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Preface

The main motivation for writing this book is to report on an existing
repertoire of geostatistical methods for handling the integration of geo-
physical information in reservoir modeling and for presenting the successful
case studies that validate them.

Geostatistical methods were introduced in the 1960s (Matheron 1965) as
tools for coping with large amount of similar data and to characterize, for
example, grades dispersion in mineral deposits (David 1977; Journel and
Huijbreghts 1978). When geostatistical methods become popular for oil
reservoir characterization in the 1980s (Deutsch and Journel 1992), the lack
of well data made it necessary for another type of data integration in
geostatistical methods. Hence, a new paradigm—one based on data inte-
gration—developed in geostatistical methods though joint simulations and
stochastic sequential simulations with soft data.

Since the beginning of this century, oil and gas discoveries have been
mainly in deep and ultra-deep waters. Getting to these reservoirs involves
ever-higher costs for drilling and well data sampling; it also involves
increased investment in research and development (R&D) to successfully use
cheaper and more efficient geophysical exploration methods. The recent high
quality of geophysical data, particularly reflection seismic data, represented a
breakthrough in reservoir modeling and characterization. However, the use of
3D and 4D seismic data has been a real challenge for geostatistical data
integration methods.

Using seismic reflection data, stochastic seismic inversion methods are
playing an important role in the characterization of oil and gas reservoirs,
which can basically be divided into two groups: the first based on the lin-
earized Bayesian approach to seismic inversion (Buland and Omre 2003;
Tarantola 2005); the second based on geostatistical inversion methods that
are essentially stochastic sequential simulations and optimization processes
like genetic algorithms and simulated annealing (Bortolli et al. 1993; Haas
and Dubrule 1994; Soares et al. 2007).

This book focuses on the geostatistical inversion methods, with Chap. 2
providing an overview of elementary geostatistics. Stochastic simulations
and joint simulations are presented in Chap. 3, with the different versions
used in the inversion approaches: joint simulation with joint distributions to
deal with multivariate inversion and direct inversion and simulation with
point distributions to access the data uncertainty.
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In Chap. 4 we develop seismic inversion methods—acoustic, elastic and
amplitude versus angle (AVA)—within the geostatistical framework.
Chapter 5 encompasses the direct inversion of porosity, facies and rock
physics models (RPM). Chapter 6 focuses on other methods of geophysical
integration, such as joint electromagnetic and seismic inversion and the
integration of seismic in history matching processes: that is, the integration of
seismic and dynamic production data in numerical reservoir models.

This book is a natural extension and a summary of the Lisbon University
Technical Institute’s (IST—Instituto Superior Técnico) Master of Science
program in Petroleum Engineering notes on reservoir characterization as well
as those of the short courses given at other schools and oil companies. We are
indebted to all the students whose critiques enriched this book.

The seismic inversion methods presented here were developed and
implemented at the Centre for Modeling Petroleum Reservoirs research
Centre, which is now the Petroleum Group of the Centre for Natural
Resources and Environmental Research (CERENA—Centro de Recursos
Naturais e Ambiente). We would like to express our thanks to Jean Paul Diet,
who introduced us to the concept of geostatistical inversion and helped
secure funding from CGG. We would also like to thank Thierry Colleau, who
helped steer us in the right direction at the outset, and António Costa Silva,
Luís Guerreiro and Carlos Maciel of Partex Oil and Gas, for their encour-
agement and support and for helping us find real applications for it in the
Middle East.

Petrobras geophysicists Guenther Neto, Lucia Dillon and Evaldo Mundim
brought new insights and their substantial experience to these methods. Last
but not least, we would like to express our gratitude to the many researchers
at the Centre for Modeling Petroleum Reservoir (CMRP) and our colleagues
and friends, especially Maria João Pereira, Ana Horta, Rúben Nunes, Pedro
Correia and Hugo Caetano, who have helped develop these methods over the
past 15 years with ideas developed in the course of many projects, theses and
publications.

Finally, a special acknowledge to Ângela Pereira, Catarina Marques and
Pedro Pereira for the detailed revision of the manuscript and the valuable
recommendations and Rúben Nunes for all the programming related with the
DSS algorithm.

Lisboa, Portugal Leonardo Azevedo
Amílcar Soares
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1Introduction—Geostatistical
Methods for Integrating Seismic
Reflection Data into Subsurface
Earth Models

1.1 Spatial Resolution Gap

The integration of seismic reflection data for
subsurface modeling and characterization, while
assessing the uncertainty of the subsurface
property of interest, is becoming one of the most
important challenges in reservoir characterization
due to the increase in the quality of deep target
geophysical—in particular seismic reflection data
—information.

The direct use of seismic data as secondary
data for reservoir characterization faces the
problem of vertical spatial resolution gap
between the low vertical resolution of seismic
reflection data and the high vertical resolution of
well-log data. Given these differences in spatial
resolution, it is difficult to extract a relationship
between, for example, seismic amplitudes and
well-log porosity or acoustic impedance infor-
mation from well-log data, to follow the tradi-
tional workflow of joint stochastic sequential
simulation or stochastic sequential simulation
with known means (Deutsch and Journel 1992).

More traditional workflows for integrating
seismic reflection data for modeling the subsur-
face petrophysical properties (e.g. porosity, facies
and saturation) begin by inferring the subsurface
elastic properties (e.g. acoustic and/or elastic
properties) from the available seismic reflection
data gathered by any seismic inversion method-
ology. These seismic properties are represented in

a more compatible resolution as the well-log data.
From the resulting inverted elastic models the use
of geostatistical techniques, such as stochastic
sequential co-simulation (Chap. 3), allows the
simulation of the petrophysical properties of
interest by using the well-log data of the property
to be modelled as the primary variable and the
inverted elastic models as secondary variable. In
this sequential approach, petrophysical modeling
is performed in two independent steps (Fig. 1.1).
The petrophysical property of interest is inferred
from an inverted Earth model and is not a direct
result of the inversion process; therefore, the
resulting petrophysical model is not directly
constrained by the available seismic reflection
data.

Another approach is to interpret the seismic
properties—acoustic impedance, for example—
as a trend of the main petrophysical property: i.e.
porosity. In these situations the stochastic simu-
lation with local means (Chap. 3) can be applied.
In this case, as the local trend is usually a smooth
version of main property spatial dispersion, the
eventual differences between spatial resolutions
become less important. Even so, depending on
the inversion method used to obtain the seismic
property, the spatial resolution gap between
seismic and well-log data, can still be an issue
in these two approaches, i.e. joint stochastic
sequential simulation and stochastic sequential
simulation with known local trend.
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1.2 Seismic Inversion

This book focuses on different methods to inte-
grate seismic data into subsurface Earth models:
the seismic inversion. Seismic reflection data, or
its amplitudes, is usually poorly related with
subsurface petrophysical properties (such as
facies, porosity and saturation). But, these prop-
erties often have a significant relationship with
acoustic and/or elastic impedances. For example,
the acoustic impedance, which is the product of
rock density and velocity, usually has a good
inverse relationship with porosity.

As the acoustic and/or elastic impedances are
physically related with seismic amplitudes, A,
these can be approximated by a convolution of
seismic reflectivity r (derived from
acoustic/elastic impedances) with a known
wavelet w:

A ¼ r � w; ð1:1Þ

where A is the recorded seismic amplitude
obtained by the convolution of r, the subsurface
reflection coefficients, which are dependent on
the elastic properties (P-wave and S-wave
velocities and density) of the subsurface geol-
ogy, with an estimated wavelet w.

This physical relationship induced a new class
of methods based on the inverse solution of the
problem: one wants to know the model parame-
ters (i.e. facies, porosity or related acoustic or
elastic impedance), which derived reflectivity
coefficients, convolved with a known wavelet,
lead to the known solution: i.e. the recorded
seismic amplitudes.

The theoretical solutions for seismic inversion
are described in Tarantola (2005). The seismic
inversion problem began to be approached with
deterministic methodologies that are basically
optimization procedures seeking the minimiza-
tion of an objective function; normally the mis-
match between the synthetic seismic reflection
data obtained by perturbing an initial guess
elastic model and the observed seismic reflection
data.

Over recent years, seismic inversion has suc-
cessfully been extended to a statistical frame-
work for assessing the uncertainty of the inferred
3D subsurface elastic models, which is one of the
main limitations of deterministic inverse proce-
dures. Two different stochastic approaches to
solve the seismic inversion ought to be noted.
One approach of stochastic seismic inversion
algorithms, the linearized Bayesian inversion
(Buland and Omre 2003), are based on a partic-
ular solution of the inverse problem under the
Bayesian framework. These methods assume the
parameters and observations, as well as the data
error, are multi-Gaussian distributed, which
allows the model to be linearized (Chap. 4).
Within this framework the posterior distribution
is analytically obtained and is also multi-
Gaussian. The second category comprises
stochastic methodologies to tackle the seismic
inversion as an optimization problem in an iter-
ative and convergent process. This includes what
are known as iterative geostatistical seismic
inversion methods. They are based on stochastic
and joint sequential simulations to generate
possible solutions and an optimization procedure
(e.g. genetic algorithm, simulated annealing) to

Fig. 1.1 Schematic representation of the traditional geo-modeling workflow to derive petrophysical models (e.g.
porosity) from inverted elastic models

2 1 Introduction—Geostatistical Methods for Integrating Seismic …

http://dx.doi.org/10.1007/978-3-319-53201-1_4


guarantee convergence with the known seismic
amplitudes. These geostatistical inverse methods
are the focus of this book (Chap. 4), and are
based on the family of direct stochastic sequen-
tial simulations and joint co-simulations with
local and point distributions. As they do not
imply any nonlinear transformation of

parameters or observations, these methods have a
high potential to accommodate accurate solutions
for new challenges of different data integration,
like the joint inversion of seismic reflection
and electromagnetic data or the integration of
production data into seismic inversion (Chap. 6).
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2Fundamental Geostatistical Tools
for Data Integration

Geophysicists and other geoscientists are among
the potential readers of this book. The purpose of
this chapter is to summarize the basics of geo-
statistics, focusing on the set of methods used in
stochastic simulations (Chap. 3) and seismic
inversion (Chaps. 4 and 5). For those seeking
more detailed information on geostatistics, we
recommend Journel and Huijbreghts (1978),
David (1977), Isaaks and Srivastava (1989),
Goovaerts (1997) and Chilès and Delfiner
(1999). As for the broad range of applications of
geostatistics the following compilation of papers
of different international geostatistics congresses
are recommended: Verly et al. (1984), Armstrong
et al. (1989), Soares (1993), Baafi and Schofield
(1997), Kleingeld and Krige (2001), Leuangth-
ong and Deutsch (2004), Ortiz and Emery
(2008), Abrahamsen et al. (2012).

Geostatistics began playing a central role in
the modeling and characterization workflows of
hydrocarbon reservoir characterization in recent
years (Dubrule 2003). By definition, geostatistics
is a set of statistical tools that seek to describe the
spatial and/or temporal distribution of a given
property of interest, of which one only knows its
value at sparse and discrete locations (Goovaerts
1997). Despite its potential, the use of geosta-
tistical tools as part of the reservoir geo-modeling
workflow is still traditionally restricted to the
three-dimensional interpolation of the reservoirs’
internal properties of interest (e.g. porosity,
velocities) in between the sparse well locations.

The importance of geostatistical techniques
has grown considerably largely as a result of
their ability to integrate, within the same frame-
work—the reservoir grid—geophysical and
well-log data of a different nature and support.
For example, the integration of seismic reflection
data during the geo-modeling procedure allows
for more detailed, heterogenic and reliable
reservoir models when compared with those
based exclusively on well-log data. This is due to
the much higher spatial coverage the seismic data
provides compared with the well data (Doyen
2007). Among the most well-known geostatisti-
cal algorithms are the Kriging methods
(Sect. 2.3: Deutsch and Journel 1992) and con-
ditional simulations [Chap. 3: e.g. sequential
Gaussian simulation, direct sequential simula-
tion; (Deutsch and Journel 1992; Gomez-
Hernandez and Journel 1993; Verly 1993;
Soares 2001)].

Deterministic models estimate the value of the
property of interest, zðx0Þ� at location x0 by using
a linear combination of the observed values, i.e.
the experimental data. Within this framework, the
inferred value is believed to correspond to the true
value for that unknown location, z x0ð Þ ¼ zðx0Þ�.
The interpolated values are interpreted as having
no associated error and the underlying assump-
tion is that the physical system being modelled is
fully known (Goovaerts 1997). By assuming no
uncertainty in the inferred parameter, determin-
istic models are hardly suitable for describing
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complex and heterogeneous systems like hydro-
carbon reservoirs. In these environments, the lack
of knowledge of the physical system being
modelled is large, and uncertainty should be
assessed during the modeling process (Caers
2011).

Unlike deterministic models, the use of a
probabilistic framework reflects the lack of
knowledge we have about the natural Earth
system being modelled. At location x0, the
probabilistic framework provides a distribution
of possible values for the property of interest
along with its probability of occurrence, allowing
the assessment of the spatial uncertainty of the
property being modelled at a particular location
of interest (Caers 2011). Finally, it is worth
noting that any model resulting from a proba-
bilistic approach is constrained by a set of
assumptions about prior probability distributions
that are estimated from available experimental
data and the spatial continuity model imposed
by, for instance, a variogram model or training
image (Goovaerts 1997; Strebelle 2002).

This section introduces the main geostatistical
stochastic sequential simulation approaches, due
to their importance in assessing spatial uncer-
tainty in recent modeling workflows and the lack
of a real understanding of this family of algo-
rithms within the oil and gas industry. Chapter 3
deals exclusively with stochastic sequential
simulation algorithms. These algorithms are the
basis of the geostatistical modeling techniques
presented in Chaps. 4, 5 and 6.

2.1 Spatial Continuity Patterns
Analysis and Modeling

Much of the success related with geostatistical
models in Earth sciences relates to the ability to
reproduce subsurface three-dimensional numeri-
cal models with the relevant statistics of the
variables retrieved from available experimental
data. This reproduction is particularly effective
for the spatial continuity and variability of the
physical property under investigation.

The purpose of the geostatistical methodolo-
gies for estimation, simulation and inversion
introduced here is to generate numerical subsur-
face models that reproduce the main statistics and
spatial distribution as they are quantified (or
estimated) as a result of available information
and experimental data. Therefore, in this section
we deal with the geostatistical tools that allow
inference of the spatial continuity patterns of a
natural resource for a given property measured at
sparse locations within the study area.

Modeling the spatial behavior of a given
property plays a key role in geostatistical
methodologies, fulfilling two objectives: first, the
characterization and quantification of the spatial
pattern of a reservoir property, commonly des-
ignated in geostatistics as spatial continuity
analysis, i.e. the quantification of the spatial
continuity for the property of interest and the
way how it varies in different spatial directions;
second it is also the basis for the spatial infer-
ence/estimation, simulation and geostatistical
inversion methodologies presented in the fol-
lowing chapters.

2.1.1 Bi-point Statistics

Let us start with a simple example of an image,
or two-dimensional model, with a biphasic phe-
nomenon: a body X within a given area A, which
is composed by X and its complementary Xc

(A = XUXc) in two distinct cases (Fig. 2.1), for
which we intend to quantify the degree of spatial
continuity.

To calculate the proportion of X in A, we can
use a point that visits all possible locations within
A and takes the value of ‘1’ if it intersects body
X, and the ‘0’ if it intersects its complementary
Xc. The ratio between the absolute frequency of
intersections ‘1’ and the total number of posi-
tions within A is an estimator of the proportion of
X in A.

Similarly, to measure the spatial continuity or
dispersion of X, we can consider a circle with
radius r and count the number of times it is
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wholly contained in X while visiting all the
locations within A. Increasing the radius r allows
us to assess the continuity of X for both situa-
tions, assuming an indicator variable Ir(x) = 1 if
the circle of radius r, centered in x, is wholly
contained within X, and Ir(x) = 0 if the circle is
not wholly contained in X. This relative mea-
surement of the spatial continuity, which varies
inversely with the size of r, is given by the fol-
lowing integral calculation (Eq. 2.1):

1
A

Z
A

lr xð Þdx: ð2:1Þ

In the case previously described, the circle of
radius r is considered, in image processing and
particularly for mathematical morphology, to be a
structural element that allows the inference of the
spatial continuity of X (Serra 1982). However,
there are many other structural elements that may
be used for the same purpose: a line segment l or
the bi-point—pairs of points separated by a vector
distance h—that are richer than the circle in a

morphological point of view. These tools, when
compared with the circle as structural element,
allow the measurement of other parameters, such
as the anisotropy degree of X: i.e. the way the
continuity ofX varies in different spatial directions.

Although less rich than the line segment, the
bi-point acting as structural element for measur-
ing the spatial continuity of a natural resource is
the privileged structural element in geostatistics.
Notice that, unlike the line segment, the bi-point
does not include the notion of connected sets
(two points may simultaneously belong to
X while not being connected). However, the
knowledge we have from a given resource is not
normally acquired from a two-dimensional rep-
resentation, as in Fig. 2.1. In practice, we nor-
mally have access to a sparse limited discrete
group of samples located within the study area
(e.g. well data, core samples, soil samples). For
this reason, the inference of the spatial continuity
of a given property is frequently performed by
returning to the bi-point as structural element
(Sect. 2.1.4).

Fig. 2.1 Based on the circle
as the basic structural
element, the two images
(a) and (b) have a spatial
continuity of X as illustrated
in (c)
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2.1.2 Complex Morphologic Patterns:
Auxiliary and Reference
Images

There are cases in which the connectivity of
bodies is of outmost importance for the charac-
terization of a resource (e.g. meandering sand
channels in braided river sedimentary environ-
ments associated with some hydrocarbon reser-
voirs). In these cases, given the limitations of the
bi-point in characterizing the connectivity of two
distinct bodies (see above), we may have to return
to proxy images of co-variables for the successful
reproduction of these complex spatial patterns.
The spatial distribution of these complex struc-
tures may be inferred from 2D and/or 3D images,
conceptual models or interpreted from available
geophysical data acquired from the hydrocarbon
reservoir of interest, for example. Although they
are auxiliary variables, which may be directly or
indirectly related to the properties being studied,
that information (e.g. seismic amplitudes, resis-
tivity) may be used as auxiliary variables for joint
simulation or as target images for geostatistical
inversion, which then allows the reproduction of
those complex spatial patterns within the
geo-modeling workflow.

When geophysical data is scarce or unavailable,
for example during early exploratory phases,
another reliable alternative is to use feasible geo-
logical models of a given sedimentary environ-
ment. These representations of reality are built by
gathering all the information about the system
being studied (e.g. information from analogous and
neighboring fields, expert opinion from geolo-
gists), and are often referred to as reference images.
These reference images are then used to quantify
the continuity and connectivity of the features from
multi-point structural elements (Strebelle 2002;
Arpat and Caers 2007; Mariethoz et al. 2010;
Renard and Allard 2013; Mariethoz and Caers
2014), as in the example of the line segment.

Although these multi-point statistics method-
ologies are not the focus of this book, it is
important to stress their use in complex geolog-
ical environments. The choice of multi-point
statistics as tools to quantify the spatial conti-
nuity patterns of a given property should be

exclusively directed by the trust and knowledge
of the degree of similitude between reality and
the reference image.

2.1.3 Spatial Random Fields

A random variable (RV) is defined as one that
can assume all the values contained within a
probability distribution function. It can be con-
tinuous if the possible range of outcomes is
continuous, or discrete if the outcomes are finite
and without any specific order. By using the
concept of RVs, the value of a property (e.g.
porosity, acoustic impedance) at a given location
within a study area (e.g. a reservoir grid) is
interpreted as a single realization, zðx1Þ of the RV
Zðx1Þ. The group of these dependent RVs,
located for example along a reservoir grid, is
defined as a random field (RF) (Ventsel 1973).

To properly model a stochastic process there
is no need to explicitly characterize the entire
number of associated RVs and their corre-
sponding multivariate distributions. Instead, and
under some a priori assumptions, all that is
required to spatially characterize a given prop-
erty is to describe a certain number of parame-
ters, such as the mean (Eq. 2.2) and variance
(Eq. 2.3; Isaaks and Srivastava 1989):

E Z xið Þf g ¼ m xið Þ ¼
Zþ1

�1
zdFxiðzÞ; ð2:2Þ

var Z xið Þf g ¼
Zþ1

�1
½z� m xið Þ�2dFxiðzÞ; ð2:3Þ

where Fxi zð Þ is the probability distribution func-
tion of the RV Z xið Þ.

If we consider two RVs, such as Z x1ð Þ and
Z x2ð Þ, the covariance between both variables is
given by:

CðZ x1ð Þ; Z x2ð ÞÞ ¼ E Z x1ð ÞZ x2ð Þf g
� m x1ð Þm x2ð Þ; ð2:4Þ

with

8 2 Fundamental Geostatistical Tools for Data Integration



E Z x1ð Þ; Z x2ð Þf g ¼ Zþ1

�1

Zþ1

�1
xyd2Fx1;x2ðx; yÞ;

ð2:5Þ

where Fx1;x2ðx; yÞ is the bivariate probability
distribution function

Fx1;x2 x; yð Þ ¼ probfZ x1ð Þ\x and Z x2ð Þ\yg:
ð2:6Þ

The way the two RVs are spatially correlated
is frequently described by a variogram model.
The variogram between two RVs can be
expressed as:

c Z x1ð Þ; Z x2ð Þð Þ ¼ Ef½Z x1ð Þ � Z x2ð Þ�2g: ð2:7Þ

Under the spatial RF assumption, the avail-
able experimental data is interpreted as being a
single realization, zðxiÞ, i ¼ 1; . . .;N (with
N equal to the total number of samples of the
available experimental dataset), of a random
function that comprises a set of spatially-
correlated RVs. Therefore, by definition it is
impossible to sample more than a single real-
ization, z x1ð Þ; for a given RF. Even if the same
location is sampled twice, each sample set will
correspond to two different realizations of zðxiÞ
in the same RF (Goovaerts 1997; Soares 2006).

However, a single realization of a random
function is not enough to completely describe its
statistical moments. The inference of these
moments is only possible if we are somehow able
to repeatedly sample a given location within the
study area. The first and second statistical
moments of a given RF can only be calculated by
assuming different levels of stationarity within a
specified study area: the stationarity of the mean
and the stationarity of the spatial covariance
(Goovaerts 1997; Soares 2006).

Within a pre-defined area of interest, A, the
decision about the stationarity refers to a constant
mean and spatial continuity pattern, as estimated
from the available experimental data. By con-
sidering stationarity we can assume all RVs have
the same mean within a limited area. With this
assumption, the mean is not dependent on the

location, x0, since it remains constant for the
entire field. In this framework, the mean can then
be estimated as the arithmetic mean of all the
realizations of RF (i.e. the experimental dataset)
composed by N samples, ZðxaÞ, a ¼ 1; . . .;N:

m ¼ 1
N

XN
i¼1

ZðxaÞ: ð2:8Þ

The second order of stationarity is defined if
the correlation between two RVs depends
exclusively on the distance between the two
variables—the vector h—and not on the specific
location, x0, of each variable. For example, the
variogram between Zðx1Þ and Zðx2Þ:

c Z x1ð Þ; Z x2ð Þð Þ ¼ c Z x1ð Þ; Z x1þhð Þð Þ ¼ cðhÞ:
ð2:9Þ

By definition, the decision on stationarity can
never be proved or refuted since we only know a
single realization of the random function. Note
that the stationarity is a property of the random
function, or geostatistical model, needed to spa-
tially infer the value of a given property far from
the location of experimental data. This decision
does not assume that the Earth’s physical system
we are trying to model is itself stationary. We
should also test the available experimental data
for its homogeneity across the entire study area.
If this hypothesis cannot be assumed for the
entire study area, then we may have to divide the
field in smaller areas in which the decision about
stationarity is more suitable (Goovaerts 1997).

2.1.4 Variograms and Spatial
Covariances

Given a quantitative property, Z(x), the diagrams
representing the pairs of points, Z(x), versus Z
(x + h) calculated for different values of h are the
statistics parameters that contain more, and richer,
information about the spatial continuity of Z(x).

Figure 2.2 shows an example of well-log data
with samples located along the well path. For
each well we sample each pair of points with
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distance h, Z(x) and Z(x + h). Figure 2.3 shows
the cross-plots between pairs of points Z(x) and Z
(x + h) for different values of h in the vertical
direction: h = 1, 2, 3, 10. For h = 1 we may infer
a good linear correlation between the values of
samples Z(x). This means there is a good corre-
lation between the values of samples located in
x and the values of the samples located imme-
diately below. As soon as the values of h in-
crease, the clouds of points start to scatter and the
spatial correlation of the samples decreases. We
may interpret from Fig. 2.3 that there is no cor-
relation between samples separated by a distance
of h = 10.

A group of diagrams constructed from dif-
ferent steps, h, comprises almost all the infor-
mation related with the degree of dispersion/
continuity for the variable, Z(x), at that well
location that we may retrieve from bi-point
statistics. However, for a better interpretation
and further use one must synthesize the bi-plots
shown in Fig. 2.3 into a single tool. Summariz-
ing the dispersion between pairs of points allows
for a better visualization of the behavior of the
property with increasing h. One way, for exam-
ple, would be to represent the correlation coeffi-
cients (Pearson’s correlation) in function of h,

resulting in what is commonly called a correlo-
gram (Fig. 2.4).

In addition to the correlogram (Fig. 2.4), there
are other measurements that synthesize the dis-
persion of different clouds of point (Z(x), Z
(x + h)), and which may result in a series of
statistics quantifying the continuity of Z(x). For
example, each cross-plot from may be summa-
rized by the mean of the least squares between Z
(x) and Z(x + h), which is commonly called a
variogram (or semi-variogram: Eq. 2.10):

c hð Þ ¼ 1
2NðhÞ

XNðhÞ
a¼1

Z xað Þ � Z xa þ hð Þ½ �2; ð2:10Þ

where N(h) is the number of pairs of points for
each value of h.

Note that all these statistics represent the
spatial continuity of the variable Z(x) in a given
experimental location. In other words, the spatial
continuity and its representativeness are limited
to the region around the well. If instead of a
single well we simultaneously consider all the
wells with the same direction located within a
reservoir and intersecting different geological
layers, the resulting variogram (Eq. 2.10), or

Fig. 2.2 Left Spatial representation of four wells and samples of a given subsurface property of interest measured along
the well path. Right Detail of a well with the samples measured vertically along the well path

10 2 Fundamental Geostatistical Tools for Data Integration



correlogram, would represent the space covered
by the group of available wells.

Let us now consider an example of a sedi-
mentary environment related with large sinuous
channels. This kind of geological setting is nor-
mally described as anisotropic, i.e. the spatial
continuity/variability is different depending on
the direction of space. For example, petrophysi-
cal properties, such as porosity and permeability,
are frequently more continuous and consequently
less variable along a given geological formation
and are more variable between formations. The
same exercise can be carried out using the pairs
of values (Z(x), Z(x + h)) for different directions

in space. This exercise allows the assessment of
spatial continuity for the property Z(x) along the
entire domain of spatial analysis.

A different measurement of spatial continuity
is given by the average of the product Z(x)Z
(x + h), for a given distance h. This results in a
non-centered covariance estimate (Eq. 2.11):

C hð Þ ¼ 1
NðhÞ

XNðhÞ
a¼1

Z xað Þ � Z xa þ hð Þ½ �: ð2:11Þ

This covariance estimator may be centered by:

C hð Þ ¼ 1
NðhÞ

XNðhÞ
a¼1

Z xað Þ : Z xa þhð Þ½ � � m xað Þ;m xa þhð Þ;

ð2:12Þ

given mðxaÞ ¼ 1
NðhÞ

PNðhÞ
a¼1

ZðxaÞ and mðxa þ hÞ ¼

1
NðhÞ

PNðhÞ
a¼1

Zðxa þ hÞ as the arithmetical averages for

all the points at locations xa and xa þ h,
a ¼ 1; . . .;NðhÞ.

The covariance estimator (Eq. 2.12) may be
expressed in terms of a correlogram (or normal-
ized covariance):

Fig. 2.3 Bi-plots of Z(x) versus Z(x + h) for different distances (values of h) in the vertical direction: h = 1, 2, 3 e 10

Fig. 2.4 Example of a correlogram for h between 1 and 4
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qðhÞ CðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðxaÞ : r

2
ðxa þhÞ

q ; ð2:13Þ

where

r2ðxaÞ ¼
1

NðhÞ
XNðhÞ
a¼1

Z xað Þ � m xað Þ½ �2;

and

r2ðxaþhÞ ¼
1

NðhÞ
XNðhÞ
a¼1

Z xa þ hð Þ � m xa þ hð Þ½ �2:

By assuming the stationarity of increments
h (Sect. 2.1.3), the mean of the least squares and
the mean of the products are estimates of the
second moments: the variogram (Eq. 2.14) and
the centred covariance (Eq. 2.15):

c hð Þ ¼ 1
2
Ef½Z xð Þ � Z xþ hð Þ�2g; ð2:14Þ

C hð Þ ¼ E Z xð ÞZ xþ hð Þf g
� E Z xð Þf gEfZ xþ hð Þg; ð2:15Þ

we reach the relationship between a variogram
and the covariance (Eq. 2.16):

c hð Þ ¼ C 0ð Þ � CðhÞ: ð2:16Þ

We then may express the variogram in terms
of a correlogram (Eq. 2.17):

q hð Þ ¼ CðhÞ
Cð0Þ : ð2:17Þ

The relationship between the variogram and
the covariance functions (Eq. 2.16) is synthe-
sized in Fig. 2.5.

2.1.5 Spatial Representativeness
of the Variogram

As noted in Sect. 2.1.3. above, it is important to
relate the stationary assumption of the proba-
bilistic model to the notion of the representa-
tiveness and homogeneity of the experimental
samples, which are the basis for calculating the
stationary statistics (mean and variance).

For the first statistical moment, the mean of

the N samples within an area A, mz ¼ 1
N

PN
a¼1

zðxaÞ
is an estimator of the expected value of the ran-
dom function Z(x) − E{Z(x)}, under the
assumption of stationary about the mean.

Given that we only have access to a single
realization of the random function Z(x), i.e. the
set of values z(xa) in A, we ensure that mz is a
good estimate of the spatial integral (Eq. 2.18):

mz ¼ 1
A

Z
A

z xð Þdx: ð2:18Þ

Assuming a stationarity mean for the random
function Z(x) is equivalent to considering the set
of available experimental data—the only known
realization of the random function Z(x)—as
homogenous and representative for the entire area
A. The same principle can easily be extrapolated
for the second statistical moments: the variograms
(Eq. 2.14) and covariance (Eq. 2.15).

Let us consider a given area, A, as a closed
body and a distance vector, h, as schematically
represented in Fig. 2.6. A new area, A+h, can
then be defined by the samples x+h with distance
+h from the samples x in A (Eq. 2.19):

Aþ h : xþ hjx 2 Af g or xjx� h 2 Af g: ð2:19Þ

Fig. 2.5 Relationship between covariance, C(h), and
variogram, c(h), functions with the increment of step h
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In the same way we may mathematically
define A−h (Eq. 2.20):

A�h : x� hjx 2 Af g or xjxþ h 2 Af g: ð2:20Þ

The variogram is by definition the variance of
the deviations (Z(x) − Z(x + h)) when both
samples x and x + h belong to A. Hence, its
representativeness refers to the union of both
grey areas as shown in Fig. 2.6: ðA \Aþ hÞ [
ðA \A�h).

In terms of spatial integrals of A, the vari-
ogram may be described as follows:

2c hð Þ ¼ 1
A\Aþ h

Z
A\Aþ h

½Z xð Þ � ZðxþhÞ�2dx

2
64

þ 1
A\A�h

Z
A\A�h

½Z xð Þ � Zðx� hÞ�2dx

3
75:

ð2:21Þ

When the distance vector h is small—for
example smaller than half the dimension of A—
then the representativeness of the variogram is
similar to A:

ðA\AþhÞ [ ðA\A�hÞ � A:

Thus, when computing the variogram estimate
we must take into account that its representa-
tiveness in A is given by the dimension of the
distance vector h. For practical applications, the
representativeness of the variogram (c hð Þ) should
be questioned for distances, h, larger than half
the size of A along the direction of h.

Besides the spatial representativeness, each
value of the variogram must be related to a
homogeneous cloud of pairs of points in the
bi-plot ðZ xð Þ; Zðxþ hÞÞ for each step h. For
example, one single anomalous value ZðxiÞ may
result, along with its neighbor samples Zðxi þ hÞ,
in large values of Z xið Þ � Z xi þ hð Þ½ �2, and con-
sequently a large mean c hð Þ translated in practice
as a weak spatial correlation for that given value
of h. We may consider this sample anomalous
and as having a restrict representativeness. If the
computed experimental variogram, without tak-
ing into account the anomalous value ZðxiÞ, has a
more regular behavior (in a way that it is more
similar to the rest of the values of c hð Þ), it may
and should be adopted as representative of the
remaining samples for the whole area. Note that
in these cases, during the process of local esti-
mation the areas surrounding ZðxiÞ should be
considered with special care to ensure the area of
influence of the sample does not have a large
impact on the estimate. By definition, c hð Þ does
not translate the behaviour of the large spatial
variability between ZðxiÞ and the neighbor
samples.

2.1.6 Spatial Continuity
for Multivariate Systems

Consider those cases in which, at a given spatial
location for a single sample, we measure more
than one attribute, Z1(xi), Z2(xi), … ZN(xi): for
example, P-wave velocity, S-wave velocity and
density measured at the same locations along a
well path.

The correlation between each pair of these
attributes Z1(x), Z2(x), … ZN(x) may be measured
through the correlation coefficient for the set of
N samples (Eq. 2.22):

q Z1; Z2ð Þ ¼ 1
Nr1r2

XN
i¼1

ðZ1 xið Þ � m1ÞðZ2 xið Þ � m2Þ½ �;

ð2:22Þ

Fig. 2.6 Schematic representation of the spatial repre-
sentativeness for covariance and variance estimates
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where m1, m2, r1
2 e r2

2 are the mean and variance
of Z1(x) and Z2(x) respectively.

We can now generalize the correlation between
the different variables and calculate the correlation
of variable Z1(x) located in x and the variable
Z2(x + h) located in x + h. The spatial depen-
dency between each pair of variables with dis-
tance hmay be characterized by cross-variograms,
cross-covariance and cross-correlation (Goovaerts
1997).

Assessing the spatial dependency between
variables is important as we often have to use an
auxiliary variable (frequently more abundant) to
estimate a primary variable (less abundant)
assuming a spatial correlation between both. This
is frequently the case when estimating porosity
models with known values at the well locations
from models of acoustic impedance retrieved, for
example, from seismic inversion in the entire
area A.

The random function model used so far
(Sect. 2.1.3) may be generalized for multivariate
cases. The set of RVs defining Nv random func-
tion, I = 1, .., Nv, can also be designated as
multivariate random function:

Zi xð Þ; i ¼ 1; . . .;Nv; 8x2A: ð2:23Þ

The joint distribution of two variables Zi xð Þ
and Zj xð Þ depends on the distance vector h
(Eq. 2.24):

Fij h; zi; zj
� � ¼ prob Zi xð Þ� zi; Zj xþ hð Þ� zj

� �
; 8ij:
ð2:24Þ

The spatial dependency between two variables
Zi xð Þ and Zj xð Þ may be measured by the
cross-covariance function:

Cij hð Þ ¼ E Zi xð Þ � mi½ � � Zj xþ hð Þ � mj

� �� �
; 8ij;
ð2:25Þ

or by the cross-variogram:

cij hð Þ ¼ 1
2
E Zi xð Þ � Zi xþ hð Þ½ �: Zj xð Þ � Zj xþhð Þ� �� �

; 8ij:

ð2:26Þ

Note that cij hð Þ ¼ cji hð Þ; but Cij hð Þ may not
equal C hð Þ, meaning the function is not sym-
metrical with h.

The relationship between cross-variogram and
cross-covariance may be described as:

cij hð Þ ¼ Cij 0ð Þ � 1
2
½Cij hð ÞþCij �hð Þ�: ð2:27Þ

If the cross-covariance in Eq. 2.25 is rewritten
in terms of the sum between two terms dependent
on h (Eq. 2.27), it can easily be understood that
the cross-variogram (Eq. 2.27) comprises only
the first term. This is the reason for the symmetry
around h:

Cij hð Þ ¼ 1
2

Cij hð ÞþCij �hð Þ� �þ 1
2

Cij hð Þ � Cij �hð Þ� �
:

ð2:28Þ
In practice, the asymmetry component of the

cross-covariance is usually ignored for two main
reasons (Journel and Huijbreghts 1978):

• The amount of available experimental data
rarely allows comprehension and consequent
validation across the whole study area of the
physical phenomenon that results in the
asymmetry in the cross-covariance;

• Modeling the asymmetric cross-covariance is
extremely complex.

For this reason, the geostatistical tools that
quantify the spatial continuity of a multivariate
system are frequently the cross-variograms and the
symmetrical cross-covariance: Cij hð Þ ¼ CjiðhÞ, or
the mean of CijðhÞ and CjiðhÞ.

Finally, the cross-correlogram may be syn-
thetized by (Eq. 2.29):

qij hð Þ Cij hð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cii 0ð Þ � Cjj 0ð Þp 2 ½�1; 1�: ð2:29Þ
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2.1.7 Variogram Modeling
Workflow

Modeling by a Mean Representative Function

Figure 2.7a represents a given reality, i.e. a model
with all the values of Z(x) within an area A. From
that reference data Z(x), a limited set of experi-
mental data was randomly sampled (black circles
on Fig. 2.7a) and an experimental variogram
calculated (Fig. 2.7b). As a reference dataset from
which reality is known, we may also calculate the
experimental variogram for all points within the
study area, the entire cðhÞ (Fig. 2.7c).

The example illustrated in Fig. 2.7 synthesizes
the main objective during the variogrammodeling
stage: the estimation of the real variogram using a
discrete and limited set of samples z(x) and the
corresponding experimental variogram.

Once the values of the variograms for differ-
ent distances, h, are calculated for a given area A,
it is necessary to model them using a function
describing the spatial behavior of the property of
interest for the entire study area. In practice, we
adjust a smooth function of a reduced number of
parameters that describe the spatial continuity of
Z(x).

This step is of utmost importance within the
geostatistical framework, since it allows the
synthesis of the structural characteristics of the
spatial phenomena, e.g. degree of dispersion/
continuity and anisotropies, into a single and
coherent variogram model.

It is also common practice to adjust a model to
the experimental variogram by conditioning it
from expert knowledge about the phenomena
being modelled.

Positive Definite Models

From the many functions that may be used to
interpolate the points of an experimental vari-
ogram we need to constrain our options to those
allowing stable solutions when calculating linear
estimates (Sect. 2.2). To meet this condition, the
variogram and covariance must be positive defi-
nite. The necessary condition for the positive
definite of a covariance matrix is:

X
i

X
j

kikjC i; jð Þ� 0: ð2:30Þ

Any linear combination of covariance
between pairs of points within an area A is
always positive definite. If we consider a given

Fig. 2.7 a Known given data from an area A and set of
samples retrieved from this data (black filled circles).
b Experimental variogram computed from the set of

available samples. c Experimental variogram computed
from the known given data (a)
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variable Zðx0Þ resulting from a linear combina-
tion of RVs Zðx1Þ; Zðx2Þ; . . . ZðxNÞ (Eq. 2.31):

Zðx0Þ ¼
X
i

kiZðxiÞ; ð2:31Þ

then a definite positive covariance ensures that
the variance of Zðx0Þ is always positive:

varfZðx0Þg ¼ E
X
i

X
j

kikjZ xið ÞZ xj
� �� m2

( )

¼
X
i

X
j

kikjE Z xið ÞZ xj
� �� m2

� �
¼
X
i

X
j

kikjC i; jð Þ� 0:

ð2:32Þ

By replacing Eq. 2.16 in Eq. 2.31 the vari-
ance may be written in function of the variogram:

varfZðx0Þg ¼ Cð0Þ
X
i

X
j

kikj

�
X
i

X
j

kikjc i; jð Þ� 0: ð2:33Þ

In the cases in which Cð0Þ does not exist (i.e.
non-stationary random functions) the variance
Zðx0Þ exists if

P
i
ki ¼ 0. Thus, the necessary

condition of positive variance is ensured ifP
i

P
j
kikjc i; jð Þ� 0 conditioned to the sum of the

weights being zero.

2.1.8 Theoretical Variogram Models

The positive definite condition limits the number
of models that can be used for interpolating ex-
perimental variograms. In practice, within a
geostatistical framework a limited range of pos-
itive definite interpolating functions are used.
The following models are presented: spherical,
exponential, Gaussian and power.

Spherical Model

The spherical model is one of the most common
in geostatistics and it is a function of two
parameters (Eq. 2.34): the sill (C), upper limit to
which the values of the variogram tend when h is
increased; and the range, a, distance from where
the values of cðhÞ stop increasing and are
approximately equal to the sill, normally the total
variance of the experimental data Z(x). The range
of a variogram measures the distance from where
the data Z(x) is no longer correlated:

c hð Þ ¼ C 1:5 h
a � 0:5 h

a

� �3h i
for h� a

C for h[ a:

(

ð2:34Þ

Figure 2.8a shows a map with the spatial
distribution of a variable Z(x) modelled with a
spherical model (Fig. 2.8b) in which the ampli-
tude is one-third of the dimension map length.

Fig. 2.8 a Map with the
spatial distribution of the
variable Z(x) according to
b a spherical model with
amplitude equal to 1/3 L
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Exponential Model

The exponential model is a function of the same
parameters of the spherical model—sill and
range (Eq. 2.35)—while the variogram tends
asymptotic to the sill value:

c hð Þ ¼ C 1� exp � 3h
a

	 
� �
: ð2:35Þ

In this model, the range value is the distance
in which the model reaches 95% of the sill:
c hð Þ ¼ 0:95C.

Figure 2.9a shows the spatial distribution of a
variable modelled with an exponential variogram
(Fig. 2.9b) with range equal to 0.3 L of the map
length.

Comparing both Figs. 2.8 and 2.9, besides the
rapid growth of the spherical model near the

origin, it shows structures with larger spatial
continuities resulting from larger spatial correla-
tion for larger distances h.

Gaussian Model

The two variogram models previously presented
—the spherical and exponential—have a rela-
tively fast increase near the origin, translating
into a typical behavior of irregular natural phe-
nomena. Other phenomena, more regular and
continuous, are translated by a slow increase of
the variogram values near the origin, for example
a parabolic behavior. This is the case of Gaussian
models (Eq. 2.36):

c hð Þ ¼ C 1� exp
�3h2

a2

	 
� �
: ð2:36Þ

Fig. 2.9 a Map with the
spatial distribution of the
variable Z(x) according to
b an exponential model with
amplitude equal to 0.3 L

Fig. 2.10 a Map with the
spatial distribution of the
variable Z(x) according to
b a Gaussian model with
amplitude equal to 0.2 L
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As in the exponential model, range, a, is the
distance from where the model reaches 95% of
the sill: c hð Þ ¼ 0:95C.

Figure 2.10 shows the behavior of a Gaussian
variable model in which the range is 0.2 L of the
length of the map. Note the much larger and
smooth spatial continuity compared with those
obtained from the spherical and exponential
models (Figs. 2.8 and 2.9).

Power Models

So far all the variogram models described have a
sill as upper limit for where the variogram values
of c hð Þ tend when h increases infinitely. These
models are adequate for transition phenomena
characterized by a distance—the range—from
where the spatial correlation between samples no
longer exists. In these transitional phenomena
there is always a relationship between covariance
and variogram as described in Eq. 2.16.

However, there are other natural phenomena
in which the growth of c hð Þ is continuous with
h and does not tend to the sill. These are
non-stationary phenomena in which there is no
finite variance or notion of covariance—the
variance grows with the dimension of the dis-
persion field Z(x).

The most common variogram model applied
in these situations is the power model (Eq. 2.37):

c hð Þ ¼ Cha; ð2:37Þ

with a between 0 and 2. Depending on a, the
variogram may be linear (a ¼ 1), logarithmic
(0\a\1) or parabolic (1\a\2) (Fig. 2.11).

2.1.9 Linear Combinations
of Variogram Models:
Imbricated Structures

For most natural phenomena, spatial continuity
patterns are rarely simple and modelled by a
single variogram model. Normally different
structures coexist simultaneously with distinct
spatial continuities and distinct characteristics.
A simple example is the one illustrated by
Fig. 2.12, which shows a binary process with
structures at two different scales: the first struc-
ture is composed of bodies with average size a1;
the grouping of these structures results in bodies
with dimension a2 (second structure).

In these cases, the experimental variogram
reveals the simultaneous effect of the imbricated
structures through discontinuities in the growing
behavior of the variogram values with the dis-
tance h.

For comparing the effect of modeling a
property with different variogram models,
Fig. 2.13 shows four 2D models (with size
1000 	 1000 m) with distinct spatial variogram
models, respectively: (a) a spherical model with
range equal to 150 m; (b) a spherical model with
range equal to 750 m. Figure 2.13c, d show two
imbricated structures with different contributions:

• Figure 2.13c has a spatial distribution mod-
elled by a weighted mean of 70% for the first
structure (a = 150 m) and 30% for the second

Fig. 2.11 Schematic representation of power models
Fig. 2.12 Example of a binary process with structures at
two different scales, a1 and a2
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(a = 750 m). The greater influence of the
smallest structure is clear. The resulting var-
iogram model may be expressed by the fol-
lowing linear combination:

c hð Þ ¼ 0:7 Sph a ¼ 150mð Þþ 0:3 Sph a ¼ 750mð Þ:

• Figure 2.13d has a spatial distribution mod-
eled by a weighted mean of 30% for the first
structure and 70% for the second. In this
image the greater influence of the largest
scale structure is clear. The resulting vari-
ogram model may be synthetized by the fol-
lowing linear combination:

c hð Þ ¼ 0:3 Sph a ¼ 150mð Þþ 0:7 Sph a ¼ 750mð Þ:

The imbricated structures are modelled
through a linear combination of the variogram
models presented above (Fig. 2.14). They benefit
from the propriety of the positive definite models:

in any linear combination of positive coefficients
of models definite positive is positive. Any linear
combination of variogram models (Eq. 2.38) is an
imbricated group of variogram ci hð Þ where the
weights Cið0Þ are the sills—total variance—for
each single structure. The sum of the different
sills is equal to the global sill:

Fig. 2.13 Images with the
same attribute modelled with
different variogram models:
a spherical model with zero
nugget effect for a single
structure with range 150 m;
b spherical model with zero
nugget effect for a single
structure with range 750 m;
c imbricated structure
quantified by a weighted
mean of 70% for a first
structure with a = 150 m and
30% for the second structure
with a = 750 m; d imbricated
structure quantified by a
weighted mean of 30% for a
first structure with a = 150 m
and 70% for the second
structure with a = 750 m

Fig. 2.14 Variogram model resulting from the sum of
two distinct structures: c(h) = 0.48 Sph (a = 150 m) +
0.24 Sph (a = 750 m)
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c hð Þ ¼
X
i

Cið0Þci hð Þ: ð2:38Þ

Nugget Effect

Theoretically, the value of the variogram is zero
for h = 0 (c hð Þ ¼ 0; for h ¼ 0). In practice,
between consecutive samples there is a minimum
value of h for which the value of c hð Þ may be
calculated. When this minimum value (c hminð Þ) is
high, it means there is a high variability in the
natural phenomenon at the small-scale, i.e. for
distances smaller than the distances between
samples or observations: c hð Þ may not tend to
zero while h tends to zero. In these cases, there is
an inflexion or discontinuity in the growth of the
variogram at a scale not sampled by the available
experimental data, i.e. h = 0 and hmin. For these
cases, the variogram is modelled by a constant,
C0, which is called the nugget effect (Eq. 2.39).
The nugget effect is the first structure summed to
the linear combination of the remainder of the
structures:

c hð Þ ¼ C0 þ
X
i

Cið0Þci hð Þ; ð2:39Þ

while the total variance is described by:

C 0ð Þ ¼ C0 þ
X
i

Cið0Þ: ð2:40Þ

The nugget effect summarizes the effect of
two distinct parts of the total variability in the
natural phenomenon being modelled: (i) the
small-scale variability not comprised in the
sampling grid; (ii) the variability at the scale
support sample introduced by non-systematic
sampling errors that add to the structure of the
natural phenomenon random noise component.

Modeling the nugget effect by a constant
different from zero translates the lack of knowl-
edge about the system at the small-scale by
increasing the uncertainty during the estimation
procedure (Sect. 2.2 and Chap. 3). The nugget
effect can be interpreted as the intersect value at
the ordinate axis. It is usually inferred by the
intersection of a line approximating the first

points of the variogram with the ordinate axis
(Fig. 2.15).

Anisotropy Models

The spatial continuity of a natural resource fre-
quently varies as a function of the direction of the
space, e.g. greater continuity for porosity values
along a channelized structure versus lower con-
tinuity across the channel direction. A given
attribute of any natural resource (e.g. porosity in
hydrocarbon reservoirs) has an isotropic spatial
continuity if the variogram (or covariance) has
the same behavior in all directions (that is, c hð Þ
depends exclusively on the modulus of the dis-
tance vector h). There are cases, however, in
which the attribute being studied is more con-
tinuous along a preferential direction resulting in
structural anisotropy. The latter may be seen as
the variability of a given attribute depending on
the directions of the space we consider when
inferring the spatial behavior of a specific
property.

Modeling anisotropic structures seeks to
reduce structures of continuity depending on the
direction of a single variogram model. The ani-
sotropy is normally processed in terms of geo-
metric transforms of the coordinate system in
such a way as that the several variograms along
different directions are equivalent to a single
model, transforming them into isotropic
structures.

Two of the most common anisotropy models
are the geometric and the zonal.

Fig. 2.15 Nugget effect inference based on the linear
regression (thick black line) of the first points of c hð Þ.
Variogram model is represented by the thin black like
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Geometric Anisotropy

Geometric anisotropy is a model in which the
spatial continuity, revealed by the variogram
amplitudes, varies gradually from the direction of
larger continuity/range through the direction of
smallest amplitude, perpendicular to the first
following the equation of an ellipse defined by
those directions.

A geometric anisotropy is characterized by
variograms with the same model and the same
sill in all directions, but different ranges, while
the minimum and maximum amplitudes are in
perpendicular directions (Fig. 2.16).

Geometric anisotropy means the rose diagram
that describes the ranges of the variogram along
the different directions of the space may be
modelled by an ellipse in 2D or an ellipsoid in
3D. In fact, when representing the different var-
iogram ranges as a function of the angle of the
variogram direction in a diagram, the ellipse is
the geometric figure that best describes a geo-
metric anisotropy.

An ellipse may be seen as a linear transfor-
mation of a circle (or sphere in three-dimensions),
which corresponds to an isotropic condition: that
is to say, the variogram range does not change
with the variogram direction. A simple method
for combining a group of variograms, with ranges
ax, ay and az in the three directions of space,
respectively, into a single model with range
a = 1 is given by the following geometric
transformation:

ca¼1 hð Þ ¼ cx hxð Þ with h ¼ hx=ax;
ca¼1 hð Þ ¼ cy hy

� �
with h ¼ hy=ay:

ca¼1 hð Þ ¼ cz hzð Þ with h ¼ hz=az:
ð2:41Þ

This corresponds to the normalization of the
distances within the Cartesian space as follows:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx
ax

	 
2

þ hy
ay

	 
2

þ hz
az

	 
2
s

ca¼1 hð Þ ¼ cx hxð Þ if h ¼ hx; =ax

: ð2:42Þ

If we choose to transform the anisotropy into
a reference variogram (for example, the vari-
ogram with the largest range instead of a vari-
ogram with range equal to 1), the normalized
distance h can be described as:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx

ax
ax

	 
2

þ hy
ay
ay

	 
2

þ hz
az
az

	 
2
s

; ð2:43Þ

where ax is the reference variogram range and
rx ¼ ax=ax, ry ¼ ax=ay e rz ¼ ax=az are the three
anisotropic ranges in the three main ranges.

This methodology of transforming coordi-
nates may be applied equally to non-stationary
models that do not reach the sill.

If the direction of largest range does not match
the axis of the reference coordinate system, it
must be rotated so the axis xxʹ matches ax, yyʹ
matches ay and zzʹ matches az before applying
the geometry transform (Eq. 2.43).

Figure 2.17 shows a two-dimensional exam-
ple in which the maximum range is observed in
the direction of 45° and the smallest amplitude
perpendicular to this (135°). Therefore, any
vector h must be first rotated 45° (Eq. 2.44)
before any normalization operation:

hx45

hy45


� �
¼ cos 45
 � sin 45


sin 45
 cos 45


� �
� hx

hy

� �
:

ð2:44Þ

Zonal Anisotropy

Zonal anisotropy is common in stratified phe-
nomena in which the spatial continuity along a
stratum is in contrast with the variability between

Fig. 2.16 Schematic representation of geometrical ani-
sotropy: variograms with the same sill, but different
ranges
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a stratum and, consequently, the variogram along
the stratum does not reach the sill of the vari-
ogram (Fig. 2.18).

The zonal anisotropy may be modelled by a
linear combination of two structures:

c hð Þ ¼ C1c1 h1ð Þþ ðC2 � C1Þc2 h2ð Þ; ð2:45Þ

where the second structure c2 h2ð Þ, here the
vector h2;, is related only to the direction of
larger variability—that is, between stratum. The
example of Fig. 2.18 may be modelled by a
first structure with a sill C1 and a geometric
anisotropy with an anisotropic ratio and a
second structure with variance equal to
C2 − C1 and range a2 that only exists in
direction h2:

c hð Þ ¼ C1c1 h1ð Þþ ðC2 � C1Þc2 h2ð Þ;

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx
hx

	 
2

þ hz
az

	 
2
s

and h2 ¼ hz
az
:

The two structures are defined as follows:

c1 hð Þ—an isotropic model with a sill equal to C1,

and with ranges a1 in direction h1 and a2 in
direction h2.
c2 hð Þ—anisotropic model with a sill equal to
C2 − C1, with range a2 in direction h2 and with
‘infinite’ range along h1. Note that choosing a
very large range in direction h1 (for example, 10
times the dimension of the field) implies a small
contribution of c1 hð Þ for values of h1 near the
dimension of the field.

Structural Transforms

There are cases in which the anisotropic phe-
nomena do not regularly vary from the maximum
to the minimum range: for example, when the
spatial dispersion is conditioned by external
factors to the genesis of this resource. Structural
geology, such as folds and faults, are typical
events in which these cases occur.

Each of these situations requires specific
geometric transforms in order to achieve simple
and generalized variogram models for the entire
study area. For example, the transform associated
with a folded geological formation, or dome, into
a regular shape in order to better identify the
spatial continuity between samples within a very
non-isotropic structure (Fig. 2.19) (Mallet 2002,
2004). The conceptual basis of this transform is
the following: the value of a sample in the thin
part of the formation is correlated with more than
one value in the thickest part of the folded layer.
For the example in Fig. 2.19, in order to calcu-
late the mean variogram for the pairs of points
(x0, x1) and (x0, x2), it is the same as doubling the
sample x0. Note that this type of transformation
is possible in geological formations with a large
horizontal continuity and vertical heterogeneity,
which is the case in some oil and gas reservoirs.

Fig. 2.17 Schematic representation of the rose diagram
for the group of ranges and geometric anisotropic model

Fig. 2.18 Example of zonal anisotropy
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2.1.10 Co-regionalized Models
of Multivariate Systems

So far we introduced the spatial continuity
models for univariate systems. This section deals
with a co-regionalization model for multivariate
systems (Sect. 2.1.6). In a multivariate domain,
the variogram models and cross-covariance, as in
the univariate case, must ensure a positive vari-
ance of any linear combination between vari-
ables. There are several co-regionalization
models, however the most common is the linear
model. In this mode the single and cross-
variograms are the result of the linear combina-
tion of basic models.

The basic models (nugget effect, first struc-
ture, second structure and so on): with L as the
total number of structure, c0 hð Þ; c1 hð Þ; . . .; cL hð Þ;
must all belong to the simple and
cross-variograms:

ciiðhÞ ¼ b0iic0ðhÞþ b1iic1ðhÞþ . . .þ bLiicLðhÞ:
cjjðhÞ ¼ b0jjc0ðhÞþ b1jjc1ðhÞþ . . .þ bLjjcLðhÞ;
cijðhÞ ¼ b0ijc0ðhÞþ b1ijc1ðhÞþ . . .þ bLijcLðhÞ:

ð2:46Þ

The co-regionalization model of the group of
Nv 	 Nv simples and cross-covariance may be
defined as

cij hð Þ ¼
XL
l¼0

blijcl hð Þ; 8i;j;

or

Cij hð Þ ¼
XL
l¼0

blijCl hð Þ; 8i;j; ð2:47Þ

where blij are the sill of the simple model Cij hð Þ.
In order to ensure that the groups of covariances

Cij hð Þ are allowed (i.e. we need to guarantee that
the variance of any linear combination between
variables is positive) we need the following:

(1) The functions Cl hð Þ are positive definite;
(2) The matrices blij 8i;j;l¼0;L are positive define.

This condition implies that:

bliii0 e bljji0 and blii � bljjiblijblij l ¼ 0; . . .; L:

These relationships suggest two basic rules:

(i) one structure that exists in the simple
covariance may not exist in the cross-
covariance:

blii 6¼ 0 does not imply that blij 6¼ 0;

(ii) one structure that exists in the cross-
covariance needs to necessary exist in the
corresponding simple covariances:

Fig. 2.19 Structural
geometric transform of a
folded geological layer
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blij 6¼ 0 ) blii 6¼ 0 and bljj 6¼ 0;

In practice the co-regionalization models of
multivariate systems by a linear model may be
summarized in the following sequence of steps
(Goovaerts 1997):

(1) Selection of a group of structures clðhÞ; l ¼
0; . . .L; that reproduce the behavior of the
different simple variogram models ciiðhÞ; e
cjjðhÞ;. Following the rules already stated in
the previous paragraphs (i.e., one structure in
the cross-covariance needs to exist neces-
sarily in the corresponding simple covari-
ances). There is no need, at this stage, to
perform an analysis of the cross-variograms;

(2) Estimation of the sills blij for the different
structures of each cross-variogram;

(3) The matrices blij need to be positive:

bliii0 and bljji0 l ¼ 0; . . .;L:

Repeat (2) and (3) until the adjustment of
the group of simple and cross-variograms is
satisfactory.

Note that is due to the last two steps of this
sequence that in practice, make the adjustment of
co-regionalization not simple.

Nevertheless, in the cases where there is the
need to model multivariate systems and there is
also the need to approximate the adjustments of
the simple and cross-variograms, the priority
should be focused on the simple variograms, and
in particular, the variograms of the main variable.

2.2 Estimation Models

The reason geostatistics has grown in many
research fields of Earth and Environmental Sci-
ences relates to the efficiency and simplicity of its
interpolation methods from known sparse
experimental data to unknown locations within a
study area.

Here we present a group of geostatistical meth-
ods for the characterization of spatial phenomenaby

integrating different types of experimental data with
different scale support, resolution and uncertainty.
The spatial inference methodologies presented for
continuous and indicator variables are the basis for
the stochastic sequential simulation algorithms
presented in Chap. 3, and one of the main founda-
tions of the methodologies for integrating geo-
physical data into reservoir modeling (Chaps. 4, 5
and 6).

2.2.1 Linear Estimation of Local
Statistics

Generally speaking, it is possible to define the
spatial inference, or estimation, of a variable at
any given scale support (point, area or volume)
for a location not sampled Zðx0Þ, located in x0 as
a linear combination of the known value, N, for
that variable ZðxaÞ located at other different
spatial positions, xa ¼ 1; . . .; N:

Z x0ð Þ�¼
XnðuÞ
a¼1

kaZðxaÞ: ð2:48Þ

The weights, ka, (Eq. 2.48) should summarize
two extremely important characteristics in spatial
inference procedures: first, they should be sen-
sitive to the distance between the known samples
Z xað Þ and the point to be estimated Z x0ð Þ; while
they should also be able to disaggregate clusters
of experimental data in order to avoid biasing the
estimate at the unknown location, x0, by these
groups of clustered samples.

2.2.2 Probabilistic Model
of the Geostatistical
Linear Estimator

In the probabilistic model described in Sect. 2.1,
the unknown value Z x0ð Þ; and the neighboring
experimental samples ZðxaÞ, xa ¼ 1; . . .; N, are
interpreted as a RV located in x0 and xa
and respectively.

If we assume the stationary hypothesis for the
statistical moments related to the structural ele-
ment bi-point (Sect. 2.1.1), the first moment of

24 2 Fundamental Geostatistical Tools for Data Integration

http://dx.doi.org/10.1007/978-3-319-53201-1_3
http://dx.doi.org/10.1007/978-3-319-53201-1_4
http://dx.doi.org/10.1007/978-3-319-53201-1_5
http://dx.doi.org/10.1007/978-3-319-53201-1_6


each of these RVs is individually defined as
(Eq. 2.49):

EfZðxaÞg ¼ EfZðx0Þg ¼ m: ð2:49Þ

On the other hand, it is possible to assume
each pair of RVs separated by the same distance
vector h has the same joint distribution laws:

FZZ 0 Z x1ð Þ;Z x1 þ hð Þ½ � ¼ prob Z x1ð Þ\z; Z x1 þ hð Þ\z
0

n o
¼ FZZ 0 Z x2ð Þ; Z x2 þ hð Þ½ �
¼ FZZ 0 Z xð Þ; Z xþ hð Þ½ �:

ð2:50Þ

This means any bivariate law depends exclu-
sively on the distance vector h—the distance
between Z xð Þ and Z xþ hð Þ—and not on the
location x0. The second-order stationarity implies
the variogram and covariance, cðhÞ and CðhÞ, are
functions depending exclusively on the vector h.

The linear estimator described by Eq. 2.48 is
interpreted as a RV located in x0 and resulting
from the linear combination of the variables
ZðxaÞ, xa ¼ 1; . . .; N. Let eðx0Þ be the difference
between the estimated value, Z x0ð Þ�, and the real
value, Z x0ð Þ, the error associated with estimating
the value of Z xð Þ in x0 (Eq. 2.51):

eðx0Þ ¼ Z x0ð Þ��Z x0ð Þ ¼
X
a

kaZ xað Þ � Z x0ð Þ:

ð2:51Þ

The two quality criteria mentioned above may
be expressed in terms of the mean and the vari-
ance of the new RV eðx0Þ:

(i) Unbiased condition: Efeðx0Þg ¼ 0

The first quality criteria of the estimate,
ZðxaÞ�, is related to its expected value:

EfZðxaÞ�g ¼ EfZðx0Þg ¼ m: ð2:52Þ

Ensuring, within the probabilistic formalism
of this estimation model, there is no bias in the
estimation Efeðx0Þg ¼ 0 results in the following:

Efeðx0Þg ¼ E
X
a

kaZ xað Þ
( )

� E
X
a

Z x0ð Þ
( )

¼ 0

X
a

kaEfZ xað Þg ¼ EfZ x0ð Þg:

ð2:53Þ

Since the random function is stationary,
EfZðxaÞg ¼ EfZðx0Þg ¼ m, the equality from
Eq. 2.53 is ensured if the sum of the weights is
equal to 1: X

a

ka ¼ 1: ð2:54Þ

(ii) Variance minimization: Ef eðx0½ Þ�2g

The second quality factor of this estimator is
related to the variance of the error eðx0Þ. Two
estimators may have a null mean of eðx0Þ, but the
minimum dispersion around the mean states the
difference in terms of the quality of the
estimators:

varfeðx0Þg ¼ varfZðxaÞ� � Zðx0Þg

¼ E
X
a

kaZðxaÞ � Zðx0Þ
" #28<

:
9=
;:

ð2:55Þ

Decomposing the squared terms, we have:

¼ E
X
a

X
b

kakbE Z xað Þ � Z xb
� �� �( )

þE Z x0ð Þ2
n o

� 2E
X
a

kaZ xað Þ � Z x0ð Þ
( )

¼
X
a

X
b

kakbE Z xað Þ � Z xb
� �� �þE Z x0ð Þ2

n o

� 2
X
a

kaE Z xað Þ � Z x0ð Þf g:

ð2:56Þ

Once the covariance or variance (CðhÞ or
cðhÞÞ, model is defined and validated for the
entire study area, Z x0ð Þ, the variance of estima-
tion of any estimator may be expressed as a
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function of the covariance between the samples
and the unknown location at which the estima-
tion is performed:

varfeðx0Þg ¼ Cð0Þþ
X
a

X
b

kakbCðxaxbÞ

� 2
X
a

kaCðxaxbÞ:

ð2:57Þ

2.3 Kriging Estimate1

Ordinary Kriging is the most common Kriging
algorithm from a family of algorithms that
comprise the following non-stationary estima-
tors: simple Kriging, universal Kriging (also
known as Kriging with trend), Kriging with
external drift, co-Kriging, the estimator of prob-
ability distribution functions—indicator Kriging
for categorical indicator variables, and the non-
linear estimates—multi-Gaussian Kriging and
disjunctive Kriging (Matheron 1965).

The linear geostatistical estimator (Eq. 2.48)
named by ordinary Kriging is defined as a linear
combination of N neighbors of x0—ZðxaÞ,
a ¼ 1; . . .; N—that verifies the two criteria
related to the estimation error eðx0Þ ¼
Z x0ð Þ��Z x0ð Þ; unbiasedness Efeðx0Þg ¼ 0 and
minimum estimation variance (Eq. 2.58):

minfvar eðx0ð ÞÞg: ð2:58Þ

The first criterion is reached by imposing a
condition on the weights (Eq. 2.54).

Minimizing the estimation variance (Eq. 2.58)
is ensured by the classic method of equating the

N partial derivatives to zero in order to ka
(a ¼ 1; . . .; N) and solving the system of
N equations with N unknowns by any mathe-
matical method. However, since the solution of
the N unknowns is conditioned by Eq. 2.54, the
minimization of Eq. 2.57 may be solved by
resorting to Lagrange formalism, which implies
adding an extra equation to Eq. 2.57 and, con-
sequently, an extra unknown (the Lagrange
parameter l) to Eq. 2.57:

varfeðx0Þg ¼ Cð0Þþ
X
a

X
b

kakbCðxaxbÞ

� 2
X
a

kaCðxax0Þþ 2l
X
a

ka � 1

" #
;

ð2:59Þ

the last term is null.
The minimization of Eq. 2.59 consists of

calculating the N + 1 partial derivatives to
achieve ka and l, using an equality to zero,
obtaining the system of N + 1 equations with
N + 1 unknowns in this way. The resulting
solution is the N weights ka that fulfil the unbi-
asedness condition (Eq. 2.54) while at the same
time minimizing the estimation variance:

@ E Z x0ð Þ��Z x0ð Þ½ �2
n o

þ 2l
P
a
ka � 1

� �� �
@ka

¼ 0; a ¼ 1; . . .N

@ E Z x0ð Þ��Z x0ð Þ½ �2
n o

þ 2l
P
a
ka � 1

� �� �
@l

:

ð2:60Þ

The development of the N first equations
results in:

The last partial derivative in order to l results
in the following equation:

X
a

ka ¼ 1: ð2:62Þ

@ Cð0Þþ P
a

P
b
kakbCðxaxbÞ � 2

P
a
kaCðxax0Þþ 2l

P
a
ka � 1

� �" #

@ka
¼ 0; a ¼ 1; . . .N 2

X
b

kbC xaxb
� �� 2C xax0ð Þþ 2l ¼ 0; a ¼ 1; . . .N:

ð2:61Þ

1The geostatistical estimator was named Kriging
by Georges Matheron (1965) as a tribute to the pioneering
work of Danie G. Krige (1951).

26 2 Fundamental Geostatistical Tools for Data Integration



Finally, the Kriging system of N + 1 equa-
tions that allows calculation of the N weights ka
is the following:P

b
kbC xaxb

� �þ l ¼ C xax0ð Þ; a ¼ 1; . . .NP
a
ka ¼ 1:

8<
:

ð2:63Þ

The minimum estimation variance is obtained
by replacing Eq. 2.63 into Eq. 2.57:

r2E ¼ C 0ð Þþ
X
a

kaC xax0ð Þ � l� 2
X
a

kaC xax0ð Þ

r2E ¼ C 0ð Þ �
X
a

kaC xax0ð Þ � l:

ð2:64Þ
The Kriging system may also be described in

terms of the variogram c hð Þ, knowing that
c hð Þ ¼ C 0ð Þ � CðhÞ:P

b
kbc xaxb
� �� l ¼ c xax0ð Þ; a ¼ 1; . . .NP

a
ka ¼ 1;

8<
:

ð2:65Þ

with the estimation variance defined as:

r2E ¼
X
a

kac xax0ð Þþ l: ð2:66Þ

2.3.1 Kriging System Resolution

In practice, the system of N + 1 equations may
be written in a matrix notation (Eq. 2.67). Con-
sidering K the covariance matrix between sam-
ples, M the second member matrix—the
covariance between samples and the unknown
location—and k the weighting matrix:

K½ � ¼

Cðx1; x1Þ � � � Cðx1; xNÞ 1

..

. . .
. ..

. ..
.

CðxN ; x1Þ � � � CðxN ; xNÞ 1

1 1 0

0
BBBB@

1
CCCCA;

M½ � ¼
Cðx1; x0Þ

..

.

CðxN ; xNÞ
1

2
6664

3
7775 k½ � ¼

k1
..
.

kN
l

2
6664

3
7775; ð2:67Þ

The Kriging system may be written as
follows:

K½ � � k½ � ¼ ½M�; ð2:68Þ

where the solution is achieved by inverting the
matrix K:

k½ � ¼ K½ ��1�½M�; ð2:69Þ

and

r2E x0ð Þ ¼ C 0ð Þ � k½ �T �½M�: ð2:70Þ

By defining [Z] as the vector of the values
ZðxaÞ, ½Z� ¼ ½zðx1Þ; . . .; zðxNÞ�, the Kriging esti-
mator Z x0ð Þ� is given by Eq. 2.71:

Z x0ð Þ�¼ k½ �T � Z½ � ¼ M½ �T � K½ ��1�½Z�: ð2:71Þ

Note that the Kriging variance (r2E x0ð Þ,
Eq. 2.66) depends exclusively on the location of
the experimental data ðxaÞ against the location
where the estimation is being performed (x0), and
not on the values of the experimental data. In
other words, the Kriging variance is not depen-
dent on the property that is being modelled,
but depends exclusively on the configuration of
the experimental data against the location x0
(Goovaerts 1997).

All the different available Kriging-based
techniques share some important properties:

(1) Kriging is an exact interpolator, the values of
the experimental data are honored in the
interpolated model;

(2) The interpolation is constrained by a spatial
continuity model, represented by a vari-
ogram model in two-point geostatistics;

(3) Kriging techniques are able to weigh differ-
ently isolated samples from clusters of sam-
ples (declustering);
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(4) Models interpolated with Kriging tend to
reproduce the mean value of the experimental
data in areas far from the experimental data
location (Deutsch and Journel 1992).

2.4 Linear Estimation
of Non-stationary Phenomena:
Simple Kriging

The ordinary Kriging estimator assumes the
mean of the variable Z xð Þ within the study area
A is not known but constant. However, there are
natural phenomena in which the values of a given
property we aim to estimate are not homoge-
neous across the entire study area. In such cases,
it can be said that a drift in the values of Z xð Þ
exists and that the stationarity hypothesis of
Eq. 2.49 is not verified for the entire A.

There are some linear estimation methodolo-
gies of Z(x) that take into account the way the
values of Z(x) drift spatially its local means (m(x))
vary: simple Kriging; Kriging with a trend model
(universal Kriging) and Kriging with an external
drift. Due to its importance in the following
chapters, we will only refer to the simple Kriging
estimate. For discussions of the other
non-stationary Kriging estimates, the reader is
referred to Journel and Huijbreghts (1978), Goo-
vaerts (1997), and Deutsch and Journel (1992).

The simple Kriging estimate is the most
general Kriging algorithm in its non-stationary
version. It assumes the mean of the set of RVs
from the available experimental data and the
locations not sampled within the study area is
known.

In practice, this algorithm is applied where the
theoretical formalism of the probabilistic model
imposes the knowledge of the mean of the ran-
dom function (as in the multi-Gaussian Kriging
of a random function with null mean) or when
there is good knowledge about the trend, or drift,
of the natural phenomenon. In these cases, the
values of the drift (if known for the entire field)
as the local mean of the RV of the sampled and
non-sampled values within the study area can be
assumed.

If we consider the Kriging estimator Z x0ð Þ� in
its most general form—as a linear combination of
the N data Z xað Þ, then:

Z x0ð Þ�¼ k0 � 1þ
XN
a¼1

kaZðxaÞ: ð2:72Þ

For those non-stationary cases in terms of the
first statistical moment of the RVs are known, but
not constant, the unbiasedness condition is
defined as:

E Zðx0Þf g ¼ E Zðx0Þ�f g ¼ k0 þ
XN
a¼1

kaE ZðxaÞf g;

ð2:73Þ

which implies:

k0 ¼ mx0 �
XN
a¼1

kamxa : ð2:74Þ

By plugging Eq. 2.74 into Eq. 2.72 we obtain
the simple Kriging estimate:

Z x0ð Þ��mðx0Þ ¼
XN
a¼1

ka½Z xað Þ � m xað Þ�;

ð2:75Þ

in which the residual Z x0ð Þ � m x0ð Þ is estimated
based on the residual between samples
Z xað Þ � m xað Þ.

Note that in those situations, in which uncer-
tainty about the knowledge of the drift phenomena
allows matching the drift of the set of RVs, simple
Kriging is a method for estimating the residuals.
The variance of the error eðx0Þ ¼ Z x0ð Þ��Z x0ð Þ
may be written in function of the covariances
(Eq. 2.57). For simple Kriging, the N weights are
calculated by minimizing this variance, obtained
by the N partial derivatives in order to ka,
resulting in the following system of N equations:

X
b

kbC xaxb
� � ¼ C xax0ð Þ; a ¼ 1; . . .;N; ð2:76Þ

resulting in the solution of N unknowns ka and
the consequent calculus of the estimation vari-
ance associated with simple Kriging:
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r2E x0ð Þ ¼ C 0ð Þ �
X
b

kaC xax0ð Þ: ð2:77Þ

2.5 Co-kriging Estimate

There are cases where, in addition to the main
variable being estimated, there is a secondary
variable in a different sampling grid. This sec-
ondary information may be incorporated into the
estimation model as soon as a co-regionalization
model between variables can be inferred. A typi-
cally example in hydrocarbon reservoir charac-
terization is porosity, which is often modelled
jointlywith an existing acoustic impedancemodel.

Let us first consider a primary variable, Z1 xið Þ.
i ¼ 1; . . .; N1, known in N1 sampling points and
a secondary variable, Z2 xj

� �
: j ¼ 1; . . .; N2,

sampled in N2 points. The linear estimate, Z1 x0ð Þ;
in an unknown location, x0, may be described by
the following linear combination of the neighbor
samples of both variables Z1 xið Þ and Z2 xj

� �
:

Z1 x0ð Þ½ ��CK¼
XN1

i¼1

aiZ1ðxiÞþ
XN2

j¼1

bjZ2ðxjÞ: ð2:78Þ

Equation 2.78 describes the co-Kriging esti-
mator, which like Kriging should be non-biased
and with minimum variance error. The unbi-
asedness condition implies that the expected
value for the error is null:

E Z1 x0ð Þ½ ��CK�Z1 x0ð Þ� � ¼ 0; ð2:79Þ

given the stationarity of the first statistical
moment of both variables:

E
X
i

aiZ1 xið Þþ
X
j

bjZ2 xj
� �� Z1 x0ð Þ

( )
;

ð2:80Þ

X
i

ai � 1

" #
m1 þ

X
j

bjm2 ¼ 0: ð2:81Þ

The following conditions imposed over the
weights ensure the unbiasedness of the estimate:X

i

ai ¼ 1 and
X
j

bj ¼ 0: ð2:82Þ

The estimation variance is given by:

where CZ1 hð Þ and CZ2 hð Þ are the covariances of
Z1 xð Þ and Z2 xð Þ; respectively, and CZ1Z2ðhÞ the
cross-covariance between Z1 xð Þ and Z2ðxÞ. The
weights ai and bj are calculated by minimizing
the estimation variance (Eq. 2.83) with con-
strains from Eq. 2.82.

The Lagrange formalism may be applied to
Eq. 2.83 as it was in Eq. 2.57:

var ef g ¼ 2l1
XN1

i¼1

ai � 1

 !
þ 2l2

XN2

j¼1

bj

 !
;

ð2:84Þ

var ef g ¼ var Z1ðx0Þ½ ��CK�Z1ðx0Þ
� � ¼ var

XN1

i¼1

aiZ1ðxiÞþ
XN2

j¼1

bjZ2ðxjÞ � Z1ðx0Þ
( )

¼
XN1

i¼1

XN1

j¼1

aiajCZ1ðxi; xjÞþ
XN2

i¼1

XN2

j¼1

bibjCZ1ðxi; xjÞ
XN2

i¼1

XN2

j¼1

bibjCZ2ðxi; xjÞ

þ 2
XN1

i¼1

XN2

j¼1

aibjCZ1Z2ðxi; xjÞ � 2
XN1

j¼1

aiCZ1ðxi; x0Þ

� 2
XN2

j¼1

bjCZ1Z2 xj; x0
� �þCZ1ðx0; x0Þ; ð2:83Þ

2.4 Linear Estimation of Non-stationary Phenomena: Simple Kriging 29



where:

e ¼ ½Zðx0Þ��CK � Zðx0Þ: ð2:85Þ

The minimization of Eq. 2.83 is achieved by
resorting to the N1 + N2 partial derivatives with
respect to the weights ai and bj equal to zero:

@ðvar ef gÞ
@aj

¼ 0 for j ¼ 1; . . .;N1

@ðvar ef gÞ
@bj

¼ 0 for j ¼ 1; . . .;N2

@ðvar ef gÞ
@l1

¼ 2
XN1

i¼1

ai � 1

@ðvar ef gÞ
@l2

¼ 2
XN2

i¼1

bi:

Resulting in the N1 + N2 + 2 equations:

XN1

i¼1

aiCZ1 xi; xj
� �þ XN2

i¼1

biCZ1Z2 xi; xj
� �þ l1 ¼ CZ1 x0; xj

� �
j ¼ 1; . . .;N1

XN1

i¼1

aiCZ1Z2 xi; xj
� �þ XN2

i¼1

biCZ2 xi; xj
� �þ l2 ¼ CZ1Z2 x0; xj

� �
j ¼ 1; . . .;N2

XN1

i¼1

ai ¼ 1 and
XN2

i¼1

bi ¼ 0: ð2:86Þ

In sum, here are some practical notes regard-
ing the co-Kriging estimate:

In practice, using an auxiliary variable
through co-Kriging is only advantageous com-
pared to the ordinary Kriging of the primary
variable, if the primary variable is sub-sampled
in comparison to the secondary variable and if
both variables are correlated. For more on this
topic, please see Sousa (1989), Wackernagel
(1995), Bourgault and Marcotte (1991), Marcotte
(1991), Myers (1982, 1984), Samper and Carrera
(1990) and Goovaerts (1997).

However, there are a few points that should be
noted about the co-Kriging estimate:

(1) The co-Kriging estimate is the natural exten-
sion of the Kriging estimate to incorporate a
secondary variable. As in ordinary Kriging,
the first member matrix must be definite
positive. This condition is satisfied if the
individual covariance and cross-covariance
are the ones described in Sect. 2.1.8;

(2) The resolution of the system of equations for
co-Kriging may have numerical instability
problems if there are large differences in the
variances of primary and secondary vari-
ables. In such cases, simple or cross-
correlograms should be used instead of
their variogram and covariance equivalents;

(3) Theoretically, the co-Kriging estimator
introduces estimation errors that are smaller
than those introduced by ordinary Kriging.
However, this advantage must take into

account the costs associated with model-
ing the cross-variograms, which are often
just rough approximations and forced
adjustments;

(4) The co-Kriging estimate may be generalized
for a group of auxiliary variables:

Z1 x0ð Þ½ ��CK¼
XN1

a1¼1

ka1Z1ðxa1Þþ
XNv

i¼2

XNi

i¼2

kalZiðxa1Þ:

ð2:87Þ

The resolution of this estimate implies the

knowledge of the ðNv þ 1Þ2=2 variogram
models.
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2.6 Co-estimation with a Secondary
Variable in a Much Denser
Sample Grid: Collocated
Co-kriging

In some cases, the secondary variable is much
more abundant compared to the available number
of samples or observations of the primary vari-
able. This is so when the secondary variable is
known for the entire area A, resulting in a 2D or
3D model that is intended to be used as condi-
tioning data to estimate the primary variable. Note
that the termmodel here refers to knowledge of the
variable for the entire study area. When this hap-
pens, the co-Kriging system (Eq. 2.86) becomes
unstable due to difference in the sampling density
between the primary and secondary variables.

Moreover, the value of the secondary variable
at the location at which the estimation is per-
formed tends to minimize the effect from the
primary variable samples located at great dis-
tances. In these cases, one possible solution is to
retain the values of the secondary variable at the
location being studied. This Kriging version is
known as collocated co-Kriging (Xu et al. 1992;
Almeida and Journel 1994).

By considering Z1 xð Þ to be the primary vari-
able the values of which are known at N1 loca-
tions, and Z2ðxÞ the secondary variable known
for the entire study area, the collocated
co-Kriging estimate Z1ðx0Þ is defined by:

Z1 x0ð Þ½ ��CK¼
XN1

a1¼1

aiZ1ðxiÞþ b0Z2ðx0Þ: ð2:88Þ

Resulting in a system of equation of N1 + 2
equations:

XN1

i¼1

aiCZ1 xi; xj
� �þ b0CZ1Z2 xi; x0ð Þþ l1 ¼ CZ1 x0; xj

� �
j ¼ 1; . . .;N1

XN1

i¼1

aiCZ1Z2 xi; xj
� �þ b0CZ2 0ð Þþ l2 ¼ CZ1Z2 0ð Þ j ¼ 1; . . .;N1

XN1

i¼1

ai þ b0 ¼ 1:: ð2:89Þ

When the variances of the primary and sec-
ondary variables are very different, the system of
equations (Eq. 2.89) should be expressed in
terms of correlograms.

2.7 Estimation of Local Probability
Distribution Functions

The Kriging estimate presented above is an
optimal solution for inferring mean global or
local characteristics of a quantitative property.
The resulting models are interpolated models of
mean values that are traditionally suitable for
characterizing variables homogenously spatially
distributed, i.e. variables with low variability in
which the mean value is enough to represent it
within a study area.

For heterogeneous variables, such as the
internal petro-elastic properties of a hydrocarbon
reservoir, since Kriging results in smooth mod-
els, the Kriging estimate is not enough to char-
acterize their spatial distribution.

For such complex variables there are geosta-
tistical models that aim to locally estimate the
probability distribution function of a given
property. These probability distribution functions
are the basis for the sequential stochastic simu-
lation methodologies introduced in the Chap. 3.

These can be used in the context of this book
to map extreme values or to assess local uncer-
tainty (Goovaerts 1997). But the indicator for-
malism as a method for estimating local
probability distribution functions is based in the
work developed by Switzer (1977). However,
this method is difficult to implement and was
replaced by alternative stochastic simulation
processes for continuous variables, such as the
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Gaussian formalism. Readers interested in the
indicator formalism should read Goovaerts
(1997) and Deutsch and Journel (1992).

Multi-Gaussian formalism

This approach for estimating the local probability
functions of a given variable consists in using a
single model known for the distribution function
of the group of RVs. It assumes that a group of
RVs fY xð Þ; x 2 Ag follows a joint multi-Gaussian
function. This is an easy way to estimate the local
probability distribution function when compared
to the indicator formalism, but this strong
assumption may lead to some consistency prob-
lems with the available experimental data.

The probability distribution function at any
location x0 is perfectly described by the condi-
tional expected value and variance:

E Y x0ð ÞjY x1ð Þ. . .Y xNð Þf g;
varfY x0ð ÞjY x1ð Þ. . .Y xNð Þg: ð2:90Þ

Resulting in the Gaussian probability function
at x0 as:

G x0; yð Þ ¼ G
y� E Yðx0ÞjYðxaÞ; a ¼ 1; . . .;Nf gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Yðx0ÞjYðxaÞ; a ¼ 1; . . .;Nf gp

" #
:

ð2:91Þ

Under the multi-Gaussian assumption both
first statistical moments (Eq. 2.90) are equal to
the linear simple Kriging estimate (Eq. 2.75) and
the corresponding Kriging variance (Eq. 2.77;
Journel and Huijbreghts 1978):

E Yðx0ÞjYðxaÞ; a ¼ 1; . . .;Nf g ¼ Y x0ð Þ�½ �

¼ m x0ð Þþ
Xn
a¼1

ka Y xað Þ � m xað Þ½ � ¼
XN
a¼1

kaY xað Þ;

ð2:92Þ

given that the means are known and constant:

m x0ð Þ ¼ m xað Þ ¼ 0;

var Yðx0ÞjYðxaÞ; a ¼ 1; . . .;Nf g ¼ r2E x0ð Þ:
ð2:93Þ

where the weights ka are computed by the simple
Kriging system (Eq. 2.76).

The probability distribution function in x0 is
defined by the two parameters estimated by
simple Kriging—mean and variance:

G x0; yð Þ ¼ G
y� Y x0ð Þ�½ �

r2E x0ð Þ
� �

: ð2:94Þ

2.7.1 Gaussian Transform
of the Experimental
Data

One of the greatest advantages of this approach
concerns the simplicity of its implementation: the
probability distribution function is defined for
every location x0 with the simple Kriging esti-
mate of Y x0ð Þ. However, we need a Gaussian
transformation of the experimental data ZðxaÞ;
a ¼ 1; . . .;N to ensure the Gaussian marginal
distribution at least:

YðxaÞ ¼ UðZðxaÞÞ; a ¼ 1; . . .;N; ð2:95Þ

where YðxaÞ follows a Gaussian function with
zero mean and variance one.

The Gaussian transform (Ф) may be calculated
using a polynomial approximation—Hermite’s
polynomial (Matheron 1974; Muge 1982)—or by
a simple graphical transform, which due to its
simplicity is more suitable for this operation.

Given two distribution function of variables
Z xð Þ and Y xð Þ:

F xð Þ ¼ prob ZðxÞ\zf g:
G yð Þ ¼ prob YðxÞ\yf g;

the value z corresponding to the Gaussian value
y satisfies F zð Þ ¼ GðyÞ.
Generalizing:

YðxaÞ ¼ UðZðxaÞÞ ¼ G�1 F Z xað Þð Þð Þ
a ¼ 1; . . .;N; ð2:96Þ

with the Gaussian transformation of the experi-
mental data Z xð Þ, with a probability distribution
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function F zð Þ into Gaussian Y xð Þ; and assuming
that these follow a joint multi-Gaussian proba-
bility function, all the formalisms previously
described may be applied following this
sequential approach:

(1) The experimental data is transformed into
Gaussian (Eq. 2.96);

(2) After calculating the variograms of the
transformed values YðxaÞ for each single
point x0; a local probability distribution
function is calculated:

G x0; yð Þ ¼ prob Yðx0Þ\yf g; ð2:97Þ

(3) The values of the probability distribution
F z

0� �
for any threshold value z

0
are obtained

by the inverse transform /: first the value of
yʹ corresponding to zʹ is calculated:

y0 ¼ / z0ð Þ ¼ G�1 Fðz0Þ½ �: ð2:98Þ

Then, we may calculate Fðx0; z0Þ from
G x0; y0ð Þ estimated by Eq. 2.94:

F x0; z
0ð Þ ¼ G x0; y

0ð Þ: ð2:99Þ

If the threshold zʹ is not coincident with the
values of experimental data Z xað Þ, and because
Fðx; zÞ is monotonous crescent, the inverse
transformation may be calculated by a linear or
power interpolation (Goovaerts 1997).

2.8 Estimation of Categorical
Variables

When the petrophysical properties of a given
hydrocarbon reservoir have some degree of
homogenization, one can frequently classify the
group of petrophysical properties through the
concept of lithofacies. Lithofacies may be
defined as geological bodies that share an iden-
tical behavior in terms of petrophysical and/or
elastic response; this concept does not strictly
refer to distinct types of lithologies (or sedi-
mentary facies). In reservoir characterization,
these lithofacies are frequently modelled using
categorical variables, which are further mod-
elled in terms of their internal properties and to
continuous variables, such as porosity and
permeability.

Within the conceptual geostatistical frame-
work for categorical variables, the unit element
consists in the probability of a point located
within the study area that belongs to a group of
complementary and disjunctive bodies. The
shapes of the different bodies (or lithofacies)
result from the classification of these elements
with the greater probability of belonging to each
body (or lithofacies). Let’s assume a group K of
disjunctive lithofacies, Xk ¼ 1; . . .;K. For each
point located in x within the study area A we may
define a binary vector IkðxÞ as follows (Fig. 2.20):

Ik xð Þ ¼ 1; if x 2 Xk

0; if x 2 Xj and j 6¼ k:


ð2:100Þ

Fig. 2.20 Schematic
representation of a group of
three lithofacies in a 2D
model
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From the multi-phase group, we may define
the individual statistics for each single phase:

mk ¼ EfIkðxÞg;
r2k ¼ varfIkðxÞg:

ð2:101Þ

For the group of different lithofacies we may
define a measurement of average continuity of
global structure—C(h) (Eq. 2.102)—with the
probability of two points x and x + h with dis-
tance h, belonging to the same lithofacies Xk for
all k = 1, …, K (Soares 1992):

C hð Þ ¼ E
XK
k¼1

Ik xð Þ � Ikðxþ hÞ
( )

: ð2:102Þ

The multi-phase covariance (Eq. 2.102) may
be decomposed by the sum of the single-phase
covariance:

C hð Þ ¼
XK
k¼1

E Ik xð Þ � Ikðxþ hÞf g ¼
XK
k¼1

Ck hð Þ;

ð2:103Þ

which may be written in the form of a variogram.
From the structural point of view, the co-

variance C(h) and the variogram c hð Þ quantify
the average morphological variability of the set
of all lithofacies:

c hð Þ ¼ 1
2
E
XK
k¼1

Ik xð Þ � Iki xþ hð Þ½ �2
( )

:

ð2:104Þ

Note that for most cases, when dealing with
multi-phase structures there are not enough
samples to estimate reliable individual vari-
ograms or covariances. This gets worse as the
number of lithofacies increases. In this way the
multi-phase variogram or covariance may be
directly estimated from Eq. 2.105:

c hð Þ ¼ 1
KNðhÞ

XK
k¼1

XNðhÞ
a¼1

IkðxaÞ � IkiðxaþhÞ½ �2;

C hð Þ ¼
XK
i¼1

r2k � c hð Þ: ð2:105Þ

A multi-phase group may be composed of
subgroups with distinct spatial behavior. This can
be seen as having a single variable with a
non-stationary behavior for the entire study area.
By adopting an average global spatial continuity
model there will be regional areas that are not
modelled correctly. In such cases, each subgroup
should be modelled independently, avoiding as
much as possible, the integration within the same
model subgroups with very distinct spatial
behaviors.

With these structural tools for categorical
variables, we are now ready to introduce a
morphological estimation methodology for
multi-phase structures (Soares 1992). With the
geostatistical estimation of multi-phase struc-
tures, the aim is to calculate, for each point x0
within the study area A, the joint probability of x0
belonging to lithofacies Xk for all k = 1, …, K
based on the IiðxaÞ from the experimental sam-
ples xa ¼ 1; . . .;N:

prob x0 2 X1f g ¼ I1ðx0Þ½ ��¼
X
a

ka;1I1ðxaÞ;

prob x0 2 X2f g ¼ I2ðx0Þ½ ��¼
X
a

ka;2I2ðxaÞ;

prob x0 2 XKf g ¼ IKðx0Þ½ ��¼
X
a

ka;KIKðxaÞ:

ð2:106Þ

If when constructing these estimators, we
use the same covariance model—multi-phase
covariance—then the weights ka are the same for
all phases:

ka;1 ¼ ka;2 ¼ . . . ¼ ka;K ¼ ka: ð2:107Þ

The estimator IKðx0Þ½ ��¼P
a
kaIkðxaÞ,

k ¼ 1; . . .;K, is calculated in such a way that it is
not biased and the estimation variance is
minimized:

Unbiasedness condition

E Ikðx0Þ½ ��f g ¼ EfIkðx0Þg;X
a

kaEfIkðxaÞg ¼ EfIkðx0Þg; ð2:108Þ
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implies that

X
a

ka ¼ 1: ð2:109Þ

Consequently, from Eq. 2.106 the result is
that the sum of the estimated probabilities of
belonging to each one of the phases is 1:

XK
k¼1

Ikðx0Þ½ ��¼
X
a

ka ¼ 1: ð2:110Þ

In addition to the unbiasedness condition,
Eq. 2.108 calculated the weights of the mini-
mization in the sumof the estimation variances that
is also imposed on each lithofacies individually:

min E I1ðx0Þ½ ���I1ðx0Þ½ �2 þE I2ðx0Þ½ ���I2ðx0Þ½ �2 þ . . .þE IKðx0Þ½ ���IKðx0Þ½ �2
n o

¼ min E
X
k

E Ikðx0Þ½ ���Ikðx0Þ½ �2
" #( )

ð2:111Þ

which we also may express in terms of multi-
phase covariance C(h):

X
k

E Ikðx0Þ½ ���Ikðx0Þ½ �2
n o

¼ C 0ð Þþ
X
a

X
b

kakbCðxaxbÞþ
X
a

kaCðxax0Þ:

ð2:112Þ

By minimizing this equation under the con-
straining from Eq. 2.109, we obtain the classical
Kriging system with multi-phase covariance:

P
b
kbC xaxb

� �þ l ¼ C xbx0
� � 8a ¼ 1; . . .;NP

a
ka ¼ 1:

8<
:

ð2:113Þ

The minimization of the sum of the variances
does not directly imply the minimization of the
variances for each class individually. This means
that the best estimate of the multi-phase group may
not be the best estimate of each class/lithofacies
individually: this is only possible if each class is

estimated individually with independent covari-
ance for each class.

When we can calculate individual variograms
for each phase, they can be different, and as the
weights are phase-dependent, the sum of proba-
bilities estimated at a given point may not be 1.
However, there are methods to overcome this
limitation (Suro-Perez and Journel 1990).

Considering:

Si ¼
X
a

IkiðxÞ½ �� 6¼ 1; ð2:114Þ

then the estimated probability for each phase is
reconverted by factor

IKðx0Þ½ ���¼ IKðx0Þ½ ��
Si

being
X
k

Ikðx0Þ½ ��� ¼ 1:

Thus, both the multi-phase estimation and the
individual estimation of each phase are valid
methods for reaching the same goal—the spatial
characterization of a multi-phase structure—but
in different situations:

– The individual estimation of each phase has the
advantage of taking into consideration the
structural differences quantified by individual
variogram or covariance models. However, in
practice this is not often used since while the
number of phases increase, the estimation of the
individual variograms becomes more difficult
as the number of samples per phase decreases.

– Usingmulti-phase variograms does notmeanwe
need to use a single variogram model. Hetero-
geneous multi-phase groups may and should be
modelled by different multi-phase variograms
within the same estimation procedure.
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3Simulation Models of Physical
Phenomena in Earth Sciences

3.1 Stochastic Simulation Models

The Kriging models presented in Sect. 2.2 above
can be considered smooth representations of
subsurface geology. The resulting models repre-
sent the expected mean values of the property of
interest and the extreme low and high values are
usually underestimated (Fig. 3.1) (Deutsch and
Journel 1992; Soares 2006). However, for
reservoir characterization, and in particular for
reserve calculations and fluid flow simulation, it
is important to make decisions based on reliable
and highly detailed subsurface Earth models.
These models should be geologically realistic,
incorporating small-scale variability, and able to
reproduce the extreme values—both low and
high extremes—of the experimental data. Unless
the variable that is being modelled is very
homogeneous (e.g. top, bottom and thickness of
layers for some geological environments), a
smooth representation of the subsurface geology
is clearly insufficient for assessing the uncer-
tainty and effects of extreme scenarios (e.g. very
high and low porosity values in fluid simulation
and history matching problems). The answer to
these challenges, in particular in hydrocarbon
reservoir characterization, has been given by
geostatistics through stochastic sequential simu-
lation models (Goovaerts 1997; Deutsch and
Journel 1992).

In fact, the estimation methods presented here
can infer local statistical parameters (mean and
variance) of local cumulative distribution

functions (cdfs), which are the basis for the
stochastic simulation models presented in this
section, and for the assessment of the spatial
uncertainty and extreme values by generating
multiple spatial correlated realizations of the
study’s main attributes.

The geostatistical simulation models interpo-
late the property of interest, reproducing mar-
ginal and joint distributions (joint simulation) as
retrieved from the experimental data. They also
ensure the reproduction of the spatial continuity
pattern as imposed by a variogram model and
allow the assessment of the spatial uncertainty
related with a given property.

For example, Fig. 3.1 shows a 2D model that
was created Kriging experimental data from
P-wave velocity, representing the average
behavior of that parameter. The other three fig-
ures are simulated models of the same property
resorting to stochastic sequential simulation.
Each individual model can be thought of as a
possible and equiprobable outcome RF
(Sect. 2.1.3). A set of realizations comprises
simulated Earth models that differ from each
other due to the intrinsic properties of stochastic
simulation algorithms, but are considered
equiprobable under the same assumptions about
the prior probability distributions and the spatial
continuity model. All the models belonging to an
ensemble of realizations share the same proper-
ties: the reproduction of the values of the
experimental data at its location; the reproduction
of the prior probability distribution as estimated
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from the experimental data; and the reproduction
of a spatial continuity model as revealed by a
variogram model, for example.

In the context of this book, the objectives of
the simulation models are two-fold:

– Simulated models are the privileged geosta-
tistical tool for characterizing the spatial dis-
persion and spatial uncertainty for the
petrophysical properties, facies, etc. of
hydrocarbon reservoirs;

– The geostatistical seismic inversion method-
ologies (presented in Chaps. 4, 5 and 6) are
iterative optimization methods based on a
crucial step of generation/perturbation of

petrophysical and petro-elastic models of the
reservoir—porosity, velocities, acoustic
and/or elastic impedances. In the presented
methodologies, this step is performed with
stochastic sequential simulations and joint
simulations of these properties.

Since the pioneering work of Journel (1974),
the Turning Bands simulation method with
independent conditioning, the use of stochastic
simulations for modeling and assessing the spa-
tial uncertainty of geological phenomena has
been the object of different geostatistical simu-
lation methods: Borgman et al. (1984), Davis
(1987), Srivastava (1992), Froidevaux (1993),

Fig. 3.1 Comparison between a Krigged model (upper
left corner) with three different realizations for P-wave
velocity. The experimental data used in the modeling
process is the same for all the four models and its location

is represented by the black crosses. The variability in the
simulated models is much higher when compared to the
interpolated model with Kriging
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Omre et al. (1993), Armstrong and Dowd (1994),
Shrivastava (1995), Lantuejoul (2002), Dimi-
trakopulos and Luo (2004), Richmond and
Dimitrakopulos (2005) and Boucher and Dimi-
trakopulos (2007). This book focuses on a family
of simulation algorithms, the stochastic sequen-
tial simulation methods (Alabert 1987; Journel
and Alabert 1988; Gómez-Hernández and Sri-
vastava 1990) and, in particular, the direct
sequential simulation (Soares 2001), given its
suitability for the purpose of the geostatistical
stochastic inversion.

3.2 Sequential Simulation Models

The basic principle behind sequential simulation
is extremely simple and is based on the appli-
cation of Bayes’ rule in successive sequential
steps (Law and Kelton 1991; Ripley 1987;
Journel and Alabert 1988). Let us assume we
wish to generate a set of values z1, z2,…, zN from
a multivariate distribution F Z1; Z2; Z3; . . .; ZNð Þ.
This can be expressed by the Bayes’ relation:

F Z1; Z2; Z3; . . .; ZNð Þ ¼ F Z1ð ÞF Z2jZ1ð ÞF Z3jZ1; Z2ð Þ
. . .F ZN jZ1; Z2; Z3; . . .; ZN�1ð Þ:

ð3:1Þ

The first value z1 is sampled from F(Z1) by, for
example,MonteCarlo inverse transformalgorithm
(Law and Kelton 1991); the value z2 is sampled
from the conditional distribution F(Z2|Z1 = z1);
the last value zN is sampled from the conditional
distribution F ZN jZ1; Z2; Z3; . . .; ZN�1ð Þ: Hence,
the set of values z1, z2,…, zN follows the joint dis-
tribution F Z1; Z2; Z3; . . .; ZNð Þ.

The N dependent variables Z1, Z2, Z3, …, ZN
can represent the same property spatially located
at the N nodes of a regular grid covering the
study area. With n conditioning values corre-
sponding to the experimental well samples data
Za, a = 1, n, the joint distribution can be written
as F(N) = (Z(x1), Z(x2), Z(x3), …, Z(xN)|(n)).

The crucial point of the sequential simulation
methodologies is precisely the knowledge of
N conditional cumulative distribution functions:

prob Z x1ð Þ\zj nð Þf g
prob Z x2ð Þ\zj nþ 1ð Þf g

..

.

prob Z xNð Þ\zj nþN � 1ð Þf g:
ð3:2Þ

Journel and Alabert (1988) proposed the use
of geostatistics for a local estimation of those
functions. Two geostatistical algorithms can be
used to estimate these local conditional distri-
butions based on the indicator and
multi-Gaussian Kriging (Chap. 2): sequential
Gaussian simulation (Sect. 3.3) and sequential
indicator simulation to simulate continuous and
categorical variables (Sect. 3.5), respectively.

The third simulation algorithm presented in
this book, direct sequential simulation
(Sect. 3.4), does not require the simulated vari-
able to be transformed. Local conditional mean
and variance of Z(x), estimated by simple Krig-
ing, are used for the re-sample of the global
distribution function of Z(x). As this method
works in the space of the original variables, this
property creates a high potential for accommo-
dating complex relationships between covariates.
In this chapter, joint simulations with reproduc-
tion of bivariate distributions and point distribu-
tions are also presented (Sect. 3.4.3).

3.3 Sequential Gaussian Simulation

In sequential Gaussian simulation (SGS) the
entire procedure is developed with a multi-
Gaussian distributed variable. For this reason,
the first step of this sequential methodology is the
transformation of the original data from the
available experimental data into a marginal
Gaussian distributed variable:

Y xð Þ ¼ u Z xð Þ½ �: ð3:3Þ
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This marginal Gaussian distributed Y(x) is
assumed to be multi-Gaussian (see the
multi-Gaussian approach in Chap. 2).

Assuming Y xð Þ is multi-Gaussian, the condi-
tional probability density function at any location
x0 is fully characterized by the conditional mean
and variance, which can be calculated by a linear
estimation, such as a simple Kriging estimate
(Eq. 2.75) and variance (Eq. 2.77) (Matheron
1978). The sequential Gaussian simulation
methodology can then be summarized in the
following sequence of steps:

(1) Transform the original experimental data into
Gaussian by applying Gaussian transform
(Eq. 3.3);

(2) Generate a random path over the entire
simulation grid of nodes xu; u ¼ 1; . . .;N,
where N is the total number of nodes that
compose the regular grid;

(3) Estimate the local mean, zðx0Þ�, and vari-
ance, r2SKðx0Þ, with simple Kriging estimates
conditioned to the original experimental data
and previously simulated data;

(4) Draw a value ys from the Gaussian cumula-
tive distribution Gðy x0ð Þ�; r2SKðx0Þ);

(5) Add the simulated value to the conditioning
data;

(6) Loop until all the N nodes of the simulated
grid have been simulated;

(7) Inverse the Gaussian transform to convert the
simulated values to the original data domain
zsðxÞ ¼ u�1 ysx

� �
.

This process of sequential simulation theoret-
ically ensures the reproduction of the variogram
model of Y xð Þ (Journel 1989). However, the final
back transform can be a critical step: by imposing
the original histogram Z(x) when this is consid-
erably different compared with the bell-shaped
and simetric Gaussian distribution, it can jeopar-
dize the variogram model to be reproduced.

The sequential Gaussian simulation, as the
other sequential simulation algorithms presented
in this book, contains a practical approximation:
in each step of the simulation process the simu-
lated value is included in the set of conditioning

data and as the conditioning values increase a
linear combination of n conditioning values can
be difficult to calculate accurately (Gómez-Her-
nández and Journel 1993). One approximation
consists of selecting a limited set of conditioning
data n1 � n, such that n1 � n and
EfYðx0Þjðn1Þg � EfYðx0ÞjðnÞg.

The selection of the subsets of conditioning
data around the location x0 must be careful. If the
selection of the conditioning data promotes
samples near the location (x0) to be simulated it
results in the preferential reproduction of
small-scale structures in the simulated model. On
the other hand, if the searching radius for con-
ditioning data is too large it may cause a false
homogeneity in the resulting simulated models.

3.4 Direct Sequential Simulation
from Experimental
Distributions

This section presents a detailed description of a
set of stochastic simulation algorithms that are
directly sampled from experimental distribution
functions, marginal distributions or
bi-distributions. Direct sequential simulation is a
stochastic sequential simulation methodology
that does not require any nonlinear transformation
of the experimental data [e.g. Gaussian transform
(Sect. 3.3)]. For this reason, direct sequential
simulation is a suitable method for reproducing
complex relationships between variables, such as
the acoustic and elastic properties and rock phy-
sics properties. In addition, it is a preferable
stochastic simulation tool for dealing with local
distributions and local variogram models for dif-
ferent spatial areas within a given field (see the
case studies in Chaps. 4 and 5). These important
achievements make this set of simulation meth-
ods appropriate for the seismic inversion algo-
rithms discussed in Chaps. 4, 5 and 6.

An executable of the Direct Sequential Simu-
lation algorithm with examples of application for
all the methodologies presented in the next sec-
tions is available for download at: https://sites.
google.com/view/directsequentialsimulation.
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3.4.1 Direct Sequential Simulation

Sequential Gaussian simulation presents some
limitations when seeking to reproduce more
complex structures, such as those with highly
skewed or multi-modal distributions. Retrieving
the original probability distribution function after
the inverse Gaussian transform can lead to a
more unstructured variogram. Identical problems
with variogram reproduction usually are faced
when one wishes to reproduce the joint statistics
of a multivariate set of data.

The idea of the direct use of original variables
was launched based on the following idea (Journel
1994; Journel and Xu 1994): following the tradi-
tional sequential approach, if the local conditional
distributions are centered in a simple Kriging
estimate and have a conditional variance equal to
the simple Kriging variance, then the variogram
model reproduction is assured. The problem is that
the reproduction of histograms as retrieved from
original variables, is not assured. In other words,
the local conditional distribution functions cannot
be fully characterized only by the conditional
mean and variance of the original variables.

Soares (2001) proposes a direct sequential
simulation (DSS) algorithm, based on the
resample of the global distribution conditioned
by the local conditional mean and variance. The

concept of resampling the global experimental
distributions was extended to bi-distributions
(co-simulation of a multivariate set, Sect. 3.4.3)
and distributions of uncertainty data (simulation
of point distribution, Sect. 3.4.4), methods pre-
sented in this chapter. These are clearly the
advantages of using DSS algorithms as the core
of the inverse methods presented in the next
chapter, since they ensure the reproduction of the
marginal and joint distribution of the reservoirs’
properties being modelled.

The DSS algorithm follows the sequential
simulation approach as introduced above. When
comparing with other sequential simulation algo-
rithms, such as the SGS, instead of using the simple
Krigingestimate (Eq. 2.75) and the simpleKriging
estimation variance (Eq. 2.77) to define the local
conditional distributions fromwhere the simulated
value is drawn, DSS uses the estimated local mean
and variance to sample directly from the global
conditional distribution function as estimated from
the experimental data (Fig. 3.2; Soares 2001). The
simulated values are drawn from an auxiliary
probabilitydistribution function (F0

zðzÞ) that isbuilt
from the global cumulative distribution function
FzðzÞ.F0

zðzÞ is defined by selecting an interval over
Fz zð Þ centred on the simple Kriging estimate
(zðx0Þ�)valuewithan interval rangeproportional to
the Kriging variance, r2sk (Soares 2001):

Fig. 3.2 Sampling of global probability distribution
FzðzÞ by intervals defined by the local mean and variance
of z(x0): The value yðx0Þ� corresponds to the local

estimate zðx0Þ�. The simulated value zðx0Þ� is drawn from
the interval of FzðzÞ defined by Gðy x0ð Þ�;r2SKðx0Þ)
(adapted from Soares 2001)
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1
n

Xn
i¼1

zðxiÞ ¼ z x0ð Þ½ ��; ð3:4Þ

1
n

Xn
i¼1

z xið Þ � z x0ð Þ½ ��½ �2¼ r2skðx0Þ: ð3:5Þ

One way of constructing F0
zðzÞ is by defining a

local Gaussian cumulative distribution function
G y x0ð Þ�; r2SK x0ð Þ� �

, created by the Gaussian
transform (Eq. 3.3) of the interval of FzðzÞ cen-
tered in zðx0Þ� with an amplitude proportional to
r2sk:

y xð Þ ¼ u z xð Þð Þ; with G y xð Þð Þ ¼ Fzðz xð ÞÞ:
ð3:6Þ

The procedure to simulate a given (zs x0ð Þ) is
illustrated in Fig. 3.2. First, the interval of the
original global probability distribution defined by
the local simple Kriging estimate zðx0Þ� and
variance (r2SKðx0Þ) is transformed into the
Gaussian domain (Gðy x0ð Þ�; r2SK xx0ð ÞÞ), then a
value ys is drawn from the interval defined by
Gðy x0ð Þ�; r2SK x0ð ÞÞ by Monte Carlo simulation.
Finally, the simulated value (zs x0ð Þ) is obtained
by the inverse transform: zs x0ð Þ ¼ u�1ðysÞ.

It is important to highlight that the Gaussian
transform is exclusively used to resample the
intervals of FzðzÞ and that there is no need to
assume Gaussian hypothesis for the original vari-
able as in SGS (Soares 2001).

The DSS simulation algorithm can be sum-
marized in the following sequence of steps
(Soares 2001):

(1) Generate a random seed to define a random
path over the entire simulation grid
xu; u ¼ 1; . . .;N, where N is the total number
of nodes that compose the simulation grid;

(2) Estimate the local mean, zðx0Þ�, and vari-
ance, r2SKðx0Þ, with simple Kriging estimate
conditioned to the original experimental data
and previously simulated data, within a
neighborhood around u;

(3) Define the interval of the global FzðzÞ to be
sampled (Fig. 3.2);

(4) Draw a value zsðx0Þ from the cumulative
distribution function of FzðzÞ;
Generate a value u from the uniform distri-
bution between [0, 1];
Generate a value ys from Gðy x0ð Þ�; r2SKðxuÞ);
Return the simulated value zsðx0Þ ¼ u�1 ysð Þ;

(5) Add the simulated value into the condition-
ing data;

(6) Loop until all the N nodes of the simulated
grid have been simulated.

The resulting simulated models are able to
reproduce the prior probability distribution as
estimated from the experimental data. They
honor the data values at its own locations and are
able to reproduce the spatial continuity pattern
imposed by a covariance model, i.e. the vari-
ogram model (Fig. 3.3).

3.4.2 Direct Sequential Co-simulation

In many situations we want to generate spatial
realizations of two or more properties (e.g.
porosity, acoustic impedance, permeability) by
reproducing the underlying correlation that may
eventually exist between them. This can be
achieved by joint simulations or co-simulation
models (Soares 2001; Horta and Soares 2010).
This book focuses on the class of sequential
co-simulations, and in particular the direct se-
quential co-simulation.

The Bayes’ principle (Eq. 3.1) can be extended
for the co-simulation procedure: first a variable is
simulated; then a second variable is co-simulated
conditioned to the first. For example, assuming a
case in which we have two dependent variables: a
secondary variable Z1 xð Þ, which is first simulated
by any stochastic sequential simulation procedure
(e.g. SGS, DSS); and a primary variable Z2 xð Þ, the
new property that we want to co-simulate, condi-
tioned to the previously simulated model of Z1 xð Þ.

In the direct sequential co-simulation, in
order to sample from the global prior

42 3 Simulation Models of Physical Phenomena in Earth Sciences



probability distribution of FZ2 zð Þ; we estimate
the local mean and variance of Z2 xð Þ; condi-
tioned not only to the Z2 xð Þ sample data but also
to the collocated datum at x0, of Z1 xð Þ. This can
be achieved by using a collocated simple
co-Kriging estimate (Almeida and Journel 1994;
Soares 2001):

Z2 x0ð Þ�½ �CSK ¼
XN
a¼1

ka z2 xað Þ � m2½ �

þ kb z1 x0ð Þ��m1½ � þm2;

ð3:7Þ

with m1 and m2 the mean of z1 xð Þ and z2 xð Þ,
respectively,

r2CSKðx0Þ ¼ VarfZ2 x0ð Þ��Z2 x0ð Þg: ð3:8Þ

The co-simulation process can be summarized
in the following sequence of steps:

(1) Simulate for the grid the first variable Z1 xð Þ
with DSS;

(2) Generate a random path over the entire
simulation grid x0; u ¼ 1; . . .;N, where N is
the total number of nodes that compose the
simulation grid;

(3) Estimate the local mean and variance at x0
with collocated simple co-Kriging estimate
(½Z2 x0ð Þ��CSK ) and the corresponding
co-Kriging variance (r2CSKðx0Þ) conditioned
to the neighborhood data (z2 xað Þ), composed
by the experimental and the previously sim-
ulated data, and the colocated datum (z1 x0ð Þ) ;

(4) Define the interval of Fz2ðzÞ to be sampled,
as previously explained (Fig. 3.2);

(5) Draw a value z2ðx0Þs from the cumulative
distribution function of Fz2ðzÞ:
Generate a value u from the uniform distri-
bution between [0, 1];

Fig. 3.3 Top Omnidirectional, and vertical variogram
models and probability distribution function estimated
from the well-log data. Middle Omnidirectional, and
vertical variogram models and probability distribution
function estimated from a realization simulated with DSS
using the well-log from the top figures as conditioning

data. The variogram models and the probability distribu-
tion functions, as estimated from the experimental data,
are reproduced in the simulated models. Bottom Vertical
section extracted from the simulated model honoring the
well-log data (W14 and W30) at its location
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Generate a value ys from Gðy x0ð Þ�;
r2CSKðx0Þ);
Return the simulated value
zs2 x0ð Þ ¼ u�1 ysð Þ;

(6) Add the simulated value to the set of con-
ditioning data;

(7) Loop until all the N nodes of the simulated
grid have been simulated.

The resulting co-simulated models reproduce
the marginal probability distribution of Fz2ðzÞ,
the experimental data values (z2 xað Þ) at its own
location, and the imposed spatial continuity pat-
tern as well as the spatial correlation between
both variables (Soares 2001).

3.4.3 Stochastic Sequential
Co-simulation with Joint
Probability Distributions

Independently of the joint probability distribution
observed from the experimental data between the
primary and secondary variables (FðZ2; Z1Þ), the
simulated models resulting from the direct se-
quential co-simulation (described in previous
point) are able only to reproduce a linear corre-
lation between the primary and secondary vari-
ables (Fig. 3.4; Horta and Soares 2010). This is a
clear limitation to the described co-simulation
methodology.

In reservoir characterization, it is of extreme
importance to create reservoir models capable of
reproducing the joint probability distributions as
estimated from the well log between the prop-
erties of interest. For example, in seismic inver-
sion methodologies it is essential to reproduce
the nonlinear relationships between density,
P-wave and S-wave velocities (or between
acoustic and elastic impedances) for facies clas-
sification over the simulated models. The repro-
duction of just a linear correlation between
simulated properties is clearly insufficient for
modeling complex subsurface petro-elastic
models (Avseth et al. 2005).

The noted limitations of the traditional direct
sequential co-simulation methodology were mit-
igated by the development of the direct sequen-
tial co-simulation with joint probability
distributions (Horta and Soares 2010). Basically,
this algorithm extends the concept of resampling
global distributions to joint probability distribu-
tions in order to ensure the reproduction of the
experimental joint probability distribution
between the primary and secondary variables in
the simulated models. In Fig. 3.4 we can see the
bi-plot between Vp and density estimated from
well-log data, the corresponding bi-plot between
co-simulated models estimated using direct se-
quential co-simulation and the bi-plot between
both variables obtained with direct sequential
co-simulation with joint probability distributions.

Fig. 3.4 On the left Joint distributions estimated from
well-log data, middle joint distributions estimated from
the resulting bi-distributions between co-simulated mod-
els using direct sequential co-simulation and on the right
from direct sequential co-simulation with joint probability

distributions. The use of DSS with joint probability
distributions allows the reproduction of the
bi-distributions estimated from the well-log data in the
simulated models
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Following the sequential simulation approach,
the direct sequential co-simulation with joint
probability distributions procedure is based on
the Bayes’ rule. The simulation methodology
assumes a previously simulated model, the sec-
ondary variable (Z1 xð Þ), is first calculated for the
entire simulation grid with DSS, then the primary
variable (Z2 xð Þ) is co-simulated.

For a given Z1
s(x0) simulated at a node x0 of a

random path, the following conditional cumula-
tive distribution function is estimated from the
global bi-distribution (Fig. 3.5):

F Z2 x0ð ÞjZ1 x0ð Þ ¼ zs1ðx0Þ
� �

: ð3:9Þ

Local conditional mean and variance are
estimated with collocated simple co-Kriging
estimate (Eq. 3.7) and collocated simple
co-Kriging variance (Eq. 3.8). Instead of resam-
pling the global distribution Z2 xð Þ, the idea is to
resample this conditional distribution (Eq.3.9)
based on the local conditional mean and vari-
ance, to draw Zs

2 x0ð Þ.
Direct sequential co-simulation with joint

probability distributions is able to reproduce the
marginal probability distribution functions of the
primary variable; the value of the experimental
data is honored at its spatial locations and the
spatial continuity model is also reproduced.

Moreover, the joint probability distributions, as
estimated from the experimental data between
the primary and secondary variables,
FðZ2ðxÞjZ1ðxÞÞ, are reproduced, which is the
main purpose of this simulation algorithm.

This procedure can be summarized through
the following sequence (Horta and Soares 2010):

(1) Estimate the global bi-distribution
FðZ2ðxÞ; Z1ðxÞÞ from the experimental data;

(2) Simulate the secondary variable Z1 xð Þ with
DSS for the entire simulation grid;

(3) Following a random path, estimate the local
mean and variance at x0 with collocated
simple co-Kriging estimate (½Z2 x0ð Þ��CSK)
and the corresponding co-Kriging variance
(r2CSKðx0Þ) conditioned to the original
experimental data and the previously simu-
lated data (z2 xað Þ) and the collocated datum
of the secondary variable ðzs1 x0ð ÞÞ;

(4) Based on the simulated values for the sec-
ondary variable, zs1 x0ð Þ, calculate the condi-
tional cumulative distribution function
F Z2ðxÞjZ1 xð Þ ¼ zs1ðx0Þ
� �

from the global
joint-probability distribution FðZ2ðxÞ; Z1ðxÞÞ;

(5) Follow the traditional DSS approach to
simulate the value for zs2ðx0Þ from the con-
ditional cumulative distribution function
F Z2ðxÞjZ1 xð Þ ¼ zs1ðx0Þ
� �

.

Fig. 3.5 Schematic representation of how the conditional cumulative distribution function, F IsjIp ¼ Ip x0ð Þ� �
, is

estimated for the co-DSS with joint probability distributions
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The models resulting from the stochastic
simulation with DSS with joint probability dis-
tributions ensure the spatial reproduction of the
bi-distributions between the primary and sec-
ondary variables (Fig. 3.6).

3.4.4 Stochastic Simulation
with Uncertain Data: DSS
with Point Probability
Distributions

The traditional DSS assumes that the available
experimental data, like for example the existing
well-log data, is considered hard-data with no
uncertainty attached. However, in some situa-
tions there can be considerable uncertainty in the
experimental well-log data. For example, there
are cases where we can only access the upper and
lower boundaries of pore pressure or porosity,
and instabilities along the borehole cause uncer-
tainty and wrong readings of the properties of
interest. These uncertainties may be interpreted at
the well sample data locations as probability
distribution functions along the well path, instead

of one hard value per sample. In these cases, the
stochastic sequential simulation must account for
these well-log data point distributions,1 and also
for the local distribution of the variable to be
modelled as in the usual procedure (Sect. 3.4.1).
To deal with point distribution, Srivastava (1992)
and Froidevaux (1993) propose, using the P-field
simulation, generating a spatial probability field
to produce, using Monte Carlo, the RF of Z(x).
This method has presented some problems with
variogram reproduction for three-dimensional
high anisotropic fields, and also presents arte-
facts at the conditioning data location (Pyrcz and
Deutsch 2002).

The proposed method aims at integrating the
uncertainty of data measurements—local distri-
butions—in the framework of a stochastic
sequential simulation. It consists of a sequential
approach where, in a first step and before simu-
lating the entire grid, the experimental data val-
ues located at xb are firstly drawn from the local

Fig. 3.6 Comparison between co-simulated models with
direct sequential co-simulation (on the top) and with
direct sequential co-simulation with joint probability
distributions (on the bottom). The model shown in
Fig. 3.3 was used as secondary variable for the

co-simulation process. The joint probability distributions
estimated from the experimental data and between
primary and secondary variable for both co-simulation
methods are shown in Fig. 3.4

1The notation ‘point distribution’ is for the well-log data
only.
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distributions, and in a second step the entire grid
of nodes is sequentially simulated, conditioned to
the previously simulated experimental data. The
data values zðxbÞ drawn from FðzðxbÞÞ must
reproduce not only these local cfds, but also the
spatial correlation as revealed by the spatial
covariance.

The idea of generating a spatially correlated set
of data values consists of two steps: calculating
the local mean and variance at the experimental
data location, conditioned to the neighborhood
“hard” data zðxaÞ and also to the values previously
drawn from other uncertain data distributions;
and, afterwards, generating the simulated values
with the local distributions, centered at the local
mean and variance, following the outline of direct
sequential simulation (Soares 2001).

The simulated data values, as they come from
distributions centered at simple kriging mean and
variance, reproduce not only the spatial covari-
ances (Journel 1994), but also the local distri-
butions (Soares 2001). This is a development of a
version of direct sequential simulation with joint
probability distributions (Horta and Soares
2010), which can be summarized into two basic
steps:

1. The direct sequential simulation starts by
generating first the Nd values at the experi-
mental sample data locations, xb ¼ 1; . . .;Nd

using the local distributions FðzðxbÞÞ. At a
given sample location xb, the mean and vari-
ance of zðxbÞ are calculated by simple kriging
based on the known “hard” data zðxaÞ and
previously simulated uncertain experimental
data zsðxbÞ. A value zsðx0Þ at the experimental
location x0 is drawn from the local distribution
Fðzðx0ÞÞ centered at the simple kriging esti-
mate of local mean:

zsðx0Þ ¼
X
k

kaðx0ÞzðxaÞþ
X
b

kbðx0ÞzsðxbÞ;

and with a local variance identified with
simple kriging variance where ka and kb are,
respectively, the kriging weights associated
with the known “hard” data and the previ-
ously simulated uncertain experimental data.

2. After a set of Nd experimental sample data is
generated from the local distributions, in a
second stage, the direct sequential simulation
methodology generates zðxÞ values on the
entire grid of nodes conditioned to the simu-
lated values at the experimental locations plus
the eventual hard data fzðxaÞ; a ¼ 1; . . .;
N; zðxbÞ; b ¼ 1; . . .;Ndg. For each realization,
a new set of sample data is generated before
the rest of the model is simulated.

3.5 Simulation of Categorical
Variables

3.5.1 Indicator Simulation

A common practice in hydrocarbon reservoir
characterization consists of describing petro-
physical properties by using the concept of facies
(lithofacies, lithogroups, rocktypes) to define
lithologies with statistical homogeneity of the
property of interest (e.g. high porosity, low per-
meability, etc.). The aim is to characterize the
spatial dispersion of those homogeneous facies
instead of the spatial dispersion of the petro-
physical properties themselves. These facies can
thus be considered as categorical variables.

This section will present a set of categorical
variable simulation methodologies that describe
the shape of bodies in spatial phenomena. The
aim of these simulation methodologies is to
generate indicator simulation models with the
same statistical characteristics in terms of dis-
persion and spatial continuity as the set of
available sample values. These algorithms are
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based on an estimation of categorical variables
presented in Chap. 2.

For the simulation of a set of facies Xk, k = 1,
…, N, which are mutually disjunctive, the se-
quential indicator simulation algorithm, which is
based on the estimation methods of categorical
variables presented in Chap. 2, can be described
as follows:

(1) Define a vector with the categorical variables
IkðxÞ:

IkðxÞ 1 if x 2 Xk; k ¼ 1; . . .;K
0 if x 2 Xj; j 6¼ k:

�
ð3:10Þ

For each phase Xk we may define the mean,
mk ¼ EfIkðxÞg, which is the proportion of Xk in
A, where the spatial continuity of the group IkðxÞ,
k = 1, …, K, may be measured by the multi-
phase covariance (Eq. 3.11) or variogram
(Eq. 3.12):

CðhÞ ¼ E
XK
k¼1

½IkðxÞ : Ikðxþ hÞ�
( )

; ð3:11Þ

cðhÞ ¼ 1
2
E

XK
k¼1

½IkðxÞ � Ikðxþ hÞ�2
( )

: ð3:12Þ

(2) Calculate the Kriging estimate of the proba-
bilities for a given location x1 randomly
selected within the study area A,:

½Ikðx1Þ�� ¼ probfx1 2 Xkg�; k ¼ 1; . . .;K:

ð3:13Þ

The estimated values ½Ik x1ð Þ��, k = 1, …,
K may be obtained by taking the individual
covariance of each single phase or by the
multi-phase covariance into account. The latter

implies the resolution of just one single Kriging
system.

(3) Correct the eventual violation of the order
relations:

The sum f the estimated local probabilities
values must be one:

XK
k¼1

½Ikðx1Þ�� ¼ 1: ð3:14Þ

The multi-phase Kriging ensures this relation
since it uses a single model to estimate the
K values ½Ikðx1Þ��, k = 1,…, K.

However, itmaybe that the estimated values are
not comprised within the interval [0,1]
—Ikðx1Þ� [ 1 or Ikðx1Þ�\0 resulting from nega-
tive weights calculated from the individual or
multi-phase Kriging system. In these situations,
we need tomake corrections for the order relations.

(4) Compute a ‘pseudo’ cumulative function:

½Flðx1Þ�� ¼
XK
k¼1

Ikðx1Þ�; k ¼ 1; . . .;K: ð3:15Þ

(5) Generate a p value uniformly distributed
between 0 and 1. So:

x1 belongs to phase k if
p 2 Fk�1 x1ð Þ�½ �; Fkl x1ð Þ½ ��½ �
i.e. the value simulated in xi is transformed
into: Ik x1ð Þ ¼ 1 and Ij x1ð Þ ¼ 0; j 6¼ k.

6) The simulated values Ik x1ð Þ, k = 1, …, K are
integrated into the group of conditioning data
for the simulation of the next location. The
sequence from (1) to (6) is repeated until all
locations in A are visited.

There are cases in which the sequential indi-
cator simulation introduces a bias in the final
proportions of facies and consequently does not
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reproduce the global proportion of each phase:
the final proportions of each phase are dependent
on the location of the first points randomly
simulated within A. If the first simulated points
are located near the available experimental data
of a given phase, the proportion of estimated
values for that specific phase tends to increase
rapidly during the sequential simulation proce-
dure and will hardly reproduce the global pro-
portions as estimated from the experimental data.
This effect can be severe if the variogram ranges
are large, affecting mainly the classes of smaller
proportions. Soares (1988) proposed a method
for the correction of local probabilities according
to the global proportions of facies during the
sequential process.

3.5.2 Alternative Simulation Methods
for Categorical Variables

Alternatively, there is a class of sequential
simulation methodologies that use the sequen-
tial Gaussian simulation (see Sect. 3.3) to sim-
ulate categorical variables: for example,
truncated Gaussian or pluri-Gaussian simula-
tion. The idea is to generate one or several
Gaussian random fields using the sequential
Gaussian simulation as described in Sect. 3.3
and categorize classes of one Gaussian distri-
bution with thresholds identified with the pro-
portions of different facies (truncated Gaussian)
or categorize the facies with a joint truncation of
two or pluri-Gaussian fields. In this case, the
thresholds are calculated based on a model of a
joint distribution of facies (Galli et al. 1994; Le
Loc’h et al. 1994).

3.5.3 High-Order Stochastic
Simulation of Categorical
Variables

Categorical variables can also be simulated based
on multi-point statistics (Chap. 2). Multi-point
statistics overcome the limitations of two-point
statistics to reproduce connectivity patterns by
simultaneously using a set of points for the infer-
ence of the property of interest at a given location
(Iaco and Maggio 2011). Within this high-order
statistics framework the following references
summarize the best known multi-point geostatis-
tics techniques for modeling in Earth sciences:
Strebelle (2002), Arpat and Caers (2007), Daly
and Caers (2010), Mariethoz et al. (2010), Mari-
ethoz and Caers (2014). More recently, the use of
high-order statistics, or cumulants, have been
proposed for modeling non-Gaussian Earth phe-
nomena (Dimitrakopoulos et al. 2010).

Multi-point geostatistics is based on the concept
of training images, which are defined as a con-
ceptual representation of reality. The use of train-
ing images overcomes the lack of experimental
data for retrieving reliable high-order statistics:
they are inferred directly from the training image.
Thus, the training image must represent all
expected structures for a given study area as well as
the spatial distribution of the property of interest. In
reservoir modeling, this training image is often
provided by a geologist who has a general idea of
the structural and sedimentary subsurface geology
of the area being studied. The best known
multi-point geostatistical algorithms and software
used for reservoir modeling are SNESIM (Strebelle
2002), SIMPAT (Arpat and Caers 2007) and direct
sampling (Mariethoz et al. 2010).
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4Integration of Geophysical Data
for Reservoir Modeling
and Characterization

The second part of this book deals with the
integration of different types of information for
characterizing hydrocarbon reservoirs with high
spatial resolution models of petro-elastic prop-
erties of interest: e.g. lithologies, facies and fluid
saturations. These modeling techniques are based
on the geostatistical methods presented above
and their advantages are related to the integration
of data with different support (time and spatial
support) and uncertainty, such as seismic reflec-
tion and well data, in coherent and realistic
models of hydrocarbon reservoirs.

Traditionally, reservoir models were built
exclusively with information retrieved from
sparsely located wells, and possibly conditioned
to a secondary variable of interest (e.g. a trend
map or geological model) provided by an expert
who was usually a geologist. Although well data
provides certain ‘hard’ measures of the subsur-
face property of interest, in most cases—given
the low number of available wells—the data
lacks of spatial representativeness and, conse-
quently, the corresponding models provide little
understanding of the complex and variable sub-
surface geology of the entire reservoir area
(Dubrule 2003).

Since it has high spatial representativeness by
covering the full spatial extent of the reservoir
volume, seismic reflection data is a different
window for the subsurface properties of interest.
However, seismic reflection data has a poor
spatial resolution along the vertical direction
(temporal domain), which means much greater
support compared with the well-log data and

much greater uncertainty derived both from
measurement errors and the nonlinear relation-
ship between the recorded seismic signal and the
subsurface properties we wish to describe.

Given the rich spatial extent of seismic
reflection data, the use of such information as
conditioning data for the three-dimensional
modeling of hydrocarbon reservoirs has been
the purpose of geostatistical methods based on
direct approaches. These include simulation
using the seismic reflection data either as a trend,
or joint simulation with seismic reflection data
(or any other seismic attribute, such as acoustic
impedance) as a secondary variable (Dubrule
2003; Doyen 2007). The problem with these
approaches are the simultaneous use of different
support data: i.e. different spatial or temporal
scales, and the usually poor relationship between
seismic amplitudes and the subsurface
petro-elastic properties of interest.

As for the integration of different support data,
Liu and Journel (2009) propose a new DSS
method—direct block sequential simulation—for
the integration of coarse (seismic data) and fine
scale (well-log data) data. But this lacks a rela-
tionship between seismic amplitudes and the
subsurface petrophysical properties—a necessary
condition for any of the usual methods of simu-
lation with trends or joint simulation. This
remains a major limitation for these approaches.

However, if the seismic reflection data or its
amplitudes is usually poorly related to the sub-
surface petrophysical properties (such as facies,
porosity and saturation), other seismic attributes,
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such as acoustic and/or elastic impedances, can
have a significant relationship with some facies
and/or classes of porosity. As these parameters
(e.g. acoustic/elastic impedances) are physically
related to seismic amplitudes, this induced a new
class of methods that are based on the inverse
solution of a simple, but ill-posed problem and
with non-unique solutions: on wishes to know
the model parameters (reflectivity coefficients
derived from the subsurface elastic properties),
which convolved with a known wavelet originate
of the known solution (i.e. the recorded seismic
amplitudes).

The theoretical solutions for seismic inversion
are stated in Tarantola (2005), while a brief
introduction to seismic inversion can be found
below (Sect. 4.1). The seismic inversion problem
began to be tackled with deterministic method-
ologies, which are optimization procedures
seeking the minimization of an objective func-
tion—normally the mismatch between the syn-
thetic seismic that is obtained by perturbing an
initial guess and the observed seismic reflection
data (Lindseth 1979; Lancaster and Whitcombe
2000; Russell 1988; Coléou et al. 2005).

In recent decades, seismic inversion has been
successfully extended to a statistical framework for
assessing the uncertainty of the inferred 3D sub-
surface elastic models, which is one of the major
limitations of deterministic inverse procedures.
Among the many statistical inverse approaches,
two different stochastic approaches for solving the
seismic inversion are worth mentioning.

The first group of stochastic methodologies
approaches the seismic inversion as an optimiza-
tion problem in an iterative and convergent pro-
cess. This includes what are traditionally
designated iterative geostatistical seismic inver-
sion methods, introduced in the seminal work by
Bortolli et al. (1993). The latter authors use
a stochastic sequential simulation algorithm
(sequential Gaussian simulation, Sect. 3.3) to
generate a spatial RF of acoustic impedance
traces. The optimization process is made trace-by-
trace, which became the main limitation of the
method due to its inability to distinguish between
signal and noise. Alternative methodologies that

overcame these limitations were presented later
(e.g. Soares et al. 2007).

The second group of stochastic seismic
inversion algorithms is called linearized Baye-
sian inverse methodologies. These are based on a
particular solution of the inverse problem using
the Bayesian framework and assume the param-
eters and observations are multi-Gaussian dis-
tributed as well as the data error, which allows
the forward model to be linearized (Buland and
Omre 2002). Several authors have recently con-
tributed towards overcoming some of the limi-
tations of this method, particularly the
multi-Gaussian assumption, by using Gaussian
Mixture Models (Grana and Della Rossa 2010).

The seismic inversion methodologies this
book focuses on are those based on geostatistical
iterative procedures, in which the model param-
eter space is globally perturbed by stochastic
sequential simulation algorithms. These geosta-
tistical inverse methods are based on the family
of DSS and joint co-simulations, with local and
point distributions (Chap. 3). As they do not
imply any nonlinear transformation of parame-
ters or observations, these methods have a high
potential for accommodating accurate solutions
for new challenges of different data integration,
such as the joint inversion of seismic reflection
and electromagnetic data or the integration of
production data into seismic inversion (Chap. 6).

4.1 Seismic Inversion

Predictions about an Earth’s physical system
(e.g. the Earth’s subsurface petro-elastic proper-
ties) can be made by assuming a theoretical
model that globally explains the system being
studied. The process of forecasting a response for
a particular physical system (e.g. weather fore-
casting) is commonly called forward modeling.
In forward processes we try to model the
parameters of the system to obtain its solution.
On the other hand, in inverse physical problems,
such as the seismic inversion problem, we know
the Earth’s response to a limited set of indirect
measurements and we try to infer data about the
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model parameters of the system in studies that
give rise to that solution (Tarantola 2005).

Geophysical inverse problems aim to infer the
physical properties of the subsurface geology, the
model parameters (m 2 Rn), from a set of indi-
rect geophysical measurements/observations
(dobs 2 Rn) that are normally contaminated by
measurement errors (e) originating from different
sources. The observed data (dobs) and the sub-
surface properties of interest (m) are connected
by a forward model (F). If the forward models
can be mathematically described and the model
parameters are known, the observed data may be
synthesized by Eq. 4.1 (Tarantola 2005):

dobs ¼ F mð Þþ e: ð4:1Þ

In the particular case of seismic inversion
problems, dobs represents the recorded seismic
reflection data and well-log data (if available), F,
is normally defined as the convolution model and
m the model parameter space for the properties to
invert. These properties depend on the goal of the
inversion: acoustic and/or elastic impedances or
density, P-wave and S-wave velocity models.
The forward model, F, of Eq. 4.1 can be
described by, for example, Eq. 1.1.

Seismic inversion problems are nonlinear,
ill-conditioned and with non-unique solutions due
to the intrinsic limitations of the seismic method
itself: limited bandwidth and resolution of the
seismic reflection data, noise, measurement
errors, numerical approximations and physical
assumptions about the involved forward models
(Tarantola 2005; Bosch et al. 2010; Tompkins
et al. 2011). Assuming the forward model is valid,
the optimal inverse elastic models retrieved at the
end of a seismic inverse process are just one set of
possibilities among several Earth models that
equally satisfy the observed seismic reflection
data. Due to the non-unique solution we may say
that if the match between the recorded seismic
data and the synthetic seismic reflection data,
calculated from the best-fit inverse models, is
poor, then we can conclude the correspondence
between the real elastic models with the inverted
ones is also poor. However, the opposite may not
be true. One can achieve a good match between

the observed and inverted synthetic seismic
reflection data while the real and inverted sub-
surface models are not converging with each
other—the inverse solution is converging towards
a local minimum far from the global minimum
(Tarantola 2005). The non-unique nature of
seismic inversion is a critical aspect of the
methodology approach. Regardless of the chosen
methodology and the underlying assumptions for
solving the seismic inverse problem, there is
always uncertainty with the inverted elastic
models that needs to be continuously assessed
and propagated during the inversion procedure
(Bosch et al. 2010; Grana and Della Rossa 2010;
Tompkins et al. 2011).

Inverted elastic subsurface Earth models are
now routinely used in reservoir modeling and
characterization studies. Therefore, it is important
to understand the different seismic inverse
methodologies available and the underlying
assumptions associated with each (e.g. assump-
tions about prior probability distributions and
about the spatial continuity patterns). These
assumptions have a significant impact on the
exploration of the model parameter space and,
consequently, on the assessment of the uncertainty
of the best-fit inverse models. Seismic inversion
problems can be divided into two main approa-
ches: the deterministic (also called optimization
techniques) and probabilistic (Bosch et al. 2010).

Band-limited, or integration of the seismic
trace (Lindseth 1979), colored inversion (Lan-
caster and Whitcombe 2000) and sparse-spike
and model-based (Russel 1988) are the main
deterministic algorithms for post-stack seismic
inversion. Of this group of inversion procedures,
the sparse-spike and model-based methodologies
are the most widespread deterministic inversion
techniques among the geophysical community
(Bosch et al. 2010). Sparse-spike inversion is a
model-driven technique that tries to sparsely
estimate the real reflection coefficients along the
seismic trace by deconvolution. With this
approach, a minimum number of reflections are
considered in reproducing the real seismic trace
after being convolved with a wavelet. The sparse
inverted impedances are then combined with a
low-frequency model in order to better constrain
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the observed data and add spatial consistency to
the inverted traces (Russel 1988; Russell and
Hampson 1991; Bosch et al. 2010). In the
model-based approach, an initial subsurface
model, which is normally designated as a low
frequency model, is applied to the inversion
algorithm and then perturbed until it produces
synthetic seismic correlated enough with the
recorded seismic (Russel 1988; Russell and
Hampson 1991). Within these frameworks, the
inverted impedance models provide a smooth
representation of the Earth’s subsurface proper-
ties with much less spatial variability compared
to the real and complex subsurface petrophysical
and geological properties (Russell and Hampson
1991).

Beside the widespread use of these method-
ologies within the industry, the uncertainty
assessment of deterministic solutions is limited.
Within this framework the uncertainty can only
be assessed by a linearization around the best-fit
inverse solution, which is normally retrieved by
least squares. Due to this limitation, these
methodologies are not suitable for highly non-
linear inverse problems such as pre-stack seismic
inversion and complex geological environments
(Tarantola 2005; Tompkins et al. 2011).

Among the stochastic methods, Bayesian
approaches ensure the propagation of the uncer-
tainty from the prior probability distributions
estimated from the experimental data (e.g.
well-log data), to the probability distributions of
the model parameters space (Grana et al. 2012).
Within this framework, the linearity assumptions
of the deterministic solutions are overcome,
allowing for a more comprehensive exploration
of the uncertainty and the model parameter
space. However, the uncertainty assessment
depends on the parameterization of the inverse
problem—e.g. assumptions about the prior dis-
tributions and the spatial continuity pattern
(Scales and Tenorio 2001).

Geostatistical approaches define the inverse
solution as a probability density function on the
model parameters space (Bosch et al. 2010).
Normally, the inverse solution is achieved by

sampling the model parameter space by Monte
Carlo or by using geostatistical sequential simu-
lation combined with global optimization algo-
rithms. Genetic algorithms (e.g. Mallick 1995,
1999; Boschetti et al. 1996; Soares et al. 2007) and
simulated annealing (Sen and Stoffa 1991; Ma
2002) fall within this class of inverse methodolo-
gies. When compared with deterministic inverse
methodologies, these stochastic approaches are
normally much more computationally expensive
(Bosch et al. 2010).

4.2 Bayesian Framework
for Integrating Seismic
Reflection Data into Subsurface
Earth Models

Methodologies commonly designated as lin-
earized Bayesian inversion (e.g. Buland and
Omre 2003; Buland and El Ouair 2006; Grana
and Della Rossa 2010) assume the linearization
of the forward operator, and multi-Gaussian
distribution for the prior probability distribu-
tions and for the errors within the observed
seismic data. The resulting inverse solutions are
mathematically tractable and, due to the referred
assumptions, the computational time is much
lower when compared with iterative geostatisti-
cal approaches based on genetic algorithms
(Sect. 4.3) or simulated annealing. However, the
reduction of the computational burden has a
direct impact on the exploration of the uncer-
tainty space even in the presence of exact prior
information (Scales and Tenorio 2001; Tarantola
2005; Bosch et al. 2010). To overcome the lim-
itations imposed by the Gaussian assumption of
the prior probability distributions while main-
taining the computational efficiency of the
Bayesian linearized procedures, Grana and Della
Rossa (2010) developed an inversion framework
for the Bayesian linearized inversion using
Gaussian-mixture models. Within their method,
and by defining the prior probability distributions
as Gaussian-mixtures and using a linearized
forward model, the inferred posterior probability
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distribution also is analytically expressed as
Gaussian-mixtures.

Due to the importance of Bayesian inversion
methodologies (Tarantola 2005; Buland and
Omre 2003; Buland and El Ouair 2006) in seis-
mic reservoir characterization, here we introduce
the main principles shared by these linearized
inverse methodologies.

Let us assume the model parameters space is
defined by m, e.g. subsurface P-wave velocity,
S-wave velocity and density, and the observation
data, d, the recorded seismic reflection and the
well data. The solution of a Bayesian inverse
problem is represented by the posterior distribu-
tion p(m|d), as the product of a likelihood
function p(d|m) and an a priori model p(m):

p m; dð Þ ¼ p djmð Þ : pðmÞ: ð4:2Þ

In Bayesian seismic inversion, the vectors
m and d are assumed to be multi-Gaussian dis-
tributed (Buland and Omre 2003; Grana and
Della Rossa 2010). Hence, the posterior condi-
tional distribution p(m|d) is a multi-Gaussian
distribution Nðlmjd;

P
mjdÞ with conditional

mean (lmjd) and covariance (
P

mjd; Anderson

1984):

p mjdð Þ ¼ N lmjd;
X

mjd

� �
; ð4:3Þ

where lmjd ¼ lmjd þ
P

mjd
P�1

d ðd�mÞ andP
mjd ¼

P
m �P

mjd
P�1

d

P
mjd, where R are the

covariance matrixes ofm, d and cross-covariance
m, d.

This is the particular case, when looking for
the solution in the multi-Gaussian space, of the
more general inverse problem posed by Taran-
tola (2005).

Even in a linearized version of the solution
(e.g. Buland and Omre 2003; Buland and El
Ouair 2006), in which the convolution of the
wavelet and reflectivity coefficients are written as
a linear operator, Eq. 4.2 cannot be directly

analytically calculated. Hence, the stochastic
model proposed by some authors (e.g. Buland
and Omre 2003; Buland and El Ouair 2006)
entails the resampling of the posterior distribu-
tion with a Markov Chain Monte Carlo (MCMC)
algorithm, often the Metropolis-Hastings algo-
rithm (or in a more particular case, the Gibbs
sampling).

In Bayesian inversion, MCMC sampling con-
sists of drawing spatial RFs of the elastic prop-
erties of interest (e.g. P-wave and S-wave
velocities and density) and, at each iteration,
checking the acceptability of the new realization
through the likelihood function. The a posteriori
resampling method must assure the convergence
to stable solutions: i.e. the a posteriori distribu-
tions. Hence, the role of the a priori model is
extremely important for guaranteeing the stability
of the convergence process. The a priori model p
(m) is normally chosen to contain the low fre-
quencies missing from the available seismic
reflection data. The low frequency model can be a
Krigged model for the area of interest using the
available well-log data as experimental data.

In spite of their implementation simplicity,
Bayesian inversion methodologies have some
limitations. The main one is related to the
multi-Gaussian assumption between all parame-
ters and the observed data. Some authors argue
the process assumes multi-Gaussian just for the
residuals around a given a priori model p(m). In
this case, the a priori model assumes a key role in
the reliability of the inverse elastic model. The
second limitation is the temporal resolution of the
resulting inverse models, which is limited to the
resolution of the seismic data.

The limitations imposed by the Bayesian
framework may be overcome by using inversion
methodologies that are able to account for
non-Gaussian and the non-linearization of the
forward operator. The most common inversion
techniques matching these criteria are iterative
procedures based on stochastic sequential
simulation.
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4.3 Iterative Geostatistical Seismic
Inversion Methodologies

The aim of a seismic inversion study is the
inference of the subsurface elastic or acoustic
properties from recorded seismic reflection data.
Depending on the limitations associated with the
chosen inversion methodology, the retrieved
inverse models can be acoustic and/or elastic
impedance for post-stack seismic data, or den-
sity, P-wave and S-wave models if a more
elaborate inversion algorithm is being used to
invert pre-stack seismic reflection data (Francis
2006).

Seismic inversion is an ill-posed, nonlinear
problem with multiple solutions that can be
summarized by Eq. 4.1 (Tarantola 2005). The
goal is to estimate a subsurface Earth model, m,
that after being forward modelled, F, produces
synthetic seismic data showing a good correla-
tion with the recorded seismic data. The match
between observed and synthetic seismic is
achieved by the maximization (or minimization)
of an objective function measuring the mismatch
between inverted and real seismic. For example,
the objective function can be the Pearson’s cor-
relation coefficient (Eq. 4.4):

qX;Y ¼ covðX;YÞ
rXrY

; ð4:4Þ

where cov is defined as the centered covariance
between variables X and Y, which are the syn-
thetic and real seismic volumes, respectively, and
r the individual variances of each variable. More
complex objective functions integrate Pearson’s
correlation coefficient with least-square errors
calculated between the synthetic and the recorded
seismic reflection data in terms of amplitudes.

Due to the intrinsic nature of the seismic
inversion problem, it is appropriate to pose it in a
statistical framework, such as the geostatistical
model introduced in Chap. 2. Stochastic inverse
solutions are able to provide more realistic and
heterogeneous models when compared with
those retrieved from deterministic or linearized
approaches. It is important to reproduce the main
aspects of the geological, petrophysical and rock

physics components of the reality in the inverted
elastic models, since they are fundamental for
reserve calculations and fluid flow simulations
(Francis 2006; Bosch et al. 2010).1

A geostatistical seismic inversion framework
consists of an iterative procedure in which a set
of realizations of parameters, m, are generated by
the stochastic sequential simulation methods
described in Chap. 3 and optimized until the
match of the objective function reaches a given
user-defined value.

By using the geostatistical methodologies
presented in the previous chapter we seek to
reproduce the main spatial continuity patterns of
elastic and acoustic properties, and petrophysical
properties models in the solution of Eq. 4.1, and
to access the uncertainty attached to those
models.

4.3.1 Frequency Domain
of Geostatistical Seismic
Inversion

One of the main characteristics of geostatistical
seismic inversion is producing high-resolution
subsurface Earth models. The high temporal
frequencies are not directly inverted from the
seismic data since they are not part of the
recorded seismic data due to its band-limited
nature. Hence, the small-scale variability in
geostatistical inverse models is related to the
much higher frequency content present in these
inverse models compared with those retrieved
from determinist solutions (Fig. 4.1). The inte-
gration of the well-log data, also with a very high
vertical resolution, is another source for the
high-frequency content models retrieved from
geostatistical seismic inversion methodologies.
Unlike the deterministic approaches, in which the

1It is important to stress that the choice of inverse
methodology should take into account the goal of the
study versus the computational effort involved in the
inversion procedure and the quality of the available
seismic data. Often a cheap solution, such as a determin-
istic one, compared to a stochastic approach, may be
enough for the identification and delineation of the main
reservoir areas in early exploration stages.
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well-log data is only considered for estimating an
initial low-frequency model, the integration of
well-log data into geostatistical seismic inversion
methodologies allows the well-log data to be
honored at its location (Doyen 2007; Filippova
et al. 2011).

However, because of the very different fre-
quency content of the seismic and well-log data,
the integration of the well-log into the inversion
grid is not straightforward. While the maximum
frequency content of standard seismic reflection
data is around 75 Hz, the frequency content of
the well-log data is in the order of hundreds of
Hertz. The differences in frequency content are
translated into different data sampling rates. In
order to ensure the same sampling rate, it is a
common approach to upscale the well-log data
into the seismic scale.

There are many different upscaling method-
ologies, depending on the assumptions made. It
is important to know and understand the

assumptions behind the upscaling technique
selected, since it can dramatically change the
content of the original well-log data. In statistical
frameworks it is advisable to select an upscaling
methodology that reproduces original first and
second order statistical moments, the mean and
variance, as estimated from the available well-log
data.

Sometimes the low-frequency bandwidth is
filled-in by a low-frequency model computed
pre-inversion (see Sect. 4.4). This model is used
as constraining data for the inversion procedure
and is frequently created by Kriging the well-log
data of the properties of interest after they are
filtered for the frequencies of interest (normally
between 0 and 10 Hz).

4.3.2 Trace-by-Trace Geostatistical
Seismic Inversion
Methodologies

The first geostatistical seismic inversion method-
ology was introduced by Bortoli et al. (1992) and
Haas and Dubrule (1994). These authors proposed
a sequential trace-by-trace approach (Fig. 4.2) in
which each seismic trace, or CMP location, is
visited individually following a pre-defined ran-
dom path within the seismic volume. At each step
along the random path a set of Ns realizations of
one acoustic impedance trace is simulated using
SGS (Sect. 3.3), taking the well-log data and
previously visited/simulated nodes into account.
Then, for each individual simulated impedance
trace, the corresponding reflection coefficient is
derived and convolved by a wavelet, resulting in a
set of Ns synthetic seismic traces. Each of the Ns
synthetic traces is compared in terms of a mis-
match function with the recorded/real seismic
trace. The acoustic impedance realization that
produces the best match between the real and the
synthetic seismic traces is retained in the reservoir
grid as conditioning data for the simulation of the
next acoustic impedance trace at the new location
following the pre-defined random path (Bortoli
et al. 1992; Haas and Dubrule 1994).

As with any stochastic sequential simulation
approach, since the random path changes on each

Fig. 4.1 Schematic representation of the comparison
between the bandwidth extension of inverted models
from deterministic and stochastic solutions. The high
temporal frequency content of the stochastic solution is
provided by the spatial continuity model imposed for the
stochastic simulation (adapted from Dubrule 2003)
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individual geostatistical inversion run—conse-
quently modifying the conditioning data at each
trace location—different runs produce variable
inverted acoustic impedance models that fit the
observed seismic reflection data equally. The
variability among a set of inverted models allows
the assessment of the spatial uncertainty related
with the property of interest.

One of the main drawbacks of trace-by-trace
stochastic seismic inversion methodologies con-
cerns those areas of the recorded seismic reflec-
tion data with low signal-to-noise ratio. In areas
of poor seismic signal, the sequential trace-by-
trace approaches impose inverted models fitting
the observed noisy seismic reflection data. As the
simulated trace is assumed to be ‘real’ data for
subsequent steps, this can lead to the spread of
noisy values. In fact, the retrieved inverse
impedance models should not fit the noise com-
ponent of the signal, but instead should only fit
the component of the signal corresponding to real
subsurface geology. Noisy areas should be
interpreted as high uncertainty areas with very
low influence throughout the inversion process.

More recent versions of trace-by-trace models try
to overcome this drawback by avoiding noisy
areas in the early stages of the inversion, jumping
to the trace location where the simulated Ip trace
does not produce very high correlation coeffi-
cients compared with the recorded seismic,
and revisiting these locations later in the inver-
sion procedure. In this way, there is a larger
degree of conditioning data producing a good
match with the real seismic (Grijalba-Cuenca and
Torres-Verdín 2000).

4.3.3 Global Geostatistical Seismic
Inversion Methodologies

To overcome these limitations, Soares et al.
(2007) introduce the global stochastic inversion
methodology that, contrary to trace-by-trace
approaches, uses a global approach during the
stochastic sequential simulation stage. The gen-
eral outline of this new family of geostatistical
inversion algorithms is synthetized in Fig. 4.3. It
is an iterative inverse approach that uses the

Fig. 4.2 Schematic representation of trace-by-trace geo-
statistical inverse methodologies. At the first location
(blue circle) a set of Ns acoustic impedance traces is
simulated from the available well-log data (red circles).
Each simulated trace is convolved with an estimated
wavelet producing a set of Ns synthetic seismic traces,

which are compared with the real seismic trace at that
location. If the correlation coefficient (corr) is above a
certain threshold (T), the Ip trace is considered to be
conditioning data for the location along the random path:
otherwise, a new set of Ip traces is simulated
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principle of cross-over genetic algorithms as the
global optimization technique, while the model
perturbation towards the objective function is
performed using direct sequential simulation and
co-simulation (Soares et al. 2007; Caetano 2009).

At each iteration a set of Ns impedance models
of the entire reservoir grid is generated. This
geostatistical inversion approach is based on two
key ideas: (i) the use of the direct sequential
simulation and co-simulation as the method of
perturbing the 3D impedance models in an itera-
tive process; and (ii) to follow the sequential
procedure of the genetic algorithms optimization
to converge the transformed models towards an
objective function: the global and local correla-
tion coefficients between the transformed traces
and the real seismic traces. These correlation
coefficients of different simulated models are used
as the affinity criterion between real and inverted
seismic reflection data to create the next genera-
tion of models. The iterative procedure continues
until a stopping criteria is reached: frequently the
global correlation coefficient between real and
inverted seismic reflection data.

With this approach, the areas of low signal-to-
noise ratio remain poorly matched throughout the
inversion procedure: an ensemble of best-fit
inverted models will always present high

variability or high uncertainty for those noisy
areas where the signal-to-noise ratio is low.

This approach was generalized for the inver-
sion of elastic properties, direct inversion of
petrophysical properties and seismic AVA
inversion, giving rise to the group of method-
ologies presented in this chapter.

The use of Direct Sequential Co-simulation for
Global Transformation of Subsurface Earth
Models

The use of direct sequential co-simulation as the
model parameter space perturbation during the
iterative geostatistical seismic inversion procedure
is a key concept in all inverse methodologies
presented in Sect. 4.3. The theoretical background
behind this approach can be described as follows.

Let us consider one wishes to obtain a trans-
formed model Zt(x) based on a set of Ni models
Z1ðxÞ; Z2ðxÞ; . . .; ZNiðxÞ with the same spatial
dispersion of the first and second order statistics,
e.g. covariance and variogram (C1(h), c1(h)) and
global histogram (Fzt(z)). We may generate Zt(x)
by direct co-simulation, having Z1ðxÞ; Z2ðxÞ; . . .;
ZNiðxÞ as auxiliary variables (Chap. 3). The col-
located co-Kriging estimator of Zt(x) can be
generalized for Ni collocated variables by:

Fig. 4.3 General outline for iterative geostatistical seis-
mic inversion methodologies with a global approach.
A set of Ns elastic models is simulated. Ns synthetic
seismic volumes are derived from the simulated models.
The synthetic seismic cubes are then compared against the

real one in a trace-by-trace basis. The elastic traces that
produce the synthetic seismic with a higher match against
the real one are used as seed for the generation of a new
set of models for the next iteration
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Ztðx0Þ� � m x0ð Þ ¼
X
a

ka x0ð Þ Zt xað Þ � m xað Þ½ � þ
XNi

i¼1

ki x0ð Þ Zi x0ð Þ � m x0ð Þ½ �: ð4:5Þ

Since the models ciðhÞ; i ¼ 1; . . .;Ni and
ct(h) are the same, the application of the Markov
approximation (Almeida and Journel 1994) is
quite appropriate: the corregionalization models
are entirely defined with the correlation coeffi-
cients qt,i(0) between Zt(x) and Zi(x). Therefore,
the affinity of the transformed model Zt(x) with
the multiple models Zi(x) is determined by the
correlation coefficients qt,i(0). Hence, one can
select the models with the characteristics we wish
to preserve in the transformed model Zt(x).

Local Screening Effect of Conditioning Data

Let us assume that to estimate Zt(x0), the collo-
cated value Zi(x0) of a specific model Zi(x), with
the highest correlation coefficient qt,i(0), screens
out the influence of the remaining collocated
values Zj(x0), j 6¼ i. Hence, we may estimate
Zt(x0) with just one auxiliary variable (the collo-
cated data with the highest correlation coefficient
at location x0):

Ztðx0Þ� � m x0ð Þ ¼
X
a

ka x0ð Þ Zt xað Þ � m xað Þ½ � þ ki x0ð Þ Zi x0ð Þ � m x0ð Þ½ �: ð4:6Þ

With the local screening effect, Nimodels Zi(x)
give rise to just one auxiliary variable. The Ni

models are replaced by the single model with the
highest local correlation coefficient criterion. The
direct sequential co-simulation is performed with
the local models of corregionalization—i.e. local
correlation coefficients. The conditioning sec-
ondary model is now a composition of best parts
of the Ni simulations of previous iterations. The
composition of a ‘seed’ image to generate new
images in the next iteration follows the crossover
principle of the genetic algorithm optimization.
The estimation of local means (Eq. 4.6) and
variances can be performed in the context of
direct co-simulation with bi-distributions

(Chap. 3), the joint transformation/simulation of
elastic properties into the petrophysical property
of interest.

By using collocated co-Kriging we ensure
these auxiliary models will either have a strong
or a limited influence when generating the new
models, depending on the local match between
the synthetic and real seismic reflection data
found in previous iterations. On the other hand,
the spatial continuity models and marginal and
joint probability distributions as retrieved from
the available well-log data will be honored on
each single impedance realization.

4.3.4 Global Geostatistical Acoustic
Inversion

The global stochastic inversion (GSI; Soares
et al. 2007; Caetano 2009) allows the inversion
of post-stack seismic reflection data for acoustic
impedance (Ip) models.

The general outline of this iterative geostatis-
tical methodology can be described in the fol-
lowing sequence of steps, summarized in Fig. 4.4:

(1) Simulate with DSS (Sect. 3.4) at once for the
entire seismic grid a set of Ns acoustic
impedance models, conditioned to the
available acoustic impedance well-log data
and assuming a spatial continuity pattern as
revealed by a variogram model;

(2) Derive a set Ns synthetic seismic volumes by
computing the corresponding normal inci-
dence reflection coefficients (RC; Eq. 4.7)
from the impedance models, simulated in the
previous step;
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RC ¼ Ip2 � Ip1
Ip2 þ Ip1

: ð4:7Þ

where the indexes 1 and 2 correspond to the
mean above and below the reflection inter-
face considered. The RC are then convolved
by an estimated wavelet for that particular
seismic dataset in order to compute synthetic
seismic volumes (Eq. 1.1).

(3) Convolve these RC with an estimated
wavelet for that particular seismic dataset.

(4) Each seismic trace from the Ns synthetic
seismic volumes is then compared in terms
of correlation coefficient against the real
seismic trace from the same location. The
comparison is not performed for the entire
seismic trace but on a layer basis
(Sect. 4.3.6). From the ensemble of simu-
lated Ip models, the acoustic impedance

traces that produce synthetic seismic with the
highest correlation coefficient compared with
the corresponding real seismic trace are
stored in an auxiliary volume along with the
value of the correlation coefficient.

(5) These auxiliary volumes, the one with the
best acoustic impedance traces and the other
with the corresponding local correlation
coefficients are used as secondary variables
and local regionalized models for the gen-
eration of the new set of acoustic impedance
models for the next iteration. The new set of
Ns acoustic impedance models is built using
direct sequential co-simulation (Sect. 3.4.2)
conditioned to the available acoustic impe-
dance well-log data, and using the best Ip
volumes as secondary variables and local
correlation coefficients to condition the joint
simulation.

Fig. 4.4 Schematic
representation of the GSI
methodology
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(6) The iterative procedure stops when the glo-
bal correlation coefficient between the full
synthetic and real stacked seismic volumes is
above a certain threshold (Soares et al.
2007).

The GSI methodology allows the retrieval of
high resolution Ip models honoring the distribu-
tion function as estimated from the available
well-log data, and the spatial continuity model as
retrieved from a variogram model. It has been
successfully tested on seismic datasets from very
different geological contexts with diverse quality.

An application example over a synthetic
dataset is shown in Fig. 4.5 (for details of this
dataset, please see Sect. 4.3.6). Note that the
inverted Ip model is high resolution and matches
the main structures of the original Ip model very
well.

The use of a global approach ensures that for
areas of observed seismic reflection data with
poor signal-to-noise ratio the resulting synthetic
seismic data remains unmatched throughout the
iterative procedure. The lack of convergence
results in retrieved Ip models with higher spatial
uncertainty for the same locations.

4.3.5 Global Geostatistical Elastic
Inversion

The GSI can be extended for the inversion of
n partial angle stacks directly and simultaneously
for acoustic and elastic impedance (Is) models
(Nunes et al. 2012). The main purpose of this
development was the integration of more infor-
mation to enrich the final elastic models by
simultaneously invert n partial angle stacks
directly to Ip and Is.

On most occasions Ip and Is do not have a
simple linear relationship. Hence, during the
model perturbation step of this geostatistical
seismic inversion, this inversion algorithm takes
advantage of the joint simulation algorithms—
co-DSS with joint probability distributions
(Sect. 3.4.3)—to reproduce the joint distribution
between Ip and Is as retrieved from the available
well-log data. The main outline of the GSI
(Sect. 4.3.4) is identical to this iterative geosta-
tistical seismic inversion algorithm: the model
perturbation is completed by using stochastic
sequential simulation, namely DSS and co-DSS
with joint probability distributions. At the end of
each iteration a genetic algorithm works as a

Fig. 4.5 Vertical section extracted from: (top) the real Ip model; (bottom) best-fit inverse Ip model
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global optimizer of the inversion procedure by
maximizing the correlation coefficient between
inverted and real partial angle stacks.

The main general outline for the GEI
methodology can be briefly described in the
following sequence of steps (Fig. 4.6):

(1) Generate of the joint distribution between Ip
and Is from the available well-log data;

(2) Simulate a set of Ns acoustic impedance
models, Ip, with DSS conditioned exclu-
sively to the available acoustic impedance
log data and a spatial continuity pattern as
revealed by a variogram model;

(3) For each individual Ip model a new elastic
impedance model, Is, is generated using
co-DSS with joint-probability distributions.
The co-simulation of Is, with Ip and best Is
models as secondary variable, can be sum-
marized as follows (Fig. 3.5):

(i) The local mean and variance of Isðx0Þ is
estimated with collocated co-Kriging,
from the Is log data and the previously
simulated Is values, and with the col-
located value of best Is, Is*(x0):

Isðx0Þ� � mIs x0ð Þ ¼
X
a

ka x0ð Þ Is xað Þ � mIs xað Þ½ � þ ki x0ð Þ Is� x0ð Þ � mIs x0ð Þ½ �;

(ii) From the bi-distribution (Ip, Is) the
conditional distribution of Is, given the
collocated value Ip(x0), is calculated: F
(Is|Ip = Ip(x0));

(iii) A simulated value of Is drawn from the
conditional distribution F(Is|Ip = Ip
(x0)), centred in the mean and variance
calculated in (i) (Horta and Soares 2010).

At this stage, the Is models are conditioned to the
available elastic impedance log data using the
previously simulated Ip model as an auxiliary
model (Fig. 3.5). Applying this cascade approach
of sequential simulation algorithms ensures the

Fig. 4.6 Schematic representation of the GEI workflow
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reproduction of the joint-probability distribution
between the acoustic and elastic impedance
models as estimated from the available well-log
data;
(4) From the Ns pairs of Ip and Is, Ns synthetic

partial angle stacks are derived using the
approximation outlined in Fatti et al.
(1994) (Eq. 4.8) for the calculation of the
corresponding angle-dependent RC volumes:

Rpp hð Þ � 1þ tan2h
� �DIp

DIs

� 4
Is
Ip

� �2

sin2h
DIs
2Is

; ð4:8Þ

DIp ¼ Ip2 � Ip1

Ip ¼ Ip2 þ Ip1
2

DIs ¼ Is2 � Is1

Is ¼ Is2 þ Is1
2

;

The index 1 refers to the vertical location in
which the calculation of the reflection coef-
ficient is carried out, the mean above the
reflection interface; and 2 refers to the sam-
ple immediately below, the mean below the
reflection interface;

(5) Ns synthetic partial angle stacks are gener-
ated by convolution with the corresponding
angle-dependent wavelet. It is worth noting
that for each individual partial angle stack
there must be an estimated wavelet that
should be representative of the seismic signal
for that specific range of angles;

(6) For each CMP location within the inversion
grid, each trace at that particular location, for
all the synthetic partial angle stacks, is
compared in terms of correlation coefficient
with the corresponding recorded seismic
trace. From the initial ensemble of duplets of
Ip and Is models, the pair of impedance

traces that jointly produce a synthetic seismic
trace with the highest correlation coefficient
when compared with the corresponding
observed seismic trace are stored in two
auxiliary volumes of best acoustic and elastic
impedance models, Ip and Is, along with the
respective local correlation coefficients;

(7) The best volumes, together with the local
correlation volumes, are then used as sec-
ondary variables in the co-simulation process
for the generation of a new set of impedance
models during the next iteration (Step 3);

(8) The iterative geostatistical inversion proce-
dure finishes when the average global cor-
relation coefficient between the synthetic and
the recorded partial angle stacks, for all the
available n angle stacks, is above a certain
threshold.

This joint simulation assures the reproduction
of Ip and Is marginal and joint distributions (Ip,
Is) and the spatial continuity patterns, as revealed
by the variograms of Ip and Is, respectively.

The advantage of simultaneously inverting
different partial angle stacks is the ability to
retrieve coherent elastic and acoustic impedance
models. Adding information from reflection
angles that are different from the normal inci-
dence enriches the acoustic impedance models.
In this way the internal reservoir properties are
better described, allowing for better characteri-
zation and decision making. Figure 4.7 shows an
example of Ip and Is models evaluated with the
described methodology, compared against the
real models.

When comparing the Ip model retrieved from
a simple acoustic inversion (Fig. 4.5) against the
one retrieved from elastic inversion (Fig. 4.7),
there is clear improvement in the level of detail
of the latter. By simultaneously inverting differ-
ent partial angle stacks the inverse elastic models
are richer.
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4.3.6 Geostatistical Seismic AVA
Inversion

During the last decade high-quality pre-stack
seismic data with high signal-to-noise ratio and
considerably high fold has become more avail-
able, increasing this data’s use in seismic reservoir
characterization even within early exploratory
stages. The greater availability of high-quality
pre-stack seismic data allows for more reliable
and less uncertain reservoir models compared to
reservoir models derived exclusively from
post-stack seismic reflection data. The better
subsurface characterization using pre-stack seis-
mic data is achieved by interpreting the changes of
amplitude versus the offset (AVO), or with the
angle of incidence (AVA; Castagna and Backus
1993; Avseth et al. 2005). The use of pre-stack
seismic reflection data is of great importance since
it allows the inference of density, P-wave and
S-wave velocity models, instead of the traditional
acoustic and/or impedance models. Retrieving
density and velocity models allows, for example,
to better distinguish between litho-fluid facies and
to calculate the intrinsic properties of the subsur-
face geology such as dynamic moduli (Avseth
et al. 2005).

Stochastic seismic inversion methodologies
for pre-stack seismic data, commonly called
seismic AVA inversion, are being proposed

based on different assumptions and frameworks
(Mallick 1999; Ma 2002; Buland and Omre
2003; Contreras et al. 2005). Here we introduce
the geostatistical seismic AVA inversion (Aze-
vedo et al. 2013), which relies on the same
general framework of iterative geostatistical
seismic inversion algorithms introduced in
Sect. 4.3.3.

It is important to note some important points
about the seismic processing the pre-stack seis-
mic data requires in order to be successfully
inverted (Buland and Omre 2003; Morris et al.
2011): it should, as much as possible, be free of
multiple reflections that are not possible to model
directly from subsurface elastic models using
simple approximations such as Shuey’s (1985)
linear approximation (Eq. 4.9); the multiple
attenuation techniques applied need to preserve,
as much as possible, the original relative ampli-
tudes of the recorded seismic data; the CMP
gathers should also be corrected for the
normal-moveout (NMO) effect with standard
seismic velocity analysis. In addition, and after
pre-stack migration, the CMP gathers should be
corrected for residual NMO effects. Both NMO
corrections are critical during the seismic pro-
cessing sequence, since they ensure the flatness
of the gathers to be inverted. Finally, the CMP
gathers should be transformed into the angle
gathers domain by ray tracing, using a

Fig. 4.7 Comparison between a vertical section extracted from a synthetic elastic model and a vertical section
extracted from the inverse best-fit model of: (from left to right) Ip and Is
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pre-calculated velocity model derived, for
example, from traditional velocity analysis. Each
trace within an angle gather should refer to a
single reflection angle.

As a global geostatistical inversion, the per-
turbation of the model parameters for density,
P-wave and S-wave velocities is performed
recurring to DSS (Soares 2001; Horta and Soares
2010).

The convergence of the iterative methodology
towards an objective function and the maxi-
mization of the global correlation coefficient
between real and inverted seismic data, is ensured
by returning to a similar global genetic algorithm
optimizer based on the cross-over principle. At
each iteration, the model parameter space is
updated with the elastic portions ensuring the best
match between inverted pre-stack synthetic and
real seismic data. The best elastic traces can be
thought as the best gens at a current iteration and
the seed for the generation of new elastic models
during the next iteration.

The geostatistical seismic AVA inversion may
be summarized in three main stages: stochastic
sequential joint simulation of elastic models for

the properties to invert—density, P-wave and
S-wave velocities; forward modeling and mis-
match evaluation between the observed and the
inverted seismic data; and selection of the con-
ditioning data for the generation of the next set of
elastic models during the next iteration
(Fig. 4.8).

Generating Density, P-wave and S-wave Velocity
Models

The stochastic sequential simulation stage com-
prises the simulation of elastic models following
a cascade approach. The sequential procedure
starts by simulating, for the entire seismic grid
simultaneously, a set of Ns density models fol-
lowed by the co-simulation of Ns P-wave
velocity models from which Ns S-wave veloc-
ity models are co-simulated. The order in which
each property is simulated and co-simulated is as
follows: the density is the first elastic property to
be simulated since it is the property associated
with a higher degree of uncertainty and its con-
tribution to the recorded seismic reflection data is
small. In fact, the component of the seismic

Fig. 4.8 Schematic representation of the iterative geostatistical seismic AVA inversion methodology
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reflection data related with density is low and
mostly related to the signal received at the far
angles (Avseth et al. 2005). Moreover, density is
the most spatially homogeneous variable and
consequently most convenient to be generated in
the first place. Vp and Vs are generated after-
wards by stochastic sequential co-simulation.

In the first iteration a set of density models is
simulated with DSS conditioned exclusively to
the available well-log data, thus ensuring a high
degree of variability among the ensemble of
simulated models. The level of variability will
always depend on the number of available wells
against the size of the inversion grid. Each of the
Ns simulated density models is then used as
conditioning data, along with the available
well-log data, for the co-simulation of Ns P-wave
velocity models with co-DSS with joint-
probability distributions (Sect. 3.4.3). This pro-
cedure ensures the reproduction of the
bi-distribution between density and P-wave as
estimated from the original well-log data.

To conclude the first stage of the iterative
inverse procedure, for each of the simulated
P-wave velocity models a set of Ns S-wave
velocity models is co-simulated, conditioned by
the corresponding P-wave velocity model and the
available well-log data. The last set of velocity
models is simulated using co-DSS with joint
probability distributions, ensuring the reproduc-
tion of the bi-distribution between both velocities
as estimated from the available well-log data.

It is worth noting that at the end of the itera-
tive inversion procedure, the reproduction of the
joint distribution densities, Vp and Vs, allows a
distinction to be made between any litho-fluid
facies previously identified from the original
well-log data within the inverted set of elastic
models. As well as the spatial interpretation of
these litho-fluid facies, the stochastic approach
allows the assessment of the spatial uncertainty
related with each facies of interest.

Forward Modeling

After the simulation of Ns elastic models, den-
sity, Vp and Vs, an ensemble of synthetic
pre-stack seismic volumes are calculated.

The angle-dependent RC (Rpp hð Þ) are calculated
following Shuey’s (1985) three-terms
approximation:

Rpp hð Þ � R 0ð ÞþGsin2hþF tan2h� sin2h
� �

;

ð4:9Þ

with the normal incidence, R(0), reflection as
defined by:

Rð0Þ ¼ 1
2

DVp
Vp

þ Dq
q

� �
;

and the variation of the reflectivity versus the
angle, the AVO gradient, G:

G ¼ R 0ð Þ � DVq
Vq

1
2
þ 2DVs2

Vs2

� �
� 4DVs2

Vp2
DVs
Vs

;

and F, the reflectivity at the far angles (reflection
angles higher than 30°), defined as:

F ¼ 1
2
DVp
Vp

:

Each elastic property is defined on each side
of the interface where the reflection is happening
as follows:

DVp ¼ Vp2 � Vp1

Vp ¼ Vp2 þVp1

2
DVs ¼ Vs2 � Vs1

Vs ¼ Vs2 þVs1

2
DVq ¼ Vq2 � Vq1

Vq ¼ Vq2 þVq1

2
;

index 1 refers to the vertical location at which the
calculation of the reflection coefficient is done,
the mean above the reflection interface; while
index 2 refers to the sample immediately below,
the mean below the reflection interface (Shuey
1985).

By using Shuey’s linear approximation within
a geostatistical inversion approach we are able to
retrieve directly, and as part of the inverse
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solution, the AVO normal-incidence, R(0), and
gradient, G, cubes (Rutherford and Williams
1989; Avseth et al. 2005; Castagna and Backus
1993). The propagation of the uncertainty from
the inverse problem directly towards the inverted
AVO volumes, allows better risk evaluation on
amplitude anomalies of interest, which may be
related to real hydrocarbon accumulations.
However, it is important to note that any alter-
native approximation to compute the angle-
dependent reflection coefficients can be used.

Mismatch Evaluation and Optimization

Each angle trace is composed by n seismic traces,
equal to the number of reflection angles consid-
ered. The Ns angle-dependent reflection coeffi-
cient traces are convolved by estimated
angle-dependent wavelets for each particular
incident angle (h; Fig. 4.9) to obtain Ns synthetic
angle gathers.

After the forward modeling is complete, the
resulting Ns synthetic angle gathers are compared
with the corresponding real ones in terms of a
correlation coefficient. The correlation is per-
formed trace-by-trace per angle gather allowing
assessment of local mismatches between syn-
thetic and real traces.

The correlation coefficient between synthetic
and observed seismic traces is calculated locally,
i.e. the real and the synthetic seismic volumes are
divided in a set of horizontal layers (Fig. 4.10).
The correlation coefficient between real and
synthetic seismic reflection data is then calcu-
lated by comparing the synthetic against the real
portion of the seismic trace within each layer.
This layering approach provides greater local
correlation coefficients with a reduced number of
simulated elastic models during the first stage of
the inverse procedure.

The resulting correlation coefficient is then
stored in a new volume composed by local cor-
relation gathers (Fig. 4.11). This procedure is
applied to all the layers and to the Ns synthetic
seismic volumes derived from the ensemble of
Ns simulated elastic models. The final output of
the comparison between observed and synthetic
pre-stack seismic data is an ensemble of Ns local
correlation gathers (Fig. 4.11).

After the mismatch evaluation is complete, the
conditioning data used to constrain the
co-simulation of the new set of elastic models
during the next iteration is then generated
(Fig. 4.8). This step comprises the selection and
generation of the best density, P-wave and
S-wave velocity models along with the corre-
sponding best local correlation cubes. The
resulting local correlation coefficients are used by
the global optimizer, a genetic algorithm, to
converge the inversion into the solution.

Fig. 4.9 Example of an angle-dependent wavelet, for 23
angles, used for the convolution of the angle-dependent
RC (Rpp hð Þ) during the geostatistical seismic AVA
inversion

Fig. 4.10 Horizontal layering of the seismic volumes in
a random number of horizontal layers with variable
vertical sizes. The layering is performed at the beginning
of each iteration during the iterative geostatistical seismic
AVA methodology
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Multi-variable Objective Function

The best elastic models, created at the end of
each iteration, are composed by the portions of
the elastic traces, from the ensemble of density,
P-wave and S-wave velocity models, simulated
at the current iteration, that jointly produce syn-
thetic seismic reflection data with the highest
correlation coefficient compared with the real
seismic volume. The selection of this group of
elastic traces is not trivial since the correlation

coefficient is not the same for all the angles
within the same layer (Fig. 4.11). Let us repre-
sent the correlation coefficient, r, by reflection
angle h: r hið Þ; i ¼ 1; . . .;Ns. The selected best
elastic traces should be those ensuring the high-
est correlation for all the angles simultaneously.

If we perform a linear regression for all the
values r hið Þ (Fig. 4.12), the best simulated elastic
traces would be those that ensure the flattest
regression (slope of regression equal to zero), the
highest intersect value (p) and the minimum

Fig. 4.11 Schematic representation of the comparison
procedure between the synthetic and the real pre-stack
seismic data. Each portion of trace belonging to each
synthetic angle gather, for all the locations within the

seismic volumes, is cross-correlated with the correspond-
ing real seismic trace for the same layer. A new
correlation volume, composed by correlation gathers, is
created with the resulting local correlation coefficients

Fig. 4.12 Linear regression fit (green line) of the
correlation coefficients (black circles) for a given layer
from three different angles gather realizations at the same
spatial location. The elastic models producing the

correlation coefficients from the figure on the left are
selected as conditioning data for the next generation of
models since they ensure the highest correlation coeffi-
cient for all the angles simultaneously
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least-square deviation value (LS). Equation 4.10
give us a global measure r of mismatch for a
given layer, involving all Ns local correlation
coefficients by angles:

best elastic traces ¼ w1slopeþw2pþw3LS;

ð4:10Þ

where w1, w2, w3 are user-defined weights that
can vary depending on the quality of the recorded
seismic data. If, for example, the far angle has a
lower signal-to-noise ratio, the weight of the
intersect value, w2, can be increased.

The best elastic traces will determine the
selection of the corresponding Vp, Vs and den-
sity, which gave rise to them at that iteration.
This is the principle of genetic optimization
algorithms. Hence, for a specified layer the local
portions of the density, P-wave and S-wave
velocity models that produce the most correlated
synthetic pre-stack seismic reflection data for all
the n angles simultaneously are stored in new
volumes denominated by best density, P-wave
and S-wave velocity models (Fig. 4.13). At the

same time, a weighed correlation coefficient for
that specific portion of seismic trace is also stored
in three different best correlation coefficient
volumes for density, P-wave and S-wave velocity
respectively (Fig. 4.14).

Each pair of best elastic and local correlation
cubes are then used as secondary variables for the
stochastic sequential co-simulation of the corre-
sponding elastic properties created during the next
iteration. From the evolution of the best elastic
models we are able to assess the evolution of the
iterative geostatistical methodology (Fig. 4.15).
At the end of first iteration, the resulting best
model has a patchy appearance (Fig. 4.15 on the
left) since it is built from portions of elastic traces
from different realizations comprising the first
simulation ensemble. As the iterative procedure
converges, the resulting best elastic impedance
tends to reproduce a spatial continuity pattern
towards the inverse solution (Fig. 4.15).

The iterative procedure is considered com-
plete when the global correlation coefficient
between the entire synthetic and real pre-stack
seismic volumes is above a pre-defined value.

Fig. 4.13 Schematic representation of the procedure to
calculate, at the end of each iteration, the best density,
P-wave and S-wave velocity models and the correspond-
ing local correlation cubes. These cubes will be used as

secondary variables in the co-simulation of the elastic
models for the next iteration. Portions of traces selected
from realization 1 are represented in red, while those
selected from realization 2 are plotted in blue
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In summary, the geostatistical seismic AVA
inversion methodology can be described in the
following sequence of steps:

(1) Stochastic sequential simulation of Ns
density models conditioned to the available
well-log data with DSS;

(2) Co-simulation of Ns P-wave models given
the Ns previously simulated density models
(co-DSS with joint-distributions);

(3) Stochastic sequential co-simulation of Ns
S-wave velocity models given the Ns pre-
viously simulated P-wave velocity model
(co-DSS with joint-distributions);

(4) Calculation of the Ns synthetic pre-stack
seismic cube with the simulated triplet
(density, P-wave, S-wave) using Shuey’s
linear approximation (Eq. 4.9). In this way
the AVO R(0) and G cubes are immediately
retrieved as part of the inverse solution;

(5) Compare each synthetic angle gather with
the corresponding real gather on a
trace-by-trace basis;

(6) Create Ns local correlation coeficient gath-
ers for each location within the seismic grid;

(7) Based on a genetic algorithm, select
the areas of higher correlation value, from
the correlation cube between real and syn-
thetic seismic reflection data, are selected
to build the best density, P-wave and
S-wave models, which are then used as
secondary variables for the co-simulation
of the elastic models generated during the
next iteration;

(8) Iterate and start (1) until the matching cri-
teria, global correlation between the original
and the synthetic pre-stack seismic reflec-
tion data, is reached.

Since the model perturbation is based on
stochastic sequential simulation, all the elastic
models simulated throughout the iterative pro-
cedure reproduce the following: the joint proba-
bility distributions of density versus P-wave
velocity and their marginal probability distribu-
tions, the joint probability distributions between
P-wave and S-wave velocities and their marginal
probability distributions as estimated from the
available well-log data, the value of each prop-
erty at the well locations and the spatial

Fig. 4.14 Example of the evolution of the local correlation model. From left: local correlation model at the end of
iteration 1; local correlation model at the end of iteration 2 and local correlation model at the end of iteration 6

Fig. 4.15 Example of the evolution of the best model for
density. From left: best model at the end of iteration 1;
best model at the end of iteration 2 and best model at the

end of iteration 5. Note the patchy effect on the model
from iteration 1 is attenuated during the iterative process
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continuity models of density, Vp and Vs as
revealed by variogram models.

4.3.7 Application Example with
Geostatistical Seismic
AVA Inversion

This section describes a small 3D synthetic
dataset that has been used to illustrate the dif-
ferent geostatistical inversion procedures intro-
duced in this chapter. This synthetic dataset was
constructed to mimic the challenges of a real
Atlantic deep-water turbidite field. The available
synthetic dataset includes a set of 32 wells with
density, P-wave and S-wave velocity logs; noise
free pre-stack seismic data sorted by angle
gathers with 10 angles uniformly distributed
between 0° and 34° (Fig. 4.16); and 3D density,
P-wave and S-wave velocity models for the
whole study area. An angle-dependent wavelet,
with which the synthetic pre-stack seismic data
was created, was also included in the available
synthetic dataset (Fig. 4.17). The reservoir grid
has a size of 101 � 101 � 90 cells in -i, -j and -k
directions, respectively (Fig. 4.18). The vertical
dimension of each cell is equal to the sample rate
of the seismic data (4 ms). The well-log data was
built in order to reproduce complex real reservoir

properties from the analogous turbidite field.
From the set of 32 wells only 15 were used as
conditioning data for the iterative geostatistical
pre-stack seismic inversion. The remaining 17
wells were excluded from the conditioning data
and were used exclusively to perform local blind
tests to evaluate the performance of the inverse
methodology (Fig. 4.18).

From now on, and to better distinguish from
the data retrieved by the inversion procedure, the

Fig. 4.16 Real seismic angle gathers at two different
locations. The seismic signal is considerably variable
within the study. In general, the amplitude content
increases at the far angles of the reservoir zone

Fig. 4.17 Synthetic angle-dependent wavelet used to
create the pre-stack synthetic seismic data and used in the
inversion procedure

Fig. 4.18 Available set of wells and their location within
the seismic grid. Colored wells were used to constrain the
geostatistical inversion while black filled wells were used
exclusively as blind tests. The yellow line represents the
location of the vertical N–S sections shown to compare
the inversion results to the real models
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described synthetic data will be designated as
real data: real pre-stack seismic data and real
subsurface elastic models.

Due to differences in the vertical scale
between seismic and well-log data, and in order
to keep the synthetic example as realistic as
possible, the well-log data was upscaled into the
reservoir grid prior to the inversion. The
upscaling ensures the reproduction of the main
statistics (mean, variance and extreme values) as
estimated from the original well-log data
(Fig. 4.19).

From the pre-stack seismic data, four partial
angle stacks with angles comprehended between
0°–10°, 10°–20°, 20°–30° and 30°–40° respec-
tively were also calculated. The interpretation of
the partial angle stacks allows for a better
assessment of the spatial complexity and vari-
ability of the sedimentary structures present
within the study area (Fig. 4.20). In these vol-
umes, the reservoir area is delimited by two
strong seismic reflections between 2350 and
2450 ms, corresponding to reservoir’s top and
base, respectively. The reservoir represents a
turbidite channel with an approximate N-S
direction. This complexity and heterogeneity
can be easily identified in the real density,
P-wave and S-wave velocity models (Fig. 4.21).
They show important large and small-scale
features of interest. For a reliable seismic reser-
voir characterization, the reproduction of these

variations in the inverted models is extremely
important. The reservoir area is characterized by
a thin layer of low values of density, associated
with low P-wave and S-wave velocity values
(Fig. 4.21). It is also important to highlight the
presence of local features of interest that should
be reproduced in the inverted elastic models,
such as a low P-velocity layer around 2000 ms
and a high S-wave velocity zone around well R2
(Fig. 4.21).

As in real datasets, the location of the avail-
able wells is not randomly distributed along the
study area (Fig. 4.18). In fact, most of the wells
are located within reservoir or sand-prone areas.
The preferential location of the wells is directly
translated in a bias of the marginal distributions
of the elastic properties of interest (density,
P-wave and S-wave velocities) retrieved from the
available well-log data when compared with
those estimated from the entire real 3D elastic
models (Fig. 4.22). The distributions estimated
from the set of conditioning wells hardly repro-
duce the maximum and minimum values or the
proportions of each geological facies as esti-
mated from the entire three-dimensional elastic
model.

The joint distributions between density versus
P-wave velocity and P-wave versus S-wave
velocity are complex (Fig. 4.23). It is important
to note that these relationships need to be
reproduced among inverted elastic models for a

Fig. 4.19 Comparison between the histograms of the
original well-log data and the well-log data after the
upscaling into the reservoir grid. From left: density,

P-wave and S-wave velocities. The main statistics (mean
and variance) are preserved after the upscaling process
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Fig. 4.20 Vertical seismic sections from the real partial
angle stacks between: (from top to bottom) 0°–10°, 10°–
20°, 20°–30° and 30°–40°. The location of the vertical
seismic profiles is shown in Fig. 4.18. P-wave velocity

log is displayed at the well locations. The main seismic
reflections between 2350 and 2450 ms are the reservoir’s
top and base, respectively
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reliable reservoir characterization. The use of
direct sequential co-simulation with joint proba-
bility distributions (Horta and Soares 2010)
ensures its reproduction between primary and
secondary variables.

Spatial Continuity Patterns of Elastic Properties

The spatial continuity pattern of each elastic
property was estimated using variogram mod-
els estimated for the horizontal and vertical

Fig. 4.21 N–S vertical sections from the real elastic
models (from top: density, P-wave and S-wave velocity
models). For location of the vertical section see Fig. 4.18.

The reservoir area is defined by low values of density and
P-wave velocity, and high values of S-wave velocity

Fig. 4.22 Comparison between the marginal distribu-
tions estimated from the real petro-elastic models and the
ones estimated from the set of conditioning wells. From

left: density, P-wave and S-wave velocities. It is clear the
well-log data do not perfectly reproduce the original
distributions
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directions independently (Fig. 4.24). The exper-
imental variograms were calculated exclusively
with the set of well-log data used to constrain the
inversion procedure after the upscaling of the
original well-log data. Due to the small number
of wells and the large distances between well
locations, the horizontal experimental variograms
are hardly retrieved. For this reason, an omnidi-
rectional horizontal variogram was selected to
model the horizontal spatial continuity of each
property. On the other hand, the vertical vari-
ograms are easy to calculate due to the large
number of samples provided by the well-log
data. Both directions were modelled with a
spherical variogram model with only one struc-
ture (Fig. 4.24). These variograms were used for
the sequential simulation algorithms, which are
part of the geostatistical inversion procedure.

In general, the spatial continuity pattern of all
properties is fairly similar. The horizontal vari-
ograms do not reach the sill (the variance esti-
mated from the set of experimental data) due to
different zonation in the real density, P-wave and
S-wave velocity models. These zones correspond
to the reservoir itself, its overburden and under-
burden. The zonation indicates that the elastic

properties we are trying to model are anisotropic
and non-stationary in terms of spatial distribution
for the entire study area. A zonal anisotropy
variogram (Goovaerts 1997) is a suitable
approach for conveniently modeling the natural
dispersion of these properties. All three elastic
properties follow the same spatial continuity
pattern. The modelled variograms have horizon-
tal ranges of about 20 grid cells, while the ver-
tical ranges were modelled between 20 and 25
grid cells.

Geostatistical Seismic AVA Inversion: Results

The AVA inversion procedure described in
Sect. 4.3.6 was implemented following the sim-
ulation sequence of the elastic properties: first,
the density was generated by stochastic sequen-
tial simulation; P-wave velocity was
co-simulated afterwards, conditioned to density;
and finally the S-wave velocity was co-simulated
conditioned to P-wave pre-simulated values. The
inverse procedure converged after six iterations
reaching a final global correlation coefficient
between the synthetic inverted seismic and the
real seismic volumes of 0.75 (Fig. 4.25). All the

Fig. 4.23 Joint distributions from the set of conditioning well-log data after the upscaling for, left, density versus
P-wave velocity and right, P-wave velocity versus S-wave velocity
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elastic models simulated during the last iteration
produced synthetic seismic data with very similar
correlation coefficients compared with the real
seismic reflection data. On each iteration 32
ensembles of density, P-wave and S-wave
velocity models were sequentially simulated
recurring to DSS and co-DSS with joint proba-
bility distributions. It is common in this kind of
geostatistical seismic inversion procedure for the
global correlation coefficient between synthetic
and real seismic data in the reservoir area to be
higher. The main reason for this discrepancy is
connected to the way the wavelet is estimated.
Normally, the wavelet is estimated to be repre-
sentative only of the seismic data comprehended

between top and base reservoir. In addition, the
convolutional model is only valid after the syn-
thetic RC are convolved by a half wavelet. For
this reason, it is best practice to add half the size
of the wavelet to the reservoir’s top and base
surfaces when defining the vertical interval of the
inversion grid. In these extra areas the correlation
coefficients between real and synthetic seismic
reflection data will always be smaller, while the
maximum correlation coefficient for the area of
interest is ensured.

The convergence of the inverse methodology
can also be assessed by the interpretation of local
correlation cubes resulting from the trace-by-trace
comparison between the real seismic and the

Fig. 4.24 Experimental (green circles) and modelled
variograms (blue line) for the omnidirectional (on the left)
and vertical directions (on the right). From top: density,

P-wave and S-wave velocity. The variograms were
calculated exclusively using the set of conditioning well
data
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synthetic seismic volumes (Fig. 4.26). The
interpretation of the local correlation cubes allows
the identification of local areas in which the
inverted seismic reflection data did not converge
and remained with low correlation coefficients.
Those areas are often related to low signal-to-
noise ratio and consequently should not be mat-
ched by the inverted elastic models, or areas
where the estimated wavelet is not representative
of the observed seismic data.

The best-fit synthetic seismic data is a good
match for the real pre-stack data (Fig. 4.27). The
synthetic pre-stack seismic data is able to
reproduce both the location of the main primary
reflections and, more importantly, the amplitude
variations versus the offset, or angle. Note that all
the models resulting from the last iteration pro-
duce synthetic seismic data that is very well
correlated with the real one. The resulting mean

model (average of all the models generated dur-
ing the last iteration) is able to reproduce both
the small and large scale details as interpreted
from the real elastic models (Fig. 4.28). Partic-
ular attention should be paid to the simultaneous
reproduction, in terms of values and continuity,
of the reservoir and cap rock areas (around
2500 ms) for the three inverted properties.

It is clear that the best retrieved elastic prop-
erty is the P-wave velocity. The mean P-wave
velocity model is able to reproduce the reservoir
area as originally interpreted in the real P-wave
velocity model fairly continuously. In addition,
the cap rock, defined by high values of P-wave
velocity, is also very well defined in the resulting
P-wave velocity mean model. The worst match
between real and inverted mean models is in

Fig. 4.25 Correlation coefficient evolution at the end of
each iteration for the geostatistical seismic AVA inversion
example

Fig. 4.26 Vertical section extracted from the local correlation cube for the synthetic seismic reflection that produce the
maximum correlation coefficient when compared with the real seismic data. For location see Fig. 4.18

Fig. 4.27 Synthetic seismic angle gathers retrieved at the
end of the iterative inversion procedure at the same
locations as the real gathers shown in Fig. 4.16. There is a
good match between real and synthetic gathers in terms of
main reflections and amplitude variation versus offset
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those areas less constrained by the well data and
above the reservoir’s top. The low P-wave
velocity model located around 2250 ms near
wells W30 and W14 is also present in the
inverted models, but more spatially distributed
when compared with the real one.

The density mean model is also a consider-
ably good fit for the real density model. The
reproduction of the original model is particularly
interesting for the reservoir zone and the layers
immediately below the reservoir’s base. Also, the
spatial extent and continuity of the features of
interest are present in the inverted mean model.

On the other hand, the mean of the inverted
S-wave velocity models simulated during the last
iteration succeeds to reproduce the main features
present in the real S-wave velocity model. The fit
between inverted and real models is reasonable if
large scale structures of interest are considered
(e.g. the high S-wave velocity area around well
R2). However, the small-scale details are hardly
interpreted in the inverted S-wave velocity
models. The reservoir zone appears more dis-
continuous, as does the low S-wave velocity
layer below the reservoir’s base.

It is also important to note that the mean
inverted models from Fig. 4.28 reproduce the
spatial distribution of the original elastic prop-
erties, and are simultaneously able to reproduce
its values and their relative variation within the

areas of interest. The small-scale details, which
are extremely important for a reliable reservoir
characterization, are particularly well retrieved
for the reservoir zone as well as for the layers
immediately below it.

All the models simulated during the iterative
geostatistical inversion procedure for all the
elastic properties considered are able to repro-
duce: the values of the conditioning data at their
locations (Fig. 4.28); the joint and marginal dis-
tributions (Figs. 4.29 and 4.30) of density,
P-wave and S-wave velocities as estimated from
the set of conditioning well data; and the spatial
continuity models of each property imposed
during the sequential simulation by the vari-
ogram models (Fig. 4.31).

In order to assess the local convergence of the
inverted models, a common procedure is to test
these models at specific locations against wells
not used as constraining data (i.e. blind wells;
Fig. 4.18). Figure 4.32 shows the comparison for
wells W19 and W29: the real model (plotted with
black solid line) and the mean model computed
from all the elastic models simulated during the
last iteration (plotted with red dashed line). The
inverted elastic models show a fairly good match
along the entire well profile. These two wells
were selected for blind tests since they are
located away from the rest of the conditioning
data.

Fig. 4.28 Comparison between vertical sections
extracted from (on the left) real elastic models and (on
the right) the mean model computed from the ensemble of
models simulated during the last iteration of the geosta-
tistical seismic AVA inversion. From top: density, P-wave

and S-wave velocity models. The inverted models are
constrained by the available well-log data and honor the
well data at its location. The inverted mean models are a
good match for the real elastic ones. For profile location
see Fig. 4.18

4.3 Iterative Geostatistical Seismic Inversion Methodologies 79



Another advantage of using a geostatistical
framework to solve the seismic inversion prob-
lem is the ability to individually assess the spatial
uncertainty of each inverted property. The spatial
uncertainty can be assessed by the interpretation
of the local correlation cubes resulting from the
comparison between synthetic and real seismic
traces (Fig. 4.26) or by calculating the variance
between the set of inverted elastic models

generated during the last iteration (Fig. 4.33). In
the resulting variance model areas of high vari-
ability are related with more uncertainty about
the model parameters when compared with areas
of low variance. Spatial uncertainty can be the
result of the reservoir’s variability in terms of its
internal properties (e.g. geological discontinu-
ities, faults) or the result of a lack of knowledge
of the reservoir, such as a lack of or unreliable

Fig. 4.29 Joint distributions estimated from the best-fit
inverted models between: (left) density versus P-wave
velocity and (right) P-wave versus S-wave velocity. They

reproduce the joint distributions as estimated exclusively
from the well-log data (Fig. 3.5)

Fig. 4.30 Comparison between the marginal distributions of density, P-wave and S-wave velocity estimated from the
conditioning well-log data (red) and the ones retrieved from the best-fit inverted elastic models (green bars)
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data (e.g. seismic reflection data with a low
signal-to-noise ratio). The lack of data is usually
approached by the generation of several scenar-
ios for the model parameters and spatial uncer-
tainty is assessed from the sensibility analysis of
those scenarios. In these zones there are multiple
elastic models that produce synthetic seismic
data that fit the real seismic reflection data. High
variance values are often related to portions of
the observed seismic data with a lower
signal-to-noise ratio. The proposed methodology
does not force a match with the noise content of
the recorded seismic reflection. Even at the end
of the inversion procedure, these areas will have
elastic models with considerable variability,

producing synthetic seismic data that is unable to
converge with the real data.

The variance calculated between the ensemble
of elastic models simulated during the last iter-
ation for the case study in the previous section is
shown in Fig. 4.33. The P-wave velocity is the
property showing lower variance, or lower spa-
tial uncertainty, while the S-wave velocity is the
inverted property associated with more uncer-
tainty. The greater variability among the inverted
models is preferably located in the southern part
of the models since it has less constraining data.

As a seismic AVA inversion methodology,
we are also interested in retrieving the AVO
normal incidence, R(0), and AVO gradient, G,

Fig. 4.31 Experimental (green circles) and modelled variograms (blue line) for the omnidirectional (left) and vertical
directions (right). From top: density, P-wave and S-wave velocity. The variograms were calculated over the grids of the
best-fit inverted models (compare with Fig. 3.5)
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volumes as defined by Shuey (1985) (Eq. 4.9).
For the proposed methodology, these AVO
attributes are directly derived for each triplet of
simulated density, P-wave and S-wave velocity
models and are an intrinsic part of the inverse
solution.

The interpretation of the AVO anomalies is
traditionally performed in R(0) versus G
cross-plots (Fig. 4.34). In this domain AVO
anomalies can be classified in types and inter-
preted in terms of their geological meaning
(Rutherford and Williams 1989; Castagna and
Backus 1993; Avseth et al. 2005). The classifi-
cation of AVO responses in this domain was first
introduced for gas sands by Rutherford and
Williams (1989), who proposed a classification
in three classes. This was developed by Castagna
and Swan (1997) into four classes. Class I AVO
anomalies are those values located in the fourth
quadrant of the domain defined by R(0) and G.

They are often related with events with high
impedance and low Vp/Vs ratio when compared
with the cap rock. Class II are events frequently
associated with sands and dim spots in the
original seismic reflection data. They are plotted
in the fourth and third quadrant. Class III AVO
anomalies are classical anomalies related to soft
sands filled with hydrocarbon, which are asso-
ciated with bright spots and plot in the third
quadrant. Finally, class IV AVO are rare and are
associated with soft sands filled with gas capped
with stiff shales. They are plotted in the second
quadrant of the R(0) versus G domain (Avseth
et al. 2005).

In order to assess the performance of the
geostatistical seismic AVO inversion methodol-
ogy for seismic AVO analysis, an AVO classi-
fication cube was calculated from the real
three-dimensional elastic models. This cube
was compared with the AVO classification cube

Fig. 4.32 Blind well tests for W19 and W29 wells (for
location see Fig. 4.18). The inverted models (red dashed
line) match the real ones (black solid line) at these

locations. The fit is particularly good within the reservoir
area between 2400 and 2450 ms. From left: density,
P-wave velocity and S-wave velocity
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created from the mean elastic models computed
from the ensemble of inverted models simulated
during the last iteration of the geostatistical
seismic AVO inversion (Fig. 4.35). The inverted
AVO cube is able to reproduce the spatial loca-
tion of the main AVO anomalies; however, the
class IV AVO seems to be under-represented in
the inverted AVO classification cube. Note that
this cube is also part of the inverse solution and
conditioned by both the well and seismic
reflection data.

An additional feature is the possibility of
assessing the uncertainty related with a given
AVO anomaly for a specific spatial location. The
inverse solution allows the simultaneous plotting
of the AVO responses from a set of elastic
models in the same R(0) v G cross-plot. This
allows distinguishing between anomalies of

Fig. 4.33 Vertical section of the variance volume computed from the ensemble of simulated models during the last
iteration from: (from top) density, P-wave and S-wave velocity models. For location of the section see Fig. 4.18

Fig. 4.34 AVO normal incidence, R(0), versus AVO
gradient, G, cross-plot and AVO anomalies classification
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interest related to the presence of hydrocarbons
from those anomalies that may be related
exclusively to geologic effects while the uncer-
tainty of the AVO response can be assessed
(Fig. 4.36).

Deriving Dynamic Moduli

Finally, there is the potential for inversion
methodologies based on pre-stack seismic
reflection data deriving reliable dynamic moduli

such as bulk modulus (K), shear modulus (G),
compressional modulus (M) and Poisson’s ratio
(r) (Mavko et al. 2003). Deriving reliable
dynamic moduli parameters is of extreme
importance, for example, for the characterization
of the horizontal and vertical stress indexes of a
given study area, or for pore fluid discrimination.
The comparison between real dynamic moduli
(derived from the real elastic models) and the
inverted ones (derived from the mean model of
the ensemble of models simulated during the last

Fig. 4.35 Vertical section extracted from the: (top) real AVO classification cube; (bottom) AVO classification cube
resulting from the mean elastic models simulated during the last iteration. For location of the profile see Fig. 4.18

Fig. 4.36 Random vertical and horizontal sections
extracted from the best-fit inverted density models and
vertical location where the AVO interpretation is being
performed (red line). Cross-plot between R(0) and G
values at the location represented by the intersection of

the red line with the horizontal density section for the
entire ensemble of simulated models during the last
iteration. It can be seen that even with inverse elastic
models converged towards the reality there are many
possible AVO responses
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iteration) shows that the inverted models are able
to match both large and small scale variations
(Fig. 4.37).

4.3.8 Seismic Inversion with
Structural Local Models

All geostatistical inversion methodologies intro-
duced above share common characteristics that
are intrinsic to the model perturbation technique
(Chap. 2): the stationarity assumption about the
spatial continuity model, as described by a vari-
ogram model, and the probability distribution
functions of the properties to be estimated over
the entire study area. However, these assump-
tions can hardly be verified for large study areas
and for complex and channeled geological set-
tings in which the sedimentary environments
vary rapidly both laterally and vertically: i.e.
non-stationary geological environments.

In contexts in which the stationarity assump-
tions are hardly valid for the entire inversion
grid, this can be overcome by using stochastic
sequential simulation and co-simulation with
local multi-distributions and local spatial conti-
nuity patterns. The entire study area should be
divided into sub-regions in which the assumption
of stationarity is more likely to be valid.

This family of sequential stochastic simula-
tion algorithms reproduces the marginal and joint
probability distributions both from the entire set
of experimental data and from the data within a
given zone inside the inversion grid.

The direct sequential algorithm with multi-
distribution and continuity pattern follows the
same sequence of steps as introduced in Sect. 3.4.
The local mean and variance of a point, located at
x0, is estimated with the local models of vari-
ograms. The simulated value is drawn from a
local distribution estimated from the experimental
data located within that zone. It is worth noting
that the spatial continuity pattern is not condi-
tioned by the limits of a particular zone. In fact,
when calculating the Kriging estimate and vari-
ance at location x0 the zonation has no influence
when searching for the neighbour data points.
Finally, the simulated value is drawn from the
local distribution of the cell grid to be simulated.

The definition of the spatial zones may be
derived directly from seismic interpretation, by
well-log interpretation in depth or by both
simultaneously (Fig. 4.38).

The vertical zonation illustrated by the
example in Fig. 4.38 is easily visually recog-
nized in seismic reflection sections, and in terms
of the means and variances from the original
S-wave velocity log (Fig. 4.39).

Fig. 4.37 Dynamic moduli calculated from the real
elastic models (left) and from the mean elastic model
computed from the inverted models during the last

iteration (right). From top: compressional modulus; shear
modulus; bulk modulus; and Poisson’s ratio
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In order to compare the impact of including
local multi-distributions and variograms within
the inversion procedure, we turn to the inverted
models obtained by applying of the conventional
GSI (Sect. 4.4.2) considering three distinct ver-
tical zones and including DSS with multi-
distributions and variogram models within the
inversion procedure (Fig. 4.40).

By spatially conditioning the inverse models
in terms of distributions and variogram models,
we are able to improve the best-fit inverse model
since by constraining the spatial location of
expected values for the elastic property of inter-
est. In the example from Fig. 4.40 we only expect
low Ip values (related with the reservoir zone) in
the central part of the model, while high Ip values
are mainly constrained by the zone below the
reservoir. Including this a priori information
allows the retrieval of more reliable Ip models
with better matches in terms of the spatial distri-
bution of the subsurface properties of interest.

We also show a real case application of this
methodology using geostatistical seismic AVA

inversion. The mean model of the elastic prop-
erties co-simulated during the last iteration of the
geostatistical inversion is shown in Fig. 4.41. By
inverting seismic reflection data with distinct
zones (Fig. 4.38), the values of the inferred
elastic properties will not appear in areas in which
they are not expected (Fig. 4.41). Note that these
results are not constrained by any kind of low
frequency a priori model. However, by integrat-
ing these zones the inversion results are better
constrained by previous geological knowledge
provided, for example, by seismic and geological
interpretation (e.g. it is usual to expect a given
litho-fluid facies at a maximum depth).

4.4 Integration of Low-Frequency
Models into Geostatistical
Seismic Inverse Methodologies

It is widely accepted that, because they allow the
integration of data with very different scale
support while assessing the spatial uncertainty of

Fig. 4.38 Real case example in which five vertical
zones, delimited by the white lines on the left, are easily
identified in both the vertical seismic section and the

S-wave velocity log. The global distribution of S-wave
velocity is plotted on the right

Fig. 4.39 Marginal local histograms for S-wave retrieved from the division shown in Fig. 4.38
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the inverted properties, geostatistical inversion
methodologies may bring more value compared
to deterministic inverse approaches. However,
geostatistical inversion methodologies are very
computationally expensive compared to deter-
ministic approaches.

Also, there is a frequent discussion within the
geophysical community that for most of the
geostatistical seismic inversion methodologies,
as those discussed above, there is no real control
of the initial low-frequency model (LFM) that
fills the frequency spectrum below the seismic
resolution (frequently between 5 and 10 Hz;
Fig. 4.1). The initial LFM used to constrain an
inversion procedure has a crucial impact on the
retrieved inverse elastic model. In fact, most of
the deterministic inverse solutions based on LFM

search the model parameter space around the
initial model with various kinds of optimization
technique, e.g. conjugate gradients, simulated
annealing. If this initial guess is far from the
global minimum, then the inversion procedure
will struggle to find local minima close to the
global solution.

The common approach to model an LFM is
by Kriging the well-log data of the property of
interest for the bandwidth of interest and con-
straining this interpolation by any available
interpreted horizon. The interpolation follows the
topography of key surface, such as the top and/or
base reservoir. In order to constrain the interpo-
lation, it is usual to have a processing velocity
model as a trend, using Kriging with trend, for
example (Dubrule 2003). The use of LFM allows

Fig. 4.40 Comparison between vertical sections extracted from the: (top) real Ip model; (middle) Ip model inverted
with the traditional GSI; (bottom) Ip model inverted with local multi-distribution functions and variogram models
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faster and cheaper solutions, since using an initial
LFM considerably constrains the exploration of
the model parameter space.

This section proposes a methodology to
explicitly incorporate a LFM, or a priori initial
guess model, into geostatistical seismic
methodologies. The integration of this model is
part of the objective function used in the itera-
tive procedure. The traditional objective func-
tion based exclusively on the correlation
coefficients between real and synthetic seismic
traces is combined with the deviations between

the initial guess model (LFM) and each single
model generated during a given iteration, indi-
vidually for each elastic property of interest
individually. The combined objective function
(Eq. 4.11) drives the global optimizer used as
part of iterative geostatistical seismic inversion
techniques ensuring the convergence of the
iterative procedure from iteration to iteration.
This approach has a direct impact on the match
between real and synthetic seismic data and
convergence rate of geostatistical seismic
inversion methodologies:

Fig. 4.41 Vertical section through well locations from the mean model of density, P-wave and S-wave velocities
resulting from the geostatistical seismic AVA inversion with multi-local distributions and spatial continuity patterns
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OF ¼ k1 qðsynthetic; realÞ½ � þ k2 m� m�½ �;
ð4:11Þ

where qðsynthetic; realÞ is the trace-by-trace
correlation coefficient between synthetic and real
seismic, m is the LFM for the property of interest
and m* a single realization for the same property.
k1 and k2 are user-defined weights that associated
with each term of the objective function.

It is worth noting that by adding an a priori
LFM to the objective function we are restricting
the uncertainty space of the model parameter
space and increasing the convergence rate. This
compromise can be tuned through the weights, k1
and k2, of the objective function.

The application of this integrated approach on
a real case study using geostatistical seismic
AVA inversion directly for facies (Azevedo et al.
2015) demonstrates that by integrating a priori
knowledge this inversion technique has a faster
and higher convergence value compared to the
traditional geostatistical seismic inversion
approach (Fig. 4.42). When comparing the
best-fit inverse models resulting from both
methodologies, this integrated procedure results,
in this case, in better spatial continuity and
geometry definition of the channels as interpreted
in both models (Fig. 4.43). Note that in addition
to the better spatial constraint, the inverted elastic
models remain high resolution. The high-
frequency content is kept by using stochastic
sequential simulation and by directly integrating
the well-log data within the inversion procedure:
i.e. each single model generated during the
inversion loop reproduces the well-log data val-
ues at the well locations.

Fig. 4.42 Global correlation evolution comparison
between traditional and proposed seismic AVA inversion
methodologies. It shows that the proposed technique has a
faster and higher convergence

Fig. 4.43 Comparison between traditional seismic AVA
inversion (left), proposed seismic AVA inversion (middle)
and the initial guess model (right) used in the proposed

methodology. Horizontal time section through best-fit
P-wave velocity model
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5Deriving Petrophysical Properties
with Seismic Inversion

5.1 Characterization
of Petrophysical Properties
Based on Acoustic and Velocity
Models

The geostatistical framework presented in
Chap. 2 allows the integration of data with dif-
ferent scale support. From the resulting inverted
acoustic and/or elastic models, the use of geo-
statistical techniques, such as sequential
co-simulation (Chap. 3), allows the simulation
and co-simulation of the petrophysical properties
of interest. The geostatistical simulated models
(described above) can use the well-log data of the
property to be modelled as the primary variable
and the inverted elastic models as secondary
variable for the co-simulation (or co-estimation)
of the petrophysical property of interest. In this
sequential approach, petrophysical modeling is
performed in two independent steps. The petro-
physical property of interest is inferred from the
acoustic or elastic model obtained from the
inversion procedure; therefore, the resulting
petrophysical model is not directly constrained by
the available seismic reflection data.

Co-simulation of petrophysical properties based
on acoustic impedance models

The traditional workflow for inferring the
subsurface petrophysical properties of interest is
based on a joint simulation (Chap. 2) with an
elastic model previously retrieved from the

observed seismic data by seismic inversion as a
secondary variable. The degree of detail (i.e.
small-scale variability) of the resulting petro-
physical model depends on the inverse method-
ology selected among the many available
methods.

In this traditional sequential workflow, a
relationship between the elastic and the petro-
physical property of interest is first derived from
the available well-log data. Depending on the
geological setting of the study area, the rela-
tionship between these two properties may be
linear or extremely complex, representing dif-
ferent geological formations, pore types and pore
fluids (Fig. 5.1), for example.

The petrophysical model is then derived by
resorting to stochastic sequential co-simulation
using the available well-log data for the property
of interest as experimental data and the collocated
inverted elastic model as secondary variable. The
secondary variable is often the best-fit inverted
model or the mean model calculated from the set
of models generated during the last iteration of an
iterative geostatistical seismic inversion proce-
dure. Depending on the joint probability distri-
bution between both properties, we may use the
traditional sequential co-simulation with a global
correlation coefficient between both properties, for
linear relationships between the primary and the
secondary variable (Sect. 3.4.2), or the sequential
co-simulation with joint probability distribu-
tions for complex relationships (Sect. 3.4.3).
Nevertheless, in either case the resulting
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petrophysical model is not directly retrieved from
the seismic reflection data and consequently is not
directly constrained by this data.

When compared with petrophysical models
derived exclusively from well-log data, the
uncertainty related with these models smaller;
however, they are not directly constrained by the
seismic reflection data and, locally, they may
disagree with the observed seismic data. New
inversion methodologies that permit directly
inferring petrophysical models of interest from
the available seismic reflection data allow for
more realistic and well-constrained subsurface
Earth models: i.e. subsurface models with less
uncertainty.

5.2 Direct Inversion of Porosity
Models

In seismic reservoir characterization, the classical
procedure for obtaining a petrophysical model of
interest, such as a porosity model, is sequentially
inverting seismic reflection data for an elastic
property (e.g. acoustic and/or elastic impedance)
and then inferring the petrophysical property of
interest. The conversion between the elastic and

the petrophysical domains is based on a cali-
brated relationship model between acoustic
and/or elastic impedance and the petrophysical
properties of interest (e.g. porosity; e.g. Avseth
et al. 2005). In these techniques, seismic reflec-
tion data is integrated through a forward model,
frequently a stochastic sequential simulation
algorithm, for example, sequential Gaussian
co-simulation (Deutsch and Journel 1992) or
DSS (Soares 2001). The stochastic sequential
simulation can account for the differences in
support, but cannot accommodate a nonlinear
transformation of original variables, as in the
sequential Gaussian co-simulation (Gómez-Her-
nandez and Journel 1993).

In this approach we do not directly constrain
the resulting petrophysical property model to the
available seismic reflection data: porosity is
normally derived linearly from a specific seismic
attribute, the acoustic and/or elastic impedance
model, retrieved by seismic inversion (e.g.
Doyen 2007). Consequently, this kind of
approach is normally plagued by several prob-
lems related to: first, the different (space/time)
support of the seismic data versus the measure-
ments of the internal properties of the reservoir at
the well locations; and, second, in complex

Fig. 5.1 From left example of an approximately linear relationship between Ip and porosity and a complex relationship
between Ip and porosity
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geological environments the fact the nonlinear
relationship between the two variables, elastic
and petrophysical properties, are the product of
the joint behaviour of several distinct geological
facies, makes it difficult to retrieve with such a
sequential approach and its extrapolation is
unlikely to be valid for the entire study area.

In such complex geological environments,
different facies of interest cannot be modelled
solely on the basis of their acoustic and petro-
physical properties (Fig. 5.2) and an assumption
of linearity can lead to erroneous and unreliable
models. Several alternative approaches have
been proposed to tackle this problem, for exam-
ple, by using artificial neural network algorithms
to infer the elastic properties from facies models
(Sun et al. 2001) or by the prior characterization
of facies data (Robinson 2001). Alternative
methods consist of obtaining subsurface elastic
models by seismic inversion, after which poros-
ity models are derived through a calibrated RPM
between the inverted elastic property and the
petrophysical properties of interest (Mavko et al.
2003; Bosch et al. 2010).

Here we introduce a methodology to jointly
characterize acoustic impedance and porosity by
resorting to direct sequential co-simulation with
joint probability distributions (Sect. 3.4.3). This
methodology can be extended easily to any other
petrophysical property of interest as long as it has

a relationship with acoustic impedance. Using
co-DSS with joint probability distributions to
derive porosity models within the inversion loop
ensures that the complex relationships between
Ip and porosity are reproduced, the derived
porosity models are directly constrained by the
available seismic reflection data and the uncer-
tainty is propagated during the inversion proce-
dure towards the final porosity models.

The integration of porosity models within
geostatistical seismic inversion may be summa-
rized as follows:

(1) Generate an initial set of porosity models
from the available well-log data;

(2) Co-simulate, using direct sequential
co-simulation with joint probability distribu-
tion, acoustic impedance models for the
whole study area (Horta and Soares 2001)
from the available well-log data and using the
models generated in (1) as auxiliary variables.
The example shown here considers acoustic
impedance, but its extension to other geosta-
tistical seismic inversion methodologies is
straightforward;

(3) Calculate the corresponding synthetic seis-
mic volumes by convolving the reflectivity
series derived from the simulated acoustic
impedance models with an estimated wavelet
representative of the entire field;

Fig. 5.2 Example of
complex relationship between
porosity and acoustic
impedance where different
geological facies can easily be
distinguished by the
petro-elastic domain defined
by acoustic impedance versus
porosity
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(4) Evaluate the mismatch between the entire set
of synthetic seismic data created in the pre-
vious step and the recorded seismic data by
calculating local correlation coefficients in a
trace-by-trace basis;

(5) From the set of acoustic impedance models
from a given iteration, select the elastic tra-
ces that ensure the highest correlation coef-
ficients between the corresponding synthetic
and real seismic traces and store them in an
auxiliary volume with the corresponding
correlation coefficients and the porosity
traces;

(6) Generate a new set of porosity models by
direct sequential co-simulation using the
auxiliary volumes of porosity and the corre-
sponding correlation coefficient volume cre-
ated in the previous step. Return to step
(1) until the objective function, the global
correlation coefficient between real and syn-
thetic seismic data, reaches a given threshold.

These kind of approaches, based on DSS
algorithms, ensure the reproduction of marginal
and joint distributions as given by the
co-variogram for both the elastic and the petro-
physical property of interest. With this approach,
we retrieve petrophysical model, directly con-
strained by the available seismic reflection data.
This is a crucial improvement for obtaining more
reliable reservoir models, since the joint and
marginal distributions of both properties, as
revealed by the experimental data, are spatially
reproduced in the resulting models.

The potential of inverting directly the avail-
able seismic reflection data for porosity is shown
with acoustic inversion in a case study with data
from an early exploration area located on a
complex turbiditic environment. The study area
was first divided vertically into three different
zones (Fig. 5.3). Zone 2 corresponds to the
channel system of interest in which the prospect
is located.

Fig. 5.3 Joint distributions
between Ip and porosity for
the three zones defined along
the inversion grid
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A local joint distribution between Ip and
porosity, based on well-log data available for the
study area and nearby fields, was assigned to
each zone. While zones 1 and 2 have a linear
relationship between these, the properties for
zones 2 exhibit different behavior (Fig. 5.4).

The best-fit pair of Ip and porosity retrieved at
the end of six iterations (Fig. 5.5) show a con-
sistent spatial distribution of both properties. By
directly inverting for porosity by integration
seismic reflection and well-log data within this
geostatistical seismic inversion framework, we
allow the inference of high-resolution models for
both properties and ensure the uncertainty related
with seismic inversion is simultaneously propa-
gated towards both models.

5.3 Geostatistical Seismic Inversion
Directly for Petrophysical
Properties

In seismic reservoir characterization studies we
normally seek to infer the detailed spatial distri-
bution of the subsurface facies while conditioning
the petro-elastic properties to such a model. In
this section we introduce geostatistical inversion
methodologies that allow both the inversion of
seismic reflection data for elastic properties
and the simultaneous inference of the spatial
distribution for the petrophysical properties of
interest as they are revealed in a rock physics
model.

Fig. 5.4 Vertical regionalization of the study area in which the global geostatistical inversion integrating porosity
models was implemented

Fig. 5.5 Horizon slices extracted within zone 2 for the best-fit inverse model of: left Ip and right porosity
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The integration of rock physics models within
seismic inversion methodologies allows for more
realistic reservoir models, bringing the character-
istics of the subsurface geology such as mineral-
ogy, pore type, fluids, porosity, sorting, degree of
cementation and stress into the inverted petro-
elastic models. There are different theoretical and
empirical rock physics models that can be used to
describe the elastic response of a given geological
formation as a function its properties. The most
typical rock physics models for clastic reservoirs
are summarized in Mavko et al. (2003), Avseth
et al. (2005), Simm and Bacon (2014) and, for
carbonates reservoirs, in Xu and Payne (2009).

5.3.1 Geostatistical Seismic AVA
Inversion to Facies

The inversion methodology presented here can
be considered an extension of the geostatistical
seismic AVA inversion technique (introduced in
Sect. 4.3.6) allowing the direct inversion of
pre-stack seismic data directly for facies, density,
P-wave and S-wave velocity models. The
advantage of this methodology is the inference of
facies models that are intrinsic to the inverse
solution and which are therefore conditioned
simultaneously by both: the available well-log
data and the pre-stack seismic data. Introducing a
facies model within the inversion procedure
represents a straighter connection between the
elastic properties (observed seismic) and the
subsurface geology.

The geostatistical seismic AVA inversion
directly to facies is an iterative geostatistical
seismic inversion based on three main principles:

(1) The perturbation of the model parameter
space is performed sequentially, by stochastic
sequential simulation and co-simulation: DSS
(Soares 2001) as the perturbation technique
for density models and co-DSS with joint
probability distributions (Horta and Soares
2010) as the model perturbation procedure for
P-wave and S-wave velocity models.

(2) The convergence of the iterative methodol-
ogy towards an objective function is ensured

by a global optimizer based on the crossover
genetic algorithm of previous iterations. At
each iteration the model parameter space is
updated with elastic traces that ensure the
greatest correlation coefficient between syn-
thetic and real pre-stack angle gathers at a
given iteration.

(3) The use of Bayesian classification (Avseth
et al. 2005) to create facies models from
simulated and co-simulated pairs elastic
models of density and Vp/Vs ratio.

We may summarize this inverse methodology
in six main steps (Fig. 5.6). First, the facies of
interest are identified in an elastic domain such as
the one defined by density versus Vp/Vs ratio
domain (Fig. 5.7). This is a step of the utmost
importance, since the classification at the well
locations will be used as training data for the
Bayesian classification that is performed as part
of the inversion loop. The success of the inver-
sion procedure is highly dependent on the relia-
bility of this classification and the ability to
separate the facies of interest in a given elastic
domain.

The second stage concerns the simulation and
joint simulation of both variables of the rock
physics relation, density and Vp/Vs ratio. First
the DSS of Ns density models, conditioned to the
available well-log data, followed by the direct
sequential co-simulation with joint probability
distributions of Vp/Vs ratio that describes—
along with density—the elastic domain from
where the facies were defined in the previous
step (e.g. Vp/Vs ratio). Then, from the Ns pairs
of density and Vp/Vs models, Ns facies models
are categorized according to a probabilistic
classification method, such as the Bayesian
classification, and using the pre-calibrated train-
ing data at the well locations (Avseth et al. 2005).

Inside each facies, the inverse procedure
continues with the stochastic sequential simula-
tion of Ns P-wave and S-wave velocity models
using DSS and co/DSS with joint probability
distributions (as in Sect. 4.3.6). The resulting
P-wave velocity models honor both the global
probability distribution as estimated from the
well-log and the individual probability
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distributions for each of the facies of interest as
defined by the training dataset.

After the simulation of Ns triplets of density,
P-wave and S-wave velocity models, the iterative
geostatistical inversion procedure follows the
sequence described in the previous section for
the geostatistical seismic AVA inversion
(Sect. 4.3.6) as in Fig. 5.6.

Angle-dependent RC are calculated, following
Shuey’s linear approximation (Eq. 4.9), from the
set of Ns elastic models. The resulting RC are
then convolved with an angle-dependent wavelet,
producing a set of Ns synthetic angle gathers. The
synthetic and real pre-stack volumes are hori-
zontally layered (Fig. 4.11). Each layer of the
synthetic angle gathers is then cross-correlated on

Fig. 5.6 Schematic representation of the geostatistical inversion of seismic AVA data directly to facies models
methodology

Fig. 5.7 Facies classification, in two different facies,
from well-log data in the elastic domain defined by
density versus Vp/Vs
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a trace-by-trace basis, with the corresponding
layer of the real angle gather. The resulting local
correlation coefficients are stored in local corre-
lation angle gathers (Fig. 4.13).

From the entire set of elastic models simu-
lated at the current iteration, the triplets of
density, P-wave and S-wave velocity models,
which produce synthetic seismic reflection data
with the greatest local correlation coefficient
simultaneously for all the angles when com-
pared with the real seismic data, are stored in
the best density, P-wave and S-wave velocity
models (Fig. 4.13). A local correlation coeffi-
cient is also assigned to each portion of the
elastic models selected for the best volumes.
The correlation coefficients are weighted aver-
ages of the local correlation gathers assigned to
that particular triplet of elastic models. The
correlation coefficients corresponding to the
near angles are averaged for the best correlation
cube associated to the best P-wave velocity
model. The correlation coefficients correspond-
ing to the mid and far angles are averaged for
the best correlation cube associated to the best
S-wave velocity model. The correlation coeffi-
cients corresponding to the far angles are aver-
aged for the best correlation cube associated to
the best density model. Note that the best den-
sity will be the conditioning data for a new set
of density models, the best P-wave for the
corresponding P-wave velocity models and,
finally, the best S-wave velocity as secondary
variables for the co-simulation of a new set of
S-wave velocity models. The variable r remains
unconditioned for the entire inversion loop.

The best elastic models, and the local corre-
lation volumes, are then used as secondary
variables for the sequential co-simulation of
elastic models of the next iteration. The iterative
geostatistical seismic inversion finishes when the
global correlation between synthetic and real
seismic is above a certain threshold.

All the inverted models reproduce the main
spatial patterns, as revealed by the variograms
imposed during the stochastic sequential simu-
lation of the elastic models, the probability dis-
tributions and joint probability distributions
estimated from the original well-log data and the

well-log data at the well location. The described
algorithm may be summarized as shown in
Fig. 5.6:

(1) Define facies from available well-log data in
the elastic domain defined by: for example,
density versus Vp/Vs ratio;

(2) Stochastic sequential simulation of Ns den-
sity models conditioned from available
well-log data with DSS (Soares 2001);

(3) Stochastic sequential co-simulation of Ns

models for the intermediate variable r (e.g.
Vp/Vs ratio) using the previously simulated
Ns density models as secondary variables
(co-DSS with joint-distributions) (Horta and
Soares 2010);

(4) For each pair of models generated in steps
(1) and (2) classify probabilistic facies (e.g.
Bayesian classification) resulting in Ns

facies volumes;
(5) Stochastic sequential simulation of Ns

P-wave velocity models with the DSS with
multi-local distributions using a facies
model as auxiliary variable;

(6) Stochastic sequential co-simulation of Ns

models of S-wave velocity models given the
Ns previously simulated P-wave velocity
models (co-DSS with joint-distributions)
(Horta and Soares 2010);

(7) For each of the Ns elastic models previously
simulated, calculate the pre-stack synthetic
seismic data following Shuey’s linear
approximation;

(8) Compare each synthetic angle gathers with
the corresponding real gather on a
trace-by-trace basis;

(9) Store the elastic traces of density, P-wave
and S-wave velocities that, for a given
iteration, produce synthetic angle gathers
with the highest correlation coefficient
between real and synthetic seismic traces.
These elastic traces, and the corresponding
correlation coefficient value, are used as
secondary volumes for the co-simulation of
density, P-wave and S-wave models for the
next iteration. Note that the generation of
Vp/Vs ratio models during the entire
inversion procedure is only conditioned to a
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previously generated density model. From
iteration to iteration, the conditioning based
on the match between real and synthetic
seismic data is done on the elastic properties
used to compute the synthetic seismic: i.e.
the Vp/Vs ratio model and the facies model
resulting from the Bayesian classification
are not directly constrained by the previous
iteration.

(10) Iterate until the matching criteria, the global
correlation between the original and the
synthetic seismic, is reached.

5.3.2 Application Examples with
Geostatistical Seismic
AVA Inversion Directly
to Facies

We illustrate the potential of the inversion
directly to facies with two simple examples: a
synthetic and a real application. The first syn-
thetic example uses the same dataset used to
illustrate the geostatistical seismic AVA inver-
sion (Sect. 4.3.6). In this way we can directly
compare the improvements obtained by inte-
grating facies within the inversion loop. The
second example shows a real implementation in a
challenging mature turbidite field where previous
geostatistical seismic inversion studies are
available.

Synthetic example

A facies model was calibrated by using to the
15 available conditioning wells in the elastic
domain defined by density versus Vp/Vs ratio.
This elastic domain was chosen for its potential
in separating facies filled with different fluids
(Fig. 5.7): Facies 1 corresponds to the reservoir,
while facies 2 is related with non-reservoir
lithologies (i.e. the overburden and the under-
burden lithologies). Facies 1 is related with low
values of the Vp/Vs ratio and the low density
associated with sands filled with hydrocarbons.
Please note that this synthetic example illustrates,

and is solely intended to demonstrate, the
potential of this inverse procedure.

This inverse methodology comprises the
co-simulation of a new elastic property (besides
P-wave and S-wave velocities) from a previously
simulated density model. In this example, and
due to its potential for separating the litho-fluid
facies of interest, the variable r to be
co-simulated from the density models is the
Vp/Vs ratio. The simulated pair of density and
Vp/Vs ratio models is then classified into a facies
model by Bayesian classification.

The real Vp/Vs ratio model shows a low
velocity ratio values around the 2400 ms related
to the reservoir zone. Other potential regions of
interest that should be reproduced in the inverted
models are related to local velocity variations
(e.g. low-velocity layers) such as the one around
well R2 before the 2250 ms (Fig. 5.8).

The reference density and Vp/Vs simulated
ratio models were classified in a true facies
model (Fig. 5.9) following the facies classifica-
tion performed from the well-log data (Fig. 5.7).
The facies corresponding to the reservoir (facies
1) has large lateral variations in terms of its
thickness and spatial distribution. Reliable
inverted facies models should reproduce these
variations or, at the very least, reproduce areas of
greater uncertainty for the areas in which its
thickness changes dramatically.

The iterative procedure converged after
six iterations on each set of 32 elastic mod-
els (density, P-wave and S-wave velocity and
Vp/Vs ratio) were reproduced. At each iteration,
from the 32 pairs of simulated models of den-
sity and Vp/Vs ratio, 32 facies models where
classified using Bayesian classification. The final
global correlation coefficient between the syn-
thetic seismic derived from the best-fit inverted
models and the real pre-stack seismic is 0.81
(Fig. 5.10).

The best-fit synthetic seismic data is able to
reproduce the main primary reflections and AVA
variations as interpreted from the real pre-stack
seismic data (Fig. 5.11). From a seismic AVA
perspective, it is a key point for ensuring a match
between real and synthetic seismic data both in
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the shape of seismic traces and, more impor-
tantly, in the relative variation of the amplitude
content from angle to angle.

The local correlation coefficient volume, cal-
culated on a trace-by-trace basis between the
synthetic seismic data and from the best-fit
inverted elastic models and real seismic data,

shows a good convergence of the inverse pro-
cedure (Fig. 5.12).

The convergence of the inverted elastic
models can be assessed by comparing the mean
model of all elastic models simulated during the
last iteration against the real elastic models
(Fig. 5.13). All elastic models simulated during
the last iteration produce synthetic seismic
reflection data with a correlation coefficient of
around 0.8 compared to the real seismic data.
Both density and P-wave velocity models are
particularly well retrieved. In both inverted
models there is a very good match for the
reservoir and cap rock zones in terms of their
spatial continuity and values. However, for the
P-wave velocity model, the areas above the cap
rock, before 2250 ms, have lower values com-
pared to the real model. It seems the lower
P-wave velocity layer, around 2200 ms, has a
greater extent than the real P-wave velocity
model.

The S-wave velocity model is the elastic
model in which the inversion methodology
performs worst. Nevertheless, the inverted

Fig. 5.8 Vertical section extracted from the real Vp/Vs ratio model. For location of the profile see Fig. 4.18

Fig. 5.9 Vertical section extracted from the real facies volume classified from the real elastic models. Facies 1
corresponds to the reservoir area while facies 2 to the non-reservoir. For location of the profile see Fig. 4.18

Fig. 5.10 Correlation coefficient evolution at the end of
each iteration for the geostatistical seismic AVA inversion
directly to facies example
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S-wave models are able to reproduce the main
large-scale features at its locations. Moreover,
the inverted S-wave velocity models can repro-
duce some small-scale events, such as the thin
low S-wave velocity layer immediately below the
reservoir’s base (around 2400 ms). Comparing
with the geostatistical seismic AVA inversion
(Sect. 4.3.6), there is a better match between the
real and the inverted S-wave velocity models.
This result is due to the integration of the facies
model calibration within the inversion procedure.

The facies models corresponding to the mode
of the set of facies models classified during the
last iteration of the inversion procedure can
reproduce the spatial distribution of both facies
as interpreted from the original facies volume
(Fig. 5.14). As for facies 1, which corresponds to
the reservoir area, the reproduction is good both
in its spatial distribution and in terms of reservoir
thickness. However, the facies present in the
mean facies model are more discontinuous
compared to the real facies model (Fig. 5.9). This

Fig. 5.11 Synthetic seismic angle gathers retrieved at the
end of the iterative inversion procedure at the same
locations as the real gathers shown in Fig. 4.18. There is a

good match between real and synthetic gathers in terms of
main reflections and amplitude variation versus offset

Fig. 5.12 Vertical section extracted from the local correlation cube of the best-fit inverted seismic. For location see
Fig. 4.18
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discontinuity is more noticeable for locations less
constrained by the well data. Nevertheless, it is
important to note there are individual facies
models, classified during the last iteration, with
more continuous facies with better matches to the

real facies model (Fig. 5.15). These discrepan-
cies between models are part of the uncertainty
related with the reservoir and should be inter-
preted as an advantage of the proposed
methodology.

Fig. 5.14 Vertical section extracted from the mode of facies model calculated from the set of facies models simulated
during the last iteration. For profile location see Fig. 4.18

Fig. 5.13 Comparison between vertical sections
extracted from (on the left) real elastic models and (on
the right) the mean model calculated from the set of
simulated models during the last iteration of the geosta-
tistical seismic AVA inversion directly to facies. From

top: density, P-wave and S-wave velocity models. The
inverted models are constrained by the available well-log
data and honor the well data at its location. They can
reproduce the main features of the real elastic models. For
profile location see Fig. 4.18

Fig. 5.15 Vertical section extracted from the best-fit
facies model. The facies corresponding to reservoir (facies
1) is much more continuous than that resulting from the

mean model of the simulated facies models during the last
iteration (Fig. 5.14). For profile location see Fig. 4.18
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The inverted elastic models are also able to
reproduce the joint distributions, as estimated
from the well-log, between density and Vp/Vs
ratio and Vp versus Vs (Fig. 5.16) while honor-
ing the facies classification as performed in the
training data. This is an essential feature of the
proposed iterative geostatistical methodology,
since it both ensures the reproduction of the
relationships between elastic properties and
constrains them to a geological model that is
calibrated at the well locations (the facies model
itself).

Finally, the marginal distributions of the
elastic models simulated during the entire
inversion workflow (density, Vp/Vs ratio,
P-wave and S-wave velocities) reproduce those
distribution as estimated from the well-log data
(Fig. 5.17).

It is important to note the differences within
the retrieved inverse elastic models with and
without a facies model (compare Figs. 4.24 and
5.13). It is clear that including a geological link
within the inversion procedure considerably
improves the inverse elastic models in both the
values of the retrieved properties and the spatial
interest of the features of interest (Fig. 5.13).

Real example
To illustrate the potential of this method in real

datasets, we show the implementation of this
geostatistical seismic inversion procedure in a
real dataset.

The study area is a deep offshore turbidite
environment in which the reservoirs are associ-
ated with sand-prone overbank deposits. The
known reservoirs are recognized on partial angle
stack due to their amplitude anomalies with the
offset. While the proposed method was devel-
oped to handle angle gathers, because of the lack
of pre-stack data we used partial angle stacks
with the following central angles of reflection:
10°, 15°, 20° and 29°.

A set of 13 wells with Vp, Vs and bulk den-
sity logs were available. The wells drill prefer-
entially the pay geological formations, which
introduce a bias on the known elastic properties
(Fig. 5.18). These wells were previously tied to
the available seismic data and the resulting
angle-dependent wavelets were also made avail-
able. The high resolution well-log data was
upscaled into the reservoir grid, ensuring the
extreme values, the mean and the variance as

Fig. 5.16 Joint distributions estimated from the best-fit
inverted models between: left density versus Vp/Vs ratio
and right P-wave versus S-wave velocity. They reproduce
the joint distributions as estimated from the well-log data
(Figs. 4.19 and 4.31). The joint distributions are

color-coded by facies. The reproduction of the relation-
ships between elastic properties while keeping the geo-
logic realism as provided by the facies model calibrated at
the well locations is essential
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retrieved from the original well-log data was
preserved after upscaling.

The spatial continuity pattern of each property
was inferred by modeling experimental vari-
ograms calculated in the vertical direction from
the upscaled well-log data and in the horizontal
direction from the real partial angle stacks.
Because of the distances between wells we
decided to model the horizontal spatial continuity

pattern from the seismic reflection data. This
procedure is normally translated in an overesti-
mation of the variogram range values compared
with variograms retrieved from well-log data.

We defined two facies of interest prior to the
geostatistical inversion from the elastic domain
defined by the density and Vp/Vs ratio
(Fig. 5.19). This classification enables a distinc-
tion to be made between reservoir and

Fig. 5.17 Comparison of the marginal distributions of density, P-wave and S-wave velocity and Vp/Vs ratio estimated
from the conditioning well-log data (red) and that retrieved from the best-fit inverted elastic models (green)

Fig. 5.18 Available set of
wells and their locations
within the seismic grid for
the real case study. The
black dashed line
represents the location of
the vertical well sections
shown to present the results
of the geostatistical seismic
AVA for facies. Well head
locations are represented by
black circles and the
deviation path by the thin
black line
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non-reservoir facies: i.e. sand-prone and shaly
lithologies, respectively. This was used as train-
ing data for the Bayesian classification included
as part of the geostatistical inversion procedure.

The geostatistical seismic AVA inversion
converged towards the real seismic reflection
data after six iterations. Per iteration, 32 sets of
density, P-wave and S-wave velocity were sim-
ulated and co-simulated. After six iterations, the
global correlation coefficient between the real
and synthetic partially stacked seismic reflection
for all angles simultaneously is about 0.75.

The retrieved synthetic seismic data has a
considerably good match with the real seismic
data in both primary reflection and AVA varia-
tions. It is important to note that both the
amplitude values and the extension of the seismic
events of interest as interpreted from the real
models are reproduced on the synthetic seismic
reflection data (Fig. 5.20).

Due to the similarity of the petro-elastic
models generated during the last iteration, all
these models produced synthetic seismic data
that was highly correlated with the recorded
seismic data. The mean model of density, P-wave
and S-wave velocity models calculated from the
set of elastic models generated during the last
iteration can be used to interpret the inversion

Fig. 5.19 Joint distribution between density and Vp/Vs
ratio from the upscaled well-log data and colored by
facies type. This was used as training data for the
Bayesian classification within the iterative geostatistical
workflow. Facies 1 is the reservoir facies while facies 2 is
the non-reservoir facies

Fig. 5.20 Comparison of vertical seismic sections extracted from: left real partial stacks and right synthetic seismic
reflection retrieved from the geostatistical seismic AVA inversion for facies
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results (Fig. 5.21). The inverted models are high
resolution and show both large and small details
of interest. Each model is constrained by the
corresponding well-log log data at its locations.

The modal facies model (Fig. 5.21), calcu-
lated from the set of facies models generated
during the last iteration of the inversion, show the
proportion of reservoir facies in accordance with
what is known about this reservoir. It is inter-
esting to observe that the reservoir facies is not
connected along the whole reservoir area, but
that its locations generally agree with the
amplitude anomalies interpreted from the real
seismic reflection data.

Unlike the geostatistical seismic AVA
methodology (Sect. 4.3.6), the inversion of seis-
mic data directly to facies allows retrieval of both
the best-fit inverse elastic models and a geological
model of the reservoir. Instead of being derived
from an inverted elastic model, the resulting
inverse facies model is constrained simultane-
ously by both well-log and seismic data. The
integration of the facies models during the
inversion process brings more geological realism
to the inverse solution. However, this approach
can be applied to more complex geological
environments by fully integrating other rock
physic models (Asveth et al. 2005) into the geo-
statistical seismic inversion procedure.

5.4 Integration of Rock Physics
Models into Geostatistical
Seismic Inversion

New developments for iterative geostatistical
seismic inversion procedures should integrate
statistical rock physics within the inversion
workflow. The approach proposed here may be
summarized as follows: the first step comprises
the calibration of a petro-elastic model from the
well-log data. A theoretical or empirical model is
fitted by linear or nonlinear regressions to the
available well-log data. At the end of this step we
are able to derive a set of equations governing the
geological system being examined. As in the
conventional statistical rock physics workflow,
when considering pore fluids not sampled by the
available well data, fluid substitution by Gass-
mann’s equation (e.g. Smith et al. 2003) can be
performed and included in the calibrated
petro-elastic model. The second step adds the
variability of the subsurface geology by gener-
ating values of the petro-elastic properties of
interest not sampled by the well-log data by
using Monte Carlo simulation. Adding this
variability to the calibrated petro-elastic model is
of great importance since it allows more variable
stochastic simulated models created during the

Fig. 5.21 Mean petro-elastic models calculated from the
set of models generated during the last iteration of the
geostatistical seismic AVA inversion for facies. The

inverted models are constrained by the available well-log
data and honor the well data at its location
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iterative geostatistical inversion procedure and,
therefore, more reliable solutions.

The third stage is the iterative geostatistical
inversion algorithm itself as described in Sect. 4.3.
The inversion procedure beginswith the stochastic

sequential simulation of Ns water saturation
(Sw)models byDSS from the well-log data. Then,
in a sequential approach, using the co-DSS with
joint probability distributions, generate Nsmodels
of porosity conditioned to the available well-log
data and the previously simulated Swmodels. The
resulting porosity models are then used as sec-
ondary variables for the co-simulation of Ns den-
sity models with co-DSS with joint-probability
distributions.

At each location within the reservoir grid, x0,
P-wave and S-wave values are drawn from the
probabilistic petro-elastic model constructed in
step one, taking the collocated simulated values
of Sw (x0) and porosity (x0) into account. These
values will be used to determine the local joint
probability distributions between porosity versus
P-wave velocity, and porosity versus S-wave
velocity (Fig. 5.22). The selected local proba-
bility distributions will be used in the direct
sequential co-simulation with joint probability
distributions for the simulation of Ns P-wave and
S-wave velocity models.

The iterative geostatistical inversion algorithm
then follows the approach presented for the geo-
statistical seismic AVA methodology (Sect. 4.3.6).

Fig. 5.22 Example of a bi-distribution between porosity
and P-wave velocity where several populations, corre-
sponding to different facies, can be distinguished. The red
circle represents the value for P-wave velocity computed
from a petro-elastic model given the collocated value for
porosity in x0. The local bi-distribution between porosity
versus P-wave velocity (blue circles) will be used in the
co-simulation of the P-wave and S-wave velocity models
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6Data Integration with Geostatistical
Seismic Inversion Methodologies

In this chapter we generalize the geostatistical
seismic inverse methodologies to simultaneously
integrate data of different nature, besides the
conventional seismic reflection and well-log data
as shown in the previous chapter. Here we illus-
trate recent advances in integrating controlled-
source electromagnetic (CSEM; Sect. 6.1) and
dynamic production data (Sect. 6.2) within the
inversion procedure.

6.1 Integration of Electromagnetic
and Seismic Data
into Geostatistical
Simultaneous Inversion

Recent advances in geophysical methods have
allowed the use of electromagnetic data, partic-
ularly controlled-source electromagnetic
(CSEM), to infer the spatial distribution of the
subsurface pore fluid distribution (e.g. Gao et al.
2010; Hoversten et al. 2006). The resistivity
model retrieved from CSEM inversion are later
used to derive petrophysical quantities of inter-
est, such as porosity and water saturation by
using Archie’s Law (Eq. 6.1; Archie 1942)
and/or Waxman and Smits’ equations (Eq. 6.2;
Waxman and Smits 1968). These laws relate the
electrical conductivity, or specific resistance, of a
rock to its porosity and brine saturation:

R ¼ aS�n
w /�mRw; ð6:1Þ

where, R is the specific resistance of the partially
saturated rock at the brine saturation Sw, Sw is

the saturation of brine, and n is the saturation
exponent. / is the rock porosity and m is the
cementation exponent:

r0 ¼ 1
F
ðrw þBQvÞ; ð6:2Þ

where, r0 is the electrical conductivity, F is the
formation factor, rw is the electrical conductivity
for brine, B is the equivalent conductance of
sodium clay exchange cations, and Qv is the
cation exchange capacity per unit pore volume.

Given Eqs. 6.1 and 6.2, we can look at the
CSEM data as the solution of an inverse problem
with the porosity and brine saturations as
unknown parameters.

CSEM inversion shares the same characteris-
tics of any other geophysical inverse problem.
They are ill-posed problems, nonlinear and with
non-unique solutions due to the limited bandwidth
and resolution of the geophysical data, noise,
measurement errors and physical assumptions
about the involved forward models (Tarantola
2005). The model parameters are updated until the
match between synthetic and real resistivity mea-
surements is achieved. The idea of the joint use of
seismic reflection and CSEM data is to generate
facies, or porosity, models that simultaneously
match both data. By integrating different kinds of
data within the same inversion framework we
expect to be able to reduce this uncertainty level
and consequently retrieve more reliable subsur-
face Earth models. It is important to note that
when compared with seismic reflection data,
CSEM has considerably lower resolution with
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much lower subsurface penetration (Tompkins
et al. 2011). The proposed framework, ensures
both the propagation of the uncertainty during the
entire inversion procedure and the simultaneous
integration of data with very different scale sup-
port: well-log, seismic reflection and CSEM data
(Bosch et al. 2010).

EM inversion is increasing its importance in
inferring subsurface resistivity distribution that is
later used to derive the spatial distribution of
subsurface fluids (Gao et al. 2010; Hoversten
et al. 2006). These methodologies are tradition-
ally applied individually and, due to the
non-unique nature of geophysical inversion, the
resulting models may not be consistent when
jointly interpreted.

By jointly inverting seismic reflection and
CSEM data, the retrieved petro-elastic models
allow for better reservoir characterization both in
terms of the spatial distribution of the petro-elastic
properties of interest and by separating areas filled
with different fluids. A key aspect of this joint
inversion is that both kinds of geophysical mea-
surements have different spatial sensitivity and,
consequently, there is no combined influence from
the two types of measurements.

In practice, because of the very different nat-
ure of these geophysical methods, their simulta-
neous inversion is not straightforward and,
therefore, there is a need to use a rock physics
model to link both domains: the elastic domain
derived from the seismic reflection data is linked
with the petrophysical property derived from the
inverted resistivity models.

As an example for assessing the potential of
joint inversion in reservoir characterization, here
we show an iterative geostatistical simultaneous
inversion of CSEM and seismic reflection data.
The geostatistical joint inversion of seismic and
electromagnetic data allows the simultaneously
inference of subsurface acoustic impedance,
water saturation and porosity models from
available well-log data, seismic reflection and
CSEM data (Azevedo and Soares 2014). It is an
iterative geostatistical methodology in which the
model perturbation is performed by DSS and
co-simulation (Sects. 3.4.1 and 3.4.3). Water
saturation and porosity data is obtained by

simulating water saturation and porosity by using
the previously simulated saturation models as
auxiliary variables (DSS with joint probability
distributions, Sect. 3.4.3). Each pair is used to
simultaneously produce synthetic resistivity data
(e.g. Archie’s Law) and synthetic seismic data.

The available well-log data act as experimental
data for the stochastic sequential simulation and
co-simulation algorithms, and a genetic algorithm
that is based on the cross-over principle works as a
global optimizer that simultaneously converges,
with each iteration, the synthetic resistivity and
seismic data into the real data. The inversion
procedure is considered complete if the average
global correlation coefficient between the entire
volume of real data and the inverted synthetic
resistivity and seismic reflection data, simultane-
ously, are above a certain user-defined threshold.

The geostatistical joint inversion of seismic and
electromagnetic data can be summarized through
the following sequence of steps (Fig. 6.1):

(1) Simulate Ns models of water saturation
(Sw) by stochastic sequential simulation,
DSS (Soares 2001) and using the available
Sw-log data as experimental data for the
simulation procedure;

(2) Co-simulate Ns porosity models using DSS
with joint probability distributions (Horta
and Soares 2010), the available porosity
well-log data as experimental data and each
Sw model simulated in the previous step as a
secondary variable;

(3) Classify a facies model (e.g. sand/shale) for
each pair of models created in (1) and (2);

(4) Following Archie’s Law (Archie 1942) and
the Waxman and Smits equations (1968),
calculate Ns synthetic resistivity responses
for each pair of Sw and porosity models
simulated and co-simulated in the previous
steps depending on the facies model classi-
fied in (3);

(5) Following a pre-calibrated RPM, and for
each porosity model generated in (2), derive
Ns acoustic impedance models and compute
the corresponding normal-incidence RC.
These RC are then convolved with an esti-
mated wavelet;
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(6) Calculate, on a trace-by-trace basis, the cor-
relation coefficient between synthetic and
real resistivity and seismic responses;

(7) Select the petro-elastic traces that simulta-
neously ensure the maximum correlation
coefficient between recorded and synthetic
seismic and resistivity data calculated in the
previous step. The individual correlation
coefficients are weighted averages, depend-
ing on the quality of the input geophysical
data. Save these elastic traces as the best joint
saturation and porosity volumes along with
the corresponding correlation coefficients;

(8) Co-simulate a new set of Sw and porosity
models by co-DSS and using the best joint
saturation and porosity models as secondary
variables along with the available well-log
data; Iterate and return to (2) until a given
global correlation coefficient between syn-
thetic and real resistivity and seismic data is
reached.

As a joint inversion methodology, the con-
vergence of the iterative procedure is ensured to

simultaneously match both EM and seismic
reflection data through a weighted mean of the
individual trace-by-trace correlation coefficient
between real and synthetic seismic reflection and
resistivity data (Eq. 6.3):

CCtrace ¼ w1 � CCseismic þw2 � CCEM; ð6:3Þ

where CCtrace is the joint trace-by-trace correla-
tion coefficient between real and synthetic seis-
mic reflection and resistivity data, w1 is the
weight associated with the individual correlation
coefficient between seismic traces (CCseismic) and
w2 is the weight associated with the individual
correlation coefficient between EM traces
(CCEM). The weights of Eq. 6.3 may be tuned
depending on the noise level of each recorded
geophysical data, and the influence of each
kind of geophysical data within the inversion
procedure.

All petrophysical models generated during the
iterative workflow honor the well-log data at its
locations, reproduce the marginal probability
distributions of Sw and porosity as estimated

Fig. 6.1 Schematic representation of the geostatistical joint inversion of seismic and electromagnetic data workflow
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from the available well-log data, reproduce the
joint probability distribution between Sw and
porosity as estimated by the available well-log
data and reproduce a spatial continuity pattern as
in the variogram model.

6.1.1 Application to a Synthetic
Case Study

We illustrate the application of this simultaneous
geostatistical inversion on part of the Stanford
VI-E synthetic dataset (Lee and Mukerji 2013).
Only layers 1 and 2 of the original dataset were

used in this example. These layers correspond to
non-stationary sinuous and meandering channels.

The available synthetic dataset was comprised
of 3D volumes for the measured specific resis-
tance and seismic reflection data as well as the
original petro-elastic models from where the
geophysical response was modelled (Fig. 6.2).
A set of 32 wells with saturation and porosity logs
(Fig. 6.2) and a pre-calibrated rock physics model
(see Lee and Mukerji 2013) linking the petro-
physical with the elastic properties were also
considered as input data for the simultaneous
inversion. The reservoir grid has 150 � 200 �
120 cells in the i, j and k directions, respectively.

Fig. 6.2 Horizontal slices extracted at the same depth from the original 3D petro-elastic models of Sw, porosity,
P-wave velocity and density and well locations for the available well-log data used to constrain the inversion
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Each cell is 25m by 25 m by 1 m, resulting in a
reservoir size of 3750 m by 5000 m.

Since the original resistivity and seismic
reflection data are noise free, some noise was
introduced by upscaling the original well-log
data, with very high vertical resolution, into the
reservoir grid. The upscaling technique ensures
the mean and variance, as estimated from the
original data, are reproduced in the upscaled cells
(Fig. 6.3). In addition, and in order to increase
the complexity of this synthetic example, the
rock physics model used as part of the geosta-
tistical seismic inversion was also simplified in
comparison to the original rock physics model as
described in Lee and Mukerji (2013) (Table 6.1).
The original rock physics model was built
applying a constant cement model and Gar-
dener’s law (Mavko et al. 2003).

Due to the synthetic nature of the example
shown here, the weights defined by Eq. 6.3 were
both set to 0.5, ensuring both geophysical data
have the same importance during the geostatis-
tical inversion procedure.

Another considerable difference with respect
to the original synthetic dataset is the way the
synthetic specific resistance is calculated within
the joint inversion workflow. While in the orig-
inal synthetic dataset real specific resistance was
calculated using Archie’s Law (Archie 1942) for
sand facies and Waxman and Smits (1968) for
shales, we oversimplified this calculation by
using Archie’s Law for the entire model without
including any facies model within the joint
inversion methodology. The Archie’s parameters
used to calculate the synthetic specific resistance
are synthetized in Table 6.2.

Fig. 6.3 Comparison between the original well-log data before and after the upscaling

Table 6.1 Simplified rock physics model used to link the elastic and the petrophysical domains within the iterative
simultaneous geostatistical inversion (adapted from Lee and Mukerji 2013)

Mineral Fraction (%) Bulk modulus(GPa) Shear modulus (GPa) Density (g/cc)

Quartz 0.65 36.6 44 2.65

Clay 0 21 21 2.5

Feldspar 0.2 75.6 75.6 2.63

Rock fragments 0.15 80 80 2.7
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The results shown here were obtained after six
iterations, in which at each iteration a set of 32
pairs of Sw and porosity models were simulated
by DSS and co-DSS with joint probability dis-
tributions. At the end of the iteration the average
global correlation coefficient between the entire
volume of real and synthetic resistivity and
seismic reflection data is about 0.75.

The mean model calculated from the set of
realizations generated during the last iteration
produces highly-correlated synthetic seismic and
EM data for all realizations. For this case study,
during the last iteration the 32 realizations of Sw
and porosity produced synthetic seismic reflec-
tion and resistivity data with a good match when
compared to the real responses: i.e. global cor-
relation coefficients above 0.7. Therefore, the
petro-elastic generated at this iteration only show
small-scale variability and its mean model is a
good approximation of the convergence level for
the geostatistical procedure.

The mean model of the petro-elastic models
generated during the last iteration of Sw and
porosity have a good match for the real ones
(Fig. 6.4). The inverted models show more dis-
continuities within the meandering channels
compared with real petro-elastic models;

nevertheless, the shape and spatial location of the
main sedimentary structures, along with their
spatial distribution, is well reproduced. The
small-scale variability within the channel areas is
a direct result of the stochastic approach used to
solve this inversion problem. The proposed joint
inverse methodology can retrieve high resolution
petro-elastic models. Another important aspect
worth mentioning is the underestimation of the
values of the inverted properties of interest out-
side the channel areas.

Finally, the synthetic resistivity and seismic
responses from the mean models presented in
Fig. 1.5 agree with the real recorded data
(Fig. 6.5). It is clear, however, that the match is
considerably better for the seismic reflection data
when compared to the data for specific resis-
tance. The specific resistance values outside the
channels are overestimated in comparison to the
real data.

It should be noted that this synthetic dataset is
highly non-stationary and suitable for geostatistical
methodologies approaches based on multi-point
statistics (e.g. Strebelle 2002). However, while
here we use stochastic sequential simulation algo-
rithms based on bi-point statistics, the proposed
geostatistical joint inverse methodology succeeds

Table 6.2 Archie’s parameters used as part of the geostatistical joint inversion workflow (adapted from Lee and
Mukerji 2013)

Parameter Tortuosity constant (a) Cementation exponent (m) Saturation exponent (n) Brine resistivity (X m)

Value 1 2 1.8 0.25

Fig. 6.4 Horizontal slices extracted at the same depth as shown in Fig. 6.2 from the mean model calculated from the
petro-elastic models generated during the last iteration of: (from left) water saturation, porosity and acoustic impedance
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in reproducing the main spatial features of the
complex geological environment.

6.1.1.1 Final Remarks About Joint
Inversion of Seismic
and CSEM Data

The results obtained seem robust, even in chal-
lenging non-stationary environments such as the
one represented by this synthetic dataset. The
retrieved inverse water saturation, porosity and

acoustic impedance (or density and P-wave
velocity) models reproduce both small-scale
and large-scale details as interpreted from the
real models.

The petro-elastic properties best inferred from
the geostatistical joint inverse workflow are
porosity and acoustic impedance (or P-wave
velocity and density). On the other hand, Sw is
the property in which the algorithm shows lower
convergence towards the solution. The results do

Fig. 6.5 Comparison between horizontal slices extracted at the same depth as shown in Fig. 6.8 from (top) real
specific resistance and seismic reflection data and (bottom) synthetic specific resistance and seismic response calculated
from the mean model resulting from the petro-elastic models generated during the last iteration (Fig. 6.2)
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agree with what it is expected, since the resolu-
tion of the EM data is smaller in comparison to
the seismic reflection data.

The inverted petro-elastic models have a
lower speed of convergence outside the channel
areas in comparison to the real ones. We put this
mismatch of property values down to two rea-
sons: the difference between the distributions of
the real three-dimensional models in comparison
to those retrieved from the upscaling data; and
the simplifications in the calculation of the
specific resistance response. While the high
specific resistance areas within the channel are
fairly well reproduced, there is a clear mismatch
(overestimation) of resistivity values. It is clear to
us that the proposed methodology should include
a facies model when computing the synthetic
resistivity response from the Sw and porosity
models. The over-simplification of modeling the
synthetic resistivity response allowed us to test
and assess the concept of the use of a geostatis-
tical framework for jointly inverting geophysical
data of very different nature.

As an iterative geostatistical joint inversion
methodology, the spatial uncertainty of each
property may be assessed individually by calcu-
lating the variance between the set of petro-elastic
models simulated and co-simulated during the last

iteration of the inversion procedure (Fig. 6.6).
The interpretation of the variance models shows
the porosity models are related with the location
and spatial extent of the meandering channels,
while the Sw models are related with the fluid fill
within the channel itself. This is directly related to
the nature of the geophysical data integrated
within this inversion methodology. The seismic
reflection data allowing the inversion directly for
porosity has a stronger relationship with the
location and structure of the study area, while the
EM data is highly responsive to the pore fluids
present in the subsurface rocks.

6.2 Integration of Dynamic
Production Data: Global
Inversion

Here we present a contribution to one of the most
important and difficult challenges of the hydro-
carbon reservoir characterization: the integration
of all the available geological, seismic reflection,
well-log and production data into a coherent
numerical reservoir model to reflect the Earth’s
subsurface complexity and heterogeneities.

Traditional approaches within the oil and gas
industry for reservoir characterization is still

Fig. 6.6 Horizontal slices extracted at the same depth as shown in Fig. 6.2 from the standard deviation model
calculated from the ensemble of petro-elastic models generated during the last iteration
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heavily based on matching each type of data
sequentially in separate workflows. Subsurface
elastic, or petro-elastic, models derived from any
inversion procedure, as, for example, those
described above, are able to match the observed
seismic data. However, these models are fre-
quently unsuitable for matching and predicting
production data in mature fields. In such cases,
the inverted petro-elastic models are perturbed in
order to match the historical production data in a
process commonly designated as history match-
ing (Hu 2000; Hu et al. 2001; Hoffman and Caers
2005; Caers and Hoffman 2006; Kashib and
Srinivasan 2006; Mata-Lima 2008; Oliver et al.
2008; Demyanov et al. 2011; Oliver and Chen
2001).

History matching is another inverse problem
in which the known solution, the measured
observations of production (d), is related with the
unknown parameters (m) through a nonlinear
function (g), e.g. a fluid flow simulator:

d ¼ gðmÞþ e; ð6:4Þ

In history matching problems we try to match
the reservoir’s response at sparse well locations,
but allowing modifications for the entire reser-
voir grid without spatial constraint from other
data (for example, seismic data). There is a
highly nonlinear relationship to optimize
between the local petrophysical properties at the
well locations and the model parameters. In
addition, there is also a spatial scale gap between
the petrophysical properties one tries to infer
spatially-distributed along the entire reservoir
field and the dynamic responses obtained locally
at the well locations. Different history matching
procedures are proposed to solve this problem by
using geostatistics as the driving process of
parameter characterization (Hu 2000; Hu et al.
2001; Hoffman and Caers 2005; Caers and
Hoffman 2006; Kashib and Srinivasan 2006;
Mata-Lima 2008). Essentially, these methods
consist of an iterative procedure with the per-
turbation of the model parameter space by
stochastic sequential simulation and an opti-
mization process to guarantee the convergence

through the desired solution: i.e. the known
production data. By tuning the inferred reservoir
models to match historical production data, the
resulting petro-elastic models generally begin
diverging from the observed seismic reflection
data, particularly at locations far from the wells,
where there is no constraining ‘hard-data’.

The next section introduces traditional geo-
statistical history matching, as proposed by
Mata-Lima (2008). It is then followed by an
approach that simultaneously integrates seismic
reflection and production data within the same
history matching iterative procedure. Note that
despite the distinct physical nature of these
inverse problems (seismic inversion and history
matching) both have the same parameter solution
space: the reservoir’s model parameter space.

6.2.1 Geostatistical History Matching

The traditional geostatistical history matching
(Mata-Lima 2008; Caeiro et al. 2015) is an iter-
ative geostatistical procedure that uses stochastic
sequential simulation as the model perturbation
technique and a genetic algorithm as a global
optimizer for the iterative procedure. It uses
available well-log data as experimental data for
the geostatistical simulation and a variogram
model to describe the spatial continuity pattern of
the property being modelled. Within this frame-
work, there is the assumption of stationarity for
the first and second statistical moments as esti-
mated from the available well-log data. We
assume the spatial dispersion behavior of the
natural property we are seeking to model can be
fully described by a variogram model for the
entire reservoir grid. It is true that for highly
non-stationary geology settings, such as those
associated with turbidite channels, these
assumptions generally do not meet realistic
geological models; however, given the simplicity
of the perturbation technique of the model
parameter space they allow a faster convergence
in the iterative processes. For more on
non-stationary inverse problems, please see
Sect. 4.3.8 in Chap. 4.
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The traditional geostatistical history matching
may be summarized through the following
sequence of steps (Mata-Lima 2008):

(1) Simulate an ensemble of petrophysical
models (e.g. porosity and/or permeability)
from the available well-log data for the entire
reservoir grid using a secondary model
derived from a seismic inversion procedure;

(2) Complete a fluid flow simulation for each of
the models generated in (1);

(3) Compare the production data obtained in
(2) and the real historical production data;

(4) Divide the reservoir into areas of influence
for each well being considered;

(5) For each area considered in the previous
step, select the petrophysical model that
ensures the maximum match with the pro-
duction data for that particular area;

(6) Use the patchwork model composed in (5) as
secondary variable for the generation of a
new ensemble of models using stochastic
sequential co-simulation;

(7) Iterate until all wells match the observed
production data.

The main bottlenecks of this family of history
matching algorithms are the considerable amount
of computation time spent on the fluid flow
simulations (one for each model generated dur-
ing the entire iterative procedure) and the lack of
a spatial conditioning data for cells located far
from the wells. The only spatial constraint at
these locations is the global cumulative distri-
bution function of the simulated property and the
variogram model imposed during the geostatis-
tical simulations.

6.2.2 Iterative Global Seismic
Inversion in History
Matching

The integration of seismic reflection and pro-
duction data into the traditional geostatistical
history matching allows for more detailed and
constrained subsurface Earth models. While the

detail increases, their intrinsic uncertainty is
reduced. Hence, geostatistical seismic inversion
(Sect. 4.3 in Chap. 4) and geostatistical history
matching are two different inversion methods
with the same aim—a numerical model of
parameters—and identical perturbation in an
iterative procedure—DSS and co-simulation with
joint probability distributions—the solution of
both inverse problems cannot be the same. The
idea of the proposed approach is to obtain a
solution in an iterative process that jointly mat-
ches both objective functions: the match between
synthetic and real seismic data and between
historical and simulated production data. The
integration of seismic reflection data into the
geostatistical history matching workflow may be
split into two stages: the stochastic simulation of
petro-elastic models—forward modeling and the
comparison against the observed seismic and
production data (Fig. 6.7)—and the selection of
the conditioning data for the next iterations based
on the petro-elastic ensemble simulated at the
current iteration (Fig. 6.8).

The first stage of this simultaneous inversion
procedure may be further divided into two pro-
cesses that run in parallel: the geostatistical
seismic inversion of post-stack seismic data (as
described in Sect. 4.4.3 in Chap. 4) and the fluid
flow simulation and comparison against the
observed data (Fig. 6.7).

First, a global geostatistical acoustic inver-
sion, as described in Sect. 4.3.4 in Chap. 4, is
performed. For each simulated Ip model, Ns
porosity is generated by stochastic sequential
simulation with joint probability distributions
from where Ns permeability distributions are
derived following the same methodology. In this
way, the relationship between the petro-elastic
properties is ensured between the simulated and
co-simulated models as retrieved from the
available well-log data.

From the set of Ns acoustic impedance mod-
els, Ns post-stack synthetic seismic volumes are
calculated. Each synthetic volume is then com-
pared, in terms of correlation coefficient, with the
real seismic data on a trace-by-trace basis. These
correlation coefficients can be thought as seismic
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Fig. 6.7 Schematic representation of the first stage of the geostatistical history matching conditioned to seismic
inversion workflow

Fig. 6.8 top MDS plot for three wells with 16 models each (blue circles). The area of influence of each well is
represented in orange over a 2D grid. The model plotted with a green circle corresponds to the model with the lowest
mismatch in terms of simulated and observed production data and will be used to fill the respective area of influence in
the best local correlation and best cubes. bottom Best local correlation cube and best volumes for acoustic impedance,
porosity and permeability. The grid cells outside the areas of influence are filled with the best correlated models in terms
of seismic data
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deviations from the real or recorded seismic
data:

els ¼ Al � Ar

� �
; l ¼ 1; . . .;Ns; ð6:5Þ

where Al is the synthetic seismic data and Ar is
the real seismic data.

While the seismic forward modeling is being
performed, the Ns pairs of porosity and perme-
ability are used as input for a fluid flow simulator
(e.g. Eclipse®, T-Navigator®). From the fluid
flow simulation, we obtain Ns production profiles
for the variables of interest (e.g. oil and water
production). Depending on the target of the his-
tory matching (e.g. total field or well production
rates), the simulated responses are compared
with the corresponding historical production
data: the observed data. For each simulated
production profile, Ns deviations from the
observed historic production data can be calcu-
lated following:

eld ¼ dl � dr
� �

; l ¼ 1; . . .;Ns; ð6:6Þ

where dl is the synthetic production profile and dr
is the historic production data.

At this stage we can assess the mismatch
between synthetic and real seismic reflection data
(Eq. 6.5) and the deviations between simulated
fluid flow production data and the real historic
production data (Eq. 6.6).

The second step of the proposed iterative
methodology comprises the selection of the best
models of acoustic impedance, porosity and
permeability, and the best local correlation
coefficients at the end of a given iteration. These
will be used as the seed for the generation of new
models during the next iteration, i.e. secondary
variables in the co-simulation of a new set of
petro-elastic properties. These are composite, or
patchwork, models created by selecting patches
from the set of simulated models that locally
ensure the lowest misfit between observed and
synthetic data, simultaneously for production and
seismic reflection data. The proposed methodol-
ogy is based on the following rational:

• for the cells close to the well locations, the
misfit of production data will prevail in
choosing the best models of the next iteration;

• far from the influence of the wells, the misfit
between synthetic and real seismic reflection
data will condition the choice of the best
models for the next iteration.

The selection of the areas of influence may be
performed strictly by statistical algorithms (e.g.
Voronoi polygons), based on well tests or a
geological facies model that is inferred, for
example, from previous inverted models.

6.2.3 Selection of Petro-Elastic
Models

The selection of the petro-elastic models to fill
the areas of influence for each well is carried out
by plotting the simulated productions along with
the real ones in a multidimensional scaling ref-
erential (Cox and Cox 1994; Scheidt and Caers
2008; Suzuki and Caers 2008; Caers 2011).
Multidimensional scaling (MDS) is a multivari-
ate statistical technique that can reveal, in few
dimensions, the patterns between a set of multi-
dimensional models based on the concept of
distances (Caers 2011). Briefly, the MDS con-
verts a dissimilarity matrix (D) into points, which
can then be plotted in a Cartesian space, the
MDS space (Borg and Groenen 1997; Cox and
Cox 1994; Caers 2011). The matrix D is first
converted into a matrix A by a scalar product.
Then, A is decomposed by eigenvector decom-
position, where only the first d principal com-
ponents, or eigenvectors, are retained. A detailed
mathematical description of this methodology
can be found in Cox and Cox (1994) and Caers
(2011).

In the metric space, the MDS space itself, the
relative position between several simulated
models or their dynamic responses, is directly
related to how similar these models are in terms
of their internal configuration or dynamic
responses. In this space, similar models will be
plotted in a cluster, while distinct models will be
plotted with greater distances between them.

An essential step in the MDS procedure is the
selection of the distance to construct the dis-
similarity matrix (D). In order to ensure a good
separation of the ensemble of models in the MDS
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space, this distance should reflect the type of data
one is dealing with. If the goal is to distinguish
between models that have bodies with different
shapes (e.g. different channelized systems), then
the Hausdorff distance may be suitable for that
purpose (Scheidt and Caers 2008; Suzuki and
Caers 2008). Correlation-based distances are
preferred for distinguishing between different
temporal signals such as seismic reflection data.
For the geostatistical seismic inversion with
history matching we calculate the Euclidean
distance per well between each of the simulated
production curves against its corresponding real
curve.

After calculating the distance matrix (D) for
each individual well, all the simulated responses
and historic data are plotted in the MDS space
(Fig. 6.8). Then, for each well in the corre-
sponding metric space, the petro-elastic models
with the production profile that is closest to the
observed production data will be chosen to build
the best acoustic impedance, porosity and per-
meability models within the area of influence for
that particular well. The associated local corre-
lation coefficients calculated from the synthetic
seismic traces resulting from the selected elastic
models and the real seismic data are also stored
in a local correlation cube.

All the other zones outside the well’ area of
influence are selected according the match
against the recorded seismic data: i.e. following
the traditional approach of the geostatistical
seismic inversion methods introduced in Chap. 3.

The geostatistical iterative procedure contin-
ues with the generation of a new set of
petro-elastic models recurring to co-simulation
and using the best acoustic impedance, porosity
and permeability models as secondary variables,
along with the best local correlation volume. The
inversion is considered complete when the global
correlation coefficient between a synthetic seis-
mic volume and the real seismic data is above a
certain threshold. This simultaneous inversion
methodology can be summarized through the
following sequence of steps (Fig. 6.9):

(1) Stochastic sequential simulation of Ns
acoustic impedance models using DSS;

(2) Stochastic sequential co-simulation of Ns
porosity models with co-DSS with joint
probability distributions using the models
simulated in (1) as secondary variables;

3) Stochastic sequential co-simulation of Ns
permeability models with co-DSS with joint
probability distributions using the models
simulated in (2) as secondary variables;

(4) Calculate Ns synthetic seismic volumes and
compare each with the real seismic data on a
trace-by-trace basis for each model simulated
in (1);

(5) Calculate the respective flow simulations and
compare the obtained dynamic responses
with the observed ones from the historic
production data for each pair of porosity and
permeability in (2) and (3);

(6) Plot the simulated and real production pro-
files in the MDS space for each well
individually;

(7) Compose new best acoustic impedance,
porosity and permeability models from the set
of simulated models in (1), (2) and (3). Around
the well location select the models from
(6) with production data closest to the real one.
Select the models that produce the synthetic
seismic data that best correlates with the real
one in areas far from the influence of the wells;

(8) Based on a global genetic algorithm, use the
‘best’ models created in (7) as secondary vari-
ables in the perturbation of the model parame-
ters by using co-simulation methodology.
Return to (1) and iterate until the global corre-
lation coefficient between real and synthetic
seismic data is above a certain threshold.

As a geostatistical approach, all simulated
models created during each iteration can repro-
duce the probability distributions for the inverted
properties, acoustic impedance, porosity and
permeability, as estimated from the well-log data;
the joint distribution between acoustic impedance
versus porosity and porosity versus permeability
as retrieved from the well-log data; the spatial
continuity pattern imposed by the variogram; and
the values of the well-logs at the well locations.

The inverted petro-elastic models are able to
simultaneously match the observed seismic and

6.2 Integration of Dynamic Production Data: Global Inversion 121

http://dx.doi.org/10.1007/978-3-319-53201-1_3


historic production data. The proposed approach
solves two different highly nonlinear inverse
problems within the same solution space: the
model parameter space. From the resulting set of
inverted models, the individual spatial uncer-
tainty of each property can also be assessed,
allowing for better risk assessment.

The main bottleneck of geostatistical history
matching methodologies is related to the com-
putational burden associated with the Ns fluid
flow simulations carried out at each iteration in
order to obtain the simulated production data for
each pair of porosity and permeability models.
For this reason, in medium to large reservoir
models, the proposed method can accomplish the
fluid flow simulation in a coarser reservoir grid in
a multi-scale approach (Marques et al. 2015).
These alternative solutions can be easily coupled

with the iterative geostatistical history matching
conditioned by seismic inversion.

6.2.4 Application to a Synthetic Case
Study

In this section we show the application of both
methodologies described above to part of the
Stanford VI synthetic reservoir (SVI; Castro et al.
2005). A portion of 60 � 75 � 20 cells in the i, j,
k directions, respectively, was selected from layer
2 of the SVI (Fig. 6.10). The original reservoir
grid was upscaled into a coarser grid comprising
50 m � 50 m � 2 m cells in order to speed up
the fluid flow simulator. The upscaling procedure
ensured the reproduction of the original spatial
distribution for the petro-elastic models as well as

Fig. 6.9 Schematic representation of the iterative geostatistical history matching conditioned to seismic inversion
workflow
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its distribution functions. Only 12 of the 23 wells
were used as a constraint for the geostatistical
history matching and seismic inversion
(Fig. 6.10). The remaining wells were not used in
any part of the inversion procedure and were kept
exclusively for blind tests at the well locations.
The rest of the available dataset comprises real
three-dimensional models of acoustic impedance,
porosity and permeability (Fig. 6.11) as well as a
noise-free full-stack seismic volume (Fig. 6.12).

Structurally, the SVI reservoir is a simple and
gentle asymmetrical anticline with axis N15Eº.
Layer 2 of the SVI dataset comprises meandering
channels of variable sizes with four facies types:
floodplain, point bar, channel and boundaries
(Castro et al. 2005). The reproduction of such a
non-stationary sedimentary environment in
reservoir modeling represents a challenge for any
geostatistical inversion methodology based on
two-point geostatistics. The shape and thickness
of the many meandering channels vary

considerably across the real petro-elastic models
(Figs. 6.11 and 6.12) and a successful inversion
needs to ensure the reproduction of these chan-
nels in terms of size and spatial distribution.

Finally, a fluid flow simulator, such as
Eclipse® (Schlumberger) or T-Navigator (RFD),
ran over the original petrophysical models to
produce the historic data used for the history
matching problem. The reservoir was in produc-
tion for approximately three years. The simulation
target was bottom-hole pressure (BHP) at each
individual well. The wells were shut down after
reaching a minimum BHP value. An oil produc-
tion rate (OPR) constraint was also applied to
each individual well. The initial reservoir condi-
tions were set such as not all 12 wells were pro-
ducing simultaneously during the three years. The
intrinsic parameterization of the initial reservoir
conditions is not an important aspect in testing the
performance and efficiency of the integration of
seismic data into history matching.

Fig. 6.10 Available set of wells and their location within the study area. Coloured wells were used to constrain the
geostatistical inversion while black wells were used exclusively as blind tests. Top reservoir surface is also shown as
example
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In this particular example, the geostatistical
history matching conditioned to seismic inver-
sion converged to a global correlation coefficient
between real and synthetic seismic data of 0.81.
This convergence was obtained after six itera-
tions with 16 ensembles of petro-elastic models
(acoustic impedance and porosity) simulated and
co-simulated per iteration. The resulting syn-
thetic seismic data with the highest correlation
coefficient matches the main seismic reflections
as observed in the real seismic data (Fig. 6.12).
The integration of both data allows the repro-
duction of both the non-stationary patterns rela-
ted with the meandering channels and the high

variability that they present in terms of shape and
thickness.

The resulting inverted petro-elastic models for
acoustic impedance, porosity and permeability
(Figs. 6.13, 6.14 and 6.15) reproduce the real
ones very well. The inverted models can repro-
duce the small-scale and large-scale non-
stationary patterns. It is also interesting to note
the evolution of the inverted models from itera-
tion to iteration (Fig. 6.13, 6.14 and 6.15). In the
first iteration, the simulated models are condi-
tioned only to the available well-log data and,
consequently, the meandering structures are not
reproduced. After the first iteration, the inverted

Fig. 6.11 Horizontal sections extracted from the real three-dimensional petro-elastic models. From left: acoustic
impedance, porosity and permeability

Fig. 6.12 Horizontal sections extracted from (top) the real seismic data and (bottom) the best-fit synthetic seismic data
at the end of the geostatistical inversion at different depths. The inverted seismic data provides a good reproduction of
the sedimentary bodies present within the original data
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Fig. 6.13 Horizontal sections extracted from (top) real Ip model and (bottom) the mean of the acoustic impedance
models simulated at: (from left to right) iteration 1, iteration 3 and iteration 6

Fig. 6.14 Horizontal sections extracted from (top) real porosity model and (bottom) the mean of the porosity models
simulated at: (from left to right) iteration 1, iteration 3 and iteration 6
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petro-elastic models begin conditioned to the real
seismic and historic production data, in this way
beginning to reproduce the main sedimentary
features as interpreted from the real petro-elastic
models.

Along with the inverted petro-elastic models
and the synthetic seismic data, it is also necessary
to assess the production responses obtained from
each of the converged models after the iterative
geostatistical procedure. The production profiles
for each well, obtained by the fluid flow simu-
lation of the inverted permeability and porosity
models, and related with the highest global cor-
relation coefficient between synthetic and real
seismic reflection data, are impressive matches
for the historic production data (Fig. 6.16, 6.17
and 6.18). Generally, history matching is better
for OPR and BHP than for water production
ratio. The well with the worst match in terms of
water production rate is P3. It is worth noting the
petro-elastic models designated by best-fit mod-
els (plotted in red in Fig. 6.13, 6.14 and 6.15) are
those producing the greatest global correlation

coefficient between real and synthetic seismic
data during the iterative inversion process. In
fact, for most of the wells, these best-fit models
also present the best match between the set of
simulated petro-elastic models and the historic
data.

As shown in Fig. 6.13, 6.14 and 6.15, the
best-fit inverted petro-elastic models can repro-
duce the small- and large-scale structures as
interpreted from the real petro-elastic models.
The reproduction of the non-stationary patterns
associated with the meandering channels in the
inverted petro-elastic models is surprising. In
addition to the reproduction of the spatial pat-
terns, the inverted petro-elastic models are also
able to reproduce the values of the real property.
In order to assess the convergence of the inverted
models locally, we compared the inverted models
against the real petro-elastic models at the loca-
tions of wells not used to constrain the inversion
(Fig. 6.19). The reproduction of the original
well-logs for acoustic impedance, porosity and
permeability is extremely good, even for

Fig. 6.15 Horizontal sections extracted from (top) the real permeability model and (bottom) the mean of the
permeability models simulated at: (from left to right) iteration 1, iteration 3 and iteration 6
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Fig. 6.16 OPR profiles for the best-fit inverted model for each well individually during the three-year production
period. The black dashed curve is the historic production data. The red dashed line corresponds to the response of the
best-fit inverted models. The fluid flow responses of all models simulated during the last iteration are plotted behind the
thick red line

Fig. 6.17 BHP profiles for the best-fit inverted model for each well individually during the three-year production
period. The black dashed curve is the historic production data. The red dashed line corresponds to the response of the
best-fit inverted models. The fluid flow responses of all models simulated during the last iteration are plotted behind the
thick red line
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Fig. 6.18 Water production rate profiles for the best-fit inverted model for each well individually during the three-year
production period. The black dashed curve is the historic production data. The red dashed line corresponds to the response of
the best-fit inverted models and thin grey lines to the fluid flow responses of all models simulated during the last iteration

Fig. 6.19 Blind well tests for W31 and W25 well (for location see Fig. 6.14). The inverted models (red dashed line)
match the real ones (black solid line) at these locations. From left: acoustic impedance, porosity and permeability. The
fit is particularly good for acoustic impedance and porosity
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positions far from the main cluster of wells, and
consequently less constrained by the experi-
mental data, such as the case of wells W31 and
W25.

To reveal the importance of integrating
dynamic production data within the same inver-
sion procedure, we show the results of applying
the traditional geostatistical history matching (as
described in Mata-Lima 2008, Sect. 6.2.1) to the
non-stationary dataset used in the previous
example.

Horizontal sections extracted from the best-fit
pair of porosity and permeability models after six
iterations of the iterative geostatistical history
matching procedure are shown in Fig. 6.20. The
a priori configuration for this example is the
same as that shown from the integration of
seismic reflection data into history matching. It is
clear the traditional geostatistical history match-
ing fails to retrieve a channelized configuration
exclusively from the well-log and production
data. This is mainly due to a lack of spatial
constraints in the productive areas. The incor-
poration of seismic reflection data within the

history matching procedure can fill this gap,
allowing for more reliable petrophysical models.

6.2.5 Final Remarks

The use of bi-point statistics, such as the vari-
ogram, to reproduce production data in tradi-
tional geostatistical history matching usually fails
to reproduce non-stationary channelized struc-
tures. Multi-point statistics, with appropriated
training images, succeed in reproducing realistic
geological models of such structures, but usually
fail to integrate the production data once there is
a lack of malleability to perturb models in iter-
ative steps while preserving the channelized
features of interest.

This proposed approach of integrating seismic
reflection data in history matching seems to be
promissing and an efficient way of coupling both
objectives: reproducing the production data and
the main geological features such as channelized
structures as interpreted from the available seis-
mic reflection data.

Fig. 6.20 Horizontal sections extracted from the best-fit inverse models of a porosity and b permeability retrieved
from the traditional geostatistical history matching

6.2 Integration of Dynamic Production Data: Global Inversion 129



7Afterword

This book seeks to fill the gap between tradi-
tional geostatistical methodology tools for
reservoir modeling and characterization, and
inverse procedures for integrating different data
within the geo-modeling workflow. It begins
with a review of stochastic sequential simulation.
The geostatistical inversion algorithms intro-
duced here were presented to be used as a first
approach by anyone, from student to geoscien-
tists, generating reservoir models on a daily
basis.

We hope to have aroused curiosity to engage
in further research and embark in new develop-
ments in important fields, ranging from petro-
physics to reservoir engineering. We believe the

new and challenging environments, such as deep
offshore, require integrative and multidisci-
plinary approaches that incorporate knowledge
from different scientific areas. Moreover, due to
their complexity we should never forget uncer-
tainty that is always present at every stage—from
data processing to modeling and characterization.
This uncertainty should be assessed at all stages
and integrated within entire production chain.
Improved uncertainty assessment allows for
better decision making with fewer risks and
greater success. We hope that we have been able
to show that the methodologies presented here
can help achieve this goal.
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