


The Supercontinuum Laser Source
Second Edition



Robert R. Alfano
Editor

The Supercontinuum
Laser Source
Fundamentals with
Updated References

Second Edition

With 259 Illustrations



Robert R. Alfano
Distinguished Professor of Science and Engineering
Department of Physics
City College of the City University of New York
New York, NY 10031
USA
ralfano@ccny.cuny.edu

Cover illustration: Shows the supercontinuum generation of intensity versus wavelength for 1mm
of carbon tetrachloride liquid excited by a 120-fs, 625-nm laser pulse. Photo by Robert R.
Alfano, A. Katz, and P.P. Ho.

Library of Congress Cataloging-in-Publication Data
The supercontinuum laser source: fundamentals with updated references/[edited by]

Robert R. Alfano.
p. cm.

Includes bibliographical references and index.
ISBN 0-387-24504-9 (acid-free paper)
1. Laser pulses, Ultrashort. 2. Nonlinear optics. I. Alfano, Robert R., 1941–

QC689.5.L37S87 2005
621.36¢6—dc22 2005042765

ISBN-10: 0-387-24504-9 e-ISBN 0-387-25097-2
ISBN-13: 978-0387-24504-1

Printed on acid-free paper.

© 2006, 1989 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic adap-
tation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether
or not they are subject to proprietary rights.

Printed in the United States of America. (BS/MVY)

9 8 7 6 5 4 3 2 1

springeronline.com



To my father, Alfonso L. Alfano
and my father-in-law, Samuel J. Resnick
whose advice I deeply miss.



Preface to the Second Edition

The “supercontinuum” (SC) has become one of the hottest topics to study
in optical and photonic sciences since the first book on the supercontinuum
was published, entitled The Supercontinuum Laser Source, by Springer in
1989. That book, now becoming Part I in this second edition, reviewed the
progress achieved on the experimental and theoretical understanding of the
ultrafast nonlinear and linear processes responsible for the supercontinuum
generation and related applications occurring over 20 years since its discov-
ery by Robert R. Alfano and Stanley Shapiro in 1969.

There is a great need for a sequel part covering the recent worldwide surge
of research activity on the supercontinuum phenomena and the numerous
technological applications that have occurred over the past 15 years. This void
will partly be covered in this new rejuvenated second edition, called Part II,
by an overview of the recent advances with an updated compendium of ref-
erences on the various breakthroughs to understand the supercontinuum and
its new diverse applications.

The supercontinuum is the generation of intense ultrafast broadband
“white-light” pulses spanning the ultraviolet to the near infrared that arises
from the nonlinear interaction and propagation of ultrafast pulses focused
into a transparent material. The supercontinuum can be generated in differ-
ent states of matter—condensed media (liquids and solids) and gases. The
supercontinuum is one of the most dramatic and elegant effects in optical
physics. The conversion of one color to white-light is a startling result. This
is multicolored light with many of the same desirable properties as conven-
tional laser light: intense, collimated, and coherent. The supercontinuum has
a beam divergence as good as that of the input pump laser pulse. Moreover,
the coherence length of the supercontinuum is comparable with that of an
incoherent white-light source from a light bulb. The interference pattern mea-
sured for the supercontinuum from a pair of filaments in water shows a con-
stant phase relationship between the supercontinuum produced by each
filament. There is a constant phase relationship between the pump laser pulse
and its supercontinuum. The white-light supercontinuum is an ideal tunable
ultrafast white-light laser source. Supercontinuum has overtaken the study of



other nonlinear optical effects such as second harmonic generation (SHG)
and two-photon absorption for usefulness in a number of diverse applica-
tions. The supercontinuum field is still active after 36 years, and is today
finding new and novel uses.

Various processes are involved in the supercontinuum generation. When-
ever an intense ultrashort laser pulse propagates through a medium, it
changes the refractive index from the distortion of the atomic and molecu-
lar configuration, which in turn changes the phase, amplitude, and frequency
of the incident pulse. The phase change and amplitude change can cause a
frequency sweep of the carrier wave within the pulse envelope and can alter
the envelope and spatial distribution (self-focusing). There are various mech-
anisms responsible for the index of refraction change in material with inten-
sity. The frequency broadening mechanisms are electronic cloud distortion,
reorientational, librations, vibrational, and molecular redistribution, to name
the major ones. The operation of these mechanisms depends on its relaxation
time relevant to the laser pulse duration. The relaxation times associated with
electronic distribution is of the order of Bohr orbit time ~150as; reorienta-
tion time is ~1ps; rocking and libration response about the field is ~1ps;
vibrational dephasing is ~0.1ps; and molecular motion is ~1ps. Most of these
mechanisms are involved in the supercontinuum generation with 100 fs to ps
laser pulses.

Soon after the supercontinuum discovery in 1969, it initially found appli-
cations in time-resolved pump-supercontinuum probe absorption and 
excitation spectroscopy to study the fundamental picosecond (10-12 s) and
femtosecond (10-15 s) processes that occur in biology, chemistry, and solid-
state physics. Briefly, in biology, the primary events in photosynthesis and
vision were explored; in chemistry, a better understanding of the basic chemi-
cal dynamical steps in reactions and nonradiative processes in photoexcited
chemicals was achieved; and in solid-state physics, the underlying kinetics of
how elementary excitations behave and relax, such as optical phonons, polari-
tons, excitons, and carriers (electrons and holes) dynamics among the inter-
valleys and intravalley of semiconductors, were unraveled.

With the advent of microstructure fibers, there has been a rebirth of the
supercontinuum field in the type of applications in which the supercontin-
uum can play a decisive role. These applications include frequency clocks,
phase stabilization and control, timing, optical coherence tomography
(OCT), ultrashort pulse compression, optical communication, broad spec-
trum LIDAR, atmospheric science, lighting control, attosecond (10-18 s) pulse
generation, and coherence control.

Over the past several years, supercontinuum generation in microstructure
photonic crystal fibers by ultrashort pulse propagation has become a subject
of great interest worldwide. The main reasons are the low pulse energies
required to generate the supercontinuum; its coherences and high brightness
makes the continuum an ideal white-light source for diverse applications; and
the effects of zero dispersion and anomalous dispersion regions has resulted
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in higher-order solutions generation, pulse compression, and an ultrabroad-
band continuum exceeding 1000nm, extending from the ultraviolet to the
infrared spectral regions.

In microstructural fibers, when pump wavelength lies in an anomalous dis-
persion region, it is the solitons that initiate the formation of the continuum.
In a normal dispersion region, self-phase modulation is the process that ini-
tiates the continuum generation. The combination of four-wave mixing and
Raman processes extends the spectral width of the continuum. In that regard,
the pulse duration of an ultrafast laser determines the operational mecha-
nisms—for 10 fs to 1000 fs laser pulses, self-phase modulation and soliton
generation dominates; and for pulses >30ps, stimulated Raman and four-
wave mixing play a major role in extending the spectra. Of course, the pump
wavelength location, relative to the zero dispersion wavelength and the anom-
alous dispersion region, plays a role in the active mechanism and coherence
region of the supercontinuum. The supercontinuum spectra can span more
than a two-optical octave bandwidth spread from 380nm to 1600nm using
200 fs pulses with energy in the tens of nanojoules. The span over an octave
(i.e., 450nm to 900nm) is important in controlling the phase of the carrier
wave inside the pulse envelope of a mode-locked pulse train. Using the f and
2f waves in the supercontinuum, the carrier-envelope offset (CEO) phase can
be detected using heterodyne beating between the high-frequency end of the
supercontinuum with the doubled low end frequency of the supercontinuum
in an interferometer. These phase-controlling effects are important for main-
taining the accuracy of frequency combs for clocking and timing in metrol-
ogy, high-intensity atomic studies, and attosecond pulse generation.

The increasing worldwide demand for large-capacity optical communica-
tion systems needs to incorporate both the wavelength and time. The ultra-
broad bandwidth and ultrashort pulses of the supercontinuum may be the
enabling technology to produce a cost-effective superdense wavelength divi-
sion multiplexing (>1000l) and time multiplexing for the future Terabits/s to
Pentabits/s communication systems and networks. The supercontinuum is an
effective way to obtain numerous wavelength channels because it easily gen-
erates more than 1000 optical longitudinal modes while maintaining their
coherency.

The propagation of ultrahigh power femtosecond pulses ~100GW (10mJ
at 100 fs) in “air” creates the supercontinuum from the collapse of the beam
by self-focusing into self-guided small-size filaments. These filament tracks in
air are more or less stable over long distances of a few kilometers due to the
balance between self-focusing by the nonlinear index of refraction (n2) and
the defocusing by the ionized plasma formation via multiphoton ionization.
The supercontinuum in air can be used to monitor the amount of trace gases
and biological agents in aerosols in the backscattering detection geometry for
LIDAR applications. Furthermore, remote air ionization in the atmosphere
by the intense femtosecond pulses in the filaments plasma (uses the super-
continuum as the onset marker) has the potential to trigger, control, and
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guide lightning from one point to another and possibly even induce conden-
sation by seeding clouds to make rain. This approach may be able to secure
and protect airports and power stations from lightning and may be used to
collect and store energy from lightning. Moreover, creating an ionized fila-
ment track in a desirable region may be used to confuse and redirect the
pathway of incoming missiles for defense.

This new second edition will consist of two parts. The major portion 
(Part I) of the new book will be the reprinting of Chapters 1 to 10 from the
first edition. These chapters lay down the understanding and foundation of
the birth of the supercontinuum field. They go over the salient experimental
and theoretical concepts in the research works produced up to 1989. The
second part of this new second edition includes a new chapter (Chapter 11)
highlighting the supercontinuum coherence and 10 additional chapters
(Chapters 12 to 21) listing updated references of papers on the recent
advances made in our understanding and applications of supercontinuum.
These papers will be referenced and arranged within a topical group where 
a brief overview of the key features of these papers within a topic will 
be presented.

The following are the selected topics to be highlighted in the new 
Chapters 12 to 21 of updated references:

• Supercontinuum generation in materials (solids, liquids, gases, air).
• Supercontinuum generation in microstructure fibers.
• Supercontinuum in wavelength division multiplex telecommunication.
• Femtosecond pump—supercontinuum probe for applications in semicon-

ductors, biology, and chemistry.
• Supercontinuum in optical coherence tomography.
• Supercontinuum in femtosecond carrier-envelope phase stabilization.
• Supercontinuum in ultrafast pulse compression.
• Supercontinuum in time and frequency metrology.
• Supercontinuum in atmospheric science.
• Coherence of the supercontinuum.

Special thanks to Ms. Lauren Gohara and Dr. Kestutis Sutkus for their
assistance in the production of the second edition.

New York, New York Robert R. Alfano
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Preface to the First Edition

This book deals with both ultrafast laser and nonlinear optics technologies.
Over the past two decades, we have seen dramatic advances in the generation
of ultrafast laser pulses and their applications to the study of phenomena in
a variety of fields. It is now commonplace to produce picosecond (10-12 s)
pulses. New developments have extended this technology into the femto-
second (10-15 s) time region. Soon pulses consisting of just a single cycle will
be produced (i.e., 2 fs at 600nm). These ultrafast pulses permit novel investi-
gations to study phenomena in many disciplines. Sophisticated techniques
based on these laser pulses have given rise to instruments with extremely high
temporal resolution. Ultrafast laser technology offers the possibility of study-
ing and discovering key processes unresolved in the past. A new era of time-
resolved spectroscopy has emerged, with pulses so fast that one can now study
the nonequilibrium states of matter, test quantum and light models, and
explore new frontiers in science and technology. Ultrashort light pulses are a
potential signal source in future high-bit-rate optical fiber communication
systems. The shorter the pulses, the more can be packed into a given time
interval and the higher is the data transmission rate for the tremendous band-
width capacity of optical fiber transmission.

Nonlinear optics is an important field of science and engineering because
it can generate, transmit, and control the spectrum of laser pulses in solids,
liquids, gases, and fibers. One of the most important ultrafast nonlinear
optical processes is the supercontinuum generation—the production of
intense ultrafast broadband “white-light” pulses—that is the subject of this
book.

The first study on the mechanism and generation of ultrafast supercon-
tinuum dates back over 19 years to 1969, when Alfano and Shapiro observed
the first “white” picosecond pulse continuum in liquids and solids. Spectra
extended over ~6000cm-1 in the visible and infrared wavelength region. They
attributed the large spectral broadening of ultrafast pulses to self-phase 
modulation (SPM) arising from an electronic mechanism and laid down the
formulation of the supercontinuum generation model. Over the years, the
improvement of mode-locked lasers led to the production of wider super-



continua in the visible, ultraviolet, and infrared wavelength regions using
various materials.

The supercontinuum arises from the propagation of intense picosecond or
shorter laser pulses through condensed or gaseous media. Various processes
are responsible for continuum generation. These are called self-, induced-,
and cross-phase modulations and four-photon parametric generation. When-
ever an intense laser pulse propagates through a medium, it changes the
refractive index, which in turn changes the phase, amplitude, and frequency
of the pulse. However, when two laser pulses of different wavelengths 
propagate simultaneously in a condensed medium, coupled interactions
(cross-phase modulation and gain) occur through the nonlinear susceptibil-
ity coefficients. These coupled interactions of two different wavelengths can
introduce phase modulation, amplitude modulation, and spectral broaden-
ing in each pulse due to the other pulse using cross-effects.

An alternative coherent light source to the free electron laser, the super-
continuum laser source, can be wavelength selected and coded simultaneously
over wide spectral ranges (up to 10,000cm-1) in the ultraviolet, visible, and
infrared regions at high repetition rates, gigawatt output peak powers, and
femtosecond pulse durations.

Ultrafast supercontinuum pulses have been used for time-resolved absorp-
tion spectroscopy and material characterization. Supercontinuum generation
is a key step for the pulse compression technique, which is used to produce
the shortest optical pulses. Future applications include signal processing,
three-dimensional imaging, ranging, atmospheric remote sensing, and
medical diagnosis.

Thus far, a great deal of information on supercontinuum technology has
been obtained and has enhanced our understanding of how intense optical
pulses propagate in materials. These developments are most often found in
original research contributions and in review articles scattered in journals.
Textbooks do not cover these subjects in great detail. There is a need for a
book that covers the various aspects of ultrafast supercontinuum phenom-
ena and technology.

This book reviews present and past progress on the experimental and 
theoretical understanding of ultrafast nonlinear processes responsible for
supercontinuum generation and related effects such as pulse compression and
ultrashort pulse generation on a picosecond and femtosecond time scale. The
content of the chapters in the book is a mixture of both theoretical and
experimental material. Overviews of the important breakthroughs and devel-
opments in the understanding of supercontinuum during the past 20 years
are presented. The book is organized into 10 chapters.

Summarizing the highlights of the 10 chapters of the book:

In Chapter 1, Shen and Yang focus on the theoretical models and mecha-
nisms behind supercontinuum generation arising mainly from self-phase
modulation.
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In Chapter 2, Wang, Ho, and Alfano review the experiments leading to the
supercontinuum generation in condensed matter over the past 20 years.

In Chapter 3, Agrawal discusses the effects of dispersion on ultrafast light
pulse propagation and supercontinuum generation in fibers.

In Chapter 4, Baldeck, Ho, and Alfano cover the latest experimental obser-
vations and applications of the cross-interactions in the frequency, time,
and space domains of strong pulses on weak pulses.

In Chapter 5, Manassah reviews the theoretical models giving rise to many
phenomena from self-phase and induced modulations.

In Chapter 6, Suydam highlights the effect of self-steepening of pulse profile
on continuum generation.

In Chapter 7, Corkum and Rolland review the work on supercontinuum and
self-focusing in gaseous media.

In Chapter 8, Glownia, Misewich, and Sorokin utilize the supercontinuum
produced in gases for ultrafast spectroscopy in chemistry.

In Chapter 9, Dorsinville, Ho, Manassah, and Alfano cover the present and
speculate on the possible future applications of the supercontinuum in
various fields.

In Chapter 10, Johnson and Shank discuss pulse compression from the
picosecond to femtosecond time domain using the continuum and optical
dispersive effects of gratings, prisms, and materials.

The reader will find that these chapters review the basic principles, contain
surveys of research results, and present the current thinking of experts in the
supercontinuum field. The volume should be a useful source book and give
young and seasoned scientists, engineers, and graduate students an opportu-
nity to find the most necessary and relevant material on supercontinuum 
technology in one location.

I hope these efforts will stimulate future research on understanding the
physics behind supercontinuum technology and exploring new applications.

I wish to thank all the expert contributors for their cooperation in this
endeavor. Most thought it would not be completed. Special thanks goes to
Mrs. Megan Gibbs for her administrative and secretarial assistance. I grate-
fully acknowledge T. Hiruma for his continued support. I pay particular
tribute to my friend Stan Shapiro, who missed seeing the  outgrowth of our
first work in this field 20 years ago.

New York, New York Robert R. Alfano
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1
Theory of Self-Phase Modulation
and Spectral Broadening

Y.R. Shen and Guo-Zhen Yang

1. Introduction

Self-phase modulation refers to the phenomenon in which a laser beam prop-
agating in a medium interacts with the medium and imposes a phase modu-
lation on itself. It is one of those very fascinating effects discovered in the
early days of nonlinear optics (Bloembergen and Lallemand, 1966; Brewer,
1967; Cheung et al., 1968; Lallemand, 1966; Jones and Stoicheff, 1964;
Shimizu, 1967; Stoicheff, 1963). The physical origin of the phenomenon lies
in the fact that the strong field of a laser beam is capable of inducing an
appreciable intensity-dependent refractive index change in the medium. The
medium then reacts back and inflicts a phase change on the incoming wave,
resulting in self-phase modulation (SPM). Since a laser beam has a finite cross
section, and hence a transverse intensity profile, SPM on the beam should
have a transverse spatial dependence, equivalent to a distortion of the wave
front. Consequently, the beam will appear to have self-diffracted. Such a self-
diffraction action, resulting from SPM in space, is responsible for the well-
known nonlinear optical phenomena of self-focusing and self-defocusing
(Marburger, 1975; Shen, 1975). It can give rise to a multiple ring structure 
in the diffracted beam if the SPM is sufficiently strong (Durbin et al., 1981;
Santamato and Shen, 1984). In the case of a pulsed laser input, the tempo-
ral variation of the laser intensity leads to an SPM in time. Since the time
derivative of the phase of a wave is simply the angular frequency of the wave,
SPM also appears as a frequency modulation. Thus, the output beam appears
with a self-induced spectral broadening (Cheung et al., 1968; Gustafson et
al., 1969; Shimizu, 1967).

In this chapter we are concerned mainly with SPM that leads to spectral
broadening (Bloembergen and Lallemand, 1966; Brewer, 1967; Cheung et al.,
1968; Lallemand, 1966; Jones and Stoicheff, 1964; Shimizu, 1967; Stoicheff,
1963). For large spectral broadening, we need a strong SPM in time (i.e., a
large time derivative in the phase change). This obviously favors the use 
of short laser pulses. Consider, for example, a phase change of 6p occurr-
ing in 10-12 s. Such a phase modulation would yield a spectral broadening of



~100cm-1. In practice, with sufficiently intense femtosecond laser pulses,
a spectral broadening of 20,000cm-1 is readily achievable by SPM in 
a condensed medium, which is essentially a white continuum (Alfano and
Shapiro, 1970). The pulse duration of any frequency component (uncertainty
limited) in the continuum is not very different from that of the input pulse
(Topp and Rentzepis, 1971). This spectrally superbroadened output from
SPM therefore provides a much needed light source in ultrafast spectroscopic
studies—tunable femtosecond light pulses (Busch et al., 1973; Alfano and
Shapiro, 1971). If the SPM and hence the frequency sweep in time on a laser
pulse are known, then it is possible to send the pulse through a properly
designed dispersive delay system to compensate the phase modulation and
generate a compressed pulse with little phase modulation (Treacy, 1968,
1969). Such a scheme has been employed to produce the shortest light pulses
ever known (Fork et al., 1987; Ippen and Shank, 1975; Nakatsuka and
Grischkowsky, 1981; Nakatsuka et al., 1981; Nikolaus and Grischkowsky,
1983a, 1983b).

Self-phase modulation was first proposed by Shimizu (1967) to explain the
observed spectrally broadened output from self-focusing of a Q-switched
laser pulse in liquids with large optical Kerr constants (Bloembergen and
Lallemand, 1966; Brewer, 1967; Cheung et al., 1968; Jones and Stoicheff,
1964; Lallemand, 1966; Shimizu, 1967; Stoicheff, 1963). In this case, the spec-
tral broadening is generally of the order of a hundred reciprocal centimeters.
Alfano and Shapiro (1970) showed that with picosecond laser pulses, it is 
possible to generate by SPM a spectrally broadened output extending over
10,000cm-1 in almost any transparent condensed medium. Self-focusing is
believed to have played an important role in the SPM process in the latter
case. In order to study the pure SPM process, one would like to keep the 
beam cross section constant over the entire propagation distance in the
medium. This can be achieved in an optical fiber since the beam cross sec-
tion of a guided wave should be constant and the self-focusing effect is often
negligible. Stolin and Lin (1978) found that indeed the observed spectral
broadening of a laser pulse propagating through a long fiber can be well
explained by the simple SPM theory. Utilizing a well-defined SPM from 
an optical fiber, Grischkowsky and co-workers were then able to design 
a pulse compression system that could compress a laser pulse to a few 
hundredths of its original width (Nakatsuka and Grischkowsky, 1981;
Nakatsuka et al., 1981; Nikolaus and Grischkowsky, 1983a, 1983b). With
femtosecond laser pulses, a strong SPM on the pulses could be generated by
simply passing the pulses through a thin film. In this case, the beam cross
section is practically unchanged throughout the film, and one could again
expect a pure SPM process. Fork et al. (1983) observed the generation of a
white continuum by focusing an 80-fs pulse to an intensity of ~1014 W/cm2 on
a 500-mm ethylene glycol film. Their results can be understood by SPM along
with the self-steepening effect (Manassah et al., 1985, 1986; Yang and Shen,
1984).
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Among other experiments, Corkum et al. (1985) demonstrated that SPM
and spectral broadening can also occur in a medium with infrared laser
pulses. More recently, Corkum et al. (1986) and Glownia et al. (1986) have
independently shown that with femtosecond pulses it is even possible to gen-
erate a white continuum in gas media.

The phase modulation induced by one laser pulse can also be transferred
to another pulse at a different wavelength via the induced refractive index
change in a medium. A number of such experiments have been carried out
by Alfano and co-workers (1986, 1987). Quantitative experiments on spec-
tral superbroadening are generally difficult. Self-focusing often complicates
the observation. Even without self-focusing, quantitative measurements of a
spectrum that is generated via a nonlinear effect by a high-power laser pulse
and extends from infrared to ultraviolet are not easy. Laser fluctuations could
lead to large variations in the output.

The simple theory of SPM considering only the lower-order effect is quite
straightforward (Gustafson et al., 1969; Shimizu, 1967). Even the more rig-
orous theory including the higher-order contribution is not difficult to grasp
as long as the dispersive effect can be neglected (Manassah et al., 1985, 1986;
Yang and Shen, 1984). Dispersion in the material response, however, could
be important in SPM, and resonances in the medium would introduce pro-
nounced resonant structure in the broadened spectrum. The SPM theory with
dispersion is generally very complex; one often needs to resort to a numeri-
cal solution (Fischen and Bischel, 1975; Fisher et al., 1983). It is possible to
describe the spectral broadening phenomenon as resulting from a paramet-
ric wave mixing process (in the pump depletion limit) (Bloembergen and
Lallemand, 1966; Lallemand, 1966; Penzkofer, 1974; Penzkofer et al., 1973,
1975). In fact, in the studies of spectral broadening with femtosecond pulses,
four-wave parametric generation of new frequency components in the phase-
matched directions away from the main beam can be observed together with
the spectrally broadened main beam. Unfortunately, a quantitative estimate
of spectral broadening due to the parametric process is not easy. In the pres-
ence of self-focusing, more complication arises. Intermixing of SPM in space
and SPM in time makes even numerical solution very difficult to manage,
especially since a complete quantitative description of self-focusing is not yet
available. No such attempt has ever been reported. Therefore, at present,
we can only be satisfied with a qualitative, or at most a semiquantitative,
description of the phenomenon (Marburger, 1975; Shen, 1975).

This chapter reviews the theory of SPM and associated spectral broaden-
ing. In the following section, we first discuss briefly the various physical mech-
anisms that can give rise to laser-induced refractive index changes responsible
for SPM. Then in Section 3 we present the simple physical picture and theory
of SPM and the associated spectral broadening. SPM in space is considered
only briefly. Section 4 deals with a more rigorous theory of SPM that takes
into account the higher-order effects of the induced refractive index change.
Finally, in Section 5, a qualitative picture of how self-focusing can influence
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and enhance SPM and spectral broadening is presented. Some semiquanti-
tative estimates of the spectral broadening are given and compared with
experiments, including the recent observations of supercontinuum generation
in gases.

2. Optical-Field-Induced Refractive Indices

The material response to an applied laser field is often nonlinear. An explicit
expression for the response is not readily available in general. Unless speci-
fied otherwise, we consider here only the case where the perturbative expan-
sion in terms of the applied field is valid and the nonlocal response can be
neglected. We can then express the induced polarization in a medium as
(Shen, 1984)

(1)

where the applied field is

(2)

and the nth-order susceptibility is

(3)

We note that, strictly speaking, only for a set of monochromatic applied fields
can we write

(4)

In the case of instantaneous response (corresponding to a dispersionless
medium), we have

(5)

Here, we are interested in the third-order nonlinearity that gives rise to the
induced refractive index change. We consider only the self-induced refractive
index change; extension to the cross-field-induced change should be straight-
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E (t)exp(-iwt). The third-order nonlinear polarization in a medium, in
general, takes the form

(6)

with Dc(t - t¢) = Úc(3)(t - t¢, t - t≤, t - t¢≤) :Ew(t≤)E*w(t¢≤)dt≤ dt¢≤. If the optical
field is sufficiently far from resonances that the transverse excitations are all
virtual and can be considered as instantaneous, we can write

(7)

In the dispersionless limit, the latter becomes

(8)

Equation (8) is a good approximation when the dispersion of Dc is negligi-
ble within the bandwidth of the field. The optical-field-induced refractive
index can be defined as

(9)

where n0 is the average linear refractive index of the medium. With Dn ∫
n2|Ew|2, we have n2 = (2p/n0)c(3).

A number of physical mechanisms can give rise to Dc or Dn (Shen, 1966).
They have very different response times and different degrees of importance
in different media. We discuss them separately in the following.

2.1 Electronic Mechanism

Classically, one can imagine that an applied optical field can distort the elec-
tronic distribution in a medium and hence induce a refractive index change.
Quantum mechanically, the field can mix the electronic wave functions, shift
the energy levels, and redistribute the population; all of these can contribute
to the induced refractive index change. For a typical transparent liquid or
solid, n2 falls in the range between 10-13 and 10-15 esu. For gases at 1atm pres-
sure, n2 ~ 10-16 to 10-18 esu far away from resonances. The response time is of
the order of the inverse bandwidth of the major absorption band (~10-14 to
10-15 s in condensed media) except for the population redistribution part. As
the optical frequency approaches an absorption band, n2 is resonantly
enhanced. In particular, when the population redistribution due to resonant
excitation is significant, the enhancement of n2 can be very large, but the time
response will then be dominated by the relaxation of the population redis-
tribution. In a strong laser field, saturation in population redistribution and
multiphoton resonant excitations can become important. The perturbative
expansion in Eq. (1) may then cease to be valid. For our discussion of SPM
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in this chapter, we shall assume that the laser beam is deep in the transparent
region and therefore all these electronic resonance effects on the induced
refractive index are negligible.

2.2 Vibrational Contribution

The optical field can also mix the vibrational wave functions, shift the 
vibrational levels, and redistribute the populations in the vibrational levels.
The corresponding induced refractive index change Dn is, however, many
orders (~5) of magnitude smaller than that from the electronic contribution
because of the much weaker vibrational transitions. Therefore, the vibra-
tional contribution to Dn is important only for infrared laser beams close to
vibrational resonances. For our discussion of SPM, we shall not consider
such cases.

If the laser pulse is very short (10 fs corresponding to a bandwidth of
500cm-1), the vibrational contribution to Dn can also come in via Raman
excitations of modes in the few hundred cm-1 range. The Raman transitions
are also much weaker than the two-photon electronic transitions, so their
contributions to the self-induced Dn are usually not important for the dis-
cussion of SPM unless femtosecond pulses are used.

2.3 Rotation, Libration, and Reorientation of Molecules

Raman excitations of molecular rotations can, however, contribute effectively
to Dn. This is because the rotational frequencies of molecules are usually in
the few cm-1 region except for the smaller molecules. Thus, even with a mono-
chromatic field, one can visualize a Raman process (in which absorption and
emission are at the same frequency w) that is nearly resonant. (The difference
frequency of absorption and emission is zero, but it is only a few cm-1 away
from the rotational frequencies.) In condensed media, the rotational motion
of molecules is, however, strongly impeded by the presence of neighboring
molecules. Instead of simple rotations, the molecules may now librate in a
potential well set up by the neighboring molecules. The librational frequen-
cies determined by the potential well are often in the range of a few tens of
cm-1. The modes are usually heavily damped. Like the rotational modes, they
can also contribute effectively to Dn via the Raman process.

Molecules can also be reoriented by an optical field against rotational dif-
fusion. This can be treated as an overdamped librational motion driven by
the optical field. More explicitly, molecular reorientation arises because the
field induces a dipole on each molecule and the molecules must then reori-
ent themselves to minimize the energy of the system in the new environment.

All the above mechanisms involving rotations of molecules can contribute
appreciably to Dn if the molecules are highly anisotropic. Typically, in liquids,
n2 from such mechanisms falls in the range between 10-13 and 10-11 esu, with
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a response time around 10-11 s for molecular reorientation and ~10-13 s for
libration. In liquid crystals, because of the correlated molecular motion, n2

can be much larger, approaching 0.1 to 1, but the response time is much
longer, of the order of 1 s. The rotational motion is usually frozen in solids,
and therefore its contribution to Dn in solids can be neglected.

2.4 Electrostriction, Molecular Redistribution,
and Molecular Collisions

It is well known that the application of a dc or optical field to a local region
in a medium will increase the density of the medium in that region. This is
because the molecules in the medium must squeeze closer together to mini-
mize the free energy of the system in the new environment. The effect is
known as electrostriction. The induced density variation Dr obeys the driven
acoustic wave equation, and from Dn = (∂n/∂r)Dr the induced refractive index
change can be deduced. For liquids, we normally have n2 ~ 10-11 esu with a
response time of the order of 100ns across a transverse beam dimension of
~1mm.

Molecules will also locally rearrange themselves in a field to minimize the
energy of induced dipole–induced dipole interaction between molecules in
the system. Whereas electrostriction yields an isotropic Dn, this molecular
redistribution mechanism will lead to an anisotropic Dn. Molecular correla-
tion and collisions could also affect molecular redistribution. A rigorous
theory of molecular redistribution is therefore extremely difficult (Hellwarth,
1970). Experimentally, molecular redistribution is responsible for the
anisotropic Dn observed in liquids composed of nearly spherical molecules
or atoms in cases where the electronic, electrostrictive, and rotational contri-
butions should all be negligible. It yields an n2 of the order of 10-13 esu with
a response time in the subpicosecond range. In solids, the molecular motion
is more or less frozen, so the contribution of molecular redistribution to Dn
is not significant.

2.5 Other Mechanisms

A number of other possible mechanisms can contribute to Dn. We have, for
instance, laser heating, which increases the temperature of a medium and
hence its refractive index; photorefraction, which comes from excitation and
redistribution of charged carriers in a medium; and induced concentration
variation in a mixture.

We conclude this section by noting that there is an intimate connection
between third-order nonlinearities and light scattering (Hellwarth, 1977):
each physical mechanism that contributes to Dn (except the electronic mech-
anism) is also responsible for a certain type of light scattering. The third-
order susceptibility from a given mechanism is directly proportional to the
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scattering cross section related to the same mechanism, and the response time
is inversely proportional to the linewidth of the scattering mode. Thus from
the low-frequency light scattering spectrum, one can predict the value of n2

for the induced refractive index. For example, in most liquids, light scatter-
ing shows a Rayleigh wing spectrum with a broad background extending to
a few tens of cm-1. This broad background is believed to arise from molecu-
lar libration, redistribution, and collisions (Febellinski, 1967), but the details
have not yet been resolved. For our semiquantitative prediction of n2 and the
response time, however, we do not really need to know the details if the
Rayleigh wing spectrum of the medium is available. A broad and strong
Rayleigh wing spectrum is expected to yield a large n2 with a fast response.

In Table 1.1 we summarize the results of our discussion of the various
physical mechanisms contributing to Dn. It is seen that in nonabsorbing
liquid, where all the mechanisms could operate, electrostriction and molecu-
lar reorientation may dominate if the laser pulses are longer than 100ns; mol-
ecular reorientation, redistribution, and libration may dominate for pulses
shorter than 100ns and longer than 1ps; molecular redistribution and libra-
tion and electronic contribution may dominate for femtosecond pulses. In
transparent solids, usually only electrostriction and electronic contribution
are important. Then for short pulses the latter is the only mechanism con-
tributing to Dn.

3. Simple Theory of Self-Phase Modulation 
and Spectral Broadening

For our discussion of SPM of light, let us first consider the case where the
propagation of a laser pulse in an isotropic medium can be described by the
wave equation of a plane wave:

(10)
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Table 1.1.

Magnitude of Response
third-order nonlinearity time

Physical mechanism n2 (esu) t (s)

Electronic contribution 10-15-10-13 10-14-10-15

Molecular reorientation 10-13-10-11 ~10-11

Molecular libration and ~10-13 ~10-13

redistribution
Electrostriction ~10-11 ~10-16*

* For a beam radius of ~1mm.



and n0 is the linear refractive index of the medium. In the simple theory of
SPM (Cheung et al., 1968; Gustafson et al., 1969; Shimizu, 1967), we use the
usual slowly varying amplitude approximation by neglecting the ∂ 2E /∂t2 term
on the left and keeping only the (4p/c2)c(3)|E |2E term on the right of Eq. (10),
which then becomes

(11)

The approximation here also assumes an instantaneous response of c(3).
Letting z¢ ∫ z + ct/n0 and E = |E |exp(if), we obtain from the above equation

(12)

They yield immediately the solution

(13a)

(13b)

Equation (13a) implies that the laser pulse propagates in the medium without
any distortion of the pulse shape, while Eq. (13b) shows that the induced
phase change Df(t) = f(z, t) - f0 is simply the additional phase shift experi-
enced by the wave in its propagation from 0 to z due to the presence of the
induced refractive index Dn = (2p/n0)c(3)|E |2, namely Df = (w/c)Úz

0 Dndz. Since
the frequency of the wave is w = w0(∂Df/∂t), the phase modulation Df(t) leads
to a frequency modulation

(14)

The spectrum of the self-phase-modulated field is, therefore, expected to be
broadened. It can be calculated from the Fourier transformation

(15)

An example is shown in Figure 1.1. We assume here a 4.5-ps full width at
half-maximum (FWHM) Gaussian laser pulse propagating in a nonlinear
medium that yields an SPM output with a maximum phase modulation of
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Dfmax � 72p rad. The spectrum of the output shows a broadening of several
hundred cm-1 with a quasi-periodic oscillation. It is symmetric with respect
to the incoming laser frequency because the SPM pulse is symmetric. The
leading half of the Df pulse is responsible for the Stokes broadening and the
lagging half for the anti-Stokes broadening. The structure of the spectrum
can be understood roughly as follows. As shown in Figure 1.1, the Df curve
following the laser pulse takes on a bell shape. For each point on such a curve,
one can always find another point with the same slope, except, of course, the
inflection points. Since ∂f/∂t = -w, these two points describe radiated waves
of the same frequency but different phases. These two waves will interfere
with each other. They interfere constructively if the phase difference Df12

is an integer of 2p and destructively if Df12 is an odd integer of p. Such 
interference then gives rise to the peaks and valleys in the spectrum. The
inflection points that have the largest slope on the curve naturally lead to the
two outermost peaks with |wmax| ~ |∂f/∂t|max. To find how many peaks 
we should expect in the spectrum, we need only to know fmax, as the number
of pairs of constructive and destructive interferences is simply N ~ fmax/2p
on each side of the spectrum. The broadened spectrum has Stokes–
anti-Stokes symmetry because Df(t) is directly proportional to |E(t)|2 and is
a symmetric pulse.

10 Y.R. Shen and G.-Z. Yang

Figure 1.1. Theoretical power spectrum obtained by assuming an instantaneous
response of Dn to the intensity variation |E(t)|2, so that the phase modulation Df(t)
is proportional to |E(t)|2. (a) Df versus t and (b) power spectrum of the phase-
modulated pulse.



With the above qualitative picture in mind, we can now generalize our dis-
cussion of SPM somewhat. The response of the medium to the laser pulse is
generally not instantaneous. One therefore expects

(16)

Then, even if |E(t)|2 is symmetric, Df(t) is asymmetric and is no longer pro-
portional to |E(t)|2. The consequence is a Stokes–anti-Stokes asymmetry. An
example is given in Figure 1.2. Because of the finite response time of the
medium, the leading part of the Df(t) curve always sees a larger portion of
the intensity pulse |E(t)|2, and therefore the Stokes side of the spectrum is
always stronger. This Stokes–anti-Stokes asymmetry can be drastic if the
response time becomes comparable to or smaller than the laser pulse width.

In the more rigorous theory, one should also expect a distortion of the
pulse shape as the pulse propagates on in the nonlinear medium. Self-
steepening of the pulse, for example, is possible and may also affect the 
spectral broadening (DeMartini et al., 1967; Gustafson et al., 1969; see
Chapter 6). However, the above qualitative discussion still applies since the
Df(t) curve should still take on an asymmetric bell shape in general.
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Figure 1.2. Theoretical power spectrum obtained by assuming a transient response
of Dn to the intensity variation |E(t)|2 so that Df(t) is no longer proportional to |E(t)|2.
(a) Df versus t and (b) power spectrum of the phase-modulated pulse.



The experimental situation is usually not as ideal as the simple theory
describes. The laser beam has a finite cross section and will diffract. The
transverse intensity variation also leads to a Dn(r) that varies in the trans-
verse directions. This causes self-focusing of the beam and complicates the
simultaneously occurring SPM of the beam (Shen, 1975; Marburger, 1975).
Moreover, stimulated light scattering could also occur simultaneously in the
medium, in most cases initiated by self-focusing (Shen, 1975; Marburger,
1975). All these make the analysis of SPM extremely difficult.

One experimental case is, however, close to ideal, namely SPM of a laser
pulse in an optical fiber. The transverse beam profile of a guided wave
remains unchanged along the fiber. As long as the laser intensity is not too
strong, self-focusing and stimulated scattering of light in the fiber can be
neglected. For a sufficiently short pulse, the nonlinearity of the fiber is dom-
inated by the electronic contribution and therefore has a nearly instantaneous
response. Then if the pulse is not too short and the spectral broadening is
not excessive, the slowly varying amplitude approximation is valid and
∂ 2P (3)/∂t2 in the wave equation can be well approximated by -w2

0P (3). The only
modification of the simple theory of SPM we have discussed is to take into
account the fact that we now have a wave in a waveguide with a confined
transverse dimension instead of an infinite plane wave in an open space. Thus
the quantitative analysis can easily be worked out. Indeed, Stolen and Lin
(1978) found excellent agreement between theory and experiment.

The above discussion of SPM in time can also be used to describe SPM in
space. As we already mentioned, the transverse intensity variation of a laser
beam can induce a spatial variation of Dn in the transverse directions. Let 
us consider here, for simplicity, a continuous-wave (cw) laser beam with a
Gaussian transverse profile. The phase increment Df(r, z) varying with the
transverse coordinate r is given by 

(17)

This leads to a distortion of the wave front. Since the beam energy should
propagate along the ray path perpendicular to the wave front, this distortion
of the wave front would cause the beam to self-focus. If the propagation
length is sufficiently long, the beam will actually self-focus and drastically
modify the beam cross section. However, if the length of the medium is much
shorter than the self-focusing distance, then the self-focusing effect in the
medium can be neglected and we are left with only the SPM effect on the
beam. The results of Figure 1.1 can describe the spatial SPM equally well if
we simply replace t by r and w by k�, where k� is the transverse component
of the wave vector of the beam. We realize that k� defines the deflection angle
q of a beam by the relation k� = (wn0/c)sinq. Therefore, the quasi-periodic
spectrum in the k� space actually corresponds to a diffraction pattern with
multiple bright and dark rings. This has indeed been observed experimentally
(Durbin et al., 1981; Santamato and Shen, 1984). An example is shown in
Figure 1.3. Self-focusing or diffraction in the medium can modify the spatial
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Figure 1.3. Diffraction ring pattern arising from spatial self-phase modulation of a
CW Ar+ laser beam passing through a 300-mm nematic liquid crystal film. (After
Durbin et al., 1981; Santamato and Shen, 1984.)



SPM through its modification of the beam profile. This is analogous to the
self-steepening effect on the temporal SPM through its modification of the
pulse shape.

We now return to the discussion of temporal SPM and spectral broaden-
ing. In the next section we consider the case where the incoming laser pulse
is very short and spectral broadening is very extensive so that the approxi-
mations used in the simple theory of SPM need improvement.

4. More Rigorous Theory of Self-Phase Modulation 
and Spectral Superbroadening

Another experimental case of SPM that could avoid complications arising
from self-focusing, stimulated scattering, or other nonlinear optical effects
involves the propagation of an ultrashort laser pulse through a thin nonlinear
medium. In this case, the medium is thin enough so that the self-focusing
effect on SPM in the medium can be ignored. The pulse is short enough so
that the transient stimulated light-scattering processes are effectively sup-
pressed. Yet the pulse intensity can still be so high as to induce a very strong
SPM, but not high enough to result in appreciable multiphoton absorption
or optical breakdown. This is the case first studied by Fork et al. (1987).
Using an 80-fs pulse at 627nm focused to an intensity of 1013 to 1014 W/cm
on a 500-mm film of ethylene glycol, they observed in the output a huge 
spectral broadening that appears as a white continuum. Unlike the spectral
broadening discussed in the previous section, the present case shows a
Stokes–anti-Stokes asymmetry that emphasizes the anti-Stokes side instead.
Such a spectral super-broadening was observed earlier by Alfano and Shapiro
(1970) in much longer media with picosecond pulses, but SPM in those cases
was definitely affected by self-focusing. Obviously, the results of Fork et al.
cannot be explained by the simple theory of SPM. We must resort to a more
rigorous analysis.

We first notice that the self-steepening effect on the pulse is not included
in the simple theory. This means that the approximations neglecting 
the ∂ 2E /∂t2 term and the terms involving the time derivatives of |P(3)| in the
wave equation are not quite appropriate. They become worse for shorter
pulses. In the more rigorous analysis of SPM, we must improve on these
approximations. Let us now go back to Eq. (10). Without any approxima-
tion, we can transform it into an equation for the field amplitude (Yang and
Shen, 1984):

(18)
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The last term on both sides of the equation has been neglected in the simple
theory of SPM. By defining the differential operators D± ∫ (∂/∂z) ±
(n0/c)(∂/∂t), Eq. (18) can be written as

(19)

Since D- = -(2n0/c)(∂/∂t) + D+, we have from Eq. (19)

(20)

It is then simply a question of how many terms in the power series expan-
sion we need to include to better describe the SPM.

The zeroth-order approximation corresponds to neglecting all derivatives
of c(3)|E |2E any yields

(21)

which is identical to Eq. (11) used as the basis for the simple theory of SPM.
We recognize that under this lowest-order approximation,

(22)

Therefore, we can use D+ as an expansion parameter in the higher-order 
calculations. For the first-order approximation, we neglect terms involving
D+

m(c(3)|E |2E ) with m ≥ 1 in Eq. (20) and obtain

(23)

The calculation here has in a sense used c(3)|E |2 as the expansion parameter.
In the above first-order approximation, we have kept the (c(3)|E |2)nE terms
with n £ 1 including all their time derivatives. In ordinary cases, this is a very
good approximation because usually c(3)|E |2 << 1 and therefore the higher-
order terms involving (c(3)|E |2)nE with n ≥ 2 are not very significant. For
example, in the ultrashort pulse case, we have c(3) ~ 10-14 esu (or n2 ~ 10-13 esu)
for a condensed medium; even if the laser pulse intensity is I ~ 1014 W/cm2,
we find c(3)|E |2 ~ 4 ¥ 103 << 1. For larger c(3)|E |2, one may need to include
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higher-order terms in the calculations. The next-order correction includes the
D+(c(3)|E |2E ) term and all its time derivatives. They yield additional terms
proportional to (c(3)|E |2)2E in the wave equation. If c(3)|E |2 � 1, then the
approach with series expansion will not be useful and we have to go back to
the original nonlinear wave equation (19).

In the following discussion, we consider only cases with c(3)|E |2 << 1. We
are therefore interested in the solution of Eq. (23), which, with n2 =
(2pw0/k0c)c(3), takes the form

(24)

For simplicity, we now neglect the dispersion of the response of the medium.
This, as we mentioned earlier, is equivalent to assuming an instantaneous
response. Insertion of E = |E |exp(if) into Eq. (24) yields two separate equa-
tions for the amplitude and phase:

(25a)

(25b)

In comparison with Eq. (12) for the simple theory of SPM, the only differ-
ence is the addition of the n2|E |2 (= Dn) terms on the left-hand sides of Eqs.
(25). Its effect is obvious in causing a pulse shape deformation during the
pulse propagation. With Dn > 0, we expect a pulse steepening in the lagging
edge. This is because the peak of the pulse then propagates at a lower veloc-
ity than either the leading or the lagging part of the pulse (DeMartini et al.,
1967).

Let us first neglect the self-steepening effect on the amplitude pulse.
Clearly, self-steepening in the lagging part of the f pulse should lead to 
a spectral broadening with Stokes–anti-Stokes asymmetry emphasizing the
anti-Stokes side, because it is the lagging part of the phase modulation 
that gives rise to the broadening on the anti-Stokes side. To be more quanti-
tative, we assume an input laser pulse with |E (0, t)|2 = A2/cosh(t/t), whose
shape remains unchanged in propagating through the medium so that 
|E (z, t)|2 = A2/cosh[(t - n0/c)/t]. The solution of Eq. (25b) can then be found
analytically as

(26)

with x = [t - (n0/c)z]/t. The corresponding frequency modulation is given by

(27)

Here we have defined

(28)

as a characteristic parameter for spectral broadening. For Q << 1, we have
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(29)

which is identical to the result one would find from the simple theory of SPM.
For Q � 1, we expect spectral superbroadening with appreciable Stokes–anti-
Stokes asymmetry and a maximum anti-Stokes shift Dw+ � w 0. The
maximum Stokes and anti-Stokes shifts, Dw- and Dw+, respectively, can be
directly obtained from Eq. (27):

(30)

This is plotted in Figure 1.4 in comparison with the result calculated from
the simple theory of SPM. For |Q| << 1 we have Dw ± � ±(1/2)w 0|Q|, and for
|Q| >> 1 we have Dw + � w 0|Q| and Dw - � w 0(1/|Q| - 1). It is seen that Stokes
broadening is always limited by |Dw-| < w 0, as it should be.

We now include the effect of self-steepening on the amplitude pulse. It can
be shown that with |E (0, t)|2 = A2/cosh(t/t), the solution of Eq. (25a) must
satisfy the implicit algebraic equation

Dw w± = +( ) ±[ ] -0
1
2

2 1 2
4 1Q Q .

Dw w 0
2� -Q x xsinh cosh ,
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Figure 1.4. Maximum Stokes (Dw- < 0) and anti-Stokes (Dw+ > 0) shifts calculated
with different models: simple theory of self-phase modulation (---); more rigorous
theory without the self-steepening effect on the intensity pulse (–·–); more rigorous
theory with the self-steepening effect (—). (After Yang and Shen, 1984.)



(31)

A simple numerical calculation then allows us to find |E |2 as a function of x for
a given Q. The results are shown in Figure 1.5. For |Q| � 1, the self-steepening
effect is apparent. Knowing |E (z, t)|2, we can again solve for f(z, t) from Eq.
(25b) and find Dw(z, t) and Dw±. This can be done numerically; the results 
are also presented in Figure 1.4. It is seen that for Q > 1, self-steepening of
the pulse amplitude has increased the spectral broadening on the anti-Stokes
side quite significantly. The additional spectral broadening comes in because
the steepening of the amplitude pulse enhances the steepening of the f pulse.

The spectral broadening actually results from frequency chirping since
∂f(t)/∂t = -w(t). This is shown in Figure 1.6 for the numerical example 
discussed above. As expected, the Stokes and anti-Stokes shifts appear,
respectively, in the leading and lagging parts of the self-steepened pulse.
The Dw = 0 point appears at larger x for larger values of Q because self-
steepening shifts the peak of the pulse to larger x (see Figure 1.5).

E Ez t A x Q z t A, cosh , .( ) = - ( )[ ]2 2 2 2
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Figure 1.5. Self-steepening effect on the intensity pulse during its propagation in a
nonlinear medium at various values of Q = n2A2zc/t, with x = (t - n0z/c)/t. (After Yang
and Shen, 1984.)



We can compare the calculation with the experiment of Fork et al. In their
experiment, the relevant parameters are n2 � 10-13 esu, z = 0.05cm, I ~
1014 W/cm2, and t (pulse width) � 8 ¥ 10-14 s. The corresponding value of Q
is about 2.3. They observed a Stokes broadening Dw -/w 0 � -0.6 and an anti-
Stokes broadening Dw+ /w 0 � 2.3. Our calculation gives Dw-/w 0 � -0.54 and
Dw+/w0 � 3.5. Considering the uncertainty in the experimental parameters,
we can regard the agreement between theory and experiment as reasonable.

Manassah et al. (1985, 1986) used the method of multiple scales to solve
Eq. (18) (neglecting dispersion). They also took n2|E |2/n0 as the expansion
parameter in their series expansion and therefore necessarily obtained the
same results as we discussed above.*

We have neglected in the above calculation the dispersion of the medium
response. Normal dispersion may also reshape the pulse (Fisher and Bischel,
1975; Fisher et al., 1983), but in the present case the length of the medium
is so short that this effect is not likely to be important. Anomalous disper-
sion with resonances in c(3) or n2 could, however, give rise to resonant struc-
ture in the broadened spectrum. The calculation including the dispersion of
c(3) is much more complicated and, in general, must resort to numerical solu-
tion (Fisher and Bischel, 1975; Fisher et al., 1983). In obtaining the time-
dependent solution of the wave equation with the third-order nonlinearity,
we have already taken all the four-wave mixing contributions into account.
By adding a noise term with a blackbody spectrum in the nonlinear 
wave equation, the four-wave parametric generation process proposed by 
Penzkofer et al. (1973, 1975) could also be inclued in the calculation.

1. Theory of Self-Phase Modulation and Spectral Broadening 19

Figure 1.6. Frequency shift due to phase modulation as a function of x = (t - n0z/c)/t
at various value of Q = n2A2zc/t.

* A factor of 3 in front of n2 is mistakenly left out in Eq. (3a) of Yang and Shen (1984).



5. Self-Focusing and Self-Phase Modulation

For pulsed laser beam propagation in a nonlinear medium, SPM in time 
and SPM in space necessarily appear together. SPM in time causes self-
steepening of the pulse, which in turn enhances SPM in time. Similarly, SPM
in the transverse beam profile causes self-focusing of the beam, which in turn
enhances the transverse SPM. If the propagation distance in the medium is
sufficiently long, these effects can build up to a catastrophic stage, namely
self-steepening to a shock front and self-focusing to a spot limited in dimen-
sions only by higher-order nonlinear processes and diffraction. SPM in time
and SPM in space are then tightly coupled and strongly influenced by each
other. In many experiments, the observed strong temporal SPM and exten-
sive spectral broadening are actually initiated by self-focusing. In such cases,
the input laser pulse is so weak that without self-focusing in the nonlinear
medium, SPM would not be very significant. Self-focusing to a limiting diam-
eter greatly enhances the beam intensity, and hence SPM can appear several
orders of magnitude stronger. A quantitative description of such cases is
unfortunately very difficult, mainly because the quantitative theory for self-
focusing is not yet available. We must therefore restrict ourselves to a more
qualitative discussion of the problem.

5.1 Self-Phase Modulation with Quasi-Steady-State Self-Focusing

In the early experiments on self-focusing of single-mode nanosecond laser
pulses, it was found that the output of the self-focused light had a spectral
broadening of several hundred cm-1 (Shen, 1975; Marburger, 1975). This was
rather surprising because from the simple theory of SPM, picosecond pulses
would be needed to create such a spectral broadening (Cheung et al., 1968;
Gustafson et al., 1969; Shimizu, 1967). Later, the observation was explained
by SPM of light trailing behind a moving focus (Shen and Loy, 1971; Wong
and Shen, 1972). We briefly review the picture here and then use it to inter-
pret the recently observed SPM and spectral superbroadening of ultrashort
pulses in gases (Corkum et al., 1986; Glownia et al., 1986).

Figure 1.7 depicts the quasi-steady-state self-focusing of a laser pulse
leading to a moving focus along the axis (ẑ) with a U-shaped trajectory
described by the equation (Shen, 1975; Marburger, 1975)

(32)

where P0 is the critical power for self-focusing, is the laser power at
the retarded time tR = t - zf n0/c, and K is a constant that can be determined
from experiment. This equation assumes instantaneous response of Dn to the
applied field, which is a good approximation as long as the response time t
is much shorter than the laser pulse width. Here, we are interested only in the
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upper branch of the U curve, along which the focus has a forward velocity
faster than light. Because of the high laser intensity in the focal spot, the
locally induced Dn should be appreciable and should last for a duration 
not shorter than the relaxation time t. Thus one can imagine that the moving
focus creates in the medium a channel of Dn at least t dzf /dt long trailing 
after the focus. Consider now the defocused light from a local focal spot.
Since it lags behind the moving focus (which travels faster than light), it 
experiences the Dn dielectric channel created by the focus over a certain dis-
tance and will diffract only weakly. In other words, the defocused light from
the focus is partially trapped in the Dn channel. This partial trapping of light
in turn helps to maintain the Dn channel and make it last longer. The emis-
sion from the focal spot at the end of the medium then takes the form of an 
asymmetric pulse (with a pulse width of the order of a few t) with a longer
trailing edge.

The above picture is also illustrated in Figure 1.7. We use the shaded area
around the U curve to denote the region with appreciable Dn. The laser input
at tA focuses at A, but defocuses more gradually because of the existing Dn
channel in front of it. The partially trapped light then propagates along the
axis from A to the end of the medium at A¢, crossing the shaded region with
appreciable Dn. It therefore acquires a significant phase increment Df. From
the figure, one may visualize that Df can be strongly phase modulated in time,
varying from nearly zero to a maximum and back to zero in a few relaxation
times. This could yield appreciable spectral broadening in the output of the
self-focused light.

To be more quantitative, we realize that the light pulse emitted from a focus
in the medium must be asymmetric and must have a pulse width of several
t. The shaded area in Figure 1.7 has a somewhat larger width since Dn is
induced by the focused light. Knowing the trajectory of the moving focus,
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Figure 1.7. Self-focusing for an
input laser pulse in (a) leading to
the trajectory of a moving focus
in the form of U curve in (b). The
dashed lines in (b), with slope
equal to the light velocity, depict
how light propagates in the
medium along the z axis at
various times. The shaded region
around the U curve has apprecia-
bly larger Dn. Light traversing the
medium along the dashed lines
through the shaded region should
acquire a phase increment Df
that varies with time.



the beam intensity in the focal region, and how Dn responds to the intensity,
we can calculate Df(t) and hence Dw(t) and the broadened spectrum (Shen
and Loy, 1971; Wong and Shen, 1972). As an example, consider the case 
of a 1.2-ns laser pulse propagating into a 22.5-cm CS2 cell. The trajectory 
of the moving focus (focal diameter � 5mm) is described by Eq. (32) with 
K = 5.7 (kW)1/2-cm and P0 = 8kW. In this case, Dn is dominated by molecu-
lar reorientation; it obeys the dynamic equation

(33)

For CS2, t = 2ps and n2 = 10-11 esu. The phase increment experienced by light
waves traversing the cell along the axis is given by
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Figure 1.8. Theoretical power spectrum of a light pulse emitted from the focal region
of a moving focus at the end of a CS2 cell. (a) The intensity pulse; (b) Df versus t;
(c) the power spectrum (see text for details). (After Shen and Loy, 1971; Wong and
Shen, 1972.)



where l is the cell length. (For this illustrative example, we have neglected the
diffraction effect on Df.) We now simply assume that |E(z, t)|2 in the focal
region resulting from self-focusing has a pulse width of ~ 3t and a pulse 
shape as shown in Figure 1.8a. Equations (33) and (34) then allow us to find
Dn(z, t) and Df(t). Knowing Df(t) and E(l, t), we can then calculate the spec-
trum of the output from the focal spot at the end of the cell, as shown in
Figure 1.8c. The experimentally observed spectrum has in fact the predicted
spectral broadening (Shen and Loy, 1971; Wong and Shen, 1972), but it often
has a strong central peak (Figure 1.9). This is presumably because in the 
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Figure 1.9. (a) Experimentally observed power spectrum of light emitted from 
the focal region at the end of a 10-cm CS2 cell; the input pulse has a pulse width of
1.2ns and a peak power of 27kW. (b) Theoretical power spectrum using the moving
focus model. (After Shen and Loy, 1971; Wong and Shen, 1972.)



calculation we have neglected a significant portion of the beam that self-
focuses from the periphery and experiences little phase modulation. For
shorter input pulses of longer cells, self-focusing of the beam toward the end
of the cell is more gradual; accordingly, the weakly phase-modulated part is
less and the central peak in the spectrum is reduced. We also note that in
Figures 1.8 and 1.9 the anti-Stokes broadening is much weaker. This is
because the negatively phase-modulated part of the pulse has little intensity,
as seen in Figure 1.8.

Using the picture sketched in Figure 1.7, we can actually predict the Stokes
broadening with the correct order of magnitude by the following rough esti-
mate. We approximate the upper branch of the U curve toward the end of
the medium by a straight line with a slope equal to the end velocity of the
moving focus. If Dn is the induced refractive index in the shaded area, then
the phase modulation of the emitted light is given by

(35)

where l is the length of the medium and t0 is the time when Dn(l, t) starts to
become appreciable. The extent of Stokes broadening is readily obtained
from

(36)

with Q = Dnmaxleff/cT where T ~ 2t and leff = T/[(n0/c) - (1/v)]. For the above
example with CS2, we have Dnmax ~ 10-3, T ~ 4ps, leff ~ 1cm, and Q ~ 0.01.
The resultant Stokes broadening should be Dw- ~ 150cm-1. The experimen-
tally observed broadening is about 120cm-1.

5.2 Spectral Superbroadening of Ultrashort Pulses in Gases

The above discussion can be used to explain qualitatively the recently observed
spectral superbroadening of ultrashort pulses in gas media (Corkum et al.,
1986; Glownia et al., 1986). In those experiments, picosecond or femtosecond
laser pulses with energies of several hundred microjoules were weakly focused
into a high-pressure gas cell. Spectral superbroadening with Dw ~ 104 cm-1 was
observed. A few examples are shown in Figure 1.10. Self-focusing was appar-
ently present in the experiment. We therefore use the above simple model for
SPM with quasi-steady-state self-focusing to estimate the spectral broaden-
ing (Loy and Shen, 1973), assuming that Dn from the electronic contribution
in the medium has a response time t ~ 10 fs. In this case, the position of the
moving focus is given by (Shen, 1975; Marburger, 1975)

(37)

instead of Eq. (32), where f is the focal length of the external focusing lens.
Let us consider, for example, external focusing of a 250-mJ, 100-fs pulse to a
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nominally 100-mm focal spot in a 3-atm, 100-cm Xe cell. Self-focusing yields
a smaller focus, assumed to be 50mm. We then use the values n2 ~ 10-16 esu,
I ~ 1014 W/cm2, Dnmax ~ 4 ¥ 10-5, leff ~ 10cm, and T ~ 2t ~ 20 fs; we find 
Q ~ 1 and hence Dw- ~ 104 cm-1. The above estimate is admittedly very crude
because of uncertainties in the experimental parameters, but it does give 
a spectral superbroadening in order-of-magnitude agreement with the 
experiments.

Appreciable anti-Stokes broadening was also observed in the super-
broadened spectrum of the SPM light from a gas medium. This seems to be
characteristically different from what we have concluded from the discussion
in the previous subsection. However, we realize that in the present case the
moving focus terminates at z = f instead of the end of the cell, and the total
transmitted light is detected and spectrally analyzed. Thus the detected
output pulse has essentially the same intensity envelope as the input pulse if
we neglect the self-steepening effect, and the negatively phase-modulated part
(the trailing edge) of the Df(t) pulse will overlap with the major part of the
intensity pulse. Consequently, the spectral intensity of the anti-Stokes side
should be nearly as strong as that of the Stokes side. The extent of the anti-
Stokes broadening is expected to be somewhat less than that of the Stokes
broadening because of the longer trailing edge of the Df pulse, unless the
self-steepening effect becomes important.

Self-focusing in a gas medium should be more gradual than in a liquid cell.
With weak external focusing, the focal dimensions resulting from combined
external and self-focusing may not be very different from those resulting from
external focusing alone. Thus, even with self-focusing, the SPM output from
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Figure 1.10. Continuum spectra of self-phase-modulated light from 70-fs pulses in
30-atm xenon (crosses), 2-ps pulses in 15-atm xenon (circles), and 2-ps pulses in 
40-atm nitrogen (squares). The cell length is 90cm. (After Corkum et al., 1986.)



the gas medium may not have a much larger diffraction angle than the 
linearly transmitted output, as was observed in the experiments.

5.3 Self-Phase Modulation with Transient Self-Focusing

We have used the picture of a moving focus with a trailing dielectric channel
to describe SPM initiated by quasi-steady-state self-focusing. For shorter
input pulses, the velocity of the forward moving focal spot is closer to the
light velocity, and consequently more light is expected to be trapped in the
dielectric channel for a longer distance. In fact, when the pulse width is 
comparable to or shorter than the relaxation time t, the entire self-focusing
process becomes transient, and the input pulse will evolve into a dynamic
trapping state (Loy and Shen, 1973).

The dynamic trapping model for transient self-focusing is an extension of
the moving focus model for quasi-steady-state self-focusing. Consider the
case where Dn is governed by Eq. (33) or, more explicitly,

(38)

where x = t - zn0/c. Because of this transient response of Dn, the later part of
the pulse propagating in the medium may see a larger Dn than the earlier part.
As a result, different parts of the pulse will propagate in the medium differ-
ently, as sketched in Figure 1.11 (Loy and Shen, 1973). The transient Dn makes
the very leading edge of the pulse diffract, the middle part self-focus weakly,
and the lagging part self-focus to a limiting diameter. The result is that in 
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Figure 1.11. Sketch showing self-focusing of an ultrashort pulse in a medium with
a transient response of Dn. Different parts (a, b, c, etc.) of the pulse focus and defocus
along different ray paths. The pulse is first deformed into a horn shape and then 
propagates on without much further change. (After Loy and Shen, 1973.)



propagating through the medium, the pulse is first deformed into a horn-
shaped pulse and then the horn-shaped pulse propagates on with only a slight
change of the pulse shape due to diffraction of the front edge. In a long
medium, the front-edge diffraction finally could blow up the deformed pulse.
Note that this picture comes in because in transient self-focusing, both focus-
ing and diffraction are much more gradual, leading to a long longitudinal focal
dimension and hence the rather stable horn-shaped propagating pulse. Such a
stable form of self-focused pulse propagation is known as dynamic trapping.

Since the various parts of the light pulse see different Dn’s along their paths,
the phase increments Df they acquire are also different. This means phase
modulation and hence spectral broadening. As an approximation, we can
assume that the overall phase modulation is dominated by that of a stable
horn-shaped pulse propagating in the nonlinear medium over a finite length
leff. For illustration, let us take an example in which the horn-shaped pulse
can be described by

(39)

with

where x = t - zn0/c. We have picosecond pulse propagation in Kerr liquids in
mind and therefore choose tp = 1.25t, x1 = 2.5t, x2 = 2t, t1 = t, D = 0.05, and
t = 2ps (for CS2). We also choose the pulse intensity as A2

0 = 80(n2/n0)k2a2,
where k is the wave vector and the effective pulse propagation distance 
leff = 0.15ka2. From the three-dimensional wave equation, it can be shown that
the phase modulation obeys the equation

(40)

The second term on the right of the equation is the diffractive contribution
to Df, which can be appreciable when r0 is small. Knowing |E(r, x )|2, we 
can find Dn(z, x) from Eq. (38), and hence Df(z, x ) from Eq. (40), and finally
the broadened spectrum from |E(r, x)|2, and Df(z, x) for z = leff, as shown in
Figure 1.12.

The main qualitative result of the above calculation is that the spectrum
has the quasi-periodic structure with nearly equal Stokes and anti-Stokes
broadening, although the Stokes side is more intense. This agrees with the
experimental observation (Cubbedu and Zagara, 1971; Cubbedu et al., 1971)
and the more detailed numerical calculation of Shimizu and Courtens (1973).
The reason is as follows. The Stokes–anti-Stokes symmetry results from a
symmetric Df(t) pulse that overlaps well with the intensity pulse. The neck
portion of the horn-shaped pulse with ∂(Df)/∂t < 0 contributes to the anti-
Stokes broadening. As seen in Eq. (40), the time dependence of Df comes
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solely from the time dependence in (Dn/n0 - 2/k2r2
0). Without the diffraction

term (-1/k2r2
0), the Df pulse would have a longer trailing edge because of the

relaxation of Dn. With the diffraction term, the rapid reduction of r0 toward
the neck makes the Df pulse more symmetric. Thus it appears that the
dynamic trapping model explains fairly well the qualitative features of SPM
and spectral broadening initiated by transient self-focusing. The broadening
is more extensive with more intense input pulses and longer propagation
lengths. In a long medium, dynamic trapping may exist only over a limit
section of the medium. In that case, the spectrally broadened light may seem
to have originated from a source inside the medium. This has also been
observed experimentally (Ho et al., 1987).

6. Conclusion

We have seen that the temporal SPM and the concomitant spectral broad-
ening of light arise because an intense optical field can induce an appreciable
refractive index change Dn in a medium. The theory of pure SPM is, in prin-
ciple, quite straightforward. If the input pulse intensity is not very strong, the
zeroth-order approximation taking into account only the direct contribution
of Dn to the induced phase change Df should already give a fairly good
description. The next-order approximation including the self-steepening
effect on both Df and the amplitude pulse should satisfactorily cover the cases
of strong SPM with spectral superbroadening.
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Figure 1.12. Theoretical power spectrum obtained by assuming a horn-shaped pulse
propagating for a certain distance in a nonlinear medium without any change in its
shape. (a) Normalized intensity output pulse; (b) Df versus t; (c) power spectrum of
the output. (After Loy and Shen, 1973.)



Unfortunately, the temporal SPM is often complicated by the spatial SPM.
The latter can lead to self-focusing, which dramatically alters the intensity
distributions of the laser pulse in space and time and therefore drastically
modifies the temporal SPM. In fact, in most practical cases, self-focusing
occurs long before the temporal SPM becomes appreciable; it is actually self-
focusing that increases the beam intensity in the medium and thus initiates a
strong SPM in time. Only by using an optical waveguide or a very thin non-
linear medium can self-focusing be avoided. These are then the only experi-
mental cases where a pure temporal SPM has been realized.

In the pure SPM case, the theoretical difficulty is in the description of Dn:
it is not easy, in general, to predict quantitatively the nonlinear response of
a medium from first principles; one must rely on experimental measurements.
Quantitative measurements of Dn(t) in the picosecond and femtosecond
domains are still rare. In particular, measurements of Dn with femtosecond
time resolution are still rather difficult. The various low-frequency resonances
could make the time dependence of Dn very complex. Inclusion of the tran-
sient response of Dn (or the dispersion of Dn) in the theory complicates the
calculation; one may have to resort to numerical solution of the problem.
Experimentally, SPM of laser pulses in optical fibers has been well studied;
SPM of ultrashort pulses in thin nonlinear media is, however, still not well
documented. More careful quantitative measurements are needed in order to
have a more detailed comparison with theory.

With self-focusing, the theory of SPM becomes extremely complex. The
main difficulty lies in the fact that a quantitative theory capable of describ-
ing the details of self-focusing is not yet available. We must then rely on the
more qualitative physical pictures for self-focusing. Therefore, the discussion
of the subsequently induced SPM can be at most semiquantitative. Thus, we
find it quite satisfying that the predicted spectral broadening from such the-
oretical discussions can give order-of-magnitude agreement with the experi-
mental observations in a number of very different cases: nanosecond pulse
propagation in liquids to pico- or femtosecond pulse propagation in gases.

Spectral superbroadening is often observed with the propagation of ultra-
short pulses in condensed media and is apparently initiated by self-focusing.
In most cases, the details of the self-focusing process have not been measured;
in some cases, even the quantitative information on Dn is not available. The
measurements on spectral broadening also tend to show strong fluctuations.
All these made even an order-of-magnitude comparison between theory and
experiment rather difficult.

A complete theory of SPM with self-focusing requires the solution of a
time-dependent three-dimensional wave equation. With self-focusing modi-
fying the laser pulse rapidly in both space and time, such a solution, even on
the largest computer, is a formidable task. In our opinion, the best way to
tackle the problem is to try to simplify the calculation by reasonable approxi-
mations derived from the physical picture that has already been established
for self-focusing.
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2
Supercontinuum Generation in
Condensed Matter

Q.Z. Wang, P.P. Ho, and R.R. Alfano

1. Introduction

Supercontinuum generation, the production of intense ultrafast broadband
“white light” pulses, arises from the propagation of intense picosecond or
shorter laser pulses through condensed or gaseous media. Various processes
are responsible for continuum generation. These are called self-, induced-,
and cross-phase modulations and four-photon parametric generation. When-
ever an intense laser pulse propagates through a medium, it changes the
refractive index, which in turn changes the phase, amplitude, and frequency
of the incident laser pulse. A phase change can cause a frequency sweep
within the pulse envelope. This process has been called self-phase modulation
(SPM) (Alfano and Shapiro, 1970a). Nondegenerate four-photon parametric
generation (FPPG) usually occurs simultaneously with the SPM process
(Alfano and Shapiro, 1970a). Photons at the laser frequency parametrically
generate photons to be emitted at Stokes and anti-Stokes frequencies in an
angular pattern due to the required phase-matching condition. When a coher-
ent vibrational mode is excited by a laser, stimulated Raman scattering (SRS)
occurs. SRS is an important process that competes and couples with SPM.
The interference between SRS and SPM causes a change in the emission spec-
trum resulting in stimulated Raman scattering cross-phase modulation (SRS-
XPM) (Gersten et al., 1980). A process similar to SRS-XPM occurs when an
intense laser pulse propagates through a medium possessing a large second-
order c2 and third-order c3 susceptibility. Both second harmonic generation
(SHG) and SPM occur and can be coupled together. The interference
between SHG and SPM alters the emission spectrum and is called second
harmonic generation cross-phase modulation (SHG-XPM) (Alfano et al.,
1987). A process closely related to XPM, called induced phase modulation
(IPM) (Alfano, 1986), occurs when a weak pulse at a different frequency
propagates through a disrupted medium whose index of refraction is changed
by an intense laser pulse. The phase of the weak optical field can be modu-
lated by the time variation of the index of refraction originating from the
primary intense pulse.



The first study of the generation and mechanisms of the ultrafast super-
continuum dates back to the years 1968 to 1972, when Alfano and Shapiro
first observed the “white” picosecond continuum in liquids and solids (Alfano
and Shapiro, 1970a). Spectra extending over ~6000cm-1 in the visible and
infrared wavelength region were observed. Over the years, improvements in
the generation of ultrashort pulses from mode-locked lasers led to the pro-
duction of wider supercontinua in the visible, ultraviolet, and infrared wave-
length regions using various materials. Table 2.1 highlights the major
accomplishments in this field over the past 20 years.

In this chapter we focus on the picosecond supercontinuum generation in
liquids, solids, and crystals. Supercontinuum generation in gases, XPM, and
IPM are discussed by Corkum and Rolland (Chapter 7), Glownia et al.
(Chapter 8), Baldeck et al. (Chapter 4), Agrawal (Chapter 3), and Manassah
(Chapter 5), respectively.

2. Simplified Model

Before we go further, let us first examine the nonlinear wave equation to
describe the self-phase modulation mechanism. A thorough theoretical study
of supercontinuum generation has been dealt with in Chapters 1, 3, and 5.
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Table 2.1. Brief history of experimental continuum generation.

Laser
wavelength/ Frequency

Investigator Year Material pulsewidth Spectrum (cm-1) Process

Alfano, 1968–1973 Liquids and 530nm/ Visible and 6,000 SPM
Shapiro solids 8ps or near IR

1060nm/
8ps

Stolen et al. 1974–1976 Fibers 530nm/ns Visible 500 SPM
Shank, 1983 Glycerol 620nm/100 fs UV, 10,000 SPM

Fork et al. visible,
near IR

Corkum, Ho, 1985 Semiconductors 10mm/6ps IR 1,000 SPM
Alfano dielectrics

Corkum, 1986 Gases 600nm/2ps Visible 5,000 SPM
Sorokin 300nm/0.5ps and UV

Alfano, Ho, 1986 Glass 1,060nm/ Visible 1,000 IPM
Manassah, 530nm/8ps (XPM)
Jimbo

Alfano, Ho, 1986 ZnSe 1,060nm/8ps Visible 1,000 SHG-XPM
Wang, (ISB)
Jimbo

Alfano, Ho, 1987 Fibers 530nm/30ps Visible 1,000 SRS-XPM
Baldeck



The optical electromagnetic field of a supercontinuum pulse satisfies
Maxwell’s equations:

Equations (1) can be reduced to (see Appendix)

(2)

where A(z, t) is the complex envelope of the electric field and 
is the group velocity. The total refractive index n is defined by n2 = n2

0 + 2n0n2

|A(t)|2, where n2 is the key parameter called the nonlinear refractive index.
This coefficient is responsible for a host of nonlinear effects: self- and cross-
phase modulation, self-focusing, and the optical Kerr effect, to name the
important effects. Equation (2) was derived using the following approxima-
tions: (1) linearly polarized electric field, (2) homogeneous radial fields,
(3) slowly varying envelope, (4) isotropic and nonmagnetic medium, (5) neg-
ligible Raman effect, (6) frequency-independent nonlinear susceptibility c(3),
and (7) neglect of group velocity dispersion, absorption, self-steepening, and
self-frequency shift.

Denoting by a and a the amplitude and phase of the electric field enve-
lope A = aeia, Eq. (2) reduces to

(3a)

and

(3b)

The analytical solutions for the amplitude and phase are

(4a)

and

(4b)

where a0 is the amplitude, F(t) the pulse envelope, and t the local time 
t = t - z/�g. For materials whose response time is slower than pure electronic
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redistribution, libratory motion) the envelope is just the optical pulse shape.
For a “pure” electronic response, the envelope should also include the optical
cycles in the pulse shape.

The electric field envelope solution of Eq. (2) is given by

(5)

The main physics behind the supercontinuum generation by self-phase mod-
ulation is contained in Eq. (5) and is displayed in Figure 2.1. As shown in
Figure 2.1a, the index change becomes time dependent and, therefore, the
phase of a pulse propagating in a distorted medium becomes time dependent,
resulting in self-phase modulation. The electric field frequency is continu-
ously shifted (Figure 2.1c) in time. This process is most important in the gen-
eration of femtosecond pulses (see Chapter 10 by Johnson and Shank).

Since the pulse duration is much larger than the optical period 2p/w0

(slowly varying approximation), the electric field at each position t within the
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Figure 2.1. A simple mechanism for SPM for a 
non-linear index following the envelope of a sym-
metrical laser pulse: (a) time-dependent nonlinear
index change; (b) time rate of change of index change;
(c) time distribution of SPM-shifted frequencies 
w(t) - w0.



pulse has a specific local and instantaneous frequency at given time that is
given by

(6a)

where

(6b)

The dw(t) is the frequency shift generated at a particular time location t
within the pulse shape. This frequency shift is proportional to the derivative
of the pulse envelope, which corresponds to the generation of new frequen-
cies resulting in wider spectra.

Pulses shorter than the excitation pulse can be produced at given frequen-
cies. It was suggested by Y.R. Shen many years ago that Alfano and Shapiro
in 1970 most likely produced femtosecond pulses via supercontinuum gener-
ation. Figure 2.1c shows the frequency distribution within the pulse shape.
The leading edge, the pulse peak, and the trailing edge are red shifted, non-
shifted, and blue shifted, respectively.

The spectrum of SPM pulses is obtained by taking the Fourier transform
of the complex temporal envelope A(z, t):

(7)

where W = w - w 0. The intensity spectrum is given by

(8)

In practical cases, the phase of A(z, t) is large compare with p, and the sta-
tionary phase method leads to

(9)

The intensity

(10)

where Dwmax is the maximum frequency spread, t1 and t2 are the pulse enve-
lope inflection points, and t ¢ and t ≤ are the points of the pulse shape that
have the same frequency.
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An estimate of the modulation frequency dwM can be made by calculating
the maximum number of interference minima and dividing this number into
the maximum frequency broadening. A straightforward calculation leads to 

(11)

For a Gaussian laser pulse given by

(12)

the modulation frequency of the SPM spectrum is (Alfano, 1972)

(13)

Using this relation, the average modulation period of 13cm-1 corresponds to
an initial pulse duration of 5ps emitted from mode-locked Nd:glass laser.
The maximum frequency extent in this case is (Alfano, 1972)

(14)

The maximum frequency shift (Eq. (14)) indicates the following salient points:

• The frequency extent is inversely proportional to the pumping pulse dura-
tion. The shorter the incoming pulse, the greater the frequency extent. The
first white light band supercontinuum pulses were generated using pico-
second laser pulses (Alfano and Shapiro, 1970a,b).

• The spectral broadening is proportional to n2. The supercontinuum gener-
ation can be enhanced by increasing the nonlinear refractive index. This is
discussed in detail in Section 6.

• The spectral broadening is linearly proportional to amplitude a2
0. Therefore,

multiple-excitation laser beams of different wavelengths mat be used to
increase the supercontinuum generation. This leads to the basic principle
behind IPM and XPM. These processes are described by Baldeck et al.
(Chapter 4) and Manassah (Chapter 5).

• The spectral broadening is proportional to w 0 and z.

The chirp—the temporal distribution of frequency in the pulse shape—
is an important characteristic of SPM broadened pulse. In the linear chirp
approximation, the chirp coefficient C is usually defined by the phase relation

(15)

For a Gaussian electric field envelope and linear approximation, the envelope
reduces to

(16)

The linear chirp coefficient derived from Eqs. (5) and (16) becomes
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(17)

Typical calculated SPM spectra are displayed in Figure 2.2. The spectral den-
sities of the SPM light are normalized and b is defined as b = (n2a2

0w 0z)/2c,
which measures the strength of the broadening process. Figure 2.2a shows
the spectrum for a material response time slower than pure electronic but
faster than molecular orientation for b = 30 and t = 0.1ps. The extent of the
spectrum is about 7000cm-1. Figure 2.2b shows the SPM spectrum for a
quasi-pure electronic response for b = 30 and t = 0.1ps. Typical SPM spec-
tral characteristics are apparent in these spectra.

3. Experimental Arrangement for SPM Generation

To produce the supercontinuum, an ultrafast laser pulse is essential with a
pulse duration in the picosecond and femtosecond time region. A mode-
locked laser is used to generate picosecond and femtosecond light pulses.
Table 2.2 lists the available mode-locked lasers that can produce picosecond
and femtosecond laser pulses. Measurements performed in the 1970s used a
modelocked Nd:glass laser with output at 1.06mm with power of ~5 ¥ 109 W
and the second harmonic (SHG) at 530nm with power of 2 ¥ 108 W. Typi-
cally, one needs at least a few microjoulis of 100-fs pulse passing through a
1-mm sample to produce continuum.

A typical experimental setup for ultrafast supercontinuum generation is
shown in Figure 2.3. Both spectral and spatial distributions are measured.
The 8-ps SHG pulse of 5mJ is reduced in size to a collimated 1.2-mm-
diameter beam across the sample by an inverted telescope. For weaker exci-
tation pulses, the beam is focused into the sample using a 10- to 25-cm focal
lens. The typical sample length used is 10 to 15cm for picosecond pulses and
0.1 to 1cm for 100-f pulses. The intensity distribution of the light at the exit
face of the sample was magnified 10 times and imaged on the slit of a spec-
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Table 2.2. Available ultrafast mode-locked lasers.

Oscillator Wavelength (nm) Pulse duration

Ruby 694.3 30ps
YAG 1064 30ps
Silicate glass 1060 8ps
Phosphate glass 1054 6ps
Dye Tunable (SYNC or flash lamp) 5–10ps
Dye + CO2 + semiconductor switches 9300 1–10ps
Dye (CPM) 610–630 100 fs
Dye + pulse compression (SYNC) Tunable 300 fs
Dye + CPM (prisms in cavity) 620 27–60 fs
Dye + SPM + pulse compression 620 6–10 fs

(prisms and grating pairs)
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Figure 2.3. Experimental arrangement for generating and observing supercontinuum
and self-focusing. (From Alfano, 1972.)

trograph. The spectrum of each individual filament within the slit was dis-
played. Usually there were 5 to 20 filaments. A thin quartz-wedge beam split-
ter was used to photograph filament formation of the Stokes (anti-Stokes) side
of the spectra; three type 3-68 and three type 3-67 (two type 5-60) Corning
filters were used to prevent the 530-nm direct laser light from entering the spec-
trograph. To reduce nonfilament light, a wire 2mm in diameter was sometimes
placed at the focal point of the imaging lens. Previously, spectra were 
taken on Polaroid type 57 film. At present, video systems such as an Silicon-
intensified target (SIT) camera together with a PC computer are commonly
used to display the spectra. Today, to obtain temporal information about the
supercontinuum, a streak camera is added to the experimental system.

4. Generation of Supercontinuum in Solids

In the following sections, we review the experimental measurements of super-
continuum generated in condense matter. Topics discussed include super-
continuum generation in various kinds of solids and liquids, optical glass
fibers, liquid argon, liquid and solid krypton, magnetic crystals, and dielec-
tric crystals.

The mechanisms behind SPM are discussed in Chapter 1 by Shen and
Yang. In general, various mechanisms are responsible for SPM in condensed
matter and give rise to the coefficient of the intensity-dependent refractive
index n2. These are the orientational Kerr effect, electrostriction, molecular
redistribution, librations, and electronic distribution. In suitably chosen
media (central-symmetric molecules) these frequency-broadening mecha-
nisms may be distinguished from the electronic mechanism through their dif-



ferent time responses (Lallemand, 1966). The relation times for these mech-
anisms are given approximately by (Brewer and Lee, 1968)

(18)

(19)

(20)

(21)

where h is the viscosity (h = 0.4cp for liquids and h = 106 cp for glasses); a is
the molecular radius; D is the diffusion coefficient (≥10-5 cm/s for liquids) 
and x is the diffusion distance of the clustering, ~10-8 cm; I is the moment of
inertia, Iargon = 9.3 ¥ 10-38 esu and ICCl4 = 1.75 ¥ 10-38 esu; a is the polarizabil-
ity, aargon = 1.6 ¥ 10-24 esu and aCCl4 = 1.026 ¥ 10-24 esu; and E0 is the ampli-
tude of the electric field, taken as 105 esu, which is close to the atomic field.
The response time for an electron distortion is about the period of a Bohr
orbit, ~1.5 ¥ 10-16 s. Thus, typical calculated relaxation time responses for dif-
fusional motions are >10-12 s, while the electronic distortion response time is
~150as.

With picosecond light pulses Brewer and Lee (1968) showed that the dom-
inant mechanism for filament formation should be electronic in very viscous
liquids. Molecular rocking has been suggested as the cause of broadening and
self-focusing in CS2. The molecules are driven by the laser field to rock about
the equilibrium position of a potential well that has been set up by the neigh-
boring molecules. This mechanism is characteristized by a relaxation time:

(22)

where G is the shear modulus ~1.5 ¥ 1010 dynes/cm and viscosity h = 3.7 ¥
10-3 p for CS2.

In solids, mechanisms giving rise to the coefficient of the intensity-
dependent refractive index n2 for picosecond pulse excitation are either direct
distortion of electronic clouds around nuclei or one of several coupled elec-
tronic mechanisms: librational distortion, where electronic structure is dis-
torted as the molecule rocks; electron-lattice distortion, where the electron
cloud distorts as the lattice vibrates; and molecular distortion, where elec-
tronic shells are altered as the nuclei redistribute spatially. The electrostric-
tion mechanism is rejected because it exhibits a negligible effect for
picosecond and femtosecond pulses.
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Typical supercontinuum spectra generated in solids and liquids using 8-ps
pulses at 530nm are displayed in Figure 2.4. All continuum spectra are similar
despite the different materials.

4.1 Supercontinuum in Glasses

Spectra from the glass samples show modulation (see Figure 2.4a). The spec-
tral modulation ranged from as small as a few wave numbers to hundreds of
wave numbers. The filament size was approximately 5 to 50mm. Typically, 5
to 20 small-scale filaments were observed. Occasionally, some laser output
pulses from the samples did not show modulation or had no regular modu-
lation pattern. Typical Stokes sweeps from these filaments were 1100cm-1 in
extradense flint glass of length 7.55cm and 4200cm-1 in both borosilicate
crown (BK-7) and light barium (LBC-1) glass of length 8.9cm. Sweeps on
the anti-Stokes side were typically 7400cm-1 in BK and LBC glasses. The
sweep is polarized in the direction of the incident laser polarization for
unstrained glasses.

4.2 Supercontinuum in Quartz

SPM spectra from quartz using an 8-ps pulse at 530nm are similar to the
spectra from glasses displayed in Figure 2.4a. Typical Stokes sweeps from the
filaments were 3900cm-1 in a quartz crystal of length 4.5cm, and the anti-
Stokes sweeps were 5500cm-1.

4.3 Supercontinuum in NaCl

Sweeps of 3900cm-1 in NaCl of length 4.7cm to the red side of 530nm were
observed. Sweeps on the anti-Stokes side were about 7300cm-1. Some of the
spectra show modulation with ranges from a few wave numbers to hundreds
of wave numbers. Some laser shots showed no modulation or no regular mod-
ulation pattern. For unstrained NaCl, the supercontinuum light is polarized
in the direction of the incident laser polarization.

4.4 Supercontinuum in Calcite

Sweeps of 4400cm-1 and 6100cm-1 to the Stokes and anti-Stokes sides of
530nm were observed in a calcite crystal of length 4.5cm (see Figure 2.4b).
Some spectra showed modulation structure within the broadened spectra;
some showed no modulation or no regular modulation pattern. The exit
supercontinuum light has same polarization as the incident laser. The SRS
threshold is lower for laser light traveling as an O-wave than an E-wave. SPM
dominates the E-wave spectra.
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Figure 2.4. Supercontinuum spectra from various kind of solids and liquids.
(a) Stokes and anti-Stokes SPM from BK-7 glass and filament formation for differ-
ent laser shots. The filaments are viewed through Corning 3-67 filters. (b) Stokes and
anti-Stokes SPM from calcite for different laser shots. The laser beam propagates as
an O-wave through the sample. (c) Stokes and anti-Stokes SPM spectra from calcite
for different laser shots. The laser beam propagates as an E-wave. (From Alfano,
1972.)
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Figure 2.4. (continued )
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Figure 2.4. (continued )



4.5 Supercontinuum in KBr

A high-power broadband coherent source in the near- and medium-infrared
region can be realized by passing an intense 1.06-mm picosecond pulse
through a KBr crystal. Figure 2.5 shows the spectra from 10-cm-long KBr
crystal with excitation of a 9-ps, 1011 W/cm2 pulse at 1.06mm. On the Stokes
side the maximum intensity occurs at 1.2mm. When the signal drops to 10-1

the span of the spectral broadening is Dvs = 3200cm-1 on the Stokes side and
Dva = 4900cm-1 on the anti-Stokes side. Beyond 1.6mm the signal level falls
off rapidly. At 1.8mm the signal is 10-2 and at 2mm no detectable signal can
be observed (Yu et al., 1975).

4.6 Supercontinuum in Semiconductors

Infrared supercontinuum spanning the range 3 to 14mm can be obtained
when an intense picoseond pulse generated from a CO2 laser is passed into
GaAs, AgBr, ZnSe, and CdS crystals (Corkum et al., 1985).

The supercontinuum spectra measured from a 6-cm-long Cr-doped GaAs
crystal and a 3.8-cm AgBr crystal for different laser pulse durations and
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Figure 2.5. Relative emission intensity versus emission wavelength for KBr. Exciting
wavelength = 1.06mm. (From Yu et al., 1975.)



intensities and plotted in Figures 2.6 and 2.7, respectively. The signals were
normalized for the input laser energy and the spectral sensitivity of filters,
grating, and detectors. Each point represents the average of three shots. The
salient feature of the curves displayed in Figures 2.6 and 2.7 is that the spec-
tral broadening spans the wavelength region from 3 to 14mm. The wave
number spread on the anti-Stokes side is much greater than that on the Stokes
side. From data displayed in Figure 2.6, the maximum anti-Stokes spectral
broadening is Dwa = 793cm-1. Including second and third harmonic genera-
tion (SHG and THG), it spans 2000cm-1. On the Stokes side, Dws = 360cm-1,
yielding a value of dwa/dws ~ 2.2. For AgBr, Figure 2.7 shows that Dwa = 743
cm-1 and Dws = 242cm-1, yielding Dwa/Dws ~ 3.

The spectral broadening mechanism for the supercontinuum can originate
from several nonlinear optical processes. These include self-phase modula-
tion, the four-wave parametric effect, higher-order harmonic generation, and
stimulated Raman scattering. In Figure 2.6 the supercontinuum from the
GaAs has two small peaks at 4.5 and 3.3mm. These arise from the SHG and
THG, respectively. Small plateaus are located at 7.5 and 12mm. These arise
from the first-order anti-Stokes and Stokes stimulated Raman scattering com-
bined with SPM about these wavelengths. The SPM is attributed to an elec-
tronic mechanism.
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Figure 2.6. Supercontinuum spectra from a 6-cm-long Cr-doped GaAs crystal.
(From Corkum et al., 1985.)



Summarizing the important experimental aspects of the spectra in con-
densed matter: The spectra are characterized by very large spectral widths
and a nonperiodic or random substructure. Occasionally, a periodic structure
interference minimum and maximum are observed. The modulation fre-
quencies range from a few cm-1 to hundreds of cm-1, and some modulation
progressively increases away from the central frequency. The Stokes and anti-
Stokes spectra are approximately equal in intensity and roughly uniform. The
extents on the Stokes and anti-Stokes sides are not symmetric. The peak
intensity at the central frequency is 102–103 the intensity of the SPM spectra
at a given frequency.

5. Generation of Supercontinuum in Liquids

Nonlinear optical effects in solids are very effective; however, damage gener-
ated in solid media often limits their usefulness for ultrashort high-power
effects. Various kinds of inorganic and organic liquids are useful media for
generating picosecond or femtosecond supercontinuum light pulses since
they are selfhealing media. The supercontinuum spectra produced in liquids
(Alfano, 1972) are similar to the spectra displayed in Figure 2.4 (Alfano,
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Figure 2.7. Supercontinuum spectra from a 3.8-cm-long AgBr crystal. (From
Corkum et al., 1985.)



1972). The following highlights the supercontinuum phenomena in the
various favorite liquid media of the authors. These liquids give the most
intense and uniform supercontinuum spectral distributions.

5.1 Supercontinuum in H2O and D2O

The supercontinuum generated in H2O and D2O by the second harmonic of
a mode-locked neodymium glass laser spanned several thousand wave
numbers. The time duration was equal to or less than the picosecond pulse
that generated it (Busch et al., 1973). The continuum extended to below 
310nm on the anti-Stokes side and to the near-IR region on the Stokes side.
There were sharp absorptions at 450nm in the H2O continuum and at 470
nm in the D2O continuum resulting from the inverse Raman effect (Alfano
and Shapiro, 1970b; Jones and Stoicheff, 1964). Focusing a 12-mJ, 1060-nm
single pulse 14ps in duration into 25cm of liquid D2O resulted in a contin-
uum that showed practically no structure, extending from 380 to at least 800
nm and highly directional and polarized (Sharma et al., 1976). Enhancing
the supercontinuum intensity using water with ions is discussed in Section 10.

5.2 Supercontinuum in CCl4

Another favorite liquid for producing a supercontinuum is CCl4, in which the
spectra produced are similar to the spectra displayed in Figure 2.4. A typical
flat white supercontinuum extending from 430nm through the visible and
near infrared could be produced by focusing an 8-ps pulse at 1060nm with
about 15mJ pulse energy into a cell containing CCl4 (Magde and Windsor,
1974).

5.3 Supercontinuum in Phosphoric Acid

Orthophosphoric acid was found to be a useful medium for generating
picosecond continuum light pulses ranging from the near UV to the near IR.
By focusing a pulse train from a mode-locked ruby laser into a 10-cm-long
cell containing phosphoric acid (60% by weight) solution in water by an 
8-cm focal lens, a supercontinuum from near 450nm to the near IR was
obtained. The supercontinuum spectra contain structure arising from Raman
lines (Kobayashi, 1979).

5.4 Supercontinuum in Polyphosphoric Acid

The supercontinuum from polyphosphoric acid was generated by focusing an
optical pulse at 694.3nm with 100mJ pulse energy and a pulse width of
28ps into a cell of any length from 2 to 20cm containing polyphosphoric
acid. It reaches 350nm on the anti-Stokes side, being limited by the absorp-
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tion of polyphosphoric acid, and 925nm on the Stokes side, being cut off by
limitations of IR film sensitivity (Nakashima and Mataga, 1975).

6. Supercontinuum Generated in Optical Fibers

The peak power and the interaction length can be controlled better in optical
fibers than in bulk materials. Optical fibers are particularly interesting mate-
rial for nonlinear optical experiments. In this section, we discuss super-
continuum generation in glass optical fibers. Details of the use of SPM for
pulse compression are discussed in other chapters.

The generation of continua in glass optical fibers was performed by Stolen
et al. in 1974. Continua covering ~500cm-1 were obtained. Shank et al. (1982)
compressed 90-fs optical pulses to 30-fs pulses using SPM in an optical fiber
followed by a grating compressor. Using the SPM in an optical fiber with a
combination of prisms and diffraction gratings, they were able to compress
30 fs to 6 fs (Fork et al., 1987; also see Chapter 10 by Johnson and Shank).

A typical sequence of spectral broadening versus input peak power using
500-fs pulses (Baldeck et al., 1987b) is shown in Figure 2.8. The spectra show
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Figure 2.8. Sequence of spectral broad-
ening versus increasing input energy in 
a single-mode optical fiber (length =
30cm). The intensity of the 500-fs pulse
was increased from (a) to (c). (From
Baldeck et al., 1987b.)



SPM characteristic of heavy modulation. The spectral extent is plotted
against the energy in Figure 2.9 for 500-fs pulses (Baldeck et al., 1987b). The
relative energy of each pulse was calculated by integrating its total broadened
spectral distribution. The supercontinuum extent increased linearly with the
pulse intensity. The fiber length dependence of the spectral broadening is
plotted in Figure 2.10. The broadening was found to be independent of the
length of the optical fiber for l > 20cm. This is due to group velocity disper-
sion. The SPM spectral broadening occurs in the first few centimeters of the
fiber for such short pulses (Baldeck et al., 1987b).

In multimode optical fibers, the mode dispersion is dominant and causes
pulse distortion. Neglecting the detailed transverse distribution of each
mode, the light field can be expressed by 

(23)

where w0 is the incident laser frequency; ai, Ai(t), and ki = niw0/c are the effec-
tive amplitude, electric field envelope function at the local time t = t - z/vgi,
and wave number of mode i, respectively; and vgi is the group velocity of mode
i. The effective refractive index of mode i is denoted by ni and

(24)

where n0i and n2i are the linear refractive index and the nonlinear coefficient
of the ith mode, respectively. The nonlinearities of different modes are

n n n E ti i i= + ( )0 2
2,

E t a A t i t ik zi i i
i

( ) = ( ) -[ ]Â exp ,w 0
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Figure 2.9. Supercontinuum spectra versus input pulse energy in a single-mode
optical fiber (length = 30cm) for a 500-fs pulse. (From Baldeck et al., 1987b.)



assumed to be the same, that is, n2i = n2. Substituting Eq. (21) into Eq. (20),
we obtain

(25)

where

(26)

After inserting Eq. (23) into Eq. (26), the time-dependent phase factor Df(t)
can be expanded in terms of Ei(t):

(27)

In the picosecond time envelope, the terms of i π j oscillate rapidly. Their con-
tributions to the time-dependent phase factor are washed out. The approxi-
mate Df(t) has the form

(28)

The pulse shape changes due to the different group velocities of various
modes. When most of the incident energy is coupled into the lower modes,
the pulse will have a fast rising edge and a slow decay tail since the group
velocity is faster for lower-order mode. This feature was observed using a
streak camera. Therefore, the Df(t, z) of Eq. (28) will also have a fast rising
edge and a slow decay tail. The time derivative of the phase Df(t, z) yields
an asymmetric frequency broadening.

Figure 2.11 shows the spectral continuum generated from multimode glass
optical fibers using 8-ps pulses at 530nm. The spectral broadening is asym-

Df w= ( ) ( )Â n z c a A t
i

i i2 0
2 2 .

Df w wt n z c a a A t A t i n n z c
ji

i j i j i j( ) = ( ) ( ) ( ) -( )[ ]ÂÂ 2 0 0 0 0exp .

Df wt n z c E t( ) = ( ) ( )2 0
2.

E t a A t i t in z c i ti i
i

i( ) = ( ) - - ( )[ ]Â exp ,w w f0 0 0 D
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Figure 2.10. Supercontinuum spectra versus optical fiber length for a 500-fs pulse.
(From Baldeck et al., 1987b.)



metric about the incident laser frequency. It is shifted much more to the
Stokes side than to the anti-Stokes side. The observed spectra did not show
a modulation. This can be explained by the spectral resolution of the mea-
surement system. The calculated modulation period is about 0.13nm, which
is much smaller than the resolution of the measurement system (about 1nm)
(Wang et al., 1988).

7. Supercontinuum Generation in Rare-Gas 
Liquids and Solids

Continuum generation is a general phenomenon that occurs in all states of
matter. A system for testing the role of the electronic mechanism is rare-gas
liquids and solids (Alfano and Shapiro, 1970a). Rare-gas liquids are com-
posed of atoms possessing spherical symmetry. Thus, there are no orienta-
tional, librational, or electron-lattice contributions to the nonlinear refractive
index n2. However, interrupted rocking of argon can occur in which a dis-
torted atom can rock about an equilibrium value before it collides with other
atoms. Contributions to the nonlinear refractive index might be expected
from electrostriction, molecular redistribution, interrupted rocking, and a
distortion of the electron clouds:

(29)

Electrostriction is ruled out because picosecond exciting pulses are too short.
Molecular redistribution arises from fluctuations in the local positional

n n n n n2 2 2 2 2= + + +ELECTRONIC MR LIBRATION ELECTROSTR.
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Figure 2.11. Output spectra for 8-ps laser
pulses at 527nm propagating through dif-
ferent lengths of multimode optical fibers:
(a) no fiber; (b) 22cm; (c) 42cm; (d) 84cm.
(From Wang et al., 1988.)



arrangement of molecules and can contribute significantly to n2. However, n2

due to all mechanisms except electronic was estimated to be ~2 ¥ 10-14 esu for
liquid argon from depolarized inelastic-scattering data. Electronic distortion
(n2 = 6 ¥ 10-14 esu) slightly dominates all nonlinear index contributions
(Alfano and Shapiro, 1970a; Alfano, 1972). Furthermore, the depolarized
inelastic light-scattering wing vanishes in solid xenon, implying that the mol-
ecular redistribution contribution to n2 vanishes in rare-gas solids. Observa-
tions of self-focusing and SPM in rare-gas solids appear to provide a direct
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Figure 2.12. Supercontinuum spectra for picosecond laser pulses at 530nm passing
through rare-gas liquids and solids; (a) Stokes SPM from liquid argon for different
laser shots; (b) anti-Stokes SPM for liquid argon for different laser shots; (c) Stokes
SPM for liquid and solid krypton for different laser shots. (From Alfano, 1972.)



proof that atomic electronic shells are distorted from their spherical symme-
try under the action of the applied field. However, both pure electronic and
molecular redistribution mechanisms contribute to n2 in rare-gas liquids. The
response time of the system for a combination of both of these mechanisms
lies between 10-15 and 10-12 s. For femtosecond and subpicosecond pulses, the
dominant mechanism for n2 and SPM is electronic in origin.

The experimental setup used to generate and detect a supercontinuum in
rare-gas liquids and solids is the same as that shown in Figure 2.3 with the
exception that the samples are placed in an optical dewar.

Typical supercontinuum spectra from rare-gas liquids and solids are dis-
played in Figure 2.12. Sweeps of 1000 to 6000cm-1 were observed to both the
Stokes and anti-Stokes sides of 530nm in liquid argon. Modulation ranges
from a few cm-1 to hundreds of cm-1. Similar spectral sweeps were observed
in liquid and solid krypton.
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Figure 2.12. (continued )



A most important point is that the threshold for observing SPM in liquid
krypton is 0.64 ± 0.12 that in liquid argon. The SPM threshold ratio of solid
and liquid krypton is 0.86 ± 0.15. In liquid argon, SPM spectra appear at a
threshold power of ~0.5GW focused in a 12-cm sample. The swept light is
also collimated, polarized, and modulated. These observations rule out
dielectric breakdown.

The refractive index in rare-gas liquids is given by n|| = n0 + n2·E2Ò, where
n|| is the refractive index parallel to the field. ·E2Ò1/2 is the rms value of the
electric field. The electronic nonlinear refractive index in rare gas liquids is
given by 

(30)

where n0 is the linear refractive index, r is the second-order hyperpolariz-
ability, and N is the number of atoms per unit volume. The term n2 = 0.6 ¥
10-13 esu in liquid argon and �1.36 ¥ 10-13 in liquid krypton. For liquid argon

n n n N2 0
2 4

02 81= +( )[ ]p r,
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Figure 2.12. (continued )



and liquid and solid krypton, the refractive indices are taken as 1.23, 1.30,
and 1.35, respectively (McTague et al., 1969). Intense electric fields distort
atoms and produce a birefringence. The anisotropy in refractive index
between light traveling with the wave vector parallel and perpendicular to the
applied electric field is given by (Alfano, 1972)

(31)

where dn|| and dn� are the changes in refractive indices parallel and perpen-
dicular to the field. The value of n2E2

0 is ~5 ¥ 10-5 V/m in liquid argon when
E0 ~ 1.5 ¥ 107 V/m (~4 ¥ 1011 W/cm2). This change in index explains the 
self-focusing and SPM described above which was observed by Alfano and
Shapiro in 1970. Similar SPM effects occur in organic and inorganic liquids,
often accompanied by SRS and inverse Raman effects.

8. Supercontinuum Generation in Antiferromagnetic
KNiF3 Crystals

The influence of magnetic processes on nonlinear optical effects is an inter-
esting topic. In this section, we discuss the supercontinuum generation asso-
ciated with the onset of magnetic order in a KNiF3 crystal (Alfano et al.,
1976). Light at 530nm is well suited for the excitation pulse because KNiF3

exhibits a broad minimum in its absorption (Knox et al., 1963) between 480
and 610nm.

Typical spectra from an unoriented 5-cm-long KNiF3 single crystal are dis-
played in Figure 2.13 for 530-nm picosecond excitation (Alfano et al., 1976).
The spectra are characterized by extensive spectral broadening ranging up to
~3000cm-1 to either side of the laser frequency. The intensity, although not
the spectral broadening, of the output exhibited the large temperature depen-
dence illustrated in Figure 2.14. There is no sharp feature at 552nm, the posi-
tion expected for stimulated Raman scattering by the 746-cm-1 magnon pair
excitation. Usually, the spectra were smooth; however, occasionally structure
was observed. A periodic structure with a modulation frequency of tens to
hundreds of wave numbers was evident. The frequency broadening light is
also polarized in the same direction as the incident 530-nm pulse. This prop-
erty is the same observed in glass, crystals, and liquids (see Sections 3–6).
Self-focusing was also observed, usually in the form of 10 to 40 small self-
focused spots 5 to 20mm in diameter at the exit face of the crystal. Using a
focused beam, optical damage could also be produced. It should be empha-
sized that spectral broadening was always observed even in the absence of
self-focusing, damage, or periodic spectral intensity modulation.

Figure 2.15 shows the output intensity at 570nm as a function of input
intensity for two temperatures: above and below the Néel temperature. The
output intensity is approximately exponential in the input intensity at both

d dn n n E|| ,- =^
1
3 2 0

2
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Figure 2.13. Spectra for picosecond laser
pulse at 530nm passing through 5-cm-long
KNiF3. (From Alfano et al., 1976.)

Figure 2.14. Intensity of the frequency-broadening emission from KNiF3 as a func-
tion of temperature at fixed pump intensity at 552nm. (From Alfano et al., 1976.)
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Figure 2.15. Intensity dependence of continuum spectra at 570nm from KNiF3 as a
function of pumping laser intensity at fixed lattice temperature. (From Alfano et al.,
1976.)

temperatures. However, the slope is more than a factor of two larger at 77K
than at 300K. The rapid rise in conversion efficiency of four orders of mag-
nitude within a small interval of input intensity is indicative of an amplifi-
cation process with very large gain. Identical curves were obtained at 552 and
600nm output wavelengths. The similarity in results for several output 
frequencies shows that simple stimulated magnon pair scattering is not the



dominant process. If it were, one would expect the behavior at 552nm to
differ considerably from that at other wavelengths.

The most novel experimental results in KNiF3 are the large (~20¥) inten-
sity increases below TN. Spectra at 552, 570, and 600nm behave identically—
within experimental error—consistent with the observations in Figure 2.15.
The temperature dependence of the relative peak intensity for the sponta-
neous magnon pair scattering in the KNiF3 sample (using 514.5nm laser
light) was measured and is potted in Figure 2.14. For KNiF3 the magnon pair
scattering accounts for the entire inelastic light scattering and therefore for
the non-s electronic contribution to c3 (Hellwarth et al., 1975). The temper-
ature dependence is compelling evidence for the magnetic origin of the low-
temperature-enhanced nonlinear optical spectral broadened intensity.

The observation can be semiquantitatively accounted for in terms of a 
temperature-dependent spin contribution to the overall nonlinear suscepti-
bility c(3)

ijkl that governs four-photon parametric mixing as the primary process.
In general c(3) may be written as a sum of electronic and Raman contribu-
tions (Levenson and Bloembergen, 1974). For KNiF3 we may consider the
latter to consist solely of the magnon pair Raman scattering contribution
(Chinn et al., 1971; Fleury et al., 1975), which we can approximate as a
Lorentzian:

(32)

Here wm and Gm denote the temperature-dependent frequency and linewidth,
respectively, of the magnon pair excitations, a ij

m is the magnon pair polariz-
ability, and cE

(3) is the usual nonresonant, temperature-independent “elec-
tronic” contribution from nonlinear distortion of the electronic orbits. The
second term in Eq. (32) is called magnetic cM

(3). Since the integrated intensity
of the spontaneous magnon pair Raman spectrum, which is ~|am|2, has been
measured and found to be essentially temperature independent (Chinn et al.,
1971; Fleury et al., 1975), the only quantities in Eq. (32) that vary signifi-
cantly with temperature are wm and Gm. The observed temperature indepen-
dence of the extent of spectral broadening, dw, may be explained by noting
that dw ~ 2Dwn2kE 2

1l due to self-phase modulation. Here Dw is the spectral
width of the input pulse, k is its propagation constant, E1 is the field ampli-
tude, and l is the path length. n2 is the nonlinear refractive index, which con-
tains a purely electronic contribution, s, and a contribution proportional to
the integrated Raman scattering cross section (Hellwarth et al., 1975). Since
neither s nor |am|2 is temperature dependent in KNiF3, n2 and therefore Dw
should not vary either, in agreement with observations.

The observed strong temperature dependence of the intensity of the fre-
quency-broadened spectrum (see Figure 2.14) arises from the resonant term
in Eq. (32) through the primary process 2w1 Æ w 2 + w 3, which is strongest
when w 2 = w 1 + wm and increases as Gm decreases (on cooling below the Néel
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temperature). That is, the resonant contribution to c(3) in Eq. (32) varies with
temperature in the same way as the peak spontaneous magnon pair cross
section: Gm

-1(T ). However, the individual contribution to c(3) cannot be directly
inferred from the dependence of the broadened spectrum. This is because the
latter receives significant contributions from secondary processes of the form
w1 + w ¢2 Æ w ¢3 + w4 etc., in which products of the primary process interact
with the pump to smooth the spectral distribution and wash out the sharp
features that the resonant spin nonlinearity produces in the primary process.
The large values of pump intensity and source spectral width make possible
strong amplification in spite of imprecise phase matching in the forward
direction. Such behavior (washing out of stimulated Raman features by the
spectral broadening process) has frequently been observed in both liquids and
crystals. Thus a full quantitative description of the nonlinear optical
processes in KNiF3 is not yet possible.

9. Generation of Supercontinuum near Electronic
Resonances in Crystals

Since the active medium of a laser possesses well-defined electronic energy
levels, knowledge of SPM near electronic levels is of paramount importance.
SPM near electronic levels of a PrF3 crystal has been investigated experi-
mentally and theoretically to gain additional information on the SPM
process—in particular, on the role played by the electronic levels and on how
the continuum spectrum evolves through and beyond the electronic absorp-
tion levels (Alfano et al., 1974).

Experimentally, the Stokes and anti-Stokes spectrum and filament forma-
tion from the PrF3 crystal are investigated under intense picosecond pulse
excitation at the wavelength of 530nm. The c axis of the crystal is oriented
along the optical axis. The intensity distribution at the exit face of the crystal
is magnified by 10¥ and imaged on the slit of a Jarrell-Ash 1–

2 -m-grating spec-
trograph so that the spectrum of each filament can be displayed. The spectra
are recorded on Polaroid type 57 film. No visible damage occurred in the PrF3

crystal.
The PrF3 crystal was chosen for the experiment because its electronic levels

are suitably located on the Stokes and anti-Stokes sides of the 530-nm exci-
tation wavelength. The absorption spectra of a 1–

2 -mm-thick PrF3 crystal and
the energy level scheme of Pr3+ ions are shown in Figure 2.16. The fluorides
of Pr have the structure of the naturally occurring mineral tysonite with D4

34

symmetry.
Typical spectra of frequency broadening from PrF3 about 530nm are

shown in Figure 2.17 for different laser shots. Because of the absorption asso-
ciated with the electronic level, it is necessary to display the spectrum over
different wavelength ranges at different intensity levels. In this manner, the
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development of the SPM spectrum through the electronic absorption levels
can be investigated. Using appropriate filters, different spectral ranges are
studied and displayed in the following figures: in Figure 2.18a the Stokes side
for frequency broadening v–B > 100cm-1 at an intensity level (ISPM) of ~10-2

of the laser intensity (IL), in Figure 2.18b the Stokes side for v–B > 1500cm-1

at ISPM ~ 10-4 IL, in Figure 2.18c the anti-Stokes side for v–B > 100cm-1 at 
ISPM ~ 10-2 IL, and in Figure 2.18d the anti-Stokes side for v–B > 1500cm-1 at
ISPM ~ 10-4 IL. Usually 50 to 100 small-scale filaments 5 to 50mm in diameter
are observed.

Several salient features are evident in the spectra displayed in Figures 2.17
and 2.18. In Figure 2.17 the Stokes and anti-Stokes spectra are approximately
equal in intensity and frequency extent. The peak intensity at the central fre-
quency is ~100 times the intensity of the SPM at a given frequency. The extent
of the frequency broadening is ~1500cm-1, ending approximately at the
absorption lines. Occasionally a periodic structure of minima and maxima is
observed that ranges from a few cm-1 to 100cm-1, and for some observations
no modulation is observed. Occasionally an absorption band appears on the
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Figure 2.16. Absorption spectra of 0.5-mm-thick PrF3 crystal; insert is the level
scheme of Pr3+ ions. (From Alfano et al., 1974.)
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Figure 2.17. Spectra from PrF3 excited by 4-ps laser pulses at 530nm; neutral density
(ND) filters: (a) ND = 1.5; (b) ND = 1.5; (c) ND = 2.0; (d) ND = 2.0; (e) ND = 1.7;
(f) ND = 1.4. A wire is positioned after the collection lens at the focal length. (From
Alfano et al., 1974.)

Figure 2.18. Spectra on the Stokes and
anti-Stokes sides of the 530-nm excitation:
(a) Stokes side, Corning 3-68 filter, wire
inserted, ND = 2.0; (b) Stokes side, Corning
3-66 filter, wire inserted; (c) anti-Stokes side,
wire inserted, ND = 1.0; (d) anti-Stokes side,
Corning 5-61, wire inserted. (From Alfano
et al., 1974.)



anti-Stokes side of the 530-nm line whose displacement is 430cm-1. In Figure
2.18 the main feature is the presence of a much weaker super-broadband con-
tinuum whose frequency extends through and past the well-defined absorp-
tion lines of the Pr3+ ion to a maximum frequency of >3000cm-1 on the Stokes
side (end of film sensitivity) and >6000cm-1 on the anti-Stokes side. The
intensity of the continuum at a given frequency outside absorption lines is
~10-4 the laser intensity.

The observed absorption lines on the anti-Stokes side of 530nm are located
at 441.5, 465.3, and 484.5nm and on the Stokes side at 593 and 610.9nm.
These lines correspond within ±0.7nm to the absorption lines measured 
with a Cary 14. The absorption lines measured from the Cary spectra are 
~3cm-1 at 611.2nm, 62cm-1 at 5938.8nm, 46cm-1 at 485.2nm, and >100cm-1

at 441.2nm. Figure 2.19 compares the Stokes absorption spectra of a PrF3

crystal photographed with a 1–
2 -m Jarrell-Ash spectrograph with different

broadband light sources. Figure 2.19a was obtained with light emitted from
a tungsten lamp passing through a 1–

2 -mm PrF3 crystal, Figure 2.19b was
obtained with the Stokes side of the broadband picosecond continuum gen-
erated in BK-7 glass passing through a 1–

2 -mm PrF3, and Figure 2.19c was
obtained with the broadband light generated in a 5-cm PrF3 crystal. Notice
that the absorption line at 611.2nm is very pronounced in the spectra
obtained with the continuum generated in PrF3, whereas with conventional
absorption techniques it is barely visible. The anti-Stokes spectrum obtained
with light emitted from a tungsten filament lamp passing through a 1–

2 -mm
PrF3 crystal is shown in Figure 2.20a. This is compared with the spectrum
obtained with broadband light generated in a 5-cm PrF3 crystal shown in
Figure 2.20b.
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Figure 2.19. Comparison of the Stokes
absorption spectra of PrF3 photographed
with different light sources: (a) light
emitted from a tungsten lamp is passed
through 0.5-cm-thick crystal; (b) SPM
light emitted from BK-7 glass is passed
through 0.5-mm-thick crystal; (c) SPM
light is generated within the 5-cm PrF3.
(From Alfano et al., 1974.)



The angular variation of the anti-Stokes and Stokes spectral emission from
PrF3 is displayed in Figure 2.21. The light emitted from the sample is focused
on the slit of a 1–

2 -m Jarrell-Ash spectrograph with a 5-cm focal length lens
with the laser beam positioned near the bottom of the slit so that only the
upper half of the angular spectrum curve is displayed. In this fashion, a larger
angular variation of the spectrum is displayed. Emission angles >9° go off
slit and are not displayed. This spectrum is similar to four-photon emission
patterns observed from glass and liquids under picosecond excitation.

The experimental results show that a discontinuity in intensity occurs when
the self-phase modulation frequency extends beyond the absorption line fre-
quency. This is due to almost total suppression of the signal beyond the
absorption resonance (Alfano et al., 1974). A similar argument and conclu-
sion hold for the blue side of the laser line. The residual weak intensity that
exists beyond the absorption line is not due to SPM. It can arise, however,
from three-wave mixing. Since there was a continuum of frequencies created
by SPM, it might be possible for three such frequencies, w1, w2, and w3, to
mix to create a signal at frequency w1 + w2 - w3 that lies beyond the absorp-
tion line. Since the frequencies are chosen from a continuum, it is also pos-
sible for phase matching to be achieved. For the spectrum in the domain
between the laser frequency and the absorption line, the extent of self-
broadening is proportional to the intensity. Since the energy in the pulse is
proportional to the product of the frequency extent and the intensity spec-
trum, the intensity spectrum remains approximately constant. The observed
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Figure 2.20. Comparison of the anti-
Stokes absorption spectrum of PrF3 pho-
tographed with (a) light emitted from a
tungsten lamp passing through 0.5-mm-
thick crystal and (b) SPM light generated
within the 5-cm PrF3. (From Alfano et al.,
1974.)

Figure 2.21. Angular varia-
tion of the (a) Stokes and (b)
anti-Stokes spectral patterns
emitted from PrF3 crystal: (a)
Corning 4(3-67) filters, ND =
1.0; (b) Corning 2(5-60) filters.
(From Alfano et al., 1974.)



absorption band in the continuum on the anti-Stokes side about 400cm-1

away from the excitation frequency (see Figure 2.17) is probably due to 
the inverse Raman effect (Jones and Stoicheff, 1964). The observed absorp-
tion band is located in the vicinity of strong Raman bands: 401, 370, and 
321cm-1.

A curious feature of the associated weak broadband spectrum is the exis-
tence of a pronounced absorption line at a position (611.2nm) where the
linear absorption would be expected to be rather weak. A possible explana-
tion for this is as follows: Imagine tracing the spatial development of the
phase modulation spectrum. At a short distance, where the bounds of the
spectrum have not yet intersected a strong absorption line, the spectrum is
reasonably flat. On intersecting the absorption line, the spectrum abruptly
drops (Alfano et al., 1974). The mechanism of FFPG is presumably respon-
sible for the appearance of the signal beyond the absorption line limit. This
explanation is also supported by the appearance of the angular emission
pattern (see Figure 2.21). As the spectrum continues to develop, one reaches
a point where the limit of the regenerated spectrum crosses a weak absorp-
tion line. One can again expect a drastic drop in the spectrum at the position
of this line. At still greater distances renewed four-photon parametric regen-
eration accounts for the feeble signal. A continuum is generated behind
absorption bands due to contributions from SPM, three-wave mixing
(TWM), and FFPG.

10. Enhancement of Supercontinuum in Water by
Addition of Ions

The most common liquids used to generate a continuum for various appli-
cations are CCl4, H2O, and D2O. In most applications of the ultrafast super-
continuum, it is necessary to increase the conversion efficiency of laser
excitation energy to the supercontinuum. One method for accomplishing this
is based on the induced- or cross-phase modulation. Another way is to
increase n2 in materials. In this section, chemical means are used to obtain a
tenfold enhancement of the ultrafast supercontinuum in water by adding Zn2+

or K+ ions (Jimbo et al., 1987) for 8-ps pulse generation.
The optical Kerr gate (OKG) (Ho and Alfano, 1979) was used to measure

the nonlinear refractive index of the salt solutions. The primary and second
harmonic light beams were separated by a dichroic mirror and then focused
into a 1-cm-long sample cell filled with the same salt solutions that produced
the ultrafast supercontinuum pulse enhancements. The size of the nonlinear
index of refraction, n2, was determined from the transmission of the probe
beam through the OKG.

Three different two-component salt solutions of various concentrations
were tasted. The solutes were KCl, ZnCl2, and K2ZnCl4. All measurements
were performed at 20 ± 1°C. Typical spectra of ultrafast supercontinuum
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pulses exhibited both SPM and FPPG features. The collinear profile arising
from SPM has nearly the same spatial distribution as the incident 8-ps,
530-nm laser pulse. The two wings correspond to FPPG pulse propagation.
The angle arises from the phase-matching condition of the generated wave-
length emitted at different angles from the incident laser beam direction.
FPPG spectra sometimes appear as multiple cones and sometimes show mod-
ulated features. SPM spectra also show modulated patterns. These features
can be explained by multiple filaments.

Typical ultrafast supercontinuum pulse spectra on the Stokes side for dif-
ferent aqueous solutions and neat water, measured with the optical multi-
channel analyzer, are shown in Figure 2.22. The salient features in Figure
2.22 are a wideband SPM spectrum together with the stimulated Raman scat-
tering of the OH stretching vibration around 645nm. The addition of salts
causes the SRS signal to shift toward the longer-wavelength region and some-
times causes the SRS to be weak (Figure 2.22a). The SRS signal of pure water
and dilute solution appears in the hydrogen-bonded OH stretching region
(~3400cm-1). In a high-concentration solution, it appears in the non-
hydrogen-bonded OH stretching region (~3600cm-1). The latter features of
SRS were observed in an aqueous solution of NaClO4 by Walrafen (1972).

To evaluate quantitatively the effect of cations on ultrafast supercontin-
uum generation, the ultrafast supercontinuum signal intensity for various
samples at a fixed wavelength were measured and compared. Figure 2.23
shows the dependence of the supercontinuum (mainly from the SPM con-
tribution) signal intensity on salt concentration for aqueous solutions of
K2ZnCl4, ZnCl2, and KCl at 570nm (Figure 2.23a) and 500nm (Figure
2.23b). The data were normalized with respect to the average ultrafast super-
continuum signal intensity obtained from neat water. These data indicated
that the supercontinuum pulse intensity was highly dependent on salt con-
centration and that both the Stokes and the anti-Stokes sides of the super-
continuum signals from a saturated K2ZnCl4 solution were about 10 times
larger than from neat water. The insets in Figure 2.23 are the same data
plotted as a function of K+ ion concentration for KCl and K2ZnCl4 aqueous
solutions. Solutions of KCl and K2ZnCl4 generate almost the same amount
of supercontinuum if the K+ cation concentration is same, even though they
contain different amounts of Cl- anions. This indicates that the Cl- anion has
little effect on generation of the supercontinuum. The Zn2+ cations also
enhanced the supercontinuum, though to a lesser extent than the K+ cations.

The measurements of the optical Kerr effect and the ultrafast supercon-
tinuum in salt-saturated aqueous solutions are summarized in Table 2.3. The
measured n2 (pure H2O) is about 220 times smaller than n2 (CS2). The value
GSPM(l) represents the ratio of the SPM signal intensity from a particular salt
solution to that from neat water at wavelength l. GKerr is defined as the ratio
of the transmitted intensity caused by a polarization change of the probe
beam in a particular salt solution to that in neat water; GKerr is equal to [n2

(particular solution/n2 (water)]2. Table 2.3 shows that, at saturation, K2ZnCl4

68 Q.Z. Wang, P.P. Ho, and R.R. Alfano



2. Supercontinuum Generation in Condensed Matter 69

Figure 2.22. SPM spectrum of (a) saturated K2ZnCl4 solution, (b) 0.6-m K2ZnCl4,
and (c) pure water. The SRS signal (645nm) is stronger in pure water, and it disappears
in high-concentration solution. (From Jimbo et al., 1987.)
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Figure 2.23. Salt concentration dependence of the SPM signal (a) on the Stokes side
and (b) on the anti-Stokes side 20°C. Each data point is the average of about 10 laser
shots. The inserts are the same data plotted as a function of K+ ion concentration for
KCl and K2ZnCl4 aqueous solutions. (From Jimbo et al., 1987.)
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Figure 2.23. (continued )



produced the greatest increase in the supercontinuum. Although ZnCl2 gen-
erated the largest enhancement of the optical Kerr effect, it did not play an
important role in the enhancement of the ultrafast supercontinuum (a pos-
sible reason for this is discussed below). The optical Kerr effect signal from
saturated solutions of ZnCl2 was about 2 to 3 times greater than that from
saturated solutions of K2ZnCl4.

The enhancement of the optical nonlinearity of water by the addition 
of cations can be explained by the cations’ disruption of the tetrahedral
hydrogen-bonded water structures and their formation of hydrated units
(Walrafen, 1972). Since the nonlinear index n2 is proportional to the number
density of molecules, hydration increases the number density of water mole-
cules and thereby increases n2. The ratio of the hydration numbers of Zn2+

and K+ has been estimated from measurements of GKerr and compared with
their values based on ionic mobility measurements. At the same concentra-
tion of KCl and ZnCl2 acqueous solution, (GKerr generated by ZnCl2 solu-
tion)/(GKerr generated by KCl solution) = [N(Zn2+)/N(K+)]2 ~ 2.6, where
N(Zn2+) ~ 11.2 ± 1.3 and N(K+) ~ 7 ± 1 represent the hydration numbers for
the Zn2+ and K+ cations, respectively. The calculation of the hydration number
of N(Zn2+)/N(K+) ~ 1.5 is in good agreement with the Kerr non-linearity mea-
surements displayed in Table 2.3.

In addition, from our previous measurements and discussions of nonlin-
ear processes in mixed binary liquids (Ho and Alfano, 1978), the total optical
nonlinearity of a mixture modeled from a generalized Langevin equation was
determined by the coupled interactions of solute-solute, solute-solvent, and
solvent-solvent molecules. The high salt solution concentration may con-
tribute additional optical nonlinearity to the water owing to the distortion
from the salt ions and the salt-water molecular interactions.

The finding that Zn2+ cations increased GKerr more than GSPM is consistent
with the hydration picture. The transmitted signal of the OKG depends on
Dn, while the ultrafast supercontinuum signal is determined by ∂n/∂t. The
ultrafast supercontinuum also depends on the response time of the hydrated
units. Since the Zn2+ hydrated units are larger than those of K+, the response
time will be longer. These effects will be reduced for longer pulses. Two addi-
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Table 2.3. Enhancement of the supercontinuum and
optical Kerr effects signals in saturated aqueous solutions
at 20°C.a

K2ZnCl4 KCl ZnCl2

Signal (1.9M) (4.0M) (10.6M)

GSPM (570) 11 ± 1 5.6 ± 0.9 6.6 ± 0.4
GSPM (500) 9.5 ± 2.5 4.9 ± 0.2 4.3 ± 0.5
GKerr 16 ± 1 6.1 ± 1.4 35 ± 9

a GSPM(l) = [ISPM(l)/Ilaser(530nm)]solution/[ISPM(l)/Ilaser (530nm)]water

and GKerr = [IKerr(solution)]/[IKerr (water)].



tional factors may contribute to part of the small discrepancy between GSPM

and GKerr for ZnCl2. The first one is related to the mechanism of dn genera-
tion in which c1111 is involved in the generation of SPM while the difference
c1111 - c1112 is responsible for the optical Kerr effect. The second is the possi-
ble dispersion of n2 because of the difference in wavelength between the excit-
ing beams of the ultrafast supercontinuum and the optical Kerr effects.

The optical Kerr effect is enhanced 35 times by using ZnCl2 as a solute,
and the ultrafast supercontinuum is enhanced about 10 times by using
K2ZnCl4 as a solute. The enhancement of the optical nonlinearity has been
attributed to an increase in the number density of water molecules owing to
hydration and the coupled interactions of solute and solvent molecules. Addi-
tion of ions can be used to increase n2 for SPM generation and gating.

11. Temporal Behavior of SPM

In addition to spectral features, the temporal properties of the supercon-
tinuum light source are important for understanding the generation and 
compression processes. In this section, the local generation, propagation, and
pulse duration reduction of SPM are discussed.

11.1 Temporal Distribution of SPM

In Section 2, using the stationary phase method, it was described theoreti-
cally that the Stokes and anti-Stokes frequencies should appear at well-
defined locations in time within leading and trailing edges of the pump pulse
profile (Alfano, 1972). Theoretical analyses by Stolen and Lin (1978) and
Yang and Shen (1984) obtained similar conclusions.

Passing an 80-fs laser pulse through a 500-mm-thick ethylene glycol jet
stream, the pulse duration of the spectrum in time was measured by the auto-
correlation method (Fork et al., 1983). These results supported the SPM
mechanism for supercontinuum generation. In the following, the measure-
ments of the distribution of various wavelengths for the supercontinuum 
generated in CCl4 by intense 8-ps laser pulses (Li et al., 1986) are presented.
Reduction of the pulse duration using the SPM principle is discussed in
Section 10.3.

The incident 530-nm laser pulse temporal profile is shown in Figure 2.24.
The pulse shape can be fitted with a Gaussian distribution with duration
t (FWHM) = 8ps. The spectral and temporal distributions of the super-
continuum pulse were obtained by measuring the time difference using a
streak camera. The measured results are shown as circles in Figure 2.25. Each
data point corresponds to an average of about six laser shots. The observa-
tion is consistent with the SPM and group velocity dispersion. To determine
the temporal distribution of the wavelengths generated within a supercon-
tinuum, the group velocity dispersion effect (Topp and Orner, 1975) in CCl4

2. Supercontinuum Generation in Condensed Matter 73



was corrected. Results corrected for both the optical delay in the added filters
and the group velocity are displayed as triangles in Figure 2.25.The salient
feature of Figure 2.25 indicates that the Stokes wavelengths of the contin-
uum lead the anti-Stokes wavelengths.

Using the stationary phase SPM method [Eq. (6)], the generated instanta-
neous frequency w of the supercontinuum can be expressed by

(33)

where wL is the incident laser angular frequency, l is the length of the sample,
and Dn is the induced nonlinear refractive index n2E2. A theoretical calculated
curve for the sweep is displayed in Figure 2.26 by choosing appropriate para-
meters to fit the experimental data of Figure 2.25. An excellent fit using a
stationary phase model up to maximum sweep demonstrates that the gener-
ation mechanism of the temporal distribution of the supercontinuum arises
from the SPM. During the SPM process, a wavelength occurs at a well-
defined time within the pulse. The above analysis will be supported by the
additional experimental evidence for SPM described in Section 10.3 (see
Figure 2.29).

w w w ∂ ∂t l c n tL L( ) - = -( ) ( )D ,
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Figure 2.24. Temporal profile of a 530-nm incident laser pulse measured by a 
2-ps-resolution streak camera. The dashed line is a theoretical fit to an 8-ps EWHM
Gaussian pulse. (From Li et al., 1986.)



11.2 Local Generation and Propagation

The dominant mechanisms responsible for the generation of the ultrafast
supercontinuum as mentioned in Sections 1 and 2 are SPM, FPPG, XPM,
and SRS. In the SPM process, a newly generated wavelength could have 
bandwidth-limited duration at a well-defined time location (Alfano, 1972) 
in the pulse envelope. In the FPPG and SRS processes, the duration of the
supercontinuum pulse could be shorter than the pump pulse duration due to
the high gain about the peak of the pulse. In either case, the supercontinuum
pulse will be shorter than the incident pulse at the local spatial point of gen-
eration. These pulses will be broadened in time due to the group velocity dis-
persion in condensed matter (Ho et al., 1987).

2. Supercontinuum Generation in Condensed Matter 75

Figure 2.25. Measured supercontinuum temporal distribution at different wave-
lengths: (o) data points with correction of the optical path in filters; (D) data points
with correction of both the optical path in filters and group velocity dispersion in
liquid. (From Li et al., 1986.)



Typical data on the time delay of 10-nm-bandwith pulses centered at 530,
650, and 450nm wavelengths of the supercontinuum generated from a 
20-cm-long cell filled with CCl4 are displayed in Figure 2.27. The peak loca-
tions of 530, 650, and 450nm are –49, –63, and –30ps, respectively. The
salient features in Figure 2.27 (Ho et al., 1987) indicate that the duration of
all 10-nm-band supercontinuum pulses is only 6ps, which is shorter than the
incident pulse of 8ps, the Stokes side (650nm) of the supercontinuum pulse
travels ahead of the pumping 530nm by 14ps, and the anti-Stokes side 
(450nm) of the supercontinuum pulse lags the 530nm by 10ps.

If the supercontinuum could be generated throughout the entire length of
the sample, the Stokes side supercontinuum pulse generated by the 530-nm
incident laser pulse at z = 0cm of the sample would be ahead of the 530-nm
incident pulse after propagating through the length of the sample. Over this
path, 530nm could continuously generate the supercontinuum pulse. Thus,
the Stokes side supercontinuum generated at the end of the sample coincides
in time with the 530-nm incident pulse. In this manner, a supercontinuum
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Figure 2.26. Comparison of the measured temporal distribution of supercontinuum
with the SPM model. (From Li et al., 1986.)



pulse centered at a particular Stokes frequency could have a pulse greater
than the incident pulse extending in time from the energing of the 530-nm
pulse to the position where the Stokes frequency was originally produced at
z ~ 0cm. From a similar consideration, the anti-Stokes side supercontinuum
pulse would also be broadened. However, no slow asymmetric tail for the
Stokes pulse or rise for the anti-Stokes pulse is displayed in Figure 2.27. These
observation suggest the local generation of supercontinuum pulses.

A model to describe the generation and propagation features of the super-
continuum pulse has been formulated based on local generation. The time
delay of Stokes and anti-Stokes supercontinuum pulses relative to the 
530-nm pump pulse is accounted for by the filaments formed ~5cm from 
the sample cell entrance window. The 5-cm location is calculated from data
in Figure 2.27 by using the equation.

(34)

where Dx is the total length of supercontinuum pulse travel in CCl4 after the
generation. T350 and Tsupercon. are the 530-nm and supercontinuum pulse peak
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Figure 2.27. Temporal profiles and pulse locations of a selected 10-nm band of a
supercontinuum pulse at different wavelengths propagated through a 20-cm-long CCl4

cell: (a) l = 530nm; (b) l = 650nm; (c) l = 450nm. Filter effects were compensated.
(From Ho et al., 1987.)



time locations in Figure 2.27, and v530 and vsupercon. are the group velocities of
the 530-nm and supercontinuum pulses, respectively.

The duration of the supercontinuum pulse right at the generation location
is either limited by the bandwidth of the measurement from the SPM process
or shortened by the parametric generation process. In either cases, a 10-nm-
bandwidth supercontinuum pulse will have a shorter duration than the 
incident pulse. After being generated, each of these 10-nm-bandwidth super-
continuum pulses will travel through the rest of the sample and will contin-
uously generated by the incident 530nm over a certain interaction length
before these two pulses walk off. The interaction length can be calculated as
(Alfano, 1972).

(35)

where l is the interaction length over the pump and the supercontinuum
pulses stay spatially coincident by less than the duration (FWHM) of the 
incident pump pulse, and t is the duration of the supercontinuum pulse 
envelope. From Eq. (35), one can estimate the interaction length from the
measured t of the supercontinuum pulse. Using parameters t = 6ps,
v530 = c/1.4868, and vsupercon. = c/1.4656, the interaction length l = 8.45cm is
calculated. This length agrees well with the measured beam waist length of
8cm for the pump pulse in CCl4.

Since no long tails were observed from the supercontinuum pulses to the
dispersion delay times of the Stokes and anti-Stokes supercontinuum pulses,
the supercontinuum was not generated over the entire length of 20cm but
only over 1 to 9cm. This length is equivalent to the beam waist length of the
laser in CCl4. The length of the local SPM generation over a distance of
8.45cm yields a possible explanation for the 6-ps supercontinuum pulse dura-
tion. In addition, a pulse broadening of 0.3ps calculated from the group
velocity dispersion of a 10-nm band at 650-nm supercontinuum traveling over
20cm of liquid CCl4 is negligible in this case.

Therefore, the SPM pulses have shorter durations than the pump pulse and
were generated over local spatial domains in the liquid cell.

11.3 SPM Pulse Duration Reduction

The principle behind the pulse narrowing based on the spectral temporal dis-
tribution of the SPM spectrally broadened in time within the pulse is
described in Sections 2 and 10.1. At each time t within the pulse there is a
frequency w(t). When a pulse undergoes SPM, the changes in the optical
carrier frequency within the temporal profile are greatest on the rising and
falling edges, where the frequency is decreased and increased, respectively.
Near the peak of the profile, and in the far leading and trailing wings, the
carrier frequency structure is essentially unchanged. The maximum frequency
shift is proportional to the intensity gradient on the sides of the pulse, and

l
v v

v v
=

-
t 530 supercon.

530 supercon.

,
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this determines the position of the outer lobes of the power spectrum. If these
are then attenuated by a spectral window of suitably chosen width, the wings
of the profile where the high- and low-frequency components are chiefly con-
centrated will be depressed, while the central peak will be largely unaffected.
The overall effect is to create a pulse that is significantly narrower in time
than the original pulse duration. A file can be used to select a narrow portion
of the pulse, giving rise to a narrower pulse in time.

A threefold shortening of 80-ps pulses to 30ps from an Nd:YAG laser
broadened from 0.3 to 4 Å after propagation through 125m of optical fiber
with a monochromator as a spectral window was demonstrated using this
technique (Gomes et al., 1986). The measurements of pulses at different
wave-lengths of the frequency sweep of supercontinuum pulses generated by
8-ps laser pulses propagating in CCl4 show that the continuum pulses have a
shorter duration (~6ps) than the pumping pulses (Li et al., 1986).

A major advance occurred when a 25-ps laser pulse was focused into a 
5-cm-long cell filled with D2O. A continuum was produced. Using 10-nm-
bandwidth narrowband filters, tunable pulses of less than 3ps in the spectral
range from 480 to 590nm (Figure 2.28) were produced (Dorsinville et al., 1987).

To identify the SPM generation mechanism, the temporal distribution of
the continuum spectrum was determined by measuring the time delay
between the continuum and a reference beam at different wavelengths using
a streak camera. The results are displayed in Figure 2.29, which is similar to
data displayed in Figure 2.25. The time delay was ~22ps for a 140-nm change
in wavelength; as predicted by the SPM mechanism, the Stokes wavelength
led the anti-Stokes wavelength (Alfano, 1972). The delay due to group veloc-
ity over a 5-cm D2O cell for the 140-nm wavelength change is less than 3ps.
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Figure 2.28. Streak camera temporal profile of the 25-ps, 530-nm incident laser pulse
and 10-nm-bandwidth pulse at 580nm. The 3-ps pulse was obtained by spectral fil-
tering a SPM frequency continuum generated in D2O. (From Dorsinville et al., 1987.)



The remaining 18ps is well accounted for by the SPM mechanism using a 
25-ps (FWHM) pulse and the stationary phase method (Alfano, 1972).
Furthermore, a 10-nm selected region in the temporal distribution curve 
corresponds to an ~2.6-ps width matching the measured pulse duration
(Figure 2.28). This observation suggests that by using narrower bandwidth
filters the pulse duration can be shortened to the uncertainty limit.

12. Higher-Order Effects on Self-Phase Modulation

A complete description of SPM-generated spectral broadening should take
into account higher-order effects such as self-focusing, group velocity dis-
persion, self-steepening, and initial pulse chirping. Some of these effects are
described by Suydam (Chapter 6), Shen (Chapter 1), and Agrawal (Chapter
3). These effects will influence the observed spectral profiles.

12.1 Self-Focusing

In the earliest experiments using picosecond pulses, the supercontinuum
pulses were often generated in small-scale filaments resulting from the self-
focusing of intense laser beams (Alfano, 1972). Self-focusing arises from the
radial dependence of the nonlinear refractive index n(r) = n0 + n2E2(r) (Shen,
1984; Auston, 1977). It has been observed in many liquids, bulk materials
(Shen, 1984), and optical fibers (Baldeck et al., 1987a). It effects on the con-
tinuum pulse generation can be viewed as good and bad. On the one hand,
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Figure 2.29. Continuum temporal distri-
bution at different wavelengths. Horizon-
tal error bars correspond to 10-nm
band-widths of the filter. (From Dorsin-
ville et al., 1987.)



it facilitates the spectral broadening by concentrating the laser beam energy.
On the other hand, self-focusing is a random and unstable phenomenon that
is not controllable. Femtosecond supercontinua are generated with thinner
samples than picosecond supercontinua, so it can reduce but not totally elim-
inate self-focusing effects.

12.2 Dispersion

Group velocity dispersion (GVD) arises from the frequency dependence of the
refractive index. These effects are described by Agrawal (Chapter 3). The first-
order GVD term leads to a symmetric temporal broadening (Marcuse, 1980).
A typical value for the broadening rate arising from ∂ 2k/∂w 2 is 500 fs/m·nm
(in silica at 532nm). In the case of supercontinuum generation, spectral widths
are generally large (several hundred nanometers), but interaction lengths are
usually small (<1cm). Therefore, the temporal broadening arising from GVD
is often negligible for picosecond pulses but is important for femtosecond
pulses. Limitations on the spectral extent of supercontinuum generation are
also related to GVD. Although the spectral broadening should increase lin-
early with the medium length (i.e., Dw(z)max = w 0n2a2z/c Dt), it quickly reaches
a maximum as shown in Figure 2.10. This is because GVD, which is large for
pulses having SPM-broadened spectra, reduces the pulse peak power a2 and
broadens the pulse duration Dt. As shown in Figure 2.25, the linear chirp para-
meter is decreased by the GVD chirp in the normal dispersion regime. This
effect is used to linearize chirp in the pulse compression technique.

The second-order term ∂ 3k/∂w 3 has been found to be responsible for asym-
metric distortion of temporal shapes and modulation of pulse propagation
in the lower region of the optical fiber (Agrawal and Potasek, 1986). Since
the spectra of supercontinuum pulses are exceptionally broad, this term
should also lead to asymmetric distortions of temporal and spectral shapes
of supercontinuum pulses generated in thick samples. These effects have been
observed.

In multimode optical fibers, the mode dispersion dominates and causes dis-
tortion of the temporal shapes. This in turn yields asymmetric spectral broad-
ening (Wang et al., 1988).

12.3 Self-Steepening

Pulse shapes and spectra of intense supercontinuum pulses have been found
to be asymmetric (De Martini et al., 1967). There are two potential sources
of asymmetric broadening in supercontinuum generation. The first one is the
second-order GVD term. The second one is self-steepening, which is intrin-
sic to the SPM process and occurs even in nondispersion media. Details of
the effects of self-steepening can be found in Suydam (Chapter 6), Shen and
Yang (Chapter 1), and Manassah (Chapter 5).

Because of the intensity and time dependence of the refractive index, n =
n0 + n2E(t)2, the supercontinuum pulse peak sees a higher refractive index than
its edges. Because v = c/n, the pulse peak travels slower than the leading and
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trailing edges. This results in a sharpened trailing edge. Self-steepening occurs
and more blue-shifted frequencies (sharp trailing edge) are generated than
red frequencies. Several theoretical approaches have given approximate solu-
tions for the electric field envelope distorted by self-steepening and asym-
metric spectral extent. Actual self-steepening effects have not been observed
in the time domain.

12.4 Initial Pulse Chirping

Most femtosecond and picosecond pulses are generated with initial chirps.
Chirps arise mainly from GVD and SPM in the laser cavity. As shown in
Figure 2.30, the spectral broadening is reduced for positive chirps and
enhanced for negative chirps in the normal dispersion regime. The spectral
distribution of SPM is also affected by the initial chirp.

13. Overview

Supercontinuum generation is the generation of bursts of “white” light,
which can be obtained by passing intense picosecond or femtosecond pulses
through various materials. Because of the nonlinear response of the medium,
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Figure 2.30. Influence of initial pulse chirping on
SPM-broadened spectra in optical fibers. Peak power =
1000W. (a) C = 50; (b) C = 0; (c) C = -50 [see Eq. (17)].
(From Baldeck et al., 1987b.)



the pulse envelope yields a phase modulation that initiates the wide frequency
broadening (up to 10,000cm-1). The phase modulation can be generated by
the pulse itself, a copropagating pump pulse, or the copropagating stronger
pulse. These different configurations are called self-phase modulation (SPM),
induced-phase modulation (IPM), and cross-phase modulation (XPM),
respectively. The SPM process for supercontinuum generation in various
materials was reviewed in this chapter. This latter two processes are closely
related to each other and are described by Baldeck et al. (Chapter 4), Agrawal
(Chapter 3), and Manassah (Chapter 5).

Using an 8-ps laser at 530nm, typical Stokes sweeps were 4400cm-1 in a
calcite crystal of length 4cm, 3900cm-1 in a quartz crystal of length 4.5cm,
1100cm-1 in extra-dense flint glass of length 7.55cm, 3900cm-1 in NaCl of
length 4.7cm, and 4200cm-1 in both BK-7 and LBC-1 glasses of length 
8.9cm. Sweeps on the anti-Stokes side were typically 6100cm-1 in calcite,
5500cm-1 in quartz, 7300cm-1 in NaCl, and 7400cm-1 in BK-7 and LBC-1
glasses. An infrared supercontinuum spanning the range from 3 to 14mm can
be obtained by passing an intense laser pulse generated from a CO2 laser
through GaAs, AgBr, ZnSe, and CdS crystals. Near- and medium-infrared
spectral sweeps of 3200cm-1 on the Stokes side and 4900cm-1 on the anti-
Stokes side can be realized by passing a strong 1.06-mm pulse through a KBr
crystal of length 10cm. Sweeps on the order of 1000cm-1 are observed to
both the red and blue sides of 530nm in liquid argon. Similar spectral sweeps
are observed in liquid and solid krypton arising from electronic mechanism
for SPM. Using a picosecond laser train of wavelength 530nm, the spectra
were broadened up to 3000cm-1 to either side of the laser frequency in a 
5-cm-long magnetic KNiF3 single crystal. Production of SPM near electronic
levels of PrF3 crystal and enhancement of supercontinuum in water by addi-
tion of Zn2+ and K+ cations have been also discussed. The temporal proper-
ties of supercontinuum pulses have been described. Higher-order effects on
SPM arising from dispersion, self-focusing, self-steepening, and initial pulse
chirping were briefly described.

SPM will continue to be an important nonlinear process in science and tech-
nology and has been one of the most important ultrafast nonlinear optical
processes for more than 20 years since the advent of ultrashort laser pulses!
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Appendix: Nonlinear Wave Equation with 
Group Velocity Dispersion

We start with Maxwell equations for the electric and magnetic fields E and
H in Gaussian units

— ¥ = -
1

— ¥ = +

—◊ =
—◊ =

E
B

H J

D

B

c t

c
D
t c

∂
∂

∂
∂

p

pr

,

,

,

.

1 4

4

0

2. Supercontinuum Generation in Condensed Matter 87

(A.1)



The helping equations are D = eE and B = mH, and J and r are the current
and charge densities, respectively. For nonmagnetic material, B ª H. The
refractive index of an isotropic material possessing nonlinearity can be
written as

(A.2)

where n0(w) is the linear refractive index and n2 the nonlinear refractive index.
In the absence of sources, from Maxwell equations one can readily obtain
the wave equation

(A.3)

where DL(r, t) is the linear electric displacement vector. In obtaining the equa-
tion, we have used — ¥ (— ¥ E) = —(—·E) - —2E) ª -—2E and neglected the
(n2)2 term.

The electric field can be written as

(A.4)

where F(x, y) is the transverse distribition function. Substitute Eq. (A.4) into
the wave equation and averaging over transverse coordinates, we have

(A.5)

We have neglected the ∂ 2/∂x2 and ∂ 2/∂y2 terms. The effective nonlinear refrac-
tive index n–2 is

(A.6)

Using a plane wave approximation with (k0z - w0t) representation, a lin-
early polarized electric field propagating along z direction can be written as

(A.7)

where ê is the unit vector of polarization of electric field, w0 the carrier fre-
quency, k0 the carrier wave number, and A(z, t) the pulse envelope function.
The form of DL(z, t) becomes

(A.8)
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If the (w 0t - k0z) representation is used, one obtains sign changes in the final
reduced wave equation.

Using the foregoing equations, we can write the linear polarization term
on the left-hand side of the one-dimensional wave equation as

(A.10)

The derivation of the wave equation then proceeds by expanding k2(w) about
the carrier frequency w0 in the form:

(A.11)

where k0 = k(w0) is the propagation constant, is the inverse of

group velocity, and is the inverse of group velocity of disper-

sion. It is then possible to evaluate the integral of Eq. (A.10) by using the
convenient delta function identities

(A.12)

as well as

(A.13)

and

(A.14)

In these relations, d (n)(t) is an nth-order derivative of the Dirac delta func-
tion, with the property that

(A.15)

when applied to a function f(t). Substitute Eq. (A.11) into Eq. (A.10) and use
Eq. (A.12) to (A.15), the second term on the left-hand side of Eq. (1.5)
becomes
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(A.16)

Neglecting the second derivative of A(z, t) with respect to z and

A(z, t), the first term on the left-hand side and the term on the right-hand
side of Eq. (1.5) are simply

(A.17)

and

(A.18)

respectively.
Inserting Eqs. (A.16) to (A.18) into Eq. (1.5), the wave equation for elec-

tric field reduces to the wave equation for the pulse envelope

(A.19)

where vg ∫ 1/k0
(1) is the group velocity. In Eq. (A.19), the first two terms

describe the envelope propagation at the group velocity vg; the third term
determines the temporal pulse broadening due to group velocity dispersion;
the fourth characterizes the second order of the nonlinear polarization, which
is responsible for the self-phase modulation effect and spectral broadening.
Neglecting the group velocity dispersion term in Eq. (A.19), we obtain

(A.20)

This is Eq. (2.2).
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3
Ultrashort Pulse Propagation in
Nonlinear Dispersive Fibers

Govind P. Agrawal

1. Introduction

The use of silica fibers for transmission of optical pulses has become wide-
spread, as is evident from the recent advances in optical fiber communica-
tions (Basch, 1986; Miller and Kaminow, 1988). For pulses not too short
(pulse width >1ns) and not too intense (peak power <10mW), the fiber plays
a passive role (except for energy loss) and acts as a transporter of optical
pulses from one place to another without significantly affecting their shape
or spectrum. However, as pulses become shorter and more intense, two phys-
ical mechanisms, chromatic dispersion and index nonlinearity, both intrinsic
to the silica material, start to affect the pulse shape and spectrum during
propagation.

The fiber has found many novel and interesting applications in this active
role. It has been used for pulse compression (Shank et al., 1982; Nikolaus and
Grischkowsky, 1983), and pulses with durations as short as 6 fs have been
produced (Fork et al., 1987). Such short pulses provide the capability for
ultrafast continuum spectroscopy with a time resolution approximating that
allowed by the transform-limited bandwidth (Shank et al., 1986). In the
anomalous dispersion regime the fiber supports optical solitons resulting
from a balance between the dispersive and nonlinear effects (Hasegawa and
Tappert, 1973; Mollenauer et al., 1980). The solitons may be useful for 
high-speed optical communications over long distances (Hasegawa, 1983;
Mollenauer et al., 1986). The soliton formation capacity of optical fibers has
also been exploited to develop the soliton laser (Mollenauer and Stolen,
1984). An important application of optical fibers is in the field of ultrafast
super-continuum generation (Alfano, 1985; Shank et al., 1986). Several non-
linear effects such as self-phase modulation (SPM), cross-phase modulation
(XPM), and stimulated Raman scattering (SRS) can lead to an extensive
spectral broadening of the incident pulse, resulting in an almost “white” spec-
trum (Alfano and Shapiro, 1970). Although SPM in optical fibers was studied
nearly a decade ago (Stolen and Lin, 1978), it is only recently that the effect
of XPM on propagation of ultrashort pulses in optical fibers has attracted



attention (Alfano et al., 1987; Islam et al., 1987; Agrawal, 1987; Schadt and
Jaskorzynska, 1987; Baldeck et al., 1987).

This chapter reviews how the nonlinear and dispersive effects in optical
fibers influence the propagation characteristics of ultrashort pulses with
widths in the picosecond range. In Section 2 we outline the derivation of the
basic propagation equation satisfied by the amplitude of the pulse envelope.
In the presence of SRS it becomes necessary to consider the coupled ampli-
tude equations satisfied by the pump and Raman pulses. These equations
include the effect of group velocity mismatch, group velocity dispersion,
SPM, XPM, SRS gain, and pump depletion. Section 3 considers the propa-
gation of a single pulse below the SRS threshold and identifies various 
propagation regimes. Sections 4 and 5 then consider the cases of normal dis-
persion and anomalous dispersion regimes separately. The effect of SRS on
pulse propagation is studied in Section 6, where the results of numerical sim-
ulations are presented and compared with the experiments. Particular atten-
tion is paid to the XPM effects in Section 7, where the case of two incident
pulses is investigated. Finally, Section 8 gives a brief summary of the main
conclusions of the chapter.

2. Propagation Equation

As is the case for all electromagnetic phenomena, pulse propagation in optical
fibers is governed by Maxwell’s equations. For a nonmagnetic medium, this
amounts to solving the wave equation

(1)

where E is the electric field, m0 is the vacuum permeability, and D is the 
electric flux density. The constitutive relation between D and E takes a 
simple form in the frequency domain and can be written as

(2)

where e0 is the vacuum permittivity, ñ is the refractive index, and Ẽ and D̃are
the Fourier transforms of E and D respectively, i.e.,

(3)

with a similar relation for D̃(r, w). Using Eqs. (1)–(3), we obtain

(4)

where we have assumed that — ·E @ 0. A suitable form for the refractive index
in optical fibers is
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where the linear index n(r, w) is inhomogeneous (in the transverse dimensions
x and y) to account for dielectric waveguiding and is frequency dependent 
to account for chromatic dispersion in silica fibers. The fiber loss is taken 
into account by the absorption coefficient a. Finally, the last term in 
Eq. (5) accounts for the fiber nonlinearity. The nonlinear coefficient n2 =
3.2 ¥ 10-16 cm2/W for silica fibers and is nearly frequency independent in the
frequency range of interest. It is implicitly assumed that the nonlinear
response is instantaneous, an assumption that becomes questionable for
ultrashort optical pulses with widths <0.1ps.

Since the refractive index does not vary appreciably along the fiber length
(z direction), Eq. (4) can be solved by assuming that

(6)

where ê is the polarization unit vector, b̃ is the wave number, and y (x, y) is
obtained by solving

(7)

Since the last two terms in Eq. (5) are much smaller than the linear index 
n(x, y, w), they can be treated by first-order perturbation theory. The 
complex wave number b̃ is thus well approximated by

(8)

where

(9)

and b(w) is obtained by solving the eigenvalue equation

(10)

for a given index distribution of the fiber. For a single-mode fiber, y(x, y) is
the field distribution of the fundamental fiber mode and has been taken to
satisfy the normalization condition

(11)

where the integration is carried over the fiber cross section s.
The dispersion relation (8) can be used to obtain the envelope propagation

equation by noting from Eq. (6) that

(12)

Since the pulse spectrum is centered at the carrier frequency w0, it is useful
to expand b(w) in a Taylor series
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(13)

where bn = d nb/dw n is evaluated at w0. The cubic and higher-order terms are
generally neglected by assuming that the spectral width Dw << w0. If b2 � 0
for some specific values of w0 or if the pulses are ultrashort (<0.1ps), it may
be necessary to include the cubic term. It is useful to define the slowly varying
pulse amplitude A(z, t) by using

(14)

where a(z, t) is the inverse Fourier transform of ã(z, w). During the Fourier
transform operation w - w0 is replaced by the differential operator i(∂/∂t).
The use of Eqs. (12)–(14) then leads to the following propagation equation:

(15)

where the nonlinearity coefficient

(16)

The parameter Aeff is known as the effective fiber core area and from Eq. (9)
is given by (noting that E = Ay)

(17)

Equation (15) describes the propagation of an optical pulse in single-mode
fibers. The pulse envelope moves at the group velocity vg = 1/b1. The group
velocity dispersion (GVD) is included through the parameter b2 while the
parameter g takes into account the fiber nonlinearity responsible for SPM.
Both material dispersion and waveguide dispersion contribute to b2. However,
the contribution of material dispersion generally dominates. In that case b2

can be approximated by

(18)

where l = 2pc/w0 is the carrier wavelength and D(l) = l2(d 2n/dl2). For silica
fibers D(l) = 0.066 at l = 0.53mm, and therefore b2 � 0.06ps2/m. The non-
linearity parameter g depends on the fiber parameters through Aeff. Its esti-
mated values are in the range 0.01 to 0.02W-1 m-1. The GVD parameter b2

becomes negative for l > lZD, where lZD is sometimes referred to as the zero-
dispersion wavelength. In the anomalous dispersion regime (b2 < 0), the fiber
can support optical solitons. The wavelength lZD @ 1.3mm but can be changed
in the range 1.2 to 1.6 mm by modifying the fiber design that changes the
waveguide dispersion contribution to b2.

Depending on the experimental conditions, Eq. (15) may need modifica-
tion. For example, this equation does not include the effect of SRS that
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becomes important at high power levels. SRS transfers the pulse energy to
the Stokes pulse (shifted downward in frequency by about 13THz) as the
pump pulse propagates inside the fiber. Equation (15) can be generalized to
include SRS if we include the Raman gain and consider a coupled set of
equations describing the interaction between the pump and Stokes pulses
with amplitudes A1 and A2, respectively;

(19)

(20)

Here vgj = b j
-1 is the group velocity, gj is the Raman gain coefficient, b2j is the

GVD coefficient, and gj is the nonlinear coefficient ( j = 1 and 2 for pump and
Stokes pulses, respectively). It is important to include both SPM and XPM
in the nonlinear term (Gersten et al., 1980; Schadt and Jaskorzynska, 1987;
Agrawal, 1987).

Equation (15) should also be modified for ultrashort optical pulses with
widths �0.1ps. The spectral width Dw of such pulses becomes comparable
to the carrier frequency w0, and several approximations made in the deriva-
tion of Eq. (15) become questionable. Furthermore, the pulse spectrum is
wide enough that the low-frequency components get amplified from the
Raman gain at the expense of the high-frequency components. As a result,
the spectrum shifts toward shorter frequencies as the pulse propagates inside
the fiber, a phenomenon referred to as self-frequency shift (Mitschke and
Mollenauer, 1986; Gordon, 1986). One can no longer consider the pump and
Stokes pulses separately. Rather than using Eqs. (19) and (20) to describe SRS
and related nonlinear effects, a generalization of Eq. (15) is needed. Kodama
and Hasegawa (1987) have carried out such a generalization. The resulting
propagation equation is

(21)

This equation has three additional terms compared with Eq. (15). The term
proportional to b3 results from including the cubic term in the expansion (13).
The term proportional to a1 is responsible for self-steepening; a1 is generally
approximated by a1 � 2g/w0. The term proportional to a2 includes the effect
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of SRS among other things. In particular, the imaginary part of a2 is respon-
sible for the self-frequency shift. The physical origin of this effect is related
to the retarded nonlinear response of the fiber. In this chapter we do not 
consider these effects and only refer to the recent work (Zysset et al., 1987;
Bourkoff et al., 1987; Golovchenko et al., 1987; Vysloukh and Matveeva,
1987; Serkin, 1987).

3. Propagation Regimes

We first consider the case of pulse propagation below the SRS threshold such
that Eq. (15) is applicable. It is useful to define the normalized variables

(22)

where T0 and P0 are related to the width and the peak power of the incident
pulse. Equation (15) then takes the form

(23)

where

(24)

The choice of the sign in the dispersion term depends on the sign of b2; a
plus sign is chosen for normal GVD (b2 > 0) and a minus sign is chosen for
anomalous GVD (b2 < 0). The dispersion length LD and the nonlinear length
LNL provide the length scales over which dispersive and nonlinear effects
become important. Depending on their relative magnitudes, pulse propaga-
tion in optical fibers can be classified in three different categories.

3.1 Dispersion-Dominant Regime

If the fiber length L is such that L << LNL while L ~ LD, the nonlinear term
in Eq. (23) plays a relatively minor role and can be neglected. The resulting
linear equation is readily solved to yield

(25)

where Ũ(0, w) is the Fourier transform of the incident pulse amplitude 
U(0, t). Equation (25) has been widely used to study pulse broadening in the
dispersion-dominant regime. In particular, a simple analytic expression for
the pulse width can be obtained for Gaussian pulses (Marcuse, 1981). For an
unchirped Gaussian pulse, U(0, t) = exp(-t 2/2), and the pulse broadens by a
factor of (1 + z2/L2

D)1/2 as it propagates along the fiber. The dispersion length
LD corresponds to the fiber length over which the pulse width increases by
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about 40% (in the absence of nonlinear effects). The dispersion-dominant
regime or Eq. (25) is applicable when the fiber and pulse parameters are such
that

(26)

As a rough estimate, P0 should be less than 10mW for 10-ps pulses.

3.2 Nonlinearity-Dominant Regime

If the fiber length L is such that L << LD while L � LNL, the dispersion term
in Eq. (23) plays a relatively minor role and can be neglected as long as the
pulse shape is relatively smooth so that |∂ 2U/∂t 2| is not too large. The result-
ing equation can be solved analytically with the result

(27)

where

(28)

Equation (27) shows that the nonlinearity gives rise to SPM while it does not
affect the pulse shape. The effect of SPM is to broaden the pulse spectrum
with considerable internal structure. Figure 3.1 shows the calculated SPM
spectra for a Gaussian pulse obtained by taking the Fourier transform of Eq.
(27) with a = 0 and z = 40LNL. Quite generally, the number of internal peaks
increases linearly with the fiber length (for a = 0), and the dominant peaks
occur near the spectral boundaries. The spectral range is determined by 
Dwmax = |∂fSPM/∂t|max, which is the maximum chirp induced by the nonlinear-
ity. The SPM-induced spectral features have been observed in optical fibers
and were used to estimate n2 (Stolen and Lin, 1978).

3.3 Dispersive Nonlinear Regime

When the fiber length L is longer than or comparable to both LD and LNL,
dispersion and nonlinearity act together as the pulse propagates along the
fiber. Their mutual interaction plays an important role and has been used to
generate solitons and to compress optical pulses. To understand this inter-
action theoretically, Eq. (23) is solved numerically and has been found to be
extremely helpful in interpreting the experimental results (Mollenauer et al.,
1980; Grischowsky and Balant, 1982; Tomlinson et al., 1984). It is useful to
normalize the fiber length by introducing x = z/LD and to write Eq. (23) in
the following normalized form:
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where

(30)

In the lossless case (a = 0), Eq. (29) is often referred to as the nonlinear
Schrödinger equation (NSE). In the anomalous dispersion regime (corre-
sponding to the choice of minus sign), the NSE is known to have exact 
solutions, known as solitons (Zakharov and Shabat, 1972; Hasegawa and
Tappert, 1973). For an initial pulse shape U(0, t) = sech(t) and integer values
of the parameter N, the solitons follow a periodic evolution pattern with the
period x0 = p/2. In the unnormalized units, the soliton period z0 becomes

(31)

The fundamental soliton corresponds to N = 1 and propagates without
change in its shape. From Eq. (30), the peak power necessary to excite the
fundamental soliton is P1 = |b2|/gT2

0. For a hyperbolic secant pulse, the pulse
width Tp (FWHM) is related to T0 by Tp � 1.76T0. This relation should be
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Figure 3.1. Calculated SPM spectrum of a Gaussian pulse (in the absence of dis-
persion) at a distance z = 40LNL, where LNL is the nonlinear length defined by Eq. (24).



used for comparison with experiments. As a rough estimate, for 1.55-mm
solitons in silica fibers, z0 ~ 25m and P1 ~ 1W when Tp = 1ps.

In the next two sections we consider the pulse propagation characteristics
in the normal and anomalous GVD regimes based on the numerical solution
of Eq. (29). A fast Fourier transform (FFT)-based beam propagation method
(Fleck et al., 1976; Lax et al., 1981; Agrawal and Potasek, 1986) was used for
the numerical solution. Although a finite-difference scheme can be used, the
FFT method is considerably faster for a given accuracy (typically by more
than a factor of 10). In the FFT method, Eq. (29) is formally written as

(32)

where

(33)

The field is propagated inside the fiber by a small distance d using the 
following prescription:

(34)

The numerical procedure consists of propagating the field by a distance d/2
with dispersion only, multiplying the result by a nonlinear term that repre-
sents the effect of nonlinearity over the whole step length d, and then prop-
agating the field for the remaining distance d/2 with dispersion only. In effect,
the nonlinearity is assumed to be lumped at the midplane of each segment.
This technique is a generalization of the split-step method (Hasegawa and
Tappert, 1973; Fisher and Bischel, 1975).

The propagation in a linear dispersive medium indicated by the exponen-
tial operator exp(dD/2) in Eq. (34) can be accomplished using the Fourier
transform method. The use of the FFT algorithm makes this step relatively
fast. The integral in Eq. (34) is well approximated using the trapezoidal rule:

(35)

However, Q(x + d) cannot be evaluated since U(x + d, t) is not known while
evaluating Eq. (35) at the midsegment located at x + d /2. One can approxi-
mate Q(x + d ) by Q(x) if |U|2 has not significantly changed in going from 
x to x + d. This approximation can, however, restrict the step size d to rela-
tively small values. Another approach is to follow an iterative procedure in
which Eq. (35) is evaluated several times with increasingly accurate values of
Q(x + d ). In practice, two iterations are often sufficient to obtain the desired
accuracy.
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4. Normal Dispersion

In the normal dispersion regime, the GVD parameter b2 > 0. For silica fibers,
this regime corresponds to l < 1.3mm and has been extensively studied
because of the availability of solid-state and dye lasers in the visible region.
At l = 0.53mm, b2 � 0.06ps2m and g � 0.01W-1 m-1 for typical fiber 
parameters. From Eq. (24), LD ~ 100m for T0 � 3–5ps and LNL ~ 1m for 
P0 ~ 100W. Thus the parameter N ~ 10 under typical experimental condi-
tions, although N ~ 100 is feasible for wider and more intense pulses. Figure
3.2 shows the evolution of pulse shape along the fiber for N = 30 after assum-
ing a = 0 and a Gaussian pulse with U(0, t) = exp(-t 2/2). As the pulse prop-
agates, it broadens and develops a nearly rectangular profile with sharp
leading and trailing edges. The combination of rapidly varying intensity and
SPM in these steep-slope regions broadens the pulse spectrum. Because the
new frequency components are mainly generated near the edges, the pulse
develops a nearly linear frequency chirp across its entire width (Grischkowsky
and Balant, 1982; Tomlinson et al., 1984). This linear chirp helps to compress
the pulse by passing it subsequently through a dispersive delay line (often a
grating pair).

An interesting feature of Figure 3.2 is the presence of rapid oscillations in
the wings of the pulse. Tomlinson et al. (1985) have interpreted these oscilla-
tions in terms of optical wave breaking resulting from a mixing of the SPM-
induced frequency-shifted components with the unshifted light in the wings.
This phenomenon can also be understood as a four-wave mixing process and
should be manifest through the presence of sidelobes in the pulse spectrum.
Figure 3.3 shows the pulse shape and spectrum at x = 0.08. As seen there, oscil-
lations near the pulse edges are accompanied by the sidelobes in the pulse spec-
trum. The central structure in the spectrum is due to SPM (see Figure 3.1).
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Figure 3.2. Evolution of the pulse shape of an unchirped Gaussian pulse along the
fiber length (x = z/LD) for N = 30 in the normal dispersion regime. The peak power is
related to N through Eq. (30).



The results shown in Figures 3.2 and 3.3 are for an initially unchirped pulse.
The pulses emitted by practical laser sources are often chirped and may follow
quite a different evolution pattern than that shown in Figure 3.2 (Lassen et
al., 1985). To include the effect of initial chirp, the incident amplitude is taken
to be

(36)

where C is a measure of chirp. C can be estimated by noting that the spec-
tral width of the chirped pulse is larger by a factor of (1 + C2)1/2 than the
transform-limited value for C = 0. Figure 3.4 shows the pulse shape and spec-
trum under conditions identical to those of Figure 3.3 except for the chirp
parameter that has a value of C = 20. A comparison of Figures 3.3 and 3.4
shows how much an initial chirp can modify the propagation behavior. For
example, the shape for the initially chirped pulse is nearly triangular rather
than rectangular. The pulse evolution is also sensitive to the fiber loss (Lassen
et al., 1985). Thus, for an actual comparison between theory and experiment
it is necessary to include both the chirp and the loss in numerical simulations.

5. Anomalous Dispersion

In the anomalous dispersion regime, the GVD parameter b2 < 0. For silica
fibers, this regime corresponds to l > 1.3mm and has been extensively studied,
using color-center lasers, for example (Mollenauer et al., 1980). At l =
1.55mm, b2 � -0.02ps2/m and g � 0.01W-1 m-1 for typical fiber parameters.
For T0 � 1ps, the dispersion length LD � 50m; the peak power correspond-
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Figure 3.3. Pulse shape and spectrum of an unchirped Gaussian pulse at x = 0.08
for N = 30. Sidelobes in the spectrum and oscillations near the pulse edges are due to
optical wave breaking.



ing to the fundamental soliton (N = 1) can be estimated from Eq. (30) and is
P0 ~ 1W. In the absence of fiber loss, the fundamental soliton can propagate
undistorted for arbitrarily long distances. This is the reason behind the
current interest in soliton-based communication systems (Hasegawa and
Tappert, 1973). In practice, however, the fiber loss leads to a gradual broad-
ening of the soliton. Periodic compensation of the loss by Raman gain has
been proposed to restore the original soliton (Mollenauer et al., 1986).

The higher-order solitons (N > 1) follow a periodic evolution pattern along
the fiber with a period z0 = (p/2)LD. Figure 3.5 shows, as an example, the evo-
lution pattern of an N = 3 soliton over one period obtained by solving Eq.
(29) with N = 3, a = 0, and U(0, t) = sech(t). The pulse initially narrows,
develops a two-peak structure, and then reverses its propagation behavior
beyond z/z0 = 0.5 such that the original pulse is restored at z = z0. Both pulse
narrowing and pulse restoration at the soliton period have been observed
experimentally (Stolen et al., 1983). In particular, initial narrowing of the
higher-order soliton has been used to compress the optical pulses by suitably
selecting the peak power and the fiber length. A combination of a normal
dispersion fiber with a grating pair followed by an anomalous dispersion fiber
has been used to compress optical pulses by more than three orders of
magnitude (Tai and Tomita, 1986) and to generate pulses as short as 33 fs
(Gouveia-Neto et al., 1987).

The soliton formation capacity of optical fibers has led to the development
of the soliton laser (Mollenauer and Stolen, 1984). A piece of single-mode
fiber inside the cavity is used to shape the pulses. The pulse width can be 
controlled by adjusting the fiber length. Pulses as short as 50 fs have been 
generated directly from a soliton laser and compressed to about 19 fs using
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Figure 3.4. Pulse shape and spectrum for parameters identical to those of Figure 3.3
except for the chirp parameter, which has a value C = 20 instead of 0.



the high-order soliton effect in an external fiber (Mitschke and Mollenauer,
1987).

Equation (29) has proved to be very useful in understanding the propaga-
tion behavior in the anomalous dispersion regime of optical fibers. However,
as discussed in Section 2, for ultrashort pulses (T0 � 0.1ps) Eq. (29) is no
longer adequate, and Eq. (21) should be used in its place. The necessity of
including the higher-order nonlinear terms in Eq. (21) was established in a
recent experiment where a new effect known as the self-frequency shift was
observed (Mitschke and Mollenauer, 1986). In this phenomenon the center
frequency of the soliton shifts toward red as the pulse propagates inside 
the fiber. Physically, the low-frequency components are amplified from the
Raman gain at the expense of the high-frequency components. Equation (21)
includes the Raman gain through the last term and can be used to study such
self-frequency shifts (Gordon, 1986; Kodama and Hasegawa, 1987).

The effect of higher-order dispersion on the soliton behavior [governed 
by the term proportional to b3 in Eq. (21)] has also attracted attention. In
general, such effects become significant only when the pulse wavelength
nearly coincides with the zero-dispersion wavelength of the fiber and can lead
to considerable pulse distortion (Agrawal and Potasek, 1986). It has been
shown that the fiber can support a soliton even at the zero-dispersion wave-
length (Wai et al., 1987) by shifting the center wavelength toward the anom-
alous dispersion regime.
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Figure 3.5. Evolution of N = 3 soliton over one period. Note the initial pulse nar-
rowing in the anomalous dispersion regime.



6. Stimulated Raman Scattering

In preceding sections the peak power of the incident pulse has been assumed
to be considerably below the SRS threshold (Smith, 1972). When this condi-
tion is not satisfied, the Raman gain provided by the fiber leads to a rapid
buildup of the Stokes pulse. Figure 3.6 shows the Raman gain spectrum for
silica fibers (Stolen, 1980). The large spectral width results from the amor-
phous nature of fused silica. Since the largest gain occurs at a frequency
shifted downward by about 13THz from the pump frequency, the Stokes pulse
appears red-shifted by that amount. If the incident pulse is so short (�0.1ps)
that its spectral width exceeds the Raman shift, the distinction between the
pump and Stokes pulses is not sharp since their spectra overlap. In that case
pulse evolution is governed by Eq. (21). However, for pulse widths �1ps, the
pump and Stokes pulses can be treated separately, and their propagation in
optical fibers is described by the coupled set of Eqs. (19) and (20). In this
section we consider numerical solution of these equations and compare the
results with the experimental work on SRS. The numerical method is a gen-
eralization of that used to solve the NSE, described in Section 3.3.
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Figure 3.6. Raman gain spectrum for silica fibers (after Stolen, 1980) The peak gain
is about 1 ¥ 10-13 m/W for a 1-mm pump and scales as l p

-1 with change in the 
wavelength.



For the purpose of computations, it is convenient to define the reduced time

(37)

and write Eqs. (19) and (20) in the form

(38)

(39)

where we have used the subscripts p and s to identify the pump and Stokes
variables. The parameter

(40)

accounts for the group velocity mismatch between the pump and Raman
pulses. Because of the Stokes shift of about 13THz, the parameters bj, gj, and
gj are slightly different for j = p and s. In particular, form Eqs. (16) and (18)

(41)

where lp and ls are the center wavelengths for the pump and Raman pulses,
respectively. Similarly, the gains are related by

(42)

For definiteness, the numerical results for SRS are presented here for lp �
0.53 mm; qualitatively similar behavior is expected to occur for other wave-
lengths. Using typical values for the fiber parameters, we estimate that ap =
0.0012m-1, bp = 0.06ps2m-1, gp = 0.015W-1 m-1, and gp = 0.015W-1 m-1. Assum-
ing a Gaussian unchirped pump pulse, the incident field Ap(0, t) is taken to be

(43)

We choose T0 = 10ps, which corresponds to a full width at half-maximum
(FWHM) of about 16ps. The peak pump power is taken to be P0 = 500W.
Numerical simulations require the use of a seed Raman pulse. It was taken to
be a Gaussian pulse with a width identical to that of the pump pulse but with
a power of 10-6 of the pump pulse. The two pulses overlap initially but the
Raman pulse travels faster than the pump pulse inside the fiber because of the
group velocity mismatch. The walk-off effect is included through the para-
meter d in Eq. (39); its value is estimated to be about 5ps/m. Because of the
use of a specific seed pulse, the results presented here are applicable more
directly to the case of Raman amplification rather than noise-induced SRS.
Most of the qualitative features are, however, expected to apply to SRS as well.

Figure 3.7 shows the evolution of the pump and Raman pulses as they
copropagate inside a 5-m-long fiber. As the Raman pulse moves ahead of the
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pump pulse, the energy for the generation of the Raman pulse comes from
the leading edge of the pump pulse. This is seen clearly in Figure 3.8, where
the pulse shapes are shown overlapped at z = 2m and 5m. At z = 2m, the
creation of the Raman pulse has led to a two-peak structure for the pump
pulse as a result of pump depletion. The peak near the leading edge disap-
pears with further propagation as the Raman pulse walks through it. At 
z = 5m, the two pulses are completely separated. Because of the walk-off
effect, both pulses are asymmetric and narrower than the incident pulse. In
particular, the pump pulse consists of the trailing portion of the incident
pulse that remained undepleted because of the walk-off of the Raman pulse.

The spectral evolution of the two pulses along the fiber length is shown 
in Figure 3.9. Both pulses exhibit asymmetric spectral broadening with 
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Figure 3.7. Evolution of pump pulse and Raman pulse along the fiber length. Pump
pulse parameters are lp = 0.53mm, T0 = 10ps, and P0 = 500W. Pulse walk-off is
included by taking d = -5ps/m.
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Figure 3.8. Comparison of pump and Raman pulse shapes at z = 2m and z = 5m
with parameters of Figure 3.7. At z = 2m, the pump pulse develops a two-peak struc-
ture because of pump depletion occurring at the location of the Raman pulse. Two
pulses are completely separated after propagating a distance of 5m.

Figure 3.9. Evolution of pump and Raman pulse spectra along the fiber length. The
parameter values are identical to those of Figure 3.7.
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Figure 3.10. Comparison of pump and Raman pulse spectra at z = 5m. Note the
spectral broadening of the Raman pulse by more than a factor of 2 compared with
that of the pump pulse.

Figure 3.11. Experimental spectra of pump and Raman pulses after a 25-ps pump
pulse at 532nm has propagated 10m inside a fiber. Four spectra correspond to dif-
ferent pump pulse energies normalized to E0, an energy below the Raman threshold.
(After Alfano et al., 1987.)



considerable internal structure. In general, the spectral width of the Raman
pulse exceeds that of the pump pulse by a factor of 2 or more. These features
are more clearly seen in Figure 3.10, where the spectra at z = 5m are shown
on an expanded scale. Note that the spectral range of the Raman pulse is
about 2.5 times that of the pump pulse. This feature was predicted by Gersten
et al. (1980) and has been verified by Alfano et al. (1987). Figure 3.11 shows
their experimentally observed spectra at the output end of a 10-m-long fiber
for a 25-ps pump pulse with increasing pump pulse energies. The Raman line
is broader by about a factor of 2.8. The spectral asymmetry of the pump line
is also evident. Similar qualitative features have been observed at other pump
wavelengths. Figure 3.12 shows, as an example, the observed pump spectra
at various peak power levels when 140-ps-wide pump pulses at 1.06mm are
propagated along a 150-m-long fiber (Kean et al., 1987). For peak powers
below 100W, the observed spectra are due to SPM (see Figure 3.1). The
Raman threshold is reached near 100W. The spectrum at 148W shows the
asymmetric spectral broadening resulting from the Raman interaction and
should be compared with that shown in Figure 3.10. The physical origin of
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Figure 3.12. Experimental spectra of the pump pulse at different peak powers after
a 140-ps pulse at 1.06mm has propagated inside a 150-m-long fiber. The Raman
threshold is reached at about 100W. (After Dean et al., 1987.)



spectral broadening is related to XPM, while the physical origin of spectral
asymmetry is related to the pulse walk-off. These features are discussed
further in the following section.

7. Cross-Phase Modulation

Although the major qualitative features seen in the pulse spectra of Figures
3.9 and 3.10 are due to XPM, it is difficult to isolate the XPM-induced fea-
tures. For this reason, we consider in this section the interaction of two inci-
dent pulses copropagating along the fiber without SRS; that is, gp = 0 and 
gs = 0 in Eqs. (38) and (39). The other parameters are identical to those used
in Section 6 except for the incident peak powers, which we take to be P1 = P2

= 200W. For these power levels both pulses are below the Raman threshold
for L = 5m; that is, gsPL < 16 (Smith, 1972; Stolen, 1980). Both incident
pulses are assumed to be Gaussian with T0 = 10ps; they overlap completely
at the input end of the fiber. The pulse walk-off effects are included by taking
d = -2ps/m, a value appropriate when the center wavelengths of two pulses
are spaced by about 5nm. Similar to the SRS case shown in Figures 3.7 and
3.9, the evolution of the pulse shapes and spectra along a 5-m-long fiber was
studied. It was found that the shapes of both pulses remain largely unaffected
during XPM interaction except for the walk-off effect; that is, the peaks of
the Gaussian pulses drifted apart at a rate of about 2ps/m, as one would have
expected.

The spectral evolution is, however, governed by the combined effect of
SPM and XPM. Figure 3.13 shows the pulse spectra at z = 5m for the two
pulses. Similar to the case of SPM (see Figure 3.1), the spectra exhibit inter-
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Figure 3.13. Calculated spectra of two pulses at z = 5m. Both pulses are identical
(except for their center wavelengths) and launched simultaneously inside the fiber with
parameters T1 = T2 = 10ps and P1 = P2 = 200W. Group velocity mismatch is included
by taking d = -2ps/m.



nal structure with multiple peaks. The noticeable new features are (1) that the
spectrum of each pulse is asymmetric and (2) that the spectrum of one pulse
is the mirror image of the other (shifted by the initial wavelength separation
of the two pulses). In general, blue-shifted components are more intense for
the slower pulse while the opposite occurs for the fast-moving pulse.

In order to isolate the features related to XPM and group velocity
msmatch, Figure 3.14 shows the spectrum for the case d = 0. Also included
for comparison is the spectrum expected in the absence of XPM. Since the
spectra of both pulses are found to be identical for d = 0, the spectra of only
one pulse are shown in Figure 3.15. A comparison of the two spectra in
Figure 3.14 shows that in the absence of group velocity mismatch (d = 0), the
effect of XPM is to broaden the spectrum by nearly a factor of 3 over that
expected by SPM alone. By comparing Figures 3.13 and 3.14 we conclude
that it is the pulse walk-off that is responsible for the spectral asymmetry seen
in Figure 3.13. It should, however, be stressed that XPM is also necessary for
spectral asymmetry since it is XPM that provides the physical mechanism for
two pulses to interact with each other.

A simple analytic model for the XPM interaction between two copropa-
gating pulses can be developed to understand the origin of spectral features
seen in Figures 3.13 and 3.14. The model makes the following three assump-
tions to simplify the coupled-amplitude Eqs. (19) and (20). (1) The effects of
GVD are negligible so that b21 = b22 = 0. This approximation is justified if the
fiber length is much shorter than the dispersion length LD associated with
each pulse [see Eq. (23)]. (2) The peak powers of the incident pulses are below
the Raman threshold so that g1 = g2 = 0. (3) The fiber loss is negligible so that
a1 = a2 = 0. The last assumption is not necessary but is made to simplify the
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Figure 3.14. Same as in Figure 3.13 except that the group velocity mismatch is
ignored by setting d = 0. Since the spectra are identical, only the spectrum of one
pulse is shown. The right and left plots show the spectrum without and with XPM,
respectively. Note the XPM-induced broadening by a factor of about 3.



treatment. The inclusion of fiber loss does not affect the conclusions drawn
here.

It can readily be verified by using Eqs. (19) and (20) with these simplifica-
tions that the pulse shapes remain unchanged during propagation. The effect
of SPM and XPM is to generate  a nonlinear phase shift accumulated over
the fiber length L (Islam et al., 1987). The phase shift for pulse 1 is given by

(44)

where T is the reduced time given by Eq. (37) and d is the group velocity mis-
match defined in a way similar to Eq. (40). If the two pulses are Gaussian in
shape and are launched simultaneously with complete overlap, the incident
fields are given by

(45)

where m = 1 or 2, Pm is the peak power, and Tm is the 1/e half-width. We
assume equal pulse widths, T1 = T2 = T0, but allow for unequal peak powers.
By using Eq. (45) in Eq. (44) and performing the integration, we obtain

(46)

where erf stands for the error function, t = T/T0 is the normalized time co-
ordinate, and

(47)

is the normalized walk-off parameter.
The nonlinearity-induced chirp is obtained by using D�1 = -(1/2p)∂F1/∂T.

By differentiating Eq. (46), it is given by

(48)

To the lowest order in d, the chirp is given by the simple relation

(49)

The chirp D�2 can be obtained by interchanging the subscripts 1 and 2 and
replacing d by -d in Eq. (49) and is given by

(50)

Equations (49) and (50) can be used to understand all the spectral features
seen in Figures 3.13 and 3.14. Consider first the case d = 0 (no walk-off), for
which the numerical pulse spectra are shown in Figure 3.14. Since P1 = P2

was assumed in numerical simulations, Eq. (49) indicates that the effect of
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XPM is to broaden the pulse spectrum by a factor of 3 over that expected
from the SPM alone. This is in agreement with the results of Figure 3.14. The
fact that the broadening factor is slightly smaller than 3 in Figure 3.14 is
related to the GVD, which reduces the peak powers slightly by broadening
the pulse during its propagation inside the fiber.

In the presence of group velocity mismatch (d π 0), Eq. (49) shows that the
chirp can be larger or smaller depending on the relative signs of t and d. For
the results shown in Figure 3.13, d < 0. As a consequence, the chirp is larger
near the trailing edge (t > 0) and smaller near the leading edge (t < 0) for
pulse 1 while the opposite occurs for pulse 2. Since blue components are gen-
erated near the trailing edge, they are expected to be more intense for pulse
1. For the same reason, the spectral spread should be larger toward the blue
side than the red side for pulse 1. This feature is clearly seen in Figure 3.13.
Using a similar argument, Eq. (50) predicts that the spectrum of pulse 2 will
have a larger spread on the red side, and the red components will be more
intense. For the specific case of gi � g2 and P1 = P2, the two spectra should
be mirror images of each other since D�2(t) = -D�1(-t). This feature would,
of course, be absent for unequal peak powers.

Equations (49) and (50) can be used to predict the relative spectral widths
of two spectra for the case of P1 π P2. Since the spectral range is relatively
unaffected by pulse walk-off (compare Figures 3.13 and 3.14), we set d = 0.
The ratio of the spectral widths is then given by

(51)

where we used Eq. (16) to show the dependence on wavelengths. For l1 � l2,
the width ratio can vary from 0.5 to 2 depending on the power ratio P2/P1.
In particular, when a weak probe pulse copropagates with an intense pulse
(P2 << P1), its spectrum is broadened by a factor of more than 2 over that of
the pump pulse because of XPM (Gersten et al., 1980; Alfano et al., 1987).
Note, however, that the width ratio can be quite different if l1 and l2 differ
significantly. For example, the spectral broadening would be by a factor of 4
if the probe pulse is at the second harmonic of the pump pulse.

8. Conclusion

This chapter has reviewed the propagation characteristics of ultrashort
optical pulses in single-mode fibers influenced by the dispersive and nonlin-
ear effects. When the pulse peak power is below the Raman threshold, the
propagation behavior is modeled well by the nonlinear Schrödinger equation
(29). New qualitative features arise depending on whether the propagation
occurs in the normal or the anomalous dispersion regime. In the latter case,
the fiber supports optical solitons and has found applications in the design
of the soliton laser. When the pulse peak power exceeds the Raman thresh-
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old, the evolution of the pump and Raman pulses is governed by the coupled
set of Eqs. (38) and (39). In this case it is important to take into account both
the group velocity mismatch and XPM. In particular, XPM is responsible for
new spectral features such as an additional broadening of the Raman pulse
spectrum by a factor of 2 or more over that of the pump pulse. Of course,
SRS is not a prerequisite for the observation of these novel qualitative fea-
tures; similar propagation characteristics can be observed by launching si-
multaneously two optical pulses inside the fiber. Clearly, optical fibers are
extremely versatile for studying nonlinear phenomena and should find new
applications, including one in the design of ultrafast supercontinuum laser
sources.
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4
Cross-Phase Modulation: A New
Technique for Controlling the
Spectral, Temporal, and Spatial
Properties of Ultrashort Pulses

P.L. Baldeck, P.P. Ho, and R.R. Alfano

1. Introduction

Self-phase modulation (SPM) is the principal mechanism responsible for the
generation of picosecond and femtosecond white-light supercontinua. When
an intense ultrashort pulse progagates through a medium, it distorts the atomic
configuration of the material, which changes the refractive index. The pulse
phase is time modulated, which causes the generation of new frequencies. This
phase modulation originates from the pulse itself (self-phase modulation). It
can also be generated by a copropagating pulse (cross-phase modulation).

Several schemes of nonlinear interaction between optical pulses can lead
to cross-phase modulation (XPM). For example, XPM is intrinsic to the gen-
eration processes of stimulated Raman scattering (SRS) pulses, second har-
monic generation (SHG) pulses, and stimulated four-photon mixing (SFPM)
pulses. More important, the XPM generated by pump pulses can be used to
control, with femtosecond time response, the spectral, temporal, and spatial
properties of ultrashort probe pulses.

Early studies on XPM characterized induced polarization effects (optical
Kerr effect) and induced phase changes, but did not investigate spectral, tem-
poral and spatial effects on the properties of ultrashort pulses. In 1980,
Gersten, Alfano, and Belic predicted that Raman spectra of ultrashort pulses
would be broadened by XPM (Gersten et al., 1980). The first experimental
observation of XPM spectral effects dates to early 1986, when it was reported
that intense picosecond pulses could be used to enhance the spectral broad-
ening of weaker pulses copropagating in bulk glasses (Alfano et al., 1986).
Since then, several groups have been studying XPM effects generated by
ultrashort pump pulses on copropagating Raman pulses (Schadt et al., 1986;
Schadt and Jaskorzynska, 1987a; Islam et al., 1987a; Alfano et al., 1987b;
Baldeck et al., 1987b–d; Manassah, 1987a, b; Hook et al., 1988), second 
harmonic pulses (Alfano et al., 1987a; Manassah, 1987c; Manassah and
Cockings, 1987; Ho et al., 1988), stimulated four-photon mixing pulses
(Baldeck and Alfano, 1987), and probe pulses (Manassah et al., 1985;



Agrawal et al., 1989a; Baldeck et al., 1988a, c). Recently, it has been shown
that XPM leads to the generation of modulation instability (Agrawal, 1987;
Agrawal et al., 1989b; Schadt and Jaskorzynska, 1987b; Baldeck et al., 1988b,
1988d; Gouveia-Neto et al., 1988a, b), solitary waves (Islam et al., 1987b;
Trillo et al., 1988), and pulse compression (Jaskorzynska and Schadt, 1988;
Manassah, 1988; Agrawal et al., 1988). Finally, XPM effects on ultrashort
pulses have been proposed to tune the frequency of probe pulses (Baldeck 
et al., 1988a), to eliminate the soliton self-frequency shift effect (Schadt and
Jaskorzynska, 1988), and to control the spatial distribution of light in large
core optical fibers (Baldeck et al., 1987a).

This chapter reviews some of the key theoretical and experimental works
that have predicted and described spectral, temporal, and spatial effects
attributed to XPM. In Section 2, the basis of the XPM theory is outlined.
The nonlinear polarizations, XPM phases, and spectral distributions of
coprapagating pulses are computed. The effects of pulse walk-off, input time
delay, and group velocity dispersion broadening are particularly discussed.
(Additional work on XPM and on SPM theories can be found in Manassah
(Chapter 5) and Agrawal (Chapter 3).) Experimental evidence for spectral
broadening enhancement, induced-frequency shift, and XPM-induced
optical amplification is presented in Section 3. Sections 4, 5, and 6 consider
the effects of XPM on Raman pulses, second harmonic pulses, and stimu-
lated four-photon mixing pulses, respectively. Section 7 shows how induced
focusing can be initiated by XPM in optical fibers. Section 8 presents mea-
surements of modulation instability induced by cross-phase modulation in
the normal dispersion region of optical fibers. Section 9 describes XPM-
based devices that could be developed for the optical processing of ultrashort
pulses with terahertz repetition rates. Finally, Section 10 summarizes the
chapter and highlights future trends.

2. Cross-Phase Modulation Theory

2.1 Coupled Nonlinear Equations of Copropagating Pulses

The methods of multiple scales and slowly varying amplitude (SVA) are the
two independent approximations used to derive the coupled nonlinear equa-
tions of copropagating pulses. The multiple scale method, which has been
used for the first theoretical study on induced-phase modulation, is described
in Manassah (Chapter 5). The following derivation is based on the SVA
approximation.

The optical electromagnetic field of two copropagating pulses must ulti-
mately satisfy Maxwell’s vector equation:

(1a)

and

— ¥ — ¥ = -E
D

m
∂
∂0 t
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(1b)

where e is the medium permitivity at low intensity and PNL is the nonlinear
polarization vector.

Assuming a pulse duration much longer than the response time of the
medium, an isotropic medium, the same linear polarization for the copropa-
gating fields, and no frequency dependence for the nonlinear susceptibility
c(3), the nonlinear polarization reduces to

(2)

where the transverse component of the total electric field can be approxi-
mated by

(3)

A1 and A2 refer to the envelopes of copropagating pulses of carrier frequen-
cies w1 and w2, and b1 and b2 are the corresponding propagation constants,
respectively.

Substituting Eq. (3) into Eq. (2) and keeping only the terms synchronized
with w1 and w2, one obtains

(4a)

(4b)

(4c)

where P1
NL and P2

NL are the nonlinear polarizations at frequencies w1 and w2,
respectively. The second terms in the right sides of Eqs. (4b) and (4c) are
cross-phase modulations terms. Note the factor of 2.

Combining Eqs. (1)–(4) and using the slowly varying envelope approxima-
tion (at the first order for the nonlinearity), one obtains the coupled nonlin-
ear wave equations:

(5a)

(5b)

where vgi is the group velocity for the wave i, b i
(2) is the group velocity 

dispersion for the wave i, and n2 = 3c(3)/8n is the nonlinear refractive 
index.

In the most general case, numerical methods are used to solve Eqs. (5).
However, they have analytical solutions when the group velocity dispersion
temporal broadening can be neglected.

Denoting the amplitude and phase of the pulse envelope by a and a, that 
is,
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(6)

and assuming b 1
(2) ª b 2

(2) ª 0, Eqs. (5a) and (5b) reduce to

(7a)

(7b)

(7c)

(7d)

where t = (t - z/vg1)/T0 and T0 is the 1/e pulse duration.
In addition, Gaussian pulses are chosen at z = 0:

(8a)

(8b)

where P is the pulse peak power, Aeff is the effective cross-sectional area, and
td = Td/T0 is the normalized time delay between pulses at z = 0. With the initial
conditions defined by Eqs. (8), Eqs. (5) have analytical solutions when tem-
poral broadenings are neglected:

(9a)

(9b)

(9c)

(9d)

where Lw = T0/(1/vg1 - 1/vg2) is defined as the walk-off length.
Equations (9c) and (9d) show that the phases a1(t, z) of copropagating

pulses that overlap in a nonlinear Kerr medium are modified by a cross-phase
modulation via the peak power Pjπi. In the case of ultrashort pulses this cross-
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phase modulation gives rise to the generation of new frequencies, as does self-
phase modulation.

The instantaneous XPM-induced frequency chirps are obtained by differ-
entiating Eqs. (9c) and (9d) according to the instantaneous frequency formula
Dw = -∂a/∂t. These are

(10a)

(10b)

where Dw1 = w - w1 and Dw2 = w - w2. The first and second terms on the right
sides of Eqs. (10a) and (10b) are contributions arising from SPM and XPM,
respectively. It is interesting to notice in Eq. (10) than the maximum fre-
quency chirp arising from XPM is inversely proportional to the group veloc-
ity mismatch Lw/T0 = 1/(1/vg1 - 1/vg2) rather than the pump pulse time duration
or distance traveled z as for ZPM. Therefore, the time duration of pump
pulses does not have to be as short as the time duration of probe pulses for
XPM applications.

More generally, spectral profiles affected by XPM can be studied by com-
puting the Fourier transform:

(11)

where |S(w - w0, z)|2 represents the spectral intensity distribution of the pulse.
Equation (10) is readily evaluated numerically using fast Fourier transform
algorithms.

Analytical results of Eqs. (9) take in account XPM, SPM, and group veloc-
ity mismatch. These results are used in the Section 2.2 to isolate the specific
spectral features arising from the nonlinear interaction of copropagating
pulses. Higher-order effects due to group velocity dispersion broadening are
discussed in Section 2.3.

2.2 Spectral Broadening Enhancement

The spectral evolution of ultrashort pulses interacting in a nonlinear Kerr
medium is affected by the combined effects of XPM, SPM, and pulse walk-off.

For a negligible group velocity mismatch, XPM causes the pulse spectrum
to broaden more than expected from SPM alone. The pulse phase of Eqs.
(9c) and (9d) reduces to
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The maximum spectral broadening of Gaussian pulses, computed using Eq.
(12), is given by

(13)

Thus, the spectral broadening enhancement arising from XPM is given by

(14)

Therefore, XPM can be used to control the spectral broadening of probe
pulses using strong command pulses. This spectral control is important, for
it is based on the electronic response of the interacting medium. It could be
turned on and off in a few femtoseconds, which could lead to applications
such as the pulse compression of weak probe pulses, frequency-based optical
computation schemes, and the frequency multiplexing of ultrashort optical
pulses with terahertz repetition rates.

The effect of pulse walk-off on XPM-induced spectral broadening can be
neglected when wavelengths of pulses are in the low dispersion region of the
nonlinear material, the wavelength difference or/and the sample length are
small, and the time duration of pulses is not too short. For other physical
situations, the group velocity mismatch and initial time delay between pulses
affect strongly the spectral shape of interacting pulses (Islam et al., 1987a;
Manassah 1987a; Agrawal et al., 1988, 1989a; Baldeck et al., 1988a).

Figure 4.1 shows how the spectrum of a weak probe pulse can be affected
by the XPM generated by a strong copropagating pulse. The wavelength of
the pump pulse was chosen where the pump pulse travels faster than the probe
pulse. Initial time delays between pulses at the entrance of the nonlinear
medium were selected to display the most characteristic interaction schemes.
Figures 4.1a and 4.1b are displayed for reference. They show the probe pulse
spectrum without XPM interaction (Figure 4.1a) and after the XPM inter-
action but for negligible group velocity mismatch (Figure 4.1b). Figure 4.1c
is for the case of no initial time delay and total walk-off. The probe spectrum
is shifted and broadened by XPM. The anti-Stokes shift is characteristic of
the probe and pump pulse walk-off. The probe pulse is blue shifted because
it is modulated only by the back of the faster pump pulse. When the time
delay is chosen such that the pump pulse enters the nonlinear medium after
the probe and has just time to catch up with the probe pulse, one obtains a
broadening similar to that in Figure 4.1c but with a reverse Stokes shift
(Figure 4.1d). The XPM broadening becomes symmetrical when the input
time delay allows the pump pulse not only to catch up with but also to pass
partially through the probe pulse (Figure 4.1e). However, if the interaction
length is long enough to allow the pump pulse to completely overcome the
probe pulse, there is no XPM-induced broadening (Figure 4.1f ).

The diversity of spectral features displayed in Figure 4.1 can easily be
understood by computing the phase and frequency chirp given by Eqs. (9)

D
D
w
w
i j

i

P
P

SPM+XPM

iSPM

= +1
2

.

Dw
w

i
i i jz

c
n

P P
A

z
T

( ) ª
+( )

2
0

2

eff

.

122 P.L. Baldeck, P.P. Ho, and R.R. Alfano



and (10) (Figure 4.2). For reference, Figure 4.2a shows the locations of the
pump pulse (solid line) and the probe pulse (dotted line) at the output of the
nonlinear sample (case of no initial delay and total walk-off). In this case the
XPM phase, which is integrated over the fiber length, has the characteristic
shape of an error function whose maximum corresponds to neither the probe
pulse maximum nor the pump pulse maximum (Figure 4.2b). The probe pulse
(dotted line in Figure 4.2c) sees only the blue part of the frequency chirp
(solid line in Figure 4.2c) generated by the pump pulse. As a result, the probe

4. Cross-Phase Modulation 123

Figure 4.1. Influence of cross-phase modulation, walk-off, and input time delay on
the spectrum of a probe pulse from Eqs. (9) and (11) with P1 << P2. f = 2(w1/c)n2P2Lw,
d = z/Lw, and td are the XPM, walk-off, and input time delay parameters, respectively.
(a) Reference spectrum with no XPM; i.e., f = 0. (b) XPM in the absence of walk-off;
i.e., f = 50 and d = 0. (c) XPM, total walk-off, and no initial time delay; i.e., f = 50, d =
-5, and td = 0. (d) XPM and initial time delay to compensate the walk-off; i.e., f = 50,
d = -5, and td = 5. (e) XPM and symmetrical partial walk-off; i.e., f = 50, d = -3, and
td = 1.5. (f) XPM and symmetrical total walk-off; i.e., f = 50, d = -5, and td = 2.5.
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Figure 4.2. Influence of cross-phase modulation, walk-off, and input time delay on
the phase and frequency chirp of a probe pulse. (a) Locations of pump (solid line)
and probe (dotted line) at the output of the nonlinear medium for total walk-off and
no initial time-delay; i.e., d = -5 and td = 0. (b) XPM phase with a total walk-off and
no initial time delay; i.e., f = 50, d = -5, and td = 0. (c) XPM-induced chirp (solid line)
with total walk-off and no initial time delay. (Dotted line) Probe pulse intensity.
(d) XPM phase with an initial time delay to compensate the walk-off; i.e., f = 50,
d = -5, and td = 5. (e) XPM-induced chirp (solid line) with an initial time delay to
compensate the walk-off. (Dotted line) Probe pulse intensity. (f) XPM phase and 
symmetrical partial walk-off; i.e., f = 50, d = -3, and td = 1.5. (g) XPM-induced 
chirp (solid line) and symmetrical partial walk-off. (Dotted line) Probe pulse inten-
sity. (h) XPM phase and symmetrical total walk-off; i.e., f = 50, d = -5, and td = 2.5.
(i) XPM-induced chirp (solid line) and symmetrical total walk-off. (Dotted line) Probe
pulse intensity.



spectrum is simultaneously broadened and shifted toward the highest fre-
quencies (Figure 4.1c). One should notice that opposite to the SPM frequency
chirp, the XPM chirp in Figure 4.2c is not monotonic. The pulse leading edge
and trailing edge have a positive chirp and negative chirp, respectively. As a
result, dispersive effects (GVD, grating pair, . . .) are different for the pulse
front and the pulse back. In the regime of normal dispersion (b(2) > 0), the
pulse front would be broadened by GVD while the pulse back would be
sharpened. Figures 4.2d and 4.2e show XPM-induced phase and frequency
chirp for the mirror image case of Figures 4.2b and 4.2c. The probe spectrum
is now shifted toward the smallest frequencies. Its leading edge has a nega-
tive frequency chirp, while the trailing edge has a positive one. A positive
GVD would compress the pulse front and broaden the pulse back. The case
of a partial symmetrical walk-off is displayed in Figures 4.2f and 4.2g. In
first approximation, the time dependence of the XPM phase associated with
the probe pulse energy is parabolic (Figure 4.2f ), and the frequency chirp is
quasi-linear (4.2 g). This is the prime quality needed for the compression of
a weak pulse by following the XPM interaction by a grating pair compres-
sor (Manassah, 1988). Figures 4.2h and 4.2i show why there is almost no
spectral broadening enhancement when the pump pulse passes completely
through the probe pulse (Figure 4.1f ): the part of XPM associated with the
probe pulse energy is constant (Figure 4.2h). The probe pulse is phase mod-
ulated, but the phase shift is time independent. Therefore, there is neither fre-
quency chirp (Figure 4.2i) nor spectral broadening enhancement by XPM.
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Figure 4.2. (continued )



The combined effects of XPM and walk-off on the spectra of weak probe
pulses (negligible SPM) have been shown in Figure 4.1 and 4.2. When the
group velocity mismatch is large, the spectral broadening is not significant
and the above spectral features reduce to a tunable induced-frequency shift
of the probe pulse frequency (see Section 3.2). When strong probe pulses are
used, the SPM contribution has to be included in the analysis. Figure 4.3
show how the results of Figure 4.1 are modified when the probe power is the
same as the pump power, that is, the SPM has to be taken in account. Figure
4.3a shows the spectral broadening arising from the SPM alone. Combined
effects of SPM and XPM are displayed in Figures 4.3b to 4.3e with the same
initial delays as in Figure 4.1. The SPM contribution to the spectral broad-
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Figure 4.3. Influence of self-phase modulation, cross-phase modulation, walk-off,
and input time delay on the spectrum of a probe pulse from Eqs. (9) and (11) with 
P1 = P2. The parameter values in Figure 4.1 are used.



ening is larger than the XPM contribution because the XPM interaction
length is limited by the walk-off between pump and probe pulses.

The XPM spectral features described in this section have been obtained
using first-order approximation of the nonlinear polarization, propagation
constant, and nonlinearity in the nonlinear wave equation (Eq. 1). Moreover,
plane wave solutions and peak powers below the stimulated Raman scatter-
ing threshold have been assumed. For practical purposes it is often necessary
to include the effects of (1) first- and second-order group velocity dispersion
broadening, b(2) and b(3), (2) induced- and self-steepening, (3) four-wave
mixing occurring when pump and probe pulses are coupled through c(3),
(4) stimulated Raman scattering generation, (5) the finite time response of
the nonlinearity, and (6) the spatial distribution of interacting fields (i.e.,
induced- and self-focusing, diffraction, Gaussian profile of beams, . . .). In
Section 2.3 the combined effect of XPM and group velocity dispersion broad-
ening b(2) is shown to lead to new kinds of optical wave breaking and pulse
compression. Some other effects that lead to additional spectral, temporal,
and spatial features of XPM are discussed by Agrawal (Chapter 3) and 
Manassah (Chapter 5).

2.3 Optical Wave Breaking and Pulse Compression due to Cross-Phase
Modulation in Optical Fibers

When an ultrashort light pulse propagates through an optical fiber, its shape
and spectrum change considerably as a result of the combined effect of group
velocity dispersion b(2) and self-phase modulation. In the normal dispersion
regime of the fiber (l £ 1.3mm), the pulse can develop rapid oscillations in
the wings together with spectral sidelobes as a result of a phenomenon known
as optical wave breaking (Tomlinson et al., 1985). In this section it is shown
that a similar phenomenon can lead to rapid oscillations near one edge of a
weak pulse that copropagates with a strong pulse (Agrawal et al., 1988).

To isolate the effects of XPM from those of SPM, a pump-probe config-
uration is chosen (P2 << P1) so that pulse 1 plays the role of the pump pulse
and propagates without being affected by the copropagating probe pulse. The
probe pulse, however, interacts with the pump pulse through XPM. To study
how XPM affects the probe evolution along the fiber, Eqs. (5a) and (5b) have
been solved numerically using a generalization of the beam propagation or
the split-step method (Agrawal and Potasek, 1986). The numerical results
depend strongly on the relative magnitudes of the length scales Ld and Lw,
where Ld = T 2

0/|b2| is the dispersion length and Lw = vg1vg2T0/|vg1 - vg2| is the
walk-off length. If Lw << Ld, the pulses walk off from each other before GVD
has an opportunity to influence the pulse evolution. However, if Lw and Ld

become comparable, XPM and GVD can act together and modify the pulse
shape and spectra with new features.

To show these features as simply as possible, a specific case is considered
in which Lw/Ld = 0.1 and l1/l2 = 1.2. Both pulses are assumed to propagate
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in the normal GVD regime with b1 = b2 > 0. It is assumed that the pump
pulse goes faster than the probe pulse (vg1 > vg2). At the fiber input both pulses
are taken to be a Gaussian of the same width with an initial delay td between
them. First, the case td = 0 is considered, so the two pulses overlap completely
at z = 0. Figure 4.4 shows the shapes and spectra of the pump and probe
pulses at z/Ld = 0.4 obtained by solving Eqs. (5a) and (5b) numerically with
N = (g 1P1Ld)0.5 = 10. For comparison, Figure 4.5 shows the probe and pump
spectra under identical conditions but without GVD effects (b1 = b2 = 0). The
pulse shapes are not shown since they remain unchanged when the GVD
effects are excluded.
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Figure 4.4. Shape and spectrum of probe pulse (left) and pump pulse (right) at 
z/Ld = 0.4 when the two pulses copropagate in the normal dispersion regime of a
single-mode fiber. The parameters are N = 10, Lw/Ld = 0.1, l1/l2 = 1.2, and td = 0.
Oscillations near the trailing edge (positive time) of the probe pulse are due to XPM-
induced optical wave breaking. (From Agrawal et al., 1988.)



From a comparison of Figures 4.4 and 4.5, it is evident that GVD can sub-
stantially affect the evolution of features expected from SPM or XPM alone.
Consider first the pump pulse for which XPM effects are absent. The expected
from dispersive SPM for N = 10. With further propagation, the pump pulse
eventually develops rapid oscillations in the wings as a result of conventional
SPM-induced optical wave breaking. Consider now the probe pulse for which
SPM effects are absent and probe pulse evolution is governed by dispersive
XPM. In absence of GVD, the pulse shape would be a narrow Gaussian cen-
tered at t = 4 (the relative delay at the fiber output because of group veloc-
ity mismatch). The GVD effects not only broaden the pulse considerably but
also induce rapid oscillations near the trailing edge of the probe pulse. These
oscillations are due to XPM-induced optical wave breaking.

To understand the origin of XPM-induced optical wave breaking, it is
useful to consider the frequency chirp imposed on the probe pulse by the
copropagating pulse. As there is total walk-off and no initial delay, maximum
chirp occurs at the center of the probe pulse. Since the chirp is positive, blue-
shifted components are generated by XPM near the pulse center. As a result
of the normal GVD, the peak of the probe pulse moves slower than its tails.
Since the peak lags behind as the probe pulse propagates, it interferes with
the trailing edge. Oscillations seen near the trailing edge of the probe pulse
in Figure 4.4 result from such an interference. Since the basic mechanism is
analogous to the optical wave-breaking phenomenon occurring in the case of
dispersive XPM, we call it XPM-induced optical wave breaking.

In spite of the identical nature of the underlying physical mechanism,
optical wave breaking exhibits different qualitative features in the XPM case
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Figure 4.5. Spectra of probe and pump pulses under conditions identical to those
of Figure 4.4 but without the GVD effects (b1 = b2 = 0). Pulse shapes are not shown
as they remain unchanged. (From Agrawal et al., 1988.)



compared with the SPM case. The most striking difference is that the pulse
shape is asymmetric with only one edge developing oscillations. For the case
shown in Figure 4.4 oscillations occur near the trailing edge. If the probe and
pump wavelengths were reversed so that the pump pulse moved slower than
the probe pulse, oscillations would occur near the leading edge since the
pump pulse would interact mainly with that edge. In fact, in that case the
shape and the spectrum of the probe pulse are just the mirror images of those
shown in Figures 4.4 and 4.5.

The effect of initial delay between probe and pump pulses is now investi-
gated. The effect of initial delay on XPM-induced spectral broadening has
been discussed in the dispersionless limit (b1 = b2 = 0) in Section 2.2. For
example, if the pump pulse is delayed by the right amount so that it catches
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Figure 4.6. Probe shape and spectrum with (top) and without (bottom) the GVD
effects under conditions identical to those of Figure 4.5 except that td = -2. Note the
important effect on pulse evolution of the initial time delay between the pump and
probe pulses. (From Agrawal et al., 1988.)



up with the probe pulse at the fiber output, the probe spectrum is just the
mirror image of that shown in Figure 4.4, exhibiting a red shift rather than
a blue shift. Futhermore, if td is adjusted such that the pump pulse catches
up with the probe pulse halfway through the fiber, the probe spectrum is sym-
metrically broadened since the pump walks through the probe in a symmet-
ric manner. Our numerical results show that the inclusion of GVD completely
alters this behavior. Figure 4.6 shows the probe shape and spectrum under
conditions identical to those of Figure 4.4 except that the probe pulse is
advanced (td = -2) such that the pump pulse would catch it halfway through
the fiber in the absence of GVD effects. The lower row shows the expected
behavior in the dispersionless limit, showing the symmetrical spectral broad-
ening in this case of symmetrical walk-off. A direct comparison reveals how
much the presence of GVD can affect the SPM effects on the pulse evolu-
tion. In particular, both the pulse shape and spectra are asymmetric. More
interestingly, the probe pulse is compressed, in sharp contrast to the case of
Figure 4.4, where GVD led to a huge broadening. This can be understood
qualitatively from Eq. (10). For the case shown in Figure 4.6, the XPM-
induced chirp is negative and nearly linear across the trailing part of the
probe pulse. Because of this chirp, the traveling part is compressed as the
probe pulse propagates inside the fiber.

Experimental observation of XPM-induced optical wave breaking would
require the use of femtosecond pulses. This can be seen by noting that for
picosecond pulses with T0 = 5–10ps, typically Ld ª 1km while Lw ª 1 m even
if the pump-probe wavelengths differ by as little as 10nm. By contrast, if
T0 = 100 fs, both Ld and Lw become comparable (ª10cm), and the temporal
changes in the probe shape discussed here can occur in a fiber less than a
meter long. Pulses much shorter than 100 fs should also not be used since
higher-order nonlinear effects such as self-steepening and a delayed nonlin-
ear response then become increasingly important. Although these effects are
not expected to eliminate the phenomenon of XPM-induced optical wave
breaking, they may interfere with the interpretation of experimental data.

3. Pump-Probe Cross-Phase Modulation Experiments

Cross-phase modulation is intrinsic to numerous schemes of ultrashort pulse
interaction. The first observation of spectral effects arising from XPM was
reported using a pump-probe scheme (Alfano et al., 1986). The phase mod-
ulation generated by the infrared pulse at the probe wavelength was referred
to as an induced-phase modulation (PM). More recently, the induced-
frequency shift and spectral broadening enhancement of picosecond probe
pulses have been observed using optical fibers as nonlinear media (Baldeck
et al., 1988a; Islam et al., 1987a, b). Pump-probe experiments on XPM are
of prime importance for they could lead to applications for pulse compres-
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sion, optical communication, and optical computation purposes. Results of
the pump-probe experiments on XPM are discussed in this section.

3.1 Spectral Broadening Enhancement by Cross-Phase Modulation in
BK-7 Glass

The possibility of enhancing the spectral broadening of a probe pulse using
a copropagating pump pulse was first observed experimentally in early 1986
(Alfano et al., 1986). The spectral broadening of a weak 80-mJ picosecond
530-nm laser in BK-7 glass was enhanced over the entire spectral band by the
presence of an intense millijoule picosecond 1060-nm laser pulse. The spec-
tral distributions of the self-phase modulation and the cross-phase modula-
tion signals were found to be similar. The dominant enhancement mechanism
for the induced supercontinuum was determined to be a cross-phase modu-
lation process, not stimulated four-photon scattering.

The experimental setup is shown in Figure 4.7. A single 8-ps laser pulse at
1060nm generated from a mode-locked glass laser system was used as the
pump beam. Its second harmonic was used as the probe beam. These pulses
at the primary 1060-nm and the second harmonic 530-nm wavelengths were
weakly focused into a 9-cm-long BK-7 glass. A weak supercontinuum signal
was observed when both 530- and 1060-nm laser pulses were sent through
the sample at the same time. This signal could arise from the IPM process
and/or stimulated four-photon parametric generation (FPPG).

In this induced supercontinuum experiment, the 530-nm laser pulse inten-
sity was kept nearly constant with a pulse energy of about 80mJ. The primary
1060-nm laser pulse energy was a controlled variable changing from 0 to 
2mJ. Filters were used to adjust the 1060-nm pump-laser pump intensity. The
output beam was separated into three paths for diagnosis.

The output beam along path 1 was imaged onto the slit of a 0.5-m Jarrel-
Ash spectrograph to separate the contributions from the possible different
mechanisms for the supercontinuum by analyzing the spatial distribution of
the spectrum from phase modulation and stimulated four-photon scattering
processes. In this spectrograph measurement, films were used to measure the
spatial distribution of the supercontinuum spectrum and a photomultiplier
tube was used to obtain quantitative reading. To distinguish different con-
tributions from either phase modulation or stimulated four-photon scatter-
ing, geometric blocks were arranged in the path for the selection of a
particular process. An aperture of 6mm diameter was placed in front of the
entrance slit of the spectrograph to measure the signal contributed phase
modulation, while an aluminum plate of 7mm width was placed in front of
the spectrograph entrance slit to measure the l = 570nm contribution.

The beam along path 2 was directed into a spectrometer with an optical
multichannel analyzer to measure the supercontinuum spectral intensity dis-
tribution. The spectrum was digitized, displayed, and stored in 500 channels
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as a function of wavelength. The beam along path 3 was delayed and directed
into a Hamamatsu Model C1587 streak camera to measure the temporal dis-
tribution of the laser pulse and induced supercontinuum. The duration of the
induced supercontinuum with a selected 10-nm bandwidth was measured to
be about the same as the incident laser pulse duration.

Experimental results for the spectral distribution of induced supercontin-
uum and supercontinuum are displayed in Figure 4.8. More than 20 laser
shots for each data point in each instance have been normalized and
smoothed. The average gain of the induced supercontinuum in a BK-7 glass
from 410- to 660-nm wavelength was about 11 times that of the supercon-
tinuum. In this instance, both the 530- and 1060-nm laser pulse energies were
maintained nearly constant: 80mJ for 530nm and 2mJ for 1060nm. In this
experiment, the 530-nm laser pulse generated a weak supercontinuum and
the intense 1060-nm laser pulse served as a catalyst to enhance the super-
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Figure 4.7. Schematic diagram of the experimental arrangment for measuring the
spectral broadening enhancement of probe pulses by induced-phase modulation. F1:
Hoya HA30 (0.03%), R72 (82%), Corning 1-75 (1%), 1-59 (15%), 0-51 (69%), 3-75
(80%). The numbers in parentheses correspond to the transmittivity at 1054nm. All
these color filters have about 82% transmittivity at 527nm. F2: 1-75 + 3-67 for Stokes
side measurements; F2: 1-75 + 2 (5-57) for anti-Stokes side measurements; F3: neutral
density filters; F: ND3 + 1-75; D1, D2; detectors; M: dielectric-coated mirror; BS:
beam splitter. (From Alfano et al., 1986.)



continuum in the 530-nm pulse. The supercontinuum generated by the 1060-
nm pulse alone in this spectral region was less than 1% of the total induced
supercontinuum. The spectral shapes of the induced supercontinuum pulse
and the supercontinuum pulse in Figure 4.8 are similar. Use of several liquid
samples such as water, nitrobenzene, CS2, and CCl4 has also been attempted
to obtain the induced supercontinuum. There was no significant (twofold)
enhancement from all other samples that we tested.

A plot of the intensity dependence of the induced supercontinuum is dis-
played in Figure 4.9 as a function of the 1060-nm pump pulse energy. The
wavelengths plotted in Figure 4.9 were l = 570nm for the Stokes side and l
= 498nm for the anti-Stokes side. The 530-nm pulse energy was set at 80 ±
15mJ. The induced supercontinuum increased linearly as the added 1060-nm
laser pulse energy was increased from 0 to 200mJ. When the 1060-nm pump
pulse was over 1mJ, the supercontinuum enhancement reached a plateau and
saturated at a gain factor of about 11 times over the supercontinuum inten-
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Figure 4.8. Intensities of the induced ultrafast supercontinuum pulse (IUSP) and the
ultrafast supercontinuum pulse (USP). Each data point was an average of about 20
laser shots and was corrected for the detector, filter, and spectrometer spectral sensi-
tivity. (D) IUSP (F1: 3-75); (�) USP from 527nm (F1: HA30). USP from 1054nm,
which is not shown here was ª1% of the IUSP signal. The measured 527-nm probe
pulse was about 5 ¥ 10 counts on this arbitrary unit scale. The error bar of each data
point is about ±20%. (From Alfano et al., 1986.)



sity generated by only the 530-nm pulse. This gain saturation may be due to
the trailing edge of the pulse shape function being maximally distorted when
the primary pulse intensity reaches a certain critical value. This implies a sat-
uration of the PM spectral distribution intensity when the pumped primary
pulse energy is above 1mJ, as shown in Figure 4.9.

Since the supercontinuum generation can be due to the phase modulation
and/or the stimulated four-photon scattering processes, it is important to dis-
tinguish between these two different contributions to the induced supercon-
tinuum signal. Spatial filtering of the signal was used to separate the two main
contributions. The induced supercontinuum spectrum shows a spatial spec-
tral distribution similar to that of the conventional supercontinuum. The
collinear profile that is due to the phase modulation has nearly the same
spatial distribution as the incident laser pulse. Two emission wings at non-
collinear angles correspond to the stimulated four-photon scattering contin-
uum arising from the phase-matching condition of the generated wavelengths
emitted at different angles from the incident laser beam direction. Using a
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Figure 4.9. Dependence of the IUSP signal on the intensity of the 1.06-mm pump
pulse. (�) Stokes side at l = 570nm; (D) anti-Stokes side at l = 498nm. The error bars
of the anti-Stokes side were similar to those of the Stokes side. The solid line is a
guide for the eye. The vertical axis is the normalized IIUSP/I527 nm. (From Alfano et al.,
1986.)



photomultiplier system and spatial filtering, quantitative measurements of
the induced supercontinuum contributions from the collinear PM and the
noncollinear stimulated four-photon scattering parts were obtained (Figure
4.10). These signals, measured at l = 570nm from the collinear PM and the
noncollinear parts of the induced supercontinuum, are plotted as a function
of the pump pulse energy. There was little gain from the contribution of the
stimulated four-photon scattering process over the entire pulse-energy-
dependent measurement as shown in Figure 4.10. The main enhancement of
the induced supercontinuum generation is consequently attributed to the PM
mechanism, which corresponds to the collinear geometry. Another possible
mechanism for the observed induced supercontinuum could be associated
with the enhanced self-focusing of the second harmonic pulse induced by the
primary pulse. There was no significant difference in the spatial intensity dis-
tribution of the 530-nm probe beam with and without the added intense
1060-nm pulse.

In this experiment the spectral broadening of 530-nm pulses was enhanced
by nonlinear interaction with copropagating strong infrared pulses in a BK-
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Figure 4.10. Dependence of Is (PM) and Is (FPPG) at l = 570nm or the intensity of
the 1054-nm pump laser pulse. (�) PM; (D) FPPG. The measured signal has been nor-
malized with the incident 527-nm pulse energy. The error bar of each data point is
about ±20% of the average value. (From Alfano et al., 1986.)



7 glass sample. The spectral change has been found to arise from a phase
modulation process rather than a stimulated four-photon mixing process. It
is in good agreement with predictions of the induced-phase modulation
theory. This experiment showed the first clear evidence of a cross-phase mod-
ulation spectral effect.

3.2 Induced-Frequency Shift of Copropagating Pulses

Optical fibers are convenient for the study of nonlinear optical processes. The
optical energy is concentrated into small cross section (typically 10-7 cm2) for
long interaction lengths. Thus, large nonlinear effects are possible with mod-
erate peak powers (10–104 W). Optical fibers appear to be an ideal medium
in which to investigate XPM effects. The first pump probe experiment using
picosecond pulses propagating in optical fibers demonstrated the importance
of the pulse walk-off in XPM spectral effects (Baldeck et al., 1988a). It was
shown that ultrashort pulses that overlap in a nonlinear and highly disper-
sive medium undergo a substantial shift of their carrier frequencies. This new
coherent effect, which was referred to as an induced-frequency shift, resulted
from the combined effect of cross-phase modulation and pulse walk-off. In
the experiment, the induced-frequency shift was observed by using strong
infrared pulses that shifted the frequency of weak picosecond green pulses
copropagating in a 1-m-long single-mode optical fiber. Tunable red and blue
shifts were obtained at the fiber output by changing the time delay between
infrared and green pulses at the fiber input.

A schematic of the experimental setup is shown in Figure 4.11. A mode-
locked Nd: YAG laser with a second harmonic crystal was used to produce
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Figure 4.11. Experimental setup used to measure the induced-frequency shift of
532-nm pulses as a function of the time delay between pump and probe pulses at the
optical fiber input. Mirrors M1 and M2 are wavelength selective; i.e., they reflect 
532-nm pulses and transmit 1064-nm pulses. (From Baldeck et al., 1988a.)



33-ps infrared pulses and 25-ps green pulses. These pulses were separated
using a Mach-Zehnder interferometer delay scheme with wavelength-
selective mirrors. The infrared and green pulses propagated in different inter-
ferometer arms. The optical path of each pulse was controlled using variable
optical delays. The energy of infrared pulses was adjusted with neutral
density filters in the range 1 to 100nJ while the energy of green pulses was
set to about 1nJ. The nonlinear dispersive medium was a 1-m-long single-
mode optical fiber (Corguide of Corning Glass). This length was chosen to
allow for total walk-off without losing control of the pulse delay at the fiber
output. The group velocity mismatch between 532 and 1064-nm pulses was
calculated to be about 76ps/m in fused silica. The spectrum of green pulses
was measured using a grating spectrometer (1 meter, 1200 lines/mm) and an
optical multichannel analyzer (OMA2).

The spectra of green pulses propagating with and without infrared pulses
are plotted in Figure 4.12. The dashed spectrum corresponds to the case of
green pulses propagating alone. The blue-shifted and red-shifted spectra are
those of green pulses copropagating with infrared pulses after the input
delays were set at 0 and 80ps, respectively. The main effect of the nonlinear
interaction was to shift the carrier frequency of green pulses. The induced-
wavelength shift versus the input delay between infrared and green pulses is
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Figure 4.12. Cross-phase modulation effects on spectra of green 532-nm pulses.
(a) Reference spectrum (no copropagating infrared pulse). (b) Infrared and green
pulses overlapped at the fiber input. (c) Infrared pulse delayed by 80ps at the fiber
input. (From Baldeck et al., 1988a.)



plotted in Figure 4.13. The maximum induced-wavelength shift increased lin-
early with the infrared pulse peak power (Figure 4.14). Hence, the carrier
wavelength of green pulses could be tuned up to 4 Å toward both the red and
blue sides by varying the time delay between infrared and green pulses at the
fiber input. The solid curves in Figures 4.13 and 4.14 are from theory.

When weak probe pulses are used the SPM contribution can be neglected
in Eqs. (9) and (10). Thus, nonlinear phase shifts and frequency chirps are
given by

(15)

(16)

When the pulses coincide at the fiber entrance (td = 0) the point of
maximum phase is generated ahead of the green pulse peak because of the
group velocity mismatch (Eq. 15). The green pulse sees only the trailing part
of the XPM profile because it travels slower than the pump pulse. This leads
to a blue induced-frequency shift (Eq. 16). Similarly, when the initial delay is
set at 80ps, the infrared pulse has just sufficient time to catch up with the
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Figure 4.13. Induced wavelength shift of green 532-nm pulses as a function of the
input time delay between 532-nm pulses and infrared 1064-nm pulses at the input of
a 1-m-long optical fiber. ( ) Experimental points. The solid line is the theoretical pre-
diction from Eq. (3.3). (From Baldeck et al., 1988a.)



green pulse. The green pulse sees only the leading part of the XPM phase
shift, which gives rise to a red induced-frequency shift. When the initial delay
is about 40ps, the infrared pulse has time to pass entirely through the green
pulse. The pulse envelope sees a constant dephasing and there is no shift of
the green spectrum (Figure 4.13).

Equations (15) and (16) can be used to fit our experimental data shown in
Figures 4.13 and 4.14. Assuming that the central part of the pump pulses
provides the dominant contribution to XPM, we set t = 0 in Eq. (16) and
obtain

(17)

The maximum induced-frequency shift occurs at td = d = z/Lw and is given
by

(18)

Equations (17) and (18) are plotted in Figures 4.13 and 4.14, respectively.
There is very good agreement between this simple analytical model and exper-
imental data. It should be noted that only a simple parameter (i.e., the
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Figure 4.14. Maximum induced wavelength shift of 532-nm pulses versus the peak
power of infrared pump pulses. ( ) Experimental points. The solid line is the theo-
retical prediction from Eq. (3.4). (From Baldeck et al., 1988a.)



infrared peak power at the maximum induced-frequency shift) has been
adjusted to fit the data. Experimental parameters were l = 532nm, T0 =
19.8ps (33ps FWHM), Lw = 26cm, and d = 4.

We have shown experimentally and theoretically that ultrashort optical
pulses that overlap in a nonlinear and highly dispersive medium can undergo
a substantial shift of their carrier frequency. This induced-frequency shift has
been demonstrated using strong infrared pulses to shift the frequency of
copropagating green pulses. The results are well explained by an analytical
model that includes the effect of cross-phase modulation and pulse walk-off.
This experiment led to a conclusive observation of XPM spectral effects.

3.3 XPM-Induced Spectral Broadening and Optical Amplification in
Optical Fibers

This section presents additional features that can arise from the XPM inter-
action between a pump pulse at 630nm and a probe pulse at 532nm. With
this choice of wavelengths, the group velocity dispersion between the pump
pulse and the probe pulse is reduced and the XPM interaction enhanced. The
spectral width and the energy of the probe pulse were found to increase in
the presence of the copropagating pump pulse (Baldeck et al., 1988c).

A schematic of the experimental setup is shown in Figure 4.15. A mode-
locked Nd: YAG laser with a second harmonic crystal was used to produce
pulses of 25-ps duration at 532nm. Pump pulses were obtained through stim-
ulated Raman scattering by focusing 90% of the 532-nm pulse energy into 
a 1-cm cell filled with ethanol and using a narrowband filter centered at 
630nm. Resulting pump pulses at 630nm were recombined with probe pulses
and coupled into a 3-m-long single-mode optical fiber. Spectra of probe
pulses were recorded for increasing pump intensities and varying input time
delays between pump and probe pulses.
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Figure 4.15. Experimental setup for generating copropagating picosecond pulses at
630 and 532nm. (From Baldeck et al., 1988c.)



With negative delays (late pump at the optical fiber input), the spectrum
of the probe pulse was red shifted as in the 1064nm/532nm experiment
(Figure 4.12). A new XPM effect was obtained when both pulses entered the
fiber simultaneously. The spectrum of the probe pulse not only shifted toward
blue frequencies as expected but also broadened (Figure 4.16). An spectral
broadening as wide as 10nm could be induced, which was, surprisingly, at
least one order of magnitude larger than predicted by the XPM theory. As
shown in Figure 4.16, the probe spectrum extended toward the blue-shifted
frequencies with periodic resonant lines. These lines could be related to mod-
ulation instability sidelobes that have been predicted theoretically to occur
with cross-phase modulation (see Section 8).

The optical amplification of the probe pulse is another new and unexpected
feature arising from the XPM interaction. Pump power-dependent gain factors
of 3 or 7 were measured using probe pulses at 532nm and pump pulses at 630
or 1064nm, respectively. Figure 4.17 shows the dependence of the XPM-
induced gain for the probe pulse at 532nm with the input time delay between
the probe pulse and the pump pulse at 630nm. The shape of the gain curve
corresponds to the overlap function of pump and probe pulses. Figure 4.18
shows the dependence or the gain factor on the intensity of pump pulses at
1064nm. This curve is typical of a parametric amplification with pump deple-
tion. The physical origin of this XPM-induced gain is still under investigation.
It could originate from an XPM-phase-matched four-wave mixing process.

The spectral distribution of probe pulses can be significantly affected by
the XPM generated by a copropagating pulse. In real time, the probe pulse
frequency can be tuned, its spectrum broadened, and its energy increased.
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Figure 4.16. Cross-phase modulation effects on the spectrum of a probe picosecond
pulse. (Dashed line) Reference spectrum without XPM. (Solid line) With XPM and
no time delay between pump and probe pulses at the optical fiber input. (From
Baldeck et al., 1988c.)
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Figure 4.17. XPM-induced optical gain I532(out)/I532(in) versus input time delay
between pump pulses at 630nm and probe pulses at 532nm. (Crosses) Experimental
data; (solid line) fit obtained by taking the convolution of pump and probe pulses.
(From Baldeck and Alfano, 1988c.)

Figure 4.18. XPM-induced optical gain I532(out)/I532(in) versus intensity of pump
pulses at 1064nm. (From Baldeck et al., 1987c–d.)



XPM appears as a new technique for controlling the spectral properties and
regenerating ultrashort optical pulses with terahertz repetition rates.

4. Cross-Phase Modulation with Stimulated 
Raman Scattering

When long samples are studied optically, stimulated Raman scattering (SRS)
contributes to the formation of ultrafast supercontinua. In 1980, Gersten,
Alfano, and Belic predicted that ultrashort pulses should generate broad
Raman lines due to the coupling among laser photons and vibrational
phonons (Gersten et al., 1980). This phenomenon was called cross-pulse
modulation (XPM). It characterized the phase modulation of the Raman
pulse by the intense pump laser pulse. Cornelius and Harris (1981) stressed
the role of SPM in SRS from more than one mode. Recently, a great deal of
attention has been focused on the combined effects of SRS, SPM, and group
velocity dispersion for the purposes of pulse compression and soliton gener-
ation (Dianov et al., 1984; Lu Hian-Hua et al., 1985; Stolen and Johnson,
1986; French et al., 1986; Nakashima et al., 1987; Johnson et al., 1986; Gomes
et al., 1988; Weiner et al., 1986–1988, to name a few). Schadt et al. numeri-
cally simulated the coupled wave equations describing the changes of pump
and Stokes envelopes (Schadt et al., 1986) and the effect of XPM on pump
and Stokes spectra (Schadt and Jaskorzynska, 1987a) in nonlinear and dis-
persive optical fibers. Manassah (1987a, b) obtained analytical solutions for
the phase and shape of a weak Raman pulse amplified during the pump and
Raman pulse walk-off. The spectral effects of XPM on picosecond Raman
pulses propagating in optical fibers were measured and characterized (Islam
et al., 1987a, b; Alfano et al., 1987b; Baldeck et al., 1987b, d). In this section
we review (1) Schadt and Jaskorzynska theoretical analysis of stimulated
Raman scattering in optical fibers and (2) measurements of XPM and SPM
effects on stimulated Raman scattering.

4.1 Theory of XPM with SRS

The following theoretical study of stimulated Raman scattering generation
of picosecond pulses in optical fibers is from excerpts from Schadt et al.
(1986) and Schadt and Jaskorzynska (1987a).

In the presence of copropagating Raman and pump pulses the nonlinear
polarization can be approximated in the same way as in Section 2.1 by

(19)

where the total electric field E3(r, z, t) is given by

(20)

In this case, A1 = Ap and A2 = As.
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The subscripts P and S refer to the pump and Stokes Raman pulses, respec-
tively. The anti-Stokes Raman is neglected. Substituting Eq. (20) into Eq. (19)
and keeping only terms synchronized with either pump or Stokes carrier fre-
quency, the nonlinear polarization becomes

(21a)

(21b)

where c (3) = c (3)
PM + icR

(3), cR
(3) gives rise to the Raman gain (or depletion) of the

probe (or pump), and c (3)
PM leads to self- and cross-phase modulations. Note

the factor 2 associated with XPM.
As in the pump-probe case, the phase shift contribution of the nonlinear

polarization at the pump (or Raman) frequency depends not only on the pump
(or Raman) peak power but also on the Raman (or pump) peak power. This
gives rise to cross-phase modulation during the Raman scattering process.

Using the expressions for PP
NL and PS

NL in the nonlinear wave equation,
leads to the coupled nonlinear dispersive equations for Raman and pump
pulses:

(22a)

(22b)

where A1 = a1/|a0P| are the complex amplitudes a1 normalized with respect to
the initial peak amplitude |a0P| of the pump pulse. The index 1 = P refers to
the pump, whereas 1 = S refers to the Stokes pulse. Z = z/zK and T = (t - z/vs)/t0

are the normalized propagation distance and the retarded time normalized
with respect to the duration of the initial pump pulse. W = w/(1/t0) is a nor-
malized frequency. Moreover, the following quantities were introduced:

zK = 1/gP|a0P|2 = 1/(|a0P|2n2wP/c) is the Kerr distance, with the PM coefficient
gP, the Kerr coefficient n2, and wP as the carrier frequency of the pump
pulse; c is the velocity of light.

zW = t0/(vp
-1 - vs

-1) is the walk-off distance; vp and vs are the group velocities
at the pump and Stokes frequencies, respectively.

zD = t 2
0/k≤P is the dispersion length; k≤P = ∂ 2kP/∂w2, where kP is the propagation

constant of the pump.
zD = 1/as|a0P|2 = 1/g |a0P|2 is the amplification length, with g the Raman gain

coefficient.
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zL = 1/GP is the pump loss distance, where GP is the attenuation coefficient at
the pump frequency.

The derivation of Eqs. (22) assumes that a quasi-steady-state approxima-
tion holds. Thus, it restricts the model to pulses much longer than the vibra-
tional dephasing time (~100 fs) of fused silica. The Raman gain or loss is
assumed to be constant over the spectral regions occupied by the Stokes and
pump pulses, respectively. Furthermore, the quasi-monochromatic approxi-
mation is used, which is justified as long as the spectral widths of the pulses
are much smaller than their carrier frequencies. As a consequence of these
simplifications, the considered spectral broadening of the pulses is a result
only of phase modulations and pulse reshaping. The direct transfer of the
chirp from the pump to the Stokes pulse by SRS is not described by the
model. The frequency dependence of the linear refractive index is included
to a second-order term, so both the walk-off arising from a group velocity
mismatch between the pump and Stokes pulses and the temporal broaden-
ing of the pulses are considered.

Using Eqs. (22a) and (22b), Schadt and Jaskorzynska numerically simu-
lated the generation of picosecond Raman pulses in optical fibers. They par-
ticularly investigated the influence of walk-off on the symmetry properties of
pulse spectra and temporal shapes and the contributions from SPM and
XPM to the chirp of the pulses.

4.1.1 Influence of Walk-Off on the Symmetry Properties of
the Pulse Spectra

Results obtained in absence of walk-off are shown in Figure 4.19 (Schadt
and Jaskorzynska, 1987a). The pump spectrum, broadened and modulated
by SPM, is slightly depleted at its center due the energy transfer toward the
Raman pulse (Figure 4.19a). The Raman spectrum is almost as wide as the
pump spectrum, but without modulations (Figure 4.19b). The spectral broad-
ening of the Raman spectrum arises mainly from XPM. The modulationless
feature appears because the Raman pulse, being much shorter than the pump
pulse, picks up only the linear part of the XPM-induced chirp. Such a lin-
early chirped Raman pulse could be efficiently compressed using a grating-
pair pulse compressor.

The influence of the walk-off on the Raman process is displayed in Figure
4.20. The pronounced asymmetry of the spectra in Figure 4.20a and 4.20b is
connected with the presence of the pulse walk-off in two different ways. When
the Stokes pulse has grown strong enough to deplete the pump pulse visibly,
it has also moved toward the leading edge of the pump (it is referred only to
regions of normal dipersion). The leading edge has in the meantime been
downshifted in frequency as a result of SPM. Consequently, the pump pulse
loses energy from the lower-frequency side. On the other hand, the asym-
metric depletion of the pump gives rise to the asymmetric depletion buildup
of the frequency shift itself, as can be seen from Figures 4.20c and 4.20d.
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Figure 4.19. Spectra of pump and Stokes Raman pulses in the absence of walk-off.
(a) Spectrum of the pump pulse. (b) Spectral broadening of the Stokes pulse because
of phase modulations. (From Schadt and Jaskorzynska, 1987a.)
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Theoretical spectra in Figure 4.20 agree very well with measured spectra
(Gomes et al., 1986; Weiner et al., 1986; Zysset and Weber, 1986).

4.1.2 Contributions from Self-Phase Modulation and Cross-Phase
Modulation to the Chirp of Pulses

The chirps of Raman and pump pulses originate from SPM and XPM. The
contributions from SPM and XPM are independent as long as the effect of
second-order dispersion is negligible. In Figure 4.21 are plotted the contribu-
tions to the pump and Stokes chirps coming from either SPM only (Figures
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Figure 4.21. Chirp components that are due to SPM and XPM for the case of
walk-off. (a) Pump chirp due to SPM only. (b) Stokes chirp due to SPM only. (c) 
Pump chirp due to XPM only. (d) Stokes chirp due to XPM only. (From Schadt and
Jaskorzynska, 1987a.)



4.21a, 4.21b) or XPM only (Figures 4.21c, 4.21d). The shapes of SPM con-
tributions shown in Figures 4.21a and 4.21b apparently reflect the history of
their buildup according to the changes of pulse shapes during the propaga-
tion. Their strong asymmetry is a result of an asymmetric development of the
pulse shapes that is due to walk-off. The XPM affecting the pump pulse in the
initial stage of the Raman process plays a lesser role as the pump depletion
becomes larger. This constituent of the chirp, associated with the Stokes pulse
is built up just in the region where most of the pump energy is scattered to
the Stokes frequency if the Raman process goes fast enough. However, if for
a fixed walk-off SRS is slow, as in the case illustrated by Figure 4.21c, the
leading part of the pump pulse will remain affected by the XPM.

The most characteristic feature of the XPM-induced part of the Stokes
chirp, shown in Figure 4.21d, is a plateau on the central part of the Stokes
pulse. In the case of the lower input power (Figure 4.21d) this plateau can be
attributed mainly to the effect of walk-off. Since pump depletion becomes
considerable only close to the end of the propagation distance, it has little
influence on the buildup of the chirp. For higher input powers the range over
which the chirp vanishes is wider. Consequently, after the walk-off distance
the effect of XPM on the Stokes chirp is negligible for a severely depleted
pump, whereas in the case of insignificant pump depletion the leading part
of the Stokes pulse will remain influenced by XPM.

Schadt et al. have developed a numerical model to describe combined
effects of SRS, SPM, XPM, and walk-off in single-mode optical fibers. They
explained the influence of the above effects on pump and Stokes spectra and
chirps. They separately studied the contributions of SPM and XPM to the
chirps and found that both walk-off and pump depletion tend to cancel the
effect of XPM on the chirp in the interesting pulse regions. However, for more
conclusive results an investigation of the direct transfer of the pump chirp
and consideration of the finite width of the Raman gain curve are needed.

4.2 Experiments

In the late 1970s and early 1980s, numerous experimental studies investigated
the possibility of using SRS to generate and amplify Raman pulses in optical
fibers (Stolen, 1979). However, most of these studies involved “long” nano-
second pulses and/or neglected to evaluate SPM and XPM contributions to
the pump and Raman spectral broadenings. It was not until 1987, after the
success of the first spectral broadening enhancement experiment (Alfano et
al., 1986), that measurements of XPM effects on Raman pulses were reported
(Islam et al., 1987a; Alfano et al., 1987b). In this section, research work at
AT&T Bell Laboratories and at the City College of New York is reported.

4.2.1 XPM Measurements with the Fiber Raman Amplification
Soliton Laser

Islam et al. showed the effects of pulse walk-off on XPM experimentally in
the Fiber Raman Amplification Soliton Laser (FRASL) (Islam et al., 1986).
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They proved that XPM prevents a fiber Raman laser from producing
pedestal-free, transform limited pulses except under restrictive conditions
(Islam et al., 1987b). The following simple picture of walk-off effects and
experimental evidence is excerpted from reference (Islam et al., 1987a).

The spectral features and broadening resulting from XPM depend on the
walk-off between the pump and signal pulses. These spectral features can be
confusing and complicated, but Islam et al. show that they can be understood
both qualitatively and quantitively and quantitatively by concentrating on the
phase change as a function of walk-off. XPM is most pronounced when the
pump and signal are of comparable pulse widths and when they track each
other. The phase change Df induced on the signal is proportional to the pump
intensity, and the signal spectrum (Figure 4.22a) looks like that obtained from
self-phase-modulation (SPM).

The opposite extreme occurs when the phase shift is uniform over the width
of the signal pulse. This may happen in the absence of pump depletion or
spreading if the pump walks completely through the signal, or if the signal
is much narrower than the pump and precisely tracks the pump. XPM is can-
celed in this limit, and the original spectral width of the signal (much nar-
rower than any shown in Figure 4.22) results.

A third simple limit exists when the pump and signal coincide at first, but
then the pump walks off. This is most characteristic of stimulated amplifica-
tion processes (i.e., starting from noise), and may occur also in synchro-
nously-pumped systems such as the FRASL. The net phase change turns out
to be proportional to the integral of the initial pump pulse, and, as Figure
4.22b shows, the signal spectrum is asymmetric and has “wiggles.” Figure
4.22c treats the intermediate case where the pump starts at the trailing edge
of the signal, and in the fiber walks through to the leading edge. A symmet-
ric spectrum results if the walk-off is symmetric.

A FRASL consists of a optical fiber ring cavity that is synchronously
pumped by picosecond pulses and designed to lase at the stimulated Raman
scattering Stokes wavelength (Figure 4.23). To obtain the generation of
soliton Raman pulses the pump wavelength is chosen in the positive group
velocity dispersion region of the optical fiber, whereas the Raman wavelength
is in the negative group velocity dispersion region. Inserting a narrowband
tunable etalon in the resonant ring, Islam et al. turned their laser in a pump-
probe configuration in which they could control the seed feedback into the
fiber and observe the spectral broadening in a single pass. The effect of walk-
off on XPM could be studied by changing the fiber length in the cavity.
Output Raman signals were passed through a bandpass filter to eliminate the
pump and then sent to a scanning Fabry-Perot and an autocorrelator.

When a 50-m fiber is used in the FRASL (l < lw), the signal remains 
with the pump throughout the fiber. With no etalon in the cavity, the signal
spectrum is wider than the 300-cm-1 free spectral range of the Fabry-Perot.
Even with the narrow-passband etalon introduced into the cavity, the 
spectral width remains greater than 300cm-1 (Figure 4.24a). Therefore,
more or less independent of the seed, the pump in a single pass severely
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Figure 4.22. Phase shifts and spectra corresponding to various degrees of walk-off
between pump and signal pulses. (a) Perfect tracking case (t0 = b = 0, 2A2l = 3.5p,
a = 1); (b) pump and signal coincide initially, and then pump walks off (t0 = 0,
bl = 4, 2A2/b = 3.5p, a = 1); and (c) pump walks from trailing edge of signal to the
leading edge (t0 = -2, bl = 4, 2A2/b = 3.5p, a = 1). (From Islam et al., 1987a.)



broadens the signal spectrum. As expected from theory, the Raman spectrum
is featureless.

If the fiber length is increased to 100m (l ª lw), there is partial walk-off
between the pump and signal and XPM again dominates the spectral fea-
tures. Without an etalon in the FEASL cavity, the emerging spectrum is wide
and has wiggles (Figure 4.24b). By time dispersion tuning the FRASL, thus
varying the amount of walk-off, the details of the spectrum can be changed
as shown in Figure 4.24c. Even after the etalon is inserted and the cavity
length appropriately adjusted, the spectrum remained qualitatively the same
(Figure 4.24d).

When there is complete walk-off between pump and signal (l = 400m >>
lw), without an etalon the spectrum is symmetric and secant-hyperboliclike,
althoug still broad (Figure 4.24e). The effects of XPM are reduced consid-
erably, but they are not canceleled completely because the walk-off is asym-
metrized by pump depletion. As Figure 4.24f shows, the addition of the
etalon narrows the spectrum (the narrow peak mimics the seed spectrum).
However, XPM still produces a broad spectral feature (at the base of the
peak), which is comparable in width to the spectrum without the filter (Figure
4.24e). In autocorrelation, it was found that the low-level wider feature cor-
responded to a t ª 250 fs peak, while the narrow spectral peak results in a
broader t ª 2.5ps pulse.

With these experimental results, Islam et al. have conclusively assessed the
effects of walk-off on Raman XPM. It should be noted that, despite the long
nonlinear interaction lengths, spectral broadenings were small and the SPM
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Figure 4.23. Modified fiber Raman amplification soliton laser (FRASL). B.S., beam
splitter. (From Islam et al., 1987a.)
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Figure 4.24. Experimental spectra for various fiber lengths (l) with and without the
tunable etalon in the FRASL cavity. (a) l = 50m with etalon in cavity. (b) l = 100m,
no etalon. (c) l = 100m, no etalon, but different FRASL cavity length than in (b).
(d) Same as (c), except with etalon inserted. (e) l = 400m, no etalon. (f) Same as (e),
except with etalon inserted. Here, except for the wings, the spectrum is nearly that of
the etalon. The vertical scales are in arbitrary units, and the signal strength increases
for increasing fiber lengths. (From Islam et al., 1987a.)



generated by the Raman pulse itself was negligible. Furthermore, measured
spectral features were characteristic of XPM for the Raman amplification
scheme, as expected for the injection of Raman seed pulses in the optical fiber
loop.

4.2.2 Generation of Picosecond Raman Pulses in Optical Fibers

Stimulated Raman scattering of ultrashort pulses in optical fibers attracts a
great deal of interest because of its potential applications for tunable fiber
lasers and all-optical amplifiers. XPM effects on weak Raman pulses propa-
gating in long low-dispersive optical fibers were characterized in the preced-
ing section. Temporal and spectral modifications of pump and Raman pulses
are more complex to analyze when Raman pulses are generated in short
lengths (i.e., high Raman threshold) of very dispersive optical fibers. In addi-
tion to XPM and walk-off, one has to take into account pump depletion,
SPM of the Raman pulse, Raman-induced XPM of the pump pulse, group
velocity dispersion broadening, higher-order SRS, and XPM-induced mod-
ulation instability. This section presents measurements of the generation of
Raman picosecond pulses from the noise using short lengths of a single-mode
optical fiber (Alfano et al., 1987b; Baldeck et al., 1987b–d).

A mode-locked Nd:YAG laser was used to generate 25-ps time duration
pulses at l = 532nm with a repetition rate of 10Hz. The optical fiber was
custom-made by Corning Glass. It has a 3-mm core diameter, a 0.24% 
refractive index difference, and a single-mode cutoff at l = 462nm. Spectra
of output pulses were measured using a grating spectrometer (1m, 600 lines/
mm) and recorded with an optical multichannel analyzer OMA2. Temporal
profiles of pump and Raman pulses were measured using a 2-ps resolution
Hamamatsu streak camera.

Spectra of pump and Raman pulses, which were measured for increasing
pump energy at the output of short fiber lengths, are plotted in Figure 4.25.
The dashed line in Figure 4.25a is the reference laser spectrum at low inten-
sity. Figures 4.25a (solid line) and 4.25b show spectra measured at the Raman
threshold at the output of 1- and 6-m-long optical fibers, respectively. The
Raman line appears at l = 544.5nm (about 440cm-1). The laser line is broad-
ened by SPM and shows XPM-induced sidebands, which are discussed in
Section 8. For moderate pump intensities above the stimulated Raman scat-
tering threshold, spectra of Raman pulses are broad, modulated, and sym-
metrical in both cases (Figures 4.25c and d). For these pump intensities, the
pulse walk-off (6m corresponds to two walk-off lengths) does not lead to
asymmetric spectral broadening. For higher pump intensities, Raman spectra
become much wider (Figures 4.25e and f ). In addition, spectra of Raman
pulses generated in the long fiber are highly asymmetric (Figure 4.25f ). The
intensity-dependent features observed in Figure 4.24 are characteristic of
spectral broadenings arising from nonlinear phase modulations such as SPM
and XPM as predicted by the theory (Section 4.1). At the lowest intensities
XPM dominates, while at the highest intensities the SPM generated by the
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Figure 4.25. Spectra of picosecond Raman pulses generated in short lengths of a
single-mode optical fiber. The laser and Raman lines are at 532 and 544.5nm, respec-
tively. Results in the left column and right column were obtained with 1- and 6-m-
long single-mode optical fibers, respectively. (a and b) Dashed line: referenced of laser
spectrum at low intensity; solid line: pump and Raman lines near the stimulated
Raman scattering threshold. Frequency sidebands about the laser line are XPM-
induced modulation instability sidebands (see Section 8). (c and d) Raman spectra for
moderate pump peak powers above threshold. (e and f ) Raman spectra for higher
pump peak powers. (From Baldeck et al., 1987c–d.)



Raman pulse itself is the most important. However, it should be noted that
the widths of Raman spectra shown in Figure 4.25 are one order of magni-
tude larger than expected from the theory. Modulation instability induced by
pump pulses could explain such a discrepancy between measurements and
theory (Section 8).

Temporal measurements of the generation process were performed to test
whether the spectral asymmetry originated from the pump depletion reshap-
ing as in the case of longer pulses (Schadt et al., 1986). Pump and Raman pro-
files were measured at the output of a 17-m-long fiber (Figure 4.26). The dotted
line is for a pump intensity at the SRS threshold and the solid line for a higher
pump intensity. The leading edge of the pump pulse is partially “eaten” but is
not completely emptied because of the quick walk-off between pump and
Raman pulses. Thus, the leading edge of the pump pulse does not become very
sharp, and the contribution of pump depletion effects to the spectral asym-
metry of pump and Raman pulses does not seem to be significant.

Figure 4.26 shows a typical sequence of temporal profiles measured for
input pump intensities strong enough to generate higher-order stimulated
Raman scattering lines. The temporal peaks are the maxima of high-order
SRS scatterings that satisfy the group velocity dispersion delay of 6ps/m for
each frequency shift of 440cm-1. These measurements show that (1) the
Raman process clamps the peak power of pulses propagating into an optical
fiber to a maximum value and (2) high-order stimulated Raman scatterings
occur in cascade during the laser pulse propagation.

4.2.3 Generation of Femtosecond Raman Pulses in Ethanol

Nonlinear phenomena such as supercontinuum generation and stimulated
Raman scattering were first produced in unstable self-focusing filaments gen-
erated by intense ultrashort pulses in many liquids and solids. Optical fibers
are convenient media for studying such nonlinear phenomena without the
catastrophic features of collapsing beams. However, optical fibers are not
suitable for certain applications such as high-power experiments, the genera-
tion of larger Raman shifts (>1000cm-1), and Raman pulses having high peak
powers (>1MW). In this section, spectral measurements of SRS generation
in ethanol are presented. Spectral shapes are shown to result from the com-
bined effects of XPM, SPM, and walk-off.

Spectral measurements of SRS in ethanol have been performed using the
output from a CPM ring dye amplifier system (Baldeck et al., 1987b). Pulses
of 500 fs duration at 625nm were amplified to an energy of about 1mJ at a
repetition rate of 20Hz. Pulses were weakly focused into a 20-cm-long cell
filled with ethanol. Output pulses were imaged on the slit of a 1–

2 -m Jarrell-
Ash spectrometer and spectra were recorded using an optical multichannel
analyzer OMA2.

Ethanol has a Raman line shifted by 2928cm-1. Figure 4.27 shows how the
Stokes spectrum of the Raman line changes as a function of the pump inten-
sity. Results are comparable to those obtained using optical fibers. At low
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Figure 4.26. Temporal shapes of reference pulse, pump pulse, and SRS pulses at the
output of a 17-m-long single-mode optical fiber for increasing pump intensity.
(a) First-order SRS for slightly different pump intensity near threshold. (b) First- and
second-order SRS. (c) First- to third-order SRS. (d) First- to fifth-order SRS. (From
Baldeck et al., 1987d.)



intensity the Stokes spectrum is narrow and symmetrical (Figure 4.27). As
the pump intensity increases the Raman spectrum broadens asymmetrically
with a long tail pointing toward the longer wavelengths. Spectra of the anti-
Stokes Raman line were also measured (Baldeck et al., 1987b). They were as
wide as Stokes spectra but with tails pointing toward the shortest wave-
lengths, as predicted by the sign of the walk-off parameter.

5. Harmonic Cross-Phase Modulation Generation 
in ZnSe

Like stimulated Raman scattering, the second harmonic generation (SHG)
process involves the copropagation of a weak generated-from-the-noise pulse
with an intense pump pulse. The SHG of ultrashort pulses occurs simulta-
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Figure 4.27. Effects of cross- and self-phase modulations on the Stokes-shifted
Raman line generated by 500-fs pulses in ethanol. (a to c) Increasing laser intensity.
(From Baldeck et al., 1987b.)



neously with cross-phase modulation, which affects both the temporal and
spectral properties of second harmonic pulses. In this section, measurements
of XPM on the second harmonic generated by an intense primary picosecond
pulse in ZnSe crystals are reported (Alfano et al., 1987a; Ho et al., 1988).

The laser system consisted of a mode-locked Nd:galss laser with single-pulse
selector and amplifier. The output laser pulse had about 2mJ energy and 8ps
duration at a wavelength of 1054nm. The 1054-nm laser pulse was weakly
focused into the sample. The spot size at the sample was about 1.5mm in diam-
eter. The second harmonic produced in this sample was about 10nJ. The inci-
dent laser energy was controlled using neutral density filters. The output light
was sent through a 1–

2 -m Jarrell-Ash spectrometer to measure the spectral dis-
tribution of the signal light. The 1054-nm incident laser light was filtered out
before detection. A 2-ps time resolution Hamamatsu streak camera system was
used to measure the temporal characteristics of the signal pulse. Polycrys-
talline ZnSe samples 2, 5, 10, 22, and 50mm thick were purchased from Janos,
Inc. and a single crystal of ZnSe 16mm thick was grown at Philips.

Typical spectra of non-phase-matched SHG pulses generated in a ZnSe
crystal by 1054-nm laser pulses of various pulse energies are displayed in
Figure 4.28. The spectrum from a quartz sample is included in Figure 4.28d
for reference. The salient features of the ZnSe spectra indicate that the extent
of the spectral broadening about the second harmonic line at 527nm depends
on the intensity of the 1054-nm laser pulse. When the incident laser pulse
energy was 2mJ, there was significant spectral broadening of about 1100cm-1

on the Stokes side and 770cm-1 on the anti-Stokes side (Figure 4.29). There
was no significant difference in the spectral broadening distribution measured
in the single and polycrystalline materials. The spectral width of the SHG
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Figure 4.28. Induced-spectral-broaden-
ing spectra in ZnSe crystal excited by an
intense 1060-nm laser pump. In (d) the
ZnSe crystal was replaced by a 3.7-cm-
long quartz crystal. (From Alfano et al.,
1987a.)



signal is plotted for the Stokes and anti-Stokes sides as a function of the inci-
dent pulse energy in Figure 4.30. The salient feature of Figure 4.30 is that
the Stokes side of the spectrum is broader than the anti-Stokes side. When
the incident pulse energy was less than 1mJ, the spectral broadening was
found to be monotonically increasing on the pulse energy of 1054nm. The
spectral broadening generated by sending an intense 80-mJ, 527-nm, 8-ps laser
pulse alone through these ZnSe crystals was also measured for comparison
with the ±1000cm-1 induced spectral broadening. The observed spectral
broadening was only 200cm-1 when the energy of the 527-nm pulse was over
0.2mJ. This measurement suggests that the self-phase modulation process
from the 10-nJ SHG pulse in ZnSe is too insignificant to explain the observed
1000cm-1. Most likely, the broad spectral width of the SHG signal arises from
the XPM generated by the pump during the generation process.

The temporal profile and propagation time of the intense 1054-nm pump
pulse and the second harmonic pulse propagating through a 22-mm ZnSe
polycrystalline sample is shown in Figure 4.31. A pulse delay of ~189ps at
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Figure 4.29. Spectral measurement of the induced spectrally broadened pulse about
l = 527nm by sending a 1054-nm pulse through 22-mm ZnSe. (From Alfano et al.,
1988.)



1054nm was observed (Figure 4.31a) when an intense 1054-nm pulse passed
through the crystal. The second harmonic signal, which spread from 500 
to 570nm, indicated a sharp spike at 189ps and a long plateau from 189 to
249ps (Figure 4.31b). Using 10-nm bandwidth narrowband filters, pulses of
selected wavelengths from the second harmonic signal were also measured.
For example, time delays corresponding to the propagation of two pulses
with wavelengths centered at 530 and 550nm are displayed in Figures 4.31c
and d, respectively. All traces from Figure 4.31 indicated that the induced
spectrally broadened pulses have one major component emitted at nearly the
same time as the incident pulse (Figure 4.31a). The selected wavelength
shifted 10nm from the second harmonic wavelength has shown a dominant
pulse distribution generated at the end of the crystal. Furthermore, when a
weak 3-nJ, 527-nm calibration pulse propagated alone through the 22-mm
ZnSe, a propagation time of about 249ps was observed, as expected from the
group velocity.

The difference in the propagation times of a weak 527-nm calibration pulse
and a 1054-nm pump pulse through a ZnSe crystal can be predicted perfectly
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Figure 4.30. Intensity dependence of induced spectral width about 530nm in ZnSe
pumped by a 1060-nm laser pulse. The horizontal axis is the incident laser pulse
energy. (�) 2.2-cm-long polycrystalline ZnSe anti-Stokes broadening. (�) 2.2-cm-long
polycrystalline ZnSe Stokes broadening. (�) 1.6-cm-long single-crystal ZnSe anti-
Stokes broadening. (�) 1.6-cm-long single-crystal ZnSe Stokes broadening. (�) 3.7-
cm-long quartz crystal anti-Stokes broadening. (�) 3.7-cm-long quartz crystal Stokes
broadening. The measured Dn is defined as the frequency spread from 527nm to the
farthest detectable wavelengths measured either photographically or by an optical
multi-channel analyzer. (From Alfano and Ho, 1988.)



by the difference in group velocities. The measured group refractive indices
of ZnSe can be fitted to ng,1054 = 3.39 and ng,1054 = 2.57, respectively. These
values are in agreement with the calculated values.

The sharp spike and plateau of the second harmonic pulse can be explained
using the XPM model of second harmonic generation (Ho et al., 1980).
Because of lack of phase matching, i.e., destructive interferences, the energy
of the second harmonic pulse cannot build up along the crystal length. As a
result, most of the second harmonic power is generated at the exit face of the
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Figure 4.31. Temporal profile and propagation delay time of (a) incident 1054nm,
(b) SHG-XPM signal of all visible spectra, and (c) selected 530nm from SHG-XPM
of a 22-nm-long ZnSe crystal measured by a 2-ps resolution streak camera system.
(d) same as (c) for a signal selected at 550nm. The reference time corresponds to a
laser pulse traveling through air without the crystal. The right side of the time scale
is the leading time. The vertical scale is an arbitrary intensity scale. (From Alfano and
Ho, 1988.)



crystal, which explains the observed spike. However, since very intense pump
pulses are involved there is a partial phase matching due to the cross-phase
modulation and two photon absorption effects at the second harmonic wave-
length. Some second harmonic energy can build up between the entrance and
exit faces of the sample, which explains the plateau feature.

6. Cross-Phase Modulation and Stimulated Four-Photon
Mixing in Optical Fibers

Stimulated four-photon mixing (SFPM) is an ideal process for designing
parametric optical amplifiers and frequency converters. SFPM is produced
when two high-intensity pump photons are coupled by the third-order sus-
ceptibility c(3) to generate a Stokes photon and an anti-Stokes photon. The
frequency shifts of the SFPM waves are determined by the phase-matching
conditions, which depend on the optical geometry. SFPM was produced in
glass by Alfano and Shapiro (1970) using picosecond pulses. Later, SFPM
was successfully demonstrated by a number of investigators in few mode,
birefringent, and single-mode optical fibers (Stolen, 1975; Stolen et al., 1981;
Washio et al., 1980). Most of the earlier experiments using optical fibers were
performed with nanosecond pulses. Lin and Bosch (1981) obtained large-
frequency shifts; however, the spectral dependence on the input intensity was
not investigated. In the following, measurements of the intensity dependence
of SFPM spectra generated by 25-ps pulses in an optical fiber are reported
(Baldeck and Alfano, 1987). For such short pulses, spectra are influenced by
the combined effects of SPM and XPM. The broadening of SFPM lines and
the formation of frequency continua are investigated.

The experimental method is as follows. A Quantel frequency-doubled
mode-locked Nd: YAG laser produced 25-ps pulses. An X20 microscope lens
was used to couple the laser beam into the optical fiber. The spectra of the
output pulses were measured using a 1-m, 1200 lines/mm grating spectro-
meter. Spectra were recorded on photographic film and with an optical 
multichannel analyzer OMA2. Average powers coupled in the fiber were mea-
sured with a power meter at the optical fiber output. The 15-m-long optical
fiber had a core diameter of 8mm and a normalized frequency V = 4.44 at
532nm. At this wavelength, the four first LP modes (LP01, LP11, LP21, and
LP02) were allowed to propagate.

Typical intensity-Dependent spectra are displayed in Figures 4.32, 4.33,
and 4.34. At low intensity, I < 108 W/cm2, the output spectrum contains only
the pump wavelength l = 532nm (Figure 4.32a). At approximately 5 ¥ 108 W/
cm2 three sets of symmetrical SFPM lines (at W = 50, 160, and 210cm-1) and
the first SRS Stokes line (at 440cm-1) appear (Figures 4.32b and c). As the
intensity increases the SFPM and SRS lines broaden, and a Stokes frequency
continuum is generated (Figures 4.32d and e). Above an intensity threshold
of 20 ¥ 108 W/cm2, new sets of SFPM lines appear on the Stokes and 
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Figure 4.32. Evolution of a stimulated
four-photon spectrum with increasing pulse
intensity. (a) I < 108 W/cm2; (b and c) I = 5 ¥
108 W/cm2; (d) I = 10 ¥ 108 W/cm2; (e) I = 15
¥ 108 W/cm2; (f) I = 30 ¥ 108 W/cm2; (g) I =
35 ¥ 108 W/cm2. (From Baldeck and Alfano,
1987.)

Figure 4.33. (a to e) Sequence of the
large-shift SFPM line broadening. The
pulse peak intensity increases from I =
20 ¥ 108 W/cm2 in (a) to I = 30 ¥ 108 W/
cm2 in (e) in steps of 2.5 ¥ 108 W/cm2.
(From Baldeck and Alfano, 1987.)

Figure 4.34. Examples of large-
shift Stokes lines with their 
corresponding anti-Stokes lines.
Photographs of the Stokes and
anti-Stokes regions were spliced
together. (From Baldeck and
Alfano, 1987.)



anti-Stokes sides with frequency ranging from 2700 to 3865cm-1. Finally, the
large shifts merge (Figure 4.32f ) and contribute to the formation of a 4000
cm-1 frequency continuum (Figure 4.32g). Figure 4.33 shows how the large
Stokes shift SFPM lines are generated and broaden when the pump intensity
increases from 20 ¥ 108 to 30 ¥ 108 W/cm2. Figure 4.34 gives two examples of
complete spectra including the large-shift anti-Stokes and Stokes lines. The
measured SFPM shifts correspond well with the phase-matching condition
of SFPM in optical fibers.

Figure 4.35 shows the development of a Stokes continuum from the com-
bined effects of SFPM, SRS, SPM, and XPM. As the pump intensity is
increased, the pump, SFPM, and first SRS lines broaden and merge (Figure
4.35a). For stronger pump intensities, the continuum is duplicated by stimu-
lated Raman scattering, and the continuum expands toward the lowest
optical frequencies (Figure 4.35b). As shown, the maximum intensities of
new frequencies are self-limited.

The broadening of the SFPM and SRS lines arises from self- and cross-
phase modulation effects. It is established that spectral broadenings gener-
ated by SPM are inversely proportional to the pulse duration and linearly
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Figure 4.35. Supercontinuum generation. (a) The pump, SFPM, and first SRS
Stokes lines are broadened at I = 10 ¥ 108 W/cm2. (b) The broadened second and third
SRS Stokes lines appear and extend the spectrum toward the Stokes wavelengths at
I = 15 ¥ 108 W/cm2. (From Baldeck and Alfano, 1987.)



proportional to the pump intensity. In this experiment, SPM effects are
important because of the pump pulse shortness (25ps) and intensity (109 W/
cm2). Furthermore, the modulation that is seen in the continuum spectrum
fits well with the spectrum modulation predicted by phase modulation 
theories.

Figure 4.36 shows the spectral broadening of the anti-Stokes SFPM line
of l = 460nm (W = 2990cm-1). This line is a large-shift SFPM anti-Stokes
line generated simultaneously with the l = 633nm SFPM Stokes line by the
laser pump of l = 532nm (see Figure 4.34). The corresponding frequency
shift and mode distribution are W = 2990cm-1 and LP01 (pump)–LP11 (Stokes
and anti-Stokes), respectively. From Figures 4.36a to d, the peak intensity of
the l = 460nm line increases from approximately 20 ¥ 108 to 30 ¥ 108 W/cm2

in steps of 2.5 ¥ 108 W/cm2. In Figure 4.36a, the spectrum contains only the
460-nm SFPM line generated by the laser pump (l = 532nm). In Figure 4.36b,
the line begins to broaden and two symmetrical lines appear with a frequency
shift of 100cm-1. This set of lines could be a new set of small-shift SFPM
lines generated by the 460-nm SFPM line acting as a new pump wavelength.
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Figure 4.36. (a to d) Spectral broadening of the anti-Stokes SFPM line generated at
460nm. The pulse peak intensity increases from I = 20 ¥ 108 W/cm2 in (a) to I = 30 ¥
108 W/cm2 in (e) in steps of 2.5 ¥ 108 W/cm2. (From Baldeck and Alfano, 1987.)



Figures 4.36c and d show significant broadening, by a combined action of
SFPM, SPM, and XPM, of the 460nm into a frequency continuum. Similar
effects were observed on the Stokes side as displayed in Figure 4.33.

The intensity effects on SFPM spectra generated by 25-ps pulses propa-
gating in optical fibers have been investigated experimentally. In contrast to
SFPM lines generated by nanosecond pulses, spectra were broadened by self-
phase modulation and cross-phase modulation. Intensity-saturated wide 
frequency continua covering the whole visible spectrum were generated for
increasing intensities. Applications are for the design of wideband amplifiers,
the generation of “white” picosecond pulses, and the generation by pulse
compression of femtosecond pulses at new wavelengths.

7. Induced Focusing by Cross-Phase Modulation in
Optical Fibers

Cross-phase modulation originates from the nonlinear refractive index Dn(r,
t) = 2n2E 2

p(r, t) generated by the pump pulse at the wavelength of the probe
pulse. Consequently, XPM has not only temporal and spectral effects but also
spatial effects. Induced focusing is a spatial effect of XPM on the probe beam
diameter. Induced focusing is the focusing of a probe beam because of the
radial change of the refractive index induced by a copropagating pump beam.
Induced focusing is similar to the self-focusing (Kelley, 1965) of intense lasers
beams that has been observed in many liquids and solids. Overviews and 
references on self-focusing in condensed media are given by Auston (1977)
and Shen (1984).

In 1987, Baldeck, Raccah, and Alfano reported on experimental evidence
for focusing of picosecond pulses propagating in an optical fiber (Baldeck 
et al., 1987a). Focusing occurred at Raman frequencies for which the 
spatial effect of the nonlinear refractive index was enhanced by cross-phase
modulation. Results of this experiment on induced focusing by cross-phase
modulation in optical fibers are summarized in this section.

The experimental setup is shown in Figure 4.37. A Quantel frequency-
doubled mode-locked Nd: YAG laser produced 25-ps pulses at 532nm. The
laser beam was coupled into the optical fiber with a 10¥ microscope lens. A
stable modal distribution was obtained with a Newport FM-1 mode scram-
bler. Images of the intensity distribution at the output face were magnified
by 350¥ and recorded on photographic film. Narrowband (NB) filters were
used to select frequencies of the output pulses. The optical fiber was a com-
mercial multimode step-index fiber (Newport F-MLD). Its core diameter was
100 mm, its numerical aperture 0.3, and its length 7.5m.

Several magnified images of the intensity distributions that were observed
at the output face of the fiber for different input pulse energies are shown in
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Figure 4.38. The intensity distribution obtained for low pulse energies (E <
1nJ) is shown in Figure 4.38a. It consists of a disk profile with a speckle
pattern. The intensity distribution of the disk covers the entire fiber core area.
The disk diameter, measured by comparison with images of calibrated slits,
is 100mm, which corresponds to the core diameter. The characteristics of this
fiber allow for the excitation of about 200,000 modes. The mode scrambler
distributed the input energy to most of the different modes. The speckle
pattern is due to the interference of these modes on the output face. Figure
4.37b shows the intensity distribution in the core for intense pulses (E >
10nJ). At the center of the 100-mm-diameter disk image, there is an intense
smaller (11-mm) ring of a Stokes-shifted frequency continuum of light.
About 50% of the input energy propagated in this small-ring pattern. The
corresponding intensities and nonlinear refractive indices are in the ranges of
gigawatts per square centimeter and 10-6, respectively. For such intensities,
there is a combined effect of stimulated Raman scattering, self-phase modu-
lation, and cross-phase modulation that generates the observed frequency
continuum. In Figure 4.37c, an NB filter selected the output light pattern at
550nm. This clearly shows the ring distribution of the Stokes-shifted wave-
lengths. Such a ring distribution was observed for a continuum of Stokes-
shifted wavelengths up to 620nm for the highest input energy before damage.

The small-ring intensity profile is a signature of induced focusing at the
Raman wavelengths. First, the small ring is speckleless, which is characteris-
tic of single-mode propagation. This single-mode propagation means that the
guiding properties of the fiber are dramatically changed by the incoming
pulses. Second, SRS, SPM, and XPM occur only in the ring structure, i.e.,
where the maximum input energy has been concentrated. Our experimental
results may be explained by an induced-gradient-index model for induced
focusing. For high input energies, the Gaussian beam induces a radial change
of the refractive index in the optical fiber core. The step-index fiber becomes
a gradient-index fiber, which modifies its light-guiding properties. There is
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Figure 4.37. Experimental setup for the observation of Raman focusing in a large-
core optical fiber. (From Baldeck et al., 1987.)



further enhancement of the nonlinear refractive index at Raman frequencies
because of XPM. Thus, Stokes-shifted light propagates in a well-marked
induced-gradient-index fiber. The ray propagation characteristics of a gradi-
ent-index fiber are shown schematically in Figure 4.39 (Keiser, 1983). The
cross-sectional view of a skew-ray trajectory in a graded-index fiber is shown.
For a given mode u, there are two values for the radii, r1 and r2, between which
the mode is guided. The path followed by the corresponding ray lies com-
pletely within the boundaries of two coaxial cylindrical surfaces that form a
well-defined ring. These surfaces are known as the caustic surfaces. They have
inner and outer radii r1 and r2, respectively. Hence, Figure 4.39 shows that
skew rays propagate in a ring structure comparable to the one shown in
Figure 4.38c. This seems to support the induced-gradient-index model for
induced focusing in optical fibers.

Induced focusing of Raman picosecond pulses has been observed in optical
fibers. Experimental results may be explained by an induced-gradient-index
model of induced focusing. An immediate application of this observation
could be the single-mode propagation of high-bit-rate optical signals in large-
core optical fibers.
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Figure 4.38. Images of the intensity distributions at the optical fiber output: (a) input
pulses of low energies (E < 1nJ); (b) input pulses of high energies (E > 10nJ); (c) same
as (b) with an additional narrowband filter centered at l = 550nm. (M = 350c). (From
Baldeck et al., 1987a.)



8. Modulation Instability Induced by 
Cross-Phase Modulation in Optical Fibers

Modulation instability refers to the sudden breakup in time of waves propa-
gating in nonlinear dispersive media. It is a common nonlinear phenomenon
studied in several branches of physics (an overview on modulation instabil-
ity can be found in Hasegawa, 1975). Modulation instabilities occur when the
steady state becomes unstable as a result of an interplay between the disper-
sive and nonlinear effects. Tai, Hasegawa, and Tomita have observed the
modulation instability in the anomalous dispersion regime of silica fibers,
i.e., for wavelengths greater than 1.3 mm (Tai et al., 1986). Most recently,
Agrawal (1987) has suggested that a new kind of modulation instability can
occur even in the normal dispersion regime when two copropagating fields
interact with each other through the nonlinearity-induced cross-phase mod-
ulation. This section summarizes the first observation by Baldeck, Alfano,
and Agrawal of such a modulation instability initiated by cross-phase mod-
ulation in the normal dispersion regime of silica optical fibers (Baldeck et al.,
1988b, 1989d).

Optical pulses at 532nm were generated by either a mode-locked Nd: YAG
laser or a Q-switched Nd: YAG laser with widths of 25ps or 10ns, respec-
tively. In both cases the repetition rate of pulses was 10Hz. Pulses were
coupled into a single-mode optical fiber using a microscope lens with a mag-
nification of 40. The peak power of pulses into the fiber could be adjusted
in the range 1 to 104 W by changing the coupling conditions and by using
neutral density filters. The optical fiber was custom-made by Corning Glass.
It has a 3-mm core diameter, a 0.24% refractive index difference, and a single-
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Figure 4.39. Cross-sectional 
projection of a skew ray in a gra-
dient-index fiber and the graphi-
cal representation of its mode
solution from the WBK method.
The field is oscillatory between 
the turning points r1 and r2 and is
evanescent outside this region.



mode cutoff at l = 462nm. Spectra of output pulses were measured using 
a grating spectrometer (1m, 600 lines/mm) and recorded with an optical 
multichannel analyzer OMA2.

Figures 4.40 and 4.41 show spectra of intense 25-ps pulses recorded for
different peak powers and fiber lengths. Figure 4.40a is the reference spec-
trum of low-intensity pulses. Figures 4.40b and c show spectra measured at
about the modulation instability threshold for fiber lengths of 3 and 0.8m,
respectively. They show modulation instability sidebands on both sides of the
laser wavelength at 532nm and the first-order stimulated Raman scattering
line at 544.5nm. Notice that the frequency shift of sidebands is larger for the
shorter fiber. Secondary sidebands were also observed for pulse energy well
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Figure 4.40. Characteristic fre-
quency sidebands of modulation
instability resulting from cross-
phase modulation induced by the
simultaneously generated Raman
pulses in lengths L of a single-mode
optical fiber. The laser line is at 
l = 532nm and the Raman line at
l = 544.5nm. The time duration of
input pulses is 25ps. (a) Reference
spectrum at low intensity; (b) Spec-
trum at about the modulation
instability threshold and L = 3m;
(c) same as (b) for L = 0.8m. (From
Baldeck et al., 1988d–1989.)

Figure 4.41. Secondary sidebands
observed for pulse energies well
above the modulation instability
threshold. (From Baldeck et al.,
1988d–1989.)



above the modulation instability threshold and longer optical fibers as shown
in Figure 4.41.

Similar to spectra in the experiment of Tai et al., spectra shown in Figures
4.40 and 4.41 are undoubtedly signatures of modulation instability. A major
salient difference in the spectra in Figures 4.40 and 4.41 is that they show
modulation instability about 532nm, a wavelength in the normal dispersion
regime of the fiber. According to the theory, modulation instability at this
wavelength is possible only if there is a cross-phase modulation interaction
(Agrawal, 1987). As shown in Figure 4.40, modulation instability sidebands
were observed only in the presence of stimulated Raman scattering light. It
has recently been demonstrated that cross-phase modulation is intrinsic to
the stimulated Raman scattering process (see Section 4). Therefore, sideband
features observed in Figures 4.40 and 4.41 are conclusively a result of the
cross-phase modulation induced by the simultaneously generated Raman
pulses. To rule out the possibility of a multimode or single-mode stimulated
four-photon mixing process as the origin of the sidebands, Baldeck et al. note
that the fiber is truly single-mode (cutoff wavelength at 462nm) and that the
sideband separation changes with the fiber length.

The strengthen the conclusion that the sidebands are due to modulation
instability induced by cross-phase modulation, Baldeck et al. measured and
compared with theory the dependence of sideband shifts on the fiber lengths.
For this measurement, they used 10-ns pulses from the Q-switched Nd:YAG
laser to ensure quasi-CW operation. The spectra were similar to those
obtained with 25-ps pulses (Figure 4.40). As shown in Figure 4.42, the side-
lobe separation, defined as the half-distance between sideband maxima,
varied from 1.5 to 8.5nm for fiber lengths ranging from 4 to 0.1m, respec-
tively. The energy of input pulses was set at approximately the modulation
instability threshold for each fiber length. The solid line in Figure 4.42 cor-
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Figure 4.42. Sideband shifts versus
fiber length near the modulation
instability threshold. The time dura-
tion of input pulses is 10ns. Crosses
are experimental points. The solid
line is the theoretical fit from Eq.
(25). (From Baldeck et al., 1988d–
1989.)



responds to the theoretical fit. As discussed in Agrawal (1987), the maximum
gain of modulation instability sidebands is given by gmax = k≤W2

m, where Wm =
2pfm is the sideband shift. Thus, the power of a sideband for an optical fiber
length L is given by

(23)

where Pnoise is the initial spontaneous noise and k≤ = ∂(vg)-1/∂w is the group
velocity dispersion at the laser frequency.

For such amplified spontaneous emission, it is common to define a thres-
hold gain gth by

(24)

where Pth is the sideband power near threshold such that each sideband con-
tains about 10% of the input energy. A typical value for gth is 16 (Tai et al.,
1986).

From Eqs. (23) and (24) the dependence of the sideband shift on the fiber
length near threshold is given by

(25)

At l = 532nm, the group velocity dispersion in k≤ ª 0.06ps2/m. The theoret-
ical fit shown in Figure 4.42 (solid line) is obtained using this value and gth

= 18.1 in Eq. (25). The good agreement between the experimental data and
the theory of modulation instability supports the belief of Baldeck et al. that
they have observed cross-phase modulation-induced modulation instability,
as predicted in Agrawal (1987).

Tai et al. have shown that modulation instability leads to the breakup of
long quasi-CW pulses in trains of picosecond subpulses. The data in Figure
4.42 show that the maximum sideband shift is Dlmax ª 8.5nm or 8.5THz,
which corresponds to the generation of femtosecond subpulses within the
envelope of the 10-ns input pulses with a repetition time of 120 fs. Even
though autocorrelation measurements were not possible because of the low
repetition rate (10Hz) needed to generate pulses with kilowatt peak powers,
Baldeck et al. believe they have generated for the first time modulation insta-
bility subpulses shorter than 100 fs.

Baldeck et al. (1988b) observed modulation instability in the normal dis-
persion regime of optical fibers. Modulation instability sidebands appear
about the pump frequency as a result of cross-phase modulation induced by
the simultaneously generated Raman pulses. Sideband frequency shifts were
measured for many fiber lengths and found to be in good agreement with
theory. In this experiment, cross-phase modulation originated from an optical
wave generated inside the nonlinear medium, but similar results are expected
when both waves are incident externally. Modulation instability induced by
cross-phase modulation represents a new kind of modulation instability that
not only occurs in normally dispersive materials but also, most important,
has the potential to be controlled in real time by switching on or off the

Wm g k L= ¢¢( )th
1 2.

P L P gth noise th( ) = ( )exp ,

P L P k Lm mW W, exp ,( ) = ¢¢( )noise
2
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copropagating pulse responsible for the cross-phase modulation. Using
optical fibers, such modulation instabilities could lead to the design of a novel
source of femtosecond pulses at visible wavelengths.

9. Applications of Cross-Phase Modulation for
Ultrashort Pulse Technology

Over the last 20 years, picosecond and femtosecond laser sources have been
developed. Researchers are now investigating new applications of the unique
properties of these ultrashort pulses. The main efforts are toward the design
of communication networks and optical computers with data streams in,
eventually, the tens of terahertz. For these high repetition rates, electronic
components are too slow and all-optical schemes are needed. The discovery
of cross-phase modulation effects on ultrashort pulses appears to be a major
breakthrough toward the real-time all-optical coding/decoding of such short
pulses. As examples, this section describes the original schemes for a fre-
quency shifter, a pulse compression switch, and a spatial light deflector. These
all-optical devices are based on spectral, temporal, and spatial effects of
cross-phase modulation on ultrashort pulses.

The first XPM-based technique to control ultrashort pulses was developed
in the early 1970s. It is the well-known optical Kerr gate, which is shown 
in Figure 4.43. A probe pulse can be transmitted through a pair of cross-
polarizers only when a pump pulse induces the (cross-) phase (modulation)
needed for the change of polarization of the probe pulse. The principle of the
optical Kerr gate was demonstrated using nonlinear liquids (Shimizu and Sto-
icheff, 1969; Duguay and Hansen, 1969) and optical fibers (Stolen and Ashkin,
1972; Dziedzic et al., 1981; Ayral et al., 1984). In optical fibers, induced-phase
effects can be generated with milliwatt peak powers because of their long
interaction lengths and small cross sections (White et al., 1988). XPM effects
in optical fibers have been shown to alter the transmission of frequency 
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Figure 4.43. Schematic diagram of an optical Kerr gate.



multiplexed signals (Chraplyvy et al., 1984) and also to allow quantum non-
demolition measurements (Levenson et al., 1986; Imoto et al., 1987). In addi-
tion, phase effects arising from XPM have been used to make all-fiber logic
gates (Kitayama et al., 1985a), ultrafast optical multi/demultiplexers (Morioka 
et al., 1987), and nonlinear interferometers (Monerie and Durteste, 1987).

The novelty of our most recent work was to show that XPM leads not only
to phase effects but also to spectral, temporal, and spatial effects on ultra-
short pulses. New schemes for XPM-based optical signal processors are pro-
posed in Figure 4.44. The design of an ultrafast frequency shifter is shown
in Figure 4.44a. It is based on spectral changes that occur when pulses
copropagate in a nonlinear dispersive medium. In the absence of a pump
pulse, the weak signal pulse passes undistorted through the nonlinear
medium. When the signal pulse copropagates in the nonlinear medium with
a pump pulse, its carrier wavelength can be changed by an amount Dl that
is linearly proportional to the peak power of the pump pulse (see Section
3.2). Thus, in Figure 4.44 the signal pulses S1 and S2 have their frequencies
shifted by Dl1 and Dl2 by the pump pulses P1 and P2, while S3 is not affected
by the stream of pump pulses.

The design of a pulse-compression switch is proposed in Figure 4.44b. It
is a modified version of the usual optical fiber/grating-pair pulse compres-
sion scheme (see Chapter 9 by Dorsinville et al. and Chapter 10 by Johnson
and Shank). First, the probe pulse is spectrally broadened by a copropagat-
ing pump pulse in the nonlinear medium (case of negligible group velocity
mismatch; see Sections 2.2 and 3.1). Then, or simultaneously, it is compressed
in time by a dispersive element. Thus, in the presence of the pump pulse, the
signal pulse is compressed (“on” state), while in its absence, the signal pulse
is widely broadened (“off” state) by the device.

An example of an all-optical spatial light deflector based on spatial effects
of XPM is shown in Figure 4.44c. In this scheme, the pump pulse profile
leads to an induced focusing of the signal pulse through the induced non-
linear refractive index (Section 7). The key point in Figure 4.43c is that half
of the pump pulse profile is cut by a mask, which leads to an asymmetric
induced-focusing effect and a spatial deflection of the signal pulse. This effect
is very similar to the self-deflection of asymmetric optical beams (Swart-
lander and Kaplan, 1988). In the proposed device, pump pulses originate
from either path P1 or path P2, which have, respectively, their left side or right
side blocked. Thus, if a signal pulse copropagates with a pump pulse from
P1 or P2, it is deflected on, respectively, the right or left side of the non-
deflected signal pulse.

The prime property of future XPM-based optical devices will be their
switching speed. They will be controlled by ultrashort pulses that will turn
on or off the induced nonlinearity responsible for XPM effects. With short
pulses, the nonlinearity originates from the fast electronic response of the
interacting material. As an example, the time response of electronic non-
linearity in optical fibers is about 2 to 4 fs (Grudinin et al., 1987). With such
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Figure 4.44. Schematic diagrams of ultrafast optical processors based on cross-phase
modulation effects. (a) Ultrafast frequency shifter; (b) all-optical pulse compression
switch; (c) all-optical spatial light deflector.



a response time, one can envision the optical processing of femtosecond
pulses with repetition rates up to 100THz.

10. Conclusion

This chapter reviewed cross-phase modulation effects on ultrashort optical
pulses. It presented XPM measurements that were obtained during the years
1986 to 1988. XPM is a newly identified physical phenomenon with impor-
tant potential applications based on the picosecond and femtosecond pulse
technology. XPM is similar to SPM but corresponds to the phase modula-
tion caused by the nonlinear refractive index induced by a copropagating pulse.
As for SPM, the time and space dependences of XPM lead to spectral, tem-
poral, and spatial changes of ultrashort pulses.

Experimental investigations of cross-phase modulation effects began in
1986, when the spectral broadening enhancement of a probe pulse was
reported for the first time. Subsequently, spectra of Raman, second har-
monic, and stimulated four-photon mixing picosecond pulses were found to
broaden with increasing pump intensities. Moreover, it was demonstrated
that the spectral shape of Raman pulses was affected by the pulse walk-off,
that the frequency of copropagating pulses could be tuned by changing the
input time delay between probe and pump pulses, and that modulation insta-
bility could be obtained in the normal dispersion regime of optical fibers. All
these results are well understood in terms of the XPM theory. Furthermore,
induced focusing of Raman pulses, which was recently observed in optical
fibers, was explained as a spatial effect of XPM.

The research trends are now toward more quantitative comparisons
between measurement and theory and the development of XPM-based appli-
cations. Future experiments should clarify the relative contributions of SPM,
XPM, and modulation instability to the spectral broadening of Raman,
second harmonic, and stimulated four-photon mixing pulses. As, XPM
appears to be a new tool for controlling (with the fast femtosecond time
response of electronic nonlinearities) the spectral, temporal, and spatial prop-
erties of ultrashort pulses. Applications could include the frequency tuning
in real time of picosecond pulses, the compression of weak pulses, the gen-
eration of femtosecond pulse trains from CW beams by XPM-induced mod-
ulation instability, and the spatial scanning of ultrashort pulses. The unique
controllability of XPM should open up a broad range of new applications
for the supercontinuum laser source.

Experiments on induced- and cross-phase modulations have been per-
formed by the authors in close collaboration with T. Jimbo, Z. Li, Q.Z. Wang,
D. Ji, and F. Raccah. Theoretical studies were undertaken in collaboration
with J. Gersten and Jamal Manassah of the City College of New York and,
most recently, with Govind P. Agrawal of AT&T Bell Laboratories.

We gratefully acknowledge partial support from Hamamatsu Photonics
K.K.
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11. Addendum

This chapter was written during the spring of 1988. Since then many more
of new theoretical and experimental results on XPM effects have been or are
being published by various research groups. The reference list in the intro-
duction section of this chapter has been updated. The interested readers
should refer themselves to original reports in the most recent issues of optics
and applied physics publications.

References

Agrawal, G.P. (1987) Modulation instability induced by cross-phase modulation. Phys.
Rev. Lett. 59, 880–883.

Agrawal, G.P. and M.J. Potasek (1986) Nonlinear pulse distortion in single-mode
optical fibers at the zero-dispersion wavelength. Phys. Rev. 3, 1765–1776.

Agrawal, G.P., P.L. Baldeck, and R.R. Alfano (1988) Optical wave breaking and pulse
compression due to cross-phase modulation in optical fibers. Conference abstract
#MW3, in Digest of the 1988 OSA annual meeting. Optical Society of America,
Washington, D.C. Opt. Lett. 14, 137–139 (1989).

Agrawal, G.P., P.L. Baldeck, and R.R. Alfano (1989a) Temporal and spectral effects
of cross-phase modulation on copropagating ultrashort pulses in optical fibers.
Submitted for publication in Phys. Rev. A.

Agrawal, G.P., P.L. Baldeck, and R.R. Alfano (1989b) Modulation instability induced
by cross-phase modulation in optical fibers. Phys. Rev. A (April 1989).

Alfano, R.R. and P.P. Ho (1988) Self-, cross-, and induced-phase modulations of
ultrashort laser pulse propagation. IEEE J. Quantum Electron. 24, 351–364.

Alfano, R.R. and S.L. Shapiro (1970) Emission in the region 4000–7000 Å via four-
photon coupling in glass. Phys. Rev. Lett. 24, 584–587. Observation of self-phase
modulation and small scale filaments in crystals and glasses. Phys. Rev. Lett. 24,
592–594.

Alfano, R.R., Q. Li, T. Jimbo, J.T. Manassah, and P.P. Ho (1986) Induced spectral
broadening of a weak picosecond pulse in glass produced by an intense ps pulse.
Opt. Lett. 11, 626–628.

Alfano, R.R., Q.Z. Wang, T. Jimbo, and P.P. Ho (1987a) Induced spectral broaden-
ing about a second harmonic generated by an intense primary ultrafast laser pulse
in ZnSe crystals. Phys. Rev. A35, 459–462.

Alfano, R.R., P.L. Baldeck, F. Raccah, and P.P. Ho (1987b) Cross-phase modulation
measured in optical fibers. Appl. Opt. 26, 3491–3492.

Alfano, R.R., P.L. Baldeck, and P.P. Ho (1988) Cross-phase modulation and induced-
focusing of optical nonlinearities in optical fibers and bulk materials. Conference
abstract #ThA3, In Digest of the OSA topical meeting on nonlinear optical proper-
ties of materials. Optical Society of America, Washington, D.C.

Auston, D.H. (1977) In Ultrafast Light Pulses S.L. Shapiro, ed. Springer-Verlag,
Berlin, 1977.

Ayral, J.L., J.P. Pochelle, J. Raffy, and M. Papuchon (1984) Optical Kerr coefficient
measurement at 1.15mm in single-mode optical fivers. Opt. Commun. 49, 405–408.

Baldeck, P.L. and R.R. Alfano (1987) Intensity effects on the stimulated four-photon
spectra generated by picosecond pulses in optical fibers. Conference abstract #FQ7,

4. Cross-Phase Modulation 179



March meeting of the American Physical Society, New York, New York, 1987; J.
Lightwave Technol. L. T-5, 1712–1715.

Baldeck, P.L., F. Raccah, and R.R. Alfano (1987a) Observation of self-focusing in
optical fibers with picosecond pulses. Opt. Lett. 12, 588–589.

Baldeck, P.L., P.P. Ho, and R.R. Alfano (1987b) Effects of self, induced-, and cross-
phase modulations on the generation of picosecond and femtosecond white light
supercontinua. Rev. Phys. Appl. 22, 1677–1694.

Baldeck, P.L., P.P. Ho, and R.R. Alfano (1987c) Experimental evidences for cross-
phase modulation, induced-phase modulation and self-focusing on picosecond
pulses in optical fibers. Conference abstract #TuV4, in Digest of the 1987 OSA
annual meeting. Optical Society of America, Washington, D.C.

Baldeck, P.L., F. Raccah, R. Garuthara, and R.R. Alfano (1987d) Spectral and tem-
poral investigation of cross-phase modulation effects on picosecond pulses in 
singlemode optical fibers. Proceeding paper #TuC4, International Laser Science
conference ILS-III, Atlantic City, New Jersey, 1987.

Baldeck, P.L., R.R. Alfano, and G.P. Agrawal (1988a) Induced-frequency shift of
copropagating pulses. Appl. Phys. Lett. 52, 1939–1941.

Baldeck, P.L., R.R. Alfano, and G.P. Agrawal (1988b) Observation of modulation
instability in the normal dispersion regime of optical fibers. Conference abstract
#MBB7, in Digest of the 1988 OSA annual meeting. Optical Society of America,
Washington, D.C.

Baldeck, P.L., R.R. Alfano, and G.P. Agrawal (1988c) Induced-frequency shift,
induced spectral broadening and optical amplification of picosecond pulses in a
single-mode optical fiber. Proceeding paper #624, Electrochemical Society sympo-
sium on nonlinear optics and ultrafast phenomena, Chicago, Illinois, 1988.

Baldeck, P.L., R.R. Alfano, and G.P. Agrawal (1988d) Generation of sub-100-fsec
pulses at 532nm from modulation instability induced by cross-phase modulation in
single-mode optical fibers. Proceeding paper #PD2, in Utrafast Phenomena 6.
Springer-Verlag, Berlin.

Baldeck, P.L. and R.R. Alfano (1989) Cross-phase modulation: a new technique for
controlling the spectral, temporal and spatial properties of ultrashort pulses. SPIE
Proceedings of the 1989 Optical Science Engineering conference, Paris, France.

Chraplyvy, A.R. and J. Stone (1984) Measurement of cross-phase modulation in
coherent wavelength-division multiplexing using injection lasers. Electron. Lett. 20,
996–997.

Chraplyvy, A.R., D. Marcuse and P.S. Henry (1984) Carrier-induced phase noise in
angel-modulated optical-fiber systems. J. Lightwave Technol. LT-2, 6–10.

Cornelius, P. and L. Harris (1981) Role of self-phase modulation in stimulated Raman
scattering from more than one mode. Opt. Lett. 6, 129–131.

Dianov, E.M., A.Y. Karasik, P.V. Mamyshev, G.I. Onishchukov, A.M. Prokhorov,
M.F. Stel’Marh, and A.A. Formichev (1984) Picosecond structure of the pump pulse
in stimulated Raman scattering in optical fibers. Opt. Quantum Electron. 17, 187.

Duguay, M.A. and J.W. Hansen (1969) An ultrafast light gate. Appl. Phys. Lett. 15,
192–194.

Dziedzic, J.M., R.H. Stolen, and A. Ashkin (1981) Optical Kerr effect in ling fibers,
Appl. Opt. 20, 1403–1406.

French, P.M.W., A.S.L. Gomes, A.S. Gouveia-Neto, and J.R. Taylor (1986) Picosec-
ond stimulated Raman generation, pump pulse fragmentation, and fragment com-
pression in single-mode optical fibers. IEEE J. Quantum Electron. QE-22, 2230.

180 P.L. Baldeck, P.P. Ho, and R.R. Alfano



Gersten, J., R.R. Alfano, and M. Belic (1980) Combined stimulated Raman scatter-
ing and continuum self-phase modulation. Phys. Rev. A#21, 1222–1224.

Gomes, A.S.L., W. Sibbet, and J.R. Taylor (1986) Spectral and temporal study of
picosecond-pulse propagation in a single-mode optical fibers. Appl. Phys. B#39,
44–46.

Gomes, A.S.L., V.L. da Silva, and J.R. Taylor (1988) Direct measurement of non-
linear frequency chirp of Raman radiation in single-mode optical fibers using a
spectral window method. J. Opt. Soc. Am. B#5, 373–380.

Gouveia-Neto, A.S., M.E. Faldon, A.S.B. Sombra, P.G.J. Wigley, and J.R. Taylor
(1988a) Subpicosecond-pulse generation through cross-phase modulation-induced
modulation instability in optical fibers. Opt. Lett. 12, 901–906.

Gouveia-Neto, A.S., M.E. Faldon, and J.R. Taylor (1988b) Raman amplification of
modulation instability and solitary-wave formation. Opt. Lett. 12, 1029–1031.

Grudinin, A.B., E.M. Dianov, D.V. Korobkin, A.M. Prokhorov, V.N. Serkinand,
and D.V. Khaidarov (1987) Decay of femtosecond pulses in single-mode optical
fibers. Pis’ma Zh. Eksp. Teor. Fiz. 46, 175–177. [Sov. Phys. JETP Lett. 46, 221,
225.]

Hasegawa, A. (1975). Plasma Instabilities and Nonlinear Effects. Springer-Verlag,
Heidelberg.

Ho, P.P., Q.Z. Wang, D. Ji, and R.R. Alfano (1988) Propagation of harmonic cross-
phase-modulation pulses in ZnSe. Appl. Phys. Lett. 111–113.

Hook, A.D. Anderson, and M. Lisak (1988) Soliton-like pulses in stimulated Raman
scattering. Opt. Lett. 12, 114–116.

Imoto, N., S. Watkins, and Y. Sasaki (1987) A nonlinear optical-fiber interferometer
for nondemolition measurement of photon number. Optics Commun. 61, 159–163.

Islam, M.N., L.F. Mollenauer, and R.H. Stolen (1986) Fiber Raman amplification
soliton laser, in Ultrafast Phenomena 5. Springer-Verlag, Berlin.

Islam, M.N., L.F. Mollenauer, R.H. Stolen, J.R. Simson, and H.T. Shang (1987a)
Cross-phase modulation in optical fibers. Opt. Lett. 12, 625–627.

Islam, M.N., L.F. Mollenauer, R.H. Stolen, J.R. Simson, and H.T. Shang (1987b)
Amplifier/compressor fiber Raman lasers. Opt. Lett. 12, 814–816.

Jaskorzynska, B. and D. Schadt (1988) All-fiber distributed compression of weak
pulses in the regime of negative group-velocity dispersion. IEEE J. Quantum Elec-
tron. QE-24, 2117–2120.

Johnson, A.M., R.H. Stolen, and W.M. Simpson (1986) The observation of chirped
stimulated Raman scattered light in fibers. In Ultrafast Phenomena 5. Springer-
Verlag, Berlin.

Keiser, G. (1983) In Optical Fiber Communications. McGraw-Hill, New York.
Kelley, P.L. (1965) Self-focusing of optical beams. Phys. Rev. Lett. 15, 1085.
Kimura, Y., K.I. Kitayama, N. Shibata, and S. Seikai (1986) All-fibre-optic logic

“AND” gate. Electron. Lett. 22, 277–278.
Kitayama, K.I., Y. Kimura, and S. Seikai (1985a) Fiber-optic logic gate. Appl. Phys.

Lett. 46, 317–319.
Kitayama, K.I., Y. Kimura, K. Okamoto, and S. Seikai (1985) Optical sampling using

an all-fiber optical Kerr shutter. Appl. Phys. Lett. 46, 623–625.
Levenson, M.D., R.M. Shelby, M. Reid, and D.F. Walls (1986) Quantum nondemo-

lition detection of optical quadrature amplitudes. Phys. Rev. Lett. 57, 2473–2476.
Lin, C. and M.A. Bosh (1981) Large Stokes-shift stimulated four-photon mixing in

optical fibers. Appl. Phys. Lett. 38, 479–481.

4. Cross-Phase Modulation 181



Lu, Hian-Hua, Yu-Lin Li, and Jia-Lin Jiang (1985) On combined self-phase modu-
lation and stimulated Raman scattering in fibers. Opt. Quantum Electron. 17, 187.

Manassah, J.T. (1987a) Induced phase modulation of the Raman pulse in optical
fibers. Appl. Opt. 26, 3747–3749.

Manassah, J.T. (1987b) Time-domain characteristics of a Raman pulse in the pres-
ence of a pump. Appl. Opt. 26, 3750–3751.

Manassah, J.T. (1987c) Amplitude and phase of a pulsed second-harmonic signal. J.
Opt. Soc. Am. B#4, 1235–1240.

Manassah, J.T. (1988) Pulse compression of an induced-phase modulated weak signal.
Opt. Lett. 13, 752–755.

Manassah, J.T. and O.R. Cockings (1987) Induced phase modulation of a generated
second-harmonic signal. Opt. Lett. 12, 1005–1007.

Manassah, J.T., M. Mustafa, R.R. Alfano, and P.P. Ho (1985) Induced supercon-
tinuum and steepening of an ultrafast laser pulse. Phys. Lett. 113A, 242–247.

Monerie, M. and Y. Durteste (1987) Direct interferometric measurement of non-
linear refractive index of optical fibers by cross-phase modulation. Electron. Lett.
23, 961–962.

Morioka, T., M. Saruwatari, and A. Takada (1987) Ultrafast optical multi/demulti-
plexer utilising optical Kerr effect in polarisation-maintaining single-mode optical
fibers. Electron. Lett. 23, 453–454.

Nakashima, T., M. Nakazawa, K. Nishi, and H. Kubuta (1987) Effect of stimulated
Raman scattering on pulse-compression characteristics. Opt. Lett. 12, 404–406.

Schadt, D., B. Jaskorzynska, and U. Osterberg (1986) Numerical study on combined
stimulated Raman scattering and self-phase modulation in optical fibers influenced
by walk-off between pump and Stokes pulses. J. Opt. Soc. Am. B#3, 1257–1260.

Schadt, D. and B. Jaskorzynska (1987a) Frequency chirp and spectra due to self-phase
modulation and stimulated Raman scattering influenced by walk-off in optical
fibers. J. Opt. Soc. Am. B#4, 856–862.

Schadt, D. and B. Jaskorzynska (1987b) Generation of short pulses from CW light by
influence of cross-phase modulation in optical fibers. Electron. Lett. 23, 1091–1092.

Schadt, D. and B. Jaskorzynska (1988) Suppression of the Raman self-frequency shift
by cross-phase modulation. J. Opt. Soc. Am. B#5, 2374–2378.

Shen, Y.R. (1984) In The Principles of Nonlinear Optics. Wiley, New York.
Shimizu, F. and B.P. Stoicheff (1969) Study of the duration and birefringence of self-

trapped filaments in CS2. IEEE J. Quantum Electron. QE-5, 544.
Stolen, R.H. (1975) Phase-matched stimulated four-photon mixing. IEEE J. Quantum

Electron. QE-11, 213–215.
Stolen, R.H. (1979) In Nonlinear properties of Optical fibers, S.E. Miller and A.G.

Chynoweth, eds. Academic Press, New York, Chapter 5.
Stolen, R.H. and A. Ashkin (1972) Optical Kerr effect in glass waveguide. Appl. Phys.

Lett. 22, 294–296.
Stolen, R.H., M.A. Bosh, and C. Lin (1981) Phase matching in birefringent fibers.

Opt. Lett. 6, 213–215.
Stolen, R.H. and A.M. Johnson (1986) The effect of pulse walk-off on stimulated

Raman scattering in optical fibers. IEEE J. Quantum Electron. QE-22, 2230.
Swartzlander, G.A., Jr., and A.E. Kaplan (1988) Self-deflection of laser beams in a

thin nonlinear film. J. Opt. Soc. Am. B5, 765–768.
Tai, K., A. Hasegawa, and A. Tomita (1986) Observation of modulation instability

in optical fibers. Phys. Rev. Lett. 56, 135–138.

182 P.L. Baldeck, P.P. Ho, and R.R. Alfano



Tomlinson, W.J., R.H. Stolen, and A.M. Johnson (1985) Optical wave breaking of
pulses in nonlinear optical fibers. Opt. Lett. 10, 457–459.

Trillo, S., S. Wabnitz, E.M. Wright, and G.I. Stegeman (1988) Optical solitary waves
induced by cross-phase modulation. Opt. Lett. 13, 871–873.

Wahio, K., K. Inoue, and T. Tanigawa (1980) Efficient generation near-IR stimulated
light scattering in optical fibers pumped in low-dispersion region at 1.3mm. Elec-
tron. Lett. 16, 331–333.

Weiner, A.M., J.P. Heritage, and R.H. Stolen (1986) Effect of stimulated Raman scat-
tering and pulse walk-off on self-phase modulation in optical fibers. In Digest 
of the Conference on Lasers and Electro-Optics. Optical Society of America,
Washington, D.C., p. 246.

Weiner, A.M., J.P. Heritage, and R.H. Stolen (1988) Self-phase modulation and
optical pulse compression influenced by stimulated Raman scattering in fibers. J.
Opt. Soc. Am. B5, 364–372.

White, I.H., R.V. Penty, and R.E. Epworth (1988) Demonstration of the optical Kerr
effect in an all-fibre Mach-Zehnder interferometer at laser diode powers. Electron.
Lett. 24, 172–173.

Zysset, B. and H.P. Weber (1986) Temporal and spectral investigation of Nd:YAG
pulse compression in optical fibers and its application to pulse compression. In
Digest of the Conference on Lasers and Electro-Optics. Optical Society of America,
Washington, D.C., p. 182.

4. Cross-Phase Modulation 183



5
Simple Models of Self-Phase and
Induced-Phase Modulation

Jamal T. Manassah

Introduction

Supercontinuum (Alfano and Shapiro, 1970) generation is the production of
nearly continuous spectra by propagating intense picosecond and subpi-
cosecond laser pulses through nonlinear media. Induced supercontinuum
(Manassah et al., 1985; Alfano et al., 1986) is the superbroadening of the
spectrum of a weak pulse due to the presence of a strong pulse propagating
simultaneously with it in a nonlinear medium. These observable physical
effects form the motivation for the study of self-phase and induced-phase
modulation. This chapter examines, for some idealized simple models of the
nonlinear material and incoming pulse, the amplitude, phase, geometric
shape, and spectral distribution of an outgoing pulse on exiting from the non-
linear material for cases of both absent and present pump. The chapter is
limited in scope and extent; it is confined to some analytical and semiana-
lytical cases developed by the author and co-workers. Effects related to group
velocity dispersion (GVD) are not generally included among our models.

To define the nomenclature for the different models, we next write the
general form of Maxwell’s equation in a nonlinear medium. The propagation
of a monochromatic electromagnetic wave in a linear medium is described by
the equation

Denoting, k(w 0) ∫ k0, the above Maxwell’s equation can be described for any
w near w 0 to second order in the difference (w - w 0) by

where
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where k¢ is the group velocity and k≤ is the group velocity dispersion. Con-
sequently, for a pulse with center frequency w 0, the electric field then obeys
the equation (Tzoar and Jain, 1979)

where w in Fourier space has been replaced by [i(∂/∂t)] in the time domain.
In normalized coordinates defined by

where E0 is the maximum pulse amplitude and t is its width, Maxwell’s equa-
tion for the function F can be written as

where

The source term for Maxwell’s equation in a nonlinear medium is given by
(Bloembergen, 1965)

where PNL is the nonlinear polarization (c(2) medium means that PNL is pro-
portional to E2; c(3) medium means that PNL is proportional to |E|2E, etc.). In
all phenomenological treatment (i.e., Sections 1 through 4), we assume the
instantaneous form for the polarization, which implies physically that the
pulse duration is much longer than the material relaxation time.

In the following, plane wave refers to the case where the �2
T term of

Maxwell’s equation is neglected, finite beam size refers to the case where �2
T

effects are incorporated in the analysis, dispersionless refers to the case where
the k≤0 term in Maxwell’s equation is neglected, steepened pulse refers to the
case where the time derivative of the envelope of the nonlinear polarization
is kept (see also Chapter 6, by Suydam), and low-intensity pulse refers to the
case where this steepening is negligible.
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1. Low-Intensity Pulse in c(3) Dispersionless Medium

In this section we review the conventional self-phase modulation theory
(Alfano and Shapiro, 1970) and generalize its results to the case of finite beam
size. We show that the effects of diffraction can combine with those of self-
phase modulation and self-focusing to exhibit many new features both in the
shapes of the pulse and phase and in the spectral distribution.

1.1 Conventional Self-Phase Modulation Theory

The topic is covered in greater detail by Shen and Yang (Chapter 1 and Wang
et al., Chapter 2), but for completeness we will quickly review it. The sim-
plified nonlinear wave equation for the electric field envelope is given by

(1)

where vg is the group velocity and n2 is the Kerr index of refraction. In this
equation we neglected group velocity dispersion, self-steepening (De Martini
et al., 1967), and absorption and we assumed that c(3) is instantaneous (i.e.,
we neglect all effects associated with nonzero relaxation time). Denoting the
amplitude and phase of the envelope A by a and a, respectively, their differ-
ential equations are given by

(2)

(3)

and the solutions are

(4)

(5)

where ū is the pulse comoving coordinate defined by

(6)

a0 is the amplitude at z = 0, and F is the pulse shape form function. The above
solution assumes that a(z = 0) = 0; otherwise this initial phase should be
added to the solution of Eq. (5). It should be noted that in this approxima-
tion the amplitude of the pulse is unmodified and only the phase of the pulse
is affected, hence the name self-phase modulation. At this point, we refer the
reader to other articles (Alfano, 1972 and Chapter 2) for the analysis of the
experimental consequences of the above solutions.
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The spectral extent of a Gaussian pulse associated with the above super-
continuum is

(7)

where t is the incoming pulse width. The spectral distribution is symmetric
(see Fig. 5.1), and its modulation period is

(8)

The linear chirp coefficient for the self-phase modulated pulse in the above
approximation is given for a Gaussian pulse by

(9)

where the coefficient m is related to the curvature of the phase at its
extremum, that is,

(10)a extremum = mu 2.
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Figure 5.1. A typical spectral distribution predicted by the conventional self-phase
modulation theory.



1.2 Grating Transform and Pulse Compression

The frequency sweep in the self-phase modulated pulse is used as the first step
in the fiber-grating compressor (Tomlinson et al., 1984; Grischkowsky and
Balant, 1986). In this section, we find the characteristics of the grating that
optimizes the compressor for a self-phase modulated signal in the same
approximations as in Section 1.1. Other details are given in Chapter 10 by
Johnson and Shank. To find the grating transform of an incoming pulse we
use the techniques of Fourier optics (Goodman, 1968). Essentially, in the
Fourier domain, the outgoing signal is equal to the incoming signal multi-
plied by the optical element transfer function (Gaskill, 1978). The transfer
function of a grating is described by (Treacy, 1969; Martinez et al., 1984)

(11)

where

(12)

that is, the transfer function is a pure phase. Using the properties of the
Fourier transform, the outgoing pulse can be written as the convolution of
the incoming pulse with the time representation of the grating transfer func-
tion. Thus, the outgoing pulse electric field can be written as a function of
the incoming pulse amplitude and phase as

(13)

where K is the incoming pulse center frequency normalized to the pulse dura-
tion (i.e., K = wt) and g = c/t 2.

For an incoming Gaussian pulse that is weakly self-phase modulated, the
amplitude and the phase are given by (4) and (5) but the integration in Eq.
(13) with these expressions cannot be performed except numerically. However,
an approximation to this integral can be obtained by approximating the phase
to a Gaussian as given by Eq. (10). Under these conditions the outgoing pulse
can be approximated by

(14)

The optimum compression condition then can be directly deduced to give
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The amplitude scaling factor and the compression ratio under this opti-
mization condition are respectively related to the parameter given by

(16)

The outgoing pulse (amplitude)2 is then written as

(17)

The numerically derived |Eout|2 actually deviates on the wings from Eq. (18)
results, because of the deviation of the phase from the approximate parabolic
shape assumed in the derivation of (17). Experimentally, these deviations
were compensated for by the addition of prisms (Fork et al., 1987) that
correct for cubic terms in the exact phase expression.

1.3 Self-Focusing and Self-Phase Modulation in a Parabolic Graded
Index Medium

In this section we examine the combined effects of Kerr nonlinearity, dif-
fraction, and graded index waveguiding on the spatial and spectral profiles
of an intense pulse propagating in a parabolic graded index material with 
the same axis of symmetry as the pulse (Manassah et al., 1988a). The beam
transverse geometric shape, radius of curvature, phase, and spectrum are
computed as functions of the material parameters and pulse peak powers.
Approximate analytical results are derived for the beam waist radius of cur-
vature and phase. This calculation is motivated by two considerations:

1. Graded-index optical fibers (Thomas et al., 1982) are closely approximated
by such materials.

2. The results for homogeneous bulk material in the presence of heating due
to absorption of the laser beam can be closely approximated by this model
for thermal positive lensing materials.

The approximations that we make in the following calculation are that

1. the graded index profile is approximated by

2. the GRIN material boundary with other materials is at a distance larger
than the beam radius (in the language of optical fibers this translates into
neglecting the core-cladding boundary conditions) and the beam radius a
is much smaller than the core radius rc;

3. effects of group velocity dispersion are neglected;
4. the self-steepening (De Martini et al., 1967) of the amplitude is neglected

(i.e., the time derivative of the nonlinear polarization is neglected);
5. the quadratic index of refraction n2 is not modified by the radial variation

in the ordinary index of refraction;
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6. one component of the electric field is kept (i.e., we are neglecting the vector
nature of the electic field);

7. the graded index of refraction is of the order required to guide the beam
within the material transverse dimension; and

8. the spatial changes in the physical quantities over the light wavelength are
unimportant. Under these assumptions, e, the envelope of the electric field,
obeys the equation

(18)

where �2
T is the transverse component of the Laplacian, e ¢ = ∂e/∂z, k2 = kA

= 2kn0D/r2
c, and D is the relative index difference between the core center

and the cladding.

If the initial condition for the incoming pulse is given by

(19)

that is, the initial pulse is assumed to be Gaussian both in the transverse plane
and in the comoving coordinate system, ū = (z/vg - t), where vg is the pulse
group velocity, a the initial beam radius, t the pulse duration, and e0 the mag-
nitude of the pulse amplitude.

In the following, the product e0 exp(-ū 2/2t 2) is denoted by ẽ 0. Then an
approximate solution to Eq. (18) with the boundary condition given by Eq.
(19), correct to order r2/a2, can be obtained through the trial solution 
(Marburger, 1975)

(20)

where the different functions can be interpreted as follows: w̄ is the normal-
ized beam radius, r is the inverse of the beam radius of curvature, and ka
is the longitudinal phase on the material axis. This approximation of self-
similarity of the beam is well justified for powers smaller than the critical
power (i.e., the power at which self-focusing becomes possible), in particular
for instances where w̄max and w̄min are not too far apart.

The equations satisfied by the subsidiary functions w̄ , r, and a are given
by
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(24)

(25)

(26)

and Lw and Ld are the characteristic lengths for waveguiding and diffraction,
respectively.

The solutions to Eqs (21), (22), and (23) satisfying the boundary condi-
tions w̄ = 1, r = 0, and a = 0 at z = 0 are

1. the normalized beam radius:

(27)

2. the inverse of the radius of curvature:

(28)

3. the longitudinal phase:

(29)

for B - 2C ≥ 0 and

(30)

for B - 2C £ 0, where

(31)

(32)

(33)

For negative n2 (i.e., defocusing medium), b < d is satisfied for all values of
e and Eq. (29) is the solution for the longitudinal phase everywhere. For pos-
itive n2 (i.e., focusing medium), b = d for the critical field ec, which is given by
(Kelley, 1965)
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It should be noted that, in the low intensity limit, Eqs. (27), (28), and (29)
lead to the usual results for Gaussian beams propagating in lenslike media
(Kogelnik, 1965; Kogelnik and Li, 1966).

Equation (27) shows that the normalized beam radius w̄ varies periodically
along the optical axis length. The period of variation depends only on the
waveguiding characteristic length Lw. The magnitude of w̄min, the minimum
normalized beam radius, depends on all three characteristic lengths associ-
ated with A, B, and C. In Figure 5.2, the minimum beam radius is plotted as
a function of the pulse normalized peak power P/Pc for different values of
the graded index parameter D, where Pc is the critical power for self-focus-
ing. The minimum beam radius decreases for increasing peak powers and col-
lapses at P = Pc.

The inverse of the radius of curvature r is plotted in Figure 5.3 as a func-
tion of the normalized length 2z/pLw. For increasing peak powers, the cur-
vature is clearly enhanced periodically by self-focusing at the beam waist (i.e.,
minimum beam diameter) locations.

The total phase of the electric field can be computed using Eqs. (20), (28),
and (29). This phase, and consequently the spectral broadening arising from
self-phase modulation, is radially dependent. It is worth noting that the time-
dependent part of the phase f¢, denoted f¢t , which is equal to total phase -
w 0t, reduces to that of the conventional SPM theory in the case of a
homogeneous medium (k2 = 0) and for an incoming plane wave (a fi •). Fur-
thermore, for weak waveguiding (k2 fi 0), but finite initial beam diameter, the
time-dependent phase f¢t reduces to
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Figure 5.2. Minimum beam waist as a function of the normalized peak power P/Pc.
D is the relative refraction index difference between the GRIN core center and the
cladding. In silica fibers Pc ª 106 W.



(35)

Thus, in this limit the spectral extent as a function of the radius varies as 
(1 - 2r2/a2). This approximation is valid for r/a << 1 and reflects the |e|2

change.
In Figure 5.4 the longitudinal phase contribution ka(z, ū = 0), denoted 

the a-phase, is plotted as a function of the normalized material length for
different power levels. As shown, the a-phase mostly increases by steps at z
locations corresponding to the periodic positions of the minimum beam
waist. As a result, the total amount of the longitudinal phase yielded by the
pulse is often much larger than the usual SPM, and it depends strongly on
the waveguiding, diffraction, and nonlinear parameters. It is worth noting
that for z << Lw the regularized a-phase, defined as the value of the a-phase
at a certain power minus its value for zero intensity, has the same sign as 
fSPM; however, this sign changes for z > Lw. Physically, this result leads to the
reverse of the red leading the blue in the supercontinuum and may have
important consequences for soliton propagation in graded-index fibers and
for pulse compression. Finally, one notices that the a-phase approaches a
ladder function for values of e that equalize B and 2C (i.e., P fi Pc).

The temporal distribution of the longitudinal phase, the a-phase, can be
studied using Eq. (29). If we define the parameter p by
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Figure 5.3. Inverse of radius of curvature as a function of normalized length 2z/pLw

for a graded-index fiber. (a = 1.5mm, D = 0.48%, and Lw = 15.3mm). (a) P/Pc = 0.1;
(b) P/Pc = 0.9; (c) P/Pc = 0.99.



where p = 1 corresponds to P = Pc, then

(37)

It is worth noting that for small p, Eq. (37) can be approximated by

(38)

In Figure 5.5 the a-phase, normalized to its maximum value, is plotted as
a function of time for different power levels. For small peak powers the width
of the phase envelope is smaller than the conventional SPM phase, as
shown by Eq. (38). As the pulse peak power increases and tends to the crit-
ical power, the phase width significantly decreases, and the value of the phase
at its maximum increases dramatically.

The spectral distribution of a pulse propagating in this medium can be
obtained by taking the Fourier transform of the electric field and then taking
its magnitude squared. It should be noted that all time dependence as given
by Eq. (20) should be incorporated in the numerical calculation. Special care
should be exercised at the beam waist, where w̄ as a function of time features
the same narrowing characteristics observed above for the longitudinal phase.
At locations other than the waists, most of the pulse energy is not modu-
lated. For small peak powers (P << Pc) the SPM spectra generated in para-
bolic GRIN material are similar to the conventional SPM broadened spectra,
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Figure 5.4. Longitudinal a-phase as a function of the material normalized length
2z/pLw for a grade-index fiber. (a) P/Pc = 0.1; (b) P/Pc = 0.9; (c) P/Pc = 0.99.



as observed in Figure 5.6a. On the other hand, for peak powers near the crit-
ical power for self-focusing (P ª Pc) new SPM features appear, see Figure
5.6b. There is an intense peak at the laser wavelength over a much weaker
background of white light. This effect is due to the narrowing of the a-phase
and the limited modulation over the pulse duration.

In conclusion, the combined effects of self-focusing, diffraction, and wave-
guiding lead to novel features in both the time and frequency domains of the
electric field of a pulse. Novel features in the SPM spectra, distinct from con-
ventional SPM theory, appear.

1.4 Self-Focusing, Self-Phase Modulation, and Diffraction in Bulk
Homogeneous Material

In this section we specialize the results of the previous section to k2 fi 0 (i.e.,
homogeneous bulk material) (Manassah et al., 1988b), We explore the simul-
taneous effects of self-focusing, self-phase modulation, and diffraction on the
propagation of an ultrafast pulse in a homogeneous Kerr medium. The com-
peting effects of self-focusing and diffraction are shown to modify the shape
and magnitude of the pulse amplitude and phase. These modifications are
shown to affect the spectral distribution of the supercontinuum compared to
that predicted by conventional self-phase modulation theory.

In the case of a homogeneous medium (A fi 0), the results of Section 1.3
can be written as
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Figure 5.5. The a-phase normalized to its maximum value plotted versus time for a
graded-index fiber. (a) Conventional SPM phase for P/Pc = 0.1; (b) P/Pc = 0.1; (c) P/Pc

= 0.992. Maximum values of the phase are, respectively, 0.92, 0.55, and 1880 radians.
(a = 25mm, D = 0.48%, z = 10cm, and t = 15ps.)
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Figure 5.6. Spectral broadening of a Gaussian pulse (t = 15ps) outgoing from a
graded-index fiber (a = 25mm, D = 0.48%). (a) P/Pc = 0.1 and z = 0.5m; (b) P/Pc =
0.997 and z = 0.1m.
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for p¢ < 1, and

(42)

for p¢ < 1, where

(43)

p = e 2
0 /e 2

c, ec is the critical field for self-focusing, and y is the material length
in units of the Rayleigh diffraction length Ld, that is,
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Figure 5.7. Normalized beam radius for a pulse propagating in a homogeneous
medium at u = 0 as a function of the normalized length (z/Ld). (I) p << 1; (II) p = 0.1;
(III) p = 0.9; (IV) p = 0.99; (V) p = 1; (VI) p = 1.01; (VII) p = 1.02; (VIII) p = 1.1;
(IX) p = 2; (X) p = 10.



(45)

In the following, the analysis is limited to y < yfoc, where the above solutions
are valid.

It should be noted that the solutions of w̄ , r, and a in the linear regime
(e0 fi 0) reduce to the standard formulas of a Gaussian pulse propagating in
a homogeneous medium (Tien et al., 1965), specifically:

(46)

(47)

(48)

In Figure 5.7 the normalized beam radius is plotted for ū = 0 as a function
of the normalized length (z/Ld) and for different electric field intensities [p =
e2

0 /e 2
c]. For weak fields (p < 1) diffraction is the dominant effect, while for the

most intense fields (p > 1) the nonlinearity is dominant, there is self-focusing,
and w̄ approaches zero as the length approaches the self-focusing distance.

In Figure 5.8 the normalized inverse radius of curvature (Ld/R = rLd) is
plotted for ū = 0 as a function of the normalized length. For p < 1, this quan-
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Figure 5.8. Normalized inverse radius of curvature (rLd) for a pulse propagating in
a homogeneous medium at u = 0 as a function of the normalized length (z/Ld). (I) 
p << 1; (II) p = 0.1; (III) p = 0.9; (IV) p = 0.99; (V) p = 1; (VI) p = 1.01; (VII) p =
1.02; (VIII) p = 1.1; (IX) p = 2; (X) p = 10.



tity is positive, has a maximum for y = 1/(1 - p)1/2, and goes to zero for very
large distances; that is, diffraction is the dominant effect. For p > 1, this quan-
tity is negative, monotonically decreasing, and approaches -• at the self-
focusing distance.

In Figure 5.9 the regularized longitudinal phase (i.e., its value for a spe-
cific p minus its value for p = 0) is plotted for ū = 0 as a function of the nor-
malized length. For 0 < p < 2 the longitudinal phase changes sign in the total
length interval; when positive it is the reverse sign of that predicted by the
conventional self-phase modulation theory. For 1 < p < 2 this phase has a
positive asymptote for the sample length equal to the self-focusing distance.
For p > 2 this phase is everywhere negative, admits the conventional self-phase
modulation curve as a tangent at the origin, but decreases much faster than
the SPM result as the length increases until it reaches a negative asymptote
at the self-focusing distance.

In Figure 5.10a the electric field intensity (e2
0 /w̄ 2) is plotted for p ª 1 as a

function of the normalized time (ū /t) for different normalized lengths of the
sample; as can be observed, the pulse compresses with increasing length.
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Figure 5.9. Regularized longitudinal phase for a pulse propagating in a homoge-
neous medium at u = 0 as a function of the normalized length (z/Ld). (I) p << 1;
(II) p = 0.1; (III) p = 0.9; (IV) p = 0.99; (V) p = 1; (VI) p = 1.01; (VII) p = 1.02;
(VIII) p = 1.1; (IX) p = 2; (X) p = 10.



Physically it should be noted that for very large distances the dispersion
effects will impose a limit on the value of this compression. In Figure 5.10b
the regularized longitudinal phase is plotted for p < 1 as function of the 
normalized time for different normalized lengths of the sample. As can be
observed, for small length the phase has the same sign as in conventional
SPM theory, for intermediate length the phase changes sign in its width inter-
val, and for large length the phase is always positive, leading to the reverse
of the red leading the blue in the supercontinuum. In Figure 5.10c the spec-
tral distribution for p @ 1 and large z is plotted; it should be noted that a
central peak appears in the spectrum.

In Figure 5.11 the electric field intensity, phase, and spectral distribution
are plotted as a function of ū for length close to the self-focusing distance.
Both the field intensity and the phase narrow, albeit at different rates. The
magnitudes of the maxima of both intensity and phase increase dramatically
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Figure 5.10. (a) Normalized intensity of the pulse as a function of time for p =
0.9999. Homogeneous material. (I) z/Ld = 1; (II) z/Ld = 3; (III) z/Ld = 100. (b) Regu-
larized longitudinal phase as a function of time for p = 0.9999. Homogeneous mate-
rial. (I) z/Ld = 1; (II) z/Ld = 3; (III) z/Ld = 100. [The values of the phase peaks are,
respectively, 0.285, 0.25, and 46.87. The corresponding phases for SPM theory are,
respectively, -0.5, -1.5, and -50.] (c) Spectral distribution intensity as a function of
the normalized frequency difference. p = 0.9999 and z/Ld = 100.
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Figure 5.10. (continued)



from those of conventional SPM theory because of the strong self-focusing
effect. If the electric field can still be supported by the medium (i.e., no break-
down occurs), Figure 5.11c shows the dramatic change in the spectral extent
over an infinitesimal change in the sample length.

1.5 Thermal Focusing Effects on the Supercontinuum

It has long been recognized (Gordon et al., 1965) that the propagation of a
laser beam in a material produces local heating in its vicinity and that the
temperature gradient in the material induces a transverse gradient of the
refractive index, which leads to a lensing effect. In Section 1.3 we showed that
the phase shape and spectral distribution of a pulse propagating in a para-
bolic graded-index material differ significantly from the conventional self-
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Figure 5.11. (a) Normalized intensity (e2/w̄ 2) of the pulse as a function of time. p =
10. (I) z/Ld = 0; (II) z/Ld = 0.333; (III) z/Ld = 0.3333. [The focusing distance for this
case corresponds to 1/3.] (b) Regularized longitudinal phase as a function of time. p
= 10. (I) z/Ld = 0; (II) z/Ld = 0.333; (III) z/Ld = 0.3333. [The values of the phase peaks
are, respectively, 0.51, -5.4, and -8.4. The corresponding phases for SPM theory are,
respectively, -0.5, -1.67, and -1.67.] (c) Spectral distribution intensity as a function
of the normalized frequency difference. p = 10. (I) z/Ld = 0.333; (II) z/Ld = 0.3333.
[z/Ld = 1/3 is the self-focusing length for p = 10.]
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Figure 5.11. (continued)



phase modulation results of Section 1.1. The temperature gradient can, in
the case of supercontinuum generation with high repetition rate, thus produce
significant variations in the spectral extent and shape. Properly controlled
(e.g., by using a CW heating beam), it is also possible to use this effect in
optical fibers, lead glass, and certain semiconductors where dn/dT > 0 (Dabby
and Whinnery, 1968) to control the sign of the pulse phase so as to reverse
the red leading the blue in the supercontinuum and possibly to compress
pulses within c(3) materials without the need for external gratings or 
prisms (Manassah et al., 1988c). In this section we review the effects of
heating on the index of refraction profile and show how a homogeneous bulk
material transforms in the vicinity of the heating beam into a graded-index
material.

The following derivation is due to Gordon et al. (1965). If the field of the
heating laser beam is given by

(49)

the heat generated per unit length is proportional to the square of this field.
The Green’s function for the heat diffusion equation is given by

(50)

where

(51)

k is the thermal conductivity (cal/cm·s·K), r is the density (g/cm3), and Cp is
the specific heat (cal/g·K). The temperature distribution for the distributed
source is

(52)

where Q(r) is the heat generated per unit length. The solution for DT is given
as function of the exponential integrals:

(53)

where A can be related to the heating beam total power and the material rate
of dissipation through

(54)

where b is the fractional dissipation per centimeter.
For a temperature rise DT, the corresponding index of refraction is
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where dn/dT measures the change in the material index of refraction for a
change in its temperature. For small r, combining Eqs. (53) and (55), due 
to the temperature gradient, the index of refraction in the material is given
by

(56)

where

(57)

that is, the problem reduces to a case similar to that treated in Section 1.3.
The conclusions are as follows for dn/dT positive:

1. The normalized beam diameter is a periodic function in z. The wavelength
of this periodicity is proportional to |d ¢|-1/2. In Figure 5.12, w̄ is plotted for
selected values of |d ¢|.

2. The longitudinal phase, for u = 0, as function of z mostly increases by steps
at z locations corresponding to the periodic positions of the minimum
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Figure 5.12. Normalized probe beam diameter as a function of the material thick-
ness in the presence of thermal focusing. (a) p = 0, |d ¢| = 0; (b) p = 0.9, |d ¢| = 0; (c) p
= 0.9, |d ¢| = 2.5 ¥ 10-3; (d) p = 0.9, |d ¢| = 7.8 ¥ 10-3; (e) p = 0.9, |d ¢| = 2.5 ¥ 10-2.
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Figure 5.13. Longitudinal probe phase at ū = 0 as a function of the material thick-
ness in the presence of thermal focusing. p = 0.9. (a) |d ¢| = 0; (b) |d ¢| = 2.5 ¥ 10-3;
(c) |d ¢| = 7.8 ¥ 10-3; (d) |d ¢| = 2.5 ¥ 10-2.

Figure 5.14. Probe spectral distribution in the presence of thermal focusing for r =
0, z = 10cm, and p = 0.9. (a) |d ¢| = 2.5 ¥ 10-3; (b) |d ¢| = 2.5 ¥ 10-2.



beam diameter. As a result, this phase is not linear in z like the conven-
tional self-phase modulation theory phase. Furthermore, its magnitude can
be much larger. In Figure 5.13 this phase is plotted for different values of
the d ¢ parameter.

3. The time-dependent portion of the longitudinal phase may have the reverse
sign to that of conventional SPM. Physically, this result leads to the reverse
of the red leading the blue in the supercontinuum. Furthermore, as the
pulse peak magnitude increases and tends to the critical field of the non-
linear medium, the phase which decreases significantly. Therefore, for w̄
close to its maximum, only a short period over the pulse duration is mod-
ulated; this portion increases as w̄ approaches its minimum.

In Figure 5.14 the spectral intensity is plotted for the same length z but for
different d ¢ parameters. For larger d ¢ the spectral extent is larger.

In Figure 5.15 the spectral intensity is plotted for the d ¢ of the curve in
Figure 5.14b, but for a slightly different sample length. As can be observed,
the spectral extent does not change significantly with a small variation in z;
however, the spectral shape can be altered dramatically. Actually, the two
lengths chosen correspond to successive maximum and minimum positions
of the normalized beam diameter.
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Figure 5.15. Probe spectral distribution in the presence of thermal focusing for r =
0, z = 9.44cm, p = 0.9, and |d ¢| = 2.5 ¥ 10-2.



2. Pulse Steepening in a c(3) Dispersionless Medium:
Plane-Wave Approximation

2.1 Nonlinear Wave Equation

Maxwell’s equation, in a c(3) nonlinear medium where the dispersion of the
linear index of refraction and its imaginary part are neglected, is given by

(58)

where n is the linear index of refraction and n2 is the nonlinear index of refrac-
tion. In the instance that the transverse variation of E is neglected (i.e., dif-
fraction is neglected), one component of E is present and <E ·E> = |E|2/2, the
wave equation reduces to

(59)

where vg is the group velocity in the medium, assumed constant over the light
bandwidth. To reduce the differential equation to a dimensionless form, we
introduce the new dimensionless variables F, T, and Z defined as

(60)

where t is the pulse width and E0 is the maximum amplitude of the electric
field at the entrance plane of the c(3) medium. Introducing the nonlinear cou-
pling constant e, defined as

(61)

the wave equation in dimensionless form reduces to

(62)

Typical values for the above parameters are

2.2 Method of Multiple Scales

The functional dependence of F on Z, T, and e in the solution of (62) is not
disjoint (Nayfeh, 1981). To first order in e, F depends on the combinations
eT and eZ as well as on the individual T, Z, and e. Carrying the perturba-
tion to higher orders, F additionally depends on e2T, e2Z, e3T, e3Z, . . . .
Hence it is convenient to write F as
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(63)

where the new scaled variables Z1, T1, Z2, T2, etc., are defined as

(64)

(65)

The Tn’s and Zn’s represent different time and distance scales. F is then deter-
mined as a function of the old and new variables. Next, we seek a uniform
expansion solution to F in the form

(66)

To express the derivatives in (62) as functions of the new variables, we use
the chain rules for derivatives; then

(67)

Using expressions (66) and (67) in the partial differential equation (62) and
equating the respective coefficients of e n, one obtains, respectively, for the
terms multiplying e 0, e, and e 2 the following equations:
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Since the incoming pulse is described most easily by a comoving coordinate
system (i.e., a new coordinate system that is moving with the pulse), we will
define the Un and Vn families of new coordinates as

(71)

The partial derivatives can be described in the new coordinates as

(72)

The partial differential equations (68), (69), and (70) are then given by

(73)
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and
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An ansatz that solves the above partial differential equations correct to order
e in the (66) expansion is
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where K = wt = W and w is the pulse center frequency. It is worth noting at
this point that the solutions thus obtained are valid for eV ~ O(1) while those
deduced from ordinary perturbation theory would have been valid only for
V ~ O(1). Furthermore, note that the specific form for C cannot be obtained
from the above equations. With the above ansatz, the above system of partial
differential equations reduces to (Manassah et al., 1986)

(77)

(78)

2.3 Quasi-Linear Partial Differential Equations

Starting with Eqs. (77) and (78) we obtain the system of quasi-linear partial
differential equations for the amplitude and phase of the pulse. Denote A by
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Then the system of partial differential equations is given by

(80)

(81)

(82)

(83)

In variables U and V, the above equations lead to
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In the same notation, the quasi-linear partial differential equations in other
work are:
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2. Slowly varying approximation (Anderson and Lisak, 1983):

(88)

(89)

3. Yang and Shen approximation (Yang and Shen, 1984)

(90)

(91)

Next we will find the solution for a and a for a pulse whose initial shape is
a sech pulse. In Manassah et al. (1986) the Gaussian pulse results are also
given. In Table 5.1 some physical quantities in the present notation are given.

2.4 Pulse Amplitude

The solution of Eq. (84) with the boundary condition

(92)

can be obtained by the usual technique of first-order partial differential equa-
tions; it is given by (Anderson and Lisak, 1983)
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Table 5.1. Range of experimental parameters in supercontinuum generation 
experiments.a

n2 = 10-22 (MKS) n2 = 10-20 (MKS)

Pc, critical power
= 0.9 ¥ 10-13 (esu) = 0.9 ¥ 10-11 (esu)

for self-focusing 2 ¥ 106 W 2 ¥ 104 W

Pin, pulse input 107 109 1011 107 109 1011

power, W
E0, maximum 9 ¥ 107 9 ¥ 108 9 ¥ 109 9 ¥ 107 9 ¥ 108 9 ¥ 109

amplitude of the
incoming pulse, V/m

Sf, distance to 0.4 0.04 0.004 0.04 0.004 0.0004
focusing point; m

e = n2|E0|2/n
2–3 ¥ 10-6 2–3 ¥ 10-4 2–3 ¥ 10-2 2–3 ¥ 10-4 2–3 ¥ 10-2 2–3

(n = 1.5)
eV = n2|E0|2z/ct 1–3 ¥ 10-7 1–3 ¥ 10-5 1–3 ¥ 10-3 1–3 ¥ 10-5 1–3 ¥ 10-3 1–3 ¥ 10-1

(z = 1mm of sample
thickness)

a Source wavelength = 1mm, pulse width = 10-13 s, and beam diameter at input plane = 1mm.
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Figure 5.16. Steepened pulse amplitude as a function of U. — eV = 0.0; – –– eV
= 0.3; –·– eV = 0.5; –· ·– eV = 0.8.

Figure 5.17. Magnitude of the steepened (amplitude)2 at U = 0 as a function of eV.
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Figure 5.18. Slope of the steepened pulse as a function of U. (a) eV = 0.1; (b) eV =
0.4; (c) eV = 0.8.



(93)

The amplitude is maximum for

(94)

The (amplitude)2 of the pulse at U = 0 is given by the solution of

(95)

or

(96)

where a0 = a(0, V).
The partial derivative of the amplitude with respect to U is given by

(97)

where (-) refers to U < - 3–2eV and (+) otherwise.
The present model produces an amplitude that is asymmetric; this distor-

tion is called self-steepening. A shock in the amplitude can develop for
.

In Figure 5.16 the amplitude a is plotted as a function of U for different
values of eV, in Figure 5.17 a0 is plotted as a function of eV, and in Figure
5.18 ∂a0/∂U is plotted as a function of U.
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Figure 5.18. (continued)



2.5 Pulse Phase

The general solution of Eq. (85) is given by (Manassah et al., 1986)

(98)

where the function F(U, V) is a solution of the equation

(99)

The boundary condition imposed by the physical condition of no initial chirp
is that at the input plane (i.e., V = 0), a should be zero for all values of U.
This implies that, for an incoming sech pulse, we have

(100)

The general solution of Eq. (99) is given by

(101)

The special form of a satisfying the boundary condition (100) is given by

(102)

where

(103)

The maximum of a, denoted by aM, and its position, denoted by Ua, are
respectively given by (Manassah and Mustafa, 1988a)

(104)

and

(105)

We note that the positions of the maxima of a and a are shifted from each
other. Furthermore, this shift is linear in eV. Also note that while the value
of the maximum of the amplitude is equal to 1 for all eV, aM, the value of
the phase maximum, increases linearly with eV. In Figure 5.19, a(U, V) is
plotted for different values of the parameter eV. As can be observed, for small
values of eV, a is symmetric and is centered on the U = 0 axis. However, as
eV increases the a curve becomes skewed and its maximum is shifted to the
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Figure 5.19. Phase of the steepened pulse as function of eV. (a) — eV = 0.1;
(b) – – eV = 0.4; (c) –·– eV = 0.8.

Figure 5.20. Computed magnitude of the maximum of the steepened pulse phase as
function of eV.



left of the U = 0 axis. In Figures 5.20 and 5.21 the computed values of aM

and Ua are plotted as functions of eV. As can be seen, the computed curves
are well approximated by Eqs. (104) and (105).

The expression for the derivative of the phase with respect to U, also called
the instantaneous frequency sweep, is given by

(106)

The second partial derivative of the phase is given by

(107)

In Figures 5.22 and 5.23 the phase partial derivatives are plotted for differ-
ent values of the parameter eV. It should be observed that ā ¢ and ā ≤ for a
self-phase modulated pulse are qualitatively different from those of a chirped
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Figure 5.21. Computed position of the maximum of the steepened pulse phase as a
function eV.



Gaussian pulse, where a ¢ is linear in U and a ≤ is a constant. Consequently,
whereas in the time domain for small eV the phase can be approximated by
a chirped Gaussian, in the frequency domain, where the values of ā ¢ and ā ≤
are critical, such an approximation is not valid. We will return to this point
when we discuss the spectral distribution and the filter transform of this
pulse. The critical results of this section are the asymmetries of the phase and
its derivatives. In the following section, we discuss a direct method for mea-
suring the asymmetry in the phase.

2.6 Direct Time Measurement of the Phase

The phase of the pulse can be directly measured using the Rothenberg-
Grischkowsky interferometric technique (Rothenberg and Grischkowsky,
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Figure 5.22. The U partial derivative of the steepened pulse phase as a function of
eV. (a) — eV = 0.1; (b) – – eV = 0.4; (c) –·– eV = 0.8.



1987). Essentially, the measurement technique consists of adding two pulses,
a reference pulse of known width and zero chirp and a signal pulse described
by the above amplitude and phase, and then subtracting the sum of the inten-
sities of the reference pulse and the signal pulse. The resultant is given by

(108)

If the reference pulse R(U) is obtained as a portion of the incoming pulse
(i.e., sech U), then I(U) is given by

(109)

In Figure 5.24, I(U) is plotted using the above theory and is compared to the
results of conventional self-phase modulation theory. As can be observed
(Manassah and Mustafa, 1988a), the asymmetry in the amplitude and phase
are translated into an asymmetry in I(U).

2.7 Interference Pattern of the Supercontinuum

In this section we compute the interference pattern generated by a self-phase-
modulated pulse (Manassah and Mustafa, 1988b). We prove that the pres-
ence of the amplitude-phase time shift generates fringe position shifts. We
also compute the Fourier transform of the interferometric intensity distrib-
ution and prove that the range of this transform is directly related to the
range of ā ¢.

I U Ua U U( ) = ( ) ( )[ ]2sech cos .a

I U R U a U U( ) = ( ) ( ) ( )[ ]2 cos .a

220 J.T. Manassah

Figure 5.23. The U second partial derivative of the steepened pulse phase as a func-
tion of U. (a) — eV = 0.1; (b) – – eV = 0.4; (c) –·– eV = 0.8.
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Figure 5.24. Difference signal between the output from a Mach-Zehnder interfer-
ometer and the sum of the input pulse to the interferometer (i.e., the SPM pulse) and
the reference pulse (i.e., sech pulse). K = 300, eV = 0.5. (a) Conventional SPM theory;
(b) self-steepened theory.



For all interferometric problems (Born and Wolf, 1975), the method of
analysis of nonmonochromatic light is first to find the intensity distribution
for a specific frequency as a function of the path time delays of the spe-
cific physical setup and then to sum incoherently over the intensities of
all frequency components. Therefore, if a light that is incident on a
Young/Michelson interferometric system has an input spectral distribution
given by Iin(w), the output intensity Iout from this system is then given by
(Manassah, 1987a)

(110)

where D is the time delay associated with the two paths and H(w, D) is the
response of the system to the incoming field of unit amplitude and frequency
w. Specifically, the monochromatic response function for the Young config-
uration is given by

(111)

The relative output intensity for any D, normalized to the intensity for D =
0, is then given by

(112)

For CW radiation, the minima of the interferometric intensity are located at

In normalized time T, and using normalized frequency K, the normalized
time delay D/t is parametrized as y/K. In these units, the CW minima corre-
spond to

(113)

and the expression for the relative intensity of the interference pattern reduces
to

(114)

In Figure 5.25 we plot IR(y) for fixed K (i.e., fixed pulse width) but variable
eV (i.e., changing pulse energy). As can be observed, both the values and posi-
tions of the extrema change with eV. Furthermore, for large n, the ratio of
the magnitude of a maximum intensity to that of its neighboring minimum
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Figure 5.25. Young/Michelson normalized interferometric intensity distribution
IR(y), for a steepened self-phase-modulated input, as a function of y (= w0D). K = 50.
(a) eV = 0.1; (b) eV = 0.5; (c) eV = 0.8.



intensity decreases with increasing eV. This ratio goes asymptotically, for
large n, to 1.

In Figure 5.26 we plot the shifts in the position of the third minimum (i.e.,
the minimum that corresponds to y(2) = 5p for CW radiation) as a function
of K, but fixed eV. As can be observed, this shift depends only weakly on K.
The approximate scaling—i.e., the strong dependence of the shift in fringe
positions on the ratio eV, essentially the pulse intensity over the pulse dura-
tion, and not independently on the pulse width—will be discussed next. The
phase of an SPM signal was shown in Section 2.5 to depend only on the para-
meter K through a multiplicative factor, a = Kā , where ā depends only on
the parameter eV. Consequently, if for y/K < 1 we approximate Eq. (114) by
the leading term of its Taylor series, we obtain

(115)

This approximate expression for IR does not have an explicit dependence
on K. We notice from Figure 5.26 that this asymptotic value for IR is already
within 2% of its exact value for K ~ 90 (i.e., a 30-fs pulse for l ~ 0.6mm).
Furthermore, by examining Eq. (114) it also becomes clear why the eV-
dependent amplitude-phase time shift is responsible for the interferometric
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Figure 5.25. (continued)



minima shifts; in effect ∂ā /∂U π 0 for U = Ua and the argument of the cosine
function at that point is eV dependent.

In Table 5.2 the shifts in the positions of the IA
R minima are tabulated as

functions of the order of the minima and of the parameter eV. A shift is
defined as the difference between the actual minimum of IA

R (y) and the cor-
responding CW minimum as defined in Eq. (113). As can be observed, each
eV has a distinct signature for the shifts.
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Figure 5.26. Shifts in the positions of the Young interferometric third-order
minimum, for a steepened self-phase-modulated input, eV = 0.5, as a function of K
(= w0t).

Table 5.2. Shifts in the positions of the asymptotic
interfero-metric intensity minima for various orders and
eV values.

n
eV 0 1 2 3 4

0.1 -0.006 -0.016 -0.021 -0.029 -0.034
0.2 -0.018 -0.051 -0.073 -0.045 -0.343
0.3 -0.040 -0.101 -0.010 1.14 2.29
0.4 -0.072 -0.127 1.84 2.02 2.20
0.5 -0.113 0.115 1.74 2.20 3.63
0.6 -0.161 1.29 1.59 3.15 4.59
0.7 -0.213 1.19 2.62 3.84 4.87
0.8 -0.254 1.04 2.51 4.01 5.67



A nonspectroscopic method for deducing eV is through an analysis of the
Fourier transform of IA

R . The expression for the Fourier transform can be
directly deduced from Eq. (116) and the integral representation of the Dirac
delta function, specifically:

(116)

where Ui and Uj are respectively the solutions of

(117)

(118)

and N is the a2 integral normalization factor. F(x) is an even function of x.
For x > 0, only Eq. (117) admits a solution since |∂ā /∂U| < 1. The function
F(x) is not identically zero in the interval [a, b], where

(119)

(120)

(i.e., a determination of the range of F(x) specifies the value of the parame-
ter eV). In Figure 5.27 the maximum and minimum of (∂ā /∂U) are plotted
as functions of the parameter eV. It should also be observed here that, as we
will see in Section 2.8, the spectral distribution extents on the Stokes and anti-
Stokes sides are determined by the extrema of (∂ā /∂U). In Figure 5.28, the
function F(x) is plotted for selected values of eV.

2.8 Spectral Distribution

The spectral distribution for a signal is proportional to the magnitude
squared of the time Fourier transform of the electric field, which is given by

(121)

In Figure 5.29 the spectral intensity (Manassah and Mustafa, 1988a) of the
supercontinuum is computed from the specific values of the amplitude a and
phase a, earlier computed. However, to gain an intuitive feeling for this spec-
trum structure, we observe that the stationary phase method can be applied to
the integral of Eq. (121). Specifically, this equation can be approximated by

(122)
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where K - K¢ = dK and U1 and U2 are the roots of the equation

(123)

(i.e., the stationary points), and U1 and U2 are chosen such that a≤(U1) > 0
and a≤(U2) < 0. Two stationary points exist for any (-d) in the interval span-
ning the domain of a ¢. We observe the following features for the spectral dis-
tribution of the self-phase modulated supercontinuum:

1. The spectral extents are given by

(124)

(125)

Since Max(∂a/∂U) > |min(∂a/∂U)| (see Figure 5.27), the spectral extent on
the anti-Stokes side (d < 0) is appreciably larger than the corresponding
quantity on the Stokes side, a result clearly exhibited in Figure 5.29.

¢ - ª ( )K K UStokes Min ∂a ∂ .

¢ - ª ( )K K Uanti-Stokes Max ∂a ∂ ,

d a+ ¢( ) =U 0
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Figure 5.27. Values of the extrema of the U partial derivative of the steepened pulse
phase as a function of eV. (a) Maxima; (b) minima. (Dashed line) Conventional SPM;
(full line) steepened pulse.
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Figure 5.28. Fourier transform of the Young interferometer intensity distribution for
a steepened SPM pulse as a function of c. (a) eV = 0.1; (b) eV = 0.4; (c) eV = 0.8.
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Figure 5.28. (continued)

Figure 5.29. Normalized
computed spectral distribution
of the self-phase-modulated
steepened pulse as a function
of the frequency difference
multiplied by the pulse dura-
tion. The pulse duration ~10-13

s (K = 300). Left is anti-Stokes
side. (a) eV = 0.1; (b) eV = 0.4;
(c) eV = 0.8.



2. The existence of two stationary points for all d in the spectral distribution
domain implies the existence of interference in the spectral intensity. M,
the number of oscillations in the spectrum, is given by

(126)

where Eq. (104) has been used to derive the last relation. It is worth noting
that M increases with both K (i.e., t) and eV. The modulation frequency
of these oscillations is approximately given by the frequency extent divided
by the number of oscillations. Combining Eqs. (124), (125), and (126), we
deduce that this quantity depends only on eV and is independent of K.

3. The envelope of the maxima of the spectral distribution is approximately
given by

M
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Figure 5.29. (continued)



(127)

In Figure 5.30 this approximate envelope is plotted for selected eV. As can
be observed, it mimics very well the exact envelope that can be deduced from
Figure 5.29. The cutoff points for the envelope are, for |d|, equal to (max ā ¢)
and (min ā ¢). This envelope maximum is in the shallow region of the a¢ curve.
As can be observed from Figure 5.22, this is close to the region of (min a¢).
Physically, this translates into the spectrum having a sharp band edge close
to its Stokes maximum extent.

2.9 The SPM-Spectral Maximum Shift

In Figure 5.31 we plot the position of the spectral distribution maximum as
function of eV. We will refer to this displacement of the spectral maximum
as the SPM-spectral maximum shift (Manassah and Mustafa, 1988a). For 
all practical purposes, the magnitude of this shift follows closely the Stokes
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Figure 5.30. Approximate envelopes of the spectra of Figure 5.29 obtained by the
method of the stationary phase approximation. (a) eV = 0.1; (b) eV = 0.4; (c) 
eV = 0.8.
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Figure 5.30. (continued)



frequency extent to within half a modulation cycle. As will be seen in Section
4, this shift may also be observed in induced phase modulation (IPM) due to
the similarity relations in the spectral distributions of SPM and IPM proved
to exist under certain conditions (Manassah et al., 1985). This similarity-
induced shift should be distinguished from the induced frequency shift 
(Manassah, 1987b) that will be shown to exist because of the group velocity
dispersion between pump and probe. Also, the SPM-spectral maximum shift
whose origin is the self-steepening of the pulse shape should be distinguished
from the self-frequency shift (Gordon, 1986) whose origin is the nonzero
relaxation time of the medium.

Physically, the SPM-spectral maximum shift can be understood simply by
noting that the c(3) nonlinearity does not change the total number of photons
in the pulse. Thus, since the spectral anti-Stokes extent is larger than the
Stokes extent, in order to conserve energy it is necessary that the peak of the
spectral intensity be shifted to the Stokes side. Mathematically the SPM-
spectral maximum shift can be approximated as a function of eV by

(128)

2.10 Filter Transform

In this section we compute the effects of amplitude filters on ultrafast self-
phase-modulated pulses (Manassah, 1988c). We examine the dependence of

Dm K Vªe 4.
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Figure 5.31. The SPM-spectral maximum shift, in the presence of pulse steepening,
as a function of eV. (K = 300.)



the outgoing signal shape (i.e., width, amplitude, structure, and maxima posi-
tions) on the self-phase modulation parameters and filter characteristics. In
particular, we show that amplitude filters can be used, under certain condi-
tions, to compress pulses. The physical setup we are examining consists of an
SPM pulse passing through an amplitude filter.

The amplitude filter transfer function is assumed to be Gaussian and is
given by

(129)

where K = wt and Df and wf are, respectively, the filter spectral half-width and
center frequency. The outgoing field from the filter is related to the respec-
tive ingoing field by

(130)

Expressed as a function of the amplitude and phase of the SPM ingoing field,
Eout(U) is given by (Manassah, 1986a)

(131)

In the case of very large (Dft), specifically (Dft)2 >> K(eV), and using the
following representation of the Dirac delta function:

(132)

E out fi E in. Physically, if the filter is transparent to all frequencies, there is no
modification to the pulse.

On the other hand, if 1 << (Dft)2 << KeV, we can evaluate Eq. (131) by the
stationary phase method; specifically, we can approximate Eout by

(133)

where U¢ and U≤ are the roots of

(134)

(i.e., the stationary points of the integral),

(135)

U¢ and U≤ are chosen such that a≤(U¢ ) > 0 and a≤(U≤ ) < 0. Two sta-
tionary points exist for any (-df) in the interval spanning the values of a¢.
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Examining Eq. (133), we notice that Eout describes two pulses centered respec-
tively at U¢ and U≤ and of width (Dft). Because (Dft) << KeV, the interfer-
ence term in |Eout|2 is negligible. In the case that (-df) is close to the maximum
or minimum of ā ¢, the two stationary points are narrowly separated and the
two pulses merge into one. This limit is referred to as the one-daughter-pulse
regime. It should be noted that the above results differ qualitatively from
those associated with chirped Gaussian (CG) pulses. To understand these dif-
ferences, we note that although the phase function a for SPM and CG pulses
coincides in the region around the maximum of a, the respective derivative
functions a ¢ and a≤ are quiet distinct. For CG pulses, a ¢ is linear in U
and its magnitude is symmetric with respect to an axis of symmetry and 
a≤ is constant. For SPM pulses, as we have seen, a ¢ is asymmetric and 
is bounded; it has two extremes. Consequently, whereas approximating a
for an SPM pulse by the CG pulse may be acceptable in the time domain 
in certain specific instances, it is nearly never so in the frequency domain.
The transformation by a filter is essentially a frequency, domain calculation
and therefore we should expect major qualitative differences in features
between the SPM and CG pulses going through the amplitude filters,
namely:

1. For CG pulses Eq. (135) has a single solution, whereas for SPM pulses the
same equation admits two, one, or zero solutions depending on the value
of df. Physically, this means that while the CG pulse produces only a single
daughter pulse on passing through the filter, for an SPM pulse input, two
pulses are the normal output from the filter. See Figure 5.32.

2. The outputs from two filters with center frequencies equidistant from the
pulse center frequency have similar shapes for a CG input pulse; however,
they do no for an SPM input pulse. This asymmetry is manifested through
then amplitude, shape, and width of the outgoing pulses. Compare, for
example, Figure 5.32 (iv) and (x).

3. In the CG case, the time of arrival of the pulse peak for different filter
center frequencies is a linear function of the detuning with the pulse carrier
frequency. For SPM pulses, this curve is given by the a¢ graph previously
given (see Figure 5.22). In Figure 5.32, numerically evaluated values of
|Eout|2 for different values of the filter center frequency are shown. An effi-
cient compression scheme will concentrate on values of Kf where only one
narrow daughter pulse is generated (i.e., near the frequency corresponding
to the spectral maximum extent). The computed values for the position of
the pulse maximum and width agree to better than 10% with the approxi-
mate values of the stationary phase approximation.

For estimation purposes, in the intermediate region (i.e., (Dft)2 ~ K(eV)) the
stationary phase approximation should be replaced by the method of steep-
est descent, which is applicable in case the argument of the exponent in the
integrand is complex and the exponent is multiplied by a large number, in
this instance K.
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In Figure 5.33 the computed magnitude of |E(out)|2 and the compression
ratio are plotted as functions of the parameter (Dft) in the instance of optimal
compression (i.e., one daughter pulse only). As can be observed, as the filter
is broadened (more light passes through), the magnitude of |E (out)|2 is
increased. The compression ratio (the pulse width of |E (in)|2 divided by the
pulse width of |E (out)|2) reaches a maximum as a function of (Dft) and then
decreases. As (Dft) grows very large ((Dft)2 >> K(eV)) the compression ratio
approaches 1. An approximate value of the compression ratio can be esti-
mated by the method of steepest descent, namely,
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Figure 5.32. Field intensity outgoing from an amplitude filter, where the input is a
steepened SPM signal (K = 300, eV = 0.4, Dft = 5). All the intensities are normalized
to the maximum value of the pulse resulting from a filter with the same center fre-
quency as the incoming pulse. (i) K - Kf = -60; (ii) K - Kf = -50; (iii) K - Kf = -40;
(iv) K - Kf = -30; (v) K - Kf = -20; (vi) K - Kf = -10; (vii) K - Kf = 0; (viii) K - Kf =
10; (ix) K - Kf = 20; (x) K - Kf = 30; (xi) K - Kf = 34; (xii) normalized sech2 pulse.



(136)

where g ª Ka≤(Us), and Us is the average value of the two collapsing station-
ary points. Comparison of this estimate for C with its computed values gives
an error margin of less than 25% over the whole range of (Dft).

Finally, we study the effect of laser source fluctuations on this compres-
sion scheme. In Figure 5.34 we show the effect of changing eV by ±25% which
corresponds to ±25% in the ingoing laser intensity. While keeping (Dft) con-
stant, the effect of increasing eV is to create two daughter pulses. This can
be understood by noting that the magnitude of the maximum of a ¢ increases
with eV; therefore an increase of eV means the resurgence of two well-
separated stationary points. On the other hand, a decrease in eV drastically
reduces the magnitude of E(out) but with only slight variations in the shape.
Therefore, in designing a setup for pulse compression through the above
scheme, the nonlinear parameters should be selected to overcompensate the
positive fluctuation.

It should be emphasized that the above compression scheme produces
ultrashort pulses but with center frequency different from that of the incom-
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Figure 5.33. (a) Compression ratio and (b) intensity magnitude of the steepened
SPM pulses outgoing from a filter as functions of (Dft). (i) ––K = 300, eV = 0.4,
K - Kf = -60; (ii) – • – • – K = 30, eV = 0.4, K - Kf = -6; (iii) — —K = 300, eV = 0.8,
K - Kf = -210.



ing laser signal. This scheme permits, inter alia, the generation of femtosec-
ond pulses in new regions (such as the ultraviolet) of the spectral domain
using a laser source, with center frequency in the visible.

3. c(5) Dispersionless Medium

So far, our calculations assumed a c(3) nonlinear medium. Higher-order
leading linearity is possible; for example, in cases where the nonlinearity is
due to two-quantum photogeneration of nonequilibrium carriers in certain
semiconductors the medium will be a c(5) medium. In this section we treat
such a case. As we will observe, all calculations made for the c(3) medium case
can be repeated for the c(5) medium case. We restrict ourselves here to some
illustrative examples.

3.1 Self-Focusing in c(5) Material

In this section we examine the combined effects of the c(5) nonlinearity and
diffraction on the spatial properties of a Gaussian pulse propagating in a c(5)

medium. We make the same assumptions as in Sections 1.3 and 1.4.
The envelope of the electric field obeys the equation
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Figure 5.34. Effects of fluctuation in eV (i.e., laser intensity) on the shape of the
filter output. (K = 300, K - Kf = -60, Dft = 5.) (i) ——eV = 0.3; (ii) — — —eV = 0.4;
(iii)  – • – • – eV = 0.5. The peak intensities are, respectively 8.27 ¥ 10-3, 6.03 ¥ 10-1,
and 2.54 ¥ 10-1.



(137)

where �2
T is the transverse component of the Laplacian e¢ = ∂e/∂z, n4 is the

quartic nonlinear index of refraction, and n0 is the linear index of refraction
of the medium.

We consider the initial condition

(138)

that is, we are considering a CW Gaussian beam (the generalization to a
Gaussian pulse can be performed using the same steps as in Sections 1.3 and
1.4). An approximate solution to Eq. (137) with the boundary condition
(138), correct to order r2/a2, can be obtained through the trial solution

(139)

where the different functions have the same meaning as in Sections 1.3 and
1.4. The equations for w̄ , r and a are given by

(140)

(141)

(142)

For the initial conditions w̄ (z = 0) = 1, and r(z = 0) = 0, the function w̄
obeys the equation

(143)

where

(144)

The critical field is given by

(145)

For e > ec, the relation between w̄ and z is given by

(146)
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Figure 5.35. Normlized beam diameter of a pulse propagating in a dispersionless c(5)

material, and with intensity larger than the critical intensity, plotted as a function of
the distance expressed in units of the Rayleigh length. (a) s = (1.1)4; (b) s = 10;
(c) s = (2)4.
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Figure 5.35. (continued)

Figure 5.36. Normalized focusing distance in c(5) material as a function of the pulse
(intensity)2 measured in units of the (critical intensity)2.
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where Ld is the Rayleigh diffraction length,

(147)

and F̃ and Ē are the elliptic integrals of the first and second kinds.
In Figure 5.35 the function w̄ as a function of the normalized length y is

plotted for different values of s. In Figure 5.36 the normalized focusing dis-
tance as a function of s is plotted. As can be observed, the focusing distance
decreases as s-1/2 for large s, that is, as the normalized (energy)-1, whereas for
a c(3) medium it decreases as (energy)-1/2.

3.2 Self-Steepened Pulse in c(5) Dispersionless Medium:
Plane Wave Approximation

In this section we investigate the amplitude, phase, and spectral distribution
of a high-intensity pulse propagation in a c(5) dispersionless medium 
(Manassah and Mustafa, 1988d). We consider the case where diffraction can
be neglected. Our treatment follows exactly the same steps as in Section 2.1;
consequently, here we give only the results.

The Maxwell wave equation is given by

(148)

where n is the linear index of refraction and n4 is the quartic nonlinear index
of refraction. This wave equation can be simplified under the assumption that
one component of E is present, the transvers variation of E is neglected (i.e.,
diffraction effects are neglected), and ·E • EÒ = |E|2/2. The dimensionless vari-
ables F, Z, and T are defined in the same manner as in Section 2, and the
dimensionless nonlinear coupling constant e¢ is defined as

(149)

and the nonlinear wave equation form reduces to

(150)

Using the variables U, V, and K of Section 2 and the method of multiple
scales, the quasi-linear partial differential equations for the amplitude a and
the phase a are given by

(151)

(152)

For the initial boundary conditions
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(153)

(154)

the solution for the amplitude is given by

(155)

where e¢V = n4|E0|4*z/ct. The slope of the amplitude is given by

(156)

where (-, +) corresponds respectively to U (smaller, larger) than - 5–2e¢V. Solu-
tion (155) derived for the amplitude under the condition of no dispersion and
no absorption is valid for all values of V < Vcrit, where Vcrit is the critical value
of V at which the optical amplitude shock develops (i.e., ∂a/∂U fi •). This
solution is smoothed at the shock discontinuity by higher-order derivatives
in Maxwell’s equation. The value of Vcrit is given by

(157)

In Figures 5.37 and 5.38 the amplitude and its first derivative are plotted for
selected e¢V. The self-steepening effect is as expected, more pronounced as
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Figure 5.37. Steepened amplitude of a pulse propagating in dispersionless c(5) mate-
rial as a function of U. (a) e¢V = 0.05; (b) e¢V = 0.2; (c) e¢V = 0.34.



e¢V increases, and so is the asymmetry. The position of the amplitude
maximum, denoted by Ua, is at

(158)

The solution of the phase equation (152) obeying (158) the boundary con-
dition of Eq. (154) is given by

(159)

where

(160)

The first partial derivative of a with respect to U is given by

(161)

This quantity represents physically the normalized frequency sweep.
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Figure 5.38. The U partial derivative of the steepened amplitude of a pulse propa-
gating in dispersionless c(5) material as a function of U. (a) e¢V = 0.05; (b) e¢V = 0.2;
(c) e¢V = 0.34.



The second partial derivative of a with respect to U is given by

(162)

In Figures 5.39, 5.40, and 5.41, respectively, are plotted the phase and its
derivatives ∂ā /∂U and ∂2ā /∂U2. We note the following:

1. The phase is asymmetric with respect to the U axis. This is a result of the
amplitude self-steepening.

2. The position and the value of the phase maximum, denoted respectively
by Ua and aM, are given by

(163)

(164)

3. The maxima of the amplitude and the phase, as can be deduced by com-
paring Eqs. (158) and (163), are shifted with respect to each other. This
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Figure 5.39. Normalized phase of a steepened pulse propagating in dispersionless
c(5) material as a function of U. (a) e¢V = 0.05; (b) e¢V = 0.2; (c) e¢V = 0.34.
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Figure 5.40. Normalized frequency sweep (slope of the phase) of a steepened pulse
propagating in c(5) dispersionless medium as a function of U. (a) e¢V = 0.05;
(b) e¢V = 0.2; (c) e¢V = 0.34.

Figure 5.41. Normalized second partial derivative of the phase of a steepened pulse
propagating in c(5) dispersionless medium as a function of U. (a) e¢V = 0.05;
(b) e¢V = 0.2; (c) e¢V = 0.34.



results in a shift of the minima of the interference pattern as shown is
Section 2.8.

4. The derivative of the phase is asymmetric with respect to the U axis. This
results in an asymmetry of the spectral distribution between the Stokes and
anti-Stokes portions of the spectrum.

5. The absolute value of the maximum of ∂a/∂U is always bigger than that
corresponding to its minimum value; therefore the anti-Stokes extent is
larger than the Stokes extent of the spectrum. This inequality also leads to
having for x > 0 the left peak of the Fourier transform of the interference
pattern closer (in the notation of Section 2.8) to x = 1 than the right peak.

In Figure 5.42 we plot the values of max(∂a/∂U) and min(∂a/∂U) as func-
tions of e¢V. The asymmetry in their values for the same (intensity)2 is clear.
In Figure 5.43 we plot the function F(x) for this case; the asymmetry in the
values of the extrema is again exhibited. Notice that a peak appears at 
x = 1. This peak is associated with the spectral peak at the center frequency,
as will be seen later.

The spectral distributions of the resulting supercontinuum obtained by
taking the amplitude squared of the Fourier transform of the electric field
are shown in Figure 5.44. We note that:

1. The detailed features of the calculated spectral extents conform very well
with the estimated values deduced from the values of max(∂a/∂U) and
min(∂a/∂U).
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Figure 5.42. Extrema of the frequency sweep of a steepened pulse propagating in
c(5) dispersionless medium as a function of e¢V. (a) Maxima; (b) minima.
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Figure 5.43. Envelope of the Fourier transform of the intensity distribution of a
Young interferometer having as input a steepened pulse outgoing from a dispersion-
less c(5) material. (a) e¢V = 0.05; (b)e¢V = 0.2; (c) e¢V = 0.34.
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Figure 5.43. (continued)

Figure 5.44. Spectral distribution of a steepened pulse outgoing from a dispersion-
less c(5) material. The zero of D is the center frequency of the original pulse. (a) e¢V
= 0.05; (b) e¢V = 0.2; (c) e¢V = 0.34.
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Figure 5.44. (continued)



2. The existence of a spectral peak on the edge of the Stokes portion of the
spectrum is a result of the shallowness of the ∂a/∂U curve near its
minimum value.

3. The number of oscillations in the spectral distribution is estimated by the
method of the stationary phase approximation to be given by

(165)

and is the close agreement with the numerically computed values.
4. The spectral shape has a peak at the center frequency, a new feature not

present in the c(3) medium supercontinuum.

c(5) in the presence of self-steepening and material relaxation is treated in the
appendix at the end of the chapter.

4. Induced Nonlinear Effects

In this section we study the geometric, time, and frequency domain effects
on a pulse (probe) propagating in a c(3) medium due to the presence of a
strong pump.

4.1 Induced-Phase Modulation

When a weak probe pulse is sent together with a pump, the phase of the probe
pulse at different frequencies can be modulated by the time variation of the
nonlinear index of refraction originating from the primary intense pulse
(Manassah, 1987b). This process is defined as induced-phase modulation
(IPM). If we denote by A and B the envelopes of the pump and probe, respec-
tively, their differential equations are given for the lowest order of the quasi-
linearized model (i.e., the pump shape distortion due to group velocity
dispersion is neglected, higher derivatives beyond the first derivative of the
index of refraction are neglected, the self-steepening effect is neglected, and
the transverse variation of the envelope is neglected) by

(166)

(167)

where ga,b = n2ka,b/2n0, n0 is the linear index of refraction, n2 is the quadratic
(Kerr) index of refraction, ga is the conventional SPM coefficient (see Section
1.1), and va and vb are respectively the group velocities of the pump and the
probe in the medium. We assume that the probe and pump durations are
given by tb and ta and we introduce the normalized probe comoving coordi-
nate Ū defined by
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where the normalization is with respect to the pump duration. Denoting by
F and G the pulse shape functions for the pump and probe, the initial con-
ditions for the amplitude and phase of each pulse are given by

(169)

(170)

(171)

(172)

where t0 is the initial displacement of maxima between the pump and probe.
The solutions of Eqs. (166) and (167), in the case that a >> b, obeying the
boundary conditions (169) through (172) are given by

(173)
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(175)

(176)

where

(177)

If the pump form function is hyperbolic secant, then

(178)

where
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h is the inverse walk-off distance between the pump and probe over the dura-
tion of the pump pulse. In the Ū notation, the functions a, a, b, and b reduce
to
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where T0 = t0/ta and ta ∫ stb. It is worth noting that in this model the pump
only modulates the probe; that is, there is no energy transfer between the two
pulses. In Figure 5.45 the phase function y is plotted for different values of
the parameters.

In the frequency domain, the electric field for the probe signal is propor-
tional to

(184)

where D = (w¢ - w)ta and w is the probe center frequency. The spectral inten-
sity is proportional to |ĒB(D)|2. In Figure 5.46 the spectral intensity of the
probe is plotted for different values of the parameters hZ and T0 in the case
that s = 1.

The spectral extent of the probe due to IPM can be obtained by the sta-
tionary phase method; in essence:

(185)

where
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and the values of D1 and D2 are given by
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Figure 5.45. Induced phase function y. (a) h = 0, T0 = 0; (b) hz = 1/2, T0 = 0; (c) hz
= 1, T0 = 0; (d) hz = 4, T0 = 0; (e) hz = 4, T0 = -2; (f) hz = 4, T0 = 2.
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Figure 5.46. Spectral distribution of the probe. The probe and pump have the same
initial width. Top figure: (a) – – hz = 0, T0 = 0; (b) – · · – hz = 1/2, T0 = 0; (c) – · – hz
= 1, T0 = 0; Bottom figure: (a) – – hz = 4, T0 = 0; (b) – · · – hz = 4, T0 = -2; (c) – · –
hz = 4, T0 = 2. [a2

0gz = 5p/2.]



where l is the length of the material and Ū1,2 are the roots of the transcen-
dental equation

(188)

In Figure 5.47 the spectral extents are plotted as functions of hl. We note
that the spectral extent of the probe-induced broadening increases linearly
with the length of the sample for small walk-off; however, it saturates for
values of hl > 2. Physically, twice the walk-off distance measures the distance
over which the pump and probe have some overlap; consequently it acts as a
maximum effective length for material as far as induced-phase modulation is
concerned.

In conclusion, the following features are observed in the induced super-
continuum spectrum, in the presence of walk-off between pump and probe:

1. There is asymmetry in the spectral distribution between the Stokes and
anti-Stokes sides.

2. The spectral intensity maximum is shifted to the Stokes side of the probe
center frequency for h > 0 and to the anti-Stokes side for h < 0. This effect
is called induced frequency shift.

3. The spectral distributions for equal magnitude but opposite sign h are sym-
metric with regard to the D axis.

4. The spectral distribution extent saturates for l >> h-1.

4.2 Raman Amplification and Induced-Phase Modulation

In optical fiber transmission one encounters the situation where Raman
amplification and induced-phase modulation are simultaneously present
(Manassah and Cockings, 1987a). In this section we study this combined
effect to the lowest order approximation. The modifications to be made to
Eqs. (166) and (167) are that an amplification term should be added to the
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Figure 5.47. Induced frequency extent as a
function of fiber length.



probe amplitude equation and the g ’s should be multiplied by 1/2 to take into
account the value of the overlap integrals of the transverse distribution of
the pump and signal over the fiber cross section. The differential equation for
the probe amplitude is given by

(189)

where d is the Raman loss coefficient. The expressions for a, a, and b are the
same as those given by Eqs. (180), (181), and (183) with g fi g/2 and Eq. (182)
is modified to read

(190)

Here we treat the case s = 1. The time of arrival of the peak of the pump at
length l of the fiber is denoted by Ū1 and is given by

(191)

With no pump present, the time of arrival of the probe peak is denoted by
Ū2 and is given by

(192)

In the presence of the pump, the coordinate of the probe peak, denoted by
Ū2, is obtained by finding the maximum of b, which reduces to solving the
transcendental equation

(193)

We plot the values of Ū1 - Ū2 and of b(Ū2) in the three following experi-
mentally implementable cases:

1. hl fixed, T0 = 0, and a2
0 (intensity of the pump) is changed—see Figure

5.48a.
2. a2

0 fixed, T0 = 0, and l is changed—see Figure 5.48b.
3. hl fixed, pump intensity fixed, and T0 is varied. In Figure 5.49 the pulse

shape and position and in Figure 5.50 the maximum magnitude of the
probe are plotted for this case.

The outstanding features observed are

1. a pull between the pump and probe pulses, that is, |Ū1 - Ū2| < |Ū1 - Ū ¢2|;
2. a time ordering with the pump pulse out last at the exit, if the initial time

delay between the two pulses is smaller than tcorrel, where t0 < tcorrel, and tcorrel

is the region of strong distortion of the signal;
3. a long time correlation (many pulse widths) in the pump-probe system;
4. an increase in the intensity of the pump increasing the pull;
5. the probe pulse perhaps splitting for t0 > tcorrel and producing a daughter

pulse, that is, a secondary pulse of weak amplitude;
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Figure 5.48. Time delay between pump and Raman pulses, at exit S = Ū1 - Ū2. (Solid
line) Pump and signal system; (dashed line) noninteractive signal and pump. (a) hz =
2, T0 = 0; (b) da0/2h = (5p)/8, T0 = 0.
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Figure 5.49. Normalized outgoing Raman probe amplitude (b/bmax) for different
initial delay times between probe and pump. The arrow indicates the position of the
outgoing pump maximum. In the absence of a pump, the probe maximum would have
been in all these graphs at T = 0. Parameters for all cases are hz = 2, da2

0 /2h = (5p)/8.
(a) T0 = -5.5; (b) T0 = -4.5; (c) T0 = -3.5; (d) T0 = -2.5; (e) T0 = -1.5; (f) T0 = -0.5;
(g) T0 = 0.5; (h) T0 = 1.5; (i) T0 = 2.5; (j) T0 = 3.5.



6. the amplification curve being a narrow function of the initial time lag
between pump and probe; and

7. the amplification saturating as the length of the fiber exceeds a few walk-
off distances.

4.3 Induced Pulse Compression

In Section 1.2 we discussed the fiber-grating compressor. In this section we
study the possibility of using induced-phase modulation as the source of the
chirp (Manassah, 1988a, 1988b). Walk-off effects between pump and probe,
discussed in Section 4.1, are incorporated in this analysis. For computational
simplicity we assume that the probe and pump pulse shapes are given, respec-
tively, by a Gaussian and a hyperbolic secant.

In Figure 5.51a the derivative of the probe normalized phase with respect
to Ū is given for different values of hz. The values of the extrema of this
function determine the induced spectral extent of the probe. As can be
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Figure 5.50. Maximum amplitude of the Raman signal as a function of initial delay
time T0. hz = 2, da2

0 /2h = 5p/8.
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Figure 5.51. Top: Induced frequency sweep (i.e., derivative of the induced phase) for
different hz and T0 = 0. (a) hz = 1; (b) hz = 2; (c) hz = 3; (e) hz = 5; (f) hz = 6. Bottom:
Induced frequency sweep near Ū = 0. (a) hz = 1; (b) hz = 2; (c) hz = 3. Best fits for
the slopes are, respectively, -1.44, -0.64, and -0.22.



observed, for a specific material length z, the induced spectral extent
decreases with increasing h. Physically, an increase in the value of h corre-
sponds to a shorter spatial overlap between probe and pulse and consequently
to a smaller induced-phase modulation. It should also be noted that for 1 <
hz < 3 and for T0 = -hz/2, y¢ is linear in Ū in the region around Ū = 0 and
is symmetric with respect to this point. In Figure 5.51B y¢ is plotted for such
cases. Consequently, if the probe pulse duration is much shorter than the
pump pulse duration (i.e., the probe amplitude range is entirely within the
region of the linear chirp), it is reasonable to expect the induced-phase mod-
ulated probe pulse, under these conditions, to be efficiently compressed
through the grating.

We assume that T0 = -hz/2 and s >> 1 and we denote the induced phase
by p, which is given by

(194)

where r(hz) is a function of hz equal to (0.72, 0.32, 0.11), respectively, for 
hz = (1, 2, 3).

If the incoming probe pulse intensity is given by

(195)

then the outgoing probe pulse from a pump-fiber-grating compressor, under
the optimal phase condition, is given by

(196)

where

(197)

(198)

and the optimal phase-matching condition is given by

(199)

where the grating phase function is given by

(200)

where K = wta is the probe central frequency normalized to the pump width.
In Figure 5.52 the numerically computed outgoing pulse intensity is plotted

and is compared with the incoming pulse. The compression ratio agrees to
better than 1% with the result of Eq. (198).

In Figure 5.53 the amplitude scale z and the relative with l of the probe
are plotted as function of p. It should be noted that in the choice of p, values
for the SPM coefficient should be smaller than those at which pump distor-
tion sets in (i.e., in the notation of Section 2, eV ª 0.2). As can be observed,
the parameter l is larger than s; that is, the probe pulse is compressed even
for large values of s. Experimentally, for a 10-ps pump pulse, hz = 3; for gaa2

0 z
= 1500 (i.e., eV ª 0.1), 2ga = gb, the value of |p| is approximately 650.
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Another method for pulse compression is through chirping-filtering, as dis-
cussed in Section 2.10. The disadvantage of this technique over the above one
is the energy loss suffered by the probe in this process. The expression for the
outgoing probe pulse, following its induced-phase modulation and filtering,
is given by

(201)

where we assumed that T0 = -hz/2, Df is the Gaussian filter width, Kb = wbta,
Kf = wfta, and wf is the filter center frequency. The filter transform function
is given by Eq. (129), and Eq. (201) can be analytically evaluated in the
approximation of a linear chirp. The intensity of the outgoing pulse is then
given by

(202)
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Figure 5.52. Induced-phase-modulated probe pulse at the input and output of the
fiber-grating compressor as a function of Ū. s = 10; gba2

0 z = 1000; hz = 3. (i) Input;
(ii) output.



(204)

and

(205)

In Figure 5.54 the parameter z and c are plotted as functions of d for a value
of the SPM coefficient just smaller than that at which pulse distortion sets
in. As can be observed, the parameter c can be larger than s ; that is, the
probe pulse is compressed even for relatively large value of s.

In conclusion, through combination with either a grating or amplitude
filter, induced-phase modulation can lead to pulse compression.

4.4 Induced Focusing

In this section we compute the induced focusing effects (Bladeck et al., 1987;
Manassah, 1988c) generated by a strong pump on the propagation of a probe
Gaussian pulse in a c(3) medium. The differential equations for the probe
pulse diameter, radius of curvature, and phase are expressed as functions of
the pump pulse characteristics. We prove that waveguiding or the probe by
the pump is possible.
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Figure 5.53. Fiber-grating outgoing induced-phase-modulated pulse’s amplitude
scale factor z and the pulse inverse width l as functions of the induced-phase mod-
ulation parameter p. s = 10. (i) Amplitude scale factor; (ii) inverse width.
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Figure 5.54. Fiber-filter outgoing induced-phase-modulated pulse’s intensity ampli-
tude scale factor and the pulse inverse width squared as functions of the normalized
filter width (Dfta). (i) Intensity scale factor; (ii) width squared (top) s = 10, p = 200;
(bottom) s = 10, p = 200.



In the approximation where effects of group velocity dispersion and self-
steepening are neglected and the general conditions for the slowly varying
approximation are valid, the differential equations for the envelopes of the
pump and probe pulses are given by

(206)

(207)

where A1 and A2 are respectively the pump and probe envelopes, A¢ = ∂A/∂z,
and �2

T is the transverse component of the Laplacian.
If the initial conditions for the envelopes are written as

(208)

that is, the initial pulses are assumed to be Gaussian both in the transverse
plane and in the commoving coordinate system, ū = (z/vg - t) where vg is the
group velocity, a is the initial beam radius, t is the pulse duration, A0 is the
magnitude of the pulse amplitude, and the subscripts (1, 2) refer respectively
to the pump and probe.

In the following, the product A0 exp(-ū 2/2t2) is denoted by Ã0. Furhter-
more, we will solve Eqs. (206) and (207) in the limit A0

1 >> A0
2, and t1 >> t2.

For practical purposes, we are assuming that the pump pulse duration is long
enough that any walk-off between pulse and pump because of a difference
in group velocity can be neglected. Approximate solutions to Eqs. (206) and
(207), correct to order r2/a2, can be obtained through the trial solutions:

(209)

where the different functions have the same meaning as in Section 1.3; specif-
ically, w̄ is the normalized beam radius, r is the inverse of its radius of cur-
vature, and ka is the longitudinal phase. The equations satisfied by these
subsidiary functions are

(210)
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(213)

(214)

Physically, the above factors are easily identifiable: 4/k2a4 is the square of the
inverse Rayleigh diffraction length (denoted L), and the Kerr phase for the
pump pulse in the conventional SPM theory (see Section 1.1) is given by

(215)

where n = n0.
The solutions for the pump subsidiary functions are the same as those

derived in Section 1.4, specifically,

(216)

(217)

(218)

where

(219)

(220)

(221)

(222)

(Ac
1)2 is the critical field for self-focusing (i.e., the field for which the self-

focusing distance is at z = •). In this notation, as noted in Section 1.4, the
normalized self-focusing distance is (y1)foc = 1/(p - 1)

1–
2 for p > 1. Here we will

solve only for the probe subsidiary functions w̄ 2, r2, and a2 under the con-
dition that p ª 1 and that for the duration of the probe pulse we have p ª p¢.
In this instance, w̄ 1 = 1 and the solutions of the probe subsidiary functions
are given by
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(226)

(227)

(228)

and the range w̄ 2
2 is between L2

1/2L2
2 and 1. In the same notation, the expres-

sions for w̄ 2, r2, and a2 in the absence of a pump (i.e., A0
1 = 0) are given by

(229)

(230)

(231)

where y2 = z/L2.
In the figures, we consider the easily achievable experimental setup of a

probe with a central frequency at twice that of the pump (i.e., l2 = l1/2) and
for a1 = a2. In this case L2 = 2L1. In Figure 5.55, w̄ 2 is plotted in the presence
and absence of the pump field; in Figure 5.56, r2 is plotted; and in Figure
5.57, the longitudinal phase a2 is plotted. The curves in the presence of the
pump are reminiscent of those corresponding to the propagation of a 
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Figure 5.55. Normalized radius of an IPM probe as a function of distance. The
pump intensity when present is at the self-focusing critical value. (a) No pump;
(b) pump present.



Figure 5.56. Inverse radius of curvature of an IPM probe as a function of distance.
The pump intensity is at the self-focusing critical value.

Figure 5.57. Longitudinal phase of an IPM probe as a function of distance. The
pump intensity is at the self-focusing critical value.



Gaussian pulse in a quadratic graded-index material. This should come as 
no surprise, since Eq. (214) is equivalent to that case.

In conclusion, in this section we computed the geometric effects of
induced-phase modulation of a pump on the propagation of a weak probe
in a nonlinear c(3) material. We showed that, physically, the induced index of
refraction can lead to a waveguiding of the probe. Furthermore the computed
cumulative longitudinal phase [i.e., Eq. (225)] may lead to some interesting
verification of the model through interference experiments.

4.5 Induced Self-Steepening

In this section we consider induced-phase modulation when the pump inten-
sity produces self-steepening (Manassah et al., 1985). This case can be solved
by the method of multiple scales used in Section 2. Using the notation of
Section 2, for the case of the probe at the second harmonic frequency of the
pump and assuming that the material has no c(2) (i.e., there is no conversion
of two primary photons into a second harmonic photon) and that all condi-
tions of Section 2.1 are satisfied, the total F0 can be written as

(232)

This equation should be compared with Eq. (76). A corresponds to the pump
and B to the probe and d is the initial scaling factor between the probe and
pump amplitudes. For the case of d << 1, that is, a weak probe, the equa-
tions that will correspond to Eqs. (84) and (85), for the nonlinear polariza-
tion <|F|2>F, are

(233)

(234)

(235)

(236)

This system of equations indicates that once the pump pulse shape function
is determined, b, a, and b can be deduced as functions of it. For the initial
conditions, that the pump and probe have hyperbolic secant shape with the
same width, the solutions of a and a are given by Eqs. (93) and (98), respec-
tively, and those of b and b by

(237)

(238)

Essentially the pump self-steepening is directly mirrored in the probe. The
key results of the above analysis are as follows:

b a= .

b a= 2 ,

∂b
∂

e ∂b
∂

e
e

V
a

U
K a

K
a- = -

2 4
2 2

2
4.

∂a
∂

e ∂a
∂

e e
V

a
U

K
a

K
a- = -

2 2 8
2 2

2
4 ,

∂
∂

e ∂
∂

e
∂
∂

b
V

a
b
U

ab
a
U

- - =
2

02 ,

∂
∂

e
∂
∂

a
V

a
a
U

- =
3
2

02 ,

F0
2= +Ae BeiKU i KUd .

5. Simple Models of Self-Phase and Induced-Phase Modulation 269



1. The ratio of the magnitudes of a and b is constant throughout the medium;
that is, the ratio of the energy densities in the pump and the probe is pre-
served and thus the pump only modulates the probe.

2. For the case where the ratios of the pump and probe center frequencies are
the same as the ratio of the phases (a, b), the supercontinuum and the
induced supercontinuum spectral distributions are geometrically similar.
This could provide direct experimental verification of the model.
The solutions of Eqs. (234) and (236), for pump and probe having the 
same initial shape and width, are given by Eqs. (237) and (238). The general
solution for b is given by

(239)
where the function L can be written as L(l), the function l satisfies the 
equation

(240)

its solution is given by

(241)

and the particular solution of L is then obtained by making it satisfy 
the initial condition. The b solution is given by Eq. (237) as long as 
b(U, 0) = 0.

The treatment in this section has so far considered a nonlinear index of
refraction that has been averaged over time (the light cycle). If, on the other
hand, we consider the time-dependent nonlinear index of refraction (i.e., the
polarization is proportional to |F|2F), the equations of motion for the
envelopes A and B are given by

(242)
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In the limit considered earlier, d 2 << 1, the above equations reduce to
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(248)

(249)

In this limit, the equations for a and a reduce to those of the SPM theory of
Section 2 and the solutions for b and b are, respectively, given by

(250)

(251)

where L1 and L2 satisfy the partial differential equation

(252)

The solution of Eq. (252) is given by

(253)

where the initial pump pulse has been assumed to be given by sech (U ). If
the probe pulse shape is also a sech function but of different width, that 
is, b(U, 0) = sech(nU) and b(U, 0) = 0, then the functions L1 and L2

are given by the following parametric representation (where s is the 
parameter):

(254)
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The frequency extent of the induced supercontinuum centered at the probe
frequency (i.e., 2w) is given by the maximum and minimum of (1/2K)∂b/∂U,
where

(257)

and the derivative of L2 in parametric form is
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In Figure 5.58, b(U, V ) is plotted for different values of eV for n = 1.7 and
in Figure 5.59 the induced supercontinuum frequency extents are plotted as
functions of eV. The induced supercontinuum frequency extents, as functions
of eV, grow faster than those corresponding to SPM.

4.6 Induced-Phase Modulation of a Generated Second Harmonic Pulse

In the previous sections we considered the induced-phase modulation on a
probe by a pump when both were initially introduced in the system. In this
section (Manassah and Cockings, 1987b) we examine the induced-phase
modulation of a second harmonic signal generated by the pump; that is, we
consider a medium with both c(2) and c(3) coefficients present (Alfano and Ho,
1986, 1988; Alfano et al., 1987).

To first order in the quadratic susceptibility [c(2)] and the Kerr susceptibil-
ity, and neglecting all higher-order derivatives of the linear refractive index
beyond the first derivative with respect to frequency, the quasi-linear partial
differential equations describing the envelopes of the first and second har-
monic pulses are given by
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Figure 5.58. Amplitude of the induced-phase-modulated steepened second har-
monic pulse in a dispersionless c(3) medium as a function of U. c(2) = 0.—eV = 0.0;
— — —eV = 0.3; — • —eV = 0.5; — • • —eV = 0.8.



(259)

(260)

where g was defined earlier, e is given by

(261)

a is the absorption coefficient of the medium at w 2, v1 and v2 refer to the
group velocities, respectively, at the primary and second harmonic frequen-
cies, k1 and k2 are the corresponding wave vectors, and d is the quadratic non-
linear optical coefficient (PNL = dE2 ). In the weak second harmonic signal
limit (i.e., |B| << |A| or no pump depletion), the solutions of the above equa-
tions reduce to

e m w= 0 1 2cd ,

∂
∂

∂
∂

e g a
B
z v

B
t

i A i k k z i B A B Bb+ = - -( )[ ] + +( ) -
1

2 2
2

2
2 1

2 2exp ,

∂
∂

∂
∂

e g
A
z v

A
t

i A B i k k z i A B Aa+ = -( )[ ] + +( )1
2 2

1
2 1

2 2* ,exp

5. Simple Models of Self-Phase and Induced-Phase Modulation 273

Figure 5.59. Induced frequency sweep extents (maxima and minima of the deriva-
tive of the induced phase) for a steepened second harmonic pulse in a dispersionless
c(3) medium as a function of eV. c(2) = 0.



(262)

(263)

where

(264)

(265)

(266)

n1 and n2 are the indices of refraction at w and 2w, ad the superscripts p and
g refer, respectively, to the phase and group quantities. If the pulse form func-
tion is a hyperbolic secant, then the expressions for A and B can be written
as

(267)

(268)

We note that A includes self-phase modulation (SPM), and B includes the
SPM of A through the c(2) term and its induced-phase modulation (IPM) by
A through the c(3) term. A convenient expression for B suitable for numeri-
cal integration is

(269)
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2. The dependence on the primary intensity in the integrand is multiplicative
through c(2) and in the phase through c(3).

3. The upper limit of integration in y differs from the lower limit by h¢z, which
represents the length of the sample in units of walk-off distance.

4. The above treatment for SPM assumes that we are in the regime where self-
steepening is unimportant.

To gain a feeling for the different parameters of the present problem, con-
sider ZnSe (Alfano and Ho, 1986, 1988; Alfano et al., 1987). This material
was shown to have large values for both c(2) and c(3) and is therefore an excel-
lent candidate for observing both the induced-phase modulation of a gener-
ated second harmonic signal and its time domain structure. The group indices
of refraction for this material at the primary (1.06mm) and second harmonic
frequencies are, respectively ng

1 = 2.62 and ng
2 = 3.44; therefore, for a sample 

2cm long and a pulse of 10-ps duration, h¢z ª 5.
In Figure 5.60 the magnitude of B = |B| is plotted. As observed, the time

domain structure of |B| exhibits two peaks (Manassah, 1988d), one located
near Ū = -h¢z and the other at Ū = 0; these two positions correspond to the
time of arrival of two weak pulses, at the primary frequency and at the
socondary frequency, going through the linear medium [i.e., c(2) = c(3) = 0].
The appearance of the pump companion (i.e., at Ū ª h¢z) results from the
c(2) term; the c(3) term shifts slightly this pump companion forward.
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Figure 5.60. Magnitude of the generated second harmonic pulse envelope as a func-
tion of the normalized time (in units of primary pulse width), in the presence of SPM
and IPM: h¢z = 6, az = 0.9, z¢/h¢ = 20. (Dotted line) g = 0; (full line) ga = gb and 2ga2

0 /
h¢ = 0.5p.



The magnitude of B for weak phase modulation at the points Ū = h¢z and
Ū = 0 is given by

(270)

(271)

These magnitudes are not specific to the detailed pulse shape; for example,
they will be the same if, instead of a sech pulse, a Gaussian pulse is used.

The shift and the magnitude value of the pump companion peak are 
shown in Figure 5.61. As the product of the Kerr constant by the primary
intensity is increased (within the range of validity of the above weak phase-
modulation equations), the magnitude of the pump companion peak com-
pared with the magnitude of the other peak increases.

Next, we examine the spectral distribution of the second harmonic pulse.
We compare the spectral distribution of the second harmonic signal in the
absence of c(3) (i.e., g = 0) with that in its presence (hereafter ga = gb π 0). Fur-
thermore, we compare the phase-modulated primary pulse’s spectral distrib-
ution with the corresponding incoming pulse’s spectral distribution. [It is
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Figure 5.61. (a) Position shift, away from the pump, of the pump companion peak
as a function of the product of the Kerr constant by the primary pulse intensity.
(b) Magnitude of this peak normalized to G = 0 peak: z¢/h¢ = 20, h¢z = 6, az = 0.9,
G = 2ga2

0 /h¢.



obvious that the spectral distribution of the outgoing primary pulse will have
the shape predicted by the conventional self-phase modulation theory.]

In the absence of self-phase modulation, the spectral distribution of the
second harmonic signal will exhibit some modulation. Physically, this is a
direct result of its two-peak structure. Interference terms will manifest them-
selves because of the phase difference due to the time separation between the
two peaks. The Fourier transform of the second harmonic pulse in the
absence of c(3) is given by

(272)

Denote the normalized intensities of the primary and second harmonic,
respectively, by Ĩ 1 and Ĩ 2. In Figures 5.62 and 5.63 these spectral distribu-
tions are plotted for specific parameters. The Ĩ functions are defined by
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Figure 5.62. Normalized spectral
distribution of the primary pulse as
a function of the normalized fre-
quency difference: az = 0.9, h¢z = 6,
z¢/h¢ = 20. (Dotted line) g = 0; (full
line) 2ga2

0 /h¢ = 0.5p.
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(274)

where
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Figure 5.63. Normalized spectral
distribution of the generated
second harmonic signal as a func-
tion of the normalized frequency
difference: h¢z = 6, az = 0.9, z¢/h¢ =
20. (Dotted line) g = 0; (full line)
2ga2

0 /h¢ = 0.5p.

Figure 5.64. The (radiated intensity)1/4 = i as a function of v = (Dw)t for a = n/2.
(Top) Full line, n = 1; dotted line, n = 5. (Bottom) Full line, n = 3; dashed line, n = 7.
The intensity curve reaches zero at the minima.

�





1. Ĩ 2 is not symmetric in D2. This results from the asymmetry in the phase
modulation exponents.

2. The frequency extents for the primary and secondary spectral distributions
do not scale with g. The second harmonic spectral distribution is affected
by both SPM (through A) and IPM (because of A).

5. Quantum Mechanical Treatment of
Supercontinuum Generated in a Thin Sample of
Two-Level Resonant Atoms

The phenomenological theories of direct and induced supercontinuum have
been developed in previous sections for a Kerr-like medium. In the phenom-
enological theory, the interaction term in Maxwell’s equation is assumed to
be instantaneous in the electric field. The microstructure of the nonlinear
polarization constant is nowhere incorporated in the phenomenological
model. This assumption is reasonable as long as the excitation laser frequency
is far off any resonance line of the medium and the medium relaxation con-
stants are short compared to the pulse duration. In this section we investi-
gate the spectrum generated as a result of an incoming resonant ultra-short
pulse impinging on a very thin sample of a system of two-level atoms 
(Manassah, 1986b). We emphasize in our analysis the case of large-
amplitude pulses whose width is much shorter than the system inherent relax-
ation time constant (i.e., natural lifetime).

The model that we adopt for our analysis is Robiscoe’s (1978) generaliza-
tion of the model of Rosen and Zener (1932). In this model, a pulse with a
secant hyperbole envelope is incident on a two-level atom system. The natural
decay of the atom is incorporated in the Schrödinger equation through the
Bethe-Lamb phenomenological prescription (Lamb and Retherford, 1950;
Bethe and Salpeter, 1957). The wave function of a two-level atom can be 
represented by

(278)

where ui and wi refer, respectively, to the eigenfunctions and eigenvalues of
the unperturbed Hamiltonian. In the presence of an electromagnetic field,
central frequency v, and envelope function f(t), the differential equations for
c1 and c2 are

(279)

where w = w2 - w1 - v and level 1 is assumed to be long lived. If we define
the new variables C1 and C2 by

(280)

the equations of motions reduce to
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where W = w + 1–2 ig. The boundary conditions are assumed to be

(282)

The decoupled equations for C1 and C2 are given by

(283)
for

(284)

The solutions of (283), satisfying the boundary condition (282), were given
by Robiscoe (1978) as

(285)

where

In this section we concentrate henceforth on the physical conditions of on-
resonance radiation and pulse duration much shorter than the atomic life-
time (if other relaxation times are present, the pulse duration is also assumed
much shorter). The solutions for C1 and C2 reduce then to those obtained
from Eq. (283) if g is zero, multiplied by the phenomenological decay func-
tion e-gt/2. Specifically,

(286)

The off-diagonal matrix element for the density matrix is given by

(287)

where w0 is the energy level difference.
If a = n/2 and the area of the pulse A = np, the expression for the off-

diagonal matrix element is

(288)

This density matrix element is proportional to the medium complex polar-
ization. For a thin sample, the sheet source approximation, the radiated field
is proportional to the polarization (Sargent et al., 1974); specifically,

(289)

where tr refers to the retarded time and C is time independent.
Our next task is to study the radiated electric field in the time and fre-

quency domains. The zeroes of the polarization in the time domain are
located at
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(290)

where m £ n. Notice that t = 0 is a zero for even n. The specific forms for the
polarization, expressed as direct functions of t, are given by

(291)

where gn are given in Table 5.3. Notice that gn determines the asymptotic time
dependence given that gt << 1. The values of gn at t = 0 are 1 and 0, respec-
tively, for odd and even n. Observe that as n increases (i.e., the energy of the
incoming pulse is increasing) the degree of the polynomial gn (in sechx) is
increasing. The functions sechnx are narrower than (sechx) for n > 1, which
physically implies that as n increases the spectral extent of the radiated field
increases. Specifically, the Fourier transform, for odd n, of r is given by

(292)

where Dw is the frequency of the radiated field as measured from the center
of the resonance line, and hn (Dwt) are polynomials given in Table 5.4. Notice
that hn are even polynomials of degree n - 1. The coefficient of the leading
power of this polynomial is given by
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Table 5.3. The function gn for integers (x = t/t).

n g(n)(x)

1 sech x
2 2 tanh x sech x
3 3 sech x - 4 sech3 x
4 tanh x [4 sech x - 8 sech3 x]
5 5 sech x - 20 sech3 x + 16 sech5 x
6 tanh x [6 sech x - 32 sech3 x + 32 sech5 x]
7 7 sech x - 56 sech3 x + 112 sech5 x - 64 sech7 x

Table 5.4. The function hn(v) for small odd integers 
(v = Dwt).

n hn(w)

1 1
3 1 - 2�2

5

7 1
196
45

70
45

4
45

2 4 6- + -� � �

1
10
3

2
3

2 4- +� �



The behavior at the wings for the Fourier transform of the off-diagonal
element of the density matrix is given (for a = n/2, n odd) by

(294)

where v = Dwt.
Having found r on this infinite set of discrete points to be equivalent to

the solutions of (279) with g = 0 and multiplied by e-rt, and given that r is an
analytical function, then the solution for any arbitrary value of a can simi-
larly be found for the same conditions (g << t, u = w0), by

(295)

where gd is the Gudermannian (hyperbolic amplitude), given by

(296)

For example, ra is given for a = 1–4 (2m + 1) by

(297)

where X = (1 + e-2x)-1/2, x = t/t, and k2m+1 is a polynomial of order 2m + 1. In
Table 5.5, k2m+1, for lowest-order values, is given. Notice that as t fi •,
|ra| ª e-gt/2. The Fourier component for r(a=(2m+1)/4) is given by

(298)

where v = Dwt, s = 1–4 gt + 1–2 iv, and lm is a polynomial of order m. In Table 5.6,
lm(s) is given for the lowest-order values of m. For Dw fi 0,
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Table 5.5. The function k2m+1(X) for small odd integers
X = (1 + e-2x)-1/2, x = t/t.

2m + 1 k2m+1(X)

1 X
3 3X - 4X 3

5 5X - 20X 3 + 16X 5

7 7X - 56X 3+ 112X 5 - 64X 7



The steep switch-on in the value of r(t), in time of order t, determines this
asymptotic behavior. From Eqs. (294) and (300) it can be observed that the
asymptotic form of r̃(v) can be written as

(301)

where f(a) is v independent.
In conclusion, using the two-level atom as a model for the interaction of

an ultrafast pulse with a resonant system, we exhibited the following features
for the generated supercontinuum:

1. At a specific incoming pulse energy, the intensity oscillates as a function
of w, the number of oscillations increasing linearly as a function of the
incoming energy.

2. At a specific frequency, the intensity oscillates as a function of the incom-
ing pulse amplitude.

3. On the wings of the line, the intensity is an exponentially decreasing func-
tion multiplied by a polynomial whose degree is proportional to the energy
of the incoming pulse. Another feature that we found, but that we do not
present here, is that if the excitation pulse center frequency is off-resonance,
the spectrum of the produced radiation field is asymmetric. Experimen-
tally, the above predictions can easily be tested using 30-fs pulses that have
been amplified in a copper vapor laser.

Finally, we reemphasize that in the above analysis we assumed an optically
thin sample. This implies that only a very small fraction of the pulse is
absorbed by the medium, which in turn implies that the predicted supercon-
tinuum sits on top of a large unaltered component. The portion of the pulse
that is absorbed, and thus acts as a source for the supercontinuum, Is, can be
obtained from Beer’s law

(302)

where I(0) is the incoming pulse intensity, L is the thickness of the sample,
a¢ is the transient effective absorption coefficient, a¢ ª at/T, a is the CW
absorption coefficient, t is the pulse width, and T is the line width. In the
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Table 5.6. The function lm(s) for small odd integers 
s = 1–

2 t (iDw + g /2).

2m + 1 lm(s)

1 1
3 -1 + 8s

5

7 - + - +1
144
15

54
15

512
15

2 3s s s

1
8
3

64
3

2- +s s



treatment of the optically thick sample case, the full-fledged Maxwell-Bloch
equations (Bloch, 1946; Feynman et al., 1957) describing the electromagnetic
field-two-level atom system should be used. Under such circumstances, effects
such as self-induced transparency (McCall and Hahn, 1969) and superradi-
ant damping (Friedberg and Hartmann, 1971) were shown to be present and
are expected to influence the spectral shape of the emitted radiation.

6. Concluding Remarks

In this chapter, we had the opportunity to review some recent work on simple
models of self-phase and induced-phase modulation that can be treated ana-
lytically or almost so. What we observe is that:

1. Despite the many simplifying assumptions required to obtain analytical
solutions, important qualitatively new features are obtained. Thus, these
models serve as all good models should, as theoretical laboratories to seek
new effects.

2. The old myth about the existence of “standard supercontinuum charac-
teristics” is as valid as that of any phenomenological categorization, that
is, in very limited cases. A rich and diversified variety of supercontinuum
structures is shown to exist for different experimental regimes.

3. The partial differential equations derived are amenable to standard numer-
ical computations and approximate methods and would provide the means
to the natural extension of the simple analytical cases presented.

This chapter did not treat the following important cases:

1. Instances where the group velocity dispersion effects are important. This
precluded any discussion of solitons, an area of intense and extensive
research effort.

2. The experimental case where the pump and probe in induced-phase mod-
ulation are of the same magnitude. [Our solutions are restricted to weak
probes.]

3. The general transverse dependence for large r, that is, for values of r com-
parable to the value of the pulse radius a. [Our finite beam solutions are
restricted to small r/a.]

4. Saturable absorbers, where a full treatment of the Bloch-Maxwell equa-
tions is required. Such a treatment will lead to a rigorous inclusion of relax-
ation times and to the detailed study of frequency-dependent nonlinear
indices of refraction.

5. Multimodes of the electromagnetic field and in general the noise problem.

We are actively pursuing work in all of the above areas and will report our
results in the literature as they develop.

Finally, I would like to acknowledge the contributions of my coworkers R.
Alfano, P. Baldeck, O. Cockings, P. Ho, and M.A. Mustafa, whose partici-
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pation in the different portions of the work reported in this chapter made 
it possible. Victoria Okai deserves the credit for typing and producing the
manuscript.
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Appendix: Analytical Solution for 
a Self-Phase Modulated and 
Self-Steepened Pulse Propagating 
in a c(5)-Medium with 
Material Relaxation

In this appendix, we derive the analytical solution for a self-phase modulated
pulse propagating in a nonlinear c(5)-medium. The calculation is performed
in the plane-wave approximation for dispersionless medium but with self-
steepening and material relaxation present.

In the phenomenological model that we consider, the nonlinear source
term for Maxwell’s equation is taken as:

(A.1)

That is, we are taking the first two terms of the noninstantaneous nonlinear
polarization where c1 is the first moment of the delayed response kernel is
essentially equal to the material response time. Variable n4 is the nonlinear
Kerr coefficient, n is the linear index of refraction of the material, and c is
the speed of light in vacuum. This phenomenological model is valid for a
pulse duration longer than the material response time.

Maxwell’s equation reduces to

(A.2)

where the dimensional parameters e¢, was defined in Section 3, and g ¢ is given
by

(A.3)

In the physical coordinates U and V, as defined in Section 3, the amplitude
a and the phase a of A, then obey the following quasi-linearized partial dif-
ferential equations:

(A.4)
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The U-partial derivatives, appearing on the left-hand side of Eqs. (A4) and
(A5), are responsible for self-steepening and the term proportional to g ¢
expresses the finite relaxation time of the medium. We notice that in this
model the finite relaxation time does not alter the amplitude equation.

To discuss the impact of self-steepening and finite relaxation time, we shall
index a and a by two dummy indices where the first index refers to self-
steepening and the second to finite relaxation time. Each index takes the value
(0, 1) for the effect being (absent, present). (It is stressed that we can directly
solve Eqs. (A4) and (A5) in the most general case, but we are going through
these intermediate steps to clarify the role and meaning of the different terms
in the equations.) We now write the solutions in the four cases, for an initial
sech pulse with zero phase:

(i) g ¢ = 0, e¢V << 1

(A.6)

(A.7)

(ii) g ¢ π 0, e¢V << 1

(A.8)

(A.9)

(iii) g ¢ = 0

(A.10)

(A.11)

where

(A.12)

(iv) general case

(A.13)

(A.14)

The foregoing general solution for the amplitude, derived under the con-
dition of no dispersion, is valid for all values of V < Vcrit, where Vcrit is the
critical value of V.

In Figure A1, we plot ā 0,1 - ā 0,0. This quantity, which represents the
portion of the phase due to nonzero relaxation time for e¢V << 1, is 
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Figure A1. The phase portion due to nonzero relaxation time, in the absence of self-
steepening, as function of U.

Figure A2. The phase portion due to nonzero relaxation time, in the presence of self-
steepening, as function of U.



approximately linear in U and has a negative slope, which translates into a
Stokes shift in the instantaneous frequency. This shift is similar to Gordon’s
self-frequency shift, derived for c3 material. In Figure A2, we plot ā 0,1 - ā 0,0

for different values of e¢V to qualitatively examine the effects of self-
steepening on this Stokes shift.

In Figure A3, we are plotting ā 1,1, the pulse total phase in the general case.
(Henceforth, we will omit the subscripts to refer to the general case.) We note
that the presence of the g ¢-term and the self-steepening term shifts the posi-
tion of the phase maximum from the U = 0 axis. Furthermore, the maximum
of the pulse amplitude and that of the phase are shifted with respect to each
other, which leads to a shift in the positions of the interference fringes of this
pulse, for a Young set-up, from those of cw coherent light.

The normalized frequency sweep for this pulse, obtained by taking the U-
partial derivative of ā , is given, for the general case, by

(A.15)

In Figure A4, we are plotting this quantity. It should be remembered that the
maximum of this curve determines in each case the spectral frequency extent
on the anti-Stokes side, while its minimum determines the corresponding
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Figure A3. The pulse normalized total phase as function of U.
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Figure A4. The pulse normalized instantaneous frequency sweep as function of U.

Figure A5. The Stokes and anti-Stokes spectral distribution extents as a function of
e¢V.



quantity on the Stokes side. As we can observe from the figure, the normal-
ized frequency sweep is asymmetric with respect to the U - 0 axis. This results
in an asymmetry of the spectral distribution between the Stokes and anti-
Stokes portion of the spectrum. Furthermore, the absolute value of the
maximum of ∂ā /∂U is always bigger than that corresponding to its minimum
value, and therefore the anti-Stokes spectral extent is larger than the Stokes
extent. In Figure A5, these extreme quantities are plotted as function of e¢V
for different g ¢s. These extrema were also shown to determine the domain of
F(x), the Fourier transform of the visibility function of the Young intensity
distribution with the general solution pulse as input. In Figure A6, we plot
the envelopes of F(x) for different cases. The domain for each case, as com-
puted in Figure A6, agrees with the results of Figure A5.

The pulse spectral distribution is obtained by taking the absolute magni-
tude square of the Fourier transform of the pulse electric field. In Figure A7,
the spectrum is shown for selected values of the parameters. The important
features found in our calculations are the following:

1. As e¢V increases, the spectrum is more asymmetric, and near the Stokes
maximum extent the spectrum falls off rapidly.

2. As g ¢ increases, the spectrum is further shifted to the Stokes side and the
maximum frequency extents are consistent with the results of Figure A5.
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Figure A6. The envelope of the Fourier transform of the Young visibility function.



To understand the role of the nonzero relaxation time in the Stokes shift,
let us calculate the mean frequency of the pulse normalized to the original
center frequency. The normalized first moment of the frequency can be
written in the time domain representation as follows:

(A.16)

for small e¢V, this quantity, for the g (5) medium, is given by

(A.17)

The second term on the right-hand side corresponds to the numerically com-
puted Stokes shift. Note that this shift is linear in the thickness of the mate-
rial, and in the relaxation time and is quadratic in the intensity.
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Figure A7. The pulse spectral distribution as function of the normalized frequency
difference multiplied by the pulse duration. At left is the anti-Stokes side. Normal-
ized center frequency K = 300; e¢V = 0.2.



6
Self-Steepening of Optical Pulses

B.R. Suydam

Self-steepening of optical pulses has been well described in the literature 
(De Martini et al., 1967; Marburger, 1975) and has been invoked to explain
certain cases of spectral superbroadening (Yang and Shen, 1984). For intense
optical pulse the refractive index depends on the intensity. Thus, the peak of
the pulse travels at a speed different from that of the leading and trailing
edges, so that ultimately the pulse tries to form a shock at the trailing edge
if n2 is positive or on the leading edge if n2 is negative. A very similar thing
occurs in fluid mechanics. However, all fluids exhibit viscosity and heat flow
and these effects combine to prevent the formation of a truly discontinuous
shock; they give the final shock structure, which has finite thickness and a
definite shape. In the optical case, dispersion will play an analogous role; it
brings the process of self-steepening to an end before a true discontinuity can
form. It is for this last reason that we feel it to be imperative to include the
effects of dispersion in our present study of self-steepening.

1. Mathematical Formulation

For mathematical tractability, we restrict our discussion to that of a plane-
polarized plane wave traveling in a uniform, isotropic, transparent medium.
To arrive at manageable equations we have had to assume also the following:

1. dispersion, absorption, and nonlinearity of the medium are so weak that
a light pulse changes shape but slowly as it propagates;

2. higher-order dispersion terms, which would be neglected in a slowly
varying envelope theory, are required to take on a certain form; and

3. the nonlinearity develops instantaneously.

Note that we do not assume that the envelope varies slowly. Under the fore-
going assumptions, if we set

E U i kz t= ¢ -( )[ ]+1
2 exp w c.c.



into the wave equation for E, we can derive as a good approximation the
equation

(1)

The derivation of this equation is given in Appendix A. In the process we have
changed from laboratory coordinates z¢, t to coordinates z and t given by

(2)

so that ∂/∂z is calculated in a frame moving with the pulse at the group 
velocity v.

The coefficients a and g measure, respectively, the dispersion and the non-
linearity and are given by

where n(l) is the linear refractive index expressed as a function of the free
space wavelength l ∫ 2pc/w. Our derivation also yields

(3)

We keep the two symbols separate both to facilitate comparison with exist-
ing theories and to clarify the physical origin of the various effects we discuss.

In spite of its appearance, Eq. (1) is not the result of a slowly varying enve-
lope theory. This is made clear in Appendix A. As a result we are able, without
violating the conditions of our approximations, to study pulses of arbitrar-
ily short rise times and of arbitrarily great bandwidths. Assumption (1) is well
satisfied for pulses below the damage threshold and frequencies far from an
absorption line or band. Assumption (2), spelled out in Appendix A, is auto-
matically met for narrowband signals (Dw << w); for Dw of order w it imposes
special, but not nonphysical, conditions on the behavior of n(l) near the band
edges. Assumption (3) is not reasonable, but it is at present necessary. Cer-
tainly the linear part of the polarization does not respond instantaneously,
as otherwise there would be no dispersion, and it would be unrealistic to
expect the nonlinear part to respond faster than the linear part. Note also
that we have neglected a small amount of absorption, which can be put back
in as a perturbation once we have solved Eq. (1).

We shall wish to put numbers into some of our formulas. For this purpose
we have chosen from the* American Institute of Physics Handbook (1963) and
Boling et al. (1978)

(4)
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as typical. The number a could vary by a factor 3 or so either way, and as
dn/dl µ l-3 over the range considered a scales roughly as l-1. The dispersion
constant a can be either positive for normal dispersion or negative for anom-
alous dispersion. On the other hand, n2 can be negative only near to and on
the high-frequency side of an absorption line or band, conditions that would
strongly violate our assumptions of small dispersion and nearly negligible
absorption. Consequently, we shall hereafter assume that g and e are positive.

Two special cases of our Eq. (1), both of which include dispersion, have
been shown to be completely integrable. The case e ∫ 0 (no self-steepening),
known as the nonlinear Schrödinger (NS) equation, was completely solved by
Zakharov and Shabat (1972). The case g ∫ 0 and e π 0, called by the authors
a derivative nonlinear Schrödinger (DNS) equation, has been completely
solved by Kaup and Newell (1978). In both cases an arbitrary initial pulse of
finite energy per unit area will ultimately break up into a set of solitons plus
“radiation” (hash that ultimately disperses away). In our case, with general 
g and e, we also find solitary wave solutions, which we call “solitons,” which
are mathematically scarcely distinguishable from the solitons of the DNS
equation and are a direct generalization of the solitons of the NS equation.
As do the NS and DNS equations, our equation also admits “kink” or “dark
soliton” solutions.

It is convenient for us to rewrite Eq. (1) in terms of a real amplitude A and
a real phase f; thus we set

and obtain

(5)

The subscripts z and t denote partial derivatives. These equations describe
how the amplitude and the phase evolve as the pulse propagates in z.

2. Early Self-Steepening

There are two ways in which an initially smooth pulse can develop features
that sharpen as it propagates, namely by self-steepening and by growth of the
modulational instability (longitudinal self-focusing). First let us consider self-
steepening. The operator ∂/∂t is of order W, which represents the bandwidth
of the envelope function U. Thus the dispersion term is of order aW2, whereas
the self-steepening term is of order eA2W. For very smooth pulses W is small;
if the power level is not too low we will have

(6)

and under this condition we can neglect dispersion. In this limit Eqs. (5)
reduce to

W << eA a2
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(7)

The first is well known (Whitham, 1974), and its general solution can be
written in the form

(8)

Initially, that is to say at z = 0,* u(t, 0) = f(t), so the form of the arbitrary
function f is determined by the pulse shape at z = 0. Equation (8) describes
shock formation, which we can see as follows. Differentiating Eq. (8) yields

(9)

Clearly, these derivatives become infinite and a shock starts to form when D
first vanishes, and as e is positive this occurs when f ¢ achieves its most neg-
ative value, say f ¢m; clearly this occurs on the trailing edge.

The value of z at which the shock first starts to form is clearly given by

(10)

For a Gaussian pulse of width 2T, we have

Clearly | f ¢| is maximum when (t/T)2 = 1–2 , so for such a pulse

whence, for a Gaussian pulse in a medium of refractive index 1.67,

(11)

where I0 is the peak intensity in watts/cm2. As an example, for a 100-fs pulse
we set T = 5 ¥ 10-14 and with our typical value for e we would have

(12)

(i.e., a pulse of 1TW/cm2 would start to shock after about 12mm of travel).
We have seen that the distance for shock formation is proportional to the
pulse width. Thus for a pulse of 10ps width zs would be 100 times greater
than that for a 100-fs pulse, that is, about 1.2m for a 1TW/cm2 pulse and 
1.2km for a 1GW/cm2 pulse.

How a shock actually develops according to Eq. (8) is illustrated in Figure
6.1, in which we have depicted an initially Gaussian pulse, labeled z = 0, and
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* Throughout this chapter we use the expression “initially” or “initial condition” in
this sense (i.e., the condition at z = 0).



shown how it changes shape after propagating the distances z = zs/2, z = zs

(the distance for first shock formation), and z = 3zs/2 when the shock is well
developed. For z > zs we must use Eq. (8) with some care. In general, for 
z > zs, Eq. (8) describes a breaking wave, indicated in our figure by the dashed
lines for z = 3zs/2. The intensity cannot, however, be three valued, so we must
instead place a shock (i.e., a discontinuous jump) in this region. Equation (8)
and, therefore, Eq. (7) also is satisfied on both sides of the jump. The loca-
tion of the jump is determined by the condition that

that is, energy is conserved, as demanded by Eq. (1). We must remember that
for z ≥ zs our Figure 6.1 depicts the behavior of the solution of the first of
Eqs. (7); in fact, before z reaches zs, the pulse bandwidth will have become
large enough that dispersion can no longer be neglected. We shall now
proceed to estimate at what point dispersion must be included.

Once u has been determined, the equation for f is linear and can be solved
by the method of characteristics. In the special case of the DNS equation,
g = 0 and f ∫ 0 is a solution; in this case phase modulation does not grow as
the pulse propagates.

To show more clearly how early self-steepening occurs I think it useful to
resort to a simple model problem. To this end we choose the leading edge of

W u z d U d= ( ) = =
-•

•

-•

•

ÚÚ t t t, ,2 a constant
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Figure 6.1. Various states of self-steepening of an initially Gaussian pulse, accord-
ing to Eq. (8). Shown are curves for z = 0, the initial pulse, z = 1–2 zs, z = zs, the begin-
ning of shock formation, and z = 3–2zs, depicting a well-formed shock. On the z = zs

curve, the circle indicates the point of infinite slope. The dashed curve and vertical
shock for z = 3–2zs are discussed in the text.



f(t) to be anything that rises smoothly to a peak value f0 at t = 0. The trail-
ing edge, where the self-steepening occurs, we choose to be of the form

(13)

Then by Eq. (8), for t < 0, u will be some stretched-out version of the origi-
nal pulse shape f(t), and on the trailing edge

(14)

and for this case our previously defined D becomes

Setting this value of u into the second of Eqs. (7), we can readily solve by the
method of characteristics (in the trailing edge) and find

(15)

where f0(t) = f(t, 0) is the initial phase. In the leading edge, t < 3ef0z, the
phase will build up in a way that depends on the choice of f(t) in this region.

Consider now a pulse initially without phase modulation, so f0 ∫ 0. We see
f reaches its maximum at t = tmin = 3ef0z and it is zero at t = t0. Thus over
this period of duration

the phase swings by

so we can estimate the bandwidth induced solely by this phase modulation,
Wf, as

(16)

If we insert this into (6) rewritten as an equality we obtain

(17)

When this condition is satisfied dispersion has become just as important as
self-steepening and Eqs. (7) have broken down as a decent approximation.
For our typical numbers gA2

0 /aw2 = 1 implies a peak power level of 3 ¥
1014 W/cm2 (A0 = 4.7 ¥ 108 V/cm). For peak power levels significantly lower
than this,

(18)

is the distance at which this breakdown occurs. For our typical numbers and
t0 = 50fs (fall time), this gives z0 = 6.4 ¥ 10-3 cm, which is far less than the
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distance for shock formation, zs. For peak power notably less than 1014 W/cm2

D is very nearly unity and the trailing edge has steepened very little. Thus, for
such a pulse, self-steepening is of only minor importance during the initial
phase; it is the buildup of phase modulation that forces one to include the
effects of dispersion.

3. Modulational Instability

Another mechanism for the breakup of an initially smooth pulse is the mod-
ulational instability, which has also been called longitudinal self-focusing.
This has been well discussed by Marburger (1975) in the case e = 0. To illus-
trate how this comes about, let us consider the smoothest possible pulse,
namely, an unmodulated wave train. Thus we set

(19)

These functions satisfy Eqs. (5). Now consider a small perturbation to this
solution; namely, we set

(20)

Setting Eqs. (20) into Eqs. (5) yields equations for w and f̃ . If the perturba-
tion is small enough, we can neglect squares and products of w, f̃ , and their
derivatives. The resulting linearized equations for the perturbations are

(21)

and the question is, what happens to the perturbation as it propagates; does
it grow?

We can readily reduce Eqs. (21) to a pair of first-order ordinary differen-
tial equations by Fourier analyzing in t, setting

(22)

and thus eliminate one of the variables, say q, between the two resulting equa-
tions. The result is the second-order equation

(23)

This has the solutions

(24)

where
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By hypothesis g is positive; if a is also positive then a is pure imaginary and
both functions u+(z) and u-(z) simply oscillate as the pulse propagates, that
is, as z increases; the perturbation neither grows nor dampens.

Now suppose that the dispersion is anomolous, that is, that a is negative.
We set b = -a = positive and obtain

(26)

and this is maximized for

(27)

If we set this value into Eq. (26) we determine that the maximum value of
a2 is

(28)

Now if

(29)

(which for our typical numbers means peak power less than 1015 W/cm2), W2
M

and a2
M are positive and u+(z) oscillates with an exponentially growing ampli-

tude as the beam propagates. Thus, no matter how small the initial distur-
bance, the modulation of the beam will grow exponentially until it interacts
nonlinearly with itself. This is the modulational instability. The reader may
notice that had we set e = 0 our analysis would have been identical to that of
the self-focusing instability (Bespalov and Talanov, 1966; Suydam, 1973). One
might therefore call the phenomenon longitudinal self-focusing rather than
modulational instability; the two terms mean the same thing.

It is interesting to compare the effects of the modulational instability and
of self-steepening. To this end we will consider a beam of a few terawatts
power or less in a medium of anomalous dispersion. The inequality (29) is
strongly satisfied, so the maximum growth rate is

very nearly. Now multiply this by the shock formation distance zs, given by
Eq. (11); we get

where N is the half-width of the pulse measured in cycles of the carrier fre-
quency w. In propagating over the shock-forming distance zs the modula-
tional instability grows by a factor exp[2.44N], which amounts to a factor 105

for N = 4.7 cycles half-width. Clearly, unless we are dealing with pulses of
less than 10 cycles full width, the modulational instability, if it occurs (i.e., if
a is negative), far outstrips self-steepening. Thus, for the exceptional case of
anomalous dispersion, the breakup of a smooth pulse into nascent solitons
does not involve self-steepening. However, as we shall see in the next section,
the ultimate soliton (or solitons) possesses strong phase modulation, which
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would have been absent were e = 0. Thus even here the self-steepening term
is very important in establishing the ultimate bandwidth of the pulse.

4. Solitonlike Solutions

When dispersion is normal, the only way a pulse can develop sharp features
and undergo spectral broadening is through the processes of self-steepening
and self-phase modulation. As we saw in Section 2 [see Eqs. (15) and (16)],
self-steepening enhances the self-phase modulation. For the DNS equation
self-steepening interacting with dispersion ultimately breaks the pulse up 
into a set of solitons plus, perhaps, some radiation. We therefore expect some-
thing similar to happen in our case, so we turn now to the study of the soli-
tary wave solutions of Eq. (1).

For a traveling wave solution, the amplitude will be of the form

(30)

where h is an as yet undetermined constant. With this ansatz the first of Eqs.
(5) becomes

(31)

This equation is solved identically in A by the choice

(32)

If we define a new function

(33)

we can integrate Eq. (32), obtaining

(34)

whence

(35)

Setting Eqs. (32) and (35) into the second of Eqs. (5) yields

(36)

We have set f¢0 (z) = b = constant, as is required by our insistence that A depend
only on x ∫ t - hz/v. Equation (36) has the first integral

(37)

where C is an arbitrary integration constant and we have set
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for short. If we set

into Eq. (37) we can write its solution as

(39)

For general values of C, this is an elliptic integral and the solution represents
the anharmonic oscillations of a particle of mass 2 and total energy C in the
potential well

In the special case R = 0, these are the so-called cniodal waves.
For two special choices of C the integration becomes elementary. First, if

we set C = 0, u2 factors out of the radical so that we can carry out the inte-
gration and then solve for u, obtaining

(40)

where

(41)

This solution requires that P be positive. The material constants a, g, and e
together with the two integration constants b and h determine A0 and �.
Alternatively, we could assign A0 and � and solve for the integration con-
stants, obtaining

(42)

The quantities h and b can be viewed as nonlinear modifications of the group
and phase velocities, respectively.

To complete our solution, we set Eq. (40) into Eq. (33) and obtain
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Using the addition formula for the tangent, one sees that H is odd, that is,
H(-x) = -H(x). Clearly

(45)

The solutions we have found above we shall call solitons for short. They are
the only traveling wave solutions for which W is finite. Clearly W is propor-
tional to the total soliton energy per unit area; we shall simply call it the total
energy for short.

Our solution goes to a perfectly regular limit as P Æ 0, namely,

(46)

and

(47)

Both our general soliton and our limiting algebraic soliton are formally iden-
tical to those of the DNS equation (Kaup and Newell (1978)); our general
solitons go over to the solitons of the NS equation in the limit e Æ 0.

Another traveling wave solution, known as a “kink” or as a “dark soliton,”
can be found as a special case of Eq. (39). As it contains infinite total energy
in the sense that the integral of Eq. (45) diverges, it is not germane to our
discussion. Nevertheless, the reader might find it interesting, so we give this
solution in Appendix B.

As is seen, our solitons differ from those of Kaup and Newell (1978) only
in the presence of the constant g in our Eqs. (42). Soliton solutions exist quite
independently of the algebraic signs of the material constants a, g, and e.
In both cases the phase f is given by Eqs. (43) and (44), so with identical
values of e the two show identical phase modulation. The solitons of the NS
equation, for which e = 0, are quite different. In this case Eqs. (40) and (44)
become

so for this case there is no phase modulation. Equations (41) become

Thus such solitons can exist only if the dispersion is anomalous. Moreover,
A2

0 and �2 are not independent so we cannot determine h or b but only the
relationship between them:
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so there is no upper limit to the total energy that an NS soliton may carry.
The two constants that uniquely specify an NS soliton (e ∫ 0) are its peak
amplitude and its velocity; that is, A0 and h may be arbitrarily chosen.

It is useful to make estimates of the total bandwidth of one of our soli-
tons. We can define the effective width of our soliton, TW, as that of a square
pulse with the same total energy and the same peak intensity as our soliton.
Then clearly, from Eq. (45)

(48)

We know the spectrum and can compute TW for a Gaussian pulse. If we define
the spectral bandwidth W to be that of the interval (-W/2, W/2) that contains
half the pulse energy, we find that a Gaussian pulse yields

(49)

The subscript A means that this is the bandwidth arising solely from the tem-
poral shape of the real amplitude.

In addition to WA, there is frequency modulation on the pulse. If we define
the instantaneous frequency to be the time derivative of the total phase, we
have seen that this frequency swings over a range (w, w + 3RA2

0 ). Thus it seems
reasonable to estimate the total bandwidth owing to phase modulation to be

(50)

For our typical numbers Wf = w at a peak power of 6.5 ¥ 1014 W/cm2. If
instead we took Df = f(•) - f(-•) as given by Eq. (44) and estimated this
bandwidth as Df/TW, we would exactly recover Eq. (50) above. The ratio of
the phase-to-amplitude modulational bandwidths is

(51)

If we define W for the actual soliton by Eq. (45) and call WM its maximum
possible energy, that is, that when � Æ 0, y Æ •, then Eq. (51) can also be
written as

(52)

When W approaches WM, the bandwidth of the soliton is dominated by phase
modulation, whereas for W << WM the quantity � becomes large, the soliton
is very narrow, and this effect dominates the bandwidth. For our typical
numbers WM corresponds to about 2J/cm2. In general,

(53)

so it can readily vary a factor 3 or so either way from the figure quoted above.
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Note that the frequency modulation disappears if we set e = 0 into Eq.
(44), so although self-phase modulation is a dominant contributor to the
bandwidth of very energetic solitons (W approximately WM), it arises from
the interaction of dispersion with the self-steepening term of Eq. (1) and is,
in this sense, a self-steepening effect.

5. An Attempted Synthesis

We have seen that the trailing edge of an initially very smooth pulse will
steepen and will develop phase modulation as it propagates. In the absence
of dispersion, this process would continue until a discontinuous shock
formed on the trailing edge and the phase modulational bandwidth would
become infinite at the shock. We have further seen that when dispersion is
taken into account there are traveling wave solutions, which we have called
solitons, for which the self-steepening and the dispersion just balance. It
seems very reasonable, then, to postulate that the self-steepening process is
limited by soliton formation. In fact, for the DNS equation, our Eq. (1) with
g ∫ 0, this postulate is a rigorous result (Kaup and Newell, 1978).

According to the above ideas, I now describe my view of the development
of an initially smooth pulse as it propagates. At first, dispersion is unimpor-
tant and the pulse gradually sharpens up on its trailing edge, and this self-
steepening process is accompanied by the growth of self-phase modulation,
all as described in Section 2. As we have seen, when the phase modulation
during the self-steepening phase reaches a value

(54)

Equations (7) break down as a model for the propagation because 
they ignored dispersion, which has a very important influence on the further
development. Actually, dispersion starts to play an important part somewhat
earlier, and by the time Eq. (54) is satisfied it will already have modified the
trailing edge shape to somewhat resemble that of a soliton. In Section 4 we
saw that the phase modulational contribution to the bandwidth of a soliton
is

(55)

The similarity of Eqs. (54) and (55) reinforces our belief that at this transi-
tional stage the trailing edge of our steepened pulse somewhat resembles that
of a soliton.

During the self-steepening phase the velocity of the trailing edge (actually
of its peak) is given by
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where u0 is the peak value of A2 for the initial pulse. A soliton propagates
with velocity

(57)

so that vsol > vss. In fact, for our typical numbers vsol exceeds group velocity
unless the peak power exceeds 4 ¥ 1015 W/cm2. The solitonlike trailing edge
will therefore advance into the smooth leading section of the pulse. What sub-
sequently happens depends on the total energy W of the initial pulse.

If the initial pulse energy is

the nascent soliton can engulf the whole pulse and form a genuine soliton.
Our parameter y = RA2

0 /� will be determined by

(58)

To estimate separately A2
0 and �, we note that the trailing edge need not

steepen beyond what it had reached at the end of the self-steepening stage,
Eq. (17). Thus, this trailing edge advances until the pulse is symmetrical, and
from this stage onward there are only detailed shape adjustments to arrive
finally at the exact soliton form. Using as our model an initial triangular pulse
with rise time T1 and decay time T0, we have clearly

(59)

where Ai denotes the peak value of A in the initial pulse. As the pulse
advances its decay time becomes T = T0D and this continues until D reaches
the value given by Eq. (17). From this time on, the decay time remains T0D
and the pulse compresses until the rise time is the same. Thus at the time of
formation of the quasi-soliton

(60)

whence for the peak amplitude of the quasi-soliton we have

(61)

with D given by Eq. (17). As we saw in Section 2, unless we are dealing with
initial pulses of peak power in excess of 1014 W/cm2, D differs little from unity,
so an initially symmetrical pulse would undergo little compression unless its
peak intensity was very high.

If W > WM the situation is more complicated and our present under-
standing more conjectural. Again the trailing edge starts to eat up the smooth
part of the pulse until it can swallow no more. Somewhere along this process
the advancing “snowplow” must wrinkle the part of the pulse immediately
ahead of itself, which can then proceed to self-steepen on its own and ulti-
mately develop a new soliton. If W exceeds WM by only a modest amount,
an alternative to the formation of a new soliton is simply to throw the remain-
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ing energy away as radiation. Something analogous to this is known to
happen in self-focusing.

6. Conclusion

We conclude this chapter by examining the virtues and the weaknesses of
what we have presented. The virtues are easily disposed of; there are two,
namely:

1. we do not employ a slowly varying envelope approximation, and
2. we include linear dispersion in an approximation that is reasonably good

for many common transparent media.

Our mathematical model contains three weaknesses. First, dispersion is
always accompanied by some small absorption and this we have neglected.
This is not a serious fault, as the effects of a small absorption can readily be
estimated. The method is to start with Eqs. (40) and (44) for the amplitude
and the phase. In these equations one now allows A0 and � to be slowly
varying functions of z; they are determined by substituting the resulting
expressions into Eqs. (5), to which a smll absorption term has been added.
One then solves for A0(z), �(z) by a “slowly varying A0 and � approximation.”
Normally such corrections are important only for fiber transmission lines.

The second fault of our mathematical model is that it is limited to plane
waves, for which nothing varies in the x or y direction. We could extend our
results to a nearly plane wave for which the beam diameter is so large that
the D2

	 operator (missing from our Eq. (1)) is negligible compared to all the
other operators in our equation. This seems to rule out any really practical
application of our treatment to transmission in fibers.

The third fault is that we do not include nonlinear dispersion; that is, we
postulate that the nonlinear response develops instantaneously. The linear
part of the polarization does not respond instantaneously, as otherwise there
would be no linear dispersion. Surely the nonlinear polarization cannot
respond faster than does the linear. Thus, one really should write the non-
linear polarization in the form

in the cubic approximation. If we set

in this, it becomes a three-dimensional generalization of our expression for
the linear polarization in Appendix A. Assuming a very quick (but not instan-
taneous) response, one could expand as in Appendix A, obtaining something
like
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and now g, a, b, etc. would all be complex. If their imaginary parts can be
neglected, the first-order effect would seem to be to modify the constant we
called e. A guess as to what this might do is that, at least in some cases, we
would have something very like Eq. (1) for which e is no longer g /w but
instead rather larger, thus shortening the distance over which self-steepening
effects develop.

A fourth fault, not with our model but with our mathematics, is the hand-
waving in Section 5 that replaces sound mathematics. This fault I do not know
how to cure unless someone can show our Eq. (1), or an appropriate improve-
ment, to be completely integrable. However, our estimate of the final
bandwidth owing to phase modulation, Eq. (50), does not depend on this
handwaving, but is based on balancing the self-steepening term against the
dispersion term. Similarly, the estimate of the propagation distance at which
this broadening has essentially developed, given by Eq. (17), depends on
rather modest handwaving.
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Appendix A: Approximations Leading to the Extended
Nonlinear Schrödinger Equation

Equation (1) of the main text forms the foundation of all of our discussion
of self-steepening and of spectral broadening of short intense pulses. It is our
purpose here to derive this as an approximation to the true wave equation
without assuming the envelope to be slowly varying in comparison with the
oscillating factor, exp[i(kz - wt)].
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For strictly plane waves traveling in a dielectric medium Maxwell’s equa-
tions reduce to the simple wave equation

(A.1)

where E is the electric vector and P is the polarization vector. We assume our
medium to be uniform and isotropic and the electric field to be plane polar-
ized in the direction of the unit vector e; then P is also parallel to e and we
can factor this vector out. In the resulting scalar equation we set

(A.2)

and the result is the equation

(A.3)

In general, we can split the polarization into a linear and a nonlinear part

(A.4)

In Eq. (A.2) we have ignored the higher harmonic terms in PNL because we
are only calculating the propagation of the fundamental.

In general, in our uniform isotropic medium, the linear part of the polar-
ization can be represented as

which, using Eq. (A.2), translates as

(A.5)

As PL and E are real, so is K. We have suppressed the z dependence of P and
of U; K is independent of z.

Our first assumption is that the dispersion is small. If K(t) were equal to
k0d(t) (k0 = a constant), we would have 4pP = k0U and there would be no dis-
persion. Weak dispersion then must mean that K(t) is very sharply spiked
near t = 0; this will soon be made precise. The nature of K described above
suggests expansion of Eq. (A.5) by partial integration. To this end, we define
a sequence of functions

(A.6)
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With the aid of these functions, successive partial integration of Eq. (A.5)
yields

(A.7)

This is still exact; our assumption of weak dispersion means that the series
converges quickly, because the Hn(0) rapidly decrease with increasing n, and
that the integral remainder is small.

From the recursion relations, Eqs. (A.6), it readily follows that

(A.8)

whence, if we define

(A.9)

then

(A.10)

and Eq. (A.7) is just the Fourier transform of the Tayler series expansion of
k (w). If we now differentiate Eq. (A.7) an appropriate number of times we
obtain

(A.11)

where R is the remainder, given by

(A.12)

k is given by Eq. (A.9), and primes on k mean d/dw. From Eq. (A.9), as K is
real it follows that k(w) cannot be pure real unless K is a d-function, and in
fact the Kramers-Kronig relations follow from Eq. (A.9). Small dispersion
implies very small absorption, which we ignore. Thus, from now on k is
assumed to be real.

Our next step is to set Eq. (A.11) into the right-hand side of Eq. (A.3) and
to combine the terms in U, ∂U/∂t, and ∂2U/∂t2. The choice
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(A.13)

makes the term U vanish; the rest of the terms yield

(A.14)

where we have defined new constants

(A.15)

and R is as defined by Eq. (A.12). Owing to our assumption of weak dis-
persion, the expansion of Eq. (A.7) is a rapidly converging one and a ∂2U/∂t2,
b ∂3U/∂t3, and R are all small.

We are now ready for the main step in our approximation. Defining the
two operators

(A.16)

we can write Eq. (A.14) as

(A.17)

where X represents the right-hand side of Eq. (A.14). We assume both the
dispersion and the nonlinearity to be weak, so X is small. If X were zero, a
solution would be U = f(t - z/v), which yields D+ U = 0. With X small but 
not quite zero D+ U must be very small; that is, the operator D+ is small.
Now
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For weak dispersion wk ¢/2(1 + k) << 1, so finally

(A.21)

is a good approximation. Thus Eq. (A.17) can be written as

(A.22)

First note that the nonlinear part of X can be written as

(A.23)

Whence we immediately get

(A.24)

To carry out a similar trick on the linear part of X, which arises from dis-
persion, we must assume something special about the behavior of k(w) at 
frequencies far removed from the carrier. Thus we write

(A.25)

and we assume that k(w) or K(t) takes a special form such that the terms 
(b - a/w)∂3U/∂t3 and (w2/c2)R either vanish identically or are at least negligi-
bly small even for U that are not slowly varying in time. Under this special
assumption

is a good approximation and Eq. (A.22) becomes

(A.26)

where

(A.27)

It is convenient to express things in terms of the retarded time t = t - z/v
rather than the true time t. Thus we make the transformation of independent
variables
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and Eq. (A.26) becomes

(A.29)

Our derivation of Eq. (A.29) assumes nothing about PNL except that it is
small. Our assumption about the dispersion, however, makes this equation
really a model rather than a description of a real material. The function k(w)
can be expanded about a frequency w0 as

where k ¢0 means k¢ at w = w0 etc. Our dropping all the terms on the right-
hand side of Eq. (A.25) except the first means that there are special relations
for determining all the k 0≤¢, k 0≤≤, etc. from the first three k0,k ¢0 , and k ≤0 , or at
least these relations must be satisfied to a good approximation. For narrow-
band signals W remains small and the values of k 0≤¢, etc. do not matter. If,
however, the bandwidth becomes wide enough that these terms do matter,
they must be such as to make b - a/w ª 0 and R ª 0.

Another thing to note about our derivation is that it works only for a plane
wave. For a general wave, Eq. (A.1) acquires two new terms on the left-hand
side, namely,

and

and this latter, owing to the nonlinear part of P, cannot vanish in general.
Our above derivation would throw these two extra terms into the X of Eq.
(A.22) and the operator (1 + p)-1 would make a mess of them. An additional
idea is required to include diffraction in the model.

For our study we make the very simply choice

which using Eq. (A.2) becomes

(A.30)

Thus we assume a nonlinearity that responds instantaneously. Equation (1)
of the main text, with e = g /w, follows.

Appendix B: The “Kink” or “Dark Soliton”

An interesting solitary wave solution known as a “kink” or as a “dark
soliton” can also be found as a special case of Eq. (39). To find it we must
postulate that P and Q areboth negative and moreover that
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(B.1)

Under these conditions if one defines

(B.2)

and chooses

(B.3)

one finds that

(B.4)

and the integration of Eq. (39) becomes elementary. Carrying it out and
solving the result for u yields

(B.5)

where

(B.6)

Note that condition (B.1) guarantees that both A2
0 and �2 are positive.

As before, we can express h and b in terms of A2
0 and �2, namely,

(B.7)

It is interesting to note that this kink solution is, in a sense, complemen-
tary to our soliton. Writing Asol for the soliton and Ak for the kink and choos-
ing A2

0 and �2 identical for the two, we have

(B.8)

For this reason this kink solution has, in the case e = 0, been called a dark
soliton by Hasegawa and Tappert (1973). As the kink and the soliton 
have different velocities (different values of h), Eq. (B.8) can be true only
instantaneously, e.g., at z = 0. However, it immediately follows that for the
kink
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(B.9)

As does the soliton, the kink goes to a perfectly regular solution in the limit
� Æ 0, namely, the algebraic kink

(B.10)

If one looks at the amplitude A rather than the intensity A2, these kinks are
somewhat reminiscent of a plane hydrodynamic shock in which viscosity and
heat conduction are taken into account. This kink solution is also a solution
to the DNS equation and is mentioned, but not discussed, by Kaup and
Newell (1978).
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7
Self-Focusing and Continuum
Generation in Gases

Paul B. Corkum and Claude Rolland

1. Introduction

This book attests to the fact continuum generation has become both techni-
cally and conceptually important. Discovered in 1970 (Alfano and Shapiro,
1970a, 1970b), continuum generation is a ubiquitous response of transpar-
ent materials (liquids, solids, and gases) to high-power, ultrashort-pulse radi-
ation. This chapter highlights some of these aspects while presenting the
sometimes unique characteristics of continuum generation in gases. In addi-
tion, we introduce some related results that reflect on the light-atom interac-
tion at high intensities.

Gases are ideal media in which to study nonlinear phenomena, such as
continuum generation. The choice of low-density rare gases makes the non-
linearity simple since the susceptibility will be purely electronic in nature.
Experimentally, the strength of the nonlinearity can be precisely controlled
by varying the gas pressure. Gases are ideal in another way. There is a strong
conceptual link between the susceptibility and the transition probability.
Since there is a lot of emphasis, at present, on understanding multiphoton
ionization in rare gases,* concepts being developed in this area can provide
a framework for further advances of nonlinear optics in general and contin-
uum generation in particular.

In gases, the lowest-order contribution to the nonlinear susceptibility is c(3).
The magnitude of the nonresonant c(3) for the rare gases (Lehmeier et al.,
1985) and for many molecular gases is well known. For xenon h2 = (3c(3)

1111/h0

= 2.4 ¥ 10-25 m2/V2 atm, where the refractive index h is given by h = h0 + h2E2

+ . . . , E being the rms electric field. c(3) is proportional to the gas pressure.
This chapter is organized around the pressure-dependent strength of the

nonlinearity. Much of the content originates from six experimental papers
(Corkum et al., 1986a, 1986b; Corkum and Rolland, 1987, 1988a, 1988b;

* See, for example, papers in Multiphoton Ionization of Atoms (S.L. Chin and 
P. Lambropoulos, eds.), Academic Press, New York (1984), and special issue on 
Multielectron Excitation of Atoms, J. Opt. Soc. Am. B4, no. 5 (1987).



Chin et al., 1988) describing related work at the National Research Council
of Canada.

Section 2 discusses the aspects of the experiment that are common to all
parts of the chapter.

Section 3 describes the interaction of ultrashort pulses with very low-
pressure gases. Low pressure ensures that nonlinear optics plays no role in
the interaction (Corkum and Rolland, 1988a; Chin et al., 1988). This allows
the ionization properties of xenon to be established. We will see that 
relatively high intensities are required to ionize gases with ultrashort pulses
(~100fs). In this way, we establish an upper intensity limit for the nonlinear
interaction in a purely atomic system.

Section 3 also introduces the concept of transient resonances. Although
transient resonances are a characteristic of the interaction of ultrashort
pulses with matter in the intensity and wavelength range discussed in this
chapter, their role in multiphoton ionization depends on the pulse duration.

As the gas pressure is increased, we enter the traditional realm of non-
linear optics. If the intensity for the production of significant plasma is not
exceeded, changes to the spectrum of the pulse can be investigated under con-
ditions where self-phase modulation is the dominant mechanism. We will see
in Section 4 that high-order nonlinear terms must contribute to the spectral
bandwidth if the laser intensity reaches 1013 W/cm2 or higher (Corkum and
Rolland, 1988b).

A qualitative explanation of why high-order terms must contribute to self-
phase modulation is given in Section 5.

At still higher pressures the region of continuum generation (Corkum et al.,
1986a, 1986b) and self-focusing (Corkum and Rolland, 1988b) is reached.
Section 6.1 describes the spectral aspects of continua in gases. In particular, it
shows that the spectra are similar for condensed media and for gases.

The spatial characteristics of continuum generation are particularly strik-
ing (Corkum and Rolland, 1988b). These are described in Section 6.2 with
special emphasis on the role of self-focusing in continuum generation. There
is a wide range of conditions over which continua are produced with virtu-
ally the same beam divergence as the incident diffraction-limited beam
(Corkum and Rolland, 1987, 1988b). As the intensity or the gas pressure is
increased, conical emission is observed.

2. Experimental Aspects

Pulses of three different durations (22, ~90, and ~900fs full width at half-
maximum (FWHM)) were used in various parts of the experiment. This
section discusses the experimental aspects that are common to all parts of the
chapter. Each subsection includes experimental details of specific interest.

Laser pulses were produced by amplifying the output of either a spectrally
filtered synchronously pumped dye laser (900fs) or a colliding-pulse mode-
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locked dye laser (90fs). The temporal, spatial, and spectral characteristics of
the pulses have been fully described (Corkum and Rolland, 1988a; Rolland
and Corkum, 1986). The wavelength of the 900-fs pulse was centered at 
616nm and its bandwidth (D�) was slightly greater than the transform limit
(Dt D� = 0.52; Dt is the FWHM pulse duration). The 90-fs pulse was centered
at 625nm and had Dt D� = 0.5. The pulse durations were measured by 
autocorrelation and fit by a sech2 (90 and 22fs) or to a Gaussian (900fs) 
pulse shape. After amplification the 90- and 900-fs pulses were spatially 
filtered to ensure diffraction-limited beam profiles.

The 22-fs pulses were created from the 90-fs pulses using large-aperture
pulse compression techniques (Rolland and Corkum, 1988). The resulting
100-mJ pulses were diffraction limited with a signal-to-background power
contrast ratio of approximately 30 :1 (5 :1 in energy). Compensation for the
dispersion in all optical elements (lenses, windows, beam splitters, etc.) was
accomplished by predispersing the pulse. Thus, the pulse measured 22fs only
in the target chamber and at the autocorrelation crystal. Since the 350-Å
bandwidth of the 22-fs pulse gives rise to serious chromatic aberration in a
single-element lens, an achromatic lens ( f = 14.3cm) was used to focus the
pulses into the vacuum chamber (and onto the autocorrelation crystal).

All focal spot measurements were made by either scanning a pinhole (900
and 90fs) through the focus or observing the portion of the energy trans-
mitted through a pinhole (22fs) of known diameter. Within the accuracy of
the scans, the beam profiles were Gaussian.

3. Multiphoton Ionization

Some time ago it was proposed (Bloembergen, 1973) that ionization could
play a major role in continuum generation though a time-dependent change
in the plasma density. Plasma density changes impress a frequency chirp on
a transmitted pulse. However, to influence continuum generation (Corkum 
et al., 1986a, 1986b) even to a small degree by plasma production there is a
price to pay in energy absorption and in the distortion of the spatial beam
profile (Corkum and Rolland, 1988b). Since we will show that these signatures
of plasma production are not observed, we can conclude that ionization plays
no role in gaseous continuum generation. The absence of ionization can be
used to establish a maximum intensity in the laser focus where the continuum
is being generated and hence the maximum value of h2E2.

Continuum experiments were the first to indicate that it is difficult to ionize
xenon and krypton with ultrashort pulses (Corkum et al., 1986a, 1986b) 
relative to extrapolations of 0.53mm, 1.06mm experiments (l’Huillier et al.,
1983) (25ps). Since the ionization threshold is a major uncertainty in con-
tinuum generation, we have performed two experiments (Corkum and
Rolland, 1988a; Chin et al., 1988) whose specific aim was to study multi-
photon ionization. The more recent and more quantitative of these is
described in this section (Chin et al., 1988).
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Femtosecond pulses were focused into a vacuum cell filled with ~4 ¥ 10-6

torr of xenon. Ions were extracted with an ~80V/cm static field into a time-
of-flight mass spectrometer. Data were obtained using a microcomputer,
coupled to a boxcar integrator that was programmed to accept only laser
pulses within a narrow energy range (±2.5%). The computer recorded and
averaged the associated ion signals. The intensity in the vacuum chamber was
varied by rotating a l/2 plate placed in front of a polarizer (reflection from
a Brewster’s angle germanium plate was used as a dispersion-free polariza-
tion selector for the 22-fs pulse).

Figure 7.1 is a graph of the number of ions as a function of the peak laser
intensity for both rare gases and all three laser pulse durations. (Higher 
ionization states were observed but not plotted since they were too weak.)
The solid curves were obtained from a modified Keldysh theory (Szöke,
1988). Although we did not measure the absolute number of ions, we esti-
mate the threshold sensitivity (the lowest ion signals in Figure 7.1) of our 
ion collector to be approximately 10 ions. The relative scaling between 
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Figure 7.1. Ion yield of Xe for 900-, 90-, and 22-fs pulses. The solid curves are cal-
culated from a modified Keldysh theory (Szöke, 1988). The calculations give an
absolute number of ions for the measured focal geometry and the neutral gas density.
The experimental number of ions is plotted in relative units. The data have been posi-
tioned on the graph so as to emphasize the agreement between experiment and theory.
The error bars show the standard error of the experimental data.



Figure 7.1. (continued)



experimental and calculated ion signals for Xe (Figure 7.1) is consistent with
this estimate.

We performed this experiment to find the intensity at which ionization
would need to be considered in nonlinear optics experiments. Not only does
Figure 7.1 answer this question qualitatively, but the agreement between
theory and experiment allows us to make quantitative predictions. However,
the agreement raises an important issue. How can a Keldysh theory, which
assumes that resonances are unimportant, be consistent with electron spec-
tral measurements (Freeman et al., 1987) which indicate that resonances play
a major role in ionization? Because of the importance of this issue for non-
linear optics, we discuss it below with respect to ionization and, in Section 5,
with respect to high-order nonlinear optics.

An important feature of the high-power light-atom interactions is the ac
Stark shift. At I = 1013 W/cm2, the laser field exceeds the atomic field (of
hydrogen) for all radii greater than R = 4Å. At this radius the atomic poten-
tial is 3.8eV below the ionization potential. For R > 4Å, it is appropriate to
consider the electron oscillating in the laser field as the lowest-order solution
and the atomic field as a perturbation. Nearly all excited states, therefore,
have an energy of oscillations (ac Stark shift) approximately equal to the 
ponderomotive potential (Uosc = (qE)2/2mw2 where q is the electronic charge,
w is the laser angular frequency, and m is the electron mass). At 1013 W/cm2

and 620nm the ponderomotive potential is approximately 0.4 eV. Thus reso-
nances are transiently produced and resonant enhancement of high-order
terms in the susceptibility will occur.

In view of the transient resonance induced in the medium, we might expect
resonances always to be important. However, small deviations from Keldysh
models appear only at relatively low intensities. Transient resonances appear
to play a significant role in the overall ionization rate over, at most, a limited
intensity/time range. (Note that detailed electron spectral measurements 
have so far been performed only in the 1–3 ¥ 1013 W/cm2 intensity range with
~500-fs pulses (Freeman et al., 1987).)

To understand why the contributions of transient resonances to ultrashort
pulse ionization should be so small, consider just how transient these reso-
nances can be. Assuming that all high-lying states move with the pondero-
motive potential, we can write the maximum rate of change of the
ponderomotive shift as where U0 is
the maximum value of the ponderomotive shift during the pulse and a 
Gaussian pulse shape has been assumed. In the case of the 90-fs pulse with
a characteristic peak intensity of 1014 W/cm2, dU/dt)max = 0.1eV/optical cycle.
In the even more extreme case of the 22-fs pulse, the same peak intensity 
gives dU/dt)max = 0.4 eV/optical cycle.

The significance of such large ponderomotive shifts can be seen by con-
sidering a two-level system. For a two-level system both the pulse duration
dependence and the intensity dependence of the dephasing between the tran-
sition (transition frequency = wab) and the near-resonant harmonic of the

dU dt U t) = ( ) ( )( )max ln . exp .2 2 0 5 0 50
1 2 D
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laser frequency can be estimated. For a constantly shifting transition, wab +
(dU/dt)t/h, the dephasing time (T ) is given by the condition that df ~ 2p. That
is, T ~ (2h/dU/dt)1/2 where dU/dt is assumed constant. For a 90-fs pulse at 
1014 W/cm2, T ~ 13fs. At the same intensity T ~ 6fs for a 22-fs pulse. Reso-
nances that last only a few cycles are hardly resonances at all and can be
expected to have only minor effects on the overall ionization rate. Only for
relatively small dU/dt can transient resonances play an important role. They
may account for the deviations of the experimental and calculated curves
observed in the 900-fs and low-power 90-fs xenon results.

The above discussion does not imply that transient resonances cannot lead
to observable nonlinear optical consequences. In fact, nonlinear optics may
provide one of the best methods of observing transient resonances.

In summary, these experiments show that ionization will be barely signifi-
cant for 90-fs pulses at intensities of 1013 W/cm2. In addition, the slopes of
the ion curves in Figure 7.1 indicate that a lowest-order perturbation expan-
sion for the transition rate (and, therefore, the susceptibility) will be incom-
plete for intensities greater than ~3 ¥ 1013 W/cm2 for 0.6-mm light. This
intensity can be used to estimate the maximum value of h2E2 that is experi-
mentally accessible with 90-fs pulses.

4. Self-Phase Modulation

One of the most studied nonlinear processes with ultrashort pulses is self-
phase modulation. It is the basis of optical pulse compression, which is widely
used in femtosecond technology. In many cases continuum generation is
believed to be an extreme version of self-phase modulation. Thus, it seems
natural to adjust the strength of the nonlinearity by varying the gas pressure
so that only modest self-phase modulation occurs. We can then follow the
magnitude of the spectral broadening as the intensity or the nonlinearity is
increased. Analogous experiments can be performed in fibers by increasing
the length of the fiber.

Self-phase modulation is more complex in unbounded media than in fibers
because, in unbounded media, self-phase modulation is inescapably related
to self-focusing. (This relationship ensured that pulse compression based on
self-phase modulation remained a curiosity until fiber compression became
available.) It is possible to minimize the effects of self-focusing by keeping
the medium shorter (Rolland and Corkum, 1988; Fork et al., 1983) than the
self-focusing length. High-power pulse compression experiments use precisely
this technique to control self-focusing (Rolland and Corkum, 1988).
However, long before the self-phase modulation has become strong enough
to generate continua, the beam propagation can no longer be controlled
(Rolland and Corkum, 1988). In spite of this complexity, most continua are
produced in long, unbounded media. Much of the remainder of the chapter

324 P.B. Corkum and C. Rolland



addresses some of the physics issues associated with continuum production
in this kind of medium.

The self-phase modulation experiment (Corkum and Rolland, 1988b) was
performed with the 90-fs, 625-nm pulse with a maximum energy of ~500mJ.
A vacuum spatial filter with aperture diameter less than the diffraction limit
of the incident beam produced an Airy pattern from which the central
maximum was selected with an iris. The resulting diffraction-limited beam
was focused into a gas cell that was filled to s maximum pressure of 40atm.
We report here mainly on the results obtained with xenon. However, where
other gases have been investigated, we have found similar behavior.

As the gas pressure or laser power is increased, spectral broadening due to
self-phase modulation is observed. In the h2 limit (i.e., terms of higher order
than h2E2 are negligible) and neglecting dispersion, the spectral width
depends only on the laser power

(1)

where the power in the pulse is given by P = P0e-(t/t)2 and dl)max and dl)init are
the maximum and initial bandwidth of the pulse, respectively. All other
symbols have their conventional meaning. The factor exp(0.5) arises because
the maximum broadening for a Gaussian pulse occurs at . It will be
present in Eq. (2) for the same reason. We can evaluate* dl)max for h2 =
2.4 ¥ 10-25 m2/V2 atm and obtain dl)max = 3.9 ¥ 10-7 Å/Watm. Equation (1) is
valid only below the self-focusing threshold.

Equation (1) shows that modifications of the nonlinearity can be observed
through an intensity dependence of the spectral broadening. The results
obtained with two different focusing lenses (F/70 and F/30) and a selection
of pressures are presented in Figure 7.2. In all cases, the power was main-
tained below the self-focusing threshold. The solid lines are a fit to the exper-
imental data using Eq. (2) and a saturation intensity of Isat = 1013 W/cm2.

(2)

In Figure 7.1, the saturation intensity of 1013 W/cm2 corresponds to a
power of 1.5 ¥ 108 W for the F/30 and 8 ¥ 108 W for the F/70 lens. The dashed
lines are obtained using Eq. (2) and Isat = •. Compared to Eq. (1), a factor
of 2.1 is required in the denomimator of Eq. (2) to fit the data. This factor
is attributed to uncertainties in the input parameters such as the value of h2,
the pulse shape and duration (measured by autocorrelation), and approxi-
mations made in deriving Eq. (1).
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* h2 of xenon at atmospheric pressure was erroneously reported to be h2 = 4 ¥
10-26 m2/V2 in Corkum et al. (1986a, 1986b).



Saturationlike behavior of the nonlinearity could be caused by plasma pro-
duced by ionization (Corkum and Rolland, 1988b). There are four experi-
mental reasons to believe that saturation is a fundamental phenomenon, not
directly related to ionization:

1. At 1013 W/cm2, sufficient ionization to modify the beam propagation by
one diffraction-limited beam divergence, or to modify the spectrum mea-
surably, would require ~25% of the beam energy. We measure an absorp-
tion of less than 3%.

2. Ionization would produce asymmetric self-phase modulation since the
plasma would most affect the trailing region of the pulse. We observe a
nearly symmetrical spectrum.

3. Figure 7.1 shows that insignificant plasma density is produced by I <
3 ¥ 1013 W/cm2.

4. Ionization would produce irreversible distortion of the transmitted beam
profile. In fact, beam distortion is frequently used as a diagnostic of ion-
ization (Corkum and Rolland, 1988a; Guha et al., 1985). We see little beam
distortion.
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Figure 7.2. Spectral width of the radiation transmitted through a cell filled with 5,
10, and 20atm of xenon as a function of the peak laser power. The circles and squares
represent data obtained with an F/70 and an F/30 lens, respectively. The solid curves
are plots of Eq. (2) with a saturation intensity of 1013 W/cm2 corresponding to 1.5 ¥
108 W for the F/30 lens (w0 = 21mm).



5. Saturation of the Nonlinear Response in Gases

Since the nonlinear response is not modified by ionization, we must consider
other explanations. For xenon and 0.6-mm light, the first excited state is 4.2
photon energies above the ground state. Any pulse duration or intensity-
dependent changes must come from higher-order terms. In the absence of
resonances, high-order terms should contribute to the nonlinear response
approximately in the ratio c(3)E2/c(1). At 1013 W/cm2 the ratio is ~0.04. To
explain the observations in Figure 7.2, resonant enhancement is required 
and, as we have already indicated in Section 3, resonant enhancements are
inevitable.

In discussing transient resonances, we have already pointed out that bound
carriers in a high-lying resonant level respond as free electrons. It was just
this fact that required that the ac Stark shift be equal to the ponderomotive
potential. These bound electrons must reduce the refractive index as would
truly free electrons. Since the high-lying states are only transiently resonant,
they are only virtually occupied. Thus, aside from resonantly enhanced ion-
ization, which is discussed below, the reduced refractive index need not be
associated with net absorption from the beam. The change in refractive index
due to bound electrons in high-lying levels is equivalent to h2E2 when only
10-3 of the ground state population is in these levels. (It is interesting to note
that the connection between the ac Stark shift and the susceptibility, implicit
in this description, can also be shown for a weakly driven two-level system
(Delone and Krainov, 1985).)

It is essential to consider whether a transiently resonant population of
10-3 is consistent with low ionization levels, since transiently resonant states
in xenon lie within one or two photon energies of the continuum. Resonantly
enhanced ionization of xenon has been observed in multiphoton ionization
experiments with ~500-fs pulses (Freeman et al., 1987). If we assign a cross
section (Mainfray and Manus, 1980) of s = 10-19 (10-20) cm2 to the single-
photon ionization from a near-resonant state, we can calculate the ratio of
resonantly excited electrons (Ne) to free electrons (Ni) at an intensity of
1013 W/cm2 (Ne/Ni = h-w/sIt). The ratio for a 90-fs pulse is ~3(30). Note 
the pulse duration scaling. Thus the resonant population can exceed the free-
electron population for ultrashort pulses.

It may seem that the small cross section used above is in contrast to what
would be calculated from Keldysh-type theories (Szöke, 1988; Keldysh, 1965)
for 1013 W/cm2, assuming an ionization potential of <1eV. This apparent dis-
crepancy is explained by the fact that a transiently resonant electron is only
weakly bound. Since an unbound electron cannot absorb photons from a
plane electromagnetic wave, as we cross the boundary between an unbound
and a weakly bound electron we should not expect the electron to absorb
photons readily. (In the long-wavelength limit this is no longer valid because
of the Lorentz force contribution to ionization.)
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Values for s are very poorly known experimentally, especially for levels
near the continuum. Recent UV measurements (Landen et al., 1987) for the
krypton 4p5d and 4p4d levels (1 and 1.7 eV below the continuum) yielded
values of s = 3 ¥ 10-18 and 8 ¥ 10-18 cm-2, respectively. These results satisfy
the trend of decreasing s as the continuum is approached.

It is useful to reexpress the above discussion in more general terms. Many
high-order nonlinear terms will be enhanced by transient resonance due to
the dense packing of levels at high energies. Our qualitative description of
the plasmalike response of the electron is equivalent to summing a series 
of nonlinear terms. It should be emphasized that transient resonances will
influence all nonlinear processes in this intensity range. Their effects could
well exceed the nonresonant contributions to the susceptibility. Note that
enhancement of the nonlinear response is also observed in partially ionized
plasma due to excited state population (Gladkov et al., 1987).

6. Self-Focusing: c(3) Becomes Large

The modification to the nonlinear response of the medium that we have
described has important consequences for self-focusing. In Figure 7.2 the
highest-intensity data points (for a given F-number and gas pressure) give
approximately the threshold above which the nature of the spectral broad-
ening changes nearly discontinuously. For F/70 optics this value is approxi-
mately a factor of 2 above the calculated self-focusing threshold. A factor of
2 discrepancy is consistent with the correction factor of 2.1 that we required
to make Eq. (2) agree with experimental data. The critical power is clearly
not a useful parameter if the intensity at the geometric focus exceeds 
1013 W/cm2.

To ensure that self-focusing will be initiated all remaining results are taken
with large F-number optics (F/200).

6.1 Spectral Characteristics of Gaseous Continua

When the beam intensity is increased above that plotted in Figure 7.2, the
wavelength scale of the spectral broadening increases dramatically. In Figure
7.3 typical multishot spectra are plotted for the 70-fs and 2-ps pulses (with
characteristics similar to the 90- and 900-fs pulses described previously)
transmitted through a gas cell filled with various gases. Shown in Figure 7.3a
are spectra for 30atm of xenon illuminated with 70-fs and 2-ps pulses, respec-
tively. Figure 7.3b shows spectra for 40atm of N2 (2ps) and 38atm of H2

(70fs). The spectra in Figure 7.3 are typical of spectra obtained with all 
gases that we have investigated, provided only that the laser intensity was 
sufficient to exceed the critical power for self-focusing.

The similarity in the blue spectral component for all the curves in Figure
7.3 should be noted. In fact, the blue spectral component is nearly universal
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Figure 7.3. Continuum spectra. (a) In xenon: P = 30atm, Dt = 70 fs (crosses); P =
15atm, Dt = 2ps (circles). (b) In N2: P = 40atm, Dt = 2ps (circles) in H2: P = 38atm,
Dt = 70 fs (crosses).



for all gases that produce continua regardless of the (above-threshold) inten-
sity or pressure. (It is also typical of a chaotic spectrum (Ackerhalt et al.,
1985).) The red component, however, varies with the laser and gas parame-
ters. We have investigated the red cutoff only with CO2 using femtosecond
pulses. The maximum wavelength for 30atm of CO2 exceeded the 1.3-mm
limit of our S1 photocathode. (Because of an orientational contribution to
the non-linearity, continua can be produced at a particularly low threshold
intensity with picosecond pulses in CO2.)

Figure 7.4 shows that spectral modulation is another characteristic of the
spectrum of gaseous continua. Modulation has been noted previously on the
single-shot spectra of gases (Glownia et al., 1986). Spectral modulation is
characteristic of continua from condensed media as well (Smith et al., 1977).
Figure 7.4 illustrates the intensity and h2 scaling of the spectral modulation
of a xenon continuum as measured in the region of 450nm. Figures 7.4a and
7.4b show that the modulation frequency is reproducible from shot to shot.
The modulation depth is not always as great as shown in Figure 7.4. Figures
7.4c and 7.4d demonstrate that the modulation frequency varies with h2E2

near the continuum threshold. However, in Figure 7.4e to 7.4g we see that
the simple h2E2 scaling is eventually lost at higher pressure-power products.
In all cases, the modulation frequency increases further from the laser fre-
quency. This behavior is in contrast with that expected for self-phase modu-
lation (Smith et al., 1977).

The characteristics of gaseous continua described so far are similar to
those of condensed-medium continua. However, the extra flexibility provided
by pressure dependence of the nonlinearity allows issues like the h2E2 depen-
dence of the spectral modulation to be addressed. We will see that it also
allows us to correlate self-focusing with continuum generation much more
precisely than previously possible.

As already mentioned, continuum generation showed a sharp threshold,
below which spectral broadening is described by Eq. (2) and above which full
continua re produced. The threshold power for continuum generation equals
the self-focusing threshold power to the accuracy to which the self-focusing
threshold is known. The functional dependence of the continuum threshold
on laser power, gas pressure, and the hyperpolarizability is also the same as
that for self-focusing. This dependence is shown in Figure 7.5, where the
product of the gas pressure and the laser power at threshold for all gases
investigated with the femtosecond pulse is plotted as a function of the laser
power. Comparing the pressure-power products for each gas, we find that
they are inversely proportional to the hyperpolarizabilites. Similar data were
obtained (but are not plotted) with the picosecond pulse. For the rare gases
and H2, the picosecond data would fit on their respective lines in Figure 7.5.
Both N2 and CO2, however, have lower thresholds than would be indicated
from their purely electronic nonlinearities. This is due to orientational effects
that are important in both gases.
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Figure 7.4. Details of the single-shot continuum spectrum centered near l = 450nm
illustrating the spectral modulation on the continuum. (The horizontal scale for all
traces except (f ) is 137Å/div.) (a) and (b) (7atm pressure of xenon) show the repro-
ducibility of the spectral modulation. (c) and (d) (14atm pressure of xenon) show the
h2E2 scaling of the spectral modulation. (c) was taken with the same laser power as
(a) and (b). (d) was taken with one-half the laser power of (a)–(c). (e) to (g) (21atm
pressure of xenon) show that the h2E2 scaling is not valid well above the continuum
threshold. (e) and (f) were taken with the same laser power as (a)–(c). The wavelength
scale in (f) has been expanded by a factor of 10. (g) was taken with one-third of the
laser power of (a)–(c).



6.2 Spatial Characteristics of Gaseous Continua

One might expect that spatial changes in a beam that has experienced at least
the onset of self-focusing would be severe. Considering that the spectrum of
the beam is catastrophically modified, can we expect anything but a severely
distorted transmitted beam?

Figure 7.6 shows the near-field and far-field distributions of the beam after
passing through the gas cell. The first row is composed of reproductions of
Polaroid photos of the near-field spatial distribution as viewed through an
~0.5-mm-wide slit and recorded on an optical multichannel analyzer (OMA).
The second row shows far-field distributions recorded in a similar manner.
From left to right are distributions taken through a filter that blocks all wave-
lengths l < 650nm (left column), with the gas cell evacuated (middle column),
and through a filter that blocks l > 525nm (right column). The left- and right-
hand columns were obtained with the gas cell filled with sufficient pressure to
ensure that the laser peak power exceeded the continuum threshold. On the
basis of the spatial profile alone, it is virtually impossible (with large F-number
optics) to distinguish between the presence and absence of self-focusing and
continuum generation for powers near the self-focusing threshold.

As the laser power is increased to approximately four times the continuum
threshold, conical emission is observed. At first the ring structure is simple,
but it becomes increasingly complex at higher powers. Figure 7.7 shows the
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Figure 7.5. Laser power multiplied by the gas pressure at the continuum threshold,
plotted as a function of the inverse of the laser power for different gases.
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Figure 7.6. Near-field (top row) and far-field (bottom row) distributions of the beam
after passing through the gas cell. From left to right are shown the red spectral com-
ponent (l > 650nm), the beam with the gas cell evacuated, and the blue spectral com-
ponent (l < 525nm).

Figure 7.7. Conical emission as observed in the near field through the red (l >
650nm, left image) and blue (l < 525nm, right image) filters.



ring structure only slightly above the threshold for conical emission. Conical
emission was previously observed in condensed-medium continuum genera-
tion (Smith et al., 1977; Alfano and Shapiro, 1970a).

Figure 7.6 indicates that the transverse beam distribution is almost totally
reconstructed after self-focusing. The spatial reconstruction of the beam
stands in stark contrast to the catastrophic change in the initial spectrum. With
such beam reconstruction, it is natural to reexamine whether self-focusing 
was ever initiated. Several reasons to associate continuum generation with 
self-focusing in gases are listed below:

1. Conceptually, self-focusing is just the free-space spatial manifestation 
of self-phase modulation. Since Eq. (1) is valid for large F-number optics,
h2 must be the dominant nonlinearity, rendering self-focusing inevitable.
Of course, when the intensity approaches 1013 W/cm2, h2 is no longer 
dominant.

2. The continuum threshold has approximately the same magnitude as the
calculated self-focusing threshold. It also has the same functional dependence
on the gas pressure, laser power, and hyperpolarizability.

3. Conical emission has been predicted by the moving-focus model of self-
focusing (Shen, 1975). It is also a characteristic of a saturating nonlinearity
(Marburger, 1975) and high-order nonlinear mixing processes. With large F-
number optics, all of these potential explanations of conical emission require
self-focusing to increase the peak intensity.

4. We have projected conical emission to its source and find that it origi-
nates from the prefocal region. This origin can be graphically illustrated by
placing a 3-mm-diameter opaque disk at the geometric focus. Significant
conical emission escapes around its side.

5. The h2E2 dependence of the spectral modulation implies that h2 plays at
least a limited role in continuum generation.

6. In no case have we been able to observe continuum generation without
the laser power exceeding the calculated self-focusing power.

6.3 Discussion

It is not possible to consider gaseous continuum generation as if it were pro-
duced by self-phase modulation in the h2 limit alone. The conceptual link
between self-phase modulation and self-focusing makes this approach un-
realistic. The very small value of h2E2, even at the ionization threshold
(Corkum et al., 1986a, 1986b), gives additional evidence that continuum gen-
eration is not only an h2 process.

There is a second conceptual problem. If plasma is not created (as we have
shown experimentally), then high-order nonlinearities are required to stabi-
lize self-focusing: consequently, h2 is no longer the dominant nonlinear term.
(It is interesting to note that nonlinear optics will be very different in the long-
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wavelength limit, where the Lorentz force severely limits the lifetime of most
high-lying states.)

Out of this apparent complexity, however, very simple and near-universal
behavior emerges. This simple behavior will have to be explained by contin-
uum theories. In particular, theory will have to explain the periodicity of the
modulation, the spatial properties of the beam, conical emission, and the uni-
versality of the blue spectral component of the continuum.

7. Conclusions

With the recent development of ultrashort pulses, it is now possible to
perform nonlinear optics experiments in new limits of intensity and pulse
duration. Due to the sweep of the focus, earlier self-focusing experiments may
already have explored this region, although unwittingly.

This chapter has described experiments explicitly performed to investigate
subpicosecond nonlinear optics. It described the first high-intensity experi-
ments performed with pulses as short as 22fs and showed that ionization
cannot be described by perturbation theory for pulse durations shorter than
1ps. It also discussed the role of transient resonances in multiphoton ion-
ization and in high-intensity self-phase modulation experiments. For ultra-
short pulses, these transient resonances dominate the nonlinear optical
response of gases in much the same way that high-lying resonances dominate
in partially ionized plasmas (Gladkov et al., 1970.) (Presumably, the same is
true in condensed media near the multiphoton ionization threshold).

Continuum generation in gases (and indeed all nonlinear optical phenom-
ena in this intensity and pulse duration range) will be understood only in the
context of transient resonances and limited convergence of perturbation
theory.

In conclusion, it should be emphasized that the observations in this chapter
are very much in keeping with the condensed-media results. The difference is
only that gases show the properties of continua in such a dramatic form as
to strongly challenge conventional ideas of continuum generation.

Acknowledgments. The author acknowledges important contributions to this
work by Dr. S.L. Chin, during a five-month sabbatical at NRC. His experi-
ence with multiphoton ionization experiments was invaluable, as was his con-
tribution to other concepts expressed in this chapter. Dr. T. Srinivasan-Rao’s
contributions are also acknowledged. Without her short visit to NRC we
would never have begun this set of experiments. D.A. Joines has cheerfully
provided technical support throughout all of the experiments. Our rapid
progress would not have been possible without him. Discussion with many
colleagues at NRC are gratefully acknowledged.

7. Self-Focusing and Continuum Generation in Gases 335



References

Ackerhalt, J.R., P.W. Milonni, and M.-L. Shih (1985) Phys. Rep. 128, 207.
Alfano, R.R. and S.L. Shapiro (1970a) Phys. Rev. Lett. 24, 584.
Alfano, R.R. and S.L. Shapiro (1970b) Phys. Rev. Lett. 24, 592.
Bloembergen, N. (1973) Opt. Commun. 8, 285.
Chin, S.L., C. Rolland, P.B. Corkum, and P. Kelly (1988) Phys. Rev. Lett. 61, 153.
Corkum, P.B. and C. Rolland (1987) Summary of postdeadline papers, XV Interna-

tional Quantum Electron. Conference, April, Baltimore, Maryland, Paper PD-21.
Corkum, P.B. and C. Rolland (1988a) In NATO ASI Series—Physics B, vol. 171, A.

Bandrauk, ed., p. 157. Plenum, New York.
Corkum, P.B. and C. Rolland (1988b) unpublished.
Corkum, P.B., C. Rolland, and T. Srinivasan-Rao (1986a) Phys. Rev. Lett. 57, 2268

(1986a).
Corkum, P.B. and C. Rolland, and T. Srinivasan-Rao (1986b) In Ultrafast Phenom-

ena V, G.R. Fleming and A.E. Siegman, eds., p. 149. Springer-Verlag, New York.
Delone, N.B. and V.P. Krainov (1985) Atoms in Strong Light Fields, p. 174, Springer-

Verlag, Berlin.
Fork, R.L., C.V. Shank, C. Hirliman, R. Yen, and W.J. Tomlinson (1983) Opt. Lett.

8, 1.
Freeman, R.R., P.H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M.E.

Geusic (1987) Phys. Rev. Lett. 59, 1092.
Gladkov, S.M., N.I. Koroteev, M.V. Ruchev, and A.B. Fedorov (1987) Sov. J. Quantum

Electron. 17, 687.
Glownia, J.H., J. Miswich, and P.P. Sorokin (1986) J. Opt. Soc. Am. B3, 1573.
Guha, S., E.W. Van Stryland, and M.J. Soileau (1985) Opt. Lett. 10, 285.
l’Huillier, A., L.A. Lompre, G. Mainfray, and C. Manus (1983) Phys. Rev. A27, 2503.
Keldysh, L.V. (1965) JETP 20, 1307.
Landen, O.L., M.D. Perry, and E.M. Campbell (1987) Phys. Rev. Lett 59, 2558.
Lehmeier, H.J., W. Leupacher, and A. Penzkofer (1985) Opt. Commun. 56, 67.
Mainfray, G. and C. Manus (1980) Appl. Opt. 19, 3934.
Marburger, J.H. (1975) Prog. Quantum Electron 4, 35.
Rolland, C. and P.B. Corkum (1986) Opt. Commun. 59, 64.
Rolland, C. and P.B. Corkum (1988) J. Opt. Soc. Am. B5, 641.
Shen, Y.R. (1975) Prog. Quantum Electron 4, 1.
Smith, W.L., P. Liu, and N. Bloembergen (1977) Phys. Rev. A15, 2396.
Szöke, A. (1988) NATO ASI Series—Physics B, vol. 171, A. Bandrauk, ed., p. 207.

Plenum, New York.

336 P.B. Corkum and C. Rolland



8
Utilization of UV and IR
Supercontinua in Gas-Phase
Subpicosecond Kinetic 
Spectroscopy

J.H. Glownia, J. Misewich, and P.P. Sorokin

1. Introduction

Through the work of photochemists extending over many decades, there now
exists a wealth of information on the various reactions that photoexcited gas
phase molecules undergo. Most of this information relates to the product
molecules that are formed, either as the direct result of a primary photo-
chemical act, such as photodissociation, or through subsequent secondary
reactions, involving collisions with other molecules in the gas. Recently, there
has been an extensive effort directed at determining the exact energy distrib-
utions of the primary products formed in photodissociation. With the use 
of nanosecond tunable-laser techniques, such as laser-induced fluorescence
(LIF) and coherent anti-Stokes Raman spectroscopy (CARS), scientists have
successfully determined the nascent electronic, vibrational, and rotational
energy distributions of various diatomic fragments such as CN, OH, NO, and
O2 that are directly formed in the photodissociation of many kinds of mol-
ecules. The ready availability of high-quality, tunable, nanosecond lasers has
made determination of the above-mentioned collisionless energy distribu-
tions a relatively straightforward process. The determination of product
translational energies has long effectively been handled by angularly resolved
time-of-flight (TOF) spectroscopy, or by sub-Doppler resolution spec-
troscopy, including a recently improved version of the latter, velocity-aligned
Doppler spectroscopy (Xu et al., 1986).

Of great interest, but until recently unobtainable, is detailed knowledge of
the time sequences of the various internal conversions, rearrangements, dis-
sociations, etc. that molecules typically undergo upon photoexcitation. To
illustrate this point, let us consider Figure 8.1, which depicts an alkyl azide
analog of the Curtius rearrangement for an acyl azide molecule. It is known
that the weakest bond in the covalently bonded azide group lies between the
two nitrogen atoms closest to the carbon atom. This fact explains the finding
that molecular nitrogen is invariably produced in the photolysis of covalently
bonded azides. The existence of the stable methylenimine product in the 
case of Figure 8.1 implies a breaking of the C—H bond and forming of an



N—H bond. However, as to whether the above reactions actually happen
sequentially in the order described, or whether the whole sequence occurs in
a simultaneous, concerted manner, the relevant literature is quite contentious.
It would appear that an advanced technique of kinetic spectroscopy,* having
a spectral range that includes portions of the infrared and having a subpi-
cosecond time resolution, could provide direct answers in the above example,
provided that the time to form the final methylenimine product is no less than
several hundred femtoseconds. Experimentally, one would monitor the times
for disappearance of the azide symmetric or antisymmetric stretches and
compare these with the appearance time for the N—H stretch.

While time-resolved broadband infrared probing of the vibrational modes
of photoexcited molecules should thus give easily interpretable results, it
appears, unfortunately, to be a rather difficult technique to develop and to
apply. In general, the optical absorbances associated with purely vibrational
transitions are a few orders of magnitude weaker than those associated with
electronic transitions. Thus, signal-to-noise considerations become of para-
mount importance. Aside from questions of sensitivity, there is also the
problem that only a very limited spectral range has thus far been demon-
strated for subpicosecond kinetic spectroscopy in the infrared. For many pho-
toexcited molecules one can, of course, determine exact times of dissociation
by observing the appearance times of products of the photodissociation.
Here one can fortunately utilize as monitors electronic transitions with their
intrinsically high molar absorbances. Examples are given further on in this
chapter. Electronic transitions between excited states of a molecule can also
be utilized to monitor the motion of a molecule along an excited state poten-
tial surface, tracking the times when the molecule internally converts or frag-
ments. This is illustrated by another example, discussed further on, in which
an infrared subpicosecond kinetic spectroscopy probe is actually utilized.

Of course, the problem of spectroscopically monitoring in real time the
unimolecular reactions of a photoexcited molecule can also be attacked in
ways other than through kinetic spectroscopy. A.W. Zewail’s group uses a dif-
ferent time-resolved approach, which is illustrated by their recent study of
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Figure 8.1. Rearrangement mechanism proposed for the photolysis of methyl azide.

* The term “kinetic spectroscopy” was used by G. Porter, R. Norrish, and others,
who pioneered the field of flash photolysis. Since the technique we describe in this
chapter also relies on the use of a time-resolved, broadband, absorption spectroscopy
probe, we choose to describe our work with the same term, with the addition, however,
of the prefix “subpicosecond.”



ICN photodissociation (Dantus et al., 1987). After a subpicosecond UV
pump pulse has initiated ICN fragmentation, a tunable LIF subpicosecond
probe pulse induces the CN fragments to fluoresce. They recorded the CN*
excitation spectrum as a function of pump-probe delay, providing new infor-
mation about the photodissociation dynamics.

We have tried briefly in the preceding paragraphs to stress the potential
utility of a subpicosecond kinetic spectroscopy approach to the real-time
study of intramolecular photoinitiated reactions of gas-phase molecules.
As is well known, subpicosecond kinetic spectroscopy has already been
employed successfully in the condensed phase by several research groups to
elucidate the dynamics of biological processes, to follow the approach to
equilibrium in photoexcited dyes, to study ultrafast processes in semicon-
ductors, etc. However, such studies, almost without exception, have relied on
the use of broadband time-resolved spectroscopic probes in the visible. Our
group has recently started to make advances toward developing equipment
capable of providing a wider subpicosecond spectral probing range. In recent
papers (Glownia et al., 1986a, 1987a, 1987b) we have described an appara-
tus capable of simultaneously generating both intense subpicosecond UV
(308, 248.5nm) excitation pulses and subpicosecond continua for probing
photoexcited molecules via broadband absorption spectroscopy. Both UV
(230 to 450nm) and IR (2.2 to 2.7mm) continua have thus far been produced.
A method of upconverting the latter to the visible for ease of detection has
also been demonstrated. In the present chapter this apparatus is described in
detail. Also given is an account of some of the first experiments performed
using this equipment.

The organization of this chapter is as follows. Since the pulses in both exci-
tation and probe channels are derived from subpicosecond UV pulses ampli-
fied in XeCl gain modules, we begin, in Section 2, with a description of the
apparatus we have built for producing intense subpicosecond 308-nm pulses.
In Section 3 we show how these 308-nm pulses can be used to generate ultra-
fast UV supercontinuum pulses and also how the latter can be used to seed
an amplification process in a KrF excimer gain module in order to produce
intense subpicosecond pulses at 248nm. Section 4 describes our technique for
producing an ultrafast IR continuum, as well as the method we use for upcon-
verting it to the visible for ease of detection. Exactly how the UV and IR
continua are utilized in subpicosecond kinetic spectroscopy experiments is
shown in the examples discussed in the balance of the chapter. Section 5
describes an IR experiment we have performed, the measurement of the 
B̃ Æ Ã internal conversion rate in 1,4-diazabicyclo[2.2.2]octane (DABCO)
vapor, while Section 6 describes some preliminary results obtained in the case
of two subpicosecond kinetic spectroscopy experiments recently attempted,
photolysis of thallium halide vapors at 248 and 308nm and photolysis of
chlorine dioxide vapor at 308nm. Section 7 concludes with a brief descrip-
tion of two promising directions than can now be taken in our approach to
subpicosecond kinetic spectroscopy.
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2. 160-fs XeCl Excimer Amplifier System

The suitability of commercially available excimer gain modules for ampli-
fication of ultrafast UV pulses has been apparent for many years.
Around 1982, various groups (Corkum and Taylor, 1982; Egger et al., 1982;
Bucksbaum et al., 1982; Szatmári and Schäfer, 1984a) successfully utilized
discharge-pumped excimer gain modules for amplification of UV pulses
having durations of a few picoseconds. However, it was well known (e.g., see
Corkum and Taylor, 1982) that the gain bandwidth of these systems is such
that amplification of much shorter pulses can also be accomplished. The first
published accounts of subpicosecond pulse amplification in excimers were
published some four years later (Glownia et al., 1986b; Schwarzenbach et al.,
1986). Glownia et al. (1986b) used a pair of XeCl gain modules to amplify
350-fs, 308-nm pulses to ~10-mJ energies with <1-mJ amplified spontaneous
emission (ASE) content. Seed pulses for the excimer amplifier were formed
through the combined use of a synch-pumped mode-locked dye laser tuned
to 616nm, a single-mode fiber pulse compressor (Nakatsuka et al., 1981;
Nikolaus and Grischkowsky, 1983), a four-stage Nd3+ : YAG-laser-pumped
dye amplifier, and, finally a KDP frequency-doubling crystal. Schwarzenbach
et al. (1986) used generally similar methods to produce subpicosecond seed
pulses suitable for amplification at 248.5nm in KrF gain modules.

In 1987 further significant advances in excimer-based UV subpicosecond
amplification were made. Szatmári et al. (1987a) reported the generation of
220-fs pulses at 308nm from an XeCl amplifier. Shortly afterwards, the same
Göttingen group (Szatmári et al., 1987b) reported having obtained 15-mJ,
80-fs, 248.5-nm pulses from a KrF amplifier and having then amplified these
pulses to 900GW peak power in a wide-aperture KrF discharge amplifier. A
remarkable feature of the above work is that the seed pulses in each case were
formed directly with nanosecond excimer-pumped dye laser sources. A novel
method discovered earlier (Szatmári and Schäfer, 1983, 1984b) of generating
single, picosecond pulses through the combined use of an excimer-pumped,
quenched, dye laser and a distributed feedback dye laser (DFDL) was
improved on by Szatmári et al. (1987a, 1987b) to the degree that subpi-
cosecond pulses were produced. These pulses were amplified and then fre-
quency doubled prior to final amplification in an excimer gain module. One
of the many advantages of the technique employed by the Göttingen group
is that, due to the wide wavelength range accessible with DFDLs, all of the
known rare-gas halide wavelengths can be reached through frequency dou-
bling or mixing. Possible disadvantages of the Göttingen technique center
around the inherent difficulties in adjusting and stabilizing the DFDL. It will
be interesting to follow the development of this unique approach and to see
also if it eventually benefits from commercial product engineering.

In 1987 a full description was published (Glownia et al., 1987b) of the 
XeCl excimer-based system our group currently employs, which generates
bandwidth-limited, 160-fs, 308-nm pulses at a 10-Hz rate. Subpicosecond
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pulses at ~616nm are formed in a colliding-pulse mode-locked (CPM) laser
(Fork et al., 1981; Valdmanis et al., 1985), amplified in a four-stage Nd3+ :
YAG laser-pumped amplifier chain, and then frequency doubled in a 1-mm-
long KDP crystal, forming seed pulses at 308nm for further amplification in
the XeCl excimer gain module. Since this sytem is the heart of our subpi-
cosecond pump-probe apparatus, we summarize its main features here.

The design of the CPM laser is generally similar to that of Valdmanis et
al. (1985), incorporating four dispersion-compensating prisms in the seven-
mirror ring cavity arrangement of Fork et al. (1981). The pulse repetition rate
is 116MHz. An 80-mm focal-length lens is used to focus the 514.5-nm CW
Ar+-ion laser pump beam into the Rhodamine 6G gain jet. Surprisingly,
optimum mode locking at 616nm, described below, requires only 1.4W of
pump power. Both the gain and DODCI absorber jets are standard Coher-
ent dye laser nozzles (dye stream thickness ~100mm). A relatively dilute con-
centration of DODCI (50mg in 21 ethylene glycol) was found to be optimum
for operation at 616nm. The CPM output power is about 20mW in each arm
when the laser is optimized at this frequency.

We generally tune the intraprism path length for minimum amplified laser-
pulse duration (see below) while maintaining the peak of the output spec-
trum near 616nm. With this adjustment, the CPM pulse width is about 
240 fs. However, when measured after the beam has propagated through an
additional 5cm of H2O, the pulse width is 200 fs, showing that the laser oper-
ates with excess negative dispersion in the cavity. It should be noted that this
CPM laser can readily produce much shorter pulse widths (~70 fs) at longer
wavelengths. However, the spectrum of the amplified and frequency-doubled
pulses cannot then properly match the XeCl gain profile. The first three stages
of the dye amplifier are excited transversely; the fourth, longitudinally. Kiton
Red 620dye is used in the first stage; Sulforhodamine 640 in the last three
stages. The solvent used in all stages is H2O + 4% Ammonyx LO. Malachite
Green bleachable absorber dye jets are used between the first three amplifier
stages to control amplified spontaneous emission. The small-signal attenua-
tions of the absorber jets are roughly 10¥ and 200¥. Pumping of the dye
amplifier chain is accomplished with ~125mJ of 532-nm light from a Quanta-
Ray DCR-2A Nd3+ : YAG laser operating in the short pulse (2-ns central
peak) mode. We typically measure a total amplified pulse energy of ~0.6mJ.
The autocorrelation trace of the amplified CPM dye laser pulses at full power
indicates a pulse width of ~200 fs.

The ~200-fs amplified 616-nm pulses are spatially compressed to a beam
diameter of ~2mm, then frequency doubled in 1-mm-long KDP crystals to
form seed pulses for amplification in the XeCl excimer gain module. In
Glownia et al. (1987b) extensive frequency broadening of the second har-
monic was noted when the size of the input beam in the KDP crystal was
allowed to be less than 2mm in diameter. This was attributed to self-phase
modulation (SPM) occurring in the KDP crystals. Since the UV spectral
width of the seed pulses was observed to be typically 10¥ the XeCl gain band-
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width, it was argued by Glownia et al. (1987b) that the positive frequency
sweep associated with the most intense part of the pulse would result in a
nearly in-phase excitation of all the frequencies lying under the XeCl gain
curve. This is an exact prescription for forming bandwidth-limited pulses.
This argument was used to explain the observation (see below) that the UV
pulses amplified by the XeCl gain module are bandwidth limited.

The UV seed pulses are amplified in a single pass through a Lambda-
Physik EMG101-MSC excimer gain module (45-cm-long discharge). Pro-
vided that the seed pulse spectrum is relatively flat over the XeCl gain profile,
the spectrum of the amplified 308-nm pulse appears as shown in Figure 8.2.
Figure 8.3 displays a typical amplified 308-nm pulse autocorrelation trace.
(Two-photon ionization in DABCO vapor is used for the 308-nm pulse auto-
correlation measurements.) Measurements made on this system over a period
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Figure 8.2. Spectrum of amplified 308-nm pulses.

Figure 8.3. Autocorrelation trace of amplified 308-nm pulses.



of more than one year have consistently shown the amplified 308-nm pulse
width to be near 160 fs, a number very close to the bandwidth limit calcu-
lated (Glownia et al., 1987b) for the spectrum of Figure 8.2. This observed
facile generation of bandwidth-limited UV pulses is rationalized by the argu-
ment mentioned in the preceding paragraph.

With the use of 1-mm-long KDP doubling crystals, pulse energies of 4 to
5mJ are achieved in a single pass through the XeCl excimer gain module.
With the scheme shown in Figure 8.4, however, a second UV pulse, having
roughly the same energy, can be obtained during the same excimer discharge.
Because the efficiency of second harmonic generation in the first 1-mm-long
KDP crystal is only ~10%, enough 616-nm light remains to generate a second
UV seed pulse having almost the same energy as the first. If the two UV seed
pulses are spaced apart by 2 or 3ns, there is sufficient time for repumping the
XeCl B state, according to Corkum and Taylor (1982). Thus amplification in
the XeCl gain module occurs in the form of pairs of orthogonally polarized
pulses, each pulse 4 to 5mJ in energy. The 160-fs amplified UV pulse pairs
are then separated by a Brewster polarizer into pump and probe channels
(see Figure 8.14).

3. Ultraviolet Supercontinuum Generation

It was noted by Glownia et al. (1986b) that gentle focussing in air of the
XeCl-amplified subpicosecond pulses resulted in a spectral broadening of the
pulses by roughly a factor ten. Figure 8.5 shows a typical single-shot spec-
trum of an amplified 308-nm, 160-fs pulse after it has been focused in the
laboratory atmosphere with a 1-m lens. The spectrum is almost 100cm-1 wide,
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r, red).



with the spectral enhancement being predominantly on the Stokes side. At
the same time it was observed that the far-field pattern of the beam beyond
the focal point of the 1-m lens usually contained bright spots in which the
light was concentrated. These observations qualitatively suggested to us that
SPM and self-focusing were involved in the above phenomena. However, due
to the multimode spatial character of the beam, no direct steps were taken
to verify these speculations. Instead, it was decided to experiment with a
variety of gases (Ar, H2, N2, and CO2) under high pressure to see if any dif-
ferences in spectral broadening could be discerned between the various gases
and also whether spectral continua with widths in excess of ~1000cm-1 could
be produced by this method. The results of our measurements were reported
in Glownia et al. (1986a, 1986c). The main features are summarized below.
Independently of us, P. Corkum’s group at National Research Council,
Canada, observed the same basic phenomenon of supercontinuum genera-
tion from high-pressure gases (Corkum et al., 1986a, 1986b). In their case,
both subpicosecond and picosecond amplified red pulses were successfully
utilized as pump pulses. The basic physics of this newly discovered phenom-
enon is discussed by Corkum et al. (1986b). More recent observations and
deductions about gas-phase supercontinuum generation are contained in
Corkum and Rolland (Chapter 7 in the present volume).

Figure 8.6 displays the spectrum of the energetic UV supercontinuum
beam that emerges from a high-pressure Ar cell when high-power subpi-
cosecond UV (308nm) pulses are focused into the cell. Consistent with the
finding of Corkum et al. (1986b), we observe nearly full transmission (>80%)
of energy through the pressurized cell, with no significant degradation of the
beam profile. There is thus adequate probe energy to pass through a pho-
toexcited sample on to a high-dispersion visible-UV spectrograph, to be then
recorded on an unintensified silicon diode array. With the supercontinuum
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Figure 8.5. Single-shot spectrum of amplified 308-nm pulse, recorded after the latter
was focused in air with a 1-m lens.



source and spectrograph/detector system we normally employ, a spectral res-
olution of better than 0.3 Å is achieved. For probe continua at longer wave-
lengths, one must continue to rely on the various condensed-matter
supercontinua (Alfano and Shapiro, 1970a, 1970b; Fork et al., 1982) or else
on gas-phase supercontinua pumped by a red laser (Corkum et al., 1986a,
1986b), since all supercontinua peak at the pump wavelengths employed. It
should be pointed out, however, that condensed-matter supercontinua
peaking in the UV evidently cannot easily be generated. Our attempts to
achieve this effect with the use of amplified subpicosecond 308-nm pulses as
pump pulses were unsuccessful, possible due to nonlinear absorption in the
various liquids tried.

Because of the large spectral extent of supercontinuum pulses, they are
broadened in time by group velocity dispersion (GVD). For condensed-
matter visible supercontinua, Li et al. (1986) have measured spectral delays
with the use of a streak camera and filters. Utilizing a cross-correlation tech-
nique, Fork et al. (1983) have measured the sweep of a supercontinuum gen-
erated in an ethylene glycol jet. We have ultilized a novel method, based on
time-resolved absorption spectroscopy, to measure with subpicosecond reso-
lution the frequency sweep of the supercontinuum displayed in Figure 8.6.
This method, in the form in which it was originally demonstrated (Misewich
et al., 1988a), is now briefly described.

Thallium chloride molecules, contained in a vapor cell at 450°C, were irra-
diated by 250-fs, 248-nm pump pulses derived (by a method to be described
below) from 160-fs, 308-nm pulses. Supercontinuum probe pulses were simul-
taneously obtained from the same apparatus by focusing 4-mJ, 160-fs,
308-nm pulses into 40-atm Ar with a 50-cm lens. The probe pulses were
directed into the TlCl vapor colinearly with the pump pulses, then dispersed
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Figure 8.6. Spectrum of UV supercontinuum beam emerging from Ar cell, p =
40atm. Pump pulses (4mJ, 308nm, 160 fs) were focused into the middle of the 
60-cm-long Ar cell with a 50-cm lens. Average of 64 shots.



in a spectrograph and recorded on an optical multichannel analyzer (OMA).
Absorbances were computed by comparison of supercontinuum intensities
recorded with and without the UV pump blocked.

Thallium chloride molecules irradiated at 248nm undergo prompt disso-
ciation into Tl and Cl atoms, with the former being distributed into ground
2P1/2 and first-excited 2P2/3 (7793cm-1) states in roughly a 30 :70% ratio (van
Veen et al., 1981). Several allowed transitions, spanning a wide range of fre-
quencies, connect the two states with various higher excited states. By plot-
ting the individual rise times of the above atomic transitions as a function of
pump-probe delay, one obtains the plot in Figure 8.7, which shows that the
40-atm Ar supercontinuum is characterized by a positive chirp of approxi-
mately 1340cm-1/ps.

Our technique utilizing TlCl photodissociation to measured the UV super-
continuum frequency sweep has also revealed some interesting features of the
photodissociation itself. We defer a discussion of the transient absorption
spectra of photodissociating TlCl and TlI molecules until Section 6. From
the results presented there, however, it can be stated that while the total dura-
tion of the gas-phase supercontinuum pulse emerging from the high-pressure
cell is on the order of 10ps, the effective time resolution is much better. As
shown above, the probe continuum pulse has a fast red-to-blue linear sweep.
Our spectral results (Section 6) indicate that the cross-correlation between the
160-fs, 308-nm pump pulse and a given wavelength interval of the swept
probe pulse is stable to at least ±50 fs from shot to shot. It is this observed
stability that gives the UV gas-phase supercontinuum pulse its good time 
resolution.

The UV supercontinuum pulses of Figure 8.6 can be directly used as 
seed pulses suitable for further amplification in KrF gain modules. From
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Figure 8.7. Frequency sweep of 40-atm Ar supercontinuum beam whose spectrum
is shown in Figure 8.6. Data points correspond to Tl absorptive transitions whose
onsets were measured.



Figure 8.6 one sees that there is roughly a microjoule of energy in the super-
continuum between 248 and 249nm, the wavelength range over which KrF
amplification occurs. With this amount of input energy one easily obtains 6-
mJ output pulses through single-pass amplification in a KrF gain module
with a 45-cm-long discharge region (Glownia et al., 1986a, 1986c, 1987c). In
Glownia et al. (1986a), the high-pressure cell used to form the KrF seed
pulses contained H2 gas. We originally used hydrogen because of a coinci-
dence between an anti-Stokes Raman wavelength and the wavelength at
which maximum KrF gain occurs. Stimulated Raman scattering (SRS) occurs
in high-pressure H2 gas when 160-fs, 308-nm pump pulses are applied, but
not without the simultaneous occurrence of UV continuum generation. In
several other molecular gases we failed to observe SRS with our 308-nm,
160-fs pump source, but we do observe UV continuum generation. Since SRS
is known to be a ubiquitous phenomenon when high-power pulses of a few
picoseconds duration are applied to high-pressure molecular gases (Mack et
al., 1970), once must conclude that the conditions for its occurrence are made
far less favorable as one proceeds to the subpicosecond domain, while the
occurrence of supercontinuum generation becomes much more likely.

4. Subpicosecond Time-Resolved 
Infrared Spectral Photography

Time-resolved infrared spectral photography (TRISP) (Avouris et al., 1981;
Bethune et al., 1981, 1983; Glownia et al., 1985) is a nonlinear optical tech-
nique by which a broadband (Dv ~ 1000cm-1) infrared absorption spectrum
can be recorded in a single shot of a few nanoseconds duration. The IR spec-
tral range that has thus far been convered with this technique is 2 to 11mm
(Bethune et al., 1983). Recently, we reported a successful extension of the
TRISP technique to the subpicosecond time domain (Glownia et al., 1987a).
The IR spectral region that can be probed with our present ultrafast appa-
ratus is only 2.2 to 2.7mm, but extension of subpicosecond capability to other
IR ranges seems possible.

In this section we present details of the 2.2–2.7-mm subpicosecond TRISP
apparatus. In the following section we describe the actual measurement of a
subpicosecond photophysical event with the use of this apparatus.

In a TRISP apparatus, means for generating a broadband infrared sample
probing pulse are combined with a method for upconverting and detecting
this signal in the visible. Our ultrafast TRISP apparatus combines a new sub-
picosecond IR continuum generator with a standard TRISP upconverter. We
first discuss formation of an ultrashort IR continuum. Powerful subpicosec-
ond IR pulses at ~2.4mm are produced by stimulated electronic Raman scat-
tering (SERS) in Ba vapor (Figure 8.8). The latter is contained at ~10 torr
pressure inside an Inconel pipe heated to ~1050°C. The length of the heated
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region is ~0.5m. As pump pulses we directly utilize amplified 308-nm,
160-fs pulses. Although application of ~20-ns XeCl laser pulses to Ba vapor
is known (Burnham and Djeu, 1978; Cotter and Zapka, 1978) to produce
SERS only on the 6s2 1S0 Æ 6s5d1 D2 transition, with a Stokes output near
475nm, we find, by contrast, that with ultrashort 308-nm excitation SERS
occurs only on the 6s2 1S0 Æ 6s7s1 S0 transition, with a Stokes output peaked
near 2.4mm. The 2.4-mm SERS output is highly photon efficient, with 
measured IR output pulse energies of ~0.4mJ for ~5-mJ UV input pulses.
The SERS threshold is lower than 1mJ, even for an unfocused pump beam.
Spectrally, the IR output is found to be a continuum, extending from 2.2 to
2.7mm (Figure 8.9). Occurrence of the 2.4-mm SERS process is accompanied
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Figure 8.8. Diagram of the Ba SERS process.



by the presence of a parametrically generated beam of light in the vicinity of
the 535-nm Ba resonance line.

We have also measured the ~2.4-mm IR continuum pulse width by non-
background-free autocorrelation, with the second harmonic being generated
in a thin LiIO3 crystal. For the 250-fs, 308-nm pump pulses that were applied
(Glownia et al., 1986d), the IR pulse width was determined to be ~160 fs.

In Glownia et al. (1987a), a plausible argument was given to account for
the switch of Stokes wavelength from 475nm to 2.4mm that occurs with ultra-
short excitation. It was suggested that this switch could be attributed to the
change in Raman gain regime (from stationary to transient) that occurs in
going from ~20ns to subpicosecond 308-nm excitation pulses. In the sta-
tionary regime (tp > T2), the intensity of the Stokes wave increases in accor-
dance with the law

(1)

where G0 is the static gain, inversely proportional to the Raman linewidth. In
the transient regime, the intensity of the Stokes wave assumes (for a square
input pulse) the value (Akhmanov et al., 1972; Carman et al., 1970)

(2)

Since G0 is directly proportional to T2, one sees that there is no dependence
of Stokes gain on Raman linewidth in the transient regime. A possible expla-
nation for the Stokes wavelength switch would thus be that the collisional
linewidth of the 6s5d1 D2 state is sufficiently narrow compared with that of
the 6s7s1 S0 state to favor Raman Stokes generation of 475nm in the sta-
tionary case, even though the remaining factors in G0 favor Stokes generation

I z K t T zS p( ) ( )[ ]-~ exp .1 0 2
1 1 2

2 2G

I z K zS ( ) = ( )0 0exp ,G
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Figure 8.9. Spectrum of Raman Stokes light, recorded with the use of a scanning
monochromator and PbS detector.



at 2.4mm. In the transient regime the gain is independent of T2, and the
above-mentioned remaining factors entirely determine the Stokes wavelength.
No Ba linewidth data are available to support this contention. However, a
crude calculation of the van der Waals interaction between a ground state Ba
atom and a Ba atom in either the 6s7s1 S0 state or the 6s5d1 D2 state, with use
of London’s general formula (Margenau, 1939), indicates a larger width for
the 6s7s state.

We now discuss upconversion of the IR. With the use of a polished Si
wafer, the horizontally polarized ultrashort IR pulses (�IR) are colinearly com-
bined with the vertically polarized ~15-ns pulses (�L) from a tunable nar-
rowband furan 1 dye laser. With the timing between the two sources adjusted
so that the subpicosecond IR pulses occur within the 15-ns-long dye laser
pulses, both beams are sent into an Rb upconverter (Glownia et al., 1985)
where the dye laser beam induces SERS on the Rb 5s Æ 6s Stokes transition,
producing a narrowband vertically polarized Stokes wave �S. Horizontally
polarized, visible continuum pulses at �L-�S ± �IR are then observed to emerge
from the Rb cell when �L is tuned to phase match either upconversion process.

Figure 8.10 shows a recording of the (lower-sideband) upconverted spec-
trum. In Figure 8.11 portions of two upconverted spectra are superimposed.
In one case, the IR pulse was passed through an empty 20-cm cell; in 
the other case it was passed through the same cell filled with 200 torr of CO.
The deduced absorbance is shown in Figure 8.12. A surprising finding is the
observed increase in upconverted signal at the peaks of the CO 2–0 bands.
This is explained as follows (Glownia et al., 1987a). Under the conditions of
Figure 8.11 and 8.12, the upconverted signal was heavily saturated by the sub-
picosecond IR pulse; that is, too few photons at �L and �S were available
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Figure 8.10. Upconverted TRISP spectrum (128-shot average, lower sideband). The
spectrum is saturated (see text). The three absorptions are Rb excited state (5p)
absorptions occurring at the visible wavelengths shown.



during the actual IR pulse to allow efficient upconversion of the latter. There-
fore a decrease in transmitted light due to molecular resonance absorption
during the IR pulse did not result in a measurable decrease in upconverted
signal. However, the coherently reemitted light of the molecules (Hartmann
and Laubereau, 1984), occurring for a time the order of T2 after the IR pulse,
when the upconverter is no longer saturated, was able to be efficiently upcon-
verted, resulting in the observed peaks. Positive IR absorption is observed in
the upconverted spectra when the subpicosecond IR probe beam is suffi-
ciently attenuated.
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Figure 8.11. Superimposed upconverted spectra (cell empty and filled with 200-torr
CO gas). Each spectrum is the average of 128 shots.

Figure 8.12. Absorbance formally deduced from Figure 8.11.



5. Application of Subpicosecond TRISP: Measurement 
of Internal Conversion Rates in DABCO Vapor

We recently reported (Glownia et al., 1987c) the first application of subpi-
cosecond time-resolved IR absorption spectroscopy to measure an ultrafast
molecular process. This experiment combined subpicosecond 248-nm excita-
tion with subpicosecond IR continuum probing to measure the B̃ Æ Ã inter-
nal conversion rate in DABCO vapor. A diagram of the photophysical
processes involved is shown in Figure 8.13. The idea that the B̃ Æ Ã internal
conversion rate in DABCO might be high enough to require ultrafast tech-
niques for its measurement is contained in an earlier study (Glownia et al.,
1985), in which the population of the Ã state was monitored following the
application of a 30-ns, 248.5-nm KrF laser excitation pulse. A high B̃ Æ Ã
internal conversion rate for DABCO was also implied in a recent two-color
laser photoionization spectroscopy study (Smith et al., 1984). In the above-
mentioned earlier study of DABCO by our group, nanosecond TRISP was
used to monitor the Ã state population. This was because the B̃ ¨ Ã transi-
tion (occurring at ~2.5mm) was found to have a much higher oscillator
strength than all other transitions connecting the Ã state with higher elec-
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Figure 8.13. Diagram of photophysical
processes involved in the subpicosecond
DABCO experiment.



tronic states (Glownia et al., 1985). Since the subpicosecond TRISP appara-
tus described in the last section monitors the region 2.2 to 2.7mm, we decided
to measure the DABCO B̃Æ Ã internal conversion with the greatly improved
time resolution this apparatus offers.

Collimated 2-mJ, 250-fs, 248.5-nm pulses were sent unfocused (beam
dimensions: 2cm ¥ 1cm) into a 60-cm-long cell containing DABCO at its
ambient vapor pressure (~0.3 torr) together with 100 torr of H2. The linear
absorption of the DABCO at 248.5nm (40,229cm-1) was more than 50%,
even though this wavelength lies near the point of minimum absorbance
between the v¢ = 0 ¨ v≤ = 0 (39,807cm-1) and next highest vibronic peaks of
the lowest-energy, dipole-allowed, band (Halpern et al., 1968; Hamada et al.,
1973).This band system has been assigned (Parker and Avouris, 1978, 1979)
as B̃1E¢[3px,y(+)] ¨ X̃1A¢1[n(+)]. Optical transitions from the ground state X̃ to
the first excited state, the Ã1A¢1[3s(+)] (origin at 35,785cm-1), are one-photon
forbidden, two-photon allowed (Parker and Avouris, 1978, 1979).

The 160-fs IR continuum pulses that probe the Ã state population were
directed through the vapor collinearly with the UV photoexcitation pulses,
upconverted to the visible, and then dispersed in a spectrograph equipped
with an unintensified OMA detection system. The pump-probe delay could
be varied up to ±ns by means of an optical delay arm. Absorbances were
computed by comparison of upconverted intensities recorded with and
without the UV pump blocked.

A block diagram of the experiment is shown in Figure 8.14. As described
in Section 2, subpicosecond pulses at ~616nm formed in a CPM laser are
amplified, then frequency doubled, forming seed pulses at ~308nm for further
amplification in the XeCl excimer gain module. Amplification of the UV

8. UV and IR Supercontinua in Gas-Phase Subpicosecond Spectroscopy 353

Figure 8.14. Diagram of experimental apparatus for the DABCO experiment.



pulses in the latter occurs in the form of pairs of orthogonally polarized
pulses, spaced 2 to 3ns apart, formed in the multiplexer described also in
Section 2. The 160-fs amplified UV pulse pairs are separated by a polariza-
tion-sensitive coupler into pump and probe channels. The pump channel 
308-nm pulses are focused into high-pressure gas to form seed pulses for
amplification at 248.5nm in a KrF module (see Section 3). The probe channel
pulses are Raman shifted in Ba vapor to form IR probe continuum pulses
(see Section 4). The narrowband pulsed dye laser drives the Rb upconverter
(see Section 4).

Figure 8.15a shows the absorbance recorded when the probe is delayed 
~4ps with respect to the pump (point (a) in Figure 8.16), while Figure 8.15b
displays the absorbance with the probe arriving just before the pump (point
(b) in Figure 8.16). The absorbance recorded at 2.494mm, as a function of
probe delay, is shown in Figure 8.16. The large absorption band that devel-
ops represents transitions B̃† ¨ Ã† of vibrationally excited Ã state molecules,
containing up to 4400cm-1 of vibrational energy. Since the B̃ ¨ Ã transition
is one that occurs between Rydberg states, vertical (Dv = 0) transitions are
expected. Thus it is not surprising that the peak of the band in Figure 8.15a
appears very close to the B̃ ¨ Ã peak for vibrationally equilibrated Ã state
molecules, shown here in Figure 8.17 and described in detail in Glownia et
al. (1985). However, the width of the B̃ ¨ Ã band is obviously greater in the
vibrationally excited case.

The computer-generated curve in Figure 8.16 is a nonlinear least squares
fit to the data. The fit indicates a rise time of ~500 fs. Although the infrared
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Figure 8.15. (a) Absorbance (base 10) with probe delayed ª4ps with respect to pump.
(b) Absorbance with probe pulse preceding pump pulse.



and ultraviolet pulse widths were determined by autocorrelation to be ~160
and ~250 fs, respectively, the cross-correlation between these pulses has not
been measured. Thus, the rise time in our experiment could be limited by the
laser system cross-correlation. In any case, the process converting DABCO
states accessed by the subpicosecond 248.5-nm pump beam into vibrationally
excited Ã states is observed to occur on a time scale that is at least as fast as
~500 fs. That internal conversion to vibrationally excited Ã state molecules is
the dominant process for photoexcited DABCO molecules, even at UV pump
intensities of ~4GW/cm2, is also underscored by the fact that there is no
apparent decrease in the integrated intensity of the 2.5-mm absorption band
induced at these pump intensities, as compared with the 2.5-mm integrated
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Figure 8.16. Peak B̃ † ¨ Ã† absorbance as a function of probe pulse delay time with
respect to pump pulse.

Figure 8.17. Absorbance measured with probe pulse delayed 75ns with respect to
pump pulse. The latter was an 8-mJ, 25-ns pulse obtained by operating the KrF gain
module as a conventional laser. 60-cm DABCO cell, 3-atm H2 pressure.



intensity induced by 25-ns UV pulses at comparable fluence levels (compare
Figures 8.15a and 8.17).

The DABCO experiment shows how subpicosecond TRISP can be used to
monitor the internal conversion of photoexcited molecules in real time. In
the sequence of spectra corresponding to the data points in Figure 8.16, it is
clearly seen that the wavelength at which the peak absorbance occurs under-
goes a definite blue-to-red shift as the magnitude of the absorbance grows in.
It is tempting to attribute this to an intramolecular vibrational redistribution
(IVR) process. However, heavy caution must be applied here, since the same
apparent phenomenon could easily be induced by a red-to-blue sweep of the
IR probe continuum. We have no information at present as to whether or not
the IR continuum is swept.

6. Preliminary Results on the Application of the 
UV Supercontinuum Probe

In Section 3 we described a convenient method, based on photofragmenta-
tion of thallium halides, by which the sweep of the UV supercontinuum can
be measured. In the process of measuring the rise times of the Tl absorption
lines, we have consistently noted that the latter assume unusual line shapes,
with enhanced integrated intensities, for a period lasting roughly a pico-
second, beginning the moment the atomic absorption is first discerned and
ending when the asymptotic, normal appearing, absorption line profile is
finally attained. We present some of these preliminary spectral results in this
section. These results are qualitatively discussed in terms of a model based
on the transient behavior of the polarization induced by the subpicosecond
swept UV continuum as the latter interacts with the time-varying population
of two-level atoms produced by the photolysis pulse. A detailed description
of our model will be presented elsewhere (Misewich et al., 1988b).

There has been broad interest for some time in the spectroscopy of the
thallium halides. The ultraviolet absorption cross sections have been mea-
sured by Davidovits and Bellisio (1969). The UV absorption spectra comprise
a number of well-defined bands whose conformity between the various
halides is striking. In the most recent thallium halide photofragmentation
study (van Veen et al., 1981), these bands are simply labeled A, B, C, and D.
In that work, the time-of-flight spectra and angular distributions of
photofragments were measured for the thallium halides at a variety of UV
wavelengths, including 308 and 248nm. We have now utilized subpicosecond
pulses, at both 308 and 248nm, to separately excite TlI and TlCl molecules.
In the case of the former, 308nm is very close to the peak of the C band,
while 248nm lies on the high-frequency side of the D band. For the latter,
308nm is near the peak of the B band, while 248nm excites the C band.

Figures 8.18, 8.19, and 8.20 show the appearance of time-resolved absorp-
tion spectra recorded in the vicinity of the 377.6-nm Tl 7S1/2 ¨ 6P1/2
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resonance line following the application of 160-fs, 308-nm pump pulses to
TlI vapor. It is seen that roughly 1ps elapses from the moment the atomic
transition appears to the point at which no further changes in the appear-
ance of the atomic resonance line occur. From the TOF data presented in
van Veen et al. (1981), iodine atoms produced by 308-nm photolysis of TlI
have a relatively broad distribution of translational velocities peaking at ~4.4
¥ 104 cm/s. Hence the average Tl–I separation at large distances must increase
as ~7.1 ¥ 104 cm/s. However, at smaller distances the average rate of increase
of separation is much smaller, because the atoms are accelerated from rest.
We have been unable to mark the exact time of occurrence of the 308-nm
pump pulse with respect to the times shown in Figures 8.18 to 8.20. However,
if one assumes the pump pulse occurs somewhere in the vicinity of Figures
8.18a and b, one deduces that the asymptotic line shape must be attained well
before the Tl-I separation has increased by 7.1 Å.
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Figure 8.18. Time-resolved absorption spectra, recorded in the vicinity of the 
377.6-nm Tl 7S1/2 ¨ 6P1/2 resonance line, following the application of 160-fs, 308-nm
pulses to TII vapor. Pump-probe separation increased by 100-fs between each spec-
trum shown. Each spectrum represents the average absorbance (base 10) deduced
from dual 64-shot continuum accumulations, one with and one without the 308-nm
pump blocked. The dashed line marks the position of the asymptotic resonance peak.



Figure 8.19. Continuation of Figure 8.18, with pump-probe separation in (a)
increased by 100 fs over that in Figure 8.18 (d).

Figure 8.20. Continuation of Figure 8.19, with pump-probe separation in (a)
increased by 100 fs over that in Figure 8.19 (d).



The most striking feature of Figures 8.18 to 8.20 is, of course, the 
dispersion-like appearance of the atomic absorption feature for the first 600
or 700 fs, with evidence of a spectral region in which apparent gain prevails.
A superficially similar phenomenon was recently observed by Fluegel et al.
(1987) in their femtosecond studies of coherent transients in semiconductors.
However, in that work the dispersive structure observed in the normalized
differential transmission spectra in the region of the excition resonance, when
pump and probe pulses overlapped in time, was attributed to the frequency
shift of the exciton resonance, i.e., the optical Stark shift. In the case of
Figures 8.18 to 8.20 there is no preexisting absorption line to be shifted when
the pump is applied.

The appearance of the absorption spectra when the 308-nm pump inten-
sity is reduced by roughly a factor 3 (0.5ND filter inserted in the pump arm)
is shown in Figures 8.21 and 8.22. From the entire sequence of spectra con-
stituting this particular experiment, we have selected the eight consecutive
spectra that most closely correspond with Figures 8.18 and 8.19. (Exact 
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Figure 8.21. Time-resolved spectra taken from a sequence with conditions generally
similar to those in Figures 8.18 to 8.20, except that the 308-nm pump intensity was
reduced by a factor 3. Pump-probe separation increased by 100 fs between spectra.



correspondence between the pump-probe delays of Figures 8.18 to 8.20 was
not possible to maintain because of the insertion of the 0.5ND filter in the
pump arm.) The peak absorbances are clearly saturated. However, the inte-
grated absorbances may not be so, since the spectra in Figures 8.21 and 8.22
are clearly narrower. This line broadening is a feature we have observed in all
our Tl-halide spectra, with both 308- and 248-nm pumping and in both TlI
and TlCl. Widths of all Tl absorption lines, even those measured at very long
pump-probe separations, are dependent on the UV pump intensity applied.
A reasonable explanation of this phenomenon is Stark broadening due to
creation of ions or electrons in the vapor by the UV pump pulse.

Figures 8.23 to 8.26 show the appearance of the absorption spectra as a
function of time in the vicinity of the 351.9-nm 6D5/2 ¨ 6P3/2 and 352.9-nm
6D3/2 ¨ 6P3/2 absorption lines, following application of a 308-nm, 160-fs exci-
tation pulse to TlI vapor. These transitions thus monitor thallium atoms in
the excited 6P3/2 state (7793cm-1). Note the absence of any evident spectral
region with apparent gain during any part of the sequence. However, there
are again strong transiently appearing asymmetries in the two line shapes.
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Figure 8.22. Continuation of Figure 8.21, with pump-probe separation in (a)
increased by 100 fs over that in Figure 8.21 (d).



Generally similar results were obtained in the case of 248-nm pump excita-
tion of TlI, and with both 248- and 308-nm excitation of TlCl. In the case
of TlI excited by a 248-nm pump, the time evolution of the line shapes of the
two resonances near 352 and 353-nm is similar to that shown in Figures 8.23
to 8.26, with pronounced red wings during a period of again approximately
a picosecond. The 377.6-nm line is much less intense and as a result 
comparatively difficult to minotor. These appears again to be a transiently
appearing negative absorption on the high-frequency side of the line, but its
magnitude is much less than the magnitude of the differential positive absorp-
tion appearing on the low-frequency side of the line. The latter absorbance
monotonically grows to a final value of ~0.1 for the same UV pump powers
for which the 353-nm absorbance (the weak line in Figures 8.23 to 8.26)
almost attains the value 0.4. Clearly, a large inversion on the 6P3/2 - 6P1/2 tran-
sition is produced by 248-nm photolysis of TlI.

For the TlCl, with 248-nm excitation, the 352-nm absorption develops a
pronounced blue wing, in contrast with the cases discussed above. This blue
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Figure 8.23. Time-resolved spectra, recorded in the vicinity of the 351.9-nm 6P5/2 ¨
6P3/2 and 352.9-nm 6P3/2 ¨ 6P3/2 Tl absorption lines, following the application of
160-fs, 308-nm pulses to TlI vapor. Pump-probe separation increased by 100 fs
between spectra.



Figure 8.24. Continuation of Figure 8.23, with pump-probe separation in (a)
increased by 100 fs over that in Figure 8.23 (d).

Figure 8.25. Continuation of Figure 8.24, with pump-probe separation in (a)
increased by 100 fs over that in Figure 8.24 (d).



wing is evident for roughly 1.2ps, then quickly disappears as the final line
shape is assumed. During the 1.2-ps interval, the magnitude of the integrated
absorption of the 352-nm line is enhanced by at least a factor 2, relative to
that for the asymptotically attained line shape. The 377.6-nm line appears to
grow monotonically to its asymptotic value, without noticeable line shape 
distortions other than a slight negative differential absorption on the high-
frequency side of the line. For TlCl with 308-nm pumping, there is no
observed 352- or 353-nm absorption feature, in agreement with the specific
finding of van Veen et al. (1981) that only one dissociative channel (either 
Tl + Cl or Tl + Cl*) is active when TlCl is pumped at 308nm. Since this should
be the simplest situation to analyze, we present in Figures 8.27 to 8.29 some
of the observed spectra for this specific case. A region of negative differen-
tial absorption is again clearly seen in some of the spectra (Figures 8.28a–d,
Figure 8.29a).

We now present a qualitative explanation for the unusual spectral line
shapes observed for the first picosecond following the photolysis pulse. Our
model is based on the transient behavior of the polarization induced by the
subpicosecond swept UV continuum pulse as the latter interacts with the
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Figure 8.26. Continuation of Figure 8.25, with pump-probe separation in (a)
increased by 100 fs over that in Figure 8.25 (d).



Figure 8.27. Time-resolved spectra, recorded near the 377.6-nm Tl line, following
application of 160-fs, 308-nm pulses to TlCl vapor. 100-fs steps between successive
spectra.

Figure 8.28. Continuation of Figure 8.27, with pump-probe separation in (a)
increased by 100 fs over that in Figure 8.27 (d).



time-varying (growing) population of two-level atoms produced by the 
photolysis pulse. As we will show below, in order to get a reasonable cor-
respondence of the line shapes calculated in this manner with the observed
line shapes, especially with those possessing the most unusual feature (e.g.,
Figures 8.18 to 8.20), one has to allow the created atoms to undergo con-
tinuous frequency shifts in time for a period after the photolysis pulse.

The numerical calculations we have performed are basically straight-
forward. An optically thin sample is assumed. There are two contributions to
the output field from the resonant vapor, i.e., Etot(t, z) = Ein(t, z) + Erad(t, z),
where Ein(t, z) is the swept UV continuum and Erad(t, z) is the field radiated
by the polarization it induces in the medium. Various contributions to the
latter are numerically calculated, based on solutions of Schrödinger’s equa-
tion for a two-level atom interacting with a swept continuum pulse

(3)

where a1 and a0 are the time-dependent amplitudes of the upper and lower
atomic states, and wa is the atomic resonance frequency, equal to w1 - w0. The
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Figure 8.29. Continuation of Figure 8.28, with pump-probe separation in (a)
increased by 100 fs over that in Figure 8.28 (d).



rotating-wave approximation has been made in Eq. (3). We assume the swept
continuum pulse to have the form

(4)

with

(5)

and

(6)

Equations (4) to (6) imply that the instantaneous frequency of the UV con-
tinuum sweeps across the frequency wc at time t = 0. The value of b was taken
to correspond with the value we measured for the supercontinuum sweep rate,
1340cm-1/ps. Equation (6) shows the form of the swept continuum pulse ampli-
tude that we assumed in our numerical integrations. We generally specified a
width D on the order of a picosecond. The wave function for the atom is

(7)

and the polarization P is generally expressed as

(8)

where N is the atomic density.
We now outline the general procedure that was followed in obtaining numer-

ical solutions. Let a0 = R(t - ti) be the amplitude of the lower state for an atom
created at time ti. The solution to Eq. (3) can be formally expressed as

(9)

The contribution to the polarization (per atom) is

(10)

Equation (9) was numerically integrated with the use of a specific rise 
function

(11)

The numerical integration in Eq. (9) was combined with an additional 
integration over another distribution function: D(t) = dN(t)/dt, where N(t)
represents the atomic population. We specified D(t) to be proportional to the
quantity sech2 [(t - TSECH2)/WSECH2]. Here the quantity TSECH2 marks
the time at which the growth rate of N(t) achieves its maximum, and WSECH2
characterizes the width of the growth period. Thus the total polarization P is
given by
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(12)

We are modeling the dissociation of a diatomic molecule to create two
atoms. At early times in the dissociation, when the two atoms are close to
one another, the atomic transition frequencies are perturbed by the bending
of the potential surfaces. We allowed for the existence of a continuous red
(or blue) shift of the atomic transition frequency by making wa in the above
equations a function of time relative to the creation of the atom:

(13)

where w0
a is the unperturbed atomic transition frequency.

In the slowly varying envelope approximation (SVEA), it is assumed that
the total field Etot(t, z) and polarization P(t, z) can be written in the follow-
ing forms:

(14)

and

(15)

where E (t, z) and P (z, t) are complex functions of z and t that vary little in
an optical period or wavelength. Following the usual procedure of neglect-
ing second derivatives of the slowly varying quantities E (t, z) and P (t, z),
one obtains on substitution of (14) and (15) into the wave equation the well-
known complex field self-consistency equation

(16)

If one defines a retarded time t = t - z/c, one can rewrite Eq. (16) as

(17)

From Eqs. (9), (10), (12), and (15), P (z, t) is seen to have no explicit depen-
dence on z: P (z, t) = P (t). Thus we can integrate Eq. (17) to obtain
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with the last term of Eq. (19) representing the field Erad(z, t) radiated by the
polarization induced in the medium by Ein(z, t). The spectral dependence of
the total field Etot(z, t) is given by the sum of the Fourier transforms Ẽ in(w)
and Ẽ rad(w), and the spectral dependence of the collected intensity at the end
of the vapor cell is given by

(20)

With the use of fast Fourier transform numerical computation techniques,
and with the quantity wc in Eq. (9) set equal to w0

a, we obtained computer
plots of the quantity log10[Iout(w)/|Ẽ in(w)|2] for various choices of the para-
meters introduced above.

An example of a sequence of calculated spectra is shown in Figures 8.30
to 8.32. The parameters used here were chosen in an attempt to approximate
the shape of the observed spectra shown in Figures 8.18 to 8.20. It is seen
that a qualitative agreement exists between theory and experiment, with 
the particular observed feature of a transient spectral region of negative
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Figure 8.30. Calculated transient absorption spectra for a sequence of pump-probe
separations increasing by 100 fs between successive spectra. The following parameter
values were used: g = 0.0015 fs-1, WSECH2 = 150 fs, WTANH = 50 fs, RMAX =
40cm-1, RTAU = 600 fs.



absorbance clearly captured in the calculated spectra. In Figures 8.30 to 8.32,
the quantity g was chosen to correspond to a polarization dephasing time of
T2 = 1.3ps. This value results in an asymptotic atomic linewidth (~6cm-1

FWHM) that closely approximates the measured value.
Several general conclusions can be drawn by examining the shapes of the

various calculated spectra. Most important, without the inclusion of a red shift
RMAX very little asymmetry appears in the spectra, and there is no significant
negative absorption.

The rise time of the absorption seems to be simply related to the quantity
WSECH2, for all values of RMAX.

For a given T2, even for a relatively large RMAX (e.g., 60cm-1), decreas-
ing RTAU below T2/10 has the effect of reducing the height of the transiently
appearing wings, so that the spectra are dominated at all times by a sym-
metric peak centered at w0

a. To get more pronounced wings and a greater
asymmetry for a given RMAX, one has to increase RTAU. However, if RTAU
becomes comparable to T2, additional oscillatory half-cycles of absorption
and gain begin to appear in the absorption spectrum. For RTAU >> T2, a
simple growth of the absorption line at a frequency w0

a - RMAX is observed.
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Figure 8.31. Continuation of Figure 8.30, with pump-probe separation in (a)
increased by 100 fs over that in Figure 8.30 (d).



A blue atomic resonance frequency shift reverses the asymmetry, produc-
ing transient negative absorption in the region w < w0

a. Changing the direc-
tion of the probe continuum sweep, however, does not appear to affect the
appearance of the absorption spectrum, at least with the use of the b value
appropriate for our case.

We generally used a single value (50 fs) for WTANH. The spectra were seen
to be generally insensitive to the choice of this parameter, provided it was
taken to be short enough.

To summarize very briefly, it appears that the transient absorption spectra
we have obtained of photolytically produced atoms contain qualitative infor-
mation regarding the “transition state” that occurs between the time a mol-
ecule has absorbed a UV photon and the time its constituent atoms have fully
separated. Specifically, information can be obtained about the rise time of the
atomic population and the frequency shift that the atom undergoes during
dissociation. However, information about the latter tends to be diluted by the
polarization dephasing time T2 of the separating atoms.
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Figure 8.32. Continuation of Figure 8.31, with pump-probe separation in (a)
increased by 100 fs over that in Figure 8.31 (d).



We now describe a brief result obtained by applying the UV super-
continuum to the gas-phase molecule chlorine dioxide, OClO. For several
decades it has been assumed that the sole result of applying light to the struc-
tured OClO (Ã2A2 ¨ X̃2B1) band system, which extends from ~460 to 
280nm, is the photolytic production of ClO + O (Bethune et al., 1983). From
OClO absorption spectra taken at very high spectral resolution, in which the
widths of individual vibronic lines could be measured, it was inferred that
OClO predissociates at a rate strongly dependent on how far above the origin
one photoexcites the molecule (Michielson et al., 1981).

As an initial test and possible calibration of the UV gas-phase super-
continuum, we attempted an experiment to photolyze OClO with a 160-fs,
308-nm UV pulse and then probe the appearance of the ClO radical with the
UV supercontinuum pulse. The ClO radical strongly absorbs from ~310 to
250nm, a region largely nonoverlapping with the OClO absorption band.
With 308-nm excitation, subpicosecond predissociation rates for OClO were
expected.

When the above spectral region was probed, no ClO was detected, with
pump-probe delays of up to a nanosecond tried. The 160-fs, 308-nm excita-
tion pulse was then replaced by a standard 25-ns, 308-nm pulse with the same
0.04J/cm2 fluence. (We sent 3mJ through a 3-nm aperture into a 10-nm cell
containing 5 torr OClO.) Again, no significant absorption was detected at 
relatively short delays (Figure 8.33a). However, if the probe was delayed by
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Figure 8.33. (a) Single-pass absorbance spectrum recorded through a 10-cm cell
filled with 5-torr OClO with probe pulse occurring at the end of a 25-ns, 308-nm pho-
tolysis pulse. Pump energy of 3mJ was sent through a 3-nm aperture. (b) Same as (a)
but recorded 900ns after the photolysis pulse.



several hundred nanoseconds, the fully developed ClO spectrum was easily
observed (Figure 8.33b). We thus conclude that 308-nm photolysis of OClO
produces Cl + O*2, with O*2 most likely being in high vibrational levels of the
1S+

g state. The observed slow appearance of ClO results from the combina-
tion of Cl atoms with unphotolyzed parent OClO molecules

(21)

For 5 torr of unphotolyzed OClO present in the cell and with use of the
known 300K rate constant for (21), 6 ¥ 10-11 cm3 molec-1 s-1, one predicts the
ClO would appear in ~100ns, approximately what was observed. This OClO
result should have a large impact on further understanding the interesting
sequence of chemical reactions initiated by photolysis of OClO (Bethune 
et al., 1983).

7. Promising Directions for Subpicosecond 
Kinetic Spectroscopy

In the Introduction we presented an example of a unimolecular photochem-
ical reaction, the rearrangement of methyl azide (Figure 8.1). The example
was primarily meant to be illustrative. The IR subpicosecond continua
required to probe the most relevant vibrational transitions have not yet been
developed. However, through the use of the UV subpicosecond gas-phase
continuum discussed in the preceding sections, an alternative method of
attacking this problem, and many similar problems, now appears to be 
possible. Specifically, it should now be possible to observe momentarily in 
the UV the singlet spectrum of methylnitrene (CH3N) and then to watch it
disappear as the molecule isomerizes to singlet methylenimine (CH2NH).
Demuynck et al. (1980) have predicted little or no barrier for isomerization
from singlet CH3N to singlet CH2NH, but they also predict a sizable barrier
(53kcal/mol) for isomerization of triplet CH3N. In recent years, searches 
for optical spectra of CH3N were made in several photolysis and pyrolysis
studies, but no CH3N was ever observed in any of these studies, most likely
because of rapid isomerization of singlet CH3N to CH2NH. (By the spin con-
servation selection rule, photolysis of methyl azide has to produce singlet
nitrene, since the ground state of N2 is a singlet.) Recently, the Ã3E - X̃3A2

ultraviolet emission spectrum of triplet CH3N was observed (Carrick and
Engelking, 1984; Franken et al., 1970) by reacting methyl azide with
metastable (A3S+

u) N2 in a flowing afterglow. This result qualitatively confirms
the prediction of a high triplet isomerization barrier height made by
Demuynck et al. (1980). The triplet CH3N (0, 0) band occurs at 314.3nm,
not too distant from the 336-nm origin of the A3P - X3S- band system of
the isoelectronic radical NH. Since NH has also an allowed singlet system
(c1P - a1D), with origin at 324nm, one should expect an analogous singlet
CH3N system to exist, with an origin somewhere in the region of 300nm.

Cl OClO 2ClO+ Æ .
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Methyl azide can be photolyzed at either 248 or 308nm. With the effective
good time resolution of the swept UV supercontinuum demonstrated in
Section 6, one should be able to observe the transient singlet band system of
CH3N, even if the latter isomerizes in a time of half a picosecond.

We conclude by mentioning one improvement in the subpicosecond kinetic
spectroscopy technique we employ that is scheduled to be tried soon. This is
the incorporation of a reference arm for improved sensitivity. With the use
of two matched spectrograph-OMA systems, it should be possible to cancel
in every shot the effect of random spectral variations in the supercontinuum
intensity. At present, we require two independent accumulations of several
tens of shots, one with the pump blocked and one with the pump unblocked,
from which the spectral variation of absorbance is electronically calculated.
Incorporation of such a reference arm is, of course, simpler with the UV
supercontinuum than in the case of the IR continua, due to the need to
upconvert the latter. It will be interesting to see how much subpicosecond
kinetic spectroscopy can benefit from such an improvement once it is 
implemented.
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9
Applications of Supercontinuum:
Present and Future

R. Dorsinville, P.P. Ho, J.T. Manassah,
and R.R. Alfano

1. Introduction

Over the past two decades, the supercontinuum light source has been exten-
sively used in laser spectroscopy research such as inverse Raman scattering
(Alfano and Shapiro, 1971), time-resolved induced absorption in liquids and
solids (Alfano and Shapiro, 1971; Greene et al., 1978), primary vision
processes (Doukas et al., 1980), energy transfer mechanisms in photosynthe-
sis (Searle et al., 1978; hot carrier and exciton relaxation processes in semi-
conductors (von der Linde and Lambrich, 1979; Shank et al., 1982), and
time-resolved multiplex coherent anti-Stokes Raman scattering (Goldberg,
1982), to name a few.

In this chapter, we review some of the applications in time-resolved absorp-
tion and excitation spectroscopy and pulse compression and propose several
new possible applications using supercontinuum light for ranging, imaging,
remote sensing, and computation. It is impossible to review all the research
involved using the supercontinuum. Only a small sample was selected, reflect-
ing the interests of the authors. We apologize in advance to those whose work
is not mentioned.

2. Time-Resolved Absorption Spectroscopy

The ultrafast supercontinuum pump-and-probe absorption technique has
been used to study ultrafast relaxation processes in solid-state physics, chem-
istry, and biological systems. An intense pulse photoexcites the sample into
an excited state. The dynamics of the excited state is followed using the white
light supercontinuum at subsequent delay times. Optically thin samples are
usually pumped by a pulse I(t) at wavelength l, and the induced transient
optical density is observed at various wavelengths at time t (delay time
between pump and probe pulses). The OD can be written (Greene et al., 1978;
Gayen et al., 1987) as

(1)OD t l t s, ln exp ,( ) = - -( ) - ( )[ ] ( ){ }Ú ÚI t LN t dt I t dt1



where s is the excited state absorption cross section at l, L is the sample
thickness, and N1(t) is the instantaneous population density in the probing
lower-lying energy level. Polarization selection in time can be investigated
using polarized pump and probe pulses.

A typical experimental setup for the pump and probe is shown in Figure
9.1. The arrival time of the pump pulse to the sample can be adjusted with
an optical delay line. Transient absorption change in the sample at various
wavelengths are measured and processed with a spectrograph and an optical
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Figure 9.1. Schematic of an experimental setup for measuring ultrafast relaxation
kinetics using the supercontinuum.

Figure 9.2. Geometry of the optical excitation and probing beams at the sample site.



multichannel analyzer. The supercontinuum probing pulse is usually sepa-
rated into two beams at the sample site as shown in Figure 9.2. Accuracy of
the measured induced OD change in the order of OD 0.005 can be achieved.
By coupling a dispersion-corrected spectrometer to a streak camera
(Masuhara, 1983), it is possible to measure simultaneously the temporal and
spectral information of the sample. To give the reader a feeling for what is
going on in the field, several experiments are reviewed using the super-
continuum induced absorption technique. The next section gives typical
examples in the fields of solid-state physics, chemistry, and biology.

2.1 Solid-State Physics

2.1.1 Supercontinuum Spectroscopy of
Semiconductor Microstructures

Carrier and elementary excitation relaxation, intervalley scattering, and
phonon-carrier dynamics in very thin (50 to 200Å) GaAs-AlGaAs semicon-
ductor microstructures and bulk GaAs have been characterized using super-
continuum picosecond and femtosecond probe pulses. The optical density
change of a 205-Å-thick GaAs layer sample is plotted in Figure 9.3 at three
different probing times (Fork et al., 1980). Information on the induced
bleaching of exciton absorption peaks at each of the 2-dimensional (n = 1,
2, 3) band edges can be clearly identified. Ionization dynamics of excitons
were also followed using femtosecond interactions. These techniques have
effectively probed the carrier and excitation dynamics in quantum wells. A
similar experiment has been applied in the understanding of subpicosecond
optical nonlinearities in GaAs multiple-quantum-well structures (Hulin et al.,
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Figure 9.3. Optical density change in a superlattice optically pumped by a 625-nm
femtosecond beam and probed by the supercontinuum at different delay times (1, 11,
and 151ps).



1986). Nonlinearities based on the optical Stark effect can be a potential
application for the ultrafast optical logic gates and switches.

2.1.2 Nonequilibrium Electron Processes in Metals

Nonequilibrium electron heating in gold films has been measured using 
an amplified 65-fs colliding-pulse mode-locked (CPM) laser pulse pump at
625nm and supercontinuum probe technique (Schoenlein et al., 1986). Time-
resolved reflectivity allows a characterization of both the excited electron
thermal distribution and its cooling dynamics. Differential measurements of
transient reflectivity can be obtained by monitoring the sample-reflected
signal along with a reference signal from the continuum. Transient reflectiv-
ity was found to depend on the conduction band energy being probed and
on the incident fluence. This technique allows the separation of electronic
from phonon processes.

2.1.3 Transient Lattice Defects in Alkali Halide Crystals

Dynamics of self-trapped exciton, F, and F-like species in semiconducting or
insulating crystals by two 266-nm photons (Willians et al., 1984) were studied
using supercontinuum absorption spectroscopy with 3-ps pulses. Kinetics
from the NaCl measurements pertain to thermally activated defect formation
from relaxed self-trapped excitons. Photochemical defect production follows
promotion to a potential sheet on which the barriers to halogen diffusion are
small.

2.2 Chemistry

2.2.1 Iodine Photodissociation in Solution

Supercontinuum absorption spectroscopy (Berg et al., 1984) has identified the
excited states of I2 molecules using a 2-ps, 590-nm pump laser pulse. There
is a fast predissociation in 5 to 10ps with rapid partitioning between sepa-
rated species excited state molecules and vibrationally excited ground state
atoms. This is followed by a slower relaxation process that involves the tran-
sition from the excited electronic state to ground state vibrational relaxation.
This study can help to understand the early partitioning among various inter-
mediate states following photodissociation.

2.2.2 Photoinduced Electron Transfer in Porphyrin-Quinone

A way to avoid the ultrafast deactivation of the porphyrin-quinone photo-
induced electron transfer is to construct intramolecular exciplex-type 
compounds where porphyrin and quinone are combined by methylene chains.
These chain will weaken the chromophore interactions and prevent the strong
solvation by intervening chains. The transient absorption spectra (Hirata 
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et al., 1983) indicate a considerable contribution from the S1 state at a short
decay time. The long decay component of a few hundred picoseconds has
demonstrated the characteristic of the electron transfer state. This informa-
tion can be used to design a biomimetic photosynthetic system.

2.3 Biology

2.3.1 Photosynthesis

The present understanding of oxygen-evolving photosynthesis is that the
process is driven by two light reactions (Wong, 1982). Associated with each
photoreaction is a reaction center that utilizes the energy of a captured
photon to promote an electron to a state of higher reduction potential.

Using supercontinuum induced-absorption spectroscopy, green plant pho-
tosystem I reaction centers, isolated from pea chloroplasts, have been mea-
sured (Gore et al., 1986). Transient absorption spectra of photosystem I
reaction centers spanning supercontinuum wavelengths from 625 to 765nm
are displayed in Figure 9.4 at different delay times. In the samples contain-
ing chemically reduced P700, there is a significant delay between the grow-in
of the excited antenna chlorophyll signal and the signal due to the excitation
of P700. The 15- to 20-ps energy transfer time is consistent with the antenna
chlorophyll lifetime.

Matveetz et al. (1985) have applied 300-fs pulses to study the transient dif-
ferential absorption spectra of reaction centers of Rhodopseudomonas viridis.
Kobayashi and Iwai (1984) have investigated the primary process in the 
photoconversion of protochlorophyllide to chlorophyllide a. This reveals 
the reduction of the precursor protochlorophyllide into chlorophyllide in the
development of chloroplasts in higher plants.

2.3.2 Vision

Energy of absorbed photons in visual pigments is converted to a change in
electrical potential across the photoreceptor cells, which is transmitted to the
nervous system through standard synaptic processes. The first intermediate
process in the photoreaction of rhodopsin is formed in subpicoseconds.
Lippitsch et al. (1982a) have applied the supercontinuum from 340 to 460nm
in linear dichroism spectroscopy to study the primary processes in retinal.
Conformational changes of retinal following excitation have been studied.
Doukas et al. (1980) and Monger et al. (1979) studied laser-induced
absorbance changes as a function of time in squid and bovine rhodopsin
using a supercontinuum generated by the 7-ps, 530-nm second harmonic
pulse from an Nd:glass laser. Their data show that bathorhodopsin forma-
tion is complete within 3ps, supporting the cis-trans isomerization model of
the primary event in vision. Kobayashi et al. (1984) used the 500 to 700-nm
supercontinuum to probe the primary process in the photocycles of the
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purple membrane bacteriorhodopsin. They claimed a pH-dependent fast
relaxation process for the change in structures of chromophore and near
residues. These and similar studies should be able to establish the sequence
and dynamics of the events initiating the visual process and the structural
information.

2.3.3 Hemoproteins

Hemoproteins contain one or more heme groups embedded as active centers
in the folded polypeptide chain. They occur in all aerobic and many anaero-
bic cells and perform oxygen storage and transport, electron transfer, and
catallysis (Eisenstein and Frauenfelder, 1982). Martin et al. (1984) have used
a 100-fs supercontinuum from 390 to 500nm to probe a photodissociation
process of hemoproteins and protoheme with a lifetime of 350 fs. Informa-
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Figure 9.4. Transient absorption spectra of PS I reaction centers (——) P700 chem-
ically reduced; (. . . . . .) P700 chemically oxidized.



tion or the primary events of local motions inside the heme pocket follow-
ing ligand detachment can be obtained. Cornelius and Hochstrasser (1982)
have examined the supercontinuum difference spectra from 400 to 480nm of
myoglobins with ligands of O2 and CO pumped by 350 and 530nm. No 
subnanosecond geminate recombination occurs in either case. Both species
are efficiently photolyzed with the 350-nm pump. Details of spectral 
shape dynamics are useful for understanding some of the energy transfer
mechanisms.

In addition, Lippitsch et al. (1982b) have found that biliverdin plays an
important role in photobiological processes. Supercontinuum absorption
spectroscopy from 400 to 650nm suggested that the predominant relaxation
mechanism is single-bond rotation after internal conversion.

3. Time-Resolved Excitation Spectroscopy

Several ultrafast excitation spectroscopy techniques using the continuum
have been developed and successfully used. These are near-IR excitation and
probing techniques, coherent anti-Stokes Raman scattering, and Raman
induced-phase conjugation. In this section we present a brief description of
these techniques and a short review of the use of the supercontinuum for
optical pulse compression. A detailed discussion of pulse compression is
given in Chapter 10 by Johnson and Shank.

3.1 Generation of Subpicosecond IR Laser Pulses

Picosecond IR pulses can be generated by difference frequency mixing a
strong monochromatic picosecond pulse with a white light continuum, as
recently shown by Jedju and Rothberg (1987). The apparatus is depicted in
Figure 9.5. A CW mode-locked Nd3+ :YAG laser is used to pump synchro-
nously a Rhodamine-6G-based dye laser to obtain 5-ps nearly transform-
limited pulses of 1nJ each at a repetition rate of 82MHz. After amplification,
1-mJ pulses at 580nm are obtained. Half of this energy is focused by a 
15-cm lens into a 3-cm cell containing a liquid to generate a white continuum
extending from 300 to 900nm. The generated continuum and the other half
of the laser pulse are loosely focused into an LiIO3 crystal to generate the IR
pulses. The wavelength of the output pulse is determined by the frequency
within the continuum that is phase matched at the given crystal angle. The
authors report a photon conversion efficiency of about 5 ¥ 10-3, 40nJ
maximum energy per pulse, 4 to 5ps pulse duration, and tunability from 2 
to 5mm. The generated pulses were used to study transient absorption of
photogenerated charged solitons in polyacetylene (Rothberg et al., 1986).
In a similar arrangement, Moore and Schmidt (1987) have used the 25-mJ
output of an amplified CPM laser to generate 2-nJ, 0.2-ps pulses tunable from
1.7 to 4.0mm.
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3.2 Coherent Anti-Stokes Raman Scattering (CARS)

Coherent anti-Stokes Raman scattering (CARS) spectroscopy uses two elec-
tromagnetic fields, E1 and Es, with wave vectors k1 and ks and photon fre-
quencies w1 and ws, where wp = w1 - ws is the frequency of a Raman-active
vibrational mode in the system under consideration. The interaction through
the vibrational resonance components of the third-order nonlinear coefficient
c3 generates strong anti-Stokes signals at the frequency was = 2w1 - ws.
Picosecond white light continuum can be used as the Stokes pulse Es and
enables an extensive anti-Stokes spectrum to be obtained in a single ultrafast
laser pulse. The method was first used by Goldberg (1982) to obtain transient
CARS spectra of benzene and toluene vapors. The picosecond pulse contin-
uum, extending throughout the visible and near-infrared spectrum, was pro-
duced by focusing the 25-mJ, 5-ps, 1054-nm fundamental from a mode-locked
Nd:phosphate glass laser system into a 5-cm liquid D2O cell. The continuum
beam was then collimated and filtered to pass wavelengths >530nm, provid-
ing a broad band of light at Stokes frequencies. The second harmonic at 
530nm was used as the second beam, E1. For photolysis purposes a third
beam, the fourth harmonic at 264nm, was sent through an independent delay
path, recombined with the other two beams, and focused into the sample cell.
The CARS spectrum was recorded using a grating spectrograph and a vidicon
system. The sample was probed about 200ps after arrival of the UV pulse.

384 R. Dorsinville, P.P. Ho, J.T. Manassah, and R.R. Alfano

Figure 9.5. Experimental arrangement for generating subpicosecond near-IR 
pulses by difference mixing a strong monochromatic picosecond pulse with the 
supercontinuum.



The author observed a complex spectrum, which was attributed to the for-
mation of a C2 diradical.

3.3 Raman-Induced Phase Conjugation (RIPC)

Phase conjugation allows the generation of a time-reversed replica of an
optical wave front using nonlinear optical effects. Saha and Hellwarth (1983)
have used the phase conjugation geometry in conjunction with coherent
Raman spectroscopy techniques to obtain vibrational spectra in liquids. In
this Raman induced phase conjugation technique, two nanosecond 
singlepulse laser beams at w and w - W or (w + W) (where W corresponds to
a vibrational frequency in a nonlinear medium) mix with a third laser beam
to generate a fourth beam at w - W or (w + W), nearly phase conjugate to one
of the beams at w. The resonance enhancement of the c3 nonlinear coeffi-
cient generates the signals at the Stokes and anti-Stokes frequencies. The
main characteristics of this technique are a wide frequency range (thousands
of cm-1) and a broad acceptance angle for phase matching (40 mrad). For
example, under identical conditions, the phase-matching limited frequency
range for RIPC is one to two orders of magnitude larger than the frequency
range in CARS spectroscopy. Dorsinville et al. (1987) later extended the
RIPC technique to the picosecond regime by using a mode-locked YAG laser
as the laser source at w and a picosecond continuum as the w ± W beam.
Picosecond RIPC spectra covering a 2000-cm-1 range were obtained for dif-
ferent liquids and solids. By delaying one of the interacting beams relative to
the other two beams, vibrational lifetimes could be determined. The kinetic
information on a picosecond time scale is obtained using a slow detector from
the convolution of the probe pulse shape with the response function of the
material. Delfyett et al. (1987) have shown that by combining the RIPC
geometry with streak camera techniques, phonon and vibrational lifetimes
can be measured in real time. In this method, the generated phase conjugate
pulse using RIPC is passed into a streak camera and a video computer system
to record its time profile. The rise and decay times of the generated pulse are
directly related to the phonon formation and decay times. The technique was
used to detemine phonon and vibrational lifetimes of solids and liquids in
different organic liquids and solids.

4. Optical Pulse Compression

Pulse compression techniques have been used to generate optical pulses of
few femtoseconds (Knox et al., 1985) from CPM dye lasers and to generate
2-ps pulses from a 35-ps Nd:YAG pulse (Kafka et al., 1984). Details of pulse
compression are given in Chapter 10 by Johnson and Shank.

The fundamental limit on the shortness of the temporal duration of an
ultrafast pulse can be determined by the uncertainty relation (Dv Dt = K;
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K = 0.44 for a Gaussian pulse). This suggests that the first condition for
obtaining a short pulse is a broad bandwidth. This can be achieved by self-
phase modulation (SPM). The SPM-generated continuum pulse is chirped
(has a time-dependent frequency shift). The lower frequencies are produced
at the leading edge of the pulse, the higher frequencies at the trailing edge. If
this positive chirp is linear and the chirped pulse is allowed to traverse a
medium with negative linear dispersion, the pulse can be compressed to a
temporal duration close to that allowed by the uncertainty principle.

Figure 9.6 shows a typical pulse compression setup consisting of an optical
fiber and a grating pair. An ultrashort laser pulse is focused into the optical
fiber. The pulse is spectrally broadened by SPM and acquires a positive linear
chirp, i.e., f = w0t + Bt2 and w(t) = w0 + 2Bt. A positively chirped frequency
increases in time from the leading edge to the trailing edge. That is, the pulse
is blue in the rear and red in the front. Group velocity dispersion (GVD) tem-
porally broadens the pulse. The graiting pair acts as the negative dispersive
element by forcing the lower frequencies (red) to travel a longer optical path
than the higher frequencies (blue) (Treacy, 1969). The higher frequencies of
the trailing edge of the pulse catch up with the leading edge, resulting in a
compressed pulse (Treacy, 1969; Shank et al., 1982).

Single-mode fibers have several advantages over bulk materials for pulse
compression applications:

• There are no complications from other nonlinear processes, such as self-
focusing. This is due to the relatively low light intensity inside the fiber.

• The chirp is independent of transverse position on the output beam.
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Figure 9.6. Experimental arrangement for compressing a laser pulse using an optical
fiber and a grating pair.



• The path length in fibers is usually longer than in bulk media and group
velocity dispersion plays a more important role. GVD acts to linearize the
chirp over most of the length of the pulse.

All these characteristics act to produce stable, reproducible, self-phase-
modulated and positively linearly chirped pulse (Grischkowsky and Balant,
1982).

Figure 9.7 illustrates the ray path of a monochromatic wave through a pair
of gratings used for pulse compression. Here q is the angle between incident
and diffracted rays, g is the angle of incidence, lg is the distance between the
two gratings, and the relation between g and q for first-order diffraction is
given by sin(g - q) = (l/d) - sin g, with d being the groove spacing. The line
x = 0 represents a reference plane between the two gratings.

The ray path length p(w) is the sum of the paths A, B, and C and is given
by (see Figure 9.7)

9. Applications of Supercontinuum 387

Figure 9.7. Ray path of a monochromatic wave through a pair of gratings used for
pulse compression.



(2)

The resulting frequency-dependent phase is given by

(3)

where R is a complex geometric function specific to the grating pair (Treacy,
1969) and c is the velocity of light.

For pulse compression purposes, the important characteristic of a grating
pair is the variation of group delay time t(w) with frequency. This charac-
teristic determines whether the grating pair can compensate for the linear
chirp introduced by SPM and the fiber GVD. t(w) is defined as follows:

(4)

For gratings the last two terms cancel and t(w) = p(w)/c.
The group delay time can also be expressed as

(5)

Keeping only the linear term and taking into account that q is frequency
dependent (formula 2), an analytical approximation of the variation of the
group delay with frequency can be derived by differentiating p(w)/c with
respect to w:

(6)

This formula gives the time separation Dt introduced by a grating pair for
a spectral separation Dw. For example, for d-1 = 1200 lines/mm, l = 1.06mm,
and g = 60°, formula (6) gives a relative time separation of 0.6ps per centimeter
of grating spacing lg for two wavelength components differing by 100Å.

Grating pairs also introduce nonlinear terms such as the quadratic term in
Eq. (5). This term is positive and proportional to the second derivative of the
group delay (d2t/dw2) or the third derivative of the phase (d3F/dw3). At large
bandwidth and pulse durations in the order of 10 fs, this introduces undesir-
able phase distortions that prevent further compression.

A prism-grating combination substantially reduces the phase distortion
(Brito Cruz et al., 1988). Figure 9.8 shows the propagation of an optical pulse
through the prism sequence. The optical path variation with frequency is
caused by the refracted rays leaving the first prism at different angles for dif-
ferent wavelengths. In the case of normal dispersion, the low frequencies will
be less refracted and reach the second prism earlier than the high frequen-
cies, causing a path difference in air. An additional path variation is caused
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by the difference in travel inside the two prisms. By changing the distance lp

between the two prisms, the group delay time can be widely adjusted. The
phase shift is given by (Fork et al., 1984):

where b is the angle between a line drawn between prism apices and the direc-
tion of a ray leaving the first prism. Prism pairs provide adjustable second-
and third-order phase corrections (Fork et al., 1984) that can be either 
positive or negative. The prisms can be adjusted to cancel the third deriva-
tive of the phase introduced by the grating pair.

In general, for pulse compression, group delay times should satisfy the 
condition

(7)

where Dt is the group delay time difference before the prism-grating com-
pressor and the subscripts g and p refer to prism and grating group delay
times, respectively.

Using the Taylor expansion for the group delay time (5), condition (7) gives

(8)
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Figure 9.8. Propagation of the optical pulse through a prism pair. f1 is the angle of
incidence at the entrance face of the first prism, f2 is the angle with respect to the
normal to the exit face, b is the angle between a line drawn between prism apices and
the direction of a ray leaving the prism at f2; and lp is the distance between prism
apices.



where F is the phase before the prism-grating compressor and Fg, Fp are the
contributions to the phase due to the gratings and prisms, respectively.

A short transform-limited pulse is obtained if the different phase deriva-
tives can be adjusted to satisfy (8), by choosing the gratings and prisms with
the correct parameters and adjusting the angle and the separation between
the two gratings and the two prisms forming the compressor pairs (Brito Cruz
et al., 1988). This is illustrated in Table 9.1, which gives the second and third
derivatives of the phase with respect to frequency for a double prism pair and
double grating pair described by Fork et al. (1988). The expressions for the
second and third derivatives of the phase for the prism pairs can be positive
or negative depending on the prism separation lp. The lengths lp, lg (the grating
separation), and lm (the length of material other than the minimum material
path contributed by the prisms) can be adjusted to satisfy Eq. (8).

For example, using a value of +700 fs2 for the quadratic phase distortion
(linear chirp) for the pulse emerging from the optical fiber and using the
experimentally determined value for the grating spacing, the values of the
prism spacing and material length can be calculated from the expressions in
Table 9.1 to obtain a quadratic phase distortion of -700 fs and a net cubic
phase distortion of zero. For this particular case, lg = 0.5cm, lp = 68cm, and
lm = 1.0cm, in good agreement with the experimental values (Fork et al.,
1987).

The compression techniques we have described were used to obtain
picosecond and femtosecond pulses from different laser systems. Table 9.2
reviews the pulse compression characteristics obtained from different laser
systems.

Substantial pulse compression can also be obtained without gratings or
prisms. As a result of the SPM process, the Stokes and anti-Stokes shifts are
proportional to the intensity gradients on the sides of the pulse. Therefore, a
pulse obtained by passing the SPM beam through a narrow spectral window
could be shorter than the original beam (Masuhara et al., 1983). Gomes 
et al. (1986) demonstrated a pulse compression technique where a spectral
window within the broadened spectral profile eliminates the wings of the
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Table 9.1. Second and third derivatives of the phase
with respect to frequency for a double prism pair and
double grating pair.a

Derivative Prisms Gratings Material

+648 - 32(lp) -3640(lg) +2900(lm)

+277 - 49(lp) +3120(lg) +1620(lm)

a lg is the grating spacing, lp the prism spacing, and lm the mate-
rial length.
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SPM-generated pulse where the high- and low-frequency components are
located. They obtained a 3-fold shortening of 80-ps pulses from an Nd:YAG
laser. The pulses were broadened from 0.3 to 4Å after propagation through
125m of optical fiber. A monochromator was used as a spectral window.
Dorsinville et al. (1988) generated pulses down to 3ps using a continuum gen-
erated in a 5-cm D2O cell by an intense 25-ps Nd:YAG second harmonic
laser pulse and narrowband filters for spectral selection. The pulse duration
was measured by a 2-ps time resolution streak camera. More details on pulse
compression are given in Chapter 10.

5. Exploration of Future Applications

The supercontinuum can have a number of new applications in instances
where knowledge is needed on specified phase and intensity for well-
separated wavelengths (Manassah et al., 1984). Specifically, time delay and
relative intensity measurements for different wavelengths become simple.

5.1 Ranging

The main limitation on accurate determination of optical lengths through the
uncontrolled atmosphere is the uncertainty in the average refractive index
over the optical path due to the nonuniformity and turbulence of the atmos-
phere. Simultaneous measurements over the same path using two or more dif-
ferent wavelengths of light could be used to provide the base values. The
dispersive delays between any two wavelengths can be calculated using the
expressions of Owens (1967) and Topp and Orner (1975) for the optical
refractive index of air as a function of the ambient pressure, temperature,
and composition. For path lengths of a few tens of meters, Erickson (1962)
proposed the use of direct interferometry for the dispersive delay mea-
surements. In effect, his system consists of an automatic fringe-counting
Michelson interferometer. For lengths greater than 100m, the method of
direct interferometry is impractical. A system using a pulsed subpicosecond
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Table 9.2. Pulse compression performances of different laser systems.

Pulse duration
Repetition Wavelength

References Before After rate (nm)

Gomes et al., 1985 85ps 2.9ps 500Hz 1064
Zysset et al., 1986 90ps 200 fs 82MHz 1064
Johnson and Simpson, 1986 33ps 410 fs 100MHz 532
Shank et al., 1982 90 fs 30 fs 20Hz 620
Knox et al., 1985 40 fs 8 fs 5kHz 620
Palfrey and Grischkowsky, 1985 5.4ps 16 fs 200Hz 587
Fork et al., 1987 30 fs 7 fs 8kHz 620



single-wavelength laser source and a synchroscan streak camera with a time
resolution of 3ps as a detector can measure distances of a few kilometers to
an accuracy of 1mm if the index of refraction of ambient air is known to
an accuracy of 0.1ppm; however, the index of refraction of air varies by as
much as 100ppm over the operational range of such range finders and the
measurement accuracy is thus reduced to ±1m. (The time delay between two
signals in different media is Dt = (L/cdn).) On the other hand, if a system
consists of a multiwavelength source, such as the supercontinuum, with a
multichannel synchroscan streak camera (Tsuchiya, 1983) in the receiver, the
arrival time data for the different wavelengths determine the parameters in
the Owens index of refraction formula (wavelength, temperature, pressure,
and relative humidity dependence) to an accuracy of 0.4ppm, and conse-
quently the accuracy of distance measurements is restored to the ±0.4-cm
range. Simultaneously, the pressure can be determined to an accuracy of
1.5mbar and temperature to ±1/2K. Furthermore, the wide frequency band
of the continuum source allows for selective tuning and encoding (for
example, the addition of a constant phase) of the different emitted lines, thus
providing the added feature of system integrity under adverse field conditions
( jamming, interference, etc.).

5.2 3-D Imaging

Direct nondestructive in situ measurement of the contour of surface, as well
as the internal structure of an object, with an accuracy of 30mm can be
accomplished using 100-fs laser pulses derived from the supercontinuum.

The reflection of an incoming signal from surface imperfections will be
delayed in time, with respect to other points on the surface, arrival at the
detector. Experimentally, these measurements are carried out by modulating
the arrival times to the target using an oscillating delay prism and passing
the reflected signal together with a reference signal into a second harmonic
correlation crystal. The convoluted harmonic signal is then detected by a
video system in synchronism with the modulation frequency. Using three dif-
ferent optical frequencies from the supercontinuum and collimating the cor-
responding beams in a three-dimensional orthogonal configuration, a 3-D
image of the imperfection can be directly deduced. The S/N ratios for each
frequency channel and interchannels are excellent. This technique can, for
example, measure the defects and wear on the ball bearings in delicate equip-
ment, semiconductor surfaces, and tissue topography.

For the diagnostics of an object inside a material, the different reflection
and absorption coefficients for the different optical frequencies at the inter-
faces and in the materials can be used to measure the location and contour
of cracks or impurities inside a sample. It is to be noted that the accuracy of
the measurement can be further enhanced from ±30mm by selecting one of
the frequencies to be close to a resonance line, thus endowing it with a large
optical path in the medium and resulting in longer time delays and more accu-
rate spatial measurements. These techniques can, for example, measure loca-
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tions of impurities inside Si and GaAs. Measurements in biological and
medical samples are possible.

5.3 Induced-Phase Modulation Based Optical Computational Switches

The development of optical systems for ultrafast signal processing, commu-
nication, and computation has been a very active area of research. The use
of nonlinear properties of materials for implementing this program has
received considerable attention. Using induced-phase modulation, it is pos-
sible to configure canonical logical elements (Lattes et al., 1983; Manassah
and Cockings, 1987) for computation. The configurations of XOR (exclusive
OR) and NOT gates presented here are only for illustrative purposes. We refer
the reader to Section 4.2 of the Manassah (Chapter 5) for the underlying
models and to Section 9 of Baldeck et al. (Chapter 4) for additional appli-
cations using cross-phase modulation.

In Figure 9.9, possible gates are displayed. The input signals and seed
center frequencies are w2 and the pump center frequency is w1. The Kerr
phase shifter(s) (KPS) is in the path of the seed signal. The seed, following
its passage through the KPS, is multiplexed with the pump and both are fed
into a fiber (or waveguide) with molecular vibration (phonon) energy equal
to h- (w1 - w2); that is, under proper time delays between the seed and pump
the seed can be Raman amplified or left unchanged. The amplification factor
can easily change by two orders of magnitude over a few pulse widths
(Chapter 4). Denote this phase shift by F. At the end of the fiber a filter
allows only the seed to pass through to the next space.

The NOT gate pump arm and seed arm are chosen such that in the absence
of an input signal the phase between the seed and pump corresponds to the
maximum of the amplification curve, while in the presence of an input signal
the KPS introduces in the seed phase a shift equal to F0.

The XOR gate seed arm and pump arm differ in the absence of any input
by a phase -F0 from the maximum and amplification position. In the pres-
ence of either input the seed is amplified, while in the presence of both inputs
the phase is +F0 from the maximum position and the seed is not amplified.

Other configurations that are more energy efficient and have fewer ports
are possible but are not covered here.

5.4 Atmospheric Remote Sensing

The use of differential absorption lidar for remote sensing of atmospheric
species is a viable experimental technique for the detection and identification
of a wide range of molecular constituents. The lidar equation is given by

(9)

where Pr and Pt are, respectively, the received and transmitted powers, K is
the overall system efficiency, r is the target reflectivity, A is the receiving tele-
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scope area, sa is the absorption cross section of the absorbing molecule a, R
is the range, and a is the background extinction coefficient of the atmosphere.
A measurement of Na based on a single wavelength requires an accurate
knowledge of K, r, a, and sa. However, K, r and a are generally known with
poor accuracy. The differential absorption lidar (Tsuchiya, 1983) approach
attempts to overcome some of these difficulties by performing the lidar exper-
iment with two or more frequencies. For a dual-wavelength source (with fre-
quencies �1 and �2),

(10)

where Pa = Pr/Pt, and the superscript refers to the wavelength. A multiwave-
length source such as the supercontinuum, with an inbuilt calibrated power
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Figure 9.9. (Top) NOT gate and (bottom) XOR gate.



spectrum, provides the possibility for a more accurate determination of Na.
The differential spectral reflectance (DSR) error can be reduced significantly
by using three or more frequencies because the DSR Taylor’s expansion terms
can be directly determined from the ratios of P(i)

a and P(j)
a for i and j off the

molecular absorption line. Furthermore, the background extinction coeffi-
cient can be factored out and the water vapor absorption tail contribu-
tion can be Taylor expanded around the molecular absorption line. Another
advantage of the supercontinuum is the virtual elimination of time 
interval (1ns) between the different probing wavelengths. This interval 
should be less than 10-2 s to neglect temporal fluctuations in the atmospheric
parameters.

5.5 Optical Fiber Measurements

Signal attenuation and pulse spreading are the two characteristics that deter-
mine the suitability of a particular optical fiber for communication use. Signal
attenuation determines the distance between repeaters and pulse spreading
determines the maximum bit rate over a channel (channel capacity). In an
optical fiber, three sources of attenuation are present: Mie scattering (wave-
length independent), Rayleigh scattering (l-4 law), and molecular absorption.
The fiber loss is written as

(11)

where C(l) includes impurity absorption and other wavelength-dependent
phenomena and B includes Mie scattering and losses introduced by
microbending or coating defects. The molecular absorption is a function of
the impurities present in the raw material or introduced in the manufactur-
ing process. Quality control and component specifications are achieved
through a measurement of attenuation as a function of wavelength. Present
techniques use near-IR fiber Raman laser to perform these measurements for
discret points in the wavelength region 1.1 to 1.6mm (pulse duration ~100ps).

The supercontinuum in the IR band allows the measurement of a nor-
malized attenuation profile for all points in the band 0.7 to 2mm and with
the option of reducing the pulse duration to 100 fs. This data can further
provide the needed parameters for the design of wavelength division multi-
plexing (WDM) systems. Furthermore, the SPM source can actually be used
in situ to calibrate existing network losses for the different wavelengths and
assess their suitability for WDM upgrading.

Pulse spreading in fibers is dominated by the material dispersion term
(dn/dw). The supercontinuum provides an experimental tool for measuring
pulse spreading at different wavelengths and meaningfully comparing the
results for WDM applications. Furthermore, this experimental technique is
useful in exploring the inherent lower limits on the duration of a pulse that
is suitable for optical communication.

a
l

l= + + ( )A
B C4 ,
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5.6 Kinetics of Optical Nonlinearities

Spectral and temporal information on nonlinear optical susceptibilities is
important for the design and application of future optoelectronic devices.
Using the pump-and-probe technique to determine ultrafast temporal
responses of nonlinear processes requires a great number of successive shots
to obtain all the information. Based on the techniques of single-shot Kerr gate
(Ho, 1984) and real-time picosecond oscilloscopes (Valdmanis, 1986), a single-
short supercontinuum Kerr method can be developed to probe for complete
information on nonlinearities with single-shot excitation (Saux et al., 1988).
A long chirped probe pulse from a supercontinuum is used to transform a tem-
poral modulation into a spectral modulation. A spectrograph then converts
the wavelength-encoded temporal information to the spatial domain for
readout. The chirp of the supercontinuum is created mainly by the group veloc-
ity dispersion in the generation sample. Subpicosecond temporal resolution of
optical nonlinearity measurements of glasses has been demonstrated.

6. Conclusion

We have reviewed some of the applications of the continuum in ultrafast spec-
troscopy and nonlinear optics and suggested some future applications includ-
ing ranging, imaging, and remote sensing. The supercontinuum source can
be directly applied in many other areas of solid-state physics, biology, chem-
istry, and medicine. Exciting and far-reaching future applications are
expected to be related to the possibility of producing femtosecond pulses
using SPM. Ultrashort pulses are expected to lead to breakthroughs in com-
munication and optical computing. Data transmission rates may be increased
three or more orders of magnitude. Optical computing based on ultrafast
logic units has the potential for revolutionizing the field of computers.
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10
Pulse Compression in Single-Mode
Fibers: Picoseconds to 
Femtoseconds

A.M. Johnson and C.V. Shank

1. Introduction

The compression of frequency swept (in time) or “chirped” optical pulses was
independently proposed by Gires and Tournois (1964) and Giordmaine et al.
(1968). Optical pulse compression is the optical analog of microwave pulse
compression or chirp radar developed by Klauder et al. (1960). The com-
pression is accomplished in two steps. First, an optical frequency sweep is
impressed on the pulse. The next step is the compensation of this frequency
sweep by using a dispersive delay line, where the group velocity or group delay
varies with optical frequency. Ideally, the dispersive delay line would impress
the opposite chirp on the pulse, resulting in the compression of the pulse to
its minimum width, ~1/Dw, where Dw is the frequency sweep. Treacy (1968,
1969) was the first to recognize that a pair of diffraction gratings was a suit-
able dispersive delay line for a linearly chirped pulse; he used gratings to com-
press the inherently chirped output of a mode-locked Nd:glass laser. Similar
experiments were later performed by Bradley et al. (1970). Duguay and
Hansen (1969) used an LiNbO3 phase modulator and Gire-Tournois inter-
ferometer to compress pulses from a mode-locked He-Ne laser.

A chirp can be impressed on a intense optical pulse as it passes through a
medium with an intensity-dependent refractive index, i.e., an optical Kerr
medium. The phase of the intense optical pulse is modulated by the non-
linear refractive index. Extreme small spectral broadening of optical pulses 
in optical Kerr liquids was first observed in self-focused filaments by 
Bloembergen and Lallemand (1966), Brewer (1967), and Ueda and Shimoda
(1967). The weak spectral broadening was first explained by Shimizu (1967)
as due to a rapid time-varying phase shift arising from the nonlinear refrac-
tive index. Gustafson et al. (1969) further elaborated on Shimizu’s explanation
with detailed numerical calculations of the spectra of self-phase-modulated
pulses, including the effects of dispersion and relaxation of the nonlinearity.
Alfano and Shapiro (1970) made the first measurements of self-phase modu-
lation (SPM) in crystals, liquids, and glasses (see Chapter 2). Spectral broad-
ening data in glasses were also obtained by Bondarenko et al. (1970).



Fisher et al. (1969) suggested that optical pulses in the range 10-13 to
10-14 s could be achieved as a result of the SPM obtained by passing a short
pulse through an optical Kerr liquid followed by a dispersive delay line.
Laubereau (1969) used several cells of the optical Kerr liquid CS2 and a pair
of diffraction gratings to compress 20-ps-duration pulses from a mode-locked
Nd:glass laser by 10¥. Zel’dovich and Sobel’man (1971) proposed the possi-
bility of using alkali metal vapors to both spectrally broaden optical pulses
by SPM and compress the pulses by the strong dispersion of the group veloc-
ity near the atomic resonance. Lehmberg and McMahon (1976) compressed
100-ps-duration pulses from a mode-locked and amplified Nd:YAG laser by
14¥, using a series of liquid CS2 cells and diffraction gratings separated by
23m. Spectral broadening of picosecond pulses from a flashlamp-pumped,
passively mode-locked Rhodamine 6G dye laser was reported by Arthurs et
al. (1971) and was attributed to SPM. Ippen and Shank (1975b) compressed
1-ps-duration pulses from a CW pumped, passively mode-locked Rhodamine
6G dye laser by 3¥ to a duration of 0.3ps using diffraction gratings separated
by 10cm.

The early measurements of SPM (Bloembergen and Lallemand, 1966;
Brewer, 1967; Ueda and Shimoda, 1967; Shimizu, 1967; Gustafson et al.,
1969; Alfano and Shapiro, 1970; Bondarenko et al., 1970) occurred in self-
focused filaments, where the intensity was high and there were problems with
competing nonlinear effects and uncertainties concerning the filament size
(see Chapter 2). Ippen et al. (1974) reported the first measurement of SPM
in the absence of self-trapping or self-focusing with the use of a guiding
multi-mode optical fiber filled with liquid CS2. Stolen and Lin (1978) reported
measurements of SPM is single-mode silica core fibers. In fibers, any addi-
tional confinement caused by self-focusing is negligible. An additional advan-
tage of this guiding structure over bulk crystals or liquid cells is that the
modulation can be imposed over the entire transverse spatial extent of the
beam, and the problem of unmodulated light in the wings of the beam is
eliminated (Ippen et al., 1974). Perhaps the most important feature of SPM
in optical fibers is that significant spectral broadening can be achieved at
power levels much lower than those required in bulk media.

The first fiber pulse compression experiments utilized the fiber as a dis-
persive delay line to compress chirped optical pulses. Suzuki and Fukumoto
(1976) used an LiNbO3 phase modulator to chirp 1-mm laser pulses, which
were subsequently compressed by the normal or positive group velocity dis-
persion (GVD) (red frequencies lead blue) of a silica optical fiber. Wright and
Nelson (1977) compressed the chirped output of a GaAs semiconductor laser
operating at 0.894mm using a positive GVD optical fiber delay line. Iwashita
et al. (1982) demonstrated 5¥ compression of 1.7-ns, 1.54-mm pulses from a
chirped InGaAsP injection laser using a 104-km negative GVD fiber delay
line. Mollenauer et al. (1980) performed the first pulse compression experi-
ments using optical fibers as a Kerr medium, in their work on soliton com-
pression of pulses from a color center laser. In these experiments, the laser
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wavelength (l = 1.55mm) was in the anomalous or negative GVD (blue fre-
quencies lead red) region for silica and did not require a separate dispersive
delay line. In this instance, the fiber material forms an integrated dispersive
delay line and self-compresses the pulse. Using soliton compression,
Mollenauer et al. (1983) compressed 7-ps-duration pulses by 27¥ to a dura-
tion of 0.26ps with a 100-m length of single-mode fiber. This compression
was achieved with only 200W of peak power at the fiber input, thus further
attesting the low power requirements of nonlinear effects in optical fibers. It
is beyond the scope of this chapter to consider soliton compression in optical
fibers. Further information on soliton compression and its applications can
be found, for example, in excellent discussions by Mollenauer and co-workers
(Mollenauer and Stolen, 1982; Mollenauer, 1985; Mollenauer et al., 1986).
This chapter is limited to pulse compression, in silica core fibers, in the
normal or positive GVD region (l £ 1.3mm), where a separate dispersive
delay line is necessary. The compression of positively chirped optical pulses
passing through a dispersive medium possessing negative GVD is schemati-
cally illustrated in Figure 10.1.

Nakatsuka and Grischkowsky (1981) demonstrated distortion-free pulse
propagation of synchronously mode-locked dye laser pulses by using the pos-
itive GVD of fibers to chirp the pulses. In this experiment, low-power (to
avoid SPM) 3.3-ps dye laser pulses were chirped and temporally broadened
to 13ps and recompressed back to 3.3ps by the negative GVD of a near-
resonant atomic Na-vapor delay line. Subsequently, Nakatsuka et al. (1981)
performed the first pulse compression experiment using fibers as a Kerr
medium in the positive GVD region. This experiment utilized both the 
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Figure 10.1. Compression of positively chirped optical pulses (red frequencies
leading blue) using a dispersive medium possessing negative group velocity dispersion
(GVD). Negative GVD: Red frequencies delayed with respect to blue.



positive GVD and SPM to temporally and spectrally broaden 5.5-ps dye laser
pulses with subsequent compression by >3¥ to 1.5ps by passage through a
near-resonant atomic Na-vapor delay link. Shank et al. (1982) replaced the
atomic vapor delay line with a Treacy (1968; 1969) grating pair to compress
the 90-fs amplified output of a colliding-pulse mode-locked (CPM) dye laser
by 3¥ to a duration of 30 fs, using a 15-cm fiber. Subsequently, Nikolaus and
Grischkowsky (1983a) compressed the 5.4-ps output of a synchronously
mode-locked and cavity-dumped dye laser by 12¥ to a duration of 450 fs,
using a grating-based dispersive delay line and a 30-m fiber. Using two stages
of fiber-grating compression, Nikolaus and Grischkowsky (1983b) com-
pressed 5.9-ps pulses from the aforementioned dye laser by 65¥ to a duration
of 90 fs. In the technological push to generate optical pulses of less than 
10-fs duration, amplified CPM dye laser pulses were next compressed to 
16 fs by Fujimoto et al. (1984). Compression to 12 fs by Halbout and
Grischkowsky (1984) was soon followed by compression to 8 fs by Knox et
al. (1985). Each of these compression achievements occurred with an impor-
tant concomitant increase in repetition rate. Recently, Fork et al. (1987)
achieve compression to 6 fs, the shortest to date, by using a grating pair fol-
lowed by a prism sequence in order to compensate the cubic phase distortion
of these large-bandwidth pulses by the grating pair.

Optical fiber compression of “long” duration picosecond pulses from CW
mode-locked (CWML) Nd:YAG-based systems has also been achieved. Sub-
picosecond pulses can be generated with these sources without the use of a
mode-locked dye laser. In addition, compressed CWML Nd:YAG-based
systems can be used as pump sources for synchronously mode-lock dye lasers.
Johnson et al. (1984a, 1984b) performed the first “long” pulse fiber com-
pression experiments in a system other than a dye laser. In these experiments,
33-ps pulses at 0.532mm from a CWML and frequency-doubled Nd:YAG
laser were compressed 80¥ to a duration of 410 fs, using a 105-m fiber and a
grating pair. Shortly thereafter, Dianov et al. (1984a) compressed 60-ps
pulses, at 1.064mm from a CWML and Q-switched Nd:YAG laser (1kHz
repetition rate), by 15¥ to a duration of 4ps using a 10-m fiber and a grating-
based delay line. The compression of 1.064-mm pulses from a CWML Nd:
YAG laser was laser performed independently by Kafka et al. (1984) and 
Heritage et al. (1984). Kafka et al. (1984) demonstrated the compression of
80-ps pulses by 45¥ to a duration of 1.8ps, while Heritage et al. (1984) 
compressed 90-ps pulses by 30¥ to a duration of 3ps. Dupuy and Bado (1984)
reported the compression of 110-ps pulses from a CWML argon-ion laser 
by 5¥. Further studies of the compression of 1.064-mm pulses from CWML
Nd:YAG laser were reported by Heritage et al. (1985a), Kafka and Baer
(1985), and Gomes et al. (1985a). Using two stages of fiber-grating com-
pression, Gomes et al. (1985b) compressed 85-ps pulses, at 1.064mm, from a
CWML Nd:YAG laser by 113¥ to a duration of 750 fs. Damm et al. (1985)
reported on the use of large-core (50mm) graded-index fiber to compress 
5-ps pulses at 1.054mm from a mode-locked Nd:phosphate glass laser by 7¥
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to a duration of 700 fs. CWML and Q-switched Nd:YAG laser pulses at
1.064mm were compressed 29¥ to a duration of 2.9ps by Gomes et al. (1985c)
in a manner similar to that reported by Dianov et al. (1984). Blow et al. (1985)
reported on all-fiber compression of a CWML Nd:YAG laser at 1.32mm by
adjusting the waveguide dispersion of two lengths of fiber. In this experiment,
130-ps pulses were compressed to a photodiode limit of 70ps by using a dis-
persion-shifted positive GVD fiber followed by a negative GVD fiber. Kai
and Tomita (1986a) reported the compression of 100-ps pulses at 1.32mm
from a CWML Nd:YAG laser by 50¥ to a duration of 2ps using 2km of
dispersion-shifted fiber and a grating pair. Using two stages of fiber-grating
compression, Zysset et al. (1986) compressed 90-ps pulses, at 1.064mm, from
a CWML Nd:YAG laser by 450¥ to a duration of 200 fs. Kai and Tomita
(1986b) demonstrated the compression of 100-ps, 1.32-mm pulses from a
CWML Nd:YAG laser by 1100¥ to a duration of 90 fs by using one stage of
fiber-grating compression (dispersion-shifted fiber) followed by soliton com-
pression in a length of negative GVD fiber.

In Section 2 we present results for picosecond fiber-grating compression in
a normalized form, from which one can calculate the optimum fiber length,
the achievable compression, and the proper grating separation for a given
input pulse and fiber. Section 3 deals with the subtleties and nuances of fem-
tosecond fiber pulse compression, that is, higher order dispersion compensa-
tion of very large bandwidth pulses.

2. Picosecond Pulse Compression

2.1 Optical Kerr Medium

Optical fibers are usually considered to be linear media; that is, as the input
power is increased, one expects only a proportional increase in output power
(Stolen, 1979b). However, dramatic nonlinear effects can occur that can cause
strong frequency conversion, optical gain, and many other effects generally
associated with very intense optical pulses and highly nonlinear optical mate-
rials. These nonlinear processes depend on the interaction length as well as
the optical intensity. In small-core fibers high intensities can be maintained
over kilometer lengths. If this length is compared with the focal region of a
Gaussian beam of comparable spot size, enhancements of 105 to 108 are pos-
sible using fibers. This enhancement lowers the threshold power for nonlinear
processes—in some cases to less than 100mW (Stolen, 1979b). For example,
single-mode fibers with core diameters less than 10mm possess core areas of
<10-6 cm2, which serves to translate powers in watts to intensities of MW/cm2.
An intensity-dependent refractive index leads to SPM and self-focusing
within a single optical pulse. In fibers, however, any additional confinement
caused by self-focusing is negligible (Stolen and Lin, 1978). Recently, Baldeck
et al. (1987) reported on the observation of self-focusing in optical fibers with
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25-ps pulses from an active-passive mode-locked and frequency-doubled 
Nd:YAG laser (see Chapter 4). There are several caveats to this observation
of self-focusing: (1) self-focussing occurred with pulse energies greater than
10nJ, in a multimode fiber with a core diameter of 100mm; (2) self-focusing
appeared primarily at Stokes-shifted stimulated Raman frequencies, for
which the effect of the nonlinear refractive index is enhanced by cross-phase
modulation; (3) self-focusing occurred at stimulated Raman conversion effi-
ciencies of approximately 50%. The experimental conditions under which
Baldeck et al. (1987) were able to observe self-focusing lend further substan-
tial support to the claim that self-focusing is negligible under the standard
experimental conditions for pulse compression in single-mode fibers. Hence
single-mode fibers represent a nearly ideal nonlinear Kerr medium for the
generation of the SPM necessary for pulse compression.

Fisher et al. (1969) suggested that picosecond pulses could be compressed
to femtosecond durations by employing the large positive chirp obtainable
near the center of a short pulse as a result of SPM in optical Kerr liquids.
SPM results from the passage of an intense pulse through a medium with an
intensity-dependent refractive index. When the relaxation time of the non-
linearity is much less than the input pulse duration, the region where the pos-
itive chirp is largest and least dependent on time occurs at about the peak of
the pulse and large compression ratios are possible. For longer relaxation
times, this region is delayed with respect to the peak of the pulse. Compres-
sion is diminished by the influence of relaxation, which not only delays the
maximum chirp but also decreases the linear chirp in magnitude and extent.
In the limit of the input pulse duration being much shorter than the relax-
ation time, the resultant chirp would be nonzero only on the wings of the
pulse. In fact, if such a pulse were passed through the dispersive delay line,
the most intense portion would remain uncompressed. Consequently, Fisher
et al. (1969) limited their discussion to picosecond (>5ps) pulses incident on
Kerr liquid CS2. The dominant contribution to the optical Kerr effect in CS2

is molecular orientation, with a relaxation time of ~2ps (Shapiro and Broida,
1967; Ippen and Shank, 1975a). In the optical Kerr gate experiments of Ippen
and Shank (1975a) utilizing subpicosecond pulses incident on CS2, the asym-
metries in the transmission of the optical gate have been attributed to the 
relatively long relaxation time. In the case of fused silica, the dominant 
contribution to the Kerr coefficient is the optically induced distortion of the
electronic charge distribution and is expected to have a relaxation time of
~10-15 s (Alfano and Shapiro, 1970; Owyoung et al., 1972; Duguay, 1976).
Thus, relaxation time effects should be negligible, even for the case of fem-
tosecond duration input pulses, for compression in silica fibers.

In general, when an intense optical pulse passes through a nonlinear
medium, the refractive index n is modified by the electric field E,

(1)

where n0 is the refractive index at arbitrarily low intensity and n2 is the optical
Kerr coefficient (see Chapters 1 and 2). The time-dependent portion of the

n n n E t= + ( ) +0 2
2 L,
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refractive index modulates the phase of the pulse as it propagates through
the medium. A phase change df(t) is therefore impressed on the propagating
pulse:

(2)

where w is the optical frequency, z is the distance traveled in the Kerr medium,
and c is the velocity of light. When relaxation time effects can be neglected,
according to Shimizu (1967) and DeMartini et al. (1967), the approximate
frequency shift at any retarded time (t) is given by the time derivative of the
phase perturbation, which is therefore proportional to the time derivative of
the pulse intensity

(3)

The instantaneous frequency w(t) will shift from the input optical frequency
w0 by an amount that depends on the intensity profile

(4)

A positive value of n2 for silica implies that the increasing intensity in the
leading edge of a short pulse results in an increasing refractive index, or a
decreasing wave velocity. As a result of the negative sign in Eq. (4), the instan-
taneous frequency of the leading edge of the pulse will decrease with respect
to w0. This time-dependent slowing of the wave reduces the rate at which the
wave fronts pass a given point in the fiber, thus reducing the optical frequency.
The leading edge of the pulse is therefore red-shifted. On the trailing edge of
the pulse there is a corresponding frequency increase, or blue shift, resulting
in an increase in the spectral bandwidth of the pulse.

For the propagation of low-intensity optical pulses the input and output
frequency spectra would be the same (Ippen et al., 1974). As the intensity
increases, the transmitted spectrum is broadened and spectral interference
maxima and minima appear as the peak phase shift passes through multiples
of p. As discussed in the next section, the peaks in the self-phase-modulated
spectrum can be washed out or filled in by the presence of GVD.

The spectral broadening of an optical pulse is much easier to treat in the
time domain than in the frequency domain (Stolen and Lin, 1978). In the
time domain the intensity-dependent refractive index causes a phase shift of
the center of the pulse with respect to the wings. A phase modulation intro-
duces sidebands on the frequency spectrum. In the absence of GVD, the
shape of the pulse does not change with distance along the fiber and the
instantaneous phase depends on the pulse intensity. A phase-modulated or
chirped pulse is illustrated in Figure 10.2a, indicating that the instantaneous
frequency is lower in the leading half of the pulse and higher, than the carrier
frequency, in the trailing half of the pulse. The magnitude of this frequency
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chirp, in the absence of pulse-shaping effects, builds up in direct proportion
to the length of fiber traversed. As illustrated in Figure 10.2b, there is a nearly
linear chirp through the central part of the pulse. This region of linear chirp
(positive) can be compressed by the linear dispersion (negative) of a grating-
pair delay line, by reassembling its frequency components. Treacy (1978,
1979) showed that when two wavelength components, l and l¢ are incident
on a grating pair, the longer wavelength experiences a greater group delay.
This group delay is determined by the optical path length traversed. With ref-
erence to Figure 10.3a, the relationship between the first-order diffraction
angles is

where d is the grating ruling spacing, q is the acute angle between incident
and diffracted rays, and g is the angle of incidence measured with respect to
the grating normal. The slant distance AB between the gratings is b, which
equals G sec(g - q) where G is defined as the perpendicular distance between
the gratings. The ray path length PABQ (see Figure 10.3a) is given by

where t is the group delay. After considerable algebraic manipulation, the
variation of the group delay with wavelength, for various ray path lengths, is
found by differentiating p/c with respect to l leading to

(see also Chapter 9).
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Figure 10.2. Effect of an intensity-dependent refractive index on the phase and
instantaneous frequency of an optical pulse after propagation down a single-mode
fiber.
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Figure 10.3. (a) Treacy (1978, 1979) “single-pass” geometrical arrangement of dif-
fraction gratings used for pulse compression. The angle of incidence with respect to
the grating normal is g, and q is the acute angle between the incident and diffracted
rays. The ray paths are shown for two wavelength components with l¢ > l. Since the
path length for l¢ is greater than that for l, longer wavelength components experience
a greater group delay. (b) A positively chirped optical pulse with red (R) frequencies
leading the blue (B) incident on typical “double-pass” grating-pair compressor.



A typical “double-pass” (Johnson et al., 1984a, 1984b) grating-pair dis-
persive delay line is illustrated in Figure 10.3. Here the first grating disperses
the beam and the second grating makes the spectral components parallel. The
path for the red-shifted light is longer than that for the blue, so if the spacing
is chosen correctly all the spectral components will be lined up after the
second grating. However, the spectral components will not be together spa-
tially and the output beam looks like an ellipse with red on one side and blue
on the other. This is corrected by reflecting the beam back through the grating
pair, and hence “double-pass,” which puts the spectral components back
together and doubles the dispersive delay; that is, the rays (blue and red)
undergo double delay or retrace. Johnson et al. (1984a, 1984b) revived the
use of the “double-pass” grating-pair delay line, introduced by Desbois et al.
(1973) and Agostinelli et al. (1979), for the temporal expansion (picoseconds
to nanoseconds) and shaping of mode-locked Nd:glass and Nd:YAG laser
pulses. In large-compression-ratio experiments, the double-pass delay line
cancels the large transverse displacement of the spatially dispersed spectral
components of the output beam evident in Treacy’s (1968, 1969) “single-
pass” grating-pair delay line. The first compressor application of the double-
pass delay line was in the 80¥ compression of mode-locked and
frequency-doubled Nd:YAG laser pulses by Johnson et al. (1984a, 1984b).

In the next section the parameters necessary for constructing an optical
pulse compressor based on a single-mode fiber and grating pair are described.

2.2 Nonlinear Pulse Propagation and Grating Compression

Tomlinson et al. (1984) and Stolen et al. (1984c) have shown, over a fairly
broad range of experimental parameters, that the propagation of short, high-
intensity pulses in a single-mode fiber can be accurately described by a model
that includes only the lowest-order terms in GVD (positive) and SPM. The
pulse propagation is modeled by the dimensionless nonlinear wave
(Schrödinger) equation:

(5)

where E is the (complex) amplitude envelope of the pulse. (For a derivation
of the nonlinear wave equation see Chapter 3). The time variable t is a
retarded time and is defined such that for any distance z along the fiber, the
center of the pulse is at t = 0, and we assume an input pulse envelope of the
form

(6)

The normalized length z0 and the peak amplitude A are defined by
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and

(8)

where

(9)

t0 is the pulse width (full width at half-maximum) of the input pulse (t0 =
1.76t0), D(l) or D is the GVD, D(l) in dimensionless units or D in ps-nm/km,
n is the refractive index of the core material and n2 is its nonlinear Kerr coef-
ficient in electrostatic units (1.1 ¥ 10-13 esu for silica), c is the velocity of light
(cm/s), and l is the vacuum wavelength (cm). Figure 10.4 is a plot of the nor-
malized GVD for a silica-core fiber, based on values of D(l) derived from
Gloge (1971) and Payne and Gambling (1975). The peak power of the input
pulse is given by P, and the quantity Aeff is an effective core area (cm2), which
for typical fiber parameters is fairly close to the actual core area. These nor-
malized parameters come out of the theory for optical solitons in fibers (neg-
ative GVD), where z0 is the soliton period and P1 is the peak power of the
fundamental soliton (Mollenauer et al., 1980). In the present regime of pos-
itive GVD there are no solitons, but these parameters are still useful because
z0 is actually the length of fiber required for GVD to approximately double
the width of the input pulse (in the absence of SPM), and P1 is the peak
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Figure 10.4. Plot of the normalized group velocity dispersion for a silica-core fiber.
The normalized z0 is obtained in meters by dividing the square of the input pulse
width in picoseconds by the value from the plot.



power required for SPM to approximately double the spectral width of the
input pulse in a fiber of length z0 (in the absence of GVD).

As discussed earlier, an intense optical pulse will be spectrally broadened
and frequency chirped on exiting the fiber. The next step of the pulse com-
pression process is to reassemble the chirped pulse with a compressor. The
action of the compressor is most easily described in the frequency domain
since it is simply a frequency-dependent time delay. The Fourier transform of
the pulse can be expressed in the form

(10)

where A(w) and f(w) are the amplitude and phase (for simplicity we do not
indicate their z dependence explicitly). The effect of the compressor can be
described by a phase function fc(w), so that the Fourier transform of the com-
pressed pulse is given by

(11)

If fc(w) = -f (w), then at t = 0 all the frequency components of the pulse
will be in phase and will thus create the pulse with the maximum peak ampli-
tude. We assume that it is also the shortest possible compressed pulse or close
to it. We define this compressor as ideal.

One of the most useful types of compressors is the Treacy (1968, 1969)
grating-pair compressor. A grating-pair compressor has a delay function that
is approximately of the form

(12)

The compressor constant a0 can easily be adjusted by varying the grating sep-
aration and is thus a directly accessible experimental parameter. We use the
term quadratic compressor to refer to a compressor with a response function
of the form of Eq. (12). It can be shown that the Fourier transform of a pulse
with a linear frequency chirp, which means that the temporal phase is pro-
portional to t2, has a phase that is proportional to w2, so that, for a linearly
chirped pulse, a quadratic compressor is the ideal compressor. To the extent
that the frequency chirp on a pulse is nonlinear, a quadratic compressor is
not the ideal compressor for that pulse, but if the departure is not too large,
a quadratic compressor can still give reasonably good compression. The
expression for the grating constant is

(13)

where b is the center-to-center distance between the two gratings, d is their
groove spacing, l is the center wavelength of the pulse, and g ¢ is the angle
between the normal to the input grating and the diffracted beam at l. From
the numerical solutions of Eq. (5), which includes GVD, Tomlinson et al.
(1984) and Stolen et al. (1984c) were able to derive an expression for the
grating constant in terms of the input pulse duration and peak amplitude,
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(14)

or

(15)

An expression for the grating separation can also be generated in terms of
these experimental parameters by combining Eqs. (13) and (15):

(16)

For the limiting case of zero GVD, the numerical results for the optimum
quadratic compressor lead to

(17)

Using Eqs. (13) and (17) as well as the pulse length normalization (t0 = 1.76t0),
the grating separation in the absence of GVD is given by

(18)

It is interesting to discuss the role GVD plays in the pulse compression
process. In simulating the compression of picosecond pulses chirped by prop-
agating in the nonlinear Kerr liquid CS2, Fisher and Bischel (1975) concluded
that GVD would have the influence of expanding the temporal region over
which the chirp was relatively linear, resulting in optimum compression.
Grischkowsky and Balant (1982a, 1982b) were the first to realize the signifi-
cance of GVD in fiber-grating compression. During passage through the
fiber, both the pulse shape and the frequency bandwidth are broadened by
the combined action of SPM and positive GVD. Thus, the red-shifted light
generated at the leading edge of the pulse travels faster than the blue-shifted
light generated at the trailing edge, and this leads to pulse spreading and rec-
tangular pulse shapes. Because the new frequencies are generated primarily
at the leading and trailing edges, which gradually move apart in time, the
pulse develops a linear frequency chirp over most of the pulse length. These
“enhanced frequency chirped” (Grischkowsky and Balant, 1984a, 1984b)
pulses can lead to almost ideal compression by a grating pair. Negligible
GVD, on the other hand, can lead to large deviations from linearity of the
chirp, which can result in substantial wings or sidelobes on the compressed
pulse.

Optimum fiber-grating compression requires the appropriate choice of the
fiber length and grating spacing for optimum chirp and chirp compensation,
respectively. These length scales can vary over an enormous range. For
example, Knox et al. (1985) compressed 40-fs pulses to a duration of 8 fs
using 7mm of fiber and a grating separation of approximately 1cm. On the
other extreme, Johnson et al. (1984a, 1984b) compressed 33-ps pulses to a
duration of 410 fs using 105m of fiber and a grating separation of 7.2m. For
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a particular input pulse width, peak power, wavelength, and fiber core area,
the optimal chirp occurs for a single fiber length. The optimal fiber length
varies as

(19)

Not unexpectedly, the grating separation has the same dependence on input
pulse width and peak power (see Eqs. (8) and (16)).

Two limiting fiber length regimes of practical interest can be identified
(Tomlinson et al., 1984; Stolen et al., 1984). The first is that of a fiber of
optimum length to provide the best linear chirp (Grischkowsky and Balant,
1982a, 1982b). The second regime is that for which the length is much less
than optimal and the effects of GVD can be neglected. Some of the proper-
ties of the chirp and compression in these two limiting regimes are illustrated
in Figure 10.5, where the compression factor is about 12.5¥ in each case. Dis-
played in Figure 10.5 are the pulse shape exiting the fiber, the frequency spec-
trum, the chirp, and the compressed pulse for both optimum quadratic and
ideal compressors. If GVD is negligible, the fiber output pulse will have the
same shape and intensity as the input pulse, while in a fiber of optimum
length GVD will broaden the output pulse by about a factor of 3¥. As
pointed out by Grischkowsky and Balant (1982a, 1982b), a “squared” or

z Popt µ t 0
2 .
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Figure 10.5. Pulse shapes before and after grating compression, frequency spectra,
and chirp for the limiting regimes of optimal fiber length and of negligible group
velocity dispersion. The upper curves are for the case of negligible GVD and an 
intensity-length product A2z/z0 = 12.5. The lower curves are for A = 20 and the 
corresponding optimum fiber length of zopt = 0.075z0. To compare the quality of
compression in the two regimes, a common compression factor of approximately
12.5¥ was chosen in each case.



“rectangular” fiber output pulse will have a linear frequency chirp over most
of the length of that pulse. The overall width of the frequency spectrum is
about the same in the two cases, but GVD acts to fill in the spectrum. For
each length, the grating separation was optimized to give the maximum peak
intensity. The optimum fiber length was chosen to maximize the energy in the
compressed pulse. In Figure 10.5 it is interesting to note that when the fiber
length and grating separation are optimized, the quality of the compressed
pulse (optimum quadratic compressor) is better than that with the ideal com-
pressor in the absence of GVD.

The procedure of Tomlinson et al. (1984) and Stolen et al. (1984c) for 
calculating the compression, the optimal fiber length, and the grating 
separation is presented in Table 10.1. There are two important normalized
parameters. The first is the normalizing length z0 defined Eq. (7), and the
second is the normalized amplitude A defined in Eq. (8). For a silica-core
fiber the GVD parameter C1 has been given for several common laser wave-
lengths but can also be read directly from Figure 10.4 for an arbitrary wave-
length. Table 10.1 also gives approximate expressions for the compression
factor t0/t, the optimum fiber length zopt, and the grating separation b in both
limits of fiber length (see Eqs. (16) and (18)). These expressions are supported
by a recent approximate analytical theory of the compression process
reported by Meinel (1983). The angle g¢ is between the normal to the grating
and the diffracted beam. For A £ 3, the compression and pulse quality are
not strong functions of fiber length, so there is no clear optimum length. This
fact is consistent with the results of Shank et al. (1982) in which 90-fs pulses
were compressed with fiber lengths between 4 and 20cm and produced the
same factor of 30¥ compression.

Johnson et al. (1984a, 1984b) used these numerical calculations to design
the first “long” pulse fiber-grating compressor for 33-ps pulses (0.532mm)
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Table 10.1. Fiber-grating compressor parameters.a

a z0 = t 2
0/C1; A = ; t0 = 1.76t0.P P1

C
D

c

P
nc A

z n
A

z

1 2 2

1

1
0 2

2

0

0 322

0 144 0 5145

0 138 0 532

0 117 0 600

0 031 1 064

16
7 92

= ( ) =

=( )
=( )
=( )
=( )

Ï

Ì
ÔÔ

Ó
Ô
Ô

= = ( ) ( )
( )

È
ÎÍ

˘
˚̇

¥

-l l
p

l m
l m
l m
l m

l
p

l

.

. .

. .

. .

. .

.

m

m ps m

m

m

cm cm
cm

2

eff eff 1010

0 63 1 0 9

1 6

84 13

5 56 10
600

14

2
0

0

2
0
2

2
0
2

2
0

2 5

2

W

cm
ps

cm
ps

cm
nm

opt

0

opt

0

opt

2 2

z z
A

z z
A z z

z z A

b C
A

b C
A z z

C
d

=
ª

<<
ª + [ ]

ª

ª È
ÎÍ

˘
˚̇

ª È
ÎÍ

˘
˚̇

= ( )
¥

È
ÎÍ

˘
˚̇ ( )

È
ÎÍ

˘
-

t t t t

t t

l

. .

. —

. ˚̇̊
¢

3
2cos g



from a frequency-double Nd:YAG laser. The calculation deduced an
optimum fiber length zopt = 83m, a grating separation b = 606cm (1800
grooves/mm), and a compressed pulse width t = 350 fs. The experiment con-
sisted of coupling 240-W pulses into a 105-m single-mode polarization-
preserving fiber (Stolen et al., 1978) with a core diameter of 3.8mm. A
schematic drawing of the fiber-grating compressor is displayed Figure 10.6.
Compressed pulses as short as 410 fs or a compression of 80¥ was obtained
with a grating separation of 724cm. The fiber input pulse and the compressed
pulse are displayed together in Figure 10.7. The agreement between calcula-
tion and experiment was quite remarkable in light of the fact that the calcu-
lations were for normalized amplitudes A £ 20. The compression experiments
had normalized amplitudes of A > 150.

As a result of the limited availability of high-reflectivity gratings at 
0.532mm with greater groove densities than 1800 grooves/mm it was impor-
tant to keep the input pulse width as short as possible to avoid an unrea-
sonable grating separation. The grating separation varies as the square of the
input pulse width (see Eq. (16)). This is not as serious a problem at 1.064mm,
where the cubic wavelength dependence is quite helpful in keeping the grating
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Figure 10.6. Schematic drawing of the “double-pass” fiber-grating pulse compressor
used for the 80¥ compression of 0.532-mm pulses. The dispersive delay line consists
of gratings G1 and G1 (1800 grooves/mm) and mirrors M1, M2, and M3. Mirror M4 is
cut in half to allow the fiber output pulse to pass over it. M3 is slightly tilted down-
ward to allow the output beam to be reflected by M4 out of the compressor. The
round-trip distance between the gratings was 724cm.



separation reasonable. The 33-ps fiber input pulses were obtained by fre-
quency doubling a harmonically mode-locked CW Nd:YAG laser (Johnson
and Simpson, 1983, 1985a; Keller et al., 1988). As opposed to fundamental
mode locking, typical harmonic mode-locked pulse widths are 50ps at 
1.064mm (Johnson and Simpson, 1985a) (see Figure 10.8). If 50- to 60-ps
fiber input pulses (0.532mm) from a standard fundamentally mode-locked
laser were used, a grating separation of greater than 14m would have been
needed.

At this point it is useful to give a pulse compression example replete with
experimental parameters, numerical calculation parameters, and the resultant
numerical simulation of the compression process. This next example of
0.532mm pulse compression was performed using a separate, larger-core fiber
distinct from that discussed earlier in Johnson et al. (1984a, 1984b). A “flat”
polarization-preserving fiber made by preform deformation (Stolen et al.,
1984b) with a 4.1-mm silica-core diameter. A micrograph of the fiber is shown
in Figure 10.9. The birefringence resulting from the stress cladding lifts the
degeneracy of the two orthogonal modes of propagation. Thus linearly
polarized light propagating along the well-defined principal fiber axis will be
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Figure 10.7. 80¥ compression of 33-ps, 0.532-mm pulses. Standard background-free
autocorrelation of the input and compressed pulses displayed on the same scale.
(Input: Gaussian pulse shape. Compressed pulse: sech2 pulse shape.)
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Figure 10.8. Background-free autocorrelation of the 1.064-mm output of a har-
monically mode-locked CW Nd:YAG laser (Gaussian pulse shape). These pulses 
are frequency doubled in KTiOPO4 (KTP) to yield pulses of 33 to 35ps duration at
0.532mm.

Figure 10.9. “Flat” polarization-preserving fiber made by perform deformation. The
4.1-mm pure silica core is surrounded by a B :Ge: SiO2 stress cladding, an F :SiO2 outer
cladding, followed by a pure silica support cladding. The “rectangular” fiber has
overall dimensions of 100 ¥ 200mm.



preserved. The diffraction efficiency of the gratings is a very sensitive func-
tion of the polarization of the fiber output. Thus, polarization-preserving
fiber is extremely useful in reducing amplitude fluctuations in the compressed
output due to polarization “scrambling” effects in fibers. One disadvantage
of using polarization-preserving fibers is that the threshold for stimulated
Raman scattering (SRS) is reduced by a factor of 2 in fibers maintaining
linear polarization (Stolen, 1979a). Experimentally, it was found that the
reduced SRS threshold was a small price to pay for the increased amplitude
stability afforded by polarization-preserving fiber. The effects of SRS on
compression are discussed in the next section.

For comparable compression, this larger core diameter fiber resulted in the
reduction of SRS by about a factor of 2. The fiber length was 93.5m and
had a loss of 16db/km at 0.532mm. At the input lens (10¥ objective) the peak
power was 235W (820MW average, 100MHz repetition rate). However, this
is not the best estimate of the peak power actually coupled into the fiber. The
best approach is to measure the light coupled out of the fiber and correct 
for the transmission of the output lens and the known loss in the given 
length of fiber. This approach corrects for the loss in the input lens, mode-
matching effects, light coupled into the cladding, and the reflection loss on
the fiber input face. In this instance the peak power actually coupled into the
fiber is closer to 172W. The fiber-grating compressor parameters given in
Table 10.1 can be calculated with the following information: P = 172W, t0 =
35ps, n = 1.46, Aeff = 0.92Acore = 1.21 ¥ 10-7 cm2, n2 = 1.1 ¥ 10-13 esu, P1 =
5.74mW, A = 173, z0 = 8.88km, d = 5.56 ¥ 10-5 cm, and g ¢ = 32.5°. The cal-
culations indicate an optimum fiber length zopt = 82m, a grating separation
of 603cm, and a compressed pulse width of 320 fs. With this fiber, pulses have
been compressed to durations as short as 430 fs (80¥ compression). The
typical day-to-day duration of the compressed pulses falls in the range 460
to 470 fs (Johnson and Simpson, 1985a, 1986). The actual grating separation
used to generate the 460-fs pulse displayed in Figure 10.10 was 698cm.

What actually happened to the 35-ps, 235-W pulse as it propagated through
the fiber-grating compressor to produce the clean 460-fs pulses at the output?
The spectral width of the fiber input pulses was measured to be 0.27Å and
was limited by the slits on the spectrometer. The self-phase-modulated spec-
trum of the output pulse was broadened to 17.2Å and is displayed in Figure
10.11. GVD acted to fill in the self-phase-modulated spectrum, resulting in
a flattened spectrum. The fiber output pulse was substantially broadened to
a duration of 142ps and is displayed in Figure 10.12. The triangular auto-
correlation function is indicative of a rectangular intensity profile. As pointed
out by Grischkowsky and Balant (1982a, 1982b), a rectangular fiber output
pulse will have linear frequency chirp over most of its length and result in
optimum compression by a grating pair.

The two symmetrically located sidelobes on the fiber output frequency
spectrum in Figure 10.11 are not expected from pure SPM. To determine 
the origin of these sidelobes Tomlinson et al. (1985) performed numerical
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Figure 10.10. Typical autocorrelation of the compressed 0.532-mm pulses using a
93.5-m length of the “flat” polarization-preserving fiber displayed in Figure 10.9.
Typical day-to-day pulses fall into the range of 460 to 470 fs.

Figure 10.11. Spectral width of the 35-ps, 235-W, 0.532-mm fiber input pulses and
the spectrally broadened (by SPM) output pulses after propagation down a 93.5-m
length of the 4.1-mm core diameter polarization-preserving fiber.



simulations of the nonlinear pulse propagation using the experimental and
calculated numerical parameters given previously. The results of several of
the numerical calculations are given in Figure 10.13. This figure presents the
nonlinear pulse propagation as a function of fiber length z/z0. In Figure
10.13a, at z/z0 = 0.0020 (z = 18m), the temporal shape of the pulse is only
slightly broadened (the input pulse width is 1.76t0), and the instantaneous
frequency function and spectrum are characteristic of pure SPM. Recall that
the calculated optimum fiber length is zopt = 82m. In Figure 10.13b, at z/z0 =
0.0054 (z = 48m), the temporal shape has become more “rectangular” as a
result of the influence of GVD. The instantaneous frequency function indi-
cates a nearly linear frequency chirp over a significant portion of the pulse
width. In Figure 10.13c, at z/z0 = 0.0060 (z = 53m), as the fiber length
approaches zopt the chirp “linearization” proceeds as a result of the con-
comitant pulse broadening.

Figure 10.14 displays the instantaneous frequency function, the temporal
pulse shape, and its frequency spectrum, for a length at z/z0 = 0.01 (z = 89m),
for a lossless fiber and for a fiber with a loss of 16db/km (normalized loss
parameter a = 16.36). The nonlinear Schrödinger equation (Eq. (5)) with the
inclusion of a normalized linear loss parameter a is given by
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Figure 10.12. Autocorrelation of the fiber output pulse broadened by GVD. A tri-
angular atuocorrelation function is indicative of a rectangular intensity profile that
has a deconvolution factor of unity.



In Figure 10.14a and b the resulting pulse shape shows well-development
interference fringes on the leading and trailing edges. The frequency spectra
clearly display the symmetrically located sidelobes. The spectrum for the fiber
with loss (Figure 10.14b) is in excellent agreement with the experimental spec-
trum of Figure 10.11. (Since the experimental spectrum is an average over
many pulses, we do not expect to see the fine structure displayed in the cal-
culated spectrum.) Simulations of the effect of a grating-pair compressor on
these fiber output pulses gave a compression of 98¥ for the lossless fiber and
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Figure 10.13. Numerical simulations of the nonlinear pulse propagation of 34.4-ps
pulses (t0 = 19.5ps) at 0.532mm with a normalized input amplitude of A = 173 and
normalizing fiber length of z0 = 8.88km displayed as a function of fiber length z/z0.
The upper curves show the instantaneous frequency as a function of time, the middle
curves show the intensity as a function of time, and the lower curves show the 
frequency spectra of the pulses. For the 93.5-m fiber used the normalized length was
z/z0 = 0.0105.



of 84¥ for the fiber with loss. Thus by including the fiber loss in the non-
linear Schrödinger equation, numerical solutions of Eq. (20) are in excellent
agreement with the experimentally observed 80¥ compression.

The origin of the sidelobes in the frequency spectrum of the fiber output
pulses on Figures 10.11 and 10.14 has been attributed to a phenomenon that
Tomlinson et al. (1985) dubbed “optical wave-breaking.” Briefly, when an
intense pulse propagates down an optical fiber, the leading edge of the pulse
experiences a frequency decrease or red shift, while the trailing edge experi-
ences a blue shift. For large-compression experiments (large values of the nor-
malized amplitude A) in the presence of GVD, the red-shifted light near the
leading edge of the pulse travels faster than, and overtakes, the unshifted light
in the forward tails of the pulse (and vice versa on the trailing edge). There-
fore, the leading and trailing regions of the pulse will contain light at two dif-

10. Pulse Compression in Single-Mode Fibers 421

Figure 10.14. Numerical simulations of nonlinear pulse propagation for A = 173 and
a fiber length of z/z0 = 0.01 for (a) a lossless fiber and (b) a fiber with a normalized
loss parameter a = 16.36 (16db/km). The upper curves are the instantaneous fre-
quency, the middle curves are the temporal shape of the output pulse, and the lower
curves show the frequency spectra of the output pulses. The inset in (b) displays a
detail of the interference region (optical wave-breaking) on the edge of the pulse.



ferent frequencies, which will interfere and generate new frequencies. These
new frequencies appear as the sidelobes on the fiber output spectrum and
result in a small increase in the background on the compressed pulse. This
phenomenon is somewhat analogous to the “breaking” of water wave and
has been described as optical wave-breaking. Optical wave-breaking can also
occur in small-compression-ratio experiments (small values of A) if the fiber
is longer than the optimum fiber length, so that there is sufficient GVD to
mediate the interference process. The interference fringes resulting from the
optical wave-breaking are prominent in the calculated temporal pulse shapes
(see inset of Figure 10.14b). Since the spectral bandwidth that contributes to
the compressed pulse is approximately twice the frequency difference involved
in the wave-breaking interference, the period of the interference fringes is
approximately twice the width of the compressed pulse. Additional evidence
for optical wave-breaking has appeared in the numerical studies of nonlinear
pulse propagation by Lassen et al. (1985).*

These experiments and numerical simulations demonstrate the enormous
range of applicability of the nonlinear Schrödinger equation (Eq. (20)) for
describing nonlinear pulse propagation in single-mode fibers. Each of the
various terms in Eq. (20) represents the lowest-order approximation to the
phenomenon that it is describing, and it is assumed that the higher-order
terms will be significant for very high compression ratios and/or very short
input pulses. The present results indicate that large compression ratios of 80¥
can accurately be described by Eq. (20) without invoking any higher-order
terms. The limits of this fiber-grating compression approach have recently
been studied by Bourkoff et al. (1987a, 1987b), Tomlinson and Knox (1987),
and Golovchenko et al. (1988).

2.3 Stimulated Raman Scattering and Pulse Compression

The interplay between optical fiber pulse compression (l = 1.3mm) and stim-
ulated Raman scattering, or more appropriately the interplay between SPM,
SRS, and GVD, could easily fill a book chapter. It is much beyond the scope
of this chapter to discuss the role of SRS in great detail. Instead, the reader
is referred to a number of excellent articles on SRS and nonlinear pulse prop-
agation in fibers in the region of positive GVD: Auyeung and Yariv, 1978;
Butylkin et al., 1979; Dianov et al., 1984b, 1985, 1986a, 1987; Gomes et al.,
1986a, 1986b, 1988a; Heritage et al., 1988; Hian-Hua et al., 1985; Johnson
et al., 1986; Kuckartz et al., 1987, 1988; Lin et al., 1977; Nakashima et al.,
1987; Ohmori et al., 1983; Roskos et al., 1987; Schadt et al., 1986, 1987;
Smith, 1972; Stolen and Ippen, 1973; Stolen and Johnson, 1986; Stolen et al.,
1984a, 1972; Stolz et al., 1986; Valk et al., 1984, 1985; Weiner et al., 1988.
Several of the salient features of SRS are briefly discussed in this section.

422 A.M. Johnson and C.V. Shank

* Note added in proof: Optical wave-breaking was recently observed (temporally) by
Rothenberg and Grischkowsky (1989).



The maximum power of an optical pulse in a fiber is usually limited by
SRS. In the region of positive GVD, a Raman Stokes pulse will travel faster
than the pump pulse. Thus the role of GVD is important in determining the
limitations of SRS on the self-phase-modulated pump pulse. Stolen and
Johnson (1986) discussed a simple picture of the SRS process that assumes
that the Stokes power builds up from a weak injected signal rather than from
spontaneous scattering. This follows the approach of Smith (1972) for CW
Raman generation, in which the integrated spontaneous Raman scattering
along the fiber can be replaced by a weak effective Stokes input power. At
the top of Figure 10.15, a portion of the injected CW Raman signal enters
the fiber along with the leading edge of the pump pulse. Because of GVD,
this part of the signal will travel faster than the pump and never experience
Raman amplification. In the second line of Figure 10.15, a portion of the
signal enters the fiber along with the peak of the pump pulse. As the pump
pulse travels along the fiber with velocity Vp, the faster-traveling Stokes signal
(Vs) is amplified by extracting energy from the pump. Amplification ceases
when the signal has passed through the pump pulse. Maximum amplification
will occur for a stokes signal that passes through the entire pump pulse, and
this is the portion of the CW signal that enters the fiber along with the trail-
ing edge of the pump pulse (third line of Figure 10.15). If a significant part
of the pump energy has been shifted to the Stokes frequency (pump deple-
tion), subsequent portions of the CW signal (fourth and fifth lines of Figure
10.15) will see a much reduced amplification.

The net result is that the amplification of the injected CW signal by the
pump pulse has produced a Stokes pulse with a peak that is ahead of the
pump pulse by about one pump pulse length (line 7 of Figure 10.15). If we
define a walk-off length lw,

(21)

as the distance in which the Stokes signal passes through one pump pulse
width t0 the Stokes maximum will be produced about two walk-off lengths
into the fiber. All of the Stokes conversion will occur within about four walk-
off lengths.

The signal gain depends on distance (L) along the fiber, and the net ampli-
fication involves an integral over the region where the Stokes and pump pulses
interact. In the limit where the Stokes signal sees the entire pump pulse the
gain becomes

(22a)

(22b)

where g0 is the peak Raman gain coefficient, Aeff is the effective core area, and
P0 is the peak pump power. Thus, the maximum gain is approximately the
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peak power times the walk-off length. Typical values of G will be around 16
but can go as high as 20 for significant Raman conversion and small walk-
off or interaction lengths. For example, Stolen and Johnson (1986) estimated
a value of G = 19.7, for 20% Raman conversion of 35-ps, 0.532-mm pulses,
and a walk-off length of 6.2m.

An estimate of the critical pump power Pp = Pc entering the fiber, for which
the intensities of the first Stokes component of SRS and of the pump were
equal at the fiber output, was derived for the case of CW SRS by Smith
(1972). This approach has proved to be fairly reliable even in the pulsed case.
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Figure 10.15. Schematic representation of a CW Stokes signal amplified as it passes
through a pump pulse because of GVD. Portions of the CW signal are separately
identified to illustrate that maximum amplification occurs for the part of the CW
signal that enters the fiber with the trailing edge of the pump pulse. Earlier portions
of the CW signal see reduced gain because they do not pass through the entire pump
pulse, and later portions of the signal see reduced gain because the pump pulse has
been depleted by earlier Raman conversion. The dotted curve represents the propa-
gation of the pump pulse in the absence of Raman conversion.



For the case of polarization-preserving fiber, the critical pump power is esti-
mated to be

(23)

and for non-polarization-preserving fiber the critical pump power is

(24)

The Raman gain in fibers is a factor of 2 higher if linear polarization is main-
tained (Stolen, 1979) and accounts for the factor of 2 in Eqs. (23) and (24).
The peak Raman gain coefficient g0 at a pump wavelength of 0.526mm is 1.86
¥ 10-11 cm/W (Stolen and Ippen, 1973). The Raman gain varies linearly with
pump frequency and the peak coefficient for a 1.064-mm pump is g0 = 0.92 ¥
10-11 cm/W (Lin et al., 1977).

Fiber-grating compression of optical pulses can be strongly affected by
SRS, which at high intensities will distort the pulse profile and consequently
the chirp on the pulse. SRS limit the power available in the compressed pulse.
Above the Raman threshold, further increases in pump power result only in
increased Raman conversion. SRS does not seem to have a major effect on
the compression of femtosecond pulses, and this can be attributed to the very
short walk-off lengths involved (see Eqs. (21), (23), and (24)). Longer pulses
translate into longer walk-off lengths and lower critical powers for the onset
of SRS. The compression of the fundamental and the second harmonic of
mode-locked Nd:YAG laser falls squarely into this region of competition
between SRS, SPM, and GVD. Under conditions of walk-off of the gener-
ated Stokes pulse, intense SRS will preferentially deplete the leading edge of
the pump pulse and steepen its rising edge. SPM of the reshaped pump pulse
causes nonsymmetric spectral broadening and a nonlinear chirp. An example
of the distortion of the self-phase-modulated pump spectrum by the presence
of 20% Roman conversion (Stolen and Johnson, 1986) is displayed in Figure
10.16. This figure shows the Stokes and pump spectra for 35-ps, 0.532-mm
pump pulses after propagation down 101m of single-mode polarization-
preserving fiber (walk-off length = 6.2m). The long-wavelength component,
or red-shifted frequency component, shows signs of depletion. The resultant
nonlinear chirp, of course, leads to very poor fiber-grating compression.

In general, compression in the presence of strong SRS using fiber lengths
less than zopt (i.e., negligible GVD) results in compressed pulses accompanied
by broad wings. In addition, the spectral fluctuations lead to severe fluctua-
tions in compressed pulse amplitude and shape. Recently, Weiner et al. (1988)
demonstrated that high-quality stabilized compression could be achieved,
under these circumstances, only by utilizing an asymmetric spectral window
(Heritage et al., 1985a) to select out a linearly chirped portion of the broad-
ened spectrum.
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Another approach to obtaining high-quality stable pulse compression is to
avoid or severely limit SRS and use fibers of length zopt to obtain the neces-
sary linear chirp. Johnson et al. (1984a, 1984b) generated high-quality 
410-fs pulses (80¥ compression) at 0.532mm with a fiber length greater than
zopt and less than 5% Raman conversion. Using fibers of nearly optimum
length and operating below the Raman threshold, Roskos et al. (1987) and
Dianov et al. (1987) generated high-quality pulses as short as 550 fs (110¥
compression) at 1.064mm.

Earlier pulse compression calculations for shorter fiber lengths clearly indi-
cated that the chirp would be severely distorted and asymmetric as a result
of strong SRS (Schadt et al., 1986; Schadt and Jaskorzynska, 1987; Kuckartz
et al., 1987). However, Kuckartz et al. (1988) recently demonstrated that in
sufficiently long fibers the combined action of GVD and SPM could cause a
further reshaping and linearization of the chirp, which then could be effi-
ciently compressed by a grating pair. High-quality pulses with comparatively
low substructure as short as 540 fs (130¥ compression) at 1.064mm using 
120m of polarization-preserving fiber were obtained in the presence of strong
SRS (Kuckartz et al., 1988). Heritage et al. (1988) recently demonstrated that
with a 400-m length of polarization-preserving fiber, significant third Raman
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Figure 10.16. Raman and pump spectra of 35-ps, 0.532-mm pulses as measured from
a 101-m fiber at about 20% Raman conversion. The self-phase-modulated pump spec-
trum shows signs of depletion of the long-wavelength or red-shifted frequency com-
ponents by SRS leading to a nonlinear chirp. (Walk-off length = 6.2m.)



Stokes generation, and an asymmetric spectral window (Heritage et al.,
1985a), high-quality ultrastable compressed pulses as short as 550 fs (130¥
compression) at 1.064mm could be obtained. They found that most of the
pump spectrum was linearly chirped by the strong reshaping due to strong
SRS, SPM, and GVD.

Several review and extended-length articles on nonlinear pulse propaga-
tion, pulse shaping, and compression in fibers have recently been published:
Alfano and Ho, 1988; Dianov et al., 1988; Golovchenko et al., 1988; Gomes
et al., 1988b; Kafka and Baer, 1988; Thurston et al., 1986; Zhao and
Bourkoff, 1988. (See Chapter 3.) This list of articles is by no means complete
and furthermore is limited to discussions in the region of positive GVD.

Thus far, this chapter has dealt with negative dispersive delay lines con-
sisting of Treacy, (1968, 1969) grating pairs in reflection mode. Several alter-
natives to this approach deserve mentioning. Yang et al. (1985) demonstrated
femtosecond optical fiber pulse compression using a holographic volume
phase transmission grating pair. Prisms were used as negative dispersive delay
lines by Fork et al. (1984), Martinez et al. (1984), and Bor and Racz (1985)
and were used in femtosecond optical fiber pulse compression by Kafka and
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Figure 10.17. Schematic of a synchronously mode-locked Rhodamine 6G dye laser
pumped by fiber-grating compressed 0.532-mm pulses. A pair of 2-mm-thick pellicles
or a single-plate birefringent filter was used for wavelength tuning and bandwidth
control.



Baer (1987). In another variation, Nakazawa et al. (1988) used a TeO2

acousto-optic light deflector and corner cube combination as a negative dis-
persive delay to demonstrate femtosecond optical fiber pulse compression.

One of the first applications of “long” fiber-grating compressed pulses was
their use by Johnson et al. (1984b), Johnson and Simpson (1985a, 1985b,
1986), Kafka and Baer (1985, 1986), and Beaud et al. (1986) as a source of
ultrashort pump pulses for wavelength-tunable femtosecond dye lasers. A
schematic of a Rhodamine 6G synchronously mode-locked dye laser pumped
by compressed 0.532-mm pulses is displayed in Figure 10.17. Wavelength-
tunable pulses as short as 180 fs (Johnson and Simpson, 1986) were obtained
from the dye laser synchronously pumped with 470-fs-duration 0.532-mm
pulses (see Figure 10.18).

Johnson et al. (1984a, 1984b) reported that the duration and functional
form of the compressed 0.532-mm pulses were extremely sensitive to the
grating separation (for constant fiber input power). As the grating separation
was decreased from its optimum, the compressed pulse would broaden
smoothly. Compressed pulses of 460 to 470 fs (Johnson and Simpson, 1985a)
duration were obtained with a grating separation of 698cm (see Figure
10.10). By decreasing the grating separation by 4.2, 15.6, and 27% the com-
pressed pulses were broadened to 920 fs, 12.3ps, and 22ps, respectively (see
Figure 10.19). Thus a temporally tunable source of ultrashort pulses was
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Figure 10.18. Autocorrelation function of the pellicle-tuned dye laser synchronously
pumped by 470-fs-duration 0.532-mm pulses, tuned to a wavelength of 0.592mm (sech2

pulse shape assumed).
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Figure 10.19. Temporal tuning of compressed 0.532-mm pulses with decreasing
grating separation from the optimum (see Figure 10.10). The grating separation was
reduced from the optimum of 698cm by (a) 4.2% (sech2 pulse shape), (b) 15.6%
(Gaussian pulse shape, and (c) 27% (Gaussian pulse shape).



demonstrated. With this source of temporally tunable pump pulses, the first
reported investigation of the dynamics of synchronous mode locking as a
function of pump pulse duration was made by Johnson and Simpson (1985a).
The experimental variation of the dye laser pulse width as a function of the
pump pulse width (see Figure 10.20) was

(25)

in excellent agreement with the square root dependence predicted by 
Ausschnitt and Jain (1978) and Ausschnitt et al. (1979).

Palfrey and Grischkowsky (1985) generated 16-fs frequency-tunable pulses
by using a two-stage fiber pulse compressor together with an optical ampli-
fier. Ishida and Yajima (1986) generated pulses of less than 100 fs tunable
over 0.597 to 0.615mm by taking the output from a cavity-dumped, hybridly
mode-locked CW dye laser and coupling it to a single-stage fiber compres-
sor. Damen and Shah (1988) reported on femtosecond luminescence spec-
troscopy of III–V semiconductors with 60-fs compressed pulses. The 60-fs
pulses were derived from a compressed pulse-pumped synchronously 
mode-locked dye laser that was further compressed by a fiber-prism pulse
compressor.

Applications of fiber-grating compressed pulses include picosecond pho-
toconductive sampling characterization of semiconductor epitaxial films

t tdye pump~ ,.0 52
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Figure 10.19. (continued)



deposited on lattice-mismatched substrates (Johnson et al., 1985, 1987;
Feldman et al., 1988), picosecond electro-optic sampling of GaAs integrated
circuits (Kolner and Bloom, 1984, 1986; Weingarten et al., 1988), picosecond
photoemission sampling of integrated circuits (Bokor et al., 1986; May et al.,
1987, 1988) picosecond vacuum photodiode (Bokor et al., 1988), picosecond
optical pulse shaping and spectral filtering (Dianov et al., 1985, 1986b; Haner
and Warren, 1987; Heritage et al., 1985a, 1985b; Weiner et al., 1986), and the
demonstration of an ultrafast light-controlled optical fiber modulator (Halas
et al., 1987) and its use in the first experimental investigation of dark-soliton
propagation in optical fibers (Krokel et al., 1988).

Recently, pulse compression techniques have been applied to the amplifi-
cation of high-energy 1.06-mm pulses. The onset of self-focusing limits the
amplification of ultrashort optical pulses. Fisher and Bischel (1974) proposed
avoiding self-focusing in Nd : glass amplifiers by temporally broadening the
input pulse to lower the pulse intensity. They noted that under certain cir-
cumstances, the glass nonlinearity would impress a chirp on the pulse that
could subsequently be compressed by a dispersive delay line. Strickland and
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Figure 10.20. Temporal dynamics of the synchronous mode locking of the pellicle-
tuned Rhodamine 6G dye laser as a function of the pump pulse duration, with the
dye laser tuned to 0.595mm.



Mourou (1985) and Maine et al. (1988) used an optical fiber to stretch a short
optical pulse, amplify, and then recompress using a grating pair. Since the
stretched pulse is amplified, the energy density can be increased, thereby more
efficiently extracting the stored energy in the amplifier.

3. Femtosecond Pulse Compression

3.1 Theory

Remarkable progress has taken place in the compression of optical pulses.
The theoretical limit in the visible spectrum is just a few femtoseconds.
Already optical pulses as short as 6 fs have been generated and used in exper-
iments (Fork et al., 1987; Brito Cruz et al., 1986). Such a pulse contains spec-
tral components covering nearly the entire visible and near-infrared region
of the spectrum. The short pulse itself is nearly an ideal continuum source.

It is useful to explore the limits of pulse compression in order to under-
stand and appreciate the processes involved in compressing optical pulses in
the femtosecond time regime. Attacking the limits provides a pathway for
both utilizing and generating ever shorter optical pulses.

When an optical pulse propagates through any dielectric medium, group
velocity dispersion broadens the pulse. For example, an 8-fs pulse will have
its width doubled by passage through ~1mm of glass or ~3m of air. These
linear propagation effects are not fundamental and can in principle be cor-
rected by a linear compensation scheme.

One of the most useful pulse compressors, the grating-pair compressor
devised by Treacy (1969) has been discussed earlier in this chapter. In his orig-
inal paper, Treacy pointed out some of the limitations of this compressor for
very short optical pulses having a large bandwidth. A grating pair induces a
phase distortion on an optical pulse that becomes more severe as the ratio of
the pulse bandwidth to the carrier frequency begins to approach unity.

The problem of generating ultrashort optical pulses reduces to minimizing
the phase distortion. A useful way to discuss this problem is in terms of the
Taylor series expansion of the phase:

(26)

which is made around the central frequency, w0, of the pulse spectrum. Treacy
has shown that a pair of diffraction gratings can be used to compensate for
the quadratic phase distortion, (d 2f/dw 2)w0, of a frequency-broadened optical
pulse. He pointed out in the same paper that the principal remaining problem
in pulse compression of large-bandwidth signals using gratings is uncom-
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pensated cubic phase distortion, (d3f/dw3)w0. Christov and Tomov (1986) also
recognized this problem in a recent publication on optical fiber-grating com-
pressors Tables 10.2 and 10.3 show phase derivatives for prisms and gratings.

To overcome the problem of unwanted cubic phase distortion an elegant
solution has been devised. Both a grating pair and a prism pair induce a cubic
phase distortion. We can take advantage of the fact that the cubic phase dis-
tortion for gratings and prisms is of the opposite sign by using a configura-
tion where the compressed pulse is passed sequentially through a pair of
gratings and a pair of prisms. In this manner it is possible to cancel the cubic
phase distortion (Treacy, 1969).

The effect of a combination of prisms, gratings, and material on a pulse is
described by a total phase shift
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Table 10.2. Second and third derivatives of phase with respect to frequency for a double
prism pair, a double grating pair, and material.

Prism Grating Material

Derivatives of the path P in the prism sequence with respect to wavelength
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Table 10.3. Second and third derivatives of phase with
respect to frequency for the double prism pair and double
grating pair described in the text.a

Derivative Prisms Gratings Material

+648 - 32lp -3640lg +2900lm

+277 - 49lp -3120lg +1620lm

a Lengths are in centimeters.
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(27)

where the subscripts p, g, and m refer to prisms, gratings, and material, respec-
tively. The material of length lm contributes a phase shift

(28)

where c is the speed of light and nm(w) the refractive index. For the prism-
and-grating pair we follow the method described by Martinez et al. (1984).
A grating pair in a double-pass configuration causes a phase shift

(29)

where lg is the grating spacing, d is the groove spacing, and g is the angle of
incidence.

For a double prism pair the phase shift is

(30)

where lp is the distance between prism apices and b(w) is the angle between
the refracted ray at frequency w and the line joining the two apices (Figure
10.21). For prisms with apex angle a and refractive index np(w) the angle
y2(w) at which the refracted ray leaves the first prism can be calculated by a
straightforward application of Snell’s law as a function of the angle of inci-
dence y1.

We define y2max as the maximum angle at which a ray can leave the first
prism and still intersect the apex of the second prism. Equation (30) can then
be rewritten as 

(31)

Typical experimental values are a = 60°, y1 = 47° (minimum deviation), np(w0)
= 1.457 (quartz prisms) at w0 = 3.1 rad/fs (l0 = 615mm), and y2max = 49°.

The total phase shift fT (w) can be calculated numerically for conditions
typical of recent ultrashort-pulse-compression experiments by using Eqs.
(28), (29), and (31) to provide a group delay dispersion d 2fT/dw 2|w0 of -700
fs2 and to cause the derivative of the group delay dispersion, d 3fT/dw 3, to be
zero at the center frequency of the pulse. The value of d 2fT/dw 2 is such as to
compensate the linear frequency sweep generated on a 60-fs, 200-kW pulse
propagated through a 0.9-cm quartz fiber with a 4-mm core diameter. The
prism spacing, grating spacing, and material length used in the numerical cal-
culations are lp = 74cm, lg = 0.7cm, and lm = 0.5cm of quartz, respectively.
The angle of incidence at the first grating was 45°, and the number of grooves
per millimeter was 600.
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The departure of this compressor based on prisms and gratings from an
ideal quadratic compressor can be evaluated by examining the variation of
the group delay dispersion, d 2fT(w)/dw 2, with frequency (Figure 10.22). One
sees that this combination of prisms, gratings, and material provides the value
of group delay dispersion required to compensate for the linear chirp in the
pulse. At the same time, this combination of prisms, gratings, and material
makes the derivative of the group delay dispersion zero at the center fre-
quency of the pulse. This minimizes the cubic distortion and leaves as the
main contribution to the phase that which is due to the curvature of the group
delay dispersion (d 4f/dw 4 π 0) across the spectral range of the pulse.

The consequence of the departure of these actual compressors from an
ideal quadratic compressor can be examined by calculating the temporal
profile of the compressed pulse given a hypothetical incident pulse with an
ideal quadratic phase distortion. In particular, we compare a compressor
using prisms and gratings with a compressor using the gratings alone. Figure
10.23 shows the calculated intensity profile for the case when prisms, grat-
ings, and material are used with the same parameters as in Figure 10.22. The
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Figure 10.21. Parameters used in describing propagation of the optical pulse
through the prism sequence. The angle of incidence at the face of the first prism is y1

and the angle with respect to the normal to the exit face is y2. The angle between a
line drawn between prism apices and the direction of a ray exiting the first prism at
y2 is denoted by b. The distance between prism apices is lp.



bandwidth of the incoming pulse was chosen to be 0.5 rad/fs, which corre-
sponds to a transform-limited pulse duration of 4 fs. In both Figures 10.23a
and 10.23b the linear frequency sweep has been compensated for, but only in
the case of the compressor with prism pair, grating pair, and dispersive mate-
rial (Figure 10.23b) was it possible to compensate for the parabolic frequency
sweep by setting the cubic phase distortion to zero.

The oscillatory trailing edge on the pulse shown in Figure 10.23a is due 
to the uncompensated cubic distortion, which causes the high- and low-
frequency edges of the pulse spectrum to lag with respect to the center fre-
quency. These delayed frequency components beat with each other to create
an oscillatory trailing edge on the pulse. If prisms are used alone, the com-
pressed pulse is similar to that shown in Figure 10.23a but with the time axis
reversed; that is, the oscillatory trailing edge becomes an oscillatory leading
edge.

The dominant residual distortion of the phase-corrected pulse is that which
is due to the uncorrected negative curvature of the group velocity dispersion
d 4f/dw4 < 0. The effect is to leave small oscillatory wings on the leading and
trailing edges of the pulse, as is evident from Figure 10.23b, and to broaden
the main peak slightly. The lower limit on the duration of pulses compressed
in this manner depends on the specific shape of the input-pulse spectrum and
its precise distortions. For the ideal secant hyperbolic shape input pulse
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Figure 10.22. Plot of the second derivative of phase with respect to frequency for
the prisms (short dash), gratings (long dash), and material (dash-dot) and for the total
phase shift (solid).
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Figure 10.23. Calculated pulse intensity vs. time for the case of compression using
only gratings and material dispersion (a) and for the case of compression using a com-
bination of prisms, gratings, and material dispersion (b).



assumed above, the minimum compressed pulse width is between 6 and 7 fs,
which is in approximate agreement with recently observed pulses compressed
with grating and prism pairs (Fork et al., 1987). In Figure 10.24 the energy
in the pulse peak is plotted versus pulse bandwidth for the case of gratings
alone and the grating-prism pair combination.

3.2 Experiment

The arrangement of gratings and prisms for pulse compression is illustrated
in Figure 10.25. The experimental study was carried out using optical pulses
generated in a colliding-pulse mode-locked laser that contained an intracav-
ity prism sequence identical to the four-prism set shown in Figure 10.25.
These pulses were amplified at a repetition rate of 8kHz in a copper-vapor
laser-pumped amplifier to energies of ~1mJ. The amplified pulses had dura-
tions of 50 fs and a spectrum centered at 620nm. A fraction of the amplified
pulse energy was coupled into a polarization-preserving quartz fiber with core
dimensions of ~4mm and a length of 0.9cm. The optical intensity in the fiber
was 1–2 ¥ 1012 W/cm.
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Figure 10.24. Plot of energy in the main peak of the compressed pulse for the case
of combined prisms and gratings and for the case of gratings alone.



A four-prism sequence was then introduced, so the combined prism and
grating sequence was equivalent to that shown in Figure 10.25. It was then
possible to adjust the spacing of the prism and grating pairs so the maxima
of the six different upconverted intensity traces all occurred at the same phase
delay. Subsequent optimization was done by monitoring the interferometric
autocorrelation (Diels et al., 1978, 1985) trace of the compressed pulse while
adjusting the prism spacing lp and the grating spacing lg. It is not possible to
use the more conventional background-free autocorrelation technique for
pulses this short since even a small relative angle between wave vectors of the
interacting beams introduces measurable error. It was also necessary to use
an extremely thin (32-mm) KDP crystal to double the compressed pulse so as
to minimize distortion by group velocity dispersion within the doubling
crystal.

The interferometric autocorrelation trace obtained on optimizing lp and lg

is shown in Figure 10.26. The prism spacing for this trace was lp = 71cm, and
the grating spacing was lg = 0.5cm. For purposes of comparison we have used
crosses to indicate the calculated maxima and minima for an interferometric
autocorrelation trace of a hyperbolic-secant-squared pulse having zero phase
distortion and a full width at half-maximum of 6 fs. The close fit between the
calculated and experimental interferometric autocorrelation functions indi-
cates an absence of significant phase distortion over the bandwidth of the
pulse. The well-resolved interference maxima also provide a rigorous cali-
bration of the relative delay.

3.3 Applications

The success in generating optical pulses as short as 6 fs opens up the domain
of physical processes that take place in a few femtoseconds to study. A pulse
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Figure 10.25. Combined grating and prism sequence used to remove both quadratic
and cubic phase distortion. The solid line is a reference line. The dashed line is the
path of a plane wave that propagates between the gratings at an angle q with respect
to the normal to the grating faces and between the prism pairs at an angle b with
respect to a line drawn between the prism apices. The plane LL¢ is a plane of sym-
metry for the grating sequence, and the plane MM¢ is a plane of symmetry for the
prism sequence.



that is so short contains frequency components from almost the entire visible
region of the spectrum. Such a pulse is a nearly ideal continuum source. The
well-defined temporal and spectral character of the pulse makes it quite
useful for time-resolved spectroscopic problems.

Ultrashort optical pulse techniques provide a unique means for investigat-
ing nonequilibrium energy redistribution among vibronic levels in large
organic molecules in solution. Previously, the dynamics of induced
absorbance changes have been measured using pump and probe pulses having
the same frequency spectrum. In the experiments described here induced
absorption changes of optically excited molecules over a broad spectral range
of 2400cm-1 centered at the energy of the excitation pulse were measured
while maintaining a 10-fs time resolution. These experiments permit the
observation of time-resolved hole burning and the process of equilibration
to a thermalized population distribution on a femtosecond time sale (Brito
Cruz et al., 1986, 1988b).

The absorption spectrum of a large dye molecule is dominated by vibronic
transitions from a thermalized group state. Typically, these large molecules,
which have a molecular weight of 400 or more, have a large number of degrees
of freedom. The optical absorption coefficient may be written as a sum over
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Figure 10.26. Experimental interferometric autocorrelation trace for a compressed
pulse for lp = 71cm and lg = 0.5cm. The interference maxima and minima calculated
for the interferometric autocorrelation trace for a hyperbolic-secant-squared pulse of
6-fs duration are indicated by crosses. The close agreement between experiment and
theory demonstrates absence of significant phase distortion in the compressed pulse.



transitions from occupied vibrational levels in the ground state to vibrational
levels in the excited state. The absorption coefficient is given by

(7)

where C is a constant, Pi is the thermal occupation probability of the initial
state, M is the dipole moment of the electronic transition, cif is the Franck-
Condon factor, and g is the line shape profile for each transition. The above
expression describes the molecular system in thermal equilibrium. With a
short optical pulse it is possible to excite a band of states that are resonant
with the pumping energy. Before the molecular system comes into equilib-
rium, bleaching is observed in a spectral range determined by the convolu-
tion of the pump spectrum with the line shape profile of the individual
transitions. As time progresses, the system relaxes to thermal equilibrium due
to interaction with the thermal bath. The thermal bath couples to the vibronic
levels by both intramolecular and intermolecular processes. The large number
of degrees of freedom in the molecular backbone can form a thermal bath
within the molecule itself. It is also possible for intermolecular energy trans-
fer to take place on a somewhat longer time scale by collisions, dipole-dipole
interaction, etc.

The experimental apparatus is arranged to perform a pump-probe type of
experiment with one important modification over previous experiments. The
probe pulse is approximately 10 fs in duration and has a significantly broader
bandwidth than the 60-fs pump pulse. The pumping and probing pulses are
derived from the same initial amplified 60-fs optical pulse having an energy
of 1mJ with a center frequency at 618nm. The probe pulse is formed by
passing a portion of the initial pulse through a 12-nm length of optical fiber
followed by a grating-pair compressor. The shorter pulse is then used to probe
the absorption spectrum by passing through the excited sample into a
spectro-meter and diode array. Care is taken to compensate for group veloc-
ity dispersion in the probe optical path. The experiments are performed at a
repetition rate of 8kHz.

The dyes are dissolved in ethylene glycol at concentrations that yield optical
attenuations of less than 1/e when the dye solution is flowed through a jet
with a thickness of 100 to 300mm. The pump pulses are attenuated to levels
that induce absorption changes of a few percent or less.

The data are collected by a differential measuring technique. The pump
beam is periodically blocked by a shutter at a frequency of 10Hz and the
transmitted spectra are recorded in the computer memory in phase with the
chopped pumping beam. Spectra are recorded at different time delays as
determined by the optical path delay, which is controlled by a stepping motor
translation stage. Integration time for a single spectrum is typically 30s.

In Figure 10.27 the absorption spectrum for cresyl violet is plotted before
and after excitation with a 60-fs optical pulse at 618nm for zero relative time
delay. A decrease in absorption is clearly observed in the spectral region close

a c� � � �( ) = -( )ÂC PM gi if if
if
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to the pumping wavelength. In addition, replica holes are seen approximately
600cm-1 above and below the excitation energy. In Figure 10.28 the time-
resolved differential spectra are plotted for cresyl violet. The time delay
between spectra is 25 fs. The central hole and the two adjacent replica holes
are seen to broaden and form a thermalized spectrum in the first few hundred
femtoseconds following excitation.

The mechanism for the formation of the replica holes is readily under-
stood. Measurements of the Raman spectra of cresyl violet reveal the pres-
ence of a strong mode at 590cm-1. In a large molecule with a large number
of degrees of freedom a correspondingly large number of modes can con-
tribute to the absorption spectrum, as illustrated with Figure 10.27. Usually
only a few modes with energies larger than kT change their occupation
number during the optical transition to the excited state. These modes are
called active or system modes and have large Franck-Condon factors. The
strength of the absorption is determined by the Franck-Condon factor cif.
The 598-cm-1 mode appears to be the dominant mode in the absorption spec-
trum as evidenced by bleaching both at the 0–0 transition, which is at the
excitation energy, and at the 0–1 and 1–0 positions of the Franck-Condon
progression.
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Figure 10.27. Plot of the absorbance spectrum of the molecule cresyl violet near zero
time delay before (solid line) and after (dashed line) excitation with a 60-fs optical
pulse.



The relative strengths of the bleaching at the central hole and at the replica
holes can be determined by estimating the Franck-Condon factors in the har-
monic approximation. We calculate c00/c01,10 = 0.26, which is consistent with
the experimental observation value.

The hole observed in Figure 10.28 broadens and relaxes to the quasi-
equilibrium spectrum within the first few hundred femtoseconds. If we
assume that the inhomogeneous linewidth is much larger than the homoge-
neous linewidth, we can estimate the polarization dephasing time T2 from the
width of the hole burned in the spectrum. For the case of a Lorentzian profile,
where Dl is the half-width of the hole, the expression for T2 is given by T2 =
2l2/pcDl. Using the above expression we determine T2 to be 75 fs for cresyl
violet.

Some insight into the energy relaxation of the excited molecules can be
obtained by looking at the time evolution of the differential absorption at
different spectral regions within our range of observation. In Figure 10.29
we plot this evolution for a region 7nm wide around 587, 625, and 654nm.
The curve for 625nm shows the evolution of the population in levels that are
very close in energy to the levels excited by the pump. In this spectral region
an overshoot in the bleaching occurs as a consequence of the spectral hole
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Figure 10.28. Differential absorbance spectra plotted as a function of relative time
delay following excitation with a 60-fs optical pulse at 618nm for the molecule cresyl
violet.



burning and a rapid recovery on the order of 50 fs is observed as the ground
and excited states become thermalized. The bleaching at 654nm also shows
a small overshoot, which recovers as the nonequilibrium distribution transits
to a thermalized distribution in the first few hundred picoseconds. On the
high-energy side at 587nm a slower rise is observed as the molecular distri-
bution thermalizes.
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11
Coherence Properties of the
Supercontinuum Source

I. Zeylikovich and R.R. Alfano

1. Introduction

One of the salient features of laser radiation is coherence which is revealed by
interference in the form of fringes. Coherence phenomena can be observed in
the temporal and spatial domains. The Michelson interferometer can be used
to measure the temporal coherence, and the spatial coherence can be observed
in a Young’s double-slit experiment (Born and Wolf, 1964). The supercon-
tinuum is a novel nonlinear optical phenomena characterized by a dramatic
“white-light” spectrum which can be generated in various media (Alfano and
Shapiro, 1970). There are diverse applications for the supercontinuum source
which depend upon coherence, such as optical coherence tomography (Hartl
et al., 2001), optical frequency metrology (Diddams et al., 2000), communi-
cations (Takara, 2002), and ultrashort pulse generation (Baltuska et al., 2002).
The contrast of the supercontinuum frequency comb longitudinal modes 
generated in fiber depends on coherence degradation (Nakazawa et al., 1998)
which is related to a radio frequency noise component over a broadband 
frequency region of the supercontinuum. The coherent nature of the super-
continuum generation process is important for ensuring the spectral mode
structure of the frequency comb associated with laser pulses to be transferred
coherently to the supercontinuum. The complex degree of mutual coherence
was defined for independent supercontinuum sources (Dudley and Coen,
2002). Recently, the supercontinuum mutual coherence was quantified by
interference between the supercontinuum generated from two separated 
photonic crystal fibers (PCFs) (Gu et al., 2003) and by means of a time-delay
pulsed method of supercontinuum trains generated through a tapered fiber
(Lu and Knox, 2004). In the experimental setups (Gu et al., 2003; Lu and
Knox, 2004), a fixed delay between two interferometer’s beams was used. The
broadband noise in microstructure fiber, related to the mutual coherence, was
studied experimentally and by numerical simulations (Corwin et al., 2003).

This chapter describes some of the recent research works related to the
coherence properties of the supercontinuum generated from bulk and fiber
media.



2. Background

The total field at point P is obtained by a superposition of two waves E1(t)
and E2(t) of frequency w propagating from point sources S1 and S2. The field
at P is given by

(1)

where j1(t) and j2(t) are the phases of the two waves and r1 and r2 are the
distances from P to S1 and S2, respectively. When the phase difference j1(t)
- j2(t) is constant, the two sources are mutually coherent. When the phase
quantity j1(t) - j2(t) varies with time in a random fashion, then the two
sources are mutually incoherent and destroy the interference.

The degree of coherence is obtained from the total field at point P. The
intensity at P for stationary fields is given by

(2)

where I1 = ·|E1|2Ò and I2 = ·|E2|2Ò are the intensities at P due to S1 and S2. The
angle brackets denote the time average. The intensity at P is given by (Born
and Wolf, 1964)

(3)

where t = (r1 - r2)/c and G12(t) = ·E1(t + t)E2
*(t)Ò is termed the mutual 

coherence function. G12(t) is given as

(4)

where 2pnt = (2p/l)(|r1 - r2|) and y12 = arg[G12(t)]. Experiments for G12(t) are
restricted to small path differences defined by Dl << c/Dn. The function G12(0)
is termed the mutual intensity. The function G11(t) = ·E1(t)E1

*(t + t)Ò is known
as the autocorrelation function or the self-coherence function.

Equation (3) is given as

(5)

The complex degree of coherence is defined as

(6)

The intensity at P is written as

(7)

The visibility of the interference fringes, V, is defined as

(8)

which becomes

(9)V I I I I= ( ) +( )[ ] ( )2 1 2
1 2

1 2 12g t .

V I I I I= -( ) +( )max min max min ,

I I I I IP t g t pnt y( ) = + + ( ) ( ) +( )1 2 1 2
1 2

12 122 2cos .

g t t t12 12 11 22
1 2

12 1 2
1 20 0( ) = ( ) ( ) ( )[ ] = ( ) ( )G G G G I I .
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A qualitative description of some of the basic experiments which illustrate
the coherence effects follows. It should be emphasized that the effects of
coherence in a radiation field are all contained in the complex function g12(t).
It is useful to separate the coherence effects into two categories. The first cat-
egory, termed temporal coherence, results from the finite spectral bandwidth
of the radiation, Dn. The second category, termed spatial coherence, results
from angular source size q. The region of high spatial coherence is defined
by the transverse coherence length lt = l/q. Thus, g11(t) (or, simply, g (t)) is a
measure of temporal coherence and g12(0) (or, simply, m12) measures spatial
coherence effects. The free space coherence length lc = ctc is measured as the
full-width-half-maximum (FWHM) of the |g (t)|-function and is defined by
the spectral bandwidth Dn (tc ~ 1/Dn). The coherence length of the super-
continuum is short and of the order of a few microns. It is not necessarily
true that the coherence length is always inversely proportional to the entire
spectral width Dn of the supercontinuum and/or the entire spectrum can be
used to produce the shortest pulse duration. For example, the soliton’s time
jitter and its associated changes in the supercontinuum spectrum as the result
of the pulse noise can cause decoherence in a portion of the entire super-
continuum spectrum.

The supercontinuum is an unusual “white-light” source because of its dis-
tinction with a conventional white-light source (Alfano and Shapiro, 1970).
The supercontinuum has a high degree of spatial coherence resulting in a
highly collimating beam. Moreover, the frequency and time are well corre-
lated in the supercontinuum pulse produced by the self-phase modulation
(SPM) process. The chirped supercontinuum pulse spectrum (w versus t) can
be compressed to the ultrashort pulse due to high spectral phase correlation.

Significant progress in femtosecond (fs) pulse generation from mode-
locked lasers has made it possible to generate optical pulses below 20 fs which
are of a few cycles in duration (Nisoli et al., 1996; Baltuska et al., 2002). This
achievement has resulted in a growing interest in controlling the phase of the
underlying carrier wave with respect to the envelope profile (Jones et al., 2000;
Apolonski et al., 2000). The supercontinuum pulses have become an impor-
tant tool in precision optical frequency measurements (Hartl et al., 2001),
and in the generation of attosecond pulses (Baltuska et al., 2003).

The electric field of an ultrashort pulse in a laser pulse train is given by

(10)

The fields depend on the carrier-envelope phase (CEP) j, determining the
position of the carrier wave (oscillating at frequency w0) with respect to the
amplitude envelope A(t). Due to cavity or material dispersion (n(l)) the group
velocity ug π up (the phase velocity), the CEP is shifted with each successive
laser pulse by

(11)

where L is of round-trip cavity length, and group index is ng = n + w ∂n/∂w.

Dj = -( ) = -( )1 1 0 0u u w wg p gL n n L c ,

E t A t t( ) = ( ) +( )cos .w 0 j
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For a light pulse traveling in a nonlinear Kerr media where the index n =
n0 + n2I(t) is of length l, the net Dj shift becomes

(12)

which can be written as

(13)

In the frequency domain, Dj results in offset frequency fCE from the exact 
repetition rate frep. The frequency of each individual laser mode fm is given by

(14)

where m is the mode number and frep = 1/t is the repetition frequency of the
pulse train with time t between pulses. The offset can be rewritten as

(15)

The linear dispersion does not effect fCE whereas djNL changes the pulse-
to-pulse phase, and fCE causes additional noise, jitter, and CEP coherence
degradation. The pulse-to-pulse evolution of the CEP can be measured and
stabilized by the laser cavity feedback control using the supercontinuum in a
f-to-2f interferometer such that the CEP coherence is maintained (Jones et
al., 2000). Carrier-envelope coherence time was used to quantitatively char-
acterize CEP stability (Fortier et al., 2002). A mode-locked laser pulse train
can produce a phase-locked frequency comb spectrally limited by femto-
second pulse duration. The coherent supercontinuum generation is needed to
produce a spectral comb spanning an octave. The supercontinuum generation
process is particularly important to ensure that the phase coherence is trans-
ferred from laser pulses to supercontinuum pulses.

3. Coherence of Supercontinuum Generated in 
a Bulk Media

The mutual coherence of the supercontinuum pulses independently gener-
ated in a bulk media (CaF2, glasses) was tested by performing an experiment
related to the double-source interference, such as was done by Bellini and
Hansch (2000). Two supercontinuum pulses were independently generated at
different lateral positions in the CaF2 plate by two phase-locked laser pulses
(see Figure 11.1). When the two pump pulses were adjusted for zero relative
delay, clear and stable interference fringes were produced in space by the 
two white-light continua, generating independently, indicating that super-
continuum sources were highly phase-correlated. The interference pattern
was spectrally dispersed with a planar diffraction grating and a lens. It was
possible to produce stable fringe patterns of high contrast over the entire
spectrum demonstrating the high supercontinuum pulses’ mutual (spectral)
coherence over the entire visible spectrum.

Dj = 2p f fCE rep.

f mf fm CE= +rep ,

Dj j j= +d d0 NL .

Dj = - ( )( )( )w ∂ ∂w w ∂ ∂w wn I t n c2 l ,
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There is a substantial difference between the Bellini–Hansch (BH)
approach and the Young- or Michelson-type experiments. In such cases two
spatial portions of the same beam or two time-delayed replicas of the same
pulse are recombined to produce interference. In the Bellini–Hansch experi-
ment the interference fringes appear because of the spatio-temporal super-
position of two white-light pulses that are independently generated at two
separate positions of the CaF2 plate by split pulses. These supercontinuum
pulses were expected to be highly uncorrelated. However, the Bellini–Hansch
experiment has shown that the phase relations of the pump pulses were trans-
ferred to the supercontinuum pulses producing stable interference fringes.

In addition, the collinear generation of supercontinuum pulses in bulk
media was demonstrated using time-delayed pulses from the visible down to
the near-infrared, demonstrating that the mutual coherence of the pump
pulses is fully transferred to the two supercontinua pulses (Corsi et al., 2003).

To characterize interference between independent supercontinuum pulses
the mutual (spectral) coherence function was introduced by Dudley and Coen
(2002). In optical coherence tomography (OCT) (Hartl et al., 2001), the 
high-axial resolution depends on the interference with the pair of the same
supercontinuum pulses (separated into the reference and sample pulses). The
resulting interference pattern depends on time-delay interference that is 
averaged over multiple pairs. To characterize this type of interference in the
time domain, the degree of temporal coherence (|g (t)|-function) can be used.

The “self-coherence” properties of the supercontinuum generated in a thin
plate of different solid materials were experimentally investigated using a 
diffraction-grating-based interferometer (Zeylikovich and Alfano, 2003).
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Figure 11.1. Experimental setup for testing the phase lock between two “white-light”
continuum pulses. The infrared pulses from the laser are split by a 50% beam splitter
(BS) and focused with a variable relative delay by lens L onto a thin CaF2 plate. Inter-
ference fringes between the two emerging continua are detected on a screen in the far
field.



This interferometer does not require a reference beam and is not sensitive to
vibration. The experimental setup to explore the coherence of the supercon-
tinuum source is shown schematically in Figure 11.2(a). A mode-locked 
Ti : sapphire amplifier system provides 200-fs pulses with a repetition rate of
250kHz and about 20MW peak power. The output of the Ti : sapphire laser
centered at 800nm is fused silica, and pyrex glass. A broadband supercon-
tinuum extending from 400nm to 850nm is produced in the 9-mm thickness
pyrex glass plate (PGP). To achieve stable supercontinuum generation the
PGP is rotated at 2Hz. The supercontinuum out of the plate is collimated by
the fused silica lens and is focused by a 3-cm focal-length fused silica lens
into the diffraction grating (100 lines/mm). Diffraction grating (DG) is placed
near the focus of the lens and interference fringes appear by the interference
of zero and first diffraction orders. The interference pattern is captured by
the 14-bits charge coupled device (CCD) camera. The optimal interferomet-
ric fringes are shown in Figure 11.3(a)(insert) together with an intensity dis-
tribution in the x-direction perpendicular to the interference fringes. The
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Figure 11.2. (a) Experimental setup for measuring spatial-temporal coherence of
the supercontinuum generation; and (b) a diagram of the diffraction grating based
interferometer focused by a 10-cm focal length lens into plane-parallel plates of CaF2,
sapphire, BK-7.



fringe visibility is given by Eq. (9) and can be rewritten as

(16)

where V0 = [2(I1I2)1/2/(I1 + I2)], and I1 and I2 are the zero and first diffraction
orders’ intensities. The degree of spatial coherence |m12| = |g12(0)| can be
obtained measuring the fringe visibility at zero path difference (V(0)). Since
|g12(t)| = |m12||g (t)| (where |g (t)| = |g11(t)| is the degree of temporal coherence,
|g (0)| = 1), and from Eq. (16) |m12| can be obtained as

(17)

Using Eqs. (16) and (17), |g (t)| is given as

(18)

Measuring the visibility V(x) of the interference fringes at different x-
positions, the function V(t) can be calculated using Eq. (18).

The degree of spatial coherence |m12| of about 0.34 was calculated by Eq.
(17) using the intensity distribution shown in Figure 11.3(a) (for zero delay
and for zero and first diffraction orders wavefronts shift (dX) of half of beam
diameter). The degree of temporal coherence was calculated by Eq. (18) and
by using the intensity distribution shown in Figure 11.3(a) (for different 
time delays). The result is shown in Figure 11.3(b).

The free-space coherence length lc of the supercontinuum source is defined
by the FWHM of the |g (t)| and is about 1.6mm. The lc is given by (Hartl et
al., 2001)

(19)

where Dl is the spectral bandwidth.

lc = ( )[ ]( )2 2 0
2ln ,p l lD

g t t m t( ) = ( ) = ( ) ( )V V V V12 0 0 .

m12 00= ( )V V .

V V= ( )0 12g t ,
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Figure 11.3. Interferometric fringes are shown in (a) together with an intensity 
distribution in the x-direction perpendicular to the interference fringes. The degree 
of temporal coherence is shown in (b).



The spectrum of the supercontinuum source had a bandwidth Dl of about
140nm centered at 550nm. To achieve a flat spectrum distribution along a
bandwidth Dl the very high intensity part of the entire spectrum was cut off
above 650nm by the short pass filter. A “blue” part of the spectrum of about
450nm was limited by the sensitivity of the CCD detector. The lc was calcu-
lated to be about 0.95mm which is significantly less than the experimental 
1.6mm. The “effective” spectral bandwidth (Dl)eff of the supercontinuum
source was estimated to be 83nm (using Eq. (19)). To explain the reduction
of the spectral bandwidth the degree of spatial coherence over the entire
visible spectrum was measured.

The interferometer was combined with the spectrograph and the interfer-
ence fringes were set parallel to the dispersion direction of the spectrograph
by rotating the DG by 90°. The interference spectrum was registered by the
CCD camera. The spectral interference is shown in Figure 11.4. The inten-
sity distributions at different path differences were taken in the direction per-
pendicular to the spectrograph dispersion and correspond to the wavelengths
specified in the caption. Using these intensity distributions the degree of spec-
tral spatial coherence |m12(l)| was calculated using the intensity distribu-
tion shown in Figure 11.4 at a zero path difference of 0.45 at 550nm, of 0.31
at 650nm, and of 0.19 at 450nm. The average of these numbers, of about
0.31, is closed to the |m12| = 0.34. The degradation of the |m12| can be associ-
ated with spectral phase and amplitude fluctuations.

4. Coherence of Supercontinuum in Photonic Crystal
Fibers (PCFs)

4.1 Supercontinuum Generation in PCFs

The supercontinuum generation is sensitive to input pulse noise which is 
of particular importance for applications requiring stability over an octave-
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Figure 11.4. Supercontinuum spectral interference fringes from a pyrex glass plate.



spanning supercontinuum sources, for such applications as metrology which
requires highly coherent supercontinuum light with limited pulse-to-pulse
variations and reduced timing jitter. The fluctuations in both the temporal
and spectral properties were studied by Dudley and Coen (2002a,b) using
numerical simulations of supercontinuum generation in PCFs in the presence
of noise on the input pulse. By quantifying the phase fluctuations using the
mutual degree of coherence, the influence of the input pulse wavelength and
duration on the supercontinuum coherence was calculated, allowing optimal
experimental conditions for coherent supercontinuum generation to be iden-
tified. Quantum noise was modeled phenomenologically by including in 
the input field a noise seed of one photon per mode with random phase.
Simulation parameters were used for a 10-cm tapered fused-silica strand of
2.5-mm diameter with a Zero Dispersion Wavelength at 780nm, in which
supercontinuums spanning more than an octave were generated. Dudley and
Coen (2002a) simulations were first carried out with 10-kW peak power,
150-fs duration (FWHM) hyperbolic secant input pulses injected at 850nm
in the anomalous dispersion regime.

The simulations allow the physical origin of several major spectral and
temporal features to be identified. In particular, with an anomalous-
dispersion regime input, nonlinear and dispersive interactions lead to rapid
temporal oscillations owing to ultrafast modulation instability (MI) which
initiates a multisoliton generation. These solitons separate temporally from
the residual input pulse by different amounts that are due to group-velocity
walk-off. The Dudley and Coen (2002b) results also show that the super-
continuum pulses that are generated are affected by significant spectral and
temporal jitter from run to run. As well as causing significant averaging of
any integrated temporal or spectral characteristics that would be experimen-
tally measured, this jitter is associated with coherence degradation caused by
severe fluctuations in the spectral phase at each wavelength.

The modulus of the complex degree of first-order coherence calculated
over a finite bandwidth at each wavelength in the supercontinuum is given by
(Dudley and Coen, 2002a)

(20)

The angle brackets denote an ensemble average over independently generated
supercontinuum pairs [E1(l, t)E2(l, t)] and t is the time measured at the res-
olution time scale of the spectrometer. The ensemble average was applied to
the results of many simulations with different random quantum noise.

The coherence, |g12
(1)| at t1 - t2 = 0, was calculated which would correspond

to measuring the fringe visibility in a two independently generated super-
continuum sources’ interference. During the initial stage of evolution, at z =
2cm, the input pulse undergoes significant compression and associated spec-
tral broadening and |g12

(1)| ª 1 over most of the supercontinuum spectrum. For
z = 5cm, where the effects of MI and pulse breakup were clearly manifested
on the temporal intensity profile, there was significant coherence degradation,

g t t E t E t E t E t12
1

1 2 1 1 2 2 1 1
2

2 2
2 1 2( ) -( ) = ( ) ( ) ( ) ( )[ ]l l l l l, , , , , .*
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with a reduced |g12
(1)|. The coherence degradation also increases for longer z =

10cm at the fiber output, |g12
(1)| << 1 over most of the supercontinuum.

Superior coherence properties were shown to be expected for supercontin-
uum generated with shorter input pulses where SPM plays a more significant
role in the spectral broadening and the effects of MI are reduced. This result
was confirmed for 150-fs input pulses with those obtained using shorter input
pulse durations of 100 fs and 50 fs. Although the spectral broadening in all
cases were comparable, MI on the temporal profile is less apparent as the
input pulse duration was reduced, and shorter input pulses were clearly seen
to lead to an improved coherence, with |g12

(1)| ª 1 over more than an octave for
the shortest input pulses of 50 fs. In addition, for a pulse with an input wave-
length of 740nm in the normal-dispersion regime in which MI was com-
pletely inhibited, there was negligible coherence degradation. The generated
spectral width of 350nm at the 20-dB level was, however, significantly less
than that obtained with an anomalous-dispersion regime pump. The 
significant coherence degradation observed at 780nm (the ZDW) and 820nm
(anomalous dispersion) was consistent with the increased influence of MI at
these longer wavelengths. For frequency metrology application, it is clear that
supercontinuum must be generated where coherence degradation is mini-
mized and where supercontinuum spans over an octave.

4.2 Supercontinuum Coherence Properties in a PCF

The mechanisms responsible for supercontinuum coherence degradation near
and far from the ZDW are still not completely understood. Both temporal
and spectral coherence time-delay resolved measurements provide more 
complete information on supercontinuum coherence that is important for 
different applications. The supercontinuum temporal and mutual coherence
degradation near and far from the ZDW with a novel approach for produc-
ing spectral interference in the fiber output was investigated (Zeylikovich 
et al., 2005). The experimental setup is shown in Figure 11.5. An Er :fiber 
oscillator/amplifier/frequency-doubling system (IMRA femtolite “C” series)
provides 120-fs pulses centered at 1560nm and 90-fs pulses centered at 
780nm with a repetition rate of 48MHz and about 40/20mW average power
at 1560/780nm. Pulses were coupled into a 1.5m-long section of PCF 
(purchased from Crystal Fibre A/S). The ZDW was located at 740nm.

The fiber consisted of a fused silica core with a diameter of 2mm, embed-
ded in a fused silica cladding of air-filled cylinders parallel to the core in a
hexagonal pattern. Spectra of the fiber output were analyzed using an optical
spectrum analyzer (OSA, ANDO AQ-6317). The fiber output in time domain
was studied using the rapid scanning autocorrelator (FR-103XL) that utilizes
a background-free, second-harmonic generation (SHG) for the measurement
of the pulse intensity autocorrelation function. The coherence length of the
supercontinuum light was measured using a diffraction-grating-based inter-
ferometric autocorrelator (Zeylikovich et al., 1995).
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The soliton number N is an integer closest to the parameter (Agrawal,
2001) A0 = (gP0T0

2/|b2|)1/2, where g = n2w/cAeff is the nonlinear coefficient equal
to ~0.1W-1 m-1 at 800nm, P0 is the peak power, T0 = TFWHM/1.76 is the pulse
duration, and b2 is the group velocity dispersion coefficient (~ -0.015ps2/m
at 800nm).

At 22-W peak power, distinct Stokes and anti-Stokes Raman peaks at 
785mm and 778mm were observed, respectively, followed by the generation
of the strong distinct second component at 772nm and the third anti-Stokes
component (see Figure 11.6). As the power was increased to 45W, a second
separate peak split off from the pump. The generation of a second soliton
peak was accompanied by the appearance of a blue-shifted peak around 
677nm. Increasing the power from 45W to 90W pronounced the first soliton
frequency shift up to 50nm, followed by the 12-nm shift of the blue-shifted
peak with the power increasing. As the input power was increased further to 
140W, the spectral peak at 830nm was split into two spectral peaks at 
812nm and 856nm. The temporal behavior of the solitons was obtained
using a SHG autocorrelator. One was used to measure the solitons’ time-
delay (depending from the pump peak power) and jitter. The autocorrelation
results show the appearance of new pulses (solitons) generated in the fiber
that propagate at different speed. The results show run-to-run variations in
the structure of the observed temporal intensity. The estimated value of the
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observed jitter Dt is about 0.1ps. A time-integrated measurement of the jitter
averages out the jitter that occurs on a time scale shorter than the device inte-
gration time.

4.2.1 Supercontinuum Self- and Mutual Coherence in the PCF

The coherence length of the supercontinuum light for the 140W peak power
was measured by a diffraction-grating-based autocorrelator (Zeylikovich et
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al. 1995). The measured lc was about 12mm in good agreement with the
Michelson interferometer measurements. The theoretical lc is given by Eq. (19)
which is derived for a transform-limited Gaussian pulse. The spectrum of the
supercontinuum pulse extends over 100nm. The “effective” spectral band-
width (Dl)eff of the supercontinuum source (with the equivalent Gaussian
spectrum bandwidth) was estimated to be 20nm giving, from Eq. (19), a the-
oretical coherence length of 12mm. To explain this difference between the 
estimated “effective” spectrum bandwidth (~20nm) and the experimental
value of the supercontinuum spectrum bandwidth (~100nm), the experiments
were performed using the spectrograph combined with the autocorrelator.
The near zero-delay interferometric region produced by the DG-based 
autocorrelator was focused perpendicular to the spectrograph entrance slit. A
portion of the time-delayed interference spectrum was registered by the CCD
camera (Figure 11.5). The two-dimensional spectral interference is shown in
Figure 11.7(b)–(e). The spectra (Figure 11.7(d), (e)) reflect interference in the
normal dispersion region while Figure 11.7(b) and (c) are in the anomalous
dispersion region.

The condition for maximum intensity of the two-dimensional spectral
interference is given by
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(21)

Integer numbers m = 0, ±1, ±2, ±3 are interference orders. Figure 11.7 has a
wavelength scale along the x-axis. The fringes should then appear linear, ori-
ented under the certain angle to the x-axis (as observed in Figure 7(d)). The
angle between the mth interference fringe and the x-axis is given by

(22)

where D = dl/dx is a spectrograph dispersion and K is a calibration 
coefficient.

The distance dy between two interference fringes along the y-direction is

so that it should increase with increasing l and this is opposite to what is
observed in Figure 11.7(d) and (e). The blue-shifted spectral components
(nonsolitonic radiation (NSR)) produce fringes in the regions of Figure
11.7(d) and (e). It is assumed, that a dispersive wave (Dudley and Coen,
2002a) was a starting process for the NSR. Under certain pump power, the
dispersive wave was parametrically coupling with the soliton through the
four-wave mixing. In this case, the four waves are generated at well-defined
angles. In addition, when an intense ultrashort laser pulse propagates through
a medium, it distorts the atomic and molecular configuration which in turn
changes the refractive index. This effect changes the phase, amplitude, and
frequency of the incident laser pulse. The phase change can cause a frequency
sweep within the pulse envelope, producing SPM and a well-defined tempo-
ral chirp. Both of these processes can change the spectral interference fringe
shape and spectral period. A detailed analysis is needed to explain the shape
of fringes observed in Figure 11.7(d) and (e).

The spectral interference shown in Figure 11.7(d), (e) clearly shows the high
degree of spectral coherence for the NSR (Figure 11.7(e), (d)), and the coher-
ence degradation in the pump (Figure 11.7 (c)), and the soliton’s spectral
(Figure 11.7(b)) regions. The spectral coherence degradation observed in
Figure 11.7(b), (c) is associated with run-to-run fluctuations in the spectral
phase at each wavelength, and temporal coherence degradation is associated
with the temporal jitter.

Clarification is needed to distinguish the “same” pulse spectral coherence
and the “pulse-to-pulse” mutual coherence shown by the Bellini–Hansch
experiment. In OCT (Hartl et al., 2001), the high-axial resolution depends
on the interference with the pair of the same supercontinuum pulses (sepa-
rated into the reference and sample pulses). The resulting interference pattern
depends on time-delay interference that is averaged over multiple pairs. If a
single pulse spectral interference is considered (without averaging over mul-
tiple input pulses), then V(l) = 1 which reflects the fact that a light pulse is
always self-coherent. The soliton’s time jitter and associated changes in the
supercontinuum spectra as a result of input pulse noise cause decoherence.

d dt ly c= = ,

tan ,am mD K=

wt p= = ± ±2 0 1 2m m, , , ,where K
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In this case, Dl used for the lc calculation needs to be estimated by the FWHM
of the spectrally coherent regions (Figure 11.7(e) and (d)).

4.2.2 Mutual (Axial) Supercontinuum Coherence in the PCF

Two time-delayed femtosecond pump pulses propagating axially in the PCF
with the group velocity ug, produce two independent supercontinuum pulses
(Zeylikovich et al., 2005), as shown in Figure 11.8. The E1(t) and E2(t - t)
are amplitudes of the generated supercontinuum pulses, separated in time by
the fixed time interval t. The G1(w, z) and G2(w, z - ugt) exp(-iwt) are the spec-
tral amplitudes of these dual-pulses generated in fiber at lengths z and
z -ugt. At the output of fiber, the dual-pulses produce spectral interference pat-
terns with intensity of I(w, t), where wavelength peaks depend upon time delay:

(23)

where

and K|g12(w, t)| is the contrast of the multiple-frequency channels. The coef-
ficient K is given by
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and the complex degree of mutual (axial) coherence between the independent
axial supercontinuum sources is

(24)

where L is the fiber length. The angle brackets denote an ensemble average
over independently generated pairs of supercontinuum spectra.

In the spectral domain, the period of the spectral interference fringes is 
W = 1/t. The frequency interval can be changed by variation of the time 
delay t. The output supercontinuum spectrum from the PCF for the 120-fs
pulses centered at 1560nm with 500-W peak power is shown in Figure
11.8(a). The parameter A0 was calculated to be 1.6 (N = 2) for g ~ 0.05W-1

m-1, ZDW l = 740nm, and |b2| ~ 0.2ps2/m at 1550nm.
The output spectrum for two pump pulses under the same conditions as

Figure 11.9(a), separated by the time-delay t ~ 6.7ps, is shown in Figure
11.9(b). The spectrum now consists of numerous well-defined frequency
peaks. The use of two pump pulses did not change the spectrum envelope. In
this case, the degree of spectral coherence (DSC) of the generated soliton was
high (|g12(w, t)| ~ 0.98), which is demonstrated by the high contrast of the
spectral interference (Figure 11.9(b)). It is assumed that the high DSC of the
soliton is due to the fact that the pump wavelength is far from the ZDW 
(l = 740nm). In this case, the generated supercontinuum is much less sensi-
tive to noise on the input pulse and coherence degradation.

The corresponding spectra generated by two 90-fs pulses at 780nm near
the ZDW separated by t ~ 3.3 s is shown in Figure 11.9(c). The high contrast
(|g12(w, t)| ~ 0.8) spectral interference in Figure 11.9(c) is observed only in the
region close to the pump wavelength, and the low contrast (|g12(w, t)| ~ 0.05)
is observed in the soliton’s spectral region. The increase in two pulses’ time-
delay up to 6.6ps led to the generation of the spectrum shown in Figure
11.9(d), which is associated only with self-phase modulation accompanied by
the high DSC (|g12(w, t)| ~ 0.8). The use of two delayed pump pulses near the
ZDW significantly changed the generated spectrum, as distinct from the two
pump pulses spectrum envelope at 1550nm.

Numerical simulations (Dudley and Coen, 2002a) show that the main
source for the soliton’s temporal jitter arises from the modulation instability
MI effects in the presence of input pulse noise and results in low coherence.
The MI bandwidth B and soliton order N depends inversely on the amount
of group velocity dispersion (GVD), |b2|. The GVD increases for larger 
wavelengths, thereby B and N in turn decrease. The B and N can be calcu-
lated from the relationships (Agrawal, 2001):

(25)

Since (g/|b2|)1/2 for 800nm is approximately five times greater than for the 
1550nm wavelength, the soliton’s temporal jitter is much larger for the 
800nm pump when compared with the 1550nm pump wavelength.
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H. Takara (2002) used picosecond lasers with a repetition rate of ~10GHz
to create multiple optical carriers for the wavelength division multiplexing
(WDM) network. It is much simpler to produce a broadband supercontinuum
by femtosecond pulses; however, the repetition rate of femtosecond lasers is
limited (~100MHz). This sets up a frequency separation limit between the 
frequency channels, being no more than 100MHz. This range is not enough
to separate the channels for the WDM network and then transmit informa-
tion. In our approach, the coherent generation of a large number of frequency
channels, at 100GHz appropriate for the WDM network, is demonstrated by
a pair of time-delayed pump pulses.

5. Conclusion

This chapter presents some of the salient properties related to the coherence
of the supercontinuum laser source generated in bulk and fibers. In fibers with
an input anomalous-dispersion region, the supercontinuum pulses that are
generated are affected by significant spectral and temporal jitter from run to
run, due to MI on the temporal profile and multiple solitons generation 
producing coherence degradation. The soliton’s time jitter, and associated
changes in the supercontinuum spectra as a result of input pulse noise, cause
decoherence in a portion of the entire supercontinuum spectrum and, as a
consequence, the coherence length of the supercontinuum is inversely pro-
portional to the coherent (“effective”) spectral bandwidth (not to the entire
spectrum). The solitons’ spectra have a low coherence when the soliton’s wave-
length is close to the ZDW and a high degree of spectral coherence when the
soliton’s wavelength is far from the ZDW. Excellent coherent properties can
be achieved for input pulses of duration ~50 fs (or less), with a fiber’s length
shorter than 5cm, and/or propagating in the normal-dispersion region. The
method of spectral interferometry is a convenient way of quantifying the
coherence degradation across supercontinuum spectra generated in fibers and
bulk media. The coherent supercontinuum generation of a large number of
frequency channels at 100GHz appropriate for the WDM network has been
demonstrated using a pair of time-delayed pump pulses. The well-defined cor-
relation of the frequency versus time behavior in the supercontinuum over a
large frequency bandwidth will play an important role in many diverse appli-
cations which depend upon coherence.
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12
Supercontinuum Generation in 
Materials (Solids, Liquids, Gases, Air)

Summary

This chapter highlights some of the key research papers studying the gener-
ation of supercontinuum in a variety of materials (solids, liquids, and gases)
since the advent of available femtosecond mode-locked lasers. The focus of
most of this research was on extending and controlling the spectral broad-
ening and the involvement of self-focusing to change the spatial profile. Three
types of femtosecond lasers have been primarily used in supercontinuum gen-
eration: Ti : sapphire lasers operating at about 800nm, Cr4+ : forsterite lasers
operating at about 1200nm, and fiber lasers operating at about 1500nm. The
supercontinuum spectral extending over 300nm to 4500nm has been demon-
strated in materials. Polarization excitation can be used to control and modify
the supercontinuum generation and broadening.

One of the major aims of many of the research papers presented here was
to create an ideal “white light” continuum laser source. The width of the con-
tinuum spectral band was found to increase with band gap energies of the
materials, where CaF2 and LiF are among the best for solids, water for liquids,
and argon for gases. The supercontinuum appears to be a “universal phe-
nomenon” created in all transparent Kerr c3 materials using intense ultra-
short laser excitation pulses with duration in the picosecond to femtosecond
range.
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13
Supercontinuum Generation in
Microstructure Fibers

Summary

Over the past four years, there has been a surge of activity in the supercon-
tinuum field since the introduction of various types of microstructure fibers.
The main reason for this great interest worldwide is the low femtosecond
pulse energies (~1nJ) required to generate the supercontinuum. The pulses
from femtosecond oscillators can conveniently be used to produce supercon-
tinuum. The microstructure fibers provide a micron to submicron size guide
over a long distance for a femtosecond pulse to travel along. In comparison
to supercontinuum generated in bulk media, there is a limited interaction
length, ~5cm for supercontinuum. In addition, self-focusing (beam breakup)
in bulk requires larger energies in the 100mJ to mJ range for supercontinuum
production. Also, the fibers have unique dispersion characteristics which
provide for zero dispersion, and anomalous dispersion (negative) regions to
keep the supercontinuum and pump femtosecond pulses from spreading and
overlapping over a longer distance to interact further and extend the super-
continuum broadening.

There are several different types of microstructure fibers being used to
produce supercontinuum. The most commonly used are: photonic crystal
fibers (PCFs), birefringent photonic crystal fiber, tapered fibers, hollow
(holey) fiber arrays, simple and multiple submicron size core fibers, and doped
silica fibers.

The PCF has a central region of pure silica core surrounded by lower index
air holes. Light is guided by total internal reflection and in a step index fiber
due to the refractive index difference between core and air holes. An ellipti-
cally shaped core instead of a circular core induces a high birefringence which
can preserve the state of polarization of the pump and supercontinuum
pulses traveling in the fiber. A tapered silica fiber consists of a long, narrow
waist region, ~2mm, connected on both sides by larger size diameter fibers.
High intensity can be produced in the waist region.

The most commonly used femtosecond laser sources for supercontinuum
generation in fibers are: Ti : sapphire, Cr4+ : forsterite, erbium fiber, and ytter-



bium fiber lasers. For the erbium fiber laser pulses of 60 fs, 200pJ at 1560nm,
produces a supercontinuum over an octave spanning from 400 to 1750nm in
(SF6) silica fiber. For a Cr4+ : forsterite laser pulse of 30 fs, 0.6nJ at 1250nm,
produces a supercontinuum from 1mm to 2mm in nonlinear glass fiber. Using
a Ti : sapphire laser pulse of 4nJ at 800nm in a tapered fiber of 2mm diam-
eter and 90mm in length, a supercontinuum over two octaves broad was gen-
erated covering 370 to 1545nm. For Ti : sapphire pulses of 150 fs, 10nJ at 820
nm, can produce a supercontinuum in the ultraviolet in a silica hollow fiber.
Using two cascaded hollow fibers filled with argon of 60cm length with pulse
compression, the shortest pulses of 3.8 fs of 100mJ were achieved with the
supercontinuum spanning over 500THz (400nm to 1000nm) using 25 fs, mJ
pump pulses from the Ti : sapphire amplifier system operating at 1kHz.

In microstructural fibers, when pump wavelength lies in an anomalous dis-
persion region, it is the solitons that initiate the formation of the continuum.
In a normal dispersion region, self-phase modulation is the process that 
initiates the continuum generation. The combination of four-wave mixing and
Raman processes extends the spectral width of the continuum. In that regard,
the pulse duration of an ultrafast laser determines the operational mechanisms
—for 10 fs to 1000 fs laser pulses, self-phase modulation and soliton genera-
tion dominates; while for pulses >30ps, stimulated Raman and four-wave
mixing play a major role in extending the spectra. The supercontinuum spectra
can span more than a two optical octave bandwidth spread from 380nm to
1600nm using 200 fs pulses with energy in the tens of nanojoules. The span
over an octave (i.e., 450nm to 900nm) is important in controlling the phase of
the carrier wave inside the pulse envelope of a mode-locked pulse train using
the f and 2f waves from a supercontinuum in an interferometer.

The selected references in this chapter describe some of the salient features
of supercontinuum generation and applications using microstructure fibers.
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14
Supercontinuum in 
Wavelength Division Multiplex
Telecommunication

Summary

The increasing demand for large capacity optical communication needs to
incorporate both wavelength and time multiplexing. The supercontinuum
offers both capabilities. Major advances in multiple wavelengths, division
multiplexing for communication applications, have been achieved by several
Japanese groups using the supercontinuum. This chapter highlights the ref-
erences of researchers who are working toward achieving the transfer of
extremely large amounts of coded information to meet tomorrow’s demands.
The supercontinuum produced by pulses from mode-locked lasers offers an
effective way to obtain both the wavelength and time channels, because of
the ease of generating thousands of optical frequencies and maintaining
coherence from pulse to pulse.

Multi-terabits/s (3.24Tbits/s) transmission over 80km distances has been
achieved using only a limited number of wavelength channels ~81 from the
supercontinuum. A 1.5ps pulse from a mode-locked diode laser combined
with an erbium amplifier produces the supercontinuum which is multiplexed
to 40Gbits/s from time multiplexing the pulse train from 10GHz to 40GHz.

There are many challenges to overcome to improve speed—such as reduc-
ing a bit period time to ~1ps and increasing the number of coherent wave-
lengths in the supercontinuum, generated by femtosecond pulses from
compact high repetition rate mode-locked lasers. One needs to use 30 fs pulses
at a bit period time of ~1ps and thousands of wavelengths coding from the
supercontinuum to achieve pentabits/s transmitted over tens of kilometers.
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15
Femtosecond Pump:
Supercontinuum Probe for
Applications in Semiconductors,
Biology, and Chemistry

Summary

Immediately following the supercontinuum discovery in 1969, it was realized
that the supercontinuum, then called a “white light continuum,” was an ideal
light flash for probing transient phenomena upon photoexcitation of mate-
rials. This discovery of the picosecond continuum advanced conventional
flash lamp and nanosecond laser photolysis by over one thousand-fold in time
resolution for chemistry and biological applications. Soon afterward, carrier
and phonon dynamics in semiconductors and dielectrics were investigated 
on the picosecond and nanosecond time scales to obtain information on
intra- and intervalley hot electron transitions which involved nonradiative
vibrational and optical phonon dynamics. With the advent of femtosecond
mode-locked pulse lasers (CPM dye and later Ti : sapphire), the supercon-
tinuum generated by femtosecond pulses was extended into the femtosecond
time scale to probe events with even finer time resolution, for better under-
standing the underlying fundamental processes of the excitation that live in 
materials.

This chapter gives a selected sample of references to the numerous research
works probing faster processes in biology, chemistry, and solid state physics
using a femtosecond pump–supercontinuum probe approach.

In chemistry, femtosecond photo-induced intramolecular electron transfer,
charge transfer, and the effect of solute–solvent dynamics on the absorption
transitions of the solute are being studied on femtosecond to picosecond time
scales. The cooling dynamics of the “hot” excited solute in the S1 state results
in a 50-fs internal conversion in the S1 state by intramolecular vibrational
thermalization followed by a solute-to-solvent energy transfer on the order
of ~2ps which proceeds through the hydrogen bonds. The ultrafast electron
transfer injected from the excited dye to a TiO2 semiconductor nanoparticle
was reported to occur on a 6-fs time scale.

In the solid state, research concentrated on heavy and light hole dynamics
in quantum wells, quantum dots, and bulk semiconductors, and probing
quasi-particle and electron temporal behavior near Fermi levels of Fermi



liquids and non-Fermi liquid states in superconductors. The relaxation of
photoexcited electrons near the Fermi level of metallic silver nanoparticles
occurs with complex relaxation behavior for times ~670 fs to 4ps. In porous
silicon, coherent optical phonons were attributed to the large 500-fs compo-
nent of the transmission component arising from the size of crystallized
regions. The nonequilibrium carriers at the semicondutor–metal interface
occur on the femtosecond scale for a carrier to penetrate through the Schot-
tky barrier.

In the biological chemistry area, the photo-isomerization dynamics was
studied by Raman with a supercontinuum probe pulse with >250 fs to obtain
more information between trans- and cis-forms and the charge transfer states.

The next era of pump-supercontinuum probe usage will undoubtedly be
focused on ultraviolet and X-ray attosecond pump pulses with a supercon-
tinuum to probe ever finer times and coherent processes of electron motion
in atoms and the molecules and carriers’ linear and angular momentum 
relaxation. One anticipates the study of Auger events of the electron bond
rearrangments of the inner shell transitions and vacancies in atoms. The
attosecond time scale of orbiting electrons about nuclei and for electron tran-
sitions between inner shells will be investigated with sub-femtosecond super-
continuum and attosecond pulse excitation to answer more on the quantum
and relativistic events.
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16
Supercontinuum in 
Optical Coherence Tomography

Summary

This chapter presents references to research in ultrahigh resolution optical
coherence tomography (OCT) imaging using the supercontinuum source. The
images are formed from the backscatter ballistic light from refractive index
changes inside the materials, primarily tissues. The axial resolution of the
OCT images is dependent on the bandwidth of the illumination source. The
supercontinuum is the best and most convenient way to produce the widest
bandwidth for OCT. Presently, the longitudinal resolutions of 2.5mm in air
and ~2mm in tissue have been achieved using the supercontinuum in OCT.
The high transmission zone for deep penetration of tissue for imaging is from
700nm to 1300nm. Laser sources being used at different central wavelengths
which cover the absorption regions of tissue for OCT imaging are: Ti : sap-
phire (centered at 800nm), neodymium glass (centered at 1060nm), Cr4+ :
forsterite (centered at 1300nm), and Cr4+ :YAG (centered at 1500nm). A
compact handheld OCT unit, including a femtosecond source, microstruc-
ture supercontinuum fibers, transmission fibers, and scanning units for
remote diagnoses of tissues and structures of surfaces, is under development
and investigation for medical and nonmedical applications.
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17
Supercontinuum in Femtosecond
Carrier-Envelope Phase Stabilization

Summary

One of the newest uses of the supercontinuum in conjunction with a mode-
locked laser is in metrology, to achieve better, more accurate clocks and
timing. There is a worldwide effort to produce more accurate measurements
of frequency where the fractional change in frequency Df/f ~ 10-16 to 10-18 is
sorted. Pulses from mode-locked lasers have been used in the past as a 
frequency comb since the mode under laser profile is spaced by exact multi-
ples of the repetition frequency frep = c/2nL. The repetition rate of pulse 
circulating in the cavity, ~40MHz to 1GHz, depends on the laser cavity
length, L.

As ultrafast pulses generated by mode-locked lasers become shorter in time
duration, ~20 fs, the relative phase between the peak of the envelope and the
underlying carrier wave becomes important for the phase stabilization of
optical frequencies in the pulses to make more accurate frequency measure-
ments and intense pulses for nonlinear optical effects. The control of the
carrier-envelope phase (CEP) in a mode-lock laser pulse train with the help
of the supercontinuum results in more accurate techniques for frequency
metrology for clocking and enhanced optical nonlinear applications.

There are two parts in a laser pulse—an envelope profile and a carrier wave.
The carrier wave propagates with phase velocity, Vp, and the envelope profile
propagates with group velocity, Vg. These velocities are usually different
because of dispersion given by n(l). The maximum electric strength depends
on the exact portion of the carrier wave electric field with regard to the pulse
envelope here called carrier-envelope offset (CEO).

The references to papers in this chapter describe how to phase stabilize the
laser pulse in a mode-locked train. A good number of researchers use the
supercontinuum to accomplish this feat.

Due to cavity dispersion, Vg π Vp, the laser pulse envelope profile is not
fixed to the underlying carrier frequency but shifted. There is a change of
phase called the CEP slip DjCEO, between the carrier phase and envelope peak
for each successive phase in the mode-locked train, which is given by



In the frequency domain, DjCEO results in offset frequency fCEO from the exact
repetition frequency frep. The comb frequency of the pulse in the mth mode
is given by

The most common scheme to obtain fCEO is to beat f2m with 2fm in an inter-
ferometer. This is where the supercontinuum comes into play. The comb con-
sists of lines located at fm = mfrep + fCEO at the low-frequency portion of the
supercontinuum spectrum and at f2m at the high-frequency portion of the
supercontinuum spectrum. The mode at f2m is combined with the doubled fre-
quency of supercontinuum at fm given by 2fm = 2mfrep + 2fCEO. This process is
described at f to 2f heterodyne techniques. Beating these waves in the comb
at f2m and 2fm by heterodyning gives

The difference between f2m = 2mfrep + fCEO and 2fm is fCEO. One can adjust fCEO

toward zero. The one octave frequency span in the supercontinuum is used
where the red (say at 1040nm) is doubled by second harmonic generation
(SHG) and the blue (say at 520nm) is used in an interferometer to obtain the
offset fCEO and DjCEO change. To do this, the laser cavity length and mirror
alignment are adjusted to compensate for fCEO. The laser pulse from a mode-
locked laser train is spectrally broadened to form the supercontinuum in a
microstructural fiber. The output is fed into an f to 2f interferometer loop,
where the supercontinuum is split into a red pulse and a blue pulse spaced
by 2f. The red pulse is first converted by SHG in the loop and combined to
be heterodyned with the blue portion of the supercontinuum at the interfer-
ometer loop. The combined beam is filtered with 10nm bandwidth filters 
(at 520nm).

The output of a mode-locked laser have pulses spaced by a repetition rate,
frep. These pulses form a comb of optical frequencies given by the mode under
the spectral timing and clocking with the accuracy of Df/f ~ 10-14, see Chapter
19. The difference is that the phase velocity of the carrier wave and the group
velocity of envelope causes a carrier-envelope frequency offset shift, fCEO. The
offset frequency is controlled and deleted by heterodyning beating. The offset
frequency offset can be stabilized and adjusted using a feedback loop to
adjust either the intensity of pulse or a cavity mirror alignment. The adjust-
ment of jCEO can make the peak of a carrier field coincide with the peak of
the envelope to produce a more reproductable pulse to pulse with a higher
intense field in the train for nonlinear optics and atomic physics applications.
The phase stabilization can be used to control and achieve attosecond jitter
resolution for probing the electron motions in atoms. It has been found that
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one of the key processes to achieve attosecond pulse reproductability for
CEO is the supercontinuum where f to 2f waves in the supercontinuum are
beaten together in an interferometer with a feedback loop.
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18
Supercontinuum in 
Ultrafast Pulse Compression

Summary

The ultrawide spectral width of the supercontinuum supports the frequen-
cies required to produce the ultimate short pulse. The references in this
chapter demonstrate how the supercontinuum can be used to generate sub-
10-fs ultrashort pulses using pulse compression. Pulses as short as 3.8 fs with
energies up to 15mJ have been generated using the supercontinuum, using two
cascaded hollow fibers with adaptive pulse compression. The supercontin-
uum spanned from 530nm to 1000nm. Using sub-10-fs pulses, care is needed
to prevent a time broadening effect when traveling through optics (lenses,
prisms, plates, and coated dielectric mirrors) and air itself. One needs to
reverse chirp the pulses to compensate for time-broadening effects in mate-
rials. With spectrally wider supercontinuum pulses, compression down to 1
fs and possibly even into attosecond regions may be possible over the next
decade using uv pulses.
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19
Supercontinuum in Time and
Frequency Metrology

Summary

The references in this chapter extends the concept using the supercontinuum
for phase stabilization of mode-locked lasers described in Chapter 17. As
shown by the research references, there is a push to produce more accurate
measurements of frequency to develop clocks with instability down to 
~10-17 at 1 s. State-of-the-art standards, based on atoms, ions, and molecules,
exhibit excellent stability to achieve ultrahigh reproducibility and accuracy
for clocks. The new concept added to past clock technology is based on “fem-
tosecond optical frequency comb generation” with regular spaced sharp lines
at well-defined frequencies. The pulse from a stabilized mode-locked laser is
ideal for a “frequency comb.” The mode spectrum of the femtosecond laser
with the supercontinuum can generate optical pulse spanning over two
octaves in bandwidth over the visible and near infrared. The optical hetero-
dyning portion of the supercontinuum produces added stability for frequency
measurement with a fractional frequency noise on order of 6 ¥ 10-16 in 1 s of
averaging over the 300THz bandwidth. With a 10-18 frequency accuracy,
small gravity changes can easily be detected.
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20
Supercontinuum in 
Atmospheric Science

Summary

Intense ultrafast laser pulses propagating in air can self-guide in the form of
channels and produce supercontinuum “white light” filaments over distances
greater than 20m. The spatial stabilization is attributed to the balance
between defocusing processes of diffraction and Kerr self-focusing from the
plasma created in the air by the laser pulse. In the guided channel the pro-
duction of the supercontinuum is the onset fingerprint of the trapping
process. An intense ultrashort laser pulse of ~10mJ to 350mJ of ~70 fs dura-
tion self-focuses to ~80mm to produce the supercontinuum in air in the form
of long filaments.

The research references in this chapter describe the generation of the super-
continuum in the form of filaments in the air from water droplets and ionized
plasma, and present various applications of the supercontinuum to atmos-
pheric science. These supercontinuum pulses are transmitted through fog and
cloud for free space wireless optical communications and imaging used for
remote sensing of pollutants and aerosols, and range finding. The produc-
tion of well-defined ionized trails in air at a distance has potential uses such
as controlling lightning, inducing rain, and creating an ionized pathway for
missiles to follow for defensive and offensive military applications.
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21
Coherence of the Supercontinuum

Summary

Coherence is one of the key properties of light. Since the spectrum of the
supercontinuum is extremely broad, its coherence length can be rather short,
~1.6mm (Chapter 11), which is ideal for optical coherence tomography (OCT)
(Chapter 16). The references in this chapter describe the phase coherence of
the supercontinuum pulses produced in bulk and fiber media using fem-
tosecond laser pulses.

The coherence properties of the supercontinuum are important for many
applications: OCT, frequency combs, generation of intense pulses, and sta-
bilization of a pulse-to-pulse phase relationship, attosecond jitter, and control
of quantum states; to name a few important ones.

The supercontinuum generation is a way to broaden the spectrum of a
pulse to more than an octave for a wide spanned frequency comb as men-
tioned in Chapters 17 and 19. The coherent nature of the supercontinuum
generation process is important to ensure that the spectral line structure 
for the frequency comb from the mode-locked laser pulse is transferred 
coherently to the supercontinuum. The degree coherence of the super-
continuum is quantified using the mutual and self-coherence functions using
interferometers or Young’s two-source type interference arrangements. The
distinct interference fringes observed in the overlap region of the two spectra
suggest that some coherence of the pump pulses is maintained during the
supercontinuum generation from bulk or fiber medium. The coherence 
properties of the supercontinuum improves for a small fiber interaction 
distance, ~2cm, for short pump pulses, ~50 fs, and for the normal dis-
persion region where self-phase modulation plays a significant role in the
absence of modulation instability, higher soliton generation or fission, ampli-
fication spontaneous emission, four-wave mixing, or stimulated Raman.
It was found that dispersion decreasing fibers (DDF) maintain their coher-
ence better than other dispersion flat fibers; dispersion shifted fiber as the
supercontinuum broadening occurs for DDF through a single soliton 
compression.



A mode-locked laser pulse train can produce a self-referencing phase-
locked femtosecond frequency comb. The spectral extent is limited by a pulse
duration of ~50 fs. The supercontinuum is needed to produce a wider spec-
tral for the comb. A phase-locked supercontinuum pulse can be generated
from a train of these phase-locked pulses. In mode-locked lasers, the same
pulse is circulating in the cavity to produce these pulse trains. The supercon-
tinuum generation process is particularly important to ensure that the phase
coherence is transferred from pumping pulses to the supercontinuum and that
the phase-locking is maintained. As long as only a single filament is main-
tained in bulk medium, interference fringes can be observed.

The use of two nonoverlapping intense supercontinuum femtosecond
pulses separated in time by t, measured in picoseconds, can produce an inter-
ference pattern in the spectral domain where multiple wavelength channels
are produced for multiple wavelength multiplexing application (Chapter 11)
in the 50GHz range, ideal for wavelength discussion multiplexing (WDM)
communication (see Chapter 14).

From the references in this chapter, the mutual coherence of the pump
pulses from mode-locked femtosecond lasers can be transferred to the super-
continuum pulses using either bulk or fiber medium. The degree of coher-
ence is >0.8. The phase relationship between the supercontinuum pulses and
with itself are retained and robust.

The temporal, spectral, and coherence properties of femtosecond super-
continuum pulses can be used to control the spatiotemporal behavior of
optical excitations in materials. The coherent control of a quantum system by
one or more time-delayed chirped supercontinuum pulses may allow one to
manipulate the quantum states and alter the radiative and nonradiative
pathway and decay routes of excitations in chemical, semiconductor, quantum
dots, nanocrystals, and biological systems. The quantum control of the 
transient populations and excitations can be achieved by changing the sign of
chirp, polarizations, time sequence, and relative phase shape of the super-
continuum pulses. In this manner, the interference among the states can be
changed. One of the goals in controlling matter with light is to achieve the
largest desired contrast between different energy pathways of an optically
excited state or excitation, say, between internal conversion and energy trans-
fer routes in the primary events that occur in photosynthesis or vision.
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Absorbance changes, induced, 440
Absorption coefficient, 441
Absorption lines, 67
Absorption spectroscopy, time resolved,

356–365, 377–383
ac Stark shift, 323, 327
Aerosols, 522
Amplification length, 145
Amplitude filters, 233–238
Anomalous dispersion, 19, 101–103
Antiferromagnetic crystals, 58–62
Anti-Stokes broadening, 25
Atmospheric remote sensing, 393–395
Atmospheric science, 522
Attoseconds, 506, 517, 524
Auger events, 506
Autocorrelation function, 454
Autocorrelation trace,

interferometric, 439, 440

Beam radius, normalized, 192
Biology applications, 505

CaF2, 456, 473
Carrier envelope phase (CEP), 455, 456,

512
CARS (coherent anti-Stokes Raman

scattering), 384–385
CEO, 512
CG (chirped Gaussian pulses), 235
Charge transfer, 505
Chemistry, 505
Chirp coefficient, 38

linear, 187
Chirp “linearization,” 419
Chirped Gaussian (CG) pulses, 235

Chirps
impressed, 399
initial, 82
linear, 100, 386–388, 406
nonlinearity-induced, 112
pump, 149–150
Stokes, 149–150

Chlorine dioxide, 371–372
Clocks, 519
Coherence, 453, 454, 461, 524, 525
Coherence length, 464, 465
Coherent anti-Stokes Raman scattering

(CARS), 384–385
Coherent control, 506, 525
Colliding-pulse mode-locked (CPM)

laser, 341, 402
Comb frequency, 513, 519
Compression ratio, 236–237
Compressors

double-pass fiber-grating pulse,
414

ideal, 410
quadratic, 410

Computational switches, optical, 393
Conical emission, 332–334
Continuous wave, see CW entries
Continuum generation, see

Supercontinuum generation
Controlling matter, 525
Copropagating pulses

coupled nonlinear equations of,
118–121

induced-frequency shift of, 137–141
Coupled nonlinear equations of

copropagating pulses, 118–121
CPM (colliding-pulse mode-locked)

laser, 341, 402
Cr4+ lasers, 473, 481, 482, 510

Index



530 Index

Cross-phase modulation (XPM) (see
IPM), 33, 83, 110–113, 117–118

applications for ultrashort pulse
technology, 175–178

harmonic cross-modulation, 159–164
induced focusing by, 168–171
modulation instability induced by,

171–175
optical wave breaking due to, 127–131
pump-probe experiments, 131–144
with second harmonic generation, 33,

159–164
spectral broadening induced by,

141–144
stimulated four-photon mixing and,

164–168
with stimulated Raman scattering,

144–159
theory of, 118–131

Cubic phase distortion, 433
CW (continuous wave) laser beam,

12–14
CW mode-locked (CWML) laser,

402–403

DABCO vapor, 339
internal conversion rates in,

352–356
Dark soliton, 305, 315–317
Defocusing medium, 191
Degradation of coherence, 462, 468
Degree of coherence, 454, 459
Derivative nonlinear Schrödinger

(DNS) equation, 297
DFDL (distributed feedback dye laser),

340
Differential spectral reflectance (DSR)

error, 395
Diffraction length, Rayleigh, 197
Diffraction ring pattern, 13
Dispersion

anomalous, 19, 101–103
group velocity, see Group velocity

dispersion
normal, 100–101

Dispersion-dominant regime, 96–97
Dispersion length, 145
Dispersionless medium, 238–251

analytical solution for SPM in,
288–294

self-focusing in, 238–242
self-steepened pulse in, 242–251

Dispersive effect, 3
Dispersive nonlinear regime, 97–99
Distance measurements, 391–392
Distributed feedback dye laser (DFDL),

340
DNS (derivative nonlinear Schrödinger)

equation, 297
Double-pass fiber-grating pulse

compressor, 414
Double-pass grating-pair delay line, 407,

408
DSR (differential spectral reflectance

error), 395
Dual pulse interference, 467, 525

Early self-steepening, 297–301
Electric field, 88
Electric field envelope, 36
Electric field intensity, 199–200
Electric vector, 311
Electron heating, nonequilibrium, 380
Electron transfer, photoinduced,

380–381
Electronic resonances in crystals,

supercontinuum near, 62–67
Electrostriction, 7, 42
Excimer amplifier system, 340–343
Excitation spectroscopy, time-resolved,

383–385
Expansion parameter, 15

Fast Fourier transform (FFT) method,
99

Femtosecond light pulses, 2
Femtosecond pulse compression,

432–444
Femtosecond Raman pulses, 157–159
Df/f, 513, 519
FFT (fast Fourier transform) method,

99
Fiber, see also Optical fiber entries
Fiber-grating compressor parameters,

413
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Fiber length regimes, limiting, 412
Fiber Raman amplification soliton laser

(FRASL), 150–155
Fibers, 481, 518, 524
Filaments, 422
Filter transform, 233–238
Focusing, induced, see Induced focusing
Focusing medium, 191
Four-photon parametric generation

(FPPG), 33
Fourier transform, fast (FFT) method,

99
Four wave mixing, 524
Fractional change in frequency, 512,

513, 519
FRASL (fiber Raman amplification

soliton laser), 150–155
Free space wireless, 522
Frequency comb, 519, 524, 525
Frequency modulation, 9
Frequency shift, 37

maximum, 38
f to 2f, 482, 513, 514

Gaseous continua
spatial characteristics of, 332–334
spectral characteristics of, 328–332

Gases
saturation of nonlinear response in,

327–328
self-focusing in, 318–335

Gaussian pulses, 120
chirped (CG), 235

Generation of supercontinuum, 473,
505

Glass optical fibers, supercontinuum in,
51–54

Graded index profile, 189
Grating constant, 410
Grating pair, 432

double, 433
Grating separation, 411–412
Grating transform, 188
Group delay dispersion, 435
Group delay time, 389
Group velocity, 512
Group velocity dispersion (GVD), 81,

345, 386, 463, 512

effects of, 127–131
negative, 401, 409
nonlinear wave equation with,

87–90
positive, 409

Group velocity mismatch, 111–113
GVD, see Group velocity dispersion

Hemoproteins, 382–383
Holes, 505
Holey fiber, 481
Horn-shaped pulse, 26–27
Hot carriers, 505
Hyperpolarizabilities, 330

Ideal compressors, 410
Imaging, three-dimensional, 392–393
Index of refraction, see Refractive

indexes
Induced absorbance changes, 440
Induced focusing, 263–269

by cross-phase modulation, 168–171
Induced-frequency shift of

copropagating pulses, 137–141
Induced nonlinear effects, 251–280
Induced-phase modulation (IPM) (see

XPM), 33, 83, 131, 251–255
based optical computational switches,

393
of generated second harmonic pulse,

272–280
Raman amplification and, 255–259
spectral broadening enhancement by,

132–137
Induced polarization, 4
Induced pulse compression, 259–263
Induced self-steepening, 269–272
Induced transient optical density,

377–379
Induced ultrafast supercontinuum pulse

(IUSP), 134
Infrared (IR) laser pulses, 3, 383, 384
Infrared supercontinuum generation,

347–352
Integrated intensity, 61
Interference, 10, 453
Interference fringes, 454, 525



532 Index

Interference pattern of supercontinuum,
220–226

Interferometric autocorrelation trace,
439, 440

Iodine photodissociation in solution,
380

Ionization, multiphoton, 320–324
IPM, see Induced-phase modulation
IR, see Infrared entries
IUSP (induced ultrafast

supercontinuum pulse), 134

Jitter, 524

Keldysh theory, 323
Kerr distance, 145
Kerr gate, optical (OKG), 67, 175
Kerr index of refraction, 186
Kerr liquids, 27
Kerr medium, 456, 473, 522

optical, 403–408
Kerr phase shifter (KPS), 393, 394
Kinetic spectroscopy, 338

promising directions for, 372–373
Kink, 305, 315–317
KPS (Kerr phase shifter), 393, 394

Laser beams, see Lasers
Laser heating, 7
Laser pulses

femtosecond, 2
infrared, 3, 383, 384
picosecond, 2

Lasers, 1, 473, 481, 482, 510
soliton, 102–103

Lattice defects, transient, 380
Librational frequencies, 6
Lidar equation, 393
LIF, 473
Light pulses, see Laser pulses
Linear and angular momentum, 506
Linear chirp coefficient, 187
“Linearization,” chirp, 419
Longitudinal phase, 205–207
Longitudinal self-focusing, 301
Low-intensity pulses, 186–207

Maxwell’s equations, 35, 87–88,
184–185; see also Wave equation

Metrology, 519
Microstructure fibers, 481, 518, 524
Mie scattering, 395
Mode-locked lasers, 40
Modulation

cross-phase, see Cross-phase
modulation

frequency, 9
induced-phase, see Induced-phase

modulation
phase, 9
self-phase, see Self-phase modulation

Modulation frequency, 37–38, 330
Modulation instability (MI), 171–175,

301–303, 461, 462, 470
Molecular redistribution, 7
Multiphoton ionization, 320–324
Multiple scale method, 118, 208–211
Mutual coherence function, 454
Mutual coherent, 454, 462, 467
Mutual incoherent, 454

Nanocrystals, 525
Nonequilibrium electron heating, 380
Nonlinear effects, induced, 251–280
Nonlinear pulse propagation, 408–422
Nonlinear refractive index, 35, 88
Nonlinear response in gases, saturation

of, 327–328
Nonlinear Schrödinger equation (NSE),

98, 297, 408
approximations leading to extended,

310–315
derivative, 297

Nonlinear wave equation, 208
with group velocity dispersion, 87–90

Nonlinearity-dominant regime, 97
Nonlinearity-induced chirps, 112
Nonpolarization-preserving fiber, 425
NOT gate, 393, 394
NSE, see Nonlinear Schrödinger equation

Octave spanning, 456, 482, 513, 519
OD (induced transient optical density),

377–379
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OKG (optical Kerr gate), 67, 175
OMA (optical multichannel analyzer),

332
Optical amplification of probe pulses,

142–144
Optical coherence tomography (OCT),

457, 510, 524
Optical computational switches, 393
Optical density, induced transient,

377–379
Optical fiber loss, 395
Optical fiber measurements, 395
Optical fibers, see also Fiber entries

supercontinuum in, 51–54
Optical-field-induced refractive indexes,

4–8
Optical grating, see Grating entries
Optical Kerr gate (OKG), 67, 175
Optical Kerr medium, 403–408
Optical multichannel analyzer (OMA),

332
Optical nonlinearities, kinetics of, 396
Optical pulse compression, 385–391

femtosecond, 432–444
picosecond, 403–432
in single-mode fibers, 399–444

Optical pulses, see also Pulse entries
self-steepening of, 295–317

Optical wave-breaking, 421–422
due to cross-phase modulation,

127–131
Optical wireless, 522

Parabolic graded index medium,
189–195

Peak intensity, 61
Pentabits/s, 498
Phase conjugation, Raman-induced

(RIPC), 385
Phase difference, 10
Phase distortion, cubic, 433
Phase factor, time-dependent, 53
Phase increment, 21–23
Phase modulation, 9
Phase shift, 434
Photodissociation, iodine, in solution,

380
Photoexcitation, 337–339

Photoinduced electron transfer, 380–381
Photonic crystal fibers (PCF), 453, 460,

462, 468, 481
Photoreaction of rhodopsin, 381–382
Photorefraction, 7
Photosynthesis, 525
Photosynthesis process, 381
Picosecond laser pulses, 2
Picosecond optical pulse compression,

403–432
Picosecond Raman pulses, 155–157
Plasma density changes, 320
Polarization, induced, 4
Polarization-preserving fiber, 425
Polarization vector, 311
Pollutants, 522
Power spectrum, 11
Probe pulses, optical amplification of,

142–144
Probe spectral distribution, 206–207
Propagation equation, 92–96
Propagation regimes, 96–99
Pulse amplitude, 212–215
Pulse comoving coordinate, 186
Pulse compression, 91, 188–189, 517

induced, 259–263
optical, see Optical pulse compression
stimulated Raman scattering and,

422–432
Pulse-compression switch, 176–178
Pulse compression techniques, 385–391
Pulse envelope, 35–36
Pulse phase, 216–219
Pulse propagation, 92–96

nonlinear, 408–422
Pulse steepening, 208–238
Pulse walk-off, see Walk-off entries
Pulsed quasi-monochromatic field, 5
Pulses

copropagating, see Copropagating
pulses

Gaussian, see Gaussian pulses
horn-shaped, 26–27
laser, see Laser pulses
light, see Laser pulses
low-intensity, 186–207
optical, see Optical pulse entries
probe, 142–144
pump, 104–110



534 Index

Pulses (cont.)
Raman, see Raman pulses
ultrashort, see Ultrashort pulse

entries
Pump chirps, 149–150
Pump loss distance, 146
Pump-probe cross-phase modulation

experiments, 131–144
Pump pulses, 104–110

Quadratic compressors, 410
Quantum dots, 505, 525
Quantum effects, 506, 525
Quantum mechanical treatment of

supercontinuum, 280–285
Quasi-linear partial differential

equations, 211–212
Quasi-monochromatic field, pulsed, 5
Quasi-particles, 505
Quasi-solitons, 308
Quasi-steady-state self-focusing, 20–24

Raman amplification, 255–259
Raman gain, 425
Raman gain spectrum, 104
Raman-induced phase conjugation

(RIPC), 385
Raman process, walk-off and, 146–149
Raman pulses, 104–110

femtosecond, 157–159
picosecond, 155–157

Raman scattering
coherent anti-Stokes (CARS),

384–385
stimulated, see Stimulated Raman

scattering entries
Raman transitions, 6
Rare-gas liquids and solids,

supercontinuum in, 54–58
Rayleigh diffraction length, 197, 242
Rayleigh wing spectrum, 8
Refractive indexes, 92–93

graded, 190
Kerr, 186
nonlinear, 35, 88
optical-field-induced, 4–8
total, 35

Relativistic events, 506
Relaxation time responses, 42
Remote sensing, atmospheric,

393–395
Replica holes, formation of, 442–443
Resonant structure, 3
Rhodopsin, photoreaction of,

381–382
RIPC (Raman-induced phase

conjugation), 385

Salt concentration dependence, 68–72
Saturation, 326

of nonlinear response in gases,
327–328

Schrödinger equation, nonlinear, see
Nonlinear Schrödinger equation

Second harmonic generation (SHG),
48

Second harmonic generation cross-
phase modulation (SHG-XPM),
33, 159–164

Second harmonic pulse, generated, IPM
of, 272–280

Self-coherence, 457, 464, 524
Self-coherence function, 454, 524
Self-focusing, 2–3, 80–81, 328–335,

404, 481, 522
in dispersionless medium, 238–242
in gases, 318–335
longitudinal, 301
quasi-steady-state, 20–24
self-phase modulation and, 20–28
transient, self-phase modulation with,

26–28
Self-focusing distance, normalized,

197–198
Self-phase modulation (SPM), 1–4, 33,

83, 117, 386
analytical solution for, 288–294
in bulk homogeneous material,

195–202
experimental arrangement for,

40–41
higher-order effects on, 80–82
local generation and propagation of,

74–78
measurement of, 400
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more rigorous theory of, 14–19
in parabolic graded index medium,

189–195
pulse duration reduction, 78–80
review of conventional theory,

186–187
self-focusing and, 20–28
simple theory of, 8–14
simplified model, 34–40
spectral distribution predicted by, 187
-spectral maximum shift, 231–233
temporal and spatial, 29
temporal behavior of, 73–80
temporal distribution of, 73–74
with transient self-focusing, 26–28
in unbounded media, 324–326

Self-steepened pulse in dispersionless
medium, 242–251

Self-steepening, 81–82, 215
early, 297–301
induced, 269–272
of optical pulses, 295–317

Self-steepening effect, 14–19
Semiconductors, 505

coherent transients in, 359
supercontinuum in, 47–49
supercontinuum spectroscopy of,

379–380
SFPM, see Stimulated four-photon

mixing
SHG (second harmonic generation),

48, 513
SHG-XPM (second harmonic

generation cross-phase
modulation), 33, 159–164

Shock-forming distance, 302
Shortest pulse duration, 517
Silicon-intensified target (SIT) camera,

41
Single-mode fibers, pulse compression

in, 399–444
SIT (silicon-intensified target) camera,

41
Slowly varying amplitude (SVA), 118
Slowly varying envelope approximation

(SVEA), 367
Soliton compression, 401
Soliton laser, 102–103
Solitonlike solutions, 303–307

Solitons, 98, 297, 305, 307, 463, 468, 470
dark, 305, 315–317
fundamental, 102
quasi-solitons, 308

Solute-solvent, 505
Spatial coherence, 453, 459, 460
Spectral broadening

asymmetric, 106–109
more rigorous theory of, 14–19
self-induced, 1–3
simple theory of, 8–14
of ultrashort pulses, 24–26
XPM-induced, 141–144

Spectral broadening enhancement,
121–127

by induced-phase modulation,
132–137

Spectral coherence, 466
Spectral distribution, 226–231

probe, 206–207
Spectral extents, 227
Spectral intensity, 226
Spectral interference, 465
Spectroscopy

coherent anti-Stokes Raman
scattering, 384–385

kinetic, see Kinetic spectroscopy
supercontinuum, of semiconductors,

379–380
time-resolved absorption, 356–365,

377–383
time-resolved excitation, 383–385
ultrafast, 2

SPM, 462, 482, 513; see also Self-phase
modulation

SRS, see Stimulated Raman scattering
entries

Stark shift, ac, 323, 327
Stimulated four-photon mixing

(SFPM), 164
cross-phase modulation and, 164–168

Stimulated Raman scattering (SRS), 33,
104–110, 347–348, 417

cross-phase modulation with,
144–159

pulse compression and, 422–432
Stimulated Raman scattering

cross-phase modulation (SRS-XPM),
33



SVA (slowly varying amplitude), 118
SVEA (slowly varying envelope

approximation), 367
Sweep rate, supercontinuum, 366
Switches, optical computational, 393

Temperature gradient, 204
Temporal coherence, 455, 459, 462
Temporal tuning, 429–430
Terabits/s, 498, 519
Thallium chloride molecules, 345–346
Thermal focusing effects on

supercontinuum, 202–207
Third harmonic generation (THG), 48
Three-dimensional imaging, 392–393
Threshold gain, 174
Threshold power for continuum

generation, 330
Time-dependent phase factor, 53
Time division multiplexing, 498
Time-resolved absorption spectroscopy,

356–365, 377–383
Time-resolved excitation spectroscopy,

383–385
Time-resolved infrared spectral

photography (TRISP), 347–352
application of, 352–356

Trans-cis forms, 506
Transverse coherence, 455
TRISP, see Time-resolved infrared

spectral photography

U curve, 20–21
Ultimate clocks, 419
Ultrafast spectroscopic studies, 2
Ultrafast supercontinuum pulse (USP),

134
Ultrashort pulse technology, cross-phase

modulation in, 175–178
Ultrashort pulses, spectral super-

broadening of, 24–26
Ultraviolet, 506, 517
Ultraviolet supercontinuum generation,

343–347
Uncertainty relation, 386
USP (ultrafast supercontinuum pulse),

134

536 Index

Streak camera, 79, 133, 163, 385
Stokes and anti-Stokes shifts,

maximum, 17
Stokes-anti-Stokes asymmetry, 11
Stokes broadening, 24
Stokes chirps, 149–150
Stokes wave, 349
Superbroadening, see Spectral

broadening
Supercontinuum

gaseous, see Gaseous continua
interference pattern of, 220–226
present and future applications of,

377–396
quantum mechanical treatment of,

280–285
thermal focusing effects on, 202–207
ultraviolet, 356–372

Supercontinuum generation, 33,
184–185, 453, 456, 473, 481

in antiferromagnetic crystals, 58–62
in calcite, 43–46
in carbon tetrachloride, 50
in condensed matter, 33–83
near electronic resonances in crystals,

62–67
enhancement of, in water, 67–73
experimental, 34
in gases, 318–335
in glasses, 43
infrared, 347–352
in liquids, 49–51
in optical fibers, 51–54
in phosphoric acid, 50
in polyphosphoric acid, 50–51
in potassium bromide, 47
in quartz, 43
in rare-gas liquids and solids, 54–58
in semiconductors, 47–49
in sodium chloride, 43
in solids, 41–49
threshold power for, 330
ultraviolet, 343–347
in water, 50

Supercontinuum laser, 470, 481
Supercontinuum spectroscopy of

semiconductors, 379–380
Supercontinuum sweep rate, 366
Susceptibility, 4



Index 537

UV (ultraviolet) supercontinuum
generation, 343–347

Visibility, 454, 459
Vision, 525

Walk-off, 122
Raman process and, 146–149

Walk-off distance, 145
Wave equation, 8–9

nonlinear, see Nonlinear wave
equation

Wavelength division multiplexing
(WDM), 470, 498, 525

Wavelength division multiplexing
(WDM) systems, 395

White light, 455, 522
White light continuum, 505

XOR gate, 393, 394
XPM, see Cross-phase modulation,

Induced-phase modulation
X-ray attosecond, 506

Young experiments, 457, 524
Young/Michelson interferometric

system, 222–224
Young visibility function, 293

Zero dispersion wavelength (ZDW),
461, 468




