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Foreword

The 10th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place in Montbonnot, near Grenoble, France, during June 2–5, 2015.
It was hosted and organized by INRIA, the French National Research Institute in Com-
puter Science and Control. The DisCoTec series is one of the major events sponsored
by the International Federation for Information Processing (IFIP). It comprises three
conferences:

– COORDINATION, the IFIP WG6.1 International Conference on Coordination Mod-
els and Languages.

– DAIS, the IFIP WG6.1 International Conference on Distributed Applications and
Interoperable Systems.

– FORTE, the IFIP WG6.1 International Conference on Formal Techniques for Dis-
tributed Objects, Components and Systems.

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to systems
research issues.

Each day of the federated event began with a plenary keynote speaker nominated by
one of the conferences. The three invited speakers were Alois Ferscha (Johannes Ke-
pler Universität, Linz, Austria), Leslie Lamport (Microsoft Research, USA), and Willy
Zwaenepoel (EPFL, Lausanne, Switzerland).

Associated with the federated event were also three satellite workshops, that took
place on June 5, 2015:

– The 2nd International Workshop on Formal Reasoning in Distributed Algorithms
(FRIDA), with a keynote speech by Leslie Lamport (Microsoft Research, USA).

– The 8th International Workshop on Interaction and Concurrency Experience (ICE),
with keynote lectures by Jade Alglave (University College London, UK) and Steve
Ross-Talbot (ZDLC, Cognizant Technology Solutions, London, UK).

– The 2nd International Workshop on Meta Models for Process Languages (MeMo).

Sincere thanks go to the chairs and members of the Program and Steering Com-
mittees of the involved conferences and workshops for their highly appreciated efforts.
Organizing DisCoTec was only possible thanks to the dedicated work of the Organiz-
ing Committee from INRIA Grenoble-Rhône-Alpes, including Sophie Azzaro, Vanessa
Peregrin, Martine Consigney, Alain Kersaudy, Sophie Quinton, Jean-Bernard Stefani,
and the excellent support from Catherine Nuel and the people at Insight Outside. Fi-
nally, many thanks go to IFIP WG6.1 for sponsoring this event, and to INRIA Grenoble-
Rhône-Alpes and its Director Patrick Gros for their support and sponsorship.

Alain Girault
DisCoTec 2015 General Chair
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Preface

This volume contains the proceedings of FORTE 2015, the 35th IFIP International Con-
ference on Formal Techniques for Distributed Objects, Components and Systems. This
conference was organized as part of the 10th International Federated Conference on
Distributed Computing Techniques (DisCoTec) and was held in Grenoble, France be-
tween June 2–4, 2015.

The FORTE conference series represents a forum for fundamental research on the-
ory, models, tools, and applications for distributed systems. The conference encourages
contributions that combine theory and practice, and that exploit formal methods and
theoretical foundations to present novel solutions to problems arising from the devel-
opment of distributed systems. FORTE covers distributed computing models and for-
mal specification, testing, and verification methods. The application domains include
all kinds of application-level distributed systems, telecommunication services, Internet,
embedded and real-time systems, as well as networking and communication security
and reliability.

We received a total of 53 full paper submissions for review. Each submission was
reviewed by at least three members of the Program Committee. Based on high-quality
reviews, and a thorough (electronic) discussion by the Program Committee, we selected
15 papers for presentation at the conference and for publication in this volume.

Leslie Lamport (Microsoft Research) was keynote speaker of FORTE 2015. Leslie
received the Turing Award in 2013. He is known for his seminal contributions in dis-
tributed systems. He has developed algorithms, formal models, and verification methods
for distributed systems. Leslie’s keynote lecture was on Temporal Logic of Actions.

We would like to thank all those who contributed to the success of FORTE 2015:
the authors, for submitting high-quality work to FORTE 2015; the Program Committee
and the external reviewers, for providing constructive, high-quality reviews, an efficient
discussion, and a fair selection of papers; the invited speaker for an inspiring talk; and,
of course, all the attendees of FORTE 2015. We are also grateful to the DisCoTec Gen-
eral Chair, Alain Girault, Organization Chair, Jean-Bernard Stefani, and all members of
their local organization team. The EasyChair conference management system facilitated
PC discussions, and the preparation of these proceedings. Thank You.

June 2015 Susanne Graf
Mahesh Viswanathan



Organization

Program Committee Chairs

Susanne Graf VERIMAG & CNRS, Grenoble, France
Mahesh Viswanathan University of Illinois at Urbana-Champaign, USA

Program Committee Members

Erika Abraham RWTH Aachen University, Germany
Luca Aceto Reykjavik University, Iceland
S. Akshay IIT Bombay, India
Paul Attie American University of Beirut, Lebanon
Rohit Chadha University of Missouri, USA
Rance Cleaveland University of Maryland, USA
Frank de Boer CWI, Amsterdam, The Netherlands
Borzoo Bonakdarpour McMaster University, Ontario, Canada
Michele Boreale Università degli Studi di Firenze, Italy
Stephanie Delaune CNRS & ENS Cachan, France
Wan Fokkink Vrije Universiteit Amsterdam, The Netherlands
Gregor Goessler Inria Grenoble, France
Gerard Holzmann Jet Propulsion Laboratory, Pasadena, CA, USA
Alan Jeffrey Alcatel-Lucent Bell Labs, USA
Petr Kuznetsov Telecom ParisTech, France
Ivan Lanese University of Bologna/INRIA, Italy
Kim Larsen University of Aalborg, Denmark
Antonia Lopes University of Lisbon, Portugal
Stephan Merz LORIA & INRIA Nancy, France
Catuscia Palamidessi INRIA Saclay, France
Alan Schmitt IRISA & INRIA Rennes, France

Steering Committee

Erika Abraham RWTH Aachen, Germany
Dirk Beyer University of Passau, Germany
Michele Boreale Università degli Studi di Firenze, Italy
Einar Broch Johnsen University of Oslo, Norway
Frank de Boer CWI, Amsterdam, The Netherlands
Holger Giese University of Potsdam, Germany
Catuscia Palamidessi INRIA, Saclay, France
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Jean-Bernard Stefani INRIA, Grenoble, France (Chair)
Heike Wehrheim University of Paderborn, Germany



X Organization

Additional Reviewers

Agrawal, Shreya
Astefanoaei, Lacramioara
Azadbakht, Keyvan
Bauer, Matthew
Bettini, Lorenzo
Bezirgiannis, Nikolaos
Bracciali, Andrea
Bresolin, Davide
Castellani, Ilaria
Corzilius, Florian
Dalsgaard, Andreas Engelbredt
Dang, Thao
Della Monica, Dario
Demangeon, Romain
Denielou, Pierre-Malo
Di Giusto, Cinzia
Dokter, Kasper
Enea, Constantin
Fehnker, Ansgar
Foshammer, Louise
Francalanza, Adrian
Franco, Juliana
Griffith, Dennis
Guha, Shibashis
Henrio, Ludovic
Herbreteau, Frédéric
Hirsch, Martin
Höfner, Peter
Jongmans, Sung-Shik T.Q.
Kemper, Stephanie
Kini, Dileep
Laurent, Mounier

Lenglet, Sergueï
Loreti, Michele
Mandel, Louis
Marques, Eduardo R.B.
Martins, Francisco
Massink, Mieke
Mateescu, Radu
Mezzina, Claudio Antares
Najm, Elie
Ober, Iulian
Padovani, Luca
Peressotti, Marco
Pessaux, François
Phawade, Ramchandra
Poulsen, Danny Bøgsted
Prisacariu, Cristian
Pérez, Jorge A.
Quinton, Sophie
Ravi, Srivatsan
Reniers, Michel
Rezine, Ahmed
S. Krishna
Sangnier, Arnaud
Serbanescu, Vlad Nicolae
Sirjani, Marjan
Tapia Tarifa, Silvia Lizeth
Tiezzi, Francesco
Trivedi, Ashutosh
Valencia, Frank
Wognsen, Erik Ramsgaard
Xue, Bingtian



Contents

Ensuring Properties of Distributed Systems

Types for Deadlock-Free Higher-Order Programs . . . . . . . . . . . . . . . . . . . . . 3
Luca Padovani and Luca Novara

On Partial Order Semantics for SAT/SMT-Based Symbolic Encodings
of Weak Memory Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Alex Horn and Daniel Kroening

A Strategy for Automatic Verification of Stabilization of Distributed
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Ritwika Ghosh and Sayan Mitra

Faster Linearizability Checking Via P -Compositionality . . . . . . . . . . . . . . . 50
Alex Horn and Daniel Kroening

Translation Validation for Synchronous Data-Flow Specification in the
SIGNAL Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Van Chan Ngo, Jean-Pierre Talpin, and Thierry Gautier

Formal Models of Concurrent and Distributed
Systems

Dynamic Causality in Event Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Youssef Arbach, David Karcher, Kirstin Peters, and Uwe Nestmann

Loop Freedom in AODVv2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Kedar S. Namjoshi and Richard J. Trefler

Code Mobility Meets Self-organisation: A Higher-Order Calculus of
Computational Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Ferruccio Damiani, Mirko Viroli, Danilo Pianini, and Jacob Beal

Real Time Systems

Timely Dataflow: A Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Mart́ın Abadi and Michael Isard

Difference Bound Constraint Abstraction for Timed Automata
Reachability Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Weifeng Wang and Li Jiao



XII Contents

Compliance and Subtyping in Timed Session Types . . . . . . . . . . . . . . . . . . 161
Massimo Bartoletti, Tiziana Cimoli, Maurizio Murgia,
Alessandro Sebastian Podda, and Livio Pompianu

Security

Type Checking Privacy Policies in the π-calculus . . . . . . . . . . . . . . . . . . . . . 181
Dimitrios Kouzapas and Anna Philippou

Extending Testing Automata to All LTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Ala Eddine Ben Salem

Efficient Verification Techniques

Simple Isolation for an Actor Abstract Machine . . . . . . . . . . . . . . . . . . . . . . 213
Benoit Claudel, Quentin Sabah, and Jean-Bernard Stefani

Sliced Path Prefixes: An Effective Method to Enable
Refinement Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
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Types for Deadlock-Free Higher-Order Programs

Luca Padovani(�) and Luca Novara

Dipartimento di Informatica, Università di Torino, Torino, Italy
luca.padovani@di.unito.it

Abstract. Type systems for communicating processes are typically studied using
abstract models – e.g., process algebras – that distill the communication behavior
of programs but overlook their structure in terms of functions, methods, objects,
modules. It is not always obvious how to apply these type systems to structured
programming languages. In this work we port a recently developed type system
that ensures deadlock freedom in the π-calculus to a higher-order language.

1 Introduction

In this article we develop a type system that guarantees well-typed programs that com-
municate over channels to be free from deadlocks. Type systems ensuring this property
already exist [7,8,10], but they all use the π-calculus as the reference language. This
choice overlooks some aspects of concrete programming languages, like the fact that
programs are structured into compartmentalized blocks (e.g., functions) within which
only the local structure of the program (the body of a function) is visible to the type
system, and little if anything is know about the exterior of the block (the callers of
the function). The structure of programs may hinder some kinds of analysis: for exam-
ple, the type systems in [7,8,10] enforce an ordering of communication events and to
do so they take advantage of the nature of π-calculus processes, where programs are
flat sequences of communication actions. How do we reason on such ordering when
the execution order is dictated by the reduction strategy of the language rather than by
the syntax of programs, or when events occur within a function, and nothing is known
about the events that are supposed to occur after the function terminates? We answer
these questions by porting the type system in [10] to a higher-order functional language.

To illustrate the key ideas of the approach, let us consider the program

〈send a (recv b)〉| 〈send b (recv a)〉 (1.1)

consisting of two parallel threads. The thread on the left is trying to send the message
received from channel b on channel a; the thread on the right is trying to do the op-
posite. The communications on a and b are mutually dependent, and the program is a
deadlock. The basic idea used in [10] and derived from [7,8] for detecting deadlocks
is to assign each channel a number – which we call level – and to verify that channels
are used in order according to their levels. In (1.1) this mechanism requires b to have
smaller level than a in the leftmost thread, and a to have a smaller level than b in the
rightmost thread. No level assignment can simultaneously satisfy both constraints. In
order to perform these checks with a type system, the first step is to attach levels to

c© IFIP International Federation for Information Processing 2015
S. Graf and M. Viswanathan (Eds.): FORTE 2015, LNCS 9039, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-19195-9_1



4 L. Padovani and L. Novara

channel types. We therefore assign the types ![int]m and ?[int]n respectively to a and b
in the leftmost thread of (1.1), and ?[int]m and ![int]n to the same channels in the right-
most thread of (1.1). Crucially, distinct occurrences of the same channel have types
with opposite polarities (input ? and output !) and equal level. We can also think of
the assignments send : ∀ı.![int]ı → int→ unit and recv : ∀ı.?[int]ı → int for the com-
munication primitives, where we allow polymorphism on channel levels. In this case,
the application send a (recv b) consists of two subexpressions, the partial application
send a having type int→ unit and its argument recv b having type int. Neither of these
types hints at the I/O operations performed in these expressions, let alone at the levels
of the channels involved. To recover this information we pair types with effects [1]: the
effect of an expression is an abstract description of the operations performed during its
evaluation. In our case, we take as effect the level of channels used for I/O operations,
or ⊥ in the case of pure expressions that perform no I/O. So, the judgment

b : ?[int]n � recv b : int& n

states that recv b is an expression of type int whose evaluation performs an I/O opera-
tion on a channel with level n. As usual, function types are decorated with a latent effect
saying what happens when the function is applied to its argument. So,

a : ![int]m � send a : int→m unit&⊥
states that send a is a function that, applied to an argument of type int, produces a
result of type unit and, in doing so, performs an I/O operation on a channel with level
m. By itself, send a is a pure expression whose evaluation performs no I/O operations,
hence the effect ⊥. Effects help us detecting dangerous expressions: in a call-by-value
language an application e1e2 evaluates e1 first, then e2, and finally the body of the
function resulting from e1. Therefore, the channels used in e1 must have smaller level
than those occurring in e2 and the channels used in e2 must have smaller level than those
occurring in the body of e1. In the specific case of send a (recv b) we have ⊥< n for
the first condition, which is trivially satisfied, and n < m for the second one. Since the
same reasoning on send b (recv a) also requires the symmetric condition (m < n), we
detect that the parallel composition of the two threads in (1.1) is ill typed, as desired.

It turns out that the information given by latent effects in function types is not suffi-
cient for spotting some deadlocks. To see why, consider the function

f
def
= λ x.(send a x; send b x)

which sends its argument x on both a and b and where ; denotes sequential composition.
The level of a (say m) should be smaller than the level of b (say n), for a is used before b
(we assume that communication is synchronous and that send is a potentially blocking
operation). The question is, what is the latent effect that decorates the type of f , of the
form int→h unit? Consider the two obvious possibilities: if we take h = m, then

〈recv a〉| 〈 f 3; recv b〉 (1.2)

is well typed because the effect m of f 3 is smaller than the level of b in recv b, which
agrees with the fact that f 3 is evaluated before recv b; if we take h = n, then

〈recv a; f 3〉| 〈recv b〉 (1.3)
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is well typed for similar reasons. This is unfortunate because both (1.3) and (1.2) reduce
to a deadlock. To flag both of them as ill typed, we must refine the type of f to int→m,n

unit where we distinguish the smallest level of the channels that occur in the body of f
(that is m) from the greatest level of the channels that are used by f when f is applied
to an argument (that is n). The first annotation gives information on the channels in the
function’s closure, while the second annotation is the function’s latent effect, as before.
So (1.2) is ill typed because the effect of f 3 is the same as the level of b in recv b and
(1.3) is ill typed because the effect of recv a is the same as the level of f in f 3.

In the following, we define a core multithreaded functional language with commu-
nication primitives (Section 2), we present a basic type and effect system, extend it
to address recursive programs, and state its properties (Section 3). Finally, we briefly
discuss closely related work and a few extensions (Section 4). Proofs and additional
material can be found in long version of the paper, on the first author’s home page.

2 Language Syntax and Semantics

In defining our language, we assume a synchronous communication model based on lin-
ear channels. This assumption limits the range of systems that we can model. However,
asynchronous and structured communications can be encoded using linear channels:
this has been shown to be the case for binary sessions [5] and for multiparty sessions to
a large extent [10, technical report].

We use a countable set of variables x, y, . . . , a countable set of channels a, b, . . . ,
and a set of constants k. Names u, . . . are either variables or channels. We consider a
language of expressions and processes as defined below:

e ::= k
∣
∣ u

∣
∣ λ x.e

∣
∣ ee P,Q ::= 〈e〉 ∣

∣ (νa)P
∣
∣ P|Q

Expressions comprise constants k, names u, abstractions λ x.e, and applications e1e2.
We write _ for unused/fresh variables. Constants include the unitary value (), the in-
teger numbers m, n, . . . , as well as the primitives fix, fork, new, send, recv whose
semantics will be explained shortly. Processes are either threads 〈e〉, or the restriction
(νa)P of a channel a with scope P, or the parallel composition P|Q of processes.

The notions of free and bound names are as expected, given that the only binders are
λ ’s and ν’s. We identify terms modulo renaming of bound names and we write fn(e)
(respectively, fn(P)) for the set of names occurring free in e (respectively, in P).

The reduction semantics of the language is given by two relations, one for expres-
sions, another for processes. We adopt a call-by-value reduction strategy, for which we
need to define reduction contexts E , . . . and values v, w, . . . respectively as:

E ::= [ ]
∣
∣ E e

∣
∣ vE v,w ::= k

∣
∣ a

∣
∣ λ x.e

∣
∣ send v

The reduction relation −→ for expressions is defined by standard rules

(λ x.e)v −→ e{v/x} fix λ x.e −→ e{fix λ x.e/x}
and closed under reduction contexts. As usual, e{e′/x} denotes the capture-avoiding
substitution of e′ for the free occurrences of x in e.
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Table 1. Reduction semantics of expressions and processes

〈E [send a v]〉| 〈E ′[recv a]〉 a−−→ 〈E [()]〉| 〈E ′[v]〉 〈E [fork v]〉 τ−−→ 〈E [()]〉| 〈v()〉

〈E [new()]〉 τ−−→ (νa)〈E [a]〉
a 	∈ fn(E )

e −→ e′

〈e〉 τ−−→ 〈e′〉

P
�−−→ P′

P|Q
�−−→ P′ |Q

P
�−−→ Q

(νa)P
�−−→ (νa)Q

� 	= a
P

a−−→ Q

(νa)P
τ−−→ Q

P ≡ �−−→≡ Q

P
�−−→ Q

The reduction relation of processes (Table 1) has labels �, . . . that are either a chan-
nel name a, signalling that a communication has occurred on a, or the special symbol
τ denoting any other reduction. There are four base reductions for processes: a com-
munication occurs between two threads when one is willing to send a message v on a
channel a and the other is waiting for a message from the same channel; a thread that
contains a subexpression fork v spawns a new thread that evaluates v(); a thread that
contains a subexpression new() creates a new channel; the reduction of an expression
causes a corresponding τ-labeled reduction of the thread in which it occurs. Reduc-
tion for processes is then closed under parallel compositions, restrictions, and structural
congruence. The restriction of a disappears as soon as a communication on a occurs: in
our model channels are linear and can be used for one communication only; structured
forms of communication can be encoded on top of this simple model (see Example 2
and [5]). Structural congruence is defined by the standard rules rearranging parallel
compositions and channel restrictions, where 〈()〉 plays the role of the inert process.

We conclude this section with two programs written using a slightly richer language
equipped with let bindings, conditionals, and a few additional operators. All these
constructs either have well-known encodings or can be easily accommodated.

Example 1 (parallel Fibonacci function). The fibo function below computes the n-th
number in the Fibonacci sequence and sends the result on a channel c:

1 fix λfibo.λn.λc.if n ≤ 1 then send c n

2 else let a = new() and b = new() in

3 (fork λ_.fibo (n - 1) a);

4 (fork λ_.fibo (n - 2) b);

5 send c (recv a + recv b)

The fresh channels a and b are used to collect the results from the recursive, parallel
invocations of fibo. Note that expressions are intertwined with I/O operations. It is
relevant to ask whether this version of fibo is deadlock free, namely if it is able to
reduce until a result is computed without blocking indefinitely on an I/O operation. �

Example 2 (signal pipe). In this example we implement a function pipe that forwards
signals received from an input stream x to an output stream y:

1 let cont = λx.let c = new() in (fork λ_.send x c); c in

2 let pipe = fix λpipe.λx.λy.pipe (recv x) (cont y)
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Note that this pipe is only capable of forwarding handshaking signals. A more inter-
esting pipe transmitting actual data can be realized by considering data types such as
records and sums [5]. The simplified realization we consider here suffices to illustrate a
relevant family of recursive functions that interleave actions on different channels.

Since linear channels are consumed after communication, each signal includes a con-
tinuation channel on which the subsequent signals in the stream will be sent/received.
In particular, cont x sends a fresh continuation c on x and returns c, so that c can
be used for subsequent communications, while pipe x y sends a fresh continuation
on y after it has received a continuation from x, and then repeats this behavior on the
continuations. The program below connects two pipes:

3 let a = new() and b = new() in

4 (fork λ_.pipe a b); (fork λ_.pipe b (cont a))

Even if the two pipes realize a cyclic network, we will see in Section 3 that this
program is well typed and therefore deadlock free. Forgetting cont on line 4 or not
forking the send on line 1, however, produces a deadlock. �

3 Type and Effect System

We present the features of the type system gradually, in three steps: we start with a
monomorphic system (Section 3.1), then we introduce level polymorphism required by
Examples 1 and 2 (Section 3.2), and finally recursive types required by Example 2 (Sec-
tion 3.3). We end the section studying the properties of the type system (Section 3.4).

3.1 Core Types

Let L
def
=Z∪{⊥,�} be the set of channel levels ordered in the obvious way (⊥< n <�

for every n ∈ Z); we use ρ , σ , . . . to range over L and we write ρ �σ (respectively,
ρ �σ ) for the minimum (respectively, the maximum) of ρ and σ . Polarities p, q, . . . are
non-empty subsets of {?, !}; we abbreviate {?} and {!} with ? and ! respectively, and
{?, !} with #. Types t, s, . . . are defined by

t,s ::= B
∣
∣ p[t]n

∣
∣ t →ρ ,σ s

where basic types B, . . . include unit and int. The type p[t]n denotes a channel with
polarity p and level n. The polarity describes the operations allowed on the channel: ?
means input, ! means output, and # means both input and output. Channels are linear
resources: they can be used once according to each element in their polarity. The type
t →ρ ,σ s denotes a function with domain t and range s. The function has level ρ (its
closure contains channels with level ρ or greater) and, when applied, it uses channels
with level σ or smaller. If ρ =�, the function has no channels in its closure; if σ =⊥,
the function uses no channels when applied. We write → as an abbreviation for →�,⊥,
so → denotes pure functions not containing and not using any channel.

Recall from Section 1 that levels are meant to impose an order on the use of channels:
roughly, the lower the level of a channel, the sooner the channel must be used. We ex-
tend the notion of level from channel types to arbitrary types: basic types have level �
because there is no need to use them as far as deadlock freedom is concerned; the level
of functions is written in their type. Formally, the level of t, written |t|, is defined as:
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|B| def
=� |p[t]n| def

= n |t →ρ ,σ s| def
= ρ (3.1)

Levels can be used to distinguish linear types, denoting values (such as channels) that
must be used to guarantee deadlock freedom, from unlimited types, denoting values that
have no effect on deadlock freedom and may be disregarded. We say that t is linear if
|t| ∈ Z; we say that t is unlimited, written un(t), if |t|=�.

Below are the type schemes of the constants that we consider. Some constants have
many types (constraints are on the right); we write types(k) for the set of types of k.

() : unit
n : int

fix : (t → t)→ t
fork : (unit→ρ ,σ unit)→ unit

new : unit→ #[t]n n < |t|
recv : ?[t]n →�,n t n < |t|
send : ![t]n → t →n,n unit n < |t|

The type of (), of the numbers, and of fix are ordinary. The primitive new creates a
fresh channel with the full set # of polarities and arbitrary level n. The primitive recv

takes a channel of type ?[t]n, blocks until a message is received, and returns the message.
The primitive itself contains no free channels in its closure (hence the level �) because
the only channel it manipulates is its argument. The latent effect is the level of the
channel, as expected. The primitive send takes a channel of type ![t]n, a message of type
t, and sends the message on the channel. Note that the partial application send a is a
function whose level and latent effect are both the level of a. Note also that in new, recv,
and send the level of the message must be greater than the level of the channel: since
levels are used to enforce an order on the use of channels, this condition follows from
the observation that a message cannot be used until after it has been received, namely
after the channel on which it travels has been used. Finally, fork accepts a thunk with
arbitrary level ρ and latent effect σ and spawns the thunk into an independent thread
(see Table 1). Note that fork is a pure function with no latent effect, regardless of
the level and latent effect of the thunk. This phenomenon is called effect masking [1],
whereby the effect of evaluating an expression becomes unobservable: in our case, fork
discharges effects because the thunk runs in parallel with the code executing the fork.

We now turn to the typing rules. A type environment Γ is a finite map u1 : t1, . . . ,un :
tn from names to types. We write /0 for the empty type environment, dom(Γ) for the
domain of Γ , and Γ(u) for the type associated with u in Γ ; we write Γ1,Γ2 for the union of
Γ1 and Γ2 when dom(Γ1)∩dom(Γ2) = /0. We also need a more flexible way of combining
type environments. In particular, we make sure that every channel is used linearly by
distributing different polarities of a channel to different parts of the program. To this
aim, following [9], we define a partial combination operator + between types:

t + t
def
= t if un(t)

p[t]n + q[t]n
def
= (p∪q)[t]n if p∩q = /0

(3.2)

that we extend to type environments, thus:

Γ + Γ ′ def
= Γ ,Γ ′ if dom(Γ)∩dom(Γ ′) = /0

(Γ ,u : t)+ (Γ ′,u : s)
def
= (Γ + Γ ′),u : t + s

(3.3)

For example, we have (x : int,a : ![int]n) + (a : ?[int]n) = x : int,a : #[int]n, so we
might have some part of the program that (possibly) uses a variable x of type int along
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with channel a for sending an integer and another part of the program that uses the same
channel a but this time for receiving an integer. The first part of the program would
be typed in the environment x : int,a : ![int]n and the second one in the environment
a : ?[int]n. Overall, the two parts would be typed in the environment x : int,a : #[int]n

indicating that a is used for both sending and receiving an integer.
We extend the function | · | to type environments so that |Γ | def

=
�

u∈dom(Γ ) |Γ(u)| with
the convention that | /0|=�; we write un(Γ) if |Γ |=�.

Table 2. Core typing rules for expressions and processes

Typing of expressions

[T-NAME]

Γ ,u : t � u : t &⊥ un(Γ)

[T-CONST]

Γ � k : t &⊥
un(Γ)
t ∈ types(k)

[T-FUN]

Γ ,x : t � e : s & ρ
Γ � λx.e : t →|Γ |,ρ s &⊥

[T-APP]

Γ1 � e1 : t →ρ ,σ s & τ1 Γ2 � e2 : t & τ2

Γ1 + Γ2 � e1e2 : s & σ � τ1 � τ2

τ1 < |Γ2|
τ2 < ρ

Typing of processes

[T-THREAD]

Γ � e : unit& ρ
Γ � 〈e〉

[T-PAR]

Γ1 � P Γ2 � Q

Γ1 + Γ2 � P|Q

[T-NEW]

Γ ,a : #[t]n � P

Γ � (νa)P

We are now ready to discuss the core typing rules, shown in Table 2. Judgments
of the form Γ � e : t & ρ denote that e is well typed in Γ , it has type t and effect ρ ;
judgments of the form Γ � P simply denote that P is well typed in Γ .

Axioms [T-NAME] and [T-CONST] are unremarkable: as in all substructural type systems
the unused part of the type environment must be unlimited. Names and constants have
no effect (⊥); they are evaluated expressions that do not use (but may contain) channels.

In rule [T-FUN], the effect ρ caused by evaluating the body of the function becomes the
latent effect in the arrow type of the function and the function itself has no effect. The
level of the function is determined by that of the environment Γ in which the function
is typed. Intuitively, the names in Γ are stored in the closure of the function; if any
of these names is a channel, then we must be sure that the function is eventually used
(i.e., applied) to guarantee deadlock freedom. In fact, |Γ | gives a slightly more precise
information, since it records the smallest level of all channels that occur in the body of
the function. We have seen in Section 1 why this information is useful. A few examples:

– the identity function λ x.x has type int→�,⊥ int in any unlimited environment;
– the function λ_.a has type unit→n,⊥ ![int]n in the environment a : ![int]n; it contains

channel a with level n in its closure (whence the level n in the arrow), but it does
not use a for input/output (whence the latent effect ⊥); it is nonetheless well typed
because a, which is a linear value, is returned as result;

– the function λ x.send x 3 has type ![int]n→�,n unit; it has no channels in its closure
but it performs an output on the channel it receives as argument;
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– the function λ x.(recv a+x) has type int→n,n int in the environment a : ?[int]n;
note that neither the domain nor the codomain of the function mention any channel,
so the fact that the function has a channel in its closure (and that it performs some
I/O) can only be inferred from the annotations on the arrow;

– the function λ x.send x (recv a) has type ![int]n+1 →n,n+1 unit in the environment
a : ![int]n; it contains channel a with level n in its closure and performs input/output
operations on channels with level n+ 1 (or smaller) when applied.

Rule [T-APP] deals with applications e1e2. The first thing to notice is the type envi-
ronments in the premises for e1 and e2. Normally, these are exactly the same as the
type environment used for the whole application. In our setting, however, we want to
distribute polarities in such a way that each channel is used for exactly one communica-
tion. For this reason, the type environment Γ1 + Γ2 in the conclusion is the combination
of the type environments in the premises. Regarding effects, τi is the effect caused by
the evaluation of ei. As expected, e1 must result in a function of type t →ρ ,σ s and e2 in
a value of type t. The evaluation of e1 and e2 may however involve blocking I/O oper-
ations on channels, and the two side conditions make sure that no deadlock can arise.
To better understand them, recall that reduction is call-by-value and applications e1e2

are evaluated sequentially from left to right. Now, the condition τ1 < |Γ2| makes sure
that any I/O operation performed during the evaluation of e1 involves only channels
whose level is smaller than that of the channels occurring free in e2 (the free channels
of e2 must necessarily be in Γ2). This is enough to guarantee that the functional part
of the application can be fully evaluated without blocking on operations concerning
channels that occur later in the program. In principle, this condition should be paired
with the symmetric one τ2 < |Γ1| making sure that any I/O operation performed during
the evaluation of the argument does not involve channels that occur in the functional
part. However, when the argument is being evaluated, we know that the functional part
has already been reduced a value (see the definition of reduction contexts in Section 2).
Therefore, the only really critical condition to check is that no channels involved in I/O
operations during the evaluation of e2 occur in the value of e1. This is expressed by the
condition τ2 < ρ , where ρ is the level of the functional part. Note that, when e1 is an
abstraction, by rule [T-FUN] ρ coincides with |Γ1|, but in general ρ may be greater than
|Γ1|, so the condition τ2 < ρ gives better accuracy. The effect of the whole application
e1e2 is, as expected, the combination of the effects of evaluating e1, e2, and the latent
effect of the function being applied. In our case the “combination” is the greatest level
of any channel involved in the application. Below are some examples:

– (λ x.x) a is well typed, because both λ x.x and a are pure expressions whose effect
is ⊥, hence the two side conditions of [T-APP] are trivially satisfied;

– (λ x.x) (recv a) is well typed in the environment a : ?[int]n: the effect of recv a is
n (the level of a) which is smaller than the level � of the function;

– send a (recv a) is ill typed in the environment a : #[int]n because the effect of
evaluating recv a, namely n, is the same as the level of send a;

– (recv a) (recv b) is well typed in the environment a : ?[int→ int]0,b : ?[int]1. The
effect of the argument is 1, which is not smaller than the level of the environment
a : ?[int→ int]0 used for typing the function. However, 1 is smaller than �, which
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is the level of the result of the evaluation of the functional part of the application.
This application would be illegal had we used the side condition τ2 < |Γ1| in [T-APP].

The typing rules for processes are standard: [T-PAR] splits contexts for typing the pro-
cesses in parallel, [T-NEW] introduces a new channel in the environment, and [T-THREAD]

types threads. The effect of threads is ignored: effects are used to prevent circular depen-
dencies between channels used within the sequential parts of the program (i.e., within
expressions); circular dependencies that arise between parallel threads are indirectly
detected by the fact that each occurrence of a channel is typed with the same level (see
the discussion of (1.1) in Section 1).

3.2 Level Polymorphism

Looking back at Example 1, we notice that fibo n c may generate two recursive
calls with two corresponding fresh channels a and b. Since the send operation on c is
blocked by recv operations on a and b (line 5), the level of a and b must be smaller than
that of c. Also, since expressions are evaluated left-to-right and recv a + recv b is
syntactic sugar for the application (+) (recv a) (recv b), the level of a must be
smaller than that of b. Thus, to declare fibo well typed, we must allow different occur-
rences of fibo to be applied to channels with different levels. Even more critically, this
form of level polymorphism of fibo is necessary within the definition of fibo itself,
so it is an instance of polymorphic recursion [1].

The core typing rules in Table 2 do not support level polymorphism. Following the
previous discussion on fibo, the idea is to realize level polymorphism by shifting levels
in types. We define level shifting as a type operator ⇑n, thus:

⇑nB
def
= B ⇑n p[t]m

def
= p[⇑nt]n+m ⇑n(t →ρ ,σ s)

def
= ⇑nt →n+ρ ,n+σ ⇑ns (3.4)

where + is extended from integers to levels so that n+�=� and n+⊥=⊥. The effect
of ⇑nt is to shift all the finite level annotations in t by n, leaving � and ⊥ unchanged.

Now, we have to understand in which cases we can use a value of type ⇑nt where
one of type t is expected. More specifically, when a value of type ⇑nt can be passed to a
function expecting an argument of type t. This is possible if the function has level �. We
express this form of level polymorphism with an additional typing rule for applications:

[T-APP-POLY]

Γ1 � e1 : t →�,σ s & τ1 Γ2 � e2 : ⇑nt & τ2

Γ1 + Γ2 � e1e2 : ⇑ns & (n+σ)� τ1� τ2

τ1 < |Γ2|
τ2 <�

This rule admits an arbitrary mismatch n between the level the argument expected
by the function and that of the argument supplied to the function. The type of the appli-
cation and the latent effect are consequently shifted by the same amount n.

Soundness of [T-APP-POLY] can be intuitively explained as follows: a function with level
� has no channels in its closure. Therefore, the only channels possibly manipulated by
the function are those contained in the argument to which the function is applied or
channels created within the function itself. Then, the fact that the argument has level
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n+ k rather than level k is completely irrelevant. Conversely, if the function has chan-
nels in its closure, then the absolute level of the argument might have to satisfy spe-
cific ordering constraints with respect to these channels (recall the two side conditions
in [T-APP]). Since level polymorphism is a key distinguishing feature of our type system,
and one that accounts for much of its expressiveness, we elaborate more on this intuition
using an example. Consider the term

fwd
def
= λ x.λ y.send y (recv x)

which forwards on y the message received from x. The derivation
...

[T-APP]
y : ![int]1 � send y : int→1,1 unit&⊥

...
[T-APP]

x : ?[int]0 � recv x : int& 0
[T-APP]

x : ?[int]0,y : ![int]1 � send y (recv x) : unit& 1
[T-FUN]

x : ?[int]0 � λ y.send y (recv x) : ![int]1 →0,1 unit&⊥
[T-FUN]� fwd : ?[int]0 → ![int]1 →0,1 unit&⊥

does not depend on the absolute values 0 and 1, but only on the level of x being smaller
than that of y, as required by the fact that the send operation on y is blocked by the
recv operation on x. Now, consider an application fwd a, where a has type ?[int]2. The
mismatch between the level of x (0) and that of a (2) is not critical, because all the levels
in the derivation above can be uniformly shifted up by 2, yielding a derivation for

� fwd : ?[int]2 → ![int]3 →2,3 unit&⊥
This shifting is possible because fwd has no free channels in its body (indeed, it is typed
in the empty environment). Therefore, using [T-APP-POLY], we can derive

a : ?[int]2 � fwd a : ![int]3 →2,3 unit&⊥
Note that (fwd a) is a function having level 2. This means that (fwd a) is not level

polymorphic and can only be applied, through [T-APP], to channels with level 3. If we
allowed (fwd a) to be applied to a channel with level 2 using [T-APP-POLY] we could derive

a : #[int]2 � fwd a a : unit& 2

which reduces to a deadlock.

Example 3. To show that the term in Example 1 is well typed, consider the environment

Γ
def
= fibo : int→ ![int]0 →�,0 unit,n : int,c : ![int]0

In the proof derivation for the body of fibo, this environment is eventually enriched
with the assignments a : #[int]−2 and b : #[int]−1. Now we can derive

...
[T-APP]

Γ � fibo (n - 2) : ![int]0 →�,0 unit&⊥
[T-NAME]

a : ![int]−2 � a : ![int]−2 &⊥
[T-APP-POLY]

Γ ,a : ![int]−2 � fibo (n - 2) a : unit&−2
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where the application fibo (n - 2) a is well typed despite the fact that
fibo (n - 2) expects an argument of type ![int]0, while a has type ![int]−2. A similar
derivation can be obtained for fibo (n - 1) b, and the proof derivation can now be
completed. �

3.3 Recursive Types

Looking back at Example 2, we see that in a call pipe x y the channel recv x is used
in the same position as x. Therefore, according to [T-APP-POLY], recv x must have the
same type as x, up to some shifting of its level. Similarly, channel c is both sent on y

and then used in the same position as y, suggesting that c must have the same type as y,
again up to some shifting of its level. This means that we need recursive types in order
to properly describe x and y.

Instead of adding explicit syntax for recursive types, we just consider the possibly
infinite trees generated by the productions for t shown earlier. In light of this broader
notion of types, the inductive definition of type level (3.1) is still well founded, but type
shift (3.4) must be reinterpreted coinductively, because it has to operate on possibly
infinite trees. The formalities, nonetheless, are well understood.

It is folklore that, whenever infinite types are regular (that is, when they are made
of finitely many distinct subtrees), they admit finite representations either using type
variables and the familiar μ notation, or using systems of type equations [4]. Unfortu-
nately, a careful analysis of Example 2 suggests that – at least in principle – we also
need non-regular types. To see why, let a and c be the channels to which (recv x)

and (cont y) respectively evaluate on line 2 of the example. Now:

– x must have smaller level than a since a is received from x (cf. the types of recv).
– y must have smaller level than c since c is sent on y (cf. the types of send).
– x must have smaller level than y since x is used in the functional part of an appli-

cation in which y occurs in the argument (cf. line 2 and [T-APP-POLY]).

Overall, in order to type pipe in Example 2 we should assign x and y the types tn and
sn that respectively satisfy the equations

tn = ?[tn+2]n sn = ![tn+3]n+1 (3.5)

Unfortunately, these equations do not admit regular types as solutions. We recover
typeability of pipe with regular types by introducing a new type constructor

t ::= · · · ∣
∣ �t�n

that wraps types with a pending shift: intuitively �t�n and ⇑nt denote the same type, ex-
cept that in �t�n the shift ⇑n on t is pending. For example, �?[int]0�1 and �?[int]2�−1

are both possible wrappings of ?[int]1, while int→0,⊥ ![int]0 is the unwrapping of
�int→1,⊥ ![int]1�−1. To exclude meaningless infinite types such as ���· · ·�n�n�n we
impose a contractiveness condition requiring every infinite branch of a type to contain
infinite occurrences of channel or arrow constructors. To see why wraps help finding
regular representations for otherwise non-regular types, observe that the equations

tn = ?[�tn�2]n sn = ![�tn+1�2]n+1 (3.6)
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denote – up to pending shifts – the same types as the ones in (3.5), with the key differ-
ence that (3.6) admit regular solutions and therefore finite representations. For example,
tn could be finitely represented as a familiar-looking μα.?[�α�2]n term.

We should remark that �t�n and ⇑nt are different types, even though the former is
morally equivalent to the latter: wrapping is a type constructor, whereas shift is a type
operator. Having introduced a new constructor, we must suitably extend the notions of
type level (3.1) and type shift (3.4) we have defined earlier. We postulate

|�t�n| def
= n+ |t| ⇑n�t�m def

= �⇑nt�m

in accordance with the fact that �·�n denotes a pending shift by n (note that | · | extended
to wrappings is well defined thanks to the contractiveness condition).

We also have to define introduction and elimination rules for wrappings. To this aim,
we conceive two constants, wrap and unwrap, having the following type schemes:

wrap : ⇑nt →�t�n unwrap : �t�n →⇑nt

We add wrap v to the value forms. Operationally, we want wrap and unwrap to an-
nihilate each other. This is done by enriching reduction for expressions with the axiom

unwrap (wrap v)−→ v

Example 4. We suitably dress the code in Example 2 using wrap and unwrap:

1 let cont = λx.let c = new() in (fork λ_.send x (wrap c)); c in

2 let pipe = fix λpipe.λx.λy.pipe (unwrap (recv x)) (cont y)

and we are now able to find a typing derivation for it that uses regular types. In par-
ticular, we assign cont the type sn → sn+2 and pipe the type tn → sn →n,� unit where
tn and sn are the types defined in (3.6). Note that cont is a pure function because its
effects are masked by fork and that pipe has latent effect � since it loops performing
recv operations on channels with increasing level. Because of the side conditions in
[T-APP] and [T-APP-POLY], this means that pipe can only be used in tail position, which is
precisely what happens above and in Example 2. �

3.4 Properties

To formulate subject reduction, we must take into account that linear channels are con-
sumed after communication (last but one reduction in Table 1). This means that when a
process P communicates on some channel a, a must be removed from the type environ-
ment used for typing the residual of P. To this aim, we define a partial operation Γ − �
that removes � from Γ , when � is a channel. Formally:

Theorem 1 (Subject Reduction). If Γ � P and P
�−−→Q, then Γ−��Q where Γ−τ def

= Γ

and (Γ ,a : #[t]n)− a
def
= Γ .

Note that Γ − a is undefined if a 	∈ dom(Γ). This means that well-typed programs
never attempt at using the same channel twice, namely that channels in well-typed pro-
grams are indeed linear channels. This property has important practical consequences,
since it allows the efficient implementation (and deallocation) of channels [9].



Types for Deadlock-Free Higher-Order Programs 15

Deadlock freedom means that if the program halts, then there must be no pending
I/O operations. In our language, the only halted program without pending operations is
(structurally equivalent to) 〈()〉. We can therefore define deadlock freedom thus:

Definition 1. We say that P is deadlock free if P
τ−−→∗

Q �−→ implies Q ≡ 〈()〉.

As usual,
τ−−→∗

is the reflexive, transitive closure of
τ−−→ and Q �−→ means that Q is

unable to reduce further. Now, every well-typed, closed process is free from deadlocks:

Theorem 2 (Soundness). If /0 � P, then P is deadlock free.

Theorem 2 may look weaker than desirable, considering that every process P (even
an ill-typed one) can be “fixed” and become part of a deadlock-free system if com-
posed in parallel with the diverging thread 〈fix λ x.x〉. It is not easy to state an inter-
esting property of well-typed partial programs – programs that are well typed in un-
even environments – or of partial computations – computations that have not reached
a stable (i.e., irreducible) state. One might think that well-typed programs eventually
use all of their channels. This property is false in general, for two reasons. First, our
type system does not ensure termination of well-typed expressions, so a thread like
〈send a (fix λ x.x)〉 never uses channel a, because the evaluation of the message di-
verges. Second, there are threads that continuously generate (or receive) new channels,
so that the set of channels they own is never empty; this happens in Example 2. What
we can prove is that, assuming that a well-typed program does not internally diverge,
then each channel it owns is eventually used for a communication or is sent to the envi-
ronment in a message. To formalize this property, we need a labeled transition system
describing the interaction of programs with their environment. Labels π , . . . of transi-
tions are defined by

π ::= �
∣
∣ a?e

∣
∣ a!v

and the transition relation
π�−→ extends reduction with the rules

a 	∈ bn(C )

C [send a v]
a!v�−→ C [()]

a 	∈ bn(C ) fn(e)∩bn(C ) = /0

C [recv a]
a?e�−→ C [e]

where C ranges over process contexts C ::= 〈E 〉 | (C |P) | (P|C ) | (νa)C . Messages
of input transitions have the form a?e where e is an arbitrary expression instead of a
value. This is just to allow a technically convenient formulation of Definition 2 below.
We formalize the assumption concerning the absence of internal divergences as a prop-
erty that we call interactivity. Interactivity is a property of typed processes, which we
write as pairs Γ � P, since the messages exchanged between a process and the environ-
ment in which it executes are not arbitrary in general.

Definition 2 (Interactivity). Interactivity is the largest predicate on well-typed pro-
cesses such that Γ � P interactive implies Γ � P and:

1. P has no infinite reduction P
�1�−→ P1

�2�−→ P2
�3�−→ ·· · , and

2. if P
��−→ Q, then Γ − � � Q is interactive, and
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3. if P
a!v�−→ Q and Γ = Γ ′,a : ![t]n, then Γ ′′ � Q is interactive for some Γ ′′ ⊆ Γ ′, and

4. if P
a?x�−→ Q and Γ = Γ ′,a : ?[t]n, then Γ ′′ � Q{v/x} is interactive for some v and

Γ ′′ ⊇ Γ ′ such that n < |Γ ′′ \ Γ ′|.
Clause (1) says that an interactive process does not internally diverge: it will even-

tually halt either because it terminates or because it needs interaction with the environ-
ment in which it executes. Clause (2) states that internal reductions preserve interactiv-
ity. Clause (3) states that a process with a pending output on a channel a must reduce
to an interactive process after the output is performed. Finally, clause (4) states that a
process with a pending input on a channel a may reduce to an interactive process after
the input of a particular message v is performed. The definition looks demanding, but
many conditions are direct consequences of Theorem 1. The really new requirements
besides well typedness are convergence of P (1) and the existence of v (4). It is now
possible to prove that well-typed, interactive processes eventually use their channels.

Theorem 3 (Interactivity). Let Γ � P be an interactive process such that a ∈ fn(P).

Then P
π1�−→ P1

π2�−→ ·· · πn�−→ Pn for some π1, . . . ,πn such that a 	∈ fn(Pn).

4 Concluding Remarks

We have demonstrated the portability of a type system for deadlock freedom of π-
calculus processes [10] to a higher-order language using an effect system [1]. We have
shown that effect masking and polymorphic recursion are key ingredients of the type
system (Examples 1 and 2), and also that latent effects must be paired with one more
annotation – the function level. The approach may seem to hinder program modularity,
since it requires storing levels in types and levels have global scope. In this respect,
level polymorphism (Section 3.2) alleviates this shortcoming of levels by granting them
a relative – rather than absolute – meaning at least for non-linear functions.

Other type systems for higher-order languages with session-based communication
primitives have been recently investigated [6,14,2]. In addition to safety, types are used
for estimating bounds in the size of message queues [6] and for detecting memory
leaks [2]. Since binary sessions can be encoded using linear channels [5], our type
system can address the same family of programs considered in these works with the
advantage that, in our case, well-typed programs are guaranteed to be deadlock free
also in presence of session interleaving. For instance, the pipe function in Example 2
interleaves communications on two different channels. The type system described by
Wadler [14] is interesting because it guarantees deadlock freedom without resorting to
any type annotation dedicated to this purpose. In his case the syntax of (well-typed)
programs prevents the modeling of cyclic network topologies, which is a necessary
condition for deadlocks. However, this also means that some useful program patterns
cannot be modeled. For instance, the program in Example 2 is ill typed in [14].

The type system discussed in this paper lacks compelling features. Structured data
types (records, sums) have been omitted for lack of space; an extended technical re-
port [13] and previous works [11,10] show that they can be added without issues. The
same goes for non-linear channels [10], possibly with the help of dedicated accept
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and request primitives as in [6]. True polymorphism (with level and type variables)
has also been studied in the technical report [13]. Its impact on the overall type sys-
tem is significant, especially because level and type constraints (those appearing as side
conditions in the type schemes of constants, Section 3.1) must be promoted from the
metatheory to the type system. The realization of level polymorphism as type shift-
ing that we have adopted in this paper is an interesting compromise between impact
and flexibility. Our type system can also be relaxed with subtyping: arrow types are
contravariant in the level and covariant in the latent effect, whereas channel types are
invariant in the level. Invariance of channel levels can be relaxed refining levels to pairs
of numbers as done in [7,8]. This can also improve the accuracy of the type system in
some cases, as discussed in [10] and [3]. It would be interesting to investigate which
of these features are actually necessary for typing concrete functional programs using
threads and communication/synchronization primitives.

Type reconstruction algorithms for similar type systems have been defined [11,12].
We are confident to say that they scale to type systems with arrow types and effects.

Acknowledgments. The authors are grateful to the reviewers for their detailed comments and
useful suggestions. The first author has been supported by Ateneo/CSP project SALT, ICT COST
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Abstract. Concurrent systems are notoriously difficult to analyze, and
technological advances such as weak memory architectures greatly com-
pound this problem. This has renewed interest in partial order seman-
tics as a theoretical foundation for formal verification techniques. Among
these, symbolic techniques have been shown to be particularly effective
at finding concurrency-related bugs because they can leverage highly op-
timized decision procedures such as SAT/SMT solvers. This paper gives
new fundamental results on partial order semantics for SAT/SMT-based
symbolic encodings of weak memory concurrency. In particular, we give
the theoretical basis for a decision procedure that can handle a fragment of
concurrent programs endowed with least fixed point operators. In addi-
tion, we show that a certain partial order semantics of relaxed sequential
consistency is equivalent to the conjunction of three extensively studied
weak memory axioms by Alglave et al. An important consequence of this
equivalence is an asymptotically smaller symbolic encoding for bounded
model checking which has only a quadratic number of partial order con-
straints compared to the state-of-the-art cubic-size encoding.

1 Introduction

Concurrent systems are notoriously difficult to analyze, and technological
advances such as weak memory architectures as well as highly available dis-
tributed services greatly compound this problem. This has renewed interest
in partial order concurrency semantics as a theoretical foundation for formal
verification techniques. Among these, symbolic techniques have been shown to
be particularly effective at finding concurrency-related bugs because they can
leverage highly optimized decision procedures such as SAT/SMT solvers. This
paper studies partial order semantics from the perspective of SAT/SMT-based
symbolic encodings of weak memory concurrency.

Given the diverse range of partial order concurrency semantics, we link our
study to a recently developed unifying theory of concurrency by Tony Hoare
et al. [1]. This theory is known as Concurrent Kleene Algebra (CKA) which is
an algebraic concurrency semantics based on quantales, a special case of the
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fundamental algebraic structure of idempotent semirings. Based on quantales,
CKA combines the familiar laws of the sequential program operator (;) with a
new operator for concurrent program composition (‖). A distinguishing feature
of CKA is its exchange law (U ‖ V); (X ‖ Y) ⊆ (U ;X ) ‖ (V ;Y) that describes
how sequential and concurrent composition operators can be interchanged. In-
tuitively, since the binary relation ⊆ denotes program refinement, the exchange
law expresses a divide-and-conquer mechanism for how concurrency may be
sequentially implemented on a machine. The exchange law, together with a uni-
form treatment of programs and their specifications, is key to unifying existing
theories of concurrency [2]. CKA provides such a unifying theory [3,2] that has
practical relevance on proving program correctness, e.g. using rely/guarantee
reasoning [1]. Conversely, however, pure algebra cannot refute that a program
is correct or that certain properties about every program always hold [3,2,4].
This is problematic for theoretical reasons but also in practice because todays
software complexity requires a diverse set of program analysis tools that range
from proof assistants to automated testing. The solution is to accompany CKA
with a mathematical model which satisfies its laws so that we can prove as well
as disprove properties about programs.

One such well-known model-theoretical foundation for CKA is Pratt’s [5]
and Gischer’s [6] partial order model of computation that is constructed from
labelled partially ordered multisets (pomsets). Pomsets generalize the concept of
a string in finite automata theory by relaxing the total ordering of the occur-
rence of letters within a string to a partial order. For example, a ‖ a denotes a
pomset that consists of two unordered events that are both labelled with the
letter a. By partially ordering events, pomsets form an integral part of the ex-
tensive theoretical literature on so-called ‘true concurrency’, e.g. [7,8,9,10,5,6],
in which pomsets strictly generalize Mazurkiewicz traces [11], and prime event
structures [10] are pomsets enriched with a conflict relation subject to certain
conditions. From an algorithmic point of view, the complexity of the pomset lan-
guage membership (PLM) problem is NP-complete, whereas the pomset language
containment (PLC) problem is Πp

2 -complete [12].
Importantly, these aforementioned theoretical results only apply to star-free

pomset languages (without fixed point operators). In fact, the decidability of
the equational theory of the pomset language closed under least fixed point,
sequential and concurrent composition operators (but without the exchange
law) has been only most recently established [13]; its complexity remains an
open problem [13]. Yet another open problem is the decidability of this equa-
tional theory together with the exchange law [13]. In addition, it is still unclear
how theoretical results about pomsets may be applicable to formal techniques
for finding concurrency-related bugs. In fact, it is not even clear how insights
about pomsets may be combined with most recently studied language-specific
or hardware-specific concurrency semantics, e.g. [14,15,16,17].

These gaps are motivation to reinvestigate pomsets from an algorithmic
perspective. In particular, our work connects pomsets to a SAT/SMT-based
bounded model checking technique [18] where shared memory concurrency
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is symbolically encoded as partial orders. To make this connection, we adopt
pomsets as partial strings (Definition 1) that are ordered by a refinement rela-
tion (Definition 3) based on Ésik’s notion of monotonic bijective morphisms [19].
Our partial-string model then follows from the standard Hoare powerdomain
construction where sets of partial strings are downward-closed with respect to
monotonic bijective morphism (Definition 4). The relevance of this formaliza-
tion for the modelling of weak memory concurrency (including data races) is
explained through several examples. Our main contributions are as follows:

1. We give the theoretical basis for a decision procedure that can handle a
fragment of concurrent programs endowed with least fixed point operators (The-
orem 2). This is accomplished by exploiting a form of periodicity, thereby
giving a mechanism for reducing a countably infinite number of events to a
finite number. This result particularly caters to partial order encoding tech-
niques that can currently only encode a finite number of events due to the
deliberate restriction to quantifier-free first-order logic, e.g. [18].

2. We then interpret a particular form of weak memory in terms of certain
downward-closed sets of partial strings (Definition 11), and show that our
interpretation is equivalent to the conjunction of three fundamental weak
memory axioms (Theorem 3), namely ‘write coherence’, ‘from-read’ and
‘global read-from’ [17]. Since all three axioms underpin extensive experi-
mental research into weak memory architectures [20], Theorem 3 gives deno-
tational partial order semantics a new practical dimension.

3. Finally, we prove that there exists an asymptotically smaller quantifier-free
first-order logic formula that has only O(N2) partial order constraints (The-
orem 4) compared to the state-of-the-art O(N3) partial order encoding for
bounded model checking [18] where N is the maximal number of reads and
writes on the same shared memory address. This is significant because N
can be prohibitively large when concurrent programs frequently share data.

The rest of this paper is organized into three parts. First, we recall familiar
concepts on partial-string theory (§ 2) on which the rest of this paper is based.
We then prove a least fixed point reduction result (§ 3). Finally, we character-
ize a particular form of relaxed sequential consistency in terms of three weak
memory axioms by Alglave et al. (§ 4).

2 Partial-String Theory

In this section, we adapt an axiomatic model of computation that uses partial
orders to describe the semantics of concurrent systems. For this, we recall famil-
iar concepts (Definition 1, 2, 3 and 4) that underpin our mathematical model of
CKA (Theorem 1). This model is the basis for subsequent results in § 3 and § 4.

Definition 1 (Partial String). Denote with E a nonempty set of events. Let Γ be
an alphabet. A partial string p is a triple 〈Ep, αp,�p〉 where Ep is a subset of E,
αp : Ep → Γ is a function that maps each event in Ep to an alphabet symbol in Γ,
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e0 e2

e1
��

e3
��

Fig. 1. A partial string p = 〈Ep, αp,�p〉 with events Ep = {e0, e1, e2, e3} and
the labelling function αp satisfying the following: αp(e0) = ‘r0 := [b]acquire’,
αp(e1) = ‘r1 := [a]none’, αp(e2) = ‘[a]none := 1’ and αp(e3) = ‘[b]release := 1’

and �p is a partial order on Ep. Two partial strings p and q are said to be disjoint
whenever Ep ∩ Eq = ∅. A partial string p is called empty whenever Ep = ∅. Denote
with P f the set of all finite partial strings p whose event set Ep is finite.

Each event in the universe E should be thought of as an occurrence of a com-
putational step, whereas letters in Γ describe the computational effect of events.
Typically, we denote a partial string by p, or letters from x through z. In essence,
a partial string p is a partially-ordered set 〈Ep, �p〉 equipped with a labelling
function αp. A partial string is therefore the same as a labelled partial order (lpo),
see also Remark 1. We draw finite partial strings in P f as inverted Hasse dia-
grams (e.g. Fig. 1), where the ordering between events may be interpreted as
a happens-before relation [8], a fundamental notion in distributed systems and
formal verification of concurrent systems, e.g. [16,17]. We remark the obvious
fact that the empty partial string is unique under component-wise equality.

Example 1. In the partial string in Fig. 1, e0 happens-before e1, whereas both e0
and e2 happen concurrently because neither e0 �p e2 nor e2 �p e0.

We abstractly describe the control flow in concurrent systems by adopting
the sequential and concurrent operators on labelled partial orders [9,5,6,19,21].

Definition 2 (Partial String Operators). Let x and y be disjoint partial strings. Let
x ‖ y � 〈Ex‖y, αx‖y,�x‖y〉 and x; y � 〈Ex;y, αx;y,�x;y〉 be their concurrent and

sequential composition, respectively, where Ex‖y = Ex;y � Ex ∪ Ey such that, for
all events e, e′ in Ex ∪ Ey, the following holds:

– e �x‖y e′ exactly if e �x e′ or e �y e′,
– e �x;y e′ exactly if (e ∈ Ex and e′ ∈ Ey) or e �x‖y e′,

– αx‖y(e) = αx;y(e) �
{

αx(e) if e ∈ Ex

αy(e) if e ∈ Ey.

For simplicity, we assume that partial strings can be always made disjoint
by renaming events if necessary. But this assumption could be avoided by us-
ing coproducts, a form of constructive disjoint union [21]. When clear from the
context, we construct partial strings directly from the labels in Γ.

Example 2. If we ignore labels for now and let pi for all 0 ≤ i ≤ 3 be four
partial strings which each consist of a single event ei, then (p0; p1) ‖ (p2; p3)
corresponds to a partial string that is isomorphic to the one shown in Fig. 1.

To formalize the set of all possible happens-before relations of a concurrent
system, we rely on Ésik’s notion of monotonic bijective morphism [19]:
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e0
��

e2
��

e′0 e′2

e1
��

��e3
��

��

��
��
��

e′1
��

e′3
����

����

︸ ︷︷ ︸

y
︸ ︷︷ ︸

x Fig. 2. Two partial strings x and y such that x 
 y pro-
vided all the labels are preserved, e.g. αx(e′0) = αy(e0)

Definition 3 (Partial String Refinement). Let x and y be partial strings such that
x = 〈Ex, αx �x〉 and y = 〈Ey, αy,�y〉. A monotonic bijective morphism from x
to y, written f : x → y, is a bijective function f from Ex to Ey such that, for all events
e, e′ ∈ Ex, αx(e) = αy( f (e)), and if e �x e′, then f (e) �y f (e′). Then x refines y,
written x 
 y, if there exists a monotonic bijective morphism f : y → x from y to x.

Remark 1. Partial words [9] and pomsets [5,6] are defined in terms of isomor-
phism classes of lpos. Unlike lpos in pomsets, however, we study partial strings
in terms of monotonic bijective morphisms [19] because isomorphisms
are about sameness whereas the exchange law on partial strings is an
inequation [21].

The purpose of Definition 3 is to disregard the identity of events but retain
the notion of ‘subsumption’, cf. [6]. The intuition is that 
 orders partial strings
according to their determinism. In other words, x 
 y for partial strings x and
y implies that all events ordered in y have the same order in x.

Example 3. Fig. 2 shows a monotonic bijective morphism from a partial string as
given in Fig. 1 to an N-shaped partial string that is almost identical to the one
in Fig. 1 except that it has an additional partial order constraint, giving its N
shape. One well-known fact about N-shaped partial strings is that they cannot
be constructed as x; y or x ‖ y under any labelling [5]. However, this is not a
problem for our study, as will become clear after Definition 4.

Our notion of partial string refinement is particularly appealing for symbolic
techniques of concurrency because the monotonic bijective morphism can be di-
rectly encoded as a first-order logic formula modulo the theory of uninterpreted
functions. Such a symbolic partial order encoding would be fully justified from
a computational complexity perspective, as shown next.

Proposition 1. Let x and y be finite partial strings in P f . The partial string refine-
ment (PSR) problem — i.e. whether x 
 y — is NP-complete.

Proof. Clearly PSR is in NP. The NP-hardness proof proceeds by reduction from
the PLM problem [12]. Let Γ∗ be the set of strings, i.e. the set of finite partial
strings s such that �s is a total order (for all e, e′ ∈ Es, e �s e′ or e′ �s e). Given a
finite partial string p, let Lp be the set of all strings which refine p; equivalently,
Lp � {s ∈ Γ∗ | s 
 p}. So Lp denotes the same as L(p) in [12, Definition 2.2].
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Let s be a string in Γ∗ and P be a pomset over the alphabet Γ. By Remark 1,
fix p to be a partial string in P. Thus s refines p if and only if s is a member
of Lp. Since this membership problem is NP-hard [12, Theorem 4.1], it follows
that the PSR problem is NP-hard. So the PSR problem is NP-complete. ��

Note that a single partial string is not enough to model mutually exclusive
(nondeterministic) control flow. To see this, consider a simple (possibly sequen-
tial) system such as if * then P else Q where * denotes nondeterministic
choice. If the semantics of a program was a single partial string, then we need
to find exactly one partial string that represents the fact that P executes or Q exe-
cutes, but never both. To model this, rather than using a conflict relation [10], we
resort to the simpler Hoare powerdomain construction where we lift sequential
and concurrent composition operators to sets of partial strings. But since we
are aiming (similar to Gischer [6]) at an over-approximation of concurrent systems,
these sets are downward closed with respect to our partial string refinement
ordering from Definition 3. Additional benefits of using the downward closure
include that program refinement then coincides with familiar set inclusion and
the ease with which later the Kleene star operators can be defined.

Definition 4 (Program). A program is a downward-closed set of finite partial strings
with respect to 
; equivalently X ⊆ P f is a program whenever ↓
 X = X where
↓
 X � {y ∈ P f | ∃x ∈ X : y 
 x}. Denote with P the family of all programs.

Since we only consider systems that terminate, each partial string x in a pro-
gram X is finite. We reemphasize that the downward closure of such a set X
can be thought of as an over-approximation of all possible happens-before re-
lations in a concurrent system whose instructions are ordered according to the
partial strings in X . Later on (§ 4) we make the downward closure of partial
strings more precise to model a certain kind of relaxed sequential consistency.

Example 4. Recall that N-shaped partial strings cannot be constructed as x; y
or x ‖ y under any labelling [5]. Yet, by downward-closure of programs, such
partial strings are included in the over-approximation of all the happens-before
relations exhibited by a concurrent system. In particular, according to Exam-
ple 3, the downward-closure of the set containing the partial string in Fig. 1
includes (among many others) the N-shaped partial string shown on the right
in Fig. 2. In fact, we shall see in § 4 that this particular N-shaped partial string
corresponds to a data race in the concurrent system shown in Fig. 3.

It is standard [6,21] to define 0 � ∅ and 1 � {⊥} where ⊥ is the (unique)
empty partial string. Clearly 0 and 1 form programs in the sense of Definition 4.
For the next theorem, we lift the two partial string operators (Definition 2) to
programs in the standard way:

Definition 5 (Bow Tie). Given two partial strings x and y, denote with x �� y either
concurrent or sequential composition of x and y. For all programs X ,Y in P and
partial string operators ��, X �� Y � ↓
 {x �� y | x ∈ X and y ∈ Y} where X ‖ Y
and X ;Y are called concurrent and sequential program composition, respectively.
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By denoting programs as sets of partial strings, we can now define Kleene
star operators (−)‖ and (−); for iterative concurrent and sequential program
composition, respectively, as least fixed points (μ) using set union (∪) as the
binary join operator that we interpret as the nondeterministic choice of two
programs. We remark that this is fundamentally different from the pomsets re-
cursion operators in ultra-metric spaces [22]. The next theorem could be then
summarized as saying that the resulting structure of programs, written S, is
a partial order model of an algebraic concurrency semantics that satisfies the
CKA laws [1]. Since CKA is an exemplar of the universal laws of program-
ming [2], we base the rest of this paper on our partial order model of CKA.

Theorem 1. The structure S = 〈P,⊆,∪, 0, 1, ; , ‖〉 is a complete lattice, ordered by
subset inclusion (i.e. X ⊆ Y exactly if X ∪ Y = Y), such that ‖ and ; form unital
quantales over ∪ where S satisfies the following:

(U ‖ V); (X ‖ Y) ⊆ (U ;X ) ‖ (V ;Y) X ∪ (Y ∪ Z) = (X ∪ Y) ∪ Z
X ∪X = X X ∪ 0 = 0 ∪X = X
X ∪Y = Y ∪ X X ‖ Y = Y ‖ X
X ‖ 1 = 1 ‖ X = X X ; 1 = 1;X = X
X ‖ 0 = 0 ‖ X = 0 X ; 0 = 0;X = 0
X ‖ (Y ∪Z) = (X ‖ Y) ∪ (X ‖ Z) X ; (Y ∪ Z) = (X ;Y)∪ (X ;Z)

(X ∪ Y) ‖ Z = (X ‖ Z) ∪ (Y ‖ Z) (X ∪ Y);Z = (X ;Z)∪ (Y ;Z)

X ‖ (Y ‖ Z) = (X ‖ Y) ‖ Z X ; (Y ;Z) = (X ;Y);Z
P‖ = μX .1 ∪ (P ‖ X ) P ; = μX .1 ∪ (P ;X ).

Proof. The details are in the accompanying technical report of this paper [21].

By Theorem 1, it makes sense to call 1 in structure S the ��-identity program
where �� is a placeholder for either ; or ‖. In the sequel, we call the binary
relation ⊆ on P the program refinement relation.

3 Least Fixed Point Reduction

This section is about the least fixed point operators (−); and (−)‖. Henceforth,
we shall denote these by (−)��. We show that under a certain finiteness con-
dition (Definition 7) the program refinement problem X�� ⊆ Y�� can be re-
duced to a bounded number of program refinement problems without least
fixed points (Theorem 2). To prove this, we start by inductively defining the
notion of iteratively composing a program with itself under ��.

Definition 6 (n-iterated-��-program-composition). Let N0 � N ∪ {0} be the set
of non-negative integers. For all programs P in P and non-negative integers n in
N0, P0·�� � 1 = {⊥} is the ��-identity program and P (n+1)·�� � P �� Pn·��.

Clearly (−)�� is the limit of its approximations in the following sense:
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Proposition 2. For every program P in P, P�� =
⋃

n≥0 Pn·��.

Definition 7 (Elementary Program). A program P in P is called elementary if P
is the downward-closed set with respect to 
 of some finite and nonempty set Q of finite
partial strings, i.e. P =↓
 Q. The set of elementary programs is denoted by P�.

An elementary program therefore could be seen as a machine-representable
program generated from a finite and nonempty set of finite partial strings. This
finiteness restriction makes the notion of elementary programs a suitable can-
didate for the study of decision procedures. To make this precise, we define the
following unary partial string operator:

Definition 8 (n-repeated-�� Partial String Operator). For every non-negative in-
teger n in N0, x0·�� � ⊥ is the empty partial string and x(n+1)·�� � x �� xn·��.

Intuitively, pn·�� is a partial string that consists of n copies of a partial string
p, each combined by the partial string operator ��. This is formalized as follows:

Proposition 3. Let n ∈ N0 be a non-negative integer. Define [0] � ∅ and [n + 1] �
{1, . . . , n + 1}. For every partial string x, xn·�� is isomorphic to y = 〈Ey, αy,�y〉
where Ey � Ex × [n] such that, for all e, e′ ∈ Ex and i, i′ ∈ [n], the following holds:

– if ‘��’ is ‘‖’, then 〈e, i〉 �y 〈e′, i′〉 exactly if i = i′ and e �x e′,
– if ‘��’ is ‘;’, then 〈e, i〉 �y 〈e′, i′〉 exactly if i < i′ or (i = i′ and e �x e′),
– αy(〈e, i〉) = αx(e).

Definition 9 (Partial String Size). The size of a finite partial string p, denoted by
|p|, is the cardinality of its event set Ep.

For example, the partial string in Fig. 1 has size four. It is obvious that the
size of finite partial strings is non-decreasing under the n-repeated-�� partial
string operator from Definition 8 whenever 0 < n. This simple fact is important
for the next step towards our least fixed point reduction result in Theorem 2:

Proposition 4 (Elementary Least Fixed Point Pre-reduction). For all elementary
programs X and Y in P�, if the ��-identity program 1 is not in Y and X ⊆ Y��,

then X ⊆ ⋃

n≥k≥0 Y k·�� where n =
⌊
�X
�Y

⌋

such that �X � max {|x| | x ∈ X} and

�Y � min {|y| | y ∈ Y} is the size of the largest and smallest partial strings in X and
Y , respectively.

Proof. Assume X ⊆ Y��. Let x ∈ P f be a finite partial string. We can assume
x ∈ X because X �= 0. By assumption, x ∈ Y��. By Proposition 2, there exists
k ∈ N0 such that x ∈ Y k·��. Fix k to be the smallest such non-negative integer.

Show k ≤
⌊
�X
�Y

⌋

(the fraction is well-defined because X and Y are nonempty

and 1 �∈ Y). By downward closure and definition of 
 in terms of a one-to-one
correspondence, it suffices to consider that x is one of a (not necessarily unique)
longest partial strings in X , i.e. |x′| ≤ |x| for all x′ ∈ X ; equivalently, |x| = �X .
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If |x| = 0, set k = 0, satisfying 1 = X ⊆ Y k·�� = 1 and k ≤ n = 0 as required.
Otherwise, since the size of partial strings in a program can never decrease
under the k-iterated program composition operator �� when 0 < k, it suffices to
consider the case x 
 yk·�� for some shortest partial string y in Y . Since Eyk·�� is
the Cartesian product of Ey and [k], it follows |x| = k · |y|. Since |x| ≤ �X and

�Y ≤ |y|, k ≤ ⌊ �X
�Y

⌋

. By definition n =
⌊
�X
�Y

⌋

, proving x ∈ ⋃

n≥k≥0 Y k·��. ��

Equivalently, if there exists a partial string x in X such that x �∈ Y k·�� for all

non-negative integers k between zero and
⌊
�X
�Y

⌋

, then X �⊆ Y��. Since we are

interested in decision procedures for program refinement checking, we need to
show that the converse of Proposition 4 also holds. Towards this end, we prove
the following left (−)�� elimination rule:

Proposition 5. For every program X and Y in P, X�� ⊆ Y�� exactly if X ⊆ Y��.

Proof. Assume X�� ⊆ Y��. By Proposition 2, X ⊆ X��. By transitivity of ⊆ in
P, X ⊆ Y��. Conversely, assume X ⊆ Y��. Let i, j ∈ N0. By induction on i,
X i·��

�� X j·�� = X (i+j)·��. Thus, by Proposition 2 and distributivity of �� over
least upper bounds in P, X��

�� X�� = X��, i.e. (−)�� is idempotent. This,
in turn, implies that (−)�� is a closure operator. Therefore, by monotonicity,
X�� ⊆ (Y��)

��

= Y��, proving that X�� ⊆ Y�� is equivalent to X ⊆ Y��. ��
Theorem 2 (Elementary Least Fixed Point Reduction). For all elementary pro-
grams X and Y in P�, if the ��-identity program 1 is not in Y , then X�� ⊆ Y�� is

equivalent to X ⊆ ⋃

n≥k≥0 Y k·�� where n =
⌊
�X
�Y

⌋

such that �X � max {|x| | x ∈ X}
and �Y � min {|y| | y ∈ Y} is the size of the largest and smallest partial strings in X
and Y , respectively.

Proof. By Proposition 5, it remains to show that X ⊆ Y�� is equivalent to X ⊆
⋃

n≥k≥0 Y k·�� where n =
⌊
�X
�Y

⌋

. The forward and backward implication follow

from Proposition 4 and 2, respectively. ��
From Theorem 2 follows immediately that X�� ⊆ Y�� is decidable for all

elementary programs X and Y in P� because there exists an algorithm that
could iteratively make O

(|X | × |Y|n) calls to another decision procedure to
check whether x 
 y for all x ∈ X and y ∈ Y k·�� where n ≥ k ≥ 0. However,
by Proposition 1, each iteration in such an algorithm would have to solve an
NP-complete subproblem. But this high complexity is expected since the PLC
problem is Πp

2 -complete [12].

Corollary 1. For all elementary programs X and Y in P, if |x| = |y| for all x ∈ X
and y ∈ Y , then X�� ⊆ Y�� is equivalent to X ⊆ Y .

We next move on to enriching our model of computation to accommodate a
certain kind of relaxed sequential consistency.
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4 Relaxed Sequential Consistency

For efficiency reasons, all modern computer architectures implement some form
of weak memory model rather than sequential consistency [23]. A defining
characteristic of weak memory architectures is that they violate interleaving se-
mantics unless specific instructions are used to restore sequential consistency.
This section fixes a particular interpretation of weak memory and studies the
mathematical properties of the resulting partial order semantics. For this, we
separate memory accesses into synchronizing and non-synchronizing ones, akin
to [24]. A synchronized store is called a release, whereas a synchronized load is
called an acquire. The intuition behind release/acquire is that prior writes made
to other memory locations by the thread executing the release become visible
in the thread that performs the corresponding acquire. Crucially, the particular
form of release/acquire semantics that we formalize here is shown to be equiv-
alent to the conjunction of three weak memory axioms (Theorem 3), namely
‘write coherence’, ‘from-read’ and ‘global read-from’ [17]. Subsequently, we
look at one important ramification of this equivalence on bounded model checking
(BMC) techniques for finding concurrency-related bugs (Theorem 4).

We start by defining the alphabet that we use for identifying events that de-
note synchronizing and non-synchronizing memory accesses.

Definition 10 (Memory access alphabet). Define 〈LOAD〉 � {none, acquire},
〈STORE〉 � {none, release} and 〈BIT〉 � {0, 1}. Let 〈ADDRESS〉 and 〈REG〉 be
disjoint sets of memory locations and registers, respectively. Let load tag ∈ 〈LOAD〉
and store tag ∈ 〈STORE〉. Define the set of load and store labels, respectively:

Γload, load tag � {load tag} × 〈REG〉 × 〈ADDRESS〉
Γstore, store tag � {store tag} × 〈ADDRESS〉 × 〈BIT〉

Let Γ � Γload,none ∪ Γload,acquire ∪ Γstore,none ∪ Γstore,release be the memory ac-
cess alphabet. Given r ∈ 〈REG〉, a ∈ 〈ADDRESS〉 and b ∈ 〈BIT〉, we write
‘r := [a]load tag’ for the label 〈load tag, r, a〉 in Γload, load tag; similarly, ‘[a]store tag := b’
is shorthand for the label 〈store tag, a, b〉 in Γstore, store tag.

Let x be a partial string and e be an event in Ex. Then e is called a load or store if
its label, αx(e), is in Γload, load tag or Γstore, store tag, respectively. A load or store event e
is a non-synchronizing memory access if αx(e) ∈ Γnone � Γload,none ∪ Γstore,none;
otherwise, it is a synchronizing memory access. Let a ∈ 〈ADDRESS〉 be a memory
location. An acquire on a is an event e such that αx(e) = ‘r := [a]acquire’ for some
r ∈ 〈REG〉. Similarly, a release on a is an event e labelled by ‘[a]release := b’ for some
b ∈ 〈BIT〉. A release and acquire is a release and acquire on some memory location,
respectively.

Example 5. Fig. 3 shows the syntax of a program that consists of two threads T1
and T2. This concurrent system can be directly modelled by the partial string
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Thread T1 Thread T2

r0 := [b]acquire [a]none := 1
r1 := [a]none [b]release := 1

Fig. 3. A concurrent system T1 ‖ T2 consisting of two
threads. The memory accesses on memory locations
b are synchronized, whereas those on a are not.

shown in Fig. 1 where memory location b is accessed through acquire and re-
lease, whereas memory location a is accessed through non-synchronizing loads
and stores (shortly, we shall see that this leads to a data race).

Given Definition 10, we are now ready to refine our earlier conservative over-
approximation of the happens-before relations (Definition 4) to get a particular
form of release/acquire semantics. For this, we restrict the downward closure
of programs X in P, in the sense of Definition 4, by requiring all partial strings
in X to satisfy the following partial ordering constraints:

Definition 11 (SC-relaxed program). A program X is called SC-relaxed if, for all
a ∈ 〈ADDRESS〉 and partial string x in X , the set of release events on a is totally
ordered by �x and, for every acquire l ∈ Ex and release s ∈ Ex on a, l �x s or s �x l.

Henceforth, we denote loads and stores by l, l′ and s, s′, respectively. If s and
s′ are release events that modify the same memory location, either s happens-
before s′, or vice versa. If l is an acquire and s is a release on the same memory
location, either l happens-before s or s happens-before l. Importantly, however,
two acquire events l and l′ on the same memory location may still happen con-
currently in the sense that neither l happens-before l′ nor l′ happens-before l,
in the same way non-synchronizing memory accesses are generally unordered.

Example 6. Example 4 and 5 illustrate the SC-relaxed semantics of the concur-
rent system in Fig. 3. In particular, the N-shaped partial string in Fig. 2 cor-
responds to a data race in T1 ‖ T2 because the non-synchronizing memory
accesses on memory location a happen concurrently. To see this, it may help
to consider the interleaving r0 := [b]acquire; [a]none := 1; r1 := [a]none; [b]release := 1
where both memory accesses on location a are unordered through the happens-
before relation because there is no release instruction separating [a]none := 1
from r1 := [a]none. One way of fixing this data race is by changing thread T1 to
if [b]acquire = 1 then r1 := [a]none. Since CKA supports non-deterministic choice
with the ∪ binary operator (recall Theorem 1), it would not be difficult to give
semantics to such conditional checks, particularly if we introduce ‘assume’ la-
bels into the alphabet in Definition 10.

We ultimately want to show that the conjunction of three existing weak mem-
ory axioms as studied in [17] fully characterizes our particular interpretation of
relaxed sequential consistency, thereby paving the way for Theorem 4. For this,
we recall the following memory axioms which can be thought of as relations on
loads and stores on the same memory location:

Definition 12 (Memory axioms). Let x be a partial string in P f . The read-from
function, denoted by rf : Ex → Ex, is defined to map every load to a store on the same
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memory location. A load l synchronizes-with a store s if rf(l) = s implies s �x l.
Write-coherence means that all stores s, s′ on the same memory location are totally
ordered by �x. The from-read axiom holds whenever, for all loads l and stores s, s′ on
the same memory location, if rf(l) = s and s ≺x s′, then l �x s′.

By definition, the read-from function is total on all loads. The synchronizes-
with axiom says that if a load reads-from a store (necessarily on the same mem-
ory location), then the store happens-before the load. This is also known as the
global read-from axiom [17]. Write-coherence, in turn, ensures that all stores on
the same memory location are totally ordered. This corresponds to the fact that
“all writes to the same location are serialized in some order and are performed
in that order with respect to any processor” [24]. Note that this is different from
the modification order (‘mo’) on atomics in C++14 [25] because ‘mo’ is generally
not a subset of the happens-before relation. The from-read axiom [17] requires
that, for all loads l and two different stores s, s′ on the same location, if l reads-
from s and s happens-before s′, then l happens-before s′.We start by deriving
from these three memory axioms the notion of SC-relaxed programs.

Proposition 6 (SC-relaxed consistency). For all X in P, if, for each partial string
x in X , the synchronizes-with, write-coherence and from-read axioms hold on all re-
lease and acquire events in Ex on the same memory location, then X is an SC-relaxed
program.

Proof. Let a ∈ 〈ADDRESS〉 be a memory location, l be an acquire on a and s′
be a release on a. By write-coherence on release/acquire events, it remains to
show l �x s′ or s′ �x l. Since the read-from function is total, rf(l) = s for some
release s on a. By the synchronizes-with axiom, s �x l. We therefore assume
s �= s′. By write-coherence, s ≺x s′ or s′ ≺x s. The former implies l �x s′ by the
from-read axiom, whereas the latter implies s′ �x l by transitivity. This proves,
by case analysis, that X is an SC-relaxed program. ��

We need to prove some form of converse of the previous implication in order
to characterize SC-relaxed semantics in terms of the three aforementioned weak
memory axioms. For this purpose, we define the following:

Definition 13 (Read consistency). Let a ∈ 〈ADDRESS〉 be a memory location and
x be a finite partial string in P f . For all loads l ∈ Ex on a, define the following set of
store events: Hx(l) � {s ∈ Ex | s �x l and s is a store on a}. The read-from function
rf is said to satisfy weak read consistency whenever, for all loads l ∈ Ex and stores
s ∈ Ex on memory location a, the least upper bound

∨Hx(l) exists, and rf(l) = s
implies

∨Hx(l) �x s; strong read consistency implies rf(l) = s =
∨Hx(l).

By the next proposition, a natural sufficient condition for the existence of the
least upper bound

∨Hx(l) is the finiteness of the partial strings in P f and the
total ordering of all stores on the same memory location from which the load l
reads, i.e. write coherence. This could be generalized to well-ordered sets.

Proposition 7 (Weak read consistency existence). For all partial strings x in P f ,
write coherence on memory location a implies that

∨Hx(l) exists for all loads l on a.
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We remark that
∨Hx(l) = ⊥ if Hx(l) = ∅; alternatively, to avoid that Hx(l)

is empty, we could require that programs are always constructed such that their
partial strings have minimal store events that initialize all memory locations.

Proposition 8 (Weak read consistency equivalence). Write coherence implies that
weak read consistency is equivalent to the following: for all loads l and stores s, s′ on
memory location a ∈ 〈ADDRESS〉, if rf(l) = s and s′ �x l, then s′ �x s.

Proof. By write coherence,
∨Hx(l) exists, and s′ �x

∨Hx(l) because s′ ∈ Hx(l)
by assumption s′ �x l and Definition 13. By assumption of weak read consis-
tency,

∨Hx(l) �x s. From transitivity follows s′ �x s.
Conversely, assume rf(l) = s. Let s′ be a store on a such that s′ ∈ Hx(l).

Thus, by hypothesis, s′ �x s. Since s′ is arbitrary, s is an upper bound. Since the
least upper bound is well-defined by write coherence,

∨Hx(l) �x s. ��
Weak read consistency therefore says that if a load l reads from a store s and

another store s′ on the same memory location happens before l, then s′ happens
before s. This implies the next proposition.

Proposition 9 (From-Read Equivalence). For all SC-relaxed programs in P, weak
read consistency with respect to release/acquire events is equivalent to the from-read
axiom with respect to release/acquire events.

We can characterize strong read consistency as follows:

Proposition 10 (Strong Read Consistency Equivalence). Strong read consistency
is equivalent to weak read consistency and the synchronizes-with axiom.

Proof. Let x be a partial string in P f . Let l be a load and s be a store on the same
memory location. The forward implication is immediate from

∨Hx(l) �x l.
Conversely, assume rf(l) = s. By synchronizes-with, s �x l, whence s ∈

Hx(l). By definition of least upper bound, s �x
∨Hx(l). Since s �x

∨Hx(l),
by hypothesis, and �x is antisymmetric, we conclude s =

∨Hx(l). ��
Theorem 3 (SC-relaxed Equivalence). For every program X in P, X is SC-relaxed
where, for all partial strings x in X and acquire events l in Ex, rf(l) =

∨Hx(l), if
and only if the synchronizes-with, write-coherence and from-read axioms hold for all x
in X with respect to all release/acquire events in Ex on the same memory location.

Proof. Assume X is an SC-relaxed program according to Definition 11. Let x be
a partial string in X and l be an acquire in the set of events Ex. By Proposition 7,
∨Hx(l) exists. Assume rf(l) =

∨Hx(l). Since l is arbitrary, this is equivalent
to assuming strong read consistency. Since release events are totally ordered in
�x, by assumption, it remains to show that the synchronizes-with and from-
read axioms hold. This follows from Proposition 10 and 9, respectively.

Conversely, assume the three weak memory axioms hold on x with respect
to all release/acquire events in Ex on the same memory location. By Proposi-
tion 6, X is an SC-relaxed program. Therefore, by Proposition 9 and 10, rf(l) =
∨Hx(l), proving the equivalence. ��
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While the state-of-the-art weak memory encoding is cubic in size [18], the
previous theorem has as immediate consequence that there exists an asymptot-
ically smaller weak memory encoding with only a quadratic number of partial
order constraints.

Theorem 4 (Quadratic-size Weak Memory Encoding). There exists a quantifier-
free first-order logic formula that has a quadratic number of partial order constraints
and is equisatisfiable to the cubic-size encoding given in [18].

Proof. Instead of instantiating the three universally quantified events in the
from-read axiom, symbolically encode the least upper bound of weak read con-
sistency. This can be accomplished with a new symbolic variable for every ac-
quire event. It is easy to see that this reduces the cubic number of partial order
constraints to a quadratic number. ��

In short, the asymptotic reduction in the number of partial order constraints
is due to a new symbolic encoding for how values are being overwritten in
memory: the current cubic-size formula [18] encodes the from-read axiom (Def-
inition 12), whereas the proposed quadratic-size formula encodes a certain least
upper bound (Definition 13). We reemphasize that this formulation is in terms
of release/acquire events rather than machine-specific accesses as in [18]. The
construction of the quadratic-size encoding, therefore, is generally only appli-
cable if we can translate the machine-specific reads and writes in a shared mem-
ory program to acquire and release events, respectively. This may require the
program to be data race free, as illustrated in Example 6.

Furthermore, as mentioned in the introduction of this section, the primary
application of Theorem 4 is in the context of BMC. Recall that BMC assumes
that all loops in the shared memory program under scrutiny have been unrolled
(the same restriction as in [18]). This makes it possible to symbolically encode
branch conditions, thereby alleviating the need to explicitly enumerate each
finite partial string in an elementary program.

5 Concluding Remarks

This paper has studied a partial order model of computation that satisfies the
axioms of a unifying algebraic concurrency semantics by Hoare et al. By fur-
ther restricting the partial string semantics, we obtained a relaxed sequential
consistency semantics which was shown to be equivalent to the conjunction of
three weak memory axioms by Alglave et al. This allowed us to prove the exis-
tence of an equisatisfiable but asymptotically smaller weak memory encoding
that has only a quadratic number of partial order constraints compared to the
state-of-the-art cubic-size encoding. In upcoming work, we will experimentally
compare both encodings in the context of bounded model checking using SMT
solvers. As future theoretical work, it would be interesting to study the relation-
ship between categorical models of partial string theory and event structures.
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Abstract. Automatic verification of convergence and stabilization prop-
erties of distributed algorithms has received less attention than verifica-
tion of invariance properties. We present a semi-automatic strategy for
verification of stabilization properties of arbitrarily large networks under
structural and fairness constraints. We introduce a sufficient condition
that guarantees that every fair execution of any (arbitrarily large) in-
stance of the system stabilizes to the target set of states. In addition to
specifying the protocol executed by each agent in the network and the
stabilizing set, the user also has to provide a measure function or a rank-
ing function. With this, we show that for a restricted but useful class
of distributed algorithms, the sufficient condition can be automatically
checked for arbitrarily large networks, by exploiting the small model
properties of these conditions. We illustrate the method by automati-
cally verifying several well-known distributed algorithms including link-
reversal, shortest path computation, distributed coloring, leader election
and spanning-tree construction.

1 Introduction

A system is said to stabilize to a set of states X ∗ if all its executions reach some
state in X ∗ [1]. This property can capture common progress requirements like
absence of deadlocks and live-locks, counting to infinity, and achievement of self-
stabilization in distributed systems. Stabilization is a liveness property, and like
other liveness properties, it is generally impossible to verify automatically. In
this paper, we present sufficient conditions which can be used to automatically
prove stabilization of distributed systems with arbitrarily many participating
processes.

A sufficient condition we propose is similar in spirit to Tsitsiklis’ conditions
given in [2] for convergence of iterative asynchronous processes. We require the
user to provide a measure function, parameterized by the number of processes,
such that its sub-level sets are invariant with respect to the transitions and
there is a progress making action for each state.1 Our point of departure is a

This work is supported in part by research grants NSF CAREER 1054247 and
AFOSR YIP FA9550-12-1-0336.

1 A sub-level set of a function comprises of all points in the domain which map to the
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non-interference condition that turned out to be essential for handling models
of distributed systems. Furthermore, in order to handle non-deterministic com-
munication patterns, our condition allows us to encode fairness conditions and
different underlying communication graphs.

Next, we show that these conditions can be transformed to a forall-exists form
with a small model property. That is, there exists a cut-off number N0 such that if
the condition(s) is(are) valid in all models of sizes up to N0, then it is valid for all
models.We use the small model results from [3] to determine the cut-off parameter
and apply this approach to verify several well-known distributed algorithms.

We have a Python implementation based on the sufficient conditions for sta-
bilization we develop in Section 3. We present precondition-effect style transition
systems of algorithms in Section 4 and they serve as pseudo-code for our im-
plementation. The SMT-solver is provided with the conditions for invariance,
progress and non-interference as assertions. We encode the distributed system
models in Python and use the Z3 theorem-prover module [4] provided by Python
to check the conditions for stabilization for different model sizes.

We have used this method to analyze a number of well-known distributed
algorithms, including a simple distributed coloring protocol, a self-stabilizing
algorithm for constructing a spanning tree of the underlying network graph, a
link-reversal routing algorithm, and a binary gossip protocol. Our experiments
suggest that this method is effective for constructing a formal proof of stabiliza-
tion of a variety of algorithms, provided the measure function is chosen carefully.
Among other things, the measure function should be locally computable: changes
from the measure of the previous state to that of the current state only depend
on the vertices involved in the transition. It is difficult to determine whether such
a measure function exists for a given problem. For instance, consider Dijkstra’s
self-stabilizing token ring protocol [5]. The proof of correctness relies on the fact
that the leading node cannot push for a value greater than its previous unique
state until every other node has the same value. We were unable to capture
this in a locally computable measure function because if translated directly, it
involves looking at every other node in the system.

1.1 Related Work

The motivation for our approach is from the paper by John Tsitsiklis on con-
vergence of asynchronous iterative processes [2], which contains conditions for
convergence similar to the sufficient conditions we state for stabilization. Our
use of the measure function to capture stabilization is similar to the use of Lya-
punov functions to prove stability as explored in [6], [7] and [8]. In [9], Dhama
and Theel present a progress monitor based method of designing self-stabilizing
algorithms with a weakly fair scheduler, given a self-stabilizing algorithm with
an arbitrary, possibly very restrictive scheduler. They also use the existence of
a ranking function to prove convergence under the original scheduler. Several
authors [10] employ functions to prove termination of distributed algorithms,
but while they may provide an idea of what the measure function can be, in gen-
eral they do not translate exactly to the measure functions that our verification
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strategy can employ. The notion of fairness we have is also essential in dictating
what the measure function should be, while not prohibiting too many behav-
iors. In [7], the assumption of serial execution semantics is compatible with our
notions of fair executions.

The idea central to our proof method is the small model property of the suf-
ficient conditions for stabilization. The small model nature of certain invariance
properties of distributed algorithms (eg. distributed landing protocols for small
aircrafts as in [11]) has been used to verify them in [12]. In [13], Emerson and
Kahlon utilize a small model argument to perform parameterized model checking
of ring based message passing systems.

2 Preliminaries

We will represent distributed algorithms as transition systems. Stabilization is
a liveness property and is closely related to convergence as defined in the works
of Tsitsiklis [2]; it is identical to the concept of region stability as presented in
[14]. We will use measure functions in our definition of stabilization. A measure
function on a domain provides a mapping from that domain to a well-ordered
set. A well-ordered set W is one on which there is a total ordering <, such that
there is a minimum element with respect to < on every non-empty subset of
W . Given a measure function C : A → B, there is a partition of A into sub
level-sets. All elements of A which map to the same element b ∈ B under C are
in the same sub level-set Lb.

We are interested in verifying stabilization of distributed algorithms indepen-
dent of the number of participating processes or nodes. Hence, the transition
systems are parameterized by N—the number of nodes. Given a non-negative
integer N , we use [N ] to denote a set of indices {1, 2, . . . , N}.
Definition 1. For a natural number N and a set Q, a transition system A(N)
with N nodes is defined as a tuple (X,A,D) where

a) X is the state space of the system. If the state space of of each node is Q,
X = QN .

b) A is a set of actions.
c) D : X ×A → X is a transition function, that maps a system-state action pair

to a system-state.

For any x ∈ X , the ith component of x is the state of the ith node and we
refer to it as x[i]. Given a transition system A(N) = (X , A,D) we refer to the
state obtained by the application of the action a on a state x ∈ X i.e, D(x, a),
by a(x).

An execution of A(N) records a particular run of the distributed system with
N nodes. Formally, an execution α of A(N) is a (possibly infinite) alternat-
ing sequence of states and actions x0, a1, x1, . . ., where each xi ∈ X and each
ai ∈ A such that D(xi, ai+1) = xi+1. Given that the choice of actions is non-
deterministic in the execution, it is reasonable to expect that not all executions
may stabilize. For instance, an execution in which not all nodes participate, may
not stabilize.
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Definition 2. A fairness condition F for A(N) is a finite collection of subsets of
actions {Ai}i∈I , where I is a finite index set. An action-sequence σ = a1, a2, . . .
is F -Fair if every Ai in F is represented in σ infinitely often, that is,

∀ A′ ∈ F , ∀i ∈ N, ∃k > i, ak ∈ A′.

For instance, if the fairness condition is the collection of all singleton subsets
of A, then each action occurs infinitely often in an execution. This notion of
fairness is similar to action based fairness constraints in temporal logic model
checking [15]. The network graph itself enforces whether an action is enabled:
every pair of adjacent nodes determines a continuously enabled action. An exe-
cution is strongly fair, if given a set of actions A such that all actions in A are
infinitely often enabled; some action in A occurs infinitely often in the it. An
F-fair execution is an infinite execution such that the corresponding sequence
of actions is F -fair.

Definition 3. Given a system A(N), a fairness condition F , and a set of states
X ∗ ⊆ X , A(N) is said to F -stabilize to X ∗ iff for any F-fair execution α =
x0, a1, x1, a2, . . ., there exists k ∈ N such that xk ∈ X ∗. X ∗ is called a stabilizing
set for A and F .

It is different from the definition of self-stabilization found in the literature [1],
in that the stabilizing set X ∗ is not required to be an invariant of A(N). We view
proving the invariance of X ∗ as a separate problem that can be approached using
one of the available techniques for proving invariance of parametrized systems
in [3], [12].

Example 1. (Binary Gossip) We look at binary gossip in a ring network com-
posed of N nodes. The nodes are numbered clockwise from 1, and nodes 1 and
N are also neighbors. Each node has one of two states : {0, 1}. A pair of neigh-
boring nodes communicates to exchange their values, and the new state is set to
the binary Or (∨) of the original values. Clearly, if all the interactions happen
infinitely often, and the initial state has at least one node state 1, this transition
system stabilizes to the state x = 1N . The set of actions is specified by the set
of edges of the ring. We first represent this protocol and its transitions using a
standard precondition-effect style notation similar to one used in [16].

Automaton Gossip[N : N]
type indices : [N ]
type values : {0, 1}
variables

x[indices → values]
transitions

step(i: indices , j: indices )
pre True
eff x[i] = x[j] = x[i] ∨ x[j]

measure
func C : x �→ Sum(x)
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The above representation translates to the transition system A(N) = (X , A,D)
where

1. The state space of each node is Q = {0, 1}, i.e X = {0, 1}N .
2. The set of actions is A = {step(i, i+ 1) | 1 ≤ i < N} ∪ {(N, 1)}.
3. The transition function is D(x, step(i, j)) = x′ where x′[i] = x′[j] = x[i] ∨

x[j].

We define the stabilizing set to be X∗ = {1N}, and the fairness condition is F =
{{(i, i+1} | 1 < i < N}∪{1, N}, which ensures that all possible interactions take
place infinitely often. In Section 3 we will discuss how this type of stabilization
can be proven automatically with a user-defined measure function.

3 Verifying Stabilization

3.1 A Sufficient Condition for Stabilization

We state a sufficient condition for stabilization in terms of the existence of a mea-
sure function. The measure functions are similar to Lyapunov stability conditions
in control theory [17] and well-founded relations used in proving termination of
programs and rewriting systems [18].

Theorem 1. Suppose A(N) = 〈X , A,D〉 is a transition system parameterized
by N , with a fairness condition F , and let X ∗ be a subset of X . Suppose further
that there exists a measure function C : X → W , with minimum element ⊥ such
that the following conditions hold for all states x ∈ X:

– (invariance) ∀ a ∈ A, C(a(x)) ≤ C(x),
– (progress) ∃ Ax ∈ F , ∀a ∈ Ax, C(x) 
=⊥⇒ C(a(x)) < C(x),
– (noninterference) ∀a, b ∈ A, C(a(x)) < C(x) ⇒ C(a(b(x))) < C(x), and
– (minimality) C(x) = ⊥ ⇒ x ∈ X ∗.

Then, A[N ] F-stabilizes to X ∗.

Proof. Consider an F -fair execution α = x0a1x1 . . . of A(N) and let xi be an
arbitrary state in that execution. If C(xi) = ⊥, then by minimality, we have xi ∈
X ∗. Otherwise, by the progress condition we know that there exists a set of actions
Axi ∈ F and k > i, such that ak ∈ Axi , and C(ak(xi)) < C(xi). We perform
induction on the length of the sub-sequence xiai+1xi+1 . . . akxk and prove that
C(xk) < C(xi). For any sequence β of intervening actions of length n,

C(ak(xi)) < C(xi) ⇒ C(ak(β(xi))) < C(xi).

The base case of the induction is n = 0, which is trivially true. By induction
hypothesis we have: for any j < n, with length of β equal to j,

C(ak(β(xi)) < C(xi).
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We have to show that for any action b ∈ A,

C(ak(β(b(xi))) < C(xi).

There are two cases to consider. If C(b(xi)) < C(xi) then the result follows from
the invariance property. Otherwise, let x′ = b(xi). From the invariance of b we
have C(x′) = C(xi). From the noninterference condition we have

C(a(b(xi)) < C(xi),

which implies that C(a(x′)) < C(x′). By applying the induction hypothesis to x′

we have the required inequality C(ak(β(b(xi))) < C(xi). So far we have proved
that either a state xi in an execution is already in the stabilizing set, or there is
a state xk, k > i such that C(xk) < C(xi). Since < is a well-ordering on C(X ),
there cannot be an infinite descending chain. Thus

∃j(j > i ∧ C(j) = ⊥).

By minimality , xj ∈ X∗. By invariance again, we have F -stabilization to X∗ �

We make some remarks on the conditions of Theorem 1. It requires the mea-
sure function C and the transition system A(N) to satisfy four conditions. The
invariance condition requires the sub-level sets of C to be invariant with respect
to all the transitions of A(N). The progress condition requires that for every
state x for which the measure function is not already ⊥, there exists a fair set
of actions Ax that takes x to a lower value of C.

The minimality condition asserts that C(x) drops to ⊥ only if the state is in
the stabilizing set X ∗. This is a part of the specification of the stabilizing set.

The noninterference condition requires that if a results in a decrease in the
value of the measure function at state x, then application of a to another state x′

that is reachable from x also decreases the measure value below that of x. Note
that it doesn’t necessarily mean that a decreases the measure value at x′, only
that either x′ has measure value less than x at the time of application of a or
it drops after the application. In contrast, the progress condition of Theorem 1
requires that for every sub-level set of C there is a fair action that takes all
states in the sub-level set to a smaller sub-level set.

To see the motivation for the noninterference condition, consider a sub-level set
with two states x1 and x2 such that b(x1) = x2, a(x2) = x1 and there is only one
action a such that C(a(x1)) < C(x1). But as long as a does not occur at x1, an
infinite (fair) execution x1bx2ax1bx2 . . . may never enter a smaller sub-level set.

In our examples, the actions change the state of a node or at most a small
set of nodes while the measure functions succinctly captures global progress
conditions such as the number of nodes that have different values. Thus, it is
often impossible to find actions that reduce the measure function for all possible
states in a level-set. In Section 4, we will show how a candidate measure function
can be checked for arbitrarily large instances of a distributed algorithm, and
hence, lead to a method for automatic verification of stabilization.
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3.2 Automating Stabilization Proofs

For finite instances of a distributed algorithm, we can use formal verification
tools to check the sufficient conditions in Theorem 1 to prove stabilization. For
transition systems with invariance, progress and noninterference conditions that
can be encoded appropriately in an SMT solver, these checks can be performed
automatically. Our goal, however, is to prove stabilization of algorithms with an
arbitrary or unknown number of participating nodes. We would like to define a
parameterized family of measure functions and show that ∀N ∈ N,A(N) satisfies
the conditions of Theorem 1. This is a parameterized verification problem and
most of the prior work on this problem has focused on verifying invariant prop-
erties (see Section 1 for related works). Our approach will be based on exploiting
the small model nature of the logical formulas representing these conditions.

Suppose we want to check the validity of a logical formula of the form ∀ N ∈
N, φ(N). Of course, this formula is valid iff the negation ∃ N ∈ N,¬φ(N) has
no satisfying solution. In our context, checking if ¬φ(N) has a satisfying solu-
tion over all integers is the (large) search problem of finding a counter-example.
That is, a particular instance of the distributed algorithm and specific values of
the measure function for which the conditions in Theorem 1 do not hold. The
formula ¬φ(N) is said to have a small model property if there exists a cut-off
value N0 such that if there is no counter-example found in any of the instances
A(1),A(2), . . . ,A(N0), then there are no counter-examples at all. Thus, if the
conditions of Theorem 1 can be encoded in such a way that they have these
small model properties then by checking them over finite instances, we can infer
their validity for arbitrarily large systems.

In [3], a class of ∀∃ formulas with small model properties were used to check
invariants of timed distributed systems on arbitrary networks. In this paper, we
will use the same class of formulas to encode the sufficient conditions for checking
stabilization. We use the following small model theorem as presented in [3]:

Theorem 2. Let Γ (N) be an assertion of the form

∀i1, . . . , ik ∈ [N ]∃j1, . . . , jm ∈ [N ], φ(i1, . . . , ik, j1, . . . , jm)

where φ is a quantifier-free formula involving the index variables, global and
local variables in the system. Then, ∀N ∈ N : Γ (N) is valid iff for all n ≤ N0 =
(e + 1)(k + 2), Γ (n) is satisfied by all models of size n, where e is the number
of index array variables in φ and k is the largest subscript of the universally
quantified index variables in Γ (N).

3.3 Computing the Small Model Parameter

Computing the small model parameter N0 for verifying a stability property of
a transition system first requires expressing all the conditions of Theorem 1
using formulas which have the structure specified by Theorem 2. There are a
few important considerations while doing so.
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Translating the sufficient conditions. In their original form, none of the condi-
tions of Theorem 1 have the structure of ∀∃-formulas as required by Theorem 2.
For instance, a leading ∀x ∈ X quantification is not allowed by Theorem 2, so
we transform the conditions into formulas with implicit quantification. Take for
instance the invariance condition: ∀x ∈ X , ∀a ∈ A, (C(a(x)) ≤ C(x)). Checking
the validity of the invariance condition is equivalent to checking the satisfiability
of ∀a ∈ A, (a(x) = x′ ⇒ C(x′) ≤ C(x)), where x′ and x are free variables, which
are checked over all valuations. Here we need to check that x and x′ are actually
states and they satisfy the transition function. For instance in the binary gossip
example, we get

Invariance : ∀x ∈ X , ∀a ∈ A, C(a(x)) ≤ C(x) is verified as

∀a ∈ A, x′ = a(x) ⇒ C(x′) ≤ C(x).

≡ ∀i, j ∈ [N ], x′ = step(i, j)(x) ⇒ Sum(x′) ≤ Sum(x).

Progress : ∀x ∈ X , ∃a ∈ A, C(x) 
= ⊥ ⇒ C(a(x)) < C(x)

is verified as C(x) 
= 0

⇒ ∃i, j ∈ [N ], x′ = step(i, j)(x) ∧ Sum(x)′ < Sum(x).

Noninterference : ∀x ∈ X , ∀a, b ∈ A, (C(a(x)) < C(x) ≡ C(a(b(x))) < C(x))

is verified as ∀i, j, k, l ∈ [N ], x′ = step(i, j)(x) ∧ x′′ = step(k, l)(x)

∧x′′′ = step(i, j)(x′′) ⇒ (C(x′) < C(x) ⇒ C(x′′′) < C(x)).

Interaction graphs. In distributed algorithms, the underlying network topology
dictates which pairs of nodes can interact, and therefore the set of actions. We
need to be able to specify the available set of actions in a way that is in the format
demanded by the small-model theorem. In this paper we focus on specific classes
of graphs like complete graphs, star graphs, rings, k-regular graphs, and k-partite
complete graphs, as we know how to capture these constraints using predicates in
the requisite form. For instance, we use edge predicates E(i, j) : i and j are node
indices, and the predicate is true if there is an undirected edge between them in
the interaction graph. For a complete graph, E(i, j) = true. In the Binary Gossip
example, the interaction graph is a ring, and E(i, j) = (i < N ∧ j = i+1)∨ (i >
1 ∧ j = i − 1) ∨ i = 1 ∧ j = N). If the graph is a d-regular graph, we express
use d arrays, reg1, . . . , regd, where ∃i, regi[k] = l if there is an edge between
k and l, and i 
= j ≡ regi[k] 
= regj [k]. This only expresses that the degree
of each vertex is d, but there is no information about the connectivity of the
graph. For that, we can have a separate index-valued array which satisfies certain
constraints if the graph is connected. These constraints need to be expressed in
a format satisfying the small model property as well. Other graph predicates
can be introduced based on the model requirements, for instance, Parent(i, j),
Child(i, j), Direction(i, j). In our case studies we verify stabilization under the
assumption that all pairs of nodes in E interact infinitely often. For the progress
condition, the formula simplifies to ∃a ∈ A,C(x) 
= ⊥ ⇒ C(a(x)) < C(x)). More
general fairness constraints can be encoded in the same way as we encode graph
constraints.
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4 Case Studies

In this section, we will present the details of applying our strategy to various
distributed algorithms. We begin by defining some predicates that are used in our
case studies. Recall that we want wanted to check the conditions of Theorem 1
using the transformation outlined in Section 3.3 involving x, x′ etc., representing
the states of a distributed system that are related by the transitions. These
conditions are encoded using the following predicates, which we illustrate using
the binary gossip example given in Section 2:

– isState(x) returns true iff the array variable x represents a state of the sys-
tem. In the binary gossip example, isState(x) = ∀i ∈ [N ], x[i] = 0∨ x[i] = 1.

– isAction(a) returns true iff a is a valid action for the system. Again, for the
binary gossip example isAction(step(i, j)) = True for all i, j ∈ [N ] in the
case of a complete communication graph.

– isTransition(x, step(i, j), x′) returns true iff the state x goes to x′ when the
transition function for action step(i, j) is applied to it. In case of the binary
gossip example, isTransition(x, step(i, j), x′) is

(x′[j] = x′[i] = x[i] ∨ x[j]) ∧ (∀p, p /∈ {i, j} ⇒ x[p] = x′[p]).

– Combining the above predicates, we define P (x, x′, i, j) as

isState(x) ∧ isState(x′) ∧ isTransition(x, step(i, j), x′) ∧ isAction(step(i, j)).

Using these constructions, we rewrite the conditions of Theorem 1 as follows:

Invariance : ∀i, j, P (x, x′, i, j) ⇒ C(x′) ≤ C(x). (1)

Progress : C(x) 
= ⊥ ⇒ ∃i, j, P (x, x′, i, j) ∧ C(x′) < C(x). (2)

Noninterference : ∀p, r, s, t, P (x, x′, p, q) ∧ P (x, x′′, s, t) ∧ P (x′′, x′′′, p, q)
⇒ (C(x′) < C(x) ⇒ C(x′′′) < C(x)). (3)

Minimality : C(x) = ⊥ ⇒ x ∈ X∗. (4)

4.1 Graph Coloring

This algorithm colors a given graph in d + 1 colors, where d is the maximum
degree of a vertex in the graph [10]. Two nodes are said to have a conflict if they
have the same color. A transition is made by choosing a single vertex, and if it
has a conflict with any of its neighbors, then it sets its own state to be the least
available value which is not the state of any of its neighbours. We want to verify
that the system stabilizes to a state with no conflicts. The measure function is
chosen as the set of pairs with conflicts.
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Automaton Coloring[N : N]
type indices : [N ]
type values : {1, . . . , N }
variables

x[indices �→ values]
transitions

internal step(i: indices )
pre ∃j ∈ [N ](E(j, i) ∧ x[j] = x[i])
eff x[i] = min(values \{c | j ∈ [N ] ∧ E(i, j) ∧ x[j] = c})

measure
func C : x �→ {(i, j) | E(i, j) ∧ x[i] = x[j]}

Here, the ordering on the image of the measure function is set inclusion.

Invariance : ∀i ∈ [N ], P (x, x′, i) ⇒ C(x′) ⊆ C(x). (From (1))

≡ ∀i, j, k ∈ [N ], P (x, x′, i) ⇒ ((j, k) ∈ C(x′)
⇒ (j, k) ∈ C(x)).

≡ ∀i, j, k ∈ [N ], P (x, x′, i)
⇒ (E(j, k) ∧ x[j] 
= x[k] ⇒ x′[j] 
= x′[k]).

(E is the set of edges in the underlying graph)

Progress : ∃m ∈ [N ], C(x) 
= ∅ ⇒ C(step(m)(x)) < C(x).

≡ ∀i, j ∈ [N ], ∃m,n ∈ [N ], (E(i, j) ∧ x[i] 
= x[j]) ∨
(P (x, x′,m) ∧ E(m,n) ∧ x[m] = x[n] ∧ x′[m] 
= x′[n]).

Noninterference : ∀q, r, s, t ∈ [N ], (P (x, x′, q) ∧ P (x, x′′, s) ∧ P (x′′, x′′′, q))
⇒ (E(q, r) ∧ x[q] = x[r] ∧ x′[q] 
= x′[r] ⇒ E(s, t)

∧(x′[s] 
= x′[t] ⇒ x′′′[s] 
= x′′′[t]) ∧ x′′′[r] 
= x′′′[q])).
(from (3 and expansion of ordering)

Minimality : C(x) = ∅ ⇒ x ∈ X∗.

From the above conditions, using Theorem 2 N0 is calculated to be 24.

4.2 Leader Election

This algorithm is a modified version of the Chang-Roberts leader election algo-
rithm [10]. We apply Theorem 1 directly by defining a straightforward measure
function. The state of each node in the network consists of a) its own uid, b)
the index and uid of its proposed candidate, and c) the status of the election
according to the node (0 : the node itself is elected, 1 : the node is not the leader,
2 : the node is still waiting for the election to finish). A node i communicates
its state to its clockwise neighbor j (i+ 1 if i < N , 0 otherwise) and if the UID
of i’s proposed candidate is greater than j, then j is out of the running. The
proposed candidate for each node is itself to begin with. When a node gets back
its own index and uid, it sets its election status to 0. This status, and the correct
leader identity propagates through the network, and we want to verify that the
system stabilizes to a state where a leader is elected. The measure function is
the number of nodes with state 0.
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Automaton Leader[N : N]
type indices : [N ]
variables

uid[indices �→ [N ]]
candidate[indices �→ [N ]]
leader[indices �→ {0, 1, 2}]

transitions
internal step(i: indices , j: indices )
pre leader[i] = 1 ∧ uid[candidate[i]] > uid[candidate[j]]
eff leader[j] = 1 ∧ candidate[j] = candidate[i]
pre leader[j] = 2 ∧ candidate[i] = j
eff leader[j] = 0∧candidate[j] = j
pre leader[i] = 0
eff leader[j] = 1 ∧ candidate[j] = i

measure
func C : x �→ Sum(x.leader[i])

The function Sum() represents the sum of all elements in the array, and it can
be updated when a transition happens by just looking at the interacting nodes.
We encode the sufficient conditions for stabilization of this algorithm using the
strategy outlined in Section 3.2.

Invariance : ∀i, j∈ [N ], P (x, x′, i, j)⇒(Sum(x′.leader)≤Sum(x.leader)).

≡ ∀i, j ∈ [N ], (P (x, x′, i, j) ⇒ (Sum(x.leader)− x.leader[i]−
x.leader[j] + x′.leader[i] + x′.leader[j] ≤ Sum(x.leader)).

(difference only due to interacting nodes)

≡ ∀i, j ∈ [N ], P (x, x′, i, j)
⇒ (x′.leader[i] + x′.leader[j] ≤ x.leader[i] + x.leader[j])

Progress : ∃m,n ∈ [N ], Sum(x.leader) 
= N − 1

⇒ Sum(step(m,n)(x).leader) < Sum(x.leader)).

≡ ∀p ∈ [N ], x.leader[p] = 2 ⇒
∃m,n ∈ [N ], (P (x, x′,m, n) ∧ E(m,n) ∧
x′.leader[m] + x′.leader[n] < x.leader[m] + x.leader[n]).

(one element still waiting for election to end)

Noninterference : ∀q, r, s, t ∈ [N ], P (x, x′, q, r) ∧ P (x, x′′, s, t) ∧ P (x′′, x′′′, q, r)
⇒ (x′[q] + x′[r] < x[q] + x[r]

⇒ (x′′′[q] + x′′′[r] + x′′′[s] + x′′′[t] < x[q] + x[r] + x[s] + x[t])).

(expanding out Sum)

Minimality : C(x) = N − 1 ⇒ x ∈ X∗.

From the above conditions, using Theorem 2, N0 is calculated to be 35.

4.3 Shortest Path

This algorithm computes the shortest path to every node in a graph from a root
node. It is a simplified version of the Chandy-Misra shortest path algorithm [10].
We are allowed to distinguish the nodes with indices 1 or N in the formula
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structure specified by Theorem 2. The state of the node represents the distance
from the root node. The root node (index 1) has state 0. Each pair of neighboring
nodes communicates their states to each other, and if one of them has a lesser
value v, then the one with the larger value updates its state to v + 1. This
stabilizes to a state where all nodes have the shortest distance from the root
stored in their state. We don’t have an explicit value of ⊥ for the measure
function for this, but it can be seen that we don’t need it in this case. Let the
interaction graph be a d−regular graph. The measure function is the sum of
distances.

Automaton Shortest[N : N]
type indices : [N ]
type values : {1, . . . , N }
variables

x[indices �→ values]
transitions

internal step(i: indices , j: indices )
pre x[j] > x[i] + 1
eff x[j] = x[i] + 1
pre x[i] = 0
eff x[j] = 1

measure
func C : x �→ Sum(x[i])

Ordering on the image of measure function is the usual one on natural numbers.

Invariance : ∀i, j ∈ [N ], P (x, x′, i, j) ⇒ Sum(x′) ≤ Sum(x).

≡ ∀, j ∈ [N ], P (x, x′, i, j)
⇒ Sum(x)− x[i]− x[j] + x′[i] + x′[j] ≤ Sum(x).

≡ ∀i, j ∈ [N ], P (x, x′, i, j) ⇒ x′[i] + x′[j] ≤ x[i] + x[j).

Progress : ∃m,n∈ [N ], C(x) 
= ⊥⇒P (x, x′,m, n) ∧ Sum(x)′ < Sum(x).

≡ ∀k, l ∈ [N ], (E(k, l) ⇒ x[k] ≤ x[l] + 1)

∨∃m,n ∈ [N ](P (x, x′,m, n) ∧ E(m,n)

∧x[m] + x[n] > x′[m] + x′[n]).
(C(x) = ⊥ if there is no pair of neighboring

vertices more than 1 distance apart from each other )

Noninterference : ∀q, r, s, t ∈ [N ], P (x, x′, q, r) ∧ P (x, x′′, s, t) ∧ P (x′, x′′, q, r)
⇒ (x′[q] + x′[r] < x[q] + x[r]

⇒ (x′′′[q]+x′′′[r] + x′′′[s] + x′′′[t] < x[q] + x[r] + x[s] + x[t])).

Minimality : C(x) 
= ⊥ ⇒ x ∈ X∗

≡ ∀i, j(E(i, j) ⇒ x[i]− x[j] ≤ 1 ⇒ x ∈ X∗) (definition)

N0 is 7(d+ 1) where the graph is d-regular.

4.4 Link Reversal

We describe the full link reversal algorithm as presented by Gafni and Bertsekas
in [19], where, given a directed graph with a distinguished sink vertex, it outputs
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a graph in which there is a path from every vertex to the sink. There is a
distinguished sink node(index N). Any other node which detects that it has only
incoming edges, reverses the direction of all its edges with its neighbours. We
use the vector of reversal distances (the least number of edges required to be
reversed for a node to have a path to the sink, for termination. The states store
the reversal distances, and the measure function is identity.

Automaton Reversal[N : N]
type indices : [N ]
type values : [N ]
variables

x[indices �→ values]
transitions

internal step(i: indices )
pre i �= N ∧ ∀j ∈ [N ](E(i, j) ∧ (direction(i, j) = −1)
eff ∀j ∈ [N ](E(i, j) ⇒ (Reverse(i, j)) ∧ x(i) = min(x(j)))

measure
func C: x �→ x

The ordering on the image of the measure function is component-wise comparison:

V1 < V2 ⇔ ∀i(V1[i] < V2[i])

We mentioned earlier that the image of C has a well-ordering. That is a condition
formulated with the idea of continuous spaces in mind. The proposed ordering for
this problem works because the image of the measure function is discrete and has
a lower bound (specifically, 0N). We elaborate a bit on P here, because it needs
to include the condition that the reversal distances are calculated accurately. The
node N has reversal distance 0. Any other node has reversal distance rd(i) =
min(rd(j1), . . . rd(jm), rd(k1) + 1, . . . rd(kn) + 1) where jp(p = 1 . . .m) are the
nodes to which it has outgoing edges, and kq(q = 1 . . . n) are the nodes it has
incoming edges from. P also needs to include the condition that in a transition,
reversal distances of no other nodes apart from the transitioning nodes change.
The interaction graph in this example is complete.

Invariance : ∀i, j ∈ [N ], P (x, x′, i) ⇒ x′[j] ≤ x[j] (ordering)

Progress : ∃m ∈ [N ], C(x) 
= ⊥ ⇒ (C(step(m)(x)) < C(x)).

≡ ∀n ∈ [N ], (x[n] = 0) ∨ ∃m ∈ [N ](P (x, x′,m) ∧ x′[m] < x[m]).

Noninterference : ∀i, j ∈ [N ], P (x, x′, i) ∧ P (x′, x′′, j) ∧ P (x′, x′′′, i)
⇒ (x′[i] < x[i] ∧ x′′′[i] < x[i]). (decreasing measure)

Minimality : C(x) = 0N ⇒ x ∈ X∗.

From the above conditions, using Theorem 2, N0 is calculated to be 21.

5 Experiments and Discussion

We verified that instances of the aforementioned systems with sizes less than
the small model parameter N0 satisfy the four conditions(invariance, progress,
non-interference, minimality) of Theorem 1 using the Z3 SMT-solver [4]. The
models are checked by symbolic execution.
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Fig. 1. Instance size vs log10(T ), where T is the running time in seconds

The interaction graphs were complete graphs in all the experiments. In
Figure 5, the x-axis represents the problem instance sizes, and the y-axis is
the log of the running time (in seconds) for verifying Theorem 1 for the different
algorithms. 2

We observe that the running times grow rapidly with the increase in the
model sizes. For the binary gossip example, the program completes in ∼ 17
seconds for a model size 7, which is the N0 value. In case of the link reversal, for
a model size 13, the program completes in ∼ 30 mins. We have used complete
graphs in all our experiments, but as we mentioned earlier in Section 3.2, we
can encode more general graphs as well. This method is a general approach
to automated verification of stabilization properties of distributed algorithms
under specific fairness constraints, and structural constraints on graphs. The
small model nature of the conditions to be verified is crucial to the success of this
approach. We saw that many distributed graph algorithms, routing algorithms
and symmetry-breaking algorithms can be verified using the techniques discussed
in this paper. The problem of finding a suitable measure function which satisfies
Theorem 2, is indeed a non-trivial one in itself, however, for the problems we
study, the natural measure function of the algorithms seems to work.
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Abstract. Linearizability is a well-established consistency and correct-
ness criterion for concurrent data types. An important feature of lineariz-
ability is Herlihy and Wing’s locality principle, which says that a
concurrent system is linearizable if and only if all of its constituent parts
(so-called objects) are linearizable. This paper presents P-compositionality,
which generalizes the idea behind the locality principle to operations on
the same concurrent data type. We implement P-compositionality in a
novel linearizability checker. Our experiments with over nine implemen-
tations of concurrent sets, including Intel’s TBB library, show that our lin-
earizability checker is one order of magnitude faster and/or more space
efficient than the state-of-the-art algorithm.

1 Introduction

Linearizability [1] is a well-established correctness criterion for concurrent data
types and it corresponds to one of the three desirable properties of a distributed
system, namely consistency [2]. The intuition behind linearizability is that every
operation on a concurrent data type is guaranteed to take effect instantaneously
at some point between its call and return.

The significance of linearizability for contemporary distributed key/value
stores has been highlighted recently by the Jepsen project, an extensive case
study into the correctness of distributed systems.1 Interestingly, Jepsen found
linearizability bugs in several distributed key/value stores despite the fact that
they were designed based on formally verified distributed consensus protocols.
This illustrates that there is often a gap between the design and the implemen-
tation of distributed systems. This gap motivates the study in this paper into
runtime verification techniques (in the form of so-called linearizability checkers)
for finding linearizability bugs in a single run of a concurrent system.

The input to a linearizability checker consists of a sequential specification of
a data type and a certain partially ordered set of operations, called a history. A
history represents a single terminating run of a concurrent system. We assume
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that the concurrent system is deadlock-free since there already exist good dead-
lock detection tools. Despite the restriction to single histories, the problem of
checking linearizability is NP-complete [3]. This high computational complex-
ity means that writing an efficient linearizability checker is inherently difficult.
The problem is to find ways of pruning a huge search space: in the worst case,
its size is O(N!) where N is the length of the run of a concurrent system.

This paper presents a novel linearizability checker that efficiently prunes the
search space by partitioning it into independent, faster to solve, subproblems.
To achieve this, we propose P-compositionality (Definition 6), a new partitioning
scheme of which Herlihy and Wing’s locality principle [1] is an instance. Recall
that locality says that a concurrent system Q is linearizable if and only if each
concurrent object in Q is linearizable. The crux of P-compositionality is that
it generalizes the idea behind the locality principle to operations on the same
concurrent object. For example, the operations on a concurrent unordered set
and map are linearizable if and only if the restriction to each key is linearizable.
This is not a consequence of Herlihy and Wing’s locality principle.

In this paper, we study the pragmatics of P-compositionality through its im-
plementation in a novel linearizability checker and experimental evaluation.
Our implementation is based on Wing and Gong’s algorithm (WG algorithm) [4]
and a recent extension by Lowe [5]. We call Lowe’s extension of Wing and
Gong’s algorithm the WGL algorithm. The idea behind the WGL algorithm is
to prune states that are equivalent to an already seen state. Lowe’s experiments
show that the WGL algorithm can solve a significantly larger number of prob-
lem instances than the WG algorithm. We therefore use the more recent WGL
algorithm as our starting point.

Our linearizability checker preserves three practical properties of the algo-
rithms in the WG-family that we deem important. Firstly, our tool is precise,
i.e., it reports no false alarms. This is particularly significant for evaluating
large code bases, as effectively shown by the Jepsen project. Secondly, our tool
takes as input an executable specification of the data type to be checked. This
significantly simplifies the task of expressing the expected behaviour of a data
type because one merely writes code, i.e., no expertise in formal modeling is
required. Finally, our tool can be easily integrated with a range of runtime mon-
itors to generate a history from a run of a concurrent system. This is essential to
make it a viable runtime verification technique.

We experimentally evaluate our linearizability checker using nine different
implementations of concurrent sets, including Intel’s TBB library, as exemplars
of P-compositionality. Our experiments show that our linearizability checker
is at least one order of magnitude faster and/or more space efficient than the
WGL algorithm. Overall, the results of our work can therefore dramatically
increase the number of runs that can be checked for linearizability bugs in a
given time budget.

The rest of this paper is organized as follows. We first formalize the problem
by recalling familiar concepts (§ 2). We then present P-compositionality (§ 3) on
which our decision procedure (§ 4) is based. We implement and experimentally
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call1
� set.insert(1) : true �

ret1

call3
� set.contains(1) : true �

ret3

call2
� set.remove(1) : false �

ret2

Fig. 1. A history diagram H1 for the operations on a concurrent set

evaluate our decision procedure (§ 5). Finally, we discuss related work (§ 6) and
conclude the paper (§ 7).

2 Background

We recall familiar concepts that are fundamental to everything that follows.

Definition 1 (History). Let E � {call, ret} ×N. For all natural numbers n in N,
calln � 〈call, n〉 in E is called a call and retn � 〈ret, n〉 in E is called a return. The
invocation of a procedure with input and output arguments is called an operation. An
object comprises a finite set of such operations. For all e in E, obj(e) and op(e) denote
the object and operation of e, respectively. A history is a tuple 〈H, obj, op〉 where H is
a finite sequence of calls and returns, totally ordered by �H. When no ambiguity arises,
we simply write H for a history. We write |H| for the length of H.

Intuitively, a history H records a particular run of a concurrent system. Using
the implicitly associated functions obj and op, a history H gives relevant infor-
mation on all operations performed at runtime, and the sequence of calls and
returns in H give the relative points in time at which an operation started and
completed with respect to other operations. This can be visualized using the
familiar history diagrams [1], as illustrated next.

Example 1. Consider a concurrent set with the usual operations: ‘insert’ adds an
element to a set, whereas ‘remove’ does the opposite, and ‘contains’ checks mem-
bership. The return value indicates the success of the operation. For example,
‘set.remove(1) : true’ denotes the operation that successfully removed ‘1’ from
the object ‘set’, whereas ‘set.remove(1) : false’ denotes the operation that did
not modify ‘set’ because ‘1‘ is already not in the set. Then the history diagram
in Fig. 1 can be defined by H1 = 〈call1, call2, ret1, ret2, call3, ret3〉 such that, for all
1 ≤ i ≤ 3, obj(calli) = obj(reti) = ‘set’, and the following holds:

– op(call1) = op(ret1) = ‘insert(1) : true’,
– op(call2) = op(ret2) = ‘remove(1) : false’,
– op(call3) = op(ret3) = ‘contains(1) : true’.

Note that |H1| = 6 and the total ordering �H1 satisfies, among other con-
straints, ret1 �H1 call3 because ret1 precedes call3 in the sequence H1.
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Henceforth, we draw diagrams as in Fig. 1. Linearizability is ultimately de-
fined in terms of sequential histories, in the following sense:

Definition 2 (Complete and Sequential History). Let e, e′ ∈ E and H be a his-
tory. If e is a call and e′ is a return in H, both are matching whenever e �H e′ and
their objects and operations are equal, i.e. obj(e) = obj(e′) and op(e) = op(e′). A
history is called complete if every call has a unique matching return. A complete his-
tory is called sequential whenever it alternates between matching calls and returns
(necessarily starting with a call).

Example 2. The following history H2 is sequential:

� remove(1) : false � � insert(1) : true � � contains(1) : true �

And so is H3 that we get when we swap the first two operations in H2 (al-
though the resulting sequence of operations is not what we would expect from
a sequential set, as discussed next):

� insert(1) : true � � remove(1) : false � � contains(1) : true �

H3 in Example 2 illustrates that a history can be sequential even though it
may not satisfy the expected sequential behaviour of the data type. This is ad-
dressed by the following definition:

Definition 3 (Specification). A specification, denoted by φ (possibly with a sub-
script), is a unary predicate on sequential histories.

Example 3. Define φset to be the specification of a sequential finite set. This means
that, given a sequential history S according to Definition 2, the predicate φset(S)
holds if and only if the input and output of ‘insert’, ‘remove’ and ‘contains’ in
S are consistent with the operations on a set. For example, φset(H2) = true,
whereas φset(H3) = false for the histories from Example 2.

Remark 1. In the upcoming decision procedure (§ 4), every φ is an executable
specification. Informally, this is achieved by ‘replaying’ all operations in a se-
quential history S in the order in which they appear in S. If in any step the
output deviates from the expected result, the executable specification returns
false; otherwise, if it reaches the end of S, it returns true.

The next definition will be key to answer which calls may be reordered in a
history in order to satisfy a specification.

Definition 4 (Happens-before). Given a history H, the happens-before relation is
defined to be a partial order <H over calls e and e′ such that e <H e′ whenever e’s
matching return, denoted by ret(e), precedes e′ in H, i.e. ret(e) �H e′. We say that
two calls e and e′ happen concurrently whenever e �<H e′ and e′ �<H e.
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Example 4. For the history H1 in Fig. 1, we get:

– call1 <H1 call3 and call2 <H1 call3, i.e. call1 and call2 happen-before call3;
– call1 �<H1 call2 and call2 �<H1 call1, i.e. call1 and call2 happen concurrently.

Note that a history H is sequential if and only if <H is a total order. More
generally, <H is an interval order [6]: for every x, y, u, v in H, if x <H y and
u <H v, then x <H v or u <H y. Observe that a partial order 〈P, ≤〉 is an inter-
val order if and only if no restriction of 〈P, ≤〉 is isomorphic to the following
Hasse diagram [7]:

• •

• •
Put differently, this paper is about a decision procedure (§ 4) that concerns a

certain class of partial orders. The decision problem rests on the next definition:

Definition 5 (Linearizability). Let φ be a specification. A φ-sequential history is
a sequential history H that satisfies φ(H). A history H is linearizable with respect
to φ if it can be extended to a complete history H′ (by appending zero or more returns)
and there is a φ-sequential history S with the same obj and op functions as H′ such that

L1 H′ and S are equal when seen as two sets of calls and returns;
L2 <H ⊆ <S, i.e. for all calls e, e′ in H, if e happens-before e′, the same is true in S.

Informally, extending H to H′ means that all pending operations have com-
pleted. This paper therefore considers only complete histories. This is fully jus-
tified under our stated assumption (§ 1) that the concurrent system is deadlock-
free [5]. Condition L1 means that H′ and S are identical if we disregard the order
in which calls and returns occur in both sequences. Condition L2 says that the
happens-before relation between calls in H must be preserved in S.

Example 5. Recall Example 3. Then H1 in Fig. 1 is linearizable with respect to φset
because H2 is a witness for a φset-sequential history that respects the happens-
before relation <H1 detailed in Example 4. In particular, call1 <H1 call3 and
call2 <H1 call3 cannot be reordered.

3 P-compositionality

In this section, we introduce P-compositionality. We illustrate our new parti-
tioning scheme in Examples 7–9.

Definition 6 (P-compositionality). Let P be a function that maps a history H to
a non-trivial partition of H, i.e. P satisfies P(H) �= {H}. A specification φ is called
P-compositional whenever any history H is linearizable with respect to φ if and only
if, for every history H′ ∈ P(H), H′ is linearizable with respect to φ. When this equiv-
alence holds we speak of P-compositionality.
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In the following examples, we assume that the partitions are non-trivial.
The first example illustrates that the locality principle [1] is an instance of P-
compositionality.

Example 6. Denote with Obj the set of objects. Let φ be a specification for all
objects in Obj. Let PObj be the function that maps every history H to the set of
histories H where each sub-history H′ ∈ H is the restriction of H to an object
in Obj. Then PObj(H) is a partition of H. By the locality principle [1], a history
H is linearizable with respect to φ if and only if, for all Hobj ∈ PObj(H), Hobj is
linearizable with respect to φ. Therefore φ is a PObj-compositional specification.

The remaining examples show that P-compositionality strictly generalizes
the locality principle because P-compositionality can partition a history even
if the implementation details or constituent parts (i.e. objects) of a concurrent
system are unknown. For example, there are at least eight different implemen-
tations of concurrent sets (Table 2), but we do not need to know the objects
(e.g. registers, buckets) of which such implementations consist in order to par-
tition one of their histories. This is in contrast to the locality principle where
such knowledge is required. Put differently, P-compositionality is all about the
interface of a concurrent data type, whereas the locality principle hinges on the
implementation details of such an interface.

Example 7. Reconsider φset, the specification of a set from Example 3, where all
operations have the form insert(k), remove(k) and contains(k) for some k. Let
Pset be the function that partitions every history H according to such k. Since the
‘insert’, ‘remove’ and ‘contains’ operations on a single set object are linearizable
if and only if the restriction to each k is linearizable, φset is a Pset-compositional
specification of a set.

Similarly, there exists a Pmap-compositional specification for concurrent un-
ordered maps where every history is partitioned by each key k.

Example 8. Consider a concurrent array. As their sequential counterparts, a con-
current array can be only read or written at a particular array index. Let Parray
be the function that partitions a history based on such array indexes. This gives
a Parray-compositional specification of an array.

Example 9. Consider a concurrent stack where each pop and push operation
also returns the height of the stack before it is modified. Among other things,
the return value can be used to determine whether the operation has succeeded.
For example, if stack.pop returns zero, we know the pop operation was unsuc-
cessful (and the popped element is undefined) because the stack was empty at
the time the operation was called. We can use the returned height to partition a
history such that a concurrent stack is linearizable if and only if each partition
is linearizable. This way we get a Pstack-compositional specification of a stack.

Intuitively, the reason why the previous specifications are P-compositional
is because all operations in one partition are, informally speaking, unaffected
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by all operations in every other partition. For example, the return value of
set.insert(k) is unaffected by set.insert(k′), set.remove(k′) and set.contains(k′) for
k �= k′. This clearly, however, has its limitations. For example, a ‘size’ operation
that returns the number of elements in a concurrent collection data type cannot
be generally partitioned this way.

Note that all these examples have in common that their P-compositional
specifications can be expressed as a conjunction of specifications that each par-
tition a history. For example, φset =

∧

k∈K φset(k) where φset(k) for every k is a
sequential specification that only concerns operations on k, e.g. set.insert(k).

Next, we show how to leverage the concept of P-compositionality to more
efficiently find linearizability bugs.

4 Decision Procedure

In this section, we explain our linearizability checking algorithm that decides
whether a history is linearizable with respect to some P-compositional spec-
ification (Definition 6). The novelty of our decision procedure is Algorithm 3
that leverages P-compositionality. In the next section (§ 5), we experimentally
evaluate the effectiveness of Algorithm 3.

Since we base our work on the WGL algorithm (recall § 1), we use the fol-
lowing data structures to represent the input to the decision procedure:

1. The specification (Definition 3) is modelled by a persistent data structure,
e.g. [8]. Most standard data types in functional programming languages can
be almost directly used this way. For instance, the specification of a set can
be modelled through an immutable sequential set.

2. A history (Definition 1), in turn, is represented by a doubly-linked list of so-
called entries. Consequently, each entry e has a e.next and e.prev field that
point to the next and previous entry, respectively. In addition, each entry e
has a match field, and we say that e is a call entry exactly if e.match �= null;
otherwise, e is called a return entry. Given a call entry e, e.match corre-
sponds to the matching return entry of e. This linked-list data structure
therefore aligns directly with the usual definition of history (Definition 1).

The idea behind the WGL Algorithm 1 is threefold: it keeps track of provi-
sionally linearized call entries in a stack; it uses the stack to backtrack if nec-
essary, and caches already seen configurations. We briefly explain each idea in
turn. Denote the stack of call entries by calls. Given a history H, the height of
calls is at most half of H’s length, i.e. |calls| ≤ 0.5 × |H| = N. Note that there
is no rounding involved because |H| is always even since every call entry has
a matching return entry. The height of the stack grows only if a call entry can
be linearized (line 5). When the stack grows or shrinks, the history is modi-
fied (lines 13 and 23) by the LIFT and UNLIFT procedures (Algorithm 2). We
remark that the workings of both procedures are illustrated by Example 10. If
no further call entries can be linearized but the stack is nonempty, the algorithm
backtracks and tries the next possible call entry (lines 18–24). The backtracking
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Algorithm 1. WGL linearizability checker [5]

Require: head entry is such that head entry.next points to the beginning of history H.
Require: N = 0.5 × |H| is half of the total number of entries reachable from head entry.
Require: linearized is a bitset (array of bits) such that linearized[k] = 0 for all 0 ≤ k < N.
Require: For all entries e in H, 0 ≤ entry id(e) < N.
Require: For all entries e and e′ in H, if entry id(e) = entry id(e′), then e = e′.
Require: cache is an empty set and calls is an empty stack.
1: while head entry.next �= null do
2: if entry.match �= null then � Is call entry?
3: 〈is linearizable, s′〉 ← apply(entry, s) � Simulate entry’s operation
4: cache′ ← cache � Copy set
5: if is linearizable then
6: linearized′ ← linearized � Copy bitset
7: linearized′[entry id(entry)] ← 1 � Insert entry id(entry) into bitset
8: cache ← cache ∪ {〈linearized′, s′〉} � Update configuration cache
9: if cache′ �= cache then

10: calls ← push(calls, 〈entry, s〉) � Provisionally linearize call entry and state
11: s ← s′ � Update state of persistent data type
12: linearized[entry id(entry)] ← 1 � Keep track of linearized entries
13: LIFT(entry) � Provisionally remove the entry from the history
14: entry ← head entry.next � Continue search in shortened history
15: else � Cannot linearize call entry
16: entry ← entry.next � Continue search in unmodified history
17: else � Handle “return entry”
18: if is empty(calls) then
19: return false � Cannot linearize entries in history
20: 〈entry, s〉 ← top(calls) � Revert to earlier state
21: linearized[entry id(entry)] ← 0
22: calls ← pop(calls)
23: UNLIFT(entry) � Undo provisional linearization
24: entry ← entry.next
25: return true

points depend on the return value of apply(entry, s) and the cache. The former
(line 3) models the specification φ: by Remark 1, it determines whether entry can
be applied to the current state s of a persistent data type. The latter (lines 4–8)
is an optimization due to Lowe [5] that prunes the search space by memoiz-
ing already seen configurations which are known to be non-linearizable. More
accurately, each configuration is a pair that consists of a set of unique call en-
try identifiers and a state of the persistent data structure. The intuition behind
pruning already seen configurations is that only one of two permutations of
operations on a concurrent data type need to be considered if they lead to an
identical state [5]. We remark that the total correctness of the WGL algorithm
follows from Wing and Gong’s total correctness argument [4].

Example 10. We illustrate the handling of entries in the history data structure.
For this, consider the two histories in Fig. 2. In Fig. 2a, the entries satisfy the
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following: call2.prev = call1, call2.next = call3 and call2.match = ret2 etc. Then
LIFT(call2) (Algorithm 2) produces the history shown in Fig. 2b. Note that both
call2 and ret2 are still valid entry pointers whose fields remain unchanged. This
explains how UNLIFT(call2) reverts the change in constant-time.

Algorithm 3 gives our partitioning scheme. This is an iterative algorithm
that, given an entry in a history H and positive integer n, partitions H starting
from that entry into at most n separate sub-histories. The partitioning is con-
trolled by the function partition : E → N from the set of call and return entries
to the natural numbers.

Example 11. Consider the history in Fig. 2b. For all entries e in this history,
let partition(e) = k where k is the integer argument of the operation. For ex-
ample, partition(call3) = partition(ret3) = 1 because op(call3) = op(ret3) =
‘remove(1) : false’. Then the function PARTITION(call1) returns two disjoint sub-
histories for the operations on ‘0’ and ‘1’, respectively:

call1
� set.insert(0) : true � ret1

call2
� set.contains(0) : true � ret2

and call3
� set.remove(1) : false � ret3.

Given a nonempty set of disjoint sub-histories returned by the PARTITION
function (Algorithm 3), we invoke Algorithm 1 on each sub-history. It is not too
difficult to implement sub-histories such that there is no sharing between them,
and Algorithm 1 could be therefore run in parallel for each sub-history. Never-
theless, this addresses a challenging problem that was identified independently
by Lowe [5] and Kingsbury [9].

Theorem 1. Let φ be a P-compositional specification and H be a history. Denote with
head entry the entry that represents the beginning of H. Associate with each disjoint
history Hk in partition P(H) a unique number 0 ≤ k < |P(H)| = n. If, for all
Hk ∈ P(H) and e ∈ Hk, partition(e) = k, then H is linearizable with respect to φ if
and only if Algorithm 1 returns true for every history in PARTITION(head entry, n).

We next experimentally quantify the benefits of the previous theorem.

call1
� set.insert(0) : true �

ret1

call2
� set.contains(0) : true �

ret2

call3
� set.remove(1) : false �

ret3

(a)

call1
� set.insert(0) : true �

ret1

call3
� set.remove(1) : false �

ret3

(b)

Fig. 2. After calling LIFT(call2) in history (2a), we get the history in (2b). UNLIFT(call2)
reverts this change in constant-time.
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Algorithm 2. History modifications

1: procedure LIFT(entry)
2: entry.prev.next ← entry.next
3: entry.next.prev ← entry.prev
4: match ← entry.match
5: match.prev.next ← match.next
6: if match.next �= null then
7: match.next.prev ← match.prev
8:
9: procedure UNLIFT(entry)

10: match ← entry.match
11: match.prev.next ← match
12: if match.next �= null then
13: match.next.prev ← match

14: entry.prev.next ← entry
15: entry.next.prev ← entry

Algorithm 3. History partitioner

Require: n is a positive integer
Require: entries is an array of size n
1: function PARTITION(entry, n)
2: for 0 ≤ i < n do
3: entries[i] ← null
4: while entry �= null do
5: i ← partition(entry) mod n
6: if entries[i] �= null then
7: entries[i].next ← entry

8: next entry ← entry.next
9: entry.prev ← entries[i]

10: entry.next ← null
11: entries[i] ← entry
12: entry ← next entry

13: return entries

5 Implementation and Experiments

In this section, we discuss and experimentally evaluate our implementation of
the decision procedure (§ 5). As an exemplar of P-compositionality, our experi-
ments use Intel’s TBB library and Lowe’s implementations of concurrent sets.

5.1 Implementation

The implementation details of an NP-complete decision procedure matter, es-
pecially for our experimental evaluation of P-compositionality. We particularly
consider hashing and cache eviction options because these were not studied in
previous implementations of the WG-based algorithms [4,5].

For experimental robustness, we implemented our linearizability checker in
C++11 [10] because this language has built-in concurrency support while al-
lowing us to rule out interference from managed runtime environments (e.g.
JVM) due to garbage collection etc. The choice of language, though, meant that
we had to implement persistent data structures from scratch. In doing so, we
focused on optimizing equality checks for our specific purposes. This way, we
managed to avoid a known performance bottleneck in Lowe’s implementation
of the WGL algorithm [5] where the cost of equality checks had to be compen-
sated with an additional union-find data structure. Another optimization in our
implementation is a constant-time (instead of linear-time) hash function for bit-
sets where we exploit the fact that the bitwise XOR operator over fixed-size bit
vectors forms an abelian group. This optimization turns out to be important
when histories are longer than 8 K, cf. [5]. To see this, consider the computa-
tional steps for retrieving a configuration from the cache and updating it (line 8
in Algorithm 1). For example, a history of length 216 means that each bitset
in a configuration is at least 3 KiB, and so a constant-time hash function can
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Table 1. Experimental results for three variants of the same linearizability checker. The
results for the baseline are reported in the WGL column. The rows correspond to bench-
marks drawn from Intel’s TBB library and Lowe’s implementations of concurrent sets
(see Table 2 for mnemonics).

WGL WGL+LRU WGL+P
Benchmark Time Memory Timeout Time Memory Timeout Time Memory Timeout

TBB 101 s 9792 MiB 0% 11 s 670 MiB 0% 6 s 672 MiB 0%

CRLSL 20 s 15738 MiB 0% 25 s 678 MiB 0% 6 s 400 MiB 0%

CRLFSL 14 s 15029 MiB 0% 18 s 678 MiB 0% 5 s 401 MiB 0%

FGL 16 s 14297 MiB 0% 81 s 678 MiB 0% 5 s 401 MiB 0%

LLL 23 s 16494 MiB 0% 94 s 678 MiB 0% 6 s 401 MiB 0%

LSL 20 s 15736 MiB 0% 25 s 678 MiB 14% 6 s 401 MiB 0%

LFLL 11 s 11847 MiB 0% 15 s 678 MiB 0% 5 s 402 MiB 0%

LFSL 14 s 14712 MiB 0% 18 s 678 MiB 0% 5 s 401 MiB 0%

LFSLF0 14 s 13125 MiB 0% 18 s 678 MiB 0% 5 s 402 MiB 0%

LFSLF1 < 1 s 404 MiB 0% < 1 s 407 MiB 0% < 1 s 402 MiB 0%

OPTIMIST 16 s 13818 MiB 0% 54 s 678 MiB 9% 5 s 401 MiB 0%

make a measurable difference when the cache is frequently accessed. In fact,
it is not uncommon for the cache to contain more than 27 K of such configu-
rations. For this reason, we also implemented a least recently used (LRU) cache
eviction feature that can optionally be enabled at compile-time. The effects of
the LRU cache will be evaluated shortly.

Overall, our implementation and experimental setup is around 4 K lines of
code, including several dozen unit tests. All the code and benchmarks are pub-
licly available in our source code repository.2

5.2 TBB and Concurrent Set Experiments

For the experimental evaluation of our partitioning scheme, we collected over
700 histories from nine different implementations of concurrent sets by Lowe [5]
and the concurrent unordered set implementation in Intel’s TBB library.3 We
performed all experiments on a 64-bit machine running GNU/Linux 3.17 with
12 Intel Xeon 2.4 GHz cores and 94 GB of main memory.

Each history is generated by running 4 concurrent threads that pseudo ran-
domly invoke operations on a single shared concurrent set. The argument of
each operation is a pseudo random uniformly distributed integer between 0

2 https://github.com/ahorn/linearizability-checker
3 https://www.threadingbuildingblocks.org/

https://github.com/ahorn/linearizability-checker
https://www.threadingbuildingblocks.org/
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(inclusive) and 24 (exclusive). Each thread invokes 70 K such operations. Note
that this is significantly more than in previous experiments where each process
is limited to 213 ≈ 8 K operations [5]. In total, since every call generates a pair
of entries, every history H in our benchmarks has length |H| = 4 × 2 × 70 K =
560 K. We discuss the experimental results using Intel’s TBB library and Lowe’s
concurrent set implementations in turn.

The experimental results are given in Table 1. Each of the three main columns
corresponds to one variant of the same linearizability checker: ‘WGL’ is the
baseline, ‘WGL+LRU’ is the WGL algorithm with LRU cache eviction enabled
(§ 5.1), and ‘WGL+P’ is the WGL algorithm combined with our partitioning al-
gorithm (Algorithm 3 in § 4). We tried to use the WG algorithm [4] without the
extension by Lowe [5] but WG times out on the majority of benchmarks. We
therefore do not report the results on the WG algorithm and focus on WGL,
WGL+LRU and WGL+P. The meaning of the sub-columns is as follows. The
‘Time’ and ‘Memory’ columns give the average of the elapsed time and vir-
tual memory usage, respectively. These averages exclude runs that we had to
terminate after 1 hour. The percentage of such terminated runs is given in the
‘Timeout’ column. In each row, all variants are compared with respect to the
same benchmark data. We therefore do not report confidence intervals.

The TBB benchmark corresponds to the first row in Table 1 and consists of
a total of 100 histories. Table 1 clearly shows that the WGL+P algorithm is at
least one order of magnitude faster compared to the baseline. We also see that
enabling the LRU cache eviction decreases the memory footprint by at least one
order of magnitude, approximately 10 GiB versus 700 MiB. In fact, the runtime
performance of WGL+LRU is almost one order of magnitude faster than the
baseline. The WGL+P algorithm is at least as fast and almost as space efficient
as WGL+LRU. In the experiments with Lowe’s implementations of concurrent
sets (see next paragraph), we further investigate the effect of the LRU cache
eviction feature and how it compares to the partitioning scheme.

We give Lowe’s implementations of concurrent sets mnemonics (Table 2) that
identify the remaining ten benchmarks in Table 1. Each of these ten benchmarks
comprises between 50 and 100 histories with an average of 70 histories per
benchmark. To avoid bias, we collected these using Lowe’s tool. The signifi-
cance of the experimental results in Table 1 is twofold. Firstly, they show that
on average, WGL+P is three times faster than WGL, and WGL+P consumes one
order of magnitude less space than WGL. Secondly, and more crucially, how-
ever, these experiments reveal that WGL+LRU is not as efficient as WGL+P, in
neither time nor space. For example, for WGL+LRU the average elapsed time
of the FGL and LLL benchmark is 81 s and 94 s, respectively, with an average
memory usage of 678 MiB in both cases. By contrast, WGL+P achieves an av-
erage runtime of less than 7 s (and so WGL+P is one order of magnitude faster
than WGL+LRU) and consumes even less memory on average (401 MiB) than
WGL+LRU. The higher average runtime of WGL+LRU in the FGL benchmark
is due to a single check that took several orders of magnitude longer (3068 s)
than the remaining checks (20 s on average when the 3068 s outlier is excluded).
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Table 2. Mnemonics for Lowe’s implementation of concurrent sets [5]

Benchmark name Mnemonic Benchmark name Mnemonic

collision resistance lazy skip list CRLSL lock-free linked-list LFLL
collision resistance lock-free skip list CRLFSL lock-free skip list LFSL
fine-grained lock FGL lock-free skip list faulty (bad hash) LFSLF0
lazy linked-list LLL lock-free skip list faulty (good hash) LFSLF1
lazy skip list LSL optimistic lock OPTIMIST

In the LLL benchmark there are two such outliers (2201 s and 675 s, whereas the
other checks average 27 s). The observed difference between WGL+LRU and
WGL+P is even more pronounced in both the LSL and OPTIMIST benchmarks
where the LRU cache eviction causes 14% and 9% of runs to timeout, whereas
the WGL+P algorithm always runs to completion in less than a few seconds.

This experimentally confirms that the WGL+P is one order of magnitude
faster as well as more space efficient than the baseline and WGL+P consumes
even less space than our WGL+LRU implementation.

6 Related Work

Linearizability is related to the concept of atomicity, including weaker forms
such as k-atomicity [11]. An important difference is that atomicity is typically
not defined in terms of a sequential specification, e.g. [12]. The theoretical limi-
tations of automatically verifying linearizability are well understood. Of course,
the problem is generally undecidable [13]. In fact, even checking finite-state im-
plementation against atomic specifications, provided the number of program
threads is bounded, is EXPSPACE [14]. And the best known lower bound for
this problem is PSPACE-hardness. This explains the restrictions in this paper
and its focus on runtime verification instead.

The literature on machine-assisted techniques for checking linearizability
can be broadly divided into simulation-based methods (e.g. [15,16]), model
checking (e.g. [17,18,19,20]), static analysis (e.g. [21,22,23,24]) and fully auto-
matic testing (e.g. [4,25,26,27,28,29,30,5]). The simulation-based methods have
been used by experts to mechanically verify simple fine-grained and lock-free
implementations. Model checking requires less expertise but is typically lim-
ited to very small programs and a small number of threads due to the state
explosion problem. By contrast, static analysis tools aim to prove correctness
with respect to an unbounded number of threads. In general, these techniques
are necessarily incomplete and require the user to supply linearization points
and/or invariants. Vafeiadis [24] proposes a more automatic form of static anal-
ysis that works well on simpler concurrent data types such as stacks but report-
edly not so well on data types that have more complicated invariants, including
the CAS-based and lazy concurrent sets extensively studied in our experiments.
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Our work is most closely related to linearizability testing techniques that are
precise, fully automatic and necessarily incomplete, e.g. [4,25,26,27,28,29,30,5].
We focus our discussion on tools that do not require the notion of commit
points, cf. [31]. The work in [25,30] checks k-atomicity with a polynomial-time
algorithm assuming that each write to a register assigns a distinct value. By
contrast, we solve a more general NP-complete problem of which k-atomicity
is an instance. The tool in [26] analyzes code that uses concurrent collection data
types such as maps. To make the analysis scale, the authors assume that the col-
lection data types are linearizable, whereas our tool could be used to check such
an assumption. A different tool [27] requires programmers to annotate concur-
rent implementations with so-called state summary functions that act as a form
of specification. Our approach is more modular because it strictly separates the
concurrent implementation from its specification. By contrast, [28] works with-
out the programmer having to provide a sequential specification. As a result,
however, the tool can only find linearizability violations when an exception is
thrown or a deadlock occurs. Subsequent work [29] circumvents this, in the
context of object-oriented programs, by considering the special case of a su-
perclass serving as an executable, possibly non-deterministic, specification for
all its subclasses. The fact that the superclass can be non-deterministic may ex-
plain why even checks of two threads can take a significant amount of time (e.g.
108 min) despite the fact that each concurrent test considers only two possible
linearizations [29]. By contrast, the WGL algorithm [4,5], on which our decision
procedure is based (§ 4), is significantly faster but limited to deterministic spec-
ifications. Crucially, our experiments (§ 5) with P-compositional specifications
show a significant improvement over the WGL algorithm.

7 Concluding Remarks

We have presented a precise, fully automatic runtime verification technique
for finding linearizability bugs in implementations of concurrent data types
that are expected to satisfy a P-compositional specification. Our experiments
show that our partitioning scheme improves the WGL algorithm [4,5] by one
order of magnitude, in both time and space. An additional strength of our tech-
nique is that it is applicable to any linearizability checker. For this, however,
our work assumes that the specification is P-compositional. This is generally
not always the case and it would be therefore interesting to further generalize
P-compositionality, perhaps with a less modular partitioning scheme that can
make more assumptions about the underlying decision procedure.

Acknowledgements.. We would like to thank Gavin Lowe, Kyle Kingsbury and Alexey
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Abstract. We present a method to construct a validator based on trans-
lation validation approach to prove the value-equivalence of variables in
the compilation of the Signal compiler. The computation of output sig-
nals in a Signal program and their counterparts in the generated C code
is represented by a Synchronous Data-flow Value-Graph (Sdvg). Our val-
idator proves that every output signal and its counterpart variable have
the same values by transforming the Sdvg graph.

Keywords: Value-Graph · Graph transformation · Formal verification ·
Translation validation · Certified compiler · Synchronous programs

1 Introduction

Motivation A compiler is a large and very complex program which often con-
sists of hundreds of thousands, if not millions, lines of code, and is divided into
multiple sub-systems and modules. In addition, each compiler implements a par-
ticular algorithm in its own way. That results in two main drawbacks regarding
the formal verification of the compiler itself. First, constructing the specifica-
tions of the actual compiler implementation is a long and tedious task. Second,
the correctness proof of a compiler implementation, in general, cannot be reused
for another compiler.

To deal with these drawbacks of formally verifying the compiler itself, one
can prove that the source program and the compiled program are semantically
equivalent, which is the approach of translation validation [13,12,5]. The princi-
ple of translation validation is as follows: the source and the compiled programs
are represented in a common semantics. Based on the representations of the
input and compiled programs, the notion of “correct transformation” is formal-
ized. An automated proof method is provided to generate the proof scripts in
case the compiled program implements correctly the input program. Otherwise,
it produces a counter-example.

In this work, to adopt the translation validation approach, we use a value-
graph as a common semantics to represent the computation of variables in the
source and compiled programs. The “correct transformation” is defined by the
assertion that every output variable in the source program and the corresponding
variable in the compiled program have the same values.
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The Language. Signal [3,7] is a synchronous data-flow language that allows
the specification of multi-clocked systems. Signal handles unbounded sequences
of typed values (x(t))t∈N, called signals, denoted by x. Each signal is implicitly
indexed by a logical clock indicating the set of instants at which the signal is
present, noted Cx. At a given instant, a signal may be present where it holds a
value, or absent where it holds no value (denoted by ⊥). Given two signals, they
are synchronous iff they have the same clock. In Signal, a process (written P
or Q) consists of the synchronous composition, noted |, of equations over signals
x, y, z, written x := y op z or x := op(y, z), where op is an operator. Naturally,
equations and processes are concurrent.

Contribution. A Sdvg symbolically represents the computation of the output
signals in a Signal program and their counterparts in its generated C code. The
same structures are shared in the graph, meaning that they are represented by
the same subgraphs. Suppose that we want to show that an output signal and
its counterpart have the same values. In order to do that we simply check that
they are represented by the same subgraphs, meaning they label the same node.
We manage to realize this check by transforming the graph using some rewrite
rules, which is called normalizing process.

Let A and C be the source program and its generated C code. Cp denotes the
unverified Signal compiler which compiles A into C = Cp(A) or a compilation
error. We now associate Cp with a validator checking that for any output signal x
in A and the corresponding variable xc in C, they have the same values (denoted
by x̃ = x̃c). We denote this fact by C �val A.

1 if (Cp(A) is Error) return Error;
2 else {
3 if (C �val A) return C;
4 else return Error;
5 }

The main components of the validator are depicted in Fig. 1. It works as follows.
First, a shared value-graph that represents the computation of all signals and
variables in both programs is constructed. The value-graph can be considered as
a generalization of symbolic evaluation. Then, the shared value-graph is trans-
formed by applying graph rewrite rules (the normalization). The set of rewrite
rules reflects the general rules of inference of operators, or the optimizations of
the compiler. For instance, consider the 3-node subgraph representing the ex-
pression (1 > 0), the normalization will transform that graph into a single node
subgraph representing the value true, as it reflects the constant folding. Finally,
the validator compares the values of the output signals and the corresponding
variables in the C code. For every output signal and its corresponding variable,
the validator checks whether they point to the same node in the graph, mean-
ing that their computation is represented by the same subgraph. Therefore, in
the best case, when semantics has been preserved, this check has constant time
complexityO(1). In fact, it is always expected that most transformations and op-
timizations are semantics-preserving, thus the best-case complexity is important.
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Fig. 1. Sdvg Translation Validation Architecture

This work is a part of the whole work of the Signal compiler formal veri-
fication. Our approach is that we separate the concerns and prove each analy-
sis and transformation stage of the compiler separately with respect to ad-hoc
data-structures to carry the semantic information relevant to that phase. The
preservation of the semantics can be decomposed into the preservation of clock
semantics at the clock calculation and Boolean abstraction phase, the preserva-
tion of data dependencies at the static scheduling phase, and value-equivalence
of variables at the code generation phase. Fig. 2 shows the integration of this
verification framework into the compilation process of the Signal compiler. For
each phase, the validator takes the source program and its compiled counterpart,
then constructs the corresponding formal models of both programs. Finally, it
checks the existence of the refinement relation to prove the preservation of the
considered semantics. If the result is that the relation does not exist then a
“compiler bug” message is emitted. Otherwise, the compiler continues its work.

Outline The remainder of this paper is organized as follows. In Section 2,
we consider the formal definition of Sdvg and the representation of a Signal
program and its generated C code as a shared Sdvg. Section 3 addresses the
mechanism of the verification process based on the normalization of a Sdvg.
Section 4 illustrates the concept of Sdvg and the verification procedure. Section
5 terminates this paper with some related work, a conclusion and an outlook to
future work.

2 Synchronous Data-Flow Value-Graph

Let X be the set of variables which are used to denote the signals, clocks and
variables in a Signal program and its generated C code, and F be the set of
function symbols. In our consideration, F contains usual logic operators (not,
and, or), numerical comparison functions (<, >, =, <=, >=, /=), numerical
operators (+, -, *, /), and gated φ-function [2]. A gated φ-function such as
x = φ(c, x1, x2) represents a branching in a program, which means x takes the
value of x1 if the condition c is satisfied, and the value of x2 otherwise. A constant
is defined as a function symbol of arity 0.
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Fig. 2. The Translation Validation for the SIGNAL Compiler

Definition 1. A Sdvg associated with a Signal program and its generated C
code is a directed graph G = 〈N,E, lN ,mN〉 where N is a finite set of nodes that
represent clocks, signals, variables, or functions. E ⊆ N ×N is the set of edges
that describe the computation relations between nodes. lN : N −→ X ∪ F is a
mapping labeling each node with an element in X ∪ F . mN : N −→ P(N) is a
mapping labeling each node with a finite set of clocks, signals, and variables. It
defines the set of equivalent clocks, signals and variables.

A subgraph rooted at a node is used to describe the computation of the corre-
sponding element labelled at this node. In a graph, for a node labelled by y, the
set of clocks, signals or variables mN (y) = {x0, ..., xn} is written as a node with
label {x0, ..., xn} y.

2.1 SDVG of SIGNAL Program

Let P be a Signal program, we write X = {x1, ..., xn} to denote the set of
all signals in P which consists of input, output, state (corresponding to delay
operator) and local signals, denoted by I, O, S and L, respectively. For each
xi ∈ X , Dxi denotes its domain of values, and D

⊥
xi

= Dxi ∪{⊥} is the domain of
values with the absent value. Then, the domain of values of X with absent value
is defined as follows: D⊥

X =
⋃n

i=1 Dxi ∪ {⊥}. For each signal xi, it is associated
with a Boolean variable x̂i to encode its clock at a given instant t (true: xi

is present at t, false: xi is absent at t), and x̃i with the same type as xi to
encode its value. Formally, the abstract values to represent the clock and value
of a signal can be represented by a gated φ-function, xi = φ(x̂i, x̃i,⊥).
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Assume that the computation of signals in processes P1 and P2 is represented
as shared value-graphs G1 and G2, respectively. Then the value-graph G of the
synchronous combination process P1|P2 can be defined as G = 〈N,E, lN ,mN 〉 in
which for any node labelled by x, we replace it by the subgraph that is rooted by
the node labelled by x in G1 and G2. Every identical subgraph is reused, in other
words, we maximize sharing among graph nodes in G1 and G2. Thus, the shared
value-graph of P can be constructed as a combination of the sub-value-graphs
of its equations.

A Signal program is built through a set of primitive operators. Therefore,
to construct the Sdvg of a Signal program, we construct a subgraph for each
primitive operator. In the following, we present the value-graph corresponding
to each Signal primitive operator.

Stepwise Function. Consider the equation using the stepwise function y :=
f(x1, ..., xn), it indicates that if all signals from x1 to xn are defined, then the
output signal y is defined by applying f on the values of x1, ..., xn. Otherwise, it is
assigned no value. Thus, the computation of y can be represented by the following
gated φ-function: y = φ(ŷ, f(x̃1, x̃2, ..., x̃n),⊥), where ŷ ⇔ x̂1 ⇔ x̂2 ⇔ ... ⇔ x̂n

(since they are synchronous). The graph representation of the stepwise function
is depicted in Fig. 3. Note that in the graph, the node labelled by {x̂1, ..., x̂n} ŷ
means that mN (ŷ) = {x̂1, ..., x̂n}. In other words, the subgraph representing the
computation of ŷ is also the computation of x̂1, ..., and x̂n.

{x̂1, ..., x̂n} ŷ

φ

⊥

{ỹ} f

x̃1

φ

x̃2

φ

... x̃n

φ

{x̂} ŷ

φ

⊥

{ỹ} m̃.x

{m̃.x0} a

Fig. 3. The graphs of y := f(x1, ..., xn) and y := x$1 init a

Delay. Consider the equation using the delay operator y := x$1 init a. The
output signal y is defined by the last value of the signal x when the signal
x is present. Otherwise, it is assigned no value. The computation of y can be
represented by the following nodes: y = φ(ŷ, m̃.x,⊥) and m̃.x0 = a, where ŷ ⇔
x̂. m̃.x and m̃.x0 are the last value of x and the initialized value of y. The graph
representation is depicted in Fig. 3.
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Merge. Consider the equation which corresponds to the merge operator y :=
x default z. If the signal x is defined then the signal y is defined and holds
the value of x. The signal y is assigned the value of z when the signal x is
not defined and the signal z is defined. When both x and z are not defined, y
holds no value. The computation of y can be represented by the following node:
y = φ(ŷ, φ(x̂, x̃, z̃),⊥), where ŷ ⇔ (x̂ ∨ ẑ). The graph representation is depicted
in Fig. 4. Note that in the graph, the clock ŷ is represented by the subgraph of
x̂ ∨ ẑ.

{ŷ} ∨

φ

⊥

{ỹ} φx̂ ẑ

x̃

φ

z̃

φ

{ŷ} ∧

φ

⊥

{ỹ} x̃φx̂ ∧

b̂ ˜b

φ

Fig. 4. The graphs of y := x default z and y := x when b

Sampling. Consider the equation which corresponds to the sampling operator
y := x when b. If the signal x, b are defined and b holds the value true, then
the signal y is defined and holds the value of x. Otherwise, y holds no value.
The computation of y can be represented by the following node: y = φ(ŷ, x̃,⊥),

where ŷ ⇔ (x̂ ∧ b̂ ∧ b̃). Fig. 4 shows its graph representation.

Restriction. The graph representation of restriction process P1\x is the same
as the graph of P1.

Clock Relations. Given the above graph representations of the primitive op-
erators, we can obtain the graph representations for the derived operators on
clocks as the following gated φ-function z = φ(ẑ, true,⊥), where ẑ is computed
as ẑ ⇔ x̂ for z := x̂, ẑ ⇔ (x̂ ∨ ŷ) for z := xˆ+ y, ẑ ⇔ (x̂ ∧ ŷ) for z := xˆ∗ y,

ẑ ⇔ (x̂ ∧ ¬ŷ) for z := xˆ− y, and ẑ ⇔ (b̂ ∧ b̃) for z := when b. For the clock
relation xˆ= y, it is represented by a single node graph labelled by {x̂} ŷ.

2.2 SDVG of Generated C Code

For constructing the shared value-graph, the generated C code is translated into
a subgraph along with the subgraph of the Signal program. Let A be a Signal
program and C its generated C code, we write XA = {x1, ..., xn} to denote the
set of all signals in A, and XC = {xc

1, ..., x
c
m} to denote the set of all variables in
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C. We added “c” as superscript for the variables, to distinguish them from the
signals in A.

As described in [4,8,6,1], the generated C code of A consists of the following
files:

• A main.c is the implementation of the main function. It opens the IO com-
munication channels by calling functions provided in A io.c, and calls the
initialization function. Then it calls the step function repeatedly in an infi-
nite loop to interact with the environment.

• A body.c is the implementation of the initialization function and the step
function. The initialization function is called once to provide initial values
to the program variables. The step function, which contains also the step
initialization and finalization functions, is responsible for the calculation of
the outputs to interact with the environment. This function, which is called
repeatedly in an infinite loop, is the essential part of the concrete code.

• A io.c is the implementation of the IO communication functions. The IO
functions are called to setup communication channels with the environment.

The scheduling and the computations are done inside the step function. There-
fore, it is natural to construct a graph of this function in order to prove that
its variables and the corresponding signals have the same values. To construct
the graph of the step function, the following considerations need to be studied.
The generated C code in the step function consists of only the assignment and
if-then statements. For each signal named x in A, it has a corresponding
Boolean variable named C x in the step function. Then the computation of x is
implemented by a conditional if-then statement as follows:

1 if (C_x) {
2 computation(x);
3 }

If x is an input signal then its computation is the reading operation which
gets the value of x from the environment. In case x is an output signal, after
computing its value, it will be written to the IO communication channel with the
environment. Note that the C programs use persistent variables (e.g., variables
which always have some value) to implement the Signal program A which uses
volatile variables. As a result, there is a difference in the types of a signal in the
Signal program and of the corresponding variable in the C code. When a signal
has the absent value, ⊥, at a given instant, the corresponding C variable always
has a value. This implies that we have to detect when a variable in the C code
such that whose value is not updated. In this case, it will be assigned the absent
value, ⊥. Thus, the computation of a variable, called xc, can fully be represented
by a gated φ-function xc = φ(C xc, x̃c,⊥), where x̃c denotes the newly updated
value of the variable.

In the generated C code, the computation of the variable whose clock is the
master clock, which ticks every time the step function is called, and the compu-
tation of some local variables (introduced by the Signal compiler) are imple-
mented using the forms below.
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It is obvious that x is always updated when the step function is invoked. The
computation of such variables can be represented by a single node graph labelled
by {x̃c} xc. That means the variable xc is always updated and holds the value
x̃c.

1 if (C_x) {
2 computation(x);
3 } else computation(x);
4 // or without if-then
5 computation(x)

Considering the following code segment, we observe that the variable x is
involved in the computation of the variable y before the updating of x.

1 if (C_y) {
2 y = x + 1;
3 }
4 // code segment
5 if (C_x) {
6 x = ...
7 }

In this situation, we refer to the value of x as the previous value, denoted by
m.xc. It happens when a delay operator is applied on the signal x in the Signal
program. The computation of y is represented by the following gated φ-function:
yc = φ(C yc,m.xc + 1,⊥).

3 Translation Validation of SDVG

In this section, we introduce the set of rewrite rules to transform the shared value-
graph resulting from the previous step. This procedure is called normalizing. At
the end of the normalization, for any output signal x and its corresponding
variable xc in the generated C code, we check whether x and xc label the same
node in the resulting graph. The normalizing procedure can be adapted with
any future optimization of the compiler by updating the set of rewrite rules.

3.1 Normalizing

Once a shared value-graph is constructed for the Signal program and its gen-
erated C code, if the values of an output signal and its corresponding variable
in the C code are not already equivalent (they do not point the same node in
the shared value-graph), we start to normalize the graph. Given a set of term
rewrite rules, the normalizing process works as described below. The normalizing
algorithm indicates that we apply the rewrite rules to each graph node individ-
ually. When there are no more rules that can be applied to the resulting graph,
we maximize the shared nodes, reusing the identical subgraphs. The process
terminates when there exists no more sharing or rules that can be applied.

We classify our set of rewrite rules into three basic types: general simplification
rules, optimization-specific rules and synchronous rules. In the following, we shall
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present the rewrite rules of these types, and we assume that all nodes in our
shared value-graph are typed. We write a rewrite rule in form of term rewrite
rules, tl → tr, meaning that the subgraph represented by tl is replaced by the
subgraph represented by tr when the rule is applied. Due to the lack of space, we
only present a part of these rules, the full set of rules is shown in the appendix.

1 // Input: G: A shared value-graph. R: The set of
2 // rewrite rules. S: The sharing among graph nodes.
3 // Output: The normalized graph
4 while (∃s ∈ S or ∃r ∈ R that can be applied on G) {
5 while (∃r ∈ R that can be applied on G) {
6 for (n ∈ G)
7 if (r can be applied on n)
8 apply the rewrite rule to n
9 }

10 maximize sharing
11 }
12 return G

General Simplification Rules. The general simplification rules contain the
rules which are related to the general rules of inference of operators, denoted
by the corresponding function symbols in F . In our consideration, the operators
used in the primitive stepwise functions and in the generated C code are usual
logic operators, numerical comparison functions, and numerical operators. When
applying these rules, we will replace a subgraph rooted at a node by a smaller
subgraph. In consequence of this replacement, we will reduce the number of
nodes by eliminating some unnecessary structures. The first set of rules simplifies
numerical and Boolean comparison expressions. In these rules, the subgraph t
represents a structure of value computing (e.g., the computation of expression
b = x �= true). These rules are self explanatory, for instance, with any structure
represented by a subgraph t, the expression t = t can always be replaced with a
single node subgraph labelled by the value true.

= (t, t) → true

�= (t, t) → false

The second set of general simplification rules eliminates unnecessary nodes in
the graph that represent the φ-functions, where c is a Boolean expression. For
instance, we consider the following rules.

φ(true, x1, x2) → x1

φ(c, true, false) → c
φ(c, φ(c, x1, x2), x3) → φ(c, x1, x3)

The first rule replaces a φ-function with its left branch if the condition always
holds the value true. The second rule operates on Boolean expressions repre-
sented by the branches. When the branches are Boolean constants and hold
different values, the φ-function can be replaced with the value of the condition
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c. Consider a φ-function such that one of its branches is another φ-function.
The third rule removes the φ-function in the branches if the conditions of the
φ-functions are the same.

Optimization-Specific Rules. Based on the optimizations of the Signal com-
piler, we have a number of optimization-specific rules in a way that reflects the
effects of specific optimizations of the compiler. These rules do not always re-
duce the graph or make it simpler. One has to know specific optimizations of the
compiler when she wants to add them to the set of rewrite rules. In our case, the
set of rules for simplifying constant expressions of the Signal compiler such as:

+(cst1, cst2) → cst, where cst = cst1 + cst2
∧(cst1, cst2) → cst, where cst = cst1 ∧ cst2
�(cst1, cst2) → cst

where � denotes a numerical comparison function, and the Boolean value cst is
the evaluation of the constant expression �(cst1, cst2) which can hold either the
value false or true.

We also may add a number of rewrite rules that are derived from the list of
rules of inference for propositional logic. For example, we have a group of laws
for rewriting formulas with and operator, such as:

∧(x, true) → x
∧(x,⇒ (x, y)) → x ∧ y

Synchronous Rules. In addition to the general and optimization-specific rules,
we also have a number of rewrite rules that are derived from the semantics of
the code generation mechanism of the Signal compiler.

The first rule is that if a variable in the generated C code is always updated,
then we require that the corresponding signal in the source program is present
at every instant, meaning that the signal never holds the absent value. In conse-
quence of this rewrite rule, the signal x and its value when it is present x̃ (resp.
the variable xc and its updated value x̃c in the generated C code) point to the
same node in the shared value-graph. Every reference to x and x̃ (resp. xc and
x̃c) point to the same node.

We consider the equation pz := z$1 init 0. We use the variable m̃.z to
capture the last value of the signal z. In the generated C program, the last value
of the variable zc is denoted by m.zc. The second rule is that it is required that
the last values of a signal and the corresponding variable in the generated C
code are the same. That means m̃.z = m.zc.

Finally, we add rules that mirror the relation between input signals and their
corresponding variables in the generated C code. First, for any input signal x
and the corresponding variable xc in the generated C code, if x is present, then
the value of x which is read from the environment and the value of the variable
xc after the reading statement must be equivalent. That means x̃c and x̃ are
represented by the same subgraph in the graph. Second, if the clock of x is also
read from the environment as a parameter, then the clock of the input signal x
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is equivalent to the condition in which the variable xc is updated. It means that
we represent x̂ and C xc by the same subgraph. Consequently, every reference
to x̂ and C xc (resp. x̃ and x̃c) points to the same node.

4 Illustrative Example

Let us illustrate the verification process in Fig. 1 on the program DEC in Listing
1.1 and its generated C code DEC step() in Listing 1.2.

In the first step, we shall compute the shared value-graph for both programs
to represent the computation of all signals and their corresponding variables.
This graph is depicted in Fig. 5.

1 process DEC=
2 (? integer FB;
3 ! integer N)
4 (| FB =̂ when (ZN<=1)
5 | N := FB default (ZN-1)
6 | ZN := N$1 init 1
7 |)
8 where integer ZN init 1
9 end;

Listing 1.1. DEC in Signal

1 EXTERN logical DEC_step() {
2 C_FB = N <= 1;
3 if (C_FB) {
4 if (!r_DEC_FB(&FB)) return FALSE; // read input FB
5 }
6 if (C_FB) N = FB; else N = N - 1;
7 w_DEC_N(N); // write output N
8 DEC_step_finalize();
9 return TRUE;

10 }

Listing 1.2. Generated C code of DEC

Note that in the C program, the variable N c (“c” is added as superscript for
the C program variables, to distinguish them from the signals in the Signal
program) is always updated (line (6)). In lines (2) and (6), the references to the
variable N c are the references to the last value of N c denoted by m.N c. The
variable FBc which corresponds to the input signal FB is updated only when
the variable C FBc is true.

In the second step, we shall normalize the above initial graph. Below is a
potential normalization scenario, meaning that it might have more than one
normalization scenario, and the validator can choose one of them. For example,
given a set of rules that can be applied, the validator can apply these rules with
different order. Fig. 6 depicts the intermediate resulting graph of this normal-
ization scenario, and Fig. 7 is the final normalized graph from the initial graph
when we cannot perform any more normalization.



Translation Validation for Synchronous Data-Flow Specification 77

Fig. 5. The shared value-graph of DEC and DEC step

1. The clock of the output signal N is a master clock which is indicated in the
generated C by the variable N c being always updated. The node {N̂ , ẐN} ∨
is rewritten into true.

2. By rule ∧(true, x) → x, the node {F̂B} ∧ is rewritten into {F̂B} <=.
3. The φ-function node representing the computation of N is removed and N

points to the node {Ñ} φ.
4. The φ-function node representing the computation of ZN is removed and

ZN points to the node {Z̃N} m̃.N .

5. The nodes F̃Bc and F̃B are rewritten into a single node {F̃B} F̃Bc. All

references to them are replaced by references to {F̃B} F̃Bc.

6. The nodes m.N c and m̃.N are rewritten into a single node {m̃.N} m.N c.

All references to them are replaced by references to {m̃.N} m.N c.

Fig. 6. The resulting value-graph of DEC and DEC step
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Fig. 7. The final normalized graph of DEC and DEC step

In the final step, we check that the value of the output signal and its correspond-
ing variable in the generated code merge into a single node. In this example, we
can safely conclude that the output signal N and its corresponding variable N c

are equivalent since they point to the same node in the final normalized graph.

5 Related Work and Conclusion

There is a wide range of works for value-graph representations of expression eval-
uations in a program. For example, in [16], Weise et al. present a nice summary
of the various types of value-graph. In our context, the value-graph is used to
represent the computation of variables in both source program and its generated
C code in which the identical structures are shared. We believe that this rep-
resentation will reduce the required storage and make the normalizing process
more efficient than two separated graphs. Another remark is that the calculation
of clocks as well as the special value, the absent value, are also represented in
the shared graph.

Another related work which adopts the translation validation approach in
verification of optimizations, Tristan et al. [15], recently proposed a framework
for translation validation of Llvm optimizer. For a function and its optimized
counterpart, they construct a shared value-graph. The graph is normalized (the
graph is reduced). After the normalization, if the outputs of two functions are
represented by the same sub-graph, they can safely conclude that both functions
are equivalent.

On the other hand, Tate et al. [14] proposed a framework for translation vali-
dation. Given a function in the input program and the corresponding optimized
version of the function in the output program, they compute two value-graphs to
represent the computations of the variables. Then they transform the graph by
adding equivalent terms through a process called equality saturation. After the
saturation, if both value-graphs are the same, they can conclude that the return
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value of two given functions are the same. However, for translation validation
purposes, our normalization process is more efficient and scalable since we can
add rewrite rules into the validator that reflect what a typical compiler intends
to do (e.g., a compiler will do the constant folding optimization, then we can add
the rewrite rule for constant expressions such as three nodes subgraph (1+ 2) is
replaced by a single node 3).

The present paper provides a verification framework to prove the value-
equivalence of variables and applies this approach to the synchronous data-flow
compiler Signal. With the simplicity of the graph normalization, we believe that
translation validation of synchronous data-flow value-graph for the industrial
compiler Signal is feasible and efficient. Moreover, the normalization process
can always be extended by adding new rewrite rules. That makes the translation
validation of Sdvg scalable and flexible.

We have considered sequential code generation. A possibility is to extend this
framework to use with other code generation schemes including cluster code with
static and dynamic scheduling, modular code, and distributed code. One path
forward is the combination of this work and the work on data dependency graph
in [10,11,9]. That means that we use synchronous data-flow dependency graphs
and synchronous data-flow value-graphs as a common semantic framework to
represent the semantics of the generated code. The formalization of the notion of
“correct transformation” is defined as the refinements between two synchronous
data-flow dependency graphs and in a shared value-graph as described above.

Another possibility is that we use an Smt solver to reason on the rewriting
rules. For example, we recall the following rules:

φ(c1, φ(c2, x1, x2), x3) → φ(c1, x1, x3) if c1 ⇒ c2

φ(c1, φ(c2, x1, x2), x3) → φ(c1, x2, x3) if c1 ⇒ ¬c2

To apply these rules on a shared value-graph to reduce the nested φ-functions
(e.g., from φ(c1, φ(c2, x1, x2), x3) to φ(c1, x1, x3)), we have to check the validity
of first-order logic formulas, for instance, we check that |= (c1 ⇒ c2) and |= c1 ⇒
¬c2. We consider the use of Smt to solve the validity of the conditions as in the
above rewrite rules to normalize value-graphs.
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Abstract Event Structures (ESs) address the representation of direct
relationships between individual events, usually capturing the notions of
causality and conflict. Up to now, such relationships have been static,
i.e. they cannot change during a system run. Thus the common ESs
only model a static view on systems. We dynamize causality such that
causal dependencies between some events can be changed by occurrences
of other events. We first model and study the case in which events may
entail the removal of causal dependencies, then we consider the addition
of causal dependencies, and finally we combine both approaches in the so-
called Dynamic Causality ESs. For all three newly defined types of ESs,
we study their expressive power in comparison to the well-known Prime
ESs, Dual ESs, Extended Bundle ESs, and ESs for Resolvable Conflicts.
Interestingly Dynamic Causality ESs subsume Extended Bundle ESs and
Dual ESs but are incomparable with ESs for Resolvable Conflicts.

1 Introduction

Concurrency Model. Event Structures (ESs) usually address statically defined
relationships that constrain the possible occurrences of events, typically repre-
sented as causality (for precedence) and conflict (for choice). An event is a single
occurrence of an action; it cannot be repeated. ESs were first used to give seman-
tics to Petri nets [14], then to process calculi [4,8], and recently to model quantum
strategies and games [16]. The semantics of an ES itself is usually provided by
the sets of traces compatible with the constraints, or by configuration-based sets
of events, possibly in their partially-ordered variant (posets).

Motivation. Modern process-aware systems emphasize the need for flexibility
into their design to adapt to changes in their environment [13]. One form of
flexibility is the ability to change the work-flow during the runtime of the system
deviating from the default path, due to changes in regulations or to exceptions.
Such changes could be ad hoc or captured at the build time of the system
[10]. For instance—as taken from [13]—during the treatment process, and for a
particular patient, a planned computer tomography must not be performed due
to the fact that she has a cardiac pacemaker. Instead, an X-ray activity shall be
performed. In this paper, we provide a formal model that can be used for such
scenarios, showing what is the regular execution path and what is the exceptional
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Growing

Resolvable Conflict

Dynamic Causality

Fig. 1. Landscape of Event Structures (new ESs are bold)

one [10]. In the conclusion, we highlight the advantages of our model over other
static-causality models w.r.t. such scenarios.

Overview.
We study the idea—motivated by application scenarios—of events changing

the causal dependencies of other events. In order to deal with dynamicity in
causality usually duplications of events are used (see e.g. [5], where copies of the
same event have the same label, but different dependencies). In this paper we
want to express dynamic changes of causality more directly without duplications.
We allow dependencies to change during a system run, by modifying the causality
itself. In this way we avoid duplications of events, and keep the model simple
and more intuitive. We separate the idea of dropping (shrinking) causality from
adding (growing) causality and study each one separately first, and then combine
them. In § 3 we define Shrinking Causality Event Structures (SESs), and compare
their expressive power with other types of ESs. In § 4 we do the same for Growing
Causality Event Structures (GESs). In § 5 we combine both concepts within the
Dynamic Causality Event Structures (DCESs) and show that they are strictly
more expressive than Extended Bundle Event Structures (EBESs) [8], which
are incomparable to SESs and GESs. Although Event Structures for Resolvable
conflicts (RCESs) [12] are shown to be more expressive than GESs and SESs,
they are incomparable with DCESs. The relations among the various classes
of ESs are summarised in Fig. 1, where an arrow from one class to another
means that the first is less expressive than the second. In § 6 we summarize the
contributions and show the limitations of other static-causality models w.r.t. our
example, and conclude by future work.

Related Work. Kuske and Morin in [7] worked on local independence, using local
traces. There actions can be independent from each other after a given history.
Comparing to our work we provide a mechanism for independence of events,
through the growing and shrinking causality, while this related work abstracts
from the way actions become independent. In [12], van Glabbeek and Plotkin
introduced RCESs, where conflicts can be resolved or created by the occurrence
of other events. This dynamicity of conflicts is complementary to our approach.
As visualized in Fig. 1 DCESs and RCESs are incomparable but—similarly to
RCESs—DCESs are more expressive than many other types of ESs.
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2 Technical Preliminaries

We investigate the idea of dynamically evolving dependency between events.
Therefore we want to allow that the occurrence of events creates new causal de-
pendencies between events or removes such dependencies. We base our extension
on prime event structures, because they provide a very simple causality model.
In the following we shortly revisit the main definitions of the types of ESs from
literature we compare with. We omit the labels of events since our results are
not influenced by their presence.

2.1 Prime Event Structures

A prime event structure (PES) [15] consists of a set of events and two relations
describing conflicts and causal dependencies. To cover the intuition, that events
causally depending on an infinite number of other events can never occur, [15]
requires PESs to satisfy the axiom of finite causes. Additionally the enabling
relation is assumed to be a partial order, i.e. is transitive and reflexive. Further-
more the concept of conflict heredity is required; saying that an event conflicting
with another event conflicts with all its causal successors.

If we allow to add or drop causal dependencies, it is hard to maintain the
conflict heredity and the transitivity and reflexivity of enabling. Because of that
we do not consider the partial order property nor the axiom of conflict heredity
in our definition of PESs. The same applies for the finite causes property which
will be covered through finite configurations, like Def. 13 later on. Note however
that the following version of PESs has the same expressive power as PESs in [15]
w.r.t. to finite configurations.

Definition 1. A Prime Event Structure (PES) is a triple π = (E,#,→), where
E is a set of events, # ⊆ E2 is an irreflexive symmetric relation (the conflict
relation), and → ⊆ E2 is the enabling relation.

The computation state of a process that is modeled as a PES is represented
by the set of events that have occurred. Given a PES π = (E,#,→) we call such
sets C ⊆ E that respect # and → as configurations of π.

Definition 2. Let π = (E,#,→) be a PES. A set of events C ⊆ E is a con-
figuration of π if it is conflict-free, i.e. ∀e, e′ ∈ C . ¬ (e#e′), downward-closed,
i.e. ∀e, e′ ∈ E . e→ e′ ∧ e′ ∈ C =⇒ e ∈ C, and the transitive closure of the
enabling relation is acyclic, i.e. →∗ ∩ C2 is free of cycles. We denote the set of
configurations of π by C(π).

An event e is called impossible in a PES if it does not occur in any of its
configurations. Events can be impossible because of enabling cycles, or an over-
lapping between the enabling and the conflict relation, or because of impossible
predecessors.
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Fig. 2. A Bundle ES, an Extended Bundle ES, and a Dual ES

2.2 Bundle, Extended Bundle and Dual Event Structures

PESs are simple but also limited. They do not allow to describe optional or
conditional enabling of events. Bundle event structures (BESs)—among others—
were designed to overcome these limitations [8]. Enabling of events is based on
bundles which are pairs (X, e), denoted as X 	→ e, where X is a set of events
and e is the event pointed by that bundle. A bundle is satisfied when one event
of X occurs. An event is enabled when all bundles pointing to it are satisfied.
This disjunctive causality allows for optionality in enabling events.

Definition 3. A Bundle Event Structure (BES) is a triple β = (E,#, 	→),
where E is a set of events, # ⊆ E2 is an irreflexive symmetric relation (the
conflict relation), and 	→ ⊆ P(E)× E is the enabling relation, such that for all
X ⊆ E and e ∈ E the bundle X 	→e implies that for all e1, e2 ∈ X with e1 
= e2
it holds e1#e2 (Stability).

Figure 2 (a) shows an example of a BES. The solid arrows denote causality,
i.e. reflect the enabling relation, where the bar between the arrows indicates a
bundle, and the dashed line denotes a mutual conflict.

A configuration of a BES is again a conflict-free set of events that is downward-
closed. Therefore the stability condition avoids causal ambiguity [9]. To exclude
sets of events that result from enabling cycles we use traces. For a sequence
t = e1 · · · en of events let t = {e1, . . . , en} and ti = e1 · · · ei. Let ε denote the
empty sequence.

Definition 4. Let β = (E,#, 	→) be a BES. A trace is a sequence of distinct
events t = e1 · · · en with t ⊆ E such that ∀1 ≤ i, j ≤ n . ¬ (ei#ej) and such that
∀1 ≤ i ≤ n . ∀X ⊆ E . X 	→ei =⇒ ti−1 ∩X 
= ∅.

A set of events C ⊆ E is a configuration of β if there is a trace t such
that C = t. This trace-based definition of a configuration will be the same for
Extended Bundle and Dual ESs. Let T(β) denote the set of traces and C(β) the
set of configurations of β.

Partially ordered sets, abbreviated as posets, are used as a semantic model for
different kinds of ESs and other concurrency models (see e.g. [11]). In contrast
to configurations, a poset does not only record the set of events that happened,
but also captures the precedence relations between the events. Formally a poset
is a pair (A,≤), where A is a finite set of events and ≤ is a partial order over A.

A poset represents a set of system runs, differing for permutation of indepen-
dent events. To describe the semantics of the entire ES, families of posets [11]
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with a prefix relation are used. According to Rensink in [11], families of posets
form a convenient underlying model for models of concurrency, and are more
expressive than families of configurations.

To obtain the posets of a BES, wndow each of its configurations with a partial
order. Let β = (E,#, 	→) be a BES and C ∈ C(β), and e, e′ ∈ C. Then e ≺C e′

if ∃X ⊆ E . e ∈ X ∧ X 	→ e′. Let ≤C be the reflexive and transitive closure of
≺C . It is proved in [8] that ≤C is a partial order over C. Let P(β) denote the
set of posets of β.

Let x and y be two ESs of arbitrary kind on which posets are defined. We
denote that x and y have the same set of posets by x �p y. Note that for
BESs, EBES, and DESs families of posets are the most discriminating semantics
studied in the literature. So, in these cases, we consider two ESs as behaviorally
equivalent if they have the same set of posets.

The first extension of BESs we consider are Extended Bundle Event Structures
(EBESs) from [8]. The conflict relation # is replaced by a disabling relation.
An event e1 disables another event e2, means once e1 occurs e2 cannot occur
anymore. The symmetric conflict # can be modeled through mutual disabling.
Therefore EBESs are a generalization of BESs, and thus are more expressive [8].

Definition 5. An Extended Bundle Event Structure (EBES) is a triple ξ =
(E,�, 	→), where E is a set of events, � ⊆ E2 is the irreflexive disabling
relation, and 	→ ⊆ P(E) × E is the enabling relation, such that for all X ⊆ E
and e ∈ E the bundle X 	→e implies that for all e1, e2 ∈ X with e1 
= e2 it holds
e1�e2 (Stability).

Stability ensures that two distinct events of a bundle set are in mutual dis-
abling. Figure 2 (b) shows an EBES with the two bundles {a, c} 	→ d and
{b, c} 	→ d. The dashed lines denote again mutual disabling as required by sta-
bility. A disabling d � e, to be read ‘e disables d’, is represented by a dashed
arrow.

Definition 6. Let ξ = (E,�, 	→) be an EBES. A trace is a sequence of distinct
events t = e1 · · · en with t ⊆ E such that ∀1 ≤ i, j ≤ n . ei� ej =⇒ i < j and
∀1 ≤ i ≤ n . ∀X ⊆ E . X 	→ei =⇒ ti−1 ∩X 
= ∅.

We adapt the definitions of configurations and traces of BESs accordingly.
For C ∈ C(ξ) and e, e′ ∈ C, let e ≺C e′ if ∃X ⊆ E . e ∈ C ∧X 	→e′ or if e�e′.
Again ≤C denotes the reflexive and transitive closure of ≺C , and P(ξ) denotes
the set of posets of ξ.

Dual Event Structures (DESs) are the second extension of BES examined
here. They are obtained by dropping the stability condition. This leads to causal
ambiguity, i.e. given a trace and one of its events, it is not always possible to
determine what caused this event. The definition of DESs varies between [6]
(based on EBESs) and [9] (based on BESs). Here we rely on the version of [9].

Definition 7. A Dual Event Structure (DES) is a triple δ = (E,#, 	→), where
E is a set of events, # ⊆ E2 is an irreflexive symmetric relation (the conflict
relation), and 	→ ⊆ P(E)× E is the enabling relation.
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Figure 2 (c) shows a DES with one bundle, namely {a, b, c} 	→d, and without
conflicts. Again the definitions of configurations and traces are exactly the same
as in BESs (cf. Def. 4), therefore we omit them here.

Because of the causal ambiguity, the definition of ≤C is difficult and the be-
havior of a DES w.r.t. a configuration cannot be described by a single poset any-
more. [9] illustrates that there are different possible interpretations of causality.
The authors defined five different intentional posets: liberal, bundle satisfaction,
minimal, early and late posets. They show the equivalence of the behavioral se-
mantics, and that the early causality and trace equivalence coincide. Thus we
concentrate on early causality. The remaining intentional partial order semantics
are discussed in [1]. To capture causal ambiguity we have to consider all traces
of a configuration to obtain its posets. Below U1 is earlier than U2 if the largest
index in U1 \ U2 is smaller than the largest index in U2 \ U1 [9].

Definition 8. Let δ = (E,#, 	→) be a DES, t = e1 · · · en one of its traces,
1 ≤ i ≤ n, and X1 	→ ei, . . . , Xm 	→ ei all bundles pointing to ei. A set U is a
cause of ei in t if ∀e ∈ U . ∃1 ≤ j < i . e = ej, ∀1 ≤ k ≤ m. Xk ∩ U 
= ∅, and U
is the earliest set satisfying the previous two conditions. Let Pd(t) be the set of
posets obtained this way for t.

2.3 Event Structures for Resolvable Conflicts

Event Structures for Resolvable Conflicts (RCES) were introduced in [12] to
generalize former types of ESs and to give semantics to general Petri Nets. They
allow to model the case where a and c cannot occur together until b takes place,
i.e. initially a and c are in a conflict until the occurrence of b resolves this
conflict. An RCES consists of a set of events and an enabling relation between
sets of events. Here the enabling relation also models conflicts between events.
The behavior is defined by a transition relation between sets of events that is
derived from the enabling relation �.
Definition 9. An Event Structure for Resolvable Conflicts (RCES) is a pair

ρ = (E,�), where E is a set of events and � ⊆ P(E)
2
is the enabling relation.

In [12] several versions of configurations are defined. Here we consider only
configurations which are both reachable and finite.

Definition 10. Let ρ = (E,�) be an RCES and X,Y ⊆ E. Then X →rc Y
if (X ⊆ Y ∧ ∀Z ⊆ Y . ∃W ⊆ X . W � Z). The set of configurations of ρ is
defined as C(ρ) = {X ⊆ E | ∅→∗

rcX ∧X is finite }, where →∗
rc is the reflexive

and transitive closure of →rc.

As an example consider the RCES ρ = (E,�), where E = {a, b, c}, {b} �
{a, c}, and ∅ � X iff X ⊆ E and X 
= {a, c}. It models the above described initial
conflict between a and c that can be resolved by b. In Fig. 3 (ρ) the respective
transition graph is shown, i.e. the nodes are all reachable configurations of ρ
and the directed edges represent →rc. Note, because of {a, c} ⊂ {a, b, c} and
∅ 
� {a, c}, there is no transition from ∅ to {a, b, c}.
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{b, c}

{a, b, c}

Fig. 3. Transition graphs of RCESs with resolvable conflict (ρ) and disabling (ργ)

We consider two RCESs as equivalent if they have the same transition graphs.
Note that, since we consider only reachable configurations, the transition equi-
valence defined below is denoted as reachable transition equivalence in [12].

Definition 11. Two RCESs ρ = (E,→rc) and ρ′ = (E′,→′
rc) are transition

equivalent, denoted by ρ�t ρ
′, if E = E′ and →rc ∩ (C(ρ))

2
= →′

rc ∩ (C(ρ′))2.

Again we adapt the notion of transition equivalence to arbitrary types of
ESs with a transition relation. Let x and y be two arbitrary types of ESs on
that a transition relation is defined. We denote the fact that x and y have the
same transition graphs by x�t y. Note that for RCESs, transition equivalence is
the most discriminating semantics studied in the literature. So we consider two
RCESs as behavioral equivalent if they have the same transition graphs.

3 Shrinking Causality

Now we add a new relation which represents the removal of causal dependencies
as a ternary relation between events � ⊆ E3. For instance (a, c, b) ∈ �, denoted
as [a→b]� c, models that a is dropped from the set of causal predecessors of
b by the occurrence of c. The dropping is visualized in Fig. 4(a) by a dashed
arrow with empty head from the initial cause a→b to its dropper c. We add this
relation to PESs and denote the result as shrinking causality event structures.

Definition 12. A Shrinking Causality Event Structure (SES) is a pair σ =
(π,�), where π = (E,#,→) is a PES and � ⊆ E3 is the shrinking causality
relation such that [e→e′′]�e′ implies e→e′′ for all e, e′, e′′ ∈ E.

Sometimes we expand (π,�) and write (E,#,→,�). For [c→t]�m we call
m the modifier, t the target, and c the contribution. We denote the set of all
modifiers dropping c → t by [c → t]�. We refer to the set of dropped causes of an
event w.r.t. a specific history by the function dc : P(E)×E → P(E) defined as:
dc(H, e) = {e′ | ∃d ∈ H . [e′→e]�d}. We refer to the initial causes of an event
by the function ic : E → P(E) such that: ic(e) = {e′ | e′→e}. The semantics of
a SES can be defined based on posets similar to BESs, EBESs, and DESs, or
based on a transition relation similar to RCESs. We consider both.
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Fig. 4. A SES and GESs modeling disabling, conflict, temporary disabling, and resolv-
able conflicts

Definition 13. Let σ = (E,#,→,�) be a SES.
– A trace of σ is a sequence of distinct events t = e1 · · · en with t ⊆ E such

that ∀1 ≤ i, j ≤ n . ¬ (ei#ej) and ∀1 ≤ i ≤ n .
(

ic(ei) \ dc
(

ti−1, ei
)) ⊆ ti−1.

C ⊆ E is a traced-based configuration of σ if there is t such that C = t. Let
CTr(σ) be the set of traced-based configurations, T(σ) the set of traces of σ.

– Let t = e1 · · · en ∈ T(σ) and 1 ≤ i ≤ n. A set U is a cause of ei in t if
∀e ∈ U . ∃1 ≤ j < i . e = ej, (ic(ei) \ dc(U, ei)) ⊆ U , and U is the earliest set
satisfying the previous two conditions. Let Ps(t) be the set of posets obtained
this way for t.

– Let X,Y ⊆ E. Then X→sY if X ⊆ Y , ∀e, e′ ∈ Y . ¬(e#e′), and ∀e ∈ Y \X .
(ic(e) \ dc(X, e)) ⊆ X.

– The set of all configurations of σ is C(σ) = {X ⊆ E | ∅→∗
s X ∧X is finite },

where →∗
s is the reflexive and transitive closure of →s.

The combination of initial and dropped causes ensures that for each ei ∈ t,
all its initial causes are either preceding ei or dropped by other events preceding
ei. Note that as for DESs we concentrate on early causality. We consider the
reachable and finite configurations w.r.t. to →s as well as configurations based
on the traces. Note that both definitions coincide.

To show that �p and �t coincide on SESs we make use of the result that
�p and trace equivalence coincide on DES (compare to [9]) and show that SESs
are as expressive as DESs. Consider the shrinking-causality [c→t]�d. It models
the case that initially t causally depends on c which can be dropped by the
occurrence of d. Thus for t to be enabled either c occurs or d does. This is a
disjunctive causality as modeled by DESs. In fact [c→t]�d corresponds to the
bundle {c, d} 	→ t. We prove that we can map each SES into a DES with the
same behavior and vice versa. To translate a SES into a DES we create a bundle
for each initial causal dependence and add all its droppers to the bundle set.

In the opposite direction we map each DES into a set of similar SESs such
that each SES in this set has the same behavior as the DES. Intuitively we have
to choose an initial dependency for each bundle from its set, and to translate
the rest of the bundle set into droppers for that dependency. Unfortunately the
bundles that point to the same event are not necessarily disjoint. Consider for
example {a, b} 	→ e and {b, c} 	→ e. If we choose b → e as initial dependency
for both bundles to be dropped as [b→e] � a and [b→e] � c, then {a, e} is a
configuration of the resulting SES but not of the original DES. So we have to
ensure that we choose distinct events as initial causes for all bundles pointing to
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the same event. Thus for each bundle we choose a fresh event as initial cause,
make it impossible by a self-loop, and add all events of the bundle as droppers.
Note that to translate a DES into a SES we have to introduce additional events,
i.e. it is not always possible to translate a DES into a SES without additional
impossible events. All proofs can be found in [1].

Theorem 1. SESs are as expressive as DESs.

In [1] we show that each SES and its translation as well as each DES and its
translation have the same set of posets considering not only early but also liberal,
minimal, and late causality. Thus the concepts of SESs and DESs are not only
behaviorally equivalent but—except for the additional impossible events—also
structurally closely related.

Note that �p, �t, and trace-equivalence coincide on SES.

Theorem 2. Let σ, σ′ be two SESs. Then σ�p σ
′ iff σ�tσ

′ iff T(σ) = T(σ′).

As shown above SESs allow to model disjunctive causality. As an example
consider the dropping of a causality as in Fig. 4(a). Such a disjunctive causality
is not possible in EBESs. On the other hand the asymmetric conflict of an EBES
cannot be modeled with a SES. As an example consider Fig. 2 (b),where e cannot
precede d.

Theorem 3. SESs and EBESs are incomparable.

SESs are strictly less expressive than RCESs, because each SES can be trans-
lated into a transition-equivalent RCES, and on the other hand there are RCESs
that cannot be translated into a transition-equivalent SES. As a counterexam-
ple we use the RCES ρσ = ({e, f} , {∅ � ∅, ∅ � {e} , ∅ � {f} , {e} � {e, f}}) that
captures disabling in an EBES.

Theorem 4. SESs are strictly less expressive than RCESs.

4 Growing Causality

As in SESs we base our extension for growing causality on PESs. We add the
new relation � ⊆ E3, where (a, c, b) ∈ �, denoted as c� [a → b], models that c
adds a as a cause for b. Thus c is a condition for the causal dependency a→b.

The adding is visualized in Fig. 4(d) by a dashed line with a filled head from
the modifier c to the added dependency a→ b, which is dotted denoting that
this dependency does not exist initially (In this example there is an additional
causality c→a).

Definition 14. A Growing Causality Event Structure (GES) is a pair γ =
(π,�), where π = (E,#,→) is a PES and � ⊆ E3 is the growing causality
relation such that ∀e, e′, e′′ ∈ E . e′� [e → e′′] =⇒ ¬(e → e′′).

We refer to the causes added to an event w.r.t. a specific history by the function
ac : P(E)×E → P(E), defined as ac(H, e) = {e′ | ∃a ∈ H . a� [e′ → e]}, and to
the initial causality by the function ic as defined in § 3. Similar to the RCESs
the behavior of a GES can be defined by a transition relation. Thus we consider
two GESs as equally expressive if they are transition-equivalent.
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Definition 15. Let γ = (E,#,→,�) be a GES.
– A trace of γ is a sequence of distinct events t = e1 · · · en with t ⊆ E such that

∀1 ≤ i, j ≤ n . ¬ (ei#ej) and
(

ic(ei) ∪ ac
(

ti−1, ei
)) ⊆ ti−1 for all i ≤ n.Then

C ⊆ E is a trace-based configuration of γ if there is a trace t such that
C = t. The set of traces of γ is denoted by T(γ) and the set of its trace-based
configurations is denoted by CTr(γ).

– Let X,Y ⊆ E. Then X →g Y if X ⊆ Y , ∀e, e′ ∈ Y . ¬ (e#e′), ∀e ∈ Y \
X . (ic(e) ∪ ac(X, e)) ⊆ X, and ∀t,m ∈ Y \ X . ∀c ∈ E . m� [c → t] =⇒
(c ∈ X ∨m ∈ {c, t}).

– The set of all configurations of γ is C(γ) =
{

X ⊆ E | ∅→∗
gX ∧X is finite

}

,
where →∗

g is the reflexive and transitive closure of →g.

The last condition in the transition definition prevents the concurrent occur-
rence of a target and its modifier since they are not independent. One exception
is when the contribution has already occurred; in that case, the modifier does not
change the target’s predecessors. It also captures the trivial case of self adding,
i.e. when a target adds a contribution to itself or a modifier adds itself to a
target. Again we consider the reachable and finite configurations, and show in
[1] that the definitions of reachable and trace-based configurations coincide.

Disabling as defined in EBESs or the asymmetric event structure of [3] can be
modeled by �. For example b�a can be modeled by b� [a → a] as depicted in
Fig. 4 (b). Conflicts can be modeled by � through mutual disabling, as depicted
in Fig. 4 (c), and thus the conflict relation can be omitted in this ES model.

In inhibitor event structures [2] there is a kind of disabling, where an event
e can be disabled by another event d until an event out of a set X occurs. This
kind of temporary disabling provides disjunction in the re-enabling that cannot
be modeled in GESs but in DCESs (cf. the next section). However temporary
disabling without a disjunctive re-enabling can be modeled by a GES as in
Fig. 4 (d).

Also resolvable conflicts can be modeled by a GES. For example the GES in
Fig. 4 (e) with a� [c → b] and b� [c → a] models a conflict between a and b
that can be resolved by c. Note that this example depends on the idea that a
modifier and its target cannot occur concurrently (cf. Def. 15). Note also that
resolvable conflicts are a reason why families of configurations cannot be used
to define the semantics of GESs or RCESs.

As shown in Fig. 4 (b) GESs can model disabling. Nevertheless EBESs and
GESs are incomparable, because GESs cannot model the disjunction in the en-
abling relation that EBESs inherit from BESs. On the other hand EBESs cannot
model conditional causal dependencies. Thus GESs are incomparable to BESs
as well as EBESs.

Theorem 5. GESs are incomparable to BESs and EBESs.

GESs are also incomparable to SESs, because the adding of causes cannot be
modeled by SESs. As a counterexample we use the GES of Fig. 4 (c). Then since
BESs are incomparable to GESs, BESs are less expressive than DESs, and DESs
are as expressive as SESs, we conclude that GESs and SESs are incomparable.
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Theorem 6. GESs and SESs are incomparable.

As illustrated in Fig. 4 (d) GESs can model resolvable conflicts. Nevertheless
they are strictly less expressive than RCESs, because each GES can be trans-
lated into a transition equivalent RCES and on the other hand there exists no
transition equivalent GES for the RCES ργ = ({a, b, c} ,�) that is given by the
second transition graph in Fig. 3. It models the case, where after a and b the
event c becomes impossible, i.e. it models disabling by a set instead of a single
event.

Theorem 7. GESs are strictly less expressive than RCESs.

5 Dynamic Causality

Up to now we have investigated shrinking, and growing causality separately. In
this section we combine them and examine the resulting expressiveness.

Definition 16. A Dynamic Causality Event Structure (DCES) is a triple Δ =
(π,�,�)—expanded (E,#,→,�,�)—, where π = (E,#,→) is a PES, � ⊆ E3

is the shrinking causality relation, and � ⊆ E3 is the growing causality relation
such that for all e, e′, e′′ ∈ E: 1. [e→e′′]�e′∧�m ∈ E . m� [e → e′′] =⇒ e → e′′

2. e′ � [e → e′′] ∧ �m ∈ E . [e→e′′]�m =⇒ ¬(e → e′′) 3. e′ � [e → e′′] =⇒
¬([e→e′′]�e′).

Conditions 1 and 2 are just a generalization of the conditions in Defs. 12 and 14
respectively. If there are droppers and adders for the same causal dependency we
do not specify whether this dependency is contained in →, because the semantics
depends on the order in which the droppers and adders occur. Condition 3
prevents that a modifier adds and drops the same cause for the same target.

The order of occurrence of droppers and adders determines the causes of an
event. For example assume a� [c → t] and [c→t]�d, then after ad, t does not
depend on c, whereas after da, t depends on c. Thus configurations like {a, d}
are not expressive enough to represent the state of such a system (cf. Lem. 1).

Therefore in a DCES a state is a pair of a configuration C and a causal state
function cs, which computes the causal predecessors of an event, that are still
needed.

Definition 17. Let Δ = (E,#,→,�,�) be a DCES. The function mc : P(E)×
E → P(E) denotes the maximal causality that an event can have after some
history C ⊆ E, and is defined as mc(C, e) = {e′ ∈ E \ C | e′ → e ∨ ∃a ∈ C . a�
[e′ → e]}. A state of Δ is a pair (C, cs) where cs : E \ C → P(E \ C) such that
C ⊆ E and cs(e) ⊆ mc(C, e). We denote cs as causality state function, which
shows for an event e that did not occur, which events are still missing such that e
is enabled. An initial state of Δ is S0 = (∅, csi), where csi(e) = {e′ ∈ E | e′ → e}.
Note that S0 is the only state with an empty set of events; for other sets of
events there can be multiple states. The behavior of a DCES is defined by the
transition relation on its reachable states with finite configurations.
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Definition 18. Let Δ = (E,#,→,�,�) be a DCES and C,C′ ⊆ E. Then
(C, cs)→d (C

′, cs′) if:
1. C ⊆ C′ 2. ∀e, e′ ∈ C′ . ¬(e#e′) 3. ∀e ∈ C′ \ C . cs(e) = ∅
4. ∀e, e′ ∈ E \ C′ . e′ ∈ cs(e) \ cs′(e) =⇒ [e′ → e]� ∩(C′ \ C) 
= ∅
5. ∀e, e′ ∈ E \ C′ . [e′ → e]� ∩(C′ \ C) 
= ∅ =⇒ e′ /∈ cs′(e)
6. ∀e ∈ E \ C′ . e′ ∈ cs′(e) \ cs(e) =⇒� [e′ → e] ∩ (C′ \ C) 
= ∅
7. ∀e, e′ ∈ E \ C′ . � [e′ → e] ∩ (C′ \ C) 
= ∅ =⇒ e′ ∈ cs′(e)
8. ∀e, e′ ∈ E \ C . [e′ → e]� ∩(C′ \ C) = ∅∨ � [e′ → e] ∩ (C′ \ C) = ∅
9. ∀t,m ∈ C′ \ C . ∀c ∈ E . m� [c → t] =⇒ (c ∈ C ∨m ∈ {c, t}).
Condition 1 ensures the accumulation of events. Condition 2 ensures conflict
freeness. Condition 3 ensures that only events which are enabled after C can
take place in C′. Condition 4 ensures that, if a cause disappears, there has to
be a dropper of it. The same is ensured by Condition 6 for appearing causes.
Condition 5 ensures that if there are adders, the cause has to appear in the
new causal state, unless it occurred. Similarly, Condition 7 ensures, that causes
disappear, when there are droppers. To keep the theory simple, Condition 8
avoids race conditions; it forbids the occurrence of an adder and a dropper of
the same causal dependency within one transition. Condition 9 ensures that
DCESs coincide with GESs.

Definition 19. Let Δ be a DCES. The set of (reachable) states of Δ is defined
as S(Δ) = {(X, csX) | S0 →∗

d (X, csX) ∧ X is finite }, where→∗
d is the reflexive

and transitive closure of →d.
Two DCESs Δ = (E,#,→,�,�) and Δ′ = (E′,#′,→′,�′,�′) are state

transition equivalent, denoted by Δ�s Δ
′, if E = E′ and →d ∩ (S(Δ))2 = →′

d

∩ (S(Δ′))2.

Lemma 1. There are DCESs that are transition equivalent but not state tran-
sition equivalent.

Because of the previous Lemma, we consider the more discriminating equiva-
lence �s—instead of �t—to compare DCESs and to compare with DCESs. To
compare with RCESs, we use the counterexample ργ of Fig. 3 to show that not
for every RCES there is a transition-equivalent DCES. Moreover RCESs cannot
distinguish between different causality states of one configuration (cf. Lem. 1).
Consequently DCESs and RCESs are incomparable.

Theorem 8. DCESs and RCESs are incomparable.

By construction, DCESs are at least as expressive as GESs and SESs. To embed
a SES (or GES) into a DCES it suffice to choose � = ∅ (or � = ∅). Furthermore
are DCESs incomparable to RCESs which are strictly more expressive than GESs
and SESs. Thus DCESs are strictly more expressive then GESs and SESs.

Theorem 9. DCESs are strictly more expressive than GESs and SESs.

To compare with EBESs, we use the disabling of GESs, and the disjunctive
causality of SESs. The translation of an EBES into a DCES is formally defined in
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Fig. 5. A DCES, a BES, and a DES modeling the medical example

[1], where disabling uses self-loops of target events, while droppers use auxiliary
impossible events, not to intervene with the disabling. Besides we construct
posets for the configurations of the translation, and compare them with those of
the original EBES. In this way we prove that DCESs are at least as expressive
as EBESs. But since EBESs cannot model the disjunctive causality—without a
conflict—of SESs which are included in DCESs, the following result holds.

Theorem 10. DCESs are strictly more expressive than EBESs.

6 Conclusions

We study the idea that causality may change during system runs in event struc-
tures. For this, we enhance a simple type of ESs—the PES—by means of ad-
ditional relations capturing the changes in events’ dependencies, driven by the
occurrence of other events.

First, in § 3, we limit our concern to the case where dependencies can only
be dropped. We call the new resulting event structure Shrinking Causality ES
(SES). In that section, we show that the exhibited dynamic causality can be ex-
pressed through a completely static perspective, by proving equivalence between
SESs and DESs. By such a proof, we do not only show the expressive power
of our new ES, but also the big enhancement in expressive power (w.r.t. PESs)
gained by adding only this one relation.

Later on, in § 4, we study the complementary style where dependencies can
be added to events, resulting in Growing Causality ES (GES). We show that the
growing causality can model both permanent and temporary disabling. Besides,
it can be used to resolve conflicts and, furthermore, to force conflicts. Unlike
the SESs, the GESs are not directly comparable to other types of ESs from the
literature, except for PESs; one reason is that they provide a conjunctive style
of causality, another is their ability to express conditioning in causality.
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Finally, in § 5, we combine both approaches of dynamicity with a new type of
event structures, which we called the Dynamic Causality ES (DCES). Therein
a dependency can be both added and dropped. For this new type of ESs the
following two—possibly surprising—facts can be observed: (1) There are types
of ESs that are incomparable to both SESs and GESs, but that are compara-
ble to (here: strictly less expressive than) DCESs, i.e. the combination of SESs
and GESs; one such type is EBESs. (2) Though SESs and GESs are strictly
less expressive than RCESs, their combination—the newly defined DCESs—is
incomparable to RCESs, or any other type of ESs with a static causality.

To highlight the pragmatic advantages of dynamic-causality ESs over their
equivalent and non-equivalent competitor ESs, we go back to our example men-
tioned in the motivation. Reichert et al. in [10] emphasize that the model of
such processes should distinguish between the regular execution path and the
exceptional one. Accordingly, they define two labels, REGULAR and EXCEP-
TIONAL, to be assigned to tasks. Fig. 5 (a) shows a DCES model of our example,
where rest represents the rest of the treatment process, and ct represents the
computer tomography. The initial causality in a DCES e.g. ct → rest corre-
sponds to the regular path of a process, while the changes carried by modifiers
e.g. cardiac pacemaker correspond to exceptional one. Other static-causality ESs
like a BES and a DES can model the fact that either the computer tomography
XOR the X-ray is needed, as shown in Fig. 5(b) and 5(c). The same can be
done by an equivalent RCES. However, we argue that none of these models can
distinguish between regular and exceptional paths.

Thus our main contributions are: 1. We provide a formal model that allows
us to express dynamicity in causality. Using this model, we enhance the PESs
yielding SESs, GESs and DCESs. 2. We show the equivalence of SESs and DESs.
3. We show the incomparability of GESs to many other types of ESs. 4. We show
that DCESs are strictly more expressive than EBESs and thus strictly more
expressive than many other existing types of ESs. 5. We show that DCESs are
incomparable to RCESs. 6. The new model succinctly supports modern work-
flow management systems.

In [5] Crafa et al. defined an Event Structure semantics for the π-calculus
based on Prime ESs. Since the latter do not allow for disjunctive causality which
they needed, and in order to avoid duplications of events, they extended Prime
ESs with a set of bound names, and altered the configuration definition to allow
for such disjunction. With Shrinking-Causality ESs—that can express disjunc-
tive causality—this problem could possibly be addressed more naturally without
copying events. Here higher-order dynamicity, i.e. to allow for adding and drop-
ping of adders and droppers, might help to deal with the instantiation of variables
caused by communications involving bound names.

Up to now, we limit the execution of a DCESs such that an interleaving
between adders and droppers of the same causal dependency is forced. As a
future work, we want to study the case where modifiers of the same dependency
can occur concurrently—read: at the very same instant of time—in DCESs.
Similarly, we want to investigate the situation of concurrent occurrence of an
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adder and its target in GESs. Furthermore, we want to study the ideas of adding
and dropping by sets of events or even higher-order dynamics, i.e. events that
may change the role of events to adders, dropper or back to normal events.
Additionally, the set of possible changes in our newly defined ESs must still be
declared statically. We will also investigate the idea that ESs can evolve, by
supporting ad hoc changes, such that new dependencies as well as events can be
added to a structure.
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Abstract. The AODV protocol is used to establish routes in a mobile,
ad-hoc network (MANET). The protocol must operate in an adversar-
ial environment where network connections and nodes can be added or
removed at any point. While the ability to establish routes is best-effort
under these conditions, the protocol is required to ensure that no rout-
ing loops are ever formed. AODVv2 is currently under development at
the IETF, we focus attention on version 04. We detail two scenarios that
show how routing loops may form in AODVv2 routing tables. The second
scenario demonstrates a problem with the route table update performed
on a Broken route entry. Our solution to this problem has been incorpo-
rated by the protocol designers into AODVv2, version 05. With the fix
in place, we present an inductive and compositional proof showing that
the corrected core protocol is loop-free for all valid configurations.

1 Introduction

The AODV (“Ad-Hoc On-Demand Distance Vector”) protocol family is under
development by the IETF MANET (Mobile, Ad-Hoc Networking) group. Its cur-
rent form is AODVv21, which has evolved from the earlier DYMO2 and AODV3

protocols. As stated in the protocol description, AODVv2 “is intended for use
by mobile routers in wireless, multihop networks. AODVv2 determines unicast
routes among AODVv2 routers within the network in an on-demand fashion,
offering rapid convergence in dynamic topologies.” AODVv2 is still evolving; our
work focuses on the recent version 04 (which we refer to as AODVv2-04), pub-
lished in July 2014. Subsequently, AODVv2-05 was issued in October of 2014,
and AODVv2-06 in December 2014.
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The environment in which AODVv2 operates is challenging, as network con-
nections and nodes may be added or removed at any point. In such a setting,
routes are established in a best-effort mode. However, the protocol is required
to enforce a key safety property, that there are no routing loops in any reach-
able global state. A routing loop is formed when the next-hop entries in routing
tables are connected in a cyclic manner (E.g., node A has next-hop B; node B
has next-hop C; and node C has next-hop A).

We construct a formal, inductive proof that an abstract model of the protocol
has no routing loops. Such a proof has utility, even though AODVv2 is still not
finalized. A proof elucidates broad conditions under which loop-freedom can be
guaranteed; those conditions can then be taken into account as the protocol is
refined, and any fixes necessary can be incorporated quickly and with relatively
little cost. Indeed, in the course of our analysis, we found that AODVv2-04
allows routing loops to form under certain sequences of actions, we discuss those
scenarios in Section 1.2. The first example illustrates that if instance-specific
timing constants are not set correctly, then routing loops may form. The second
example is more serious since it can occur even if the protocol parameters are
set correctly. This problem was quickly acknowledged by the protocol designers
and corrected, based on our input, for version 05 of AODVv2 (cf. [14], Appendix
C: Changes since revision ...-04.txt).
Our model aims to capture the core of the AODVv2 protocol by abstracting

away some detail and by leaving out optional features. The main abstraction
is that timer-driven actions are replaced either with non-determinism or with
global predicate guards. For instance, our model allows a route entry to be
invalidated at any point, while the protocol permits this only after timer expira-
tion. In another instance, routes marked as Expired are expunged (i.e., removed
completely) only after there is no activity for at least MAX_SEQNUM_LIFETIME

seconds. Note that MAX_SEQNUM_LIFETIME is one of several instance specific
constants in the protocol. Our model abstracts away from such constants by
replacing the time-based preconditions with global network predicates. The pred-
icates abstract nicely from the specifics of network structure, delays and process-
ing power, which must go into determining a correct setting for these symbolic
constants.

The full AODVv2 protocol has mechanisms that allow a wide variety of met-
rics to determine the cost of a route. Our model considers only the hopcount
metric, i.e. the metric that counts the number of network edge hops between the
origin node of a route and the target node of a route. Hop count is an impor-
tant metric used in practice, and AODVv2 correctness requires at a minimum
that the protocol behave correctly with the hop count metric. Our proof can be
adapted to other cost metrics, where the cost of a link is greater than 0, and cost
along a path is additive. Within these limits, the model exhibits all of the actual
protocol computations, and more: hence, any proof that the model is correct
shows also that the protocol, under the stated restrictions, is correct.

To summarize, our work makes two contributions: (1) we exhibit scenarios
where AODVv2-04 allows routing loops to form, and suggest a protocol fix,
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which has been adopted by the designers, and (2) we construct a formal model
of the protocol and an inductive proof showing that the corrected core protocol
ensures loop freedom. This proof is interesting in its treatment of adversarial
actions and its use of compositional reasoning.

1.1 Protocol Sketch

We informally sketch the main features of the protocol before proceeding to
the proof. The model we use is given in Section 3. The model fixes an origin
node, O, and a target node, T . The protocol establishes a route from O to
T in two phases. The first phase is initiated by O, and consists of flooding
a RREQ (route request) message through the network4. Every node receiving
this RREQ message maintains an “origin route”, next-hop entry which points
to the neighboring node from which it has received the best route so far from
O, i.e., (roughly) the (first) path with the least cost. Note that a node may
receive multiple copies of the RREQ message sent from O, through different
paths. Whenever the target node T receives a better RREQ route from O, it
responds with an RREP (route reply) message. This message is not flooded: it
follows (backwards) the path to O that has been established by the origin route
entries. With fixed network connectivity and no message losses, this procedure
converges (under mild conditions) to a least cost path from O to T . Under the
network disruptions that are expected in the MANET model, though, there is no
guarantee of convergence. Under adversarial control of the network and message
transmission, the only property that is required of the protocol is that it should
never form a global state which has a routing loop: i.e., a state where the set of
origin route entries form a cycle, such as where node A has next-hop B, B has
next-hop C, and C has next-hop A.

The tricky part of the analysis has to do with the case of “broken” route
entries, which are created when links in the network fail. If A has next-hop B
and the A−B link fails, then the entry at A is marked as Broken. However, new
copies of the RREQ message from O may arrive at A after the breakage. When
should a route from one of those messages be accepted at A? Accepting any route
at all – which makes sense in a way: an unbroken route, however bad, is surely
preferable to a broken one – may lead to a routing loop, as shown in the second
scenario below. This scenario was possible in version 04 of the protocol, and it

4 A data structure, the RREQ Table, is used in AODVv2-04 to control the flooding.
Appendices A.1 and A.2.2 of AODVv2-04 describe precisely how the table is used: an
incoming RREQ message is used to update a route entry, then the message is checked
against the table to determine if it should be regenerated and sent to neighboring
nodes. (We have confirmed this order of actions with the protocol authors, to resolve
a slight ambiguity in the main text.) Hence, the table does not influence route
updates; it may only stop the regeneration of RREQs, which is already included in
our model as message loss. Therefore, we do not model the table.
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was discovered by us in the attempt to construct a proof of loop-freedom5. The
partial proof pointed to the condition “accept any route that is not worse than
the current broken route” as a possible resolution. We confirm that this is indeed
a correct resolution through the formal proof given next. That resolution has also
been accepted by the authors of AODVv2 and included starting with revision 05
of AODVv2 (cf. [14], Appendix C: Changes since revision ...-04.txt).

1.2 Loop Formation Scenarios

The first scenario creates a loop when the timer MAX_SEQNUM_LIFETIME is not set
to a large enough value. The second creates a loop when any route is accepted in
place of a broken one. Reading through the scenarios helps build intuition about
how the protocol operates, which is helpful in understanding the proofs.

Poor choice of timer values. The AODVv2 protocol has several actions that are
triggers by symbolic time constants. A protocol implementer has to give concrete
values to these constants, a very difficult decision, as the correct values depend
on the topology of the network, processing speeds, and transmission delays. As
shown in the scenario below, a routing loop may result if the constants are
inadvertently not set properly. The loop prevents RREP messages that are sent
back from T , the target node, from reaching O, the originating node. As a result,
no messages can be transferred from O to T .

We should note that this is not an error in the protocol – with a correct
choice of constants, the loop will not occur. We model the time-based actions
as guarded commands with an untimed guard over the network state. The proof
shows that the model is loop-free. The modeling, therefore, helps to narrow down
the choice of time constants: the values chosen for a network instance should be
such that the guard condition is guaranteed to hold when the timers expire.

Fig. 1. Network: Early Expunge Scenario. Number by edge indicates hop-count, num-
ber in brackets indicates transmission delay in time units.

5 From Section 6.3 of AODVv2-04, one case of the condition for acceptance of a
new route is “((Route.State == Broken) && LoopFree(RteMsg, Route))”. The
predicate LoopFree is defined in Section 5.6 as “LoopFree (R1, R2) is TRUE

when Cost(R2) <= (Cost(R1) + 1)”. Thus, LoopFree(RteMsg,Route) is true iff
Cost(Route) <= (Cost(RteMsg) + 1). This allows the cost of the route in the in-
coming message, RteMsg, to be arbitrarily larger than the cost of the stored route,
Route, if the stored route is in a Broken state.
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The network is fixed as shown in Figure 1. The scenario is as follows:

1. An RREQ message created by O travels along the path O; H’; H; T. As a
result, the origin route entries at these nodes have hop counts O=0, H’=1,
H=2, T=3. A copy of the RREQ message remains undelivered on the link
H −H ′.

2. The route entry at H’ is expired and then expunged.
This is the critical step. In AODVv2-04, timer conditions say when a route
must be expunged. For non-timed routes, this happens (ref. Section 6.3)
when (Current_Time - Route.LastUsed)>= MAX_SEQNUM_LIFETIME. How-
ever, the protocol (ref. Section 6.3) also allows routes to be expunged without
reference to MAX_SEQNUM_LIFETIME: an Expired route may be expunged at
any time (least recently used first). If this constant is set to too low a value,
there will be messages within the network which are still undelivered. In
the network of Figure 1, if MAX_SEQNUM_LIFETIME is set to 4 units, and the
H − H ′ path (a single link is shown but it could be a path through inter-
mediate nodes) has the delay shown in the figure, the protocol will force the
routing entry at H to be expunged while there is an undelivered RREQ. The
correct value depends on many factors, including the size of the network, the
length of paths in the network, and processing speeds and buffering at the
nodes. In the model, we abstract this to a global predicate which must be
met before the expunge action can occur.

3. The undelivered RREQ from H now reaches H’. Since H’ has no entry, it
accepts this route; its next-hop is now H.

4. H’ sends a RREQ to H with hopcount 3. Since H already has an entry
with a better hopcount, it rejects this message. At this point, there are no
undelivered RREQ messages. The H’-H entries form a routing loop.

Broken Routes. A route entry at a node is marked as Broken if the node is made
aware of a break in connectivity. The following scenario shows that a loop may
form if a broken route is replaced by any valid route (as may seem reasonable,
even if the new route has a higher cost).

Fig. 2. Network: Broken Route Scenario. Number over edge indicates hop-count (cost);
red (slanted) line indicates break.

1. A RREQmessage generated at O sets up the route O(0);X(1);A(2);B(3);T(4).
The numbers in () are the hopcounts for the origin route entries at each node.
A RREQ message remains undelivered on the lower A-B link.
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2. The link X-A breaks, causing the route at A to be marked as Broken. After
the link breaks, both X and A are required to send out RERR messages
to their neighbors. We assume that those messages are lost and therefore
neither O nor B is notified of the break.

3. A now receives a long route from O, with cost 100. This is the critical point.
In version 04 of AODVv2, any valid route is acceptable in place of a broken
one (see footnote 5 for details on why this is permitted), so this route will
be accepted. The route entry at A is now valid and has hopcount 100.

4. A now has a non-broken route. It receives the previously undelivered RREQ
from B, which has cost 4. As this cost is less than that of its current route
cost (i.e., 100), A switches its next-hop to B. Node A then sends an RREQ
to B, but that has higher cost than B’s current route, and is rejected. No
further RREQ messages remain in the network, so the A-B loop is stable.

2 Proof of Loop Freedom

The proof method is standard: we identify a suitable assertion and prove that it
is an inductive invariant by showing that it is preserved by every action. How-
ever, the proof structure is more interesting: (1) we explicitly model network
disruptions as adversarial actions and (2) the induction proof is localized to the
neighborhood of an arbitrarily chosen network edge; thus, it implicitly uses sym-
metry and is compositional in nature. Some aspects of the model are especially
important for the proof (see Section 3 for more details of the model):

1. There is an underlying connectivity graph of nodes. We assume that the
graph is finite but of arbitrary size. Nodes and links may fail, and new links
can be formed at any point. A node can also be restarted after failure.

2. Any link change and the reaction to it happens atomically with respect to
the actions of the protocol.

3. We fix an arbitrary origin node, O, and an arbitrary target node, T , such
that T differs from O. Protocol analysis is then based on the discovery and
maintenance of bidirectional routes from O to T .

4. A route entry has a sequence number, a hop-count, and a state6. We say that
an entry x is “better” than an entry y if (seqx,−hopx) is lexicographically
strictly greater than (seqy,−hopy). I.e., if seqx > seqy or if seqx = seqy
and hopx < hopy. In this situation, we also say that y is “worse” than x.
We write this relationship as y ≺ x. We treat sequence numbers as nat-
ural numbers; i.e., we do not model wrap-around effects. In AODV-v04, a
node has its own sequence number generator, with the range [0 . . . 65535]. A
new sequence number is assigned for a fresh route request/response. As the
numbers are assigned per node and the protocol separates routing entries by
(origin, target), the AODVv2 drafts implicitly assume that comparison of a
route with a wrap-around successor route is very unlikely.

6 In AODVv2-04, an entry is also labeled with an (origin, target) pair. As the model
fixes the origin and target nodes, we omit this label.
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2.1 Proof Summary

We consider first the origin route established through RREQ messages, and show
that it cannot have a routing loop. To avoid case-splitting, we suppose that there
is a dummy route to O at O, given by hopcount 0 and the sequence number of
O. The proof hinges on showing the following lemma, which gives the desired
theorem below.

Lemma 1. The following is an inductive invariant: for any node H, and for
any node G: if H has a route entry to O with next hop G, then G has a route
entry to O that is better than the entry at H.

Theorem 1. The protocol never reaches a state with a routing loop formed from
origin route entries.

Proof: The proof is by contradiction. Suppose that there is a reachable protocol
state with a routing loop induced by the entries for origin routes. Pick a node,
say H , on the loop other than O (there must be one such) and go around the
loop from H in the next-hop direction. By Lemma 1, the route entries along this
circuit improve strictly at each hop. By the transitivity of ≺, the route entry at
H is strictly worse than the route entry at H , a contradiction. EndProof.

2.2 The Main Proof

The bulk of the proof lies in establishing the invariance condition in Lemma 1.
We do so by induction: i.e., we show that the statement holds in the initial pro-
tocol configuration, and that it is preserved by protocol actions and by dynamic
network changes. For brevity, we use “route” in place of “route entry” through-
out; it should be understood that route does not refer to a path connecting
several nodes together. We require an auxiliary lemma, given below. It states
that routes in RREQ/RREP messages on outgoing channels adjacent to a node
are no better than the corresponding route at that node.

Lemma 2. The following is an inductive invariant:

(a) For any node H, the route to O in any RREQ message for (O, T ) on any
outgoing link from H is not better than the route for O at H.

(b) For any node H, the route to T in any RREP message for (O, T ) on the
link from H to its next-hop on the route to O is not better than the route for
T at H.

Proof of Lemma 2(a): The claim holds trivially at the initial state, as all con-
nection links are empty.

Consider a transition from global state s to global state t, and suppose that
the claim holds at s. To show that it holds for t, consider a node H (other than
O) in t. The proof is by case analysis on the transition which takes the system
from s to t.
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Consider first the normal operations. Most cases are straightforward. If the
transition is for a node other than H , it only affects the neighborhood of H if
a message is removed from an outgoing link of H ; in this case, the invariant is
trivially preserved. Changes to the route state of H (idle-route or expire-route)
do not change any routes. Expunging the route (expunge-route) preserves the
invariant as its guard requires all outgoing channels from H to be empty. The
generation of a RREQ (rreq-gen) can only be done by H if it is O: in that case
the route generated is equal to the (dummy) route for O at O.

The interesting case is where the route at H is updated through a RREQ or
RREP message (rreq-recv, rrep-recv). Let x be the route at H to O in s and
let y be its route in t. Then either y � x (in the normal case) or y � x (if
x is Broken). Now for every route r in a RREQ message on the link in s, the
inductive hypotheses requires that x � r, so that y � r by transitivity. Every
new RREQ message generated by H through rreq-recv carries the route y. This
re-establishes the invariant. Processing an RERR message may only invalidate
but not change the origin route.

We now consider the dynamic changes. Dropping a message, and removing
a node or a link trivially preserves the invariant as no routes are changed. The
addition of a link to H establishes the invariant for that link, as the link is
empty. The interesting case is if H is a recovered node (recover-node). By the
pre-condition for recovery (see the model detailed in the next sections), all of
H ’s outgoing channels are empty, so the invariant holds. EndProof.

The proof for part (b) is essentially identical, as the processing of RREQ
messages in rreq-recv and RREP messages in rrep-recv is nearly symmetric.

Proof of Lemma 1: The claim holds trivially at the initial state, as all routes
are undefined. Consider a transition from global state s to global state t, and
suppose that the claim holds at s. We show that it holds at t by case analysis
on the transition.

We first consider the normal protocol actions. In state t, consider node H , and
a node G such that the route to O from H has next-hop G. We have to show
that G has a route better than the route at H . Consider the possible actions.

(1) The action does not involve either H or G. So there is no change in the
routes at the two nodes. By assumption, the claim holds for (G,H) in s, so it
continues to hold in t.

(2) The action is one of G. Modifications to route state (idle-route, expire-
route) do not affect routes, so the claim continues to hold from the assumption
for s. The action cannot be an expunge, as its guard is not met in s, as the
entry for H in s has next-hop G. Processing of RERR messages does not change
the route at G (although its state may change). The interesting case is where
G updates its route to O from rG in s to r′G in t by processing an RREQ or
an RREP message. By the protocol, r′G � rG. Since r′H = rH , and rG � rH by
assumption for s, we get that r′G � r′H in t.

(3) The action is one of H . Modifications to route state (idle-route, expire-
route) do not affect routes, so the invariant is preserved from s. The action
cannot be an expunge, as H has an entry in t. The interesting case is if H
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updates its route to O through a rreq-recv for (O, T ) or through a rrep-recv for
(X,O), where X is some node. Since H points to G in t, the updating message
must be from G. Say this message carries a route r, and let rG be the route to
O at G in s. By Lemma 2, regardless of the message type (RREQ or RREP),
at state s, rG � r. The new route at H is obtained from r by incrementing its
hopcount, so it is worse than r (i.e., r′H ≺ r). The route in G is unchanged in the
transition (i.e., r′G = rG). Hence, we have r′G = rG � r � r′H . By transitivity,
r′G � r′H , as is desired. (Note the crucial role played by the hopcount increment
at H .) Actions which process RERR messages do not change the route at H , so
they preserve the invariant.

We now consider dynamic changes which affect H and G.
(4) Dropping a message from a link, and removing a link trivially preserves

the invariant as no routes are changed. (Note that the link between H and G
may be broken by the transition, yet H ’s route entry still points to G in t.)

(5) The action cannot be the addition or restart of H , as the newly added H
would not have an origin route in t. The action may not add G as a fresh node
either, as the next-hop entry for G exists for H in s.

(6) The action cannot be the restart of G, as its precondition requires there
to be no entries which have G as a next-hop, and H has such an entry in s.

(7) The action cannot be the removal of nodes G or H , as we are only stating
the claim where both nodes exist in the network at t. (In t, there may be a node
H ′ which has a next-hop entry for G′, but G′ is no longer in the network at t.
Such a (G′, H ′) pair is not part of the invariant claim.) EndProof.

RREP Invariants. RREP (route response) messages are generated whenever a
new RREQ message reaches its target. They follow a single path from target to
source which is set up by the origin route entries. I.e., unlike RREQs, the RREP
messages do not flood the network. The RREP messages create “target route”
entries at each node, which determine a path from that node to the target, T .
However, the origin route path at the point an RREP message is created may
change as the protocol progresses and intermediate nodes receive better routes.
It may also change as the result of network disruptions and rearrangements.
Hence, it is not obvious that RREP messages do not induce a routing loop in
the target route entries. The proof that the target routes created by RREP
messages is loop-free is similar in structure to the RREP loop-freedom proof.
This is possible as the protocol is nearly symmetric in its handling of RREQ
and RREP messages. We therefore omit this proof.

3 AODVv2 Model

We describe the protocol model from the viewpoint of a node with name H .

Data Structures. A node maintains a route table route, indexed by nodes. The
route to a node may be undefined, which we denote by ⊥. If defined, a route to
a node is a pair: (n, e), where n is the next-hop node and e is its route entry.
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An entry is of the form (s, h, x), where s is a sequence number, h is the hopcount
(or, more generally, the cost), and x is the state of the route (one of Active, Idle,
Expired, or Broken). It is assumed that s and h are non-negative numbers. In
addition, a node maintains its own sequence number, referred to as seq. We
use standard notation to refer to these components, for instance, n.route[O].e.h
refers to the hopcount of the route entry to node O at node n.

Messages. The protocol has three types of messages: RREQ (route request),
RREP (route reply) and RERR (route error). Each message has the following
components: h (a hopcount), tlv = (sO, sT ) (sequence numbers for origin and
target, possibly undefined), and (O, T ) – the origin and target pair. We write a
message as, for example, RREQ(h, (sO, sT ), (O, T )).

Initial State. In its initial state, a node has undefined origin and target routes,
and sequence number 0.

Protocol Actions. Here, we list the actions taken during normal operation. The
actions are atomic but may occur at any time. In the protocol, actions such as
expire-route are based on timers, to ensure that they do not happen too often.
Since we are concerned with correctness, not performance, we replace such uses
of timing by non-determinism. There are some parts of the protocol where timed
actions are used as a proxy for global conditions. In the model, we replace such
timers with global guards.

In the description below, we have also made certain actions (e.g., processing
of RERRs) have more effect, or be more often enabled, than the actual protocol
recommends. This can only result in the model having more executions than the
actual protocol, so any invariants shown for the model also hold for the protocol.

The notation y >> x expresses that the route in the route message y is
preferable to the route table entry x. From the AODVv2 protocol description,
this is true if (1) y.s > x.s, or if (2) y.s = x.s, and either (a) y.h+1 < x.h, or (b)
x is in the Broken state and y.h+1 ≤ x.h. (Term (b) is the correction introduced
in AODVv2-05 based on the second loop-formation scenario from Section 1.2.)

We introduce the global predicate AllClear, which replaces the time-driven
actions based on MAX_SEQNUM_LIFETIME. The predicate AllClear(H) holds iff (1)
there are no messages in any channel of the network with origin or target being
H , and (2) all outgoing channels from H are empty, and (3) no other node has
an Active route entry with next-hop H . This global condition is not present in
the actual protocol, as it cannot be checked locally. The protocol instead defines
a symbolic time constant, MAX_SEQNUM_LIFETIME – a node waits until that much
time has expired before expunging an entry. The protocol description does not
specify how this value is to be chosen for a network instance: the value should,
clearly, depend on factors such as the size of the network, the link delays, and
the processing power of a node. The global condition defined here abstracts from
these considerations: the time value should be set so that the global condition
is guaranteed to be true after that much time has elapsed.
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skip do nothing
expunge-route remove route if its state is Expired, and AllClear(H) holds.
idle-route change route state to Idle if Active.
expire-route change route state to Expired if Idle.
rreq-gen(T) This generates an RREQ (request) message to node T .

true ==>

let msg = RREQ(h=0, (sO=H.seq+1, sT=H.route[T].e.s), (H,T)) in

H.seq := H.seq+1;

multicast(msg)

rreq-recv(RREQ(m),K) This action processes an RREQ message
m = (h, (sO, sT ), (O, T )) from neighbor K. It is guarded by the condition
that the route in m is better than the origin route at node H .

(m.sO,m.h,Active) >> H.route[O].e ==> // m has a better route to the origin

// update the origin route

H.route[O] := (K,(m.sO,m.h+1),Active);

// propagate or reply as appropriate

if (H=T) then // H is the target node: reply with RREP

let reply = RREP(h=0,(sO=m.sO,sT=H.seq+1), (O,T)) in

H.seq := H.seq+1; // update local sequence number

unicast(reply, K) // send only to K

else // H is an intermediate node: propagate

let msg = RREQ(m.h+1, m.tlv,(O,T)) in

multicast(msg) // send to all neighbors

endif

rrep-recv(RREP(m),K) This action processes a reply (RREP) message m =
(h, (sO, sT ), (O, T )) from neighbor K if it contains a better target route.

(m.sT,m.h,Active) >> H.route[T].e ==> // m has better route to the target

// update the target route

H.route[T] := (K,(m.sT,m.h+1),Active);

// propagate as appropriate

if (H = O) then // H is the origin node: do nothing

skip

else // H is an intermediate node

if (H.route[O] is defined) then // propagate RREP

let replymsg = RREP(m.h+1, m.tlv, (O,T)) in

unicast(replymsg, H.route[O].n)

else // generate error RERR

let errormsg = RERR(h=0,tlv=(_,_)) in

unicast(errormsg,K)

endif

rerr-recv(RERR(m),K) This action processes an error (RERR) message from
neighbor K. Mark any routes passing through K as broken, and propagate
the error. This is more permissive than the protocol in marking routes as
Broken: in the protocol, there are other fields in the RERR message which
H can use to distinguish whether the error message from K pertains to an
origin or a target route.

true ==>

for all nodes w:

if (H.route[w].n = K) then
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H.route[w].e.x := Broken; // mark route as broken.

multicast(RERR(m)) // propagate RERR to all neighbors

endif

Dynamic Actions. We now describe protocol actions taken in response to dy-
namic changes. In our model the adversary may add, recover, or delete nodes,
and may add or delete edges. Edges may be deleted by the adversary at any
point during protocol execution. However, the adversary may delete a node only
if the node is not linked to any edge. Below we give the detailed response that
the protocol takes to adversarial actions.

remove-node(H) Do nothing.
new-node(H) If H is a new node, it starts at its initial state, and all outgoing

channels are empty.
recover-node(H) H is a recovered node. It does not re-join the protocol until

the condition AllClear(H) holds. This is the same global guard as that for
expunge-route. That is not a coincidence, the two conditions should be the
same, as shown by the first loop-formation scenario from Section 1.2. The
actual AODVv2-04 protocol says that a node can re-join the protocol once
MAX_SEQNUM_LIFETIME seconds have elapsed.

remove-link(H,K) Mark any routes through K as being broken, and send
RERR messages accordingly

true ==>

for all nodes w:

if (H.route[w].n = K) then

H.route[w].e.x := Broken; // mark route as broken.

multicast(RERR(m)) // propagate RERR to all neighbors

endif

add-link(H,K) new link from H to K established. Do nothing.

4 Related Work and Conclusions

There is a long history of research on inductive and compositional analysis ap-
plied to network protocols: the work in [13,15,3,16,4] is representative. The con-
tribution of this work is to apply these ideas to the verification of a protocol
operating under dynamic, adversarial network changes. Our proof technique is
standard (cf.[4]): we postulate an assertion and show that it is inductive by prov-
ing that it is preserved by every action. However, there are interesting aspects to
the structure of the proof. Most importantly, our proof technique is ‘local’, that
is, it is applied to a generic protocol node (or edge), and considers interference
from only the nodes in the neighborhood of that node (or edge) during protocol
execution. Hence, the method is compositional. It relies on symmetry in the sense
that the generic node analyzed represents any of the nodes that may arise during
the execution of the actual protocol. In addition, the possibility of adversarial
network change is taken care of by modeling the changes as non-deterministic
actions, which are always enabled, and may take effect at any point. In [12] a
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simpler model of AODVv2 was analyzed. In particular, the AODVv2 model in
that earlier work did not incorporate node restarts or the expunging of Expired
route table entries. This meant that the earlier model did not need to consider
the AllClear global guard. We note that consideration of Expired routes leads
to the first example of a routing loop in Section 1.2.

The formation of routing loops has been studied for earlier forms of the
AODVv2 protocol (AODV and DYMO) in [1,5,17,11] and [18]. Although it op-
erates in the same environment and has the same goals, the version of AODVv2
under development differs significantly, in part due to efforts made to ensure that
routing loop scenarios discovered for earlier forms are avoided. For instance, the
use of sequence numbers in AODVv2 is completely different from that in AODV
and DYMO. The version of AODVv2 (DYMO) analyzed in [9] by model checking
fixed configurations allows intermediate, non-target nodes to generate RREQs,
this is not possible in AODVv2-04. Nonetheless, some key features have been
retained across the protocol versions. An important one is the use of (sequence
number, hopcount) as a metric to ensure loop freedom. That is to be expected,
as the intuition given in all of the protocol descriptions is that the sequence num-
ber represents the “freshness” of a route, while hopcount represents its “cost”.
Our work shows that this intuition is valid; but it also shows (from the loop
formation scenarios) that care must be taken when considering disruptive net-
work changes. We have found it surprisingly easy to construct the proof, and we
suspect that this is so because of a focus, through compositional reasoning, on
‘local’ state rather than ‘global’ state, and the many simplifications introduced
by the designers.

The AODVv2 model verified here represents a possible abstract protocol im-
plementation. However, several features or options of the full protocol are either
not modeled or are not modeled in their full generality. For instance, in our ver-
sion each addressable entity in the network is, if present, identified with a single
node in any network topology. In contrast, in the full AODVv2 protocol, entities
may be ‘multi-homed’, and therefore messages sent to the entity may be sent to
multiple destinations.

Another significant difference is that in the model, we assume that the metric
used by all nodes to determine the ‘least cost route’ to a destination is based on
hop count. That is, the distance between any two neighboring nodes is 1, and
the cost of a path from node O to node T is the number of nodes in the path
minus 1. The protocol actually allows protocol implementers to choose a different
metric, which changes the ‘least cost route’. In practice, such metrics may include
information relating to bandwidth of individual edges connecting neighboring
nodes, or the implementation of individual edge connections (wireless, wired,
etc.), to name just a few possible metrics.

In addition, we note that the full AODVv2 protocol allows great scope for
implementation decisions in the following form. Many per-node protocol deci-
sions are described as ‘must’ but some are described as ‘may.’ For instance, if
the route from node H to node T is marked as ‘expired’ in the route table of
H then H must not advertise this route to its neighbors. However, if H receives
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an RREQ for T from a neighbor G then H may choose to add this route to O to
H ’s routing table and advertise the RREQ message to H ’s neighbors. In our anal-
ysis, we model these decisions as must instructions. Hence, any RREQ message
received at a node H will be processed at H and forwarded to H ’s neighbors.
We note that, the models described in our work represent models allowed by
the AODVv2 protocol and therefore any errors or discrepancies found in the
modelled protocol would represent discrepancies in the full AODVv2 protocol.

There are several other approaches to the analysis of dynamic and ad-hoc net-
works. The work in [2] shows that Hoare triples for restricted logics are decidable.
Work in [8,6] applies well-quasi-ordering (wqo) theory to ad-hoc networks, while
the algorithm of [7] relies on symbolic forward exploration, as does (in a dif-
ferent way) the method of [17]. It would be interesting to see how well these
algorithmic and semi-algorithmic methods apply to the AODVv2 model. Our
own recent work [12] shows that the loose coupling forced by dynamic network
changes contributes to the effectiveness of compositional reasoning and local
symmetry reduction.

4.1 Conclusion and Future Work

We describe a formal proof of loop-freedom for a model of the AODVv2 protocol.
In the course of doing so, we discovered a mistake in version 04 of the protocol,
which has been acknowledged and corrected by the designers. The straightfor-
ward nature of the proof strengthens the conjecture which originally inspired
this work: that dynamic network protocols must be loosely coupled and, hence,
especially amenable to inductive compositional analysis.

There are several open questions that remain. For instance, we are interested
in techniques for the automatic generation of induction compositional assertions
for use in the analysis of loosely coupled dynamic systems. Other questions
surround the analysis of AODVv2 itself. One is to check whether the chosen
values for timing constants are correct for a given configuration of the protocol;
the work in [10] can be a good starting point. Another is to generalize this proof
to apply to a richer class of distance metrics, as well as to network features such
as multi-homing. A particularly important question is to find a good strategy
for constructing proofs for the various combinations of “may” options which are
permitted by the protocol, while avoiding a combinatorial explosion of protocol
variants. As nearly all network protocols include a number of may options, this
is a broadly applicable question, and especially relevant in practice.

Acknowledgments. We would like to thank the authors of the AODVv2-04 protocol,
in particular Charles Perkins, for helpful comments on the loop-formation scenarios and
the proof.
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Abstract. Self-organisation mechanisms, in which simple local interactions
result in robust collective behaviors, are a useful approach to managing the coor-
dination of large-scale adaptive systems. Emerging pervasive application scenar-
ios, however, pose an openness challenge for this approach, as they often require
flexible and dynamic deployment of new code to the pertinent devices in the
network, and safe and predictable integration of that new code into the existing
system of distributed self-organisation mechanisms. We approach this problem
of combining self-organisation and code mobility by extending “computational
field calculus”, a universal calculus for specification of self-organising systems,
with a semantics for distributed first-class functions. Practically, this allows self-
organisation code to be naturally handled like any other data, e.g., dynamically
constructed, compared, spread across devices, and executed in safely encapsu-
lated distributed scopes. Programmers may thus be provided with the novel first-
class abstraction of a “distributed function field”, a dynamically evolving map
from a network of devices to a set of executing distributed processes.

1 Introduction

In many different ways, our environment is becoming ever more saturated with
computing devices. Programming and managing such complex distributed systems is
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a difficult challenge and the subject of much ongoing investigation in contexts such as
cyber-physical systems, pervasive computing, robotic systems, and large-scale wireless
sensor networks. A common theme in these investigations is aggregate programming,
which aims to take advantage of the fact that the goal of many such systems are best
described in terms of the aggregate operations and behaviours, e.g., “distribute the new
version of the application to all subscribers”, or “gather profile information from every-
body in the festival area”, or “switch on safety lights on fast and safe paths towards the
emergency exit”. Aggregate programming languages provide mechanisms for building
systems in terms of such aggregate-level operations and behaviours, and a global-to-
local mapping that translates such specifications into an implementation in terms of the
actions and interactions of individual devices. In this mapping, self-organisation tech-
niques provide an effective source of building blocks for making such systems robust
to device faults, network topology changes, and other contingencies. A wide range of
such aggregate programming approaches have been proposed [3]: most of them share
the same core idea of viewing the aggregate in terms of dynamically evolving fields,
where a field is a function that maps each device in some domain to a computational
value. Fields then become first-class elements of computation, used for tasks such as
modelling input from sensors, output to actuators, program state, and the (evolving)
results of computation.

Many emerging pervasive application scenarios, however, pose a challenge to these
approaches due to their openness. In these scenarios, there is need to flexibly and dy-
namically deploy new or revised code to pertinent devices in the network, to adaptively
shift which devices are running such code, and to safely and predictably integrate it into
the existing system of distributed processes. Prior aggregate programming approaches,
however, have either assumed that no such dynamic changes of code exist (e.g., [2,21]),
or else provide no safety guarantees ensuring that dynamically composed code will
execute as designed (e.g., [15,22]). Accordingly, our goal in this paper is develop a
foundational model that supports both code mobility and the predictable composition
of self-organisation mechanisms. Moreover, we aim to support this combination such
that these same self-organisation mechanisms can also be applied to manage and direct
the deployment of mobile code.

To address the problem in a general and tractable way, we start from the field cal-
culus [21], a recently developed minimal and universal [5] computational model that
provides a formal mathematical grounding for the many languages for aggregate pro-
gramming. In field calculus, all values are fields, so a natural approach to code mo-
bility is to support fields of first-class functions, just as with first-class functions in
most modern programming languages and in common software design patterns such
as MapReduce [10]. By this mechanism, functions (and hence, code) can be dynami-
cally consumed as input, passed around by device-to-device communication, and oper-
ated upon just like any other type of program value. Formally, expressions of the field
calculus are enriched with function names, anonymous functions, and application of
function-valued expressions to arguments, and the operational semantics properly ac-
commodates them with the same core field calculus mechanisms of neighbourhood fil-
tering and alignment [21]. This produces a unified model supporting both code mobility
and self-organisation, greatly improving over the independent and generally incompat-
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ible mechanisms which have typically been employed in previous aggregate program-
ming approaches. Programmers are thus provided with a new first-class abstraction of
a “distributed function field”: a dynamically evolving map from the network to a set of
executing distributed processes.

Section 2 introduces the concepts of higher-order field calculus; Section 3 formalises
their semantics; Section 4 illustrates the approach with an example; and Section 5 con-
cludes with a discussion of related and future work.

2 Fields and First-Class Functions

The defining property of fields is that they allow us to see computation from two differ-
ent viewpoints. On the one hand, by the standard “local” viewpoint, computation is seen
as occurring in a single device, and it hence manipulates data values (e.g., numbers) and
communicates such data values with other devices to enable coordination. On the other
hand, by the “aggregate” (or “global”) viewpoint [21], computation is seen as occur-
ring on the overall network of interconnected devices: the data abstraction manipulated
is hence a whole distributed field, a dynamically evolving data structure having extent
over a subset of the network. This latter viewpoint is very useful when reasoning about
aggregates of devices, and will be used throughout this document. Put more precisely,
a field value φ may be viewed as a function φ : D →L that maps each device δ in
the domain D to an associated data value � in range L . Field computations then take
fields as input (e.g., from sensors) and produce new fields as outputs, whose values may
change over time (e.g., as inputs change or the computation progresses). For example,
the input of a computation might be a field of temperatures, as perceived by sensors at
each device in the network, and its output might be a Boolean field that maps to true

where temperature is greater than 25◦C, and to false elsewhere.

Field Calculus. The field calculus [21] is a tiny functional calculus capturing the es-
sential elements of field computations, much as λ -calculus [7] captures the essence of
functional computation and FJ [12] the essence of object-oriented programming. The
primitive expressions of field calculus are data values denoted � (Boolean, numbers,
and pairs), representing constant fields holding the value � everywhere, and variables x,
which are either function parameters or state variables (see the rep construct below).
These are composed into programs using a Lisp-like syntax with five constructs:

(1) Built-in function call (o e1 · · ·en): A built-in operator o is a means to uniformly
model a variety of “point-wise” operations, i.e. involving neither state nor communi-
cation. Examples include simple mathematical functions (e.g., addition, comparison,
sine) and context-dependent operators whose result depends on the environment (e.g.,
the 0-ary operator uid returns the unique numerical identifier δ of the device, and the
0-ary nbr-range operator yields a field where each device maps to a subfield mapping
its neighbours to estimates of their current distance from the device). The expression
(o e1 · · ·en) thus produces a field mapping each device identifier δ to the result of ap-
plying o to the values at δ of its n ≥ 0 arguments e1, . . . ,en.
(2) Function call (f e1 . . . en): Abstraction and recursion are supported by function
definition: functions are declared as (def f(x1 . . . xn) e) (where elements xi are formal
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(a) (if x (f (sns)) (g (sns))) (b) ((if x f g) (sns))

Fig. 1. Field calculus functions are evaluated over a domain of devices. E.g., in (a) the if opera-
tion partitions the network into two subdomains, evaluating f where field x is true and g where
it is false (both applied to the output of sensor sns). With first-class functions, however, domains
must be constructed dynamically based on the identity of the functions stored in the field, as in
(b), which implements an equivalent computation.

parameters and e is the body), and expressions of the form (f e1 . . . en) are the way of
calling function f passing n arguments.
(3) Time evolution (rep x e0 e): The “repeat” construct supports dynamically evolv-
ing fields, assuming that each device computes its program repeatedly in asynchronous
rounds. It initialises state variable x to the result of initialisation expression e0 (a value
or a variable), then updates it at each step by computing e against the prior value of x.
For instance, (rep x 0 (+ x 1)) is the (evolving) field counting in each device how
many rounds that device has computed.
(4) Neighbourhood field construction (nbr e): Device-to-device interaction is encap-
sulated in nbr, which returns a field φ mapping each neighbouring device to its most
recent available value of e (i.e., the information available if devices broadcast the value
of e to their neighbours upon computing it). Such “neighbouring” fields can then be
manipulated and summarised with built-in operators, e.g., (min-hood (nbr e)) out-
puts a field mapping each device to the minimum value of e amongst its neighbours.
(5) Domain restriction (if e0 e1 e2): Branching is implemented by this construct,
which computes e1 in the restricted domain where e0 is true, and e2 in the restricted
domain where e0 is false.

Any field calculus computation may be thus be viewed as a function f taking
zero or more input fields and returning one output field, i.e., having the signature
f : (D → L )k → (D → L ). Figure 1a illustrates this concept, showing an example
with complementary domains on which two functions are evaluated. This aggregate-
level model of computation over fields can then be “compiled” into an equivalent sys-
tem of local operations and message passing actually implementing the field calculus
program on a distributed system [21].

Higher-order Field Calculus. The higher-order field calculus (HFC) is an extension
of the field calculus with embedded first-class functions, with the primary goal of al-
lowing it to handle functions just like any other value, so that code can be dynamically
injected, moved, and executed in network (sub)domains. If functions are “first class” in
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e ::= x
∣
∣ v

∣
∣ ( e e)

∣
∣ (rep x w e)

∣
∣ (nbr e)

∣
∣ (if e e e) expression

v ::= �
∣
∣ φ value

� ::= b
∣
∣ n

∣
∣ 〈�,�〉 ∣

∣ o
∣
∣ f

∣
∣ (fun (x) e) local value

w ::= x
∣
∣ � variable or local value

F ::= (def f(x) e) user-defined function
P ::= F e program

Fig. 2. Syntax of HFC (differences from field calculus are highlighted in grey)

the language, then: (i) functions can take functions as arguments and return a function
as result (higher-order functions); (ii) functions can be created “on the fly” (anonymous
functions); (iii) functions can be moved between devices (via the nbr construct); and
(iv) the function one executes can change over time (via rep construct).

The syntax of the calculus is reported in Fig. 2. Values in the calculus include fields
φ , which are produced at run-time and may not occur in source programs; also, local
values may be smoothly extended by adding other ground values (e.g., characters) and
structured values (e.g., lists). Borrowing syntax from [12], the overbar notation denotes
metavariables over sequences and the empty sequence is denoted by •. E.g., for expres-
sions, we let e range over sequences of expressions, written e1, e2, . . . en (n ≥ 0). The
differences from the field calculus are as follows: function application expressions (ee)
can take an arbitrary expression e instead of just an operator o or a user-defined func-
tion name f; anonymous functions can be defined (by syntax (fun (x) e)); and built-in
operators, user-defined function names, and anonymous functions are values. This im-
plies that the range of a field can be a function as well. To apply the functions mapped
to by such a field, we have to be able to transform the field back into a single aggregate-
level function. Figure 1b illustrates this issue, with a simple example of a function call
expression applied to a function-valued field with two different values.

How can we evaluate a function call with such a heterogeneous field of functions?
It would seem excessive to run a separate copy of function f for every device that has
f as its value in the field. At the opposite extreme, running f over the whole domain
is problematic for implementation, because it would require devices that may not have
a copy of f to help in evaluating f . Instead, we will take a more elegant approach, in
which making a function call acts as a branch, with each function in the range applied
only on the subspace of devices that hold that function. Formally, this may be expressed
as transforming a function-valued field φ into a function fφ that is defined as:

fφ (ψ1,ψ2, . . .) =
⋃

f∈φ(D)

f (ψ1|φ−1( f ),ψ2|φ−1( f ), . . . ) (1)

where ψi are the input fields, φ(D) is set of all functions held as data values by some
devices in the domain D of φ , and ψi|φ−1( f ) is the restriction of ψi to the subspace of
only those devices that φ maps to function f . In fact, when the field of functions is
constant, this reduces to be precisely equivalent to a standard function call. This means
that we can view ordinary evaluation of function f as equivalent to creating a function-
valued field with a constant value f , then making a function call applying that field to
its argument fields. This elegant transformation is the key insight of this paper, enabling
first-class functions to be implemented with a minimal change to the existing semantics
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while also ensuring compatibility with the prior semantics as well, thus also inheriting
its previously established desirable properties.

3 The Higher-order Field Calculus: Dynamic and Static Semantics

Dynamic Semantics (Big-Step Operational Semantics). As for the field calcu-
lus [21], devices undergo computation in rounds. In each round, a device sleeps for
some time, wakes up, gathers information about messages received from neighbours
while sleeping, performs an evaluation of the program, and finally emits a message to
all neighbours with information about the outcome of computation before going back to
sleep. The scheduling of such rounds across the network is fair and non-synchronous.
This section presents a formal semantics of device computation, which is aimed to rep-
resent a specification for any HFC-like programming language implementation.

The syntax of the HFC calculus has been introduced in Section 2 (Fig.2). In the
following, we let meta-variable δ range over the denumerable set D of device identifiers
(which are numbers). To simplify the notation, we shall assume a fixed program P. We
say that “device δ fires”, to mean that the main expression of P is evaluated on δ .

We model device computation by a big-step operational semantics where the result
of evaluation is a value-tree θ , which is an ordered tree of values, tracking the result
of any evaluated subexpression. Intuitively, the evaluation of an expression at a given
time in a device δ is performed against the recently-received value-trees of neighbours,
namely, its outcome depends on those value-trees. The result is a new value-tree that
is conversely made available to δ ’s neighbours (through a broadcast) for their firing;
this includes δ itself, so as to support a form of state across computation rounds (note
that any implementation might massively compress the value-tree, storing only enough
information for expressions to be aligned). A value-tree environment Θ is a map from
device identifiers to value-trees, collecting the outcome of the last evaluation on the
neighbours. This is written δ �→ θ as short for δ1 �→ θ1, . . . ,δn �→ θn.

The syntax of field values, value-trees and value-tree environments is given in Fig.3
(top). Figure 3 (middle) defines: the auxiliary functions ρ and π for extracting the root
value and a subtree of a value-tree, respectively (further explanations about function
π will be given later); the extension of functions ρ and π to value-tree environments;
and the auxiliary functions args and body for extracting the formal parameters and the
body of a (user-defined or anonymous) function, respectively. The computation that
takes place on a single device is formalised by the big-step operational semantics rules
given in Fig.3 (bottom). The derived judgements are of the form δ ;Θ 	 e ⇓ θ , to be
read “expression e evaluates to value-tree θ on device δ with respect to the value-tree
environment Θ”, where: (i) δ is the identifier of the current device; (ii) Θ is the field of
the value-trees produced by the most recent evaluation of (an expression corresponding
to) e on δ ’s neighbours; (iii) e is a run-time expression (i.e., an expression that may
contain field values); (iv) the value-tree θ represents the values computed for all the
expressions encountered during the evaluation of e—in particular ρ(θ ) is the resulting
value of expression e. The first firing of a device δ after activation or reset is performed
with respect to the empty tree environment, while any other firing must consider the
outcome of the most recent firing of δ (i.e., whenever Θ is not empty, it includes the
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Field values, value-trees, and value-tree environments:
φ ::= δ �→ � field value
θ ::= v(θ ) value-tree
Θ ::= δ �→ θ value-tree environment

Auxiliary functions:
ρ(v (θ)) = v

πi(v (θ1, . . . ,θn)) = θi if 1 ≤ i ≤ n π�,n(v(θ1, . . . ,θn+2)) = θn+2 if ρ(θn+1) = �

πi(θ ) = • otherwise π�,n(θ ) = • otherwise

For aux ∈ ρ,πi,π�,n :

⎧

⎨

⎩

aux(δ �→ θ ) = aux(θ ) if aux(θ ) �= •
aux(δ �→ θ ) = • if aux(θ ) = •
aux(Θ ,Θ ′) = aux(Θ),aux(Θ ′)

args(f) = x if (def f(x) e) body(f) = e if (def f(x) e)
args((fun (x) e)) = x body((fun (x) e)) = e

Rules for expression evaluation: δ ;Θ 	 e ⇓ θ
[E-LOC]

δ ;Θ 	 � ⇓ �()

[E-FLD] φ ′ = φ |dom(Θ )∪{δ}
δ ;Θ 	 φ ⇓ φ ′ ()

[E-B-APP]
δ ;πn+1(Θ) 	 en+1 ⇓ θn+1 ρ(θn+1) = o

δ ;π1(Θ) 	 e1 ⇓ θ1 · · · δ ;πn(Θ) 	 en ⇓ θn v= εoδ ;Θ (ρ(θ1), . . . ,ρ(θn))

δ ;Θ 	 en+1(e1, . . . ,en) ⇓ v(θ1, . . . ,θn+1)

[E-D-APP]

δ ;πn+1(Θ) 	 en+1 ⇓ θn+1 ρ(θn+1) = � args(�) = x1, . . . ,xn

δ ;π1(Θ) 	 e1 ⇓ θ1 · · · δ ;πn(Θ) 	 en ⇓ θn body(�) = e

δ ;π�,n(Θ) 	 e[x1 := ρ(θ1) . . . xn := ρ(θn)] ⇓ θn+2 v= ρ(θn+2)

δ ;Θ 	 en+1(e1, . . . ,en) ⇓ v(θ1, . . . ,θn+2)

[E-REP] �0 =

{
ρ(Θ(δ )) if Θ �= /0
� otherwise

δ ;π1(Θ) 	 e[x := �0] ⇓ θ1 �1 = ρ(θ1)

δ ;Θ 	 (rep x � e) ⇓ �1 (θ1)
[E-NBR] Θ1 = π1(Θ) δ ;Θ1 	 e ⇓ θ1 φ = ρ(Θ1)[δ �→ ρ(θ1)]

δ ;Θ 	 (nbr e) ⇓ φ (θ1)

[E-THEN] δ ;π1(Θ) 	 e ⇓ θ1 ρ(θ1) = true δ ;πtrue,0Θ 	 e′ ⇓ θ2 �= ρ(θ2)

δ ;Θ 	 (if e e′ e′′) ⇓ �(θ1,θ2)

[E-ELSE] δ ;π1(Θ) 	 e ⇓ θ1 ρ(θ1) = false δ ;πfalse,0Θ 	 e′′ ⇓ θ2 �= ρ(θ2)

δ ;Θ 	 (if e e′ e′′) ⇓ �(θ1,θ2)

Fig. 3. Big-step operational semantics for expression evaluation

value of the most recent evaluation of e on δ )—this is needed to support the stateful
semantics of the rep construct.

The operational semantics rules are based on rather standard rules for functional
languages, extended so as to be able to evaluate a subexpression e′ of e with respect to
the value-tree environment Θ ′ obtained from Θ by extracting the corresponding subtree
(when present) in the value-trees in the range of Θ . This process, called alignment, is
modelled by the auxiliary function π , defined in Fig. 3 (middle). The function π has
two different behaviours (specified by its subscript or superscript): πi(θ ) extracts the
i-th subtree of θ , if it is present; and π�,n(θ ) extracts the (n+ 2)-th subtree of θ , if it is
present and the root of the (n+ 1)-th subtree of θ is equal to the local value �.
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Rules [E-LOC] and [E-FLD] model the evaluation of expressions that are either a lo-
cal value or a field value, respectively. For instance, evaluating the expression 1 pro-
duces (by rule [E-LOC]) the value-tree 1(), while evaluating the expression + produces
the value-tree +(). Note that, in order to ensure that domain restriction is obeyed (cf.
Section 2), rule [E-FLD] restricts the domain of the value field φ to the domain of Θ
augmented by δ .

Rule [E-B-APP] models the application of built-in functions. It is used to evaluate
expressions of the form (en+1e1 · · ·en) such that the evaluation of en+1 produces a
value-tree θn+1 whose root ρ(θn+1) is a built-in function o. It produces the value-tree
v(θ1, . . . ,θn,θn+1), where θ1, . . . ,θn are the value-trees produced by the evaluation of
the actual parameters e1, . . . ,en (n ≥ 0) and v is the value returned by the function.
Rule [E-B-APP] exploits the special auxiliary function ε , whose actual definition is ab-
stracted away. This is such that εo

δ ;Θ (v) computes the result of applying built-in func-
tion o to values v in the current environment of the device δ . In particular, we assume
that the built-in 0-ary function uid gets evaluated to the current device identifier (i.e.,
εuid

δ ;Θ () = δ ), and that mathematical operators have their standard meaning, which is
independent from δ and Θ (e.g., ε+δ ;Θ (1,2) = 3). The ε function also encapsulates mea-
surement variables such as nbr-range and interactions with the external world via sen-
sors and actuators. In order to ensure that domain restriction is obeyed, for each built-in
function o we assume that: εo

δ ;Θ (v1, · · · ,vn) is defined only if all the field values in
v1, . . . ,vn have domain dom(Θ)∪{δ}; and if εo

δ ;Θ (v1, · · · ,vn) returns a field value φ ,
then dom(φ) = dom(Θ)∪ {δ}. For instance, evaluating the expression (+ 1 2) pro-
duces the value-tree 3(1(),2(),+()). The value of the whole expression, 3, has been
computed by using rule [E-B-APP] to evaluate the application of the sum operator + (the
root of the third subtree of the value-tree) to the values 1 (the root of the first subtree of
the value-tree) and 2 (the root of the second subtree of the value-tree). In the following,
for sake of readability, we sometimes write the value v as short for the value-tree v().
Following this convention, the value-tree 3(1(),2(),+()) is shortened to 3(1,2,+).

Rule [E-D-APP] models the application of user-defined or anonymous functions, i.e.,
it is used to evaluate expressions of the form (en+1 e1 · · ·en) such that the evaluation
of en+1 produces a value-tree θn+1 whose root � = ρ(θn+1) is a user-defined function
name or an anonymous function. It is similar to rule [E-B-APP], however it produces a
value-tree which has one more subtree, θn+2, which is produced by evaluating the body
of the function � with respect to the value-tree environment π�,n(Θ) containing only the
value-trees associated to the evaluation of the body of the same function �.

To illustrate rule [E-REP] (rep construct), as well as computational rounds, we consider
program (rep x 0 (+ x 1)) (cf. Section 2). The first firing of a device δ after ac-
tivation or reset is performed againstthe empty tree environment. Therefore, according
to rule [E-REP], to evaluate (rep x 0 (+ x 1)) means to evaluate the subexpression
(+ 0 1), obtained from (+ x 1) by replacing x with 0. This produces the value-tree
θ1 = 1(1(0,1,+)), where root 1 is the overall result as usual, while its sub-tree is the
result of evaluating the third argument. Any subsequent firing of the device δ is per-
formed with respect to a tree environment Θ that associates to δ the outcome of the
most recent firing of δ . Therefore, evaluating (rep x 0 (+ x 1)) at the second fir-
ing means to evaluate the subexpression (+ 1 1), obtained from (+ x 1) by replacing
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x with 1, which is the root of θ1. Hence the results of computation are 1, 2, 3, and so
on.

Value-trees also support modelling information exchange through the nbr construct,
as of rule [E-NBR]. Consider the program e′ = (min-hood (nbr (sns-num))), where the
1-ary built-in function min-hood returns the lower limit of values in the range of its
field argument, and the 0-ary built-in function sns-num returns the numeric value
measured by a sensor. Suppose that the program runs on a network of three fully
connected devices δA, δB, and δC where sns-num returns 1 on δA, 2 on δB, and 3

on δC. Considering an initial empty tree-environment /0 on all devices, we have the
following: the evaluation of (sns-num) on δA yields 1(sns-num) (by rules [E-LOC]

and [E-B-APP], since εsns-num
δA ; /0 () = 1); the evaluation of (nbr (sns-num)) on δA yields

(δA �→ 1)(1(sns-num)) (by rule [E-NBR]); and the evaluation of e′ on δA yields

θA = 1((δA �→ 1)(1(sns-num)),min-hood)

(by rule [E-B-APP], since εmin-hood
δA; /0 ((δA �→ 1)) = 1). Therefore, after its first firing, de-

vice δA produces the value-tree θA. Similarly, after their first firing, devices δB and δC

produce the value-trees

θB = 2((δB �→ 2)(2(sns-num)),min-hood)
θC = 3((δC �→ 3)(3(sns-num)),min-hood)

respectively. Suppose that device δB is the first device that fires a second time. Then
the evaluation of e′ on δB is now performed with respect to the value tree envi-
ronment ΘB = (δA �→ θA, δB �→ θB, δC �→ θC) and the evaluation of its subexpressions
(nbr(sns-num)) and (sns-num) is performed, respectively, with respect to the follow-
ing value-tree environments obtained from ΘB by alignment:

Θ ′
B = π1(ΘB) = (δA �→ (δA �→ 1)(1(sns-num)), δB �→ · · · , δC �→ · · ·)

Θ ′′
B = π1(Θ ′

B) = (δA �→ 1(sns-num), δB �→ 2(sns-num), δC �→ 3(sns-num))

We have that εsns-num
δB ;Θ ′′

B
() = 2; the evaluation of (nbr (sns-num)) on δB with re-

spect to Θ ′
B yields φ (2(sns-num)) where φ = (δA �→ 1,δB �→ 2,δC �→ 3); and

εmin-hood
δB;ΘB

(φ) = 1. Therefore the evaluation of e′ on δB produces the value-tree
1(φ (2(sns-num)),min-hood). Namely, the computation at device δB after the first
round yields 1, which is the minimum of sns-num across neighbours—and similarly
for δA and δC.

We now present an example illustrating first-class functions. Consider the program
((pick-hood (nbr (sns-fun)))), where the 1-ary built-in function pick-hood returns
at random a value in the range of its field argument, and the 0-ary built-in function
sns-fun returns a 0-ary function returning a value of type num. Suppose that the pro-
gram runs again on a network of three fully connected devices δA, δB, and δC where
sns-fun returns �0 = (fun () 0) on δA and δB, and returns �1 = (fun ()e′) on δC,
where e′ = (min-hood (nbr (sns-num))) is the program illustrated in the previous ex-
ample. Assume that sns-num returns 1 on δA, 2 on δB, and 3 on δC. Then after its first
firing, device δA produces the value-tree

θ ′
A = 0(�0 ((δA �→ �0)(�0 (sns-fun)),pick-hood),0)
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where the root of the first subtree of θ ′
A is the anonymous function �0 (defined above),

and the second subtree of θ ′
A, 0, has been produced by the evaluation of the body 0 of

�0. After their first firing, devices δB and δC produce the value-trees

θ ′
B = 0(�0 ((δB �→ �0)(�0 (sns-fun)),pick-hood),0)

θ ′
C = 3(�1 ((δC �→ �1)(�1 (sns-fun)),pick-hood),θC)

respectively, where θC is the value-tree for e given in the previous example.
Suppose that device δA is the first device that fires a second time. The computation is

performed with respect to the value tree environment Θ ′
A = (δA �→ θ ′

A, δB �→ θ ′
B, δC �→

θ ′
C) and produces the value-tree 1(�1 (φ ′ (�1 (sns-fun)),pick-hood),θ ′′

A ), where

φ ′ = (δA �→ �1,δC �→ �1) and θ ′′
A = 1((δA �→ 1,δC �→ 3)(1(sns-num)),min-hood),

since, according to rule [E-D-APP], the evaluation of the body e′ of �1 (which produces
the value-tree θ ′′

A ) is performed with respect to the value-tree environment π�1,0(Θ ′
A) =

(δC �→ θC). Namely, device δA executed the anonymous function �1 received from δC,
and this was able to correctly align with execution of �1 at δC, gathering values per-
ceived by sns-num of 1 at δA and 3 at δC.

Static Semantics (Type-Inference System). We have developed a variant of the
Hindley-Milner type system [9] for the HFC calculus.This type system has two kinds of
types, local types (the types for local values) and field types (the types for field values),
and is aimed to guarantee the following two properties:

Type Preservation. If a well-typed expression e has type T and e evaluates to a value
tree θ , then ρ(θ ) also has type T.

Domain Alignment. The domain of every field value arising during the evaluation of
a well-typed expression on a device δ consists of δ and of the aligned neighbours.

Alignment is key to guarantee that the semantics correctly relates the behaviour of if,
nbr, rep and function application—namely, two fields with different domain are never
allowed to be combined. Besides performing standard checks (i.e., in a function appli-
cation expression (en+1 e1 · · ·en) the arguments e1, . . .en have the expected type; in an
if-expression (ife0 e1 e2) the condition e0 has type bool and the branches e1 and e2

have the same type; etc.) the type system perform additional checks in order to ensure
domain alignment. In particular, the type rules check that:

– In an anonymous function (fun(x)e) the free variables y of e that are not in x have
local type. This prevents a device δ from creating a closure e′ =(fun (x) e)[y := φ ]
containing field values φ (whose domain is by construction equal to the subset of
the aligned neighbours of δ ). The closure e′ may lead to a domain alignment error
since it may be shifted (via the nbr construct) to another device δ ′ that may use it
(i.e., apply e′ to some arguments); and the evaluation of the body of e′ may involve
use of a field value φ in φ such that the set of aligned neighbours of δ ′ is different
from the domain of φ .

– In a rep-expression (rep x w e) it holds that x, w and e have (the same) local type.
This prevents a device δ from storing in x a field value φ that may be reused in the
next computation round of δ , when the set of the set of aligned neighbours may be
different from the domain of φ .
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– In a nbr-expression (nbre) the expression e has local type. This prevents the at-
tempt to create a “field of fields” (i.e., a field that maps device identifiers to field
values)—which is pragmatically often overly costly to maintain and communicate.

– In an if-expression (ife0 e1 e2) the branches e1 and e2 have (the same) local type.
This prevents the if-expression from evaluating to a field value whose domain is
different from the subset of the aligned neighbours of δ .

4 A Pervasive Computing Example

We now illustrate the application of first-class functions using a pervasive computing
example. In this scenario, people wandering a large environment (like an outdoor fes-
tival, an airport, or a museum) each carry a personal device with short-range point-
to-point ad-hoc capabilities (e.g. a smartphone sending messages to others nearby via
Bluetooth or Wi-Fi). All devices run a minimal “virtual machine” that allows runtime
injection of new programs: any device can initiate a new distributed process (in the form
of a 0-ary anonymous function), which the virtual machine spreads to all other devices
within a specified range (e.g., 30 meters). For example, a person might inject a process
that estimates crowd density by counting the number of nearby devices or a process
that helps people to rendezvous with their friends, with such processes likely imple-
mented via various self-organisation mechanisms. The virtual machine then executes
these using the first-class function semantics above, providing predictable deployment
and execution of an open class of runtime-determined processes.

Virtual Machine Implementation. The complete code for our example is listed in
Figure 4, with syntax coloring to increase readability: grey for comments, red for
field calculus keywords, blue for user-defined functions, and green for built-in op-
erators. In this code, we use the following naming conventions for built-ins: func-
tions sns-* embed sensors that return a value perceived from the environment (e.g.,
sns-injection-point returns a Boolean indicating whether a device’s user wants
to inject a function); functions *-hood yield a local value � obtained by aggregating
over the field value φ in input (e.g., sum-hood sums all values in each neighbourhood);
functions *-hood+ behave the same but exclude the value associated with the current
device; and built-in functions pair, fst, and snd respectively create a pair of locals
and access a pair’s first and second component. Additionally, given a built-in o that
takes n ≥ 1 locals an returns a local, the built-ins o[*,...,*] are variants of o where
one or more inputs are fields (as indicated in the bracket, l for local or f for field), and
the return value is a field, obtained by applying operator o in a point-wise manner. For
instance, as = compares two locals returning a Boolean, =[f,f] is the operator taking
two field inputs and returns a Boolean field where each element is the comparison of
the corresponding elements in the inputs, and similarly =[f,l] takes a field and a local
and returns a Boolean field where each element is the comparison of the corresponding
element of the field in input with the local.

The first two functions in Figure 4 implement frequently used self-organisation
mechanisms. Function distance-to, also known as gradient [8,14], computes a field
of minimal distances from each device to the nearest “source” device (those mapping to
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;; Computes a field of minimum distance from ’source’ devices
(def distance-to (source) ;; has type: (bool) → num

(rep d infinity (mux source 0 (min-hood+ (+[f,f] (nbr d) (nbr-range))))))

;; Computes a field of pairs of distance to nearest ’source’ device, and the most recent value of ’v’ there
(def gradcast (source v) ;; has type: ∀ β . (bool, β ) → β

(snd ((fun (x)
(rep t x (mux source (pair 0 v)

(min-hood+
(pair[f,f] (+[f,f] (nbr-range) (nbr (fst t)))

(nbr (snd t)))))))
(pair infinity v)))

;; Evaluate a function field, running ’f’ from ’source’ within ’range’ meters, and ’no-op’ elsewhere
(def deploy (range source g no-op) ;; has type: ∀ β . (num, bool, ()→ β , ()→ β ) → β

((if (< (distance-to source) range) (gradcast source g) no-op)))

;; The entry-point function executed to run the virtual machine on each device
(def virtual-machine () ;; has type: () → num

(deploy (sns-range) (sns-injection-point) (sns-injected-fun) (fun () 0)))

;; Sums values of ’summand’ into a minimum of ’potential’, by descent
(def converge-sum (potential summand) ;; has type: (num, num) → num

(rep v summand (+ summand
(sum-hood+ (mux[f,f,l] (=[f,l] (nbr (parent potential)) (uid))

(nbr v) 0)))))

;; Maps each device to the uid of the neighbour with minimum value of ’potential’
(def parent (potential) ;; has type: (num) → num

(snd (min-hood (pair[l,f] potential
(mux[f,f,l] (<[f,l] (nbr potential) potential)

(nbr (uid)) NaN)))))

;; Simple low-pass filter for smoothing noisy signal ’value’ with rate constant ’alpha’
(def low-pass (alpha value) ;; has type: (num, num) → num

(rep filtered value (+ (* value alpha) (* filtered (- 1 alpha)))))

Fig. 4. Virtual machine code (top) and application-specific code (bottom)

true in the Boolean input field). This is computed by repeated application of the triangle
inequality (via rep): at every round, source devices take distance zero, while all others
update their distance estimates d to the minimum distance estimate through their neigh-
bours (min-hood+ of each neighbour’s distance estimate (nbr d) plus the distance to
that neighbour nbr-range); source and non-source are discriminated by mux, a built-
in “multiplexer” that operates like an if but differently from it always evaluates both
branches on every device. Repeated application of this update procedure self-stabilises
into the desired field of distances, regardless of any transient perturbations or faults [13].
The second self-organisation mechanism, gradcast, is a directed broadcast, achieved
by a computation identical to that of distance-to, except that the values are pairs
(note that pair[f,f] produces a field of pairs, not a pair of fields), with the second
element set to the value of v at the source: min-hood operates on pairs by applying
lexicographic ordering, so the second value of the pair is automatically carried along
shortest paths from the source. The result is a field of pairs of distance and most recent
value of v at the nearest source, of which only the value is returned.
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The latter two functions in Figure 4 use these self-organisation methods to implement
our simple virtual machine. Code mobility is implemented by function deploy, which
spreads a 0-ary function g via gradcast, keeping it bounded within distance range

from sources, and holding 0-ary function no-op elsewhere. The corresponding field of
functions is then executed (note the double parenthesis). The virtual-machine then
simply calls deploy, linking its arguments to sensors configuring deployment range
and detecting who wants to inject which functions (and using (fun () 0) as no-op

function).
In essence, this virtual machine implements a code-injection model much like those

used in a number of other pervasive computing approaches (e.g., [15,11,6])—though
of course it has much more limited features, since it is only an illustrative example.
With these previous approaches, however, code shares lexical scope and cannot have
its network domain externally controlled. Thus, injected code may spread through the
network unpredictably and may interact unpredictably with other injected code that it
encounters. The extended field calculus semantics that we have presented, however,
ensures that injected code moves only within the range specified to the virtual machine
and remains lexically isolated from different injected code, so that no variable can be
unexpectedly affected by interactions with neighbours.

Simulated Example Application. We further illustrate the application of first-class
functions with an example in a simulated scenario. Consider a museum, whose docents
monitor their efficacy in part by tracking the number of patrons nearby while they are
working. To monitor the number of nearby patrons, each docent’s device injects the
following anonymous function (of type: ()→ num):

(fun () (low-pass 0.5 (converge-sum (distance-to (sns-injection-point))
(sns-patron))))

This counts patrons using the function converge-sum defined in Figure 4(bottom), a
simple version of another standard self-organisation mechanism [4] which operates like
an inverse broadcast, summing the values sensed by sns-patron (1 for a patron, 0 for
a docent) down the distance gradient back to its source—in this case the docent at the
injection point. In particular, each device’s local value is summed with those identifying
it as their parent (their closest neighbour to the source, breaking ties with device unique
identifiers from built-in function uid), resulting in a relatively balanced spanning tree
of summations with the source at its root. This very simple version of summation is
somewhat noisy on a moving network of devices, so its output is passed through a
simple low-pass filter, the function low-pass, also defined in Figure 4(bottom), in order
to smooth its output and improve the quality of estimate.

Figure 5a shows a simulation of a docent and 250 patrons in a large 100x30 meter
museum gallery. Of the patrons, 100 are a large group of school-children moving to-
gether past the stationary docent from one side of the gallery to the other, while the
rest are wandering randomly. In this simulation, people move at an average 1 m/s, the
docent and all patrons carry personal devices running the virtual machine, executing
asynchronously at 10Hz, and communicating via low-power Bluetooth to a range of 10
meters. The simulation was implemented using the ALCHEMIST [18] simulation frame-
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(a) Simulation snapshots
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(b) Estimated vs. True Count

Fig. 5. (a) Two snapshots of museum simulation: patrons (grey) are counted (black) within 25
meters of the docent (green). (b) Estimated number of nearby patrons (grey) vs. actual number
(black) in the simulation.

work and the Protelis [17] incarnation of field calculus, updated to the extended version
of the calculus presented in this paper.

In this simulation, at time 10 seconds, the docent injects the patron-counting func-
tion with a range of 25 meters, and at time 70 seconds removes it. Figure 5a shows two
snapshots of the simulation, at times 11 (top) and 35 (bottom) seconds, while Figure 5b
compares the estimated value returned by the injected process with the true value. Note
that upon injection, the process rapidly disseminates and begins producing good esti-
mates of the number of nearby patrons, then cleanly terminates upon removal.

5 Conclusion, Related and Future Work

Conceiving emerging distributed systems in terms of computations involving aggre-
gates of devices, and hence adopting higher-level abstractions for system development,
is a thread that has recently received a good deal of attention. A wide range of aggre-
gate programming approaches have been proposed, including Proto [2], TOTA [15],
the (bio)chemical tuple-space model [19], Regiment [16], the στ-Linda model [22],
Paintable Computing [6], and many others included in the extensive survey of aggre-
gate programming languages given in [3]. Those that best support self-organisation ap-
proaches to robust and environment-independent computations have generally lacked
well-engineered mechanisms to support openness and code mobility (injection, update,
etc.). Our contribution has been to develop a core calculus, building on the work pre-
sented in [21], that smoothly combines for the first time self-organisation and code
mobility, by means of the abstraction of “distributed function field”. This combination
of first-class functions with the domain-restriction mechanisms of field calculus allows
the predictable and safe composition of distributed self-organisation mechanisms at
runtime, thereby enabling robust operation of open pervasive systems. Furthermore, the
simplicity of the calculus enables it to easily serve as both an analytical framework and
a programming framework, and we have already incorporated this into Protelis [17],
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thereby allowing these mechanisms to be deployed both in simulation and in actual
distributed systems.

Future plans include consolidation of this work, by extending the calculus and its
conceptual framework, to support an analytical methodology and a practical toolchain
for system development, as outlined in [4]. First, we aim to apply our approach to sup-
port various application needs for dynamic management of distributed processes [1],
which may also impact the methods of alignment for anonymous functions. Second,
we plan to isolate fragments of the calculus that satisfy behavioural properties such as
self-stabilisation, quasi-stabilisation to a dynamically evolving field, or density inde-
pendence, following the approach of [20]. Finally, these foundations can be applied in
developing APIs enabling the simple construction of complex distributed applications,
building on the work in [4] to define a layered library of self-organisation patterns, and
applying these APIs to support a wide range of practical distributed applications.
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Abstract. This paper studies timely dataflow, a model for data-parallel
computing in which each communication event is associated with a vir-
tual time. It defines and investigates the could-result-in relation which
is central to this model, then the semantics of timely dataflow graphs.

1 Introduction

Timely dataflow is a model of data-parallel computation that extends tradi-
tional dataflow (e.g., [10]) by associating each communication event with a vir-
tual time [12]. Virtual times need not be linearly ordered, nor correspond to
the order in which events are processed. As in the Time Warp mechanism [7],
virtual times serve to differentiate between data in different phases or aspects
of a computation, for example data associated with different batches of inputs
and different loop iterations. Thus, an implementation may overlap, but still
distinguish, work that corresponds to multiple logical parts of a computation.

In this model, each node in a dataflow graph can request to be notified when it
has received all messages for a given virtual time. The facilities for asynchronous
processing and completion notifications imply that, even within a single program,
some components can function in batch mode (queuing inputs and delaying pro-
cessing until an appropriate notification) and others in streaming mode (pro-
cessing inputs as they arrive). For example, an application may process a stream
of GPS readings; as these readings arrive, the application may update a map
and, after each batch of readings, recompute shortest paths between landmarks.

The Naiad system [12] is the origin and an embodiment of timely dataflow.
Naiad aspires to serve as a coherent platform for data-parallel applications, of-
fering both high throughput and low latency. Timely dataflow is crucial to this
goal. Naiad contrasts with other systems that focus on narrower domains (e.g.,
graph problems) or on particular classes of programs (e.g., without loops).

The development and presentation of timely dataflow in the context of Naiad
was fairly precise but informal. Only one of its critical components (a distributed
algorithm that keeps track of virtual times for which there may remain work)
was rigorously specified and verified [4]. Moreover, in the context of Naiad, def-
initions focus on particular structures of dataflow graphs and particular types
of nodes. Specifically, Naiad supports iterative computations, with loops that
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include special nodes for ingress, feedback, and egress, and with a set of virtual
times that includes coordinates for input epochs and loop counters.

The goal of this paper is to provide a general, rigorous definition of timely
dataflow. We allow arbitrary graph structures, partial orders of virtual times,
and stateful local computations at each of the nodes. The local computations
are deterministic (only for simplicity); non-determinism is introduced by the
ordering of events. We specify the semantics of timely dataflow graphs using a
linear-time temporal logic. In this setting, we explore some of the fundamental
concepts and properties of the model. In particular, we study the could-result-in
relation, which drives completion notifications; for instance, we investigate how
it applies to recursive dataflow computations, which are beyond Naiad’s present
scope. The semantics serves as the basis for rigorous proofs, as we demonstrate
with an example application. We are finding the semantics valuable in other,
more substantial applications. Specifically, the results of this paper have already
been useful to us in our work on information-flow security properties [1] and on
fault-tolerance [2]. Our rather elementary formulation of the semantics amply
suffices for these present purposes; we leave algebraic or categorical presentations
(see, e.g., [6]) for further work.

The next section defines dataflow graphs and other basic notions. Section 3
concerns the could-result-in relation. Section 4 describes the semantics of graphs,
and Section 5 applies it. Section 6 concludes. Because of space constraints, proofs
are omitted.

2 Dataflow Graphs, Messages, and Times

As is typical in dataflow models, we specify computations as directed graphs,
with distinguished input and output edges. The graphs may contain cycles. Dur-
ing execution, stateful nodes send and receive timestamped messages, and in ad-
dition may request and receive notifications that they have received all messages
with a certain timestamp. This section defines the graphs and the behavior of
individual nodes; later sections cover more global aspects of the semantics.

We write ∅ both for the empty sequence and for the empty set. We write
〈〈m0,m1, . . .〉〉 for the sequence (finite or infinite) that consists ofm0, m1, . . . . We
use “·” for sequence concatenation and also for appending elements to sequences,
for example writing m·u instead of 〈〈m〉〉·u, where u is a sequence and m an
element. A mapping f on elements is extended to a mapping on sequences by
letting f(〈〈m0,m1,m2, . . .〉〉) = 〈〈f(m0), f(m1), . . .〉〉, and to a mapping on sets by
letting f(S) = {f(s) : s ∈ S}. When A is a set, we write P(A) for its powerset,
and A∗ and Aω , respectively, for the sets of finite and infinite sequences of
elements of A. When f is a function with a domain that includes A, we write
f�A for the restriction of f to A. When B is also a set, we write Πx∈A.B
for the set of functions that map each x ∈ A to an element of B; if A is a
finite set {a1, . . . , ak} and b1, . . . , bk are elements of B, we write such a function
〈a1 �→ b1, . . . , ak �→ bk〉.
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2.1 Basics of Graphs, Messages, and Times

We assume a set of messages M , a partial order of times (T,≤), and a time
time(m) ∈ T for each m ∈ M . We also assume a finite set of nodes (proces-
sors) P , and a set of local states ΣLoc for them. Finally, we assume a set of
edges (channels), partitioned into input edges I, internal edges E, and output
edges O. Edges have sources and destinations (not always both): for each i ∈ I,
dst(i) ∈ P , and src(i) is undefined; for each e ∈ E, src(e), dst(e) ∈ P , and we
require that they are distinct; for each o ∈ O, src(o) ∈ P , and dst(o) is undefined.

Input edges are not essential for computations getting started, because nodes
can initially create data in response to notifications. We include input edges as
a convenience, and because they can serve for connecting graphs.

We allow (but do not require) the set of times to be the disjoint union of mul-
tiple “time domains”. For example, a node may receive inputs tagged with GMT
times, and produce outputs tagged with GMT times, PST times, or perhaps with
sequence numbers, and may even send outputs in different time domains along
different edges. In Naiad, the nodes for loop ingress and egress, respectively, add
and remove time coordinates that represent loop counters. Accordingly, we do
not assume, for example, that it is always immediately meaningful to compare
the times of inputs and outputs.

2.2 Processor Behavior

Timely dataflow supports stateful computations in which each node maintains
local state. For each node p, a subset Initial (p) of ΣLoc × P(T ) describes the
possible initial states and initial notification requests for p. A local history for
p is a finite sequence of the form 〈〈(s,N), x1, . . . , xn〉〉 where (s,N) ∈ Initial(p),
n ≥ 0, and each xi is either a pair (d,m) where m ∈ M and d ∈ I ∪ E with
dst(d) = p, or a time t ∈ T . In this context, we call a pair (d,m) or a time
t an event . Thus, a local history records the order in which a node consumes
events; it also determines what the node does in response to these events, via the
function g1 introduced below. We write Histories(p) for the set of local histories
of node p.

For each node p, the function g1(p) maps ΣLoc × (T ∪ ({d ∈ I ∪ E | dst(d) =
p}×M)) to ΣLoc×P(T )× (Π{d∈E∪O|src(d)=p}.M∗). Intuitively g1 describes one
step of computation by one node:

– g1(p)(s, t) = (s′, {t1, . . . , tn}, 〈e1 �→μ1, . . . , ek �→μk〉) means that, in response
to a notification for time t and at a state s, the node p can move to state s′, re-
quest notifications for times t1, . . . , tn, and add message sequences μ1, . . . , μk

on outgoing edges e1, . . . , ek, respectively.

– g1(p)(s, (d,m)) = (s′, {t1, . . . , tn}, 〈e1 �→μ1, . . . , ek �→μk〉) means that, in re-
sponse to a message m on incoming edge d and at a state s, the node p can
move to state s′, request notifications for times t1, . . . , tn, and add message
sequences μ1, . . . , μk on outgoing edges e1, . . . , ek, respectively.
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We could easily restrict these definitions so that a message for time t cannot
appear in a history to the right of a notification for time t, and so that notifica-
tions appear only in response to notification requests. However, such restrictions
do not seem necessary; each node can enforce them.

We extend the function g1 to a function g that applies to local histories. For
each node p, g(p) maps Histories(p) to ΣLoc ×P(T )× (Π{d∈E∪O|src(d)=p}.M∗),
and is defined inductively by:

– g(p)(〈〈(s,N)〉〉) = (s,N, 〈e1 �→∅, . . . , ek �→∅〉)
– If g(p)(h) = (s′, N, 〈e1 �→μ1, . . . , ek �→μk〉), h′ = h·t, and g1(p)(s

′, t) = (s”,
N ′, 〈e1 �→μ′

1, . . . , ek �→μ′
k〉), then

g(p)(h′) = (s”, N − {t} ∪N ′, 〈e1 �→μ1·μ′
1, . . . , ek �→μk·μ′

k〉)
– If g(p)(h) = (s′, N, 〈e1 �→μ1, . . . , ek �→μk〉), h′ = h·(d,m), and g1(p)(s

′, (d,m))
= (s”, N ′, 〈e1 �→μ′

1, . . . , ek �→μ′
k〉), then

g(p)(h′) = (s”, N ∪N ′, 〈e1 �→μ1·μ′
1, . . . , ek �→μk·μ′

k〉)
Given a triple (s,N, 〈e1 �→μ1, . . . , ek �→μk〉), perhaps obtained via one of these

functions, we write: ΠLoc(s,N, 〈e1 �→μ1, . . . , ek �→μk〉) for s, ΠNR(s,N, 〈e1 �→μ1,
. . . , ek �→μk〉) for N , and Πei(s,N, 〈e1 �→μ1, . . . , ek �→μk〉) for μi.

In this model, each node can consume and produce multiple events in one
atomic action. For example, a node may simultaneously dequeue an input mes-
sage and produce two output messages on each of two distinct edges. Alter-
native models could be more asynchronous; in our example, the node would
first dequeue the input message, and after some delay produce the two out-
put messages one after the other. Fortunately, such an asynchronous model
can be seen as a special case of ours: in our model, asynchronous behavior
can be produced by buffering (see, e.g., [14]). We say that p ∈ P is a buffer
node if there exist exactly one e1 ∈ I ∪ E such that dst(e1) = p and exactly
one e2 ∈ E ∪ O such that src(e2) = p, and g1(p)(s, t) = (s, ∅, 〈e2 �→∅〉) and
g1(p)(s, (e1,m)) = (s, ∅, 〈e2 �→〈〈m〉〉〉). Such a node p is simply a relay between
queues. (The term “buffer” comes from the literature.) In order to simulate a
more asynchronous semantics, we could require that every non-buffer node has
its output edges going into buffer nodes. However, we do not need to impose this
constraint.

3 Pointstamps and the Could-result-in Relation

As indicated in the Introduction, each node can request to be notified when it has
received all messages for a given virtual time. Furthermore, “under the covers”,
an implementation may benefit from knowing that a virtual time is complete in
order to reclaim associated resources. Thus, the notion of completion of virtual
times is central to timely dataflow and to its practical realization. Reasoning
about completion is based on the could-result-in relation on pointstamps. In this
section we define this relation and establish some of its properties.



Timely Dataflow: A Model 135

3.1 Defining Could-result-in

A pointstamp is a pair (x, t) of a location x (node or edge) in a graph and a
time t. Thus, the set of pointstamps is ((I ∪ E ∪ O) ∪ P ) × T . We say that
pointstamp (x, t) could-result-in pointstamp (x′, t′), and write (x, t)� (x′, t′),
if a message or notification at location x and time t may lead to a message or
notification at location x′ and time t′. We define � via an auxiliary relation
�1 that reflects one step of computation.

Definition 1. (p, t)�1 (d, t′) if and only if src(d) = p and there exist a history
h for p and a state s such that

g(p)(h) = (s, . . .)

and an event x such that either x = t or x = (e,m) for some e and m such that
t = time(m), and

g1(p)(s, x) = (. . . , 〈. . . d�→μ . . .〉)
where some element of μ has time t′.

Definition 2. (x, t)� (x′, t′) if and only if

– x = x′ and t ≤ t′, or
– there exist k > 1, distinct xi for i = 1 . . . k, and (not necessarily distinct) ti

for i = 1 . . . k, such that x = x1, x
′ = xk, t ≤ t1, and tk ≤ t′, and for all

i = 1 . . . k − 1:
• xi ∈ I ∪ E, xi+1 ∈ P , dst(xi) = xi+1, and ti = ti+1, or
• xi ∈ P , xi+1 ∈ E ∪ O, src(xi+1) = xi, and there exist t′i ≥ ti and
t′′i ≤ ti+1 such that (xi, t

′
i)�1 (xi+1, t

′′
i ).

In the first case, we say that the proof of (x, t)� (x′, t′) has length 1; in the
second, that it has length k. (These lengths are helpful in inductive arguments.
Different proofs of (x, t)� (x′, t′) may in general have different lengths.)

This definition captures the semantics of an arbitrary node p, via the functions
g1 and g. The function g is applied to a local history to generate a state s, then
g1 is applied at s. Thus, the definition restricts attention to states s that can
arise in some execution with p. However, we do not attempt to guarantee that
this execution is one of those that can occur in the context of the other nodes in
the graph of interest, in order to avoid a circularity: this latter set of executions
is itself defined in terms of the relation � (in Section 4.2).

An implementation, such as Naiad’s, may soundly use simple, conservative ap-
proximations to the relation � as we define it here. In Naiad, for most nodes p,
it is assumed that (p, t)�1 (e, t) for all t and each outgoing edge e; certain nodes
(loop ingress, feedback, and egress) receive special treatment.

The definition implies that � is reflexive. The following proposition asserts
a few of the additional properties of � that we have found useful.
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Proposition 1.

1. If (p, t1)� (e, t2) then there are e′ ∈ E ∪O and t′ ∈ T such that src(e′) = p,
(p, t1)� (e′, t′) and (e′, t′)� (e, t2), with the proof of (e′, t′)� (e, t2) strictly
shorter than that of (p, t1)� (e, t2).

2. If (x, t1)� (x, t2) then t1 ≤ t2.
3. If (x1, t1)� (x2, t2), t

′
1 ≤ t1, and t2 ≤ t′2, then (x1, t

′
1)� (x2, t

′
2).

The definition is designed to be convenient in proofs and to reflect important
aspects of implementations (and of Naiad’s specifically). In particular, the dis-
tinctness requirement (“there exist k > 1, distinct xi for i = 1 . . . k”) means that
proofs and implementations do not need to chase around cycles.

On the other hand, because of the distinctness requirement, the definition
does not immediately yield that � is transitive, as one might expect, and as
one might often want in proofs. More broadly, the definition of � may not corre-
spond to the intuitive understanding of could-result-in without some additional
assumptions, which we address next.

3.2 On Sending Notification Requests and Messages into the Past

In timely dataflow, and in Naiad in particular, it is generally expected that
events do not give rise to other events at earlier times. When those other events
are notification requests, the required condition is easy to state. When they
are messages, it is not, because we do not wish to compare times across time
domains. In this section we formulate and study these two conditions.

The first considers the generation of notification requests, which the definition
of � ignores. We formulate it via an additional relation �N , a local variant of
the could-result-in relation that focuses on the generation of notification requests.
(This relation is not intended to be reflexive or transitive.)

Definition 3. (p, t)�N (p, t′) if and only if there exist a history h for p and a
state s such that

g(p)(h) = (s,N1, . . .)

and an event x such that either x = t′′ for some t′′ such that t ≤ t′′, or x = (e,m)
for some e and m such that t ≤ time(m), and

g1(p)(s, x) = (. . . , N, . . .)

where some element of N −N1 is ≤ t′.

Using this relation, we can express that an event at time t can trigger notifi-
cation requests only at greater times t′:

Condition 1. If (p, t)�N (p, t′) then t ≤ t′.

The question of the transitivity of � is closely related to the expectation
that nodes should not be allowed to send messages into the past. Indeed, a suf-
ficient condition for transitivity is that, for all pointstamps (x, t) and (x′, t′),
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if (x, t)� (x′, t′) then t ≤ t′ (as implied by Theorem 1, below). However, the
converse does not hold, for trivial reasons. For example, in a graph with a sin-
gle node, the relation � will always be transitive but we may not have that
(x, t)� (x′, t′) implies t ≤ t′. Still, we can compare times at a node and at its in-
coming edges, and fortunately such comparisons suffice, as the following theorem
demonstrates.

Condition 2. For all p ∈ P , e ∈ E with dst(e) = p, and t, t′ ∈ T , if (p, t)�
(e, t′) then t ≤ t′.

Theorem 1. The relation � is transitive if and only if Condition 2 holds.

Conditions 1 and 2 both depend on the semantics of individual nodes; Con-
dition 2 also depends on the topology of the graph. Although we assume them
in some of our results, we do not discuss how they can be enforced. In practice,
Naiad simply assumes analogous properties, but type systems and other static
analyses may well help in checking them.

The following proposition offers another way of thinking about transitivity by
comparing times at different nodes and edges, via an embedding of these times
into an additional partial order (T ′,�). One may view (T ′,�) as a set of times
normalized into a coherent universal time—the “GMT” of timely dataflow. (This
proposition is fairly straightforward, and we do not need it below.)

Proposition 2. The relation � is transitive if and only if there exist a partial
order (T ′,�) and a mapping E from the set of pointstamps ((I ∪E ∪O)∪P )×T
to T ′ such that, for all (x, t) and (x′, t′), (x, t)� (x′, t′) if and only if E(x, t) �
E(x′, t′).

3.3 Closure

We say that a set S of pointstamps is upward closed if and only if, for all
pointstamps (x, t) and (x′, t′), (x, t) ∈ S and (x, t)� (x′, t′) imply (x′, t′) ∈ S.
For any set S of pointstamps, Close↑(S) is the least upward closed set that
contains S. Assuming that � is transitive, the following proposition provides a
simpler formulation for Close↑.

Proposition 3. Assume that Condition 2 holds. Then Close↑(S) = {(x′, t′) |
∃(x, t) ∈ S.(x, t)� (x′, t′)}.

3.4 Recursion

Naiad focuses on iterative computation, and the could-result-in relation for the
nodes that support iteration (loop ingress, feedback, and egress) has been dis-
cussed informally [12]. We could revisit iteration using our definitions. However,
the definitions are much more general. We demonstrate the value of this gener-
ality by outlining how they apply to recursive dataflow computation (e.g., [5]).
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Let us consider a dataflow graph that includes a distinguished input node in

with no incoming edges, a distinguished output node out with no outgoing edges,
some ordinary nodes for operations on data, and other nodes that represent
recursive calls to the entire computation. For simplicity, we let I = O = ∅,
and do not consider multiple mutually recursive graphs and other variants. We
assume that every node is reachable from in, out is reachable from every node,
and there is a path from in to out that does not go through any call nodes. In
order to make the recursion explicit, we modify the dataflow graph by splitting
each call node c into a call part call-c and a return part ret-c, where the
former is the source of a back edge to in and the latter is the destination of a
back edge from out.

A stack ∫ is a finite sequence of call nodes. We let
.� be the least reflexive,

transitive relation on pairs (p, ∫) such that

1. (call-c, ∫) .� (in, ∫ ·c);
2. symmetrically, (out, ∫ ·c) .� (ret-c, ∫); and
3. if p is not call-c and p′ is not ret-c for any c, and there is an edge from

p to p′, then (p, ∫) .� (p′, ∫).
We will have that

.� is a conservative approximation of � .
At each node p, we define a pre-order on stacks: ∫ �p ∫ ′ if and only if

(p, ∫) .� (p, ∫ ′). We write (Tp,≤p) for the partial order induced by �p (so, Tp

identifies ∫ and ∫ ′ when both ∫ �p ∫ ′ and ∫ ′ �p ∫). The partial order is thus
different at each node. The partial order of virtual times (T,≤) is the disjoint
(“tagged”) union of the partial orders (Tp,≤p) for all the nodes. We write [∫ ]p
for the element of T obtained by tagging the equivalence class of ∫ at p.

We assume that each node p uses the appropriate tags for its outgoing mes-
sages and notification requests, and ignores inputs and notifications not tagged
with p, and also that the behavior of p, as reflected in the relation �1 , conforms
to what the relation

.� expresses:

If (p, [∫ ]q)�1 (d, [∫ ′]p′) then q = p, p′ = dst(d), and (p, ∫) .� (p′, ∫ ′).
We obtain:

Proposition 4. If (p, [∫ ]p)� (p′, [∫ ′]p′) then (p, ∫) .� (p′, ∫ ′).
Proposition 5. If (p, [∫ ]q)� (p′, [∫ ′]q′) and p �= p′, then q = p and q′ = p′.

Applying Theorem 1, we also obtain:

Proposition 6. The relation � is transitive.

Furthermore, the relation
.� can be decided quite simply by finding the first

call in which two stacks differ and performing an easy check based on that
difference. This check relies on an alternative modified graph, in which we split
each call node c into a call part call-c and a return part ret-c, but add a direct
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forward edge from the former to the latter (rather than back edges). Suppose
(without loss of generality) that ∫ is of the form ∫1·∫2 and ∫ ′ is of the form ∫1·∫ ′2,
where ∫2 and ∫ ′2 start with c and c’ respectively if they are not empty. We assume
that c and c’ are distinct if ∫2 and ∫ ′2 are both non-empty (so, ∫1 is maximal).
Let l be ret-c if ∫2 is non-empty, and be p if it is empty; let l′ be call-c’ if ∫ ′2
is non-empty, and be p′ if it is empty. Then we can prove that (p, ∫) .� (p′, ∫ ′) if
and only if there is a path from l to l′ in the alternative modified graph.

Special cases (in particular, special graph topologies) may allow further sim-
plifications which could be helpful in implementations.

4 Semantics

We describe the semantics of timely dataflow graphs in a state-based frame-
work [3,11]. In this section, we first review this framework, then specify the
semantics. Finally, we discuss matters of compositionality.

4.1 The Framework (Review)

The sequence 〈〈s0, s1, s2, . . .〉〉 is said to be stutter-free if, for each i, either si �=
si+1 or the sequence is infinite and si = sj for all j ≥ i. We let �σ be the stutter-
free sequence obtained from σ by replacing every maximal finite subsequence
si, si+1, . . . , sj of identical elements with the single element si. A set of sequences
S is closed under stuttering when σ ∈ S if and only if �σ ∈ S.

A state space Σ is a subset of ΣE ×ΣI for some sets ΣE of externally visible
states and ΣI of internal states. If Σ is a state space, then a Σ-behavior is an
element of Σω. A ΣE-behavior is called an externally visible behavior. A Σ-
property P is a set of Σ-behaviors that is closed under stuttering. When Σ is
clear from context or is irrelevant, we may leave it implicit. We sometimes apply
the adjective “complete”, as in “complete behavior”, in order to distinguish
behaviors and properties from externally visible behaviors and properties.

A state machine is a triple (Σ,F,N) where Σ is a state space; F , the set
of initial states, is a subset of Σ; and N , the next-state relation, is a subset of
Σ × Σ. The complete property generated by a state machine (Σ,F,N) consists
of all infinite sequences 〈〈s0, s1, . . .〉〉 such that s0 ∈ F and, for all i ≥ 0, either
〈si, si+1〉 ∈ N or si = si+1. The externally visible property generated by a state
machine is the externally visible property obtained from its complete property
by projection onto ΣE and closure under stuttering. For brevity, we do not
consider fairness conditions or other liveness properties that can be added to
state machines; their treatment is largely orthogonal to our present goals.

Although we are not fully formal in the use of TLA [11], we generally follow
its approach to writing specifications. Specifically, we express state machines by
formulas of the form:

∃y1, . . . , yn. F ∧ [N ]v1,...,vk
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where:

– state functions that we write as variables represent the state;

– we distinguish external variables and internal variables, and the internal
variables (in this case, y1, . . . , yn) are existentially quantified;

– F is a formula that may refer to the variables;

– is the temporal-logic operator “always”;

– N is a formula that may refer to the variables and also to primed versions of
the variables (thus denoting the values of those variables in the next state);

– [N ]v1,...,vk abbreviates N ∨ ((v′1 = v1) ∧ . . . ∧ (v′k = vk)).

4.2 Semantics Specification

In our semantics, the externally visible states map each e ∈ I∪O to a value Q(e)
in M∗. In other words, we observe only the state of input and output edges. The
internally visible states map each e ∈ E to a value Q(e) in M∗, and each p ∈ P
to a local state LocState(p) ∈ ΣLoc and to a set of pending notification requests
NotRequests(p) ∈ P(T ).

An auxiliary state function Clock (whose name comes from Naiad, and is
unrelated to “clocks” elsewhere) tracks pointstamps for which work may remain:

Clock
Δ
= Close↑

⎛

⎝

{(e, time(m)) | e ∈ I ∪E ∪O,m ∈ Q(e)}
∪

{(p, t) | p ∈ P, t ∈ NotRequests(p)}

⎞

⎠

We define an initial condition, the actions that constitute a next-state relation,
and finally the specification.

Initial condition:

InitProp
Δ
=

⎛

⎝

∀e ∈ E ∪O.Q(e) = ∅ ∧ ∀i ∈ I.Q(i) ∈ M∗

∧
∀p ∈ P.(LocState(p),NotRequests(p)) ∈ Initial (p)

⎞

⎠

Actions:

1. Receiving a message:

Mess
Δ
= ∃p ∈ P.Mess1 (p)

Mess1 (p)
Δ
=

(∃m ∈ M.∃e ∈ I ∪ E such that p = dst(e).
Q(e) = m·Q′(e) ∧Mess2 (p, e,m)

)
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Mess2 (p, e,m)
Δ
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

let
{e1, . . . , ek} = {d ∈ E ∪O | src(d) = p},
s = LocState(p),
(s′, N, 〈e1 �→μ1, . . . , ek �→μk〉) = g1(p)(s, (e,m))
in
LocState ′(p) = s′

∧
NotRequests′(p) = NotRequests(p) ∪N
∧
Q′(e1) = Q(e1)·μ1 . . . Q

′(ek) = Q(ek)·μk

∧
∀q ∈ P �= p.LocState ′(q) = LocState(q)
∧
∀q ∈ P �= p.NotRequests′(q) = NotRequests(q)
∧
∀d ∈ I ∪ E ∪O − {e, e1, . . . , ek}.Q′(d) = Q(d)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

These formulas describe how a node p dequeues a message m and reacts to
it, producing messages and notification requests.

2. Receiving a notification:

Not
Δ
= ∃p ∈ P.Not1 (p)

Not1 (p)
Δ
=

⎛

⎜
⎜
⎝

∃t ∈ NotRequests(p).
∀e ∈ I ∪ E such that dst(e) = p.(e, t) �∈ Clock
∧
Not2 (p, t)

⎞

⎟
⎟
⎠

Not2 (p, t)
Δ
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

let
{e1, . . . , ek} = {d ∈ E ∪O | src(d) = p},
s = LocState(p),
(s′, N, 〈e1 �→μ1, . . . , ek �→μk〉) = g1(p)(s, t)
in
LocState ′(p) = s′

∧
NotRequests′(p) = NotRequests(p)− {t} ∪N
∧
Q′(e1) = Q(e1)·μ1 . . . Q

′(ek) = Q(ek)·μk

∧
∀q ∈ P �= p.LocState ′(q) = LocState(q)
∧
∀q ∈ P �= p.NotRequests′(q) = NotRequests(q)
∧
∀d ∈ I ∪ E ∪O − {e1, . . . , ek}.Q′(d) = Q(d)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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These formulas describe how a node p consumes a notification t for which it
has an outstanding notification request, and how it reacts to the notification,
producing messages and notification requests.

3. External input and output changes:

Inp
Δ
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∀i ∈ I.Q(i) is a subsequence of Q′(i)
∧
∀p ∈ P.LocState ′(p) = LocState(p)
∧
∀p ∈ P.NotRequests ′(p) = NotRequests(p)
∧
∀d ∈ E ∪O.Q′(d) = Q(d)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Outp
Δ
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∀o ∈ O.Q′(o) is a subsequence of Q(o)
∧
∀p ∈ P.LocState ′(p) = LocState(p)
∧
∀p ∈ P.NotRequests ′(p) = NotRequests(p)
∧
∀d ∈ I ∪ E.Q′(d) = Q(d)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

External input changes allow the contents of input edges to be extended
rather arbitrarily. We do not assume that such extensions are harmonious
with notifications and the use of Clock ; from this perspective, it would be
reasonable and straightforward to add the constraint Clock ′ ⊆ Clock to Inp.
Similarly, external output changes allow the contents of output edges to be
removed, not necessarily in order. We ask that Q(i) be a subsequence of
Q′(i) and that Q′(o) be a subsequence of Q(o), so that it is easy to attribute
state transitions. While variants on these two actions are viable, allowing
some degree of external change to input and output edges seems attractive
for composability (see Section 4.3).

The high-level specification:

ISpec
Δ
= InitProp ∧ [Mess ∨Not ∨ Inp ∨Outp]LocState,NotRequests,Q

Spec
Δ
= ∃LocState,NotRequests, Q�E.ISpec

ISpec describes a complete property and Spec an externally visible property.
This specification is the most basic of several that we have studied. For in-

stance, another one allows certain message reorderings, replacing Mess1 (p) with

∃m ∈ M.∃e ∈ I ∪ E such that p = dst(e).∃u, v ∈ M∗.
Q(e) = u·m·v ∧Q′(e) = u·v ∧ ∀n ∈ u.time(n) �≤ time(m) ∧Mess2 (p, e,m)

Given a queue of messages Q(e), p is allowed to process any message m such
that there is no message n ahead of m with time(n) ≤ time(m). Mathematically,
we may think of Q(e) as a partially ordered multiset (pomset) [13]; with that
view, m is a minimal element of Q(e). This relaxation is useful, for example, for
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enabling optimizations in which several messages for the same time are processed
together, even if they are not all at the head of a queue.

4.3 Composing Graphs

We briefly discuss how to compose graphs, without however fully developing
the corresponding definitions and theory (in part, simply, because we have not
needed them in our applications of the semantics to date).

We can regard the specifications of this paper as being parameterized by a
Clock variable, rather than as being specifically for Clock as defined in Sec-
tion 4.2. Once we regard Clock as a parameter, the specifications that corre-
spond to multiple dataflow graphs can be composed meaningfully, and along
standard lines [9]. Suppose that we are given graphs G1 and G2, with nodes
P1 and P2, input edges I1 and I2, internal edges E1 and E2, and output edges
O1 and O2, and specifications Spec1 and Spec2. We assume that P1 and P2, I1
and I2, E1 and E2, and O1 and O2 are pairwise disjoint. We also assume that
I1, I2, O1, and O2 are disjoint from E1 and E2. We write X12 = I2 ∩ O1 and
X21 = I1∩O2. The edges in X12 and X21 will connect the two graphs. We define
a specification for the composite system with nodes P = P1 ∪ P2, input edges
I = I1 ∪ I2 −X12 −X21, internal edges E = E1 ∪ E2 ∪X12 ∪ X21, and output
edges O = O1 ∪O2 −X12 −X21, by

Spec12 = ∃Q�(X12 ∪X21).Spec1 ∧ Spec2 ∧ [¬(Acts1 ∧ Acts2)]

where, for j = 1, 2,

Actsj =

⎡

⎣

∃i ∈ Ij .Q
′(i) is a proper subsequence of Q(i)

∨
∃o ∈ Oj .Q(o) is a proper subsequence of Q′(o)

⎤

⎦

The formula [¬(Acts1 ∧Acts2)] ensures that the actions of the two subsystems
that are visible on their input and output edges are not simultaneous. It does
not say anything about internal edges, nor does it address notification requests.

It remains to study how Spec12 relates to the non-compositional specifica-
tion of the same system. Going further, the definition of a global Clock might
be obtained compositionally from multiple, more local could-result-in relations.
Finally, one might address questions of full abstraction. Although we rely on a
state-based formalism, results such as Jonsson’s [9] (which are cast in terms of
I/O automata) should translate. However, a fully abstract treatment of timely
dataflow would have interesting specificities, such as the handling of completion
notifications and the possible restrictions on contexts (in particular contexts
constrained not to send messages into the past).

5 An Application

In order to leverage the definitions and to test them, we state and prove a basic
but important property for timely dataflow. Specifically, we argue that, once a
pointstamp (e, t) is not in Clock , messages on e will never have times ≤ t. For
this property to hold, however, we require a hypothesis on inputs; we simply
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assume that, for all input edges i, Q(i) never grows, though it may contain some
messages initially. (Alternatively, we could add the constraint Clock ′ ⊆ Clock to
Inp, as suggested in Section 4.2.)

First, we establish some auxiliary propositions:

Proposition 7. ISpec implies that always, for all p ∈ P , there exists a local
history H(p) for p such that LocState(p) = ΠLocg(H(p)) and NotRequests(p) =
ΠNRg(H(p)).

Proposition 8. Assume that Conditions 1 and 2 hold. Then ISpec implies

[(∀i ∈ I.Q′(i) is a subsequence of Q(i)) ⇒ (Clock ′ ⊆ Clock )]

Proposition 9.

[(∀i ∈ I.Q′(i) is a subsequence of Q(i)) ⇒ (Clock ′ ⊆ Clock )]
∧
[∀i ∈ I.Q′(i) is a subsequence of Q(i)]
⇒

∀e ∈ I ∪ E ∪O, t ∈ T.

⎡

⎣

(e, t) �∈ Clock
⇒
(e, t) �∈ Clock

⎤

⎦

We obtain:

Theorem 2. Assume that Conditions 1 and 2 hold. Then ISpec and

[∀i ∈ I.Q′(i) is a subsequence of Q(i)]

imply

∀e ∈ I ∪ E ∪O, t ∈ T,m ∈ M.

⎡

⎣

(e, t) �∈ Clock
⇒
(m ∈ Q(e) ⇒ time(m) �≤ t)

⎤

⎦

Previous work [4] studies a distributed algorithm for tracking the progress
of a computation, and arrives at a somewhat analogous result. This previous
work assumes a notion of virtual time but defines neither a dataflow model nor
a corresponding could-result-in relation (so, in particular, it does not treat ana-
logues of Conditions 1 and 2). In the distributed algorithm, information at each
processor serves for constructing a conservative approximation of the pending
work in a system. Naiad relies on such an approximation for implementing its
clock, which the state function Clock represents in our model.

6 Conclusion

This paper aims to develop a rigorous foundation for timely dataflow, a model for
data-parallel computing. Some of the ingredients in timely dataflow, as defined
in this paper, have a well-understood place in the literature on semantics and
programming languages. For instance, many programming languages support
messages and message streams. On the other hand, despite similarities to extant
concepts, other ingredients are more original, so giving them self-contained
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semantics can be both interesting and valuable for applications. In particular,
virtual times and completion notifications may be reminiscent of the notion of
priorities [15,8], but a straightforward reduction seems impossible. More broadly,
there should be worthwhile opportunities for further foundational and formal
contributions to research on data-parallel software, currently a lively area of
experimental work in which several computational abstractions and models are
being revisited, adapted, or invented.

Acknowledgments. We are grateful to our coauthors on work on Naiad for discus-
sions that led to this paper. In addition, conversations with Nikhil Swamy and Dimitrios
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Abstract. We consider the reachability problem for timed automata.
One of the most well-known solutions for this problem is the zone-based
search method. Max bound abstraction and LU-bound abstraction on
zones have been proposed to reduce the state space for zone based search.
These abstractions use bounds collected from the timed automata struc-
ture to compute an abstract state space. In this paper we propose a dif-
ference bound constraint abstraction for zones. In this abstraction, sets
of difference bound constraints collected from the symbolic run are used
to compute the abstract states. Based on this new abstraction scheme,
we propose an algorithm for the reachability checking of timed automata.
Experiment results are reported on several timed automata benchmarks.

1 Introduction

Model checking of timed automata has been studied for a long time since it
was proposed [2]. One of the most interesting properties to be verified for timed
automata is the reachability property. In this paper, we will focus on the reach-
ability problem of timed automata.

It is known that the reachability problem for timed automata is PSPACE-
complete [3]. Initially region-based method [2] was used to discretize the state
space, and convert the timed automata model to finite automata. However, the
resulting finite automata are so large that it is not practical to perform model
checking on them. BDD-based [4,8] and SAT-based [17] symbolic model checking
can be used to fight the state explosion.

Zone-based method is an important approach to the reachability problem of
timed automata. In zone-based method, a group of difference bound inequalities
is used to symbolically represent a convex set of clock valuations (which is called
a “zone”), and exhaustive search is performed on the symbolic state space [7].
Abstraction techniques for zones are used to reduce the symbolic state space, and
ensure the reduced symbolic state space to be finite. In max-bound abstraction
(a.k.a. k-approximation), the maximum constants appearing in the guards of the
timed automata are collected, and used to compute abstractions for zones. LU-
abstraction [6] improves by classifying the constants into two categories: those
appearing in lower bound guards and those appearing in upper bound guards.

c© IFIP International Federation for Information Processing 2015
S. Graf and M. Viswanathan (Eds.): FORTE 2015, LNCS 9039, pp. 146–160, 2015.
DOI: 10.1007/978-3-319-19195-9_10
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Behrmann et al. [5] used static analysis on the structure of timed automata to
obtain smaller bounds, which lead to coarser abstractions. Herbreteau et al [12]
proposed to calculate the bounds on-the-fly, and used a non-convex abstraction
based on LU-bounds. All the above mentioned techniques are based on bounds
that are collected from the timed automata, which just capture limited amount
of information about the system.

In this paper, we explore the possibility to use difference bound constraints
as abstractions for zones. In our abstraction scheme, a set of difference bound
constraints is used as the abstraction of the zone. In fact, the conjunction of
these difference bound constraints is a zone that is larger than the original zone.
This abstraction is, to some extent, similar to the predicate abstraction in the
program verification field.

A lazy search algorithm similar to that in [13] is used to gradually refine the
abstraction. Each node is a tuple (l, Z, C), where (l, Z) is the symbolic state,
and C is a set of difference bound constraints, which serves as the abstraction.
Initially, the difference bound constraint set of each node is ∅, which means
there is no difference bound constraint in the abstraction, i.e., the abstracted
zone is the set of all clock valuations. If a transition t is disabled from a node
(l, Z, C), we extract a set of difference bound constraints Ct from Z such that
Postt(�Ct�) = ∅, Ct is sufficient to prove that the transition t from the configu-
ration (l, Z) is disabled. The difference bound constraints in Ct are added to C,
after which the change in C is propagated backward according to certain rules.
The addition of difference bound constraints into the abstraction is in fact a
refinement operation.

The key problem here is how to compute and propagate the set of difference
bound constraints. We propose a method to propagate difference bound con-
straints, which makes use of structural information of the timed automata to
identify “important” difference bound constraints in the zones from those that
are “irrelevant”.

Unfortunately, the lazy search algorithm using only difference bound con-
straint abstraction does not necessarily terminate. The LU-abstraction Extra+LU

[6] is used in our algorithm to ensure termination. The resulting algorithm can
be seen as a state space reduction using difference bound constraint abstraction
on top of Extra+LU -based symbolic search.

We performed experiments to compare our method with zone-based search
and the lazy abstraction method proposed in [13]. Results show that in general
our method behaves similarly to that in [13], while in some cases our method
can achieve better reduction of the state spaces.

Related Work. Abstraction refinement techniques [9] have attracted much at-
tention in recent years. This kind of techniques check the property of the system
by iteratively checking and refining abstract models which tend to be smaller
than the original model. Efforts have been devoted on adapting abstraction re-
finement techniques for the verification of timed automata [16,10].

Lazy abstraction [11] is an important abstraction refinement technique. In the
lazy abstraction procedure, an abstract reachability tree is built on-the-fly, along
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with the refinement procedure, and predicate formulas are used to represent the
abstract symbolic states. Difference bound constraint abstraction is similar to
predicate abstraction, and the constraint propagation resembles interpolation
[15]. In our method, abstractions only take the form of conjunctions of differ-
ence bound constraints, which is more efficient than general-purpose first order
formulas. Herbreteau et al. [13] proposed a lazy search scheme to dynamically
compute the LU-bounds during state space exploration, which results in smaller
LU-bounds and coarser abstractions. We use a similar lazy search scheme.

Organization of the Paper. In Section 2 we have a simple review of basic
concepts related to timed automata. We present the difference bound constraint
abstraction, and the model checking algorithm based on this abstraction in Sec-
tion 3. An example is given in Section 4 to illustrate how our method achieves
state space reduction. Experiment results are reported in Section 5, and conclu-
sions are given in Section 6.

2 Preliminaries

2.1 Timed Automata and the Reachability Property

A set of clock variables X is a set of non-negative real-valued variables. A clock
constraint is a conjunction of constraints of the form x ∼ c, where x, y ∈ X ,
c ∈ N, and∼∈ {<,≤, >,≥}. A difference bound constraint onX is a constraint of
the form x−y ≺ c, where x, y ∈ X∪{0}, c ∈ N, and≺∈ {<,≤}. Obviously a clock
constraint can be re-written as conjunctions of difference bound constraints. A
clock valuation is a function ν : X 	→ R≥0, which assigns to each clock variable
a nonnegative real value. We denote 0 the special clock valuation that assigns 0
to every clock variable. For a formula ϕ on X , we write ν |= ϕ, if ϕ is satisfied
by the valuation ν. Furthermore, we denote by �ϕ� the set of all clock valuations
satisfying ϕ, i.e., �ϕ� = {ν|ν |= ϕ}.
Definition 1 (Timed Automata). A timedautomaton is a tuple 〈L, linit, X, T 〉,
whereL is a finite set of locations, linit is the initial location,X is a finite set of clocks,

and T is a finite set of transitions of the form l
a,g,r−−−→ l′, where a is an action label, g

is a clock constraint, which we call guard, and r ⊆ X is the set of clocks to be reset.

For a transition t = l
a,g,r−−−→ l′ ∈ T , we use t.a, t.g, t.r to denote the corre-

sponding action, guard, and set of clocks to be reset.

Definition 2 (Semantics of Timed Automata). A configuration of a timed
automaton A = 〈L, linit, X, T 〉 is a pair (l, ν) where l ∈ L is a location, and ν is
a clock valuation. The initial configuration is (linit,0). There are two kinds of
transitions

– Action. For each pair of states (l, ν) and (l′, ν′), (l, ν) →t (l
′, ν′) iff there is

a transition t = l
a,g,r−−−→ l′ ∈ T , and
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• ν |= g, and
• ν′(x) = ν(x) for each x /∈ r, and
• ν′(x) = 0 for each x ∈ r.

– Delay. For each pair of configurations (l, ν) and (l′, ν′), and an arbitrary
δ ∈ R≥0, (l, ν) →δ (l′, ν′), iff l = l′ and ν′(x) = ν(x) + δ for each clock
x ∈ X.

A run of a timed automaton is a (possibly infinite) sequence of configurations
ρ = (l0, ν0)(l1, ν1) · · · , where (l0, ν0) = (linit,0), and for each i ≥ 0, either
(li, νi) →t (li+1, νi+1) for some t ∈ T , or (li, νi) →δ (li+1, νi+1) for some δ ∈
R≥0.

The definition of timed automata is always extended to networks of timed au-
tomata, which is a parallel composition of timed automata. The parallel compo-
sition can be obtained by the product of these components. Usually this product
is not computed directly, but on-the fly during the verification. In this paper we
will describe our method based on timed automata, while it could be naturally
extended on networks of timed automata.

In this paper we will consider the reachability problem. Basically, a location
of a timed automaton is reachable iff there is a run of the timed automaton that
reaches the location.

Definition 3 (Reachability). A location lacc of a timed automaton A is reach-
able iff there is a finite run ρ = (l0, ν0)(l1, ν1) · · · (lk, νk), where lk = lacc.

2.2 Zone Based Symbolic Semantics

The symbolic semantics of timed automata has been proposed to fight state
explosion. Basically, the idea is to represent a set of clock valuations using clock
constraints. Zones are used in timed automata model checking to symbolically
represent the sets of clock valuations. A zone is a convex set of clock valuations
that can be represented by a set of difference bound constraints.

For a zone Z and a clock constraint g, we define Z ∧ g as {ν|ν ∈ Z ∧ ν |= g},
Z[r := 0] as {ν|∃ν′ ∈ Z · ∀x ∈ r(ν(x) = 0) ∧ ∀x /∈ r(ν(x) = ν′(x))}, and Z ↑ as
{ν|∃ν′ ∈ Z, δ ∈ R≥0 · ν = ν′ + δ}. Zones are closed under these operations [7].

Definition 4 (Symbolic Semantics of Timed Automata). The symbolic
semantics of a timed automaton A = 〈L, linit, X, T 〉 is a labeled transition system
(S,⇒, s0). Each state s ∈ S is a symbolic configuration (l, Z), where l is a
location, and Z is a zone. The initial state is s0 = (linit, �0 ≤ x1 = x2 = · · · =
xn�). For each pair of states s = (l, Z) and s′ = (l′, Z ′), s ⇒t s

′ iff there exists a

transition t = l
a,g,r−−−→ l′ ∈ T such that Z ′ = (Z ∧ g)[r := 0] ↑. A symbolic run is

a sequence (l0, Z0)(l1, Z1) · · · , where (l0, Z0) = (linit, �0 ≤ x1 = x2 = · · · = xn�),
and for each i ≥ 0, (li, Zi) ⇒t (li+1, Zi+1) for some t ∈ T .

In addition, we define the Post operator Postt(Z)
def
= (Z ∧ t.g)[t.r := 0] ↑. A

transition t = l
a,g,r−−−→ l′ ∈ T is disabled at (l, Z), if Postt(Z) = ∅.
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Symbolic semantics is sound and complete with respect to the reachability
property [7]. A given location lacc is reachable iff there is a symbolic run ending
with a configuration (lacc, Z) where Z �= ∅.

Zones can be represented as Difference Bound Matrices (DBMs), and efficient
algorithms for manipulating DBMs have already been proposed [7]. The DBM
representation of a zone on the clock set X is a (|X | + 1) × (|X | + 1) matrix,
each element of which is a tuple (≺, c), where ≺∈ {<,≤} and c ∈ N. In a DBM
D, D0x = (≺, c) means 0 − x ≺ c, i.e. x � −c, Dx0 = (≺, c) means x − 0 ≺ c,
i.e. x ≺ c, for x, y �= 0, Dij = (≺, c) represents the constraint xi − xj ≺ c.
Two different DBMs might correspond to the same zone. In order to tackle this
problem, the canonical forms of DBMs can be computed by the Floyd-Warshall
algorithm [7].

The zone-based semantics described in the above is not necessarily finite.
Max-bound abstraction and LU-bound abstraction are proposed to reduce the
state space to finite, and the former can be seen as a special case of the latter.
Basically, these abstraction techniques remove from the zone those constraints
that exceed certain bounds, resulting in an abstracted zone that is larger than
the original one. Coarser abstractions lead to smaller symbolic state space. As
far as we know, Extra+LU [6] is the coarsest convex-preserving abstraction based
on LU-bounds.

An LU-bound is a pair of functions LU , where L : X → N ∪ {−∞} is called
a lower bound function and U : X → N ∪ {−∞} an upper bound function.

Definition 5 (LU-extrapolation [6]). Let Z be a zone whose canonical DBM
is 〈ci,j ,≺i,j〉i,j=0,1,...,|X|. Given an LU-bound LU , the LU-extrapolation

Extra+LU (Z) of Z is a zone Z ′ which can be represented by a DBM 〈c′i,j ,≺′
i,j

〉i,j=0,1,...,|X|, where

〈c′i,j ,≺′
i,j〉 =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞ if ci,j > L(xi)

∞ if − c0,i > L(xi)

∞ if − c0,j > U(xj), i �= 0

(−U(xj), <) if − c0,j > U(xj), i = 0

(ci,j ,≺i,j) otherwise

We denote by ⇒E the symbolic semantics of timed automata augmented with
Extra+LU : for two symbolic configurations (l, Z) and (l′, Z ′), (l, Z) ⇒E (l′, Z ′) iff
there is a zone Z ′′ such that (l, Z) ⇒ (l′, Z ′′) and Z ′ = Extra+LU (Z

′′). We can
choose the LU-bound L(x) and U(x) as follows: for each clock x, L(x)(U(x)) is
the largest constant c such that x > c(x < c) or x ≥ c(x ≤ c) appears in the
guard of some transition. Intuitively, L(x) (U(x)) collects the maximum constant
appearing in the lower-bound (upper-bound) guard of x. It can be proved that
⇒E preserves reachability [6].
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3 Difference Bound Constraint Abstraction Based
Reachability Checking

3.1 Difference Bound Constraint Abstraction and Adaptive
Simulation Graph

For a zone Z and a difference bound constraint c we denote Z |= c as ∀ν ∈
Z ·ν |= c. For a set C of difference bound constraints we denote �C� to be the set
of valuations that satisfy all the constraints in C, i.e., �C� = {ν|∀c ∈ C · ν |= c}.
Intuitively, a set C of difference bound constraints is interpreted as a conjunction
of the constraints from C. In fact, �C� is also a zone, although it will not be stored
as a canonical DBM in our algorithm. In the sequel, we might mix the use of
set-theoretic notations (e.g. intersection) and logic notations (e.g. conjunction)
on zones and constraints.

Definition 6 (Difference Bound Constraint Abstraction). A difference
bound constraint abstraction C for a zone Z is a set of difference bound con-
straints such that Z ⊆ �C�.

This definition resembles the concept of predicate abstraction in program
verification. Each difference bound constraint in C can be seen as a predicate.
In our algorithm, only those difference bound constraints that are useful for the
reachability problem are kept, while the irrelevant constraints are ignored. The
difference bound constraint abstraction of a zone is still a zone, but we store it
as a set of constraints rather than a canonical DBM. Based on this abstraction,
we define an Adaptive Simulation Graph (ASG) similar to that in [13].

Definition 7 (Adaptive Simulation Graph). Given a timed automaton A,
the adaptive simulation graph ASGA of A is a graph with nodes of the form
(l, Z, C), where l is a location, Z is a zone, and C is a set of difference bound
constraints such that Z ⊆ �C�. A node could be marked tentative (which roughly
means it is covered by another node). Three constraints should be satisfied:
G1 For the initial state l0 and initial zone Z0, there is a node (l0, Z0, C0) in the
graph for some C0.
G2 If a node (l, Z, C) is not tentative, then for every transition (l, Z) ⇒t (l

′, Z ′)
s.t. Z ′ �= ∅, there is a successor (l′, Z ′, C′) for this node.
G3 If a node (l, Z, C) is tentative, there is a non-tentative node (l, Z ′, C′) cov-
ering it, i.e., Z ⊆ �C� ⊆ �C′�.
In addition, two invariants are required.
I1 If a transition t is disabled from (l, Z), and (l, Z, C) is a non-tentative node,
then t should also be disabled from (l, �C�).
I2 For every edge (l, Z, C) ⇒t (l

′, Z ′, C′) in the ASG: Postt(�C�) ⊆ �C′�.

For a node v = (l, Z, C), we use v.l, v.Z, and v.C to denote the three compo-
nents. We say that a node (l, Z, C) is covered by a node (l, Z ′, C′), if Z ⊆ �C′�.

The following theorem states that, the adaptive simulation graph preserves
reachability of the corresponding timed automaton.
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Theorem 1. A location lacc in the timed automaton A is reachable, iff there is
a node (lacc, Z, C) such that Z �= ∅ in ASGA.

The right-to-left direction of this theorem is obviously true: by the definition
of ASG, each path in ASGA corresponds to a symbolic run in A. In order to
prove the other direction of Theorem 1, we prove a slightly stronger lemma.

Lemma 1. If there is a symbolic run (l0, Z0) · · · (l, Z) in A with Z �= ∅, then
there must be a non-tentative node (l, Z1, C1) in ASGA such that Z ⊆ �C1�.

Proof. We prove this lemma by induction on the length of the run. For the 0-
length run and (l0, Z0), the lemma is trivially true. Assume the lemma is true for
a run (l0, Z0) · · · (l, Z), now we prove that the lemma holds for every successor
(l′, Z ′) of (l, Z) with (l, Z) ⇒t (l

′, Z ′) and Z ′ �= ∅.
We need to prove that there is a node in ASGA corresponding to (l′, Z ′) as

described in the lemma. By induction hypothesis, there is a non-tentative node v
such that Z ⊆ �v.C�. We now assert that Postt(v.Z) �= ∅. Because, otherwise, by
I1 of Definition 7 we will have Postt(�v.C�) = ∅, and consequently Postt(Z) ⊆
Postt(�v.C�) = ∅, which contradicts the assumption Z ′ �= ∅. From G2 we know
that there is a successor v′ of v such that (v.l, v.Z) ⇒t (v′.l, v′.Z). By I2 we
have Postt(�v.C�) ⊆ �v′.C′�, so Z ′ = Postt(Z) ⊆ Postt(�v.C�) ⊆ �v′.C�, If v′ is
non-tentative, then it is a node that we want to find, and the lemma is proved.
Otherwise, there is a non-tentative node v′′ covering v′. From G3 we know that
�v′.C� ⊆ �v′′.C�, so Z ′ ⊆ �v′′.C�, and v′′ is the qualifying node.

According to Theorem 1, the reachability problem could be solved by explor-
ing the ASG. The algorithm for constructing the ASG will be described in the
next subsection.

3.2 The ASG-Constructing Algorithm

The algorithm for constructing the ASG is shown in Algorithm 1. The main
procedure repeatedly calls EXPLORE to explore the nodes until an accepting
node is found (lines 10-11), or the worklist is empty (line 8).

The function EXPLORE proceeds as follows. For a node v to be explored,
first it checks whether v is an accepting node. If so, the algorithm exits with
the result “reachable”, otherwise it checks whether there is a non-tentative node
v′′ covering v. If so, v is marked tentative with respect to v′′ (line 13), and
the set of difference bound constraints of v′′ is copied to v to maintain G3 of
Definition 7 (line 14). There is no need to generate successor nodes for a tentative
node. Otherwise, the difference bound constraint set of v is computed using the
transitions disabled at v to maintain I1 (line 17), after which successor nodes
of v are generated (maintaining G2) and put into the worklist for exploration
(lines 19-21).

Whenever the difference bound constraint set of a node v′ is changed, PROP-
AGATE will be called (lines 15, 18, 38) to propagate the newly-added constraints
backward to its parent v (to maintain I2) (lines 29-31), and further to the nodes
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Algorithm 1. The ASG-constructing algorithm

1: function main
2: let vroot = (l0, Z0, ∅)
3: add vroot to the worklist
4: while worklist not empty do
5: remove v from the worklist
6: explore(v)
7: resolve
8: return “not reachable”
9: function explore(v)
10: if v.l is accepting then
11: exit “reachable”
12: else if ∃v′′ non-tentative s.t. v.l =

v′′.q ∧ v.Z ⊆ �v′′.C� then
13: mark v tentative w.r.t. v′′

14: v.C ← v′′.C
15: propagate(v, v.C)
16: else
17: v.C ←disabled(v.l, v.Z)
18: propagate(v, v.C)
19: for all (l′, Z′) s.t. (v.l, v.Z) ⇒

(l′, Z′) and Z′ �= ∅ do

20: create the successor v′ =
(l′, Z′, ∅) of v

21: add v′ to worklist
22: function resolve
23: for all v tentative w.r.t. v′ do
24: if v.Z � �v′.C� then
25: mark v non-tentative
26: set v.C ← ∅
27: add v to worklist
28: function propagate(v′, C′)
29: let v = parent(v′)
30: C ← backprop(v, v′, C′)
31: C1 ←update(v, C)
32: if C1 �= ∅ then
33: for all vt tentative w.r.t. v do
34: if vt.Z ⊆ �v.C� then
35: Ct ←update(vt, C1)
36: propagate(vt, Ct)

37: if v �= vroot then
38: propagate(v, C1)

tentative with respect to v (to maintain G3) (line 36). If a tentative node vt is no
longer covered by v, the function RESOLVE will eventually be called (line 7) to
mark it non-tentative, remove all constraints from its difference bound constraint
set, and put it into the worklist for exploration (lines 25-27).

For each node v, the difference bound constraint abstraction v.C is stored as
a set of difference bound constraints, rather than a canonical DBM. Checking
whether Z ⊆ �C� for a zone Z and a difference bound constraint set C can be
accomplished by checking whether Z |= c for all c ∈ C. When adding constraints
to a difference bound constraint abstraction, only the strongest constraints are
kept, which is handled by the function UPDATE, whose code is omitted here.

3.3 Computing the Difference Bound Constraint Sets

The algorithm for building the ASG relies on two functions DISABLED, and
BACKPROP to extract the “important” difference bound constraints from zones.
In this subsection we describe an implementation of the two functions. Before
doing that we introduce the arithmetic on {<,≤}×N. For two arbitrary pairs
(≺1, c1), (≺2, c2) ∈ {<,≤} × (N ∪ {+∞}), (≺1, c1) + (≺2, c2) = (≺3, c3), where
c3 = c1 + c2, and ≺3=< iff ≺1=< or ≺2=<. The order “<” is defined as:
(≺1, c1) < (≺2, c2) iff c1 < c2 or c1 = c2∧ ≺1=< ∧ ≺2=≤.
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DISABLED. In order to maintain the invariant I1, the result C computed by
DISABLED(l, Z) should satisfy: i) Z ⊆ �C�, and ii) Postt(�C�) = ∅ for each t
disabled at (l, Z).

By Definition 4 we know that Postt(Z) = ∅ iff Z ∧ t.g = ∅. Thus the prob-
lem is reduced to: given a zone Z, and a formula ϕ which is conjunctions of
difference bound constraints, such that Z ∧ ϕ = ∅, find a set C of difference
bound constraints such that Z ⊆ �C� and �C� ∧ ϕ = ∅. Since Z ∧ ϕ = ∅, there
must be a sequence of difference bound constraints x0 − x1 ≺0 c0, x1 − x2 ≺1

c1, . . . xm−1 − xm ≺m−1 cm−1, xm − x0 ≺m cm such that

– C1 Each of them appears either in ϕ, or in the canonical DBM of Z.
– C2 xi �= xj for i, j ∈ {0, 1, . . . ,m} and i �= j
– C3 (≺0, c0)+ · · ·+(≺m, cm) < (<, 0), i.e., this sequence of difference bound

constraints forms a contradiction.

We take C to be {c = xi − x(i+1) mod (m+1) ≺i ci|c is from Z}. Obviously, the
C obtained above satisfies i) and ii).

As shown in [7], a conjunction of difference bound constraints can be seen
as a directed weighted graph, where each clock variable corresponds to a node,
and each constraint corresponds to a weighted edge, whose weight is a pair in
{<,≤} × (N ∪ {+∞}). Figure 1 illustrates the directed weighted graph for the
zone x ≥ 0 ∧ y − x = 10. There is a contradiction in the conjunction iff there is
a negative cycle in the graph, i.e., the sum of weights in the cycle is less than
(≤, 0).

0 x

y

(≤, 0)

(≤,−10)(<,+∞)

(≤,−10) (≤, 10)

(<,+∞)

Fig. 1. Directed weighted graph of zone x ≥ 0 ∧ y − x = 10

The difference bound constraints in C correspond to the edges in the graph of
Z that form a negative cycle with the edges from the graph of ϕ. So the problem
is reduced to finding a negative cycle in the merged graph of Z and ϕ, and picking
the edges in the cycle that belong to Z. This task is accomplished by the function
FINDCONTRA in Algorithm 2, where Floyd-Warshall algorithm is used to find
a negative cycle. Function DISABLED in Algorithm 2 calls FINDCONTRA for
every disabled transition, and collects all the constraints obtained.

BACKPROP. In order to maintain the invariant I2, the result C computed
by BACKPROP(v, v′, C′) (where (v.l, v.Z) ⇒t (v′.l, v′.Z)) should satisfy: i)
Postt(�C�) ⊆ �C′� and ii) v.Z ⊆ �C�.
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If there is a set Cc′ of difference bound constraints for each c′ ∈ C′, such that
v.Z ⊆ �Cc′� and Postt(�Cc′�) |= c′, then we can choose C as

⋃

c′∈C′
Cc′ . One can

easily check that such a C satisfies the above two conditions. We only need to
consider the propagation of each difference bound constraint in C′ one by one.

For simplicity, we break up each transition into three steps: guard, reset, and
time delay, and explain the propagation for each step. The overall description of
BACKPROP is shown in Algorithm 2.

We assume two zones Z1, Z2 and a difference bound constraint c2 which cor-
responds to Z2 (i.e. Z2 |= c2).

Delay. Now we have Z1 ↑= Z2, we want to find a Cc2 such that Z1 ⊆ �Cc2�
and �Cc2� ↑|= c2. Observe that c2 must be in one of the three cases: x − 0 ≺ c,
0 − x ≺ c, and x − y ≺ c, where x, y ∈ X and c ∈ N. Since Z1 ↑= Z2, c2 can
not be of the form x − 0 ≺ c, and for the other two cases we have Z1 |= c2 and
�{c2}� ↑|= c2. So we can just choose Cc2 to be {c2}. Intuitively, for time delay,
we just copy c2 from the successor to the predecessor.

Reset. For a set r of clocks such that Z1[r] = Z2, we want to find a Cc2 such
that Z1 ⊆ �Cc2� and �Cc2�[r] |= c2. Let c2 be x − y ≺ c, where x ∈ X ∪ {0},
y ∈ X and c ∈ N, we choose Cc2 as {c1}, where:

c1 =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x− y ≺ c, if x, y /∈ r

0− y ≺ c, if x ∈ r, y /∈ r

x− 0 ≺ c, if x /∈ r, y ∈ r

0− 0 ≺ c, if x, y ∈ r

(1)

The first and the last cases are trivial. Let’s look at the second case. Since
x ∈ r, according to the definition of reset operation, it must be the case that
Z2 |= x = 0. According to the assumption, Z2 |= c2. Note that c2 is x − y ≺ c.
Combining the above two results we have Z2 |= 0− y ≺ c. Since y /∈ r, the value
of y has not changed during the reset operation, thus we have Z1 |= 0 − y ≺ c.
Conversely, we can check that �{0 − y ≺ c}�[r] |= x − y ≺ c. Thus {c1} is a
qualified candidate for Cc2 . It is similar for the third case.

Here we ignore the case when c2 is x − 0 ≺ c because, according to the time
delay operation (which always follows the reset operation in the timed automata
run), this is impossible.

Guard. For a guard g such that Z1 ∧ g = Z2, we want to find a Cc2 such that
Z1 ⊆ �Cc2� and �Cc2� ∧ g |= c2. Notice that Z1 ∧ g |= c2 iff Z1 ∧ (g ∧ ¬c2) = ∅,
similarly, �Cc2�∧ g |= c2 iff �Cc2�∧ (g ∧¬c2) = ∅. Like c2, its negation ¬c2 is also
a difference bound constraint, so g ∧ ¬c2 is a conjunction of difference bound
constraints, and we can use FINDCONTRA to compute the set Cc2 .
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Algorithm 2

1: function findcontra(Z, ϕ)
2: Find a negative cycle using Floyd-

Warshall algorithm on the
merged graph of Z and ϕ

3: Take the sequence of constraints
corresponding to the negative
cycle in Z ∧ ϕ: c0, c1, . . . cm−1.

4: return {ci|ci is from Z}
5: function disabled(l, Z)
6: C ← ∅
7: for all t disabled at (l, Z) do

8: C ← C ∪ findcontra(Z, t.g)

9: return C
10: function backprop(v, v′, C′)
11: Given v ⇒t v

′

12: C ← ∅
13: for all c2 ∈ C′ do
14: Compute c1 according to (1)
15: C ← C∪ findcontra(v.Z, g∧

¬c2)
16: return C

3.4 Termination of the ASG-Constructing Algorithm

In order to ensure that the ASG-constructing algorithm terminates, we make
slight modifications on Definition 7 and on Algorithm 1. The condition G2 of
Definition 7 is modified to:

G2’ If a node (l, Z, C) is not tentative, then for every transition (l, Z) ⇒E
t

(l′, Z ′) s.t. Z ′ �= ∅, there is a successor (l′, Z ′, C′) for this node.
The symbolic transition relation ⇒ is replaced with ⇒E , which means that

the operator Extra+LU is used when computing the successor nodes. Accord-
ingly, in Line 19 of Algorithm 1, (v.l, v.Z) ⇒ (v′.q, v′.Z) should be changed to
(v.l, v.Z) ⇒E (v′.q, v′.Z).

Now our algorithm can be seen as a further reduction made on top of Extra+LU -
based search.

Theorem 2. For an arbitrary timed automaton A, the modified version of Al-
gorithm 1 as described above will terminate.

Proof. Assume, to the contrary, that the algorithm does not terminate. There
must be an infinite sequence of explored nodes v1, v2, . . . (listed in the order of
exploration) such that v1.l = v2.l = · · · . Since the symbolic state space with
Extra+LU abstraction is finite, there must be two nodes vi, vj (with i < j) in the
sequence such that vi.Z = vj .Z. From Definition 6 we know that vj .Z = vi.Z ⊆
�vi.C�, so vj will never be explored, which contradicts the assumption.

4 An Example

Here we illustrate how our method works on the example timed automaton A1

shown in Figure 2a, where q4 is the accepting location. Following [5], instead of
considering one global LU-bound, we associate a local LU-bound to each location
using static guard analysis. The LU-bound at each location is given in Figure 2c.
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(a) (b)

Location Lx Ux Ly Uy Lz Uz

q0 100 100 200 −∞ 200 200
q1 −∞ 99 200 −∞ 200 200
q2 −∞ −∞ −∞ −∞ −∞ −∞
q3 −∞ −∞ −∞ −∞ −∞ −∞
q4 −∞ −∞ −∞ −∞ −∞ −∞

(c)

Fig. 2. (2a): a timed automaton A1, (2b): the ASG of A1. Solid arrows represent the
transition relation, while doted arrows represent the cover relation. (2c): the LU-bounds
of A1

Using zone-based search, the following symbolic configurations will be gener-
ated: (q0, x = z ≥ 0∧ y ≤ z), (q0, z = x+ 1∧ y ≤ z ∧ x ≥ 0), (q0, z = x+ 2∧ y ≤
z∧x ≥ 0), . . . , (q0, z = x+100∧y ≤ z∧x ≥ 0), . . ., which is more than 100 nodes.
When using our method, the resulting ASG has only 3 nodes, as shown in Fig-
ure 2b. In this example our method successfully ignores many of the constraints
that are irrelevant to the reachability problem, achieving a huge reduction.

The algorithm in [13] can not avoid generating too many nodes either. The
reason is that, LU-bound based abstractions can not find that the difference
bound constraints on z − x and y − x are irrelevant. In our abstraction scheme,
we consider more information than just LU-bounds, so our method can identify
these constraints to be irrelevant.

5 Experiments

We have implemented UPPAAL’s search algorithm, the algorithm in [13], and
our algorithm. Similar to [14], an improvement is made on Algorithm 1 in the
implementation: for each node v, if there is a node v′ such that v.l = v′.l and
v.Z ⊆ v′.Z, then v will be deleted, parents of v will be inherited by v′, and the
difference bound constraints in v′.C will be propagated to the parents of v, and
nodes that are covered by v (if there is any) will be marked non-tentative.

We performed experiments on several benchmarks. The results are shown in
Table 1 and Table 2, which are the results for breadth-first search (bfs) and
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Table 1. Experiment results of the three methods using bfs search. “Search-Extra+
LU”

stands for Extra+
LU -based search similar to UPPAAL. “a�LU ,disabled” is the algo-

rithm in [13]. “DBCA-Extra+
LU” is difference bound constraint abstraction combined

with Extra+
LU . “tnds” is the total number of nodes generated, “fnds” is the number

of nodes finally left, and “tm(s)” is the running time (in seconds). “to” stands for
time-out(200s).

Model Search-Extra+
LU a�LU ,disabled DBCA-Extra+

LU

tnds fnds tm(s) tnds fnds tm(s) tnds fnds tm(s)

A1 405 204 0.03 405 203 0.14 3 3 0.00
D′′

7 12869 12869 6.77 113 113 0.00 113 113 0.01
D′′

8 48619 48619 100.08 145 145 0.01 145 145 0.01
D′′

70 to 9941 9941 4.35 9941 9941 90.19
CSMA/CD 9 99288 45836 3.13 78552 35084 7.33 78552 35084 4.38
CSMA/CD 10 258249 120845 8.44 200649 90125 12.15 200649 90125 14.91
CSMA/CD 11 656312 311310 25.30 501432 226830 65.16 501432 226830 38.27
CSMA/CD 12 1636261 786447 68.81 1230757 561167 118.12 1230757 561167 98.58

FDDI 12 52555 727 13.72 422 341 0.56 176 154 0.13
FDDI 30 to 2923 2227 26.84 464 406 2.29
Fischer 8 132593 25080 2.61 132593 25080 8.44 132593 25080 7.55
Fischer 9 487459 81035 11.24 487459 81035 30.82 487459 81035 22.35
Critical 4 434421 53937 6.83 499441 53697 31.58 548781 54180 23.59
Lynch 4 46432 12700 1.19 46432 12700 1.26 46432 12700 1.05

Table 2. Experiment results of the three methods using dfs search. All settings are
the same as in Table 1, except that dfs search is performed here

Model Search-Extra+
LU a�LU ,disabled DBCA-Extra+

LU

tnds fnds tm(s) tnds fnds tm(s) tnds fnds tm(s)

A1 405 204 0.02 405 203 0.23 3 3 0.00
D′′

7 12869 12869 6.61 113 113 0.01 113 113 0.01
D′′

8 48619 48619 110.15 145 145 0.01 145 145 0.01
D′′

70 to 9941 9941 4.68 9941 9941 55.30
CSMA/CD 9 246072 45836 9.43 136813 36901 18.63 129718 35415 11.58
CSMA/CD 10 822699 120845 37.98 452788 98731 96.94 362407 90769 35.57
CSMA/CD 11 2758945 311310 150.23 to 997243 228054 120.85

FDDI 12 1016 727 0.27 96 96 0.02 96 96 0.03
FDDI 30 6308 4507 5.73 240 240 0.26 240 240 0.41
FDDI 50 17508 12507 53.21 400 400 0.72 400 400 1.35
Fischer 8 218017 25080 4.37 196738 25080 14.00 156634 25080 7.84
Fischer 9 1058685 81035 25.80 906766 81035 86.21 642739 81035 44.13
Critical 4 1067979 54469 15.19 1025269 53731 66.45 1009995 54488 38.25
Lynch 4 84421 12700 1.21 83171 12700 3.81 83967 12700 3.25
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depth-first search (dfs), respectively. D′′ is from [13], Fischer comes from the
demos in the UPPAAL tool. The other models are from [1]. In our experiment
settings, no location is set to be accepting, thus forcing the algorithms to perform
exhaustive state space exploration. The programs are run on a VMware virtual
machine with Ubuntu 10.04 operating system, which is allocated 2GB of memory.
The underlying PC has an Intel Core i7 CPU of 2.93GHz and 3GB of RAM.

The results on the model A1 show the advantage of our method over LU-
bound based abstractions. This is the case when LU-bound information is not
sufficient to identify irrelevant constraints. On the other models, our method
behaves similarly as a�LU ,disabled. This is quite reasonable, since we use the
same lazy search framework.

In many cases DBCA-Extra+
LU generates less nodes, but costs more time

than Search-Extra+
LU . This is due to the overhead of the effort to maintain

the invariants of ASGs The situation is similar for a�LU ,disabled. However,
for some of the models we can see that the state space reduction of our method
over Search-Extra+

LU is large enough to cover the overhead.

6 Conclusion

In this paper we proposed a difference bound constraint abstraction on zones
for timed automata reachability checking. Difference bound constraint sets are
used as abstractions in a lazy search algorithm, and Extra+LU is used to ensure
termination. Experiments show that in some of the cases the new abstraction
scheme reduces the state spaces. A future work would be to perform experiments
on other models to further investigate the performance.

Our abstraction is not necessarily coarser than [13], because non-convex ab-
stractions [12] are used in [13], while difference bound constraint abstraction is
in fact conjunctions of constraints, which is convex. However, our abstraction
scheme makes it possible to make use of more information than just LU-bounds,
achieving state space reduction in some cases.

The difference bound constraint abstraction is used in a forward lazy search
scheme, and Extra+LU is used to ensure termination. In fact, backward zone-
based search is also possible [18], and does not need Max-bound abstraction or
LU-abstraction to ensure termination. A possible future work is to explore the
possibility to perform lazy search using difference bound constraint abstraction
in a backward manner.
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Abstract. We propose an extension of binary session types, to formalise
timed communication protocols between two participants at the end-
points of a session. We introduce a decidable compliance relation, which
generalises to the timed setting the usual progress-based notion of com-
pliance between untimed session types. We then show a sound and com-
plete technique to decide when a timed session type admits a compliant
one, and if so, to construct the least session type compliant with a given
one, according to the subtyping preorder induced by compliance. Decid-
ability of subtyping follows from these results. We exploit our theory to
design and implement a message-oriented middleware, where distributed
modules with compliant protocols can be dynamically composed, and
their communications monitored, so to guarantee safe interactions.

1 Introduction

Session types are formal descriptions of interaction protocols involving two or
more participants over a network [18,23]. They can be used to specify the be-
havioural interface of a service or a component, and to statically check through
a (session-)type system that this conforms to its implementation, so enabling
compositional verification of distributed applications. Session types support for-
mal definitions of compatibility or compliance (when two or more session types,
composed together, behave correctly), and of substitutability or subtyping (when
a service can be safely replaced by another one, while preserving the interaction
capabilities with the context). Since these notions are often decidable and com-
putationally tractable (for synchronous session types), or safely approximable
(for asynchronous ones), session typing is becoming a particularly attractive ap-
proach to the problem of correctly designing distributed applications. This is
witnessed by a steady flow of foundational studies [16,10,15] and of tools [12,24]
based on them in the last few years.

In the simplest setting, session types are terms of a process algebra featuring
a selection construct (an internal choice among a set of branches), a branching
construct (an external choice offered to the environment), and recursion. In this
basic form, session types cannot faithfully capture a natural and relevant aspect
of interaction protocols, i.e., the timing constraints among the communication
actions. While formal methods for time have been studied for at least a couple

c© IFIP International Federation for Information Processing 2015
S. Graf and M. Viswanathan (Eds.): FORTE 2015, LNCS 9039, pp. 161–177, 2015.
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of decades, they have approached the realm of session types very recently [9,22].
However, these approaches introduce time into an already sophisticated frame-
work, featuring multiparty session types with asynchronous communication (via
unbounded buffers). While on the one hand this has the advantage of extending
to the timed setting type techniques which enable compositional verification [19],
on the other hand it seems that some of the key notions of the untimed setting
(e.g., compliance, duality) have not been explored yet in the timed case.

We think that studying timed session types in a basic setting (synchronous
communication between two endpoints, as in the seminal untimed version) is
worthy of attention. From a theoretical point of view, the objective is to lift to
the timed case some decidability results, like those of compliance and subtyping.
Some intriguing problems arise: unlike in the untimed case, a timed session type
not always admits a compliant; hence, besides deciding if two session types are
compliant, it becomes a relevant problem whether a session type has a compli-
ant. From a more practical perspective, decision procedures for timed session
types, like those for compliance and for dynamic verification, enable the imple-
mentation of programming tools and infrastructures for the development of safe
communication-oriented distributed applications.

Contributions. In this paper we introduce a theory of binary timed session types
(TSTs), and we explore its viability as a foundation for programming tools to
leverage the complexity of developing distributed applications.

We start in Section 2 by giving the syntax and semantics of TSTs. E.g., we
describe as the following TST the contract of a service taking as input a zip
code, and then either providing as output the current weather, or aborting:

p = ?zip{x}. (!weather{5 < x < 10} ⊕ !abort{x < 1})

The prefix ?zip{x} states that the service can receive a zip code, and then reset
a clock x. The continuation is an internal choice between two outputs: either
the service sends weather in a time window of (5, 10) time units, or it will abort
the protocol within 1 time unit.

The semantics of TSTs is a conservative extension of the synchronous seman-
tics of untimed session types [4], adding clock valuations to associate each clock
with a positive real. We also extend to the timed setting the standard seman-
tic notion of compliance, which relates two session types whenever they enjoy
progress until reaching success. For instance, p above is not compliant with:

q = !zip{y}. (?weather{y < 7}+ ?abort{y < 5})

because q is available to receive weather until 7 time units since it has sent the
zip code, while p can choose to send weather until 10 time units (note that p
and q , cleaned from all time annotations, are compliant in the untimed setting).

Despite the semantics of TSTs being infinite-state (while it is finite-state in
the untimed case), we develop a sound and complete decision procedure for
verifying compliance (Theorem 1). To do that, we reduce this problem to that
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of model-checking deadlock freedom in timed automata [2], which is decidable,
and we implement our technique using the Uppaal model checker [7].

Another difference from the untimed case is that not every TST admits a
compliant (while in the untimed case, a session type is always compliant to its
syntactic dual). For instance, consider the client contract:

q ′ = !zip{y < 10}. (?weather{y < 7}+ ?abort{y < 5})

No service can be compliant with q ′, because if q ′ sends the zip code, e.g., at time
8, one cannot send weather or abort in the given time constraints. We develop
a procedure to detect whether a TST admits a compliant. This takes the form of
a kind system which associates, to each p, a set of clock valuations under which p
admits a compliant. The kind system is sound and complete (Theorems 4 and 5),
and kind inference is decidable (Theorem 3), so summing up we have a (sound
and complete) decision procedure for the existence of compliant. When p admits
a compliant, by exploiting the kind system we can construct the greatest TST
compliant with p (Theorem 7), according to the semantic subtyping relation [4].
Decidability of subtyping follows from that of compliance and kind inference.
This provides us with an effective way of checking whether a service with type p
can be replaced by one with a subtype p′ of p, guaranteeing that all the services
which interacted correctly with the old one will do the same with the new one.

In Section 4 we address the problem of dynamically monitoring interactions
regulated by TSTs. To do that, we will provide TSTs with a monitoring seman-
tics, which detects when a participant is not respecting its TST. This semantics
enjoys some desirable properties: it is deterministic, and it guarantees that in
each state of an interaction, either we have reached success, or someone is in
charge of a move, or not respecting its TST. We then exploit all the theoretical
results discussed above, to discuss the design and implementation of a message-
oriented middleware which uses TSTs to enable and regulate the interaction of
distributed services. This infrastructure pursues the bottom-up approach to ser-
vice composition: it allows services to advertise contracts (in the form of TSTs);
all the advertised TSTs are collected by a broker, which finds pairs of compli-
ant TSTs, and creates sessions between the respective services. These can then
start interacting, by doing the actions prescribed by their TSTs (or even by
choosing not to do so). In a system of honest services, compliance between TSTs
ensures progress of the whole system; in any case, dynamic verification of all the
exchanged messages guarantees safe executions.

Due to space constraints, the proofs of our statements, additional examples,
as well as some tools related to the middleware, are available in [5].

2 Timed Session Types

We introduce binary timed session types (TSTs), by giving their syntax and
semantics, and by defining a compliance relation between them. The main result
of this section is Theorem 1, which states that compliance is decidable.
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Syntax. Let A be a set of actions, ranged over by a, b, . . .. We denote with A! the
set {!a | a ∈ A} of output actions, with A? the set {?a | a ∈ A} of input actions,
and with L = A! ∪ A? the set of branch labels, ranged over by �, �′, . . ..

We use δ, δ′, . . . to range over the set R≥0 of positive real numbers including
zero, and d, d′, . . . to range over N. Let C be a set of clocks, namely variables in
R≥0, ranged over by t, t′, . . .. We use R, T , . . . ⊆ C to range over sets of clocks.

Definition 1 (Guards). The set GC of guards over clocks C is defined as:

g ::= true
∣
∣ ¬g ∣

∣ g ∧g
∣
∣ t ◦d ∣

∣ t− t′ ◦d (where ◦ ∈ {<,≤,=,≥, >})
Definition 2 below introduces the syntax of TSTs. A TST p models the be-

haviour of a single participant involved in an interaction. TSTs are terms of a pro-
cess algebra featuring the success state 1, internal choice

⊕

i∈I !ai{gi, Ri} . pi,
external choice

∑

i∈I ?ai{gi, Ri} . pi, and recursion recX. p.
To give some intuition, we consider two participants, Alice (A) and Bob (B),

which want to interact. Alice advertises an internal choice
⊕

i !ai{gi, Ri} . pi
when she wants to do one of the outputs !ai in a time window where gi is true;
further, the clocks in Ri will be reset after the output is performed. The meaning
of an external choice

∑

i ?ai{gi, Ri} . qi (advertised, say, by B) is somehow dual:
B is saying that he is available to receive each message ai in any instant within
the time window defined by gi (and the clocks in Ri will be reset after the input).

Definition 2 (Timed session types). Timed session types p, q, . . . are terms
of the following grammar:

p ::= 1
∣
∣

⊕

i∈I

!ai{gi, Ri} . pi
∣
∣

∑

i∈I

?ai{gi, Ri} . pi
∣
∣ recX. p

∣
∣ X

where (i) the set I is finite and non-empty, (ii) the actions in internal/external
choices are pairwise distinct, (iii) recursion is guarded. Unless stated otherwise,
we consider TSTs up-to unfolding of recursion. A TST is closed when it has no
recursion variables. If q =

⊕

i∈I !ai{gi, Ri} . pi and 0 
∈ I, we write !a0.p0 ⊕ q
for

⊕

i∈I∪{0} !ai{gi, Ri} . pi (the same for external choices). True guards, empty
resets, and trailing occurrences of the success state can be omitted.

Example 1. Along the lines of PayPal User Agreement [1], we specify the pro-
tection policy for buyers of a simple on-line payment platform, called PayNow
(see [5] for the full version). PayNow helps customers in on-line purchasing, pro-
viding protection against misbehaviours. In case a buyer has not received what
he has paid for, he can open a dispute within 180 days from the date the buyer
made the payment. After opening of the dispute, the buyer and the seller may
try to come to an agreement. If this is not the case, within 20 days, the buyer
can escalate the dispute to a claim. However, the buyer must wait at least 7 days
from the date of payment to escalate a dispute. Upon not reaching an agreement,
if still the buyer does not escalate the dispute to a claim within 20 days, the
dispute is considered aborted. During a claim procedure, PayNow will ask the
buyer to provide documentation to certify the payment, within 3 days of the date
the dispute was escalated to a claim. After that, the payment will be refunded
within 7 days. The contract of PayNow is described by the following TST p:
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p = ?pay{tpay}. (?ok + ?dispute{tpay < 180, td}. p′) where

p′ = ?ok{td < 20} +

?claim{td < 20 ∧ tpay > 7, tc}.?rcpt{tc < 3, tc}.!refund{tc < 7} +

?abort

Semantics. To define the behaviour of TSTs we use clock valuations, which
associate each clock with its value. The state of the interaction between two TSTs
is described by a configuration (p, ν) | (q, η), where the clock valuations ν and
η record (keeping the same pace) the time of the clocks in p and q , respectively.
The dynamics of the interaction is formalised as a transition relation between
configurations (Definition 5). This relation describes all and only the correct
interactions: for instance, we do not allow time passing to make unsatisfiable
all the guards in an internal choice, since doing so would prevent a participant
from respecting her protocol. In Section 4 we will study another semantics of
TSTs, which can also describe the behaviour of dishonest participants who do
not respect their protocols.

We denote with V = C → R≥0 the set of clock valuations (ranged over by
ν, η, . . .), and with ν0 the valuation mapping each clock to zero. We write ν + δ
for the valuation which increases ν by δ, i.e., (ν + δ)(t) = ν(t) + δ for all t ∈ C.
For a set R ⊆ C, we write ν [R] for the reset of the clocks in R, i.e., ν [R](t) = 0
if t ∈ R, and ν [R](t) = ν (t) otherwise.

Definition 3 (Semantics of guards). For all guards g, we define the set of
clock valuations �g� inductively as follows, where ◦ ∈ {<,≤,=,≥, >}:

�true� = V �¬g� = V \ �g� �g1 ∧ g2� = �g1� ∩ �g2�

�t ◦ d� = {ν | ν (t) ◦ d} �t − t′ ◦ d� = {ν | ν (t)− ν(t′) ◦ d}
Before defining the semantics of TSTs, we recall from [8] some basic operations

on sets of clock valuations (ranged over by K,K′ , . . . ⊆ V).

Definition 4 (Past and inverse reset). For all sets K of clock valuations, the
set of clock valuations ↓ K (the past of K) and K[T ]−1 (the inverse reset of K)
are defined as: ↓ K = {ν | ∃δ ≥ 0 : ν + δ ∈ K}, K[T ]−1 = {ν | ν [T ] ∈ K}.
Definition 5 (Semantics of TSTs). A configuration is a term of the form
(p, ν) | (q, η), where p, q are TSTs extended with committed choices [!a{g,R}] p.
The semantics of TSTs is defined as a labelled relation −→ over configurations,
whose labels are either silent actions τ , delays δ, or branch labels.

We now comment the rules in Figure 1. The first four rules are auxiliary, as
they describe the behaviour of a TST in isolation. Rule [⊕] allows a TST to
commit to the branch !a of her internal choice, provided that the corresponding
guard is satisfied in the clock valuation ν . This results in the term [!a{g,R}] p,
which represents the fact that the endpoint has committed to branch !a in a
specific time instant: actually, it can only fire !a through rule [!] (which also
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(!a{g, R}. p ⊕ p′, ν ) τ−→ ([!a{g,R}] p, ν ) if ν ∈ �g� [⊕]

([!a{g,R}] p, ν ) !a−→ (p, ν [R]) [!]

(?a{g,R}. p + p′, ν )
?a−→ (p, ν [R]) if ν ∈ �g� [?]

(p, ν )
δ−→ (p, ν + δ) if δ > 0 ∧ ν + δ ∈ rdy(p) [Del]

(p, ν )
τ−−→ (p′, ν ′)

(p, ν ) | (q, η) τ−−→ (p′, ν ′) | (q, η) [S-⊕]
(p, ν )

δ−→ (p, ν ′) (q, η)
δ−→ (q, η ′)

(p, ν ) | (q, η) δ−→ (p, ν ′) | (q, η ′)
[S-Del]

(p, ν )
!a−−→ (p′, ν ′) (q, η)

?a−−→ (q ′, η ′)
(p, ν ) | (q, η) τ−−→ (p′, ν ′) | (q ′, η ′)

[S-τ ]

rdy(
⊕

!ai{gi, Ri} . pi) = ↓ ⋃

�gi� rdy(
∑ · · ·) = rdy(1) = V rdy([!a{g,R}] p) = ∅

Fig. 1. Semantics of timed session types (symmetric rules omitted)

resets the clocks in R), while time cannot pass. Rule [?] allows an external choice
to fire any of its input actions whose guard is satisfied. Rule [Del] allows time to
pass; this is always possible for external choices and success term, while for an
internal choice we require that at least one of the guards remains satisfiable; this
is obtained through the function rdy in Figure 1. The last three rules deal with
configurations of two TSTs. Rule [S-⊕] allows a TSTs to commit in an internal
choice. Rule [S-τ ] is the standard synchronisation rule à la CCS; note that B is
assumed to read a message as soon as it is sent, so A never blocks on internal
choices. Rule [S-Del] allows time to pass, equally for both endpoints.

Example 2. Let p = !a ⊕ !b{t > 2}, let q = ?b{t > 5}, and consider the
following computations:

(p, ν0) | (q, η0) 7−→ τ−→ ([!b{t > 2}] , ν0 + 7) | (q, η0 + 7)
τ−→ (1, ν0 + 7) | (1, η0 + 7) (1)

(p, ν0) | (q, η0) δ−→ τ−→ ([!a] , ν0 + δ) | (q, η0 + δ) (2)

(p, ν0) | (q, η0) 3−→ τ−→ ([!b{t > 2}] , ν0 + 3) | (q, η0 + 3) (3)

The computation in (1) reaches success, while the other two computations reach
the deadlock state. In (2), p commits to the choice !a after some delay δ; at this
point, time cannot pass (because the leftmost endpoint is a committed choice),
and no synchronisation is possible (because the other endpoint is not offering ?a).
In (3), p commits to !b after 3 time units; here, the rightmost endpoint would
offer ?b, — but not in the time chosen by the leftmost endpoint. Note that, were
we allowing time to pass in committed choices, then we would have obtained
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e.g. that (!b{t > 2}, ν0) | (q, η0) never reaches deadlock — contradicting our
intuition that these endpoints should not be considered compliant.

Compliance. We now extend to the timed setting the standard progress-based
compliance between (untimed) session types [21,11,4]. If p is compliant with q ,
then whenever an interaction between p and q becomes stuck, it means that
both participants have reached the success state. Intuitively, when two TSTs are
compliant and participants behave honestly (according to their TSTs), then the
interaction will progress, until both of them reach the success state.

Definition 6 (Compliance). We say that (p, ν ) | (q, η) is deadlock whenever
(i) it is not the case that both p and q are 1, and (ii) there is no δ such that

(p, ν + δ) | (q, η + δ)
τ−→. We then write (p, ν) �� (q, η) whenever:

(p, ν) | (q, η) −→∗ (p′, ν ′) | (q ′, η ′) implies (p′, ν ′) | (q ′, η ′) not deadlock

We say that p and q are compliant whenever (p, ν0) �� (q, η0) (in short, p �� q).

Example 3. Let p = ?a{t < 5}.!b{t < 3}. We have that p is compliant with
q = !a{t < 2}.?b{t < 3}, but it is not compliant with q ′ = !a{t < 5}.?b{t < 3}.
Example 4. Consider a customer of PayNow (see Example 1) who is willing to
wait 10 days to receive the item she has paid for, but after that she will open
a claim. Further, she will instantly provide PayNow with any documentation
required. The customer contract is described by the following TST, which is
compliant with PayNow’s contract p in Example 1:

!pay{tpay}.(!ok{tpay < 10} ⊕
!dispute{tpay=10}.!claim{tpay=10}.!rcpt{tpay=10}.?refund)

Compliance between TSTs is somehow more liberal than the untimed notion,
as it can relate terms which, when cleaned from all the time annotations, would
not be compliant in the untimed case. The following example shows e.g., that a
recursive internal choice can be compliant with a non-recursive external choice
— which can never happen in untimed session types.

Example 5. Consider the TSTs p = recX.
(

!a ⊕ !b{x ≤ 1}. ?c. X)

, and q =
?a + ?b{y ≤ 1}. !c{y > 1}. ?a. We have that p �� q . Indeed, if p chooses the
output !a, then q has the corresponding input, and they both succeed; instead,
if p chooses !b, then it will read ?c when x > 1, and so at the next loop it is
forced to choose !a, since the guard of !b has become unsatisfiable.

Definition 7 and Lemma 1 below coinductively characterise compliance be-
tween TSTs, by extending to the timed setting the coinductive compliance for
untimed session types in [3]. Intuitively, an internal choice p is compliant with
q when (i) q is an external choice, (ii) for each output !a that p can fire after
δ time units, there exists a corresponding input ?a that q can fire after δ time
units, and (iii) their continuations are coinductively compliant. The case where
p is an external choice is symmetric.
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Definition 7. We say R is a coinductive compliance iff (p, ν)R (q, η) implies:

1. p = 1 ⇐⇒ q = 1

2. p =
⊕

i∈I !ai{gi, Ri} . pi =⇒ ν ∈ rdy(p) ∧ q =
∑

j∈J ?aj{gj , Rj} . qj ∧
∀δ, i : ν + δ ∈ �gi� =⇒ ∃j : ai = aj ∧η+ δ ∈ �gj�∧ (pi, ν + δ[Ri])R (qj , η+ δ[Rj ])

3. p =
∑

j∈J ?aj{gj , Rj} . pj =⇒ η ∈ rdy(q) ∧ q =
⊕

i∈I !ai{gi, Ri} . qi ∧
∀δ, i : η+ δ ∈ �gi� =⇒ ∃j : ai = aj ∧ν + δ ∈ �gj�∧ (pj , ν + δ[Rj ])R (qi, η+ δ[Ri])

Lemma 1. p �� q ⇐⇒ ∃R coinductive compliance : (p, ν0)R (q, η0)

The following theorem establishes decidability of compliance. To prove it, we
reduce the problem of checking p��q to that of model-checking deadlock freedom
in a network of timed automata constructed from p and q (see [5] for details).

Theorem 1. Compliance between TSTs is decidable.

3 On Duality and Subtyping

The dual of an untimed session type is computed by simply swapping internal
choices with external ones (and inputs with outputs) [10]. A näıve attempt to
extend this construction to TSTs can be to swap internal with external choices,
as in the untimed case, and leave guards and resets unchanged. This construction
does not work as expected, as shown by the following example.

Example 6. Consider the following TSTs:

p1 = !a{x ≤ 2}. !b{x ≤ 1} p2 = !a{x ≤ 2} ⊕ !b{x ≤ 1}. ?a{x ≤ 0}
p3 = recX. ?a{x ≤ 1 ∧ y ≤ 1}. !a{x ≤ 1, {x}}. X

The TST p1 is not compliant with its näıve dual q1 = ?a{x ≤ 2}. ?b{x ≤ 1}:
even though q1 can do the input ?a in the required time window, p1 cannot
perform !b if !a is performed after 1 time unit. For this very reason, no TST is
compliant with p1. Note instead that q1 ��!a{x ≤ 1}. !b{x ≤ 1}, which is not its
näıve dual. In p2, a similar deadlock situation occurs if the !b branch is chosen,
and so also p2 does not admit a compliant. The reason why p3 does not admit
a compliant is more subtle: actually, p3 can loop until the clock y reaches the
value 1; after this point, the guard y ≤ 1 can no longer be satisfied, and then p3
reaches a deadlock.

As suggested in the above example, the dual construction makes sense only for
those TSTs for which a compliant exists. To this purpose, we define a procedure
(more precisely, a kind system) which computes the set of clock valuations K
(called kinds) such that p admits a compliant TST in all ν ∈ K. We then
provide a constructive proof of its soundness, by showing a TST q compliant
with p, which we call the dual of p.

We now define our kind system for TSTs.
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Γ � 1 : V [T-1]
Γ � pi : Ki for i ∈ I

Γ � ∑

i∈I ?ai{gi, T i} . pi : ⋃i∈I ↓
(

�gi� ∩ Ki[T i]
−1

) [T-+]

Γ � pi : Ki for i ∈ I

Γ � ⊕

i∈I !ai{gi, T i} . pi :
(⋃

i∈I ↓ �gi�
) \ (⋃i∈I ↓ (�gi� \ Ki[T i]

−1)
) [T-⊕]

Γ,X : K � X : K [T-Var]
∃K,K′ : Γ{K/X} � p : K′

Γ � recX. p :
⋃ {K | Γ{K/X} � p : K′ ∧ K ⊆ K′} [T-Rec]

Fig. 2. Kind system for TSTs

Definition 8 (Kind system). Kind judgements Γ � p : K are defined in
Figure 2. where Γ is a partial function which associates kinds to recursion variables.

Rule [T-1] says that the success TST 1 admits compliant in every ν : indeed, 1
is compliant with itself. The kind of an exernal choice is the union of the kinds
of its branches (rule [T-+]), where the kind of a branch is the past of those clock
valuations which satisfy both the guard and, after the reset, the kind of their
continuation. Internal choices are dealt with by rule [T-⊕], which computes the
difference between the union of the past of the guards and a set of error clock
valuations. The error clock valuations are those which can satisfy a guard but
not the kind of its continuation. Rule [T-Var] is standard. Rule [T-Rec] looks for a
kind which is preserved by unfolding of recursion (hence a fixed point). In order
to obtain completeness of the kind system we need the greatest fixed point.

Example 7. Recall p2 from Example 6. We have the following kind derivation:

� 1 : V
� 1 : V

[T-+]� !a{x ≤ 0} : ↓ �x ≤ 0� ∩ V = �x ≤ 0�
[T-⊕]

� p2 :
( ↓ �x ≤ 2� ∪ ↓ �x ≤ 1�

) \ ( ↓ �x ≤ 2� \ V) ∪ ↓ �x ≤ 1� \ �x ≤ 0�
)

= K

where K = �(x > 1) ∧ (x ≤ 2)�. As noted in Example 6, intuitively p2 has no
compliant; this will be asserted by Theorem 5 below, as a consequence of the
fact that ν0 
∈ K. However, since K is non-empty, Theorem 4 guarantees that
there exist q and η such that (p2, ν) �� (q, η), for all clock valuations ν ∈ K.

The following theorem states that every TST is kindable. We stress the fact
that being kindable does not imply admitting a compliant. This holds if and
only if ν0 belongs to the kind (see Theorems 4 and 5).

Theorem 2. For all closed p, there exists some K such that � p : K.

The following theorem states that the problem of determining the kind of a

TST is decidable. This might seem surprising, as the cardinality of kinds is 22
ℵ0
.

However, the kinds constructed by our inference rules can always be represented
syntactically by guards (as in Definition 1) [17].

Theorem 3. Kind inference is decidable.
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coΓ (1) = 1
coΓ

(∑

i∈I ?ai{gi, T i} . pi
)

=
⊕

i∈I !ai{gi ∧ Ki[T i]
−1, T i} . coΓ (pi) if Γ � pi : Ki

coΓ
(⊕

i∈I !ai{gi, T i} . pi
)

=
∑

i∈I ?ai{gi, T i} . coΓ (pi)
coΓ (X ) = X if Γ (X ) defined

coΓ (recX. p) = recX. coΓ{K/X}(p) if Γ � recX. p : K

Fig. 3. Dual of a TST

We now define the canonical compliant of kindable TSTs. Roughly, we turn
internal choices into external ones (without changing guards nor resets), and
external into internal, changing the guards so that the kind of continuations is
preserved. Decidability of this construction follows from that of kind inference.

Definition 9 (Dual). For all kindable p and kinding environments Γ , we define
the TST coΓ (p) (in short, co(p) when Γ = ∅) in Figure 3.

The following theorem states the soundness of the kind system: is particular,
if the clock valuation ν0 belongs to the kind of p, then p admits a compliant.

Theorem 4 (Soundness). If � p : K and ν ∈ K, then (p, ν) �� (co(p) , ν).

Example 8. Recall the TST q1 = ?a{x ≤ 2}. ?b{x ≤ 1} in Example 6. We have:

co(q1) = !a{x ≤ 1}. !b{x ≤ 1}
Since � q1 : K = �x ≤ 1� and ν0 ∈ K, by Theorem 4 we have that q1 �� co(q1),
as anticipated in Example 6.

The following theorem states the kind system is also complete: in particular,
if p admits a compliant, then the clock valuation ν0 belongs to the kind of p.

Theorem 5 (Completeness). If � p : K and ∃q, η. (p, ν)��(q, η), then ν ∈ K.

Compliance is not transitive, in general (see [5]); however, the following The-
orem 6 states that transitivity holds when passing through duals.

Theorem 6. If p �� p′ and co(p′) �� q, then p �� q.

We now show that the dual is maximal w.r.t. the subtyping relation, like the
dual in the untimed setting. We start by defining the semantic subyting preorder,
which is a sound and complete model of the Gay and Hole subtyping relation
(in reverse order) for untimed session types [4]. Intuitively, p is subtype of q if
every q ′ compliant with q is compliant with p, too.

Definition 10 (Semantic subtyping). For all TSTs p, we define the set p��

as {q | p �� q}. Then, we define the relation p � q whenever p�� ⊇ q��.

The following theorem states that co(p) is the maximum (i.e., the most “pre-
cise”) in the set of the compliants of p, if not empty.
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Theorem 7. q �� p =⇒ q � co(p)

The following theorem reduces the problem of deciding p � q to that of
checking compliance between p and co(q). Since both compliance and the dual
construction are decidable, this implies decidability of subtyping.

Theorem 8. If q admits a compliant, then: p � q ⇐⇒ p �� co(q).

4 Runtime Monitoring

In this section we study runtime monitoring based on TSTs. The setting is the
following: two participants A and B want to interact according to two (compliant)
TSTs pA and pB , respectively. This interaction happens through a server, which
monitors all the messages exchanged between A and B, while keeping track of
the passing of time. If a participant (say, A) sends a message not expected by
her TST, then the monitor classifies A as culpable of a violation. There are other
two circumstances where A is culpable: (i) pA is an internal choice, but A loses
time until all the branches become unfeasible, or (ii) pA is an external choice,
but A does not readily receive an incoming message sent by B.

Note that the semantics in Figure 1 cannot be directly exploited to define such
a runtime monitor, for two reasons. First, the synchronisation rule is purely
symmetric, while the monitor outlined above assumes an asymmetry between
internal and external choices. Second, the semantics in Figure 1 does not have
transitions (either messages or delays) which are not allowed by the TSTs: for
instance, (!a{t ≤ 1}, ν) cannot take any transitions (neither !a nor δ) if ν (t) >
1. In a runtime monitor we want to avoid such kind of situations, where no
actions are possible, and the time is frozen. More specifically, our desideratum
is that the runtime monitor acts as a deterministic automaton, which reads a
timed trace (a sequence of actions and time delays) and it reaches a unique
state γ, which can be inspected to find which of the two participants (if any)
is culpable.

To reach this goal, we define the semantics of the runtime monitor on two
levels. The first level, specified by the relation −→→, deals with the case of honest
participants; however, differently from the semantics in Section 2, here we de-
couple the action of sending from that of receiving. More precisely, if A has an
internal choice and B has an external choice, then we postulate that A must move
first, by doing one of the outputs in her choice, and then B must be ready to
do the corresponding input. The second level, called monitoring semantics and
specified by the relation −→→M , builds upon the first one. Each move accepted by
the first level is also accepted by the monitor. Additionally, the monitoring se-
mantics defines transitions for actions not accepted by the first level, for instance
unexpected input/output actions, and improper time delays. In these cases, the
monitoring semantics signals which of the two participants is culpable.

Definition 11 (Monitoring semantics of TSTs). Monitoring configura-
tions γ, γ′, . . . are terms of the form P ‖Q, P and Q are triples (p, c, ν), where
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(!a{g,R}. p ⊕ p′, [], ν ) ‖ (q, [], η) A:!a−−→→ (p, [!a], ν [R]) ‖ (q, [], η) if ν ∈ �g� [M-⊕]

(p, [!a], ν) ‖ (?a{g,R}. q + q ′, [], η)
B:?a−−→→ (p, [], ν ) ‖ (q, [], η [R]) if ν ∈ �g� [M-+]

ν + δ ∈ rdy(p) η + δ ∈ rdy(q)

(p, [], ν ) ‖ (q, [], η) δ−→→ (p, [], ν + δ) ‖ (q, [], η + δ)
[M-Del]

(p, c, ν ) ‖ (q, d, η) λ−→→ (p′, c′, ν ′) ‖ (q ′, d′, η ′)

(p, c, ν ) ‖ (q, d, η) λ−→→M (p′, c′, ν ′) ‖ (q ′, d′, η ′)
[M-Ok]

(p, c, ν ) ‖ (q, d, η) � A:�−−→→
(p, c, ν) ‖ (q, d, η) A:�−−→→M (0, c, ν ) ‖ (q, d, η)

[M-FailA]

(d = [] ∧ ν + δ �∈ rdy(p)) ∨ d �= [])

(p, c, ν ) ‖ (q, d, η) δ−→→M (0, c, ν + δ) ‖ (q, d, η + δ)
[M-FailD]

Fig. 4. Monitoring semantics (symmetric rules omitted)

p is either a TST or 0, and c is a one-position buffer (either empty or con-
taining an output label). The transition relations −→→ and −→→M over monitoring
configurations, with labels λ, λ′, . . . ∈ ({A,B} × L) ∪R≥0, is defined in Figure 4.

In the rules in Figure 4, we always assume that the leftmost TST is governed
by A, while the rightmost one is governed by B. In rule [M-⊕], A has an internal
choice, and she can fire one of her outputs !a, provided that its buffer is empty,
and the guard g is satisfied. When this happens, the message !a is written to the
buffer, and the clocks in R are reset. Then, B can read the buffer, by firing ?a in
an external choice through rule [M-+]; this requires that the buffer of B is empty,
and the guard g of the branch ?a is satisfied. Rule [M-Del] allows time to pass,
provided that the delay δ is permitted for both participants, and both buffers
are empty. The last three rules specify the runtime monitor. Rule [M-Ok] says
that any move accepted by −→→ is also accepted by the monitor. Rule [M-FailA]

is used when participant A attempts to do an action not permitted by −→→: this
makes the monitor evolve to a configuration where A is culpable (denoted by the
term 0). Rule [M-FailD] makes A culpable when time passes, in two cases: either
A has an internal choice, but the guards are no longer satisfiable; or she has an
external choice, and there is an incoming message.

When both participants behave honestly, i.e., they never take [M-Fail*] moves,
the monitoring semantics preserves compliance (Theorem 9). The monitoring
compliance relation ��M is the straightforward adaptation of that in Definition 6,
except that −→→ transitions are used instead of −→ ones (see [5]).

Theorem 9. �� = ��M .
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The following lemma establishes that the monitoring semantics is determin-

istic: that is, if γ
λ−→→M γ′ and γ

λ−→→M γ′′, then γ′ = γ′′. Determinism is a very
desirable property indeed, because it ensures that the culpability of a participant
at any given time is uniquely determined by the past actions. Furthermore, for
all finite timed traces λ (i.e., sequences of actions A : � or time delays δ), there
exists some configuration γ reachable from the initial one.

Lemma 2. Let γ0 = (p, [], ν0) ‖ (q, [], η0). If p��q, then (−→→M , γ0) is determinis-

tic, and for all finite timed traces λ there exists (unique) γ such that γ0
λ−→→M γ.

The goal of the runtime monitor is to detect, at any state of the execution,
which of the two participants is culpable (if any). Further, we want to identify
who is in charge of the next move. This is formalised by the following definition.

Definition 12 (Duties & culpability). Let γ = (p, c, ν) ‖ (q, d, η). We say
that A is culpable in γ iff p = 0. We say that A is on duty in γ if (i) A is not
culpable in γ, and (ii) either p is an internal choice, or d is not empty.

Lemma 3 guarantees that, in each reachable configuration, only one of the
participants can be on duty; and if no one is on duty nor culpable, then both
participants have reached success.

Lemma 3. If p �� q and (p, [], ν0) ‖ (q, [], η0) −→→∗
M γ, then:

1. there exists at most one participant on duty in γ,
2. if there exists some culpable participants in γ, then no one is on duty in γ,
3. if no one is on duty in γ, then γ is success, or someone is culpable in γ.

Note that both participants may be culpable in a configuration. E.g., let
γ = (!a{true}, [], η0) ‖ (?a{true}, [], η0). By applying [M-FailA] twice, we obtain:

γ
A:?b−−−→→M (0, [], ν0) ‖ (?a{true}, [], η0) B:?b−−−→→M (0, [], ν0) ‖ (0, [], η0)

and in the final configuration both participants are culpable.

Example 9. Let p = !a{2 < t < 4} be the TST of participant A, and let
q = ?a{2 < t < 5} + ?b{2 < t < 5} be that of B. We have that p �� q .
Let γ0 = (p, [], ν0) ‖ (q, [], ν0). A correct interaction is given by the timed trace

η = 〈1.2, A : !a, B : ?a〉. Indeed, γ0 η−→→M (1, [], ν0) ‖ (1, [], ν0). On the contrary,
things may go awry in three cases:

(i) a participant does something not permitted. E.g., if A fires a at 1 t.u., by

[M-FailA]: γ0
1−→→M

A:!a−−−→→M (0, [], ν0 + 1) ‖ (q, [], η0 + 1), where A is culpable.
(ii) a participant avoids to do something she is supposed to do. E.g., assume

that after 6 t.u., A has not yet fired a. By rule [M-FailD], we obtain γ0
6−→→M

(0, [], ν0 + 6) ‖ (q, [], η0 + 6), where A is culpable.
(iii) a participant does not receive a message as soon as it is sent. For instance,

after a is sent at 1.2 t.u., at 5.2 t.u. B has not yet fired ?a. By [M-FailD],

γ0
1.2−−→→M

A:!a−−−→→M
4−→→M (1, [!a], ν0+5.2) ‖ (0, [], η0+5.2), where B is culpable.
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5 Conclusions

We have studied a theory of session types (TSTs), featuring timed synchronous
communication between two endpoints. We have defined a decidable notion of
compliance between TSTs, a decidable procedure to detect when a TST admits a
compliant, a decidable subtyping relation, and a (decidable) runtime monitoring.

All these notions have been exploited in the design and development of a
message-oriented middleware which uses TSTs to drive safe interactions among
distributed components. The idea is a contract-oriented, bottom-up composition,
where only those services with compliant contracts can interact via (binary) ses-
sions. The middleware makes available a global store where services can advertise
contracts, in the form of TSTs. Assume that A advertises a contract p to the
store (this is only possible if p admits a compliant). A session between A and
B can be established if (i) B advertises a contract q compliant with p, or (ii) B
accepts the contract p (in this case, the contract of B is the dual of p). When
the session is established, A and B can interact by sending/receiving messages
through the session. During the interaction, all their actions are monitored (ac-
cording to Definition 11), and possible misbehaviours are detected (according
to Definition 12). The middleware is accessible through a set of public APIs; a
suite of tools for developing contract-oriented applications is available at [5].

Related work. Compliance between TSTs is loosely related to the notion of
compliance between untimed session types (in symbols, ��u). Let u(p) be the
session type obtained by erasing from p all the timing annotations. It is easy
to check that the semantics of (u(p), ν0) | (u(q), ν0) in Section 2 coincides with
the semantics of u(p) | u(q) in [4]. Therefore, if u(p) �� u(q), then u(p) ��u u(q).
Instead, semantic conservation of compliance does not hold, i.e. it is not true in
general that if p �� q , then u(p) ��u u(q). E.g., let p = !a{t < 5} ⊕ !b{t < 0},
and let q = ?a{t < 7}. We have that p �� q (because the branch !b can never
be chosen), whereas u(p) = !a ⊕ !b 
��u?a = u(q). Note that, for every p,
u(co(p)) = co(u(p)).

In the context of session types, time has been originally introduced in [9].
However, the setting is different than ours (multiparty and asynchronous, while
ours is bi-party and synchronous), as well as its objectives: while we have focussed
on primitives for the bottom-up approach to service composition [6], [9] extends
to the timed case the top-down approach. There, a choreography (expressing the
overall communication behaviour of a set of participants) is projected into a set
of session types, which in turn are refined as processes, to be type-checked against
their session type in order to make service composition preserve the properties
enjoyed by the choreography.

Our approach is a conservative extension of untimed session types, in the
sense that a participant which performs an output action chooses not only the
branch, but the time of writing too; dually, when performing an input, one has
to passively follow the choice of the other participant. Instead, in [9] external
choices can also delay the reading time. The notion of correct interaction studied
in [9] is called feasibility: a choreography is feasible iff all its reducts can reach the



Compliance and Subtyping in Timed Session Types 175

success state. This property implies progress, but it is undecidable in general,
as shown by [20] in the context of communicating timed automata (however,
feasibility is decidable for the subclass of infinitely satisfiable choreographies).
The problem of deciding if, given a local type T , there exists a choreography G
such that T is in the projection of G and G enjoys (global) progress is not being
addressed in [9]. We think that it can be solved by adapting our kind system (in
particular rule [T-+] must be adjusted).

Another problem not addresses by [9] is that of determinining if a set of
session types enjoys progress (which, as feasibility of choreographies, would be
undecidable). In our work we have considered this problem, under a synchronous
semantics, and with the restriction of two participants. Extending our seman-
tics to an asynchronous one would make compliance undecidable (as it is for
untimed asynchronous session types [15]). Note that our progress-based notion
of compliance does not imply progress with the semantics of [9] (adapted to
the binary case). For instance, let p = ?a{x ≤ 2}. !a{x ≤ 1} and q = !a{y ≤
1}. ?a{y ≤ 1}. We have that p��q , while in the semantics of [9] (ν0, (p, q,w0)) −→∗

(ν , (!a{x ≤ 1}, ?a{y ≤ 1},w0)) with ν(x) = ν(y) > 1, which is a deadlock state.
Dynamic verification of timed multiparty session types is addressed by [22],

where the top-down approach to service composition is pursued [19]. Our mid-
dleware instead composes and monitors services in a bottom-up fashion [6].

In [13] timed specifications are studied in the setting of timed I/O transition
systems (TIOTS). They feature a notion of correct composition, called compati-
bility, following the optimistic approach pursued in [14]: roughly, two systems are
compatible whenever there exists an environment which, composed with them,
makes “undesirable” states unreachable. A notion of refinement is coinductively
formalised as an alternating timed simulation. Refinement is a preorder, and
it is included in the semantic subtyping relation (using compatibility instead
of ��). Because of the different assumptions (open systems and broadcast com-
munications in [13], closed binary systems in TSTs), compatibility/refinement
seem unrelated to our notions of compliance/subtyping. Despite the main no-
tions in [13] are defined on semantic objects (TIOTS), they can be decided on
timed I/O automata, which are finite representations of TIOTS. With respect to
TSTs, timed I/O automata are more liberal: e.g., they allow for mixed choices,
while in TSTs each state is either an input or an output. However, this increased
expressiveness does not seem appropriate for our purposes: first, it makes the
concept of culpability unclear (and it breaks one of the main properties of ours,
i.e. that at most one participant is on duty at each execution step); second, it
seems to invalidate any dual construction. This is particularly unwelcome, since
this construction is one of the crucial primitives of contract-oriented interactions.
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Abstract. In this paper we propose a formal framework for studying privacy. Our
framework is based on the π-calculus with groups accompanied by a type system
for capturing privacy requirements relating to information collection, information
processing and information dissemination. The framework incorporates a privacy
policy language. We show that a system respects a privacy policy if the typing
of the system is compatible with the policy. We illustrate our methodology via
analysis of privacy-aware schemes proposed for electronic traffic pricing.

1 Introduction

The notion of privacy is a fundamental notion for society and, as such, it has been an ob-
ject of study within various scientific disciplines. Recently, its importance is becoming
increasingly pronounced as the technological advances and the associated widespread
accessibility of personal information is redefining the very essence of the term privacy.

A study of the diverse types of privacy, their interplay with technology, and the
need for formal methodologies for understanding and protecting privacy is discussed
in [19], where the authors follow in their arguments the analysis of David Solove, a le-
gal scholar who has provided a discussion of privacy as a taxonomy of possible privacy
violations [18]. According to Solove, privacy violations can be distinguished in four
categories: invasions, information collection, information processing, and information
dissemination. Invasion-related privacy violations are violations that occur on the physi-
cal sphere of an individual. The authors of [19] concentrate on the latter three categories
and they identify a model for studying them consisting of the data holder possessing
information about the data subject and responsible to protect this information against
unauthorized adversaries within the environment.

The motivation of this paper stems from the need of developing formal frameworks
for reasoning about privacy-related concepts. Such frameworks may provide solid foun-
dations for understanding the notion of privacy and allow to rigorously model and study
privacy-related situations. More specifically, our objective is to develop a static method
for ensuring that a privacy policy is satisfied by an information system using the π-
calculus as the underlying theory.

To achieve this objective, we develop a meta-theory for the π-calculus that captures
privacy as policy. Following the model of [19], we create a policy language that enables
us to describe privacy requirements for private data over data entities. For each type of
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private data we expect entities to follow different policy requirements. Thus, we define
policies as objects that describe a hierarchical nesting of entities where each node/entity
of the hierarchy is associated with a set of privacy permissions. The choice of permis-
sions encapsulated within a policy language is an important issue because identification
of these permissions constitutes, in a sense, a characterization of the notion of privacy.
In this work, we make a first attempt of identifying some such permissions, our choice
emanating from the more obvious privacy violations of Solove’s taxonomy which we
refine by considering some common applications where privacy plays a central role.

As an example consider a medical system obligated to protect patient’s data. Inside
the system a nurse may access patient files to disseminate them to doctors. Doctors are
able to process the data without any right to disseminate them. Overall, the data cannot
be disclosed outside the hospital. We formalize this policy as follows:

t� Hospital : {nondisclose}[ Nurse : {access,disclose Hospital1},
Doctor : {access, read,write}]

where t is the type of the patient’s data. The policy describes the existence of the
Hospital entity at the higher level of the hierarchy associated with the nondisclose per-
mission signifying that patient data should not be disclosed outside the system. Within
this structure, a nurse may access (but not read) a patient file and disseminate the file
once (disclose Hospital1). Similarly a doctor may be given access to a patient file but is
also allowed to read and write data within the files (permissions access, read and write).

Moving on to the framework underlying our study, we employ the π-calculus with
groups [5]. This calculus extends the π-calculus with the notion of groups and an as-
sociated type system in a way that controls how data is being disseminated inside a
system. It turns out that groups give a natural abstraction for the representation of en-
tities in a system. Thus, we build on the notion of a group of the calculus of [5], and
we use the group memberships of processes to distinguish their roles within systems.
Information processing issues can be analysed through the use of names of the calculus
in input, output and object position to identify when a channel is reading or writing
private data or when links to private data are being communicated between groups.

An implementation of the hospital scenario in the π-calculus with groups would be

(ν Hospital)((ν Nurse)(a〈l〉.0) | (ν Doctor)(a(x).x(y).x〈d〉.0))
In this system, (νHospital) creates a new group that is known to the two processes of the
subsequent parallel composition while (Nurse) and (Doctor) are groups nested within
the Hospital group and available to processes a〈l〉.0 and a(x).x(y).x〈d〉.0, respectively.
The group memberships of the two processes characterize their nature while reflecting
the entity hierarchy expressed in the privacy policy defined above.

The types of the names in the above process are defined as y : t,d : t, that is y and
d are values of sensitive data, while l : Hospital[t] signifies that l is a channel that
can be used only by processes which belong to group Hospital to carry data of type t.
Similarly, a :Hospital[Hospital[t]] states that a is a channel that can be used by members
of group Hospital, to carry objects of type Hospital[t]. Intuitively, we may see that this
system conforms to the defined policy, both in terms of the group structure as well as
the permissions exercised by the processes. Instead, if the nurse were able to engage in
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a l〈d〉 action then the defined policy would be violated as it would be the case if the
type of a was defined as a : Other[Hospital[t]] for some distinct group Other. Thus, the
encompassing group is essential for capturing requirements of non-disclosure.

Using these building blocks, our methodology is applied as follows: Given a sys-
tem and a typing we perform type checking to confirm that the system is well-typed
while we infer a permission interface. This interface captures the permissions exercised
by the system. To check that the system complies with a privacy policy we provide a
correspondence between policies and permission interfaces the intention being that: a
permission interface satisfies a policy if and only if the system exercises a subset of the
allowed permissions of the policy. With this machinery at hand, we state and prove a
safety theorem according to which, if a system Sys type-checks against a typing Γ and
produces an interface Θ , and Θ satisfies a privacy policy P , then Sys respects P .

2 The Calculus

Our study of privacy is based on the π-calculus with groups proposed by Cardelli et
al. [5]. This calculus is an extension of the π-calculus with the notion of a group and
an operation of group creation where a group is a type for channels. In [5] the authors
establish a close connection between group creation and secrecy as they show that a
secret belonging to a certain group cannot be communicated outside the initial scope of
the group. This is related to the fact that groups can never be communicated between
processes. Our calculus is based on the π-calculus with groups with some modifications.

We assume the existence of two basic entities: G , ranged over by G,G1, . . . is the
set of groups and N , ranged over by a,b,x,y, . . ., is the set of names. Furthermore,
we assume a set of basic types D, ranged over by ti, which refer to the basic data of
our calculus on which privacy requirements should be enforced. Specifically, we assign
each name in N a type such that a name may either be of some base type t or of type
G[T ], where G is the group of the name and T the type of value that can be carried on
the name. Given the above, a type is constructed via the following BNF.

T ::= t | G[T ]

Then the syntax of the calculus is defined at two levels. At the process level, P,
we have the standard π-calculus syntax. At the system level, S, we include the group
construct, applied both at the level of processes (ν G)P, and at the level of systems,
(ν G)S, the name restriction construct as well as parallel composition for systems.

P ::= x(y:T ).P | x〈z〉.P | (ν a:T )P | P1 | P2 | !P | 0

S ::= (ν G)P | (ν G)S | (ν a:T )S | S1 | S2 | 0

In (ν a:T )P and (ν a:T )S, name a is bound in P and S, respectively, and in process
x(y:T ).P, name y is bound in P. In (ν G)P and (ν G)S, the group G is bound in P and
S. We write fn(P) and fn(S) for the sets of names free in a process P and a system S,
and fg(S) and fg(T ), for the free groups in a system S and a type T , respectively. Note
that free occurrences of groups occur within the types T of a process/system.
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We now turn to defining a labelled transition semantics for the calculus. We define a
labelled transition semantics instead of a reduction semantics due to a characteristic of
the intended structural congruence in our calculus. In particular, the definition of such
a congruence would omit the axiom (ν G)(S1 | S2) ≡ (ν G)S1 | S2 if G �∈ fg(S2) as it
was used in [5]. This is due to our intended semantics of the group concept which is
considered to assign capabilities to processes. Thus, nesting of a process P within some
group G, as in (ν G)P, cannot be lost even if G �∈ fg(P), since the (ν G) construct
has the additional meaning of group membership in our calculus and it instills P with
privacy-related permissions as we will discuss in the sequel. The absence of this law
renders a reduction semantics rule of parallel composition rather complex.

To define a labelled transition semantics we first define a set of labels:

� ::= τ | x(y) | x〈y〉 | (ν y)x〈y〉
Label τ is the internal action whereas labels x(y) and x〈y〉 are the input and output
actions, respectively. Label (ν y)x〈y〉 is the restricted output where the object y of the
action is restricted. Functions fn(�) and bn(�) return the set of the free and bound names
of �, respectively. We also define the relation dual(�,�′) which relates dual actions as

dual(�,�′) if and only if {�,�′}= {x(y),x〈y〉} or {�,�′}= {x(y),(ν y)x〈y〉}.
We use the meta-notation (F ::= P | S) to define the labelled transition semantics.

x(y : T ).P
x(z)−→ P{z/y} (In) x〈z〉.P x〈z〉−→ P (Out)

F1
�−→ F ′

1 bn(�)∩fn(F2) = /0

F1 | F2
�−→ F ′

1 | F2

(ParL)
F2

�−→ F ′
2 bn(�)∩fn(F1) = /0

F1 | F2
�−→ F1 | F ′

2

(ParR)

F
�−→ F ′ x /∈ fn(�)

(ν x : T )F
�−→ (ν x : T )F ′

(ResN)
F

x〈y〉−→ F ′

(ν y : T )F
(ν y)x〈y〉−→ F ′

(Scope)

F
�−→ F ′

(ν G)F �−→ (ν G)F ′
(ResG)

F ≡α F ′′ F ′′ �−→ F ′

F �−→ F ′
(Alpha)

P
�−→ P′

!P
�−→ P′ | !P

(Repl)
F1

�1−→ F ′
1 F2

�2−→ F ′
2 dual(�1, �2)

F1 | F2
τ−→ (ν bn(�1)∪bn(�2))(F

′
1 | F ′

2)
(Com)

Fig. 1. The labelled transition system

The labelled transition semantics follows along the lines of standard π-calculus se-
mantics where ≡α denotes α-equivalence and the rule for the group-creation construct,
(ResG), captures that transitions are closed under group restriction.

3 Policies and Types

In this section we define a policy language and the appropriate type machinery to en-
force policies over processes.
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3.1 Policies

Typically, privacy policy languages express positive and negative norms that are ex-
pected to hold in a system. These norms distinguish what may happen, in the case of
a positive norm, and what may not happen, in the case of a negative norm on data at-
tributes which are types of sensitive data within a system, and, in particular, how the
various agents, who are referred to by their roles, may/may not handle this data.

The notions of an attribute and a role are reflected in our framework via the notions
of base types and groups, respectively. Thus, our policy language is defined in such a
way as to specify the allowed and disallowed permissions associated with the various
groups for each base type (sensitive data). This is achieved via the following entities:

(Linearities) λ ::= 1 | 2 | . . . | ∗
(Permissions) P ::= read | write | access | disclose Gλ | nondisclose

(Hierarchies) H ::= ε | G : p̃[Hj] j∈J

(Policies) P ::= t� H | P;P

Specifically, we define the set of policy permissions P: they express that data may
be read (read) and written (write), that links to data may be accessed (access) or dis-
closed within some group G up to λ times (disclose Gλ ). Notation λ is either a natural
number or equal to ∗ which denotes an infinite number. While the above are positive
permissions, permission nondisclose is a negative permission and, when associated with
a group and a base type, expresses that the base type cannot be disclosed to any partic-
ipant who is not a member of the group.

In turn, a policy has the form t1 � H1; . . . ;tn � Hn assigning a structure Hi to each
type of sensitive data ti. The components Hi, which we refer to as permission hier-
archies, specify the group-permission associations for each base type. A permission
hierarchy H has the form G:p̃ [H1, . . . ,Hm], and expresses that an entity belonging to
group G has rights p̃ to the data in question and if additionally it is a member of some
group Gi where Hi = Gi: p̃i [. . .], then it also has the rights p̃i, and so on.

We define the auxiliary functions groups(H) and perms(H) so as to gather the sets
of groups and the set of permissions, respectively, inside a hierarchy structure:

groups(H) =

{{G}∪ (
⋃

j∈J groups(Hj)) if H = G : p̃[Hj] j∈J

/0 if H = ε

perms(H) =

{
p̃∪ (

⋃

j∈J perms(Hj)) if H = G : p̃[Hj] j∈J

/0 if H = ε

We say that a policy P = t1 � H1; . . . ;tn � Hn is well formed, written P : 
, if it
satisfies the following:

1. The ti are distinct.
2. If H = G : p̃[Hj] j∈J occurs within some Hi then G �∈ groups(Hj) for all j ∈ J, that

is, the group hierarchy is acyclic.
3. If H = G : p̃[Hj] j∈J occurs within some Hi, nondisclose ∈ p̃ and disclose G′ λ ∈

perms(Hj) for some j ∈ J, then G′ ∈ groups(H). In words, no non-disclosure re-
quirement imposed at some level of a hierarchy is in conflict with a disclosure
requirement granted in its sub-hierarchy.
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Hereafter, we assume that policies are well-formed policies. As a shorthand, we write
G : p̃ for G : p̃[ε] and we abbreviate G for G : /0.

As an example, consider a hospital containing the departments of surgery (Surgery),
cardiology (Cardiology), and psychotherapy (Psychotherapy), where cardiologists of
group Cardio belong to the cardiology department, surgeons of group Surgeon be-
long to the surgery department, psychiatrists of group Psy belong to the psychother-
apy department, and CarSurgeon refers to doctors who may have a joint appointment
with the surgery and cardiology departments. Further, let us assume the existence of
data of type MedFile which (1) should not be disclosed to any participant outside the
Hospital group, (2) may be read, written, accessed and disclosed freely within both
the surgery and the cardiology departments and (3) may be read, written and accessed
but not disclosed outside the psychotherapy department. We capture these requirements
via policy P =MedFile� H where pcd = {read,access,write,disclose Cardiology∗},
psd ={read,access,write,disclose Surgery∗}, ppd={nondisclose, read,access,write},

H = Hospital:{nondisclose} [Cardiology:pcd [Cardio,CarSurgeon],

Surgery:psd [Surgeon,CarSurgeon],

Psychotherapy:ppd [Psy]]

At this point we note that, as illustrated in the above policy, hierarchies need not be
tree-structured: group CarSurgeon may be reached via both the Hospital,Cardiology
path as well as the Hospital,Surgery path. In effect this allows to define a process
(ν Hospital)(ν Cardiology)(ν SD)(ν CarSurgeon)P belonging to four groups and in-
heriting the permissions of each one of them.

3.2 The Type System

We proceed to define a typing system for the calculus.

Typing Judgements. The environment on which type checking is carried out consists
of the component Γ . During type checking we infer the two additional structures of
Δ -environments and Θ -interfaces as follows

Γ ::= /0 | Γ · x : T | Γ ·G
Δ ::= /0 | t : p̃ ·Δ
Θ ::= t� Hθ ;Θ | t� Hθ

with Hθ ::= G[Hθ ] | G[p̃]. Note that Hθ captures a special type of hierarchies where
the nesting of groups is linear. We refer to Hθ as interface hierarchies. The domain of
environment Γ , dom(Γ ), contains all groups and names recorded in Γ . Environment
Δ assigns permissions to sensitive data types t. When associated with a base type t,
permissions read and write express that it is possible to read/write data of type t along
channels of type G[t] for any group G. Permission access, when associated with a type
t, expresses that it is possible to receive a channel of type G[t] for any G and, finally, if
permission disclose Gλ is associated with t then it is possible to send channels of type
G[t] for up to λ times. Thus, while permissions read and write are related to manipu-
lating sensitive data, permissions access and disclose are related to manipulating links
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to sensitive data. Finally, interface Θ associates a sensitive type with a linear hierarchy
of groups and a set of permissions, namely, an entity of the form G1[G2[. . .Gn[p̃] . . .]].

We define three typing judgements: Γ � x �T , Γ � P�Δ and Γ � S �Θ . Judgement
Γ � x � T says that under typing environment Γ , name x has type T . Judgement Γ �
P �Δ stipulates that process P is well typed under the environment Γ and produces a
permission environment Δ . In this judgement, Γ records the types of the names of P
and Δ records the permissions exercised by the names in P for each base type. Finally,
judgement Γ � S �Θ defines that system S is well typed under the environment Γ and
produces interface Θ which records the group memberships of all components of S as
well as the permissions exercised by each component.

Typing System. We now move on to our typing system. We begin with some useful
notation. We write:

Δ r
T =

⎧

⎨

⎩

t : read if T = t
t : access if T = G[t]
/0 otherwise

Δ w
T =

⎧

⎨

⎩

t : write if T = t
t : disclose G1 if T = G[t]
/0 otherwise

Furthermore, we define the � operator over permissions:

p̃1 � p̃2 = {p | p ∈ p̃1 ∪ p̃2 ∧ p �= disclose Gλ ∧ p �= nondisclose}
∪ {disclose G(λ1 +λ2) | disclose Gλ1 ∈ p̃1 ∧disclose Gλ2 ∈ p̃2}
∪ {disclose Gλ | disclose Gλ ∈ p̃1 ∧disclose Gλ ′ /∈ p̃2}
∪ {disclose Gλ | disclose Gλ ′ /∈ p̃1 ∧disclose Gλ ∈ p̃2}

Operator � adds two permission sets by taking the union of the non nondisclose per-
missions modulo adding the linearities of the disclose Gλ permissions. We extend the
� operator for Δ -environments: assuming t : /0 ∈ Δ if t : p̃ �∈ Δ , we define Δ1 �Δ2 = {t :
p̃1 � p̃2 | t : p̃1 ∈ Δ1, t : p̃2 ∈ Δ2}.

Finally, we define the ⊕ operator as:

G⊕ (t1 : p̃1, . . . , tm : p̃m) = t1 � G[p̃1], . . . , tm � G[p̃m]

G⊕ (t1 � Hθ
1 , . . . , tm � Hθ

m) = (t1 � G[Hθ
1 ], . . . , tm � G[Hθ

m])

Operator ⊕ when applied to a group G and an interface Δ attaches G to all permission
sets of Δ , thus yielding a Θ interface, whereas, when applied to a group G and an
interface Θ , it attaches group G to all interface hierarchies of Θ .

The typing system is defined in Fig. 2. Rule (Name) is used to type names: in name
typing we require that all group names of the type are present in Γ . Process 0 can be
typed under any typing environment (axiom (Nil)) to infer the empty Δ -interface.

Rule (In) types the input-prefixed process. If environment Γ extended with the type
of y produces Δ as an interface of P, we conclude that the process x(y).P produces an
interface where the type of T is extended with the permissions Δ r

T , where (i) if T is base
type t then Δ is extended by t : read since the process is reading an object of type t,
(ii) if T = T ′[t] then Δ is extended by t : access, since the process has obtained access
to a link for base type t and (iii) Δ remains unaffected otherwise.
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(Name)
fg(T )⊆ Γ

Γ · x : T � x�T
(Nil) Γ � 0� /0

(In)
Γ · y : T � P�Δ Γ � x�G[T ]

Γ � x(y : T ).P�Δ �Δ r
T

(Out)
Γ � P�Δ Γ � x�G[T ] Γ � y�T

Γ � x〈y〉.P�Δ �Δ w
T

(ParP)
Γ � P1 �Δ1 Γ � P2 �Δ2

Γ � P1 | P2 �Δ1 �Δ2
(ParS)

Γ � S1 �Θ1 Γ � S2 �Θ2

Γ � S1 | S2 �Θ1 ·Θ2

(ResNP)
Γ · x : T � P�Δ

Γ � (ν x : T )P�Δ
(ResNS)

Γ · x : T � S�Θ
Γ � (ν x : T )S�Θ

(ResGP)
Γ ·G � P�Δ

Γ � (ν G)P�G⊕Δ
(ResGS)

Γ ·G � S�Θ
Γ � (ν G)S�G⊕Θ

(Rep)
Γ � P�Δ
Γ �!P�Δ !

Fig. 2. The Typing System

Rule (Out) is similar: If y is of type T , x of type G[T ] and Δ is the permission
interface for P, then, x〈y〉.P produces an interface which extends Δ with permissions
Δ w

T . These permissions are (i) {t : write} if T = t since the process is writing data of
type t, (ii) {disclose G1} if T = G[t], since the process is disclosing once a link to
private data via a channel of group G, and (iii) the empty set of permissions otherwise.

Rule (ParP) uses the � operator to compose the process interfaces of P1 and P2.
Parallel composition of systems, rule (ParS), concatenates the system interfaces of S1

and S2. For name restriction, (ResNP) specifies that if P type checks within an environ-
ment Γ · x : T , then (νx)P type checks in environment Γ . (ResNS) is defined similarly.
Moving on to group creation, for rule (ResGP) we have that, if P produces a typing Δ ,
then system (ν G)P produces the Θ -interface G⊕Δwhereas for rule (ResGS), we have
that if S produces a typing interface Θ then process (ν G)S produces interface G⊕Θ
Thus, enclosing a system within an (ν G) operator results in adding G to the group
memberships of each of the components.

Finally, for replication, axiom (Rep) states that if P produces an interface Δ then !P
produces an interface Δ !, where Δ ! is such that if a type is disclosed λ > 1 in Δ then it
is disclosed for an unlimited number of times in Δ !. That is, Δ ! = {t : p̃! | t : p̃ ∈ Δ},
where p̃! = {p ∈ p̃ | p �= discloseGλ}∪{disclose G ∗ | disclose Gλ ∈ Δ}. Note that
the type system never assigns the nondisclose permissions, thus interfaces are never
inferred on the nondisclose permission. This is the reason the nondisclose permission is
ignored in the definition of the � operator.

As an example consider S = (ν G1)(ν G2)P where P =!get(loc : Tl).put〈loc〉.0. Fur-
ther, suppose the existence of a base type Loc and types Tl = G1[Loc], Tr = G2[Tl ] and
Ts = G1[Tl ]. Let us write Γ = get : Tr ·put : Ts · loc : Tl . Then we have:

Γ � 0 � /0 by (Nil)
Γ � put〈loc〉.0 � {Loc : {disclose G1 1} by (Out)
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Γ � get(loc : Tl).put〈loc〉.0 � {Loc : {disclose G1 1,access} by (In)
Γ � !get(loc : Tl).put〈loc〉.0 � {Loc : {disclose G1 ∗,access} by (Rep)
Γ � (ν G2)P�Loc� G2 : [{disclose G1 ∗,access}] by (ResNP)
Γ � S �Loc� G1 : [G2 : [{disclose G1 ∗,access}]] by (ResNS)

4 Soundness and Safety

In this section we establish soundness and safety results for our framework. Missing
proofs of results can be found in the appendix. First, we establish that typing is pre-
served under substitution.

Lemma 1 (Substitution). If Γ · x : T � P�Δ then Γ · y : T � P{y/x} �Δ .

The next definition defines an operator that captures the changes on the interface
environment when a process executes an action.

Definition 1 (Θ1 �Θ2).

1. p̃1 � p̃2 if (i) for all p ∈ p̃1 and p �= disclose Gλ implies p ∈ p̃2, and (ii) for all
disclose Gλ ∈ p̃1 implies disclose λ ′ G ∈ p̃2 and λ ′ ≥ λ or λ ′ = ∗.

2. Δ1 � Δ2 if ∀t, t : p̃1 ∈ Δ1 implies that t : p̃2 ∈ Δ2 and p̃1 � p̃2.
3. (i) G[p̃1]� G[p̃2] if p̃1 � p̃2, and (ii) G[H1]� G[H2] if H1 � H2.
4. Θ1 � Θ2 if (i) dom(Θ1) = dom(Θ2), and (ii) for all t, t � H1 ∈ Θ1 implies that

t� H2 ∈Θ2 and H1 � H2.

Specifically, when a process executes an action we expect a name to maintain or lose
its interface capabilities that are expressed through the typing of the name.

We are now ready to define the notion of satisfaction of a policy P by a permission
interface Θ thus connecting our type system with policy compliance.

Definition 2.

– Consider a policy hierarchy H = G : p̃[Hj] j∈J and an interface hierarchy Hθ . We
say that Hθ satisfies H, written H � Hθ , if:

groups(Hθ ) = G∪⋃

j∈J groups(H
θ
j ) ∀ j ∈ J,Hj � Hθ

j

perms(Hθ )� (� j∈Jperms(Hθ
j ))� p̃

G : p̃[Hj] j∈J � Hθ

– Consider a policy P and an interface Θ . Θ satisfies P , written P �Θ , if:

H � Hθ

t� H;P � t� Hθ
H � Hθ P �Θ

t� H;P � t� Hθ ;Θ

According to the definition of H � Hθ , an interface hierarchy Hθ satisfies a policy
hierarchy H, if its groups can be decomposed into a partition {G}∪⋃

j∈J G j, such that
there exist interface hierarchies Hθ

j referring to groups G j, each satisfying hierarchy Hj

and where the union of the assigned permissions Hθ
j with permissions p̃ is a superset
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of the permissions of Hθ , that is, perms(Hθ )� (� j∈Jperms(Hθ
j ))� p̃. Similarly, a Θ -

interface satisfies a policy, P �Θ , if for each component t� Hθ of Θ , there exists a
component t� H of P such that Hθ satisfies H. A direct corollary of the definition is
the preservation of the � operator over the satisfiability relation:

Corollary 1. If P �Θ1 and Θ2 �Θ1 then P �Θ2.

The next definition formalises when a system satisfies a policy:

Definition 3 (Policy Satisfaction). Let P : 
. We say that S satisfies P , writtenP � S,
if Γ � S �Θ for some Γ and Θ such that P �Θ .

We may now state our result on type preservation by action execution of processes.

Theorem 1 (Type Preservation).

1. Let Γ � P�Δ and P
�−→ P′ then Γ � P′ �Δ ′ and Δ ′ � Δ .

2. Let Γ � S �Θ and S
�−→ S′ then Γ � S′ �Θ ′ and Θ ′ �Θ .

Corollary 2. Let P � S and S
�−→ S′ then P � S′.

Let countLnk(P,Γ ,G[t]) count the number of output prefixes of the form x〈y〉 in
process P where x : G[t] for some base type t. (This can be defined inductively on the
structure of P.) Moreover, given a policy hierarchy H and a set of groups G̃, let us
write HG̃ for the interface hierarchy such that (i) groups(HG̃) = G̃, (ii) H � HG̃ and,

(iii) for all Hθ such that groups(Hθ ) = G̃ and H � Hθ , then perms(Hθ )� perms(HG̃).
Intuitively, HG̃ captures an interface hierarchy with the maximum possible permissions

for groups G̃ as determined by H. We may now define the notion of the error process
which clarifies the satisfiability relation between the policies and processes.

Definition 4 (Error Process). Consider a policy P , an environment Γ and a system

S ≡ (ν G1)(ν x̃1 : T̃1)((ν G2)(ν x̃2 : T̃2)(. . . ((ν Gn)(ν x̃n : T̃n)P | Q | Sn) . . . ) | S1)

System S is an error process with respect to P and Γ , if there exists t such that P =
t� H;P ′ and at least one of the following holds, where G̃ = 〈G1, . . . ,Gn〉:
1. read /∈ perms(HG̃) and ∃x such that Γ � x�G[t] and P = x(y).P′.
2. write /∈ perms(HG̃) and ∃x such that Γ � x�G[t] and P = x〈y〉.P′.
3. access /∈ perms(HG̃) and ∃x such that Γ � x�G[t] and P = y(x).P′.
4. disclose G′ λ /∈ perms(HG̃) and ∃x,y such that Γ � x �G[t], Γ � y �G′[G[t]] and

P = y〈x〉.P′.
5. disclose Gλ ∈ perms(HG̃), λ �= ∗ and countLnk(P,Γ ,G[t])> λ
6. there exists a sub-hierarchy of H, H ′ = Gk : p̃[Hi]i∈I,1 ≤ k ≤ n with nondisclose∈

p̃ and ∃,x,y such that Γ � x � G[t], Γ � y �G′[G[t]] and P = y〈x〉.P′ with G′ /∈
groups(H ′).

The first two error processes expect that a process with no read or write permissions
on a certain level of the hierarchy should not have, respectively, a prefix receiving or
sending an object typed with the private data. Similarly an error process with no access
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permission on a certain level of the hierarchy should not have an input-prefixed subject
with object a link to private data. An output-prefixed process that send links through a
channel of sort G′ is an error process if it is found in a specific group hierarchy with
no disclose G′ λ permission. In the fifth clause, a process is an error if the number of
output prefixes to links in its definition (counted with the countLnk(P,Γ , t) function)
are more than the λ in the discloseGλ permission of the process’s hierarchy. Finally, if
a policy specifies that no data should be disclosed outside some group G, then a process
should not be able to send private data links to groups that are not contained within the
hierarchy of G.

As expected, if a process is an error with respect to a policy P and an environment
Γ its Θ -interface does not satisfy P:

Lemma 2. Let system S be an error process with respect to well formed policy P and
sort Γ . If Γ � S �Θ then P ��Θ .

By Corollary 2 and Lemma 2 we conclude with our safety theorem which verifies
that the satisfiability of a policy by a typed process is preserved by the semantics.

Theorem 2 (Safety). If Γ � S �Θ , P � Θ and S
�−→

∗
S′ then S′ is not an error with

respect to policy P .

5 Example

Electronic Traffic Pricing (ETP) is an electronic toll collection scheme in which the fee
to be paid by drivers depends on the road usage of their vehicles where factors such
as the type of roads used and the times of the usage determine the toll. To achieve
this, for each vehicle detailed time and location information must be collected and pro-
cessed and the due amount can be calculated with the help of a digital tariff and a road
map. A number of possible implementation schemes may be considered for this sys-
tem [8]. In the centralized approach, all location information is communicated to the
pricing authority which computes the fee to be paid based on the received information.
In the decentralized approach the fee is computed locally on the car via the use of a
third trusted entity such as a smart card. In the following subsections we consider these
approaches and their associated privacy characteristics.

5.1 The Centralized Approach

This approach makes use of on-board equipment (OBE) which computes regularly the
geographical position of the car and forwards it to the Pricing Authority (PA). To avoid
drivers tampering with their OBE and communicating false information, the authorities
may perform checks on the spot to confirm that the OBE is reliable.

We may model this system with the aid of five groups: ETP corresponds to the
entirety of the ETP system, Car refers to the car and is divided into the OBE and the
GPS subgroups, and PA refers to the pricing authority. As far as types are concerned,
we assume the existence of two base types: Loc referring to the attribute of locations
and Fee referring to the attribute of fees. We write Tl = ETP[Loc], Tr = Car[Tl ], Tpa =
ETP[Tl ], Tx = ETP[Tl ] and Tsc = ETP[Tx].
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O = !read(loc : Tl).topa〈loc〉.0
| !spotcheck(s : Tx).read(ls : Tl).s〈ls〉.0

L = !(ν newl : Tl)read〈newl〉.0
A = !topa(z : Tl).z(l : Loc).0

| !send〈fee〉.0
| !(ν x : Tx)spotcheck〈x〉.x(y : Tl).y(ls : Loc).0

System = (ν ETP)(ν spotcheck : Tsc)(ν topa : Tpa)

[ (ν PA)A | (ν Car)((ν read : Tr)((ν OBE)O | (ν GPS)L)) ]

In the above model we have the component of the OBE, O, belonging to group
OBE, and the component responsible for computing the current location, L, belonging
to group GPS. These two components are nested within the Car group and share the
private name read on which it is possible for L to pass to O a name via which the
current location may be read. The OBE O may spontaneously read on name read or
it may enquire the current location for the purposes of a spot check. Such a check is
initiated by the pricing authority A who may engage in three different activities: Firstly,
it may receive a name z from the OBE via channel topa and then use z for reading
the car location (action z(l)). Secondly, it may periodically compute the fee to be paid
and communicate the link (fee : ETP[Fee]) via name send : ETP[ETP[Fee]]. Thirdly, it
may initiate a spot check, during which it creates and sends the OBE a new channel via
which the OBE is expected to return the current location for a verification check.

By applying the rules of our type system we may show that Γ � System�Θ , where
Γ = {fee : ETP[Fee],send : ETP[ETP[Fee]]} and where

Θ = Fee� ETP[PA[{disclose ETP∗}]]; Loc� ETP[PA[{access, read}]];
Loc� ETP[Car[OBE[{access,disclose ETP∗}]]]; Loc� ETP[Car[GPS[{disclose Car∗}]]]

A possible privacy policy for the system might be one that states that locations may be
freely forwarded by the OBE. We may define this by P = Loc� H where

H = ETP : nondisclose [Car : [OBE : {access,disclose ETP∗},
GPS : {disclose Car∗}],

PA : {access, read}]

We have that P � Loc � ETP[PA[{access, read}]], since the per-
missions assigned to groups ETP and PA by the policy are equal to
{access, read} � {access, read} = perms(ETP[PA[{access, read}]]). Simi-
larly, P � Loc � ETP[Car[OBE[{access,disclose ETP∗}]]] and P � Loc �
ETP[Car[GPS[{disclose Car∗}]]]. Thus, we conclude that System satisfies P .

This architecture is simple but also very weak in protecting the privacy of individuals:
the fact that the PA gets detailed travel information about every vehicle constitutes a
privacy and security threat. An alternative implementation that limits the transmission
of locations is presented in the second implementation proposal presented below.
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5.2 The Decentralized Approach

To avoid the disclosure of the complete travel logs of a system this solution employs
a third trusted entity (e.g. smart card) to make computations of the fee locally on the
car and send its value to the authority which in turn may make spot checks to obtain
evidence on the correctness of the calculation.

The policy here would require that locations can be communicated for at most a
small fixed amount of times and that the OBE may read the fee computed by the smart
card but not change its value. Precisely, the new privacy policy might be:

Loc�ETP : nondisclose [ Fee�ETP : nondisclose [
Car : [ Car : [

OBE : {access,disclose ETP2}, OBE : {},
GPS : {disclose Car∗}, GPS : {},
SC : {access, read}], SC : {write,disclose ETP∗}],

PA : {access, read}] PA : {access, read}]
The new system as described above may be modelled as follows, where we have a

new group SC and a new component S, a smart card, belonging to this group:

S = !read(loc : Tl).loc(l : Loc).(ν newval : Fee)fee〈newval〉.send〈fee〉.0
O = spotcheck(s1 : Tx).read(ls1 : Tl).s1〈ls1〉.spotcheck(s2 : Tx).read(ls2 : Tl).s2〈ls2〉.0
L = !(ν newl : Tl)read〈newl〉.0
A = !(ν x : Tx)spotcheck〈x〉.x(y : Tl).y(ls : Loc).0

| send(fee).fee(v : Fee).0

System = (ν ETP)(ν spotcheck : Tsc)(ν topa : Tpa)

[ (ν PA)A | (ν Car)((ν read : Tr)((ν OBE)O | (ν GPS)L) | (ν SC)S) ]

We may verify that Γ � System�Θ , where Γ = {fee :ETP[Fee],send :ETP[ETP[Fee]]}
and interface Θ satisfies the enunciated policy.

6 Related Work

There exists a large body of literature concerned with formally reasoning about privacy.
To begin with, a number of languages have been proposed to express privacy poli-
cies [16,15] and can be used to verify the consistency of policies or to check whether
a system complies with a certain policy via static techniques such as model check-
ing [15,13], on-the-fly using monitoring, or through audit procedures [7,2].

Related to the privacy properties we are considering in this paper is the notion of
Contextual Integrity [2]. Aspects of this notion have been formalized in a logical frame-
work and were used for specifying privacy regulations while notions of compliance of
policies by systems were considered. Also related to our work is [17] where a family of
models named P-RBAC (Privacy-aware Role Based Access Control) is presented that
extends the traditional role-based access control to support specification of complex
privacy policies. In particular, the variation thereby introduced called Hierarchical P-
RBAC introduces, amongst others, the notion of role hierarchies which is reminiscent
of our policy hierarchies. However, the methodology proposed is mostly geared towards
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expressing policies and checking for conflicts within policies as opposed to assessing
the satisfaction of policies by systems, which is the goal of our work.

Also related to our work is the research line on typed-based security in process cal-
culi. Among these works, numerous studies have focused on access control which is
closely related to privacy. For instance the work on the Dπ calculus has introduced
sophisticated type systems for controlling the access to distributed resources [11,12].
Furthermore, discretionary access control has been considered in [4] which similarly to
our work employs the π-calculus with groups, while role-based access control (RBAC)
has been considered in [3,9,6]. In addition, authorization policies and their analysis via
type checking has been considered in a number of papers including [10,1]. While adopt-
ing a similar approach, our work departs from these works in the following respects: To
begin with we note that role-based access control is insufficient for reasoning about
certain privacy violations. While in RBAC it is possible to express that a doctor may
read patient’s data and send emails, it is not possible to detect the privacy violation
breach executed when the doctor sends an email with the sensitive patient data. In our
framework, we may control such information dissemination by distinguishing between
different types of data and how these can be manipulated. Furthermore, a novelty of our
approach is the concept of hierarchies within policies which allow to arrange the sys-
tem into a hierarchical arrangement of disclosure zones while allowing the inheritance
of permissions between groups within the hierarchy.

To conclude, we mention our previous work of [14]. In that work we employed the
π-calculus with groups accompanied by a type system based on i/o and linear types for
capturing privacy-related notions. In the present work, the type system is reconstructed
and simplified using the notions of groups to distinguish between different entities and
introducing permissions inference during type checking. Most importantly, a contribu-
tion of this work in comparison to [14] is that we introduce a policy language and prove
a safety criterion that establishes policy satisfaction by typing.

7 Conclusions

In this paper we have presented a formal framework based on the π-calculus with groups
for studying privacy. Our framework is accompanied by a type system for capturing
privacy-related notions and a privacy language for expressing privacy policies. We have
proved a type preservation theorem and a safety theorem which establishes sufficient
conditions for a system to satisfy a policy.

The policy language we have proposed is a simple language that constructs a hi-
erarchical structure of the entities composing a system and assigning permissions for
accessing sensitive data to each of the entities while allowing to reason about some
simple privacy violations. These permissions are certainly not intended to capture every
possible privacy issue, but rather to demonstrate a method of how one might formalize
privacy rights. Identifying an appropriate and complete set of permissions for provid-
ing foundations for the notion of privacy in the general context should be the result of
intensive and probably interdisciplinary research that justifies each choice. To this ef-
fect, Solove’s taxonomy of privacy violations forms a promising context in which these
efforts can be based and it provides various directions for future work.
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Other possible directions for future work can be inspired by privacy approaches such
as contextual integrity and P-RBAC. We are currently extending our work to reason
about more complex privacy policies that include conditional permissions and the con-
cepts of purpose and obligation as in P-RBAC. Finally, it would be interesting to ex-
plore more dynamic settings where the roles evolve over time.
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Abstract. An alternative to the traditional Büchi Automata (BA), called Testing
Automata (TA) was proposed by Hansen et al. [8, 6] to improve the automata-
theoretic approach to LTL model checking. In previous work [2], we proposed
an improvement of this alternative approach called TGTA (Generalized Testing
Automata). TGTA mixes features from both TA and TGBA (Generalized Büchi
Automata), without the disadvantage of TA, which is the second pass of the empti-
ness check algorithm. We have shown that TGTA outperform TA, BA and TGBA
for explicit and symbolic LTL model checking. However, TA and TGTA are less
expressive than Büchi Automata since they are able to represent only stutter-
invariant LTL properties (LTL\X) [13]. In this paper, we show how to extend
Generalized Testing Automata (TGTA) to represent any LTL property. This al-
lows to extend the model checking approach based on this new form of testing
automata to check other kinds of properties and also other kinds of models (such
as Timed models). Implementation and experimentation of this extended TGTA
approach show that it is statistically more efficient than the Büchi Automata ap-
proaches (BA and TGBA), for the explicit model checking of LTL properties.

1 Introduction

The model checking of a behavioral property on a finite-state system is an automatic
procedure that requires many phases. The first step is to formally represent the system
and the property to be checked. The formalization of the system produces a model
M that formally describes all the possible executions of the system. The property to
be checked is formally described using a specification language such as Linear-time
Temporal Logic (LTL). The next step is to run a model checking algorithm that takes
as inputs the model M and the LTL property ϕ. This algorithm exhaustively checks
that all the executions of the model M satisfy ϕ. When the property is not satisfied, the
model checker returns a counterexample, i.e., an execution of M invalidating ϕ, this
counterexample is particularly useful to find subtle errors in complex systems.

The automata-theoretic approach [16] to LTL model checking represents the state-
space of M and the property ϕ using variants of ω-automata, i.e., an extension of the
classical finite automata to recognize words having infinite length (called ω-words).

The automata-theoretic approach splits the verification process into four operations:
1. Computation of the state-space of M. This state-space can be represented by a vari-

ant of ω-automaton, called Kripke structure KM, whose language L (KM), repre-
sents all possible infinite executions of M.

2. Translation of the negation of the LTL property ϕ into an ω-automaton A¬ϕ whose
language, L (A¬ϕ), is the set of all infinite executions that would invalidate ϕ.

c© IFIP International Federation for Information Processing 2015
S. Graf and M. Viswanathan (Eds.): FORTE 2015, LNCS 9039, pp. 196–210, 2015.
DOI: 10.1007/978-3-319-19195-9_13
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3. Synchronization of these automata. This constructs a synchronous product automa-
ton KM ⊗A¬ϕ whose language, L (KM ⊗A¬ϕ) =L (KM)∩L (A¬ϕ), is the set of
executions of M invalidating ϕ.

4. Emptiness check of this product. This operation tells whether KM ⊗A¬ϕ accepts an
infinite word, and can return such a word (a counterexample) if it does. The model
M verifies ϕ iff L (KM ⊗A¬ϕ) = /0.

The main difficulty of the LTL model checking is the state-space explosion problem.
In particular, in the automata-theoretic approach, the product automaton KM ⊗A¬ϕ is
often too large to be emptiness checked in a reasonable run time and memory. Indeed,
the performance of the automata-theoretic approach mainly depends on the size of the
explored part of KM⊗A¬ϕ during the emptiness check. This explored part itself depends
on three parameters: the automaton A¬ϕ obtained from the LTL property ϕ, the Kripke
structure KM representing the state-space of M, and the emptiness check algorithm: the
fact that this algorithm is performed “on-the-fly” potentially avoids building the entire
product automaton. The states of this product that are not visited by the emptiness check
are not generated at all.

Different kinds of ω-automata have been used to represent A¬ϕ. In the most com-
mon case, the negation of ϕ is converted into a Büchi automaton (BA) with state-based
accepting. Transition-based Generalized Büchi Automata (TGBA) represent the LTL
properties using generalized (i.e., multiple) Büchi acceptance conditions on transitions
rather than on states. TGBA allow to have a smaller [7, 4] property automaton than BA.

Unfortunately, having a smaller property automaton A¬ϕ does not always imply a
smaller product (AM⊗A¬ϕ). Thus, instead of targeting smaller property automata, some
people have attempted to build automata that are more deterministic [14].

Hansen et al. [8, 6] introduced an alternative type of ω-automata called Testing Au-
tomata (TA) that only observe changes on the atomic propositions. TA are often larger
than their equivalent BA, but according to Geldenhuys and Hansen [6], thanks to their
high degree of determinism [8], the TA allow to obtain a smaller product and thus
improve the performance of model checking. As a back-side, TA have two different
modes of acceptance (Büchi-accepting or livelock-accepting), and consequently their
emptiness check requires two passes [6], mitigating the benefits of a having a smaller
product.

In previous work [2], we propose an improvement of TA called Transition-based
Generalized Testing Automata (TGTA) that combine the advantages of both TA and
TGBA, and without the disadvantages of TA (without introducing a second mode of
acceptance and without the second pass of the emptiness check).

Unfortunately, the two variants of testing automata TA and TGTA are less expres-
sive than Büchi automata (BA and TGBA) since they are tailored to represent stutter-
invariant properties.

The goal of this paper is to extend TGTA in order to obtain a new form of testing
automata that represent any LTL property, and therefore extend the model checking
approach based on this alternative kind of automata to check other kinds of properties
and also other kinds of models.

In order to remove the constraint that TGTA only represent stutter-invariant proper-
ties, one solution would be to change the construction of TGTA to take into account the
“sub-parts” of the automata corresponding to the “sub-formulas” that are not insensitive
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to stuttering. Indeed, during the transformation of a TGBA into a TGTA, only the sec-
ond step exploits the fact that the LTL property is stutter-invariant (this step allows to
remove the useless stuttering-transitions). The idea is to apply this second step only for
the parts of the automata that are insensitive to stuttering and to apply only the first step
of the construction for the other parts (that are sensitive to stuttering).

We have run benchmarks to compare the new form of TGTA against BA and TGBA.
Experiments reported that, in most cases, TGTA produce the smallest products (AM ⊗
A¬ϕ) and TGTA outperform BA and TGBA when no counterexample is found (i.e., the
property is satisfied), but they are comparable when the property is violated, because
in this case the on-the-fly algorithm stops as soon as it finds a counterexample without
exploring the entire product.

2 Preliminaries

Let AP a finite set of atomic propositions, a valuation � over AP is represented by a
function � : AP �→ {⊥,�}. We denote by Σ= 2AP the set of all valuations over AP, where
a valuation �∈ Σ is interpreted either as the set of atomic propositions that are true, or as
a Boolean conjunction. For instance if AP= {a,b}, then Σ= 2AP = {{a,b},{a},{b}, /0}
or equivalently Σ = {ab,ab̄, āb, āb̄}.

The state-space of a system can be represented by a directed graph, called Kripke
structure, where vertices represent the states of the system and edges are the transitions
between these states. In addition, each vertex is labeled by a valuation that represents
the set of atomic propositions that are true in the corresponding state.

Definition 1 (Kripke Structure). A Kripke structure over the set of atomic proposi-
tions AP is a tuple K = 〈S ,S0,R , l〉, where:

– S is a finite set of states,
– S0 ⊆ S is the set of initial states,
– R ⊆ S ×S is the transition relation,
– l : S → Σ is a labeling function that maps each state s to a valuation that represents

the set of atomic propositions that are true in s.

The automata-theoretic approach is based on the transformation of the negation of the
LTL property to be checked into an ω-automaton that accepts the same executions.
Büchi Automata (BA) are ω-automata with labels on transitions and acceptance con-
ditions on states. Büchi Automata are commonly used for LTL model checking (we use
the abbreviation BA for the standard variant of Büchi Automata). The following section
present TGBA [7]: a generalized variant of BA that allow a more compact representa-
tion of LTL properties [4].

2.1 Transition-Based Generalized Büchi Automata (TGBA)

A Transition-based Generalized Büchi Automaton (TGBA) [7] is a variant of a Büchi
automaton that has multiple acceptance conditions on transitions.

Definition 2 (TGBA). A TGBA over the alphabet Σ = 2AP is a tuple G = 〈Q ,I ,δ,F 〉
where:
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(a) ϕ

āb̄

āb

ab

ab̄ (b) 0,FGa 1,Ga

a, ā

a

a

Fig. 1. (a) A TGBA recognizing the LTL property ϕ = GFa∧GFb with acceptance conditions
F = { , } . (b) A TGBA recognizing the LTL property ϕ = FGa with F = { } .

– Q is a finite set of states,
– I ⊆ Q is a set of initial states,
– F is a finite set of acceptance conditions,
– δ ⊆ Q ×Σ× 2F ×Q is the transition relation, where each element (q, �,F,q′) ∈ δ

represents a transition from state q to state q′ labeled by a valuation � ∈ 2AP, and
a set of acceptance conditions F ∈ 2F .

An infinite word σ = �0�1�2 . . . ∈ Σω is accepted by G if there exists an infinite run
r = (q0, �0,F0,q1)(q1, �1,F1,q2)(q2, �2,F2,q3) . . . ∈ δω where:

– q0 ∈ I (the infinite word is recognized by the run),
– ∀ f ∈ F , ∀i ∈N, ∃ j ≥ i, f ∈ Fj (each acceptance condition is visited infinitely of-

ten).
The language of G is the set L (G)⊆ Σω of infinite words it accepts.

Any LTL formula ϕ can be converted into a TGBA whose language is the set of
executions that satisfy ϕ [4].

Figure 1 shows two examples of LTL properties expressed as TGBA. The Boolean ex-
pression over AP = {a,b} that labels each transition represents the valuation of atomic
propositions that hold in this transition. A run in these TGBA is accepted if it visits
infinitely often all acceptance conditions (represented by colored dots and on tran-
sitions). It is important to note that the LTL formulas labeling each state represent the
property accepted starting from this state of the automaton. These labels are generated
by our LTL-to-TGBA translator (Spot [12]), they are shown for the reader’s convenience
but not used for model checking.
Figure 1(a) is a TGBA recognizing the LTL formula (GFa∧GFb), i.e., recognizing
the runs where a is true infinitely often and b is true infinitely often. An accepting run
in this TGBA has to visit infinitely often the two acceptance conditions indicated by

and . Therefore, it must explore infinitely often the transitions where a is true (i.e.,
transitions labeled by ab or ab̄) and infinitely often the transitions where b is true (i.e.,
transitions labeled by ab or āb).
Figure 1(b) shows a TGBA derived from the LTL formula FGa. Any infinite run in
this example is accepted if it visits infinitely often the only acceptance condition on
transition (1,a,1). Therefore, an accepting run in this TGBA must stay on state 1 by
executing infinitely a.

The product of a TGBA with a Kripke structure is a TGBA whose language is the
intersection of both languages.
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Definition 3 (Product using TGBA). For a Kripke structure K = 〈S ,S0,R , l〉 and a
TGBA G = 〈Q ,I ,δ,F 〉 the product K ⊗G is the TGBA 〈S⊗,I⊗,δ⊗,F 〉 where

– S⊗ = S ×Q ,
– I⊗ = S0 × I ,
– δ⊗ = {((s,q), �,F,(s′,q′)) | (s,s′) ∈ R , (q, �,F,q′) ∈ δ, l(s) = �}

Property 1. We have L (K ⊗G) =L (K )∩L (G) by construction.

The goal of the emptiness check algorithm is to determine if the product automaton
accepts an execution or not. In other words, it checks if the language of the product
automaton is empty or not. Testing the TGBA (representing the product automaton)
for emptiness amounts to the search of an accepting cycle that contains at least one
occurrence of each acceptance condition. This can be done in different ways: either
with a variation of Tarjan or Dijkstra algorithm [3] or using several Nested Depth-First
Searches (NDFS) [15]. The product automaton that has to be explored during the empti-
ness check is generally very large, its size can reach the value obtained by multiplying
the the sizes of the model and formula automata, which are synchronized to build this
product. Therefore, building the entire product must be avoided. "On-the-fly" emptiness
check algorithms allow the product automaton to be constructed lazily during its explo-
ration. These on-the-fly algorithms are more efficient because they stop as soon as they
find a counterexample and therefore possibly before building the entire product.

3 Transition-Based Generalized Testing Automata (TGTA)

Another kind of ω-automaton called Testing Automaton (TA) was introduced by Hansen
et al. [8]. Instead of observing the valuations on states or transitions, the TA transitions
only record the changes between these valuations. However, TA are less expressive than
Büchi automata since they are able to represent only stutter-invariant LTL properties.
Also they are often a lot larger than their equivalent Büchi automaton, but their high
degree of determinism [8] often leads to a smaller product size [6].

In previous work [1], we evaluate the efficiency of LTL model checking approach
using TA. We have shown that TA are better than Büchi automata (BA and TGBA)
when the formula to be verified is violated (i.e., a counterexample is found), but this
is not the case when the property is verified since the entire product have to be visited
twice to check for each acceptance mode of a TA. Then, in order to improve the TA
approach, we proposed in [2] a new ω-automata for stutter-invariant properties, called
Transition-based Generalized Testing Automata (TGTA) [2], that mixes features from
both TA and TGBA.

The basic idea of TGTA is to build an improved form of testing automata with gen-
eralized acceptance conditions on transitions, which allows us to modify the automata
construction in order to remove the second pass of the emptiness check of the product.

Another advantage of TGTA compared to TA, is that the implementation of TGTA
approach does not require a dedicated emptiness check, it reuses the same algorithm
used for Büchi automata, and the counterexample constructed by this algorithm is also
reported as a counterexample for the TGTA approach.
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Fig. 2. TGTA recognizing the LTL property ϕ = FGp with acceptance conditions F = { }

In [2], we compared the LTL model checking approach using TGTA with the “tra-
ditional” approaches using BA, TGBA and TA. The results of these experimental com-
parisons show that TGTA compete well: the TGTA approach was statistically more effi-
cient than the other evaluated approaches, especially when no counterexample is found
(i.e., the property is verified) because it does not require a second pass. Unfortunately,
the TGTA constructed in [2] only represent stutter-invariant properties (LTL\X [13]).

This section shows how to adapt the TGTA construction to obtain a TGTA that can
represent all LTL properties.

Before presenting this new construction of TGTA, we first recall the definition of
this improved variant of testing automata.

While Büchi automata observe the values of the atomic propositions of AP, the basic
idea of testing automata (TA and TGTA) is to only detect the changes in these values; if
the values of the atomic propositions do not change between two consecutive valuations
of an execution, this transition is called stuttering-transition.

If A and B are two valuations, A⊕B denotes the symmetric set difference, i.e., the set
of atomic propositions that differ (e.g., ab̄⊕ab= {b}). Technically, this is implemented
with an XOR operation (also denoted by the symbol ⊕).

Definition 4 (TGTA). A TGTA over the alphabet Σ is a tuple T = 〈Q ,I ,U,δ,F 〉
where:

– Q is a finite set of states,
– I ⊆ Q is a set of initial states,
– U : I → 2Σ is a function mapping each initial state to a set of symbols of Σ,
– F is a finite set of acceptance conditions,
– δ ⊆ Q ×Σ× 2F ×Q is the transition relation, where each element (q,k,F,q′) rep-

resents a transition from state q to state q′ labeled by a changeset k interpreted as
a (possibly empty) set of atomic propositions whose values change between q and
q′, and the set of acceptance conditions F ∈ 2F ,

An infinite word σ = �0�1�2 . . . ∈ Σω is accepted by T if there exists an infinite run
r = (q0, �0 ⊕ �1,F0,q1)(q1, �1 ⊕ �2,F1,q2)(q2, �2 ⊕ �3,F2,q3) . . . ∈ δω where:

– q0 ∈ I with �0 ∈U(q0) (the infinite word is recognized by the run),
– ∀ f ∈ F , ∀i ∈N, ∃ j ≥ i, f ∈ Fj (each acceptance condition is visited infinitely of-

ten).
The language accepted by T is the set L (T )⊆ Σω of infinite words it accepts.

Figure 2 shows a TGTA recognizing the LTL formula FGp. Acceptance conditions
are represented using dots as in TGBAs. Transitions are labeled by changesets: e.g., the
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transition (0,{p},1) means that the value of p changes between states 0 and 1. Initial
valuations are shown above initial arrows: U(0) = {p}, U(1) = { p̄} and U(2) = {p}.
Any infinite run in this example is accepted if it visits infinitely often, the acceptance
transition indicated by the black dot : i.e., the stuttering self-loop (2, /0, ,2).
As an illustration, the infinite word p̄; p; p; p; . . . is accepted by the run:

1 2 2 2 . . .
{p} /0 /0

because the value p only changes between the first two steps.
Indeed, a run recognizing such an infinite word must start in state 1 (because only
U(1) = { p̄}), then it changes the value of p, so it has to take transitions labeled by {p},
i.e., (1,{p},0) or (1,{p},2). To be accepted, it must move to state 2 (rather than state
0), and finally stay on state 2 by executing infinitely the accepting stuttering self-loop
(2, /0, ,2).

In the next section, we present in detail the formalization of the different steps used
to build a TGTA that represent any LTL property.

4 TGTA Construction

Let us now describe how to build a TGTA starting from a TGBA. The TGTA construc-
tion is inspired by the one presented in [2], with some changes introduced in the second
step of this construction. Indeed, a TGTA is built in two steps as illustrated in Figure 3.
The first step transforms a TGBA into an intermediate TGTA by labeling transitions
with changesets. Then, the second step builds the final form of TGTA by removing the
useless stuttering transitions. In this work, this simplification of stuttering transitions
does not require the hypothesis that the LTL property is stutter-invariant (this represents
a crucial difference compared to the TGTA construction presented in [2]). For example,
Figure 4d shows a TGTA constructed for ϕ = X p∧FGp which is not stutter-invariant.
In the following, we will detail the successive steps to build this TGTA.

TGBA Intermediate TGTA TGTA
Labeling transitions

with “changesets”

Elimination of useless

stuttering transitions ( /0)

Fig. 3. The two steps of the construction of a TGTA from a TGBA

4.1 First Step: Construction of an Intermediate TGTA from a TGBA

Geldenhuys and Hansen [6] have shown how to convert a Büchi Automaton (BA) into a
Testing Automtaton (TA) by first converting the BA into an automaton with valuations
on the states (called State-Labeled Büchi Automaton (SLBA)), and then converting this
SLBA into an intermediate form of TA by computing the difference between the labels
of the source and destination states of each transition.

The first step of the TGTA construction is similar to the first step of the TA con-
struction [6, 2]. We construct an intermediate TGTA from a TGBA by moving labels to
states, and labeling each transition by the set difference between the labels of its source
and destination states. While doing so, we keep the generalized acceptance conditions
on the transitions. The next proposition implements these first steps.
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(a) TGBA for ϕ = X p∧FGp.
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(b) Intermediate TGTA obtained by prop-
erty 2.
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(c) TGTA after simplifications by property 3.
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(d) TGTA after bisimulation.

Fig. 4. TGTA obtained after various steps while translating the TGBA representing ϕ = X p∧
FGp, into a TGTA with F = { }

Property 2 (Converting TGBA into an intermediate TGTA). Given any TGBA G =
〈QG ,IG ,δG ,F 〉 over the alphabet Σ, let us build the TGTA T = 〈QT ,IT ,UT ,δT ,F 〉
with QT = QG ×Σ, IT = IG ×Σ and
(i) ∀(q, �) ∈ IT ,UT ((q, �)) = {�}

(ii) ∀(q, �) ∈ QT ,∀(q′, �′) ∈ QT ,
(

(q, �), �⊕ �′,F,(q′, �′)
) ∈ δT ⇐⇒ ((q, �,F,q′) ∈ δG )

Then L (G) =L (T ). (The proof of this property. 2 is given in [2].)
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An example of an intermediate TGTA is shown on Figure 4b. It is the result of
applying the construction of property. 2 to the example of TGBA for ϕ = X p∧ FGp
(shown in Figure 4a). The next property shows how to remove the useless stuttering-
transitions (labeled by /0) in TGTA.

4.2 Second Step: Elimination of Useless Stuttering-Transitions ( /0)

In the following, we say that a language L is stutter-invariant if the number of the
successive repetitions of any letter of a word σ ∈L does not affect the membership of
σ to L [5]. In other words, L is stutter-invariant iff for any finite sequence u ∈ Σ∗, any
element � ∈ Σ, and any infinite sequence v ∈ Σω we have u�v ∈L ⇐⇒ u��v ∈L .

We begin by defining the concept of a language recognized starting from a state in
a TGTA. This definition will be very useful for the formalization of the second step of
the TGTA construction presented below.

Definition 5 (L (T ,q)). Given a TGTA T and a state q of T , we say that an infinite
word σ = �0�1�2 . . . ∈ Σω is accepted by T starting from the state q if there exists an
infinite run r = (q, �0 ⊕ �1,F0,q1)(q1, �1 ⊕ �2,F1,q2)(q2, �2 ⊕ �3,F2,q3) . . . ∈ δω where:
∀ f ∈ F , ∀i ∈N, ∃ j ≥ i, f ∈ Fj (each acceptance condition is visited infinitely often).
The language L (T ,q)⊆ Σω is the set of infinite words accepted by T starting from the
state q.

In the following, we will exploit the fact that in a TGTA, the language recognized
starting from certain states of a TGTA can be stutter-invariant, although the overall
TGTA language (recognized from the initial states) is not stutter-invariant. For example,
in the intermediate TGTA shown on Figure 4b, the language recognized starting from
the two initial states (labeled by the formula ϕ = X p∧ FGp) is not stutter-invariant.
However, the languages recognized starting form the other states (labeled by the formu-
las (p∧ FGp), (FGp) and (Gp)) are stutter-invariants. Indeed, similar to the original
TGBA G , in an intermediate TGTA T obtained by property 2, if the LTL formula la-
beling a state q is stutter-invariant, then the language recognized starting from this state
q is also stutter-invariant (Figure 4b). This can easily be deduced from the proof [2] of
property 2.

The next property allow to simplify the intermediate TGTA by removing the useless
stuttering transitions and thus obtain the final TGTA. The intuition behind this simplifi-
cation is illustrated in Figure 5a: In a TGTA T , we have that the language recognized
starting from a state q0 is stutter-invariant and q0 can reach an accepting stuttering-cycle
by following only stuttering transitions. In the context of TA we would have to declare
q0 as being a livelock-accepting state. For TGTA, we replace the accepting stuttering-
cycle by adding a self-loop labeled by all acceptance conditions on qn, then the pre-
decessors of q0 are connected to qn as in Figure 5b. In the last step of the following
construction, for each state q such that L (T ,q) is stutter-invariant, we add a stuttering
self-loop to q and we remove all stuttering transitions from q to other states. Figure 4c
shows how the automaton from Figure 4b is simplified.

Property 3 (Elimination of useless stuttering transitions to build a TGTA). Given
a TGTA T = 〈Q ,I ,U,δ,F 〉. By combining the first three of the following operations,



Extending Testing Automata to All LTL 205

q q0 · · · qn

q q′...
...

. . .

. . .

k /0 /0
/0

/0

/0

(a) TGTA T before reduction of stuttering tran-
sitions ( /0). L (T ,q0) is stutter-invariant.
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(b) T after reduction of stuttering tran-
sitions ( /0).

Fig. 5. Elimination of useless stuttering transitions in TGTA

we can remove the useless stuttering-transitions in this TGTA (Figure 5). The fourth
operation can be performed along the way for further (classical) simplifications.
1. If Q⊆Q is a SCC such that for any state q∈Q we haveL (T ,q) is stutter-invariant

and any two states q,q′ ∈ Q can be connected using a sequence of stuttering transi-
tions (q, /0,F0,r1)(r1, /0,F1,r2) · · · (rn, /0,Fn,q′) ∈ δ∗ with F0∪F1∪·· ·∪Fn = F , then
we can add an accepting stuttering self-loop (q, /0,F ,q) on each state q ∈ Q. I.e.,
the TGTA T ′ = 〈Q ,I ,U,δ∪{(q, /0,F ,q) | q∈ Q},F 〉 is such that L (T ′) =L (T ).
Let us call such a component Q an accepting Stuttering-SCC.

2. Let q0 is a state of T such that L (T ,q0) is stutter-invariant. If there exists an
accepting Stuttering-SCC Q and a sequence of stuttering-transitions:
(q0, /0,F1,q1)(q1, /0,F2,q2) · · · (qn−1, /0,Fn,qn) ∈ δ∗ such that qn ∈ Q and q0, q1, ...
qn−1 �∈ Q (as shown in Figure 5a), then:

– For any transition (q,k,F,q0) ∈ δ going to q0 (with (q,k,F,qn) �∈ δ), the TGTA
T ′′ = 〈Q ,I ,U,δ∪{(q,k,F,qn)},F 〉 is such that L (T ′′) =L (T ) (Figure 5b).

– If q0 ∈ I , the TGTA T ′′ = 〈Q ,I ∪{qn},U ′′,δ,F 〉 with ∀q �= qn,U ′′(q) =U(q)
and U ′′(qn) =U(qn)∪U(q0), is such that L (T ′′) =L (T ).

3. Let T † = 〈Q ,I †,U†,δ†,F 〉 be the TGTA obtained after repeating the previous
two operations as much as possible (i.e., T † contains all the transitions and initial
states that can be added by the above two operations. Then, we add a non-accepting
stuttering self-loop (q, /0, /0,q) to any state q that did not have an accepting stutter-
ing self-loop and such that L (T ,q) is stutter-invariant. Also we remove all stut-
tering transitions from q that are not self-loops since stuttering can be captured by
self-loops after the previous two operations. After this last reduction of stuttering
transitions, we obtain the final TGTA (Figure 4c).
More formally, the TGTA T ′′′ = 〈Q ,I †,U†,δ′′′,F 〉 with δ′′′ = {(q,k,F,q′) ∈ δ† |
L (T ,q) is not stutter-invariant }∪{(q,k,F,q′)∈ δ† | k �= /0∨(q= q′ ∧F =F )}∪
{(q, /0, /0,q) |L (T ,q) is stutter-invariant ∧ (q, /0,F ,q) �∈ δ†} is such that:
L (T ′′′) =L (T †) =L (T ).

4. Any state from which one cannot reach a Büchi-accepting cycle can be removed
from the automaton without changing its language.

The proof of Property 3 is similar to the proof of the second step of TGTA construction
given in [2].

Figure 4c shows how the TGTA from Figure 2 is simplified by the above Property 3.
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Similar to the TA construction [2], the resulting TGTA can be further simplified by
merging bisimilar states (two states q and q′ are bisimilar if the automaton T can accept
the same infinite words starting from either of these states, i.e., L (T ,q) =L (T ,q′)).
This optimization can be achieved using any algorithm based on partition refinement,
the same as for Büchi automata, taking {F ∩G ,F \G ,G \F ,Q \ (F ∪G)} as initial
partition and taking into account the acceptance conditions of the outgoing transitions.
The final TGTA obtained after all these steps is shown in Figure 4.

As for the other variants of ω-automata, the automata-theoretic approach using TGTA
has two important operations: the construction of a TGTA T recognizing the negation
of the LTL property ϕ and the emptiness check of the product (K ⊗T ) of the Kripke
structure K with T .

Definition 6 (Product using TGTA). For a Kripke structure K = 〈S ,S0,R , l〉 and a
TGTA T = 〈Q ,I ,U,δ,F 〉, the product K ⊗T is a TGTA 〈S⊗,I⊗,U⊗,δ⊗,F⊗〉 where

– S⊗ = S ×Q ,
– I⊗ = {(s,q) ∈ S0 × I | l(s) ∈U(q)},
– ∀(s,q) ∈ I⊗,U⊗((s,q)) = {l(s)},
– δ⊗ = {((s,q),k,F,(s′,q′)) | (s,s′) ∈ R , (q,k,F,q′) ∈ δ, k = (l(s)⊕ l(s′))},
– F⊗ = F .

Property 4. We have L (K ⊗T ) =L (K )∩L (T ) by construction.

Since a product of a TGTA with a Kripke structure is a TGTA, we only need an
emptiness check algorithm for a TGTA automaton. A TGTA can be seen as a TGBA
whose transitions are labeled by changesets instead of valuations of atomic propositions.
When checking a TGBA for emptiness, we are looking for an accepting cycle that is
reachable from an initial state. When checking a TGTA for emptiness, we are looking
exactly for the same thing. Therefore, because emptiness check algorithms do not look
at transitions labels, the same emptiness check algorithm used for the product using
TGBA can also be used for the product using TGTA.

5 Experimental Evaluation of TGTA

In order to evaluate the TGTA approach against the TGBA and BA approaches, an
experimentation was conducted under the same conditions as our previous work [1], i.e.,
within the same CheckPN tool on top of Spot [12] and using the same benchmark Inputs
(formulas and models) used in the experimental comparison [1] of BA, TGBA and TA.
The models are from the Petri net literature [11], we selected two instances of each
of the following models: the Flexible Manufacturing System (4/5), the Kanban system
(4/5), the Peterson algorithm (4/5), the slotted-ring system (6/5), the dining philosophers
(9/10) and the Round-robin mutex (14/15). We also used two models from actual case
studies: PolyORB [10] and MAPK [9]. For each selected model instance, we generated
200 verified formulas (no counterexample in the product) and 200 violated formulas
(a counterexample exists): 100 random (length 15) and 100 weak-fairness [1] (length
30) of the two cases of formulas. Since generated formulas are very often trivial to
verify (the emptiness check needs to explore only a handful of states), we selected only
those formulas requiring more than one second of CPU for the emptiness check in all
approaches.
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5.1 Implementation

Figure 6 shows the building blocks we used to implement the three approaches. The
automaton used to represent the property to check has to be synchronized with a Kripke
structure representing the model. Depending on the kind of automaton, this synchronous
product is implemented differently. The TGBA and BA approaches can share the same
product implementation. The TGTA approach require a dedicated product computation.
The TGBA, BA, and TGTA approaches share the same emptiness check.

Kripke
Structure

LTL
Formula

LTL2TGBA

TGBA2BA

TGBA2TGTA

Sync. Product
(classic)

Sync. Product
(TGTA)

Emptiness 
check (classic)

TRUE or
counterexample

Fig. 6. The experiment’s architecture in Spot. Three command-line switches control which one
of the approaches is used to verify an LTL formula on a Kripke structure. The new components
required by the TGTA approach are outlined in Gray.

5.2 Results

Figure 7 compares the sizes of the products automata (in terms of number of states) and
Figure 8 compares the number of visited transitions when running the emptiness check;
plotting TGTA against BA and TGBA. This gives an idea of their relative performance.
Indeed, in order to protect the results against the influence of various optimizations,
implementation tricks, and the central processor and memory architecture, Geldenhuys
and Hansen [6] found that the number of states gives a reliable indication of the mem-
ory required, and, similarly, the number of transitions a reliable indication of the time
consumption. Each point of the scatter plots corresponds to one of the 5600 evaluated
formulas (2800 violated with counterexample as black circles, and 2800 verified having
no counterexample as green crosses). Each point below the diagonal is in favor of TGTA
while others are in favor of the other approach. Axes are displayed using a logarithmic
scale. All these experiments were run on a 64bit Linux system running on an Intel(R)
64-bit Xeon(R) @2.00GHz, with 10GB of RAM.

5.3 Discussion

On verified properties (green crosses), the results are very straightforward to interpret.
On the scatter plots of Figure 7, the cases where the TGTA approach is better than
BA and TGBA approaches, appear as green crosses below the diagonal. In these cases,
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Fig. 7. Size of products (number of states) using TGTA against BA and TGBA
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Fig. 8. Performance (number of transitions explored by the emptiness check) using TGTA against
BA and TGBA

The TGTA approach is a clear improvement because the products automata are smaller
using TGTA. The same result is observed for the scatter plots of Figure 8, when looking
at the number of transitions explored by the emptiness check, the TGTA approach also
outperforms TGBA and BA approaches for verified properties.

On violated properties (black circles), for the number of transitions explored by the
emptiness check, it is difficult to interpret the scatter plots of Figure 8 because the
emptiness check is an on-the-fly algorithm. It stops as soon as it finds a counterexam-
ple without exploring the entire product. Thus, for violated properties, the exploration
order of non-deterministic transitions of TGBA, BA and TGTA changes the number of
transitions explored in the product before a counterexample is found.

However, if we analyze the scatter plots of Figure 7, we observe that the TGTA
approach produces the smallest products. This allows the TGTA approach to seek a
counterexample in a smaller product and therefore have a better chance to find it faster.
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6 Conclusion

In previous work [2], we have shown that Transition-based Generalized Testing Au-
tomata (TGTA) are a way to improve the model checking approach when verifying
stutter-invariant properties. In this work, we propose a construction of a TGTA that al-
low to check any LTL property (stutter-invariant or not). This TGTA is constructed in
two steps. The first one builds an intermediate TGTA from a TGBA (Transition-based
Generalized Büchi Automata). The second step transforms an intermediate TGTA into
a TGTA by removing the useless stuttering-transitions that are not self-loops (this re-
duction does not need the restriction to stutter-invariant properties as in our previous
work [2]).

The constructed TGTA combines advantages observed on both Testing Automata
(TA) and TGBA:

– From TA, it reuses the labeling of transitions with changesets, and the elimina-
tion of the useless stuttering-transitions, but without requiring a second pass in the
emptiness check of the product.

– From TGBA, it inherits the use of generalized acceptance conditions on transitions.
TGTA have been implemented in Spot easily, because only two new algorithms are

required: the conversion of a TGBA into a TGTA, and a new definition of a product
between a TGTA and a Kripke structure.

We have run benchmarks to compare TGTA against BA and TGBA. Experiments
reported that TGTA produce the smallest products automata and therefore TGTA out-
perform BA and TGBA when no counterexample is found in these products (i.e., the
property is satisfied), but they are comparable when the property is violated, because
in this case the on-the-fly algorithm stops as soon as it finds a counterexample without
exploring the entire product.

We conclude that there is nothing to lose by using TGTA to verify any LTL property,
since they are always at least as good as BA and TGBA and we believe that TGTA are
better thanks to the elimination of the useless stuttering-transitions during the TGTA
construction.

As a future work, an idea would be to provide a direct conversion of LTL to TGTA,
without the intermediate TGBA step. We believe a tableau construction such as the one
of Couvreur [3] could be easily adapted to produce TGTA. Another important optimiza-
tion is to build on-the-fly the TGTA during the construction of the synchronous product.
Especially when the number of atomic propositions (AP) is very large, because this
may lead to build a TGTA with a large number of unnecessary initial states, that are not
synchronized with the initial state(s) of the Kripke structure.
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Abstract. The actor model is an old but compelling concurrent pro-
gramming model in this age of multicore architectures and distributed
services. In this paper we study an as yet unexplored region of the actor
design space in the context of concurrent object-oriented programming.
Specifically, we show that a purely run-time, annotation-free approach
to actor state isolation with reference passing of arbitrary object graphs
is perfectly viable. In addition, we show, via a formal proof using the
Coq proof assistant, that our approach indeed enforces actor isolation.

1 Introduction

Motivations. The actor model of concurrency [1], where isolated sequential
threads of execution communicate via buffered asynchronous message-passing,
is an attractive alternative to the model of concurrency adopted e.g. for Java,
based on threads communicating via shared memory. The actor model is both
more congruent to the constraints of increasingly distributed hardware architec-
tures – be they local as in multicore chips, or global as in the world-wide web –,
and more adapted to the construction of long-lived dynamic systems, including
dealing with hardware and software faults, or supporting dynamic update and
reconfiguration, as illustrated by the Erlang system [2]. Because of this, we have
seen in the recent years renewed interest in implementing the actor model, be
that at the level of experimental operating systems as in e.g. Singularity [9], or
in language libraries as in e.g. Java [24] and Scala [13].

When combining the actor model with an object-oriented programming model,
two key questions to consider are the exact semantics of message passing, and
its efficient implementation, in particular on multiprocessor architectures with
shared physical memory. To be efficient, an implementation of message passing
on a shared memory architecture ought to use data transfer by reference, where
the only data exchanged is a pointer to the part of the memory that contains the
message. However, with data transfer by reference, enforcing the share-nothing
semantics of actors becomes problematic: once an arbitrary memory reference is
exchanged between sender and receiver, how do you ensure the sender can no
longer access the referenced data ? Usual responses to this question, typically
involve restricting the shape of messages, and controlling references (usually
through a reference uniqueness scheme [19]) by various means, including run-
time support, type systems and other static analyses, as in Singularity [9], Kilim
[24], Scala actors [14], and SOTER [21].

c© IFIP International Federation for Information Processing 2015
S. Graf and M. Viswanathan (Eds.): FORTE 2015, LNCS 9039, pp. 213–227, 2015.
DOI: 10.1007/978-3-319-19195-9_14
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Contributions. In this paper, we study a point in the actor model design space
which, despite its simplicity, has never, to our knowledge, been explored before.
It features a very simple programming model that places no restriction on the
shape and type of messages, and does not require special types or annotations
for references, yet still enforces the share nothing semantics of the actor model.
Specifically, we introduce an actor abstract machine, called Siaam. Siaam is lay-
ered on top of a sequential object-oriented abstract machine, has actors running
concurrently using a shared heap, and enforces strict actor isolation by means
of run-time barriers that prevent an actor from accessing objects that belong
to a different actor. The contributions of this paper can be summarized as fol-
lows. We formally specify the Siaam model, building on the Jinja specification
of a Java-like sequential language [18]. We formally prove, using the Coq proof
assistant, the strong isolation property of the Siaam model. We describe our
implementation of the Siaam model as a modified Jikes RVM [16]. We present
a novel static analysis, based on a combination of points-to, alias and liveness
analyses, which is used both for improving the run-time performance of Siaam
programs, and for providing useful debugging support for programmers. Finally,
we evaluate the performance of our implementation and of our static analysis.

Outline. The paper is organized as follows. Section 2 presents the Siaam machine
and its formal specification. Section 3 presents the formal proof of its isolation
property. Section 4 describes the implementation of the Siaam machine. Sec-
tion 5 presents the Siaam static analysis. Section 6 presents an evaluation of
the Siaam implementation and of the Siaam analysis. Section 7 discusses related
work and concludes the paper. Because of space limitations, we present only
some highlights of the different developments. Interested readers can find all the
details in the second author’s PhD thesis [22], which is available online along
with the Coq code [25].

2 Siaam: Model and Formal Specification

Informal presentation. Siaam combines actors and objects in a programming
model with a single shared heap. Actors are instances of a special class. Each
actor is equipped with at least one mailbox for queued communication with
other actors, and has its own logical thread of execution that runs concurrently
with other actor threads. Every object in Siaam belongs to an actor, we call its
owner. An object has a unique owner. Each actor is its own owner. At any point
in time the ownership relation forms a partition of the set of objects. A newly
created object has its owner set to that of the actor of the creating thread.

Siaam places absolutely no restriction on the references between objects, in-
cluding actors. In particular objects with different owners may reference each
other. Siaam also places no constraint on what can be exchanged via messages:
the contents of a message can be an arbitrary object graph, defined as the graph
of objects reachable (following object references in object fields) from a root
object specified when sending a message. Message passing in Siaam has a zero-
copy semantics, meaning that the object graph of a message is not copied from
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Fig. 1. Ownership and ownership transfer in Siaam

the sender actor to the receiver actor, only the reference to the root object of
a message is communicated. An actor is only allowed to send objects it owns1,
and it cannot send itself as part of a message content.

Figure 1 illustrates ownership and ownership transfer in Siaam. On the left
side (a) is a configuration of the heap and the ownership relation where each
actor, presented in gray, owns the objects that are part of the same dotted
convex hull. Directed edges are heap references. On the right side (b), the objects
1, 2, 3 have been transferred from a to b, and object 1 has been attached to the
data structure maintained in b’s local state. The reference from a to 1 has been
preserved, but actor a is no longer allowed to access the fields of 1, 2, 3.

To ensure isolation, Siaam enforces the following invariant: an object o (in
fact an executing thread) can only access fields of an object that has the same
owner than o; any attempt to access the fields of an object of a different owner
than the caller raises a run-time exception. To enforce this invariant, message
exchange in Siaam involves twice changing the owner of all objects in a message
contents graph: when a message is enqueued in a receiver mailbox, the owner of
objects in the message contents is changed atomically to a null owner ID that
is never assigned to any actor ; when the message is dequeued by the receiver
actor, the owner of objects in the message contents is changed atomically to
the receiver actor. This scheme prevents pathological situations where an object
passed in a message m may be sent in another message m′ by the receiver actor
without the latter having dequeued (and hence actually received) message m.
Since Siaam does not modify object references in any way, the sender actor can
still have references to objects that have been sent, but any attempt from this
sender actor to access them will raise an exception.

1 Siaam enforces the constraint that all objects reachable from a message root object
have the same owner – the sending actor. If the constraint is not met, sending the
message fails. However, this constraint, which makes for a simple design, is just a
design option. An alternative would be to consider that a message contents consist
of all the objects reachable from the root object which have the sending actor as
their owner. This alternate semantics would not change the actual mechanics of the
model and the strong isolation enforced by it.
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Read
hp s a = Some (C, fs) fs(F,D) = Some v

P, w � 〈a.F{D}, s〉 − OwnerCheck a True → 〈Val v, s〉

ReadX P, w � 〈a.F{D}, s〉 − OwnerCheck a False → 〈Throw OwnerMismatch, s〉

Global

acs s w = Some x P,w � 〈x, shp s〉 − wa → 〈x′, h′〉 ok act P s w wa
upd act P s w wa = (xs′, ws′,ms′, ) s′ = (xs′[w �→ x′], ws′, ms′, h′)

P � s → s′

Fig. 2. Siaam operational semantics: sample rules

Siaam: model and formal specification. The formal specification of the Siaam
model defines an operational semantics for the Siaam language, in the form of
a reduction semantics. The Siaam language is a Java-like language, for its se-
quential part, extended with special classes with native methods corresponding
to operations of the actor model, e.g. sending and receiving messages. The se-
mantics is organized in two layers, the single-actor semantics and the global
semantics. The single-actor semantics deals with evolutions of individual actors,
and reduces actor-local state. The global semantics maintains a global state not
directly accessible from the single-actor semantics. In particular, the effect of
reading or updating object fields by actors belongs to the single-actor semantics,
but whether it is allowed is controlled by the global semantics. Communications
are handled by the global semantics.

The single actor semantics extends the Jinja formal specification in HOL of
the reduction semantics of a (purely sequential) Java-like language [18] 2. Jinja
gives a reduction semantics for its Java-like language via judgments of the form
P � 〈e, (lv, h)〉 → 〈e′, (lv′, h′)〉, which means that in presence of program P (a
list of class declarations), expression e with a set of local variables lv and a heap
h reduces to expression e′ with local variables lv′ and heap h′.

We extend Jinja judgments for our single-actor semantics to take the form
P,w � 〈e, (lv, h)〉 − wa → 〈e′, (lv′, h′)〉 where 〈e, lv〉 corresponds to the local
actor state, h is the global heap, w is the identifier of the current actor (owner),
and wa is the actor action requested by the reduction. Actor actions embody the
Siaam model per se. They include creating new objects (with their initial owner),
including actors and mailboxes, checking the owner of an object, sending and
receiving messages. For instance, succesfully accessing an object field is governed
by rule Read in Figure 2. Jinja objects are pairs (C, fs) of the object class name
C and the field table fs. A field table is a map holding a value for each field
of an object, where fields are identified by pairs (F,D) of the field name F
and the name D of the declaring class. The premisses of rule Read retrieve
the object referenced by a from the heap (hp s a = Some (C, fs) – where hp

2 Jinja, as described in [18], only covers a subset of the Java language. It does not
have class member qualifiers, interfaces, generics, or concurrency.
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is the projection function that retrieves the heap component of a local actor
state, and the heap itself is an association table modelled as a function that
given an object reference returns an object), and the value v held in field F .
In the conclusion of rule Read, reading the field F from a returns the value v,
with the local state s (local variables and heap) unchanged. The actor action
OwnerCheck a True indicates that object a has the current actor as its owner.
Apart from the addition of the actor action label, rule Read is directly lifted
from the small step semantics of Jinja in [18]. In the case of field access, the rule
Read is naturally complemented with rule ReadX, that raises an exception if
the owner check fails, and which is specific to Siaam. Actor actions also include
a special silent action, that corresponds to single-actor reductions (including
exception handling) that require no access to the global state. Non silent actor
actions are triggered by object creation, object field access, and native calls, i.e.
method calls on the special actor and mailbox classes.

The global semantics is defined by the rule Global in Figure 2. The judg-
ment, written P � s → s′, means in presence of program P , global state s
reduces to global state s′. The global state (xs, ws,ms, h) of a Siaam program
execution comprises four components: the actor table xs, an ownership relation
ws, the mailbox table ms, and a shared heap h. The projection functions acs,
ows, mbs, shp return respectively the actor table, the ownerships relation, the
mailbox table, and the shared heap component of the global state. The actor ta-
ble associates an actor identifier to an actor local state consisting of a pair 〈e, lv〉
of expression and local variables. The rule Global reduces the global state by
applying a single step of the single-actor semantics for actor w. In the premises
of the rule, the shared heap shp s and the current local state x (expression and
local variables) for w are retrieved from the global state. The actor can reduce
to x′ with new shared heap h′ and perform the action wa. ok act tests the actor
action precondition against s. If it is satisfiable, upd act applies the effects of wa
to the global state, yielding the new tuple of state components (xs′, ws′,ms′, )
where the heap is left unchanged. The new state s′ is assembled from the new
mailbox table, the new ownership relation, the new heap from the single actor
reduction and the new actor table where the state for actor w is updated with
its new local state x′. We illustrate the effect of actor actions in the next section.

3 Siaam: Proof of Isolation

The key property we expect the Siaam model to uphold is the strong isolation (or
share nothing) property of the actor model, meaning actors can only exchange
information via message passing. We have formalized this property and proved
it using the Coq proof assistant (v8.4) [8]. We present in this section some key
elements of the formalization and proof, using excerpts from the Coq code. The
formalization uses an abstraction of the operational semantics presented in the
previous section. Specifically, we abstract away from the single-actor semantics.
The local state of an actor is abstracted as being just a table of local variables
(no expression), which may change in obvious ways: adding or removing a local
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variable, changing the value held by a local variable. The formalization (which we
call Abstract Siaam) is thus a generalization of the Siaam operational semantics.

Abstract Siaam: Types. The key data structure in Abstract Siaam is the config-
uration, defined as an abstraction of the global state in the previous section. A
configuration conf is a tuple comprising an actor table, an ownership relation, a
mailbox table and a shared heap. In Coq:

Record conf : Type := mkcf { acs : actors; ows : owners; mbs : mailboxes; shp : heap }.

Actor table, ownership relation, mailbox table and heap are all defined as simple
association tables, i.e. lists of pairs 〈i, d〉 of identifiers i and data d:

Definition actors := table aid locals. Definition actor := prod aid locals.
Definition owners := table addr (option aid). Definition mailboxes := table mid mbox.
Definition heap := table addr object.

Identifiers aid, addr, and mid correspond to actor identifiers, object references,
and mailbox identifiers, respectively. The data locals is a table of local variables
(with identifier type vid), an actor is just a pair associating an actor identifier
with a table of local variables, and a mailbox mbox is a list of messages associated
with an actor identifier (the actor receiving messages via the mailbox):

Definition locals := table vid value. Definition message := prod msgid addr.
Definition queue := list message. Record mbox : Type := mkmb { own : aid ; msgs : queue}.

A message is just a pair consisting of a message identifier and a reference to a root
object. A value can be either the null value (vnull), the mark value (vmark), an
integer (vnat), a boolean (vbool), an object reference, an actor id or a mailbox id.
The special mark value is simply a distinct value used to formalize the isolation
property.

Abstract Siaam: Transition rules. Evolution of a Siaam system are modeled in
Abstract Siaam as transitions between configurations, which are in turn governed
by transition rules. Each transition rule in Abstract Siaam corresponds to an an
instance of the Global rule in the Siaam operational semantics, specialized for
dealing with a given actor action. For instance, the rule governing field access,
which abstracts the global semantics reduction picking the OwnerCheck a True
action offered by a Read reduction of the single-actor semantics (cf. Figure 2)
carrying the identifier of actor e, and accessing field f of object o referenced by
a is defined as follows:

Inductive redfr : conf → aid → conf → Prop :=
| redfr_step : ∀ (c1 c2 : conf)(e : aid)(l1 l2 : locals)(i j : vid)(v w : value)(a: addr)

(o : object)(f: fid),
set_In (e,l1) (acs c1) → set_In (i, w) l1 → set_In (j,vadd a) l1 →

set_In (a,o) (shp c1) → set_In (f,v) o → set_In (a, Some e) (ows c1) →
v_compat w v → l2 = up_locals i v l1 →

c2 = mkcf (up_actors e l2 (acs c1)) (ows c1) (mbs c1) (shp c1) →
c1 =fr e ⇒ c2

where " t ’=fr’ a ’⇒’ t’ " := (redfr t a t’).

The conclusion of the rule, c1 =fr e ⇒ c2, states that configuration c1 can evolve
into configuration c2 by actor e doing a field access fr. The premises of the
rule are the obvious ones: e must designate an actor of c1; the table l1 of local
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variables of actor e must have two local variables i and j, one holding a reference
a to the accessed object (set_In (j,vadd a) l1), the other some value w (set_In (

i, w) l1) compatible with that read in the accessed object field (v_compat w v); a
must point to an object o in the heap of c1 (set_In (a,o) (shp c1) ), which must
have a field f, holding some value v (set_In (f,v) o) ; and actor e must be the
owner of object o for the field access to succeed (set_In (a, Some e) (ows c1)). The
final configuration c2 has the same owernship relation, mailbox table and shared
heap than the initial one c1, but its actor table is updated with new local state
of actor e (c2 = mkcf (up_actors e l2 (acs c1)) (ows c1) (mbs c1) (shp c1)), where
variable i now holds the read value v (l2 = up_locals i v l1).

Another key instance of the Abstract Siaam transition rules is the rule pre-
siding over message send:

Inductive redsnd : conf → aid → conf → Prop :=
| redsnd_step : ∀ (c1 c2 : conf)(e : aid) (a : addr) (l : locals) (ms: msgid)(mi: mid)

(mb mb’: mbox)(owns : owners),
set_In (e,l) (acs c1) →
set_In (vadd a) (values_from_locals l) →
trans_owner_check (shp c1) (ows c1) (Some e) a = true →
set_In (mi,mb) (mbs c1) →
not (set_In ms (msgids_from_mbox mb)) →
Some owns = trans_owner_update (shp c1) (ows c1) None a →
mb’ = mkmb (own mb) ((ms,a)::(msgs mb)) →
c2 = mkcf (acs c1) owns (up_mboxes mi mb’ (mbs c1)) (shp c1) →
c1 =snd e ⇒ c2

where " t ’=snd’ a ’⇒’ t’ " := (redsnd t a t’).

The conclusion of the rule, c1 =snd e ⇒ c2, states that configuration c1 can
evolve into configuration c2 by actor e doing a message send snd. The premises
of the rule expects the owner of the objects reachable from the root object (refer-
enced by a) of the message to be e; this is checked with function trans_owner_check

: trans_owner_check (shp c1) (ows c1) (Some e) a = true. When placing the mes-
sage in the mailbox mb of the receiver actor, the owner of all the objects reach-
able is set to None; this is done with function trans_owner_update: Some owns =

trans_owner_update (shp c1) (ows c1) None a. Placing the message with id ms and
root object referenced by a in the mailbox is just a matter of queuing it in the
mailbox message queue: mb’ = mkmb (own mb) ((ms,a)::(msgs mb)).

The transition rules of Abstract Siaam also include a rule governing silent
transitions, i.e. transitions that abstract from local actor state reductions that
elicit no change on other elements of a configuration (shared heap, mailboxes,
ownership relation, other actors). The latter are just modelled as transitions
arbitrarily modifying a given actor local variables, with no acquisition of object
references that were previously unknown to the actor.

Isolation proof. The Siaam model ensures that the only means of information
transfer between actors is message exchange. We can formalize this isolation
property using mark values. We call an actor a clean if its local variables do
not hold a mark, and if all objects reachable from a and belonging to a hold no
mark in their fields. An object o is reachable from an actor a if a has a local
variable holding o’s reference, or if, recursively, an object o’ is reachable from a

which holds o’s reference in one of its fields. The isolation property can now be
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characterized as follows: a clean actor in any configuration remains clean during
an evolution of the configuration if it never receives any message. In Coq:

Theorem ac_isolation : ∀ (c1 c2 : conf) (a1 a2: actor),
wf_conf c1 → set_In a1 (acs c1) → ac_clean (shp c1) a1 (ows c1) →

c1 =@ (fst a1) ⇒∗ c2 → Some a2 = lookup_actor (acs c2) (fst a1) →
ac_clean (shp c2) a2 (ows c2).

The theorem states that, in any well-formed configuration c1, an actor a1 which is

clean (ac_clean (shp c1) a1 (ows c1)), remains clean in any evolution of c1 that does

not involve a reception by a1. This is expressed as c1 =@ (fst a1) ⇒∗ c2 and ac_clean

(shp c2) a2 (ows c2), where fst a1 just extracts the identifier of actor a1, and a2 is

the descendant of actor a1 in the evolution (it has the same actor identifier than a1:

Some a2 = lookup_actor (acs c2) (fst a1)). The relation =@ a ⇒∗, which represents

evolutions not involving a message receipt by actor a, is defined as the reflexive and

transitive closure of relation =@ a ⇒, which is a one step evolution not involving a

receipt by a. The isolation theorem is really about transfer of information between

actors, the mark denoting a distinguished bit of information held by an actor. At first

sight it appears to say nothing about about ownership, but notice that a clean actor a

is one such that all objects that belong to a are clean, i.e. hold no mark in their fields.

Thus a corollary of the theorem is that, in absence of message receipt, actor a cannot

acquire an object from another actor (if that was the case, transferring the ownership

of an unclean object would result in actor a becoming unclean).

A well-formed configuration is a configuration where each object in the heap
has a single owner, all identifiers are indeed unique, where mailboxes hold mes-
sages sent by actors in the actor table, and all objects referenced by actors (di-
rectly or indirectly, through references in object fields) belong to the heap. To
prove theorem ac_isolation, we first prove that well-formedness is an invariant
in any configuration evolution:

Theorem red_preserves_wf : ∀ (c1 c2 : conf), c1 ⇒ c2 → wf_conf c1 → wf_conf c2.

The theorem red_preserves_wf is proved by induction on the derivation of the

assertion c1 ⇒ c2. To prove the different cases, we rely mostly on simple reasoning with

sets, and a few lemmas characterizing the correctness of table manipulation functions,

of the trans_owner_check function which verifies that all objects reachable from the

root object in a message have the same owner, and of the trans_owner_update function

which updates the ownership table during message transfers. Using the invariance of

well-formedness, theorem ac_isolation is proved by induction on the derivation of

the assertion c1 =@ (fst a1) ⇒∗ c2. To prove the different cases, we rely on several

lemmas dealing with reachability and cleanliness.

The last theorem, live_mark, is a liveness property that shows that the isola-
tion property is not vacuously true. It states that marks can flow between actors
during execution. In Coq:

Theorem live_mark : ∃ (c1 c2 : conf)(ac1 ac2 : actor),
c1 ⇒∗ c2 ∧ set_In ac1 (acs c1) ∧ ac_clean (shp c1) ac1 (ows c1)

∧ Some ac2 = lookup_actor (acs c2) (fst ac1) ∧ ac_mark (shp c2) ac2 (ows c2).
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4 Siaam: Implementation

We have implemented the Siaam abstract machine as a modified Jikes RVM [16].
Specifically, we extended the Jikes RVM bytecode and added a set of core primi-
tives supporting the ownership machinery, which are used to build trusted APIs
implementing particular programming models. The Siaam programming model
is available as a trusted API that implements the formal specification presented
in Section 2. On top of the Siaam programming model, we implemented the
ActorFoundry API as described in [17], which we used for some of our evalua-
tion. Finally we implemented a trusted event-based actor programming model
on top of the core primitives, which can dispatch thousand of lightweight actors
over pools of threads, and enables to build high-level APIs similar to Kilim with
Siaam’s ownership-based isolation.

Bytecode. The standard Java VM instructions are extended to include: a mod-
ified object creation instruction New, which creates an object on the heap and
sets its owner to that of the creating thread; modified field read and write acess
instructions getfield and putfield with owner check; modified instructions
load and store array instructions aload and astore with owner check.
Virtual Machine Core. Each heap object and each thread of execution have
an owner reference, which points to an object implementing the special Owner
interface. A thread can only access objects belonging to the Owner instance
referenced by its owner reference. Core primitives include operations to retrieve
and set the owner of the current thread, to retrieve the owner of an object,
to withdraw and acquire ownership over objects reachable from a given root
object. In the Jikes RVM, objects are represented in memory by a sequence of
bytes organized into a leading header section and the trailing scalar object’s
fields or array’s length and elements. We extended the object header with two
reference-sized words, OWNER and LINK. The OWNER word stores a reference to the
object owner, whereas the LINK word is introduced to optimize the performance
of object graph traversal operations.
Contexts. Since the JikesRVM is fully written in Java, threads seamlessly ex-
ecute application bytecode and the virtual machine internal bytecode. We have
introduced a notion of execution context in the VM to avoid subjecting VM
bytecode to the owner-checking mechanisms. A method in the application con-
text is instrumented with all the isolation mechanisms whereas methods in the
VM context are not. If a method can be in both context, it must be compiled in
two versions, one for both contexts. When a method is invoked, the context of
the caller is used to deduce which version of the method should be called. The
decision is taken statically when the invoke instruction is compiled.
Owernship Transfer. Central to the performance of the Siaam virtual machine
are operations implementing ownership transfer, withdraw and acquire. In the
formal specification, owner-checking an object graph and updating the owner
of objects in the graph is done atomically (see e.g. the message send transition
rule in Section 3). However implementing the withdraw operation as an atomic
operation would be costly. Furthermore, an implementation of ownership transfer
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Fig. 3. Owner-check elimination decision diagram

must minimize graph traversals. We have implemented an iterative algorithm
for withdraw that chains objects that are part of a message through their LINK
word. The list thus obtained is maintained as long as the message exists so
that the acquire operation can efficiently traverse the objects of the message.
The algorithm leverages specialized techniques, initially introduced in the Jikes
RVM to optimize the reference scanning phase during garbage collection [10], to
efficiently enumerate the reference offsets for a given base object.

5 Siaam: Static Analysis

We describe in this section some elements of Siaam static analysis to optimize
away owner-checking on field read and write instructions. The analysis is based
on the observation that an instruction accessing an object’s field does not need
an owner-checking if the object accessed belongs to the executing actor. Any
object that has been allocated or received by an actor and has not been passed
to another actor ever since, belongs to that actor. The algorithm returns an
under-approximation of the owner-checking removal opportunities in the ana-
lyzed program.

Considering a point in the program, we say an object (or a reference to an
object) is safe when it always belongs to the actor executing that point, regard-
less of the execution history. By opposition, we say an object is unsafe when
sometimes it doesn’t belong to the current actor. We extend the denomination
to instructions that would respectively access a safe object or an unsafe ob-
ject. A safe instruction will never throw an OwnerException, whereas an unsafe
instruction might.

Analysis. The Siaam analysis is structured in two phases. First the safe dy-
namic references analysis employs a local must-alias analysis to propagate owner-
checked references along the control-flow edges. It is optionally refined with an
inter-procedural pass propagating safe references through method arguments
and returned values. Then the safe objects analysis tracks safe runtime objects
along call-graph and method control-flow edges by combining an inter-procedural
points-to analysis and an intra-procedural live variable analysis. Both phases de-
pend on the transfered abstract objects analysis that propagates unsafe abstract
objects from the communication sites downward the call graph edges.

By combining results from the two phases, the algorithm computes conservative
approximations of unsafe runtime objects and safe variables at any control-flow
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point in the program.The owner-check elimination for a given instruction s access-
ing the reference in variable V proceeds as illustrated in Figure 3. First the unsafe
objects analysis is queried to know whether V may points-to an unsafe runtime
object at s. If not, the instruction can skip the owner-check for V . Otherwise, the
safe reference analysis is consulted to know whether the reference in variable V
is considered safe at s, thanks to dominant owner-checks of the reference in the
control-flow graph.

The Siaam analysis makes use of several standard intra and inter-prodedural
program analyses: a call-graph representation, an inter-procedural points-to anal-
ysis, an intra-procedural liveness analysis, and an intra-procedural must-alias
analysis. Each of these analyses exists in many different variants offering various
tradeoffs of results accuracy and algorithmic complexity, but regardless of the
implementation, they provide a rather standard querying interface. Our analysis
is implemented as a framework that can make use of different instances of these
analyses.
Implementations. The intra-procedural safe reference analysis which is part
of the Siaam analysis has been included in the Jikes RVM optimizing compiler.
Despite its relative simplicity and its very conservative assumptions, it efficiently
eliminates about half of the owner-check barriers introduced by application byte-
code and the standard library for the benchmarks we have tested (see Section 6).
The safe reference analysis and the safe object analyses from the Siaam analy-
sis have been implemented in their inter-procedural versions as an offline tool
written in Java. The tool interfaces with the Soot analysis framework [23], that
provides the program representation, the call graph, the inter-procedural pointer
analysis, the must-alias analysis and the liveness analysis we use.
Programming Assistant. The Siaam programming model is quite simple,
requiring no programmer annotation, and placing no constraint on messages.
However, it may generate hard to understand runtime exceptions due to failed
owner-checks. The Siaam analysis is therefore used as the basis of a program-
ming assistant that helps application developers understand why a given pro-
gram statement is potentially unsafe and may throw an owernship exception at
runtime. The Siaam analysis guarantees that there will be no false negative, but
to limit the amount of false positives it is necessary to use a combination of
the most accurate standard (points-to, must-alias and liveness) analyses. The
programming assistant tracks a program P backward, starting from an unsafe
statement s with a non-empty set of unverified ownerhip preconditions (as given
by the ok act function in Section 2), trying to find every program points that
may explain why a given precondition is not met at s. For each unsatisfied pre-
condition, the assistant can exhibit the shortest execution paths that result in an
exception being raised at s. An ownership precondition may comprise require-
ments that a variable or an object be safe. When a requirement is not satisfied
before s, it raises one or several questions of the form “why is x unsafe before s?”.
The assistant traverses the control-flow backward, looks for immediate answers
at each statement reached, and propagates the questions further if necessary,
until all questions have found an answer.
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6 Evaluation

Siaam Implementation. We present first an evaluation of the overall per-
formance of our Siaam implementation based on the DaCapo benchmark suite
[3], representative of various real industrial workloads. These applications use
regular Java. The bytecode is instrumented with Siaam’s owner-checks and all
threads share the same owner. With this benchmark we measure the overhead of
the dynamic ownership machinery, encompassing the object owner initialization
and the owner-checking barriers, plus the allocation and collection costs linked
to the object header modifications.

We benchmarked five configurations. no siaam is the reference Jikes RVM
without modifications. opt designates the modified Jikes RVM with JIT owner-
checks elimination. noopt designates the modified Jikes RVM without JIT owner-
checks elimination. sopt is the same as opt but the application bytecode has
safety annotations issued by the offline Siaam static analysis tool. Finally soptnc

is the same as sopt without owner-check barriers for the standard library byte-
code. We executed the 2010-MR2 version of the DaCapo benchamrks, with two
workloads, the default and the large. Table 1 shows the results for the Dacapo
2010-MR2 runs. The results were obtained using a machine equipped with an
Intel Xeon W3520 2.67Ghz processor. The execution time results are normal-
ized with respect to the no-siaam configuration for each program of the suite:
lower is better. The geometric mean summarizes the typical overhead for each
configuration. The opt figures in Table 1 show that the modified virtual machine
including JIT barrier elimination has an overhead of about 30% compared to the
not-isolated reference. The JIT elimination improves the performances by about
20% compared to the noopt configuration. When the bytecode is annotated by
the whole-program static analysis the performance is 10% to 20% better than
with the runtime-only optimization. However, the DaCapo benchmarks use the
Java reflection API to load classes and invoke methods, meaning our static anal-
ysis was not able to process all the bytecode with the best precision. We can
expect better results with other programs for which the call graph can be entirely
built with precision. Moreover we used for the benchmarks a context-insensitive,
flow-insensitive pointer analysis, meaning the Siaam analysis could be even more
accurate with sensitive standard analyses. Finally the standard library bytecode
is not annotated by our tool, it is only treated by the JIT elimination opti-
mization. The soptnc configuration provides a good indication of what the full
optimization would yield. The results show an overhead (w.r.t. application) with
a mean of 15%, which can be considered as an acceptable price to pay for the
simplicity of developing isolated programs with Siaam.

The Siaam virtual machine consumes more heap space than the unmodified
Jikes RVM due to the duplication of the standard library used by both the
virtual machine and the application, and because of the two words we add in
every object’s header. The average object size in the DaCapo benchmarks is 62
bytes, so our implementations increases it by 13%. We have measured a 13%
increase in the full garbage collection time, which accounts for the tracing of the
two additional references and the memory compaction.
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Table 1. DaCapo benchmarks

Benchmark opt noopt sopt soptnc opt noopt sopt soptnc
workload default large
antlr 1.20 1.32 1.09 1.11 1.21 1.33 1.11 1.10
bloat 1.24 1.41 1.17 1.05 1.40 1.59 1.14 0.96
hsqldb 1.24 1.36 1.09 1.06 1.45 1.60 1.29 1.10
jython 1.52 1.73 1.41 1.24 1.45 1.70 1.45 1.15
luindex 1.25 1.46 1.09 1.05 1.25 1.43 1.09 1.03
lusearch 1.31 1.45 1.17 1.18 1.33 1.49 1.21 1.21
pmd 1.32 1.37 1.29 1.24 1.34 1.44 1.39 1.30
xalan 1.24 1.39 1.33 1.35 1.29 1.41 1.38 1.40
geometric mean 1.28 1.43 1.20 1.16 1.34 1.50 1.25 1.15

Table 2. ActorFoundry analyses

Ownercheck Message Passing ratio to Ideal

Sites
Ideal
safe

Siaam
safe Sites

Ideal
safe

Siaam
safe

Time
(sec) Siaam SOTER

ActorFoundry
threadring 24 24 24 8 8 8 0.1 100% 100%

(1)concurrent 99 99 99 15 12 10 0.1 98% 58%
(2)copymessages 89 89 84 22 20 15 0.1 91% 56%

performance 54 54 54 14 14 14 0.2 100% 86%
pingpong 28 28 28 13 13 13 0.1 100% 89%

refmessages 4 4 4 6 6 6 0.1 100% 67%
Benchmarks

chameneos 75 75 75 10 10 10 0.1 100% 33%
fibonacci 46 46 46 13 13 13 0.2 100% 86%

leader 50 50 50 10 10 10 0.1 100% 17%
philosophers 35 35 35 10 10 10 0.2 100% 100%

pi 31 31 31 8 8 8 0.1 100% 67%
shortestpath 147 147 147 34 34 34 1.2 100% 88%

Synthetic
quicksortCopy 24 24 24 8 8 8 0.2 100% 100%

(3)quicksortCopy2 56 56 51 10 10 5 0.1 85% 75%
Real world
clownfish 245 245 245 102 102 102 2.2 100% 68%

(4)rainbow fish 143 143 143 83 82 82 0.2 99% 99%
swordfish 181 181 181 136 136 136 1.7 100% 97%

Siaam Analysis. We compare the efficiency of the Siaam whole-program
analysis to the SOTER algorithm, which is closest to ours. Table 2 contains the
results that we obtained for the benchmarks reported in [21], that use Actor-
Foundry programs. For each analyzed application we give the total number of
owner-checking barriers and the total number of message passing sites in the
bytecode. The columns “Ideal safe” show the expected number of safe sites for
each criteria. The column “ Siaam safe” gives the result obtained with the Siaam
analysis. The analysis execution time is given in the third main colum. The last
column compares the result ratio to ideal for both SOTER and Siaam. Our
analysis outperforms SOTER significantly. SOTER relies on an inter-procedural
live-analysis and a points-to analysis to infer message passing sites where a by-
reference semantics can applies safely. Given an argument ai of a message passing
site s in the program, SOTER computes the set of objects passed by ai and the
set of objects transitively reachable from the variables live after s. If the inter-
section of these two sets is empty, SOTER marks ai as eligible for by-reference



226 B. Claudel et al.

argument passing, otherwise it must use the default by-value semantic. The
weakness to this pessimistic approach is that among the live objects, a signif-
icant part won’t actually be accessed in the control-flow after s. On the other
hand, Siaam do care about objects being actually accessed, which is a stronger
evidence criterion to incriminate message passing sites. Although Siaam’s algo-
rithm wasn’t designed to optimize-out by-value message passing, it is perfectly
adapted for that task. For each unsafe instruction detected by the algorithm,
there is one or several guilty dominating message passing sites. Our diagnosis
algorithm tracks back the application control-flow from the unsafe instruction
to the incriminated message passing sites. These sites represent a subset of the
sites where SOTER cannot optimize-out by-value argument passing.

7 Related Work and Conclusion

Enforcing isolation between different groups of objects, programs or threads in
presence of a shared memory has been much studied in the past two decades.
Although we cannot give here a full survey of the state of the art (a more
in depth analysis is available in [22]), we can point out three different kinds of
related works: those relying on type annotations to ensure isolation, those relying
on run-time mechanisms, and those relying on static analyses.

Much work has been done on controlling aliasing and encapsulation in object-
oriented languages and systems, in a concurrent context or not. Much of the
works in these areas rely on some sort of reference uniqueness, that eliminates
object sharing by making sure that there is only one reference to an object
at any time, e.g. [5,14,15,19,20]. All these systems restrict the shape of object
graphs or the use of references in some way. In contrast, Siaam makes no such
restriction. A number of systems rely on run-time mechanisms for achieving iso-
lation, most using either deep-copy or special message heaps for communication,
e.g. [7,9,11,12]. Of these, O-Kilim [12], which builds directly on the PhD work
of the first author of this paper [6], is the closest to Siaam: it places no con-
straint on transferred object graphs, but at the expense of a complex program-
ming model and no programmer support, in contrast to Siaam. Finally several
works develop static analyses for efficient concurrency or ownership transfer, e.g.
[4,21,24]. Kilim [24] relies in addition on type annotations to ensure tree-shaped
messages. The SOTER [21] analysis is closest to the Siaam analysis and has been
discussed in the previous section.

With its annotation-free programmingmodel, which places no restriction on ob-
ject references and message shape, we believe Siaam to be really unique compared
to other approaches in the literature. In addition, we have not found an equiva-
lent of the formal proof of isolation we have conducted for Siaam. Our evaluations
demonstrate that the Siaam approach to isolation is perfectly viable: it suffers only
from a limited overhead in performance and memory consumption, and our static
analysis can significantly improve the situation. The one drawback of our program-
ming model, raising possibly hard to understand runtime exceptions, is greatly
alleviated by the use of the Siaam analysis in a programming assistant.
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Abstract. Automatic software verification relies on constructing, for
a given program, an abstract model that is (1) abstract enough to
avoid state-space explosion and (2) precise enough to reason about the
specification. Counterexample-guided abstraction refinement is a stan-
dard technique that suggests to extract information from infeasible error
paths, in order to refine the abstract model if it is too imprecise. Existing
approaches —including our previous work— do not choose the refinement
for a given path systematically. We present a method that generates al-
ternative refinements and allows to systematically choose a suited one.
The method takes as input one given infeasible error path and applies a
slicing technique to obtain a set of new error paths that are more abstract
than the original error path but still infeasible, each for a different rea-
son. The (more abstract) constraints of the new paths can be passed to a
standard refinement procedure, in order to obtain a set of possible refine-
ments, one for each new path. Our technique is completely independent
from the abstract domain that is used in the program analysis, and does
not rely on a certain proof technique, such as SMT solving. We imple-
mented the new algorithm in the verification framework CPAchecker
and made our extension publicly available. The experimental evaluation
of our technique indicates that there is a wide range of possibilities on
how to refine the abstract model for a given error path, and we demon-
strate that the choice of which refinement to apply to the abstract model
has a significant impact on the verification effectiveness and efficiency.

1 Introduction
In the field of automatic software verification, abstraction is a well-understood
and widely-used technique, enabling the successful verification of real-world,
industrial programs (cf. [4, 13, 14]). Abstraction makes it possible to omit cer-
tain aspects of the concrete semantics that are not necessary to prove or dis-
prove the program’s correctness. This may lead to a massive reduction of a
program’s state space, such that verification becomes feasible within reasonable
time and resource limits. For example, Slam [5] uses predicate abstraction [18]
for creating an abstract model of the software. One of the current research

A preliminary version of this article appeared as technical report [12].

c© IFIP International Federation for Information Processing 2015
S. Graf and M. Viswanathan (Eds.): FORTE 2015, LNCS 9039, pp. 228–243, 2015.
DOI: 10.1007/978-3-319-19195-9 15



Sliced Path Prefixes: An Effective Method to Enable Refinement Selection 229

1 extern int f ( int x ) ;
2 int main ( ) {
3 int b = 0 ;
4 int i = 0 ;
5 while ( 1 ) {
6 i f ( i > 9) break ;
7 f ( i ++);
8 }
9 i f (b != 0) {

10 i f ( i != 10) {
11 assert ( 0 ) ;
12 }
13 }
14 }

true

b==0

b==0

b==0

false

true

true

i==0

false

false

false false

false false

Fig. 1. From left to right, the input program, an infeasible error path, and a “good”
and a “bad” interpolant sequence for the infeasible error path

directions is to invent techniques to automatically find suitable abstractions.
An ideal model is abstract enough to avoid state-space explosion and still con-
tains enough detail to verify the property. Counterexample-guided abstraction
refinement (CEGAR) [15] is an automatic technique that starts with a coarse ab-
straction and iteratively refines an abstract model using infeasible error paths.
If the analysis does not find an error path in the abstract model, the analy-
sis terminates with the result true. If the analysis finds an error path, the
path is checked for feasibility. If this error path is feasible according to the con-
crete program semantics, then it represents a bug, and the analysis terminates
with the result false. However, if the error path is infeasible, then the abstract
model was too coarse. In this case, the infeasible error path can be passed to
an interpolation engine, which identifies information that is needed to refine the
current abstraction, such that the same infeasible error path is excluded in the
next CEGAR iterations. CEGAR is successfully used, for example, by the tools
Slam [5], Blast [7], CPAchecker [10], and Ufo [1].

Craig interpolation [16] is a technique that yields for two contradicting formu-
las an interpolant formula that contains less information than the first formula,
but is still expressive enough to contradict the second formula. In software veri-
fication, interpolation was first used for the domain of predicate abstraction [19],
and later for value-analysis domains [11]. Independent of the analysis domain,
interpolants for path constraints of infeasible error paths can be used to re-
fine abstract models and to eliminate the infeasible error paths in subsequent
CEGAR iterations. In this context, it is important to point out that the choice
of interpolants is crucial for the performance of the analysis. Figure 1 gives an
example: In this program, the analysis will typically find the shown error path,
which is infeasible for two different reasons: both the value of i and the value
of b can be used to find a contradiction. In general, it is now beneficial for the
verifier to track the value of the boolean variable b, and not to track the value of
the loop-counter variable i, because the latter has many more possible values,
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and tracking it would usually lead to an expensive unrolling of the loop. Instead,
if only variable b is tracked, the verifier can conclude the safety of the program
without unrolling the loop. Thus, we would like to use for refinement the in-
terpolant sequence shown on the left (with only the boolean variable) and not
the right one (with the loop-counter variable). However, interpolation engines
typically do not allow to guide the interpolation process towards “good”, or away
from “bad”, interpolant sequences. The interpolation engines inherently cannot
do a better job here: they do not have access to information such as whether
a specific variable is a loop counter and should be avoided in the interpolant.
Instead, which interpolant is returned depends solely on the internal algorithms
of the interpolation engine. This is especially true if the model checker uses an
off-the-shelf interpolation engine, which normally cannot be controlled on such
a fine-grained level. In this case, the model checker is stuck to what the interpo-
lation engine returns, be it good or bad for the verification process.

Therefore, we present an approach that allows to guide the interpolation en-
gine to produce different interpolants, without changing the interpolation engine.
To achieve this, we extract from one infeasible error path a set of infeasible sliced
paths, each infeasible for a different reason. Each of these sliced paths can be
used for interpolation, yielding different interpolant sequences that are all ex-
pressive enough to eliminate the original infeasible error path. Our approach
fits well into CEGAR (with or without lazy abstraction [20]), because only the
refinement component needs customization, and the new approach remains com-
patible with off-the-shelf interpolation engines.

Contributions. We make the following key contributions: (1) we introduce a
domain- and analysis-independent method to extract a set of infeasible sliced
paths from infeasible error paths, (2) we prove that interpolants for such a sliced
path are also interpolants for the original infeasible error path, (3) we explain
that —and how— it is possible to obtain, given a set of infeasible sliced paths,
different precisions (interpolants) for the same infeasible error path, and that
the choice of the precision makes a significant difference for CEGAR, (4) we im-
plement the presented concepts in the open-source framework for software ver-
ification CPAchecker, and (5) we show experimentally that the novel approach
to obtain different precisions significantly impacts the effectiveness and efficiency.

While we use interpolation to compute the refined precisions, our method is
not bound to interpolation: invariant-generation techniques for refinement such
as path invariants [8] can equally benefit from the new possibility of choice.

Related Work. The desire to control which interpolants an interpolation engine
produces, and trying to make the verification process more efficient by finding
good interpolants, is not new. Our goal is to contribute a technique that is inde-
pendent from the abstract domain that a program analysis uses, and independent
from specific properties of interpolation engines.

The first work in this direction suggested to control the interpolant
strength [17] such that the user can choose between strong and weak interpolants.
This approach is unfortunately not implemented in standard interpolation en-
gines. The technique of interpolation abstractions [22], a generalization of term
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abstraction [2], can be used to guide solvers to pick good interpolants. This is
achieved by extending the concrete interpolation problem by so called templates
(e.g., terms, formulas, uninterpreted functions with free variables) to obtain a
more abstract interpolation problem. An interpolant for the abstract interpola-
tion problem is also a solution to the concrete interpolation problem. Suitable
interpolants can be chosen using a cost function, because these interpolation ab-
stractions form a lattice. In contrast to interpolation abstractions, our approach
does not rely on SMT solving and is independent from the interpolation engine
and abstract domain, so it is also applicable to, e.g., value and octagon domains.

Path slicing [21] is a technique that was introduced to reduce the burden
of the interpolation engine: Before the constraints of the path are given to the
interpolation engine, the constraints are weakened by removing facts that are
not important for the infeasibility of the error path, i.e., a more abstract error
path is constructed. We also make the error path more abstract, but in different
directions to obtain different interpolant sequences, from which we can choose
one that yields a suitable abstract model. While path slicing is interested in
reducing the run time of the interpolation engine (by omitting some facts), we
are interested in reducing the run time of the verification engine (by spending
more time on interpolation and selection but creating a better abstract model).

2 Background
Our approach is based on several existing concepts, and in this section we remind
the reader of some basic definitions and our previous work in this field [11].

Programs, Control-Flow Automata, States, Paths, Precisions. We re-
strict the presentation to a simple imperative programming language, where all
operations are either assignments or assume operations, and all variables range
over integers.1 A program is represented by a control-flow automaton (CFA).
A CFA A = (L, l0, G) consists of a set L of program locations, which model
the program counter, an initial program location l0 ∈ L, which models the pro-
gram entry, and a set G ⊆ L × Ops × L of control-flow edges, which model the
operations that are executed when control flows from one program location to
the next. The set of program variables that occur in operations from Ops is
denoted by X . A verification problem P = (A, le) consists of a CFA A, repre-
senting the program, and a target program location le ∈ L, which represents the
specification, i.e., “the program must not reach location le”.

A concrete data state of a program is a variable assignment cd : X → Z,
which assigns to each program variable an integer value; the set of integer values
is denoted as Z. A concrete state of a program is a pair (l, cd), where l ∈ L is a
program location and cd is a concrete data state. The set of all concrete states
of a program is denoted by C, a subset r ⊆ C is called region. Each edge g ∈ G
defines a labeled transition relation g→ ⊆ C × {g} × C. The complete transition

1 Our implementation is based on CPAchecker, which operates on C programs;
non-recursive function calls are supported.
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relation → is the union over all control-flow edges: → =
⋃

g∈G

g→. We write c
g→c′

if (c, g, c′) ∈ →, and c→c′ if there exists a g with c
g→c′.

An abstract data state represents a region of concrete data states, formally
defined as abstract variable assignment. An abstract variable assignment is ei-
ther a partial function v : X −→◦ Z mapping variables in its definition range to
integer values, or ⊥, which represents no variable assignment (i.e., no value is
possible, similar to the predicate false in logic). The special abstract variable
assignment � = {} does not map any variable to a value and is used as ini-
tial abstract variable assignment in a program analysis. Variables that do not
occur in the definition range of an abstract variable assignment are either omit-
ted by purpose for abstraction in the analysis, or the analysis is not able to
determine a concrete value (e.g., resulting from an uninitialized variable decla-
ration or from an external function call). For two partial functions f and f ′, we
write f(x) = y for the predicate (x, y) ∈ f , and f(x) = f ′(x) for the predicate
∃c : (f(x) = c) ∧ (f ′(x) = c). We denote the definition range for a partial func-
tion f as def(f) = {x | ∃y : f(x) = y}, and the restriction of a partial function f
to a new definition range Y as f|Y = f ∩ (Y × Z). An abstract variable assign-
ment v represents the set [[v]] of all concrete data states cd for which v is valid,
formally: [[⊥]] = {} and for all v �= ⊥, [[v]] = {cd | ∀x ∈ def(v) : v(x) = cd(x)}.
The abstract variable assignment ⊥ is called contradicting. The implication for
abstract variable assignments is defined as follows: v implies v′ (written v ⇒ v′)
if v = ⊥, or for all variables x ∈ def(v′) we have v(x) = v′(x). The conjunction
for abstract variable assignments v and v′ is defined as:

v ∧ v′ =
{⊥ if v = ⊥ or v′ = ⊥ or (∃x ∈ def(v) ∩ def(v′) : ¬ v(x) = v′(x))
v ∪ v′ otherwise

The semantics of an operation op ∈ Ops is defined by the strongest-post
operator SPop(·): given an abstract variable assignment v, SPop(v) represents
the set of concrete data states that are reachable from the concrete data states
in the set [[v]] by executing op. Formally, given an abstract variable assignment v
and an assignment operation x := exp, we have SPx:=exp(v) = ⊥ if v = ⊥, or
SPx:=exp(v) = v|X\{x} ∧ vx with

vx =

{{(x, c)} if c ∈ Z is the result of the arith. evaluation of expression exp/v
{} otherwise (if exp/v cannot be evaluated)

where exp/v denotes the interpretation of expression exp for the abstract variable
assignment v. Given an abstract variable assignment v and an assume opera-
tion [p], we have SP[p](v) = ⊥ if v = ⊥ or the predicate p/v is unsatisfiable, or we
have SP[p](v) = v ∧ vp, with vp =

{

(x, c) ∈ (X \ def(v)× Z)
∣
∣ p/v ⇒ (x = c)

}

and p/v = p ∧ ∧

y∈def(v)
y = v(y).

A path σ is a sequence 〈(op1, l1), . . . , (opn, ln)〉 of pairs of an operation and a
location. The path σ is called program path if for every i with 1 ≤ i ≤ n there
exists a CFA edge g = (li−1, opi, li) and l0 is the initial program location, i.e., the
path σ represents a syntactic walk through the CFA. The result of appending the
pair (opn, ln) to a path σ = 〈(op1, l1), . . . , (opm, lm)〉 is defined as σ∧ (opn, ln) =
〈(op1, l1), . . . , (opm, lm), (opn, ln)〉.
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Every path σ = 〈(op1, l1), . . . , (opn, ln)〉 defines a constraint sequence
γσ = 〈op1, . . . , opn〉. The conjunction γ ∧ γ′ of two constraint sequences
γ = 〈op1, . . . , opn〉 and γ′ = 〈op ′

1, . . . , op
′
m〉 is defined as their concatenation,

i.e., γ ∧ γ′ = 〈op1, . . . , opn, op
′
1, . . . , op

′
m〉, the implication of γ and γ′ (denoted

by γ ⇒ γ′) as the implication of their strongest-post assignments SPγ(�) ⇒
SPγ′(�), and γ is contradicting if SPγ(�) = ⊥. The semantics of a path σ =
〈(op1, l1), . . . , (opn, ln)〉 is defined as the successive application of the strongest-
post operator to each operation of the corresponding constraint sequence γσ:
SPγσ (v) = SPopn

(. . . SPop1
(v) . . .). The set of concrete program states that re-

sult from running a program path σ is represented by the pair (ln, SPγσ(�)),
where � is the initial abstract variable assignment. A path σ is feasible if
SPγσ (�) is not contradicting, i.e., SPγσ (�) �= ⊥. A concrete state (ln, cdn) is
reachable, denoted by (ln, cdn) ∈ Reach, if there exists a feasible program path
σ = 〈(op1, l1), . . . , (opn, ln)〉 with cdn ∈ [[SPγσ(�)]]. A location l is reachable
if there exists a concrete data state cd such that (l, cd) is reachable. A pro-
gram is safe (the specification is satisfied) if le is not reachable. A program path
σ = 〈(op1, l1), . . . , (opn, le)〉, which ends in le, is called error path.

The precision is a function π : L → 2Π , where Π depends on the abstract
domain that is used by the analysis. It assigns to each program location some
analysis-dependent information that defines the level of abstraction of the anal-
ysis. For example, if using predicate abstraction, the set Π is a set of predicates
over program variables. If using a value domain, the set Π is the set X of program
variables, and a precision defines which program variables should be tracked by
the analysis at which program location.

Counterexample-Guided Abstraction Refinement (CEGAR). CEGAR,
a technique for automatic iterative refinement of an abstract model [15], is based
on three concepts: (1) a precision, which determines the current level of abstrac-
tion, (2) a feasibility check, which decides if an error path (counterexample) is
feasible, and (3) a refinement procedure, which takes as input an infeasible error
path and extracts a precision to refine the abstract model such that the infea-
sible error path is eliminated from further exploration. Algorithm 1 shows an
instantiation of the CEGAR algorithm. It uses the CPA algorithm [9, 11] for
program analysis with dynamic precision adjustment and an abstract domain
that is formalized as a configurable program analysis (CPA) with dynamic pre-
cision adjustment D. The CPA uses a set E of abstract states and a set L → 2Π

of precisions. The analysis algorithm computes the sets reached and waitlist,
which represent the current reachable abstract states with precisions and the
frontier, respectively. The analysis algorithm is run first with π0 as coarse ini-
tial precision (usually π0(l) = {} for all l ∈ L). If all program states have been
exhaustively checked, indicated by an empty waitlist, and no error was reached
then the CEGAR algorithm terminates and reports true (program is safe). If
the CPA algorithm finds an error in the abstract state space, then it stops
and returns the yet incomplete sets reached and waitlist. Now the correspond-
ing abstract error path is extracted from the set reached, using the procedure
ExtractErrorPath, and passed to the procedure IsFeasible for the feasibility check.
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Algorithm 1 CEGAR(D, e0, π0), cf. [11]
Input: a CPA with dynamic precision adjustment D and

an initial abstract state e0 ∈ E with precision π0 ∈ (L → 2Π)
Output: verification result true (property holds) or false
Variables: a set reached of elements of E × (L → 2Π ),

a set waitlist of elements of E × (L → 2Π), and
an error path σ = 〈(op1, l1), . . . , (opn, ln)〉

1: reached := {(e0, π0)}; waitlist := {(e0, π0)}; π := π0

2: while true do
3: (reached,waitlist) := CPA(D, reached,waitlist)
4: if waitlist = {} then
5: return true
6: else
7: σ := ExtractErrorPath(reached)
8: if IsFeasible(σ) then // error path is feasible: report bug
9: return false

10: else // error path is infeasible: refine and restart
11: π(l) := π(l) ∪ Refine(σ)(l), for all program locations l
12: reached := {(e0, π)}; waitlist := {(e0, π)}

Algorithm 2 Refine(σ)

Input: an infeasible error path σ = 〈(op1, l1), . . . , (opn, ln)〉
Output: a precision π ∈ L → 2Π

Variables: a constraint sequence Γ
1: Γ := 〈〉
2: π(l) := {}, for all program locations l
3: for i := 1 to n− 1 do
4: γ+ := 〈opi+1, . . . , opn〉
5: Γ := Interpolate(Γ ∧ 〈opi〉, γ+) // inductive interpolation
6: π(li) := ExtractPrecision(Γ ) // create precision based on Γ
7: return π

If the abstract error path is feasible, meaning there exists a corresponding con-
crete error path, then this error path represents a violation of the specification
and the algorithm terminates, reporting false. If the error path is infeasible,
i.e., is not corresponding to a concrete program path, then the precision was too
coarse and needs to be refined. The refinement step is performed by procedure
Refine (cf. Alg. 2) which returns a precision π that makes the analysis strong
enough to exclude the infeasible error path from future state-space explorations.
This returned precision is used to extend the current precision of the CPA al-
gorithm, which is started in CEGAR’s next iteration and re-computes the sets
reached and waitlist based on the new, refined precision. CEGAR is often used
with lazy abstraction [20] so that after refining, instead of the whole state space,
only some parts of reached and waitlist are removed, and re-explored with the
new precision.
Interpolation for Constraint Sequences. An interpolant for two constraint
sequences γ− and γ+, such that γ− ∧ γ+ is contradicting, is a constraint
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sequence Γ for which 1) the implication γ− ⇒ Γ holds, 2) the conjunction
Γ ∧γ+ is contradicting, and 3) the interpolant Γ contains in its constraints only
variables that occur in both γ− and γ+ [11].

Next, we introduce our novel approach, which extracts from one infeasible
error path a set of infeasible sliced path prefixes. Sect. 4 then uses this method to
extend the procedure Refine to perform precision extraction on a set of infeasible
sliced prefixes, offering to select the most suitable precision from several choices.

3 Sliced Prefixes

Infeasible Sliced Prefixes. A CEGAR-based analysis encounters an infeasi-
ble error path if the precision is too coarse. An infeasible error path contains
at least one assume operation for which the reachability algorithm computes a
non-contradicting abstract successor based on the current precision, but com-
putes a contradicting successor if the concrete semantics of the program is used.
Every infeasible error path contains at least one such contradicting assume op-
eration, but often, there exist several independently contradicting assume oper-
ations in an infeasible error path, which leads to the notion of infeasible sliced
prefixes: A path φ = 〈(op1, l1), . . . , (opw, lw)〉 is a sliced prefix for a program
path σ = 〈(op1, l1), . . . , (opn, ln)〉 if w ≤ n and for all 1 ≤ i ≤ w, we have
φ.li = σ.li and (φ.opi = σ.opi or (φ.opi = [true] and σ.opi is assume op)), i.e.,
a sliced prefix results from a program path by omitting pairs of operations and
locations from the end, and possibly replacing some assume operations by no-op
operations. If a sliced prefix for σ is infeasible, then σ is infeasible.
Extracting Infeasible Sliced Prefixes from an Infeasible Error Path.
Algorithm 3 extracts from an infeasible error path a set of infeasible sliced pre-
fixes. The algorithm iterates through the given infeasible error path σ. It keeps
incrementing a feasible sliced prefix σf that contains all operations from σ that
were seen so far, except contradicting assume operations, which were replaced by
no-op operations. Thus, σf is always feasible. For every element (op, l) from the
original path σ (iterating in order from the first to the last pair), it is checked

Algorithm 3 ExtractSlicedPrefixes(σ)
Input: an infeasible path σ = 〈(op1, l1), . . . , (opn, ln)〉
Output: a non-empty set Σ = {σ1, . . . , σn} of infeasible sliced prefixes of σ
Variables: a path σf that is always feasible
1: Σ := {}
2: σf := 〈〉
3: for each (op, l) ∈ σ do
4: if SPσf∧(op,l)(�) = ⊥ then
5: // add σf ∧ (op, l) to the set of infeasible sliced prefixes
6: Σ := Σ ∪ {σf ∧ (op, l)}
7: σf := σf ∧ ([true], l) // append no-op
8: else
9: σf := σf ∧ (op, l) // append original pair

10: return Σ
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(a) Error path (b) Sliced-prefix cascade (c) Sliced prefixes

Fig. 2. From one infeasible error path to a set of infeasible sliced prefixes

whether it contradicts σf , which is the case if the result of the strongest-post
operator for the path σf ∧ (op, l) is contradicting (denoted by ⊥). If so, the algo-
rithm has found a new infeasible sliced prefix, which is collected in the set Σ of
infeasible sliced prefixes. The feasible sliced prefix σf is extended either by a no-
op operation (Line 7) or by the current operation (Line 9). When the algorithm
terminates, which is guaranteed because σ is finite, the set Σ contains infeasible
sliced prefixes of σ, one for each ‘reason’ of infeasibility. There is always at least
one infeasible sliced prefix because σ is infeasible.

The sliced prefixes that Alg. 3 returns have some interesting characteristics:
(1) Each sliced prefix φ starts with the initial operation op1, and ends with an
assume operation that contradicts the previous operations of φ, i.e., SPφ(�) = ⊥.
(2) The i-th sliced prefix, excluding its (final and only) contradicting assume
operation and location, is a prefix of the (i + 1)-st sliced prefix. (3) All sliced
prefixes differ from a prefix of the original infeasible error path σ only in their
no-op operations.

The visualizations in Fig. 2 capture the details of this process. Figure 2a
shows the original error path. Nodes represent program locations and edges rep-
resent operations between these locations (assignments to variables or assume
operations over variables, the latter denoted with brackets). To allow easier dis-
tinction, program locations that are followed by assume operations are drawn as
diamonds, while other program locations are drawn as squares. Program loca-
tions before contradicting assume operations are drawn with a filled background.
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The sequence of operations ends in the error state, denoted by le. Figure 2b de-
picts the cascade-like sliced prefixes that the algorithm encounters during its
progress. Figure 2c shows the three infeasible sliced prefixes that Alg. 3 returns
for this example.

The refinement procedure can now use any of these infeasible sliced prefixes to
create interpolation problems, and is not bound to a single, specific interpolant
sequence for the original infeasible error path: a refinement selection from dif-
ferent precisions is now possible. The following proposition states that this is a
valid refinement process.

Proposition. Let σ be an infeasible error path and φ be the i-th infeasible sliced
prefix for σ that is extracted by Alg. 3, then all interpolant sequences for φ are
also interpolant sequences for σ.

Proof. Let σ = 〈(op1, l1), . . . , (opn, ln)〉 and φ = 〈(op1, l1), . . . , (opw, lw)〉.
Let Γφj be the j-th interpolant of an interpolant sequence for φ, i.e., for the
two constraint sequences γ−

φj = 〈op1, . . . , opj〉 and γ+
φj = 〈opj+1, . . . , opw〉,

with 1 ≤ j < w. Because φ is infeasible, the two constraint sequences γ−
φj and

γ+
φj are contradicting, and therefore, Γφj exists [11]. The interpolant Γφj is also

an interpolant for γ−
σj = 〈op1, . . . , opj〉 and γ+

σj = 〈opj+1, . . . , opn〉, if (1) the
implication γ−

σj ⇒ Γφj holds, (2) the conjunction Γφj ∧ γ+
σj is contradicting, and

(3) the interpolant Γφj contains only variables that occur in both γ−
σj and γ+

σj .
Consider that γ−

φj was created from γ−
σj by replacing some assume operations by

no-op operations, and that γ+
φj was created from γ+

σj by replacing some assume
operations by no-op operations and by removing the operations 〈opw+1, . . . , opn〉
at the end. Thus, both γ−

φj and γ+
φj do not contain any additional constraints

(except for no-op operations) than γ−
σj and γ+

σj , respectively.
Because Γφj is an interpolant for γ−

φj and γ+
φj , we know that γ−

φj ⇒ Γφj holds,
and because γ−

σj can only be stronger than γ−
φj , Claim (1) follows. The conjunction

Γφj ∧γ+
φj is contradicting, and γ+

σj can only be stronger than γ+
φj . Thus, Claim (2)

holds. Because Γφj references only variables that occur in both γ−
φj and γ+

φj , which
do not contain more variables than γ−

σj and γ+
σj , resp., Claim (3) holds.

4 Slice-Based Refinement Selection
Extracting good precisions from the infeasible error paths is key to the CEGAR
technique, and the choice of interpolants influences the quality of the precision,
and thus, the effectiveness of the analysis algorithm. By using the results intro-
duced in the previous section, the refinement procedure can now be improved by
selecting a precision that is derived via interpolation from a selected infeasible
sliced prefix.

Slice-based refinement selection extracts from a given infeasible error path
not only one single interpolation problem for obtaining a refined precision, but
a set of (more abstract) infeasible sliced prefixes and thus, a set of interpolation
problems, from which a refined precision can be extracted. The interpolation
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Algorithm 4 Refine+(σ)

Input: an infeasible error path σ = 〈(op1, l1), . . . , (opn, ln)〉
Output: a precision π ∈ L → 2Π

Variables: a constraint sequence Γ ,
a set Σ of infeasible sliced prefixes of σ,
a mapping τ from infeasible sliced prefixes and program locations to precisions

1: Σ := ExtractSlicedPrefixes(σ)
2: // compute precisions for each infeasible sliced prefix
3: for each φj ∈ Σ do
4: τ (φj) := Refine(φj) // Alg. 2
5: // select suitable sliced prefix (based on the sliced prefixes and their precisions)
6: φselected := SelectSlicedPrefix(τ )

7: // return precision for CEGAR based on selected sliced prefix
8: return τ (φselected)

problems for the extracted paths can be given, one by one, to the interpolation
engine, in order to derive interpolants for each sliced prefix individually. Hence,
the abstraction refinement of the analysis is no longer dependent on what the
interpolation engine produces, but instead it is free to choose from a set of
interpolant sequences the one that it finds most suitable. The move from solving
a single interpolation problem to solving multiple interpolation problems, and
understanding refinement selection as an optimization problem, is a key insight
of our novel approach.

Algorithm 4 shows the algorithm for slice-based refinement selection, which is
an extension of Alg. 2 in the CEGAR algorithm, allowing to choose a suitable pre-
cision during the refinement step. First, this algorithm calls ExtractSlicedPrefixes
to extract a set of infeasible sliced prefixes. Second, it computes precisions for
the sliced prefixes and stores them in the mapping τ . Third, one sliced prefix is
chosen by a heuristic (in function SelectSlicedPrefix), and fourth, the precision
of the chosen sliced prefix is selected for refinement of the abstract model. The
heuristic can decide based on the information contained in the sliced prefixes as
well as in the precisions, e.g., which variables are referenced.
Refinement-Selection Heuristics. We regard the problem of finding and se-
lecting a preferable refinement as an independent direction for further research,
and here, we restrict ourselves to presenting some ideas for a few refinement-
selection heuristics. There are two obvious options for refinement selection that
are independent of the actual interpolants. Using the interpolant sequence de-
rived from the very first, i.e., the shortest, infeasible prefix may rule out many
similar infeasible error paths. The downside of this choice is that the analysis
may have to track information rather early, possibly blowing up the state-space
and making the analysis less efficient. The other straight-forward option (similar
to counterexample minimization [2]) is to use the longest infeasible sliced prefix
(containing the last contradicting assume operation) for computing an inter-
polant sequence. This may lead to a precision that is local to the error location
and does not require refining large parts of the state space at the beginning of the
error path. However, it may also lead to a larger number of refinements if many
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error paths with a common prefix exist. A more advanced strategy is to analyze
the domain types [3] of the variables that are referenced in the extracted preci-
sion. Each precision can be assigned a score that depends on the domain types
of the variables in the precision such that the score of the infeasible sliced prefix
is better if its extracted precision references only ‘easy’ types of variables, e.g.,
boolean variables, and no integer variables or even loop counters. This allows to
focus on variables that are inexpensive to analyze, avoiding loop unrolling where
possible, and keeping the size of the abstract state space as small as possible.

As future work, we plan to systematically investigate many different refine-
ment heuristics; such heuristics can be integrated without changing the overall
algorithm, by replacing only the function SelectSlicedPrefix in Alg. 4 accordingly.

5 Experiments
We implemented our approach in the open-source verification framework
CPAchecker [10], which is available online 2 under the Apache 2.0 license.
CPAchecker already provides several abstract domains that can be used for
program analysis with CEGAR. We only extended the refinement process to
work according to Alg. 4 (Refine+), and did neither change the abstract domains
nor the interpolation engines. Our implementation is available in the source-code
repository of CPAchecker. The tool, the benchmark programs, the configuration
files, and the complete results are available on the supplementary web page 3.
Setup. For benchmarking, we used machines with two Intel Xeon E5-2650v2
eight-coreCPUs with 2.6 GHz and 135 GB of memory. We limited each verification
run to two CPU cores, 15 min of CPU time, and 15 GB of memory. We measured
CPU time and report it rounded to two significant digits. BenchExec 4 was used
as benchmarking framework to ensure precise and reproducible results.
Configurations. Out of the several abstract domains that are supported by
CPAchecker, we choose the value analysis with refinement [11] for our experi-
ments. We use CPAchecker, tag cpachecker-1.4.2-slicedPathPrefixes.

In order to evaluate the potential of our approach, we compare four differ-
ent heuristics for refinement selection (function SelectSlicedPrefix in Alg. 4):
(1) shortest sliced prefix, (2) longest sliced prefix, (3) sliced prefix with best
domain-type score, and (4) sliced prefix with worst domain-type score. The
domain-type score of a sliced prefix is computed based on the domain types [3] of
the variables that occur in the precisions, i.e., variables with a boolean character
are preferred over loop counters and other integer variables.
Benchmarks. To present a thorough evaluation of our approach, we need a large
number of verification tasks, and thus, we use the repository of SV-COMP [6]
as a source of verification tasks. We select all verification tasks that fulfill the
following characteristics, which are necessary for a valid evaluation of our ap-
proach: (1) the verification tasks relate to reachability properties, because the

2 http://cpachecker.sosy-lab.org/
3 http://www.sosy-lab.org/~dbeyer/cpa-ref-sel/
4 https://github.com/dbeyer/benchexec

http://cpachecker.sosy-lab.org/
http://www.sosy-lab.org/~dbeyer/cpa-ref-sel/
https://github.com/dbeyer/benchexec
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Table 1. Number of solved verification tasks for different heuristics for slice-based
refinement selection on different subsets of benchmarks

Heuristic Sliced-Prefix Length Score Oracle

# Tasks Shortest Longest Best Worst Best Worst Diff

DeviceDrivers64 619 326 395 399 319 403 315 88
ECA 1140 489 512 570 478 611 410 201
ProductLines 597 456 361 402 360 463 353 110
Sequentialized 234 29 22 30 27 30 19 11
All Tasks 2 696 1 369 1 359 1 470 1 252 1 577 1 165 412

analysis that we use does not support other properties; (2) the reachability prop-
erty of the verification tasks does not rely on concurrency, recursion, dynamic
data structures or pointers, because the analysis that we use does not support
these features; and (3) there is at least one refinement during the analysis with
more than one infeasible sliced prefix, i.e., in at least one refinement iteration,
a refinement selection is possible. More restrictions are not necessary because
our goal is to show that there exists a significant difference in effectiveness and
efficiency, depending on the choice of which sliced prefix is used for precision
refinement. The scope of our experiments is not to evaluate which refinement
selection is the best. The set of all verification tasks in our experiments contains
a total of 2 696 verification tasks.

Results. Table 1 shows the number of verification tasks that the analysis could
solve using refinement selection with one of the four heuristics described above.
We also show hypothetical results of a fictional heuristic “Oracle”, which, for a
given program, always selects the best (or the worst) of the four basic heuristics.
In other words, the column “Oracle Best” shows how many tasks could be solved
by at least one of the heuristics, and the column “Oracle Worst” shows how many
tasks could be solved by all of the heuristics. The difference between these num-
bers (column “Diff”) gives an approximation of the potential of our approach and
provides evidence how important refinement selection is. We list the results for
the full set of 2 696 verification tasks as well as for several subsets (categories of
SV-COMP’15). We consider these categories to be especially interesting because
they contain larger programs than the remaining categories and our approach fo-
cuses on improving refinements in large programs (with long and complex error
paths, and many contradicting assume operations per error path).

The results show that selecting the right refinement can have a significant
impact on the effectiveness of an analysis. In our benchmark set there are more
than 400 verification tasks for which the choice of the refinement-selection heuris-
tic makes the difference between being able to solve the task and running into
a timeout. Without our refinement-selection approach, the choice of the refine-
ment depends solely on the internal algorithm of the interpolation engine, and
this potential for improving the analysis would be lost. The results show that
none of the presented heuristics is clearly the best. The heuristic that uses the
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Fig. 3. Scatter plots comparing the CPU time of the analysis with different heuristics
for slice-based refinement selection for all 2 696 verification tasks

refinement with the best score regarding the domain types of the variables that
are contained in the precisions is the best overall (as expected, because it is the
only one that systematically tries to select a refinement that hopefully makes it
easier for the analysis). However, there are still verification tasks that cannot be
solved with this heuristic but with one of the others (as witnessed by the differ-
ence between columns “Score Best” and “Oracle Best”). Thus, finding a better
refinement-selection heuristics is promising future work.

Figure 3 shows scatter plots for comparing the CPU times of the analysis with
two of the four heuristics for slice-based refinement selection. The large number of
data points at the top and right borders of the boxes show those results that were
solved using one of the heuristics but not by the other. In addition, one can see
that the choice of the refinement-selection heuristic can also have a performance
impact of factor more than 10 even for those programs that can be solved by both
heuristics (witnessed by the data points in the upper left and lower right corners).
This effect also results in a huge performance difference in total: the CPU time
for those 1 165 verification tasks that could be solved with all heuristics varies be-
tween 110 h (heuristic “Score Worst”) and 57 h (heuristic “Score Best”), a potential
improvement due to refinement selection of almost 50 %.

6 Conclusion
This paper presents our novel approach of sliced prefixes of program paths, which
extracts several infeasible sliced prefixes from one single infeasible error path.
From any of these infeasible sliced prefixes, an independent interpolation prob-
lem can be derived that can be solved by a standard interpolation engine, and
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the refinement procedure can choose from the resulting interpolant sequences
the one that it considers best for the verification. Our novel approach is inde-
pendent from the abstract domain (in particular, does not depend on using an
SMT solver) and can be combined with any analysis that is based on CEGAR,
while previous work on guided interpolation [22] is applicable only to SMT-
based approaches. Finally, we demonstrated on a large experimental evaluation
on standard verification tasks that the choice, which sliced prefix to take for
precision extraction, has a significant impact on the effectiveness and efficiency
of the program analysis. In future work, we plan to systematically explore more
criteria for ranking sliced prefixes, and then investigate guided techniques for
automatically selecting a preferable refinement. Furthermore, we plan to extend
our experiments to other abstract domains, such as predicate abstraction and
octagons; preliminary results already look promising.
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