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Preface

Thermodynamics is an important tool to interpreting the conditions at which natural
geomaterial equilibrate. It allows one to determine, for example, the equilibrium
pressures and temperatures and the nature and chemical composition of phases in-
volved mineralogical and petrological processes. Simple chemical model systems,
which are often studied in the laboratory in order to understand more complicated
natural systems, generally consist of few chemical components. In order to use
phase equilibrium results obtained from model systems for interpreting the condi-
tions of formation of natural geologic materials, extrapolations in compositional
space and other P-T conditions are often required. This can only be done using the
mathematical formalism that is offered by thermodynamics.

An number of excellent books on thermodynamics with regards to the fields of
mineralogy, petrology and geochemistry have been published over past 40 years.
Many of them are, however, written for more advanced students and experienced re-
searchers and it is often assumed that the reader already possesses some prior
knowledge of the subject. Consequently, discussions and presentations of basic con-
cepts, which are necessary for beginning students and others attempting to learn
thermodynamics for the first time, are often given short shrift. Therefore, the aim of
this book is to explain the basic principles of thermodynamics at an introductory lev-
el, while trying not to loose much of the mathematical rigor that is one of the most
important and central aspects of this subject. Moreover, many students in geoscienc-
es are required to take thermodynamic courses in chemistry departments where they
are mostly confronted with treatments of gases and fluids. Thereby, the connection
to geological or mineralogical problems is often not perceived and, unfortunately,
students do not come to understand the importance of thermodynamics for a number
of different areas in the geosciences.Therefore, this introductory textbook was writ-
ten with the aim of reaching beginning geoscience students. In order to demonstrate
the usefulness and power of thermodynamics, various experimental phase equilibria
results, calorimetric data, etc. from geological literature are used to demonstrate dif-
ferent types thermodynamic calculations. The problems at the end of each chapter
are given in order that students can practice the more theoretical concepts that are
presented in text.
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Chapter 1   Definition of thermodynamic terms

1.1  Systems

A thermodynamic system is defined as the part of the universe that is subject of con-
sideration. The universe outside the chosen system is called the system’s surround-

ings. The system and its surroundings are separated from each other by walls, which
can be physical or in thought. A system may or may not interact with its surround-
ings. Whether or not an interaction takes place, depends on the nature of the walls
surrounding the system. Three kinds of systems can be distinguished based on the
permeability of the walls to energy and matter. They are:

a. Isolated systems,
b. Closed systems and
c. Open systems

Systems are referred to as isolated, if their boundaries or walls prevent any ex-
change of energy and matter between the system and its surroundings. This means,
their walls are rigid, unmovable and perfectly insulating. Systems of this kind have
constant energy and mass content. Along their boundaries discontinuities of matter
and energy can exist (Fig. 1.1a).

Isolated systems are not observable. They do not exist in nature, because all walls
allow some energy transfer. Whether or not a system can be considered isolated de-
pends on the time scale of observation.

The walls of a closed system allow energy transfer, but are impermeable to mat-
ter. Hence, these systems posses a constant mass and variable energy content. But
this does not exclude a change in internal composition caused by chemical reactions.
Along the walls of these systems discontinuities of matter but not energy are possi-
ble. Closed systems play an important role in the treatment of thermodynamic pro-
cesses (Fig. 1.1b). 

Systems are called open, if energy and matter can pass into or out of the system.
Along their boundaries or walls neither energy nor matter discontinuities can exist
for long periods of time. Systems of this type are characteristic for the treatment of
metasomatic processes (Fig. 1.1c). 

In mineralogy the systems are often subdivided in different parts, which then be-
long to different types. For example, the solid phases of a rock can be considered to
represent a closed system, but fluids like H2O, CH4 and CO2 constitute an open sys-

tem.
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Fig. 1.1 Types of thermodynamic systems. a) isolated, b) closed, and c) open. Symbols: 
double arrow = exchange in both directions possible; single arrow = exchange not possi-
ble; E = energy, M = matter

1.2  Phase

A phase is defined as a chemically, physically and structurally homogeneous part of
a system. In a system phases are separated from each other by phase boundaries. On
the boundaries, the properties of the phases change discontinuously. A system can
consist of one or more phases. If it consists of only one phase, it is called homoge-

nious. Systems with more than one phase are referred to as heterogeneous. For ex-
ample, a monomineralic rock (e.g. marble) represents a homogeneous and a
polymineralic one (e.g. granite) a heterogeneous system. 

Most substances can occur in at least three phases: solid, liquid and vapor. In ad-
dition to this, many solids exist in different forms having different crystal structures,
and are called polymorphs. For example, at temperatures below 571°C SiO2 crystal-

lizes as low quartz, between 571°C and 870°C as high quartz, between 870 and
1470°C as tridymite and from 1470°C up to the melting point at 1713°C as cristo-
balite. 

If the above definition of a phase would be taken in its strict sense, every feldspar

System

System

System

Surroundings

Surroundings

Surroundings
a) b)

c)

E
E

M
M

E M

M

E

M
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grain, say, in a granite would represent a different phase, since every grain is sepa-
rated from its neighbor by a phase boundary, whose physical properties differ great-
ly from those of the bulk. Such a construct would be very impractical. We, therefore,
neglect the surfaces and consider that all minerals with the same composition and
the same structure form just one phase.

1.3  Components

The chemical entities that are required to describe the composition of a system in
equilibrium are called components. In contrast to the number of phases, which is rig-
orously determined by thermodynamics, the choice of chemical entities is arbitrary.
It depends ultimately upon the nature of the actual thermodynamic problem. 

The choice of a component in the case of one single phase with fixed composition
is quite simple. The composition of the phase serves as the component. For example,
Al2SiO5 describes the composition of all three polymorphs: kyanite, andalusite, and

sillimanite. Similarly Mg2SiO4 represents the composition of orthorhombic olivine

and the two high-pressure polymorphs, the -phase and -phase. Systems consisting
of only one component are referred to as unary.

Most natural olivines, (Mg,Fe)2SiO4, posses a variable composition. For their de-

scription two components, namely Mg2SiO4 and Fe2SiO4, are required. The same

is true in case of the orthopyroxene solid solution, (Mg,Fe)2Si2O6. The components

here are Mg2Si2O6 and Fe2Si2O6. Systems involving two components are called bi-

nary.

The Mg-Fe exchange between orthorhombic olivine and orthopyroxene can be
represented by the following reaction:

(1.1)

The total number of components involved in reaction (1.1) is three, because only
three components are independent. The fourth component can be formulated in
terms of the other three, simply by rearrangement of Eq. (1.1). For example, the
component FeSiO3 is given by:

(1.2)

As a rule, the number of components, C, is given by the number of species, N,
reduced by the number of independent reactions, R, among the species. That is:

(1.3)

1 2Mg2SiO4 FeSiO3+ 1 2Fe2SiO4 MgSiO3.+=

FeSiO3 1 2Fe2SiO4 MgSiO3 1 2Mg2SiO4.–+=

C N R.–=
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In the our example, the number of species is 4 and the number of independent re-
actions is 1, so that

(1.4)

A system consisting of three components is referred to as ternary.

Species are not necessarily identical with phases. In our case we have four spe-
cies (Mg2SiO4, FeSiO3, Fe2SiO4, MgSiO3) but only two phases, namely olivine and

orthopyroxene.

There is a straightforward algebraic approach for determining the number of in-
dependent reactions in a system for a given number of species. A discussion is be-
yond the scope of this book. For a detailed presentation of the method, the interested
reader is referred to the extensive literature (e.g Spear 1993 and references therein).

Generally, components are real chemical entities, such as oxides or compositions
of minerals. But this needs not always to be the case. It is also possible to define en-
tities with negative masses of elements. Components of this kind are particularly ad-
vantageous when phases, as in the above example, exhibit variable compositions
(see Thompson 1982). For example, the compositional variability of an Mg-Fe-or-

thopyroxene can be described with the components MgSiO3 and . 

represents -1 mole Mg2+. The composition of ferrosilite can then be given by the
following equation:

(1.5)

The same formalism can be used to describe the composition of fayalite, namely:

(1.6)

Using the relationships (1.5) and (1.6), Eq. (1.1) becomes: 

(1.7)

According to the above definition components designate chemical entities and
have physical meaning only in reference to phases, which are part of the physical
world. It should therefore, in principle, not bear a mineral name. Nonetheless this
kind of component notation is found very often in mineralogical literature. This is
not critical, as long as the considered component does not change its 'form of ap-
pearance', but it becomes problematic as soon, as the mineral whose name is used to
describe the component undergoes some phase transition. 

C 4 1– 3.= =

FeMg-1
opx

Mg 1–
opx

FeSiO3 MgSiO3 FeMg 1–
opx

.+=

1
2
---Fe2SiO4

1
2
---Mg2SiO4 FeMg 1–

ol
.+=

FeMg 1–
opx

FeMg 1–
ol

.=
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Example: In the binary system Mg2SiO4 - Fe2SiO4 the components are designat-

ed very often as forsterite and fayalite. This denotation causes no problems as long
as processes at low and moderate pressures are considered. At high pressures, how-
ever, when olivine transforms first into -phase and later into -phase, the usage of
mineral names becomes confusing. 

1.4  Functions and variables of state

Classical thermodynamics is concerned only with macroscopic properties of a sys-
tem such as volume, pressure, temperature, electrical potential, etc. Microscopic
properties, for example the distances between atoms in a crystal structure, are not
considered. One distinguishes between two groups of properties:

Extensive properties are additive and mass dependent, that means, the property of
a system represents simply the sum of the properties of its constituent parts. To this
group belongs, for example, volume of a phase or system. 

Intensive properties are not additive and do not depend on mass. Typical inten-
sive properties are temperature, pressure, density etc. 

If a closed system consists of a pure single phase, only two intensive properties
determine completely the rest. For example, if the temperature and pressure of a
melt are fixed, then the density and viscosity of this melt are also fixed. One can
write:

(1.8)

Eq. (1.8) is called function of state and the arbitrarily chosen properties I1 and I2

are the variables of state. Let the density of a phase, , be the dependent variable and
temperature, T, and pressure, P, the variables of state. For this case, the state func-
tion, , reads:

The choice between dependent and independent variable of state is arbitrary. In
Eq. (1.9) the density was chosen as the dependent variable. But it could as well be
pressure or temperature. It is merely a question of convenience which variable is
taken as the dependent and which as independent one. Usually, pressure and tem-
perature act as independent variables, because they are relatively easy accessible in
experiment.

In case of a mixture additional variables are required in order to specify which
particular composition is under the consideration. For this purpose the molar pro-
portions of components composing the mixture must be given. If there are k compo-

Ik f I1 I2 ;= k 3 4 n.=

f T P .=
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nents present k - 1, molar fractions, xi, are needed. Instead of Eq. (1.8), we now have 

(1.10)

For example, the density, , of an Mg-Fe-olivine can be expressed as a function

of temperature, pressure, and the molar fraction of Fe2SiO4 in olivine, 

(1.11)

An extensive property of a pure phase is determined by three variable, one of
which is conveniently the mass. The other two are intensive variables.

(1.12)

Example: The volume of a forsterite crystal is direct proportional to its mass. Be-
yond that, its volume depends also on temperature and pressure, that is

(1.13)

To determine an extensive property of a mixture the mole fractions of the com-
ponents must be introduced again. In place of Eq. (1.10) we obtain:

(1.14)

If an extensive property , Ek, is divided by the mass of a phase or system, m, a

specific property is obtained. Multiplying the specific property by the molar mass
yields a molar property.

In order to calculate the numerical value of a function of state, the algebraic link
between the variables of state must be known. This is not an easy task, since classi-
cal thermodynamics does not offer any physical explanation describing the func-
tional interrelationships between variables. The problem can be overcome by
focusing the study on changes of the functions due to changes of state. 

Changes in the functions are expressed mathematically by differentials, that is, a
function is differentiated with respect to its independent variables. The obtained
quantities are termed partial derivatives. They describe how changes of independent
variables influence the function of state. The total change of a function is expressed
by the total differential, that is, the sum of all partial derivatives multiplied by the
respective infinitesimal increments of the independent variables. Applied to Eq.
(1.8), the total differential, dIk, reads:

Ik f I1 I2 x1 x2 xk 1– .=

xFe2SiO4

ol
:

f T P xFe2SiO4

ol
.=

Ek m f I1 I2 ;= k 3 4 n.=

V
ol

m
ol

g f T P .=

Ek m f I1 I2 x1 x2 xk 1– .=
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(1.15)

The differentiation of a continuous single-valued function yields a total differen-
tial, which can be integrated to obtain the original function. In this case the integral
is always the same, no matter which path of integration was chosen. Expressions
whose integrals are independent of path of integration are called exact differentials.

Using these relationships a set of mathematical formulas, which can be applied
to predict the behavior of a system under all possible conditions, has been derived.
The starting point for their derivation are two laws which represent everyday expe-
rience. These are the first and the second law of thermodynamics. 

1.5  The concept of thermodynamic equilibrium

A state of a system is determined by the values of the state variables. A change in
one or more variables causes time-dependent processes to take place. The processes
end as soon as the new state, which has its own values of variables, is reached. We
say, the system is at equilibrium again. It persists in this state, if no further distor-
tions occur. A more strict definition of an equilibrium reads: A system is at equilib-

rium if all variables such as pressure, temperature, volume, etc. remain constant,

independently of the time of observation. After being disturbed, such a system will

revert to its original state, after the disturbance comes to an end.

Example: At some pressure and temperature a forsterite crystal has a given vol-
ume. If the pressure is increased while the temperature is kept constant, its volume
decreases. However, as soon as the pressure is brought back to the original value,
the volume of the forsterite crystal will be exactly the same as it was before the
change in pressure. 

1.6  Temperature

The term temperature originally stems from man’s sense for cold and warm. In the
field of thermodynamics it represents a property, whose value is fixed by two inde-
pendent variables. In order to define temperature, we must come back to the concept
of equilibrium. If two systems are brought in contact with each other, a number of
processes such as volume and pressure changes, take place. This happens in both
systems until an overall equilibrium is reached. We call this status thermal equilib-

rium. Experience shows that systems which are in equilibrium with a given system,
are also in equilibrium with each other. That is, no processes take place if they are
brought into contact with one another. This is the subject matter of the zeroth law of

dIk I1

Ik
dI1 I2

Ik
dI2.+=
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thermodynamics that reads: Systems that are in thermal equilibrium with each other

posses one common intensive property, namely temperature.

The time required to reach thermal equilibrium depends particularly on the nature
of shared walls. With respect to the permeability to heat, two types of walls can be
distinguished. The first is called diathermal. If two systems with this kind of walls
are brought into contact, their thermodynamic states can be influenced by the mutual
heat exchange. The second type of wall is called adiabatic. A system that is sur-
rounded by this kind of wall cannot be affected by heat transfer. It can only be in-
fluenced by moving the walls, shaking, or by other processes causing an internal
motion. In nature, there are no true adiabatic walls, but dewars approach this condi-
tion closely. Changes that take place in a system with adiabatic walls, are called adi-

abatic processes. In contrast, processes taking place in a system surrounded by
diathermal walls are referred to as isothermal if the heat exchange between the sys-
tem under consideration and the neighboring system occur so quickly that the over-
all temperature remains constant. The necessary prerequisite is that the neighboring
system is large enough so not to change its temperature, when heat is taken away or
added to it. Systems of this kind are called heat reservoirs.

Before one can measure temperature, an empirical temperature scale has to be de-
fined. For this purpose a suitable system is brought into contact with several other
systems in order to equilibrate. The chosen system must be small in comparison to
the system whose temperature is to be measured, so that it will not affect significant-
ly the properties of the measured system. Thus the value of an appropriate variable
of state (e.g. volume of a gas, expansion of a Hg-column in a glass capillary) is mea-
sured. It is assumed that this variable, x, is a linear function of temperature:

(1.16)

The coefficients a and b in Eq. (1.16) are arbitrary, and are assigned to two easily
reproducible fixed points. In the case of the Celsius temperature scale, these points
are the freezing and boiling point of water at ambient pressure. Their values are 0
and 100, such that

(1.17)

The coefficients a and b are obtained by solving Eq. (1.17) 

 and (1.18)

Inserting a and b in Eq. (1.16) yields

t x ax b.+=

axo b+ 0  and   ax1 b+ 100.= =

a
100

x1 xo–
----------------= b

100
x1

xo

----- 1–

-------------------- .–=
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(1.19)

Generally, the relationship given in Eq. (1.19) does not hold strictly. Different
thermometers give slightly different temperatures. The differences depend on the
temperature, the reference system (thermometer type, e.g. gas, liquid etc.) and on
the state variable, x, that is measured. Temperatures determined by gas thermome-
ters, where volume, V, or pressure, P, as a function of temperature, is measured, de-
viate least from each other. 

(1.20)

(1.21)

At very low gas pressures Eq. (1.20) and Eq. (1.21) yield the same temperature
for all gases. This fact is the basis of thermodynamic temperature. If the coefficient

 for different values of Po is plotted versus Po and then extrapolated

to Po = 0, a constant, To, is obtained that holds for all gases: 

(1.22)

The numerical value of To is 273.16 K. It is the temperature where ice coexists

with water and vapor (triple point) in Kelvin (K). This temperature equals 0.01 de-
gree on the Celsius scale, whose zero is the freezing point of water at ambient pres-
sure. Hence, the Kelvin temperature scale is shifted by 273.15 relative to the Celsius
scale, such that:

(1.23)

In thermodynamic calculations only the Kelvin temperature scale is used. It has
the advantage of being always positive and independent of a particular substance.

In experimental mineralogy thermocouples are often used for measuring the tem-
perature, where EMF vs. temperature curve is calibrated against the melting points
of standard substances such as different halogenides, nobel metals, etc.

t x 100
x xo–

x1 xo–
---------------- °C .=

t V 100
V Vo–

V1 Vo–
------------------ °C ;    P const ,= =

t P 100
P Po–

P1 Po–
------------------ °C ;    V const .= =

100
Po

P1 Po–
------------------

To 100
Po

P1 Po–
------------------

P 0
lim ;   V const.= =

T K t C 273.15.+=
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1.7  Pressure

Mineralogical processes inside the Earth often occur at high to very high pressures.
Some minerals are thermodynamically stable only at high pressures. A well known
example is ferrosilite, FeSiO3. Thus, the variable pressure plays an important role

in many mineralogical studies. 

Pressure is defined as force per unit area. Its dimension is N/m2 (Newtons per
square meter) or Pa (Pascal). This is a small unit. In order to avoid large numbers,

MPa (Megapascal = 106 Pa) or GPa (Gigapascal = 109 Pa) are used. In the older

mineralogical literature pressure is often given in bar or kbar (103 bar). The numer-
ical conversion between the two units is:

1 bar = 105 Pa. (1.24)

1.8  Composition

In addition to temperature and pressure, composition is the third important variable.
This variable is required to describe the state of a system consisting of more than
one component. The simplest way to do this, is to give the number of moles of each
constituent participating in the mixture. This procedure, however, is impractical. It
is more convenient to use normalized quantities such as mole fractions, weight per-

cent, molarities, and molalities.

The mole fraction of the i-th component in a solution is defined as the number of
moles of i divided by the sum of all moles of all the components in the solution, that
is:

(1.25)

Example: The mole fraction of grossular in a (Mg,Fe,Ca,Mn)3Al2Si3O12 garnet

is calculated as follows:

(1.26)

The sum of all mole fractions present in a phase is always one,

xi
number of moles of i
total number of moles
----------------------------------------------------

ni

xi
i 1=

k
---------------------.= =

xCa3Al2Si3O12

grt
nCa3Al2Si3O12

grt
nCa3Al2Si3O12

grt
nMg3Al2Si3O12

grt

nFe3Al2Si3O12

grt
nMn3Al2Si3O12

grt

+

+ + .

=
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(1.27)

The multiplication of the mole fraction by 100 yields the mole percent. This unit
of measure is used in the graphical presentation of compositions and in phase dia-
grams. Mole percent is not suitable for thermodynamic calculations.

Ceramists often use weight percent (wt%) instead of mole percent to specify the
composition of a phase or system. This unit is defined as the mass of the component
under consideration divided by the total mass of the phase or system times 100, i.e.

(1.28)

Molarity (ci) gives the concentration of a component i expressed by the number

of moles of solute per liter of solution, i.e.:

(1.29)

where V is the volume of the solution. 

Molality (mi) gives the concentration of the ith-component in terms of numbers

of moles, per kg solvent, that is

(1.30)

where  is the molar mass of water.

Molarity and molality are mainly used to describe the concentrations of compo-
nents in aqueous solutions.

1.8. 1. Graphic representation of composition

For the graphic representation of composition, mole fractions, mole percent, or
weight percent can be used. 

In a two-component system composition can be represented on a straight line.
The length of a line depends on the type of compositional specification. If the com-
position is expressed by the mole fraction, the line starts at zero and ends at 1. In the

xi
i 1=

k

1.=

wt% i   = 
mass i

total mass
------------------------ 100

mi

mi
i 1=

k
---------------------- 100.=

ci

1000 ni

V
----------------,=

mi

ni

nH2O MH2O

1000
-------------------------------

-------------------------------
1000 ni

nH2O MH2O

-------------------------------,= =

MH2O
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case that mole percent or weight percent are used as the compositional units, the line
starts also at zero, but it ends at 100. The components of the system are represented
at the endings of the concentration line. If temperature and pressure are not speci-
fied, the compositions of all phases belonging to the system under consideration are
represented on concentration line regardless their stability conditions. Polymorphs
plot at the same compositional point (see Fig. 1.2). 

Fig. 1.2 Graphic representation of the composition in the binary system CaO-SiO2. a) 

concentration in mol fractions, b) concentration in weight percent.

The molar ratio of phases that constitute a given bulk composition, can be calcu-
lated using the lever rule. According to this rule, the amount of a phase is directly
proportional to the distance between the bulk composition and the composition of
the coexisting phase, sitting on the other side of the bulk composition point. The va-
lidity of the lever rule can be demonstrated as follows:

Suppose a mixture consisting of the components A and B has the composition .

Suppose further that at some P and T, A and B react with each other forming the

phases  and , with compositions  and , respectively. The question to be an-

swered is: what are the molar proportions of the two phases. 

CaO SiO2

Ca-olivine
larnite
bredigite

-Ca2SiO4

-wollastonite
-wollastonite

CaSiO3

stihovite
coesite
cristobalite
tridymite
high-quartz
low-quartz

Ca3Si2O7

rankinite

xSiO2

x CaO

a)

0 1

1 0

CaO SiO2

Ca2SiO4 CaSiO3

Ca3Si2O7

wt%(SiO2)

wt%(CaO)

100

0100

0

b)

xB

b
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According to Eq. (1.25), the mole fraction of component B in the bulk composi-
tion reads:

(1.31)

with  and  giving the number of moles for the components A and B, respec-

tively.

The following relations hold between the numbers of moles of the components A
and B in phases  and  and the bulk composition:

 and (1.32)

Inserting the expression of Eq. (1.32) into Eq. (1.31), one obtains

(1.33)

From the definition of mole fraction,

 and (1.34)

one derives the expressions for  and , namely:

 and (1.35)

Replacing the number of moles  and  in the numerator of Eq. (1.33) by the

above expressions, 

(1.36)

is obtained.

A small rearrangement of terms leads to a proof of the lever rule, namely:

xB

b nB

b

nA

b
nB

b
+

------------------=

nA

b
nB

b

nA

b
nA nA+= nB

b
nB nB.+=

xB

b nB nB+

nA nA+ nB nB.++
-------------------------------------------------------.=

xB

nB

nA nB+
------------------= xB

nB

nA nB+
------------------=

nB nB

nB xB nA nB+= nB xB nA nB+ .=

nB nB

xB

b
nA nA+ xB

b
nB nB++ xB nA nB+ xB nA nB++=
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(1.37)

The sums  and  give the total compositions of the phases 

and , respectively. The differences between the mole fractions, given on the right
side of Eq. (1.37), can be read off the line in Fig. 1.3. The numerator equals the dis-
tance a and the denominator the distance b, respectively.

Fig. 1.3 Illustration of the lever rule. The distances a an b are directly proportional to the 

amount of the phases  and , respectively.  gives the mole fraction of the compo-

nent B in the phase  and  that in the phase .  designates the mole fractions of the 

component B in the bulk composition.

Example: An analysis of a phase mixture consisting of rankinite, Ca3Si2O7, and

wollastonite, CaSiO3, yielded 45.455 wt% SiO2 and 54.545 wt% CaO. What are the

molar proportions of rankinite and wollastonite in the mixture?

To solve this problem, first the given weight percents are to be converted into
mole percents. In this conversion weight percents are taken as masses and the mole
fractions are calculated according to Eq. (1.25) as follows:

According to Eq. (1.27), the mole fraction of CaO can be calculated directly from
the known mole fraction of SiO2, namely:

nA nB+

nA nB+
-----------------------

xB

b
xB–

xB xB

b
–

----------------------.=

nA nB+ nA nB+

A BxB
b xBBx

a b

xB

xB xB

b

xSiO2

wt % SiO2

MSiO2

---------------------------------

wt % SiO2

MSiO2

--------------------------------- wt % CaO

MCaO

---------------------------------+

--------------------------------------------------------------------------

45.455
60.084
----------------

45.455
60.084
---------------- 54.545

56.077
----------------+

--------------------------------------- 0.4375.= = =
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A plot of  or  on the composition line shows that the bulk composition

lies between rankinite and wollastonite (see Fig. 1.4).

If we now make use of the lever rule (see Eq. (1.37), the molar proportions of the
phases present in the mixture are calculated as follows:

Since the maximum concentrations of CaO and SiO2 at the ends of the composi-

tion line are 1, the calculated number of moles of wollastonite is one half and that
one of rankinite one fifth of the respective formula unit. In order to obtain the whole
formula units, the right side of the above equation has to be multiplied by 5/2. The

sums  and  give the total amount of wollastonite and

rankinite, respectively and therefore 

or

Fig. 1.4 The system CaO - SiO2. In agreement with the lever rule, the distance a is 

directly proportional to the amount of wollastonite, CaSiO3, in the bulk composition. 

Similarly, the distance b corresponds to the amount of rankinite, Ca3Si2O7. The numbers 

give the mole fractions of SiO2.

xCaO 1 0.4375– 0.5625.= =
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-------------------------------- a

b
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Thus, we are able to calculate the number of moles of rankinite for any arbitrarily
chosen mole number of moles of wollastonite and vice versa. For example, if we as-

sume wollastonite  = 3, the number of moles of rankinite, ,

equals 2. The corresponding mole fractions are therefore:

of wollastonite and 

of rankinite.

For the graphic representation of a ternary system Gibbs' compositional triangle
is used. It is an equilateral triangle with the components given at the corners. The
three sides represent the three binary subsystems. Compositions within the triangle
can be plotted in different ways:

a) First, one component of the ternary system or phase under consideration is
neglected and for the remaining two, the mole fractions are calculated and plotted
on the proper side of the compositional triangle. Next, a line is drawn from the
plotting position to the opposite corner, that is the corner with the component
neglected in the calculation of the mole fractions. This line divides the triangle into
two parts in constant proportions along its entire length. Thereafter, this procedure
is repeated for another two components. The intersection of the two lines defines
the plotting position of the ternary system or phase.

b) Another way to plot a ternary phase in a compositional triangle is to use the
mole fractions of all three components present in it. Since each component is fixed
by two other, each mole fraction appears on two sides of the triangle, such that a
line connecting the two plotting positions runs parallel to the third side of the trian-
gle. The intersection of such two lines gives again the plotting position of the ter-
nary phase.

Example: How can grossular, Ca3Al2Si3O12, be represented in the ternary system

CaO-Al2O3-SiO2? To plot this phase in the Gibbs' compositional triangle, following

the method described in a), two subsystems, for example CaO-Al2O3, and

Al2O3-SiO2 are chosen. Next, the mole fractions of the components in these two

subsystems are calculated using the oxide based formula of grossular,
3CaO·Al2O3·3SiO2. The calculations yield the following results:

nCaSiO3

wo
nCa3Si2O7

rnk

xCaSiO3

wo
nCaSiO3

wo

nCa3Si2O7

rnk
nCaSiO3

wo
+

------------------------------------------------- 3
3 2+
------------ 3

5
--- 0.6= = = =

xCa3Si2O7

rnk
1 xCaSiO3

wo
– 1 0.6 = 0.4–= =
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 and 

in the subsystem CaO-Al2O3 and

 and 

in the subsystem Al2O3-SiO2.

The mineral abbreviations in the superscript signify the binary subsystem to
which the mole fractions refer.

The mole fractions, as calculated above, are plotted on the corresponding sides
of the Gibbs' compositional triangle. Then, lines are drawn to the SiO2 and CaO cor-

ners, respectively. The intersection of these lines gives the plotting position of gros-
sular (see Fig. 1.5).

Fig. 1.5 Graphic representation of a ternary phase in Gibbs' compositional triangle. The 
plotting position of grossular, Ca3Al2Si3O12, is determined using the mole fractions in 

the subsystems CaO - Al2O3 and Al2O3 - SiO2.

To plot grossular according to method b) the ternary mole fractions are to be cal-
culated first. Using the oxide formula of grossular once again, we obtain:

xCaO

lim-cor 3
3 1+
------------ 3

4
--- 0.75= = = xAl2O3

lim-cor
1 xCaO

lim-cor
– 1 0.75– 0.25= = =

xAl2O3
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1 3+
------------ 0.25= = xSiO2
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1 0.25– 0.75= =

CaO Al2O3

SiO2
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S
iO

2

CaOxlim-cor
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and

As shown previously, the mole fractions of any two components suffice. The use
of the mole fraction of the third one is not necessary. If we plot the calculated mole
fractions, each one on the two appropriate sides of the compositional triangle, and
connect the two mole fractions with one another, a parallel line to the third side of
the triangle is obtained. The intersection of two lines yields the plotting position of
grossular (see Fig. 1.6).

.

Fig. 1.6 Graphic representation of a ternary composition in a Gibbs’ triangle. The mole 
fractions are calculated with respect to all three components. Each mole fraction is plot-
ted on two sides of the triangle.

In order to read the mole fractions of a ternary composition from the Gibbs' com-
positional triangle, the procedure described above has to be reversed. Another way
to arrive at the molar proportions is to drop perpendiculars from the plotting position
on the three sides of the triangle. The lengths of the three perpendiculars are directly
proportional to the three molar fractions. This method is demonstrated in Fig. 1.7.
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grt 3
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grt 1
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Fig. 1.7 Determination of mole fractions of a ternary phase from its position in a Gibbs' 

compositional triangle. The lengths of the perpendiculars: , , and  

correspond to the mole fractions of the oxides: CaO, Al2O3, and SiO2 respectively.

If compositions with more than three components are to be presented graphically,
a procedure is applied that is called compositional projection. This means that the
dimensionality of the full space is reduced by its projection onto a compositional
subspace.

Example: Consider kaolinite, Al2Si2O5(OH)4. The composition of this mineral

can be visualized in a ternary diagram with the components Al2O3, SiO2 and H2O.

In addition, it can also be represented in a binary system. In this case, the plotting
position of kaolinite in the triangle has to be projected onto one of the three sides of
the Gibbs’ triangle. Thereby, three dimensions are reduced to two. For example, if
it is to be represented on the line Al2O3-SiO2 the projection is carried out by drawing

a line from the H2O corner of the triangle through the plotting position of kaolinite

to the basis line. The intersection of this line with basis of the triangle marks the
composition of kaolinite in the projection. This projection procedure is demonstrat-
ed in Fig. 1.8.

In a multi component systems with  projections are carried out in the same

way. For example, a phase consisting of four components can be represented in a
Gibbs' compositional triangle as a projection from one of the four corners of a tetra-
hedron. Of course, it is not necessary to draw the three dimensional diagram first.
The plotting position in the projection is found simply by using the mole fractions
calculated disregarding the component from which the projection is to be carried

CaO
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Al2O3

Ca3Al2Si3O12
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out. 

Fig. 1.8 Projection of kaolinite composition from the H2O apex onto the Al2O3-SiO2

base line. a) The plotting position of kaolinite, Al2Si2O5(OH)4, in the compositional tri-

angle, b) kaolinite in projection. 

Example: The four-component phase muscovite, KAl2[AlSi3O10](OH)2, can be

represented as a projection from the H2O apex onto the base of the tetrahedron, de-

fined by K2O-Al2O3-SiO2. In order to do this, the molar fractions of the components

are calculated as though water was not part of the system. The following values for
the mol fractions are obtained:

and

a)

b)

H2O

SiO2Al2O3

Al2O3 SiO2

H2O+

Kaolinite

Kaolinite'

Kaolinite'

xK2O

mu 1
1 3 6+ +
--------------------- 1

10
------ 0.1,= = =

xAl2O3

mu 3
1 3 6+ +
--------------------- 3

10
------ 0.3= = =
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The result of this projection is demonstrated in Fig. 1.9.

Fig. 1.9 Muscovite (mu') after projection from the H2O apex onto the base of the triangle 

K2O - Al2O3 - SiO2. The distances a, b, and c correspond to the mole fraction in the ter-

nary subsystem as follows: a Al2O3)/(K2O + Al2O3 + SiO2), b (Al2O3)/(K2O

+Al2O3 + SiO2) and c SiO2)/(K2O + Al2O3 + SiO2).

1.9  Problems

1. Show that the function z = ax/y possesses a total differential. 

2. Calculate the mole fractions of MgO and SiO2 for forsterite and enstatite. 

3. Plot the forsterite and enstatite composition on the line MgO-SiO2.

4. Calculate the mole fractions of MgO, Al2O3 and SiO2 for a water-free cordierite,

Mg2Al3AlSi5O8.

• Convert the mole fractions of MgO, Al2O3 and SiO2 into wt%.

xSiO2

mu 6
1 3 6+ +
--------------------- 0.6.= =

c
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b
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5. Plot the following compositions in the Gibbs compositional triangle
MgO-Al2O3-SiO2: enstatite, MgSiO3, kyanite, Al2SiO5, spinel, MgAl2O4, and

sapphirine, Mg2Al4O6(SiO4).

6. Plot the tremolite composition, Ca2Mg5Si8O22(OH)2, as a projection from the

H2O apex onto the base of the MgO-CaO-SiO2-H2O tetrahedron. 

7. The chemical analysis of a mechanical mixture consisting of kyanite, Al2SiO5,

and low quartz, SiO2, yielded 45.707 wt% SiO2 and 54.293 wt% Al2O3. Calcu-

late the mole fractions of kyanite and low quartz using the lever rule.



Chapter 2   Volume as a state function

For geochemical and geophysical calculations volume of minerals and fluids plays
an important role. It determines basically the direction in which reactions proceed
during the pressure changes. It belongs to one of the few relatively easily conceiv-
able thermodynamic properties. 

The volume of a solid is normally given in m3 or cm3. In older literature addition-

al volume dimensions such as calbar -1 (calorie pro bar) or Jbar -1 (Joule pro bar) are
often found. The following relationships exist between different dimension specifi-
cations:

1 bar = 105 Nm = 105 Pa (Pascal)

Taking into account that 

1 cal = 4.1844 J

the relationship

V [cal bar-1] = 10 x 4.8144 = 41.844 cm3 = 41.844 x 10-6 m3

is obtained.

The volume given in [calbar-1] or [Jbar-1] is occasionally referred to as volume

coefficient.

2.1  Volume of pure phases

In the case where the mass of a pure phase is kept constant, its volume is determined
completely by temperature and pressure. Changes in pressure result in definite
changes in temperature. The relationship between pressure, temperature, and vol-

1Jbar
1– N m

N

m
2

------- 5
10

------------------------- 10
5–
m

3
10cm

3
.= = =
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ume is given by the equation of state:

(2.1)

In a three-dimensional diagram with the coordinates temperature, T, pressure, P
and volume, V, this function represents a surface (see Fig. 2.1).

Fig. 2.1 Schematic diagram of the volume of a pure phase as a function of state V = 

f(P,T). V(T) = isotherm, V(P) = isobar, and P(T) = isochore.

Experiments aimed at studying the relationships between the variables must be
designed such that all but one of the variables are kept constant. In respect to which
variable is changed and which one is kept constant, the following partial functions
of volume are obtained: V = f(T)P and V = f(P)T. The curves given by the first func-

tion are called isobars. They represent the temperature dependence of volume at
constant pressure. The second function renders the isotherms. These curves repre-
sent the pressure dependence of the volume at constant temperature. In addition to
these two functions, a third additional one is possible. One can also keep volume
constant while the temperature changes. In this case changes in temperature cause
definite changes in pressure and one obtains the following partial function: P =

f(T)V. The resulting curve is referred to as an isochore. The three functions are de-

picted in Fig. 2.1. 

V f P T .=

P(T)

V(P)

V(T)

V

T
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2.1.1 Thermal expansion and compressibility

Fig. 2.2 shows the volume of the unit cell, VE, of diopside, CaMgSi2O6, as a func-

tion of temperature.

Fig. 2.2 The volume of the unit cell of diopside, CaMgSi2O6, as a function of tempera-

ture at 0.1 MPa. (After Richet et al. 1998). 

The volume of the unit cell increases with increasing temperature non-linearly.
The slope of the volume vs. temperature curve, which is given by the derivative

, is smaller at low temperatures and becomes greater at higher temper-

atures.

Fig. 2.3 shows the volume of the unit cell of deuterated synthetic chlorite,
Mg5Al(Si3Al)O10(OD)8, as a function of pressure at room temperature. Increasing

pressures results in a decrease in the volume of the unit cell. The slope of the volume

vs. pressure curve is given by the derivative . It decreases with increas-

ing pressure and approaches zero at very high pressures.

If both temperature and pressure change, the volume change is given by the total
differential:

(2.2)
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In Eq. (2.2) the subscript E is dropped, because the relationship holds not only for
the volume of an unit cell but, generally, for the volume of an arbitrary mass of a
pure phase. The only precondition that must be fulfilled is that the mass of the phase
remains constant in the course of a thermodynamic process.

Fig. 2.3 Volume of deuterated synthetic chlorite, Mg5Al(Si3Al)O10(OD)8, as a function 

of pressure at 298 K. (After Welch and Crichton 2002).

The fractional increase of volume with temperature at constant pressure is re-
ferred to as the coefficient of thermal expansion, , that is

(2.3)

In a similar way the compressibility coefficient, , is defined as the negative frac-
tional change of volume with pressure at constant temperature:

(2.4)

The negative sign is taken to make the coefficient a positive number, because in-
creasing pressure leads to a decrease in volume. Strictly, V in the term 1/V is the vol-
ume of the phase at pressure P, that is at the point of differentiation. For the practical
use, however, it is often replaced by Vo, that is the volume in some reference state,

700

690

680

670

660

650

640

V
E
[Å

3
]

86420

P[GPa]

VE

P

tan  = VE/ P)T

1
V
---

T

V

P
.=

1
V
--- V

P
------

T
.–=



2.1 Volume of pure phases 27

e.g. at ambient pressure and temperature. If the substance under consideration is a
solid phase, and thus has relatively small changes with both temperature and pres-
sure, little error is introduced by this simplification.

In the mineralogical literature, the isothermal bulk modulus is often used instead
of the compressibility coefficient. It is defined as the reciprocal of the compressibil-
ity, that is:

(2.5)

Generally, both thermal expansion and compressibility are pressure and temper-
ature dependent. In the case of solids, however, these dependences are relatively
small. At low and moderate pressures and temperatures both coefficients are often
considered to be constant. Moreover, the fact that pressure and temperature act in
opposite directions lowers the error, because many mineralogical processes take
place at elevated temperatures and pressures.

In order to describe the behavior of volume at very high pressures (above 1 GPa)
the Birch-Murnaghan equation is frequently used. This equation of state has the fol-
lowing form:

(2.6)

where Vo designates the volume at ambient pressure. Bo is the bulk modulus and B’

its pressure derivative.

Using the definitions of thermal expansion and compressibility, Eq. (2.2) can be
rewritten as follows:

(2.7)

In isochoric processes the volume remains constant, that is dV = 0. Inserting this
in Eq. (2.7) yields:

(2.8)

From Eq. (2.8) follows:
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Eq. (2.9) describes the pressure change per unit temperature in the case where the
volume is kept constant.

In the examples presented above, we used the volume of one unit cell. For ther-
modynamic calculations, however, the molar volume, V, is the more appropriate
quantity. It is defined as the volume that is occupied by one mole of formula units
of the substance under consideration. The spatial arrangement of atoms is predeter-
mined by the crystal structure of the substance.

Examples of calculated thermal expansion and compressibility

Example 1: Tab. 2.1 gives and Fig. 2.4 shows the molar volume of -eucryptite,
LiAlSiO4, as a function of temperature at a constant pressure of 1.94 GPa. The data

are taken from Zhang et al. (2002), who measured the lattice constants in the tem-
perature range 298-1073 K.

.

Although the molar volume clearly increases non-linearly, a straight line is first
fitted to the data points. The result is shown by the dotted line in Fig. 2.4. Of course,
this fit is only a rough approximation. Nonetheless, this procedure is frequently car-
ried out especially in the case where the average thermal expansion over a restricted
temperature interval is required. In our example the linear regression yields:

Table 2.1 Volume of -eucryptite, LiAlSiO4, as a function of

temperature at 1.94 GPa (Zhang et al. 2002)

T [K] V [cm3mole-1]

300 209.083

373 209.357

473 209.622

573 210.107

673 210.592

773 211.243

873 211.731

923 212.014

973 212.250

1073 213.046
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V [cm3mol-1] = 207.35 + 5.0739 x 10-3T [K].

Because of the assumed linear relationship between the volume and temperature,
the thermal expansion is temperature independent. It is calculated as follows:

(2.10)

where  is the average thermal expansion and V298 the volume at 298.15 K.

Using the coefficients determined by the regression procedure, one obtains:

for the volume at 298.15 K and 

for the molar volume at 700 K.

Fig. 2.4 Molar volume of -eucryptite as a function of temperature at a constant pres-
sure of 2.4 GPa (Zhang et al. 2002). A straight line and a second-order polynomial are 
fitted to the data points.
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In this example 700 K is taken as the upper temperature limit. Because of the as-
sumed linear behavior, the choice of upper temperature is entirely arbitrary. Hence,
any other temperature within the measured interval could have been used as well.

The average thermal expansion coefficient, , for -eucryptite is then

If one uses a second-order polynomial of the form V = a + bT + cT2, instead of
a straight line, a much better fit is obtained. It yields the following coefficients: 

a = 208.34,

b = 17.087 x 10- 4 and 

c = 2.47 x 10-6.

With these data, the thermal expansion is then calculated according to Eq. (2.3):

(2.11)

Using the volume at 298.15 K as a reference the calculation reads:

for 500 K and 

for 1000 K, respectively. 

A comparison of the two results reveals appreciable differences. As a general rule
it holds that higher temperatures give rise to greater thermal expansion coefficients.
It is necessary, therefore, to specify the temperature region over which a given ther-
mal expansion coefficient holds. 

1

208.863 cm
3
mol

1–
--------------------------------------------- 210.902 cm

3
mol

1–
208.863 cm

3
mol

1–
–

700 K 298.15 K–
------------------------------------------------------------------------------------------------------

2.43
5–

10 K
1–
.

=

=

1

a bT cT
2

+ +
------------------------------------ b 2cT+ .=

500
17.087

4–
10 2 2.47

6–
10 500+

208.34 17.087
4–

10 298.15 2.47
6–

10 298.15
2

+ +
------------------------------------------------------------------------------------------------------------------------------------- 2.0

5–
10 K

1–
= =

1000
17.087

4–
10 2 2.47

6–
10 1000+

208.34 17.087
4–

10 298.15 2.47
6–

10 298.15
2

+ +
-------------------------------------------------------------------------------------------------------------------------------------

3.18
5–

10 K
1–

=

=



2.1 Volume of pure phases 31

Example 2: Yang et al. (1997) determined the unit-cell dimensions of kyanite,
Al2SiO5, at room temperature and at various pressures up to 4.56 GPa. Their results

can be used to calculate the molar volume of kyanite as a function of pressure. The
pressures and the molar volumes are presented in Table 2.2 and displayed in Fig.
2.5.

A plot of the data exhibits a linear relationship between the molar volume and
pressure (see Fig. 2.5) that can be described by the equation: 

V [cm3mol-1] = 44.156 - 0.218P [GPa]. 

The linear behavior suggests a constant compressibility over the entire pressure
regime.

Using the volume at 0.1 MPa (Vo = 44.156 cm3mol-1) as a reference and that at

4.0 GPa (V4.0 = 43.285 cm3mol-1) as the upper limit, the compressibility coefficient

is:

Table 2.2 Molar volume of kyanite, Al2SiO5, as a 

function of pressure (Yang et al. 1997)

Pressure [GPa] V[cm3mol-1]

0.00 44.1572

0.68 44.0186

1.35 43.8525

1.98 43.7175

2.54 43.6113

3.10 43.4725

3.73 43.3386

4.32 43.2212

4.56 43.1674
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and the bulk modulus 

Fig. 2.5 Volume of kyanite as a function of pressure at room temperature (Yang et al. 
1997).

Example 3: The volume of the unit-cell versus pressure curve for chlorite (see
Fig. 2.3) shows a significant curvature. This means that the compressibility coeffi-
cient is pressure dependent within regime under consideration. In order to account
for this behavior, a polynomial of the second-order is fitted to the data. A least
squares best fit yields:
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Using this polynomium, the compressibility coefficient can be calculated at any
a pressure within the pressure range over which the volume-pressure relationship

was measured. Using the volume of the unit-cell at 0.1 MPa (699.56 Å3) as a refer-
ence, the compressibility coefficient at 1 GPa is calculated according to Eq. (2.4) as
follows:

An analogous calculation for P = 7 GPa yields:

As expected, different compressibility coefficients are obtained depending upon
the pressure. The higher the pressure, the smaller the compressibility coefficient.

In Fig. 2.6 the calculated compressibility coefficient of chlorite is shown as a
function of pressure. Because a second-order polynomial is used to fit the experi-
mental data, a linear relationship between compressibility and pressure results.

Fig. 2.6 Compressibility coefficient for chlorite as a function of pressure at room tem-
perature. The second-order polynomial is used to describe the volume vs. pressure rela-
tionship. (Experimental data are taken from Welch and Crichton 2002)
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In thermodynamic tables used by geoscientists the compressibility is occasional-
ly given as a function of pressure, i.e. P = o - 1P. In our case for chlorite o =

11.83 x10-3 GPa-1 and 1 = 45.76 x10-6 GPa-2 is obtained. If the thermal expansion

is also given as a function of temperature in such tables, equations of this kind read:

T = o + 1T.

In this connection, it is necessary to emphasize that equations describing the pres-
sure and temperature behavior of compressibility and thermal expansion respective-
ly are purely, empirical in nature. The second-order polynomials that are used to fit
the experimental data, have no physical meaning. Therefore, any extrapolations out-
side the experimental data base should be viewed cautiously. 

A better, although, empirical approach to describe the compressibility of solids
up to very high pressures offers the Birch-Murnaghan equation (see Eq. (2.6)). If
this equation is plotted to the experimental data of Welch and Crichton (2002), dis-
regarding the given uncertainties, a bulk modulus, Bo, of 82.9 GPa is obtained. Its

derivative B’ amounts to 4.7. 

2.1.2 Volume of ideal gases as a state function 

A mineralogist who is mainly concerned with solid rocks might think gases don’t
play such an important role in geosciences. However, a closer look at the subject un-
veils the immense importance of this group of substances. Any equilibria involving
solids involve also gases exerting a vapor pressure over the solids. In oxidation/re-
duction processes gases determine the direction in which reactions proceed. 

The most important gas is H2O vapor consisting of the components O2 and H2.

In carbonate bearing mineral assemblages CO2 gas is the most important species. In

more reducing conditions CH4 plays an essential role. H2S and gaseous sulfur play

an important role in the formation of ore deposits.

In 1802 Gay-Lussac observed that the volume of a gas at constant pressure (suf-
ficiently low) or the pressure of a gas at constant volume change linearly with tem-
perature. This observation, expressed in mathematical form, is known as the
Guy-Lussac’s law:

(2.12)

where Vo and  are the volume of the gas at 0°C and the coefficient of thermal ex-

pansion, respectively. t is the temperature in degree celsius. Gay-Lussac found  to
be constant having a value of 1/267. Experiments conducted by Regnault in 1847
yielded a value for  of 1/273. Later more precise measurements showed that some
gases obey Gay-Lussac better than others. However, the deviation from the law was
found to become smaller with decreasing pressure for all gases. If P in Eq. (2.12) is
set to ambient pressure (101325 Pa),  equals 1/273.15. With this value the

V Vo 1 t+ ;   P const,= =
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Gay-Lussac law reads:

(2.13)

In Eq. (2.13) T designates the thermodynamic temperature as defined in Eq.
(1.23).

According to the Gay-Lussac‘s law a gas would have zero volume at 0 K but this
is impossible, therefore, the absolute zero is physically not attainable. Hence, the
Gay-Lussac’s law is a limiting law and it holds strictly only for a hypothetical gas
consisting of molecules having negligible volume and no intermolecular interaction.
Such a gas is called ideal or perfect. Real gases approach this state at very low pres-
sures and high temperatures.

In the seventeenth century the British physicist Robert Boyle discovered that the
product between volume and pressure for the air is (nearly) constant. Somewhat lat-
er a French physicist Mariotte, who independently repeated Boyle’s experiments,
added the very important restriction that the inverse relationship between volume
and pressure holds only if the temperature of the gas is kept constant. The law, that
is called Boyle’s law (in the Anglo-Saxon part of the world) or Mariotte’s law (in
France) or Boyle-Mariotte’s law (in Germany), holds strictly only for the ideal gas-
es. It reads:

(2.14)

Gay-Lussac’s and Boyle-Mariotte’s law describe partial volume changes with
temperature and pressure, respectively. To obtain the total state function of volume,
V(P,T), the two laws must be combined. Hence, an isobaric and an isothermal
change are performed subsequently. We start with Vo, Po, and To, where Po =

101325 Pa and To = 273.15 K and Vo is the volume of the gas. The final state will

be characterized by V, P, and T. Following Gay-Lussac’s law, the increase of the
temperature form To to T at constant pressure Po yields:

(2.15)

According to the Boyle-Mariotte law the subsequent change in pressure from Po

to P at constant temperature T gives:

(2.16)
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Substituting for  by the expression given in Eq. (2.15) we obtain:

(2.17)

Using the volume of one mole of a perfect gas, Vo = 22.414x10-3 m3 at ambient

pressure conditions, Po = 101325 Pa and To = 273.15 K, the constant assumes a val-

ue that is referred to as the gas constant, R, namely:

Thus, for 1 mole of a perfect gas the volume as a function of state reads:

(2.18)

For an arbitrary amount of gas Eq. (2.18) has to be multiplied by the number of
moles, n. Since nV = V (total volume,) the state function then takes the following
form:

(2.19)

If Eq. (2.18) is differentiated with respect to the variables T and P,

(2.20)

is obtained. 

In order to prove whether or not Eq. (2.20) is a total differential the partial deriv-
atives are to be cross-differentiated. This means, the first derivative must be differ-
entiated with respect to pressure and the second one with respect to temperature.
Doing this, we obtain:

(2.21)

Eq. (2.21) is referred to as the reciprocity relation. It shows that Eq. (2.18) is in-
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deed a function of state.

2.1.3 Volume of real gases

An ideal or perfect gas is a purely hypothetical construct and can never exist in re-
ality. According to the equation of state, the volume of a perfect gas must become
zero at absolute zero, which means that the molecules do not have finite volume.
This is, of course, impossible, but at low pressures and high temperatures, where the
distances separating molecules are large compared to their size, the behavior of a gas
can approach ideality. However, as pressure increases, the volume of the molecules
increasingly becomes a significant fraction of the total volume. Similarly, the elec-
trostatic interaction between molecules is negligibly small at low pressures and high
temperatures and it only becomes significant with decreasing temperatures and in-
creasing pressures. Hence, another equation of state must be constructed to describe
properly the behavior of gases at higher pressures and low temperatures. 

In order to account for the finite volume of the molecules, van der Waals pro-
posed an additional term, b, that is introduced into the equation of state:

(2.22)

The term b represents the volume of a gas at absolute zero, that is, the volume of the
molecules. 

Because of the finite molecular volume, the free space, that is the space where
molecules can move around, is reduced. It equals V - b and is referred to as the 'free
volume'. The fact that molecules posses a finite volume determines also how closely
the molecules can approach one other before repulsive forces become significant.
An rearrangement of Eq. (2.22) yields:

(2.23)

Eq. (2.23) gives the pressure of a gas corrected for the molecular repulsion. re-
sulting from the closest approach.

On the other hand, the mutual attraction between molecules causes a reduction of
pressure that a gas exerts on the walls of a container. The attractive forces are pro-
portional to the number of molecules, which can be expressed as concentration c. If
we consider that the attractive force acts between two molecules, the concentration,
c, has to be squared. Because the concentration is inversely proportional to the vol-

ume ( ), follows farther that the attractive force is proportional to 1/V 2. At-

traction between molecules causes a decrease in pressure, and this means that the

term a/V 2 has to be subtracted from the term in Eq (2.23) to obtain the pressure of
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a real gas, that is

(2.24)

where a is an empirical parameter.

Fig. 2.7 Calculated isotherms for CO2. Vliq and Vgas are the volumes of the coexisting 

liquid and gas, respectively at 275 K. Pc = critical pressure, Tc = critical temperature.

Eq. (2.24) is referred to as the van der Waals equation. Its physical meaning can
be interpreted as follows: External pressure, P, and the attraction between the mol-

ecules, a/V 2, act in the same direction. They push the molecules together. At equi-
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librium, this pressure is balanced by the thermal pressure, RT/(V - b), holding the
molecules apart. Therefore,

(2.25)

Hence, the constants a and b account for the attractive and repulsive forces be-
tween the molecules, respectively. A more precise meaning of these constants and
the way how they can be evaluated, will be discussed later on.

The van der Waals equation describes the P-V-T relations of real gases only qual-
itatively and over a limited range of pressures and temperatures. This fact makes it
less important in respect of predicting gas behavior at some arbitrary pressure and
temperature conditions. Important, however, is that the equation can be used to de-
scribe both gas and liquid states. This is demonstrated in Fig. 2.7.

An rearrangement of Eq. (2.24) shows that it is cubic in volume:

(2.26)

Depending on the temperature, Eq. (2.26) has one or three solutions for V. For

temperatures  (see Fig. 2.7) only one root is real. The remaining two are com-

plex. At these temperatures only one phase, a so called supercritical fluid, exists.
For T < Tc all three roots are real. Two of them, the smallest and the largest one, rep-

resent the volumes of liquid and gas, respectively. Hence, at temperatures T < Tc a

two-phase field with coexisting gas and liquid exists. Its boundaries are given by the
inflection points on the isotherms. The two-phase field ends at the critical point,
which is characterized by the critical temperature, Tc, critical pressure, Pc, and crit-

ical volume Vc. At the critical point, both inflections of the isotherm coincide with

the maximum of the curve limiting the two-phase field. Hence, the following two
condition must be fulfilled:
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Applying the relations (2.27) and (2.28) to Eq. (2.24) yields:

(2.29)

and

(2.30)

respectively.

Eqs. (2.29) and (2.30) can be solved to obtain the parameters of the van der Waals
equation in terms of critical volume, critical temperature and gas constant, R:

(2.31)

and

(2.32)

Substituting expressions (2.31) and (2.31) into Eq. (2.24) yields the critical pres-
sure, Pc:

. (2.33)

From Eq. (2.33) it follows:

(2.34)
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Replacing Vc in Eqs. (2.31) and (2.32) by the expressions given in Eq. (2.34), the

parameters a and b are obtained as functions of Tc, Pc, and R, namely:

(2.36)

and

(2.37)

From any of Eqs. (2.33) through (2.35) it follows that 

(2.38)

where Zc is the so-called critical compressibility factor and it should be the same for

all non-ideal gases. However, using the experimentally determined critical data of
various non-ideal gases values ranging between 0.25 and 0.30 are obtained. These
deviations from the value of 0.375 are the reason why different pairs of critical data
yield different values of the parameters a and b.

Example: Consider CO2 gas. Its critical data are: Tc = 304.14 K, Pc =

73.75x105 Pa and Vc = 94.0x10-6 m3mol-1 (Ambrose 1994). 

The critical compressibility factor of CO2 is given by:

which deviates from the theoretical value by +0.101. 

Using the critical volume, Vc, and critical temperature, Tc, Eq. (2.31) yields:

In order to calculate the value of parameter a according to Eq. (2.36), Tc, and Pc,

are required. The calculation reads:

a
27R

2
Tc

2

64Pc

------------------=

b
RTc

8Pc

--------- .=

Zc

PcVc

RTc

------------ 3
8
--- 0.375,= = =

Zc
73.75

5
10 Pa 94.0

6–
10 m

3
mol

1–

8.3144Jmol
1–
K

1–
304.14K

------------------------------------------------------------------------------------- 0.274,= =

a
9
8
--- 8.3144Jmol

1–
304.14K 94.0

6–
10 m

3
mol

1–
0.2674 Jm

3
mol

2–
.= =



42 2 Volume as a state function

Parameter b can be calculated using either Eq. (2.32) or Eq. (2.37). If Eq. (2.32)
is used

is obtained.

Using Eq. (2.37) gives:

Another equation of state, also based on both repulsive and attractive forces be-
tween gas molecules, was proposed by Redlich and Kwong (1949). It differs from
the van der Waals equation in that it has a more complicated expression for the at-
tractive forces as a function of temperature and volume:

(2.39)

As in the van der Waals equation, in the Redlich-Kwong equation a and b are also
considered constant for each gas. Its applicability is, therefore, restricted to a limited
range of temperature and pressure. In an attempt to extend it to geologically relevant
high pressure and temperature conditions, several workers developed modified

Redlich-Kwong equations. All of them exhibit a corrected attractive term or repul-
sive term or both.

De Santis et al. (1974) treated a as a linear function of temperature and b as a con-
stant. Holloway (1977) did the same using the volume data for H2O of Burnham et

al. (1969a,b). Kerrick and Jacobs (1981) developed an equation adopting Carnahan
and Starling’s (1969) version of a modified Redlich-Kwong equation where

(2.40)

with y = b/4V. a is a linear function of temperature and b is a constant. Kerrick and
Jacobs’ (1981) modification assumes that a is not only a function of temperature but
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also of pressure. Their equation of state reads:

(2.41)

Halbach and Chatterjee (1982) developed yet another modified Redlich-Kwong
equation based on a careful analysis of P-V-T data for H2O. They determined that a

is not so much a function of pressure but primarily of temperature. The constant b,
on the other hand, is considered a monotonous function of P. Their equation has the
following form:

(2.42)

with a(T) = A1 + A2T + A3/T and b(P) = (1 + B1P + B2P2 + B3P3)/(B4 + B5P + B6P2).

According to the authors, Eq. (2.42) allows calculations of P-V-T for temperatures
between 100-1000°C and pressures up to 200 kbar. Less satisfactory results are ob-
tained only in the vicinity of the saturation curve, particularly at temperatures be-
tween 300 and 500°C.

Virial equation offers another approach to quantitative description of the gas be-
havior. It expresses the compressibility factor,

(2.43)

as a power series in terms of pressure (or density):

(2.44)

Coefficients B, C, D... are termed the second, third, and fourth virial coefficient.

They are functions of temperature, but not of pressure, and they must be determined
experimentally. The virial equation is the only equation of state that has a solid the-
oretical basis. Coefficients reflect the nature of molecular interactions. The equation
preforms remarkably well for many fluids at low pressures and temperatures, but it
fails at conditions generally encountered by metamorphic rocks, for example.

2.1.4 Volume of solid phases

For solids, no equations comparable to those for gases exist. It is possible, though,
to derive an algebraic expression that describes the volume behavior of solids over
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limited ranges of temperature and pressure. Let us assume that temperature increas-
es from To to T at the constant pressure of Po. In order to obtain the volume change

caused by this finite temperature change, the expression for the thermal expansion
has to be integrated between the limits of T and To. Before the integration, the vari-

ables must be separated, that is, the increment dT must be brought to the left side of
the equation and we have:

(2.45)

If thermal expansion can be considered constant within a given temperature in-
terval, the integration of Eq. (2.45) yields:

(2.46)

or 

(2.47)

Because thermal expansion is normally small compared to molar volume, the as-
sumption of constant expansion does not introduce significant error, as long as the
temperature interval remains moderate (a few hundreds of degrees). 

In the next step, the pressure is changed from Po to P, while the temperature is

kept constant at T. Now, the expression giving the compressibility of a solid has to
be integrated between the limits of P and Po, that is

(2.48)

Assuming a constant compressibility, integration of Eq. (2.48) gives:

(2.49)

or

(2.50)
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Replacing V(T,Po) in Eq. (2.50) by the expression given in Eq. (2.47) yields:

, (2.51)

If the starting temperature, To, and the starting pressure, Po, are set to the standard

conditions that is 298 K1 and 0.1 MPa, respectively, Eq. (2.51) reads:

(2.52)

where Vo is the volume at 298 K and 0.1 MPa. It is generally called the standard

volume. Compressibilities of solids are generally small compared to molar volumes,
therefore, pressures on the order of GPa are required to obtain a marked changes in

volume. Hence, 105 Pa is much smaller than P and can, therefore, be neglected. Eq.
(2.52) thus simplifies to:

(2.53)

Eq. (2.53) is a transcendent function, that can be approximated by the Mac Lau-
rin’s series according to

(2.54)

In our case x is very small, and hence the series can be truncated after the second
term. Eq. (2.53) then becomes:

(2.55)

Calculated example: According to the experimental data of Pavese et al. (2001),

the thermal expansion, , of grossular is 27.7 x 10-6 K-1. The compressibility coef-

ficient, , is calculated to be 5.9 x 10-3 GPa-1, and the standard volume, Vo =

125.424 cm3mole-1. With these data, we can calculate the molar volume of grossu-
lar at any arbitrary conditions occurring within the pressure and temperature range
in which Pavese et al. (2001) performed their experiments. This constraint is a con-
sequence of the simplification made in connection with the derivation of Eq. (2.55).
It does not yield reliable results for P-T conditions lying appreciably outside the
pressure and temperature range, in which the thermal expansion and compressibility

1. For the sake of convenience, the decimals are neglected
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were determined. In order to compare directly the result of our calculation with an
experimentally measured value, we choose P = 2.1 GPa and T = 800 K. 

Inserting the values for volume, compressibility, and thermal expansion into Eq.
(2.55), the calculation reads:

Pavese et al. (2001) determined for the same P-T conditions a value of 125.677

cm3mole-1. Although Eq. (2.55) gives a rough approximation, the difference be-
tween the calculated and measured values is small (0.05%). This is due to the fact
that thermal expansion and compressibility have opposite signs. 

Calculation of molar volume using x-ray diffraction data

Molar volumes of crystalline materials can be calculated using lattice constants as
determined by x-ray diffraction experiments. The following relationship holds:

(2.56)

where NA designates Avogadro’s constant (6.022 x 1023 mole-1). z gives the number

of formula units per unit cell and , , and  are the lattice vectors. The scalar triple

product in braces represents the volume of the crystallographic unit cell. Hence, the
molar volume of a crystalline substance is defined as the volume that is occupied by
NA formula units in the spatial arrangement as defined by the crystal structure. In

the case of a triclinic substance Eq. (2.56) reads:

(2.57)

where , , and  are the angles between the vectors  and ,  and ,  and ,

respectively.

Example: Yang et al. (1997) determined the following lattice constants for kyan-
ite, Al2SiO5, at standard conditions: ao = 7.1200 Å, bo = 7.8479 Å, co = 5.5738 Å,

89.974°,  = 101.117°, and  = 106.000°. The unit cell of kyanite contains 4 for-
mula units. Using these data, the molar volume of kyanite is calculated as follows: 
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For a monoclinic system, where only one angle ( ) differs from 90°, Eq. (2.57)
simplifies to:

(2.58)

Example: Diopside, CaMgSi2O6, possesses a monoclinic structure, C2/c. Its lat-

tice constants are: a = 9.7485 Å, b = 8.9252 Å, c = 5.2518 Å, and  = 105.899°
(Tribaudino et al. 2000). Each unit cell contains 4 formula units of diopside. Its mo-
lar volume is calculated according to Eq. (2.58):

2.2  Volume of solutions

While the volume of a pure phase is completely defined by two variables P and T,
additional variables are required to describe the volume of a solution. These addi-
tional variables are the numbers of moles of the components making up the solution.
Accordingly, the equation of state for a volume of a solution reads:

(2.59)

where ni is the number of moles of the components i.
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At constant temperature and pressure the total volume of a solution, V, repre-
sents, in the simplest case, the sum of the molar volumes of all the components mul-
tiplied by their respective number of moles. For k components the equation reads:

(2.60)

Eq. (2.60) holds for mechanical mixtures and ideal solutions. The precondition
for its validity is that by the process of mixing no or only very little strain is intro-
duced into the solution and that any chemical interaction effects between the com-
ponents plays a minor role. 

Example: Consider an olivine single crystal consisting of 92 mole percent forster-
ite and 8 mole percent fayalite. Its mass is 5 g. What is the volume of the crystal if
an ideal mixing between forsterite and fayalite is assumed? To answer this question,
the numbers of moles and the molar volumes of the two mixing components must
be known. The molar masses of forsterite and fayalite are 140.6936 g and

203.7776 g, respectively. The molar volume of forsterite is 43.79 cm3mol-1 and that

for fayalite 46.26 cm3mole-1. Using the molar masses, the number of moles of for-
sterite and fayalite in the olivine crystal can be calculated as follows:

Inserting the calculated numbers of moles together with the molar volumes of
forsterite and fayalite into Eq. (2.60) yields:

2.2.1 Partial molar volume

If the mixing of components introduces strain into a solid solution, for example, the
total volume can not be represented simply by the weighted sum of the molar vol-
umes of the end-member phases. In such cases, the molar volumes must be replaced
by the partial molar volumes. The partial molar volume of the component i, Vi, is

defined as the change in the volume of solution by adding or removing one mole of
component i at constant temperature, pressure, and number of all other components
j. Mathematically this definition is expressed as follows:
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(2.61)

The partial molar volume depends on the composition and on the nature of the
solution.

Using the above definition (Eq. (2.61)), the total volume of a non-ideal solution
containing k components reads:

(2.62)

Example: The total volume of a mechanical mixture consisting of 0.02 mole of
sphalerite, ZnS, and 0.01 mole of stoichiometric pyrrhotite, FeS, can be calculated
as follows:

 and  are the molar volumes of pure sphalerite and pure pyrrhotite, re-

spectively. Sphalerite is cubic with the sphalerite-type structure, while pyrrhotite is

hexagonal and posses the NiAs-type structure. With = 23.830 cm3mole-1 and

= 18.187 cm3mole-1, the total volume 

is obtained.

If this mixture is annealed at 700°C for 2 days, a homogeneous (Zn,Fe)S single
phase solid solution forms. In the solution zinc is partially replaced by ferrous iron,
but the crystal structure of sphalerite persists. In this case, the total volume of the
solution can not be calculated simply by multiplying the molar volumes of pure
sphalerite and pyrrhotite with their respective numbers of moles and summing up
the products. The partial molar volumes of the components must be taken instead
and we write:

Entering the solid solution FeS formally changes its crystal structure from the
NiAs type to the sphalerite type. This means its partial molar volume is based on a
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non-existing hypothetical cubic modification. Hence, in the case of FeS the differ-
ence between the partial molar volume and the molar volume is particularly mani-
fest.

For the given composition Cemi  (1983) determined the following partial molar
volumes:

 = 24.094 cm3mole-1

and

 = 24.305 cm3mole-1.

Using these values, the total volume of the solid solution is calculated as:

.

A comparison of the total volume of the solid solution with that one of the me-

chanical mixture gives a difference, V, of 0.067 cm3. Hence, the same mass of a
homogeneous solution takes up a larger volume than does the corresponding me-
chanical mixture. The thermodynamic consequences of this fact will be discussed
later. 

The total volume is an extensive property that depends on the amount of material
under consideration. The results of the above calculations, therefore, only make
sense if the amount of the mechanical mixture or solution is known. If we want to
make volume an intensive property, we must divide it by the total number of moles.
The resulting property is referred to as the molar volume of a solution, V, and in the
case of ideal mixing it holds:

(2.63)

where ni and C give the number of moles and components, respectively. Vi is the

molar volume of the end-member phase i.

According to Eq. (1.25) the term  corresponds to the mole fraction

of the component i, and so Eq. (2.63) can be rewritten as follows:
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(2.64)

Similarly, the molar volume of a non-ideal solution reads:

(2.65)

with Vi being the partial molar volume of the ith-component.

Example: Using the data from the preceding example, the molar volume of a
(Zn,Fe)S solid solution can be calculated according to Eq. (2.65) as follows:

The mole fraction of ZnS in the sphalerite solid solution is given by:

and that of FeS by:

Using these mole fractions and the partial molar volumes of the components the
molar volume of the sphalerite solid solution 

is obtained.

2.2.2 Volume relationships in binary solutions

Because the sum of all mole fractions present in every phase equal unity, the molar
volume of a binary solution (A,B) can be expressed as follows: 
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(2.66)

in the general case, and 

(2.67)

in the case that the solution behaves ideal.

In Eqs. (2.66) and (2.67) xB gives the mole fraction of the component B in the so-

lution. Vi and Vi designate the molar volume and the partial molar volume of the

component, respectively.

According to Eq. (2.61), the partial molar volumes of the components A and B in
the solution (A,B) read:

 and (2.68)

Substituting the molar volume into Eq. (2.68), 

 and (2.69)

is obtained.

From Eq. (2.69) it follows further that:

(2.70)

and

(2.71)

Considering the chain rule of differentiation, one can write

(2.72)
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Using the relationship:

(2.73)

one obtains:

 (2.74)

and

(2.75)

Replacing  in Eq. (2.70) by the expression (2.75) yields:

(2.76)

An analogous procedure can be applied to derive the partial molar volume of the
component B. The result is given in Eq. (2.77).

(2.77)

If the mole fraction xA in Eq. (2.77) is replaced by (1- xB), the commonly used

expression

(2.78)

is obtained.

The volume relationships for a binary solution are illustrated graphically in Fig.
2.8. The curved line represents the molar volume of the solution as a function of the
composition. The points where this curve meets the ordinate at xB = 0 and xB = 1
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correspond to the molar volumes of the end-member phases A and B, respectively. 

Fig. 2.8 Graphic representation of the volume relationships for a hypothetical binary 
system A-B: The solid and the dashed curve represent the molar volume of the solution 
(A,B) as a function of the mole fraction xB in the case of non-ideal and ideal mixing of 

components A and B, respectively. VA is the molar volume of the end-member phase A

and VB that of the end-member phase B. VA(xB) and VB(xB) are the partial molar volumes 

of the components and V(xB) the molar volume of the solution for the composition xB.

For further explanation see text. 

The slope of the curve at P can be expressed mathematically as follows:

(2.79)
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or

(2.80)

A simple rearrangement of Eq. (2.79) and Eq. (2.80) yields:

(2.81)

and

(2.82)

Equations (2.81) and (2.82) are identical to Eqs. (2.78) and (2.76), respectively.

As is apparent from Fig. 2.8, the partial molar volumes of the components A and

B in the solution are given by the intersection points of the tangent to the  vs. xB

curve with the ordinate at xB = 0 and xB = 1, respectively. In other words, the partial

molar volume of a component i can be defined as the volume that it would have if it
would occur as an end-member phase, with the same interatomic distances as in the
mixture. This means the volume state possessed by the component in the solution is
extrapolated to the pure phase. The fact that the tangent defining the partial molar

volumes of the components touches the  vs. xB curve at xB, demonstrates the va-

lidity of Eq. (2.65). It is obvious from Fig. 2.8 that the partial molar volume of a
component depends on its mole fraction and the bulk composition of the system. 

Special cases of partial molar volume arise at both ends of the concentration line,

where xB approaches 0 and 1, respectively. As  the component B is infinitely

diluted in A. Thus, its partial molar volume is referred to as the partial molar volume

of component B at infinite dilution, . At the opposite end of the concentration

line,  the concentration of component A in the solution approaches zero.

Correspondingly, its partial molar volume is designated as the partial molar volume

of the component A at infinite dilution, 
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2.2.3 Volume changes on mixing

In pure mechanical mixtures all components preserve their molar volumes. This
means that the molar volume of the mixture is the sum of the molar volumes of the
components. Thus, Eq. (2.64) holds. In solid solutions, however, the mixing of com-
ponents occurs on the molecular or atomic scale and, thereby, the components lose
partly their chemical and physical identities. The molar volume of a solid solution,
therefore, often deviates from the linear sum of the molar volumes of the pure com-
ponents. Hence, if a difference between the molar volume of the solid solution and
the linear sum of the molar volumes of the pure components is observed, it is the
result of the mixing process. This difference is referred to as the volume of mixing

or excess volume,  Using the same notification as in Fig. 2.8, the volume of

mixing reads: 

(2.83)

The volume of mixing can be positive as well as negative. The behavior depends
primarily on the size difference between the substituting atoms and on their bonding
character.

The difference between the partial molar volume of a component i in a mixture
and its molar volume as a pure phase is defined as the partial molar volume of mix-

ing or partial molar excess volume, . Using this definition, the partial excess

volume of component A, can be expressed as follows: 

(2.84)

In the case of infinite dilution of A, where xB approaches unity, Eq. (2.84) reads:

(2.85)

 is called the partial molar volume of mixing or the partial molar excess vol-

ume of component A at infinite dilution.

Analogous expressions can be written to describe the volume relationships for
the component B as:

(2.86)

and

mV
ex

.

mV
ex

V V
id

.–=

Vi

ex

VA

ex
VA VA.–=

VA

ex
VA VA.–=

VA

ex

VB

ex
VB VB–=



2.2 Volume of solutions 57

(2.87)

giving the partial volume of mixing for component B in general and at infinite dilu-
tion of B, respectively.

As shown in Fig. 2.9, the volume of mixing represents a weighted sum of the par-
tial molar excess volumes of the components constituting the solution. Thus, it
reads:

(2.88)

By definition, the molar volume of mixing at both ends of the compositional line
is zero. Partial molar volumes of mixing can be calculated using expressions analo-
gous to those given in Eqs. (2.81) and (2.82). Hence, for the partial molar volume of
mixing of component A holds:

(2.89)

Correspondingly, the partial molar volume of mixing of component B can be
written:

(2.90)

Fig. 2.9 shows volumes of mixing and their relationships to one another in a hy-
pothetical binary system A-B.

For practical reasons, the molar volume of a binary mixture is often presented in
a form of the polynomial with the mole fraction xB as the independent variable:

(2.91)

The coefficients a, b, c, d,... are purely empirical and have no physical meaning.
They are obtained by fitting an appropriate curve to the measured data set. Thomp-
son (1967) showed that a link between the coefficients and the volumes of mixing
exists. 
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Fig. 2.9 Volumes of mixing.  = volume of mixing,  = partial molar volume 

of mixing of the component A,  = partial molar volume of mixing of the component 

B,  = partial molar volume of mixing of the component A at infinite dilution, 

 = partial molar volume of mixing of component B at infinite dilution.

Assume that a second-order polynomial of the form

(2.92)

fits the experimentally determined volume data. 

At the point where xB equals zero it holds that:

(2.93)

At the point where xB equals one, the molar volume takes the following value:
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(2.94)

Following Eq. (2.77), the expression: 

(2.95)

is obtained for the partial molar volume of the component A.

In the case of infinite dilution of the component A, where xB is 1, VA equals ,

and Eq. (2.95) yields: 

(2.96)

Substituting Eq. (2.93) into Eq. (2.96) one obtains:

(2.97)

The coefficient c in Eq. (2.91) is therefore, equal to the negative partial molar vol-
ume of mixing of the component A at infinite dilution.

The partial molar volume of component B can be calculated analogously using
Eq. (2.78), as:

(2.98)

If B is infinitely diluted in A, xB approaches zero and Eq. (2.98) reads:

(2.99)

According to Eq. (2.93), the coefficient a in Eq. (2.92) is equivalent to the molar
volume of the pure component A, such that:

(2.100)

On the other hand, if Eq. (2.99) is substituted into Eq. (2.94), a value for the co-
efficient c is obtained again, namely:

(2.101)
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A comparison of Eqs. (2.97) and (2.101) shows that the coefficient c in Eq. (2.91)
is equivalent to the partial molar volumes of mixing of both components, A and B,
at infinite dilution. In order to understand the implications of this result on the mix-
ing behavior of the components, the volume of mixing has to be expressed in terms
of the above discussed volume relationships, namely:

(2.102)

The expression in the first square bracket represents the molar volume of the so-
lution. The second square bracket describes the molar volume of the solution in the

case of ideal mixing. Simple rearrangement and factoring out of the term 

yields:

(2.103)

In Eq. (2.103)  can as well be replaced by  because both have the

same value. 

According to Eq. (2.103) the curve representing the volume of mixing is symmet-
rical around xB = 0.5. Mixtures that exhibit this kind of behavior are called symmet-

ric.

In the case that a cubic term is added to the polynomial in order to describe the
behavior of the molar volume as a function of composition, the expression for the
volume of mixing reads:

(2.104)

Here  differs from . Hence, the volume vs. composition function is

asymmetric. Mixtures of this type are called asymmetric. It can easily be shown that
Eq. (2.104) equals Eq. (2.103), if the partial molar volumes of mixing at infinite di-

lution of both components are the same. In the mineralogical literature  is of-

ten replaced by the symbol . It is then referred to as the volume interaction

parameter between the components i and j.

2.2.4 Examples for the volumes of binary solutions

Example 1: Geiger and Feenstra (1997) measured the unit-cell constants of alman-
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dine-pyrope solid solutions and determined their molar volumes as a function of
composition. Their results are summarized in Tab. 2.3.

Fig. 2.10 shows the molar volumes as a function of composition. The solid line
is calculated according to Eq. (2.67) as follows:

No systematic deviation from linearity is observed. Hence, the mixing of Mg and
Fe is ideal, at least, within the limits of the measuring accuracy.

In this example the molar volumes of the pure components are taken to calculate
the line. One could, of course, just as well fit a line to the experimental data and ex-
tract the molar volumes of the two components from the resulting polynomial. Gen-
erally, the second approach is adopted because it is unreasonable to assume that the
molar volumes of the pure components can be determined better than the molar vol-
umes of the mixture. In our example, a linear regression yields:

Table 2.3 Compositions, unit-cell constants and the molar volume 
of almandine-pyrope garnets (Geiger and Feenstra 1997)

ao[Å]

0.000* 11.5291* 115.358*

0.071 11.5227 115.166

0.154 11.5170 114.995

0.259 11.5105 114.800

0.393 11.4995 114.472

0.493 11.4925 114.263

0.614 11.4830 113.979

0.752 11.4737 113.703

0.910 11.4612 113.332

1.000 11.4555 113.163

* uncertainties given by the authors are neglected.
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(2.105)

Fig. 2.10 Molar volumes for the solid solution Fe3Al2Si3O12 - Mg3Al2Si3O12 as a func-

tion of the mole fraction  The line is calculated using Eq. (2.67) which 

is valid in case of ideal mixing behavior of the components.

The first term Eq. (2.105) corresponds to the molar volume of pure almandine
and the second one gives the difference between the molar volumes of almandine
and pyrope. This can be shown by a rearrangement of Eq. (2.67), namely:

(2.106)

In our case, the following values are obtained:
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It should be emphasized that the experimental errors were disregarded in these
calculations. If they were taken into account, the linear regression would have yield-
ed slightly different coefficients and as a result, slightly different molar volumes for
pyrope and almandine would have been obtained.

Example 2: Tab. 2.4 contains the molar volumes of alkali feldspar solid solution
series as determined by Hovis (1988).

Table 2.4 Unit-cell parameters of alkali feldspar
solid solution series (Hovis 1988)

0.0029 100.488

0.0099 100.526

0.1437 102.091

0.1510 102.200

0.1553 102.217

0.2753 103.602

0.2898 103.89

0.3508 104.464

0.4346 105.238

0.4406 105.259

0.4911 105.710

0.5557 106.196

0.5993 106.476

0.7083 107.271

0.7333 107.384

0.8074 107.974

0.8359 108.121

0.9600 108.895

0.9917 108.953

xKAlSi3O8

fsp
V

fsp
cm

3
mol
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If the data of Tab. 2.4 are fitted with a second-order polynomial of the form

 the following coefficients are obtained: a = 100.42, b =

12.747, and c = - 4.1868. Hence, the molar volume of high albite-sanidine solid so-
lutions can be given as follows:

This polynomial can be used to calculate the molar volume for any high albi-

te-sanidine solid solution. For example, at  = 0.4 the calculation reads: 

According to Eq. (2.93), the coefficient a in the volume polynomial corresponds
to the molar volume of the component A. In our case this is the molar volume of high
albite and we can write:

Correspondingly, the sum a + b + c yields the molar volume of component B.
Here it is the molar volume of pure sanidine, namely

These two values can be used to calculate the molar volume of any high albite -
sanidine solid solution in the case that the solution behaves ideally. According to Eq.
(2.67), the molar volume of an ideal solution is given by a linear sum of the molar

volumes of the components. At , for example, one obtains:

The partial molar volume of high albite is calculated using Eq. (2.76) as: 
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If the volume polynomial, derived by least square fit, is introduced into the equa-
tion, given above, the following expression is obtained:

Hence, at  the partial molar volume of high albite is:

The partial molar volume of sanidine can be calculated according to Eq. (2.78),
that is

Substituting the volume polynomial for , one obtains:

With  = 0.4, the above expression assumes the following form:

The molar volume of the high albite-sanidine solid solution at 

can now be calculated directly, using the partial molar volumes of the components.
According to Eq. (2.67), the molar volume of the solution at any arbitrary composi-
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tion is given by the linear sum of the partial molar volumes of the components, cal-
culated for the given composition. In our case, we have:

The result is, of course, identical with the one, that was obtained previously using
the volume polynomial.

The volumes calculated in the above example and the experimental data of Or-
ville (1967) are shown graphically in Fig. 2.11.

The difference between the molar volume of the solution, determined in the ex-
periment, and its molar volume calculated in the case of ideal mixing, yields the mo-

lar volume of mixing. For  the molar volume is calculated as

follows: 

.

Following Eq. (2.84), the partial molar volume of mixing or partial molar excess
volume of high albite equals the difference between its molar volume and its partial

molar volume in the mixture. At  we have:

An analogous relationship holds for the partial volume of mixing of sanidine (see

Eq. (2.86)). At  = 0.4 one obtains:

The molar volume of mixing at  can now be calculated using the

partial molar volumes of mixing of the two components. It is
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Fig. 2.11 Volume relationships in the binary system high albite - sanidine. Circles repre-

sent the experimental data given by Hovis (1988).  and  are the molar vol-

umes of sanidine - high albite solid solution at  in the case of 

non-ideal and ideal mixing, respectively.  and  designate the 

molar volumes of the end-member phases and  and  are the 

partial molar volumes of the components at 

If we want to use Eq. (2.103) to calculate the molar volume of mixing, the partial
molar volumes of mixing of the components at infinite dilution must be known.

These values correspond to the volume interaction parameter, WV, in Eq. (2.103).
As a matter of fact, the partial molar volume of mixing of only one component is
actually required in our case, because a second-order polynomial was fit to the ex-
perimental data. As demonstrated earlier in this chapter, the partial molar volumes
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of mixing of the two components are equal in such case. Nontheless, we will calcu-
late the partial molar volumes of mixing of both components.

Let us start with high albite. In order to obtain its partial volume at infinite dilu-
tion the mole fraction of sanidine must be set to unity. The algebraic expression then
reads:

According to Eq. (2.85) the partial molar volume of mixing of high albite at infi-
nite dilution is equal to the difference between its partial molar volume at infinite
dilution and its molar volume. One can write:

Inserting the numerical values into the equation, yields:

In order to calculate the partial molar volume of sanidine at infinite dilution, its
mole fraction must be set to zero and one obtains:

Following Eq. (2.87), the partial molar volume of mixing of sanidine at infinite
dilution is defined as follows:

Substituting the numerical values for  and , the partial mo-

lar volume of mixing of sanidine at infinite dilution is:

A comparison of the result with the one obtained for high albite shows that they
are equivalent. One can now use this value to calculate the volume of mixing as a
function of composition. The mathematical expression is that from Eq. (2.103) and
it reads: 
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This expression can be used to derive the partial molar volumes of mixing of the
components. The partial molar volume of mixing of high albite is obtained using Eq.
(2.89), namely:

The partial molar volume of mixing of sanidine can be calculated according to
Eq. (2.90). 

One can test the validity for the two expressions by inserting 0.4 for the mole
fraction of sanidine and calculate the partial molar volumes of mixing. For high al-
bite one obtains:

and for sanidine 

The volumes of mixing, as calculated above, are shown graphically in Fig. 2.12. 

Example 3: Bosenick and Geiger (1997) studied the molar volume of py-
rope-grossular solid solutions at 295 K. According to them, the molar volume of
mixing can be represented by an asymmetric mixture model (see Eq. (2.104)). Their
partial molar volumes of mixing at infinite dilution, termed as volume interaction
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parameters, are 1.84 cm3mole-1 and 0.12 cm3mole-1 for pyrope and grossular,

respectively. Using these values, the mathematical expression for the integral molar
volume of mixing reads:

Fig. 2.12 Volumes of mixing in the system high albite-sanidine.  = molar 

volume of mixing,  = partial molar volume of mixing of high albite, 

 = partial molar volume of mixing of sanidine.  = partial 

molar volume of mixing of high albite at infinite dilution,  = partial molar 

volume of mixing of sanidine at infinite dilution. The arrow indicates the mole fraction 
of sanidine in the solution. (Data from Hovis 1988).
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(2.107)

Eq. (2.107) is used to calculate the molar volume of mixing as a function of the
mole fraction of grossular. The result of the calculation is presented graphically in
Fig. 2.13.

Fig. 2.13 Molar volume of mixing along the join pyrope-grossular calculated using the 
experimental data of Bosenick and Geiger (1997). 

As can be seen from Fig. 2.13, the molar volume of mixing deviates positively
from the ideality and the volume vs. composition curve is asymmetric. The greatest
volumes of mixing are exhibited by grossular-rich compositions. 

The volume of mixing function can also be used to derive a polynomial for the
molar volume of the solutions, provided that the molar volumes of the end-member
phases are known. This is, of course, the case. The molar volumes of pyrope and
grossular have been measured a number of times. We will take the values given by

Bosenick and Geiger (1997), where the molar volumes are 113.157 cm3mole-1 and

125.293 cm3mole-1 for pyrope and grossular, respectively. The uncertainties are not
considered.

Following Eq. (2.83), the molar volume for the case of ideal mixing, , has to
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be added to the molar volume of mixing, , in order to obtain the molar vol-

ume, . In our example, the calculation is as follows:

Fig. 2.14 Molar volume of pyrope-grossular solid solutions as a function of mole frac-
tion of grossular. The curves were calculated using the experimental data of Bosenick 
and Geiger (1997).

Multiplying, factoring out, and rearranging yields:
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Fig. 2.14 shows the molar volumes along the pyrope-grossular join. The solid
curve was calculated using the third-order polynomial derived above and it repre-
sents the molar volume as a function of the composition. The dotted line gives the
molar volume for the case of ideal mixing.

2.2.5 Volume of reaction

Consider the general reaction:

(2.108)

occurring at constant temperature T and constant pressure P. A, B, C and D represent
the chemical symbols of reaction constituents and a, b, c, and d are whole-num-

ber stoichiometric coefficients. They are negative for components on the left of the
equation and positive for those on the right. A stoichiometric process can thus be
represented by the equation

(2.109)

where Mi designates the chemical formula of the i-th reaction constituent.

The change in total volume of a reacting system is given by the following expres-
sion:

(2.110)

If the reactants and the products, both occur as mechanical mixture of pure phas-
es, the partial derivatives of the total volume in Eq. (2.110) represent the molar vol-
umes of the reaction constituents, that is

(2.111)
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Thus, Eq. (2.110) can be rewritten as:

(2.112)

In Eqs. (2.110) and (2.112) dni are related to each other by the stoichiometry of

the reaction. It is convenient, therefore, to introduce a new variable termed the extent

of reaction,  This variable indicates the degree of advancement of the system from
an initial unstable or metastable state towards a stable state. The changes in the vari-
able  and in the individual number of moles, dni, are related as follows:

(2.113)

Using this relationship Eq. (2.112) reads:

(2.114)

or 

(2.115)

rV is termed the volume of reaction. It indicates the change in the volume of the

reacting system per unit reaction progress variable, .

Example: Consider the solid state reaction 

taking place at 298 K and 0.1 MPa. The stoichiometric coefficients, i, are: -1, -1, 1

and 2. According to Eq. (2.115) the volume of reaction is calculated as follows:

Using the molar volumes given by Robie and Hemingway (1995), the volume of
reaction reads:
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.

2.3  Problems

1. At 800°C and 0.5 MPa, 1 mol of an ideal gas has a volume of 17.826 dm3.

• Calculate the change in the volume of the gas when it is compressed isother-
mally to 1 MPa. 

2. The critical data of a gas are: Pc = 22.06 MPa, Tc = 647.14 K and Vc =

56.0x10-6 m3mol-1 (Ambrose, 1994). 

• Calculate the values of the parameters a and b of the gas assuming van der 
Waals behavior of the gas. Why do the results depend upon the choice of the 
formulas adopted?

3. Calculate the volume of a non-ideal gas at 400°C and 40 MPa using the van der

Waals equation. The values of the parameters a and b are 0.1765 Jm3mol-2 and

33 x10-6 m3mol-1, respectively. 
In order to solve the cubic equation, use the Newton's approximation method ac-
cording to the formula:

where xo and x1 are the initial and the succeeding values, respectively. Repeat

the calculation until the difference between the two subsequent values becomes
negligibly small. As an initial value, use the ideal volume of the gas at the P, T

conditions given above. 

4. Rhodonite, MnSiO3, has a triclinic structure and has the following lattice con-

stants: 

rV 1mol 125.28cm
3
mol

1–
– 1mol 22.69cm

3
mol

1–
–

1mol 100.79cm
3
mol

1–
2mol 39.90cm

3
mol

1–
+ + 32.62 cm

3

=

=

x1 xo
f x

f ' x
------------ , –=

ao 7.616 Å,=

bo 11.851 Å,=

co 6.707 Å,=

92°33',=

94°21',=

105°40.2'.=
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Each unit cell contains 10 formula units of rhodonite. NA= 6.022 x 1023; 1Å =

10-10 m.

• Calculate the volume that is occupied by 1 formula unit of rhodonite. Express 

the volume in [Å3].

• Calculate the molar volume of rhodonite and give it in units of [m3mol-1] and 

[cm3 mol-1]. 

5. A pyrope single crystal has a mass of 4 g. At standard P,T conditions its density,

, is 3.582 gcm-3. The value of its bulk modulus, B, is 1.73x105 MPa, and that

of its thermal expansion,  is 2.47x10-5 K-1.

• Calculate the volume of the crystal at 1000°C and 0.8 GPa, assuming a constant 
thermal expansion and compressibility.

6. At standard P-T conditions, andalusite, Al2SiO5, has a molar volume of 51.52

cm3mol-1. Its thermal expansion, , is 2.47 x10-5 K-1 and the compressibility

coefficient, , is 5.43x10-12 Pa-1. Under the same P,T conditions, sillimanite has

a molar volume of 49.86 cm3mol-1, a thermal expansion coefficient of

1.44x10-5 K- 1 and the compressibility of 6.22x10-12 Pa-1 (Holland and Powell,
1990).

• Calculate the change in volume associated with the phase transition andalusite 
 sillimanite at 985 K and 0.2 GPa. Assume that the thermal expansion and the 

compressibility are pressure and temperature independent. 

7. Newton et al. (1977) measured the lattice constants for a series of Diop-
side-Ca-Tschermak solid solutions. Using their data, a polynomial describing
the molar volume as a function of composition can be derived. It reads:

(2.116)

where  is the mole fraction of CaAlAlSiO2 in clinopyroxene. 

• Calculate the molar volumes of the pure end-member components.

• Calculate the partial molar volumes of diopside and Ca-Tschermak at = 

0.4 and at infinite dilution of the components. 

• Calculate the partial molar excess volumes of the components at = 0.4.

• Calculate the partial molar excess volumes of the components at infinite dilu-
tion.

• Express the molar excess volume of the solution as a function of composition 

V cm
3
mol

1–
66.043 2.9603xCaTs

cpx
– 0.52016 xCaTs

cpx 2
,+=

xCaTs

cpx

xCaTs

cpx

xCaTs

cpx
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using the volume interaction parameter, WV.

8. Calculate the change in the volume associated with the following chemical reac-
tion:

5MgSiO3 5Al2O3 Mg2Al3AlSi5O18 3MgAl2O4.++

VMgSiO3

en
31.31 cm

3
mol

1–
,=

VAl2O3

cor
25.58 cm

3
mol

1–
,=

VMg2Al3AlSi5O18

cord
 233.22 cm

3
mol

1–
,=

VMgAl2O4

sp
39.71 cm

3
mol

1–
,=

Robie and Hemingway 1995 .



Chapter 3   The first law of thermodynamics

According to the law on the conservation of energy the sum of kinetic and potential
energy of a system is constant. This, however, is true only for frictionless systems.
If friction is present in the system kinetic energy decreases and heat is produced.
There exists a relationship between the dynamic energy dissipated and the heat pro-
duced. This relationship serves as the basis for the development of thermodynamics.

3.1  The relationship between heat and work

The basic statement concerning the relationship between heat and work reads: heat,

Q, and work, W, are equivalent:

(3.1)

That is, heat and work are just two different forms of energy. For example, the
temperature of a crystal can be increased by rubbing it adiabatically, which means
without any heat exchange with the surroundings. The same temperature increase
can be achieved if the crystal is brought into contact with a "hot" body, that is, by
providing the necessary heat directly. The proportionality factor that links work and
the resultant heat is termed the mechanical equivalent of heat. Its present value is
0.2389 calories. A calorie is defined as the quantity of heat that is required to in-
crease the temperature of 1 gram water from 14.5 to 15.5°C. This so-called thermo-

dynamical calorie was widely used in thermochemistry until 1960, when S-I units
were introduced. Its value now corresponds to 4.184 Joule.

3.2  Internal Energy

Based on the equivalence of heat and work, the statement for the first law of ther-
modynamics reads:

If a closed system, in the course of a thermodynamic process, moves from state A

into state B, the sum of the absorbed heat and performed work equals the change in

a function of state, termed the internal energy, U.

Thus the total change in internal energy, U, for the system is:

Q W.
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(3.2)

For an infinitesimal change of state Eq. (3.2) can be written as a differential

(3.3)

Because the internal energy, U, is a state function, dU is a total differential. This
means, the integration between two states does not depend on the path taken by the
system. The quantities Q and W are not total differentials and their integrals are
path dependent. The symbol ' ' indicates the differential increments of the quantities
Q and W, which are not properties of state. Therefore, Q and W cannot be inte-
grated without a knowledge of the path taken by the system during the course of a
thermodynamic process. 

In a cyclic processes, where the system returns to its initial state, the change in
the internal energy is zero:

(3.4)

The relationship given in Eq. (3.4) is representative for all functions of state.

3.2.1 Work

The term W in Eq. (3.3) indicates a differential element of work, but it does not say
anything about the type. It can be mechanical work, electrical work, or work per-
formed in a gravitational field, etc. Normally, work due to changes in volume and
electrical work play the most important role in most thermodynamic processes.

Consider a gas-filled cylinder containing a frictionless moveable piston (Fig. 3.1)
with weights sitting on top of it. At equilibrium, the external pressure, Pext, exerted

by the piston plus the mass of the weights is balanced by the internal pressure, Pint,

of the gas i.e. Pext = Pint. If the external pressure is reduced, for example, by remov-

ing one weight, the gas expands until the external pressure and the internal gas pres-
sure are once again equal. If the difference between the gas pressure and external
pressure exerted by the piston and the weights is infinitesimally small, the distance
the piston travels after the weight reduction will be infinitesimally small too. In the
case that the temperature is held constant and friction is negligible, the work done
by the gas during this expansion can be expressed as: 

(3.5)

In Eq. (3.5) the letter A defines the area of the piston. Hence, the product within
the parenthesis gives the force and dx the distance the piston travels during the ex-

U UB UA– Q W.+= =

Ud Q W.+=

Ud 0.=

dW Pext A dx.–=
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pansion. The negative sign is required, because the force exerted by the gas is di-
rected against that exerted by the piston and weights. Taking into account that 

(3.6)

Eq. (3.5) reads:

(3.7)

dW is the infinitesimal increment of work.

Fig. 3.1 Schematic representation of the work due to the reversible expansion of a gas. a) 
state before and b) after the removal of weight from the piston. Pext = external pressure 
exerted by the piston and the mass of weights. dx = infinitesimal distance the piston trav-
els during the expansion of the gas.

Adx dV,=

dW PextdV.–=

Gas Gas

dx

a b

Pext
Pext
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For an infinite number of infinitesimally small incremental steps from an initial
volume, Vi, to an end volume, Ve, the work done by the gas is

(3.8)

In the case of an isothermal change in volume of an ideal gas, one can substitute
RT/V into in Eq. (3.8) and obtains:

(3.9)

Note that the sign convention is obeyed in Eq. (3.9) because the gas expands, and
the final volume, Ve, is larger than the starting volume, Vi. Thus, the logarithm is

positive and the expression remains negative. This complies with the standard con-
vention that the work and the energy released by a system are negative. 

In order to calculate the work done on a solid through isothermal compression,
the pressure, P, in Eq. (3.8) has to eliminated. This can be done using Eq. (2.4). A
small rearrangement of this equation yields:

(3.10)

where V in the denominator designates the reference volume. As stated earlier (see
section 2.1.1,  page 25), for solids the volume at ambient pressure and temperature,
Vo, can be taken as the reference without introducing significant error into the cal-

culation. If, in addition, the compressibility coefficient, , is assumed to be constant,
Eq. (3.10) can be integrated from Po to P and from Vo to VP:

(3.11)

Po is the ambient pressure and is small compared to the pressure P. It can, there-

fore, be neglected. Substituting P in Eq. (3.8) by the expression given in Eq. (3.11)
yields:

W P V.d

Vi

Ve

–=

W RT
Vd

V
------

Vi

Ve

– RT Vlnd

Vi

Ve

– RT
Ve

Vi

------.ln–= = =

dP
dV

V
-------  ,–=

P Po–
VP Vo–

Vo

------------------- . –=
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(3.12)

Another approach for calculating the volume work done on or by a solid is to re-
place dV in Eq. (3.8) using again the definition of the compressibility coefficient.
The result reads:

(3.13)

After substitution of Eq. (3.13) into Eq. (3.8), P is the only remaining variable.
In order to obtain the work done by the solid, the integration has to be carried out
between the limits Po and P:

(3.14)

If Po is again neglected and the compressibility coefficient, is considered to be

constant, the integration of Eq. (3.14) yields:

(3.15)

Calculated example: Consider a pyrope crystal with a mass of 40.32 g. Its molar

volume at room temperature is 113.176 cm3mole-1 (Robie and Hemingway 1995).
The average compressibility coefficient, , in the pressure range between 0.1 MPa

and 5.0 GPa is 6.19 x 10-3 GPa-1(Hazen and Finger 1978). What is the work per-
formed on the crystal due to an isothermal (T = 298 K) pressure increase from 0.1
MPa to 5.0 GPa?

The molar volume of pyrope at 298 K and 5.0 GPa can be calculated using Eq.
(2.52). It is

The molar mass, M, of pyrope is 403.1508 g. For a mass of 40.32 g, this corre-
sponds to 

W
VP Vo–

Vo

------------------- Vd

Vo

VP
VP Vo–

2

2 Vo

--------------------------.= =

dV VodP.–=

W VoP P.d

Po

P

=

W
VoP

2

2
----------------.=

VP Vo 1 P– 113.176 cm
3
mol

1–
1 6.19

12–
10 Pa

1–

5.0
9

10 Pa

–

109.673 cm
3
mol

1–
.

= =

=
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In order to obtain the volumes required for the calculation of the work performed
during the course of compression, the molar volume of pyrope at 0.1 MPa and
5.0 GPa, respectively, are to be multiplied by the number of moles, n = 0.1. The fol-
lowing values are obtained:

Vo = 11.3176 cm3

and

VP = 10.9727 cm3.

Inserting these values into Eq. (3.12), the calculation reads:

Using Eq. (3.15) one obtains:

The two results differ by 27 J. This difference is due to the fact that the formulas
used in the calculations represent only approximations, since the compressibility co-
efficients are assumed to be pressure independent. 

3.2.2 Enthalpy

If the incremental volume work, pdV, is substituted for A in Eq. (3.3), the total dif-
ferential of the internal energy reads:

(3.16)

In the case of an isobaric volume change, the integration of Eq. (3.16) between
states I and II yields:

(3.17)

n
m

M
----- 40.32 g

403.1508 gmol
1–

----------------------------------------- 0.1mol.= = =

W
11.3176 10.9727–

6–
10 m

3 2

2 6.19
12–

10 Pa
1–

10.9727
6–

10 m
3

------------------------------------------------------------------------------------------------ 876 J.= =

W
10.9727

6–
10 m

3
5.0

9
10 Pa

2
6.19

12–
10 Pa

1–

2
------------------------------------------------------------------------------------------------------------------------------ 849 J.= =

dU Q PdV.–=

UII UI– Q P VII VI––=
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or rearranged:

(3.18)

The term H designates a state function called the enthalpy. This function was de-
rived assuming that the work exchange between the system and the surroundings oc-
curs at constant pressure. Under this assumption, the change in the enthalpy, H,
equals the heat, Q, absorbed or released by the system. Thus, it holds that

(3.19)

or in differential form 

(3.20)

The property, given in Eq. (3.20), makes the enthalpy particularly useful for the
description of isobaric processes.

According to Eq. (3.18), the definition of enthalpy reads:

(3.21)

Its total differential is:

(3.22)

Substituting the expression (3.16) for dU in Eq. (3.22), yields:

(3.23)

3.3  Application of the first law of thermodynamics to pure 
phases

As stated in Chap. 1, functions of state of pure phases are determined completely by
two intensive variables. In the case of the internal energy, temperature and volume
are normally chosen. The internal energy, U, is thus given by:

(3.24)

Temperature and pressure are the standard variables that are chosen to define the
enthalpy, H, of pure phases. Using them one obtains:

Q UII PVII+ UI PVI+ HII HI.––=

H P Q=

dH P dQ.=

H U PV.+=

dH dU PdV VdP.+ +=

dH Q VdP.+=

U f T V .=
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(3.25)

The total differentials of the internal energy and enthalpy read:

 (3.26)

and

(3.27)

The combination of Eq (3.26) with Eq. (3.16) yields:

(3.28)

or rearranged

(3.29)

Note, that under the specific set of variables given in Eq. (3.29), dQ is an exact
differential.

For isochoric processes, where dV equals 0, one obtains:

(3.30)

Dividing of Eq. (3.30) by dT yields:

(3.31)

In Eq. (3.31) cv designates the heat capacity of a single phase or of a given system

at constant volume. It represents the heat required to increase the temperature of the
system by one degree, if the volume is held constant. 

An expression similar to that in Eq. (3.28) is obtained, if Eq. (3.23) is combined
with Eq. (3.27), namely:

H f T P .=

dU
T

U

V
Td

V

U

T
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dH
T

H

P
dT

P

H

T
dP.+=
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V
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U
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dQ
T

U
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U
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dQ
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(3.32)

A rearrangement of Eq. (3.32) gives:

(3.33)

For isobaric processes, where dP equals 0, Eq. (3.33) simplifies to 

(3.34)

After dividing of Eq. (3.34) by dT, the heat capacity of a single phase or of a sys-
tem at constant pressure is obtained, that is

(3.35)

According to Eq. (3.31), cv corresponds to the change in the internal energy per

temperature unit in the case that the volume is held constant. Correspondingly, cp

represents the change in the enthalpy per temperature unit at constant pressure. Both
cv and cp are extensive properties. Dividing either quantity by the number of moles

yields the molar heat capacity which is an intensive property. It is given as: 

(3.36)

Cvand Cp are referred to as the molar heat capacity at constant volume and the

molar heat capacity at constant pressure, respectively.

3.3.1 Heat capacities Cv and Cp

For practical reasons, heat capacity is measured almost exclusively at constant pres-
sure. However, the heat capacity at constant volume is occasionally required, as for
example for lattice dynamics calculations. The difference between their values is
typically small, and is given by:

(3.37)
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The symbols in Eq. (3.37) have their usual meaning. T designates the temperature
in K, V gives the molar volume,  is the thermal expansion coefficient, and  the
compressibility coefficient. 

Example 1: If the heat capacity at constant volume of forsterite is to be calculated
using the heat capacity at constant pressure, the following data are required accord-
ing to Eq. (3.37): the molar volume of forsterite, its heat capacity at constant pres-
sure, its thermal expansion coefficient, , and its compressibility coefficient, . All
these quantities are temperature and pressure dependent. Their values must, there-
fore, correspond to the conditions at which the heat capacity at constant volume is
to be calculated. For a pressure and temperature of 0.1 MPa and 298 K, respectively,
Holland and Powell (1990) give the following values:

Inserting these values into Eq. (3.37) yields:

Hence, the heat capacity at constant volume for ambient pressure and tempera-
ture conditions equals: 

Example 2: Following Holland and Powell (1990), the values required to calcu-
late the heat capacity of diopside, CaMgSi2O6, under the condition of constant vol-

ume using Eq. (3.37), are: 

VMg2SiO4

ol
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3
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1–
,=
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1–
K
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,=
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10  Pa
1–
.=
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-----------------------------------------------------------------------------------------------------------------------

 2.38 Jmol
1–
K

1–
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=

Cv Mg2SiO4
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K
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K

1–
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.= =
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With these values the difference

is obtained.

Thus, Cv, for diopside is 1.6 % smaller than Cp. In the case of forsterite, the cor-

responding values differ by 2 %. These differences are typical for all solids at am-
bient conditions. Hence, the assumption that both capacities are equal, does not
effect most thermodynamic calculations significantly. At high temperatures, how-
ever, the differences become larger. The calculation using Eq. (3.37) yields accept-
able results only if the temperature dependencies of the molar volume, thermal
expansion and compressibility are known. This is not always the case. Particularly,
the temperature dependence of the compressibility is rarely available.

Comparably good results are obtained if the Grüneisen constant, , is introduced
into the calculations because it is almost temperature independent. It relates the vol-
ume, compressibility, thermal expansion coefficient and heat capacity, Cv, as fol-

lows:

(3.38)

A combination of Eqs. (3.37) and (3.38) yields:

(3.39)

Example: Consider forsterite, Mg2SiO4, once more. At 1000 K, its heat capacity,

Cp, is 175.14 Jmole-1K-1 (Holland and Powell 1990). Using the elastic properties

determined for forsterite by Suzuki et al. (1983), the Grüneisen constant is calculat-
ed to be 1.34. 

In order to calculate the heat capacity at constant volume for 1000 K, the data,
given above, are inserted into Eq. (3.39) and one obtains: 

8.31
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.=
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Thus, at 1000 K, the values for the heat capacity of forsterite at constant pressure
and at constant volume differ by ca. 5%. 

If the heat capacity at constant volume is to be calculated using Eq. (3.37), all val-
ues should hold for 1000 K. The fulfillment of this requirement is less critical in the
case of the thermal expansion and compressibility, because their values are very
small. Disregarding their temperature dependence normally does not influence the
result significantly. The molar volume for forsterite at 1000 K can, however, be cal-
culated using Eq. (2.52). It is 

Inserting this value, together with the molar volume, thermal expansion, com-
pressibility coefficient and the heat capacity, Cp, at 1000 K, into Eq. (3.37) the cal-

culation reads:

Using this result, the heat capacity,  is calculated as:

This value, if compared with the one obtained using the Grüneisen constant,
gives a difference of only 0.58%. 

Using the elastic properties of forsterite, determined by Suzuki et al. (1983), a Cv

of 166.61 Jmol-1K-1 is obtained for 1000 K. Thus, the two values calculated apply-
ing Eqs. (3.37) and (3.39), are only ca. 1% too large. This is a very small difference
especially if one considers that all values applied in the calculations have their own
uncertainties. 
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Based on the experimental results, Dulong and Petit stated that, at moderate tem-
peratures, the molar heat capacity of most solid elements has a value of 6.4

cal g-atom-1K-1 (= 26.78 Jg-atom-1K-1). This statement, that is known as the rule of

Dulong-Petit, corresponds to the prediction of the quantum theory of heat capacity
at constant volume, which states that, at elevated temperatures, the heat capacity of

the elements approaches the value of 3R (= 24.93 Jg-atom-1K-1). Comparing the
two values one has to consider that Cp is slightly lager than Cv. As an expansion of

the Dulong-Petite rule, Neumann and Kopp stated that the molar heat of a solid com-
pound is approximately the sum of the molar heat capacities of its constituents.
Both, Dulong-Petite and Neumann-Kopp rule, have only restricted availability.
Nonetheless, the heat capacity of a complex silicate can be calculated using the heat
capacities of its constituent oxides. 

Example 1: Consider beryl, Be3Al2Si6O18. Its oxide formula reads:

3BeO·Al2O3·6SiO2. Applying the Neumann-Kopp rule, its heat capacity for 298 K

is calculated as follows:

Robie and Hemingway (1995) give 25.56 Jmole-1K-1, 79.10 Jmole-1K-1 and

44.59 Jmole-1K-1 for ,  and , respectively. Using these

values the heat capacity of cordierite is calculated as follows:

The experimentally determined value for beryl is 417.00 Jmol-1K-1 (Robie and
Hemingway 1995). It is, thus, only 1.5% smaller than the value calculated above.

Example 2: In order to calculate the heat capacity of pyrope, Mg3Al2Si3O12, the

value for periklas, MgO, is required in addition to the heat capacities of corundum
and quartz. According to Robie and Hemingway (1995) its value is 37.26

Jmole-1K-1. Consequently, the calculation reads:

The obtained result is very close to the experimental value for pyrope (325.76

Jmol-1K-1, as published by Robie and Hemingway (1995)). The difference is small-

Cp Mg2Al3 AlSi5O18
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er than 0.5%. 

In Tab. 3.1 calculated heat capacities of a some of minerals are presented together
with the corresponding experimental values. The last column contains the differenc-
es between the two values, given in percent.

As apparent from Tab. 3.1, the agreement between calculated and measured heat
capacities is considerably good in the case of waterfree phases. The largest deviation
is found for grossular. But the result can be improved using Cp of wollastonite,

CaSiO3, instead of lime, CaO, and low quartz, SiO2 (Cp,calc = 337.67 Jmole-1K-1).

Considerably poorer results are obtained for phases with water as a constitutional
part of the structure such as kaolinite or anthophyllite. In the past, attempts were
made to improve the results by accounting for the hydrogen bonding in these phases.
Significant improvements were achieved by the separation of the of H2O contribu-

tions to Cp into 'structural' and 'zeolithic' (Berman and Brown 1985).

The temperature dependence of heat capacity

In the vicinity of 0K, the internal energy, U, and enthalpy, H, of solids tend towards
constant values. Because the heat capacities Cv and Cp represent the derivatives of

Table 3.1 Molar heat capacities calculated using the Neumann-Kopp rule
compared with the experimental values (Robie and Hemingway 1995).

Mineral %

Forsterite 118.61 119.11 -0.42

Enstatite 166.18 163.70 1.49

Diopside 166.78 168.51 -1.04

Anorthite 211.34 210.35 0.47

Grossular 330.22 339.08 -2.90

Spinel 115.94 116.36 -0.36

Muscovite 327.85 325.99 0.57

Tremolite 660.75 655.44 0.81

Anthophyllit 651.13 664.02 -1.94

Kaolinite 235.46 243.37 -3.25

Cp

calc
Jmol

1–
K

1–
Cp

obs
Jmol

1–
K

1–
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the internal energy and enthalpy, respectively, their values approach 0. The mathe-
matical expressions for this relationship read:

(3.40)

and

(3.41)

In addition, the difference between Cp and Cv decreases with falling temperatures

and vanishes at 0K. Different solids approach the limiting value in different ways.

For example, the heat capacity of diamond is immeasurably small at temperatures
below 50 K and remains far below the value of 3R at room temperature. On the other
hand, lead and copper obey the Dulong-Petit’s rule quite well, which means that
their heat capacity values are close to 3R at room temperature.

The increase in the heat capacity of a solid with increasing temperature is due to
the excitation of atomic vibrations. According to kinetic theory of classical mechan-
ics, the average energy per vibrating atom is twice 1/2kT per degree of freedom,
where k is Boltzmann’s constant which is obtained by dividing the universal gas
constant R, by the Avogadro number, NA. A vibrating atom has both potential and

kinetic energy. Their average contributions to the total energy are equal, namely
1/2kT for each. Thus, the value of 1/2kT has to be doubled. The potential energy is
associated with stretching of electrostatic bonds between the vibrating atoms. Its
maximum is reached at the extremes of the vibratory path, when the atom is momen-
tarily at rest. In contrast, the maximum kinetic energy is reached, when the atom
passes the vibrational midpoint. At this point it travels with a maximum velocity.
The sum of kinetic and potential energy, however, is constant, regardless of the po-
sition of the atom on its vibratory path. The interaction between the constituent at-
oms of a solid is such that the number of vibrational modes per atom is always three.
In total, the energy of a mole of an one-atomic solid is therefore 3 x 2 x 1/2kNAT =

3RT. Thus, the heat capacity at constant volume, Cv, should have a value of 3R mul-

tiplied with the number of atoms per formula unit and it should not change with tem-
perature. However, this is not the case. As shown in Fig. 3.2, heat capacities are
strongly temperature dependent and the value predicted by the theory from classical
mechanics is approached only at high temperatures. Their true behavior can only be
explained by quantum mechanical theory.

Einstein considered a crystal as an array of q atoms, each of which behaves as a
harmonic oscillator vibrating independently about its defined lattice site. The be-
havior of the individual oscillators is not influenced by that of its neighbors and all
oscillators vibrate with a single fixed frequency given as . An oscillator has three

T

U

vT 0
lim Cv T

T 0
lim 0= =

T

H

pT 0
lim Cp

T 0
lim T 0.= =
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degrees of freedom, that is, it can vibrate in three directions in space and the total
number of vibrational modes per mole of a solid is thus 3 qNA.

According to Planck, the energy of an atomic of molecular system is quantized.
The energy quantum, i, that can be absorbed or released by the i-th harmonic oscil-

lator is

(3.42)

where i is an integer designating the energy level, ranging from zero to infinity, and
h is Planck’s constant of action.  is the frequency of the vibrating oscillator.

Fig. 3.2 Heat capacity of forsterite, Mg2SiO4, as a function of temperature (Robie et al. 
1982).

In one mole of a monatomic crystal there are a total of NA atoms and, hence, 3NA

oscillators. At any fixed temperature, the energies of NA atoms are distributed over

different levels, whereby no of them are in the zeroth energy level (ground state)

having an energy of 3 o = 3 x 1/2h , n1 are in the first energy level and have an en-

ergy of 3 1 =3(1 + 1/2)h , n2 are in the second energy level and possess an energy

of 3 2 = 3(2 + 1/2)h and so on. In the i-th energy level, there are ni atoms and they

have an energy of 3 i = 3(i + 1/2)h .

The populations of different energy levels is governed by Boltzmann’s statistics.
Thus, the number of atoms occupying the i-th energy level equals
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(3.43)

where T is the temperature, a a proportionality factor and k Boltzmann’s constant.

Because there are NA atoms in one mole of a monatomic crystal, it holds that

(3.44)

Applying Eq. (3.43) to Eq. (3.44) yields:

(3.45)

The expression in the parenthesis represents the sum of a geometric series. Its
value is

Substituting this sum into Eq. (3.45) leads to the following equation for the con-
stant a in Eq. (3.43):

(3.46)

Inserting Eq. (3.46) in Eq. (3.43) yields

(3.47)

The total vibrational energy, U, of a monatomic crystal consisting of 3NA har-

monic oscillators at temperature T equals

(3.48)

Considering the relationship given in Eq. (3.42), Eq. (3.48) can be rewritten in
terms of the vibrational frequency, :
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(3.49)

Substituting the expression in Eq. (3.47) for no, n1, n2...ni into Eq. (3.49), the total

vibrational energy for one mole of monatomic crystal is obtained. It reads:

(3.50)

In the case of a polyatomic crystal, the right side of Eq. (3.50) has to be multiplied
by the number of atoms, q, in the chemical formula and one obtains:

(3.51)

The temperature independent term in Eqs. (3.50) and (3.51) gives the energy at 0
K. Hence, an oscillator never loses its energy completely. At absolute zero, it equals
1/2h  and this is called the zero point vibrational energy. It derives from the vibra-
tional motion of the atom in its ground state.

In order to obtain the heat capacity, Cv, the energy of vibration, U, has to be dif-

ferentiated with respect to temperature, that is

(3.52)

The multiplication of the frequency, , by h/k yields the so-called characteristic
temperature, . In this particular case, the characteristic temperature is referred to
as the Einstein temperature, E.

Substituting the Einstein temperature, E, into Eq. (3.52) the heat capacity equa-

tions reads:

(3.53)

The term f( E) is called Einstein heat capacity function. It ranges from 0 to 1. 

Einstein’s model equation gives the temperature dependence of the heat capacity
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of the correct general form. It can be shown that its value approaches 3R at temper-

atures  in agreement with Dulong-Petit’s law. At low temperatures

( ), it converges towards 0. However, calculated Cv values approach zero

more rapidly than do the experimental Cv values. This discrepancy is mainly due to

the fact that atoms do not vibrate with a single frequency. A better agreement be-

tween measured and calculated values is obtained for temperatures .

Debye considered a crystal as a continuum and assumed that the atoms do not vi-
brate independently of each other. Atomic vibrational behavior is influenced by the
behavior of their neighbors. Instead of a single frequency, there is a frequency spec-
trum ranging from  = 0 to  = max. Debye assumed further that within this frequen-

cy range the number of vibrations increases parabolically with increasing frequency.
Thus, he integrated Einstein’s equation over the range from 0 to max to obtain the

heat capacity through

(3.54)

and by substituting z and D for h /kT and h max/k, respectively, as

(3.55)

The term f( D/T) is called the Debye heat capacity function and it equals

(3.56)

Eq. (3.55) holds for one mole of a monatomic solid. For a polyatomic crystal, the
right side of the equation has to be multiplied by the number of atoms per chemical
formula. D is referred to as the Debye temperature.

At high temperatures where  Cv approaches the classical value of 3R. At

temperatures in the vicinity of 0 K, Eq. (3.55) simplifies to 

(3.57)
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The relation, given in Eq. (3.57), is called the Debye T 3 law.

If Debye’s model was completely correct, the Debye temperature, extracted from
experimentally determined heat capacities, would be a constant. This is generally,
however, not the case. It rather varies somewhat with the temperature of the exper-
iment. 

Heat capacity values calculated using the Debye function (Eq. (3.55)) agree rea-
sonably with experimental values for monatomic solids having cubic symmetry
(e.g. diamond, silicon, copper, lead, etc.) For silicates the agreement is rather poor.
The main reason for the discrepancy lies in the simple parabolic form used to de-
scribe the vibrational spectrum. Debye’s theory also does not account for anharmo-
nicity in the oscillators. 

Vibrational spectra can be measured using infrared spectroscopy, Raman spec-
troscopy and inelastic neutron scattering.

Fig. 3.3 shows the temperature dependence of Cv for forsterite calculated using

the Einstein and Debye models. Experimental Cv’s are given for comparison. They

were obtained from measured Cp values (Robie et al. 1982) using Eq. (3.39). 

Fig. 3.3 Heat capacity at constant volume for forsterite calculated using the Einstein and 
Debye models. D = Debye temperature (Sumino et al. 1983), E = Einstein tempera-
ture (Kieffer 1985). Experimental data are from Robie et al. 1982.

Because of the various uncertainties in the theoretical calculations it is common
practice to determine the heat capacities experimentally. The measurements are un-
dertaken at constant pressure.
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The empirical representation of heat capacities

Heat capacities are represented by empirical expressions that have the form of a
polynomial for use, for example, in thermodynamical calculations. Several polyno-
mial were developed over time. The oldest and the most simple expression is re-
ferred to as Maier-Kelly polynomial. It has the following form:

(3.58)

The coefficients a, b, and c are obtained by fitting the polynomial to the experi-
mental data. Although they are empirically determined, their values can be linked to
the Dulong-Petit law, to the Güneisen constant and to the Debye temperature.

Haas and Fisher (1976) extended the Maier-Kelly polynomial by adding two

more terms, namely dT -1/2 and eT -2. Their expression reads:

(3.59)

The Haas-Fisher polynomial reproduces experimental Cp data with a high preci-

sion. However, serious problems arise if the heat capacity is to be extrapolated at
temperatures beyond the T region in which the polynomial was fitted. In order to
overcome this problem, Berman and Brown (1985) proposed the following expres-
sion:

(3.60)

This polynomial accounts for the fact that heat capacity should approach the Du-
long-Petite value at high temperatures. It can, therefore, be used for high tempera-
ture extrapolations. 

For the same reason, Holland (1981) recommended a polynomial of the form:

(3.61)

Robie et al. (1995), adopted in their thermodynamic data base the five term ex-
pression given in Eq. (3.59). Because of the quadratic term, it yields inappropriately
high Cp values at high temperature. And, therefore, the authors warn of extrapola-

tions beyond a given temperature.

Tab. 3.2 gives the coefficients for the five term Cp polynomial for a few selected

silicates.

Cp a bT cT
2–
.+ +=

Cp a bT cT
2–

dT
1 2–

eT
2
.+ + + +=

Cp a bT
2–

cT
1 2–

dT
3–
.+ + +=

Cp a bT cT
2–

dT
1 2–

.+ + +=



3.3 Application of the first law of thermodynamics to pure phases 99

Fig. 3.4 shows the temperature dependence of heat capacity for different oxides
and silicates standardized to one atom. The heat capacity values for corundum, an-
dalusite, grossular, wollastonite and low quartz are very similar, whereas those of
high quartz and lime are quite different. This is due to the difference in lattice dy-
namic behavior of these oxides in comparison to that of complex silicates. Thus, the
underlying physical assumption inherent to the Neumann-Kopp approximation is
not valid in this case and the simple oxide summation fails. Robinson and Haas
(1983) attempted to circumvent this problem by introducing an empirically-based
model. They constructed empirical heat capacity polynomials for fictive oxide com-

ponents with cations in a given polyhedral coordination, such as Mg[4]O, Mg[6]O,

Al2
[4]O3, Al2

[6]O3, etc. These polynomial were obtained by a mathematical

least-squares procedure that used as input data the experimentally determined heat
capacity of a number of different silicates. 

Table 3.2 Coefficients for the heat capacity polynomial of the form: 

Cp[Jmol-1K-1] = a + bT + cT -2 + dT -1/2 + eT2 (Robie and Hemingway 1995).

Mineral a x 10-2 b x 103 c x 10-6 d x 10-3 e x 105

Kyanite 2.794 -7.124 -2.056 -2.289

Andalusite 2.773 -6.588 -1.9141 -2.2656

Sillimanite 2.8019 -6.900 -1.376 -2.399

Forsterite 0.8736 87.17 -3.699 0.8436 -2.237

Pyrope 8.730 -137.4 0.0045 -8.794 3.3415

Cordierite 8.123 43.34 - 8.211 -5.000

Wollastonite 2.0078 -25.89 -0.1579 -1.826 0.74.34

Diopside 4.7025 -98.64 0.2454 -4.823 2.813

Tremolite 61.31 -4189.0 51.39 -85.66 175.7

Muscovite 9.177 -81.11 2.834 -10.35

Sanidine 6.934 -171.7 3.462 -8.305 4.919

Albite 5.839 -92.85 1.678 -6.424 2.272
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Fig. 3.4 Heat capacities, Cp, as a function of temperature, standardized on a one atom 
basis. The horizontal line corresponds to Dulong-Petit’s value of 3R.

Example 1: Consider grossular, Ca3Al2Si3O12. Here, calcium is 8-fold coordinat-

ed, aluminium has six oxygens as neighbors and silicon’s coordination number is
four. In order to evaluate the Cp polynomial for grossular, the polynomials for

Ca[8]O, Al2
[6]O3 and Si[4]O2 are required. In Robinson and Haas (1983) one finds:

In order to obtain the Cp polynomial for grossular, the Cp polynomials for the ox-

ides are to be summed according to their stoichiometric proportions in garnet:
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The summation yields:

For T = 800 K, 

is obtained. This value may be compared with a value of 477.67 Jmole-1K-1 that is
obtained using the experimental data given by Bosenick et al. (1996).

If the Cp polynomials for the oxides (lime, quartz and corundum) are used, ac-

cording to the Neumann-Kopp’s rule, larger discrepancies between calculated and
measured values result. For a temperature of 800 K, for example, a Cp value of 500

Jmole-1K-1 is obtained. This large discrepancy is a consequence of the fact that the
normalizedCp vs. temperature curve for lime is much different than those for corun-

dum, quartz and grossular (see Fig. 3.4).

At high temperatures, Cp values exceed Dulong-Petits limit of 3R. One of the rea-

sons for this behavior is the formation of large concentrations of point defects as the
melting temperature is approached. 

3.3.2 Enthalpy, H, of pure phases as a function of temperature

Using the definition of the heat capacity, cp, as given in Eq. (3.35), the change in

enthalpy, dH, with change in temperature, dT, at constant pressure is given by:

(3.62)

For one mole of a pure phase, the enthalpy, H, and heat capacity, cp, in Eq. (3.62)

must be replaced by the molar quantities H and Cp, respectively.

In order to obtain the molar enthalpy of a pure phase at an arbitrary temperature,
T, Eq. (3.62) has to be integrated over the temperature range from 0K to T, that is

(3.63)

The integration constant HT = 0 corresponds to the enthalpy of the pure phase at

Cp Ca3Al2Si3O12

calc
Jmol

1–
K

1–
801.713 50.938

3–
10 T 58984.5T

2–

7862.91T
1 2–

.–

+–=

Cp Ca3Al2Si3O12

calc
483.06 Jmol

1–
K

1–
=

dH cpdT.=

HT HT 0= Cp T.d

0

T

+=



102 3 The first law of thermodynamics

0K. Its value is unknown, because it cannot be determined experimentally. Only
changes, i. e. H, are amenable to measurement. Therefore, a standard state to
which the changes refer has to be chosen. It is taken as the enthalpy change associ-
ated with the formation of a phase from the elements at 0.1 MPa and 298 K. (More
details about this will be given later). 

In thermodynamic tables one finds the so-called heat content functions [HT -

H298]/T. The term in the numerator is referred to as a standard enthalpy content and

is calculated by integrating Eq. (3.63) between 298 (more precisely 298.15) and T:

(3.64)

Inserting Eq. (3.59) into Eq. (3.64) yields

(3.65)

Eq. (3.65) gives the heat amount that is required to increase the temperature of
one mole of a pure phase from 289.15K (room temperature) to T.

Example 1: The temperature of one mole of diopside, CaMgSi2O6, is increased

from 298 to 1000 K. How much heat is absorbed by the mineral?

According to Eq. (3.64), the heat that is transferred to diopside equals its molar
heat content, that is

Using the coefficients of the Cp-polynomial for diopside given in Tab. 3.2, the

calculation reads:
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Thus, a heat of 156.364 kJ is required to increase the temperature of one mole of
diopside from 298 to 1000 K. 

In the reverse process, when the temperature of a mineral is decreased, the heat
value has a negative sign. 

Example 2: A sanidine crystal, KAlSi3O8, has a mass of 27.734 gram. 

How much heat is released to the surroundings if the crystal is cooled at constant
pressure from 800 to 298 K?

We first calculate the molar change in the enthalpy that is associated with the
cooling process. 

Here, we use again the coefficients given for sanidine from Tab. 3.2 and calcu-
late:

The sanidine mass has to be converted to the number of moles. Using its molar
mass of 277.34 gram, one has
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In order to obtain the heat that is released to the surroundings due to the cooling

process, the calculated molar heat of -132.949 Jmole-1 has to be multiplied by the
number of moles, as

Eq. (3.64) gives the heat content for a phase only in the case where no phase tran-
sition occurs over the considered temperature range. 

If a phase transition takes place between 298.15 K and T, the amount of heat, as-
sociated with the transition has to be is taken into account. It is the difference in the
enthalpy between the disappearing (educt) and the forming phase (product) and is
referred to as the heat of transition, trH:

(3.66)

In order to calculate the heat content of a substance undergoing a phase transition,
Eq. (3.64) has to be modified to

(3.67)

where Cp,1 and Cp,2 are the molar heat capacities for the phases in the temperature

range between 298.15 and Ttr and between Ttr and T, respectively.

Example: Fayalite, Fe2SiO4, melts incongruently at 1490 K and its enthalpy of

melting is 89.3 kJmole-1 (Robie and Hemingway 1995). At 1800 K, the heat content
of the melt can be calculated according to Eq. (3.67) as follows:

The expressions for the heat capacity of fayalite and for fayalite melt are taken
from Robie and Hemingway (1995). They read:
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and

Using these data 

is obtained.

Fig. 3.5 Heat content of Fe2SiO4 as a function of temperature. fusH is the heat of melt-
ing.
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Fig. 3.5 shows the heat content of Fe2SiO4 as a function of temperature up to

1800 K. trH is the heat that is required to melt one mole of fayalite at 1490 K and

0.1 MPa.

At this point, it has to be emphasized that Eq. (3.67) gives the heat content quan-
titatively only if the enthalpy of a material under consideration shows a finite differ-
ence at the transition temperature. This, however, is not always the case, as
discussed further in section 6.1.2.

3.4  Enthalpy of solutions

Similar to the volume, the enthalpy of a solution is a function of temperature, pres-
sure and composition that is given by the number of moles, ni

(3.68)

At constant temperature and pressure the enthalpy of an ideal solution is simply
the sum of the molar enthalpies of the components making up the solution multi-
plied by the corresponding number of moles:

(3.69)

Eq. (3.69) holds of course for mechanical mixtures, where the components can
be separated from each other using physical methods.

In the case of non-ideal solutions the molar enthalpy in Eq. (3.69) has to be re-
placed by the partial molar enthalpies of the components, where

(3.70)

The partial molar enthalpy, Hi, is obtained by the differentiation of the total en-

thalpy of the system, H, with respect to the number of moles of the component i, ni,

at constant temperature, pressure and composition of the mixture. It reads:

(3.71)

and gives the change in the total enthalpy of a solution when 1 mole of component
i is added at constant temperature and pressure. A requirement for Eq. (3.71) is that

H f T P n1 n2 nk .=

H niHi.
1

k

=

H niHi.
1

k

=

Hi ni

H

P T nj i

=
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the quantity of the solution must be so large that an addition of ni causes virtually no

change in the composition.

3.4.1 Enthalpy of binary solution

Consider a binary solution consisting of the components A and B. According to Eq.
(3.70) the total enthalpy of the solution is

(3.72)

where nA, nB, HA, and HB are the molar fractions and partial molar enthalpies of the

components A and B, respectively. 

Dividing Eq. (3.72) by the sum of the moles in the system, nA + nB, yields:

(3.73)

 is referred to as the molar enthalpy of solution.

As stated earlier, the absolute enthalpy can not be determined experimentally.
Only changes in enthalpy can be measured and, therefore, it is necessary to select
some standard state and refer the changes to this state. In the case of solutions it is
the state of the pure components at the temperature and pressure of mixing. Adopt-
ing this standard state, the enthalpy change associated with the process of mixing at
constant temperature and pressure is given by the difference between the molar en-
thalpy of the mechanical mixture and that of the solution. In other words, it is the
difference in the enthalpy of a system before and after the mixing process takes
place.

The molar enthalpy of a binary system consisting of components A and B, before
the process of mixing takes place, is given as

(3.74)

where HA and HB represent the molar enthalpy of the mechanical mixture

and the molar enthalpies of the pure components A and B, respectively. 

After the completion of the mixing process, the molar enthalpy for the system un-
der consideration reads:

(3.75)

H nAHA nBHB,+=

H

nA nB+
------------------ H

nA

nA nB+
------------------HA

nB

nA nB+
------------------HB+ xAHA xBHB.+= = =

H

H
mm

xAHA xBHB,+=

H
mm

,

H
sol

xAHA xBHB.+=
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Here, Hsol, HA and HB represent the molar enthalpy of the solution and the partial

molar enthalpies of the components A and B, respectively. 

In order to obtain the change in the enthalpy due to the process of mixing Eq.
(3.74) has to be subtracted from Eq. (3.75), that is

(3.76)

 is the quantity of heat that is exchanged between the system and its sur-

roundings when A and B form a homogeneous solution at constant temperature and
pressure. It is referred to as the enthalpy of mixing. In the case of an ideal solution
the molar enthalpy of solution corresponds to the stoichiometric sum of the molar
enthalpies of the pure components. Thus, in Eq. (3.76) the partial molar enthalpies
of the components and their molar enthalpies are identical and the terms in the pa-
rentheses are zero. Consequently, the enthalpy of mixing for ideal solutions equals
0. In non-ideal solutions, however, the partial molar enthalpies of the components

differ from their molar enthalpies in the pure state  and, the molar enthalpy

of mixing is identical with the molar excess enthalpy of solution,  The

terms in the parentheses in Eq. (3.76) correspond to the partial molar excess enthal-

pies or partial molar enthalpies of mixing of the components. They are:

(3.77)

and

(3.78)

Considering the fact that the sum of the molar fractions of all components making
up a solution is 1, the molar heat of mixing for a binary solution can be rewritten as
follows:

(3.79)

Similarly as to the case of the partial molar volumes, the partial molar excess en-
thalpies of the components can be derived from the molar heat of mixing. The con-
dition for this is that the molar heat of mixing as a function of molar fraction is
known over the compositional range under consideration. The partial molar excess
enthalpies of the components in a binary solution then read:

H
sol

H
mm

– mH
ex

mH xA HA HA– xB HB HB– .+= =

mH

mH 0

mH
 ex

.

HA HA– HA

ex
=

HB HB– HB

ex
.=

mH 1 xB– HA

ex
xBHB

ex
.+=
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(3.80)

and

(3.81)

Fig. 3.6 Enthalpy of mixing and partial molar excess enthalpies of the components, A

and B as functions of composition in a binary solution (A,B).  designates the molar 

heat of mixing,  and  are the partial molar excess enthalpies of the components 

A and B, respectively, at the composition xB,  and  represent the partial 

molar excess enthalpies of the components for the case where they are infinitely diluted.

The relationship between the molar heat of mixing and the partial molar excess
enthalpies of the components in a binary solution (A,B) is shown schematically in
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Fig. 3.6. Because there is no heat of mixing for pure components, the curve of the
molar enthalpy of mixing is zero at xB = 0 and at xB = 1. The intercepts of the tangent

to the curve of the molar enthalpy of mixing with the ordinate at xB = 0 and xB = 1

give the partial molar excess enthalpies for the components A and B, respectively.
In the special case solutions at infinite dilution, that is when xB approaches 0 and 1,

the partial excess enthalpies are designated as  and , respectively. They

are used to express the enthalpy of mixing as a function of composition at constant
temperature and pressure. In the case of a simple binary mixture where the partial
excess enthalpies of the components at infinite dilution are equal, i.e.

(3.82)

the expression giving the enthalpy of mixing reads:

(3.83)

In the case of a subregular solution where the excess enthalpies of the compo-
nents at infinite dilution differ one from another, the enthalpy of mixing is given by:

(3.84)

In the literature the partial molar excess enthalpies of the components ,

 and  are often replaced by the so-called enthalpic interaction parame-

ters ,  and , respectively.

3.4.2 Examples of enthalpy of mixing in binary solutions

Example 1: Tab. 3.3 gives the enthalpy of mixing for the high albite-high sanidine
solid solution series derived from experimental heat of solution measurements made
at 50°C by Hovis (1988).

The data in Tab. 3.3 are shown graphically in Fig. 3.7. Their values as a function
of concentration suggest that a simple solution best describes the mixing behavior
according to Eq. (3.83). A least-squares fit to the data yields the value for the partial

molar enthalpy of mixing for the components at infinite dilution , of

19.587 kJmole-1. Thus, the expression for the heat of mixing curve reads:
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The above equation can be used to derive expressions for the calculation of the
partial molar excess enthalpies of the components at any arbitrary composition. For
this purpose, the right hand term of the equation has to be substituted for the heat of
mixing in Eqs (3.80) and (3.81), respectively. The partial molar excess enthalpies
then read:

and

In the special case where the mole fraction of high sanidine in the solution equals
0.4, the partial molar excess enthalpy of high albite is

Table 3.3 Enthalpies of mixing for the solid solution
high albite-high sanidine (Hovis 1988)

0.009 0.415±0.822

0.1437 2.268±0.790

0.3508 4.335±0.549

0.4911 4.855±0.502

0.5993 4.961±0.613

0.8074 3.058±0.597

0.960 0.524±0.927

mH kJmol
1–

1 xKAlSi3O8

san
– xKAlSi3O8

san
19.587.=

xKAlSi3O8

san

mH kJmol
1–

HNaAlSi3O8

ex
xKAlSi3O8

san 2
19.587 kJmole

1–
=

HKAlSi3O8

ex
1 xKAlSi3O8

san
–

2
19.587 kJmole

1–
.=

HNaAlSi3O8

ex
0.4

2
19.587 3.134 kJmole

1–
.= =
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The partial molar excess enthalpy of high sanidine at this concentrations is given
by:

Fig. 3.7 Enthalpy relationships in the system high albite-high sanidine (Hovis 1988). 

 designates the molar enthalpy of mixing,  and  are the 

partial molar excess enthalpies of high albite and high sanidine, respectively, at 

 = 0.4.  and  represent the partial molar excess 

enthalpies of the components at infinite dilution.

The two partial molar excess enthalpies can be used to calculate the enthalpy of

mixing at = 0.4, following Eq. (3.79). It is
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Of course, the same result is obtained if the equation developed for simple solu-
tions is used, namely

The partial molar excess enthalpies of the components at infinite dilution are ob-

tained when  approaches 1 and 0, respectively. The calculation reads:

and

The two values are equal, because a simple solution model was used to fit the ex-
perimental data. 

Example 2: Geiger et al. (1987) determined the enthalpy of mixing for a series of
synthetic garnet solid solutions on the join almandine-pyrope. They fitted their data
to the subregular solution model and obtained the following enthalpic interaction
parameters:

and

Thus, the expression for the molar enthalpy of mixing according to Eq. (3.84)
reads:

In order to derive equations for the partial molar excess enthalpies of the compo-

mH 1.0 0.4– 3.134 0.4 7.051+ 4.701 kJmole
1–
.= =

mH 1 0.4– 0.4 19.587 4.701 kJmole
1–
.= =

xKAlSi3O8

san
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2
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1 0–
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grt 2
- 15.76
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2
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nents, the expression given above has to be substituted for the integral molar en-
thalpy of mixing in Eqs. (3.80) and (3.81). We start with the partial molar excess
enthalpy of almandine. Inserting the expression for the molar enthalpy of mixing
into Eq. (3.80) yields:

For  one obtains:

The mathematical expression for the partial molar excess enthalpy of pyrope is

HFe3Al2Si3O12

 ex
1 xMg3Al2Si3O12

grt
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- 15.76
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x
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2
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–
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.
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obtained by inserting the term for the molar enthalpy of mixing into Eq. (3.81), i.e.

If one chooses 0.8 as the mole fraction of pyrope the calculation reads:

The two partial molar excess enthalpies can be used to calculate the integral heat
of mixing for a an almandine-pyrope solid solution containing 0.8 moles almandine.
The calculation has to be carried out according to Eq. (3.79). It is: 

This result can be verified using the expression for the heat of mixing (Eq.
(3.84)), that is

The enthalpic interaction parameters given in the expression for the heat of mix-
ing are identical to the partial excess enthalpies of the components at infinite dilu-
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tion. This can be verified by setting  to one and to zero in the

equations giving the partial excess enthalpies of mixing of almandine and pyrope.

For almandine holds:

and for pyrope

3.5  Enthalpy of reaction

Consider a reacting system consisting of the components A, B, C and D and suppose
a reaction of the type

takes place at constant temperature and pressure. What is the change in the enthalpy
of the system? To answer this question, the enthalpy of each single reacting compo-
nent constituting the system must be known. Mathematically, they are given by the
partial derivatives of the total enthalpy with respect to the considered component at
constant pressure, temperature and composition of the system. Considering the fact
that in a closed system the mass remains constant, the change in the total enthalpy
due to an infinitely small extent of reaction is given by:

(3.85)

If the reactants as well as products are mechanical mixtures of the pure compo-
nents, the partial derivatives in Eq. (3.85) can be replaced by the molar enthalpies
of the pure components. In addition, as shown earlier (see Eq. (2.113)), the molar
increments, dni, are related through the stoichiometry of the reaction. Thus, Eq.

(3.85) can be written as follows:
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(3.86)

In Eq. (3.86) i and Hi are the stoichiometric coefficient and the molar enthalpy

of the component i, respectively.  is the extent of reaction. It indicates the extent to
which the reaction has progressed from the initial non equilibrium state towards
equilibrium. 

Division of Eq. (3.86) by d  yields:

(3.87)

rH is referred to as the enthalpy of reaction. It gives the amount of heat that is

exchanged between the system and its surroundings when a chemical reaction oc-
curs at constant temperature and pressure. Reactions that absorb heat in order to
maintain a constant temperature of the system are called endothermic. Conversely,
when heat is released to the surroundings the reaction is called exothermic.

In the case of the generalized reaction given above, the enthalpy of reaction
reads:

(3.88)

Eq. (3.88) has no practical meaning, because the molar enthalpies of the compo-
nents are unknown. In order to assign an enthalpy value to a substance, the standard

enthalpy of formation from the elements, fH298, is defined. It is the enthalpy asso-

ciated with the formation of substance from the elements in their stable form at
298.15  K and 0.1 MPa. The standard enthalpies of the elements in their stable form
are assigned arbitrarily a value of zero. 

Example: Consider the formation of pyrite, FeS2 from the elements. The reaction

is:

In its reference state, iron has a body-centered cubic cell and is termed -Fe. Sul-
fur is orthorhombic. At standard conditions, the formation of pyrite is exothermic

having an enthalpy value of -171.5 kJmole-1. Formally, the calculation reads:

dH iHid .
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D
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H

P T
rH iHi.
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= =

rH aHA– bHB– cHC dHD.+ +=

Fe 2S+ FeS2.=

rH298 fH298 FeS2

py
0– 0– 171.5–+ 171.5 kJ·mol
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.–= =
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The standard heats of formation for most minerals are tabulated in thermodynam-
ic tables. They can be used to calculate the enthalpy of reaction at the standard con-
ditions. The enthalpy of reaction is therefore termed the standard enthalpy of

reaction, rH298.

Example: Consider the reaction:

In order to calculate the standard enthalpy of this reaction, the standard enthalpies
of formation for the reactant and for the products must be known. The calculation
then reads:

The required standard enthalpies of formation are found in Robie and Heming-
way (1995). The following values are given:

Using them, the standard enthalpy of reaction is calculated as follows:

Hence, if the reaction 3 anorthite = grossular + 2 sillimanite + quartz could take
place at standard conditions, 20.9 kJ of heat would be released to the surroundings.
Although, this is a high-pressure high-temperature reaction, the calculation is rea-
sonable, because the temperature and pressure dependence of the heat of formation
of the reactants and products is similar and the heat of reaction does not change
strongly with temperature and pressure. 

3CaAl2Si2O8 Ca3Al2Si3O12 2Al2SiO5 SiO2.+ +=

rH298 3 fH298 CaAl2Si2O8
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grt

2 fH298 Al2SiO5
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sill
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3.5.1 Temperature dependence of the enthalpy of reaction

The temperature dependence of the enthalpy of reaction is given by the Kirch-
hoff’s law that reads:

(3.89)

where rCp gives the change in the heat capacity of the reacting system. It repre-

sents the stoichiometric sum of the molar heat capacities of the components that par-
ticipate in the reaction. One can write:

(3.90)

In Eq. (3.90), Cp,i and i are the molar heat capacity of the i-th component and

the corresponding stoichiometric coefficient, respectively. 

In the case of a general reaction (see Eq. (2.108)), the heat capacity change is giv-
en by: 

(3.91)

Using Kirchhoff’s law, the enthalpy of reaction can be calculated for any arbi-
trary temperature, provided that the heat capacities of the components are known for
the temperature range considered. For example, the transformation from tempera-
ture T1 to temperature T2 reads:

(3.92)

Because the heat capacities are also functions of temperature, their temperature
dependence must also be known. If this is not the case, different approximations of
the temperature dependence for the heat capacity change associated with the reac-
tion can be made. The simplest case is to assume that the heat capacity change is
zero ( rCp = 0) and the enthalpy of reaction is constant. Another approximation is

to assume that the heat capacity change remains constant over the temperature range
considered ( rCp = a, where a is a constant). This means that the heat of reaction is

a linear function of temperature. Both approximations yield reasonable results only
in the case when no fluid phases are involved in the reaction and when the temper-
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ature interval is small. 

Example: Consider the reaction: 3 anorthite = grossular + 2 sillimanite + quartz
once again. The calculated value for the heat of reaction holds for 298.15 K. If we
want to convert its value to 800 K, the molar heat capacities and the temperature de-
pendence of the reactants and the products are required. The following Cp polyno-

mials are given by Robie and Hemingway (1995):

There are different ways to evaluate the integrals in Eq. (3.92). One can first sum
the Cp polynomials of the components according to their stoichiometric proportions

to obtain rCp as a function of temperature and then integrate it over the temperature

range in question. Another way is to calculate the heat contents of the components
first and then sum them together by taking into account the stoichiometric coeffi-
cients. The latter method is used most frequently, particularly in the case when the
system undergoes phase transitions in the temperature range considered. 

In our example, we will adopt the second way to calculate the heat contents of the
components. One has:
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and
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81.145(800 298–

1.828
2–

10
2

----------------------------

800
2

298
2

– 1.81
5

10
1

800
--------- 1

298
---------–

2 6.985
2

10 800 298––

5.406
6–

10
3

---------------------------- 800
3

298
3

–

+

+

+ 30.9 kJmol
1–
,

=

=

Hr 800 Hr 298 3 H800 H298–
CaAl2Si2O8

an
–

H800 H298–
Ca3Al2Si3O12

grt
2 H800 H298–

Al2SiO5

sill

H800 H298–
SiO2

qtz–
,

+ +

+

=

rH800  20.9 kJmol
1–

3– 136.6 kJmol
1–

214.2 kJmol
1–

2 83.0 kJmol
1–

30.9 kJmol
1–

+

+

+

–

 19.6 kJmol
1–
.–

=

=
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At 800 K, the enthalpy of reaction is only 1.3 kJ/mol smaller than at 298 K. Thus,

the simplifying assumption of  does not introduce a large error. This is

generally the case when only solids participate in the reaction.

3.5.2 Hess’s law

A reaction can occur directly or it can proceed over several intermediate steps. In-
dependently of the way in which a reaction takes place, its value of the enthalpy of
reaction will always remain the same. In the case that the intermediate steps are in-
volved, the enthalpy value is the sum of the enthalpy values associated with each of
the intermediate reactions. This phenomenon is known as Hess’s law. It is a conse-
quence of the fact that enthalpy is a function of state, and its change in any process
depends only on the initial and final states of the system. 

Hess’s law is frequently used to determine the enthalpy of reaction for those re-
actions, that occur at P-T-conditions at which a direct measurement is not possible. 

Example: Suppose that the standard enthalpy of reaction, rH298, for the decom-

position reaction: 

is not known and we want to calculate it using Hess’s law. For this purpose, reac-
tions are required which can be combined to yield the reaction given above. Further-
more, their standard enthalpy of reaction must be known. These two requirements
are met by the following reactions: 

and

If reaction b) is subtracted from reaction a), the decomposition reaction results.
The standard enthalpy of reaction is, therefore, calculated as follows:

Using rH298,a = -33.2 kJ and rH298,b = -29.6 kJ, the calculation of the enthalpy

of reaction reads: 

rCp 0

NaAlSi3O8 NaAlSi2O6 SiO2     rH298+=

a) NaAlSiO4 NaAlSi3O8+ 2NaAlSi2O6=

b) NaAlSiO4 SiO2+ NaAlSi2O6.=

     rH298 rH298,a rH298,b.–=

rH298 33.2 kJ– 29.6 kJ+ 3.6 kJ.–= =
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The Hess’s law provides the basis for high-temperature solution calorimetry.
This is an important method used to determine the enthalpy of formation of miner-
als. The method measures the heat associated upon the dissolution of a compound
and its constituent components in an appropriate solvent. The components are often
oxides in the case of silicate. The measured heats of solution are summed according
to the oxide-based reaction of formation. This yields a value of the same magnitude
as the heat of formation. Its sign, however, is reversed, because the dissolution pro-
cess is opposite in nature to the formation reaction. If the molar heat capacities of
oxides and of the silicate are known, the heat of formation from the oxide can be
converted to the room temperature value. The standard heat of formation is then ob-
tained by adding the standard heats of formation of the oxides to the heat of forma-
tion, which is determined in the calorimetric experiment. The procedure can best be
demonstrated by a concrete example. 

Faßhauer and Cemi  (2001) determined the enthalpy of formation of petalite,
LiAlSi4O10. The reaction from the oxides to form petalite is:

The enthalpies of solution of LiAlO2, SiO2 and LiAlSi4O10 were measured in a

2PbO B2O3 melt at 1001 K. The following values were obtained:

Taking the enthalpies of solution of each of the component oxides, the enthalpy
of formation of petalite is given by:

In the above given equation the enthalpies of solution are negative. This is done
to preserve the conventional formalism used to calculate the enthalpy of reaction. In
the literature, this formalism is avoided and the he equation is written as:

Inserting the measured values, the calculation reads:

LiAlO2 4SiO2+ LiAlSi4O10.=

solHLiAlSi4O2
32.60 kJmol

1–
,=

solHSiO2

qtz–
3.84 kJmol

1–
  and–=

solH
pet

63.68 kJmol
1–
.=

fH1001
pet ox

solHLiAlO2
–– 4 solHSiO2

qtz–
–– solHLiAlSi4O10

pet
– .+=

fH1001
pet ox

solHLiAlO2
4 solHSiO2

qtz–
solHLiAlSi4O10

pet
.–+=
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In order to obtain the standard enthalpy of formation for petalite, the heat of for-
mation at 1001 K has to be transformed to room temperature and the standard en-
thalpies of formation of the oxides must be added. One has:

The enthalpy contents for each component over the temperature interval from
1001 to 298 K, [H298 - H1001]i, are calculated using the Cp polynomials given by

Robie and Hemingway (1995). We have:

According to Robie and Hemingway (1995), the values for standard heat of for-

mation of -quartz and LiAlO2 are -910.7 and -1188.67 kJmol-1. Using these data

the standard heat of formation of petalite is calculated as:

3.6  Problems

1. Consider a fayalite single crystal with a mass of 10.189 g. At standard P,T con-

ditions, its molar volume equals 46.31 cm3mol-1.

• Calculate the work that is performed by the mineral when it is heated to 800°C 

fH1001
pet ox

32.60 kJmol
1–

4 3.84 kJmol
1–

– 63.68 kJmol
1–

–

 46.44 kJmol
1–

– .

=

=

fH298
pet

fH1001
pet ox

H298 H1001–
LiAlO2

– 4 H298 H1001–
SiO2

–

H298 H1001–
LiAlSi4O10

pet
+ fH298 LiAlO4

4 fH298 SiO2

qtz–
.

+

+ +

=

H298 H1001–
LiAlO2

 64.51–  kJmol
1–

=

H298 H1001–
SiO2

qtz–
 45.59 kJmol

1–
 and –=

H298 H1001–
LiAlSi4O10

pet
 240.52 kJmol

1–
.–=

fH298
pet

46.44 kJmol
1–

– 64.51 kJmol
1–

4 45.59 kJmol
1–

240.52 kJmol
1–

– 1188.67 kJmol
1–

– 4 910.7 kJmol
1–

–

+ +

 4871.56 kJmol
1–

– .

=

=
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at constant pressure of 0.1 MPa.
• Calculate the work that is associated with the pressure increase to 2.5 GPa at 

800°C.
• Why does the result depend on choice of the formula?

 = 3.045 K-1,

 = 8.64 x 10-12 Pa-1.

2. The Einstein temperature, E, of tremolite, Ca2Mg5Si8O22(OH)2, equals 763 K

(Kieffer, 1985). 

• Calculate the Einstein frequency, E.

• Calculate the internal energy, U, of tremolite at 300 K.
• Calculate the heat capacity at constant volume, Cv, for tremolite at 300 and 

500 K.

3. Calculate the heat that is released to the surroundings when, at constant pressure,

the temperature of 5x103 kg diopside, CaMgSi2O6, is decreased from 1000 to

25°C. The molar mass of diopside is 216.550 g

4. Charlu et al. (1981) measured, using the high-temperature solution calorimetry,
the heat of solution in the system gehlenite (Ca2Al2SiO7)-åkermanite

(CaMgSi2O7) and calculated the heat of mixing. Their results can be represented

by the following equation:

(3.93)

• Which type of mixtures does the melilite solid solution represent?
• Calculate the partial molar enthalpies of mixing of the components Ca2Al2SiO7

and Ca2MgSi2O7 in the case that the solid solution contains 0.3 mole åkerman-

ite. 
• Calculate the partial molar enthalpies of mixing of the components at infinite 

dilution. 

R 8.3144 Jmol
1–
K

1–
,=

h 6.626
34–

10  Js.=

Cp CaMgSi2O6

cpx
470.25 9.864

2–
10 T– 2.454

5
10 T

2–
4823T

1– 2
–

2.813
5–

10 T
2

Jmol
1–
K

1–
.

+

+

=

mH kJmol
1–

24.288 1 xCaMgSi2O7
– xCa2MgSi2O7

2

0.502 1 xCa2MgSi2O7
–

2
+ xCa2MgSi2O7

.

=



126 3 The first law of thermodynamics

• Calculate the molar enthalpy of mixing at using the partial 

molar excess enthalpies of the components at 

5. Calculate the change in the enthalpy associated with the following reaction:

forsterite + sillimanite  cordierite + spinel

in the case that it takes place at constant pressure of 0.1 MPa and at temperatures
298 K and 1073 K, respectively. 

and

(Data: Holland and Powell 1990).

6. If anorthite undergoes a reaction with H2O to give zoisite , kyanite and quartz at

0.1 MPa and 800°C a heat of 67.432 kJ is released to the surroundings. Under
the same conditions the reaction anorthite + grossular + H2O  zoisite + quartz

produces a heat of 113.124 kJ. 

• Use the Hess's law and calculate the change in the enthalpy associated with the 
reaction:

anorhtite  grossular + kyanite + quartz.

xCa2MgSi2O7
0.3=

xCa2MgSi2O7
0.3.=

fH298 Mg2SiO4

fo
2171.87 [kJmol

1–
],–=

fH298 Al2SiO5

sill
2586.67 [kJmol

1–
],–=

fH298 Mg2Al3AlSi5O18

crd
9166.50 [kJmol

1–
]  and–=

fH298 MgAl2O4

sp
2303.57 [kJmol

1–
].–=

Cp Mg2SiO4

fo
0.2349 0.1069

5–
10 T 542.9T

2–
– 1.9064T

1 2–
kJmol

1–
K

1–
,–+=

Cp Al2SiO5

sill
0.2261 1.407

5–
10 T 2440T

2–
– 1.376T

1 2–
kJmol

1–
K

1–
,–+=

Cp MgAl2O4

sp
0.2229 0.6127

5–
10 T 1685.7T

2–
– 1.5512T

1 2–
kJmol

1–
K

1–
–+=

Cp Mg2Al3AlSi5O18

0.8213 4.3339
5–

10 T 8211.2T
2–

– 5.000T
1 2–

kJmol
1–
K

1–
–+=
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• Calculate the enthalpy of reaction at 0.1 MPa and 298 K.

(Data: Knacke et al. 1991)

7. Akaogi et al. (1984) dissolved the three Mg2SiO4 polymorphs: olivine ( ), mod-

ified spinel ( ) and spinel ( ) in a 2PbO·B2O3 melt at 975 K and measured the

heat of dissolution. Following results were obtained:

• Calculate the change in the enthalpy associated with the phase transitions 
and  at the temperature of the calorimeter (975 K) and also at 298 K.

• Calculate the standard enthalpies of formation of modified spinel ( ) and spinel 
( ).

(Cp reproduced using the data from Watanabe, 1982)

The standard enthalpy of formation of olivine ( ) equals -2173.0 kJmol-1 (Robie

Cp CaAl2Si2O8

an
297.022 43.388

3–
10 T 13.535

6
10 T

2–
Jmol

1–
K

1–
,–+=

Cp Ca3Al2Si3O12

grt
456.307 49.204

3–
10 T 13.142

6
10 T

2–
[Jmol

1–
K

1–
,–+=

Cp Al2SiO5

ky
183.770 17.100

3–
10 T 6.121

6
10 T

2–
Jmol

1–
K

1–
,–+=

Cp SiO2

qtz–
40.497 44.601

3–
10 T 0.833

6
10 T

2–
Jmol

1–
K

1–
 and–+=

Cp SiO2

qtz–
67.593 2.577

3–
10 T 0.138

6
10 T

2–
Jmol

1–
K

1–
–+=

trHSiO2
728 Jmol

1–
=

Ttr 847K.=

solHMg2SiO4
67128 Jmol

1–
,=

solHMg2SiO4
37158 Jmol

1–
 and=

solHMg2SiO4
30338 Jmol

1–
.=

Cp Mg2SiO4
155.854 22.23

3–
10 T 40.945

5
10 T

2–
Jmol

1–
K

1–
,–+=

Cp Mg2SiO4
151.837 23.23

3–
10 T 43.133

5
10 T

2–
Jmol

1–
K

1–
 and–+=

Cp Mg2SiO4
155.226 14.46

3–
10 T 47.848

5
10 T

2–
Jmol

1–
K

1–
.–+=
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and Hemingway 1995). 



Chapter 4   Second law of thermodynamics

It is common experience that all spontaneous processes tend to proceed only in one
direction. Water always flows downhill, that is, from a high gravitational potential
to a lower potential. Salt always diffuses from a state of high concentration to one
of lower concentration. Heat flows from a state of higher to lower temperature etc.
Processes of this kind are called natural. During the course of a natural process, a
system changes from an initial to a final state. The two states are entirely determined
by the variables of state. The two previously defined state functions internal energy,
U, and enthalpy, H, have some definite values. However, these functions tell noth-
ing about the direction of a spontaneous change. Their values can increase as well
as decrease as the two following examples show.

Example 1: Consider the reaction

At 0.1 MPa and 600 K, the value of the enthalpy of reaction is 86.5 kJ. Thus, heat
must be transferred from the surroundings to the system in order to keep the temper-
ature of the reacting system constant. Nonetheless, the products are more stable than
reactants and the reaction proceeds from left to the right.

Example 2: At 0.1 MPa and 900 K, the enthalpy of reaction

is - 13.99 kJ. The negative sign means that heat is released to the surroundings under
the given conditions. One could think that the reaction occurs spontaneously. How-
ever, this is not the case. At 0.1 MPa and 900 K, albite is the stable phase. 

The search for a state function that describes the tendency to proceed for all pro-
cesses, led to the definition of entropy, S. This function is central to the second law

of thermodynamics. The entropy measures the tendency for spontaneous change.
Combined with the functions defined by the first law, the entropy provides informa-
tion about the spontaneous direction of chemical reactions. 

CaCO3 SiO2+ CaSiO3 CO2.+=

NaAlSi3O8 NaAlSi2O6 SiO2+=
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4.1  Entropy

4.2  Classical definition of entropy

In thermodynamics a distinction is made between reversible and irreversible pro-
cesses. Natural processes are irreversible. They proceed in only one direction, that
is from a nonequilibrium to an equilibrium state and they can be reversed only by
an external agent that leaves changes in the surroundings. In the case of a chemical
reaction, the term irreversible applies only for some set of variables. If one or more
variables are changed, the direction of irreversibility can change. For example, the
reaction

proceeds from left to right at 0.2 GPa and 1000 K (Huckenholz et al. 1975) while at
0.2 GPa and 700 K, it proceeds from right to left. In either case, the reaction is irre-
versible.

A reversible process is one that proceeds in such infinitesimally small steps that
the system remains at equilibrium all the time. Reversible processes can be closely
approached but never realized completely. 

In the case that both heat and work are exchanged between a system and its sur-
roundings, Q is an inexact differential. However, if Q is divided by T, a new func-
tion of state, called entropy S, is obtained. It is

(4.1)

The subscript 'rev' means that the relation in Eq. (4.1) holds only for reversible
processes. 1/T is called the integrating factor. It transforms an inexact differential
into an exact one. 

The entropy of an isolated system remains constant only if reversible processes
occur, that is

(4.2)

In the case that an irreversible process takes place, the entropy change for an iso-
lated system is always positive, 

(4.3)

Ca3Al2Si3O12 SiO2+ CaAl2Si2O8 2CaSiO3+=

Qrev

T
-------------- dS.=

dSrev 0.=

dSirrev 0.
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According to Eqs. (4.2) and (4.3), the entropy of an isolated system can either in-
crease or remain constant. It can never decrease. This is the most important conse-
quence of the second law of thermodynamics.

In the case of a closed system where the heat exchange with the surroundings
takes place, the statements given in Eqs. (4.2) and (4.3) hold for the total entropy
change (system and surroundings). It is positive for irreversible (natural) and zero
for the reversible processes. Mathematically this statement reads:

(4.4)

Rearranging Eq. (4.1) and substituting it into Eq. (3.16) yields a useful form of
the first law of thermodynamics for reversible processes, namely:

(4.5)

If Eq. (4.1) is substituted into Eq. (3.23), another important relationship is ob-
tained:

(4.6)

On the atomistic scale, the entropy can be understood as a measure of the degree
of disorder. The greater it is, the higher the entropy and vice versa. For substances
in different states of aggregation the entropy increases from solid to gaseous state.
It is:

The physical interpretation of entropy is a subject matter of statistical mechanics.
and will be presented in a separate paragraph to follow.

4.2.1 Entropy of pure phases

If a closed system consists of a pure single phase, only two intensive properties are
required to determine exactly the value of any state function. Entropy is a state func-
tion and can thus be defined as a function of temperature and volume, 

(4.7)

or as a function of temperature and pressure,

(4.8)

dStot dSsyst dSsurr 0.+=

dU TdS PdV.–=

dH TdS VdP.+=

Ssolid Sfluid Sgas.

S V T

S T P .
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Differentiating Eqs (4.7) and (4.8) and combining the result with Eq. (4.1) yields:

(4.9)

and

(4.10)

respectively.

Substituting the first law definitions for Qrev in Eqs. (4.9) and (4.10), a relation

between the first and second law is obtained, namely

(4.11)

and

(4.12)

According to Eqs. (3.31) and (3.35), the partial differentials  and 

correspond to cv and cp, respectively. Thus, one can write:

(4.13)

and

(4.14)

For isochoric processes, where dV = 0 one has:

(4.15)

dS
Qrev

T
--------------

T

S

V
dT

V

S

T
dV+= =

dS
Qrev

T
--------------

T

S

P
dT

P

S

T
dP,+= =

dS
dU PdV+

T
------------------------- 1

T
---

T

U

V
dT

V

U

T
P+ dV+= =

dS
dH VdP–

T
------------------------ 1

T
---

T

H

P
dT

P

H

T
V– dP+ .= =

T

U

V T

H

P

dS
cv

T
-----dT

1
T
---

V

U

T
P+ dV+=

dS
cp

T
-----dT

1
T
---

P

H

T
V– dP.+=

dS
cv

T
-----dT.=
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That is, the change in entropy with temperature at constant volume equals the
heat capacity of the system at constant volume, divided by the temperature.

Analogously, it holds for isobaric processes, where dP = 0, that

(4.16)

Here, the change in entropy with temperature at constant pressure corresponds to the
heat capacity of a system at constant pressure, divided by the temperature. 

In order to express the quantities in square brackets in Eqs. (4.11) through (4.14)
by more convenient terms, we use the fact that entropy is a state function. A com-
parison of the coefficients in Eqs. (4.9) through (4.14) shows that:

(4.17)

(4.18)

(4.19)

and

(4.20)

Because entropy is a function of state, the cross-differentiation identity holds,
which means that the order of differentiation is irrelevant. Hence, the second deriv-
ative of Eq. (4.17) with respect to volume and the second derivative of Eq. (4.18)
with respect to temperature are equal, 

(4.21)

or

dS
cp

T
-----dT.=

T

S

V

1
T
---

T

U

V
,=

V

S

T

1
T
---

V

U

T
P+ ,=

T

S

P

1
T
---

T

H

P
=

P

S

T

1
T
---

P

H

T
V– .=

V T

S

V T V

S

T
=

1
T
---

V T

U

V T

1
T
---

V

U

T
P+=
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and

Canceling the identical terms and rearrangement yields:

(4.22)

The partial derivative ( P/ T)V gives the change in pressure with temperature at

constant volume of the system. According to Eq. (2.9), this derivative can be ex-
pressed through accessible quantities: the thermal coefficient,  and compressibil-
ity, , as follows:

Substituting the thermal expansion and compressibility into Eq. (4.22) gives:

(4.23)

or

(4.24)

Hence, the change in the internal energy with volume at constant temperature,
( U/ V , is a function of pressure, thermal expansion and compressibility. 

In an analogous way, one can find a more convenient expression for the terms in
the square brackets of Eqs. (4.12) and (4.14). The starting point is again the
cross-differentiation identity, namely

(4.25)

and therefore

1
T
---

V T

U

V

1
T
---

T V

U

T T

P

V
+

1

T
2

-----
V

U

T
P+ .–=

V

U

T
P+ T

T

P

V
.=

T

P

V
---.=

V

U

T
P+ T ---=

V

U

T
T --- P.–=

P T

S

P T P

S

T
=
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and

Thus

(4.26)

According to Eq. (2.3) the partial derivative ( V/ T)P, can be replaced by V and

one obtains:

(4.27)

A rearrangement of Eq. (4.27) yields an expression for the partial derivative
( H/ P)T that consists of experimentally accessible variables, such as volume, tem-

perature and the thermal expansion coefficient, , namely:

(4.28)

Eq. (4.22) can be used to derive the relationship between the molar heat at con-
stant volume and the molar heat at constant pressure, given in Eq. (3.37). We start
with the total differential of enthalpy that combines dH and dU, namely

Dividing this equation by dT and keeping the pressure constant (dP = 0) yields: 

. (4.29)

In order to eliminate the partial derivative ( U/ T)P in Eq. (4.29), the total differ-

ential of internal energy 

1
T
---

P T

H

P T

1
T
---

P

H

T
V–=

1
T
---

P T

H

P

1
T
---

T P

H

T T

V

P
–

1

T
2

-----
P

H

T
V– .–=

P

H

T
V– T–

T

V
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.=

P

H

T
V– T V.–=

P

H

T
V T V.–=

dH dU PdV VdP.+ +=

T

H

P T

U

P
P

T

V

P
+=
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is divided by dT at constant pressure. The result is:

(4.30)

Substituting Eq. (4.30) into Eq. (4.29) gives

or 

(4.31)

if one mole of substance is considered.

4.2.2 Adiabatic changes

If a system is completely thermally isolated, its internal energy can only be changed
by the work done on or by the system. Thus,

(4.32)

Using Eq. (4.24) and the definition of the molar heat at constant volume as given
in Eq. (3.31), the total differential of the internal energy reads:

(4.33)

In the case of an adiabatic process the change in the internal energy corresponds
to the work increment, - PdV, (see Eq. (4.32)), therefore 

(4.34)

Substituting dV by the expression given in Eq. (2.7) yields:

dU
T

U

V
dT

V

U

T
dV+=

T

U

P T

U

V V

U

T T

V

P
.+=

T

H

P T

U

V V

U

T
P+

T

V

P
+=

Cp Cv
TV

2

--------------,+=

dU Q PdV.–=

dU cvdT T --- P– dV.+=

cvdT T ---dV+ 0.=
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(4.35)

According to Eq. (4.31), the term in the parenthesis corresponds to the heat ca-
pacity of a system at constant pressure, cp. Thus for one mole of a pure substance

Eq. (4.35) is modified as follows:

(4.36)

Dividing Eq. (4.36) by dP and Cp and considering the fact that this relationship

holds for adiabatic processes yields:

(4.37)

Eq. (4.37) gives the change in temperature with pressure when the heat exchange
between the system and its surroundings does not take place. This kind of processes
play an important role in geosciences.

4.2.3 Temperature dependence of entropy

Entropy as a function of temperature is obtained by integrating the expressions in
Eqs. (4.15) and (4.16) over the temperature range from 0 to T. One has

(4.38)

and

(4.39)

Replacing the heat capacities cv and cp in Eqs. (4.38) and (4.39) by the corre-

sponding molar quantities Cv and Cp, respectively, yields the molar entropy, S. It is
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(4.40)

and

(4.41)

The molar entropy has the same dimension as the molar heat capacity, namely

Jmole-1 The lower integration limit in Eqs. (4.40) and (4.41) corresponds with
the entropy at absolute zero, So. It is in principle not known and is assumed to be

zero for pure solids that are in internal equilibrium. Internal equilibrium means that
all particles constituting the crystal are in their proper crystallographic positions. In
other words, the crystal is perfect. This assumption is in accordance with Planck’s
version of the third law of thermodynamics that states that entropy of pure substanc-
es is de facto zero at 0 K. Thus Eqs. (4.40) and (4.41) give the 'absolute value' of the
entropy. It is referred to as 'Third law' or 'conventional' entropy. The expression:

(4.42)

gives the entropy of a substance at room temperature. It is referred to as the conven-

tional standard entropy. Note that the conventional standard entropy is not compa-
rable to the standard enthalpy of formation, fH298, that refers to the reaction

forming the compound from the elements under standard conditions. This quantity
is zero for all elements. The conventional standard entropy of any element, however,
is always a positive non-zero value. 

The conventional standard entropy, together with the heat capacity polynomial,
can be used to calculate the entropy at any temperatures of interest. Using Eq. (3.59)
the calculation reads:

S
Cv

T
------ Td

0

T

=

S
Cp

T
------ T.d

0

T

=

S298

Cp

T
------ Td

0

298

=



4.2 Classical definition of entropy 139

(4.43)

Example: The conventional standard entropy of forsterite, Mg2SiO4, is 94.1

Jmole-1 -  (Robie and Hemingway 1995). Using this value and the Cp polynomial

given in Tab. 3.2 we can calculate the entropy for forsterite at 800 K as follows:

In the case where a phase transition occurs in the temperature range between
298.15 K and T, the entropy change associated with the transition has to be taken
into account. Under these circumstances, the calculation of the entropy reads:

(4.44)

In Eq. (4.44) Ttr, Cp,1 and Cp,2 designate the transition temperature, the molar

heat capacity of the low temperature phase and the molar heat capacity of the high
temperature phase, respectively. trS is the molar entropy of transition. It represents

the difference between the entropy of phase 1 and phase 2 at the temperature of tran-
sition

(4.45)
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There is a close relationship between the molar entropy of transition and molar
enthalpy of transition, namely

(4.46)

4.2.4 Entropy changes associated with irreversible processes

The total entropy change associated with an irreversible process is according to Eq.
(4.4) greater than zero. Thus, for an finite change of state it holds that

(4.47)

The validity of this statement can be demonstrated with a simple example:

Consider the transformation of sillimanite to andalusite at 0.1 MPa and 900 K,
which is, following Holdaway, within the stability field of andalusite. His phase di-
agram places the inversion curve andalusite/sillimanite at 1048 K and 0.1 MPa. The
transformation at 900 K and 0.1 MPa is, thus, an irreversible process and infinites-
imal changes in temperature will not change the direction of reaction. Hence, the en-
tropy of this inversion can not be calculated using Eq. (4.46) that holds for reversible
processes only. In order to solve the problem the process of transformation must be
carried out over several reversible steps, such as:

a) temperature increase of sillimanite from 900 to 1048 K (the transfor-
mation temperature)

b) transformation of sillimanite to andalusite at 1048 K
c) temperature decrease of andalusite to 900 K.

The reversible steps and the associated changes in the entropy can be written as
follows:

Reaction d) is the sum of reactions a) through c). It describes the transformation
of sillimanite to andalusite at 900 K and 0.1 MPa. Consequently, Sd is the entropy

change associated with this transition. It represents the sum of the entropy changes
associated with the reversible steps a) through c) and is, therefore, identical to the

trS
trH

Ttr

------------.=

Stot Ssyst Ssurr 0.+=

a)  Al2SiO5
sill

900 Al2SiO5
sill

1048        Sa

b)  Al2SiO5
sill

1048 Al2SiO5
and

1048     Sb

c)  Al2SiO5
and

1048 Al2SiO5
and

900       Sc

d)  Al2SiO5
sill

1048 Al2SiO5
and

900        Sd



4.2 Classical definition of entropy 141

change in the entropy of the system. On can write

The entropy change associated with each single step is calculated as follows:

and

where is the heat of transformation at equilibrium temperature

(1048 K). It is negative, because the tabulated values refer to the transformation
from the low to the high-temperature form. In our case, however, the transformation
occurs from the high-temperature to the low temperature form. 

Assume that the system’s surroundings is a heat reservoir that is large enough to
maintain the same temperature when heat is transferred from it to the system or
vice-versa. Assume further that the walls of the system are perfectly diathermic,
such that the heat exchange occurs reversibly. Consider what happens in the sur-
roundings in the course of the transformation process. Because the heat transfer be-
tween the system and the surroundings occurs reversibly, the entropy change of the
surroundings is given by:
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where  is the heat of transformation for the inversion andalusite  sil-

limanite at 900 K. It has a positive sign, because during the course of the transition
heat flows from the system to the surroundings. Normally, the heat of transforma-
tion is determined experimentally at the equilibrium temperature, which in our case
would be 1048 K. Hence, the tabulated heat of transformation has to be transformed
to 900 K. This transformation is carried out using Kirchhoff’s law and the calcula-
tion reads:

where  is the heat capacity change associated with the transition an-

dalusite  sillimanite. 

The total change in the entropy as a result of the irreversible transition of silli-
manite to andalusite at 900 K and 0.1 MPa is given by the sum of the entropy change
of the system and the surroundings. 

The data required to calculate the numerical values for this example are taken
from Robie and Hemingway (1995), where

and

Using these data, the change in the entropy of the system associated with the tran-
sition of sillimanite to andalusite at 900 K is calculated as follows:
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The enthalpy of transformation for andalusite  sillimanite at 900 K,

 is:

Thus, 2903 Jmol-1 must be transferred from the system to the surroundings in or-
der to keep the temperature of the system constant. The absorbance of this heat by
the surroundings causes its entropy to change. It is: 

The total change in the entropy change is given by the sum of the entropy change
in the system and in the surroundings, namely

It is positive, and is, thus, in accordance with the second law of thermodynamics. 

In the case that the transformation for sillimanite  andalusite takes place at the
equilibrium temperature of 1048 K, the entropy change of the system is

The heat that is transferred to the surroundings corresponds to the enthalpy of
transformation for sillimanite  andalusite. It is positive, because from the stand-
point of the surroundings, energy is absorbed. Its entropy change is 
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The total change in the entropy is thus:

At the equilibrium temperature the transformation is reversible. Infinitesimal
changes in temperature cause the direction of the process to reverse, unless kinetic
reasons hinder it.

4.3  Statistical interpretation of entropy

The atomistic basis for the second law lies in the fact that matter consists of particles
moving around, mixing, colliding and exchanging kinetic energy with one another.
Therefore, a macrostate of a system that is defined by the internal energy, U, the vol-
ume, V, and the number of the particles, N, is build up of a very large number of dis-
tinguishable microstates, which are characterized by the specific spatial and
energetic arrangement of the particles. The total number of microstate correspond-
ing to a particular macrostate is termed the thermodynamic probability and is desig-
nated W. The macrostate is the subject of classical thermodynamics. It is the most
probable arrangement of particles that would be observed if it were possible to make
an instantaneous observation of the state. 

Because of the mobility of particles, it is assumed that each microstate is equally
probable and the observable macrostate is the one with the greatest number of the

microstates. In one mole of a substance with 6.022x1023 particles, the number of ar-
rangements within the most probable distribution is much larger than the number of
all other arrangements. It is, therefore, the only observable macrostate. 

The number of microstates or complexions is a property of a system just as vol-
ume and energy. However, while energy and volume are additive properties, the
number of microstates is multiplicative. For a system consisting of two subsystems,
the number of microstates, , is given by

because each microstate of system 1 can be combined with any microstate of system
2. On the other hand, entropy, being an extensive property, is additive. In order to
establish a relationship between the randomness and entropy, the multiplicative
property, , has to be logarithmized, such that 
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Introducing the proportionality constant k, a quantitative relationship between the
entropy of a system and its 'randomness' is obtained, namely

(4.48)

The quantity k is called Boltzmann’s constant. It is obtained by dividing the uni-

versal gas constant, R, by Avogadro’s number (6.022x1023). Eq. (4.48) is known as
Boltzmann’s equation.

In a perfect crystal, where all constituents occupy proper crystallographic posi-
tions, the thermodynamic probability is one and thus the entropy zero, as required
by the third law. Any possible randomness associated with electronic states or ran-
domness within the nucleus are ignored in this connection. 

4.3.1 Thermal entropy

Quantum mechanical theory is based on the principle of the quantization of energy.
This means, if a particle is confined within a fixed volume, that it can only have cer-
tain discrete energy, . One says it occupies an allowed energy level. The particle
with the lowest possible energy occupies the lowest energy level or ground state. It
is designated o. The particle occupying the next higher energy level has the energy

1, the particle in the succeeding level of increasing energy has the energy 2, etc.

There are no particles in the ground state, n1 particles have the energy 1, n2 have

the energy 2, etc. No particles have energies lying between the allowed levels. The

relationship between the population of different energy levels by particles and the
entropy can be best demonstrated on a simple example.

Consider a hypothetical perfect crystal in which all lattice sites are occupied by
identical particles. The crystal contains N particles and has the energy U. The ques-
tion to be addressed is: in how many ways can the N particles be distributed over the
available energy levels such that the total energy of the crystal is U? The number of
distinguishable arrangement is given by the thermodynamic probability . In the
case, where N particles are distributed over the energy levels o through k the ther-

modynamic probability or the number of microstates is given as:

(4.49)

The most probable distribution of particles determines the macrostate of the sys-
tem. It is characterized by the set of occupancies that give the maximum . Because
a function has a maximum when its first differential is zero, the condition:
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(4.50)

must be fulfilled.

In an isolated system the total number of particles, N, and the internal energy, U,
are fixed, that is

(4.51)

and

(4.52)

From (4.51) and (4.52) follows further that

(4.53)

and

(4.54)

Entropy has a maximum value at equilibrium. Its differential is therefore zero and
one can write:

(4.55)

and

(4.56)

Using Stirling’s approximation (lnX! XlnX - X) and considering the fact that N
is constant, one obtains:
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(4.57)

Considering the constraints given in Eqs. (4.51) and (4.52) and applying
Lagrange’s method of undetermined multipliers, one obtains:

(4.58)

Because the multipliers  and  as well as i are constants, differentiation of Eq.

(4.58) yields:

(4.59)

or

(4.60)

The solution for Eq. (4.60) requires that each sum of the terms in the parenthesis
is zero for all values of i, i.e.

(4.61)

From Eq. (4.61) it follows that

(4.62)

The total number of particles in a system is, therefore,

(4.63)
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(4.64)

The thermodynamic meaning of the Lagrange multiplier,  can be determined,
as follows: Assume, that a small quantity of heat, Qrev, is transferred reversibly to

the system. According to Eq. (4.1) a reversible heat exchange can be expressed in
terms of the entropy change. Hence, the heat transfer can be represented as:

(4.65)

Substituting Eq. (4.57) into Eq. (4.65) yields:

(4.66)

Using the relationship given in Eq. (4.59), Eq. (4.66) can be rewritten:

(4.67)

In the case of a closed system it holds that the total number of particles, N, re-
mains constant, i.e.

(4.68)

Hence, Eq. (4.67) reduces to 

(4.69)

According to Eq. (4.52)

(4.70)

and in the case of an isochoric process dU = Qrev. Therefore,

(4.71)
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Hence, the second Lagrange multiplier,  can be written in terms of reciprocal
temperature

(4.72)

Substituting  and  in Eq. (4.62) by the expressions given in Eqs. (4.64) and
(4.72) yields

(4.73)

Eq. (4.73) gives the distribution of the particles over the available energy levels.
It is referred to as the Maxwell-Boltzmann distribution equations. If Eq. (4.73) is
substituted for ni in Eq. (4.49), the thermodynamic probability, , is given in terms

of the total number of particles and energy levels, i.

The denominator in Eq. (4.73) is known as the partition function termed Z.

(4.74)

Using Eq. (4.74), the entropy of a system can be written in terms of Z, T and N as
follows:

(4.75)

Substituting ni in Eq. (4.52) by the expression given in Eq. (4.73), the internal en-

ergy, U, reads:

(4.76)

4.3.2 Configurational entropy (entropy of mixing)

In the preceding section we considered the entropy in terms of the numbers of ways
in which particles can be distributed over available energy levels. Now, we consider
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the entropy in terms of the numbers of ways in which the particles distribute them-
selves over different sites in a crystal.

Fig. 4.1 Representation of atomic mixing. a) Two pure crystals consisting of A atoms 
(white) and B atoms (black) in close physical contact (initial state); b) mixing of A and B
atoms.

For the sake of simplicity, suppose that the crystals contain four atoms each. Ini-
tially, all the A atoms are in the crystal located to the left of the dashed line and all
the B atoms to the right (see Fig. 4.1a). The number of distinguishable atomic ar-
rangement is one, because an interchange among the A atoms or among the B atoms
does not produce a new configuration.

When one A atom on the left side of the dashed line interchanges with one B atom
on the right side, the atom B can be placed in four different positions. Analogously,
the atom A can take any of the four positions on the right side of the line. Hence there

are 42 = 16 possible arrangements. 

When a second A atom is to be exchanged with B atom, there are 4 x 3 = 12 pos-
sibilities of arrangement. However, half of them are not distinguishable from one
another, because they are the result of an interchange of B atoms among themselves.

The number of complexions is therefore (4 x 3/2)2 = 36. 

When a third A atom is to be exchanged with a B atom across the dashed line in
Fig. 4.1, four possible sites are available. Two of them remain occupied by B atom
and two of them are obtained by moving the first and second A atom successively
onto these two positions and thus making their original positions available for the
third A atom. Again, each atomic arrangement in crystal left to the dashed line can
be combined with the same number of different occupations in the crystal to the
right. Hence, there are 16 possible complexions. 

For the fourth A atom there is only one possible configuration. All others are ob-
tained by an interchange of A atoms among themselves and, therefore, do not repre-
sent new configuration. The same applies to the B atom diffusing into the crystal on

the left side. The number of complexions is, therefore, 12 = 1. 

The configurations, discussed above, are shown in Tab. 4.1. 

a) b)
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The total number of microstates or complexions, , is 70. This represents the
number of ways in which two types of elements, four of each kind, can be distribut-
ed over 8 sites and is calculated:

(4.77)

In the case of the given example, the calculation reads:

The last column in Tab. 4.1 gives the probability of encountering a given distri-
bution. The distribution with the highest probability occurs most frequently. In our
case, it is the distribution given in the third row. Its probability is 36/70. 

In the case of a real crystal, the number of positions is multiple of Avogadro’s
number. The number of complexions in a mixed crystal consisting of the compo-
nents A and B is calculated according to Eq. (4.77), i.e.

where z, NA, xA and xB designate the number of equivalent crystallographic sites per

formula unit, Avorgadro’s number, the fraction of the component A and the fraction
of the component B in the crystal, respectively. 

Table 4.1 Possible microstates and the probabilities for a macrostate.

Atoms in 
crystal A

Atoms in 
crystal B

Number of 
microstates

Probability of a 
macrostate

4A 4B 12 = 1 1/70

3A +1B 1A + 3B 42 = 16 16/70

2A + 2B 2A +2B (4 x 3/2)2 = 36 36/70

1A + 3B 3A + 1B 42 = 16 16/70

4B 4A 12 = 1 1/70

sum = 70
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4! 4!
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4 3 2 4 3 2
------------------------------------------------ 70.= = =

A B

zNA !

xAzNA ! xBzNA !
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In the case of an ideal solution, where the volume of mixing and the enthalpy of
mixing are zero the change in the configurational entropy associated with the pro-
cess of mixing is identical to the entropy of mixing. Hence, one can write: 

(4.78)

where k is Boltzmann’s constant (R/NA). The entropy of the mechanical mixture is

represented by the sum of entropies of components A and B. Because A and B are
pure phases, all sites are occupied by the particles constituting the corresponding
component. The thermodynamic probabilities, A and B are, therefore, 1 and the

corresponding configurational entropies zero. Hence, the configurational entropy of
a mixed crystal (A,B) is given by

(4.79)

Applying the Stirling’s approximation yields:
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(4.80)

Substituting the universal gas constant R for kNA in Eq. (4.80) gives

(4.81)

In Eq. (4.81) xA and xB represent the mole fractions of atom A and B, respectively,

in the solid solution (A,B). z gives the number of the thermodynamically equivalent
sites in the sublattice where mixing takes place.

Example: In olivine, (Mg,Fe)2SiO4, there are two different sixfold coordinated

sites termed M1 and M2 that are occupied by magnesium and iron. If neither of the
two sites is preferred by either cation, the occupation of both sites is equal and their
number per mole olivine is two times NA. The configurational part of the entropy of

mixing for olivine reads:

where

with [Mg] and [Fe] giving the atomic fractions of magnesium and iron ions, respec-
tively. The values of these fractions are equal to the mole fraction of the forsterite
and fayalite components constituting the olivine solid solution.

If, however, cation ordering takes place such that one of the sites is preferred by
one of the two cations, M1 and M2 belong to two different sublattices and the mixing
entropy for olivine is given by:

where  and  give the mole fractions for Fe at M1 and M2 site, respec-

tively.

In the general case where i ions occupy j sublattices with z equivalent sites, the
enthalpy of mixing reads: 
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(4.82)

In the preceding sections it was shown that volume and enthalpy showed no ef-
fects on mixing in the case of an ideal mixing. This does not hold for entropy. Even
an ideal solutions shows changes in the entropy function because mixing is a natural
process.

The entropy of mixing represents the difference between the entropy of the solu-
tion and the entropy of the mechanical mixture In other words, it gives the difference
between the entropy of a system before and after the mixing at atomic level.

In a two component system, A-B, the entropy for a mechanical mixture is given
by

(4.83)

where SA and SB are the molar entropies of the pure components A and B, respec-

tively.

The entropy for a solution A-B, however, reads:

(4.84)

where SA and SB are the partial molar entropies of the components.

The entropy change due to the solution of A in B or vice versa at constant tem-
perature and pressure is obtained by subtracting Eq. (4.83) from Eq. (4.84), that is:

(4.85)

Comparing the coefficients from Eqs. (4.81) and (4.85) shows that 

(4.86)

or 

(4.87)

In a solution, the mole fraction of the solute, xi is smaller than 1. Its logarithm is,

therefore, negative. Hence, the partial molar entropy, Si, is larger than the molar en-

tropy of the pure component, Si. This is in accordance with the second law of ther-
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modynamics that states that the entropy of a system increases during the course of
a natural process.

Example 1: In orthopyroxene, (Mg,Fe)2Si2O6, magnesium and iron occupy two

crystallographically different sixfold coordinated sites termed M1 and M2. The larg-
er and more strongly distorted M2 site is preferred by the iron ion. If we want to cal-
culate the configurational entropy of a Mg-Fe orthopyroxene, the mole fractions for
magnesium and iron on both sites must be known. The calculation of the entropy
then reads:

Because the sum of the mole fractions for the atoms on each lattice site is unity,
only the concentration for one of the two ions needs to be determined experimental-
ly. It is the concentration of the iron that is normally measured. In this case, the
equation for the calculation of the entropy of mixing must be modified to:

Let us now calculate the entropy of mixing, or more precisely, the configurational
entropy for an orthopyroxene solid solution containing 57.31 mol% enstatite,
Mg2Si2O6, and 42.69 mol% ferrosilite, Fe2Si2O6. The mole fractions of the iron on

M2 and M1 sites, at 973 K are 0.6488 and 0.2051, respectively (modified after Sax-
ena et al., 1987). The configurational entropy of the orthopyroxene is given by

If the iron ions were distributed identically over M1 and M2 sites,  and

 would be equal and their values would correspond to the mole fraction of

ferrosilite. The calculation of the entropy of mixing would then read:
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In the latter case, where the iron is distributed statistically over the two crystallo-
graphic sites the "randomness" is higher than in the case, where iron cations show
some preference for the M2 site. Consequently, the configurational entropy value is
more positive.

Example 2: In garnet with the general chemical formula X3Y2Si3O12, the cation

mixing takes place primarily on the X and Y sublattices. X represents the dodecahe-
drally coordinated sites that are occupied by divalent ions such as magnesium, fer-
rous iron, calcium and manganese. Y is an octahedrally coordinated site that
contains trivalent ions such aluminium, ferric iron, chromium, etc. There are three
dodecahedral and two octachedral cations per formula unit. In the case that mixing
occurs on both X and Y sites the configurational entropy is calculated as follows:

where  and  designate the mole fractions of the cations occupying the X and

Y site, respectively.

For example, a garnet of composition (Mg,Fe2+,Ca, Mn)3(Al,Fe3+,Cr3+)2Si3O12

contains: 67.1 mol% pyrope, Mg3Al2Si3O12, 18.0 mol% almandine, Fe3Al2Si3O12,

13.0 mol% grossular, Ca3Al2Si3O12, 1.1 mol% andradite, Ca3Fe2Si3O12, 0.7 mol%

spessartine, Mn3Al2Si3O12, and 0.1 mol% uvarovite, Ca3Cr2Si3O12. What is the

configurational entropy of this garnet? 

First, we calculate the mole fractions of the cations: 
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and

Using these site fractions the configurational entropy is calculated as follows:

Mixing behavior of the type presented in the above examples is termed mixing on

sites.

Example 3: Consider a diopside (CaMgSi2O6) - jadeite (NaAlSi2O6) solid solu-

tion. In this pyroxene, calcium and sodium occupy the larger M2 sites and magne-
sium and aluminium the smaller M1 sites. In order to preserve electroneutrality each
calcium atom has to be in close vicinity of a magnesium atom and the same for a
sodium and aluminium atom. The solid solution can therefore be modeled as a mix-
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ture of CaMg and NiAl pairs. Their proportions correspond to the mole fractions of

the components,  and respectively. Hence, the calculation

of the configurational entropy of a diopside-jadeite solid solution reads:

For a clinopyroxene consisting of 80 mol% diopside and 20% jadeite a configu-
rational entropy of 

is obtained. 

This type of mixing behavior is referred to as molecular mixing. It requires com-
plete ordering of cations on a local scale.

Eq. (4.82) was derived assuming that the pure components are perfect ordered
crystals whose configurational entropies are zero. The entropy of mixing is there-
fore identical to the configurational entropy of the mixed crystal. In other words, the
configurational entropy of an ideal solid solution is determined only by the 'random-
ness' of the atoms or ions over the different crystallographic sites. Therefore, Eq.
(4.82) can, as well, be used to calculate the configurational entropy of pure phases
exhibiting cation disorder, for example alkali feldspar, KAlSi3O8. In the high tem-

perature modification, sanidine, Al and Si are randomly distributed over two crys-
tallographically distinct tetrahedral sites termed t1 and t2. Sanidine’s configurational

entropy is therefore given by

In sanidine the total number of tetrahedrally coordinated cations per formula unit
is four (1Al + 3Si). Thus, one quarter of the available sites is occupied by aluminium
and three quarters of them by silicon. Because the atomic fractions for aluminium
and silicon are equal for all sites, no distinction is made between t1 and t2 and we

have:

In partially ordered monoclinic orthoclase the distribution of aluminium over the
t1 site differs from that over t2 site. In order to calculated the configurational entro-

py, each site has to be accounted for by individual terms. The configurational entro-
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py of an orthoclase is therefore calculated as follows:

Example: Consider an orthoclase with the following Al distribution: t1 = 0.433

and t2 = 0.067 (Hovis 1986). Its configurational entropy is 

In triclinic microcline four distinguishable sites are available for Al and Si, be-
cause the two t1 and t2 sites are split into t1o and t1m and t2o and t2m sites, respec-

tively. The mathematical expression for the calculation of microcline’s
configurational entropy reads:

Example: Consider a microcline with the following distribution of Al over the

four sites: = 0.425, = 0.350, = 0.110 and = 0.110 (Kroll and Ribbe

1983). The calculation of its configurational entropy yields:

In a hypothetical completely ordered microcline Al would occupy only the t1o

sites, while the remaining three sites would be occupied exclusively by Si. The con-
figurational entropy of such a microcline crystal would be zero. For kinetical rea-
sons, complete cation order is never attained in natural feldspars.

In addition to changes in the configurational entropy, changes in the thermal en-
tropy arise from the mixing process. This part of the total entropy is termed the par-
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tial molar excess entropy,  and it occurs in non-ideal solutions. Following Eq.

(4.87) the partial molar excess entropy of a component i is given by

(4.88)

where Si and Si designate the partial molar entropy and the molar entropy of the

component i, respectively. The term in the parenthesis gives the partial molar entro-
py of the component i for the case of ideal mixing.

4.4  Entropy of reaction

Consider a system consisting of four pure phases A, B, C and D once again, and let
a chemical reaction of the type

occur. In order to keep the temperature constant, heat must be exchanged between
the system and its surroundings. As discussed in the preceding chapter, this heat is
referred to as the heat of reaction, rH. In the case where the heat exchange occurs

reversibly it holds:

(4.89)

where T is the temperature at which the reaction takes place. rS is called the entro-

py of reaction. The bold type characters designate a reaction between pure phases.
The entropy of reaction can be calculated using the molar entropies of the phases
participating in the reaction at the temperature in question. For a generalized reac-
tion, the calculation of the reaction entropy reads:

(4.90)

In Eq. (4.90), SA, SB, SC and SD designate the molar entropies of phases A, B, C

and D, respectively. 

4.4.1 Temperature dependence of the entropy of reaction

The temperature dependence of the entropy of reaction is given by:
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(4.91)

where rCp is the change in heat capacity as defined in Eq. (3.90).

Hence, the entropy of reaction at temperature T is obtained by integrating Eq.
(4.91) between the temperature limits To and T:

(4.92)

Generally, in the field of geosciences the lower integration limit is taken to be
room temperature (298.15 K). In this case, the integration constant, rS298, is the

stoichiometric sum of the conventional standard entropies, S298,i, of the reactants.

If any of the reactants undergoes a phase transformation in the temperature interval
in question, the entropy associated with the transformation must be taken into ac-
count.

Example: Consider the reaction:

If one wants to calculate the entropy of this reaction at 298 K, one needs only the
third law entropies of the reactants. These values are tabulated in various thermody-
namic tables. In our example, we take the data given by Robie and Hemingway
(1995): 

Using these values the calculation yields:

In order to calculate the entropy of reaction at 800 K the molar heat capacities of
the reactants as a function of temperature are required. Robie and Hemingway
(1995) give the following Cp-polynomials for the phases in question:
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and

A summation of the polynomials according to the stoichiometric proportions of
the reactants yields:

Using this polynomial, the entropy of reaction at 800 K is calculated as follows:
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4.5  Problems

1. The third law entropy of hercynite, S298, equals 106.274 Jmol-1K-1 (Knacke et

al. 1991). 

• Calculate the entropy of hercynite for 1000°C.

2. The melting temperature of diopside, CaMgSi2O6, at 0.1 MPa is 1665 K. Its

enthalpy of melting equals 128.448 kJmol-1.

• Show that the crystallization of diopside at 0.1 MPa and 1500 K is an irrevers-
ible process.

3. In high temperature cordierite (i.e., indialite), Mg2Al4Si5O18, Al and Si, are tet-

rahedrally coordinated and located in two crystallographically different T1 and

T2 sites. 

• Calculate the configurational entropy for the case that 1 Si and 2 Al are disor-
dered over 3 T1 sites and 4 Si and 2 Al are disordered over 6 T2 sites. 

• Calculate the configurational entropy of indialite for the case that Si and Al are 
randomly distributed over 9 tetrahedral sites.

R = 8.3144 Jmol-1K-1

4. Calculate the configurational entropy of a clinopyroxene containing 10 mol%
enstatite, Mg2Si2O6, 70 mol% diopside, CaMgSi2O6, and 20 mol% Ca-Tscher-

mak, CaAl2SiO8.

5. Calculate the change in entropy associated with the reaction: 

9 talc + 4 forsterite  5anthophyllite + 4H2O

taking place at 527°C and 0.1 MPa.
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Data: Holland and Powell (1990)
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Chapter 5   Gibbs free energy and Helmholtz free 

energy

In chapter 4 it was shown that the total entropy change for an irreversible process is
positive. For a reversible processes it is zero. If the entropy function is used to ad-
dress the question whether or not a given process proceeds spontaneously in a cer-
tain direction, the system and its surroundings must be taken into consideration.
This, however, is inconvenient situation. It would be better to have a function just
for the system that would indicate whether or not a process is potentially spontane-
ous without a need for considering changes in the surroundings. 

In our example in section 4.2.4 it was shown that sillimanite transformed to an-
dalusite irreversibly. The heat exchange between the system and its surroundings,
however, took place reversibly. In the course of the transformation of sillimanite to

andalusite at 900 K an amount of heat equal to 2903 Jmol-1 was transferred from the
system to the surroundings in order to keep the temperature of the system constant.
Due to the heat absorption, the entropy of the surroundings increased by

3.23 Jmol-1K-1 (see page 143). From the standpoint of the system, this entropy
change is, however, negative. It is smaller than the change in the entropy of the sys-

tem (-3.10 Jmol-1K-1) that was calculated using the reversible path. Eq. (4.4) can,
thus, be rewritten as follows:

(5.1)

for an irreversible process and 

(5.2)

for a reversible process. 

Under isochoric conditions one has Qrev = dU. Eq. (5.1) can be rewritten, drop-

ping the subscript 'syst', as

(5.3)

dSsyst
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T
--------------– 0
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--------------– 0=

dU TdS– 0



166 5 Gibbs free energy and Helmholtz free energy

and Eq. (5.2) as

(5.4)

In the case of an isobaric processes, Qrev can be replaced by dH and one obtains:

(5.5)

where the sign 'smaller than' designates an irreversible process and the sign 'equal
to' a reversible one.

Eqs. (5.3) through (5.5) can be used to determine whether or not a process is po-
tentially spontaneous without any consideration of any changes in the surroundings.
If (dU - TdS) at constant volume or (dH - TdS) at constant pressure is smaller than
zero, a process is potentially spontaneous. If (dU - TdS) or (dH - TdS) equal zero,
there is thermodynamic equilibrium, and if (dU - TdS) or (dH - TdS) are greater than
zero, a process does not proceed in the given direction. For the sake of convenience,
we introduce dF for (dU - TdS) and dG for (dH - TdS), and we can then write:

(5.6)

and

(5.7)

Integrating Eqs. Eq. (5.6) and Eq. (5.7) yields:

(5.8)

and

(5.9)

The new functions F and G are termed the Helmholtz free energy and the Gibbs

free energy, respectively. Their values are normally expressed in Joules or calories.
Both are functions of state and both can be used to characterize the nature of a pro-
cesses. Their total differentials read:

(5.10)

and

(5.11)
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Substituting Eq. (4.5) into equation Eq. (5.10) and Eq. (4.6) into Eq. (5.11) yields:

(5.12)

and

(5.13)

In Eqs. (5.12) and (5.13) the Helmholtz free energy and the Gibbs free energy are
given as functions of temperature and volume and temperature and pressure, respec-
tively. These two equations are more convenient than Eqs. (4.5) and (4.6) that can,
in principle, also be used to describe changes in a system. Eqs. (4.5) and (4.6) con-
tain entropy as a variable which is difficult to control experimentally. 

Eqs. (4.5), (4.6), (5.12) and (5.13) can be used to derive several important rela-
tionships, namely

(5.14)

(5.15)

and

(5.16)

An additional relationship is:

(5.17)

Eq. (5.17) is obtained using the quotient rule of differentiation. According to this
rule, a function of the type y = u/v is differentiated as follows:

(5.18)

Applying it to the function (G/T), one obtains:
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(5.19)

5.1  Chemical potential of pure phases

If the Gibbs free energy, G, of a pure phase is divided by its number of moles, an
intensive function of state termed the chemical potential, , is obtained:

(5.20)

The chemical potential is thus the molar Gibbs free energy. Accordingly, its mag-

nitude is given in Joule mol-1 or calmol-1.

The total differential of the chemical potential reads:

(5.21)

Considering Eqs. (5.15) and (5.16), Eq. (5.21) can be rewritten as:

(5.22)

where S and V designate the molar entropy and molar volume of the pure phases,
respectively.

5.1.1 Chemical potential of ideal gases

A mathematical expression for the chemical potential of an ideal gas can be derived
using the relationship:

(5.23)

which describes the pressure dependence of the chemical potential at constant tem-
perature. Separating the variables in Eq. (5.23) yields:

(5.24)
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In the case of an ideal gas, the molar volume, V, in Eq. (5.24) can be replaced by
RT/P and one obtains: 

(5.25)

Integrating Eq. (5.25) between the initial pressure Po and the final pressure P

gives

(5.26)

Rearranging Eq. (5.26) and remembering that the temperature remains constant
yields:

(5.27)

where (Po,T) designates the standard chemical potential that refers to the temper-

ature of the experiment, T, and to some arbitrarily chosen standard pressure, Po.

The latter corresponds generally to the ambient pressure of 0.1 MPa. Because of this
widely accepted convention, pressure and temperature specifications for the stan-

dard potential are omitted and the standard potential is designated as o. Introducing
the superscript 'id' to designate the ideal behavior of a gas gives:

(5.28)

In the case that pressure is given in bar, Eq. (5.28) simplifies to 

(5.29)

because the reference pressure is then 1 bar and ln 1 = 0. One should, however, keep
in mind that P[bar] is a dimensionless quantity (bar/bar) that is numerically equal to
the pressure given in bars.

5.1.2 Chemical potential of non-ideal gases

In order to derive an expression analogous to Eq. (5.28) for non-ideal gases, the
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pressure in Eq. (5.25) has to be replaced by the fugacity, f, so that 

(5.30)

is obtained.

The relationship between the pressure and fugacity is given as:

(5.31)

The proportionality factor,  is termed the fugacity coefficient. It fulfills the fol-
lowing boundary condition:

(5.32)

Thus, the fugacity of a gas equals pressure as pressure decreases and approaches
0. This means that at some sufficiently low pressures all gases behave ideally. 

Integrating Eq. (5.30) between the limits fo and f yields:

(5.33)

The standard chemical potential, o, refers to the standard fugacity fo whose val-

ue is 0.1 MPa for all temperatures. Using the relationship between the pressure and

fugacity, given in Eq. (5.31), Eq. (5.33) can be rewritten to obtain:

(5.34)

Because Po and fo, equal 0.1 MPa, o must have a value of 1, and it follows that 

(5.35)

If pressure is given in bars, fo equals 1 bar and Eq. (5.33) simplifies to:

(5.36)

Accordingly, Eq. (5.34) simplifies to:
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(5.37)

The relationship between the fugacity of a real gas, its molar volume and its
fugacity coefficient can be derived using Eqs. (5.29) and (5.36). Differentiating Eq.
(5.36) with respect to pressure at constant temperature, yields:

(5.38)

An analogous relationship is obtained for an ideal gas by differentiating Eq.
(5.29), namely:

(5.39)

Subtracting Eq. (5.39) from Eq. (5.38) gives:

(5.40)

Substituting the term RT/P for V id in Eq. (5.40) and then integrating it between
the limits P = 0 and P yields:

(5.41)

or

(5.42)

The term ln(f/P)P=0 equals zero, since all gases behave ideally at pressures close

to zero. 

V real as well as RT/P, approach infinity as P approaches 0. Therefore, the two
terms cannot be integrated separately. The difference between them, however, is
definite and a nonzero quantity. 

The integration procedure can be best solved graphically. Using experimentally

determined values for the volume of the gas, the difference V real - RT/P is calculat-
ed and plotted versus pressure. The area under the curve gives, then, the fugacity co-
efficient.
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Fig. 5.1 Graphical representation of the difference V real - RT/P as a function of pressure 
for methane, CH4, at 800 K, using volume data of Grevel and Chatterjee 1992.

Fig. 5.1 shows a plot of the term V real - RT/P versus P for methane, CH4, as a

function of pressure at 800 K. The calculated areas and the corresponding fugacity
coefficient determined from the graph are summarized in Tab. 5.1.

Table 5.1 Fugacity coefficient and fugacity of methane, CH4,

determined by graphical integration of the V real - RT/P vs. P
curve, depicted in Fig. 5.1. (Data: Grevel and Chatterjee 1992)

P[bar] area ln f[bar]

0.5 0.59 8.86x10-5 1.000 0.5

1.0 1.44 2.16x10-4 1.000 1.0

10.0 17.77 2.67x10-3 1.003 10.0
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5.2  The chemical potential of components in solutions

Considering Eq. (5.13), the total differential of the Gibbs free energy, dG, of a multi
component phase can be written as follows:

(5.43)

The differential in Eq. (5.43) gives the change in the total Gibbs free energy of
the system when an infinitesimal amount of component i is added to it, while pres-
sure, temperature and the concentrations of the remaining components are kept con-
stant. It thus represents the partial molar Gibbs free energy of component i in the
solution. It is referred to as the chemical potential of the component i, i, i.e. 

(5.44)

Using this definition of the chemical potential, Eq. (5.43) can be rewritten as:

(5.45)

At constant temperature and pressure Eq. (5.45) reduces to:

(5.46)

50.0 94.93 0.01427 1.014 50.7

100.0 196.94 0.02961 1.030 103.0

500.0 1114.76 0.16759 1.182 591.2

1000.0 2433.76 0.36589 1.442 1441.8

Table 5.1 Fugacity coefficient and fugacity of methane, CH4,

determined by graphical integration of the V real - RT/P vs. P
curve, depicted in Fig. 5.1. (Data: Grevel and Chatterjee 1992)

P[bar] area ln f[bar]
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Assume, that a solution is made by continuously adding small increments, all of
the same composition, so that the bulk composition of the solution remains constant.
In this case, the values of the chemical potentials of the various components remain
constant and Eq. (5.46) can be integrated such that 

(5.47)

is obtained. Thus, the total Gibbs free energy of a mixed phase at some pressure and
temperature is given by the sum of the chemical potentials of the components mul-
tiplied by the respective number of moles.

Example: The total Gibbs free energy of an orthopyroxene crystal with 

mole enstatite and  mole ferrosilite is calculated as follows:

Dividing Eq. (5.46) by the total number of moles yields the molar Gibbs free en-

ergy, G. It is

(5.48)

Example: In the case of orthopyroxene, the molar Gibbs free energy is calculated
according to

and because the mole fractions of the components composing a mixed phase sum to
1, one can also write:

As shown previously, the chemical potential of a component in a solution is equal
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to its partial molar Gibbs free energy at the given pressure, temperature and compo-
sition of the solution. The value of the chemical potential depends not only on the
concentration of the component in the solution but also on the solution itself. That
is, the concentrations and the chemical composition of the remaining components
composing the solution also come into play. A component of the same concentration
yields different chemical potentials in different solutions.

Fig. 5.2 Graphical representation of the relationship between the molar Gibbs free 
energy, G, and the chemical potentials of the components A and B in the solution of the 

composition xB.  and  are the chemical potentials of the pure components A and 

B, respectively.

The chemical potentials of the components can be calculated using the integral
Gibbs free energy of the solution. For a binary system, A-B, the calculation gives:

For the component A:

(5.49)
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and

(5.50)

for the component B.

According to Eqs. (5.49) and (5.50), the chemical potentials of the components
A and B in the solution are given by the intersection points of the tangent line to the
G vs. xB curve with the ordinate at xB = 0 and xB = 1, respectively. Fig. 5.2 shows

the relationships between the molar Gibbs free energy of a solution and the chemical
potentials of the components for a hypothetical binary system A-B.

5.2.1 Chemical potential of an ideal gas in an ideal solution

From Eq. (5.9) it follows that

(5.51)

where Hi and Si are the partial molar enthalpy and partial molar entropy of the com-

ponent i, respectively. 

For the pure component i, it holds: 

(5.52)

Eqs. (5.51) and (5.52) can be used to derive a mathematical expression for the
chemical potential of a component in a solution.

Consider an ideal single component gas. At temperature T and pressure P, its
chemical potential equals:

If this gas is mixed with another ideal gas at the same temperature and pressure,
its chemical potential is then given by:

The difference between the chemical potential of the gas i before and after the
mixing is then:

B G 1 xB–
G
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i Hi TSi,–=

i Hi TSi.–=

i Hi TSi.–=

i Hi TSi.–=
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(5.53)

In an ideal mixture, the molar enthalpy and the partial molar enthalpy of a com-
ponent are equal, and therefore Hi - Hi = 0. The difference Si - Si, however, is equal

to - R lnxi. Thus, instead of Eq. (5.53) one can write:

(5.54)

or

(5.55)

Substituting the expression given in Eq. (5.28) for i and adding the superscript

'id' to i in order to stress the ideal behavior of the mixture, yields:

(5.56)

According to Dalton’s law, the product xiP equals the partial pressure, Pi, of gas

i in an ideal gas mixture. Hence, Eq. (5.56) can be rewritten as follows:

(5.57)

If the pressure is given in bars, Eq. (5.57) simplifies to:

(5.58)

In order to avoid any confusion, it should be noted that P designates the total
pressure, that in the case of a pure gas is identical to the gas pressure. No subscript
is therefore needed. In the case of an ideal gas mixture, P, however, represents the
sum of the partial pressures of the gases participating in the mixture, i.e. P = xiPi.

The partial pressure of each different gas must then be defined by an appropriate
subscript.

5.2.2 Chemical potential of a real gas in ideal and non-ideal gas mix-

tures

Suppose that two non-ideal gases mix ideally at constant pressure and temperature.
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The chemical potential of each gas in such a mixture reads:

(5.59)

where  is the chemical potential of the pure gas i at the given temperature and

pressure, and xi is its mole fraction in the mixture. Substituting the expression given

in Eq. (5.35) for  yields:

(5.60)

or

(5.61)

if id is replaced by the expression giving the chemical potential of an ideal gas at
pressure, P, and temperature, T. The product xiP corresponds to the partial pressure,

Pi, of the gas i in the mixture. Using this relationship, Eq. (5.61) obtains the follow-

ing form:

(5.62)

In this equation i represents the fugacity coefficient for a pure gas i. The product

(5.63)

is frequently termed the partial fugacity of the gas i in an ideal gas mixture. 

In the case of ideal mixing, the partial molar volume of a non-ideal gas, ,

and its molar volume, , are the same. In real mixtures, however, the two differ

one from another. Therefore, it holds:

(5.64)
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where i designates the fugacity coefficient of a non-ideal gas in a non-ideal gas

mixture at the given temperature, pressure and concentration of the gas i in the mix-
ture. It is referred to as the partial fugacity coefficient.

Following Eqs. (5.34) and (5.35), the chemical potential of a pure non-ideal gas

i,  equals:

(5.65)

The chemical potential of the same gas in a non-ideal gas mixture, however,
reads:

(5.66)

where i represents the partial fugacity coefficient as defined in Eq. (5.64). It de-

pends on pressure, temperature and the composition of the mixture. 

If Eq. (5.65) is subtracted from Eq. (5.66), the change in the chemical potential
due to the non ideal mixing at constant pressure and temperature is obtained. One
has:

(5.67)

or

(5.68)

The second term on the right side of Eq. (5.68) gives the relationship between the
partial fugacity coefficient of a non-ideal gas in a non-ideal gas mixture, i, and its

fugacity coefficient, i, as a pure gas. It is termed the activity coefficient, . Eq.

(5.68) can thus be rewritten to obtain:

(5.69)

Combining the two last terms in Eq. (5.69) yields:
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(5.70)

where

(5.71)

The term ai is the activity of the non-ideal gas i in an non-ideal mixture at the given

temperature, pressure and concentration of the gas, xi. It is, thus, a 'corrected mole

fraction' of a gas that accounts for the non-ideal behavior of the mixture. The 'cor-
rection' factor is the activity coefficient i.

Replacing  in Eq. (5.69) by the expression given in Eq. (5.65) gives:

(5.72)

Considering the definition of the activity coefficient, the term RT ln i in Eq.

(5.72) cancels and one obtains:

(5.73)

Because the product Pi·xi corresponds to the partial pressure of the gas, Pi, Eq.

(5.73) can be rewritten as

(5.74)

or

(5.75)

where

(5.76)
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concentration of the gas. fi is referred to as the partial fugacity.

The following relationships exist between the partial fugacity of a non-ideal gas
in a non-ideal mixture, fi, the fugacity of a pure non-ideal gas, fi, and the fugacity of

a non-ideal gas in a ideal gas mixture, :

(5.77)

The level of scientific knowledge has now reached the point whereby the mixing
properties of many geologically relevant and important binary gas mixtures are
known (see Kerrick and Jacobs 1981; Grevel and Chatterjee 1992; Aranovich and
Newton 1999). Hence, the partial fugacities of the gases participating in such mix-
tures have been determined too. In those cases where the thermodynamic properties
of mixtures are not known, the fugacity of a real gas in a non-ideal gas mixture is
determined by using the fugacity rule of Lewis and Randall. According to this rule,
the fugacity of a real gas in a non-ideal gas mixture can be estimated as follows:

(5.78)

5.2.3 Chemical potential of components in ideal solid solutions

In analogy to Eq. (5.59), the chemical potential of a component in an ideal solid so-
lution is given by:

(5.79)

where designates the standard potential of the component, i. Its numerical value

depends on pressure, temperature and the value of the standard state chosen. In most
cases the standard potential refers to the pure phase at the pressure and temperature
conditions of interest. It thus differs from the standard potential of a gas, which nor-
mally refers to the actual temperature and ambient pressure (0.1 MPa).

In deriving the expression for the chemical potential of an ideal gas in an ideal
gas mixture, it was shown that the term RT lnxi accounts for the change in the entro-

py of the gas due to the mixing process. The same holds for a solid component in a
solid solution. However, the entropy change of crystalline solid is given by Eq.
(4.86):
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where zi refers to the number of crystallographic sites per formula unit containing

the same fraction of atoms of the component i. If, however, the mixing atoms are
distributed non-equally over different crystallographic sites, each site must be given
separately. The more general form of Eq. (5.79), therefore, reads:

(5.80)

Example 1: Let us consider an olivine solid solution once again. In this solution
magnesium and ferrous iron occupy the sixfold coordinated M1 and M2 sites. Al-
though the two sites are crystallographically non-equivalent, neither cation shows a
clear preference for either site. Therefore, the chemical potential of fayalite,
Fe2SiO4, in an olivine solid solution, (Mg,Fe)2SiO4, can be written as follows:

where  gives the atomic fraction of iron in olivine. Because 

the expression for the chemical potential of fayalite can be rewritten replacing the

atomic fraction, , by the mole fraction, 

If one wants to eliminate the multiplier in front of the term that accounts for the
concentration of the component in the solution, one has to divide the above given
equation by 2 and one obtains:

or

In this case, one has to keep in mind that the chemical potential refers to one half
of the formula unit.

Example 2: As discussed previously, in orthopyroxene, (Mg,Fe)2Si2O6, ferrous

iron occupies preferably the larger and more distorted M2 sites. Hence, its site frac-
tions for M1 and M2 are different and must, therefore, appear as separate terms. The
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chemical potential of ferrosilite, Fe2Si2O6, in an orthopyroxene solid solution reads:

where  and  are the atomic fractions of iron on the M1 and M2 sites,

respectively. Note, that the mineral name ferrosilite is used to designate a compo-
nent. In a strict sense this is not correct because a mineral name designates a phase
of definite composition and definite crystal structure. Nonetheless, in the mineral-
ogical literature mineral names are often assigned to components. This practice,
however, becomes problematic when a component undergoes a phase transitions in
the course of a thermodynamic process. One should always bear in mind that a com-
ponent is a chemical entity that should be expressed in terms of a chemical formula.
A mineral name can be used only when confusion with the phase is excluded.

Example 3: In section 4.3.2 it was shown that the configurational entropy of the
diopside-jadeite solid solution can be expressed using the mole fractions of the com-
ponents. Therefore, the chemical potential of diopside in the diopside-jadeite solid
solution can be written as follows:

The term containing mole fraction accounts for the change in the entropy of a
component as a result of the process of mixing. If there are different crystallographic
sites in a structure that are available for some atoms or ions, their distribution over
these sites must be known in order to formulate the chemical potential. 

5.2.4 Chemical potential of components in non-ideal solid solutions

Similarly as in the case of non-ideal gas mixtures, the mole fraction must be re-
placed by the activity in order to express the chemical potential of a component in a
non-ideal solid mixture. At constant pressure and temperature the chemical potential
of the component i then reads: 

(5.81)

In Eq. (5.81)  and zi designate the standard potential of the component i and zi

gives the number of crystallographic sites per formula unit with the same atomic

fraction of the component i. Generally  is independent of composition, but it de-
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The activity of a component is proportional to its mole fraction. The proportion-
ality factor is referred to as the activity coefficient. Thus, it holds:

(5.82)

and the chemical potential reads:

(5.83)

The activity coefficient is a function of pressure, temperature and composition of
the solution. It is an empirical quantity and is often evaluated from the phase equi-
librium studies. In some cases it can be determined by different electrochemical
methods, e.g. emf-measurements or calorimetric studies.

Activity and activity coefficient as a function of composition

The relationship between the concentration of a component and its activity in a so-
lution is generally complex. In every solution, however, there are concentration re-
gions where the relationship is relatively simple.

At high concentration of a component when its mole fraction in the solution ap-
proaches 1, the activity coefficient also approaches 1 and the activity becomes equal
to the mole fraction, i.e.

(5.84)

The chemical potential is, according to Eq. (5.81), then:

(5.85)

The compositional region, where a component behaves this way is referred to as
the region of Raoult’s law. Within this region the chemical potential of a component
is directly proportional to the logarithm of its mole fraction. Its extension to lower
concentrations depends on the interaction between the components in the solution.
The smaller the interaction, the larger is the region in which Raoult’s law is obeyed.

In Fig. 5.3 Raoult’s region, R, extends from  to xB = 1. 

At low concentrations of a component, when its mole fraction approaches 0, the
chemical potential varies linearly with the logarithm of the mole fraction. The pro-
portionality factor, however, differs from 1. It can be greater, as well as smaller, than
one. The activity is directly proportional to the mole fraction, i.e:
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(5.86)

The proportionality factor, hi is called Henry constant. Its value depends not only

on the nature of the solute but also on the solution. The compositional region in
which a component displays this kind of behavior is referred to as the region of Hen-

ry’s law and the chemical potential is given as:

(5.87)

In Fig. 5.3 the region of Henry’s law is designated by the letter H. It extends from

xB = 0 to . The extension of Henry’s law region toward higher concentrations de-

pends on the nature of mixing in the solution. The smaller the interaction between
the components in the solution, the larger is this region. In ideal mixtures, where no
or only negligible interactions between the components exist, Henry’s line and
Raoult’s’ line coincide and the activity equals the mole fraction from xB = 0 to xB =

1.

Fig. 5.3 Schematic representation of the activity of the component B, aB, as a function of 

the mole fraction xB in the solution A-B at constant temperature and pressure. R = region 

of Raoult’s law and H = region of Henry’s law. Raoult’s and Henry’s line are tangents to 
the aB(xB) curves at low and high concentration of B, respectively.
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The region of Henry’s law and the one of Raoult’s law are separated by the so-
called intermediate region. Here, the activity coefficient is a function of solution
composition and the expression for the chemical potential has the general form giv-
en in Eq. (5.83), namely:

In the mineralogical literature there are different approaches to solving the ' (x)
problem'. Some of them will be discussed later.

5.2.5 The standard state 

The classical thermodynamics does not give any information about the absolute val-
ue of the chemical potential. Therefore an arbitrary standard state has to be chosen.
One type of a standard state was already presented in the discussion of the chemical
potential of ideal and non-ideal gases. In both cases, a state of an ideal gas at
0.1 MPa and the temperature of interest was chosen as a standard. In the case of con-
densed phases other standard states are normally used. Here we want to present three
of them.

a) The most widely used standard state is that of a pure phase at pressure and
temperature of interest. In the case of crystalline solid solutions the pure end-mem-
ber phase must have the same crystal structure as any solid solution composition.
We used this standard state implicitly in our examples 1, 2 and 3 on pages 182 and
183. Using this standard state the chemical potential is expressed according to Eq.
(5.83) as:

As the mole fraction xi approaches 1, the activity coefficient also approaches 1 and

the two last terms on the right side of the equation giving the chemical potential van-
ish, so that 

(5.88)

is obtained. This is in accordance with the chosen standard state. 

b) The standard state presented in the previous section could be difficult to
apply, if a component does not occur as a pure end-member phase (e.g. pyroxene
with Rare Earth cation only). In this case the state of infinite dilution is chosen as
the standard. The corresponding standard potential consists of the chemical poten-
tial that consists of the hypothetical pure end-member phase and Henry’s constant,
hi, such that: 
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(5.89)

Hence, this standard potential refers to a 'pure end-member phase' having the
thermodynamic properties extrapolated from the state of infinite dilution.

Using the standard potential defined in Eq. (5.89), the chemical potential of a
component i can be written as follows:

(5.90)

Eq. (5.90) holds only in the region of Henry’s law. At higher concentration of the
component, the mole fraction must be corrected introducing a new activity coeffi-

cient, . The chemical potential, therefore, reads:

(5.91)

The activity coefficient  approaches 1 as the mole fraction approaches 1 such

at xi = 1 it holds that:

(5.92)

In order to determine the relationship between the activity coefficient related to
the pure phase and the one related to infinite dilution, we take the expression given
in Eq. (5.83) and first add and then subtract the term RTlnhi:

(5.93)

The first two terms on the right side of the 'equal' sign of Eq. (5.93) give the stan-

dard potential at infinite dilution,  Hence, one can write:

(5.94)

A comparison of the terms in Eq. (5.94) to those in Eq. (5.91) shows that 
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(5.95)

The two different activity coefficients are proportional to one another. As can be
seen in Fig. 5.4, the Henry’s constant corresponds with the activity coefficient i at

xi = 0 (double arrow). At this concentration,  has the value of 1. Generally it

holds: If i has a value greater than one,  is smaller than one and vice versa. 

In the case that the pure component and the solid solution have different crystal
structures, the mixing process is associated with a phase transition. Hence, the
Gibbs’ free energy of transition must be included in the expression for the chemical
potential. Assume that a component i crystallizes in an -structure, while the solu-
tions has the -structure. The chemical potential will then read:

(5.96)

where the difference gives the Gibbs free energy of the phase transition

from  to .

The last two terms in Eq. (5.96) can be combined to give a new activity coeffi-

cient, , namely:

(5.97)

Using this activity coefficient, Eq. (5.96) simplifies to

(5.98)

Fig. 5.4 shows graphically the three different standard states of the chemical po-
tential. In order to simplify the image, a binary system consisting of the hypothetical
components A and B was chosen, where the component B forms a complete solid
solution with A. The heavy line gives the chemical potential of the component B as
a function of its mole fraction. The double arrow at xB = 0 corresponds to the term

RTlnhB. Note that the arrow giving the activity coefficient related to the state of in-

finite dilution and the one giving the activity coefficient related to the state of a pure
phase point in opposite directions.
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Fig. 5.4 Relationships between different standard states of the chemical potential in the 

binary system A-B. ,  and  are the standard potentials of the component B

referenced to the state of infinite dilution of B in A, to the pure component B occurring as 

the phase , and to the pure component B occurring as the phase , respectively.  

 and  are the corresponding activity coefficients. gives the Gibbs 

free energy of the phase transformation from  to .

The activity coefficient as a function of temperature and pressure

The activity and the activity coefficient of a component depend not only on compo-
sition but also on temperature and pressure. 

In order to derive a mathematical expression for the temperature dependence of
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the activity coefficient, we make use of a relationship analogues to the one given in
Eq. (5.17), namely: 

(5.99)

Dividing Eq. (5.83) by T and differentiating it with respect to temperature at con-
stant pressure and constant mole fraction, xi, yields:

(5.100)

or

(5.101)

where Hi and Hi are the partial molar enthalpy of the component i for mole fraction

xi and the molar enthalpy of the pure component i, respectively. Thus, the difference

Hi - Hi corresponds to the partial molar excess enthalpy, of the component i in

the solution for xi and Eq. (5.101) can also be written as:

(5.102)

Hence, the partial molar excess enthalpy of a component determines the temper-
ature dependence of the activity coefficient.

The pressure dependence of the activity coefficient can be derived analogously.
In this case, the relationship corresponding to the one given in Eq. (5.14) is used,
namely:

(5.103)

Differentiating Eq. (5.83) with respect to pressure at constant temperature and
composition of the solution gives:

T

i

T
----

P

Hi

T
2

----- .–=

Hi

T
2

-----–
Hi

T
2

------– ziR
iln

T
------------

P xi

+=

iln

T
------------

P xi

Hi Hi–

ziRT
2

------------------ ,–=

Hi

 ex
,

iln

T
------------

P xi

Hi

 ex

ziRT
2

--------------  .–=

P

i

T
Vi.=



5.3 Gibbs free energy of mixing 191

(5.104)

or upon rearranging terms

(5.105)

In Eq. (5.105), Vi and Vi designate the partial molar volume of the component i

for the mole fraction xi and the molar volume of the pure component i, respectively.

The difference Vi - Vi, therefore, corresponds to the partial molar excess volume of

the component,  for given concentration of i in the solution. One can also write:

(5.106)

Hence, the pressure dependence of the activity coefficient of a component in a
solution is determined by its partial molar excess volume. 

5.3  Gibbs free energy of mixing

At constant temperature and pressure, the Gibbs free energy of mixing, mG, is giv-

en by the difference between the molar Gibbs free energy of the system before and
after mixing, i.e.

(5.107)

Only in the case of a mechanical mixture does it hold that mG = 0. In solutions,

the Gibbs free energy of mixing always differs from zero, because mixing is a nat-
ural process that generates an increase in entropy.

Using the definition of the molar Gibbs free energy given in Eq. (5.48), Eq.
(5.107) reads:

(5.108)

where i and i are the chemical potentials of the pure component i and in the solu-
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tion, respectively. 

Expanding i in Eq. (5.108), according to Eq. (5.83), yields:

(5.109)

Because the standard potential,  in Eq. (5.109) refers to the pure component

i, the first and the last terms cancel and one obtains:

(5.110)

or

(5.111)

where

(5.112)

In Eq. (5.110), the term  gives the change in the Gibbs free energy

due to ideal mixing and the term  accounts for the non-ideal behavior

of the solution. The latter is referred to as the excess Gibbs free energy of mixing.
Using these definitions one can write:

(5.113)

If one defines the excess chemical potential of a component as:

(5.114)

the excess Gibbs free energy of mixing reads:
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(5.115)

Analogously to Eqs. (5.49) and (5.50), the excess chemical potentials of the var-
ious components in a binary solution can be calculated from the excess Gibbs free
energy as follows:

(5.116)

and

(5.117)

According to Eq. (5.16), the differentiation of the excess Gibbs free energy of
mixing with respect to temperature at constant pressure yields:

(5.118)

where  is the excess entropy of mixing. Replacing  by 

gives:

(5.119)

Substituting Eq. (5.102) into Eq. (5.119) yields:

(5.120)

Multiplying both sides of Eq. (5.120) by T and considering that 
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and  correspond to mG ex and mH ex, respectively, the following rela-

tionship between the excess Gibbs free energy of mixing, the excess enthalpy of
mixing and the excess entropy of mixing is obtained: 

(5.121)

So, the Gibbs-Helmholtz relation holds also for the excess functions of mixing.

5.3.1 Mixing and activity models

In a binary system A-B the excess Gibbs free energy of mixing is zero at both ends
of a composition line and it is a function of mole fraction for the intermediate com-

positions. In order to describe mG ex(x) mathematically, Guggenheim (1937) sug-

gested a power series having the argument (xA - xB), so that:

(5.122)

where xA and xB are the mole fractions of the components A and B, respectively and

Ko, K1, and K2 are empirical parameters that are generally functions of pressure and

temperature.

Using the relationship (xA - xB) = [(1 - xB) - xB] = (1 - 2xB), Eq. (5.122) can be

rewritten as follows:

(5.123)

Depending on the number of parameters that are necessary to describe the excess
Gibbs free energy, different types of mixtures are distinguishable.

Solutions whose excess Gibbs free energy can be represented using only param-
eters with an even number as a subscript are called symmetrical. If all constants but
the first are zero, the solution is called simple (Guggenheim 1967). 

From relations (5.116) and (5.117) and (5.123) it follows that:

(5.124)
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(5.125)

These expressions are also termed the Redlich-Kister equations (Redlich and Ki-
ster 1948). 

In the case of a simple solution, Eqs. (5.124) and (5.125) simplify to:

(5.126)

and

(5.127)

In order to determine the physical meaning behind Ko, the values of the excess

chemical potential for components at infinite dilution must be considered. If com-
ponent A is infinitely diluted in B, xB approaches 1 and Eq. (5.126) reads:

(5.128)

In the case that component B is infinitely diluted in A, xB approaches 0 and Eq.

(5.127) obtains the following form:

(5.129)

In Eqs. (5.128) and (5.129)  and  designate the excess chemical po-

tential of component A and B at infinite dilution, respectively.  and  are the

corresponding activity coefficients.

Eqs. (5.128) and (5.129) can be combined to give:

(5.130)

Hence, in the case of simple solutions the excess chemical potentials of the com-
ponents at infinite dilution are equal. 

The constant Ko is often replaced by W G (e.g. Thompson 1967) or G (Froese

and Gunter 1976). Both W G and G refer to the physical meaning behind this quan-

B

ex
RT Bln 1 xB–

2
Ko K1 1 4xB–

K2 2xB 1– 6xB 1–

+

+ .

= =

A

ex
RT Aln xB

2
Ko= =

B

ex
RT Bln 1 xB–

2
Ko.= =

A
ex

RT Aln Ko.= =

B

ex
RT Bln Ko.= =

A

ex

B

ex

A B

A

ex

B

ex
RT Aln RT Bln Ko.= = = =



196 5 Gibbs free energy and Helmholtz free energy

tity, which is, as demonstrated above, the partial molar excess Gibbs free energy of
the component at infinite dilution.

The partial molar excess Gibbs free energy, G , consists, according to Eqs.

(3.21) and (5.9), of the partial molar excess internal energy, U , the partial molar

excess entropy, S , and the partial molar excess volume, V , as follows:

(5.131)

Because U  and H  are nearly equal at ambient pressure, Eq. (5.131) is normally
written as

(5.132)

or

(5.133)

for the case where W G is used instead of G . W G is frequently referred to as an in-

teraction parameter. W H, W S and W V depend on temperature and pressure. Their
dependence, however, is small and can be ignored in most cases. Solutions where

all terms except W H are zero are termed regular (see Hildebrand 1929).

Substituting W G for Ko in Eq. (5.22) and truncating the mG ex-polynomial after

the first term yields:

(5.134)

Accordingly it holds that:
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(5.137)
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If two parameters are required to describe the excess Gibbs free energy of mix-
ing, Eq. (5.123) becomes:

(5.138)

and the excess chemical potentials and the activity coefficients of the component A
and B are given by:

(5.139)

and

(5.140)

The relationship between the parameters Ko and K1 and the excess chemical po-

tentials of the components can be determined in the same way as in the case of a sim-
ple solution. One has to set the mole fraction xB successively to one and to zero. For

xB = 1, Eq. (5.139) reads:

(5.141)

and similarly for xB = 0, Eq. (5.140) becomes:

(5.142)

From Eqs. (5.141) and (5.142) it follows that

(5.143)

and

(5.144)
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(5.145)

and

(5.146)

if W G is used instead of the chemical excess potentials of the components at infinite
dilution. 

When the K parameters with both odd and even subscripts are required to de-

scribe the mGex as a function of composition, the solution is called asymmetric.

Substituting the expressions given in Eqs. (5.145) and (5.146) for Ko and K1 into

Eq. (5.138) yields:

(5.147)

Rearranging terms in Eq. (5.147) gives the so-called sub-regular or Margules

formulation of the excess Gibbs free energy of mixing (see Margules 1895). It holds
that:

(5.148)

or 

(5.149)

In this context the W G’s are termed Margules Parameters.

Using the relationship between the excess Gibbs free energy of mixing and the
activity coefficients of the components, as given in Eqs.(5.116) and (5.117), yields:
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and

(5.151)
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Eqs. (5.149) through (5.151) are frequently used expressions to describe the sub-
regular mixing behavior in mineral solutions. Their usefulness has been discussed a
number of times e.g. Carlson and Colburn (1942), Hardy (1953) and Thompson
(1967). 

Two additional expressions for the activity coefficients in binary solutions have
been developed by Carlson and Colburn (1942), namely:

(5.152)

and

(5.153)

They are derived from Eqs. (5.150) and (5.151) by rearranging of terms and fac-
toring out the mole fractions.

Following Eqs. (5.147) through (5.149), the  polynomial for regular so-

lutions reduces to the one for simple mixtures if = = .

Example 1: According to Hovis (1995) the heat of mixing for the sanidine-anal-
bite solid solution series is a symmetric function of composition. The enthalpic in-

teraction parameter, W H, at 977 K, has a value of 17.0 kJmol-1. The solution can be

described as being regular which means that both W V and W S are zero and, conse-

quently, W H = W G. The excess Gibbs free energy of mixing is given, according to
(5.134), by:

The resulting excess Gibbs free energy of mixing is shown graphically as a func-
tion of mole fraction of sanidine in Fig. 5.5. The two dotted lines are tangents to the

mG ex curve at  = 0 and 1, respectively. Their intersections with the or-

dinate at  = 0 and 1 give the excess chemical potentials of the components

at infinite dilution and correspond to the interaction parameter, W G. Because the
mixture is symmetric, the interaction parameters of the two components are equal.

In order to calculate the activity coefficients of the two components Eqs. (5.126)

and (5.127) are used. Rearranging terms and inserting the numerical value for WG

gives for analbite:
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and for sanidine:

Fig. 5.5 Excess Gibbs free energy mG ex as a function of the composition in the system 

sanidine-analbite.  and  are the interaction parameters of the 

corresponding components. They are equal because of the symmetric nature of the solu-
tion. (Data: Hovis 1995)
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Multiplying the activity coefficients by the corresponding mole fractions yields
the activities of the components, namely:

and

The results of the calculations for a temperature of 1173 K are given in Tab. 5.2. 

Fig. 5.6 shows the activities of analbite and sanidine as a function of the mole
fraction of sanidine.

Example 2: Using the experimental data on the (Na,K)Cl solvus, Chatterjee
(1991) derived polythermal-polybaric expressions for the Margules parameters.

Table 5.2 Activity coefficients and activities of the components in the system 
analbite-sanidine at T = 1173 K. (Data: Hovis 1995)

0.000 1.000 1.000 5.715 0.000

0.100 1.018 0.916 4.104 0.410

0.200 1.072 0.858 3.051 0.610

0.300 1.170 0.819 2.349 0.704

0.400 1.322 0.793 1.873 0.749

0.500 1.546 0.773 1.546 0.773

0.600 1.873 0.749 1.322 0.793

0.700 2.349 0.704 1.170 0.819

0.800 3.051 0.610 1.072 0.858

0.900 4.104 0.410 1.018 0.916

1.000 5.715 0.000 1.000 1.000

aNaAlSi3O8
x NaAlSi3O8

=

aKAlSi3O8
x KAlSi3O8

.=

xKAlSi3O8 NaAlSi3O8
aNaAlSi3O8 KAlSi3O8

aKAlSi3O8
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They are:

and

Fig. 5.6 Activities of analbite and sanidine as a function of the mole fraction of sanidine. 
Dotted lines give the activities for the case of ideal mixing. Note that the activities of the 

components are equal for = 0.5.

with T expressed in K and P in Pascal. In these equations the numbers refer, accord-

ing to Eq. (5.131), to the partial molar excess internal energy, U , the partial molar

excess entropy, S , and the partial molar excess volume, V  of the respective com-

ponent. Because V  is small, U  can be replaced by H at ambient pressure (P =
0.1 MPa). 

In order to calculate the excess Gibbs free energy of mixing as a function of com-
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position we use Eq. (5.149). At 873 K and 0.1 MPa the calculation reads:

and the results are shown in Fig. 5.7. 

Fig. 5.7 Excess Gibbs free energy of mixing for the halite-sylvite solid solution as a 
function of the mole fraction xKCl at 873 K and 0.1 MPa (Data: Chatterjee 1991).

Fig. 5.8 shows the excess Gibbs free energy of mixing,  the ideal Gibbs

free energy of the ideal mixing,  and the total Gibbs free energy of mixing,

 as a function of the concentration of sylvite in the halite-sylvite solid so-

lution.

Using Eqs. (5.150) and (5.151) the activity coefficients of halite and sylvite in the
NaCl-KCl solid solution are calculated as follows:
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Fig. 5.8 The Gibbs free energy of mixing in the system halite-sylvite as a function of 
composition of the solution. (Calculated using data of Chatterjee 1991).
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Following Chatterjee (1991), the Margules parameters for T = 873 K and 0.1

MPa are:  and 

Inserting these values into the equations given above, yields the following ex-
pressions for the activity coefficients of NaCl and KCl:

and

The results of the calculation are presented graphically in Fig. 5.9.

Fig. 5.9 The logarithms of activity coefficients for NaCl and KCl in the halite-sylvite 
solid solution as a function of composition at 873 K and 0.1 MPa. (Data: Chatterjee 
1991)

Fig. 5.10 shows the activities of the components NaCl and KCl as a function of
the mole fraction of sylvite, xKCl, which were calculated using Eq. (5.82). They are:
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Fig. 5.10 Calculated activities of NaCl and KCl as a function of composition at 873 K 
and ambient pressure. For further explanation see text. (Data: Chatterjee 1991)

As shown in Fig. 5.10, at xNaCl = 0.1 the value of the NaCl activity is 0.3022. This

means that NaCl with a mole fraction of 0.1 'behaves' thermodynamically as if it had
a mole fraction of 0.3022. 

The expression in Eq. (5.122) can be extended to multicomponent systems
(Redlich and Kister 1948). By truncating after the third degree-term, the excess
Gibbs free energy of mixing of a ternary solution is given as (King 1969): 

aNaCl x NaCl=

aKCl x KCl .=

1.0

0.8
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(5.154)

where the xis are the mole fractions of the components A, B and C. K, L and M are

empirical terms and are constant for constant P and T. The constant N describes the
ternary interaction between the components. As demonstrated by Cheng and Gan-
guly (1994), Eq. (5.154) is equivalent to that of Wohl (1953), which in the case of a
ternary solution reads:

(5.155)

Eq. (5.155) is obtained by replacing the constants Ki, Li and Mi by the corre-

sponding interaction parameters, , which, in the case of a binary solution, are

termed Margules parameters, namely:

(5.156)
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(5.161)

In the case that the bounding binaries behave as simple solutions Eq. (5.155) re-
duces to:

(5.162)

with D = (WA,B + WA,C + WB,C + NA,B,C). ,  and  are the interac-

tion parameters of the bounding binaries A-B, A-C and B-C, respectively.

The activity coefficients of the components in ternary systems are calculated sim-
ilar to the case for binary solutions. It holds that:

(5.163)

(5.164)

and

(5.165)

If the excess Gibbs free energy of mixing can be described by the expression giv-
en in Eq. (5.162), the following activity coefficients are obtained for the components
A, B and C:

(5.166)
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. (5.168)

In the case that all three bounding binaries of the system A-B-C behave as sub-
regular solutions the activity coefficient of, for example component A, reads: 

(5.169)

The expressions for the activity coefficient of the two remaining components are
analogous and are obtained by the cyclic permutation of the indices.

The use of Eqs. (5.166) through (5.169) is only possible if the ternary term NA,B,C

is known. This, however, is rarely the case. To overcome the problem, the assump-
tion is frequently made that the ternary interaction is negligibly small and it can be
ignored.

Example: If Eq. (5.169) is applied to the ternary system albite (ab)-orthoclase
(or)-anorthite (an), the following expressions for the activity coefficients of the
components albite, orthoclase and anorthite are obtained:

(5.170)
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for the albite component,

(5.171)

for the orthoclase component and

(5.172)

for anorthite. 

Consider now a ternary feldspar solid solution that contains 63.2 mol% albite, 6.6
mol% orthoclase and 30.2 mol% anorthite. In order to calculate the activity coeffi-
cients of the three components the binary and ternary Margules parameters are re-
quired. 

Tab. 5.3 gives the Margules parameters that were derived from phase equilibria
data for coexisting alkali feldspar and plagioclase (Fuhrman and Lindsley 1988).
The values presented in the last column give the Gibbs free energy interaction pa-

rameters. They are calculated for 1073 K and 0.1 MPa using the relationship: W G =

W  - TW S + PW V.
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Inserting the various WG values into Eqs. (5.170) through (5.172) yields:

for the activity coefficient of albite,

Table 5.3 Margules parameters for ternary phases in the system albite-orthoclase-anorthite 
(Fuhrman and Lindsley 1988).

W H[Jmol-1] WS[Jmol-1K-1] WV[cm3mol-1] W G[Jmol-1]

Wab-or 18810 10.3 3.94 7758

Wor-ab 27320 10.3 3.94 16268

Wab-an 28226 - - 28226

Wan-ab 8471 - - 8471

Wor-an 47396 - - 47396

Wan-or 52468 - -1.20 52468

Wab-or-an 8700 - -10.94 8700

ab 0.066
2

7758 2 0.632 16268

7758–

+

0.302
2

28226 2 0.632 8471 28226–+

2 0.632 0.066 0.302 16268 8471+

2 0.066 0.302 0.066 52468 0.302 47396+

0.066 0.302
1
2
--- 7758 16268 28226 8471

47396 52468

+ + +

+ + 8700+ 1 2 0.632–

+

–

+

+

8.3144 1073

exp

0.981

=

=
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for that of orthoclase and 

for the activity coefficient of anorthite.

In order to account for the configurational entropy resulting from the aluminium-
silicon order, which is governed by the Al-avoidance rule, the so-called ideal activ-
ities must be calculated. They are, according to Ghiorso (1984), given by:
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(5.173)

(5.174)

and

(5.175)

Inserting the numerical values for the mole fractions of albite, orthoclase and an-
orthite into Eqs. (5.173) through (5.175) yields:

and

In order to obtain the activities of the components in a non-ideal feldspar solid
solution, the ideal activities are to be multiplied by the respective activity coeffi-
cients, i.e.:

and

The activity models, which are presented above, were derived from an analysis
of the compositional behavior of the excess Gibbs free energy of mixing. Models
that were developed considering interactions between the atoms constituting the so-
lution are rarely used and will not be discussed here. 
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5.4  Gibbs free energy of reaction

Consider a closed thermodynamic system consisting of components A, B, C and D.
If a chemical reaction of the type

takes place at constant pressure and temperature, the change in the Gibbs free ener-
gy, dG, is given by:

(5.176)

where ni designates the number of moles of the component i. Considering the defi-

nition of the chemical potential (Eq. (5.43)), Eq. (5.176) can be rewritten as follows:

(5.177)

In the case of a chemical reaction the molar increments, dni’s are related to one

another through the stoichiometric coefficients and the extent of reaction, as given
in Eq. (2.113). So, the change in the Gibbs free energy of a system is given by:

(5.178)

Dividing Eq. (5.178) by d and assuming that the reaction occurs at constant pres-
sure and temperature, yields:

(5.179)

rG is called the Gibbs free energy of reaction. It corresponds to the change in

the Gibbs free energy of a system with respect to the extent of reaction at constant
pressure and temperature.

The relationship between the Gibbs free energy of reaction, the enthalpy of reac-
tion and the entropy of reaction is given by the Gibbs-Helmholtz equation, namely:

(5.180)
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5.4.1 Standard Gibbs free energy of reaction

If the chemical potential, i, in Eq. (5.177) is split into standard and rest potential,

the Gibbs free energy of reaction reads:

(5.181)

In the case that reactants, as well as products, occur in their standard states, all
activities in Eq. (5.181) are 1 and the second term within the parentheses vanishes.
The Gibbs free energy of reaction is then equal to the stoichiometric sum of the stan-
dard potentials, and Eq. (5.181) obtains the form:

(5.182)

In this case rG
o is referred to as the standard Gibbs free energy of reaction and

the corresponding reaction is called the standard reaction. The choice of standard
conditions depends on the definition of the standard potential of the phase under
consideration. For gases, the state of an ideal gas at 0.1 MPa and the temperature of
interest are frequently chosen as the standard state. The standard potential of solid
phases, however, generally refers to the pure phase at the temperature and pressure
of interest. In the case of aqueous solutions, the state of infinite dilution is normally
chosen.

The second term within the parentheses in Eq. (5.181) accounts for the concen-
tration of the components participating in the reaction. Combining Eqs. (5.181) and
(5.182) yields:

(5.183)

A special type of reactions is that one in which a compound is formed from the
elements at standard conditions. The Gibbs free energy associated with this reaction
is referred to as the standard Gibbs free energy of formation, fG298.

Using the Gibbs-Helmholtz equation, the standard Gibbs free energy of forma-
tion can be calculated from the standard enthalpy of formation, fH298, and the con-

ventional standard entropies of the components, as follows:

(5.184)
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or 

(5.185)

where  designates the change in the entropy associated with the formation of

the compound from the elements at standard conditions. In analogy to the standard

enthalpy of formation, ,  can be called the standard entropy of for-

mation.

5.5  Problems

1. Consider a pyrope-almandine garnet solid solution, (Mg,Fe)3Al2Si3O12, con-

taining 70 mol% pyrope, Mg3Al2Si3O12.

• Calculate the Gibbs free energy of mixing at 1000 K assuming ideal mixing
behavior for garnet.

2. Calculate the change in the chemical potential of an ideal gas in the case that at
a constant temperature of 800 K, the pressure of the gas increases from 0.1 MPa
to 0.5 GPa.

3. The binary solid solution muscovite, KAl2[AlSi3O10](OH)2 - paragonite,

NaAl2[AlSi3O10](OH)2, shows asymmetric behavior. The corresponding Gibbs

free interaction parameters, according to Chatterjee and Froese (1975), read:

• Express the excess Gibbs free energy of mixing as a function of composition.

• Calculate the molar excess enthalpy of a muscovite-paragonite solid solution
containing 15 mol% paragonite for 0.2 GPa.

• Calculate the molar excess volume and the molar excess entropy of the musco-
vite-paragonite solid solution containing 10 mol% muscovite.

• Calculate the activity coefficients and activities of the components in a solid
solution containing 15 mol% paragonite at 0.2 GPa and 600°C.

• Calculate the molar Gibbs free energy of mixing for a muscovite-paragonite
solid solution containing 15 mol% paragonite at 0.2 GPa and 600°C using the
activities calculated above. 

fG298 fH298 298.15 fS298,–=

fS298

fH298 fS298

Wpg mu–
G

12230 0.71T K 6.65
6–

10 P Pa  and + +=

Wmu pg–
G

19456 1.654T K 4.56
6–

10 P Pa+ +=
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4. The heat of formation of grossular, Ca3Al2Si3O12, equals -6638.30 kJmol-1. Its

third law entropy and molar volume are equal to 256.00 Jmol-1K-1 and

125.35 cm3mol-1, respectively. The thermal expansion  = 2.39x10-5 K-1, the

compressibility coefficient  = 6.3 x 10-12 Pa-1 and Cp[Jmol-1K-1] = 728.6 -

40.986 x10-3T - 3.128 x106T-2- 6077.4 T -0.5(Holland and Powell 1990).

• Calculate the chemical potential (apparent Gibbs free energy) of grossular at
2.0 GPa and 800°C. Assume that the thermal expansion as well as the com-
pressibility coefficient are pressure and temperature independent.

5. The dehydration of phlogopite, KMg3[AlSi3O10](OH)2, in the presence of

quartz can be described by the following chemical reaction: 

Phlogopite + 3Quartz  Sanidine + 3 Enstatite + H2O (steam).

• Calculate the standard Gibbs free energy of the reaction at 0.3 GPa and 600 K
using the data in Tab. 5.4. Assume that steam behaves ideally, that the enthalpy,
the entropy and the volume of reaction are temperature and pressure indepen-
dent, and that total pressure equals the pressure of the steam. 

• How do you interpret the result?

Table 5.4 Thermodynamic data of the components involved in the reaction
of phlogopite with quartz (Holland and Powell 1996)

Phase

Phlogopite - 6219.44 328.00 149.64

Quartz - 910.88 41.50 22.69

Sanidine - 3964.90 230.00 109.00

Enstatite (MgSiO3) - 1545.13 61.25 31.31

H2O (steam) - 241.81 188.80 -

fH298 kJmol
1–

S298 Jmol
1–
K

1–
V298 cm

3
mol

1–



Chapter 6   Thermal equilibrium

An isolated system is in the state of thermal equilibrium if the total entropy has a
maximum value, i.e. 

(6.1)

From Eq. (6.1) it follows that the temperature, as well as the pressure, are the
same throughout the system. If this is not the case, irreversible equalization process-
es take place. This can be verified by a simple thought experiment. Consider an iso-
lated system that is in equilibrium. If an infinitesimal amount of heat is transferred
from one part of the system to another, then, in order to maintain thermal equilibri-
um, the condition 

(6.2)

must be fulfilled. This is only the case if the temperature in all parts of the system is
the same, that is

(6.3)

An analogous relationship holds for pressure. 

In order to derive the equilibrium condition for a closed system, we start with the
statement that says that a system is in equilibrium when all infinitesimal changes of
state occur reversibly. Excluding chemical reactions from the consideration, these
changes are given by Eqs. (4.5) and (4.6). Hence, the equilibrium conditions for adi-

abatic (dS = 0) and isochoric (dV = 0) changes of state read:

(6.4)

and for adiabatic (dS = 0) and isobaric (dP = 0) changes:

(6.5)

dSi
i

0.=

dS dS1 dS2+ Q
1
T1

----- 1
T2

----- 0= = =

T1 T2.=

dU V S 0=

dH P S 0.=
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Expressions, analogous to Eq. (6.5) are obtained from Eqs. (5.12) and (5.13). For
isothermal (dT = 0) and isochoric changes it holds:

(6.6)

and for isothermal (dT = 0) and isobaric (dP = 0) changes:

(6.7)

According to Eqs. (6.4) through (6.7), the functions of state U, H, F, and G and
the total entropy, S, have extreme values at equilibrium. Because all states of a sys-
tem in the neighborhood of equilibrium can be attained only by work, the values of
the functions U, H, F and G must be at a minimum.

In the case that a phase undergoes a phase transition from  to at constant P and
T, the equilibrium is, according to Eq. (5.176), given by:

(6.8)

The molar increments in Eq. (6.8) are interdependent, because the amounts of the
disappearing and the appearing phase must be the same. Therefore, one can write: 

(6.9)

and

(6.10)

Eq. (6.10) holds only if 

(6.11)

Following Eq. (6.11), equilibrium between phases exists when the chemical po-
tentials of the component in the coexisting phases are equal. This condition is not
restricted to the case of two phases only. It holds for any number of phases that co-
exist at a given temperature and pressure.

For reacting systems containing many components, the condition of chemical
equilibrium is given by:

(6.12)

dF T V 0=

dG T P 0.=

dG P T dn dn+ 0.= =

dn dn– dn= =

– dn 0.=

.=

dU S V dH S P dF V T dG P T i id 0.= = = = =
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For practical use only those functions whose variables are P, T and V are useful,
because the use of entropy as an independent variable is inconvenient.

6.1  Stability conditions for phases in one-component sys-
tems

Because heat capacity can not have a negative value, the entropy of a stable phase
can only increase with increasing temperature. This fact can be expressed mathe-
matically as follows:

(6.13)

On the other hand, the derivative of the Gibbs free energy with respect to temper-
ature at constant pressure gives negative entropy, Eq. (5.16):

Combining the two equations yields:

(6.14)

Fig. 6.1 Schematic representation of the Gibbs free energy of a stable phase as a function 
of temperature at constant pressure.
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Thus, according to Eq. (6.14), the Gibbs free energy curve of a stable phase as a
function of temperature at constant pressure is concave with respect to the T axis.
Moreover, because of the relationship: G = H - TS, the G(T)-curve has a negative
slope. The temperature dependence of the Gibbs free energy at constant pressure is
shown schematically in Fig. 6.1.

According to Eq. (5.14) the volume corresponds to the derivative of the Gibbs
free energy with respect to pressure, namely:

Because the volume of a stable phase decreases with increasing pressure, its de-
rivative with respect to temperature at constant temperature must be negative i.e.:

(6.15)

Considering this two relationships, one can write:

(6.16)

Fig. 6.2 Schematic representation of Gibbs free energy of a stable phase as a function of 
pressure.

P

G

T
V.=

P

V

T
0.

T
2

2
G

T

0.

G

P



222 6 Thermal equilibrium

Hence, the curve of Gibbs free energy of a stable phase as a function of pressure
is concave with respect to the P axis. The mathematical expression for the G(P)

curve is G = U - TS + PV. Because volume can assume positive values only, the
slope of the curve is normally positive. The run of the G(P) curve is presented graph-
ically in Fig. 6.2.

In an orthogonal coordinate system a G(P,T) function of a stable phase is repre-
sented by a curved surface. The intersection between the surface and any plane, that
stands perpendicular on the P-T-plane results in a curve which is concave with re-
spect to the P-T-plane (see Fig. 6.3).

Fig. 6.3 Gibbs free energy surface as a function of pressure and temperature. The trace 
of the intersection between the free energy surface and the plane that is parallel to the G
axis is a curve that is concave with respect to the P-T plane.

The stability conditions, discussed above, can be described mathematically as
follows:

(6.17)
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In the case of polymorphism, every phase has its own G(T) and G(P) curve. Fig.
6.4 shows an example for a trimorphic substance with three phases ,  and . At a
given temperature, the most stable phase has the lowest Gibbs free energy. The tem-
peratures at which two G(T) curve cross is termed the transformation temperature

and here, the chemical potential of the transforming phases are equal, as required by
Eq. (6.11). The temperature of the intersection of the Gibbs free energy curves for
the phases  and  lies above the G(T)-curve of the phase . This means that phase

 is stable at this temperature, while the coexistence between  and  is metastable.

Fig. 6.4 G(T)-curves of a trimorphic substance with the phases ,  and T T and 

T  are the transformation temperatures. The parenthesis designate the metastability of 
the phase transformation.

6.1.1 Phase equilibria in one-component systems.

At the transition point the coexisting phases are, according to Eq. (6.11), in equilib-
rium with one another, if the chemical potentials of the component in both phases
are equal. Should equilibrium persist after infinitesimal changes in pressure and
temperature, it must hold that the incremental changes in the chemical potentials are
also equal i.e.

(6.18)
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where i designates the component and  and  the two coexisting phases.

In the case of pure components, the pressure and temperature dependence of the
chemical potential is given by Eq. (5.22). Thus, Eq. (6.18) can be written as follows:

(6.19)

In Eq. (6.19)  and  are the molar entropies and  and  the molar vol-

umes of the component i in the phases  and  at P and T of interest, respectively.
Because the system contains only one component, the subscript i is not necessary
and can be dropped. Reordering the terms and factoring out dP and dT yields:

(6.20)

where  and  are entropy and volume of transformation, respec-

tively. Eq. (6.20) gives the slope of the phase boundary in the P-T diagram. It is re-
ferred to as the Clausius-Clapeyron equation and can be used to calculate the
position of phase boundaries in one component systems provided that one point of
the transformation is known. For this purpose, the expression in Eq. (6.20) must be
integrated over the range between the known temperature and pressure of transfor-
mation, To and Po, and the temperature and pressure of interest, T and P, i.e.

(6.21)

In the case of solid-solid transitions the pressure and temperature dependence of
the entropy and volume of transformation is small and can be neglected without in-
troducing considerable error, provided the pressure and temperature intervals are
not to large. Integrating Eq. (6.21) yields:

(6.22)

Example: Consider the one component system Al2SiO5. It consists of three phas-

es: kyanite, andalusite and sillimanite. In order to calculate the boundaries between
the three stability fields using the Clausius-Clapeyron equation the molar volumes,
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the standard entropies of the phases and the P-T-coordinates of two different transi-
tions are required. We take 454 K and 950 K (derived from thermodynamic data
given by Robie and Hemingway 1995) as the transition temperatures for the trans-
formation of kyanite to andalusite and for andalusite to sillimanite at ambient pres-
sure, respectively. Using these data and the data from Tab. 6.1 all three phase
transition boundaries can be calculated.

We begin with the phase transition boundary between kyanite and andalusite. Be-
cause of the linear relationship between the temperature and pressure of transforma-
tion, the phase transition boundary can be defined by two transition points. The first
one, which holds for the ambient pressure, is at 454 K. For the second one, a pres-
sure of 0.3 GPa is chosen and the calculation of the corresponding temperature
reads:

The transition temperature for the transformation of andalusite to sillimanite at
ambient pressure is 950 K. The transition temperature at 0.3 GPa is then:

.

In order to calculate the phase transformation boundary kyanite/sillimanite we

Table 6.1 Thermodynamic data of the phases in the system Al2SiO5. (Robie and 

Hemingway 1995)

Phase V[cm3mol-1] S[Jmol-1K-1]

Andalusite 51.52 91.4

Kyanite 44.15 82.8

Sillimanite 49.86 95.4
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make use of the fact that the three curves intersect at the so-called triple point. At
the pressure and temperature conditions of the triple point all three phase coexist
and, therefore, the following relationship holds:

where Ptp is the pressure of the triple point. 

Solving the above equation yields:

The temperature of the triple point, Ttp, can be calculated by inserting Ptp into any

of the two equations that were used to calculate the phase transition boundaries. We
take the equation giving the phase transition boundary andalusite/sillimanite and ob-
tain:

.

The pressure and temperature of the triple point are now used to determine the
phase transition boundary kyanite/sillimanite. A pressure of 0.6 GPa is chosen as the
second transition point and the corresponding temperature is calculated as follows:

.

The results of the calculation are presented in Fig. 6.5, where the calculated tem-
peratures are designated by open squares. The filled squares give the transition tem-
peratures for kyanite/andalusite and andalusite/sillimanite at 0.1 MPa. These are the
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transition points that were used to undertake the calculations.

Fig. 6.5 Phase transition boundaries in the one-component system Al2SiO5 that were 

calculated using the Clausius-Clapeyron equation. Filled squares: given transition points 
and open squares: calculated transitions points.

6.1.2 Classification of phase transformations

According to the work of Ehrenfest, phase transitions are classified according to the
behavior of a state function at the transition point. A first-order transition is one in
which the Gibbs free energy as a function of state variables (P,T) is continuous,
while the first derivative of the Gibbs free energy with respect to any variable of
state is discontinuous. Considering the relationships that are given in Eqs. (5.16) and
(5.17), the functions of state entropy, enthalpy and volume are discontinues at the
transition point. Examples of first-order phase transitions are melting and transfor-
mations between isostructural phases (Toledano and Toledano 1987). Variation in
the Gibbs free energy, entropy and enthalpy with temperature are illustrated sche-
matically in Fig. 6.6.

One important feature of first-order transitions are definite values for the entropy,
enthalpy and volume of transformation. This is the result of the fact that the values

8

6

4

2

0

P
[k

b
a

r]

1000900800700600500400

T[K]

kyanite
sillimanite

andalusite



228 6 Thermal equilibrium

of these functions change stepwise at the point of transition. 

Fig. 6.6 The variation of the Gibbs free energy, entropy and enthalpy as a function of 

temperature at the transition point in the case of a first-order transition.  and  

are the entropy and enthalpy of transformation from  to , respectively.
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The behavior of the Gibbs free energy and volume as a function of pressure is
shown schematically in Fig. 6.7.

Fig. 6.7 Variation of the Gibbs free energy and volume with pressure in the case of a 

first-order transformation.  gives the volume of transition from  to .

After Ehrenfest, a second-order transition is one in which the Gibbs free energy
function and the first derivatives are continuous while the second derivatives are
discontinuous. Thus, the functions S, H, and V should show no discontinuity. How-
ever, the heat capacity, Cp, the thermal expansion coefficient, and the compress-

ibility coefficient,  should be discontinuous at the transition point, because they
are the second derivatives of the Gibbs free energy with respect to temperature and
pressure, respectively. Some of these relations are illustrated by the following equa-
tions:

Eq. (6.23) shows, for example, the correlation between the second derivative of
the Gibbs free energy with respect to temperature, the first derivative of the entropy
with respect to temperature and Cp:

(6.23)

Eq. (6.24) gives the relationship between the second derivative of the Gibbs free
energy with respect to pressure, the first derivative of volume with respect to pres-
sure and the compressibility, namely:

(6.24)
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and Eq. (6.25), finally, demonstrates the correlation between the second derivative
of the Gibbs free energy divided by temperature, the first derivative of the enthalpy
and the heat capacity at constant pressure, i.e.:

(6.25)

Fig. 6.8 Variation of the Gibbs free energy, G, entropy, S, and heat capacity, Cp, with 

temperature in the case of the second-order transition. Ttr gives the transition tempera-

ture.

Fig. 6.8 shows schematically the variation of the Gibbs energy, entropy and heat
capacity with temperature. The Gibbs free energy and its first derivative, the entro-
py, do not show a discontinuity at the temperature of transition. The heat capacity,
which is the second derivative of the Gibbs free energy with respect to temperature,
however, is a step function. Directly at the transition temperature, there is a change
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from one definite value to another definite value. Ehrenfest’s classification requires,
therefore, that trCp is finite. This, however is normally not the case. For most sec-

ond order transitions there is experimental evidence that Cp, and thus trCp, be-

comes infinite at the transition temperature. The shape of the Cp curve near the

transition temperature then resembles the greek letter , and thus this type of transi-
tion is often referred to as lambda transition. An example of a lambda transition is
shown in Fig. 6.9.

Fig. 6.9 Heat capacity of fayalite, Fe2SiO4, as a function of temperature showing a 

Lambda transition at 64.9 K.

Another way to determine the change in the Gibbs free energy associated with a
phase transition is given by Landau theory. Central to this theory is the concept of
an order parameter, Q, which is related to the change of some macroscopic property
through the phase transition. Such macroscopic properties can be, for example, op-
tical birefringence, spontaneous strain, etc. The proportionality between the order
parameter, Q, and the measured macroscopic properties is usually either linear or
quadratic. Although changes in macroscopic properties are clearly related to some
microscopic interactions, a knowledge of these interactions is not necessary for Lan-
dau theory, where the Gibbs free energy associated with a phase transition is given
as a polynomial expansion of the order parameter. It describes the energy changes
that are superimposed on those caused by "normal" temperature variations and is
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therefore called the excess Gibbs free energy of transition. 

Landau’s expression for the excess Gibbs free energy associated with a phase
transition reads:

, (6.26)

where , A, B and C are empirical coefficients. The value of the order parameter, Q,
vary from 1, at absolute zero, to zero at some critical temperature, Tc, where the high

temperature phase becomes stable.

At equilibrium, the function GL has its minimum value with respect to Q, i.e:

(6.27)

In order to satisfy the conditions given in Eq. (6.27), the coefficient  in Landau’s
expression must be zero and, in addition, A must be positive. If A was negative, the
low temperature phase would be stable. At T = Tc, the sign of A must change from

positive to negative. These requirements are governed by the expression:

(6.28)

where a is a constant.

Substituting Eq. (6.28) into the Landau’s expression for the excess Gibbs free en-
ergy yields:

. (6.29)

In the case of a second-order transition, Q must vary continuously from 1 to 0
with temperature. This is only the case if all the odd order terms in the polynomial
expansion are zero. Considering this and also the fact that two or three terms of the
expansion are normally sufficient to describe the excess Gibbs free energy changes,
the Landau’s equation can be rewritten as:

(6.30)

Expression Eq. (6.30) allows Q to change between 1 and 0, but it does not pre-
clude the possibility of a discontinuity in Q. Depending upon the value of the coef-
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ficients C and D, three types of transformation can be defined, namely:

a) C is positive and the sixth-order term is negligibly small. In this case 
Q varies continuously between 1 and 0 as a function of temperature 
and the phase transition is second-order.

b) C is negative and D is positive. Here, at some given temperature, 
which is designated as Ttr and where Ttr > Tc, Q is discontinuous as a 
function of temperature. It jumps from a definite value Q = Qo to Q = 
0. At this temperature, the low temperature phase with Q = Qo coex-
ists with the high temperature phase with Q = 0.The phase transition 
is first-order and the height of the 'step' corresponds to the change in 
the thermodynamic functions associated with the phase transition.

c) C is zero and D is positive and the sixth-order term is present and is 
positive. Such an expansion describes a phase transition that is some-
where between second and first-order in nature. It is called tricritical 

phase transition.

Fig. 6.10 shows the order parameter Q as a function of temperature for a sec-
ond-order and a tricritical phase transition.

Fig. 6.10 Q as a function of temperature in the case of a second-order phase transition 
(solid line) and a tricritical phase transition (dotted).

In the case of a second-order phase transition, Q varies with temperature as:

(6.31)
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and in the case of a tricritical phase transition as:

(6.32)

In order to obtain the excess Gibbs free energy due to a second-order phase tran-
sition, Q in Eq. (6.30) has to be substituted by the expression given in Eq. (6.31).
Considering the fact that in the case of a second-order phase transition the sixth-or-
der term in negligibly small, the Landau expansion reads:

(6.33)

The other excess thermodynamic functions can be derived from Eq. (6.33). The

excess entropy, SL, is

(6.34)

and the excess enthalpy, HL, accordingly

(6.35)

The excess heat capacity, , can be obtained from Eq. (6.34), namely

(6.36)

Analogous calculation yields the excess thermodynamic quantities for the tricrit-
ical phase transition:

(6.37)
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(6.39)

Fig. 6.11 Square of the intensity of the superlattice reflection (1123) for CaCO3 as a 

function of temperature. The intersection of the regression line with the abscissa gives 
the critical temperature Tc = 1260 K. All reflection intensities are normalized to 1 by 

dividing them by the strongest reflection (Data of Dove and Powell 1989).

Example: The high temperature phase transition in calcite, CaCO3, involves the

orientational disordering of CO3 groups. In the low temperature modification, the

planar CO3 groups are ordered in alternate layers where they point in opposite di-

rection. The ordering is associated with extra reflections in x-ray diffraction pat-
terns, giving so-called superlattice reflections. In the high temperature phase, the
CO3 groups are free to rotate and, thus, are crystallographically equivalent. There-

fore, the intensity of the super lattice reflections decreases on heating and they be-
come zero at the temperature of transformation, Tc. If the square of the reflection

intensity is plotted versus temperature, a linear relationship is obtained (see Fig.
6.11). This is, according to Eq. (6.32), an indication of a tricritical transition. Sym-
metry considerations, which cannot be discussed here, require a quadratic propor-
tionality between the intensity of the superlattice reflections and the order
parameter, Q. Thus, if the reflection intensity is expressed to the second power, the
following relationship holds: 
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(6.40)

Fig. 6.11 shows the square of the intensity of the superlattice reflection 1123 for
CaCO3 as a function of temperature. The best-fit line to the data points intersects the

abscissa at 1260 K, which, according to Eq. (6.40), is the temperature of transfor-
mation, Tc.

In Fig. 6.12 the logarithm of the normalized reflection intensity is plotted versus
the logarithm of the temperature difference (Tc - T). The plot yields a linear relation-

ship and the slope of the line is twice the exponent that characterizes the nature of
the transition (see Eqs. (6.31) and (6.32)). In our example, the slope has a value of
0.48, which is very close to 0.5. The exponent is therefore, equal to 1/4 and the trans-
formation is, as already stated, tricritical. 

.

Fig. 6.12 Logarithm of the normalized reflection intensity, ln (I/Io) vs. ln (Tc - T) for cal-

cite, CaCO3. According to Eqs. (6.31) and (6.32) the slope of the line is twice the expo-

nent that characterizes the nature of the phase transformation. 

Following Eqs. (6.37) through (6.39), the values of the Landau constants a and D

are needed to calculate the excess enthalpy, HL, excess heat capacity,  and ex-

cess entropy, SL, associated with the tricritical phase transition in calcite. Redfern et
al. 1989 determined experimentally the required constants using the calorimetry.
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They measured the change in the enthalpy associated with the disordering in calcite
as a function of temperature and determined the following values:

a = 24 Jmol-1K-1

D = 30 kJmol-1.

The temperature dependence of the excess entropy arising from the disordering
is calculated according to Eq. (6.37):

At a temperature of T = 0 K the zero point entropy of ordering, ordS(T=0), is ob-

tained, namely:

In order to calculate the enthalpy change associated with the tricritical phase tran-
sition Eq. (6.38), is used:

The enthalpy of ordering at absolute zero is then:

The excess heat capacity due to ordering is obtained using Eq. (6.39):

6.2  Stability conditions for solutions

The stability of a solid solution depends not only on temperature and pressure but
also on its composition. This means a stable solid solution must not decompose
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spontaneously in two or more phases of different compositions if temperature and
pressure are held constant. 

Consider a hypothetical binary system A-B. According to, the Gibbs free energy
of this system is

(6.41)

Dividing the chemical potentials into a standard potential and a composition de-
pendent part yields:

(6.42)

Fig. 6.13 The Gibbs free energy of a binary solution A,B as a function of composition at 
constant pressure and temperature. The double arrow designates the deviation of the 
Gibbs free energy of the solution from that of a mechanical mixture for the given mole 
fraction of xB.

Fig. 6.13 shows schematically the variation of the Gibbs free energy as a function
of the mole fraction xB in the binary solution, (A,B), at constant pressure and tem-

perature. At xB = 0 and at xB = 1, the value of G equals  and , respectively.
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The G(x)-curve, therefore, starts and ends at the values of the chemical potentials of
the pure components. The dashed line gives the contribution of the standard poten-
tials to the Gibbs free energy of the solution. Because the activities of the compo-
nents A and B vary between 0 and 1, their contributions to the Gibbs free energy are
negative over the whole compositional region. The G(x)-curve must, therefore lie
underneath the dashed line that represents the Gibbs free energy for the mechanical
mixture of the pure end-members. For any xB, the distance between the dashed line

and G(x)-curve corresponds to the term RT xilnai. The tangent to G(x)-curve is giv-

en by

(6.43)

The limiting values of B and A at xB = 0 and xB = 1 are finite and zero, respec-

tively. The slope of the G(x)-curve at xB = 0 is, therefore, - and at xB = 1 + In

the intermediate compositional region two different cases are to be distinguished:

Case #1: The Gibbs free energy curve as a function of composition is convex with
respect to the concentrational join, as demonstrated in Fig. 6.14. Consider a solution
that contains xB moles of the component B and assume that it decomposes into the

phases  and . The Gibbs free energy of a mechanical mixture is then:

(6.44)

where G  and G  are the Gibbs free energies of the phases  and , respectively. As

shown in Fig. 6.14, the Gibbs free energy of a mechanical mixture (Gmm) is greater

than that of a homogenous solution (Gss). The homogenous solution is, therefore,
stable under the given conditions. Because the Gibbs free energy curve is convex
with respect to the compositional join between xB = 0 and xB = 1, a solution is always

more stable than any mechanical mixture of two phases of the same bulk composi-
tion. This means that there is complete miscibility between the components A and
B. In this place it is important to mention that a complete miscibility is only possible
if the end-members, as well as the solid solution, have the same crystal structure. 
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Fig. 6.14 The Gibbs free energy as a function of composition in the case of complete 
miscibility between the components A and B. xB designates the mole fraction oft the 

component B in the solution A,B,  and  are the mole fractions of the component B 

in the phases  and , respectively.  gives the Gibbs free energy for a mechanical 

mixture consisting of phases  and .  is the Gibbs free energy of the homogenous 

solution. G  and G give the Gibbs free energies of the phases  and .

Case #2: The Gibbs free energy curve as a function of composition has convex

as well as concave segments (see Fig. 6.15). In the region between S  and S , small
separation of composition, due to the fluctuations, leads to a lowering of the energy.
Any solution inside this compositional region is, therefore, unstable and decompos-
es spontaneously into two phases. The compositions of the stable phases are given

by the points of tangency to the Gibbs free energy curve at Q  and Q . They are
referred to as binodes, and because they lie on the common tangent, the chemical
potentials of the components A and B are equal in both phases, i.e.:

(6.45)

Using the relationships that are given in Eqs. (5.49) and (5.50), one can write:
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(6.46)

for the chemical potentials of the component A in the phases  and and

(6.47)

for the chemical potentials of the component B in the coexisting phases.

Fig. 6.15 Variation of the Gibbs free energy as a function of the mole fraction xB in a 

system in which spontaneous decomposition takes place. Gss and Gmm give the Gibbs 
free energy of the solution and the corresponding mechanical mixture consisting of two 

separate phases, respectively. S  and S  designate the spinodes and Q and Q the bin-
odes.

Subtracting Eq. (6.46) from Eq. (6.47) yields:

(6.48)

Eq. (6.48) requires that the slope of the tangent to the G(x) curve is the same at
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both points of tangency, i.e. at Q and Q , respectively.

It is important to note that the binodes do not the necessarily coincide with the
minima of the Gibbs energy versus mole fraction curve. 

S  and S  are referred to as spinodes and designate inflection points on the G(x)
curve. In the region inside these points, the second derivative of the Gibbs free en-
ergy with respect to the mole fraction, xB, is positive for all compositions. Such so-

lutions are unstable, because any compositional fluctuations gives rise to a decrease
in the total Gibbs free energy. The process of separation continues until two differ-
ent phases attain spinodal compositions. This process of spontaneous unmixing is
referred to as spinodal decomposition. Here, it is important to note that spinodal de-
composition takes place inside a homogenous phase. On a local scale the concentra-
tion of some component in the phase increases and as a result a depletion of the same
component occurs in the surrounding region. 

At the inflection points, the second derivative of the Gibbs free energy with re-
spect to composition is zero. Infinitesimal compositional fluctuations around these
points do not lead to a reduction of the Gibbs free energy. Solution having the spin-
odal composition do not, therefore, decompose spontaneously, although the system
is not at equilibrium. 

Fig. 6.16 Energy relationships associated with the formation of a spherical nucleus. 
Because the positive energy contributions of the surface energy and the strain energy 
dominate over the Gibbs free energy of the bulk, the resultant Gibbs free energy 
increases until it reaches a maximum at the critical radius rc. With further growth of the 

nucleus, the resultant free Gibbs energy decreases. 

rc
0

+

-

fr
e
e

e
n

e
r y

strain
energy

surface
energy

free Gibbs
enery of
the bulk

resultant
energy change

radius



6.2 Stability conditions for solutions 243

Solutions with compositions lying between the spinodes and binodes do not de-
compose spontaneously but are metastable. The process of spontaneous decompo-
sition can not take place in these two regions, because, as can be seen in Fig. 6.15,
small fluctuations in composition lead to an increase in the Gibbs free energy. De-
composition only occurs if the degree of undercooling is large enough to overcome
the energetic barrier associated with the energy of nucleation. Thereby a nucleus

with composition  can form. Initially, the decrease in the Gibbs free energy of the

bulk system resulting from the undercooling is outweighed by two positive energy
contributions, which are the strain and the surface energy (see Fig. 6.16). A positive
strain energy arises because the compositions and, thus, the molar volumes of the
parent and the exsolving phase are different. Consequently, the exsolving phase re-
quires more or less space than the original phase. The positive surface energy is due
to the surface tension that always exists between two different phases. After the nu-
cleus reaches some critical size (rc), the negative Gibbs free energy of the bulk out-

weighs the positive Gibbs free energies originating from the strain and the surface
tension. Thereby the new phase can grow. The diffusion of one of the components
into the new phase causes the original solution to change in composition until the

equilibrium composition, , is reached.

In the early stage of phase separation, the process of spinodal decomposition dif-
fers significantly from that of nucleation and growth. In the case of spinodal decom-
position, the separation of phases occurs by so-called uphill diffusion (Cahn 1968).
This means that the component, that accumulates in the exsolving phase diffuses
continuously from lower to higher concentration, a behavior that is somewhat con-
tradictory to that which might be expected. The driving force for diffusion is a de-
crease in the total Gibbs free energy that is associated with the decomposition of the
original solution into two phases (see Fig. 6.15). Initial separation occurs inside a
grain and the result is a wavy micro structure with sinusoidal variation in composi-
tion about a mean without sharp interfaces between the compositional crests and
troughs (see Fig. 6.17b). With time, the concentrations of the diffusing components
in the new phases increase in wavelength as well as in amplitude. In the final stage,
the compositional profiles square up and are not distinguishable from those that are
formed by nucleation and growth (Fig. 6.17d). 

The nucleation and growth process leads to nuclei having definite (binodal) com-
positions with sharp interfacial boundaries (see Fig. 6.17c). In the immediate local
region around the nucleus, the component that accumulates in the new phase is de-
pleted. Subsequent growth of the new phase requires, therefore, a continuous supply
of this component from the host phase. Thus, the component diffuses from a region
of higher to the a region of lower concentration. Hence, the new phase grows by
so-called downhill diffusion.

xB

xB
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Fig. 6.17 A comparison between spinodal decomposition and nucleation and growth 
mechanisms. a) initial stage, b) sinusoidal fluctuation in composition due to spinodal 
decomposition, c) formation of exsolution lamellae in the case of nucleation and growth, 
and d) final state for either process. The arrows show the direction in which the compo-

nent B diffuses.  is the mole fraction of the component B in the homogeneous solu-

tion before decomposition.  and  give the equilibrium mole fractions for the 

component B in the phases and , respectively.

6.2.1 Coherent exsolution

An exsolving phase and its host can have a close structural relationship with one an-
other. In the case that their crystal structures are similar, they can be oriented such
that their planes match across the interface. The degree of this lattice match is ex-
pressed in terms of coherency. In the case where the lattice spacings of the exsolved
phase and the host match exactly, the planes of the host continue across the interface
into the new phase. The interface is then called coherent. If the difference between
the crystal structures of the parent and exsolving phase are to large to form coherent
boundaries then a semi-coherent interface is formed. In this case some planes of the
host continue into the exsolved phase and some terminate at the interface. If there is
no structural relationship between the parent and the exsolved phase, a incoherent
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interface is obtained. Fig. 6.18 shows schematically the cases for coherent, semi-co-
herent and incoherent interfaces between host and exsolved phases. 

The adjustment of the lattice at and near the interface creates strain that generates
positive Gibbs free energy. This energy is termed the Cahn energy, , and, accord-
ing to Robin (1974), can be calculated as follows:

(6.49)

where k is a constant that is derived from the elastic constants of the phase under

consideration. x and xo give mole the fractions of the component i for the exsolved
phase and for the bulk crystal, respectively. G is the strainfree Gibbs free energy of
the system. 

Fig. 6.18 Coherent (a), semi-coherent (b) and incoherent (c) interfaces (schematically)
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Example: A well known case for coherent exsolution is shown by crypthopertitic
alkali feldspars. Using two different data sets of elastic constants for feldspar, Robin

(1974) calculated two different values for k, namely: 2525.5 Jmol-1 and

2948 Jmol-1. In our calculations, we will use the smaller one rounded up to a value

of 2526 Jmol-1.

For the sake of convenience, the Gibbs free energy of mixing, mG(x), instead of

the total Gibbs free energy, G(x), will be considered here. The two functions show
the same dependence on composition because, the free Gibbs energy of mixing,

mG(x), is obtained by subtracting the sum  from the total Gibbs free ener-

gy, G(x). The same is true with respect to the relationship between (x) and (x).
In order to calculate mG(x) we follow Robin (1974) and use the exchange param-

eters,  and , as determined by Thompson and Waldbaum (1969)

and obtain:

where

and

Using the value 2526 for k, the Cahn energy is calculated according to Eq. (6.49),
as follows:

where  and  are the mole fraction for sanidine in the bulk crys-

tal and in the exsolved phase, respectively. Two mole fractions were chosen for the
bulk crystal, namely: 0.3 and 0.4. The results of the calculation are presented graph-
ically in Fig. 6.19. 
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As can be seen in Fig. 6.19, the slope of the common tangent to the (x) curves
depends on the bulk composition of the solution. The points of tangency, which de-
termine the composition of the coexisting coherent phases, however, remain invari-
able. The inflection points of the (x) curve give the coherent spinodes. They
delimit the compositional region where a spontaneous coherent decomposition takes
place. Coherent spinodes lay inside the strainfree or chemical spinodes. Similarly,
the coherent binodes lay inside the chemical or strainfree binodes.

Fig. 6.19 Variation of the Gibbs free energy with composition for the system high albite 
- sanidine. The solid curve gives the Gibbs free energy of mixing, mG(x). The dashed 

and the dotted curves represent the Cahn energy calculated using the bulk compositions 

= 0.4 and 0.3, respectively.  marks the composition of the incoherent 

and  that of coherent binodes. While the slope of the common tangent to the 

curve depends on the bulk composition, , the location of the two binodes 

does not. The value of the constant k = 2526 Jmol-1.

A G(x) curve extends over the entire compositional region only if the end-mem-
bers, as well as the solid solution phases, crystallize in the same crystal structure. If
this is not the case, different G(x) curves exist for the different phases. The phase
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with the lowest Gibbs energy is the stable one and if two G(x) curves intersect, two
phases coexist. In order to obtain the composition of the coexisting phases, a com-
mon tangent to the curves must be drawn. The points of tangency give the mole frac-
tions for the components for the coexisting phases. Fig. 6.20 shows G(x) curves for
the case where the end-member phases crystallize with different crystal structures.
The end-member A crystallizes as the phase  and the end-member B as phase .
The G(x) curve of the phase does, therefore, not intersect the ordinate at xB = 1. In

the same way the Gibbs free energy curve of the phase  does not intersect the or-

dinate at xB = 0. At equilibrium, the solution (A,B)  coexists with the solution

(A,B) . The concentration of B in the coexisting phases is determined by the points
of tangency of the common tangent to the Gibbs free energy curves of the two phas-
es.

Fig. 6.20 G(x) as a function of composition for the case where the end-member A crys-

tallizes as phase  and the end-member B as phase   and  are the mole fractions 

of the component B in the coexisting solid solutions  and , respectively.  is the 

standard potential of the component A in phase  and  is the standard potential of 

the component B in phase .
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6.3  Gibbs free energy and phase diagrams of binary sys-
tems

Fig. 6.21 Relationship between the Gibbs free energy of mixing and a T-x diagram in the 
binary system A-B containing a miscibility gap. Tc = critical temperature of mixing, and 

xc = critical mole fraction.

The nature of the mG(x) curve depends on the activities of the components in the

solution. The latter depend on pressure, temperature and composition and, therefore,
the Gibbs free energy of mixing depends on these variables. If at constant pressure,
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mG(x) curves are known for a series of different temperatures, a corresponding T-x

diagram can be constructed. Similarly, a P-x diagram can be drawn if the mG(x)

curves at different pressures and constant temperature are known. 

The relationship between the Gibbs free energy of mixing and a T-x diagram is
shown schematically in Fig. 6.21.The system consists of the components A and B.
The mG(x) curves are drawn for temperatures T1 through T6, whereby increasing

numbers designate increasing temperatures. The points of tangency of the common
tangents to the curves give the position of the binodes for the corresponding temper-
atures. If the binodes of subsequent temperatures are connected by a curve, a misci-
bility gap as a function of temperature is obtained. In our example, the curve
connects the chemical binodes. It, therefore, represents the strain-free or chemical

solvus. The connection of the inflection points on the curves for different tempera-
tures would yield the strainfree spinodal, which, however, does not play any practi-
cal role in the case of solid solutions. At temperature T5, the binodes and spinodes

coincide. This temperature is called the critical temperature of mixing (Tc) and the

corresponding mole fraction is referred to as the critical mole fraction, xc. The two

variables are the coordinates of the crest of the miscibility gap in the T-x diagram.
Above Tc, there is complete miscibility between components A and B.

Fig. 6.22 Schematic T-x diagram for the system A-B. 1 = strain-free or chemical solvus, 
2 = coherent solvus, 3 = strain-free or chemical spinodal, 4 = coherent spinodal. Inside 
the coherent spinodal is the region of spontaneous decomposition.
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The stabile binodal compositions can only be achieved after the coherency is re-
moved. This happens, for example, by the formation of discrete grains. As long as
the coherency strain is maintained the Cahn energy determines the position of the
spinodes and binodes. The coherent spinodal and coherent solvus can be construct-
ed in the same way as in the case of incoherency. The points of tangency from the
common tangent to the Cahn energy curves yield the coherent binodes and the
points of inflection give the coherent spinodes. The temperature and the mole frac-
tion at which the binodes and spinodes coincide represent the critical conditions for
the coherent solvus. The concentration region inside the coherent spinodals is the re-
gion of spontaneous decomposition and is frequently referred to as the instable area.

Fig. 6.22 shows a schematic T-x diagram with a strain free solvus, incoherent
spinodal, coherent solvus and coherent spinodal. The coherent solvus occurs inside
the strain free one. The consequence is that further decomposition takes place as
soon as coherency is lifted. Moreover, the critical temperature of the coherent solvus
is lower than that of the strain free one.

Fig. 6.23 T-x diagram for the system A-B with complete miscibility of the components in 

the phases and  and  give the concentration of the component B in the coex-

isting phases  and , respectively.

Fig. 6.23 shows a T-x diagram for a system where the end-members A and B form
two complete solutions (  and ). The phase transformation  to  for the end-mem-
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ber A takes place at temperature TA and that for the end-member B at TB. The rela-

tionship between this diagram and the Gibbs free energy as a function of
temperature and composition is shown in Fig. 6.24. 

Fig. 6.24 G-x diagrams for the binary system A-B at four different temperatures. The 
end-members form two complete solutions  and .

At T1, which is lower than TA, the G(x) curve for the phase  is below that for the

phase  over the entire compositional region. Hence, phase  is the only stable mod-
ification at this temperature. At T2, the G(x) curves of the phases  and  intersect.

The points of tangency of the common tangent to the curves give the composition
of the coexisting phases  and  at the temperature T2. In the compositional region

between xB = 0 and xB = , the G(x) curve of phase is below that of phase .

Phase is, therefore, the stabile phase over this compositional region at temperature
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T2. In the region  xB  1 the Gibbs free energy curve of phase  is lower than

that of phase . Phase  is, therefore, at this temperature the stabile modification. At
T3 a similar arrangement of curves is observed. The only difference is that their in-

tersection is now closer to the pure end-member component B. Lastly, at T4, the G(x)

curve of phase occurs under that of  over the entire compositional region. At this
temperature phase  is, therefore, the only stable modification. 

6.3.1 Calculation of phase diagrams from thermodynamic data

Critical mixing conditions, binodal, spinodal

At the critical mixing conditions the binodal and spinodal curves coincide. The spin-
odes are the inflection points of the G(x) curve and mark the transition between the
concave and convex segments of the curve. Therefore, the following relationship
holds:

(6.50)

At the spinode located on left side of the hump of the Gibbs free energy curve,
the third derivative is negative because the second derivative changes from positive
to negative. The spinode on the right side, however, is the point where the second
derivative changes from negative to positive. Here, the third derivative is, therefore,
positive. At the critical conditions the two spinodes coincide and the third derivative
must be zero in order to fulfill the conditions for both spinodes simultaneously, i.e.

(6.51)

In order to formulate the critical condition using the chemical potentials and the
activities, one has to start with G(x) as a function of composition, which reads:

(6.52)

Substituting the excess Gibbs free energy of mixing, mGex, for the last two

terms in Eq. (6.52) yields:
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(6.53)

Consecutive differentiation of G(x) with respect to the mole fraction xB gives:

(6.54)

(6.55)

and

(6.56)

From Eqs. (6.50) and (6.51) it follows that

(6.57)

and

(6.58)

In the case of simple solutions, the excess Gibbs free energy can be expressed,

according to Eq. (5.134), using the interaction parameter W G as:

(6.59)

The second derivative of the excess Gibbs free energy is then: 
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(6.60)

and the third derivative is:

(6.61)

Combining Eqs. (6.60) and (6.61) with (6.57) and (6.58) yields:

(6.62)

and

(6.63)

From Eq. (6.63) the critical mole fraction  = 0.5 is obtained and inserting this

value in Eq. (6.62) gives the critical temperature, Tc as:

(6.64)

A reordering of terms in Eq. (6.64) gives:

(6.65)

The meaning of Eq. (6.65) can be demonstrated using the activity/mole fraction
relationship.

In the case of a simple binary solution, the activity of component B as a function
of mole fraction is, according to Eqs. (5.82) and (5.127), given by 

2
mG

ex

xB
2

--------------------------- 2W
G

,–=

3
mG

ex

xB

3
--------------------------- 0.=

RT

xB 1 xB–
------------------------- 2W

G
=

RT 2xB 1–

xB

2
1 xB–

2
------------------------------ 0.=

xB

c

Tc
W

G

2R
--------.=

W
G

RTc

--------- 2.=



256 6 Thermal equilibrium

(6.66)

where Ko in Eq. (5.127) is replaced by W G.

Fig. 6.25 Activity as a function of mole fraction for a simple binary solution with differ-

ent values of W G/RT. The solid curve gives the activity of the component B at the criti-
cal temperature Tc. The composition c is metastable. A solution with this composition 

decomposes into two phases (a and b).

Fig. 6.25 shows a plot of the thermodynamic activity, aB, vs. mole fraction, xB,

for different values of W G/RT. At temperatures higher than the critical temperature,

Tc, W G/RT is smaller than 2 and the activity increases monotonously with increas-

ing mole fraction. Here, the miscibility between the end members is complete. At

the critical temperature W G/RT is equal to 2 and the aB(x)-curve has an inflection

point with a horizontal tangent. At temperatures below the critical temperature,

W G/RT is larger than 2 and the activity curve has a S like form. Initially, the activity
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increases with increasing mole fraction of B until it reaches a maximum value and
then it decreases and after reaching a minimum value it slightly increases again. As
a result, three different compositions can have the same activity. Two of them give
the compositions of the coexisting stable phases into which a solution decomposes

(a and b in Fig. 6.25). The composition c is metastable. For the case W G/RT = 0, the
activity is equal to the mole fraction over the entire compositional region, i.e., the
activity coefficient equals 1 and consequently, the excess Gibbs free energy of mix-
ing is zero. The solution is ideal and ideal mixtures can not have a miscibility gap.

The binodal compositions can be calculated using the conditions of chemical
equilibrium, that require the chemical potentials of the components to be equal in
the coexisting phases, i.e:

(6.67)

and

(6.68)

In the case of a simple solution, Eqs. (6.67) and (6.68) can be written as follows:

(6.69)

and

(6.70)

For the coexisting phases, the chemical potentials of the components A and B re-
fer to the same standard state (pure end-member). Therefore, Eqs. (6.69) and (6.70)
can be rewritten as:

(6.71)

and

(6.72)

In the case of a simple symmetrical solution it holds that
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(6.73)

so that Eqs. (6.71) and (6.72) simplify to:

(6.74)

Reordering of the terms in Eq. (6.74) and solving for T yields:

(6.75)

Considering the relationship given in Eq. (6.64), Eq. (6.75) can also be written in
terms of the critical temperature, Tc, i.e.:

(6.76)

From Eq. (6.62) follows that:

(6.77)

or

(6.78)

if the term 2R/WG is replaced by 1/Tc.

Fig. 6.26 shows calculated binode and spinode for a hypothetical system A-B
with a critical temperature of mixing of Tc = 973 K. A simple mixture model is as-

sumed to describe the mixing behavior and the value of the interaction parameter

W G is 16.18 kJmol-1.
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Fig. 6.26 Calculated binode and spinode in a hypothetical system A-B, where the com-

ponents A and B form a simple mixture. The interaction parameter, WG, is assumed to 

have a value of 16.18 kJmol-1. The critical temperature of mixing is 973 K. xB,c = criti-

cal mole fraction of the component B.

Simple eutectic system 

Consider the T-x diagram for a hypothetical binary system A-B as shown in Fig.
6.27. In this system, the components A and B are completely soluble in the liquid
phase but are immiscible in the solid phases. The two boundaries, that separate the
stability field of the melt from the areas with two coexisting phases (melt and
end-member A and melt and end-member B, respectively) are called the liquidus.
The point, where the two curves intersect designates the lowest melting temperature
in the system. It is referred to as the eutectic temperature. Consequently, the corre-
sponding composition is termed the eutectic composition.
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Fig. 6.27 Schematic T-x diagram of a hypothetical binary system A-B with complete 
miscibility of the components in the melt and no miscibility in the solid phase. TA and TB

are the melting temperatures for the end-members A and B, respectively. E = eutectic. 

= chemical potential of the component B in the melt, = chemical standard 

potential of the component B.

At temperature T the pure solid end-member B and a melt with composition 

coexist. The condition for the thermodynamic equilibrium requires that the chemical
potentials of the component B are equal in both liquid and solid phase, i.e.:

(6.79)

or

(6.80)

where  and  designate the standard chemical potential of component B and

its activity in the melt, respectively. Assuming that the melt is an ideal solution, the

activity of component B in Eq. (6.80) can be replaced by the mole fraction, , and

the equilibrium condition reads:
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(6.81)

In order to maintain thermodynamic equilibrium after infinitesimal changes in
temperature and pressure, changes in the chemical potentials of the component B
must be equal in both phases, so that:

(6.82)

A T-x diagram shows the phase relationships as a function of temperature at con-
stant pressure. Therefore, in order to calculate such a phase diagram using thermo-
dynamic data, the variation in the chemical potential with temperature must be
known. According to Eqs. (5.16) and (5.17) the derivatives of the chemical potential
with respect to temperature yield the entropy or, if the chemical potential is divided
by T, the enthalpy. For the sake of convenience, the enthalpy is preferred over the
entropy and the relationship given in Eq. (5.99) is used. Dividing Eq. (6.81) by T
and differentiating with respect to temperature yields: 

(6.83)

or

(6.84)

To calculate the liquidus curve, Eq. (6.84) has to be integrated over the tempera-
ture range between the melting temperature of component B, TB, and the tempera-

ture of interest, T:

(6.85)

Considering the fact that xB equals 1 at TB and assuming that the difference

 is independent of temperature, integration of Eq. (6.85) gives:
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(6.86)

where  is the enthalpy of melting for the pure component B.

The liquidus curve on the left side of the eutectic (see Fig. 6.27) can be calculated
in a similar way. In this case, the equilibrium condition at temperature T is described
by the following expression:

(6.87)

where  and  designate the standard chemical potentials of component A in

the melt and in the solid end-member A, respectively. Dividing Eq. (6.87) by T and
differentiating with respect to temperature gives:

(6.88)

Integrating Eq. (6.88) over the temperature range between T and TA leads to: 

(6.89)

where  designates the enthalpy of melting for the pure component A.

At the temperature of the eutectic, TE, the value of the mole fraction  is the

same in Eq. (6.86) and Eq. (6.89). Hence, the two equations can be combined to
give:

(6.90)

Eq. (6.90) cannot be solved analytically. In order to calculate the temperature of
the eutectic, the trial-and-error or Newton’s method has to be applied. 

Example: Consider the binary system CaMgSi2O6 - CaAl2Si2O8. At 0.1 MPa, the

melting temperatures of diopside and anorthite are 1668 K and 1830 K, respective-

ly. The enthalpy of melting for diopside is 137.7 kJmol-1 and that one for anorthite
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is 133.0 kJmol-1. (All data are taken from Robie and Hemingway 1995).

The mole fraction of CaAl2Si2O8 in the melt that coexists with pure diopside,

CaMgSi2O6, is calculated using the exponential form of Eq. (6.89), i.e.

Eq. (6.86) is used to calculate the mole fraction of CaAl2Si2O8 in the melt, which

is at thermodynamic equilibrium with pure anorthite, namely:

The results of the calculations are shown in Fig. 6.28.

Fig. 6.28 T - x diagram for the system CaMgSi2O6 - CaAl2Si2O8 calculated using ther-

modynamic data of Robie and Hemingway (1995). Tdi = melting temperature of diop-

side, Tan = melting temperature of anorthite, E = eutectic, TE = eutectic temperature, 

arrow marks the eutectic composition (30.22 mol% CaAl2Si2O8).
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The eutectic temperature is calculated using the Newton’s method, where the so-
lution to an equation is found by an iteration procedure according to the formula:

(6.91)

where xo is the initial value and x1 is the result of the first cycle that is then used as

the input value for the second cycle etc. The calculation is repeated until the differ-
ence between two consecutive values of xi is close to zero. Applying this method to

our example gives:

or

Using 1620 K as the initial value, the iteration procedure yields the following
temperatures:
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As can be seen, T2 and T3 are the same. Hence, 1609 K is the temperature of the

eutectic.

Binary system with complete miscibility of the components in two 

phases

Fig. 6.29 shows a schematic T-x diagram of a binary system in which the two com-
ponents A and B form two complete solutions termed  and . TA and TB mark the

transition temperatures for the end-members A and B, respectively. 

At some temperature, T, lying between the melting points of the end-members,
the phases  and  are in equilibrium with one another, if the chemical potentials of
the respective component are equal in both phases, i.e.

(6.92)

and

(6.93)

Phase  as well as phase  are solutions and, therefore, Eqs. (6.92) and (6.93)
can be extended to:

(6.94)

and

(6.95)

respectively.

In the case that the solutions  and are ideal, the activities can be replaced by
the mole fractions and one obtains:

(6.96)

and

(6.97)
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Fig. 6.29 A hypothetical binary system A-B with complete miscibility of the components 
in the two phases and . TA marks the melting temperature of component A and TB that 

of component B. The two 'single phase' stability fields of phases  and are separated 

by the 'two phase' field where the phases  and coexist.  and  are the mole frac-

tions of the coexisting phases at temperature T.

Should thermodynamic equilibrium remain when temperature and pressure
change, the changes in chemical potentials of the components in the coexisting
phases must be equal, i.e.,

(6.98)

and

(6.99)

In order to calculate a T-x diagram, the derivatives of the chemical potentials with
respect to temperature are required. Because the enthalpy is a more convenient func-
tion for the calculation of a T-x diagram than the entropy, the derivative of the quo-
tient /T with respect to temperature is taken again, so that:
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(6.100)

and

(6.101)

is obtained.

Rearranging Eqs. (6.100) and (6.101) and solving them for the natural logarithm
of the composition yields:

(6.102)

and

(6.103)

In Eqs. (6.102) and (6.103) the terms  and  designate the en-

thalpy of the phase transformation of  to  for the end-members A and B, respec-
tively.

In order to calculate the mole fractions of the components A and B in the phases
 and  as a function of temperature, Eqs.(6.102) and (6.103) must be integrated.

The limits of integration are given by the transformation temperature of the
end-member and the temperature of interest. Considering that the mole fraction of
the component B, xB, is zero at temperature TA and one at temperature TB and as-

suming that the temperature dependence of the enthalpies of transformation is small
and can, therefore, be neglected, the integration yields:

(6.104)
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(6.105)

for the component B.

The exponential forms of the Eqs. (6.104) and (6.105) read: 

(6.106)

and

(6.107)

A reordering of Eq. (6.107) leads to the expression for the mole fraction ,

namely:

(6.108)

Substituting the expression in Eq. (6.108) for the mole fraction  in Eq. (6.106)

gives:

(6.109)

Solving Eq. (6.109) for  yields:
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Eq. (6.110) gives the mole fraction of component B vs. temperature curve for the
phase . The corresponding curve for the phase  is calculated according to Eq.

(6.108) using the mole fractions  obtained from Eq. (6.110).

Example: Forsterite, Mg2SiO4, and fayalite, Fe2SiO4, are completely soluble in

the liquid as well as in the solid phase. At ambient pressure, forsterite melts at
2174 K (Richet et al. 1993) and fayalite at 1490 K (Stebbins and Carmichael 1984).

The enthalpies of melting are 142 kJmol-1 (Richet et al. 1993) and 89.3 kJmol-1

(Stebbins and Carmichael 1984) for forsterite and fayalite, respectively. The calcu-
lation of the liquidus curve as a function of temperature is carried out by applying
Eq. (6.110) as follows:

In the expression given above, the enthalpies of melting are divided by 2 because
a one cation basis is used in the calculation. This means that (Mg,Fe)Si0.5O2 is taken

as the chemical formula of olivine and not (Mg,Fe)2SiO4 as normally done. The en-

thalpy of melting given in the thermodynamic tables refers to the full formula unit
and, therefore, half of these value has to be used in the calculation of the phase
boundaries. 

The solidus curve as a function of temperature is calculated using Eq. (6.108). In-
serting the numerical data in this equation, the calculation reads:

The results of the calculation are shown graphically in Fig. 6.30. 

In order to calculate a P-x diagram for a hypothetical binary system A-B, the de-
rivatives of the chemical potential with respect to pressure are required. In the case
of an infinitesimally small changes in pressure at constant temperature the equilib-
rium between two ideal solid solutions (e.g.  and ) is maintained if the conditions:
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and

(6.112)

are fulfilled.

Fig. 6.30 T-x diagram of the binary system Mg2SiO4 - Fe2SiO4 at 0.1 MPa calculated 

using the heats of fusion of the end-members. = melting temperature of for-

sterite, = melting temperature of fayalite.

Rearranging terms in Eqs. (6.111) and (6.112) leads to
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(6.113)

and

(6.114)

where the terms  and  give the changes in volume of the pure

components A and B associated with the phase transformation from  to , respec-
tively.

In order to obtain the compositions of the coexisting phases as a function of pres-
sure Eqs. (6.113) and (6.114) must be integrated. The limits of integration are the
transformation pressure of the respective end-member component and the pressure
of interest. At PA and PB the mole fraction of either component is zero and one, re-

spectively.The integration therefore yields:

(6.115)

and

(6.116)

where PA is the transformation pressure of the pure end-member component A and

PB that one of the pure end-member B.

In the exponential form Eqs. (6.115) and (6.116) read:
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(6.118)

where  and  designate the volumes of transition of the compo-

nents A and B, respectively.

Rearranging Eq. (6.118) gives:

(6.119)

Substituting Eq. (6.119) for  and rearranging the terms yields:

(6.120)

Using Eq. (6.120) the mole fraction of component B in the phase as a function
of pressure can be calculated. The results can then be used to calculate the compo-
sition of the coexisting phase according to Eq. (6.119). 

6.4  Gibbs phase rule

The Gibbs phase rule gives the number of variables that can be changed indepen-
dently of one another without changing the number of phases in a system. It defines
the variance at equilibrium in the case where the number of components and the
number of coexisting phases are known. The number of free variables is referred to
as the number of the degrees of freedom. It is equal to the difference between the
number of state variables and the number of equations relating these variables. The
Gibbs phase rule can be derived as follows:

Consider a system containing C different components that occur in  different
phases. The thermodynamic state of each phase is determined by pressure, temper-
ature and composition, where the latter is generally expressed in mole fraction. If all
components occur in all phases, there are  x C mole fractions in total. In each phase,
however, the mole fractions sum to 1 and, therefore, only
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(6.121)

mole fractions are required to describe the composition of a system. One mole frac-
tion of each phase is determined by the rest of the (C-1) mole fractions. In addition
to the composition, i.e. mole fractions, pressure and temperature must be known in
order to define the system at equilibrium. The total number of variables that are re-
quired to specify the thermodynamic state of a system is, therefore, given by:

(6.122)

The variables are related to each other by the chemical potentials of the compo-
nents, which, in the case of thermodynamic equilibrium, are equal in all phases. For
a component i that is contained in the phases 1 through , for example, it holds that:

In the case that a system contains  different phases, (  -1) independent pairs of
equal chemical potential can be formulated. For example, if the component i occurs
in three phases, only the pairs:

 and 

are independent, while the equality

results automatically from the two relations that are given above. Generally, it holds
that in a system containing C different components, there are in total C( -1) inde-
pendent equations interrelating the variables. In order to obtain the number of the
degrees of freedom or variance, the number of independent equations has to be sub-
tracted from the number of independent variables, i.e: 

(6.123)

or

(6.124)

which is the usual form of the Gibbs phase rule.

Depending on the number of degrees of freedom, equilibria are designated as in-
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variant (F = 0), univariant (F = 1), or divariant (F = 2), etc. The largest number of
coexisting phases is equal to C + 2. 

Example: The one-component system Al2SiO5 is trimorphic. The three phases

are kyanite, andalusite and sillimanite. If all three phases coexist, the number of the
degrees of freedom is, according to the Gibbs rule, zero, namely

Hence, the equilibrium is invariant. The coexistence of kyanite, andalusite and
sillimanite is only possible at one definite pressure and one definite temperature. In
a P-T-diagram these two variables define a point, the so-called triple point. A
change in either variable causes the loss of equilibrium and at least one phase dis-
appears.

Although the Gibbs phase rule appears to be simple, its application to natural sys-
tems is in many cases problematical. A violation of the phase rule clearly indicates
disequilibrium, but if it is obeyed, this does not prove a state of equilibrium.

The number of possible invariant, univariant, divariant, etc. equilibria can be cal-
culated using a combinatorial formula, that determines in how many ways N ele-
ments can be arranged in groups of k elements. The formula reads:

(6.125)

In our case, the total number of elements, N, corresponds to the largest number
of coexisting phases in a system containing C components. As can be determined
from the Gibbs phase rule, this number is equal to C + 2. Accordingly, the number
of elements, k, contained in the group corresponds to the number of coexisting phas-
es. Thus, one obtains:

(6.126)

Example: In the one-component system Al2SiO5 the number of invariant triple

points is:

The number of univariant curves, where two phases coexist is:
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and the number of divariant fields containing one phase is:

6.5  Problems

1. According to Akimoto et al. (1977), fayalite, Fe2SiO4, undergoes a phase tran-

sition from -Fe2SiO4 (olivine) to -Fe2SiO4 (spinel) at 700°C and 52.1 kbar. 

• Calculate the pressure of the phase transition at 1000°C using the Clausius-Cla-
peyron equation. Assume that entropy of transition and the volume of transition
are temperature and pressure independent.

aHolland and Powell (1998), bMarumo et al. (1977), cNavrotsky et al. (1979)

2. The interaction parameter of a hypothetical regular binary solution A-B has a

value of 20 kJmol-1.

• Calculate the critical temperature of mixing.

• Calculate the spinodal compositions at 700°C.

3. Calculate the melting temperature of a mechanical mixture consisting of 10
mol% sphene, CaTiSiO5, and of 90 mol% anorthite, CaAl2Si2O8. Assume that

the melt behaves ideally, that the melting enthalpy of anorthite is independent of
temperature and that no CaTiSiO5 is insoluble in solid anorhtite and vice versa.

• Calculate the activity coefficient for anorthite in the case that the same mixture
melts at 1818 K.

3 2
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4. For the binary system Mg2SiO4 - Fe2SiO4, the pressure of the phase transition

olivine spinel depends strongly upon the composition of the transforming
phase. An increasing content of Mg2SiO4 increases transformation pressures.

Pure forsterite, Mg2SiO4, does not transform directly to spinel type structure, but

to a phase that is termed -Mg2SiO4. At very high pressures -Mg2SiO4 finally

undergoes the transition to the spinel phase. 

Using the thermodynamic data of Navrotsky et al. (1979) a pressure of 10.7 GPa
is obtained for the metastable phase transformation olivine  spinel for pure

forsterite at 700°C. The volume of transition equals - 4.02 cm3mol-1. Pure fay-
alite undergoes this phase transition at 5.21 GPa (Akimoto et al. 1977). The

change in volume is equal to - 4.27 cm3mol-1.

• Calculate the mole fraction of fayalite for coexisting olivine and spinel at
700°C and 6.5 GPa assuming that olivine and spinel behave ideally and that the
volumes of transition are pressure independent.

Recall that there are two thermodynamically equivalent crystallographic sites
per formula unit in olivine!

5. Consider the ternary system MgO-Al2O3-SiO2 containing the phases: forsterite

(fo), enstatite (en), kyanite (ky), cordierite (crd) and spinel (sp).

• Draw the Gibbs triangle for this system and plot the compositions of the phases
given above.

• Show the univariant and divariant assemblages.



Chapter 7   Chemical reactions

7.1  Phase equilibria in reacting systems 

A system is, according to Eq. (6.7), at equilibrium if its Gibbs free energy has a min-
imum value. This means that the total differential of the Gibbs free energy must be
equal to zero, i e.

Applying this condition to reacting systems (see Eqs. (5.178) and (5.179)) yields:

(7.1)

provided the reaction takes place at constant pressure and temperature. If the chem-
ical potentials, i, in Eq. (7.1) are written in the extended form as the sum of the

standard potentials and the logarithm of activities, the following expression results:

(7.2)

or

(7.3)

if the definition of activity is considered.

According to Eq. (5.182), the stoichiometric sum of the standard potentials of the

components coefficients gives the standard Gibbs free energy of reaction, .

Thus, Eq. (7.3) can be rewritten as:

(7.4)
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Further, it holds that 

(7.5)

where

(7.6)

The value KP,T in Eq. (7.6) is referred to as the thermodynamic equilibrium con-

stant.

Considering Eqs (7.2) through (7.5), the condition for thermodynamic equilibri-
um in a reacting system reads:

(7.7)

or

(7.8)

7.1.1 Reactions in systems containing pure solid phases

In the case of a chemical reaction between pure phases, the activities of all compo-
nents equal 1. Consequently, the logarithm of the thermodynamic constant, KP,T, is

equal to zero and the standard Gibbs free energy of reaction, rG
o, also equals zero.

In order to describe thermodynamic equilibrium in a reacting system as a function
of temperature and pressure, the standard Gibbs free energy as a function of these
two variables must be known. 

The temperature dependence of the Gibbs free energy of reaction is given by the
Gibbs-Helmholtz equation, according to which it holds that

(7.9)

If, additionally, the temperature dependence of the enthalpy and entropy of reac-
tion is considered, Eq. (7.9) can be written as:
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(7.10)

In Eq. (7.10) rH298 designates the standard enthalpy of reaction and, thus, rep-

resents the stoichiometric sum of the standard enthalpies of formation of the partic-
ipating phases. rS298 is the standard entropy of reaction and is calculated using

third-law entropies. Eq. (7.10) holds for the standard pressure of 0.1 MPa.

The pressure dependence of the standard Gibbs energy of reaction can be derived
using the cross-differentiation identity, which holds for an exact differential. Ac-
cording to this rule, one can write:

(7.11)

or

(7.12)

where rV in Eq. (7.12) is the volume of reaction. It corresponds to the change in

volume of a system per unit reaction progress variable, .

Using the relationship given in Eq. (7.12), the standard Gibbs free energy of re-
action at pressure P and temperature T reads:

(7.13)

if the reactants as well as the products are pure end-member phases. In Eq. (7.13)

rV(T) indicates the volume of reaction at temperature T. If the volume of reaction

is considered to be independent of pressure and temperature, the integration of the
last term in Eq. (7.13) within the limits of Po and P yields:

(7.14)

Substituting the expression present in Eq. (7.10) for  in Eq. (7.14) gives:
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(7.15)

If additionally, the enthalpy and entropy of reaction are assumed independent of
temperature, Eq. (7.15) simplifies to:

(7.16)

In the case that the pressure and temperature dependence of volume is taken into
consideration, the integral in Eq. (7.13) obtains the form:

(7.17)

In Eq. (7.17), the term ( ( iVi,298)Po)/2 is neglected. Its contribution to the result

is negligibly small, because . i and i are the thermal expansion and com-

pressibility coefficient of the component i, respectively. The term ( iVi,298) repre-

sents the stoichiometric sum of the products of the molar volumes times the
corresponding thermal expansion coefficients, i.e.

(7.18)

Analogously, the term ( iVi,298) gives the stoichiometric sum of the products of

the compressibility coefficients times the molar volumes, so that

(7.19)

The volumes in Eqs. (7.18) and (7.19) refer to the ambient pressure and temper-
ature. The bold letter is used to indicate the pure phases. 
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Combining Eqs. (7.10) and (7.17) yields the standard Gibbs free energy of reac-
tion for the case where the temperature and pressure dependence of the state func-
tions is considered, namely:

(7.20)

or

(7.21)

when the polynomials of the molar heat capacities of the phases involved in the re-

action have the form: Cp = a + bT - cT -2.

For a system in thermodynamic equilibrium, rGP,T equals zero and Eq. (7.20)

reads:

(7.22)

Eq. (7.22) can be used to calculate the equilibrium conditions for reacting sys-
tems when all reactants are solid phases and when a high precision is required. In
many cases, however, the pressure and temperature dependence of the state func-
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tions can be neglected and Eq. (7.22) simplifies to: 

(7.23)

Example 1: Consider the reaction:

Assuming that all changes in thermodynamic functions associated with the reac-
tion are independent of temperature and pressure, the equilibrium conditions can be
calculated using, Eq. (7.23). 

First, the enthalpy, entropy and the volume of reaction are to be calculated. In or-
der to calculate the enthalpy of reaction the standard enthalpies of formation are
used and the calculation reads: 

The entropy of reaction represents the stoichiometric sum of the conventional
standard entropies of the phases involved, namely:

and the volume of reaction is obtained using the molar volumes of the phases at stan-
dard conditions as follows:

Table 7.1 Thermodynamic data for grossular, quartz, anorthite
and wollastonite (Robie and Hemingway 1995)

Phase
[kJmol-1] [Jmol-1K-1] [cm3mol-1]

Grossular -6640.0 260.1 125.28

Quartz -910.7 41.5 22.69

Anorthite -4234.0 199.3 100.79

Wollastonite -1634.8 81.7 39.90
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The required thermodynamic data are given Tab. 7.1. Using these data one ob-
tains:

for the enthalpy of reaction,

for the entropy of reaction and

for the volume of reaction.

In order to calculate the equilibrium temperature at any given pressure, the terms
in Eq. (7.23) must be rearranged, namely: 

(7.24)

Inserting the values for the enthalpy of reaction, entropy of reaction and volume
of reaction into Eq. (7.24) gives:

at ambient pressure and 

at 0.5 GPa. The two temperatures determine the curve where grossular and quartz
react to anorthite and wollastonite. All four phases (grossular, quartz, anorthite and
wollastonite) coexist along this line. The area on the left side of the line represents
the stability field of the assemblage grossular and quartz and on the right side the
stability field of anorthite and wollastonite. Fig. 7.1 shows the calculated reaction
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curve together with the experimental results of Boettcher (1970) and Huckenholz et
al. (1975). 

Fig. 7.1 Pressure-temperature diagram for the reaction grossular + quartz = anorthite + 
wollastonite. Solid line = calculated using thermodynamic data, circles and dotted line = 
experimental results of Huckenholz et al. (1975), dashed line = experimental results of 
Boettcher (1970). Open circles = growth of grossular and quartz, closed circles = growth 
of anorthite and wollastonite. The calculations are based on the thermodynamic data of 
Robie and Hemingway (1995).

Example 2: In section 6.1.1 the phase diagram for the one-component system
Al2SiO5 was calculated using the Clausius-Clapeyron equation. The calculation was

rather intricate. The knowledge of two transition points was necessary in order to
determine the phase boundaries of the stability fields of the three different modifi-
cations: kyanite, andalusite and sillimanite. This phase diagram can much easier be
calculated by treating the phase transitions as chemical reactions.

The phase transition kyanite to andalusite can be described by the chemical reac-
tion:

and the reaction:

5000

4000

3000

2000

1000

0

P
[k

b
]

11001000900800700600

T[K]

grossular + 
quartz

anorthite +
wollastonite

Al2SiO5
ky

Al2SiO5
and

=

Al2SiO5
and

Al2SiO5
sill

=



7.1 Phase equilibria in reacting systems 285

is equivalent to the phase transition andalusite to sillimanite.

The phase transition kyanite to sillimanite gives the reaction

The heat of transformation, the entropy of transformation and the volume of
transformation correspond to the enthalpy of reaction, the entropy of reaction and
the volume of reaction. Assuming that all changes in the thermodynamic functions
associated with the phase transition are pressure and temperature independent, the
equation for equilibrium reads:

(7.25)

Rearranging Eq. (7.25) and solving for T yields:

(7.26)

The thermodynamic tables for minerals of Robie and Hemingway (1995) give the

following standard enthalpies of formation: -2589.9 kJmol-1 for andalusite,

-2586.1 kJmol-1 for sillimanite and -2593.8 kJmol-1 for kyanite. Using these data
and the data from Tab. 6.1, the changes in the thermodynamic functions associated
with the transitions can be determined, namely: 
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The temperature for the transition of kyanite to andalusite at ambient pressure is
then:

and at 0.45 GPa:

The temperature for the transition of andalusite to sillimanite at 0.1 MPa is:

and at 0.45 GPa:

The two lines drawn through the data points, calculated above, intersect at the tri-
ple point, where all three phases (kyanite, andalusite and sillimanite) coexist. At the
triple point, it therefore holds that:

(7.27)

where Ptp designates the pressure of the triple point.

Rearranging Eq. (7.27) and solving for Ptp gives:
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(7.28)

Inserting the numeric values into Eq. (7.28) yields:

In order to determine the temperature of the triple point, the pressure of the triple
point (0.39 GPa) has to be inserted into one of the two equations that were used to
calculate the transition temperature as a function of pressure. We take the one, that
was used to calculate the phase transition andalusite to sillimanite and obtain:

Fig. 7.2 P-T-diagram of the Al2SiO5 system constructed using thermodynamic data of 

Robie and Hemingway (1995). Filled squares designate the calculated transition points.
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In addition, only one temperature for the phase transition kyanite to sillimanite at
some pressure above 0.39 GPa is required in order to construct the complete P-T di-
agram for the Al2SiO5 system. We take a pressure of 0.7 GPa and calculate:

The resulting phase diagram is shown in Fig. 7.2. The extensions of the transition
lines (dashed) beyond the triple point give the temperatures and pressures for the
metastable phase transitions. Hence, the transition of kyanite to sillimanite can oc-
cur metastably within the stability field of andalusite, that of andalusite to silliman-
ite in the stability field of kyanite and that of kyanite to andalusite in the stability
field of sillimanite. The squares mark the transition points that were calculated
above.

7.1.2 Reactions in systems containing solid solutions

Consider a general reaction

that takes place at some P and T. If the reactants and products do not occur as pure
phases but as components in solid solutions, the thermodynamic constant KP,T in

Eq. (7.6) does not equal 1 and its logarithm, lnKP,T, differs from zero. In this case,

the equilibrium condition for the reaction reads:

(7.29)

The sum of the terms containing the standard potentials yields the standard Gibbs

free energy of reaction, , and Eq. (7.29) can be rewritten as:
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(7.31)

If  is replaced by ( rH298 - T rS298 + rV298(P - Po)), an expression that

allows the calculation of the equilibrium pressure and temperature is obtained,
namely:

(7.32)

for the case of non-ideal solid solutions, and

(7.33)

in the case that the solutions are ideal and the activities can be replaced by the mole
fractions of the components. Eqs. (7.32) and (7.33), of course, do not account for the
temperature and pressure dependence of the changes in the thermodynamic func-
tions associated with the reaction.

Example: Consider the anorthite breakdown reaction:

and assume that anorthite, CaAl2Si2O8, kyanite, Al2SiO5, and quartz, SiO2, are pure

phases and grossular, Ca3Al2Si3O12, is a component of a pyrope-grossular solid so-

lution. Assume further that garnet is an ideal solution and the mole fraction of gros-
sular equals 0.22. 

For the system at equilibrium, the following condition holds according to Eq.
(7.29):

or

rGP T

o
RT

aC
c

aD
d

aA
a

aB
b

-------------------.ln–=

rGP T

o

rH298 T rS298 rV298 P Po–+– RT
aC

c
aD

d

aA
a

aB
b

-------------------ln–=

rH298 T rS298 rV298 P Po–+– RT
xC

c
xD

d

xA
a

xB
b

-------------------ln–=

3CaAl2Si2O8 Ca3Al2Si3O12 2Al2SiO5 SiO2+ +

3 CaAl2Si2O8

o,pl
RT xCaAl2Si2O8

pl
ln+– Ca3Al2Si3O12

grt
3RT xCa3Al2Si3O12

grt
ln+

2 Al2SiO5

o,ky
RT xAl2SiO5

ky
ln+ SiO2

o,qtz
RT xSiO2

qtz
ln+

+

+ + 0=



290 7 Chemical reactions

where

If one assumes that the pressure and temperature dependence of the changes in
the thermodynamic functions associated with the reaction is negligibly small, the
expression given in Eq. (7.23) can be used to calculate the equilibrium conditions
and one obtains:

Because all but the mole fraction of grossular equal one, the thermodynamic
equilibrium constant reads:

and, therefore:

At any given temperature, the equilibrium pressure is then given by:

Using the data on the enthalpies of formation, third-law entropies and molar vol-
umes given in the literature (Holland and Powell 1990) yields:

The equilibrium pressure at a temperature of 1273 K is then calculated as fol-
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lows:

This result is to be compared with the equilibrium pressure of 1.99 GPa that is
obtained for the end-member reaction at 1273 K.

In order to consider the non-ideality of the garnet solid solution, the activity co-
efficient, , has to be introduced into the equation and one obtains:

According to the results of the calorimetric measurements in the system
CaO-MgO-Al2O3-SiO2 (Newton et al. 1977), the garnet pyrope solution is asym-

metric and can be modelled by the subregular solution model. 

Using the exchange parameters recommended by Ganguly and Saxena (1984) the
logarithm of the activity coefficient for grossular reads:

With the equation given above a value of = 0.53 is obtained for

= 0.22. Using these two values, the equilibrium pressure for T =

1273 K is calculated as follows:

7.1.3 Reactions in systems containing solid and gas phases

The standard potentials of solid phases refer to pure phases at the temperature and
pressure of interest. The standard potentials of gases, however, refer to pure ideal
gases at the temperature T and the standard pressure Po = 0.1 MPa. In order to ac-

count for this difference, the Gibbs free energy of reaction is divided into three
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terms, namely:

(7.34)

where the superscripts s and g designate solids and gases, respectively. 

In terms of the standard Gibbs free energy of reaction, Eq. (7.34) reads:

(7.35)

In the case where the solids as well as the gases are ideal mixtures and mixing in
the solids occurs on one crystallographic site only, Eq. (7.35) obtains the form:

(7.36)

where Pj designates the partial pressure of gas j.

According to Eq. (7.15) it holds that

(7.37)

and

(7.38)

Substituting Eqs. (7.37) and (7.38) into (7.36) yields:
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(7.39)

if

(7.40)

(7.41)

and

(7.42)

In the case where the temperature and pressure dependence of the enthalpy of re-
action, entropy of reaction and volume of reaction is neglected, Eq. (7.39) simplifies
to:

(7.43)

For a system in thermodynamic equilibrium rGP,T equals zero, and Eq. (7.43)

reads:

(7.44)

The terms on the right side of equation Eq. (7.44) correspond to the term
- RTlnKP,T. In the case where the reacting solids and gases both represent ideal so-

lutions, the thermodynamic equilibrium constant has the form:
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(7.45)

When pressure is measured in bar, then Po equals one and instead of Eq. (7.45)

one can write:

(7.46)

Example 1: Consider the dehydration of pure muscovite in the presence of quartz.
The reaction reads:

Assume that the enthalpy, entropy and the volume of reaction are pressure and
temperature independent and that steam behaves as an ideal gas. In this case, the
equilibrium conditions are given by Eq. (7.44) and the dehydration temperature at
any given pressure is calculated as follows:

Tab. 7.2 contains the standard heats of formation, third-law entropies and the vol-
ume data for the reacting phases. (Holland and Powell, 1990).

With the data from Tab. 7.2, the following values for the changes in thermody-
namic functions associated with the dehydration reaction are obtained:

Table 7.2 Thermodynamic data for muscovite, quartz, sanidine, sillimanite and 
steam (Holland and Powell 1990)

Phase fH298[kJmol-1] S298[Jmol-1K-1] V298[cm3mol-1]

Muscovite - 5981.63 289.00 140.83

Quartz - 910.80 41.50 22.69

Sanidine - 3959.06 230.00 108.92

Sillimanite - 2586.67 96.00 50.03

Steam - 241.81 188.80 -
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Fig. 7.3 Upper thermal stability of muscovite in the presence of quartz, calculated using 
the thermodynamic data of Holland and Powell (1990) and H2O fugacity data of Grevel 

and Chatterjee (1992).

Assume that the total pressure and the water pressure are equal, that is:

The dehydration temperature for muscovite in the presence of quartz, is then:

at 0.1 MPa, 
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at 0.05 GPa and

at 0.8 GPa.

The entire dehydration curve as a function of temperature is shown in Fig. 7.3.
Note that at low pressures the dehydration temperature depends strongly upon pres-
sure. This is typical of all degassing reactions and is due to the high initial compress-
ibility of gases. At high pressures, the compressibility of gases becomes similar to
that of solids and the dehydration curve becomes steeper (see Fig. 7.3). 

Example 2: Consider the oxidation of fayalite, Fe2SiO4, to magnetite and quartz.

The corresponding reaction reads:

If one assumes that the enthalpy of reaction, entropy of reaction and volume of
reaction are independent of pressure and temperature and that oxygen is an ideal gas,
the thermodynamic equilibrium can be described by:

(7.47)

The oxidation of fayalite occurs at very low oxygen pressures and, therefore, the
assumption that oxygen pressure and total pressure are equal is inappropriate. It is,
however, important to know the equilibrium oxygen pressure of the assemblage fay-
alite/magnetite/quartz at any given temperature and total pressure. 

In order to calculate the equilibrium oxygen pressure as a function of temperature
at constant pressure, Eq. (7.47) is divided by RT, which gives:

(7.48)

As it is apparent from Eq. (7.48), a plot of the logarithm of the oxygen pressure
versus reciprocal temperature gives a straight line with the slope equal to
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Thus, at constant temperature and pressure the assemblage fayalite/magne-
tite/quartz defines the uniquely oxygen pressure. This assemblage is, therefore used
as a buffer in experiments where the oxygen fugacity must be controlled. This, for
example, is the case when reactants contain transition elements such as iron, man-
ganese, chromium, etc. 

Using the thermodynamic data in Tab. 7.3, the following values for the changes
in the thermodynamic functions associated with the oxidation of fayalite are ob-
tained:

The oxygen pressure at 1173 K and 0.1 MPa is then:

Fig 7.3 shows the logarithm of the oxygen pressure as a function of reciprocal
temperature at 0.1 MPa and 1.0 GPa total pressure.

Table 7.3 Thermodynamic data for fayalite, magnetite, quartz and oxygen (Holland and 
Powell 1990)

Phase

Fayalite - 1478.80 151.00 46.30

Magnetite - 1115.81 146.10 44.52

Quartz - 910.80 41.50 22.69

Oxygen 0.00 205.20 -
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Example 3: The reaction between phlogopite, KMg3[AlSi3O10](OH)2, calcite,

CaCO3, and quartz, SiO2, yields tremolite, Ca2Mg5Si8O22(OH)2, sanidine,

KAlSi3O8, carbon dioxide, CO2, and water, H2O, and reads:

Fig. 7.4 Plot of the logarithm of the oxygen pressure as a function of the reciprocal tem-
perature for the reaction 3Fe2SiO4 + O2 = 2Fe3O4 + 3SiO2 at ambient pressure and at 

1.0 GPa, calculated using the thermodynamic data of Holland and Powell (1990).

If all solids phases are pure end-members and the temperature and pressure de-
pendence of the enthalpy, entropy and the volume of reaction is neglected, the equi-
librium condition is given by:
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The partial pressures of the two gases can be calculated applying Dalton’s law,
according to which holds that:

(7.49)

where Ptot and xi are the total pressure and the mole fraction of gas i, respectively. 

Using Eq. (7.49), the following partial pressures are obtained:

and

Assuming that the total pressure is made up by the two gases and that the changes
in the thermodynamical functions associated with the reaction are independent of
pressure, the equilibrium temperature at any given pressure is calculated according
to

where P and Po give the total and the ambient pressure, respectively.

Using the thermodynamic data for the pure end-member phases of Holland and
Powell (1990) the following values for the changes in the thermodynamic functions
associated with the reaction of phlogopite, calcite and quartz to tremolite, sanidine,
carbon dioxide and water are obtained:

The calculation of the equilibrium temperature at the ambient pressure of
0.1 MPa yields:
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and at 0.5 GPa: 

Example 3: In the foregoing example the mole fraction of carbon dioxide, ,

in the gas phase is 0.75. We want now to calculate the upper thermal stability of the
phase assemblage phlogopite, calcite and quartz for two other gas compositions,

namely for = 0.25 and 0.5. We begin with = 0.25 and calculate the equi-

librium temperature at the ambient pressure of 0.1 MPa:

and at 0.5 GPa:

Analogous calculations for = 0.5 yield:
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at 0.5 GPa. 

Fig. 7.5 shows the equilibrium curves as a function of temperature for all three
gas compositions. 

Fig. 7.5 The upper thermal stability of the assemblage phlogopite + calcite + quartz for 
three different gas compositions. The curves are calculated assuming ideal thermody-
namic behavior of the gases. The asterisk and the diamond give the equilibrium temper-

atures for = 0.75 for the case that CO2 and H2O are non-ideal gases in ideal and 

non-ideal mixtures, respectively (see text).

Fig. 7.6 shows the upper thermal stability of the assemblage phlogopite/cal-
cite/quartz as a function of gas composition at a constant pressure of 0.5 GPa. The
three gas compositions which were used in the calculation of the equilibrium curves
in Fig. 7.5 are marked by the open squares. 
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Fig. 7.6 The upper thermal stability of the assemblage phlogopite, calcite and quartz as a 
function of gas composition at 0.5 GPa. (thermodynamic data of Holland and Powell 
1990). The squares give the gas compositions, that were used to calculate the equilib-
rium curves in Fig. 7.5.

The upper thermal stability of muscovite in the presence of quartz (Fig. 7.3) was
calculated assuming water as an ideal gas. This, however, is not strictly correct. At
elevated pressures water behaves non-ideally. In order to account for this non-ide-
ality, the fugacity coefficient has to be introduced into the calculations. If the solid
components are pure end-member phases and the changes in thermodynamic func-
tions are considered to be independent of pressure and temperature, the equilibrium
condition reads:

(7.50)

where Pj and j are the pressure and the fugacity coefficient of the gas, respectively.

At any given pressure, the equilibrium temperature is calculated according to:
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(7.51)

Because the fugacity coefficient is a function of temperature and pressure, Eq.
(7.51) can only be solved iteratively. 

Example: Consider now the reaction between muscovite and quartz once again,
but this time assume that steam is a non-ideal gas. Inserting the thermodynamic data
from page 295 into Eq. (7.51) yields:

We assume, again, that the total pressure is equal to the pressure of steam and,

therefore, the following relation holds P = . 

The equilibrium temperature at the ambient pressure is the same as in the case for
an ideal gas because all terms containing pressure vanish.

For a pressure of 0.05 GPa, however, the equation can not be solved analytically,
because the fugacity coefficient is a function of both pressure and temperature. An
iterative calculation method is, therefore, made. To begin, the fugacity coefficient is
set to 1 and the same result is obtained as in the case of an ideal gas, namely:

At 789 K and 0.05 GPa, the fugacity coefficient for water has a value of 0.681
(Grevel and Chatterjee 1992). Using this value, the second cycle is calculated and a
temperature of:

results. For a temperature of 771 K and at 0.05 GPa, a fugacity coefficient value of
0.649 is obtained (Grevel and Chatterjee 1992). In the next cycle, a temperature of
768 K is calculated and the corresponding value of the fugacity coefficient is 0.644.
The next calculation yields a temperature of 768 K, which is the same as in the fore-
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going cycle and, therefore, it represents the final result. The entire dehydration curve
is shown in Fig. 7.3.

If more than one gas participates in a reaction, the gaseous phase is as a mixture.
Thus, the partial fugacities of the different gas components must be known to cal-
culate the equilibrium conditions. However, if the mixing properties of the gases are
unknown, the fugacities of pure gases can be used instead. That is, the solution is
assumed to be ideal.

Example: In the examples where we calculated the equilibrium conditions for the
reaction of phlogopite, calcite and quartz to tremolite, sanidine, carbon dioxide and
water, the gaseous phase was considered to be an ideal mixture of ideal gases. In or-
der to account for the non-ideal behavior of the gases, we will now introduce fugac-
ity coefficients into the calculation. As a first approximation, we will assume that
the gases are non-ideal, but that they mix ideally. Hence, we can use the fugacities
for pure carbon dioxide and pure water. We want to calculate the equilibrium tem-
perature at P = 0.5 GPa for a gas composition following the stoichiometry of the re-

action, namely = 3/4. For this purpose, the equation that was used in the

calculations where both gases were considered to be ideal has, thus, to be modified
and reads then:

Inserting the numeric data yields:

Because the fugacity coefficients are a function of both temperature and pressure,
the iteration procedure has to be applied once again. As a first step, the activity co-
efficients are set to one and the equilibrium temperature is calculated. Then, the val-
ues for the activity coefficients corresponding to the temperature obtained from the
first step are used to calculate the next temperature, etc. This procedure is repeated
until a constant value for the equilibrium temperature is obtained. The entire itera-
tion procedure with intermediate and final results is given in Table 7.4.
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.

As can be seen from Tab. 7.4, the resulting value for the temperature is 797 K.
This value has to be compared with 711 K, which is the equilibrium temperature in
the case where the two gases are considered to be ideal.

If the gas phase is considered to be a non-ideal mixture of two non-ideal gases,
according to Eq. (5.73), the fugacity coefficients for the pure gases CO2 and H2O

must be replaced by their partial fugacity coefficients i, which depend not only on

temperature and pressure but also on composition of the gas mixture. Thus, the cal-
culation reads:

As in the foregoing examples, the equation can, once again, be solved only iter-
atively. The iteration steps, the intermediate and the final result are listed in Tab. 7.5. 

The resulting temperature of 807 K differs by only 10 degrees from that obtained
when considering CO2 and H2O to be non-ideal gases in an ideal gas mixture. Ap-

parently, disregarding the effect of non-ideality of the gases introduces a much larg-
er error than disregarding the non-ideality of the gas mixture. The two equilibrium
temperatures that were obtained in the last two calculations are shown in Fig. 7.5 as
an asterisk and diamond. 

Table 7.4 Calculation of the equilibrium temperature for the reaction phlogopite + 
calcite = tremolite + sanidine + CO2 + H2O at 0.5 GPa assuming an ideal mixing of 

non-ideal gases CO2 and H2O (data of Holland and Powell 1991 and Grevel and 

Chatterjee 1992).

resulting temp.
[K]

1. step 1.0 1.0 711

2. step 7.513 0.305 796

3. step 6.680 0.457 797

4. step 6.671 0.459 797
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7.1.4 Distribution coefficient, KD

The distribution of an element between two or more coexisting phases depends upon
pressure, temperature and the composition of the phases. This is one of the conse-
quences resulting from equilibrium conditions that require equality of chemical po-
tentials of components in coexisting phases. Because the standard chemical
potential of a component is different in different phases, the term RTlna is required
to compensate for the difference. 

Consider a hypothetical ternary system A-B-C where the component C is soluble
in A and B, but B is not soluble in A and A is also not soluble in B.

For the state of thermodynamic equilibrium it holds that

(7.52)

or if the chemical potentials of the component C in the two coexisting phases are
expressed in terms of the standard potential and activity, RTlnai:

(7.53)

Rearranging terms in Eq. (7.53) and considering the definition of chemical activ-
ity gives:

Table 7.5 Iteration procedure used to determine the equilibrium temperature for the 
assemblage phlogopite/calcite/sanidine/tremolite/CO2/H2O assuming the gas phase to 

be a non-ideal mixture of two non-ideal gases (thermodynamic data of Holland and 
Powell 1991; Aranovich and Newton 1999).

resulting temp-
[K]

1. step 1.0 1.0 711

2. step 7.713 0.496 808

3. step 6.732 0.734 807

4. step 6.741 0.732 807

CO2 H2O

C
A C

C
B C

,=

C

o A C
RT aC

A C
ln+ C

o B C
RT aC

B C
.ln+=
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(7.54)

The relationship between the mole fractions of the component C in the coexisting
phases is referred to as the distribution coefficient, KD. In ideal solutions, where the

activity coefficient i equals 1, the distribution coefficient depends on pressure and

temperature but is independent of composition. At constant pressure and tempera-
ture, therefore, it holds:

(7.55)

A special case of the relationship, as given in Eq. (7.55), is the so-called Nernst

distribution law. It holds for the partitioning of a dilute component that obeys the
Henry’s law between two liquid phases. In this case, the activity coefficients differ
from 1 but have constant values. They can. therefore, be incorporated into the stan-
dard potentials and Eq. (7.54) obtains the following form:

(7.56)

where A and B are two immiscible solvents.  and  are the standard

chemical potentials of the component C referring to the state of infinite dilution of
C in A and B, respectively. 

Example: Seck (1971) determined experimentally the phase relations in the ter-
nary system NaAlSi3O8 - KAlSi3O8 - CaAl2Si2O8. According to his experiments,

at 650°C and 0.1 GPa, the solubility of anorthite, CaAl2Si2O8, in an alkali feldspar

solid solution, (Na,K)AlSi3O8, is very low (1.5 to 2.0 mol%) and can be neglected

as a first approximation. Similarly, the solubility of potassium feldspar, KAlSi3O8,

in a plagioclase solid solution, (Ca,Na)(Al,Si)AlSi2O8, at low albite concentrations

is very low. Thus, two solid solution series exist (alkali feldspar and plagioclase) in
which the NaAlSi3O8 component is distributed. The equilibrium condition, there-

fore reads:

aC
A C

aC

A C
---------------

xC
A C

C
A C

xC

B C

C

B C
---------------------------------- C

o B C
C
o A C

–

RT
-----------------------------------------------exp const.= = =

KD

xC

A C

xC

B C
---------------.=

xC

A C

xC

B C
--------------- C

B C

C

A C
–

RT
---------------------------------------------exp const,= =

C

A C

C

A C

NaAlSi3O8

akf

NaAlSi3O8

pl
=
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or

if pure albite is taken as a standard state for the component NaAlSi3O8 in both solid

solution series.

Considering the definition of the activity (ai = xi i), the equation given above can

be rewritten as follows:

Saxena (1973) used this relationship to calculate the activity of albite in alkali
feldspar and plagioclase based on the data of Seck (1971).

In the preceding example, there was only one component partitioning between
two coexisting phases. Another possibility is that two components are distributed
between two coexisting phases whose compositions can be described by the hypo-
thetical formulas: (A,B)X and (A,B)Y. In this case, the distribution of the compo-
nents A and B between the two phases is interdependent.

The formulation of the thermodynamic equilibrium conditions for this type of
distribution are typically expressed in terms of exchange reaction. In the case of our
hypothetical system it reads:

(7.57)

where AX, BX, AY and BY are the end-member components. 

The thermodynamic equilibrium constant for the reaction (7.57) is given by

(7.58)

or 

(7.59)

where

NaAlSi3O8

o akf
RT aNaAlSi3O8

akf
ln+ NaAlSi3O8

o pl
RT aNaAlSi3O8

pl
,ln+=

RT
xNaAlSi3O8

akf

xNaAlSi3O8

pl
--------------------------ln RT

NaAlSi3O8

pl

NaAlSi3O8

akf
-------------------------.ln=

AX BY+ AY BX,+=

KP T

aAY aBX

aAX aBY

-----------------------
xAY xBX

xAX xBY

---------------------- AY BX

AX BY

----------------------= =

KP T KD K  ,=
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(7.60)

and

(7.61)

According to Ramberg and DeVore (1951), KD in Eq. (7.60) is also called the dis-

tribution coefficient, although it differs from that defined by Nerst. 

In the case that the phases (A,B)X and (A,B)Y are ideal mixtures the distribution
coefficient depends only upon temperature and pressure. However, if the mixtures
are non-ideal, it depends also on total composition of the system. 

Example: The partitioning of magnesium iron between garnet,
(Mg,Fe)3Al2Si3O12, and biotite, K(Mg,Fe)3AlSi3O10(OH)2, can be used to deter-

mine the crystallization temperature of metamorphic rocks containing these miner-
als.

The correspondent exchange reaction reads:

(7.62)

If the enthalpy of reaction, entropy of reaction, and volume of reaction are inde-
pendent of temperature and pressure, thermodynamic equilibrium is given by:

where

(7.63)

or

KD

xAY xBX

xAX xBY

----------------------=

K
AY BX

AX BY

----------------------.=

Fe3Al2Si3O12 KMg3AlSi3O10 OH 2+
Mg3Al2Si3O12 KFe3AlSi3O10 OH 2.+=

rH298 T rS298– rV298 P Po– RT KP Tln+ + 0,=

KP T

aMg3Al2Si3O12

grt
aKFe3AlSi3O10 OH 2

bt

aFe3Al2Si3O12

grt
aKMg3AlSi3O10 OH 2

bt
------------------------------------------------------------------------------------=
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(7.64)

The exponents in Eq. (7.64) account for the three crystallographic sites per for-
mula unit that are available to magnesium and iron in garnet as well as in mica. If
the thermodynamic constant KP,T is expressed in terms of KD and K , one obtains:

(7.65)

Assuming that garnet, as well as mica, are ideal solid solutions, thermodynamic
equilibrium is given by:

(7.66)

or solving for lnKD:

(7.67)

If the negative logarithm of the distribution coefficient lnKD, is plotted versus re-

ciprocal temperature 1/T, a line with the slope 

(7.68)

is obtained.

The term 

(7.69)

gives the intersection of the lnKD vs. 1/T line at 1/T = 0. 

Ferry and Spear (1978) determined experimentally the equilibrium composition
of garnet and biotite as a function of temperature at 0.207 GPa. Their results are
shown graphically in Fig. 7.7. In the experiments marked by open squares, the equi-

KP T

xMg3Al2Si3O12

grt 3
xKFe3AlSi3O10 OH 2

bt 3

xFe3Al2Si3O12

grt 3
xKMg3AlSi3O10 OH2

bt 3
--------------------------------------------------------------------------------------------------

Mg3Al2Si3O12

grt 3

KFe3AlSi3O10 OH 2

bt 3

Fe3Al2Si3O12

grt 3

KMg3AlSi3O10 OH 2

bt 3
--------------------------------------------------------------------------------------------------.

=

KP T 3KD 3K  .=

rH298 T rS298– rV298 P Po– 3RT KDln+ + 0=

KDln
rH298

3RT
------------------–

rS298

3R
---------------- rV298

3RT
----------------- P Po– .–+=

rH298 rV298 P Po–+

3R
---------------------------------------------------------------

rS298

3R
----------------
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librium was approached from the left side of Eq. (7.62) that means, the iron compo-
nent in mica increased in these runs and that in garnet decreased. The filled squares
indicate the runs in which the exchange reaction proceeded in the opposite direction,
that is, the iron content in garnet increased and that in mica decreased. The dotted
line was calculated using the values of the thermodynamic functions rH, rS and

rV at standard conditions. In order to calculate the dashed line, these functions

were calculated to 970 K, which is the mean value of all the temperatures that Ferry
and Spear (1978) used in their experiments.

Fig. 7.7 Plot of lnKD vs. reciprocal temperature for the exchange reaction of magnesium 

and iron between garnet and biotite. The squares give the experimental results of Ferry 
and Spear (1978). Equilibrium was approached from both sides of the reaction (filled 
and open symbols). The dotted and dashed lines are calculated using the thermodynamic 
data of Holland and Powell (1990) at 298 K and at 970 K, respectively. 

As can be seen in Fig. 7.7, the experimental lnKD values agree fairly well with

the calculated lines. This agreement does not, however, necessarily mean that the as-
sumption of ideal mixing for garnet and biotite is correct. This is actually not the
case, as the experimental determinations of the activity-composition relations for bi-
otite and garnet show (e.g. Holdaway et al. 1997). Nonetheless, if the activity coef-
ficients for garnet and mica have similar values, the value of K  approaches 1 and

the thermodynamic equilibrium constant, KP,T, can be replaced by the distribution

coefficient, KD.
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If the phases involved in the reaction are considered to be non-ideal solid solu-
tions, Eq. (7.67) obtains the form:

(7.70)

where

(7.71)

Following Mukhopadhyay et al. (1993) and Holdaway et al. (1997), the compo-
sition dependence of the activity coefficients for garnet and biotite can be represent-
ed by an asymmetric and a symmetric solution model, respectively. Hence, the
activity coefficients in Eq. (7.71) read:

(7.72)

(7.73)

(7.74)

and

(7.75)

where ,  and  are the interaction parameters for the components

in the asymmetric garnet and in the symmetric biotite solid solution, respectively.

Substituting Eqs. (7.72) through (7.75) into Eq. (7.71), doing some algebra and
remembering that xMg + xFe = 1.0, leads to:

(7.76)

Replacing lnK  in Eq. (7.70) by the expression given in Eq. (7.76) yields:

KDln rH298

3RT
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bt

--------- .ln–ln=

Mg

grt
ln xFe

grt 2
WMgFe

grt
2 WFeMg

grt
WMgFe

grt
– xMg

grt
+ 3RT,=

Fe
grt

ln xMg
grt 2

WFeMg
grt

2 WMgFe
grt

WFeMg
grt

– xMg
grt

+ 3RT,=

Mg

bt
ln xFe

bt 2
W

bt
3RT,=

Fe

bt
ln xMg

bt 2
W

bt
3RT,=

WFeMg
grt

WMgFe
grt

W
bt

Kln xFe

grt 2
WMgFe

grt
xMg

grt 2
WFeMg

grt
– 2xMg

grt
xFe

grt
WFeMg

grt
WMgFe

grt
–

W
bt

xFe

bt
xMg

bt
––

+

3RT.

=



7.1 Phase equilibria in reacting systems 313

(7.77)

The interaction parameters in Eq. (7.77) are, according to Holdaway et al. (1997),
temperature and pressure dependent and they read:

where T and P are given in K and Pa, respectively. 

The relationship given in Eq. (7.77) can be used to evaluate the equilibration tem-
perature of metamorphic rocks containing garnet and mica in the case that both
phases contain no other components than iron and magnesium. 

Reciprocal solutions

In the foregoing examples the cation mixing occurred only over one crystallograph-
ic site. In many solid solutions, however, mixing occurs over more than one site.
These solutions are of the type (A,B...) (X,Y...) Z. Examples among the rock-form-

ing minerals are: garnet, A3B2Si3O12, pyroxene, ABSi2O6, spinel, AB2O4, etc. In

such solid solutions the chemical potentials of the various possible end-member
components are not all mutually independent. This is because the number of inde-
pendent components necessary to describe the chemical variability of the phases is
smaller than the number of the possible end-member components. 

In order to derive the energetics a the reciprocal solution we follow Wood and
Nicolls (1978).

Consider a hypothetical mineral with two different crystallographic sites having
the general chemical formula:

(7.78)

There are four possible end-member components, namely: A X Z , B X Z ,

A Y Z  and B Y Z . The composition of the solution, however, can be completely

described using only three components as demonstrated by the following example. 
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Assume the composition of a solid solution (A0.2B0.8) (X0.3Y0.7) Z  is to be de-

scribed using the three components A X Z , B X Z  and A Y Z . Because the

mole fraction of the component B Y Z  is set to zero, the component A Y Z  is the

only one that contains the cation Y. Its mole fraction must, therefore, be equal to the
atomic fraction xY, namely 0.7. On the other hand, the mole fraction of the compo-

nent B X Z  must be equal to the atomic fraction xB, because B X Z  is the only

component containing B after the component B Y Z  has been excluded form con-

sideration. Its mole fraction, therefore, equals 0.8. Finally, the mole fraction for the
component A X Z  must equal the difference xX - xB. In our example this is 0.3 -

0.8 = - 0.5. 

Clearly the values for the mole fractions depend on the choice of the components.
This is demonstrated in Tab. 7.6, where all four possible sets of the ternary compo-
nents and their relationships to the atomic fractions of the cations are presented.

The molar Gibbs free energy of the solid solution consists of the sum of the stan-
dard potentials of the end-member components at the temperature and pressure of
interest, times the corresponding mole fractions plus the Gibbs energy of mixing,
i.e:

(7.79)

The first term on the right side of equation Eq. (7.79) gives the Gibbs free energy
of a mechanical mixture, hence it holds that:

(7.80)

Table 7.6 Mole fraction of the components in the solution (A0.2B0.8) (X0.3Y0.7) Z

using different ternary phase combinations. xA, xB, xX and xY designate the atomic 

fractions of the cations mixing on the two different sites.

AXZ BYZ AYZ BXZ

0.0 0.5 = (xY - xA) 0.2 = xA  0.3 = xX

 - 0.5 = (xX - xB) 0.0 0.7 = xY  0.8 = xB

 0.2 = xA  0.7 = xY 0.0 0.1 = (xX - xA)

 0.3 = xX 0.8 = xB - 0.1 = (xY - xB) 0.0

G xi i

o
mG.+

i
=

xi i

o

i
mG

mech
.=
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The second term in Eq. (7.79), contains the excess Gibbs free energy of mixing,

, and the configurational entropy,  multiplied by the temperature T.

Using the relationships between the atomic fractions for the cations and the mole
fractions for the ternary components as given in Tab. 7.6, four different expressions
for the free Gibbs energy of a mechanical mixture can be formulated, namely:

(7.81)

(7.82)

(7.83)

and

(7.84)

In Eqs. (7.81) through (7.84) the component set to zero is given in parenthesis as
a subscript. 

The configurational entropy is, according to Eq. (4.82), given by

(7.85)

According to Eqs. (7.81) through (7.84) there are four different possibilities for
expressing the total Gibbs free energy of a solid solution, depending on which of the
four equations are chosen to give the Gibbs free energy of the mechanical mixture.
For example, if one takes the first expression, where the component A X Z  is set

to zero, the total Gibbs free energy of the solution reads:

(7.86)

The chemical potentials of the end-member components remain the same regard-
less of which three components are taken. Hence, the Gibbs free energy of a me-
chanical mixture depends on the choice of components. The total Gibbs free energy
of a solid solution does, however, not depend on the choice of the components. The

difference must, therefore, be compensated by the term mG ex.
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In order to evaluate the term mG ex, a random mixing on each site with no inter-

action between the atoms is assumed. Under these conditions, the probabilities of
occurrence of configurations AX, AY, BX and BY in the solution equals the prod-
ucts between the atomic fractions, i.e. xAxX, xAxY, xBxX and xBxY. If the interaction

energies between the pairs A-X, A-Y, B-X and B-Y are additive, the Gibbs free en-
ergy of the mechanical mixture should be given by the sum of the standard chemical
potentials of the end-members multiplied by the probability of occurrence of the re-
spective configuration in the solution:

(7.87)

For the case of ideal mixing, the total Gibbs free energy on the individual sites is
therefore:

(7.88)

Subtracting Eq. (7.88) from Eqs. Eq. (7.86) and solving for mG ex yields:

(7.89)

Substituting xB by (1 - xA) and xY by (1 - xX) and doing some algebra leads to:

(7.90)

The expression in the parenthesis gives the Gibbs free energy of the exchange re-
action:

(7.91)

Reaction (7.91) relates the three end-member components with the fourth and is

generally referred to as the reciprocal reaction. Using the symbol rG
rec for the

Gibbs free energy of the reciprocal reaction, Eq. (7.90) can be written as:

mG
 mech
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(7.92)

Fig. 7.8 The standard chemical potentials for the four end-member components of the 
reciprocal solution (A,B) (X,Y) Z . The hatched triangle is formed by the connection 

of the standard chemical potential values of the three end-member components 

,  and . The extension of this plane to A X Z  inter-

sects the ordinate at  which is not the actual value 

of the standard chemical potential for the dependent component A X Z ,

. The difference between the point of intersection and  equals, 

therefore,  and corresponds to 

Eq. (7.92) was derived using the expression for the Gibbs free energy for the me-
chanical mixture that was obtained by dropping the component A X Z . Using the

other three expressions in Eqs. (7.82) through (7.84), one obtains:

(7.93)
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(7.94)

and

(7.95)

respectively.

The relationship between the chemical standard potentials of the end-member

components and the definition of  is illustrated graphically in Fig. 7.8. 

The compositional plane for the reciprocal solution (A,B) (X,Y) Z  is a square

with the end-member components A X Z , A Y Z , B X Z  and B Y Z . It forms

the basis of the G-x diagram shown in Fig. 7.8. A connection between the values of

the standard chemical potentials of the three end-member components ,

 and  defines a plane that, when extended to A X Z , intersects the

ordinate at a value of The point of intersection gives

the value of the standard chemical potential of component A X Z  only if the stan-

dard Gibbs free energy of the reciprocal reaction,  is zero. According to

Eqs. (7.90) and (7.92) it holds that

and this equation, thus, represents, thus, the difference between the actual value of
the standard chemical potential for the end-member component A X Z  and the

value at which the plane intersects the coordinate (see Fig. 7.8). In our example, it
is assumed that the value of the standard chemical potential of the fourth component

is greater than the sum  so that 

The excess chemical potential of any component in the solution is obtained by

differentiating  with respect to composition, i.e:

(7.96)
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(7.97)

(7.98)

and

(7.99)

The differentiation procedure gives following results:

(7.100)

(7.101)

(7.102)

and

(7.103)

In accordance with Eq. (5.114) the chemical potentials in Eqs. (7.100) through
(7.103) can be replaced by the corresponding activity coefficients and one obtains:
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(7.106)
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(7.107)

Using the relationships given in Eqs. (7.104) through (7.107), the chemical po-
tentials for the four ternary components read:

(7.108)

(7.109)

(7.110)

and

(7.111)

The reciprocal solution is only ideal if  = 1, which means that there is no in-

teraction between the atoms on the different sublattices and, therefore, the term

 equals zero. The activity coefficient,  thus accounts for the intersite in-

teraction. 

The last two terms in Eqs. (7.108) through (7.111) can be replaced by the activity
of the corresponding component in the reciprocal solution i.e.

(7.112)

(7.113)

(7.114)

and

(7.115)
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(7.116)

(7.117)

(7.118)

and

(7.119)

Example: In garnet, (Mg,Ca)3(Al,Cr)2Si3O12, mixing takes place over two differ-

ent sites. Magnesium and calcium occupy an 8-fold coordinated dodecahedral site,
whereas aluminium and chromium enter the 6-fold coordinated octahedral site. This
composition, thus, represents a reciprocal solution with the following end-member
components: pyrope, Mg3Al2Si3O12, uwarowite, Ca3Cr2Si3O12, grossular,

Ca3Al2Si3O12 and korringite, Mg3Cr2Si3O12. The reciprocal reaction that relates

the fourth dependent component to the three independent ones reads:

If pyrope, uvarovite and grossular are chosen to describe the thermodynamic
properties of the solid solution, the expression for the molar Gibbs free energy, G,
has the form:

aA X Z xAxX xBxY rG
rec

RT– ,exp=

aB Y Z xBxY xAxX rG
rec

RT– ,exp=

aA Y Z xAxY xBxX rG
rec

RTexp=

aB X Z xBxX xAxY rG
rec

RT .exp=

Mg3Al2Si3O12 Ca3Cr2Si3O12+ Mg3Cr2Si3O12 Ca3Al2Si3O12.+=

G xMg

8
Mg3Al2Si3O12

o
xCr

6
Ca3Cr2Si3O12

o

xAl

6
xMg

8
– Ca3Al2Si3O12

o
RT 3 xMg

8
xMg

8
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xCa

8
xCa

8
ln+ 2 xAl

6
xAl

6
ln xCr

6
xCr

6
ln++ xMg

8
xCr

6
rG

rec
,

+

+ +

+

=
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where  is the Gibbs free energy of the exchange reaction given above.

If, in addition to the interactions between atoms on different sites, the interactions
between atoms on individual sites is to be considered, the term for the excess Gibbs
free energy has to be extended as follows:

Consider the two-site reciprocal solid solution (A,B) (X,Y) Z  once again and

assume that A-B and X-Y form separate solid solutions that can be modelled by the
simple solution model (see Eq. (5.134)). The excess Gibbs free energy of mixing is
then described by:

(7.120)

where  and  give the interaction energies between the atoms within

the sites and  and  account for the number of the respective sites. There are four
expressions of the form as given in Eq. (7.120) possible depending on the choice of
the ternary end-members triple. In the above example, A X Z  is considered to be

the dependent component. The other three possible equations read:

(7.121)

(7.122)

and

(7.123)

The activity coefficients for the four components are obtained by differentiating
expressions given in Eqs. (7.120) through (7.123) with respect to composition. 

(7.124)

(7.125)

(7.126)

and

rG
rec
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G
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,+ +=
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WX Y–
G
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G

xXxYWX Y–
G

xBxY rG
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,+ +=

mG A Y Z
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G

xXxYWX Y–
G
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–+=

mG B X Z
ex

xAxBWA B–
G

xXxYWX Y–
G
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rec

.–+=

RT A X Zln xB
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G
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WX Y–

G
xBxY rG
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,–+=

RT ln B Y Z xA

2
WA-B

G
xX

2
WX-Y

G
xAxX rG

rec
,–+=

RT ln A Y Z xB

2
WA-B

G
xX

2
WX-Y

G
xBxX rG
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+ +=
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(7.127)

From Eqs. (7.124) to (7.127) it follows that in the case of non-ideal mixing on
sites the activity coefficient of a component in the reciprocal solution has the form:

(7.128)

where i and j designate the different sublattices and  and  give the number of the
respective sites per formula unit.

Example: Consider the distribution of iron and magnesium between olivine and
spinel that can be represented by the following exchange reaction: 

(7.129)

with the equilibrium constant:

(7.130)

where

(7.131)

and

(7.132)

Hence, the equilibrium condition for the exchange reaction reads :

(7.133)

In this example, it is assumed that atomic mixing occurs only on tetrahedral sites
and the chemical formula of spinel solid solution reads: (Mg,Fe)Al2O4. In order to

RT ln B X Z xA

2
WA-B

G
xY

2
WX-Y

G
+ x+ AxY rG

rec
.=

ij i j
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,=

MgAl2O4 1 2Fe2SiO4+ FeAl2O4 1 2Mg2SiO4+=

KP T KD K  ,=
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xFe
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sp

Mg2SiO4
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sp

Fe2SiO4
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------------------------------------------------------------ .=
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xFe
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------------------------------------------------------------ln+ + 0.=
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use KD as a geothermometer for natural spinel peridotites, however, the effect of

chromium in spinel on the partitioning behavior of iron and magnesium between oli-
vine and spinel must be considered. In other words, spinel must be treated as a re-
ciprocal solution, (Mg,Fe)(Al,Cr)2O4, containing iron and magnesium on

tetrahedral sites and aluminium and chromium on octahedral sites. The correspond-
ing reciprocal reaction is given by:

(7.134)

If the mixing on the individual sites is non-ideal, the activity coefficients for
spinel and hercynite consist of three different terms accounting for three different
energetic contributions. Two of them are necessary to account for the interactions
between the atoms within the sublattice sites (tetrahedral and octahedral), while the
third one accounts for the interaction between the atoms on different sublattices. The
activity coefficients can, thus, be represented by:

(7.135)

and

(7.136)

In the case that mixing on both sublattices obeys the simple mixture model, the
activity coefficients have the form:

(7.137)

and

(7.138)

where rG
rec is the Gibbs free energy of the reciprocal reaction given in Eq. (7.134).

 and  are the interaction parameters for the tetrahedral and octahe-

dral sites, respectively.

Substituting the expressions in Eqs. (7.137) and (7.138) for the last term in Eq.
(7.133) yields:
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sp
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=
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(7.139)

or

(7.140)

Eq. (7.140) can be used to determine the equilibration temperature of natural oli-
vine- and spinel-bearing rocks.

Energetics of order-disorder

In the foregoing examples, one type of atom always occupied only one specific crys-
tallorgraphic site. In garnet-solid solution, (Mg,Ca)3(Al,Cr)2Si3O12, for example,

magnesium occupies only the dodecahedral and aluminium only the octahedral site.
The same holds for calcium and chromium. In some crystal structures, however, an
atom can occupy more than one crystallographic site and the question regarding its
distribution over the different sites becomes relevant. If the size and the bonding
character of the sites are similar, the distribution of the atom over the various sites
can be completely random, and the atomic fractions of the respective atom will then
be the same for each site. A crystal with this type of atomic distribution are referred
to as completely disordered.

If there is a significant difference between the different crystallographic sites, an
ordering of atoms can occur. In such a case, a given atom will preferentially occupy
just one crystallographic site and the atomic fractions of various atoms over differ-
ent sites will have different values. The degree of order is generally temperature de-
pendent and it decreases with increasing temperatures and vice versa. On the other
hand, the pressure dependence of ordering is small, because of small differences in
volume between an ordered and disordered state. Perfect order is theoretically
achieved only at absolute zero (i.e.0 K) and thus, a real crystal can never be perfectly
ordered.
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There are two types of long-range ordering described in the literature: convergent

and non-convergent. In the case of convergent ordering, the difference between the
sites disappears above some critical temperature and the partitioning of an atom be-
tween the site is the same. In the case of non-convergent ordering, the differences
between the different sites remain at all temperatures and the partitioning of an atom
between the sites is never equal.

An example for non-convergent ordering is Mg-Fe orthopyroxene,
(Mg,Fe)2Si2O6. Here, iron and magnesium are distributed over two octahedrally co-

ordinated sites termed M1 and M2 and the chemical formula can be written as fol-
lows:

Iron occupies preferentially the M2 sites, which are larger and more distorted
than the M1sites.

In order to discuss the energetic properties of the orthopyroxene solid solutions
the reciprocal solution model can be used. 

The four end-member components are:

The ordered and 'anti-ordered' phases are hypothetical end-member pyroxenes
where iron occupies only the M2 and M1 site, respectively. Three components are
independent while the fourth one is related to the other three by the reciprocal reac-
tion, i.e.

(7.141)

The corresponding Gibbs free energy is given by:

(7.142)

According to Eq. (7.92) through Eq. (7.95), the excess Gibbs free energy associ-
ated with the reciprocal reaction in Eq. (7.141) can be expressed in four different

Mg Fe M2 Mg Fe M1Si2O6.

MgM2MgM1Si2O6  enstatite,

FeM2FeM1Si2O6  ferrosilite,

FeM2MgM1Si2O6  ordered phase and

MgM2FeM1Si2O6  'anti-ordered' phase.

MgM2MgM1Si2O6 FeM2FeM1Si2O6+ FeM2MgM1Si2O6
MgM2FeM1Si2O6.+

=

rG
rec

FeM2MgM1Si2O6

o
MgM2FeM1Si2O6

o
MgM2MgM1Si2O6

o
–

FeM2FeM1Si2O6

o
.–

+=
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ways depending on the choice of the components, namely:

(7.143)

(7.144)

(7.145)

and

(7.146)

The chemical formula given in parenthesis designates the fourth dependent com-
ponent. 

The calculation procedure given in (7.96) through (7.99) leads to the following
activity coefficients for the four components, i.e.:

(7.147)

(7.148)

(7.149)

and

(7.150)

Assuming an ideal mixing behavior of atoms on individual sites, the chemical po-
tentials of the four components read:

(7.151)

mG MgM2MgM1Si2O6

ex
x– Mg M2xMg M1 rG

rec
,=

mG FeM2FeM1Si2O6

ex
x– Fe M2xFe M1 rG

rec
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ex
xMg M2xFe M1 rG

rec
=

mG FeM2MgM1Si2O6

ex
xFe M2xMg M1 rG

rec
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RT MgM2MgM1Si2O6
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ln xFe M2xFe M1 rG

rec
,=

RT FeM2FeM1Si2O6
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ln xMg M2xMg M1 rG

rec
,=

RT MgM2FeM1Si2O6

rec
ln x– Fe M2xMg M1 rG

rec
=

RT FeM2MgM1Si2O6

rec
ln x– Mg M2xFe M1 rG

rec
.=

MgM2MgM1Si2O6 MgM2MgM1Si2O6

o
RT xMg M2 xMg M1ln

xFe M2xFe M1 rG
rec

,

+

+

=
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(7.152)

(7.153)

and

(7.154)

If the mixing behavior of atoms on individual sites is non-ideal, further terms
must be added to the expressions given in Eqs. (7.151) through (7.154). Many work-
ers (e.g. Thompson 1969, 1970; Sack 1980; Sack and Ghiorso 1989; Ganguly 1982;
Yang and Ghose 1994; Kroll et al. 1994, 1997) who have addressed the mixing
properties of orthopyroxenes, used a regular solution model. Following them, the
chemical potentials obtain the form:

(7.155)

(7.156)

(7.157)

and

(7.158)

where and are the interaction parameter for the M1 and M2 sites, respec-
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G
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tively.

In order to calculate the Gibbs free energy of an orthopyroxene solid solution, the
degree of order, that is the partitioning of iron (or magnesium) between M1 and M2,
must be known. 

The process of ordering is governed by the exchange reaction:

(7.159)

where iron and magnesium exchange their crystallographic positions. As for all oth-
er reactions, it holds that thermodynamic equilibrium is attained when the chemical
potentials of the anti-ordered and the ordered component are equal, that is

(7.160)

or

(7.161)

Substituting the expressions given in Eqs. (7.157) and (7.158) for the chemical

potentials  and , respectively yields:

(7.162)

or

(7.163)

The term on the left side of Eq. (7.163) is the so-called intracrystalline distribution
coefficient, KD, that reads:

MgM2FeM1Si2O6 FeM2MgM1Si2O6 ,=
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=
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(7.164)

or, because 

(7.165)

and

(7.166)

(7.167)

In his discussion on the thermodynamics of order-disorder in pyroxenes, Thomp-
son (1969) introduced an order parameter, Q, and a compositional parameter, r. The
two variable are defined as follows:

(7.168)

and

(7.169)

where xFs corresponds to the mole fraction of ferrosilite, Fe2Si2O6, in orthopyrox-

ene.

The relationships given in Eqs. (7.168) and (7.169) can be used to express the
atomic fractions of iron and magnesium on M1 and M2, respectively, i.e.: 

(7.170)

(7.171)

(7.172)

and
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(7.173)

Replacing the atomic fractions in Eq. (7.163) by the expressions given in Eqs.

(7.170) and (7.171) and considering that the difference -

 corresponds to the standard Gibbs free energy of the exchange re-

action given in Eq. (7.159), the intracrystalline distribution coefficient, KD, can be

written in terms of composition, r, and the degree the of order, Q:

(7.174)

The molar Gibbs free energy of an orthopyroxene solid solution can, according
to Shi et al. (1992), be written in terms of site occupancies, namely:

(7.175)

Substituting Eqs. (7.170) through (7.173) into Eq. (7.175) and rearranging gives:

(7.176)

where  and  represent the Gibbs free energy of exchange and recip-

rocal reaction, respectively, as defined in Eqs. (7.141) and (7.159). 
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(7.177)

and

(7.178)

Eq. (7.176) can be rewritten as:

(7.179)

where xEn and xFs are the mole fractions of enstatite and ferrosilite in orthopyrox-

ene, respectively.

The configurational entropy associated with the ordering corresponds to the dif-
ference between the entropies of partially ordered and completely disordered states,
i.e.:

(7.180)

The 'two' in front of the second bracket in Eq. (7.180) accounts for the two crys-
tallographically independent sites in orthopyroxene, which are thermodynamically
equivalent in the case of complete disorder. 

Introducing the relationship given in Eq. (7.180) into Eq. (7.179) yields:
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(7.181)

The first four terms in Eq. (7.181) give the Gibbs free energy of a completely dis-
ordered magnesium-iron pyroxene. The Gibbs free energy due to the ordering is,
thus:

(7.182)

The entropy due to the ordering, Sord , can be derived from Eq. (7.182) by differ-
entiating with respect to temperature at constant composition and constant degree of
order, i.e.:

(7.183)

The differentiation leads to:

(7.184)

where , ,  and  are the entropic interaction parameters
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for M1 and M2 sites, the change in entropy associated with the exchange reaction
and the change in entropy associated with the reciprocal reaction, respectively. 

The enthalpy associated with the ordering is obtained by extracting the entropy
contributions from Eq. (7.182). The result is:

(7.185)

In Eq. (7.185),  and  designate the enthalpic interaction parameters for

the M1 and M2 sites, respectively.  gives the enthalpy of the exchange re-

action and  that of the reciprocal reaction.

The derivative of Eq. (7.182) with respect to pressure yields the volume of order-
ing and is given by:

(7.186)

In Eq. (7.186),  and  are the volumetric interaction parameters for M1

and M2 site, respectively.  gives the change in volume associated with the

exchange reaction and  that associated with the reciprocal reaction.

If the entropy contribution is extracted from Eq. (7.181), the molar enthalpy, H,
of orthopyroxene is obtained, namely:

(7.187)

where  and  designate the molar enthalpies of

pure ferrosilite and pure enstatite, respectively.

Subtracting the enthalpy of a mechanical mixture consisting of the end-members
ferrosilite and enstatite,
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(7.188)

yields the enthalpy of mixing or excess enthalpy, mH ex, that is:

(7.189)

The molar volume of orthopyroxene is obtained by differentiating Eq. (7.181)
with respect to pressure i.e.:

(7.190)

where  and  are the molar volumes of the pure

end-member components.

The excess volume of mixing is obtained by subtracting the ideal volume of mix-
ing 

(7.191)

from Eq. (7.190). In this manner one arrives at

(7.192)

Example 1: A synthetic hypersthene containing 50 mol% ferrosilite shows the
following iron site occupation: xFe,M1 = 0.222 and xFe,M2 = 0.778. After heating the

crystal at 1173 K, the distribution changes to xFe,M1 = 0.318 and xFe,M2 = 0.682.

Calorimetric measurements of the enthalpy, disH, associated with the disordering

process yielded 1.73 kJmol-1 (Cemi  and Kähler 2000). What is the enthalpy of the

exchange reaction, 
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The enthalpy of disordering equals the difference between the excess enthalpies
of mixing before and after heating, i.e.

(7.193)

where sb and sa are the order parameters before and after heat treating, respectively. 

(7.194)

For a pyroxene of composition xFs = 0.5 one has

(7.195)

and the first term in the bracket of Eq. (7.194) vanishes. The enthalpy of disordering,

disH, is then given by:

(7.196)

Solving Eq. (7.196) for  yields:

(7.197)

Kroll et al. (1997) give for the term  a value of

- 4162 Jmol-1. The order parameters before and after heat treating are:

and

respectively.
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disordering, disH, into Eq. (7.197), the enthalpy of the exchange reaction is calcu-

lated as follows:

(7.198)

Example 2: Chatillon-Colinet et al. (1983) measured calorimetrically the heat of

mixing, , for a disordered orthopyroxene. The authors fitted a regular solution

model to their experimental data and obtained

(7.199)

where WH = 7950 Jmol-1. This datum can be combined with the result in Example

1 to evaluate the enthalpy of the reciprocal reaction, , and to determine the

intra site interaction parameters  and . 

Because the enthalpy of mixing determined by Chatillon-Colinet et al. (1983) re-
fers to a completely disordered pyroxene, the value of the order parameter, Q, is ze-
ro. In this case, Eq. (7.189) has the form:

(7.200)

A comparison of Eqs. (7.199) and (7.200) shows that

(7.201)

Combining Eq. (7.201) with  (Kroll et

al. (1997) gives:

(7.202)

and
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Using Eq. (7.203) and the relationship:

(7.204)

(Kroll et al., 1997) one obtains:

(7.205)

and

(7.206)

These results enables one to calculate the enthalpy of mixing for any orthopyrox-
ene with any arbitrary distribution of iron over the M1 and M2 sites. 

Example 3: In this example we want to calculate the entropy of disordering due
to heating of an ordered orthopyroxene at 1173 K as described in Example 1. The
calculation is carried out using Eq. (7.184) where:

(7.207)

In Eq. (7.207), the difference Qa - Qb designates the change in the order param-

eter associated with the process of Fe-Mg disordering. 

Following Kroll et al. (1997),  has a value of - 2.719 Jmol-1K-1. The en-

tropy of the reciprocal reaction,  and the entropic intra site interaction pa-

rameters  and  are approximately zero. Moreover, the compositional

parameter, r, is zero, because the mole fraction of ferrosilite in the pyroxene is 0.5.
Considering these facts the Eq. (7.207) simplifies to:
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(7.208)

Inserting the numerical data into Eq. (7.208) yields:

(7.209)

The Gibbs free energy of disordering can be calculated using the Gibbs-Helm-
holtz equation, according to which, the following relationship holds:

(7.210)

Inserting the values for the enthalpy and entropy of disordering into Eq. (7.210)
and solving for disG at T = 1173 K yields:

(7.211)

7.2  Problems

1. Consider the reaction:

• Calculate the equilibrium pressure of the reaction at 700°C assuming that the
enthalpy, entropy and the volume of reaction are all pressure and temperature
independent.
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• Calculate the equilibrium pressure of the reaction at 700°C considering the tem-
perature dependence of the enthalpy and entropy of reaction and the pressure
and temperature dependence of the volume of reaction. Use the data given in
Tab. 7.7.

; (Holland and Powell 1998).

2. Consider the degassing reaction:

• Calculate the various degassing temperatures at pressures 0.1 MPa. 10 MPa,
50 MPa, 100 MPa, 500 MPa and 1 GPa under the following assumptions: the
enthalpy, entropy and volume of reaction do not depend on pressure and tem-
perature, the gases behave ideally and their pressure equals the total pressure in
the system.

• Draw the P-T diagram. 

• Calculate the degassing temperature at 0.5 GPa for the case that the mole frac-
tion of CO2 equals 0.1. Use the data given in Tab.  (7.7) and  (7.8).

Table 7.7 Thermodynamic data of the phases involved in the reaction: talc + enstatite 
anthophyllite (Holland and Powell 1998)

Phase
[kJmol-1] [Jmol-1K-1] [cm3mol-1] x105 x1012

Talc -5896.92 260.00 136.25 2.04 21.94

Enstatite -1545.13 66.25 31.31 2.32 9.84

Anthophyllite -12068.59 536.00 265.40 2.75 15.04

fH298 S298 V298 K
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Pa
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Cp Mg3Si4O10 OH 2
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5
10 T
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3. A mechanical mixture of Ni and NiO is sealed into an evacuated quartz
ampoule and annealed at 800°C. 

• Write the chemical reaction that defines the oxygen fugacity in the quartz
ampoule.

• Assume that the enthalpy and the entropy of reaction are pressure and tempera-
ture independent and that oxygen is an ideal gas and calculate the equilibrium
oxygen pressure at 800°C. 

4. The distribution of iron and magnesium between olivine and garnet can be used
to calculate the equilibrium temperature of olivine and garnet bearing rocks. 

• Formulate the exchange reaction.

• Give the mathematical expression for the distribution coefficient, KD, as a func-

tion of temperature and pressure assuming ideal mixing of cations in both
phases. 

• Give the mathematical expression for the distribution coefficient in the case
that olivine solid solution is ideal and that of garnet non-ideal. 

• Give the mathematical expression for the activity of Mg3Al2Si3O12 in the gar-

Table 7.8 Thermodynamic data of the phases involved in the reaction: talc + 
magnesite  forsterite + CO2 + H2O (Holland and Powell 1998)

Phase
fH298

[kJmol-1]

S298

[Jmol-1K-1]

V298

[cm3mol-1]

Magnesite - 1111.59 65.10 28.03

Forsterite - 2171.85 95.10 43.06

CO2 - 393.51 213.70 -

H2O - 241.81 188.80 -

fH298 NiO 239.3 kJmol
1–
,–=

S298 Ni 29.87 Jmol
1–
K

1–
,=

S298 O2
205.15 Jmol

1–
K

1–
  and=

S298 NiO 37.99 Jmol
1–
K

1–
=

Robie and Hemingway (1995).
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net solid solution assuming that the dodecahedral sites are occupied by Mg and
Fe and the octahedral sites by Al and Cr. Further assume that the mixing on
sites obeys the model of a simple solution.



Chapter 8   Geothermometry and geobarometry

The goal of geothermometry and geobarometry is to determine the P-T-conditions
at which a rock equilibrated by using a so-called geothermometer and geobarome-

ter.

Geothermometers are phase or reaction equilibria that depend strongly on tempera-
ture and not or only little on pressure, while geobarometers have significant pressure
and negligible temperature dependencies. The fundamental thermodynamic rela-
tionship that constitutes the basis for geothermometry and geobarometry is given in
Eq. (7.8), namely

The temperature dependence of the thermodynamic equilibrium constant is given
by:

(8.1)

and its pressure dependence by:

(8.2)

The total differential of the logarithm of the thermodynamic constant, lnKP,T, is,

therefore:

(8.3)

At constant KP,T it holds that:
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(8.4)

or 

(8.5)

It is obvious from Eqs. (8.1), (8.2) and (8.5) that a reaction with a large rH and

a small rV is suitable as a geothermometer and that a reaction with a large rV and

a small rH as a geobarometer. (Note that rH and rV in Eqs. (8.1) through (8.6)

are functions of pressure and temperature). 

The principle behind geothermometry and geobarometry calculations is simple.
Thermodynamic functions of state such as rH, rS, rV, rCp, activities of the

components, etc., which are measured using different calorimetric and x-ray meth-
ods or derived from experimental phase equilibrium studies, are combined to give
the thermodynamic equilibrium constant, KP,T, i.e.:

(8.6)

Eq. (8.6) defines a surface in a three dimensional system having the coordinates
P-1/T-lnKP,T. The intersection of this surface with a P-1/T plane at any constant

lnKP,T gives a curve in a P-1/T diagram (see Fig. 8.1). 

If the activity coefficients of the components involved in the reaction are known,
the value of the thermodynamic equilibrium constant, KP,T, can be determined by

measuring the compositions of the coexisting phases. The equilibrium pressure, as
a function of temperature, for the determined equilibrium constant is then calculated
and drawn in a P-T diagram. The coordinates of the curve represent the P-T condi-
tions at which the phase assemblage may have equilibrated. In order to evaluate the
relevant equilibrium pressure and temperature, an analogous P-T-curve of another
phase assemblage from the same rock is required. The intersection of the two curves
then defines uniquely the temperature and pressure of equilibration. 
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Fig. 8.1 Graphic representation of Eq. (8.6). The dashed curve gives the P-T coordinates 
for a constant value of lnKP,T.

8.1  Exchange geothermometers

Geothermometers and geobarometers are based on different types of reactions.
One type is a so-called exchange reaction. This is a reaction that involves the ex-
change of two atoms between two different minerals. The volume changes associ-
ated with exchange reactions are generally small and the enthalpy changes relatively
large and, therefore, show a strong temperature dependence and are largely pressure
independent and thus make ideal geothermometers. 

An example of an exchange thermometer that is based on the partitioning of iron
and magnesium between garnet and biotite as presented in the foregoing chapter.
Another example is the so-called garnet-olivine geothermometer. It was calibrated
by O’Neill and Wood (1979) and is based on the equilibrium distribution of iron and
magnesium between garnet and olivine. The corresponding exchange reaction
reads:

(8.7)

1/T

P

lnKP,T

2Mg3Al2Si3O12 3Fe2SiO4+ 2Fe3Al2Si3O12 3Mg2SiO4+=
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and thermodynamic equilibrium constant given by:

(8.8)

It is important when formulating a geothermometer to relate the distribution co-
efficient, KD, which can be determined by measuring the compositions of the coex-

isting phases, to pressure and temperature. In contrast to the equilibrium constant,
the distribution coefficient depends not only on pressure and temperature but also
on the compositions of the phases involved. For the garnet-olivine geothermometer,
the distribution coefficient is defined as follows:

(8.9)

where

(8.10)

and

(8.11)

In order to account for the effect of the calcium content on the distribution coef-
ficient, O’Neill and Wood (1979) used a ternary Mg - Fe - Ca garnet in their exper-
iments. The atomic fractions of magnesium and iron are, therefore, given by:

(8.12)

and

(8.13)

respectively.
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Considering the fact that there are two thermodynamically equivalent sites in oli-
vine and three in garnet, the relationship between the atomic fraction of a component
and its activity reads:

(8.14)

(8.15)

(8.16)

and

(8.17)

Substituting expressions (8.14) through (8.17) for the activities in Eq. (8.8)
yields:

(8.18)

or

(8.19)

Taking logarithms and multiplying by the gas constant, R, and temperature, T,
leads to:

(8.20)

O’Neill and Wood (1979) assumed that olivine, as well as garnet, could be rep-
resented by a regular solution. Thus, the activity coefficients are given by:

aMg2SiO4

ol
xMg

ol

Mg

ol 2
,=

aFe2SiO4

ol
xFe

ol

Fe

ol 2
,=

aMg3Al2Si3O12

grt
xMg

grt

Mg

grt 3
=

aFe3Al2Si3O12

grt
xFe

grt

Fe

grt 3
.=

KP T

xMg

ol

Mg

ol 6
xFe

grt

Fe

grt 6

xFe

ol

Fe

ol 6
xMg

grt

Mg

grt 6
-------------------------------------------------------------=

KD KP T

1 6 Fe

ol

Mg

grt

Mg
ol

Fe
grt

----------------------- .=

RT KDln
1
6
---RT KP Tln RT

Mg

grt

Fe

grt
---------ln RT

Mg

ol

Fe

ol
--------- .ln–+=



348 8 Geothermometry and geobarometry

(8.21)

(8.22)

(8.23)

and

(8.24)

where Wij are the interaction parameters.

Considering that the sum of xMg + xFe is 1, from Eqs. (8.21) and (8.22) one ob-

tains:

(8.25)

and from Eqs. (8.23) and (8.24):

(8.26)

Disregarding the temperature and pressure dependence on the enthalpy, entropy
and volume of reaction, the equilibrium constant is, according to Eqs. (7.8) and
(7.16), given by:

(8.27)

Eq. (8.15) can, thus, be written as:

RT Mg

grt
ln xFe

grt 2
WFeMg

grt
xCa

grt 2
WCaMg

grt

xFe

grt
xCa

grt
WFeMg

grt
WCaMg

grt
WFeCa

grt
–+ ,

+

+

=

RT Fe

grt
ln xMg

grt 2
WFeMg

grt
xCa

grt 2
WFeCa

grt

xCa

grt
xMg

grt
WFeMg

grt
WFeCa

grt
WCaMg

grt
–+ ,

+

+

=

RT Mg

ol
ln xFe

ol 2
WFeMg

ol
=

RT Fe

ol
ln xMg

ol 2
WFeMg

ol
,=

RT
Mg

grt

Fe

grt
---------ln xFe

grt
xMg

grt
– WFeMg

grt
xCa

grt
WCaMg

grt
WFeCa

grt
–+=

RT
Mg

ol

Fe

ol
---------ln xFe

ol
xMg

ol
– WFeMg

ol
.=

1
6
--- KP Tln

rH298

6RT
------------------–

rS298

6R
---------------- rV298

6RT
----------------- P Po– .–+=



8.2 Solvus thermometry 349

(8.28)

If the pressure and temperature dependence on the changes in enthalpy, entropy
and volume of reaction are to be considered, the molar heat capacities, thermal ex-
pansion and compressibility coefficients of the end-member phases must be intro-
duced into the calculation. In addition, the interaction parameters must be given as
a function of temperature and pressure. This leads to complex expressions, but does
not introduce any substantially new aspects and is, therefore, not presented here.

8.2  Solvus thermometry

Solvus thermometry is based on the distribution of a component between two coex-
isting phases occurring on the limbs of a miscibility gap. The boundary of the gap,
which is referred to as the solvus, indicates the temperature dependent degree of
miscibility between two structurally related phases. The composition of coexisting
mineral pairs can, therefore, be used to estimate their temperature of equilibration.
The location of a solvus in a T-x-diagram is generally determined experimentally.
Based on the experimental results, the equilibrium conditions as a function of tem-
perature, pressure and composition are then expressed by the usual thermodynamic
formulas. 

One important mineralogical system with a miscibility gap that has been well
studied experimentally is that consisting of enstatite-diopside. The subsolidus equi-
libria in this mineral pair are governed by the partial immiscibility between Ca-rich
diopside and Ca-poor enstatite. Fig. 8.2 shows the mutual solubility of the compo-
nents as a function of temperature at 1.5 GPa (Lindsley and Dixon 1976).

Several thermodynamic models for the system enstatite-diopside have been pre-
sented in the literature. Here, we want to describe the model developed by Lindsley
et al. (1981).

In a binary system containing two phases there are two equations that relate the
chemical potentials of the components to one another. For coexisting enstatite and
diopside, these relations are:

(8.29)
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(8.30)

where   and  are the chemical po-

tentials of the components Mg2Si2O6 and CaMgSi2O6 in the phases orthopyroxene
and clinopyroxene, respectively. Eqs. (8.29) and (8.30) correspond to the reactions:

(8.31)

and

(8.32)

Fig. 8.2 T-x diagram of the system Mg2Si2O6 - CaMgSi2O6 at P = 1.5 GPa (after Linds-
ley and Dixon 1976). Enss = enstatite solid solution, Diss = diopside solid solution
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If the chemical potentials are written in their extended form, Eqs. (8.29) and
(8.30) read:

(8.33)

and

(8.34)

or

(8.35)

and

(8.36)

The differences between the standard potentials in Eqs. (8.35) and (8.36) corre-
spond to the Gibbs free energy of phase transformation for pure Mg2Si2O6 and pure

CaMgSi2O6, respectively. Hence, it holds that

(8.37)
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(8.38)

Orthopyroxene is considered to be a regular and clinopyroxene a subregular solid
solution. The activity coefficients of the components have, therefore, the form:

(8.39)

(8.40)

(8.41)

and

(8.42)

Inserting expressions (8.39) through (8.42) into Eq. (8.37) and (8.38), respective-
ly, yields: 

(8.43)

for reaction (8.31) and 
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(8.44)

for reaction (8.32).

Using the compositions of 23 orthopyroxene-clinopyroxene pairs taken from
their experiments, Lindsley et al. (1981) determined the solution parameters and ob-
tained the following values: 

Inserting these data into Eqs. (8.43) and (8.44) and solving for T, yields:

(8.45)
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(8.46)

respectively.
Eqs. (8.45) and (8.46) can be used to estimate the equilibrium temperature of en-

statite-diopside pairs at any pressure. 

8.3  Solid-solid reactions

Some geobarometers and geothermometers are based on reactions that produce or
consume of phases. Although these reactions generally are both temperature and
pressure dependent, they are preferentially used as geobarometers. This is because
solid-solid reactions often result in large volume changes. The application of these
geobarometers usually requires a chemical analysis of the coexisting phases in order
to account for the effect of solid solutions. This can be, however, also an advantage
because an increased number of components increases the variance of the system.

8.3.1 Reactions in one-component system

The most widely used system to estimate the equilibrium conditions of metamor-
phic rocks is Al2SiO5. The system comprises the polymorphs kyanite, andalusite
and sillimanite (see Fig. 7.2) and the thermodynamic equilibria are described by the
following three reactions:

The significance of these reactions for the estimation of P-T conditions in meta-
morphic rocks was recognized very early. A generation of geoscientists has tried to
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determine experimentally the location of the univariant reaction (transformation)
curves in P-T-space. The results of their investigations are, however, inconsistent.
These discrepancies or problems are related to the small Gibbs free energies of tran-
sitions and to the variation in the composition and structural state of the synthetic
versus natural phases. Thus, several phase diagrams have been published. Field pe-
trologists prefer the triple point at 0.376 GPa and 501°C as determined by Holdaway
(1971), which is consistent with the calorimetrically determined thermodynamic
properties of natural andalusite (Anderson et al. 1977). Another phase diagram that
is cited often, gives the triple point at 0.55 GPa and 622°C (Richardson et al. 1969).
The usefulness of this system as a geobarothermometer is related to the frequent oc-
currence of the three polymorphs in metapelitic rocks and the fact that some isograd
reactions correspond to polymorphic transformations. Al2SiO5 phases are used

sometimes to calibrate other geothermometers and geobarometers.

8.3.2 Reactions in multicomponent systems

One key geobarometer for medium-grade pelitic rocks is based on the assemblage
plagioclase, garnet, Al-silicate and quartz. The reaction describing thermodynamic
equilibrium between the phases reads:

(8.47)

where anorthite and grossular are components in plagioclase and garnet solid solu-
tions, respectively. Aluminium silicate can occur as kyanite or sillimanite. The re-
action was first proposed as a geobarometer by Gent (1976). Several experimental
studies have been made on the end-member reaction (e.g., Hays 1976; Harriya and
Kennedy 1968; Schmid et al. 1978; Goldsmith 1980; Koziol and Newton 1988). Fig.
8.3 shows the results of Koziol and Newton (1988).

The pressure dependence of the reaction is given by:

(8.48)

where rH, rS and rV are the enthalpy, entropy and volume of reaction, respec-

tively. KP,T is the thermodynamic equilibrium constant that reads:

(8.49)
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Fig. 8.3 Experimental results for the reaction 3an = grt + 2ky + qtz (Koziol and Newton 
1988). The reaction curve is calculated using P[GPa] = 0.0022T[K] - 0.62 from McK-
enna and Hodges (1988).

where the superscript ky/sill indicates the two possible modifications of aluminium
silicate. 

All phases except garnet and plagioclase are pure. Therefore, their activities
equal 1 and the expression for the equilibrium constant reduces to:

(8.50)

The term  is the entropy correction factor that takes into ac-
count the aluminum avoidance principle, which says that adjacent aluminium con-
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taining tetrahedra are energetically unfavorable and are, therefore, avoided.
Berman (1990) developed a model for the activity coefficients of quaternary

Ca-Mg-Fe-Mn garnets, whereby the activity coefficient for grossular reads:

(8.51)

In Eq. (8.51), Wijk are the ternary interaction parameters and the numbers in the
subscripts designate the components: 1 = Ca3Al2Si3O12, 2 = Mg3Al2Si3O12, 3 =
Fe3Al2Si3O12 and 4 = Mn3Al2Si3O12. 

Tab. 8.1 gives the values for the interaction parameters.

Table 8.1 Interaction parameters for garnet solid solutions (Berman 1990)

Parameter W H[Jmol-1] W S[Jmol-1K-1] W V[cm3mol-1]

112 21560 18.79 1.0

122 69200 18.79 1.0

113 20320 5.08 1.7

133 2620 5.08 0.9

223 230 - 0.1

233 3720 - 0.6

123 58825 23.87 2.65

124 45424 18.79 1.0

134 11470 5.08 1.3

234 1975 - 0.35
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The activity coefficient for CaAl2Si2O8 in a ternary feldspar solid solution is giv-
en by Fuhrman and Lindsley (1988) and has the following form:

(8.52)

where An = CaAl2Si2O8, Ab = NaAlSi3O8 and Or = KAlSi3O8. Note that Eq. (8.52)
represents just another form of Eq. (5.172) that is given on page 210.

The interaction parameters required in Eq. (8.52) are given in Tab. 8.2. The stan-
dard thermodynamic functions including heat capacities, thermal expansion and
compressibility coefficients that are required to calculate the pressure according to
Eq. (8.48) can be taken from Berman (1988) or Holland and Powell (1990).

8.4  Reactions involving gaseous phases

Systems involving gaseous phases are generally less useful in geothermometry or

Table 8.2 Interaction parameters for ternary feldspars (Fuhrman and Lindsley 1988)

Parameter WH[Jmol-1] WS[Jmol-1K-1] WV[cm3mol-1]

Ab-Or 18810 10.3 3.94

Or-Ab 27320 10.3 3.94

Ab-An 28226 - -

An-Ab 8471 - -

Or-An 52468 - -

An-Or 47396 - -1.20

OrAbAn 8700 - -10.94

RT γCaAl2Si2O8
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geobarometry studies because a knowledge of fugacity of the gas involved in the
metamorphic reaction is required. This information is, however, rarely available. In
order to circumvent the problem, it is often assumed that the pressure of the partic-
ipating gas equals the total pressure. This simplification can, however, introduce
significant error in the determination of equilibrium conditions, especially if the
gaseous phase consists of several different species. In such cases, the fugacities of
each separate species should be known. Occasionally, other independent reactions
in the same sample can be used to determine the composition of the fluid phase and
the fugacities can be calculated. 

One of the widely used geothermometers involving oxygen as the gaseous phase
was proposed by Buddington and Lindsley (1964). It is based on coexisting magne-
tite-ilmenite pairs and it allows a determination of equilibrium temperature and ox-
ygen fugacity. Both minerals, magnetite and ilmenite are binary solid solutions
occurring in the systems Fe3O4-Fe2TiO4 and Fe2O3-FeTiO3, respectively. Thermo-

dynamic equilibrium is defined by a temperature-dependent exchange reaction and
an oxidation reaction (Spencer and Lindsley 1981). The exchange reactions reads:

(8.53)

and the oxidation reaction reads:

(8.54)

The superscripts 'mt' and ' ilm' designate the cubic magnetite-ulvöspinel and the
rhombohedral hematite-ilmenite solid-solution phase, respectively. 

For the system at equilibrium it holds:

(8.55)

and

(8.56)

In the ilmenite structure, Fe and Ti are ordered in alternate layers perpendicular
to the c-axis. The layers are termed A and B, respectively. Spencer and Lindsley

(1981) assume that Fe2+ occupies exclusively the A layers and Ti4+ exclusively B
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layers and that Fe3+ mixes randomly in both layers showing no preference neither
for A nor for B. The activity of ilmenite is, therefore, given by:

(8.57)

Magnetite, Fe3O4, and ulvöspinel, Fe2TiO4, have an inverse spinel structure. For

the magnetite-ulvöspinel solid solution, Spencer and Lindsley (1981) adopt a

so-called 'molecular mixing' model. Octahedrally coordinated Ti 4+ is linked to oc-

tahedrally coordinated Fe2+ and each octahedrally coordinated Fe2+ is linked to oc-

tahedrally coordinated Fe3+. The activity of magnetite can, therefore, be written as:

(8.58)

Substituting the activities in Eqs. (8.55) and (8.56) by expressions (8.57) and
(8.58), respectively, lead to:

(8.59)

and

(8.60)

Spencer and Lindsley (1981) express the activity coefficients of the components
in terms of a regular solution model. They have the form:

(8.61)

where the subscripts i and j designate the components of the binary system i-j. Thus,
the activity coefficient of the end-member component Fe2TiO4 reads:

(8.62)
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and that of Fe2O3 in the rhombohedral ilmenite phase:

(8.63)

The activity coefficients of magnetite and ilmenite have similar forms. 

Inserting the activity coefficients into Eqs. (8.59) and (8.60) and replacing the
Gibbs free energy of reaction by the enthalpy and entropy of reaction yields:

(8.64)
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(8.65)

The temperature dependence of the interaction parameters is given by:

(8.66)

Using the relationship in (8.66), the equilibrium temperature can be calculated as
follows:

(8.67)
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(8.72)

The oxygen fugacity is then given by:

(8.73)

where

(8.74)

Spencer and Lindsley (1981) assume ideal mixing behavior for the magnetite-ul-

vöspinel solid solution above 800°C. Thus , the values for  and 

are zero for temperatures higher than 800°C. Other solution parameters were deter-
mined as follows:
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KD

exch
xFe2TiO4

mt
xFe2O3

ilm 2

xFe3O4

mt
xFeTiO3

ilm 2
-------------------------------------------------.=

fO2
ln KD

ox
ln rH

ox

RT
--------------- rS

ox

R
--------------–

12 1 xFe2O3

ilm
–

2
Whem ilm–

G
2 Wilm hem–

G

Whem ilm–
G

– xFe2O3

ilm

+

4 1 xFe3O4

mt
–

2
Wmt usp–

G

2 Wusp mt–
G

Wmt usp–
G

– xFe3O4

mt
+

–

RT,

+

+

=

KD

ox
ln

xFe2O3

ilm 12

xFe3O4

mt 4
--------------------------.=

Wmt usp–
G

Wusp mt–
G

Wusp mt–
H

64835 Jmol
1–

=

Wmt usp–
H

20798 Jmol
1–

=

Wilm hem–
H

102374 Jmol
1–

=

Whem ilm–
H

36818 Jmol
1–

=

rH
exch

27799 J=

Wusp mt–
S

60.296 Jmol
1–
K

1–
=

Wmt usp–
S

19.652 Jmol
1–
K

1–
=

Wilm hem–
S

71.095 Jmol
1–
K

1–
=

Whem ilm–
S

7.7714 Jmol
1–
K

1–
=

rS
exch

4.192 JK
1–
.=



364 8 Geothermometry and geobarometry

the data given in the usual thermodynamic tables (e.g. Robie and Hemingway 1995).



Solutions to problems

Chapter 01

1.

2.   

4.

7.  

Chapter 02

1.  V1MPa = 8.913 dm3mol-1

2.  

•

• The formulas are based on simplified assumptions.

x y

2
z

y x

2
z a

y
2

-----–= =

xMgO

fo
0.667,= xSiO2

fo
0.333=

xMgO

en
0.500,= xSiO2

en
0.500=

xMgO

crd
0.222,= xAl2O3

crd
0.222,= xSiO2

crd
0.556=

wt%(MgO) = 13.78, wt%(Al2O3) = 34.86, wt%(SiO2) = 51.36

xAl2SiO5

ky
0.7,= xSiO2

qtz
0.3=

a
9
8
---RTcVc 0.339 Jm

3
mol

2–
,= = a 3PcVc 0.208 Jm

3
mol

2–
= =

b
Vc

3
------ 18.67 cm

3
,= = b

RTc

8Pc

--------- 30.49 cm
3

= =
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3.  V = 1.31 x 10-4 m3mol-1

4.  VE = 579.84 Å3,

• V = 34.918 x 10-6 m3mol-1 = 34.918 cm3mol-1

5. V = 1.139 cm3

6. V and/sill = - 2.047 cm3mol-1

7.  

•

•

•

•

•

8. rV = 67.9 cm3

Chapter 03

1. W0.1MPa = 5.45 x 10-3 J

• W2.5 GPa = 63.5 J or

VCaMgSi2O6

di
66.043 cm

3
mol

1–
,= VCaAl2SiO6

CaTs
63.603 cm

3
mol

1–
=

VCaMgSi2O6

di
65.960 cm

3
mol

1–
,= VCaMgSi2O6

di
65.523 cm

3
mol

1–
=

VCaAl2SiO6

CaTs
63.416 cm

3
mol

1–
,= VCaAl2SiO6

CaTs
63.083 cm

3
mol

1–
=

VCaMgSi2O6

di ex
 0.083 cm–

3
mol

1–
,= VCaAl2SiO6

CaTs ex
 0.187 cm–

3
mol

1–
=

VCaMgSi2O6

di ex
 0.520 cm–

3
mol

1–
,= VCaAl2SiO6

CaTs ex
 0.520 cm–

3
mol

1–
=

mV
ex

1 xCaTs

cpx
– xCaTs

cpx
 0.52–=
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• W2.5 GPa = 64.0 J

• The formulas are based on simplified assumptions.

2. E = 1.589 x 1013 sec-1

• UE,300 = 456.476 kJmol-1

• Cp,300 = 612.52 kJmol-1

• Cp,500 = 845.36 kJmol-1

3.  H = - 6.815 x 106 kJ

4. subregular

•

•

•

5.  

6.  rH298 = - 21.74 kJ

• rH1073 = - 36.664 kJ

7.   

Hgeh

ex
 0.811 kJmol

1–
,–= Hak

ex
7.239 kJmol

1–
=

Hgeh

ex
 24.288 kJmol

1–
,–= Hak

ex
0.502 kJmol

1–
=

mH
ex

1.6 kJmol
1–

=

rH298 12.27 kJ,= rH1073 9.26 kJ=

trH975 29.970 kJmol
1–
,= trH975 6.82 kJmol

1–
,=

trH298 32.769 kJmol
1–
,= trH298 9.40 kJmol

1–
=
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•

Chapter 04

1.  

2.  Stot > 0 = 10 JK-1

3.  

•

4.

5.  rS800 = 701.2 JK-1

Chapter 05

1. 

2.  = 56.652 kJmol-1

3.  

•

•

fH298 2140.2 kJmol
1–
,–= fH298 2130.8–=  kJmol

1–

S1273
herc

338.537 Jmol
1–
K

1–
=

SMg2Al3AlSi5O18

conf
47.61 Jmol

1–
K

1–
=

Srand

conf
60.68 Jmol

1–
K

1–
=

S Ca Mg Mg Al Al Si O6

conf
4.22 Jmol

1–
K

1–
=

mG 15.237 kJmol
1–

–=

mG
ex

1 xmu– xmu

2
Wpg mu–

G
1 xmu–

2
xmuWmu pg–

G
+=

mH
ex

1.86 kJmol
1–

=

mV
ex

0.429 cm
3
mol

1–
,= mS

ex
0.14 JK

1–
=
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•

•

•

4.  

5.  rG = 55.46 kJmol-1

• The educts are more stable than the products at 0.3 GPa and 600 K. Therefore, 
the reaction can not proceed in the given direction.

Chapter 06

1. Ptr = 6.61 GPa

2.  Tc = 1203 K = 930°C

•

3.  Tfus = 1808 K

•

4.  

Chapter 07

1.  Peq = 0.47 GPa

pg 5.152,= apg 0.773=

mu 1.028,= amu 0.874=

mG 1.114 kJmol
1–

–=

Ca3Al2Si3O12

gr
6976.149 kJmol

1–
–=

x1 0.2814,= x2 0.7186=

CaAl2Si2O8

an
1.049=

xFe2SiO4
0.6150,= xFe2SiO4

0.8644=
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• Peq = 0.68 GPa

2.  

•

3.  

4.  

•

•

•

P x 10-6 [Pa] T[K]

0.1 519

10.0 659

50.0 723

100.0 750

500.0 778

1000 737

TxCO2
0.1= 699 K=

PO2
3.73

9–
10  Pa=

3Mg2SiO4 2Fe3Al2Si3O12 3Fe2SiO4 3Mg3Al2Si3O12++

KDln rH

6RT
---------- rS

6R
--------- rV

6RT
---------- P 10

5
––+–=

KDln
rH

6RT
---------- rS

6R
--------- rV

6RT
---------- P 10

5
–– RT Mg

grt
ln RT Fe

grt
ln–+ +–=

aMg3Al2Si3O12

grt
xMg

3
xAl

2
xFe

2 W
G

RT
--------exp

3

xCr

2 W
G

RT
--------exp

2

xFexCr
rG

rec

RT
-----------------–exp

=
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Subject index

A

Activity, 180
Activity coefficient, 179, 180, 184

pressure dependence, 190
temperature dependence, 189

Adiabatic changes, 218
Aluminum avoidance principle, 356
Ambient pressure, 181
Avogadro’s constant, 46

B

Binode, 240
chemical or strain-free, 247

Birch-Murnaghan equation, 27, 34
Boltzmann’s constant, 94, 145
Boltzmann’s equation, 145
Boltzmann’s statistics, 93
Boyle’s law, 35
Boyle-Mariotte’s law, 35
Bulk modulus, 27, 32

C

Cahn energy, 245
Calorie, 78
Celsius temperature scale, 8
Characteristic temperature, 95

Chemical potential, 168, 173
excess, 192
ideal gas, 168
standard, 168, 169

Clausius-Clapeyron equation, 224
Coefficient of thermal expansion, 26
Coherent, 244
Component, 3
Composition, 10

eutectic, 259
Compositional projection, 19
Compressibility coefficient, 26
Compressibillity factor, 43
Critical compressiblity factor, 41
Critical pressure, 39
Critical temperature, 39

D

Dalton’s law, 177, 299
Debye T 3 law, 97
Debye temperature, 96
Degrees of freedom, 272
Differential

exact, 7
total, 6

Diffusion
downhill, 243
uphill, 243
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Disorder
complete, 325
partial, 325

Distribution coefficient, 307, 309
intracrystalline, 329

Dulong-Petit’s law, 96
Dulong-Petit’s rule, 90, 92

E

Einstein heat capacity function, 95
Einstein temperature, 95
Enthalpy, 84

partial molar, 106
partial molar excess, 108

Enthalpy content
standard, 102

Enthalpy of a solution, 106
Enthalpy of formation

standard, 117, 138
Enthalpy of fusion, 105
Enthalpy of mixing, 108

excess, 108
Enthalpy of reaction, 117, 118

standard, 118, 279
Enthalpy of solution, 107
Enthalpy of transition, 140
Entropy, 129, 130

configurational, 150
molar, 137, 154
partial molar, 154
partial molar excess, 159
thermal, 145
third law or conventional, 138
third law or conventional stan-

dard, 138
Entropy of formation

standard, 216
Entropy of mixing, 152

excess, 193
Entropy of reaction, 160

standard, 279

Entropy of transition, 139
Equation of state, 24
Equilibrium, 7

divariant, 274
invariant, 273
thermal, 7, 218
univariant, 274

Equivalent of heat, 78
Eutectic, 260, 263
Extent of reaction, 74, 117, 214

F

First law of thermodynamics, 7, 78
Free volume, 37
Fugacity, 170

partial, 178, 181
Fugacity coefficient, 170

partial, 179, 305
pure gas, 178

Function of state, 5

G

Geobarometer, 344
solid-solid reaction, 349

Geothermometer, 344
Geothermometry amd geobarometry

exchange reaction, 345
Geothermometry and geobarometry,
343

enstatite-diopside, 349
garnet-olivine, 345
reactions involving gaseous phas-

es, 358
solid-solid reactions, 354

multicomponent systems,
355

one-component systems,
354

solvus thermometry, 349
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Gibbs compositional triangle, 16
Gibbs free energy, 166

excess, 232
molar, 168, 174
partial molar, 175
total, 174

Gibbs free energy of formation
standard, 215

Gibbs free energy of mixing, 191
excess, 192
ternary system, 206

Gibbs free energy of reaction, 214
standard, 215

Gibbs phase rule, 273
Gibbs-Helmholtz equation, 214
Grüneisen constant, 88
Guy-Lussac’s law, 34

H

Harmonic oscillator, 92
Heat, 78
Heat capacity

constant pressure, 86, 133
constant volume, 85, 133
Debye function, 96
Haas-Fisher polynomial, 98
Holland polynomial, 98
Maier-Kelly polynomial, 97, 98
molar, 86

Heat capacity change, 119
Heat content function, 102
Heat of transition, 104
Heat reservoir, 8
Helmholtz free energy, 166
Henry’s constant, 185
Henry’s law, 185
Henry’s law region, 185
Hess’s law, 122

I

Ideal or perfect gas, 35
Incoherent, 244
Infinite dilution, 186
Instable area, 251
Integrating factor, 130
Interaction

intersite, 320
intrasite, 337

Interaction parameter, 196
enthalpic, 110, 115, 199
volume, 60, 69

Intermediate region, 186
Internal energy, 78
Internal equilibrium, 138
Isobar, 24
Isobaric changes, 219
Isochore, 24
Isochoric changes, 218
Isotherm, 24
Isothermal change, 81, 219

K

Kelvin temperature scale, 9
Kirchhoff’s law, 119, 142

L

Lagrange multiplier, 148
Lagrange’s method, 147
Lambda transition, 231
Landau constants, 236
Landau theory, 231
Landau’s expression, 232
Lever rule, 12
Lewis and Randall

fugacity rule, 181
Liquidus, 259
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M

Macrostate, 138, 144, 145
Margules parameter, 198
Mariotte’s law, 35
Maxwell-Boltzmann distribution, 149
Metastable, 243
Microstate, 144, 145
Mixing on sites, 157
Mixtures

asymmetric, 60
simple binary, 110
symmetric, 60, 69

Molality, 11
Molarity, 11
Mole fraction, 10

critical, 250
Mole percent, 11
Molecular mixing, 158

N

Nernst distribution law, 307
Neumann-Kopp rule, 90
Nucleation, 243

O

Order parameter, 231
Ordering, 325

convergent, 326
non-convergent, 326
partial, 332

P

Partition function, 149
Phase, 2
Phase transition

Ehrenfest’s classification, 231
first-order, 227
second-order, 229
tricritical, 233

Planck’s constant of action, 93
Polymorphs, 2
Pressure

definition, 10
Process

adiabatic, 8, 136
cyclic, 79
irreversible, 130
isothermal, 8
natural, 129

Property
extensive, 5
intensive, 5
macroscopic, 5
microscopic, 5
molar, 6
specific, 6

Pure phases
stability conditions, 220, 222

R

Raoult’s law, 184
Raoult’s region, 184
Reaction

between pure phases, 278
between solids, 288
endothermic, 117
exchange, 308, 329
exothermic, 117
reciprocal, 316
standard, 215

Reciprocity relation, 36
Redlich-Kister equation, 195
Redlich-Kwong equation, 42

modified, 42, 43
Reversible process, 130
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S

Second law of thermodynamics, 7,
129
Semi-coherent, 244
Simple solutions, 254
Solution

asymmetric, 198
reciprocal, 313
regular, 196
simple, 194
stability conditions, 237
sub-regular, 198
symmetrical, 194

Solvus
coherent, 251
critical conditions, 251
strain-free or chemical, 250

Spinodal
coherent, 251
strain-free or chemical, 250

Spinodal decomposition, 242
Spinode, 242

coherent, 247
strain-free or chemical, 247

Standard pressure, 169
Standard P-T-conditions, 45
Standard state, 107, 186
Stirling’s approximation, 146
Strain, 243
Supercritical fluid, 39
Surface energy, 243
Surroundings, 1, 165
System, 165

binary, 3
closed, 1
heterogeneous, 2
homogeneous, 2
isolated, 1
open, 1
ternary, 4
thermodynamic, 1
unary, 3

T

Temperature, 7
critical mixing, 250
eutectic, 259
phase transformation, 223
thermodynamic, 9, 35

Temperature scale, 8
Thermodynamic equilibrium con-
stant, 278, 293
Thermodynamic probability, 144,
145
Thermometer, 9
Third law of thermodynamics, 138
Triple point, 274

U

Universal gas constant, 36

V

van der Waals equation, 38
Variable of state, 5

dependent, 5
independent, 5

Vibrational energy
zero point, 95

Virial coefficient, 43
Virial equation, 43
Volume, 23

critical, 39
excess, 56
molar, 28
partial molar, 48, 52, 55
partial molar excess, 56
standard, 45
total, 49

Volume as function of state, 36
Volume coefficient, 23
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Volume of a binary solution, 51
Volume of a non-ideal solution, 51
Volume of a solution, 47, 50
Volume of an ideal solution, 48
Volume of mixing, 56

partial molar, 56
Volume of reaction, 74, 279

W

Wall
adiabatic, 8
diathermal, 8

Weight percent, 11
Work, 78, 79

Z

Zeroth law of thermoynamics, 7
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