits associated with the
veterinarians who conduct them. The multiplicities are limited to ‘1’ or ‘*’ (many).
Later, we will see that multiplicities play an important role in generating appropriate
contents of the forms in the user interface.

We may also notice that the notions ‘specialty’ and ‘pet type’ are not fully used in
the use case model. There are no use cases to add/edit elements of this type. This is
due to limitations in scope caused by the initial assumption to develop the system in
one day. The additional use cases can be added ‘the next day’ together with possible
further use cases.

The main visible difference of the RSL notation in comparison to UML is the
treatment of attributes. This was explained in the earlier chapters but here we provide
a complete example. When we look at the diagram in Fig. 8.2, it might seem that

http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_2
http://dx.doi.org/10.1007/978-3-319-12838-2_4

8.2 Source Model in RSL 261

Fig. 8.2 Pet Clinic problem domain model

placing attribute icons outside of the notion icons seems unnecessary and more
laborious to maintain. This is perhaps true for the conceptual model alone. However,
we will later see that the model needs to define access to individual attributes from
other elements like data views. This is not possible with typical UML notation.

The use case model and the conceptual domain model define the overall scope of
the system. This needs to be extended with the details of the application logic and
system domain elements. The model thus becomes complicated enough to define
a package structure that helps in browsing and also organises the structure of the
generated code.

The packages for Pet Clinic are presented in Fig. 8.3. We have divided the use
cases into three packages which will form three components of the application logic

262 8 Case Study

Fig. 8.3 Structure of the
requirements specification
for the Pet Clinic

code. In the future, when the model becomes more complex, this division can have
more levels. The conceptual domain model (‘DataModel’) is divided similarly to the
use case model in our simple case. However, in more complex systems, the division
is usually made to reflect the various areas of the problem domain and not the areas
of the application logic. Other elements of the domain model (data views, screens,
messages, triggers) are kept separate from the conceptual domain model. In this way,
we separate the concerns and facilitate comprehension.

8.2.2 Use Case Representation Details

We now go into the contents of the Pet Clinic’s packages and present most of the
use case representations and related detailed domain models. For each use case, we
provide a set of scenarios and in some cases—a related activity diagram. This is
accompanied by an appropriate diagram showing a fragment of the domain model
that contains all the related notions.

Note that development of the RSL model details was based on writing use case
scenarios in textual form. All the other presented elements were developed along this
activity. The activity diagrams were generated automatically by the ReDSeeDS tool
and were used only for improving comprehension and validation of the developed
application logic. For purposes of better presentation in the book, these diagramswere
additionallymanually rearranged.Thedomainmodelwas automatically updatedwith
domain elements when consecutive SVO scenario sentences were introduced. The
domain elements were then manually connected through appropriate relationships

8.2 Source Model in RSL 263

with multiplicities and other adornments. This was done in diagrams that were also
introduced manually.

Our presentation of detailed models starts with the ‘Add new pet’ use case as
shown in Fig. 8.4. The use case consists of two scenarios that branch after sentence 5.
The first five sentences are thus identical in both scenarios and we present them
twice just to emphasise this characteristic of RSL and the ReDSeeDS tool. In further
presentations we will compress the repeated parts.

The scenarios define typical application logic for adding a new element. They
start with an Actor-to-Trigger sentence, which defines the initial interaction of the
user (pressing a button). This is followed by a System-to-Screen sentence of type
SHOW. Such sentences show some Screen element, together with the associated
widgets. To determine the contents of the Screen element we need to examine the
associated domain model. In our particular case, the ‘new pet form’ Screen is related
with the ‘pet data’ Simple View. The relationship is directed towards the Simple
View, which means that new data will be entered in the Screen. Initially, the ‘new pet
form’ widgets (e.g. text fields) in the displayed window will be empty or will have
default values.

The actual widgets to be present on the ‘new pet form’ depend on the Attribute
elements pointed at by ‘pet data’. Figure8.4 shows these elements together with the
Concept elements that contain them (compare with Fig. 8.2). The form contains six
fields: two for the ‘pet’, one for the ‘pet type’ and three for the ‘owner’.

Note that the desired configuration of the fields can sometimes depend on the
multiplicities in the conceptual domain model, that—for instance—there can be
many (‘*’) pets associated with an owner, and each pet can have just one owner.
So, a form that concentrates on the owner may also need to present a list of that
owner’s pets. On the other hand, when the form concentrates on one specific pet,
an appropriate form would contain also the data of its only owner (and not a list of
owners).

Considering the above observation, we may want to extend the syntax and
semantics of RSL to distinguish the “main concept” for a particular Data View.
This is illustrated in Fig. 8.4, which contains such a relationship between ‘pet data’
and ‘pet’. This is an example of possible extensions that can be made to RSL in rela-
tion to the basic semantic rules given in Chap.4. However, in this case the generated
form would have the same fields with or without the additional notation.

Returning to the scenarios of ‘Add new pet’, note that sentence no. 2 shifts the state
of dialogue to the actor. The following sentences should thus allow for entering some
data and/or selecting some trigger elements (buttons). The first of these sentences
is an invocation sentence. This means that it allows the actor to choose to invoke
another use case—‘Add new owner’. Alternatively, the actor can choose to enter pet
data (sentence 3) and select ‘save pet’ (sentence 4).

The alternative after sentence 2 can be better seen in the activity variant shown on
the right of Fig. 8.4. The invocation sentence returns control back to sentence 2. This
means that after performing all the interactions within ‘Add new owner’, the ‘new
pet form’ is shown again to the user. This variant of semantics is used for invocation

http://dx.doi.org/10.1007/978-3-319-12838-2_4

264 8 Case Study

Fig. 8.4 Details for ‘Add new pet’

8.2 Source Model in RSL 265

sentences used in the dialogue state ‘actor’. As we will later see, different flow of
control is used for invocation sentences that are used in the dialogue state ‘system’.

Analysing the sentences that follow sentence no. 2, we can determine all the
Triggers (buttons) that will be present in the ‘new pet form’. The first trigger comes
from sentence no. 4—the ‘save pet’ button. The second trigger has to be derived from
the first SVO sentence of the invoked ‘Add new owner’ use case. This sentence is
analogous to the first sentence of ‘Add new pet’, and thus the second Trigger element
in ‘new pet form’ is the ‘add new owner’ button.

The Triggers used within a given use case can be also shown in the domain
diagram. Figure8.4 contains the twomentioned Triggers that are related to sentences
no. 1 and 4. Note that the first trigger (‘add new pet’) is not connected with any other
element in the diagram. It is not part of any Screen used in the current use case, but
is used within the screens that invoke this use case. The second trigger (‘save pet’)
is explicitly associated with the ‘new pet form’. This additional connection can be
seen as redundant—the appropriate relationship between ‘new pet form’ and ‘save
pet’ is deduced from sentences no. 2 and 4.

The final element worth noting in relation with the ‘new pet form’ is the ‘action
param’ relationship between ‘save pet’ and ‘pet data’. This relationship is important
when several Data View elements are associated with a given Screen element. In such
cases it is often needed to determine which data have to be processed after selecting a
givenTrigger element. In our current example, the Screen is relatedwith just oneData
View (‘pet data’). To signal that these data have to be processed after pressing ‘save
pet’, we need to connect these two elements with the ‘action param’ relationship.

Sentence no. 4 is an Actor-to-Trigger sentence. This means it can be now followed
by one or more sentences of type ‘System-to’. Sentence no. 5 complies with this rule.
It declares some processing of type VALIDATE that operates on ‘pet data’. This
processing can finish with one of two possible results. Thus, sentence 5 is followed
by two condition sentences (‘pet data correct’ and ‘incorrect pet data’). These two
sentences are responsible for splitting the use case representation into two scenarios.
This splitting of control flow can be determined by examining the presented activity
diagram.

The main (‘success’) scenario finishes with three SVO sentences that follow
checking ‘pet data’. They are followed by the ‘final’ sentence which passes con-
trol back to the invoking logic—either the ‘Find pet’ use case or the main applica-
tion screen (see Fig. 8.1). The alternative scenario finishes with one SVO sentence
followed by a ‘rejoin’ that shifts control back to sentence no. 3.

When analysing the final SVO sentences of ‘Add new pet’ we should remember
that Message elements have slightly different semantics than Screen elements. They
offer a “shortcut” where there is no need for additional ‘Actor-to-Trigger’ sentences
and for a sentence that closes the Message element (cf. sentence no. 8 for ‘new
pet form’). In our simple case (sentences 7 and 5.1.1), the messages need just an
acknowledgement from the user. Pressing of the appropriate ‘OK’ button and closing
the message window is implicitly assumed in the scenario.

What cannot be assumed for the Message elements is the contents of the message
defined in Fig. 8.5. The appropriate text is given as part of the element’s description

266 8 Case Study

Fig. 8.5 Extended notation for message text

field using special marking. This is another example of extending RSL’s syntax and
semantics on top of the rules given in Chap. 4. We can also imagine an even more
complex extension, where the text is not constant but determined through some
attributes taken from the associated Data View elements.

The ‘Add new pet’ use case contains standard functionality for adding new data
elements to the system’s repository. Its logic contains many elements used in other
use cases. Thus, in further descriptions, we discuss only certain additional aspects,
characteristic for other types of functionality. This includes searching for data, listing
data elements, showing and editing data items.

The ‘Find pet’ and ‘List all owners’ use cases are two examples of application
logic for data searching whose scenarios and associated domain elements are shown
in Figs. 8.6 and 8.7, respectively. Both use cases have three scenarios; one of them
finishes with success, onewith failure, and onewith a rejoin sentence. The alternative
scenarios are controlled with two pairs of condition sentences. The first pair works
like that for ‘Add new pet’. The second pair is similar, but it works based on the
result of a ‘System-to-Message’ sentence (‘System shows no pets found message’
and ‘System shows add new owner dialog’). The condition pairs in this situation
determine also the buttons present in the message windows. For instance, the ‘no
pets found message’ have two buttons: ‘YES’ and ‘NO’.

Both use cases eventually present a Screen element that contains a list of data
elements—either a ‘pet list’ or an ‘owner list’. In both cases, a List View ele-
ment is related with the respective Screen element, and the relationship is directed
towards the Screen. This of course means that some existing data (taken from the
system’s repository) will be displayed. Somewhat more elaborate domain model—
worth mentioning—was needed for the ‘Find pet’ use case (Fig. 8.6). The displayed
list widget will contain six columns that are determined by the attributes pointed
at by the ‘pet list’. Some of these attributes are used to search for the pets and are
pointed at by another Data View, ‘pet search criteria’.

The next typical situation, shown in Figs. 8.6 and 8.7, is the invocation of various
use cases (‘Create new visit’, ‘Add new pet’ and so on) after displaying the screens
with the appropriate element lists (‘pet list screen’ or ‘owner list screen’). The above
invocation operations usually depend on selecting an item in the list, and then pressing

http://dx.doi.org/10.1007/978-3-319-12838-2_4

8.2 Source Model in RSL 267

Fig. 8.6 Details for ‘Find pet’

268 8 Case Study

Fig. 8.7 Details for ‘List all owners’

a button. We will later see how this is denoted in the definitions of the invoked use
cases.

As we can determine from the provided activity diagrams, control for the above
invocations flows is like that for the invocation in the ‘Add new pet’ use case. A
different situation is for the invocation of ‘Add new owner’ from ‘List all owners’.
This is done in an alternative scenario, where no owners are found by the system.
In this situation, the system displays a dialogue window and expects one of two
answers from the user. If the user decides to add a new owner, then the ‘Add new
owner’ use case is invoked. After the invoked use case resumes, control goes to
the next sentences in the scenario (here: two condition sentences). In this situation,
control flows differently because the invocation sentence is preceded by a ‘System-to-
Message’ sentence that does not change the dialogue state, but retains it as ‘system’.

A careful reader will notice that scenarios of both use cases lack sentences that
close certain Screen elements that were previously shown to the user. For instance,
we have sentence no. 6 in ‘Find pet’ that instructs to close the ‘pet search form’.
However, there is no analogous sentence for ‘pet list screen’. We know that there

8.2 Source Model in RSL 269

is no need to explicitly close a Message element, but Screen elements necessitate
closing.

This is not an error if we apply yet another extension of scenario semantics. We
assume that every Screen element has a standard ‘Back’ button. This means that we
do not need to add explicit sentences to press such buttons and close the respective
screens. Of course, this simplifies scenarios in many situations where the default
functionality is to go back to the “previous” Screen element. As we remember, RSL
semantics maintains a stack of Screen elements that are “uncovered” whenever some
element on top of the stack is closed. The application of this extended semantics is
illustrated in sentence no. 7 for ‘Find pet’ and sentence no. 3 for ‘List all owners’.
These sentences are not followed by any Actor-to-Trigger sentence and a CLOSE
sentence. However, such sentences are assumed and appropriate screen elements and
logic are generated in the target application code.

The ‘Show pets’ use case, shown in Fig. 8.8, is also a variant of data searching
functionality. In contains simpler logic than the previous twouse cases and its purpose
is to show a list of all the pets for a selected pet owner.With this use case, we introduce
an additional element that is needed in many situations where use cases invoke one
another. To show the pet list, we first need to know the context, i.e. the pet owner.

This context is emphasised through specifying a precondition. It contains a dec-
laration of a use case “parameter”, which is the ID of the owner selected from the
‘owner list’. This declaration can be used for checking consistency of the use case
model. The use case can be invoked only within some context where an owner ID
can be determined (e.g. selected by the user from a displayed owner list). The para-
meter in the precondition is consistent with the first sentence of the scenario, which
is of type Actor-to-ListView. This sentence refers to a screen element that has to be
present in the invoking use case. In our example, the ‘List all owners’ use case can
invoke ‘Show pets’ after the user selects an owner in the ‘owner list’ shown in the
‘owner list screen’.

The second sentence of the scenario is of type Actor-to-Trigger, which normally
starts the use case logic. This sentence determines the Trigger element that will be
contained in the Screen element that invokes this use case. So, in our example, the
‘owner list screen’ will contain the ‘show pets’ button.

A similar starting logic is defined for the ‘Delete pet’ use case, presented in
Fig. 8.9. In this case, the ‘delete pet’ buttonwill be present in the ‘owner’s pet screen’,
displayedwithin ‘Show pets’. The remaining logic of this use case is self-explanatory
as it contains just one alternative based on user’s decision.

More elaborated is the logic for the ‘Create new visit’ use case presented in
Fig. 8.10.An interesting newelement present in this use case is a Screenwith opposite
relations to Data Views. The ‘new visit form’ is related with two elements: ‘pet data’
and ‘visit data’. The first element is already known from the ‘Add new pet’ use case
(see Fig. 8.4 which contains the full definition). In this previous situation, ‘pet data’
was to be entered by the user, and thus the relationwas directed towards the respective
Screen element. In the current situation, the intention is to only show ‘pet data’ on
the screen and not modify it. Thus, the relation is directed towards ‘new pet form’.

270 8 Case Study

Fig. 8.8 Details for ‘Show pets’

Fig. 8.9 Details for ‘Delete pet’

To present ‘pet data’ in the ‘new visit form’, we need to indicate the actual data
element (a specific pet). Thus, sentence no. 4 (‘System shows new visit form’) has
to be preceded by a sentence which retrieves a single ‘pet data’ element. This is an
SVO sentence with two objects. The first (direct) object identifies the data element,

8.2 Source Model in RSL 271

Fig. 8.10 Details for ‘Create new visit’

and the second (indirect) object identifies the selection criterion. In this case, the
criterion is based on the ID of the pet selected from the ‘pet list’ element.

The ‘new visit form’ element is related also to ‘visit data’. This time, the appro-
priate screen widgets are initially empty as for the ‘new pet form’ in ‘Add new pet’.
These data are entered by the user and used in sentences no. 7 and 8 to perform
appropriate domain logic operations (VALIDATE and CREATE).

Our discussion of use case details is complemented with the definitions of ‘Show
visit details’ and ‘Edit visit’, shown in Figs. 8.11 and 8.12. These use cases illus-
trate the standard logic for manipulating simple data elements. We also notice the

272 8 Case Study

Fig. 8.11 Details for ‘Show visit details’

capability of RSL to define various configurations of elementary data objects
(attributes) that are presented to the user. In the first case, the user is presented
with data combined from three concepts (‘pet’, ‘visit’ and ‘veterinarian’) into ‘visit
details’. In the second case, the user can edit only some of these elements, as specified
with ‘visit data’.

The ‘Edit visit’ use case contains yet another element, not present in previous use
cases of the case study. Namely, the relation between the ‘visit form’ element and
the ‘visit data’ element is not directed. This means that the data are first retrieved
and presented on the screen and then modified and stored back in the system.

We do not present the four remaining use cases from Fig. 8.1. Their logic is
practically identical to the ones already presented. For instance, the ‘Add new owner’
use case is similar to the ‘Add new pet’ use case. In fact, we can treat them as
two instances of the same software behaviour pattern (see Sect. 7.3.2)—‘Add new
(resource)’.

8.3 General Architecture of the Generated System

After the RSL model is finished, we run the transformation presented in Chap. 6.
This results in generating fully compilable Java code of the Pet Clinic application.

http://dx.doi.org/10.1007/978-3-319-12838-2_7
http://dx.doi.org/10.1007/978-3-319-12838-2_6

8.3 General Architecture of the Generated System 273

Fig. 8.12 Details for ‘Edit visit’

The general structure of this code is presented through UML class diagrams in
Figs. 8.13 and 8.14. In fact, the UML class model is generated together with (or
rather: prior to) the Java code. The presented diagrams are only manually arranged
for a more comprehensible presentation in the book.

Note that the two class diagrams concentrate on the Presenter layer classes and
their relationships with the interfaces of the View layer and of the Model layer. The
Presenter classes are arranged on the diagrams to show how they were generated
from the use case model shown in Fig. 8.1. Note the navigable associations between
the Presenter classes that reflect the «invoke» relationships between use cases.

All Presenter classes relate to the respective Model layer interfaces. These inter-
faces are generated based on the domain model and its packages, as presented in
Fig. 8.3. There are three interfaces that originate from the three packages in the Data
Model package of the Pet Clinic’s domain model.

Figures8.13 and 8.14 also emphasise that the Presenter classes are all speciali-
sations of ‘AbstractUseCasePresenter’. Through this class, all the Presenters inherit

274 8 Case Study

Fig. 8.13 General structure for pets and owners

the relationship with the ‘IView’ interface. The transformation generates only one,
commonly used, interface to the View layer. This interface dispatches messages to
the various UI elements.

The implementation of ‘IView’ and theModel interfaces is illustrated in Fig. 8.15.
This is only a small fragment of the whole model, showing some of the classes
that participate in two selected use cases (‘Find pet’ and ‘Create new visit’). We
show only this fragment because of the high total number of View layer classes.
The configuration of other classes is similar, so the presented fragment is a good
representation and illustration of the overall approach.

8.3 General Architecture of the Generated System 275

Fig. 8.14 General structure for visits and veterinarians

The ‘IView’ interface is implemented by the ‘ViewImpl’ class that uses other
classes that represent specific UI elements originating from RSL’s Screens and
Messages. We can thus compare the window classes in Fig. 8.15 with appropri-
ate RSL elements in Figs. 8.6 and 8.10. These classes are instantiated at appropriate
moments within the code of ‘ViewImpl’. Their code in turn refers to the appropriate
Presenter classes to call specific code that handles user interactions.

The user interactions are supposed to result in execution of appropriate domain
logic code. This code is centred around the implementations of theModel layer inter-
faces (e.g. ‘IVisits’ and ‘IPetsAndOwners’). The respective classes that implement
these interfaces (e.g. ‘VisitsService’ and ‘PetsAndOwnersService’) are generated
with empty methods. It is up to the developers to fill the generated operations with
method code. As we will later see, in our case study, we have filled the methods with
simple stub code that returns constant test data.

Data are transferred between the layers using Data Transfer Objects defined with
DTO classes as illustrated in Figs. 8.16 and 8.17. Again, we limit ourselves to the two
already mentioned use cases. Other DTO classes have a similar structure. In general,
DTOs transfer all the necessary data elements that are declared as their attributes.

276 8 Case Study

Fig. 8.15 View and Model layer classes for selected use cases

The class attributes reflect the Attribute elements in the RSL model associated with
the respective Data Views (compare with Figs. 8.4, 8.6 and 8.10). For each of the
class attributes, the transformation also generates a getter and a setter operation.

The example in Fig. 8.16 contains two DTO classes that are used to transfer data
within the logic that realises the ‘Create new visit’ use case. Note that the two DTOs
are used to declare appropriate attributes within the Presenter class (‘CreateNewVis-
itPresenter’) and the View class (‘NewVisitForm’). In the model, these attributes
are represented as associations, navigable towards the DTO classes. The role names
(‘petDataDTO’ and ‘visitDataDTO’) reflect the names of respective fields that will
be generated in Java code. These fields are used as temporary buffers to hold DTO
values at specific moments in the application logic. These values can be accessed
through getter and setter operations. Figure8.16 shows them for one of the DTO
classes. The other classes also have such operations but they were compressed for
brevity.

Another important element to note is the multiplicity of the associations. Nor-
mally, the multiplicity is set to ‘1’ (being default for UML, it is not shown in the
diagrams). However, the DTOs that originate from List Views need to hold and trans-
fer multiple objects of a specific type. Thus, they are declared with multiplicities of

8.3 General Architecture of the Generated System 277

Fig. 8.16 DTO classes for ‘Create new visit’

‘0..*’ and the ‘PetListItemDTO’ objects are held as lists within ‘FindPetPresenter’
and ‘PetListScreen’.

To transfer data, DTOs are used as parameter types of appropriate operations
within all the architectural layers. Here, we illustrate this by analysing the system
dynamics and showing how data flows through these layers. We use the ‘Create new

Fig. 8.17 DTO classes for ‘Find pet’

278 8 Case Study

visit’ use case for this purpose. It contains a typical functionality that follows uniform
rules and can be extended also to other use cases of our case study.

The scenarios of ‘Create new visit’ (see Fig. 8.10) are transformed into dynamic
working code that involves all the presented architectural layers of the system. To
understand interactions between individual objects, we can use UML sequence dia-
grams presented in Figs. 8.18 and 8.19. These diagrams show only the interactions
between objects that are instances of the classes introduced earlier in this section. It
also introduces messages that reflect operations defined within these classes. More
details on how the particular methods of these operations work are presented in the
following sections.

Figure8.18 shows the system’s dynamics that implements the first seven scenario
sentences (see Fig. 8.10). The presented sequence starts when a ‘FindPetPresenter’
object passes control to a ‘CreateNewVisitPresenter’ object. This is part of a typical
sequence that implements an invocation between two use cases. The diagram does
not show the initial interaction between a UI element and the ‘FindPetPresenter’
object which will be discussed later. Following this initial interaction, the invoking
presenter passes the ID of the currently selected pet (‘setInputPetID’) and then calls
the ‘invoke’ operation.

Fig. 8.18 System dynamics for ‘Create new visit’—part 1

8.3 General Architecture of the Generated System 279

The next step is to read the pet data based on the pet’s ID by calling ‘readPetData’
on the appropriateModel layer object. The call ismade from the ‘createNewVisitTrig-
gered’ method generated from sentences 2 and 3 to handle the initial user interaction.
After reading pet data, the method asks the View layer object to show the appropriate
form. The ‘ViewImpl’ object creates the ‘NewVisitForm’ object which then renders
the form on the screen. This is preceded by reading pet data which is used to fill in
the respective widgets in the form.

Further sequence is executed when the user selects the ‘save visit’ button (see
sentence 6 in the scenario). This is associated with passing the visit data down to the
Presenter and Model layers. Thus, the appropriate event handler first calls ‘setVis-
itDataDTO’ on the related Presenter layer object (‘CreateNewVisitPresenter’), and
then calls ‘saveVisitTriggered’, finally passing control to the Presenter layer.

This starts the sequence of messages that derive from scenario sentences from
no. 7 onward, presented in Fig. 8.19. The first step is to validate the data just entered
by the user. This is done by the appropriate Model layer object (‘VisitsService’).
Based on the result of the validation, one of two possible scenarios can happen. The
sequence diagram presents only the main scenario (‘ret == 1’).

Fig. 8.19 System dynamics for ‘Create new visit’—part 2

280 8 Case Study

If the data are valid, the Presenter layer decides to call ‘createVisitData’ which
should update persistent storage with the new data. This is followed by a sequence
that presents the confirmation message on the screen and closes the new visit form.
The final step is to resume control back to the invoking Presenter object (‘resumeUse-
Case’).

The above-presented sequence reflects the contents of code generated automati-
cally by transformation. It reflects the sematic rules defined in Chap.4. The presented
general architecture and system dynamics can be applied to various technological
contexts. In the following sections, we present details of the generated code that are
specific to the technology framework used in this case study.

8.4 User Interface Code

To generate the detailed user interface code, we have to decide on the specific UI
technology. In our case study we use Echo36 as a representation of several contem-
porary technologies that are compatible with the MVP framework and are based on
Java code, instead of, e.g. markup languages. In Echo3, full specification of the user
interface elements and layouts can be made within Java code based on appropriate
framework classes and interfaces.We notice the names of these classes and interfaces
(e.g. ‘WindowPane’, ‘ActionListener’) in Fig. 8.15 specialised/realised by the View
layer classes that reflect specific windows of the Pet Clinic application.

In further discussion of the generated code we do not go into the details of Echo3-
specific code; the interested reader can refer to appropriate Echo3 documentation.
Instead, we concentrate on discussing general rules for generating the UI code. The
presented fragments should beunderstandable evenwithout knowledgeof the specific
Echo3 constructs.

We start with the simplest window, which is the main window. Its layout for the
Pet Clinic system is presented in Fig. 8.20. Recall that themainwindow is the starting
point for all the use cases that are directly related with the actors through the usage
relationship. Our case study requirements model has four such use cases that are
reflected in the four buttons present in the generated main window.

Themainwindowcode concentrates on the ‘MainPage’ class generated by default,
regardless of the source requirements model. However, the contents of this class
depends on the use case model as discussed in the previous paragraph. This code
is simple and short. It also shows the general structure of code for all the window
classes, so it is worthwhile to discuss it in detail. Figure8.21 shows most of the
‘MainPage’ class’ code. We have removed only the few lines that are responsible for
setting the layout and the style of individual elements not relevant to our discussion.

As we can see, ‘MainPage’ is situated within the UI framework by inheriting
from the standard ‘ContentPane’ class and implementing the standard ‘ActionLis-
tener’ interface. Readers familiar with similar frameworks should not have any

6 http://echo.nextapp.com/site/echo3.

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://echo.nextapp.com/site/echo3

8.4 User Interface Code 281

Fig. 8.20 Pet Clinic application main page

Fig. 8.21 ‘MainPage’ code

282 8 Case Study

problem with understanding the purpose of this configuration. Extending ‘Content-
Pane’ equips our class with the functionality of a UI window (showing, closing, etc.).
Implementing ‘ActionListener’ allows the class to handle events coming from the
user (button presses, etc.).

The class declares several fields (see lines 02–04). The first field (‘column’) is
used to lay out the window contents in column format. The second field (‘presenter’)
holds a reference to the Presenter layer class that will respond to user-related events.
The remaining four fields declare references to the four buttons that need to be present
in the window.

The contents of the main window are created on instantiation (creation) of a
‘MainWindow’ object during runtime. This is controlled by the class’ constructor
(lines 05–09) and the ‘addContent’ method (lines 24–37). These two methods are
simple and their code is self-explanatory. The ‘presenter’ object is supplied to the
‘MainPage’ object as the parameter of the constructor by the application’s overall
dependency creation framework. After setting the presenter and creating the overall
window layout, the ‘addContent’ method creates the four button objects. For each
of the objects, the label text and style is defined and the appropriate event handling
operation are indicated.

The events related to the four buttons are handled by the standard ‘actionPer-
formed’ method (lines 10–23). As we can see, the code inside this method is very
obvious. It has four condition statements that determine which button was pressed.
Depending on this, an appropriate operation is called on the associated ‘presenter’
object. In the next section, we see how this is handled by the Presenter layer.

The simple code of ‘MainPage’ has to be extended for more complex form win-
dows that are part of the Pet Clinic’s user interface. The amount of code raises
dramatically for even simple forms, so we show only the most interesting excerpts.
We base our analysis of typical form window code on the ‘Pet search form’ window,
whose layout is shown in Fig. 8.22. The window contains only two fields, which
is consistent with the appropriate definition of the source domain model shown in
Fig. 8.6. The first field is a purely textual field, and the second field is a date field.
Also, the form contains two buttons; the first is the ‘Back’ button generated by default
in all the windows (except themain one) and the second is derived from the ‘Find pet’
use case scenarios (see again Fig. 8.6) which indicate (sentence 4) that the ‘Pet search
form’ should allow to select the ‘Seek’ button. This simple form is implemented with
the code shown partially in Figs. 8.23, 8.24 and 8.25.

Figure8.23 introduces the declaration of the ‘PetSearchForm’ class and its fields.
The field declaration is significantly extended in comparison to that contained in
the ‘MainPage’ class. The declarations of the two buttons (lines 03 and 16) and
the ‘presenter’ (line 15) are similar to those in ‘MainPage’. The declarations of
the two form fields necessitate additional class field declarations, where each form
field has an associated ‘Label’ and a ‘TextField’ (lines 08–10). The date field has
additional associated fields that hold the date setting button and the calendar dialogue
for selecting the date (lines 11–12).

Figure8.24 presents themost important parts of the code that initiates the contents
of ‘PetSearchForm’ objects. This code is much more elaborate than that for ‘Main-
Page’, but follows the same general rules. It contains more sophisticated formatting

8.4 User Interface Code 283

Fig. 8.22 ‘Pet search form’ in the ‘Find pet’ use case

Fig. 8.23 ‘PetSearchForm’ attributes

that includes the ‘column’ and the ‘grid’ objects. For clarity, we have removed some
of the code related to setting field styles and layouts. What is left is–generally—
the consecutive creation of window widgets that represent individual labels, text
fields and buttons. All these elements were derived automatically based on detailed
platform-specific transformation rules for the View layer. Of course, the developers
might want to change these default characteristics. To do this, they would need to
either change the generated code manually or update the transformation program.
We discuss this in the last section of this chapter.

Code presented in Fig. 8.25 is independent of the window layouts and is respon-
sible for handling events that come from active window elements. In our example,
these are the three buttons of ‘Pet search form’. The ‘actionPerformed’ method is
structured similar to that in the ‘MainPage’ class and contains three condition state-
ments for each of the buttons. Pressing the standard ‘Close’ button (lines 02–04)
results in calling a standard procedure that closes the current window and finalises
the use case. This finalisation is associated with checking if the current window was

284 8 Case Study

Fig. 8.24 ‘PetSearchForm’ content population

the only opened within the current use case’s logic and if so—resuming the invoking
use case logic.

When the user presses the ‘Select’ button for the ‘birth date’ field (lines 05–10),
the event handler evokes standard code that opens a date selection dialogue. The
dialogue places the selected date in the appropriate field of the ‘PetSearchForm’
object. Finally, pressing the ‘Seek’ button (lines 11–15) results in calling further
application logic according to the current use case’s scenario. In our case, this logic
is contained in themethod of the ‘seekPetTriggered’ operation, which is called in line
14. Calling further application logic should be associated with passing data entered
in the form as is done in lines 12 and 13. The ‘populateDTOs’ method (lines 17–
28) collects data from individual form fields and places them into an appropriate
DTO (‘petSearchCriteriaDTO’). These data are also initially validated using simple
standard validation rules.

The ‘Pet search form’ contains only simple data and reacts to user interactions
by passing this data to the Presenter. The next window of the ‘Find pet’ use case is
the ‘Pet list screen’ (see once again Fig. 8.6). This time, the window has to handle
multiple data elements (lists) and inform about the selected items when invoking

8.4 User Interface Code 285

Fig. 8.25 ‘PetSearchForm’ event handling and data passing

Fig. 8.26 ‘Pet list screen’ in the ‘Find pet’ use case

logic defined through other use cases. The window’s layout illustrated in Fig. 8.26
contains a list with several columns that reflect Attribute elements associated with
the ‘pet list’ Data View in the source RSL model. Moreover, it contains three buttons
derived from the three use cases which—according to the use case scenario—can be
invoked when the ‘Pet list screen’ is displayed.

Figure8.27 presents some interesting excerpts of the ‘PetListScreen’ class’ code
and shows only the elements that are characteristic for handling lists. Otherwise, the
code is similar to that of ‘PetSearchForm’. The first elements worth noting are the
fields responsible for holding and supporting thewidget that shows the pet list data. In

286 8 Case Study

Fig. 8.27 ‘PetListScreen’ code fragments

Echo3, we have a class called ‘Table’ that defines screen elements with the capability
to present data in tabular (e.g. list) form. Such table elements have to be equippedwith
‘Models’ that hold the actual data to be displayed and ‘SelectionModels’ that define
the way items can be selected in the table. Thus, ‘PetListScreen’ defines appropriate
three fields (lines 03–05) which are initialised, populated and read in various places
in code.

The constructor of ‘PetListScreen’ (lines 09–14) is similar to that in ‘PetSearch-
Form’. The main difference is that it reads the DTO from the presenter (line 12) and
populates the screen widgets with this read data. Population is performed using the
appropriate operations in the table’s Model object (line 27).

Note that the event handler code has to handle the selections within the pet list
made by the user. This is illustrated by the code that responds to pressing the ‘Create
new visit’ button. This is the starting point of the ‘Create new visit’ use case and
the generated code follows the logic of the first two sentences in this invoked use
case. The first step is thus to determine the row that is selected by the user (line 18).
Following this, it is necessary to get the ID value of the selected pet (line 20) and pass
it to the associated Presenter object (line 21). Only then, the appropriate invocation
sequence can be called (line 21).

After invoking the ‘Create new visit’ use case we eventually reach the ‘New visit
form’. This window is presented in Fig. 8.28 and illustrates the situation where some
data (‘Pet data’) are displayed and some data (‘Visit data’) are to be entered by the
user.

8.4 User Interface Code 287

Fig. 8.28 ‘New visit form’ in the ‘Create new visit’ use case

Appropriate code that handles this situation is presented inFig. 8.29.The ‘NewVis-
itForm’ class declares two fields (lines 04–05) to refer to the two data objects that
should be handled by the window. The first object is used to populate the window’s
widget controls (lines 07–22). This is done in a straightforward code which goes
through all the attributes of ‘petDataDTO’ and sets related controls (in this case—
text fields). The second object is used to transfer data down to the Presenter and
is populated with data from the related widget controls (lines 23–35). This is done
similarly as in the ‘PetSearchForm’ class.

The generated code of the View layer contains 13 classes that reflect the Screen
elements and 16 classes that reflect the Message elements. It is out of the scope of
this book to discuss all of them.7 Their code is in general similar to that already
presented.

Figure8.30 shows some additional element types that were generated from the Pet
Clinic’s RSL model. Notice that the date fields present in the forms have associated
‘Select’ buttons that open the appropriate date selection windows using standard
Echo3 date selection functionality.Moreover,messagewindows are defined as popup
windows. Their code is similar to that of “normal” windows but differs in setting
specific switches that control the window’s behaviour.

7 The full code can be accessed from the book’s website: http://www.redseeds.eu/fromrtoj.

http://www.redseeds.eu/fromrtoj

288 8 Case Study

Fig. 8.29 ‘NewVisitForm’ code fragments

Finally, the generated code offers ‘Select’ buttons for some of the fields (here:
‘Pet type’ and ‘Owner’). This functionality is yet another extension of the RSL’s
semantics. The ‘Select’ buttons are generated for the attribute groups contained in
the Concepts that are not the ‘main concept’ for the given Screen element (compare
with Fig. 8.4). After pressing one of these buttons, the application searches through
appropriate tables and allows to populate the form’s fields with a selected item (e.g.
the ‘pet type’). This is a reasonable assumption, because these groups of attributes
reflect data related to themain Concept and thus should be consistent with the objects
already existing in the persistent storage.

8.5 Application Logic Code

The application logic can be made independent of any specific technology and based
on plain Java classes. Yet, our example transformation generates code that uses some
elements of the Spring framework to manage dependencies between objects in the
dynamic system. In our examples we find several places that use instances of the

8.5 Application Logic Code 289

Fig. 8.30 UI elements in the ‘Add new pet’ use case

‘BeanFactory’ class that facilitates creating objects dynamically and managing their
references. Otherwise, the presented code uses only standard Java constructs.

The influences of the Spring framework dominate in the central class of the
Presenter layer which is the ‘MainPresenter’. Some excerpts of its generated code
are shown in Fig. 8.31. As mentioned in the previous section, the ‘MainPresenter’
object handles the user interface events that happen in the related ‘MainWindow’
object. In the presented example, we show only one of such handler methods (lines
11–14) responsible for starting the logic that implements the ‘Find pet’ use case
whose contents are very basic. First, it gets a reference to the appropriate Presenter
object (lines 12 and 13) and then calls its ‘invoke’ operation (line 14).

To see what happens when ‘invoke’ is called, let us analyse the code of the
appropriate presenter class, shown in Fig. 8.32. It is best to analyse this code by com-
paring it with the use case’s scenarios in Fig. 8.6. The ‘invoke’ method (lines 19–21)
is simple as it generally calls the ‘findPetTriggered’ operation which is responsi-
ble for handling the first user interaction (sentence 1 of the scenario). According
to the use case’s scenario (sentence 2), the handler should show the ‘Pet search
form’ which is exactly what it requests (line 14) by calling an appropriate operation
of the ‘IView’ interface (note that the declaration of the ‘view’ field is present in
‘AbstractUseCasePresenter’).

290 8 Case Study

Fig. 8.31 ‘MainPresenter’ code fragments

Further steps of the scenario are handled by the ‘seekTriggered’ method (lines
37–47) which reflects sentences 3 and 4 of the scenario. Observe that prior to calling
‘seekTriggered’, the View layer calls ‘setPetSearchCriteriaDTO’ (lines 51–54). In
this way data are transferred from the appropriate form (‘Pet search form’) to the
current Presenter object. With this data available, the presenter can realise the logic
stemming from scenario sentences 5–7 and 5.1.1.

The first step is to read ‘pet list’ data, based on the ‘pet search criteria’. This is
implemented through a call to the relevant Model layer operation (line 38). The next
lines implement the condition sentences that fork the use case’s logic into two alter-
native scenarios. We have two ‘if’ statements that detect the result of ‘readPetList’.
Based on this, either the ‘pet list screen’ or the ‘no pets found’ message is shown.

The invocation sentences that follow sentence 7 are handled by three methods,
where we show only the ‘invokeCreateNewVisit’ method (lines 22–27). The other
two methods are similar. In general, the contents of these methods follow the
approach already discussed for the ‘MainPresenter’. The only addition is that—where
necessary—appropriate ID data (see ‘invokePetID’, line 25) is passed to the invoked
Presenter object. This ID data is previously set by the View layer object using an
appropriate setter (see lines 48–50).

‘FindPetPresenter’ code is complemented by two methods that handle two
possible events from the user, coming from the ‘no pets found’ message window.
The first handler (lines 31–34) responds to pressing ‘NO’ which results in closing
the ‘pet search form’ and finalising the use case. The second handler (response to
‘YES’) is empty, because the logic returns to the already active ‘pet search form’ (the
‘no pets found’ message is already closed upon pressing a button). Thus, no further
actions in code are needed.

Very similar code to that of ‘FindPetPresenter’ is generated for the other Presenter
layer classes. Figure8.33 shows fragments of code for ‘CreateNewVisitPresenter’.

8.5 Application Logic Code 291

Fig. 8.32 ‘FindPetPresenter’ code fragments

292 8 Case Study

Fig. 8.33 ‘CreateNewVisitPresenter’ code fragments

As we can see, this code follows the same scheme as in ‘FindPetPresenter’. This
should be obvious if we consider that it has been generated automatically using
uniform semantic rules of RSL. Similar to the discussion in the previous paragraphs,
we can compare code in Fig. 8.33 with the respective use case scenarios in Fig. 8.10.
Full code of the other Presenter classes and the whole Pet Clinic application can be
found at the book’s website.

8.5 Application Logic Code 293

In discussing the Pet Clinic’s code, we did not yet introduce the details of the
Model layer classes. This layer is generated with empty methods because they could
not be derived from RSL models using the semantic rules as in Chap.4. Thus, the
Model layer code contains just method headers, so it would not be interesting to
include it in our discussion. It can be easily deduced from the Presenter layer code
that contains calls to appropriate operations on the Model layer interfaces. In the
case study examples, we have used manually created stubs that return appropriate
data. This allowed to populate the presented forms and lists with example contents.

8.6 Discussion

The presented case study showsmost of the potential ofModel-Driven Requirements
Engineering based on RSL. We were able to obtain a fully functional prototype of
a simple system in only one working day. It took around 5h to develop detailed
scenarios and the domain model for the dozen use cases of the Pet Clinic system.
Additional 1–2h had to be spent on correcting errors in the application logic within
the scenarios. The rest of our experimental working day was used for developing
simple stubs for the Model layer.

Of course, the complexity of the Pet Clinic system is not impressive. Typical
business systems normally implement tens or even hundreds of use cases of the size
presented in the study. However, we can argue that the effort to develop the Pet
Clinic system can be extrapolated onto larger systems. A good example is the SZOK
system, briefly introduced in Sect. 7.3. This system consists of several tens of use
cases formulated in RSL and it was redeveloped using the presented application logic
reuse method. Our experience shows that developing such a system is proportional
in effort to developing a small system with around a dozen use cases.

This can be explained by the fact that the complexity of application logic rises
proportionally with the number of use cases. Use case models do not contain com-
plex dependencies and architectures that could cause exponential growth of their
complexity in the function of the number of use cases. What is more, also the growth
in complexity of the domain model does not exhibit characteristics of an exponential
function but rather rises proportionally with the growth in the number of use cases.
This second observation can be explained by the fact that the domain models are
formed into “islands” of interdependent domain elements (Concepts, Screens, Trig-
gers, etc.), concentrated around specific use cases. This is well illustrated in Figs. 8.4,
8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11 and 8.12. Note that each use case introduces some-
what the same number of newdomain elements. The number of newdomain elements
and relationships between themdoes not seem to show any dependency on the current
number of use cases in themodel. Of course, the above observations necessitate more
detailed studies and collection of more empirical data, which can be an interesting
direction of future research effort.

Most importantly, the results of the case study show significant shift in complex-
ity of the development artefacts. At the level of RSL models, we have to handle

http://dx.doi.org/10.1007/978-3-319-12838-2_4
http://dx.doi.org/10.1007/978-3-319-12838-2_7

294 8 Case Study

10–30 sentences per use case and around 5–15 domain elements with related
attributes. When we transform this into Java code, we obtain much more complex
configuration with several classes, operations and many lines of Java code. This can
be illustrated, e.g. for the ‘Find pets’ use case presented in detail in the previous sec-
tions. The application logic of this use case contains 19 sentences (including 9 SVO
sentence, 4 condition sentences, 3 invocation sentences and 3 final/rejoin sentences).
These sentences refer to 10 domain elements (3 Concepts, 2 Screens, 1 Message,
2 Triggers and 2 Data Views) with 6 Attributes. It thus totals to 35 development
“items”.

This can be compared with the size of the generated Java code which is necessary
to implement the RSL model and is semantically equivalent. This code involves 7
classes (1 Presenter class, 4 View classes, 2 DTOs) and 2 interfaces. In total, these
units are composed of 61 fields, 85 operation declarations with full signatures (para-
meters, etc.) and306 lines ofmethod content code.8 Thus, in total, the developers need
to handle 461 “items”. Moreover, these items are much more technology-oriented
than the items in the RSL model. Similar figures can be given for the other use cases
of our study.

As we can see, the RSL model contains an order of magnitude less (35 vs. 461)
elements to be specified and managed by developers. This very significant reduction
in complexity can be compared with the shift from assembly to 3GL programming.
Every instruction in a 3G language (like Java) is equivalent to several instructions in
assembly/machine code or some other code, executable directly by the computer (or
through a virtual machine). We can thus conclude that Model-Driven Requirements
Engineering promises a similar reduction in complexity as achieved by the introduc-
tion of contemporary third generation programming languages. Yet, this statement
deserves the backing of more elaborate experimental studies which form another
interesting research agenda.

When analysing the benefits of using formal requirements models, we need to
consider also the effort needed to formulate requirements in a typical software devel-
opment process. Models written in RSL reflect software requirements that need to be
formulated anyway. This can be done in less formal notations and involve somewhat
less effort. However, the application logic and the data items that need to be manipu-
lated through the user interface need to be specified with full precision at some point,
in all cases. This is preferably done by skilled requirements analysts together with the
end-users. However, in many projects, very detailed decisions about the application
logic, are made arbitrarily by the programmers already at implementation time. This
often leads to poor user satisfaction and change requests pertaining to the “finished”
system.

Software development based on RSL (and MDRE in general) has the potential to
significantly improve the above-presented situation. First, we note that writing RSL
models is similar to developing 3GL code but at a much higher level of abstraction.
It has to be precise and any change in the model has its consequences in the resulting

8 Note that the calculated lines of code include only the effective method contents, without the
method signatures, comments, empty lines, closing brackets and import statements.

8.6 Discussion 295

application. Thus, the cost of introducing RSL is that development of requirements
models is more difficult and time-consuming than writing requirements traditionally.
Specifically, writing—for instance—a use case scenario in RSL takes more time than
writing an informal use case scenario using natural language. This is one side of the
issue.

On the other hand, we should remember that writing RSL “code” combines two
activities into one. It is—at the same time—requirements formulation and writing
effective code. Thus, the effort to write requirements in RSL pays off in savings
associated with treating requirements as first-class citizens in the software develop-
ment process. The RSL specification can be thoroughly discussed with end-users and
brought to a precise level. Requirements specifications with a comparable level of
detail can be found as contractual artefacts in many software development projects.
The breakthrough advantage of RSL is that precise requirements can be instantly
turned into a running application that can be examined by end-users and validated
against their expectations.

The remaining issue is that the system generated from an RSL model is not fully
functional. As pointed out in Sect. 8.1, we did not expect to construct a fully opera-
tional system for the Pet Clinic but only a prototype that contained full user interface
and application logic (flow of control through the user interface). The developers still
have to undertake activities at the Java level to implement the business domain logic
and data persistence operations. These activities are significantly facilitated by the
fact that the generated code has clear, uniform structure and is equipped with a visual
“map” in the form of the generated UML class model. The developers simply need
to implement methods for the already generated Model layer operations, as required
by the Presenter layer classes.

The necessity to develop code at the 3GL level raises an idea to extend RSL to be
able to also specify the business domain logic (data processing) and operations for
data persistence. This would eliminate the need to write Java code almost completely
(except for some potential optimisation issues). This idea extends to specifying the
layout and detailed look-and-feel of the user interface. Currently, the transformations
generate very rudimentary windows with basic widgets, laid out in a standard way.
Wewould certainly appreciate having muchmore control over how the user interface
behaves and looks.

The above idea to extend RSL in various direction opens a very wide area of
research and innovation. We can already indicate several potential directions of
improving RSL by equipping it with more detailed syntax and developing more
advanced transformations.

• Generation of the database. This extension necessitates defining detailed semantic
rules for transformations thatwould turnRSLdomainmodels (Concepts,Attributes,
etc.) to database schemas. It may also need to involve some changes in the RSL’s
syntax that would allow for controlling the generation process.

• Generation of CRUD domain logic. This extension is related with developing
detailed semantics for the System-to-DataView SVO sentences which evoke spe-
cific domain logic operations. The sentences with standard CRUD operation types

296 8 Case Study

(see Sect. 2.3.3) can be turned into appropriate data persistence code using a
selected data persistence framework.

• Combining RSL with 3GL code for domain logic.The domain logic can be specified
directly in a 3G language like Java. However, instead of manually weaving this
code into the code generated from RSL, we can think of linking Java procedures
to individual SVO sentences. This would allow the transformation to weave the
explicit Java code automatically into the code generated from RSL.

• Combining RSL with Domain Specific Languages. This approach is similar to the
previous one, but instead of using Java we use a DSL. In this way, the domain logic
is specified in a less technology-specific language. This approach necessitates that
the RSL-based transformation is combined with a DSL-based transformation.

• Extending RSL syntax for UI elements. This includes a wide set of possible
extensions. One of them involves adding the syntax to reflect form layouts and
generally—positions of various elements in windows. With such an extension, the
RSL editor could be combined with a window layout editor that would allow for
designing window layouts to be generated in the resulting code. Another possible
extension consists in adding initial field validation. This would involve extending
the syntax of RSL with a notation to define various data formats which would be
the basis for generating the validation code.

• Defining access policies. The RSL semantics can be extended by defining policies
to access data and application logic. This can be initially based on the existing
syntax for relationships between actors and use cases. However, to implement
more detailed security rules, it will be perhaps necessary to define special syntax
for use case preconditions and equip RSL with data access adornments attached
to domain elements (Concepts).

The above-indicateddirections forRSLcertainly donot exhaust all the possibilities.
In general, we envision a significant potential to turn requirements modelling lan-
guages into fully capable general-purpose programming languages. Such languages
would be able to hide the complexity of the underlying specific technology frame-
works. The developers would then be able to concentrate on the essential complexity
of the problem at hand and the logic of the application, as seen by end-users. At the
same time, development activities could become more accessible to less technical
people and end-users could be more explicitly involved in the development of soft-
ware systems through direct cooperation with professional developers in formulating
requirements-level “programs”.

We hope that the presented case study and the whole book will inspire readers
and give them the motivation to follow the research directions proposed. We believe
that the current results, presented in this book already show that development of
languages like RSL can lead to a significant rise in the productivity of software
development teams.

http://dx.doi.org/10.1007/978-3-319-12838-2_2

Appendix A
Summary of RSL Syntax

This appendix presents a concise reference of the RSL syntax. The syntax is divided
into three parts: Requirements (with use cases and packages), Scenarios and sen-
tences, and Domain elements. Each of the RSL elements is explained in terms of its
concrete syntax, abstract syntax and semantics. For the concrete syntax, examples
with relations to other RSL elements are given.

A.1 Requirements

Requirement

Concrete Syntax and Example

Generic Requirement is depicted as a rectangle with two additional vertical lines on
its left. Requirements ‘ID’ is written in the top left corner of the box. Requirements
‘name’ is written in the centre of the rectangle. Additionally, Requirements can be
presented with minimised icons in tree structures (see ‘Requirements Package’).

Abstract Syntax

Requirements ‘name’ is a ‘Hyperlinked Sentence’. Requirement is detailed with
one or more ‘Requirement Representation’. Requirements can be related with other
Requirements through ‘Requirement Relationships’. They can be grouped into
‘Requirements Packages’. Requirement is the superclass for ‘Use Case’.

© Springer International Publishing Switzerland 2015
M. Śmiałek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2

297

298 Appendix A: Summary of RSL Syntax

Semantics

Requirement is understood as a placeholder for one or more ‘Requirement Represen-
tations’. It is treated as a concise way to symbolise this representation. Requirement
is very general and it can express every kind of required feature of the system to
be built.

Use Case

Concrete Syntax and Example

Use Case concrete syntax is an extension of UML’s concrete syntax for use cases:
“A use case is shown as an ellipse, either containing the name of the use case or with
the name of the use case placed below the ellipse.” As for any Requirement, every
Use Case icon can present an ‘ID’. Additionally, Use Cases can be presented with
minimised icons in tree structures (see ‘Requirements Package’).

Abstract Syntax

Use Case is a specialisation of ‘Requirement’. Instances of Use Case can be related
with each other by ‘Invocation Relationships’. Use Case can contain several ‘Par-
ticipation’ relationships and can be pointed to by ‘Usage’ relationships. These rela-
tionships relate it with ‘Actors’. It can contain ‘representations’, which usually are
‘Constrained Language Scenarios’.

Semantics

Use Case derives its meaning from that defined in UML: “A use case is the specifi-
cation of a set of actions performed by a system, which yields an observable result
that is, typically, of value for one or more actors or other stakeholders of the system.”
This definition is analogous to the one specified in Sect. 1.2.2. The semantics in RSL
is extended by stating that Use Case is a special kind of Requirement, thus being a

http://dx.doi.org/10.1007/978-3-319-12838-2_1

Appendix A: Summary of RSL Syntax 299

placeholder for its ‘representations’. These ‘representations’ describe the observable
behaviour (set of actor-system interactions) for the Use Case.

Attribute

Concrete Syntax and Example

Attribute is expressed through its name and (possiblymultiple) values in the following
textual syntax:

attribute name ’=’ value [‘,’ value]

When showing Attributes on requirements diagrams, the above syntax can be placed
in a “note” (similar to a UML Comment), i.e. in a rectangle with a corner bent and
connected to the appropriate RSL element (requirement or domain element) with a
dashed line.

Abstract Syntax

Attribute canbe a component of any ‘Requirement’, ‘UseCase’ or ‘DomainElement’.
Attribute can have multiple ‘AttributeValues’ associated with it.

Semantics

Attributes are entities that contain properties of various RSL elements. These prop-
erties do not define the requirements or the domain as such but they define the
RSL elements’ external features, usually associated with the software development
project. Attributes are thus containers for external (e.g. project-related) value(s),
which should be attached to RSL elements.

300 Appendix A: Summary of RSL Syntax

Requirement Relationship

Concrete Syntax and Example

Requirement Relationship is drawn as a dashed line connecting two ‘Requirements’.
An open arrowhead is drawn on the end of the line indicating the target of the
relationship. The line can be labeled with a stereotype determining the type of the
relationship (see ‘InvocationRelationship’). The linemay consist ofmany orthogonal
or oblique segments.

Abstract Syntax

Requirement Relationship starts at a specific ‘Requirement’ (source of the relation-
ship) and it points to another ‘Requirement’ (target of the relationship). The source
of the relationship should be different from its target—a ‘Requirement’ cannot be
associated with itself. Requirement Relationship is the superclass for ‘Invocation
Relationship’.

Semantics

Requirement Relationship denotes a conceptual relation between two requirements.
The nature of this relation (e.g. similarity, conflict, trace, fulfillment) is specified by
a stereotype that can be associated with the Requirement Relationship.

Invocation Relationship

Concrete Syntax and Example

Invocation Relationship is denoted similarly to the ‘Requirement Relationship’. The
dashed line has to be adorned with the «invoke» stereotype notation. The line has an
open arrowhead at one of the ends.

Appendix A: Summary of RSL Syntax 301

Abstract Syntax

Invocation Relationship is a kind of ‘Requirement Relationship’. The source and
the target elements are always ‘Use Cases’. Invocation Relationship points at an
‘Invocation Sentence’, which must be contained in a ‘Requirement Representation’
of the ‘Use Case’ which is the source of the relationship.

Semantics

Invocation Relationship substitutes the UML’s «include» and «extend» relationships
and unifies their disadvantageous semantics. Invocation Relationship denotes that
another ‘Use Case’ can be invoked from within the currently performed ‘Use Case’.
After executing one of the final ‘Sentences’ in the invoked ‘Use Case’, the flow of
control returns to the invoking use case right after the point of invocation. The exact
point of invocation and the use case to be invoked are defined by a special kind of
scenario sentence—the ‘Invocation Sentence’.

Usage and Participation

Concrete Syntax and Example

The concrete syntax of Usage and Participation is a solid line drawn between an
‘Actor’ and a ‘Use Case’. Usage is adorned with the «use» stereotype notation, and
Participation is adorned with «participate». Alternatively, Usage can be drawn as
an arrow pointing towards a ‘Use Case’, and Participation points in the opposite
direction.

302 Appendix A: Summary of RSL Syntax

Abstract Syntax

Usage is a kind of ‘Requirement Relationship’. It starts from an ‘Actor’ and it points
at a ‘Use Case’. Participation is also a kind of ‘Requirement Relationship’. It starts
from a ‘Use Case’ and it points at an ‘Actor’.

Semantics

Usage indicates that a given ‘Actor’ initiates a particular ‘Use Case’. This ‘Actor’
is the primary actor for this ‘Use Case’, i.e. one that starts the use case to reach the
use case’s goal. Participation indicates that a given ‘Actor’ is a secondary ‘Actor’
for a particular ‘Use Case’. It means that this actor does not initiate the use case but
interacts with the system while the use case instance is running. This interaction is
started by the system asking the actor to perform some actions.

Requirements Specification

Concrete Syntax and Example

Concrete syntax for Requirements Specifications is almost the same as for UML’s
‘Packages’: “A package is shown as a large rectangle with a small rectangle (a
‘tab’) attached to the left side of the top of the large rectangle.” Their names are
placed inside the large rectangle. In addition to concrete syntax for plain Packages,
Requirements Specification icons have one thick vertical line on their left. They can
also be presented in a Project Tree structure with a minimised icon being the root of
the requirements specification tree.

Abstract Syntax

Requirements Specification can contain several ‘Requirements Packages’ as its ele-
ments. It is also linked with one ‘Domain Specification’.

Appendix A: Summary of RSL Syntax 303

Semantics

Requirements Specification is the main container of the requirements part of an RSL
model. It can contain all the requirements-related elements for a given project—
‘Requirements’ grouped into appropriate ‘Requirements Packages’. It can be treated
as an equivalent of a ‘Model’ (cf. requirements model) in UML.

Requirements Package

Concrete Syntax and Example

The syntax for Requirements Packages is similar to that for ‘Requirements Specifi-
cations’. The icon has two thin vertical lines on the left. Requirements Packages can
be presented in Project Trees with minimised icons.

Abstract Syntax

Requirements Package can have owned members which are ‘Requirements’ and
‘Use Cases’. It can also have nested ‘Requirements Packages’. Every Requirements
Package is part of a ‘Requirements Specification’ or another Requirements Package.

Semantics

Requirements Package is the basic grouping element within the requirements part of
an RSL model. It can contain ‘Requirements’ (and ‘Use Cases’ as their specialisa-
tions) as well as nested ‘Requirements Packages’.

304 Appendix A: Summary of RSL Syntax

A.2 Sentences and Scenarios

Natural Language Hypertext Sentence

Concrete Syntax and Example

Natural Language Hypertext Sentence is expressed as a string of free natural language
texts. This text can contain several ‘Hyperlinks’. These hyperlinks point to various
‘Phrases’ and are marked by underlining and blue colour of the font. Another variant
for representing hyperlinks withinNatural Language Hypertext Sentences is to insert
them in double square brackets.

Abstract Syntax

Natural Language Hypertext Sentences are used as regular ‘sentences’ in ‘Require-
ment Representations’ and ‘Domain Element Representations’. They are also used
as ‘names’ for ‘Requirements’ (e.g. ‘Use Cases’) and ‘Domain Elements’. Such
sentences can contain several ‘Hyperlinks’ to ‘Phrases’.

Semantics

Natural Language Hypertext Sentence can be used in the most generic, natural lan-
guage descriptions and names of various RSL elements. They extend free text with
inserted wiki-like ‘Hyperlinks’. In this way, a coherent connection to ‘Phrases’ con-
tained in the domain vocabulary is made possible.

Precondition and Postcondition Sentences

Concrete Syntax and Example

Precondition and Postcondition sentences are similar in their concrete syntax to
‘Natural Language Hypertext Sentences’. They can contain ‘Hyperlinks’ but gener-
ally they contain free text. Precondition and Postcondition sentences start with the
Pre: or Post: keyword respectively. In activity (graphical) notation, Preconditions

Appendix A: Summary of RSL Syntax 305

are denoted as initial nodes with attached notes containing the main sentence text.
Similarly, Postconditions are denoted as final nodes.

Abstract Syntax

Precondition and Postcondition sentences are contained in ‘Constrained Language
Scenarios’. The Precondition is always the first sentence in a scenario, and the Post-
condition is always the last. All the ‘Constrained Language Scenarios’ in a ‘Use
Case’ must begin with the same Precondition. The Postconditions are different for
each scenario in a ‘Use Case’. Every scenario can have at most one Postcondition
and exactly one Precondition.

Semantics

Precondition sentence defines the condition that enables execution of all the ‘Con-
strained Language Scenarios’ in a given ‘Use Case’. When the condition is not met,
the associated ‘Use Case’ cannot start execution. This might be equivalent to, e.g.
an inactive menu option that starts this ‘Use Case’.

Postcondition sentence specifies the condition thatmust bemet at the end of execu-
tion of a given ‘ConstrainedLanguageScenario’. This condition normally determines
the final system state in relation to the system state at the Precondition. The state can
be changed or unchanged, depending on whether the ‘Use Case’ execution, denoted
with the given Postcondition, is successful or not.

Final Sentence

Concrete Syntax and Example

Final Sentence is tightly related to ‘Postcondition’ sentences. Every ‘Postcondition’
must be preceded with a final sentence. The sentence begins with the →final: key-
word followed by either the success or the failure keyword which denote the result.
In activity (graphical) notation, one of the two result keywords is attached in a note,
to a final node.

306 Appendix A: Summary of RSL Syntax

Abstract Syntax

Final Sentences are in fact parts of ‘Postconditions’. They always precede ‘Post-
conditions’ within ‘Constrained Language Scenarios’. They have an attribute that
determines whether the scenario ends with success or failure.

Semantics

Such sentences denote endof execution of a scenario.After reaching aFinal Sentence,
the given ‘Use Case’ terminates and control is passed to the invoking use case or to
the operating system (the application terminates).

Rejoin Sentence

Concrete Syntax and Example

Rejoin Sentences are denoted with the →rejoin: keyword. After the keyword, they
include the name of another ‘Constrained Language Scenario’ and the text of the
‘Scenario Sentence’ to be rejoined.Another variant of representation is to give just the
sequence number of the rejoined ‘Scenario Sentence’. Rejoin Sentences are always
placed at the end of scenarios. This means that—when applied—they substitute
the ‘Final Sentence’-‘Postcondition’ pairs. In activity (graphical) notation, Rejoin
Sentences are represented by control flow arrows that point at the sentence to be
rejoined. These arrows can be adorned with the «rejoin» stereotype notation.

Abstract Syntax

Rejoin Sentences are contained in ‘Constrained Language Scenarios’. They are
always the last sentences in scenarios (alternatively to ‘Final Sentences’ and ‘Post-
conditions’). Every scenario can have at most one Rejoin Sentence.

Appendix A: Summary of RSL Syntax 307

Semantics

Rejoin Sentence returns the flow of control to a sentence in another ‘Constrained
Language Scenario’ of the current ‘Use Case’. It is not allowed to rejoin to a sentence
contained within some other ‘Use Case’. Whenever a ‘Rejoin Sentence’ is reached,
control is passed to the indicated other sentence and execution continues from this
other sentence.

Condition Sentence

Concrete Syntax and Example

Condition Sentences start with the→cond: keyword. Their remainder complies with
the syntax of a generic ‘Natural Language Hypertext Sentence’. They can contain
‘Hyperlinks’ but generally they contain free text. Condition sentences have to fol-
low ‘SVO Sentences’ in a ‘Constrained Language Scenario’. In activity (graphical)
notation, Condition Sentences are represented by control flow arrows with attached
guards (conditions in square brackets). The actual condition is contained in the guard
text.

Abstract Syntax

Condition Sentences are contained in ‘Constrained Language Scenarios’. Every such
sentence has at least one alternative ‘Condition Sentence’, contained in another sce-
nario of the same ‘Use Case’. Regarding the sentence ordering in a scenario, no
Condition Sentence can follow a precondition (i.e. it cannot be the first executing
sentence in a scenario).

Semantics

Condition Sentence is a special kind of scenario sentence that controls the flowof sce-
nario execution. Sentences that follow a Condition Sentence in a given ‘Constrained
Language Scenario’ can be executed only if the condition expressed by this sentence

308 Appendix A: Summary of RSL Syntax

is met. When this condition is not met, another (parallel) Condition Sentence, being
part of another scenario of this ‘Use Case’, is evaluated. Control goes to the scenario
for which the condition is evaluated to true.

Invocation Sentence

Concrete Syntax and Example

Invocation Sentences start with the →invoke: keyword. After the keyword, they
include the name of another ‘Use Case’, to be invoked with this sentence. In activity
(graphical) notation, Invocation Sentences are denoted as actions with the «invoke»
stereotype. An invoke action is connected to ‘SVO Sentences’ through control flow
notation. It can also be followed by a ‘Rejoin Sentence’ denoted with a control flow
with the appropriate stereotype.

Abstract Syntax

Invovation Sentences are contained in ‘Constrained Language Scenarios’. Regarding
the sentence ordering in a scenario, no Invocation Sentence can follow a precondition
(i.e. it cannot be the first executing sentence in a scenario). Every Invocation Sentence
has to be linked to an ‘Invocation Relationship’. This relationship has to connect the
containing ‘Use Case’ (as the ‘source’) with some other ‘Use Case’ (as the ‘target’).

Semantics

Invocation Sentencehas the procedure call semantics. It denotes invocation of another
‘Use Case’ with its scenarios at the point marked with this sentence. After executing
all the scenario steps of the invoked use case, the flow of execution returns to the
invoking scenario of the current ‘Use Case’. This means executing the sentence that
immediately follows the Invocation Sentence.

Appendix A: Summary of RSL Syntax 309

SVO Sentence

Concrete Syntax and Example

SVO Sentence contains a sequence of terms that point to ‘Domain Elements’ and
‘Phrases’. It starts with a subject (S) which is a noun and points to either an ‘Actor’
or a ‘System Element’. The subject is followed by a verb (V) which points to one of
the ‘Phrase’ verbs. This is followed by an object (O), which is a noun pointing at one
of the domain vocabulary ‘Notions’. In its variant, an SVO Sentence can also contain
a preposition with another (indirect) object. These elements have to be denoted in
hyperlink notation. The first hyperlink is the subject and the second hyperlink is the
predicate (the rest of the sentence). They can be either underlined or denoted with
double square brackets. In activity (graphical) notation, SVO Sentences are denoted
as actions which are linked with other sentences with control flow arrows.

Abstract Syntax

SVO Sentences are contained in ‘Constrained Language Scenarios’. They can be
placed in any order in relation to other sentences. The only restriction is that they
cannot be the first or the last sentences in scenarios, as this is reserved for ‘Precon-
ditions’, ‘Postcondition’-‘Final Sentence’ pairs and ‘Rejoin Sentences’. Every SVO
Sentence contains one ‘subject’ and one ‘predicate’. Both are ‘Hyperlinks’ to appro-
priate elements in the domain model (‘Actor’/‘System Element’ or ‘Verb Phrase’,
respectively).

Semantics

Each SVO Sentence denotes a single interaction between the considered system and
an actor. It can denote an action performed by the actor or by the system, depending
on the sentence’s ‘subject’. The actions can pertain to various ‘Notions’ from the
domain model. Depending on the type of the ‘subject’ and the type of the ‘Notion’
that constitutes the direct ‘object’, the sentence can have different interpretations.
Possible ordering of different types of SVO Sentences is determined through changing

310 Appendix A: Summary of RSL Syntax

the dialogue state between the system and one of the participating actors.More details
on this can be found in Sect. 2.4.3.

Constrained Language Scenario

Concrete Syntax and Example

Constrained Language Scenarios are sequences of constrained language sentences.
Each scenario starts with a ‘Precondition’ and ends with a ‘Postcondition’-‘Final
Sentence’ pair (or a ‘Rejoin Sentence’). The first sentence after the ‘Precondition’
has to be an ‘SVO Sentence’ that has an ‘Actor’ as its ‘subject’. The ordering of
the remaining sentences should follow specific rules assigned to each sentence type.
‘SVO Sentences’ and some ‘Invocation Sentences’ are numbered. In activity (graph-
ical) notation, a scenario is part of an activity—a graph of actions linked through
control flowarrows.Action elements and control flowelements are denoted according
to the respective individual notations for specific scenario sentences. Each activity
can denote several alternative scenarios, where the alternatives are controlled with
‘Condition Sentences’.

Abstract Syntax

Each Constrained Language Scenario contains one ‘Precondition’ and either one
‘Postcondition’ (with a ‘Final Sentence’) or one ‘Rejoin Sentence’. It also contains
an ordered list of other types of sentences: ‘SVO Sentences’, ‘Condition Sentences’
and ‘Invocation Sentences’. Constrained Language Sentences are representations of
‘Use Cases’.

http://dx.doi.org/10.1007/978-3-319-12838-2_2

Appendix A: Summary of RSL Syntax 311

Semantics

Scenarios have control flow semantics defined according to the description in
Sect. 2.4.3.

A.3 Domain Elements

Notion

Concrete Syntax and Example

Notions are represented as rectangles with the notion names placed inside them
(centred and and aligned to the top). The Notion icon can also indicate the notion
type. This can be done through stereotype notation or through placing the type name
in the top-left corner. When the Notion type is ‘attribute’, the appropriate name of
the data type is placed in brackets. Typical data types are: “text”, “whole number”,
“real number”, “true/false”, “date” and “secret text”.

Abstract Syntax

Notions are kinds of ‘Domain Elements’. They consist of ‘domain statements’ which
are represented by ‘Phrases’. Notions can be related through ‘Domain Element Rela-
tionships’. Some Notions can have an associated ‘Primitive Data Type’ and thus they
can serve the role of Notion attributes. If a Notion is an attribute, it can be only
in ‘Domain Element Relationships’ with other Notions which indicate its role as
an attribute. The Notion names are represented as ‘Noun Phrases’. Notions can be
related with other Notions as sources or targets of ‘Notion Specialisations’. Notions
are contained in specific kind of ‘Domain Element Packages’ (‘Notion Packages’).

Semantics

Notions are the core elements in domain specifications. They represent the domain
vocabulary usedwithin all the other elements of RSLmodels. All the ‘Phrases’ (noun
phrases, verb phrases) that are part of various constrained language requirements

http://dx.doi.org/10.1007/978-3-319-12838-2_2

312 Appendix A: Summary of RSL Syntax

representations are grouped within notions. Notions can be of several types which
have different meanings:

• concepts—elements of the problem domain vocabulary,
• attributes—atomic data elements, contained in concepts,
• simple data views—elements that group attributes for presentation,
• list data views—like simple data views but presentation in the form of a list,
• screens—user interface elements that present or modify data,
• triggers—user interface elements that allow users to trigger events,
• messages and confirmations—standard user interface elements for presenting
simple messages.

Actor and System Element

Concrete Syntax and Example

The syntax for Actors is identical to that found in UML. They are denoted by stick
manfigurewith the actor’s name below it. System Elements are denoted like ‘Notions’
but the «system element» stereotype added.

Abstract Syntax

Actors and System Elements are kinds of ‘Domain Elements’. They are contained in
specific ‘Domain Element Packages’ (‘Actor Packages’ or ‘System Element Pack-
ages’). Their names are represented as ‘Noun Phrases’.

Semantics

Actors represent roles played by objects (people, systems) outside of the currently
modelled system. They can interact with the current system, where this interaction is
specified mostly through ‘Use Case’ scenarios (‘Constrained Language Scenarios’).
System Elements represent parts of the currently modelled system. In particular, this
system itself is a System Element.

Appendix A: Summary of RSL Syntax 313

Phrase

Concrete Syntax and Example

Phrases can consist of a single noun (‘Noun Phrases’) or additionally contain a
verb (‘Verb Phrases’). Verb phrases can have one noun (direct object) or two nouns
(an additional indirect object) separated by a preposition. Phrases have purely tex-
tual form with phrase parts being distinguished by bolding or underlining. When
presented as parts of ‘Notions’, Phrases are shown within rectangle frames placed
inside the ‘Notion’ icon.

Abstract Syntax

Phrases are composed of ‘TermLinks’which refer to terms in the global terminology.
Nounphrases contain a single ‘NounLink’. Simple verb phrases contain an additional
‘Verb Link’. Complex verb phrases add another ‘Noun Link’ and a ‘Preposition
Link’. Phrases can be contained in domain statements within ‘Notions’, can serve
as names of various RSL elements and can be referred to from various requirement
and domain representation sentences (‘Constrained Language Sentences’, ‘Natural
Language Hypertext Sentences’).

Semantics

Phrases denote various constrained language expressions, used in other parts of RSL
models. Verb phrases denote actions, and noun phrases denote names.

Domain Element Relationship

Concrete Syntax and Example

Domain Element Relationships are denoted with lines that connect ‘Notions’. Their
notation is similar to that of UML’s associations. Domain Element Relationships can
be directed, and this is denoted with an arrow. Relationships pointed from concept-
type ‘Notions’ towards attribute-type ‘Notions’ can be denoted using aggregation

314 Appendix A: Summary of RSL Syntax

notation (a diamond placed at the aggregate end). Relationships can be adorned with
multiplicities at each of the ends. Multiplicity notation is identical to that in UML.

Abstract Syntax

Any Domain Element Relationship connects two ‘Domain Elements’ (usually—
‘Notions’). It can be directed and has two multiplicity strings.

Semantics

A Domain Element Relationship denotes that two ‘Domain Elements’ (‘Notions’)
are in some conceptual relation. The meaning of this relation depends on the notion
types at both its ends:

• concept and concept (undirected)—conceptual (ontological) link between two ele-
ments of the vocabulary,

• concept to attribute (directed)—containment of an attribute (atomic data) in a
concept,

• data view to attribute (directed)—inclusion of an attribute in a data view for its
presentation,

• screen to data view (directed)—presentation of the data view (its related attributes)
in the screen,

• data view to screen (directed)—updating of the data view (its related attributes)
when presented in the screen,

• screen to trigger (directed)—presentation of the trigger in the screen,
• trigger to data view (directed)—data view is affected by the trigger.

Domain Specification

Concrete Syntax and Example

Concrete syntax for Domain Specifications is derived from UML’s ‘Packages’ (see
‘Requirements Specification’). Their names are placed inside additional rectangles
within the large rectangles. They can also be presented in a Project Tree structure
with a minimised icon being the root of the domain specification tree.

Appendix A: Summary of RSL Syntax 315

Abstract Syntax

Domain Specification can contain several ‘Domain Element Packages’ as its ele-
ments. It is also linked with one ‘Requirements Specification’.

Semantics

Domain Specification is the main container of the domain part of an RSL model. It
can contain all the domain-related elements for a given project—‘Notions’, ‘Actors’
and ‘System Elements’ grouped in appropriate ‘Domain Element Packages’. It can
be treated as an equivalent of a ‘Model’ (cf. domain model) in UML.

Domain Element Package

Concrete Syntax and Example

The syntax for Domain Element Packages is identical to that for UML’s Packages.
The icon has no additional adornments. Domain Element Packages can be presented
in Project Trees with minimised icons.

Abstract Syntax

Domain Element Packages can be classified as ‘Actor Packages’, ‘Notion Pack-
ages’ and ‘System Element Packages’. The respective types of packages can hold
‘Actors’, ‘Notions’ or ‘System Elements’. They can also have nested ‘Domain
Element Packages’ of the appropriate types. Every Domain Element Package is part
of a ‘Domain Specification’ or another Domain Element Package.

316 Appendix A: Summary of RSL Syntax

Semantics

Domain Element Package is the basic grouping element within the domain part of
an RSL model. It can contain domain elements, as well as nested ‘Domain Element
Packages’.

Appendix B
Summary of MOLA Syntax

This appendix presents a concise reference of the transformation part of the MOLA
syntax. It does not present the MOLA syntax for defining metamodels (MOLA-
MOF). The syntax is divided into three parts: Expressions, Rules and control flow,
Procedures. Expressions are presented in terms of their textual syntax with several
annotated examples. Other elements are explained in terms of their concrete graph-
ical syntax, abstract syntax and semantics. For the concrete syntax, examples with
relations to other MOLA elements are given.

B.1 Expressions

Like for any programming language, MOLA uses identifiers in its expressions and
element names. Identifiers can contain small and capital letters (‘a’–‘z’, ‘A’–‘Z’),
digits (0–9) and the underscore (‘_’). No other symbols are allowed. The identifiers
cannot start with digits.

Pointer and Attribute Expressions

Syntax

Pointers refer to metaclass instances (model objects) in a model. Pointers have iden-
tifiers which refer to ‘Object’ elements or ‘Variables’. Normally, the prefix ‘@’ has to
be used before the name of a Pointer. The prefix may be omitted only if the pointer
is used in the constraint of a pattern ‘Rule’ and it points to a non-reference object
element within the same ‘Rule’. If the pointer is used in an ‘Object’ element and it
points to that particular object, then the keyword selfmust be used. If the pointer is
empty, the keyword NULL is used. Pointers can be down-casted by using metaclass
identifiers and the pointer names in parentheses.

© Springer International Publishing Switzerland 2015
M. Śmiałek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2

317

318 Appendix B: Summary of MOLA Syntax

Pointers can be appended with attribute specifications. To access attribute values,
dot notation is used.

Examples

@node—pointer to a model object
@node.name—pointer to an attribute value in a model object
@node.outgoing—a pointer to a set of model objects that represent the (pos-
sibly many) edges outgoing from the node
Graph::SpecialNode(@node)—pointer down-casted to a specialisedmeta-
class.

Integer Expressions

Syntax

Integer expressions return integer values. They consist of integer constants, attribute
specifications of type Integer, variables of type Integer and standard functions. Stan-
dard arithmetical operations (‘+’, ‘−’ and ‘*’) and parentheses can be used. Standard
functions are: toInteger, size, and indexOf.

Examples

toInteger(@num_string)—converts the string in a variable into an integer
value
@node.outgoing->size()—gives the size of the set of ‘outgoing’ edges
(i.e. the number of outgoing edges)
(size(@node.name) + 1) * 5—the size of the node’s name incremented
by 1, and then multiplied by 5
indexOf("a","name")—finds the position of the string ‘a’ in the string
‘name’; returns 2.

Boolean Expressions

Syntax

Boolean expressions return Boolean values. They consist of Boolean constants (true
or false), attribute specifications of type Boolean, variables of type Boolean and
standard functions. Standard functions are: isTypeOf, isKindOf, isEmpty,
notEmpty.

Appendix B: Summary of MOLA Syntax 319

Examples

@node.isTypeOf(Node)—returns true if the model object ‘node’ is exactly
typed with the metaclass ‘Node’
@node.isKindOf(GraphElement)—returns true if themodel object ‘node’
is typed with the metaclass ‘GraphElement’ or one of its subclasses
@node.outgoing->isEmpty()—returns true if there is no element in the
set of ‘outgoing’ edges (no outgoing edge for the node exists)
@node.name->notEmpty()—returns true if the node has its name set (not
empty).

String Expressions

Syntax

String expressions return text string values. They consist of string constants (con-
tained in quotation marks), attribute specifications of type String, variables of type
String and standard functions. Standard functions are: toString, substring,
toLower, toUpper. String expressions can contain string concatenations denoted
by the + symbol.

Examples

toString(57+5)—returns a string of text characters: “62”
substring("The MOLA",5) + substring("?!&%$",2,1)—returns
a concatenation of two substrings, the first one starting with the 5th character, the
second one starting with the 2nd character and being 1 character long; returns
“MOLA!”
toLower(@node.name)—returns some ‘name’ in just lowercase characters
(eg. “node1”)
"->" + toUpper(@node.name)+ "<-"—returns a concatenation of
strings with some ‘name’ in uppercase (e.g. “->NODE1<-”).

Constraint Expressions

Syntax

Constraint expressions consist of simple constraints which use ‘Pointer’, ‘Integer’,
‘Boolean’ or ‘String’ expressions. A simple constraint uses relational symbols to
define conditions: = (equal), <> (unequal), < (less, strong subset), <= (less or equal,

320 Appendix B: Summary of MOLA Syntax

weak subset), > (greater, strong superset), >= (greater or equal, weak superset). The
= and <> symbols are used to compare two expressions of the same type. The other
symbols can be used only to compare the results of ‘Integer’ expressions or sets.

Constraint expressions return Boolean values. They can consist of a single
‘Boolean’ expression, or a constraint expression, or several such expressions con-
nected with the logical operands or, and, not. Parentheses can be used in case of
more complex expressions.

Examples

(size(@node.name)>5) and not @node.isFinal—returns true if
the node’s name is longer than 5 characters and is not a final node (the ‘isFinal’
attribute value is false)
((@cur_node <> NULL) and @ended) or not @ended—returns true
if the ‘@cur_node’ variable was initialised and the ‘@ended’ variable is true or if
the ‘@ended’ variable is false.

Assignments

Syntax

Assignments are composed of the left-hand sides and right-hand sides with the :=
symbol between them.For assignments being parts of ‘Text Statements’, the left-hand
side is either a pointer to an ‘Object’s’ attribute or a variable pointer or a parameter
pointer. For assignments being parts of ‘Objects’, the left-hand side is a pointer to
an attribute of that ‘Object’. The right-hand side is an expression. The data type of
the left-hand side has to be the same as the data type of the right-hand side.

Examples

name := "C" + @r.name—the ‘name’ of the current ‘Object’ is set to the
‘name’ of someother object (‘@r’)with a prefix (“C”) concatenated at the beginning
@tmp_name := @r.name + " " + @v.content—the ‘@tmp_name’
variable (or parameter) is set to the concatenation of three strings.

Appendix B: Summary of MOLA Syntax 321

B.2 Rules and Control Flow

Object

Concrete Syntax and Example

Objects1 are shown as rectangles with up to three compartments. They can be placed
only inside ‘Rules’. The upper compartment contains the name of the Object and the
type name. For reference Objects, their names are prefixed with the @ symbol. The
upper compartment can also contain the{NOT} annotation. It can also contain the full
name of the Object type’s package, which is shown below the class element name
in curly brackets. The middle compartment can contain constraints (also in curly
brackets), which are normally constraints involving thisObject’s attribute values. The
bottom compartment can contain the list of attribute ‘Assignments’ (one per line).

There are four types of Objects: object queries, object creates, object deletes and
loop variables. Object queries have normal (solid) border. Object creates have thick,
red dashed/dotted border. Object deletes have thin dashed border. Loop variables
have solid thick border.

Abstract Syntax

Every Object contains a ‘name’, and refers to a specific metaclass in the metamodel,
as its ‘type’. It also defines its ‘action type’ which can be normal, delete, create
or loop variable. Objects contain ‘constraint’ expressions, and can have several
‘assignments’ associated. They also define the existence of the NOT annotation and
can be associated with other Objects as their reference objects. Object is always part
of some ‘Rule’ and can be connected through ‘Links’ to other Objects contained in
the same rule.

1 In official MOLA reference objects are called ‘class elements’.

322 Appendix B: Summary of MOLA Syntax

Semantics

An Object represents a particular metaclass instance (exactly one) in the model. It
has a name—an identifier that can be used to refer to this instance in the current
MOLA procedure. Every Object has to have its type specified, which is one of the
classes from the metamodel. Objects are of two kinds—reference and non-reference.
A non-reference Object gets the pointer to a particular instance when a pattern
has been matched or a create instance operation has been performed in the rule
owning the class element (during the execution of the rule). A reference Object gets
the pointer to a particular instance before the execution of the rule. It refers to an
element that already has some value. It can be a parameter, a variable or an already
matched Object. Reference objects can be only those with the action types of normal
(query) and delete. The semantics of Objects during rule execution is explained in
the description of ‘Rules’.

Link

Concrete Syntax and Example

Links are denoted with lines connecting exactly two ‘Objects’. There are three types
of Links: link queries, link creates, link deletes. Link queries are shown as normal
(solid) lines. Link creates are shown as thick, red dashed/dotted lines. Link deletes
are shown as thin dashed lines. Link queries can be also adorned with the {NOT}
annotation. Links always show roles at both ends, which reflect metaassociation roles
in the metamodel.

Abstract Syntax

Every Link is connected to a metaassociation in the metamodel. Link ends are named
exactly as the metaassociation ends. A Link can be placed between two ‘Objects’
whose types are the same as the metaclasses connected through the metaassociation.
Links are always contained in ‘Rules’.

Appendix B: Summary of MOLA Syntax 323

Semantics

A Link represents a particular metaassociation instance in the model. The metaasso-
ciation must be valid for the metaclasses that the connecting ‘Objects’ correspond
to. The semantics of Links during rule execution is explained in the description of
‘Rules’.

Rule

Concrete Syntax and Example

Rules are shown as gray rectangles with rounded corners. The Rule box contains at
least one ‘Object’ and any number of ‘Links’.

Abstract Syntax

Every Rule is contained in some ‘Procedure’ or a loop. It can be a regular rule or a
loop head. In the second case, it has to contain exactly one loop variable ‘Object’. A
Rule can have any number of incoming ‘Control Flows’, except for a loop head rule,
which has no incoming flows. A Rule can have up to two outgoing ‘Control Flows’.
It is possible to have no outgoing flows only for the rules contained in loops. If there
are two outgoing flows, one of them must be an alternative flow ({ELSE}).

Semantics

A Rule is a kind of a decision statement with side effects. A rule execution consists
of four steps: (1) pattern matching, (2) instance and link creation, (3) attribute value
assignment, (4) instance and link deletion.

Pattern matching is performed for query, delete and loop variable ‘Objects’ and
‘Links’ contained in a Rule. A pattern is matched, when a set of metaclass and
metaassociation instances are found in the model that are formed in exactly the same
configuration as the elements in the pattern. If reference ‘Objects’ are used in a
pattern, the pattern must consist of the instances referenced by them. Additionally,
all the constraints set on the pattern’s ‘Objects’ have to be met. If the pattern is not

324 Appendix B: Summary of MOLA Syntax

met (no set of instances conforming to the pattern is found), the Rule is evaluated to
false, otherwise it is evaluated to true. Note: for normal rules, the pattern is matched
once—the first available matching set of instances is evaluated.

After a pattern is matched, all the actions defined in the rule are performed. First,
new instances are created based on create ‘Objects’ and create ‘Links’. Then, all the
attribute assignments are performed. Finally, appropriate instances are deleted based
on delete ‘Objects’ and delete ‘Links’. After executing a Rule, one of the ‘Control
Flows’ is followed—depending on the result of pattern evaluation (normal flow for
true and {ELSE} for false).

For-Each Loop

Concrete Syntax and Example

A For-Each Loop is shown as a rectangle with bold borders. This rectangle contains
the loop body which contains at least a loop head ‘Rule’.

Abstract Syntax

Every For-Each Loop is contained in a ‘Procedure’ or in another loop. It contains one
loop head ‘Rule’ and can contain other ‘Rules’, ‘Text Statements’ and ‘Procedure
Calls’. A For-Each Loop has at least one incoming ‘Control Flow’ and at most one
outgoing ‘Control Flow’. The outgoing control flow can be absent if the loop is
contained in another loop.

Semantics

The For-Each Loop has the semantics of the iterator. It iterates through all the
instances of the model specified by the loop variable ‘Object’. This is a special
‘Object’ contained in the loop head rule. For each of the iterated loop variable
instances, the pattern in the loop head ‘Rule’ is matched. For every match, the loop
body is executed.

Appendix B: Summary of MOLA Syntax 325

Text Statement

Concrete Syntax and Example

Text Statements are shown as yellow rectangles with rounded corners. The rectangle
is divided into two horizontal parts. The upper compartment contains a ‘Constraint’
expression. The lower compartment contains a list of ‘Assignments’. One of the
compartment contents can be absent.

Abstract Syntax

Every Text Statement is contained in some ‘Procedure’ or a loop. It can own one
‘Constraint’ and several ‘Assignments’. A Text Statement always has one incoming
and at most two outgoing ‘Control Flows’. It is possible to have no outgoing flows
only for the statements contained in loops. If there are two outgoing flows, one of
them must be an alternative flow (‘ELSE’).

Semantics

A Text Statement is kind of a decision statement with side effects. Execution of Text
Statements starts with the evaluation of the contained ‘Constraint’. When it is met,
the ‘Assignments’ are executed. After executing a Text Statement, one of the ‘Control
Flows’ is followed—depending on the result of pattern evaluation (normal flow for
true and {ELSE} for false).

Start and End

Concrete Syntax and Example

The Start element is shown as a small solid black circle. The End element is shown
as a circle with a smaller solid circle inside. This notation is identical to that of end
nodes and start nodes in UML’s Activity notation.

326 Appendix B: Summary of MOLA Syntax

Abstract Syntax

Start and End elements are contained in ‘Procedures’. There is exactly one Start
element in every ‘Procedure’ and at least one End element. A Start element has one
outgoing ‘Control Flow’ and no incoming ones. An End element can have many
incoming ‘Control Flows’ (at least one) and no outgoing ones.

Semantics

Start element is the entry point of execution for every ‘Procedure’. All other state-
ments must be reachable through ‘Control Flows’ from the Start element. Whenever
a ‘Control Flow’ reaches an End element, the containing ‘Procedure’ terminates its
execution and passes control to the calling ‘Procedure’ (or the program terminates
if it is the main procedure).

Control Flow

Concrete Syntax and Example

Control Flows are shown as dashed lines with hollow triangular arrow heads. They
connect ‘Rules’, ‘Text Statements’ and loops. A Control Flow can have the {ELSE}
adornment.

Abstract Syntax

Every Control Flow connects two statements. One of them is the source of the flow,
and the other is the target. A Control Flow can be normal or alternative ({ELSE}).

Appendix B: Summary of MOLA Syntax 327

Semantics

A Control Flow passes control from the source statement to the target statement.
Statements determine which outgoing Control Flow should be followed (normal or
alternative) according to specific rules for the particular statement type. The rules are
explained in the statement descriptions (see ‘Rule’ and ‘Text Statement’). If a given
statement has no alternative Control Flow, and an alternative flow is to be followed,
control is passed to the ‘End’ element or the loop’s iteration end.

B.3 Procedures

Variable

Concrete Syntax and Example

Variables are shown as white rectangles. The upper part of the rectangle contains
the variable name preceded by the @ symbol, and the variable type preceded by the
: symbol. The lower part of the rectangle contains the name of the package that
contains the metaclass defining the variable type. The package name is included in
curly brackets.

Abstract Syntax

A Variable is contained in a specific ‘Procedure’. It has the variable ‘name’ and the
name of its ‘type’. The type can be either one of primitive types (Integer, String or
Boolean) or a metaclass.

Semantics

Variables can hold primitive values or pointers to instances in themodel. Their values
canbe set through ‘Assignments’ orwhen referenced through ‘Objects’ in rules (when
typed with metaclasses). Variables can be used as ‘Objects’ in rule patterns and in
expressions.

328 Appendix B: Summary of MOLA Syntax

Parameter

Concrete Syntax and Example

Parameters are shown as white convex flags (arrow-shaped pentagons) or as white
hexagons shaped into double arrows. The first variant is used for the in paramenters,
and the second—for the in-out parameters. The upper part of the parameter symbol
contains the parameter name preceded by the @ symbol, and the parameter type
preceded by the : symbol. The lower part of the parameter symbol contains the
name of the package that contains the metaclass defining the parameter type. The
package name is included in curly brackets. Additionally, the parameter symbol has
to contain the parameter number, placed on its right side.

Abstract Syntax

A Parameter is contained in a specific ‘Procedure’. It has the parameter ‘name’ and
the name of its ‘type’. The type can be either one of primitive types (Integer, String
or Boolean) or a metaclass. A Parameter also has its ‘number’ and indication of its
kind: in or in-out.

Semantics

Parameters define the types and order of arguments (call parameters) that must be
supplied when the containing ‘Procedure’ is called. The order of parameters is deter-
mined by parameter numbers. Parameter numbering must be started from one. Every
Parameter has its value set when the containing ‘Procedure’ is started. Principles
of parameter passing are identical to those found in traditional programming lan-
guages. The in parameters are passed by value, and the in-out parameters are passed
by reference. Note that in case of pointer-type parameters (typed with metaclasses),
changes done to the pointedmodel instances are permanent, regardless ofwhether the
parameter is passed by value or by reference. Parameters can be used and changed
exactly in the same way as ‘Variables’.

Appendix B: Summary of MOLA Syntax 329

Procedure

Concrete Syntax and Example

Procedures inMOLA are represented as diagrams containing all the contents defined
with other MOLA constructs. A Procedure can be also represented in project trees
using a distinct icon accompanied by the Procedure name.

Abstract Syntax

EveryProcedure has to be contained in a specific ‘Package’. It contains ‘Parameters’,
‘Variables’ and program statements. AMOLAProcedure has a name and an indicator
of whether it is a main procedure in the MOLA program.

Semantics

MOLA programs start by executing the main Procedure. Other procedures in a
MOLA program are called through ‘Procedure Calls’. When a procedure starts exe-
cuting, its parameter values are set with the passed values. Then, its statements are
executed, beginning with the ‘Start’ element. After reaching the ‘End’ element, the
procedure passes control to the calling procedure. It the current Procedure is the
main procedure, the MOLA program terminates.

330 Appendix B: Summary of MOLA Syntax

Procedure Call

Concrete Syntax and Example

Procedure Calls are shown as rectangles with rounded corners. Calls to MOLA pro-
cedures are coloured green (khaki), and calls to external procedures are coloured
yellow (with red/pink border). The rectangle contains the name of the ‘Procedure’,
and the list of parameter values in parentheses. Parameter values are separated by
commas. Parameter values can be expressions that evaluate to appropriate ‘Parame-
ter’ types.

Abstract Syntax

A Procedure Call can be contained in a ‘Procedure’ or in a loop. It points to a
specific ‘Procedure’ to be called and its ‘Parameters’. A Procedure Call has at least
one incoming and at most one outgoing ‘Control Flow’. It is possible to have no
outgoing flow only for the calls contained in loops.

Semantics

Procedure Calls are used to call MOLA or external ‘Procedures’. Call parameters
must be supplied according to the order and types that are specified by the definition
of the called ‘Procedure’. If a parameter is the in kind, then the corresponding call
parameter can be any expression evaluated to the same type as the parameter (the
parameter is passed by value). If a parameter is the in-out kind, then the corresponding
call parameter must be a ‘Variable’ or a ‘Parameter’ (but not an ‘Object’ reference)
of the same type as the parameter (the parameter is passed by reference). The next
statement (determined by the outgoing ‘Control Flow’) is executed when the called
procedure finishes its execution. The outgoing flow can be absent if the call statement
is owned by a loop. Then the next iteration of the loop is executed.

Appendix B: Summary of MOLA Syntax 331

Package

Concrete Syntax and Example

Packages are shown in project trees as distinct icons accompanied by the Package
names. All the elements in a Package (usually—‘Procedures’) can be shown as child
nodes in the project tree.

Abstract Syntax

A Package contains other Packages and ‘Procedures’. It has a ‘name’ and can be
defined as a unit. A special Package is the ‘Model’ which is the root of the project
tree for a given project.

Semantics

Packages are the main grouping elements in MOLA programs. They are also com-
pilation units. When a Package is defined as unit, then it recompiles every time any
contained ‘Procedure’ is changed. All the directly contained ‘Procedures’ and those
contained in child Packages are recompiled for a unit.

Literature

1. Sebastian Adam, ChristianWuench, andMatthias Koch. Ergebnisberight RE-Kompass. Tech-
nical report, Fraunhofer IESE, HOOD GmbH, 2013. http://www.re-kompass.de/.

2. Steve Adolph, Paul Bramble, Alistair Cockburn, and Andy Pols. Patterns for Effective Use
Cases. Addison Wesley, 2002.

3. Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 2 edition, 2006.

4. Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press, August 1977.

5. Ian F. Alexander and Richard Stevens. Writing Better Requirements. Addison Wesley Profes-
sional, 2002.

6. Jésus Almendros-Jiménez and Luis Iribarne. Describing use-case relationships with sequence
diagrams. The Computer Journal, 50(1):116–128, 2007.

7. Thomas A. Alspaugh and Annie I. Antón. Scenario support for effective requirements. Infor-
mation and Software Technology, 50:2, 2008.

8. Scott Ambler. Agile Modeling: Effective Practices for eXtreme Programming and the Unified
Process. Wiley, 2002.

9. Albert Ambroziewicz and Michał Śmiałek. Application logic patterns—reusable elements
of user-system interaction. Lecture Notes in Computer Science, 6394:241–255, 2010. Model
Driven Engineering Languages and Systems, MODELS’10.

10. Bente Anda and Dag I. K. Sjøberg. Investigating the role of use cases in the construction of
class diagrams. Empirical Software Engineering, 10:285–309, 2005.

11. Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele Taentzer.
Henshin: Advanced concepts and tools for in-place EMF model transformations. In Dorina
C. Petriu, Nicolas Rouquette, and Øystein Haugen, editors, Model Driven Engineering Lan-
guages and Systems, volume 6394 of Lecture Notes in Computer Science, pages 121–135.
Springer, 2010.

12. Hernán Astudillo, Gonzalo Génova, Michał Śmiałek, Juan Llorens Morillo, Pierre Metz,
and Rubén Prieto-Diáz. Use cases in model-driven software engineering. Lecture Notes in
Computer Science, 3844:262–271, 2006.

13. Joy Beatty andAnthony Chen.Visual Models for Software Requirements: An RML Handbook.
Developer Best Practices. Microsoft Press, 2012.

14. Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2 edition, 2004.

© Springer International Publishing Switzerland 2015
M. Śmiałek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2

333

http://www.re-kompass.de/

334 Literature

15. Brian Berenbach. A 25 year retrospective on model-driven requirements engineering. In
Model-Driven Requirements Engineering Workshop (MoDRE), 2012 IEEE, pages 87–91,
2012.

16. Brian Berenbach, Florian Schneider, andHelmut Naughton. The use of a requirements model-
ing language for industrial applications. In20th IEEE International Requirements Engineering
Conference (RE), pages 285–290, Sept 2012.

17. Brian A. Berenbach. Comparison of UML and text based requirements engineering. In Com-
panion to the 19th Annual ACM SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’04, pages 247–252, 2004.

18. Sami Beydeda, Matthias Book, and Volker Gruhn, editors. Model-Driven Software Develop-
ment. Springer, 2005.

19. Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette, and Jamal Eddine Rougui.
First experiments with the ATL model transformation language: Transforming XSLT into
XQuery. In 2nd OOPSLA Workshop on Generative Techniques in the context of Model Driven
Architecture, 2003.

20. Robert Biddle, James Noble, and Ewan Tempero. Essential use cases and responsibility in
object-oriented development. Australian Computer Science Communications, 24(1):7–16,
January 2002.

21. Dines Bjôrner. Software Engineering 3: Domains, Requirements, and Software Design. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2006.

22. Dines Bjôrner. Rôle of domain engineering in software development. why current require-
ments engineering is flawed! Lecture Notes in Computer Science, 5947:2–34, 2010. PSI 2009.

23. Jacek Bojarski, Tomasz Straszak, Albert Ambroziewicz, andWiktor Nowakowski. Transition
from precisely defined requirements into draft architecture as an MDA realisation. In Michał
Śmiałek, Kizito Mukasa, Markus Nick, and Jürgen Falb, editors, 2nd International Workshop
on Model Reuse Strategies (MoRSe 2008), pages 35–42. Fraunhofer IRB Verlag, 2008.

24. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 2 edition, 2005.

25. Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven Software Engineering in
Practice. Morgan & Claypool, 2012.

26. Frederic P. Brooks. No silver bullet: Essence and accidents of software engineering. IEEE
Computer, 20(4):10–19, April 1987.

27. Frederic P. Brooks. The Mythical Man-Month, Anniversary Edition: Essays On Software
Engineering. Pearson Education, 1995.

28. Frank Budinsky. Eclipse Modeling Framework: A Developer’s Guide. The Eclipse series.
Addison-Wesley, 2004.

29. Juan M. Carrillo de Gea, Joaquín Nicolás, José L. Fernández Alemán, Ambrosio Toval,
Christof Ebert, and Aurora Vizcaíno. Requirements engineering tools. Software, IEEE,
28(4):86–91, 2011.

30. Juan M. Carrillo de Gea, Joaquín Nicolás, José L. Fernández Alemán, Ambrosio Toval,
Christof Ebert, and Aurora Vizcaíno. Requirements engineering tools: Capabilities, survey
and assessment. Information and Software Technology, 54(10):1142–1157, 2012.

31. J. Carter and W. B. Gardner. Mise en scene: Converting scenarios to CSP traces in support of
requirements-based programming. In 31st IEEE Software Engineering Workshop (SEW’07),
pages 41–52, 2007.

32. Murali Chemuturi. Requirements Engineering and Management for Software Development
Projects. Springer, 2012.

33. Betty H. C. Cheng and Joanne M. Atlee. Research directions in requirements engineering. In
Future of Software Engineering, 2007. FOSE ’07, pages 285–303, May 2007.

34. Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.
35. Mike Cohn. Succeeding with Agile: Software Development Using Scrum. Addison-Wesley,

2009.
36. Steve Cook, Gareth Jones, Stuart Kent, and Alan Cameron Wills. Domain-Specific Develop-

ment with Visual Studio DSL Tools. Addison-Wesley, 2007.

Literature 335

37. Alexandre R. S. Correia, Juliano M. Iyoda, and Carla T. L. L. Silva. From requirements to
ready to run software: A brief thought on how tomechanize the software development process.
International Journal in Foundations of Computer Science & Technology, 4(3):17–26, 2014.

38. Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transformation
approaches. IBM Systems Journal, 45(3):621–645, 2006.

39. Chip Davis, Daniel Chirillo, Daniel Gouveia, Fariz Saracevic, Jeffrey B Bocarsley, Larry
Quesada, Lee B Thomas, and Marc van Lint. Software Test Engineering with IBM Rational
Functional Tester: The Definitive Resource. IBM Press, 2009.

40. RemcoCdeBoer andHans vanVliet.On the similarity between requirements and architecture.
The Journal of Systems and Software, 82:544–550, 2009.

41. Jürgen Ebert and Tassilo Horn. Gretl: An extensible, operational, graph-based transformation
language. Software and Systems Modeling, 13(1):301–321, February 2014.

42. Bruce Eckel. Thinking in Java. Prentice Hall Professional, 2003.
43. Mohamed El-Attar and James Miller. Improving the quality of use case models using antipat-

terns. Software and Systems Modeling, 9:141–160, 2010.
44. Mohamed El-Attar and JamesMiller. Constructing high quality use case models: a systematic

review of current practices. Requirements Engineering, pages 1–15, 2011.
45. Khaled El Emam and A.Güneş Koru. A replicated survey of it software project failures. IEEE

Software, 25(5):84–90, Sept 2008.
46. Sebastian Erdweg, Tijs van der Storm, Markus Volter, Meinte Boersma, Remi Bosman,

William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, Gabriel D.
P. Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen Schindler, Klemens
Schindler, Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido H.
Wachsmuth, and Jimi van der Woning. The state of the art in language workbenches. In
Martin Erwig, Richard F. Paige, and Eric van Wyk, editors, Software Language Engineering,
volume 8225 of Lecture Notes in Computer Science, pages 197–217. Springer, 2013.

47. Eric Evans. Domain Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley, 2004.

48. Joerg Evermann and YairWand. Toward formalizing domain modeling semantics in language
syntax. IEEE Transactions on Software Engineering, 31(1):21–37, January 2005.

49. Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.
50. Anthony Finkelstein andWolfgang Emmerich. The future of requirements management tools.

In G. Quirchmayr, R.Wagner, andM.Wimmer, editors, Information Systems in Public Admin-
istration and Law. Oesterrechische Computer Gesselschaft, 2000.

51. Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story diagrams: A new
graph rewrite language based on the unified modeling language and java. In Gregor Engels
and Grzegorz Rozenberg, editors, Theory and Application of Graph Transformations, volume
1764 of Lecture Notes in Computer Science, pages 296–309. Springer, 1998.

52. Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley, 3 edition, 2004.

53. Martin Fowler. Language workbenches: The killer-app for domain specific languages?, June
2005. http://www.martinfowler.com/articles/languageWorkbench.html.

54. Martin Fowler and Rebecca Parsons. Domain-Specific Languages. Addison-Wesley, 2010.
55. Xaview Franch and Pere Botella. Putting non-functional requirements into software architec-

ture. In Ninth International Workshop on Software Specification and Design, pages 60–67,
Apr 1998.

56. David S. Frankel.Model Driven Architecture: Applying MDA to Enterprise Computing. OMG.
Wiley, 2003.

57. Gonzalo Génova, Juan Llorens, and Victor Quintana. Digging into use case relationships.
Lecture Notes in Computer Science, 2460:115–127, 2002. UML’02.

58. Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, and Eduardo Zambon. Saying
hello world with GROOVE—a solution to the TTC 2011 instructive case. In TTC, number 74
in Electronic Proceedings in Theoretical Computer Science, pages 215–222, 2011.

http://www.martinfowler.com/articles/languageWorkbench.html

336 Literature

59. Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zambon, and Maria
Zimakova. Modelling and analysis using GROOVE. International Journal on Software Tools
for Technology Transfer, 14(1):15–40, 2012.

60. Hassan Gomaa. Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison Wesley, 2004.

61. Ian M. Graham. Task scripts, use cases and scenarios in object-oriented analysis. Object-
Oriented Systems, 3(3):123–142, 1996.

62. Jack Greenfield and Keith Short. Software Factories. Assembling Applications with Patterns,
Models, Frameworks and Tools. Wiley, Indianapolis, Indiana, 2004.

63. SolGreenspan, JohnMylopoulos, andAlexBorgida. CapturingMoreWorldKnowledge in the
Requirements Specification. In Proc. 6th International Conference on Software Engineering,
pages 225–234. IEEE Computer Society Press, 1982.

64. Sol Greenspan, John Mylopoulos, and Alex Borgida. On formal requirements modeling lan-
guages: RML revisited. In Proc. 16th International Conference on Software Engineering,
pages 135–147. IEEE Computer Society Press, 1994.

65. Felipe Gutierrez. Introducing Spring Framework: A Primer. Apress, 2014.
66. Michael Guttman and Jordi Parodi. Real-Life MDA: Solving Business Problems with Model

Driven Architecture. The MK/OMG Press. Morgan Kaufman, 2006.
67. Ábel Hegedüs, Zoltán Ujhelyi, and Gábor Bergmann. Saying hello world with VIATRA2—a

solution to the TTC 2011 instructive case. In TTC, number 74 in Electronic Proceedings in
Theoretical Computer Science, pages 302–324, 2011.

68. Jonas Helming, Maximilian Koegel, Florian Schneider, Michael Haeger, Christine Kaminski,
Bernd Bruegge, and Brian Berenbach. Towards a unified Requirements Modeling Language.
In Requirements Engineering Visualization (REV), 2010 Fifth International Workshop on,
pages 53–57, Sept 2010.

69. Michael G. Hinchey and James L. Rash. A formal approach to requirements-based program-
ming. In Proc. 12th IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS’05), 2005.

70. Robert Hirschfeld, Michael Perscheid, and Michael Haupt. Explicit use-case representation
in object-oriented programming languages. In Proceedings of the 7th Symposium on Dynamic
Languages, DLS ’11, pages 51–60, 2011.

71. Matthias Hoffmann, Nikolaus Kuhn, Matthias Weber, and Margot Bittner. Requirements for
requirements management tools. In 12th IEEE International Requirements Engineering Con-
ference, pages 301–308, Sept 2004.

72. Tassilo Horn. Saying hello world with GReTL - a solution to the TTC 2011 instructive case. In
TTC, number 74 in Electronic Proceedings in Theoretical Computer Science, pages 295–301,
2011.

73. Heinrich Hussmann, Gerrit Meixner, and Detlef Zuehlke. Model-Driven Development of
Advanced User Interfaces. Studies in Computational Intelligence. Springer, 2011.

74. ISO/IEC. 9126:2001: Software engineering—Product quality, 2001.
75. ISO/IEC. 19502:2005: Information technology—Meta Object Facility (MOF), 2005.
76. ISO/IEC. 25010:2011: Systems and software engineering—Systems and software Quality

Requirements and Evaluation (SQuaRE)—System and software quality models, 2011.
77. ISO/IEC/IEEE. 29148:2011: Systems and software engineering—Life cycle processes -

Requirements engineering, 2011.
78. Ivar Jacobson,Magnus Christerson, Patrick Jonsson, andGunnar Övergaard.Object-Oriented

Software Engineering: A Use Case Driven Approach. Addison-Wesley, Reading, 1992.
79. Edgar Jakumeit, Sebastian Buchwald, Dennis Wagelaar, Li Dan, Ábel Hegedüs, Markus Her-

rmannsdörfer, Tassilo Horn, Elina Kalnina, Christian Krause, and Kevin Lano. A survey
and comparison of transformation tools based on the transformation tool contest. Science of
Computer Programming, 85:41–99, 2014.

80. Frederic Jouault, Freddy Allilaire, Jean Bezivin, and Ivan Kurtev. ATL: A model transforma-
tion tool. Science of Computer Programming, 72(1–2):31–39, 2008. Special Issue on Exper-
imental Software and Toolkits (EST).

Literature 337

81. Frederic Jouault and Ivan Kurtev. Transforming models with ATL. In Jean-Michel Bruel,
editor, Satellite Events at the MoDELS 2005 Conference, volume 3844 of Lecture Notes in
Computer Science, pages 128–138. Springer, 2006.

82. Hermann Kaindl. Using hypertext for semiformal representation in requirements engineering
practice. The New Review of Hypermedia and Multimedia, 2:149–173, 1996.

83. Hermann Kaindl, Michał Śmiałek, Patrick Wagner, Davor Svetinovic, Albert Ambroziewicz,
Jacek Bojarski, Wiktor Nowakowski, Tomasz Straszak, Hannes Schwarz, Daniel Bildhauer,
JohnP.Brogan,Kizito SsamulaMukasa,KatharinaWolter, andThorstenKrebs. Requirements
specification language definition. ProjectDeliverableD2.4.2,ReDSeeDSProject, 2009. http://
www.redseeds.eu.

84. Elina Kalnina, Audris Kalnins, Agris Sostaks, Janis Iraids, and Edgars Celms. Saying hello
world with MOLA—a solution to the TTC 2011 instructive case. In TTC, number 74 in
Electronic Proceedings in Theoretical Computer Science, pages 237–252, 2011.

85. Audris Kalnins, Janis Barzdins, and Edgars Celms. Model transformation language MOLA.
Lecture Notes in Computer Science, 3599:14–28, 2004. MDAFA’04.

86. Audris Kalnins, Agris Sostaks, Edgars Celms, Elina Kalnina, Jacek Bojarski, Wiktor
Nowakowski, Volker Riediger, Hannes Schwarz, Daniel Bildhauer, and Jurgen Falb. Reuse-
oriented modelling and transformation language definition. Project Deliverable D3.2.2, ReD-
SeeDS Project, 2009. http://www.redseeds.eu.

87. Audris Kalnins, Oskars Vilitis, Edgars Celms, Elina Kalnina, Agris Sostaks, and Janis
Barzdins. Building tools by model transformations in Eclipse. In Proceedings of DSM’07,
pages 194–207. Jyvaskyla University Printing House, 2007.

88. Lennart C. L. Kats, Richard G. Vogelij, Karl Trygve Kalleberg, and Eelco Visser. Software
development environments on the web: A research agenda. In Proceedings of the ACM Inter-
national Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! ’12, pages 99–116, 2012.

89. StevenKelly and Juha-Pekka Tolvanen.Domain-Specific Modeling: Enabling Full Code Gen-
eration. Wiley, 2008.

90. SuntaeKim,Dae-KyooKim, Lunjin Lu, and Sooyong Park. Quality-driven architecture devel-
opment using architectural tactics. Journal of Systems and Software, 82(8):1211–1231, 2009.

91. Anneke G. Kleppe. Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, 2008.

92. Anneke G. Kleppe, Jos B. Warmer, and Wim Bast. MDA Explained, The Model Driven
Architecture: Practice and Promise. Addison-Wesley, Boston, 2003.

93. Gerald Kotonya and Ian Sommerville. Requirements engineering: processes and techniques.
Worldwide series in computer science. Wiley, 1998.

94. Per Kroll and Bruce MacIsaac. Agility and Discipline Made Easy: Practices from OpenUP
and RUP. Addison-Wesley, 2006.

95. PhilippeKruchten.The Rational Unified Process: An Introduction. Addison-Wesley, 3 edition,
2003.

96. Daryll Kulak and Eamonn Guiney. Use Cases: Requirements in Context. Addison Wesley, 2
edition, 2012.

97. Miguel A. Laguna, José M. Marqués, and Yania Crespo. On the semantics of the extend
relationship in use case models: Open-closed principle or clairvoyance? Lecture Notes in
Computer Science, 6051:409–423, 2010. CAiSE 2010.

98. Kevin Lano, editor. UML 2 Semantics and Applications. Wiley, 2009.
99. Dean Leffingwell. Agile Software Requirements: Lean Requirements Practices for Teams,

Programs, and the Enterprise. Addison-Wesley, 2010.
100. Dean Leffingwell and Don Widrig. Managing Software Requirements: A Unified Approach.

Addison-Wesley object technology series. Addison-Wesley, 2000.
101. Grzegorz Loniewski, Ausias Armesto, and Emilio Insfran. Incorporating model-driven tech-

niques into requirements engineering for the service-oriented development process. In Jolita
Ralyté, IsabelleMirbel, and RébeccaDeneckère, editors,Engineering Methods in the Service-
Oriented Context, volume 351 of IFIP Advances in Information and Communication Tech-
nology, pages 102–107. Springer, 2011.

http://www.redseeds.eu
http://www.redseeds.eu
http://www.redseeds.eu

338 Literature

102. Grzegorz Loniewski, Emilio Insfran, and Silvia Abrahão. A systematic review of the use of
Requirements Engineering techniques in Model-Driven Development. In Dorina C. Petriu,
Nicolas Rouquette, and Øystein Haugen, editors, Model Driven Engineering Languages and
Systems, volume 6395 of Lecture Notes in Computer Science, pages 213–227. Springer, 2010.

103. Leszek Maciaszek. Requirements Analysis and System Design. Addison-Wesley, 3 edition,
2007.

104. Raimundas Matulevicius. Process Support for Requirements Engineering: A Requirements
Engineering Tool Evaluation Approach. PhD thesis, Norwegian University of Science and
Technology NTNU, 2005.

105. Steffen Mazanek. HelloWorld! An instructive case for the transformation tool contest. In
Pieter van Gorp, Steffen Mazanek, and Louis M Rose, editors, TTC, number 74 in Electronic
Proceedings in Theoretical Computer Science, pages 22–26, 2011.

106. Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled: Principles
of Model-Driven Architecture. Addison-Wesley object technology series. Addison-Wesley,
2004.

107. Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping: Reverse engineering
of graphical user interfaces for testing. In Proceedings of the 10th Working Conference on
Reverse Engineering, pages 260–269, November 2003.

108. PierreMetz, JohnO’Brien, andWolfgangWeber. Against use case interleaving. Lecture Notes
in Computer Science, 2185:472–486, 2001. UML’01.

109. Pierre Metz, John O’Brien, and Wolfgang Weber. Specifying use case interaction: Types of
alternative courses. Journal of Object Technology, 2(2):111–131, March-April 2003.

110. Pierre Metz, John O’Brien, and Wolfgang Weber. Specifying use case interaction: Clarifying
extension points and rejoin points. Journal of Object Technology, 3(5):87–102, May-June
2004.

111. Joaquin Miller and Jishnu Mukerji, editors. MDA Guide Version 1.0.1, omg/03-06-01. Object
Management Group, 2003.

112. ParastooMohagheghi,Wasif Gilani, Alin Stefanescu, andMiguel A. Fernandez. An empirical
study of the state of the practice and acceptance of model-driven engineering in four industrial
cases. Empirical Software Engineering, 18(1):89–116, 2013.

113. ParastooMohagheghi,Wasif Gilani, Alin Stefanescu,MiguelA. Fernandez, BjornNordmoen,
and Mathias Fritzsche. Where does model-driven engineering help? Experiences from three
industrial cases. Software & Systems Modeling, 12(3):619–639, 2011.

114. Ana Moreira, Gunter Mussbacher, Joao Araujo, Nelly Bencomo, and Pablo Sanchez, edi-
tors. International Workshop on Model-Driven Requirements Engineering (MoDRE), Rio de
Janeiro, Brasil, 2013. IEEE.

115. Ana Moreira, Gunter Mussbacher, Joao Araujo, and Pablo Sanchez, editors. Model-Driven
Requirements Engineering Workshop (MoDRE), Trento, Italy, 2011. IEEE.

116. Gunter Mussbacher, Joao Araujo, and Pablo Sanchez, editors. Model-Driven Requirements
Engineering Workshop (MoDRE), Chicago, IL, USA, 2012. IEEE.

117. Wiktor Nowakowski, Michał Śmiałek, Albert Ambroziewicz, Norbert Jarzȩbowski, and
Tomasz Straszak. Recovery andmigration of application logic from legacy systems.Computer
Science, 13(4):53–70, 2012.

118. Wiktor Nowakowski, Michał Śmiałek, Albert Ambroziewicz, and Tomasz Straszak.
Requirements-level language and tools for capturing software system essence. Computer
Science and Information Systems, 10(4):1499–1524, 2013.

119. Object Management Group. Software and Systems Process Engineering Metamodel specifi-
cation (SPEM), version 2.0, formal/2008-04-01, 2008.

120. Object Management Group. MOF 2.0 Query / View / Transformation Specification, v. 1.1,
formal/2011-01-01, 2011.

121. ObjectManagementGroup.Unified Modeling Language, Part 1: Infrastructure, version 2.4.1,
formal/2012-05-06, 2012.

122. Object Management Group. Unified Modeling Language, Part 2: Superstructure, version
2.4.1, formal/2012-05-07, 2012.

Literature 339

123. Object Management Group. OMG Meta Object Facility (MOF) Core Specification, version
2.4.1, formal/2013-06-01, 2013.

124. Object Management Group. XML Metadata Interchange (XMI), version 2.4.2, formal/2014-
04-04, 2014.

125. Gerard O’Regan. Introduction to Software Process Improvement. Springer, 2010.
126. Gunnard Övergaard and Karin Palmkvist. Use Cases: Patterns and Blueprints. Addison-

Wesley, 2005.
127. Oscar Pastor and Juan Carlos Molina. Model-Driven Architecture in Practice: A Software

Production Environment Based on Conceptual Modeling. Springer, 2007.
128. Tom Pender. UML Bible. Wiley, 2003.
129. Marian Petre. UML in practice. In Proceedings of the 2013 International Conference on

Software Engineering, ICSE ’13, pages 722–731, Piscataway, NJ, USA, 2013. IEEE Press.
130. Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and Techniques. Springer,

2010.
131. Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line Engineering:

Foundations, Principles and Techniques. Springer, 2005.
132. Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill series

in computer science. McGraw-Hill Higher Education, 7 edition, 2010.
133. Arend Rensink and Pieter Van Gorp. Graph transformation tool contest 2008. International

Journal on Software Tools for Technology Transfer, 12(3–4):171–181, 2010.
134. Julien Repond, Philippe Dugerdil, and Pietro Descombes. Use-case and scenario metamod-

eling for automated processing in a reverse engineering tool. In Proceedings of the 4th India
Software Engineering Conference, ISEC ’11, pages 135–144. ACM, 2011.

135. J. Rilling,W. J.Meng, R.Witte, and P. Charland. Story-driven approach to software evolution.
IET Software, 2(4):304–320, 2008.

136. Suzanne Robertson and James Robertson. Mastering the Requirements Process: Getting
Requirements Right. Addison Wesley, 2012.

137. Dough Rosenberg and Kendall Scott. Use Case Driven Object Modeling with UML. Addison
Wesley, 1999.

138. Jean-Claude Royer and Hugo Arboleda. Model-Driven and Software Product Line Engineer-
ing. ISTE. Wiley, 2013.

139. Kamil Rybiński, Sławomir Blatkiewicz, Norbert Jarzȩbowski, Wiktor Nowakowski, and
Michał Śmiałek. TALE: Tool for application logic extraction. In 4th International Workshop
on Academic Software Development Tools and Techniques, 2013.

140. Ashich Sarin and J Sharma. Getting started with Spring Framework: a hands-on guide to
begin developing applications using Spring Framework. CreateSpace Independent Publishing
Platform, 2 edition, 2014.

141. Geri Schneider and Jason P. Winters. Applying Use Cases: A Practical Guide. Addison-
Wesley, 2 edition, 2001.

142. Ken Schwaber and Mike Beedle. Agile Software Development with Scrum. Prentice Hall,
2001.

143. Anthony J. H. Simons. Use cases considered harmful. In Proceedings of the 29th Conference
on Technology of Object-Oriented Languages and Systems-TOOLS Europe’99, pages 194–
203. IEEE Computer Society Press, June 1999.

144. Daniel Sinnig, Patrice Chalin, and Ferhat Khendek. LTS semantics for use case models. In
Proceedings of the 2009 ACM Symposium on Applied Computing, SAC ’09, pages 365–370.
ACM, 2009.

145. Fábio Levy Siqueira and Paulo Sérgio Muniz Silva. An essential textual use case meta-model
based on an analysis of existing proposals. In Maria Lencastre, Hugo Estrada-Esquivel, and
Eduardo Figueiredo, editors, Anais do WER11—Workshop em Engenharia de Requisitos,
pages 419–430, April 2011.

146. Kenneth Slonneger and Barry L. Kurtz. Formal Syntax and Semantics of Programming Lan-
guages. Addison-Wesley, 1995.

340 Literature

147. Michał Śmiałek. Accommodating informality with necessary precision in use case scenarios.
Journal of Object Technology, 4(6):59–67, August 2005.

148. Michał Śmiałek. From user stories to code in one day? Lecture Notes in Computer Science,
3556:38–47, 2005. XP’05.

149. Michał Śmiałek.Software Development with Reusable Requirements-Based Cases. Publishing
House of the Warsaw University of Technology, 2007.

150. Michał Śmiałek. Requirements-level programming for rapid software evolution. In Janis
Barzdins and Marite Kirikova, editors, Databases and Information Systems VI: Selected
Papers from the Ninth International Baltic Conference, DB&IS 2010, chapter 3, pages 37–51.
IOS Press, 2011.

151. Michał Śmiałek, Albert Ambroziewicz, Wiktor Nowakowski, J. Bojarski, T. Straszak, K.
Wolter, L. Hotz, K. Mukasa, A. Jedlitschka, D. Bildhauer, K. Falkowski, J. Haas, T. Horn, V.
Riediger, H. Schwarz, A. Kalnins, E. Kalnina, A. Sostaks, E. Celms, M. Rein, S. Drejewicz, J.
Knab, J. Falb, Ö. Tüfekçi, and I. Çokkeçeci. Case-driven software development: Comprehen-
sive approach to produce and reuse model-based software cases. Project Deliverable D8.2.2,
ReDSeeDS Project, 2009. http://www.redseeds.eu.

152. Michał Śmiałek, Jacek Bojarski, Wiktor Nowakowski, Albert Ambroziewicz, and Tomasz
Straszak. Complementary use case scenario representations based on domain vocabularies.
Lecture Notes in Computer Science, 4735:544–558, 2007. MODELS’07.

153. Michał Śmiałek, Jacek Bojarski, Wiktor Nowakowski, and Tomasz Straszak. Scenario con-
struction tool based on extended UML metamodel. Lecture Notes in Computer Science,
3713:414–429, 2005. MODELS’05.

154. Michał Śmiałek, Norbert Jarzȩbowski, and Wiktor Nowakowski. Runtime semantics of use
case stories. In 2012 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 159–162. IEEE, 2012.

155. Michał Śmiałek, Norbert Jarzȩbowski, and Wiktor Nowakowski. Translation of use case
scenarios to Java code. Computer Science, 13(4):35–52, 2012.

156. Michał Śmiałek, Audris Kalnins, Albert Ambroziewicz, Tomasz Straszak, and Katharina
Wolter. Comprehensive system for systematic case-driven software reuse. Lecture Notes in
Computer Science, 5901:697–708, 2010. SOFSEM’10.

157. Michał Śmiałek,Wiktor Nowakowski, Norbert Jarzȩbowski, and Albert Ambroziewicz. From
use cases and their relationships to code. In Second IEEE International Workshop on Model-
Driven Requirements Engineering, MoDRE 2012, pages 9–18. IEEE, 2012.

158. Michał Śmiałek and Tomasz Straszak. Facilitating transition from requirements to code with
the ReDSeeDS tool. In 20th IEEE International Requirements Engineering Conference (RE),
pages 321–322. IEEE, 2012.

159. Ian Sommerville. Software Engineering. International computer science series. Addison-
Wesley, 8 edition, 2007.

160. Agris Sostaks and Audris Kalnins. The implementation of MOLA to L3 compiler. Scien-
tific Papers University of Latvia, 733:140–178, 2008. Computer Science and Information
Technologies.

161. Tomasz Straszak and Michał Śmiałek. Advances in Software Development, chapter Accep-
tance test generation based on detailed use case models, pages 116–126. Polish Information
Processing Society, 2013.

162. Tomasz Straszak and Michał Śmiałek. Automating acceptance testing with tool support. In
Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, 2014.

163. E. Stroulia, M. El-Ramly, P. Iglinski, and P. Sorenson. User interface reverse engineering in
support of interface migration to the web. Automated Software Engineering, 10(3):271–301,
2003.

164. Alistair G. Sutcliffe. User-Centred Requirements Engineering. Springer, 2002.
165. Alistair G. Sutcliffe and Neil A.M.Maiden. The domain theory for requirements engineering.

IEEE Transactions on Software Engineering, 24(3):174–196, 1998.
166. Alistair G. Sutcliffe, Neil A. M. Maiden, Shailey Minocha, and Darrel Manuel. Support-

ing scenario-based requirements engineering. IEEE Transactions on Software Engineering,
24(12):1072–1088, December 1998.

http://www.redseeds.eu

Literature 341

167. Dave Thomas. MDA: Revenge of the modelers or UML utopia? IEEE Software, 21(3):22–24,
2004.

168. Laurence Tratt. Model transformations and tool integration. Software & Systems Modeling,
4(2):112–122, 2005.

169. University of Latvia. The MOLA Language, Reference Manual, Version 2.0 final, 2007.
170. Klaas G. van den Berg and Anthony J. H. Simons. Control flow semantics of use cases in

UML. Information and Software Technology, 41(10):651–659, 1999.
171. Frank J. van der Linden, Klaus Schmid, and EelcoRommes. Software Product Lines in Action:

The Best Industrial Practice in Product Line Engineering. Springer, 2007.
172. PieterVanGorp, SteffenMazanek, andLouisM.Rose, editors.Proceedings Fifth Transforma-

tion Tool Contest, TTC 2011, volume 74 of Electronic Proceedings in Theoretical Computer
Science, Zürich, Switzerland, June 2011.

173. Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Models to
Software Specifications. Wiley, 2009.

174. Jonne van Wijngaarden and Eelco Visser. Program transformation mechanics: A classifica-
tion of mechanisms for program transformation with a survey of existing transformation sys-
tems. Technical Report UU-CS-2003-048, Institute of Information and Computing Sciences,
Utrecht University, 2003.

175. Daniel Varro andAndras Balogh. Themodel transformation language of theVIATRA2 frame-
work. Science of Computer Programming, 68(3):214–234, 2007. Special Issue on Model
Transformation.

176. Oskars Vilitis andAudris Kalnins. Technical solutions for the transformation-driven graphical
tool building platform METAclipse. Scientific Papers University of Latvia, 733:179–212,
2008. Computer Science and Information Technologies.

177. Aliya Virani. A Scenario-based Model-driven Engineering Framework. The University of
Texas at San Antonio, 2008.

178. Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon Helsen. Model-Driven
Software Development: Technology, Engineering, Management. Wiley, 2013.

179. Viliam Šimko, Petr Hnětynka, and Tomáš Bureš. From textual use-cases to component-based
applications. Studies in Computational Intelligence, 295:23–37, 2010.

180. Gerald MWeinberg. Understanding the professional programmer. Dorset House Publishing,
1988.

181. Jon Whittle. Precise specification of use case scenarios. Lecture Notes in Computer Science,
4422:170–184, 2007. FASE’07.

182. KarlWiegers.Automating requirementsmanagement.Software Development, 7(7):1–5, 1999.
183. Karl Wiegers and Joy Beatty. Software Requirements. Developer Best Practices. Microsoft

Press, 3 edition, 2013.
184. Wikipedia. List of Unified Modeling Language tools. http://en.wikipedia.org/wiki/List_of_

UML_tools, last accessed in July, 2014.
185. Stefan Winkler and Jens von Pilgrim. A survey of traceability in requirements engineering

and model-driven development. Software & Systems Modeling, 9(4):529–565, 2010.
186. Yingzhou Zhang and Baowen Xu. A survey of semantic description frameworks for program-

ming languages. ACM SIGPLAN Notices, 39(3):14–30, 2004.
187. Iyad Zikra, Janis Stirna, and Jelena Zdravkovic. Analyzing the integration between require-

ments and models in Model Driven Development. In Terry Halpin, Selmin Nurcan, John
Krogstie, Pnina Soffer, Erik Proper, Rainer Schmidt, and Ilia Bider, editors, Enterprise,
Business-Process and Information Systems Modeling, volume 81 of Lecture Notes in Business
Information Processing, pages 342–356. Springer, 2011.

http://en.wikipedia.org/wiki/List_of_UML_tools
http://en.wikipedia.org/wiki/List_of_UML_tools

Index

A
Abstraction, 4, 8, 23, 250, 294
Action, 47, 62, 65, 91, 107, 110, 131, 133

pre-defined –, 47
Activity

diagram, 63, 65, 262, 268
graph, 210, 211
model, 73, 90, 210

Actor, 5, 13, 17, 18, 35, 37, 48, 50, 55, 58,
62, 78, 85, 88, 92, 118, 227, 260

abstract –, 251
Aggregation, 41, 70, 81
Agile, 27, 234, 237
Algol, xii
Algorithm, 3, 14, 17, 20, 21, 24, 29, 47, 152,

162, 194, 232
Analysis

lexical –, 150
syntactic –, 150

Analyst, 23, 149, 234, 294
Application, 42, 97, 102, 103, 146, 258

graphical –, 24
logic, 3, 6, 14, 16, 21, 37, 42, 43, 47, 48,
50, 57, 58, 63, 83, 90, 103, 106, 110,
111, 113, 127, 134, 210, 222, 233, 234,
236, 238, 243, 250, 257, 288, 295

mobile device –, 233, 242
prototype, 257, 295
software –, 15, 21, 25, 29, 39, 41, 43, 48,
112, 118, 141, 200

web –, 15
Architect, 15, 23, 26, 28, 149
Architecture, xii, xiv, 23, 26, 30, 233, 235,

247, 272, 278, 293
Artefact, 23, 254

executable, xii

Association, 32, 41, 70, 81, 95, 116, 117,
127, 141, 170, 219

bidirectional –, 103
navigable –, 96, 116, 117, 273, 276
unidirectional –, 103

Asynchronous, 6, 107
ATL, 182
Attribute, 5, 21, 23, 32, 35, 39, 40, 42, 44,

48, 71, 74, 81, 95, 104, 121, 128, 141,
170, 179, 230, 238, 240, 253, 260,
272

Automation, 7, 43, 254, 255
Automaton, 2, 3, 16

B
Bean factory, 220, 288
Behaviour, 16, 51, 89–91, 238

observable –, 16, 32, 48, 49, 101, 243,
251

Bootstrapping, 97
Browser

model –, 78, 185, 193
project –, 73, 186, 187, 193, 227, 230
transformation –, 227
tree –, 33

Business
domain, 258
logic, 40, 127, 249, 295
system, 47, 255, 293

Button, 17, 18, 43, 55, 56, 62, 105, 106, 108,
111, 118, 141, 144, 241, 263, 269,
280, 288

initiation, 123
Bytecode, 2, 99

© Springer International Publishing Switzerland 2015
M. Śmiałek and W. Nowakowski, From Requirements to Java in a Snap,
DOI 10.1007/978-3-319-12838-2

343

344 Index

C
C, 70
C++, 2, 196
C#, xii, 2
Camel case, 113–115, 120, 130–133
CASE, 23, 26, 227
Case study, 33, 257, 293
Change request, 294
CIM, 25, 26, 30
Class, 5, 24, 35, 40, 70, 95, 104, 119, 127,

141, 170, 172, 184
diagram, 7, 21, 23, 24, 31, 32, 70, 72, 95,
255, 273

implementation –, 201
instance, 105, 107, 110, 111, 275, 278
library –, 201
super –, 179

Classes
number of –, 294

Classifier, 90, 91, 170
behaviored –, 91

Client, 1, 28, 240, 254
CMOF, 98
Code, 3, 5, 8, 14, 21, 22, 25, 28, 29, 52, 56,

57, 81, 82, 99, 107, 112, 149, 215,
235, 247

effective –, 295
executable –, xii, 2, 22, 102, 186, 239,
254, 256, 294

generation, xii, 8, 15, 26, 29, 40, 47, 65,
82, 85, 87, 102, 150, 210, 216, 226, 227,
231, 237, 243, 255

instruction, 7, 102, 107, 294
linear –, 150
lines of –, 294
machine –, xii, 2, 4, 294
method, 7, 21, 107, 109, 119, 127, 135,
214, 226, 237, 240, 275, 282

optimisation, 147
skeleton, 24, 143
source –, 151
structure, 4–6, 15, 20, 21, 27, 102, 109,
118, 141, 238, 243, 280

stub, 258, 275, 293
working –, 5, 8, 30, 147, 194, 254, 257,
278

Column, 42, 45, 105, 109
Combined fragment, 60, 61
Communication, 8, 10
Compilation, 150, 231, 235, 239

error, 190
Compiler, xii, 2–4, 23, 24, 99, 102, 150, 256

compiler, 98

construction, 102
message, 190

Complexity, xii, 3, 27, 150, 233, 254, 255,
293, 296

artefact –, 293
software –, xi

Component, 23, 24, 184
diagram, 24

Composition, 96
Concept, 40–42, 46, 59, 115, 199, 205, 238,

240, 260
main –, 115, 207, 263, 288

Condition, 52, 54–56, 61, 91, 139, 215, 266
Constraint, 72, 81, 89, 91, 127, 171

visibility –, 204
Constructor, 7, 282, 286
Control, 57, 61, 107

flow, 18, 54–57, 59, 62, 63, 65, 91, 105,
107, 123, 137, 152, 165, 190, 265, 268

flow diagram, 18
flow semantics, 16–18, 62, 90, 91
passing, 4, 18, 57, 62, 63, 83, 110, 111,
135, 136, 166, 278

return of –, 18, 106, 111, 118, 137, 215
Controller, 21
CRUD, 47, 251, 295

D
DAO, 231
Data, 21, 22, 105

access, 296
passing, 19, 45, 104, 107, 110, 115, 133,
216, 217, 279

persistence, 4, 7, 19, 21, 172, 179, 257
persistence code, 296
persistence framework, 296
processing, 14, 17, 18, 21, 24, 29, 40, 45,
47, 61, 106, 110, 115, 143, 239, 249,
255, 295

retrieval, 19, 44, 47, 107, 110, 143
set, 3
storage, 47, 233, 255
type, 104, 170, 175
view, 41–44, 46, 59, 119, 130, 141, 205,
240, 252, 261

Data flow model, xiii
Database, 7, 104

access, 239, 247, 249
column, 170–172
key, 171, 172
managenent system, 255
relational –, 170

Index 345

schema, 171, 172, 182, 295
table, 170–172

Debugger, 24, 191, 239
Debugging, 185, 191, 197, 235
Dependency, 210, 282, 293
Deployment, 23

diagram, 24
Designer, 24, 26, 28, 149
Determiner, 77
Diagram, 3, 67, 69, 78, 88
Distributed processing, xi, 15, 233
Document, 37

linear –, 33, 38
requirements –, 11, 33
template, 33, 37

Domain, 4, 12, 14, 22, 25, 28, 36, 39
abstract –, 251
application –, 39, 43, 45, 149
element, 12, 14, 18, 19, 21, 23, 34, 35,
37–39, 41, 43, 44, 46, 48, 56, 58, 61,
73, 74, 78, 80, 82, 88, 91, 94, 141, 231,
236, 245, 293

element representation, 81
expert, 16, 42, 101, 227, 234
logic, 4, 6, 14, 16, 21, 29, 40, 47, 58, 103,
107, 133, 143, 250, 257, 275

model, 24, 38, 40, 41, 50, 58, 63, 74, 78,
82, 232, 236, 262

object, 16
problem –, 39, 42, 48, 233, 234, 250, 260
rule, 45
specification, 34, 37, 39, 72, 92, 93, 199,
227, 230

statement, 12, 79
vocabulary, 33, 39

DSL, 20, 28–30, 48, 69, 99, 149, 186, 232,
296

DTO, 104, 105, 107, 109, 110, 115, 128, 129,
141, 197, 204, 231, 275

passing, 110, 112, 122, 128, 129
Dynamics, 6, 24, 107, 110, 277

E
Echo3, 103, 195, 280, 285, 287
Eclipse, 185, 231
Ecore, 98, 152
Edge, 67, 157, 170

activity –, 211
dangling –, 160

Editor, 72, 88, 99, 125
graphical –, 186
model –, 31, 149, 186, 193

RSL –, xiii, 152, 225, 231, 244, 255, 258
UML –, 195, 226
window layout –, 296

EMF, 98, 182, 186, 190
EMOF, 98
Engineering, 1
Enterprise Architect, 226
Enumeration, 186
Event, 63, 143, 282, 289

handler, 105–107, 110, 111, 125, 126,
130, 135, 136, 144, 146, 216, 282, 283

sequence, 6
Evolution

requirements –, 233
software –, 233, 254
technology –, 233, 241
transformation –, 233

Experiment, 293
Expression, 32, 72
Extend, 17, 50–52, 54, 89, 91, 95
Extension point, 52, 54, 89

F
Field, 105, 109, 263

class –, 282, 285
column –, 105, 108
data –, 105
editable –, 43
form –, 282
initialisation, 119
screen –, 107, 110

Form, 33, 45, 141, 282
layout, 296

FORTRAN, xii
Framework, 5, 7, 10, 105, 187, 197

architectural –, 23, 103, 250, 255
development –, 234
language –, 103
mathematical –, 101
modelling –, 97
security –, 15
semantic –, 217
technology –, 103, 200, 233, 280, 296
translational –, 20, 22, 112, 147

Fujaba, 182

G
Generalisation, 70, 95, 98, 170, 173, 186
Getter, 107, 126, 132, 133, 143, 144, 204,

206, 276
field –, 122

346 Index

3GL, xii, 2, 4, 20, 23, 28, 29, 102, 256, 294,
295

Goal, 13, 49–51, 57, 59
GOTO, 54, 57
Grammar, 8, 16, 31, 59, 231

context-free –, 31, 72, 77, 98
controlled, 36

Graph, 31, 36, 71, 73, 98, 149, 151, 157, 210
abstract –, 67
fragment, 150
metamodel, 158, 195
model –, 152, 185
object –, 182
source –, 151
space, 151
target –, 151
traversal, 150

GReTL, 182
GROOVE, 182, 184
Guard, 61–63
GWT, 103

H
Henshin, 182
Hibernate, 247
Hyperlink, 12, 14, 35, 39, 58, 74, 82, 88,

116, 123, 125, 129, 132, 133, 217,
230, 241

phrase –, 77
term –, 75, 78

I
IDE, 24, 99, 231, 235, 239
Identifier, 87, 104
Include, 17, 50, 51, 89, 201
Inclusion point, 51, 55, 89
Inheritance, 178, 181, 280
Innovation, 233
Interaction, 11, 13, 14, 18, 24, 43, 49, 50, 52,

61, 63, 278
model, 90, 226
sequence, 13, 17
user-system –, 21, 244, 250, 251, 255,
258, 275

Interface, 24, 25, 201, 216, 273, 280
implementation, 280

Internet, 15
Interweave, 52, 54
Invocation, 3, 51, 55, 61–63, 73, 89, 105,

110, 111, 147, 220, 222, 227, 230,
286

point, 54–56

Invoke, 17, 18, 48, 50, 54, 56, 88, 117, 118,
128, 137, 140, 143, 247, 260, 273

J
JabRef, 244
Java, xii, 2, 4, 16, 20, 33, 70, 78, 98, 102,

149, 185, 215, 258
1.5, 247
code, 102, 119, 194, 258, 272, 280, 294,
295

environment, 200, 210
library, 200
plain –, 288
procedure, 296

JavaFX, 103, 195
JDBC, 247
JGraLab, 189

K
Keyword, 47, 71, 75, 85, 228, 230

L
Label, 107, 282
Language, 1, 67, 68, 72, 81, 82, 99, 101, 147

assembly –, 102
class model –, 95
constrained –, 82, 83
definition, 72, 95
engineer, 28, 99, 102
environment, 98, 149, 150
graphical –, 150, 182, 184
imperative programming –, 102
markup –, 280
metamodelling –, 95, 97, 98
model transformation –, xiii, 27, 98, 149,
152, 181, 232

model-based –, 149
modelling –, xiii, 15, 27, 31, 67, 69, 72,
95

national –, 59
object-oriented –, 98
programming –, 16, 31, 52, 99, 149, 150,
152, 189, 296

requirements –, 32, 225
software –, 20, 78, 101
source –, 151
target –, 151
textual –, 98, 184
unified –, 29
workbench, 98, 99, 191, 232

Legend, 68, 70, 153

Index 347

Lexeme, 31
Lifecycle

iterative –, 23
software –, 250, 254

Lifeline, 59
Linguistic form, 74, 75
Look-and-feel, 243, 295
Loop

‘for’ –, 109, 121

M
Macro, 51, 52
Man-day, 257
Map, 9–11, 29, 39, 68, 295
Mapping, 26
MDA, xii, 24–26, 30
MDRE, xii, xiii, 22, 29, 37, 225, 227, 232,

233, 237, 238, 254, 293, 294
practices, 234

MDSD, xii, xiii, 24, 26, 27, 30, 233
Menu, 18, 33, 43, 50, 105

context –, 227, 228, 231
option, 241

Message, 12, 19, 44, 46, 59, 63, 91, 107, 110,
265

box, 196
passing, 6
sequence, 6

Meta-metamodel, 95, 97, 151
Metaassociation, 70, 72, 83, 96, 168, 171,

186
Metaattribute, 72, 76, 80, 193
Metaclass, 70, 72–74, 81, 91, 95, 153, 170,

186, 194
METAclipse, 185
Metalanguage, 151
Metamodel, 67, 69, 70, 72, 74, 79, 87, 91,

92, 94, 98, 151, 153, 170, 186
class –, 171
diagram, 186
MOF –, 97, 170, 197
RDB –, 171
RSL –, 95, 184–186, 194, 197, 226, 230
UML –, 81, 88–90, 102, 170, 185, 186,
197, 226

Metamodelling, 67, 72, 95, 232
infrastructure, 151

Methodology, 27, 225, 234, 237, 242, 256
model-driven –, 234
software development –, 234

Middleware, xi
Migration, 247, 249

Mobile device, 15
Model, xii, 24, 26, 31, 67, 70, 98, 101, 149,

153
domain –, 238
activity –, 48, 226
class –, xiii, 24, 39, 70, 102, 143, 170,
182, 197, 240, 295

class–, 226
component –, 226
conceptual –, 42, 261
copying, 168
design –, xii, xiii, xv, 1, 8, 26, 27, 29, 45
developer, 149
element, 153
execution, 112
exporting, 226
object-oriented –, 170
querying, 152
repository, 31, 149, 153, 184, 193, 225
RSL –, 17, 32, 34, 36, 38, 45, 67, 75, 112,
113, 118, 125, 127, 140, 141, 144, 149,
184, 185, 192, 194, 226, 227, 231, 235,
238, 240, 243, 247, 257

source –, 28, 30, 123, 125, 132, 140, 149,
150, 192, 197, 199, 200, 205, 259

storage, 149, 151, 152
target –, 101, 123, 140, 149, 150, 152,
192, 197, 200, 205, 215, 216, 218

transformation, 149
UML –, 149, 192, 194, 218, 227, 231,
235, 241, 258

visual –, 8, 24
Model layer, 6, 7, 22, 103, 106, 107, 110,

114, 127, 143, 197, 236, 273, 293
Model transformation, 8, 25, 26, 28, 36–38,

82, 98, 170, 236, 256
contest, 152
engine, 3, 4, 26, 28, 72, 232

Modelio, 226
Modelling, 23, 149

language, 16, 31, 97
language infrastructure, 151
use case –, 251

Modifier, 77
MOF, 97, 152
MOLA, 152, 153, 169, 181, 184, 235, 238

‘ELSE’ keyword, 166, 175
‘NOT’ clause, 160
‘while’ loop, 164
assignment, 154, 175
code, 185
comment, 189
compilation, 188

348 Index

compilation unit, 189
compiler, 185, 227
constraint, 164
control flow, 154
editor, 185
explicit variable, 159
expression, 164, 188, 190
external call, 196
for-each loop, 156, 166, 172, 200, 211
implicit variable, 159
in-out parameter, 175
link, 155
link deletion, 168
logical operator, 164
loop head, 156, 172
object, 152
object creation, 154, 208
object deletion, 166
parameter, 160
procedure, 157, 169, 188, 194
procedure call, 160, 199
program, 185, 226, 231, 242
query, 155, 162, 164, 175, 199
rule, 154, 172
syntax, 227
text statement, 155, 158
variable, 158

Multiplicity, 41, 70, 80, 95, 96, 156, 172,
260, 276

MVC, 21, 103
MVP, 5, 21, 103, 107, 110, 113, 115, 231,

240, 280

N
Natural language, xiv, 16, 23, 31, 59, 75

constrained –, 48, 55, 74
hypertext, 81, 83
processing, 2
representation, 37
requirements, 254, 258
text, 35

Node, 67, 70, 157, 170
ativity –, 211

Notation, 1, 4, 14, 34–36, 48, 63, 184
concrete –, 41, 80, 81, 88, 95
graphical –, 182
textual –, 182

Notion, 12, 78, 81, 115, 116, 205, 249, 260
attribute –, 115, 119
diagram, 230
domain –, 5, 13, 14, 39, 95, 229
screen –, 114, 119–123, 125, 126
trigger –, 123, 125, 126, 140

view –, 114, 115, 119–122, 140, 199
Noun, 11, 46, 74, 75, 77

phrase, 46, 74, 76, 78, 79, 85, 230
Numerical calculations, 48

O
Object, 80, 109, 154

diagram, 32, 70, 85, 95
model, 78
query, 156, 182

OMG, 24, 97, 182
Ontology, 39
Open source, 226
OpenUP, 234
Operating system, 2, 15, 242
Operation, 22, 46, 98, 104, 117, 127, 130,

132, 133, 136, 143, 278
abstract –, 105, 114, 117
call, 110, 116, 131, 133, 134, 137, 145
concrete –, 105
implementation, 107, 108
signature, 107

P
Package, 36, 72, 91, 170, 172, 186, 227

domain element –, 34
hierarchy, 197
requirements –, 34
structure, 188, 197

Palette, 188, 227
Parameter, 46, 107, 112

passing, 106, 107, 109, 135, 146, 160,
175

Parsing, 150, 185, 210
Participate, 48–50
Pascal, xii
Pattern, 25, 81, 151, 152, 155, 193, 225, 249

anti- –, 251
architectural –, 5, 15, 21
creation, 251
design –, 250
instantiation, 251
library, 251
requirements –, 250
software behaviour –, 251, 272

Performance, 4, 15
Phase, 26, 27

design –, 78
Phrase, 46, 58, 72, 74, 75, 77, 79, 83, 94,

228, 229
hyperlink, 83, 85, 95

PIM, 25, 30

Index 349

Platform, 25, 30
execution –, 2, 4
hardware –, 4
mobile –, 242
programming –, 3
software –, 4
technology –, 4, 7, 233, 258

Platform-independent, 26
Platform-specific, 26, 283
Portability, 24
Postcondition, 57, 83
Precondition, 56, 83, 269, 296
Predicate, 58, 83, 85, 116, 131, 132
Preposition, 77
Presenter layer, 6, 7, 21, 103, 105, 110–113,

117, 127, 141, 197, 210, 222, 273
Procedure, 172

call, 18, 22, 51, 54, 110, 145
library –, 189
transformation –, 186, 187

Process, 23, 24, 28, 29, 99, 227, 233
automation –, 15
development –, 240
iterative –, 27, 236
MDSD –, 27
software development –, xiii, 22, 24, 26,
254, 294

Processor, xii, 2
Productivity, 8, 28, 30, 233, 254, 257, 296
Profiling, 231
Program, 101, 150, 152, 153

construct, 150
executable –, 189
execution, 153

Programmer, 24, 26, 28, 29, 102, 152, 235,
294

MOLA –, 188
professional, xi

Programming, xi, 1, 16, 22
assembly –, xii, 256, 294
assembly language –, 4, 8
component-based –, 184
construct, 152
declarative –, 152, 157, 232
environment, 227
framework, 22
imperative –, 152, 232
object-oriented –, 184
paradign, 152
practice, 208
requirements –, 256
skills, 235
structural –, 185

Property, 81, 95, 201, 218
Proxy, 111, 136, 143, 146
PSM, 25, 30

Q
Quality, 15, 37, 241

assurance, 23, 237
code –, 38, 242, 254, 255
constraint, 15
domain model –, 255
metric, 15, 30
requirements –, 33
software –, 1, 254
use case –, 255

QVT, 182

R
Recovery

software –, 243, 247
Recursion, 170, 179, 200, 211, 215
ReDSeeDS, xiv, 152, 225, 227, 230, 240,

242, 244, 251, 258, 262
Refactoring, 249
Relationship, 13, 39, 41, 44, 49, 74, 80, 143

invocation –, 50, 89, 110, 125
semantic –, 82

Reliability, 15, 38
Requirements, xi, 1, 2, 4, 22, 23, 33, 34, 37,

39, 73, 83, 86, 94
best practices, 256
constraint, 3
constraint –, 45
diagram, 227
elicitation, xiii, 1, 258
engineer, 4, 36, 149, 234, 235, 238
engineering, xiii, 1, 225, 254
functional –, xiv, 15, 35, 37, 39, 43, 48,
82

management, 23
model, xiii, 3, 5–7, 13, 14, 22, 26, 29, 78,
91, 194, 236, 243, 250, 255, 256, 280,
294

non-functional –, xiv, 15, 24, 45, 256
quality, xiii, 254
quality –, xiv, 15, 24, 30, 35, 38, 39
representation, 35, 38, 73, 82, 86, 91, 94
software –, 22, 23, 26, 37, 254, 294
specification, 33–35, 37, 72, 81, 93, 199,
227, 231

template, 3
user –, 22, 23, 258
vocabulary –, xiv, 15, 21

350 Index

Requirements-as-such, 73
Reuse, 93, 293

requirements –, 243, 250
software –, 225, 249

Reverse-engineering, 243, 249
RFT, 245, 247
Role, 23, 234
RSL, xiii, 14, 16, 29, 31, 39, 43, 47, 48, 55,

56, 69, 72, 81, 85, 86, 91, 98, 101,
112, 127, 194, 250, 255, 293

definition, 230
extension, 295

Runtime, 101, 282
RUP, 234

S
Scenario, 5, 12, 13, 16, 18, 21, 43, 48, 50, 52,

57, 59, 62, 63, 73, 84, 89, 107, 118,
125, 128, 129, 140, 210, 228, 230,
245, 247

activity –, 87
constrained language –, 87
forking, 228, 290
textual –, 63, 262

Scope, 254
increment –, 238
project –, 236, 240

Screen, 43, 46, 59, 63, 103, 107, 108, 110,
113, 141, 240, 252, 263

element, 44, 107, 108, 116, 134, 230,
286, 288

main –, 118, 260
notion, 116

Scrum, 234
Security, 15, 296
Self-reflective, 97
Semantic rule, xiv, 118, 140, 147, 194, 196,

197, 201, 203, 204, 206, 210, 211,
214, 215, 217, 218, 220–222, 230,
260, 263, 280, 292, 293, 295

Semantics, xiii, 1, 2, 4, 7, 8, 16, 21, 28, 31,
32, 45, 48, 54, 55, 81–83, 101, 102,
105, 147, 217

call –, 51, 54
conceptual –, 101
operational –, 16, 150
RSL –, xiii, 101, 102, 185, 226, 232, 234,
266

runtime –, 90, 99, 112, 185
translational –, 16, 101, 102

Sensor, 43
Sentence, 17, 48, 55, 59, 62, 63, 85, 94, 106,

118, 125

‘actor-to-’ –, 58–63, 118, 124, 125, 128–
135, 137–139, 144, 147, 215, 216, 220,
263

‘system-to-’ –, 19, 20, 22, 58, 59, 61–63,
65, 118, 124, 125, 128, 129, 131–134,
136, 138, 139, 143, 215, 216, 263, 266,
295

condition –, 12, 57, 59, 62, 63, 83, 85,
91, 139, 145, 211, 228, 246, 248, 266

constrained language –, 82, 83
control –, 73
final –, 57, 83, 110, 111, 137, 145, 228
hyperlinked –, 74, 83
invocation –, 18, 56, 57, 61, 63, 65, 89,
110, 118, 125, 135–138, 201, 215, 218,
230, 248, 260

marking, 228
object, 11, 57, 77, 85, 132, 133, 217, 230,
270

postcondition –, 57, 83
precondition –, 213
rejoin –, 57, 62, 85, 118, 138, 145, 228
sequence, 7, 210
subject, 11, 57, 58, 83, 85, 91

Sentences
number of –, 294

Sequence diagram, 6, 59, 60, 106, 107, 278
Serialisation, 98
Setter, 107, 121, 134, 143, 144, 204, 206,

216, 276, 290
field –, 109, 120

Silver bullet, xi, 254
Singleton, 75, 178
SLE, xiii
Software, 8, 10, 22

case, 227
design, 1, 3, 4, 15, 23, 24, 26, 235
designer, 235
developer, xi, 1, 8, 27, 28, 103, 125, 149,
227, 233–235, 238, 241

development, xi, 1, 4, 8, 16, 24, 26, 27
development environment, 185
development framework, 15
development practice, 225
development team, 254, 296
engineer, 16
engineering, 13, 14, 233, 250, 254
evolution, 236, 238
lifecycle, 233
project, 1, 149, 225, 232, 242, 295
project failure, 254
project manager, 2, 254

Software process improvement, 255

Index 351

Specialisation, 51, 77, 81, 89, 92, 114, 273
SPEM, 234
SPL, 28
Spring, 201, 258, 288
SQL, 175
Stack, 94, 136

invocation –, 105
window –, 105, 147, 217, 269

Stakeholder, xiii, 254, 255
Standard, 38
State, 106, 152

dialogue –, 59–63, 123, 124, 135, 136,
139, 215, 263, 268

machine, 90
system –, 13, 16, 18–20, 56, 57

Statement
‘if’ –, 109, 112, 125, 137, 144, 290
‘if-else’ –, 139, 145, 215
assignment –, 122
condition –, 146, 282

Stereotype, 40, 50, 65, 173, 200, 241
Storage, 32, 44, 45, 67, 85, 106

graph-based –, 185
model –, 99, 150, 186
persistent –, 31, 134, 204, 241, 280, 288

Story, 9, 11
Subsystem, 25
SVO, 11, 14, 17, 18, 57–59, 73, 85, 91, 116,

123, 125, 128–130, 133, 139, 145,
228, 265, 296

Swing, 195, 247
Synchronous, 6, 107
Syntactic element, xvii, 68
Syntactic rule, 70, 90, 230
Syntax, 2, 4, 7, 8, 48, 56, 57, 69, 78, 83, 90,

101
abstract –, 31, 67, 76, 80, 82, 88, 94, 98,
99, 101, 153, 176, 204

concrete –, 31, 67, 72, 74, 78, 94, 98, 101,
153, 176, 193, 226

error, 188
graphical –, 78, 152, 184
RSL –, 234, 241, 266
textual –, 78
tree, 151

System, 2, 3, 6, 13, 22, 43, 52, 58, 113
abstract –, 251
desktop –, 243
element, 78, 91, 93
external –, 239
generated –, 249
increment, 236, 237
legacy –, 243

software –, xiii, 1, 12, 43
structure, 257
under development, 93
web-based –, 243

T
Tag, 40, 241
TALE, 245, 247
Technology, 9, 45, 103, 201, 210, 235, 241

computer –, xi
constraint, 15
details, 194
hardware –, 233
implementation –, xv, 185, 235, 238, 256
Java –, 5
obsolete –, 243
software –, 233
upgrade, 234
user interface –, 202

Template, 23, 33, 254
Term, 72, 74, 93, 94
Terminology, 36, 74, 93
Test

case, 237
data, 237, 275
script, 243, 245, 247

Testing, 23, 237
Text

free –, 56, 57, 81–83
linear –, 150
processing, 152, 205
structured –, 36

Tool, xii, 2, 23, 24, 70, 88, 92, 98, 184, 225,
234

code generation –, 85
modelling –, 27, 33, 67, 73, 94, 98, 188
MOLA –, xiv, 185, 225, 227, 235
requirements engineering –, 225
requirements management –, 33
testing –, 244
transformation –, 99
UML –, 23, 24, 27, 149, 187, 210, 227,
231, 232, 237

user, 227
Trace, 6, 7, 33, 39, 205

debug –, 191, 193
Traceability link, 171, 172, 200, 219
Transformation, 20, 29, 102, 185, 194, 225,

238
algorithm, 152, 162
automatic –, xi, xiii, 150, 239, 256
built-in –, 227

352 Index

compiler, 184
developer, xiv, 194
editor, 184
endogenous –, 149, 150
engine, xii, xiv, 20, 99, 149, 191, 225,
227, 231, 240, 249, 256

engineer, 26, 28, 99, 234, 235
environment, 152
executable –, 227
exogenous –, 150
graph –, 151, 152
language, 151
performance, 184
program, xiv, 99, 102, 147, 149, 151,
170, 172, 194, 231

programming, 235
rule, 149, 184, 235, 242

Translation, 15–17, 21, 103, 115
rule, 104, 112

Translator, 4, 16
Tree, 93, 200, 211

package –, 200
project –, 39, 227
specification, 92
structure, 34, 73, 94

Trigger, 12, 18, 43, 45, 46, 50, 58, 59, 61,
62, 105–107, 110, 118, 128, 129, 141,
211, 230, 240, 241, 252

Type-cast, 214

U
UML, 16, 27, 32, 34, 41, 50, 55, 63, 72, 80,

91, 98, 152, 215
kernel, 187
specification, 48, 52, 54, 97, 195

Usability, 24
Usage, 48–50, 72, 73, 89, 118, 259
Use case, 4, 13, 16–18, 21, 23, 35–37, 43,

48, 50, 51, 55, 57, 59, 63, 73, 88–90,
107, 113, 116–118, 123, 127–130,
136, 137, 140, 194, 210, 227, 236,
245, 247, 258, 293

abstract –, 251
diagram, 5, 23, 73, 227, 255
execution, 50, 52, 55, 57, 62
model, xiii, 48, 49, 54, 90, 110, 227, 238,
260, 273, 280

number of –, 293
parameter, 269
parameterised –, 250
pattern, 250
representation, 48, 88, 91, 260, 262
text, 35, 52

User, 6, 11, 18, 23, 28, 32, 37, 42–44, 48, 55,
62, 90, 103, 105, 109, 141, 144, 197,
260

end –, xiii, 296
end –, 101, 234, 294
interface, 3, 6, 19, 38, 41, 43, 49, 50, 105,
106, 114, 124, 233, 241, 243, 249, 295

interface code, 257, 280
interface element, 16, 21, 39, 45, 59, 63,
103, 239, 242, 274, 296

interface field, 144
interface framework, 15, 24, 105
interface model, 24
interface rendering, 217
interface ripping, 243
interface technology, 195, 255, 280
need, 254
satisfaction, 294

V
Validation, 47, 61, 141, 236, 239, 242, 284,

295
field –, 296

Verb, 11, 46, 57, 58, 74, 75, 77, 230
phrase, 12, 14, 20, 21, 36, 39, 45, 47, 48,
58, 76, 78, 85, 98, 116

Versioning, 237
VIATRA2, 182
View layer, 6, 7, 22, 103, 106, 107, 109, 112,

114, 119, 141, 197, 201, 236, 273
Virtual machine, 2, 15, 112, 294
Vision, 37, 39
Vocabulary, 12, 14, 16, 19, 23, 34, 78, 81, 93

W
WebShere, 247
Widget, 7, 263, 283, 287, 295
Wiki, 12, 36
Window, 12, 17, 19, 55, 62, 105, 124, 141,

295
class, 275
dialogue –, 268
field, 263
main –, 280
popup –, 287

Word processor, 23, 33
WordNet, 74
Work product, 234, 235, 237, 238, 240

X
XMI, 98
XML, 98, 244, 245
XP, 234

	Foreword by Juan Llorens
	Foreword by Audris Kalnins
	Preface
	Contents
	Acronyms
	1 Introducing Requirements-Driven Modelling
	1.1 Why Model Requirements?
	1.2 Making Requirements Precise
	1.2.1 Writing Good Stories
	1.2.2 Writing Stories About Software
	1.2.3 How About Quality Issues?

	1.3 What Is the Meaning of Requirements Models?
	1.3.1 Requirements Explained Through Observable Behaviour
	1.3.2 Requirements Explained Through Translation into Java

	1.4 Towards Model-Driven Requirements Engineering
	1.4.1 ``Traditional'' Software Development
	1.4.2 Model-Driven Software Development
	1.4.3 Software Development with DSLs and Model-Driven Requirements

	2 Presenting the Requirements Specification Language
	2.1 How to Define a Modelling Language?
	2.2 Structuring Requirements Specifications
	2.2.1 Basic Concepts
	2.2.2 Packaging and Presenting Requirements

	2.3 Specifying the Problem Domains and Their Rules
	2.3.1 Defining the Problem Domain
	2.3.2 Defining the Application Domain
	2.3.3 Defining the Domain Rules

	2.4 Specifying Functional Requirements
	2.4.1 Use Cases and Relationships
	2.4.2 Sentence Types
	2.4.3 Scenarios

	3 Defining RSL
	3.1 Introduction to Metamodelling
	3.2 Overview of the RSL Metamodel
	3.3 Terms and Phrases
	3.4 Domain Elements and Relationships
	3.5 Constrained Language Sentences and Scenarios
	3.6 Requirements and Use Cases
	3.7 Domain and Requirements Specifications
	3.8 Summary of Metamodelling

	4 Explaining RSL with Java
	4.1 Translational Framework
	4.2 Semantics Involving the General Structure
	4.3 Semantics Involving the View Layer
	4.4 Semantics Involving the Presenter and Model Layers
	4.5 Summary Example

	5 Understanding Model Transformations
	5.1 Overview
	5.2 ``Hello World'' in MOLA---Declarative Processing
	5.3 Variables and Procedures in MOLA---Imperative Processing
	5.4 More Advanced MOLA Constructs
	5.5 End-to-End Transformation Example
	5.6 Which Language to Choose?

	6 Writing Model Transformations for Requirements
	6.1 Using the MOLA Tools
	6.1.1 Specifying the Metamodel
	6.1.2 Specifying and Compiling Transformation Programs
	6.1.3 Debugging Transformation Programs

	6.2 Transformation Overview
	6.3 Generation of the Basic Structure
	6.4 Generation of Data Transfer Objects
	6.5 Parsing of Use Case Scenarios
	6.6 Generation of the Presenter Layer Details

	7 Applying MDRE in Practice
	7.1 Using the ReDSeeDS Tool
	7.2 Introducing the ReDSeeDS Methodology
	7.2.1 Overview of the ReDSeeDS Process
	7.2.2 Software System Evolution Process
	7.2.3 Technology Evolution Process

	7.3 Reuse Approaches with Requirements Models
	7.3.1 Applying MDRE to Existing (Legacy) Systems
	7.3.2 Reusing Requirements Models Through Patterns

	7.4 Summary: Is MDRE for Me?

	8 Case Study
	8.1 Study Assumptions and Context
	8.2 Source Model in RSL
	8.2.1 General Structure
	8.2.2 Use Case Representation Details

	8.3 General Architecture of the Generated System
	8.4 User Interface Code
	8.5 Application Logic Code
	8.6 Discussion

	Appendix A Summary of RSL Syntax
	Appendix B Summary of MOLA Syntax
	Literature
	Index

