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Preface to the Second Edition

This is the second and translated edition of the German book “Einführung in
die Bayes-Statistik, Springer-Verlag, Berlin Heidelberg New York, 2000”. It
has been completely revised and numerous new developments are pointed out
together with the relevant literature. The Chapter 5.2.4 is extended by the
stochastic trace estimation for variance components. The new Chapter 5.2.6
presents the estimation of the regularization parameter of type Tykhonov
regularization for inverse problems as the ratio of two variance components.
The reconstruction and the smoothing of digital three-dimensional images
is demonstrated in the new Chapter 5.3. The Chapter 6.2.1 on importance
sampling for the Monte Carlo integration is rewritten to solve a more general
integral. This chapter contains also the derivation of the SIR (sampling-
importance-resampling) algorithm as an alternative to the rejection method
for generating random samples. Markov Chain Monte Carlo methods are
now frequently applied in Bayesian statistics. The first of these methods,
the Metropolis algorithm, is therefore presented in the new Chapter 6.3.1.
The kernel method is introduced in Chapter 6.3.3, to estimate density func-
tions for unknown parameters, and used for the example of Chapter 6.3.6.
As a special application of the Gibbs sampler, finally, the computation and
propagation of large covariance matrices is derived in the new Chapter 6.3.5.

I want to express my gratitude to Mrs. Brigitte Gundlich, Dr.-Ing., and
to Mr. Boris Kargoll, Dipl.-Ing., for their suggestions to improve the book.
I also would like to mention the good cooperation with Dr. Chris Bendall of
Springer-Verlag.

Bonn, March 2007 Karl-Rudolf Koch



Preface to the First German Edition

This book is intended to serve as an introduction to Bayesian statistics which
is founded on Bayes’ theorem. By means of this theorem it is possible to es-
timate unknown parameters, to establish confidence regions for the unknown
parameters and to test hypotheses for the parameters. This simple approach
cannot be taken by traditional statistics, since it does not start from Bayes’
theorem. In this respect Bayesian statistics has an essential advantage over
traditional statistics.

The book addresses readers who face the task of statistical inference
on unknown parameters of complex systems, i.e. who have to estimate un-
known parameters, to establish confidence regions and to test hypotheses for
these parameters. An effective use of the book merely requires a basic back-
ground in analysis and linear algebra. However, a short introduction to one-
dimensional random variables with their probability distributions is followed
by introducing multidimensional random variables so that the knowledge of
one-dimensional statistics will be helpful. It also will be of an advantage for
the reader to be familiar with the issues of estimating parameters, although
the methods here are illustrated with many examples.

Bayesian statistics extends the notion of probability by defining the prob-
ability for statements or propositions, whereas traditional statistics generally
restricts itself to the probability of random events resulting from random
experiments. By logical and consistent reasoning three laws can be derived
for the probability of statements from which all further laws of probability
may be deduced. This will be explained in Chapter 2. This chapter also con-
tains the derivation of Bayes’ theorem and of the probability distributions for
random variables. Thereafter, the univariate and multivariate distributions
required further along in the book are collected though without derivation.
Prior density functions for Bayes’ theorem are discussed at the end of the
chapter.

Chapter 3 shows how Bayes’ theorem can lead to estimating unknown
parameters, to establishing confidence regions and to testing hypotheses for
the parameters. These methods are then applied in the linear model covered
in Chapter 4. Cases are considered where the variance factor contained in
the covariance matrix of the observations is either known or unknown, where
informative or noninformative priors are available and where the linear model
is of full rank or not of full rank. Estimation of parameters robust with respect
to outliers and the Kalman filter are also derived.

Special models and methods are given in Chapter 5, including the model of
prediction and filtering, the linear model with unknown variance and covari-
ance components, the problem of pattern recognition and the segmentation of
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digital images. In addition, Bayesian networks are developed for decisions in
systems with uncertainties. They are, for instance, applied for the automatic
interpretation of digital images.

If it is not possible to analytically solve the integrals for estimating pa-
rameters, for establishing confidence regions and for testing hypotheses, then
numerical techniques have to be used. The two most important ones are the
Monte Carlo integration and the Markoff Chain Monte Carlo methods. They
are presented in Chapter 6.

Illustrative examples have been variously added. The end of each is indi-
cated by the symbol ∆, and the examples are numbered within a chapter if
necessary.

For estimating parameters in linear models traditional statistics can rely
on methods, which are simpler than the ones of Bayesian statistics. They
are used here to derive necessary results. Thus, the techniques of traditional
statistics and of Bayesian statistics are not treated separately, as is often the
case such as in two of the author’s books “Parameter Estimation and Hy-
pothesis Testing in Linear Models, 2nd Ed., Springer-Verlag, Berlin Heidel-
berg New York, 1999” and “Bayesian Inference with Geodetic Applications,
Springer-Verlag, Berlin Heidelberg New York, 1990”. By applying Bayesian
statistics with additions from traditional statistics it is tried here to derive
as simply and as clearly as possible methods for the statistical inference on
parameters.

Discussions with colleagues provided valuable suggestions that I am grate-
ful for. My appreciation is also forwarded to those students of our university
who contributed ideas for improving this book. Equally, I would like to ex-
press my gratitude to my colleagues and staff of the Institute of Theoretical
Geodesy who assisted in preparing it. My special thanks go to Mrs. Brigitte
Gundlich, Dipl.-Ing., for various suggestions concerning this book and to Mrs.
Ingrid Wahl for typesetting and formatting the text. Finally, I would like to
thank the publisher for valuable input.

Bonn, August 1999 Karl-Rudolf Koch
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1 Introduction

Bayesian statistics has the advantage, in comparison to traditional statistics,
which is not founded on Bayes’ theorem, of being easily established and de-
rived. Intuitively, methods become apparent which in traditional statistics
give the impression of arbitrary computational rules. Furthermore, prob-
lems related to testing hypotheses or estimating confidence regions for un-
known parameters can be readily tackled by Bayesian statistics. The reason
is that by use of Bayes’ theorem one obtains probability density functions
for the unknown parameters. These density functions allow for the estima-
tion of unknown parameters, the testing of hypotheses and the computation
of confidence regions. Therefore, application of Bayesian statistics has been
spreading widely in recent times.

Traditional statistics introduces probabilities for random events which re-
sult from random experiments. Probability is interpreted as the relative fre-
quency with which an event occurs given many repeated trials. This notion
of probability has to be generalized for Bayesian statistics, since probability
density functions are introduced for the unknown parameters, as already men-
tioned above. These parameters may represent constants which do not result
from random experiments. Probability is therefore not only associated with
random events but more generally with statements or propositions, which
refer in case of the unknown parameters to the values of the parameters.
Probability is therefore not only interpreted as frequency, but it represents
in addition the plausibility of statements. The state of knowledge about a
proposition is expressed by the probability. The rules of probability follow
from logical and consistent reasoning.

Since unknown parameters are characterized by probability density func-
tions, the method of testing hypotheses for the unknown parameters besides
their estimation can be directly derived and readily established by Bayesian
statistics. Intuitively apparent is also the computation of confidence regions
for the unknown parameters based on their probability density functions.
Whereas in traditional statistics the estimate of confidence regions follows
from hypothesis testing which in turn uses test statistics, which are not read-
ily derived.

The advantage of traditional statistics lies with simple methods for esti-
mating parameters in linear models. These procedures are covered here in
detail to augment the Bayesian methods. As will be shown, Bayesian statis-
tics and traditional statistics give identical results for linear models. For this
important application Bayesian statistics contains the results of traditional
statistics. Since Bayesian statistics is simpler to apply, it is presented here
as a meaningful generalization of traditional statistics.



2 Probability

The foundation of statistics is built on the theory of probability. Plausibility
and uncertainty, respectively, are expressed by probability. In traditional
statistics probability is associated with random events, i.e. with results of
random experiments. For instance, the probability is expressed that a face
with a six turns up when throwing a die. Bayesian statistics is not restricted
to defining probabilities for the results of random experiments, but allows
also for probabilities of statements or propositions. The statements may
refer to random events, but they are much more general. Since probability
expresses a plausibility, probability is understood as a measure of plausibility
of a statement.

2.1 Rules of Probability

The rules given in the following are formulated for conditional probabilities.
Conditional probabilities are well suited to express empirical knowledge. This
is necessary, for instance, if decisions are to be made in systems with uncer-
tainties, as will be explained in Chapter 5.5. Three rules are sufficient to
establish the theory of probability.

2.1.1 Deductive and Plausible Reasoning

Starting from a cause we want to deduce the consequences. The formalism
of deductive reasoning is described by mathematical logic. It only knows
the states true or false. Deductive logic is thus well suited for mathematical
proofs.

Often, after observing certain effects one would like to deduce the under-
lying causes. Uncertainties may arise from having insufficient information.
Instead of deductive reasoning one is therefore faced with plausible or induc-

tive reasoning. By deductive reasoning one derives consequences or effects
from causes, while plausible reasoning allows to deduce possible causes from
effects. The effects are registered by observations or the collection of data.
Analyzing these data may lead to the possible causes.

2.1.2 Statement Calculus

A statement of mathematical logic, for instance, a sentence in the English
language, is either true or false. Statements will be denoted by large letters
A, B, . . . and will be called statement variables. They only take the values
true (T ) or false (F ). They are linked by connectivities which are defined



4 2 Probability

by truth tables, see for instance Hamilton (1988, p.4). In the following we
need the conjunction A ∧ B of the statement variables A and B which has
the truth table

A B A ∧ B
T T T
T F F
F T F
F F F

(2.1)

The conjunction is also called the product of the statement variables. It
corresponds in the English language to “and”. The conjunction A ∧ B is
denoted in the following by

AB (2.2)

in agreement with the common notation of probability theory.
The disjunction A∨B of the statement variables A and B which produces

the truth table

A B A ∨ B
T T T
T F T
F T T
F F F

(2.3)

is also called the sum of A and B. It corresponds in English to “or”. It will
be denoted by

A + B (2.4)

in the sequel.
The negation ¬A of the statement A is described by the truth table

A ¬A
T F
F T

(2.5)

and is denoted by

Ā (2.6)

in the following.
Expressions involving statement variables and connectivities are called

statement forms which obey certain laws, see for instance Hamilton (1988,
p.11) and Novikov (1973, p.23). In the following we need the commutative
laws

A + B = B + A and AB = BA , (2.7)
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the associative laws

(A + B) + C = A + (B + C) and (AB)C = A(BC) , (2.8)

the distributive laws

A(B + C) = AB + AC and A + (BC) = (A + B)(A + C) (2.9)

and De Morgan’s laws

(A + B) = ĀB̄ and AB = Ā + B̄ (2.10)

where the equal signs denote logical equivalences.
The set of statement forms fulfilling the laws mentioned above is called

statement algebra. It is as the set algebra a Boolean algebra, see for instance
Whitesitt (1969, p.53). The laws given above may therefore be verified
also by Venn diagrams.

2.1.3 Conditional Probability

A statement or a proposition depends in general on the question, whether
a further statement is true. One writes A|B to denote the situation that
A is true under the condition that B is true. A and B are statement vari-
ables and may represent statement forms. The probability of A|B, also called
conditional probability, is denoted by

P (A|B) . (2.11)

It gives a measure for the plausibility of the statement A|B or in general a
measure for the uncertainty of the plausible reasoning mentioned in Chapter
2.1.1.

Example 1: We look at the probability of a burglary under the condition
that the alarm system has been triggered. ∆

Conditional probabilities are well suited to express empirical knowledge.
The statement B points to available knowledge and A|B to the statement A
in the context specified by B. By P (A|B) the probability is expressed with
which available knowledge is relevant for further knowledge. This representa-
tion allows to structure knowledge and to consider the change of knowledge.
Decisions under uncertainties can therefore be reached in case of changing
information. This will be explained in more detail in Chapter 5.5 dealing
with Bayesian networks.

Traditional statistics introduces the probabilities for random events of
random experiments. Since these experiments fulfill certain conditions and
certain information exists about these experiments, the probabilities of tra-
ditional statistics may be also formulated by conditional probabilities, if the
statement B in (2.11) represents the conditions and the information.
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Example 2: The probability that a face with a three turns up, when
throwing a symmetrical die, is formulated according to (2.11) as the proba-
bility of a three under the condition of a symmetrical die. ∆

Traditional statistics also knows the conditional probability, as will be
mentioned in connection with (2.26).

2.1.4 Product Rule and Sum Rule of Probability

The quantitative laws, which are fulfilled by the probability, may be derived
solely by logical and consistent reasoning. This was shown by Cox (1946).
He introduces a certain degree of plausibility for the statement A|B, i.e. for
the statement that A is true given that B is true. Jaynes (2003) formulates
three basic requirements for the plausibility:

1. Degrees of plausibility are represented by real numbers.

2. The qualitative correspondence with common sense is asked for.

3. The reasoning has to be consistent.

A relation is derived between the plausibility of the product AB and the
plausibility of the statement A and the statement B given that the proposi-
tion C is true. The probability is introduced as a function of the plausibility.
Using this approach Cox (1946) and with additions Jaynes (2003), see also
Loredo (1990) and Sivia (1996), obtain by extensive derivations, which
need not to be given here, the product rule of probability

P (AB|C) = P (A|C)P (B|AC) = P (B|C)P (A|BC) (2.12)

with

P (S|C) = 1 (2.13)

where P (S|C) denotes the probability of the sure statement, i.e. the statement
S is with certainty true given that C is true. The statement C contains
additional information or background information about the context in which
statements A and B are being made.

From the relation between the plausibility of the statement A and the
plausibility of its negation Ā under the condition C the sum rule of probability
follows

P (A|C) + P (Ā|C) = 1 . (2.14)

Example: Let an experiment result either in a success or a failure. Given
the background information C about this experiment, let the statement A
denote the success whose probability shall be P (A|C) = p. Then, because of
(2.6), Ā stands for failure whose probability follows from (2.14) by P (Ā|C) =
1 − p. ∆
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If S|C in (2.13) denotes the sure statement, then S̄|C is the impossible

statement, i.e. S̄ is according to (2.5) with certainty false given that C is true.
The probability of this impossible statement follows from (2.13) and (2.14)
by

P (S̄|C) = 0 . (2.15)

Thus, the probability P (A|C) is a real number between zero and one

0 ≤ P (A|C) ≤ 1 . (2.16)

It should be mentioned here that the three rules (2.12) to (2.14) are suffi-
cient to derive the following laws of probability which are needed in Bayesian
statistics. These three rules only are sufficient for the further development
of the theory of probability. They are derived, as explained at the beginning
of this chapter, by logical and consistent reasoning.

2.1.5 Generalized Sum Rule

The probability of the sum A + B of the statements A and B under the
condition of the true statement C shall be derived. By (2.10) and by repeated
application of (2.12) and (2.14) we obtain

P (A + B|C) = P (ĀB̄|C) = 1 − P (ĀB̄|C) = 1 − P (Ā|C)P (B̄|ĀC)

= 1 − P (Ā|C)[1 − P (B|ĀC)] = P (A|C) + P (ĀB|C)

= P (A|C) + P (B|C)P (Ā|BC) = P (A|C) + P (B|C)[1 − P (A|BC)] .

The generalized sum rule therefore reads

P (A + B|C) = P (A|C) + P (B|C) − P (AB|C) . (2.17)

If B = Ā is substituted here, the statement A + Ā takes the truth value T
and AĀ the truth value F according to (2.1), (2.3) and (2.5) so that A+ Ā|C
represents the sure statement and AĀ|C the impossible statement. The sum
rule (2.14) therefore follows with (2.13) and (2.15) from (2.17). Thus indeed,
(2.17) generalizes (2.14).

Let the statements A and B in (2.17) now be mutually exclusive. It means
that the condition C requires that A and B cannot simultaneously take the
truth value T . The product AB therefore obtains from (2.1) the truth value
F . Then, according to (2.15)

P (AB|C) = 0 . (2.18)

Example 1: Under the condition C of the experiment of throwing a die,
let the statement A refer to the event that a two shows up and the statement
B to the concurrent event that a three appears. Since the two statements A
and B cannot be true simultaneously, they are mutually exclusive. ∆
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We get with (2.18) instead of (2.17) the generalized sum rule for the two
mutually exclusive statements A and B, that is

P (A + B|C) = P (A|C) + P (B|C) . (2.19)

This rule shall now be generalized to the case of n mutually exclusive state-
ments A1, A2, . . . , An. Hence, (2.18) gives

P (AiAj |C) = 0 for i �= j, i, j ∈ {1, . . . , n} , (2.20)

and we obtain for the special case n = 3 with (2.17) and (2.19)

P (A1 + A2 + A3|C) = P (A1 + A2|C) + P (A3|C) − P ((A1 + A2)A3|C)

= P (A1|C) + P (A2|C) + P (A3|C)

because of

P ((A1 + A2)A3|C) = P (A1A3|C) + P (A2A3|C) = 0

by virtue of (2.9) and (2.20). Correspondingly we find

P (A1 +A2 + . . .+An|C) = P (A1|C)+P (A2|C)+ . . .+P (An|C) . (2.21)

If the statements A1, A2, . . . , An are not only mutually exclusive but also
exhaustive which means that the background information C stipulates that
one and only one statement must be true and if one is true the remaining
statements must be false, then we obtain with (2.13) and (2.15) from (2.21)

P (A1 + A2 + . . . + An|C) =

n∑
i=1

P (Ai|C) = 1 . (2.22)

Example 2: Let A1, A2, . . . , A6 be the statements of throwing a one, a
two, and so on, or a six given the information C of a symmetrical die. These
statements are mutually exclusive, as explained by Example 1 to (2.18). They
are also exhaustive. With (2.22) therefore follows

P (A1 + A2 + . . . + A6|C) =

6∑
i=1

P (Ai|C) = 1 .

∆

To assign numerical values to the probabilities P (Ai|C) in (2.22), it is
assumed that the probabilities are equal, and it follows

P (Ai|C) =
1

n
for i ∈ {1, 2, . . . , n} . (2.23)

Jaynes (2003, p.40) shows that this result may be derived not only by
intuition as done here but also by logical reasoning.
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Let A under the condition C now denote the statement that is true in nA

cases for which (2.23) holds, then we obtain with (2.21)

P (A|C) =
nA

n
. (2.24)

This rule corresponds to the classical definition of probability. It says that
if an experiment can result in n mutually exclusive and equally likely out-
comes and if nA of these outcomes are connected with the event A, then
the probability of the event A is given by nA/n. Furthermore, the definition
of the relative frequency of the event A follows from (2.24), if nA denotes
the number of outcomes of the event A and n the number of trials for the
experiment.

Example 3: Given the condition C of a symmetrical die the probability
is 2/6 = 1/3 to throw a two or a three according to the classical definition
(2.24) of probability. ∆

Example 4: A card is taken from a deck of 52 cards under the condition
C that no card is marked. What is the probability that it will be an ace or
a diamond? If A denotes the statement of drawing a diamond and B the
one of drawing an ace, P (A|C) = 13/52 and P (B|C) = 4/52 follow from
(2.24). The probability of drawing the ace of diamonds is P (AB|C) = 1/52.
Using (2.17) the probability of an ace or diamond is then P (A + B|C) =
13/52 + 4/52 − 1/52 = 4/13. ∆

Example 5: Let the condition C be true that an urn contains 15 red and
5 black balls of equal size and weight. Two balls are drawn without being
replaced. What is the probability that the first ball is red and the second
one black? Let A be the statement to draw a red ball and B the statement
to draw a black one. With (2.24) we obtain P (A|C) = 15/20 = 3/4. The
probability P (B|AC) of drawing a black ball under the condition that a red
one has been drawn is P (B|AC) = 5/19 according to (2.24). The probability
of drawing without replacement a red ball and then a black one is therefore
P (AB|C) = (3/4)(5/19) = 15/76 according to the product rule (2.12). ∆

Example 6: The grey value g of a picture element, also called pixel, of a
digital image takes on the values 0 ≤ g ≤ 255. If 100 pixels of a digital image
with 512 × 512 pixels have the gray value g = 0, then the relative frequency
of this value equals 100/5122 according to (2.24). The distribution of the
relative frequencies of the gray values g = 0, g = 1, . . . , g = 255 is called a
histogram. ∆

2.1.6 Axioms of Probability

Probabilities of random events are introduced by axioms for the probability
theory of traditional statistics, see for instance Koch (1999, p.78). Starting
from the set S of elementary events of a random experiment, a special system
Z of subsets of S known as σ-algebra is introduced to define the random
events. Z contains as elements subsets of S and in addition as elements the
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empty set and the set S itself. Z is closed under complements and countable
unions. Let A with A ∈ Z be a random event, then the following axioms are
presupposed,

Axiom 1: A real number P (A) ≥ 0 is assigned to every event A of Z. P (A)
is called the probability of A.

Axiom 2: The probability of the sure event is equal to one, P (S) = 1.

Axiom 3: If A1, A2, . . . is a sequence of a finite or infinite but countable
number of events of Z which are mutually exclusive, that is Ai∩Aj = ∅
for i �= j, then

P (A1 ∪ A2 ∪ . . .) = P (A1) + P (A2) + . . . . (2.25)

The axioms introduce the probability as a measure for the sets which are the
elements of the system Z of random events. Since Z is a σ-algebra, it may
contain a finite or infinite number of elements, whereas the rules given in
Chapter 2.1.4 and 2.1.5 are valid only for a finite number of statements.

If the system Z of random events contains a finite number of elements, the
σ-algebra becomes a set algebra and therefore a Boolean algebra, as already
mentioned at the end of Chapter 2.1.2. Axiom 1 is then equivalent to the
requirement 1 of Chapter 2.1.4, which was formulated with respect to the
plausibility. Axiom 2 is identical with (2.13) and Axiom 3 with (2.21), if the
condition C in (2.13) and (2.21) is not considered. We may proceed to an
infinite number of statements, if a well defined limiting process exists. This
is a limitation of the generality, but is is compensated by the fact that the
probabilities (2.12) to (2.14) have been derived as rules by consistent and
logical reasoning. This is of particular interest for the product rule (2.12). It
is equivalent in the form

P (A|BC) =
P (AB|C)

P (B|C)
with P (B|C) > 0 , (2.26)

if the condition C is not considered, to the definition of the conditional prob-
ability of traditional statistics. This definition is often interpreted by relative
frequencies which in contrast to a derivation is less obvious.

For the foundation of Bayesian statistics it is not necessary to derive the
rules of probability only for a finite number of statements. One may, as is
shown for instance by Bernardo and Smith (1994, p.105), introduce by
additional requirements a σ-algebra for the set of statements whose prob-
abilities are sought. The probability is then defined not only for the sum
of a finite number of statements but also for a countable infinite number
of statements. This method will not be applied here. Instead we will re-
strict ourselves to an intuitive approach to Bayesian statistics. The theory
of probability is therefore based on the rules (2.12), (2.13) and (2.14).
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2.1.7 Chain Rule and Independence

The probability of the product of n statements is expressed by the chain rule
of probability. We obtain for the product of three statements A1, A2 and A3

under the condition C with the product rule (2.12)

P (A1A2A3|C) = P (A3|A1A2C)P (A1A2|C)

and by a renewed application of the product rule

P (A1A2A3|C) = P (A3|A1A2C)P (A2|A1C)P (A1|C) .

With this result and the product rule follows

P (A1A2A3A4|C)=P (A4|A1A2A3C)P (A3|A1A2C)P (A2|A1C)P (A1|C)

or for the product of n statements A1, A2, . . . , An the chain rule of probability

P (A1A2 . . . An|C) = P (An|A1A2 . . . An−1C)

P (An−1|A1A2 . . . An−2C) . . . P (A2|A1C)P (A1|C) . (2.27)

We obtain for the product of the statements A1 to An−k−1 by the chain
rule

P (A1A2 . . . An−k−1|C) = P (An−k−1|A1A2 . . . An−k−2C)

P (An−k−2|A1A2 . . . An−k−3C) . . . P (A2|A1C)P (A1|C) .

If this result is substituted in (2.27), we find

P (A1A2 . . . An|C) = P (An|A1A2 . . . An−1C) . . .

P (An−k|A1A2 . . . An−k−1C)P (A1A2 . . . An−k−1|C) . (2.28)

In addition, we get by the product rule (2.12)

P (A1A2 . . . An|C) = P (A1A2 . . . An−k−1|C)

P (An−kAn−k+1 . . . An|A1A2 . . . An−k−1C) . (2.29)

By substituting this result in (2.28) the alternative chain rule follows

P (An−kAn−k+1 . . . An|A1A2 . . . An−k−1C)

= P (An|A1A2 . . . An−1C) . . . P (An−k|A1A2 . . . An−k−1C) . (2.30)

The product rule and the chain rule simplify in case of independent state-
ments. The two statements A and B are said to be conditionally independent

or shortly expressed independent, if and only if under the condition C

P (A|BC) = P (A|C) . (2.31)
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If two statements A and B are independent, then the probability of the
statement A given the condition of the product BC is therefore equal to
the probability of the statement A given the condition C only. If conversely
(2.31) holds, the two statements A and B are independent.

Example 1: Let the statement B given the condition C of a symmetrical
die refer to the result of the first throw of a die and the statement A to the
result of a second throw. The statements A and B are independent, since
the probability of the result A of the second throw given the condition C and
the condition that the first throw results in B is independent of this result B
so that (2.31) holds. ∆

The computation of probabilities in Bayesian networks presented in Chap-
ter 5.5 is based on the chain rule (2.27) together with (2.31).

If (2.31) holds, we obtain instead of the product rule (2.12) the product
rule of two independent statements

P (AB|C) = P (A|C)P (B|C) (2.32)

and for n independent statements A1 to An instead of the chain rule (2.27)
the product rule of independent statements

P (A1A2 . . . An|C) = P (A1|C)P (A2|C) . . . P (An|C) . (2.33)

Example 2: Let the condition C denote the trial to repeat an experiment
n times. Let the repetitions be independent and let each experiment result
either in a success or a failure. Let the statement A denote the success with
probability P (A|C) = p. The probability of the failure Ā then follows from
the sum rule (2.14) with P (Ā|C) = 1−p. Let n trials result first in x successes
A and then in n−x failures Ā. The probability of this sequence follows with
(2.33) by

P (AA . . . AĀĀ . . . Ā|C) = px(1 − p)n−x ,

since the individual trials are independent. This result leads to the binomial
distribution presented in Chapter 2.2.3. ∆

2.1.8 Bayes’ Theorem

The probability of the statement AB given C and the probability of the
statement AB̄ given C follow from the product rule (2.12). Thus, we obtain
after adding the probabilities

P (AB|C) + P (AB̄|C) = [P (B|AC) + P (B̄|AC)]P (A|C) . (2.34)

The sum rule (2.14) leads to

P (B|AC) + P (B̄|AC) = 1
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and therefore

P (A|C) = P (AB|C) + P (AB̄|C) . (2.35)

If instead of AB and AB̄ the statements AB1, AB2, . . . , ABn under the con-
dition C are given, we find in analogy to (2.34)

P (AB1|C) + P (AB2|C) + . . . + P (ABn|C)

= [P (B1|AC) + P (B2|AC) + . . . + P (Bn|AC)]P (A|C) .

If B1, . . . , Bn given C are mutually exclusive and exhaustive statements, we
find with (2.22) the generalization of (2.35)

P (A|C) =
n∑

i=1

P (ABi|C) (2.36)

or with (2.12)

P (A|C) =

n∑
i=1

P (Bi|C)P (A|BiC) . (2.37)

These two results are remarkable, because the probability of the statement
A given C is obtained by summing the probabilities of the statements in
connection with Bi. Examples are found in the following examples for Bayes’
theorem.

If the product rule (2.12) is solved for P (A|BC), Bayes’ theorem is ob-
tained

P (A|BC) =
P (A|C)P (B|AC)

P (B|C)
. (2.38)

In common applications of Bayes’ theorem A denotes the statement about an
unknown phenomenon. B represents the statement which contains informa-
tion about the unknown phenomenon and C the statement for background
information. P (A|C) is denoted as prior probability, P (A|BC) as posterior

probability and P (B|AC) as likelihood. The prior probability of the state-
ment concerning the phenomenon, before information has been gathered, is
modified by the likelihood, that is by the probability of the information given
the statement about the phenomenon. This leads to the posterior probability
of the statement about the unknown phenomenon under the condition that
the information is available. The probability P (B|C) in the denominator of
Bayes’ theorem may be interpreted as normalization constant which will be
shown by (2.40).

The bibliography of Thomas Bayes, creator of Bayes’ theorem, and refer-
ences for the publications of Bayes’ theorem may be found, for instance, in
Press (1989, p.15 and 173).
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If mutually exclusive and exhaustive statements A1, A2, . . . , An are given,
we obtain with (2.37) for the denominator of (2.38)

P (B|C) =

n∑
j=1

P (Aj |C)P (B|AjC) (2.39)

and Bayes’ theorem (2.38) takes on the form

P (Ai|BC) = P (Ai|C)P (B|AiC)/c for i ∈ {1, . . . , n} (2.40)

with

c =

n∑
j=1

P (Aj |C)P (B|AjC) . (2.41)

Thus, the constant c acts as a normalization constant because of

n∑
i=1

P (Ai|BC) = 1 (2.42)

in agreement with (2.22).
The normalization constant (2.40) is frequently omitted, in which case

Bayes’ theorem (2.40) is represented by

P (Ai|BC) ∝ P (Ai|C)P (B|AiC) (2.43)

where ∝ denotes proportionality. Hence,

posterior probability ∝ prior probability× likelihood .

Example 1: Three machines M1, M2, M3 share the production of an
object with portions 50%, 30% and 20%. The defective objects are registered,
they amount to 2% for machine M1, 5% for M2 and 6% for M3. An object
is taken out of the production and it is assessed to be defective. What is the
probability that it has been produced by machine M1?

Let Ai with i ∈ {1, 2, 3} be the statement that an object randomly chosen
from the production stems from machine Mi. Then according to (2.24), given
the condition C of the production the prior probabilities of these statements
are P (A1|C) = 0.5, P (A2|C) = 0.3 and P (A3|C) = 0.2. Let statement
B denote the defective object. Based on the registrations the probabili-
ties P (B|A1C) = 0.02, P (B|A2C) = 0.05 and P (B|A3C) = 0.06 follow
from (2.24). The probability P (B|C) of a defective object of the production
amounts with (2.39) to

P (B|C) = 0.5 × 0.02 + 0.3 × 0.05 + 0.2 × 0.06 = 0.037
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or to 3.7%. The posterior probability P (A1|BC) that any defective object
stems from machine M1 follows with Bayes’ theorem (2.40) to be

P (A1|BC) = 0.5 × 0.02/0.037 = 0.270 .

By registering the defective objects the prior probability of 50% is reduced
to the posterior probability of 27% that any defective object is produced by
machine M1. ∆

Example 2: By a simple medical test it shall be verified, whether a
person is infected by a certain virus. It is known that 0.3% of a certain group
of the population is infected by this virus. In addition, it is known that 95%
of the infected persons react positive to the simple test but also 0.5% of the
healthy persons. This was determined by elaborate investigations. What
is the probability that a person which reacts positive to the simple test is
actually infected by the virus?

Let A be the statement that a person to be checked is infected by the
virus and Ā according to (2.6) the statement that it is not infected. Under
the condition C of the background information on the test procedure the
prior probabilities of these two statements are according to (2.14) and (2.24)
P (A|C) = 0.003 and P (Ā|C) = 0.997. Furthermore, let B be the statement
that the simple test has reacted. The probabilities P (B|AC) = 0.950 and
P (B|ĀC) = 0.005 then follow from (2.24). The probability P (B|C) of a
positive reaction is obtained with (2.39) by

P (B|C) = 0.003 × 0.950 + 0.997 × 0.005 = 0.007835 .

The posterior probability P (A|BC) that a person showing a positive reaction
is infected follows from Bayes’ theorem (2.40) with

P (A|BC) = 0.003 × 0.950/0.007835 = 0.364 .

For a positive reaction of the test the probability of an infection by the virus
increases from the prior probability of 0.3% to the posterior probability of
36.4%.

The probability shall also be computed for the event that a person is
infected by the virus, if the test reacts negative. B̄ according to (2.6) is
the statement of a negative reaction. With (2.14) we obtain P (B̄|AC) =
0.050, P (B̄|ĀC) = 0.995 and P (B̄|C) = 0.992165. Bayes’ theorem (2.40)
then gives the very small probability of

P (A|B̄C) = 0.003 × 0.050/0.992165 = 0.00015

or with (2.14) the very large probability

P (Ā|B̄C) = 0.99985

of being healthy in case of a negative test result. This probability must not
be derived with (2.14) from the posterior probability P (A|BC) because of

P (Ā|B̄C) �= 1 − P (A|BC) .
∆
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2.1.9 Recursive Application of Bayes’ Theorem

If the information on the unknown phenomenon A is given by the product
B1B2 . . . Bn of the statements B1, B2, . . . , Bn, we find with Bayes’ theorem
(2.43)

P (A|B1B2 . . . BnC) ∝ P (A|C)P (B1B2 . . . Bn|AC)

and in case of independent statements from (2.33)

P (A|B1B2 . . . BnC) ∝ P (A|C)P (B1|AC)P (B2|AC) . . . P (Bn|AC) . (2.44)

Thus in case of independent information, Bayes’ theorem may be applied
recursively. The information B1 gives with (2.43)

P (A|B1C) ∝ P (A|C)P (B1|AC) .

This posterior probability is applied as prior probability to analyze the in-
formation B2, and we obtain

P (A|B1B2C) ∝ P (A|B1C)P (B2|AC) .

Analyzing B3 leads to

P (A|B1B2B3C) ∝ P (A|B1B2C)P (B3|AC) .

If one proceeds accordingly up to information Bk, the recursive application
of Bayes’ theorem gives

P (A|B1B2 . . . BkC) ∝ P (A|B1B2 . . . Bk−1C)P (Bk|AC)

for k ∈ {2, . . . , n} (2.45)

with

P (A|B1C) ∝ P (A|C)P (B1|AC) .

This result agrees with (2.44). By analyzing the information B1 to Bn the
state of knowledge A about the unknown phenomenon is successively up-
dated. This is equivalent to the process of learning by the gain of additional
information.

2.2 Distributions

So far, the statements have been kept very general. In the following they
shall refer to the numerical values of variables, i.e. to real numbers. The
statements may refer to the values of any variables, not only to the random
variables of traditional statistics whose values result from random experi-
ments. Nevertheless, the name random variable is retained in order not to
deviate from the terminology of traditional statistics.
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Random variables frequently applied in the sequel are the unknown param-

eters which describe unknown phenomena. They represent in general fixed
quantities, for instance, the unknown coordinates of a point at the rigid sur-
face of the earth. The statements refer to the values of the fixed quantities.
The unknown parameters are treated in detail in Chapter 2.2.8. Random
variables are also often given as measurements, observations or data. They
follow from measuring experiments or in general from random experiments
whose results are registered digitally. Another source of data are surveys
with numerical results. The measurements or observations are carried out
and the data are collected to gain information on the unknown parameters.
The analysis of the data is explained in Chapters 3 to 5.

It will be shown in Chapters 2.2.1 to 2.2.8 that the rules obtained for
the probabilities of statements and Bayes’ theorem hold analogously for the
probability density functions of random variables, which are derived by the
statements concerning their values. To get these results the rules of probabil-
ity derived so far are sufficient. As will be shown, summing the probability
density functions in case of discrete random variables has only to be replaced
by an integration in case of continuous random variables.

2.2.1 Discrete Distribution

The statements shall first refer to the discrete values of a variable so that the
discrete random variable X with the discrete values xi ∈ R for i ∈ {1, . . . , m}
is obtained. The probability P (X = xi|C) that X takes on the value xi

given the statement C, which contains background information, is denoted
by a small letter in agreement with the notation for the continuous random
variables to be presented in the following chapter

p(xi|C) = P (X = xi|C) for i ∈ {1, . . . , m} . (2.46)

We call p(xi|C) the discrete probability density function or abbreviated dis-

crete density function or also discrete probability distribution or shortly dis-

crete distribution for the discrete random variable X .

The statements referring to the values xi of the discrete random variable
X are mutually exclusive according to (2.18). Since with i ∈ {1, . . . , m} all
values xi are denoted which the random variable X can take, the statements
for all values xi are also exhaustive. We therefore get with (2.16) and (2.22)

p(xi|C) ≥ 0 and

m∑
i=1

p(xi|C) = 1 . (2.47)

The discrete density function p(xi|C) for the discrete random variable X has
to satisfy the conditions (2.47). They hold for a random variable with a finite
number of values xi. If a countable infinite number of values xi is present,
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one concludes in analogy to (2.47)

p(xi|C) ≥ 0 and

∞∑
i=1

p(xi|C) = 1 . (2.48)

The probability P (X < xi|C) of the statement X < xi|C, which is a function
of xi given the information C, is called the probability distribution function

or shortly distribution function F (xi)

F (xi) = P (X < xi|C) . (2.49)

The statement referring to the values xi are mutually exclusive, as already
mentioned in connection with (2.47). Thus, we find with (2.21)

F (xi) = P (X < xi|C) = p(x1|C) + p(x2|C) + . . . + p(xi−1|C)

or

F (xi) =
∑
j<i

p(xj |C) . (2.50)

Because of p(xi|C) ≥ 0 it is obvious that the distribution function is a mono-
tonically increasing function. Since X < −∞ represents an impossible state-
ment, we obtain with (2.15) and (2.47) for the distribution function

F (−∞) = 0, F (∞) = 1 and F (xi) ≤ F (xj) for xi < xj . (2.51)

The most important example of a discrete distribution, the binomial dis-
tribution, is presented in Chapter 2.2.3.

2.2.2 Continuous Distribution

Let X now be a continuous random variable with the values x ∈ R in the
interval −∞ < x < ∞. The probability P (X < x|C) of the statement
X < x|C, which depends on x given the information C, is called again the
probability distribution function or shortly distribution function F (x)

F (x) = P (X < x|C) . (2.52)

Let the distribution function F (x) be continuous and continuously differen-
tiable. Given these assumptions the probability shall be determined that the
random variable X takes on values in the interval a ≤ X < b. The following
three statements are considered

X < a, X < b and a ≤ X < b .

The statement X < b results as the sum of the statements X < a and
a ≤ X < b. Since the two latter statements are mutually exclusive, we find
by the sum rule (2.19)

P (X < b|C) = P (X < a|C) + P (a ≤ X < b|C)
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or

P (a ≤ X < b|C) = P (X < b|C) − P (X < a|C)

and with the distribution function (2.52)

P (a ≤ X < b|C) = F (b) − F (a) .

The fundamental theorem of calculus gives, see for instance Blatter (1974,
II, p.15),

F (b) − F (a) =

∫ b

−∞

p(x|C)dx −
∫ a

−∞

p(x|C)dx =

∫ b

a

p(x|C)dx (2.53)

with

dF (x)/dx = p(x|C) . (2.54)

We call p(x|C) the continuous probability density function or abbreviated con-

tinuous density function, also continuous probability distribution or shortly
continuous distribution for the random variable X . The distribution for a
one-dimensional continuous random variable X is also called univariate dis-

tribution.
The distribution function F (x) from (2.52) follows therefore with the

density function p(x|C) according to (2.53) as an area function by

F (x) =

∫ x

−∞

p(t|C)dt (2.55)

where t denotes the variable of integration. The distribution function F (x) of
a continuous random variable is obtained by an integration of the continuous
density function p(x|C), while the distribution function F (xi) of the discrete
random variable follows with (2.50) by a summation of the discrete density
function p(xj |C). The integral (2.55) may therefore be interpreted as a limit
of the sum (2.50).

Because of (2.53) we obtain P (a ≤ X < b|C) = P (a < X < b|C). Thus,
we will only work with open intervals a < X < b in the following. For the
interval x < X < x + dx we find with (2.53)

P (x < X < x + dx|C) = p(x|C)dx . (2.56)

The values x of the random variable X are defined by the interval −∞ < x <
∞ so that X < ∞ represents an exhaustive statement. Therefore, it follows
from (2.22)

F (∞) = P (X < ∞|C) = 1 .
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Because of (2.16) we have F (x) ≥ 0 which according to (2.55) is only fulfilled,
if p(x|C) ≥ 0. Thus, the two conditions are obtained which the density
function p(x|C) for the continuous random variable X has to fulfill

p(x|C) ≥ 0 and

∫ ∞

−∞

p(x|C)dx = 1 . (2.57)

For the distribution function F (x) we find with (2.15), since F (−∞) repre-
sents the probability of the impossible statement,

F (−∞) = 0, F (∞) = 1 and F (xi) ≤ F (xj) for xi < xj . (2.58)

The statement X < xj follows from the sum of the two statements X < xi

and xi ≤ X < xj . The latter statements are mutually exclusive and P (xi ≤
X < xj |C) ≥ 0 holds, therefore P (X < xi|C) ≤ P (X < xj |C).

Example: The random variable X has the uniform distribution with
parameters a and b, if its density function p(x|a, b) is given by

p(x|a, b) =

⎧⎨
⎩

1

b − a
for a ≤ x ≤ b

0 for x < a and x > b .
(2.59)

As the density function p(x|a, b) is constant in the interval a ≤ x ≤ b, one
speaks of a uniform distribution.

The distribution function F (x; a, b) of the uniform distribution is com-
puted with (2.55) by

F (x; a, b) =

∫ x

a

dt

b − a
for a ≤ x ≤ b .

We therefore obtain

F (x; a, b) =

⎧⎪⎨
⎪⎩

0 for x < a
x−a
b−a for a ≤ x ≤ b

1 for x > b .

(2.60)

The density function (2.59) satisfies both conditions (2.57) because of p(x|a, b)
≥ 0 and F (∞; a, b) = 1. ∆

Additional examples for univariate distributions will be presented in Chapter
2.4.

2.2.3 Binomial Distribution

A discrete random variable X has the binomial distribution with parameters
n and p, if its density function p(x|n, p) is given by

p(x|n, p) =

(
n

x

)
px(1 − p)n−x

for x ∈ {0, 1, . . . , n} and 0 < p < 1 . (2.61)
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The values for the parameters n and p may vary, but a pair of values for n
and p determines in each case the binomial distribution.

The binomial distribution expresses the probability that in n independent
trials of an experiment x successes occur. Each experiment results either in
a success or a failure, and the success has the probability p. In Example 2
for (2.33) the probability px(1− p)n−x was determined which follows from n
successive trials with x successes first and then n − x failures. The first x
trials do not have to end in x successes, because there are

(
n
x

)
possibilities

that x successes may occur in n trials, see for instance Koch (1999, p.36).
With (2.21) we therefore determine the probability of x successes among n
trials by

(
n
x

)
px(1 − p)n−x.

The density function (2.61) fulfills the two conditions (2.47), since with
p > 0 and (1−p) > 0 we find p(x|n, p) > 0. Furthermore, the binomial series
leads to

1 = (p + (1 − p))n =

n∑
x=0

(
n

x

)
px(1 − p)n−x =

n∑
x=0

p(x|n, p) . (2.62)

As will be derived in Example 1 to (2.138) and in Example 2 to (2.141), the
expected value E(X) of the random variable X with the density function
(2.61) is given by

E(X) = np (2.63)

and its variance V (X) by

V (X) = np(1 − p) . (2.64)

Example: What is the probability that in a production of 4 objects x
objects with x ∈ {0, 1, 2, 3, 4} are defective, if the probability that a certain
object is defective is given by p = 0.3 and if the productions of the single
objects are idependent? Using (2.61) we find

p(x|n = 4, p = 0.3) =

(
4

x

)
0.3x × 0.74−x for x ∈ {0, 1, 2, 3, 4}

and therefore

p(0| . . .) = 0.240, p(1| . . .) = 0.412, p(2| . . .) = 0.264,

p(3| . . .) = 0.076, p(4| . . .) = 0.008 .

By applying the distribution function (2.50) we may, for instance, compute
the probability P (X < 2|C) that less than two products are defective by
P (X < 2|C) = 0.652. ∆

If the number of repetitions of an experiment goes to infinity and the
probability of the occurrence of a success approaches zero, the Poisson distri-
bution follows from the binomial distribution, see for instance Koch (1999,
p.87).
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2.2.4 Multidimensional Discrete and Continuous

Distributions

Statements for which probabilities are defined shall now refer to the dis-
crete values of n variables so that the n-dimensional discrete random vari-

able X1, . . . , Xn is obtained. Each random variable Xk with k ∈ {1, . . . , n} of
the n-dimensional random variable X1, . . . , Xn may take on the mk discrete
values xk1, . . . , xkmk

∈ R. We introduce the probability that given the condi-
tion C the random variables X1 to Xn take on the given values x1j1

, . . . , xnjn

which means according to (2.46)

p(x1j1
, . . . , xnjn

|C) = P (X1 = x1j1
, . . . , Xn = xnjn

|C)

with jk ∈ {1, . . . , mk}, k ∈ {1, . . . , n} . (2.65)

We call p(x1j1
, . . . , xnjn

|C) the n-dimensional discrete probability density

function or shortly discrete density function or discrete multivariate distribu-

tion for the n-dimensional discrete random variable X1, . . . , Xn.
We look at all values xkjk

of the random variable Xk with k ∈ {1, . . . , n}
so that in analogy to (2.47) and (2.48) the conditions follow which a discrete
density function p(x1j1

, . . . , xnjn
|C) must satisfy

p(x1j1
, . . . , xnjn

|C) ≥ 0 and

m1∑
j1=1

. . .

mn∑
jn=1

p(x1j1
, . . . , xnjn

|C) = 1 (2.66)

or for a countable infinite number of values xkjk

∞∑
j1=1

. . .

∞∑
jn=1

p(x1j1
, . . . , xnjn

|C) = 1 . (2.67)

The distribution function F (x1j1
, . . . , xnjn

) for the n-dimensional discrete
random variable X1, . . . , Xn is defined in analogy to (2.49) by

F (x1j1
, . . . , xnjn

) = P (X1 < x1j1
, . . . , Xn < xnjn

|C) . (2.68)

It is computed as in (2.50) by

F (x1j1
, . . . , xnjn

) =
∑

k1<j1

. . .
∑

kn<jn

p(x1k1
, . . . , xnkn

|C) . (2.69)

An n-dimensional continuous random variable X1, . . . , Xn takes on the
values x1, . . . , xn ∈ R in the intervals −∞ < xk < ∞ with k ∈ {1, . . . , n}.
The distribution function F (x1, . . . , xn) for this random variable is defined
as in (2.52) by

F (x1, . . . , xn) = P (X1 < x1, . . . , Xn < xn|C) . (2.70)
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It represents corresponding to (2.53) the probability that the random vari-
ables Xk take on values in the given intervals xku < Xk < xko for k ∈
{1, . . . , n}

P (x1u < X1 < x1o, . . . , xnu < Xn < xno|C)

=

∫ xno

xnu

. . .

∫ x1o

x1u

p(x1, . . . , xn|C)dx1 . . . dxn (2.71)

with

∂nF (x1, . . . , xn)/∂x1 . . . ∂xn = p(x1, . . . , xn|C) . (2.72)

We call p(x1, . . . , xn|C) the n-dimensional continuous probability density func-

tion or abbreviated continuous density function or multivariate distribution

for the n-dimensional continuous random variable X1, . . . , Xn.
The distribution function F (x1, . . . , xn) is obtained with (2.70) by the

density function p(x1, . . . , xn|C)

F (x1, . . . , xn) =

∫ xn

−∞

. . .

∫ x1

−∞

p(t1, . . . , tn|C)dt1 . . . dtn (2.73)

where t1, . . . , tn denote the variables of integration. The conditions which
a density function p(x1, . . . , xn|C) has to fulfill follows in analogy to (2.57)
with

p(x1, . . . , xn|C) ≥ 0 and∫ ∞

−∞

. . .

∫ ∞

−∞

p(x1, . . . , xn|C)dx1 . . . dxn = 1 . (2.74)

The n-dimensional discrete or continuous random variable X1, . . . , Xn will
be often denoted in the following by the n× 1 discrete or continuous random
vector x with

x = |X1, . . . , Xn|′ . (2.75)

The values which the discrete random variables of the random vector x take
on will be also denoted by the n × 1 vector x with

x = |x1j1
, . . . , xnjn

|′, jk ∈ {1, . . . , mk}, k ∈ {1, . . . , n} (2.76)

or in a more compact writing, if xk symbolizes one of the mk values xk1, . . . ,
xkmk

for k ∈ {1, . . . , n}, with

x = |x1, . . . , xn|′ . (2.77)

The values of the random vector of a continuous random variable are also
collected in the vector x with

x = |x1, . . . , xn|′, −∞ < xk < ∞, k ∈ {1, . . . , n} . (2.78)
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The reason for not distinguishing in the sequel between the vector x of ran-
dom variables and the vector x of values of the random variables follows from
the notation of vectors and matrices which labels the vectors by small letters
and the matrices by capital letters. If the distinction is necessary, it will be
explained by additional comments.

The n-dimensional discrete or continuous density function of the discrete
or continuous random vector x follows with (2.76), (2.77) or (2.78) instead
of (2.65) or (2.72) by

p(x|C) . (2.79)

Examples for multivariate distributions can be found in Chapter 2.5.

2.2.5 Marginal Distribution

Let X1, X2 be a two-dimensional discrete random variable with the m1 values
x1j1

for X1 and j1 ∈ {1, . . . , m1} and with the m2 values x2j2
for X2 with

j2 ∈ {1, . . . , m2}. If given the condition C the statement A in (2.36) refers
to a value of X1 and the statement Bi to the ith value of X2, we get

P (X = x1j1
|C) =

m2∑
j2=1

P (X1 = x1j1
, X2 = x2j2

|C) (2.80)

or with (2.65)

p(x1j1
|C) =

m2∑
j2=1

p(x1j1
, x2j2

|C) . (2.81)

By summation of the two-dimensional density function p(x1j1
, x2j2

|C) for
X1, X2 over the values of the random variable X2, the density function
p(x1j1

|C) follows for the random variable X1. It is called the marginal density

function or marginal distribution for X1.
Since the statements A and Bi in (2.36) may refer to several discrete ran-

dom variables, we obtain by starting from the n-dimensional discrete density
function for X1, . . . , Xi, Xi+1, . . . , Xn

p(x1j1
, . . . , xiji

, xi+1,ji+1 , . . . , xnjn
|C)

the marginal density function p(x1j1
, . . . , xiji

|C) for the random variables
X1, . . . , Xi by summing over the values of the remaining random variables
Xi+1, . . . , Xn, thus

p(x1j1
, . . . , xiji

|C)

=

mi+1∑
ji+1=1

. . .

mn∑
jn=1

p(x1j1
, . . . , xiji

, xi+1,ji+1 , . . . , xnjn
|C) . (2.82)
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In a more compact notation we obtain with (2.77)

p(x1, . . . , xi|C) =
∑
xi+1

. . .
∑
xn

p(x1, . . . , xi, xi+1, . . . , xn|C) (2.83)

or with (2.79) and

x1 = |x1, . . . , xi|′ and x2 = |xi+1, . . . , xn|′ (2.84)

finally

p(x1|C) =
∑
x2

p(x1, x2|C) . (2.85)

The marginal distribution function, that is the distribution function which
belongs to the marginal density (2.82), is determined in analogy to (2.69) by

F (x1j1
, . . . , xiji

, xi+1,mi+1 , . . . , xnmn
)

= P (X1 < x1j1
, . . . , Xi < xiji

|C)

=
∑

k1<j1

. . .
∑

ki<ji

mi+1∑
ki+1=1

. . .

mn∑
kn=1

p(x1k1
, . . . , xiki

, xi+1,ki+1 , . . . , xnkn
|C) .

(2.86)

If an n-dimensional continuous random variable X1, . . . , Xn is given, the
marginal distribution function for X1, . . . , Xi is obtained instead of (2.86) in
analogy to (2.70) up to (2.73) by

F (x1, . . . , xi,∞, . . . ,∞) = P (X1 < x1, . . . , Xi < xi|C)

=

∫ ∞

−∞

. . .

∫ ∞

−∞

∫ xi

−∞

. . .

∫ x1

−∞

p(t1, . . . , ti, ti+1, . . . , tn|C)dt1 . . . dtn

(2.87)

with the variables t1, . . . , tn of integration. The marginal density function
p(x1, . . . , xi|C) for X1, . . . , Xi results from

∂iF (x1, . . . , xi,∞, . . . ,∞)/∂x1 . . . ∂xi = p(x1, . . . , xi|C) , (2.88)

hence

p(x1, . . . , xi|C)

=

∫ ∞

−∞

. . .

∫ ∞

−∞

p(x1, . . . , xi, xi+1, . . . , xn|C)dxi+1 . . . dxn . (2.89)

The marginal density function p(x1, . . . , xi|C) therefore follows by integrating
over the values of the random variables Xi+1, . . . , Xn. We introduce with
(2.78)

x1 = |x1, . . . , xi|′ and x2 = |xi+1, . . . , xn|′ (2.90)
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and get in a more compact notation

p(x1|C) =

∫
X2

p(x1, x2|C)dx2 (2.91)

where X2 denotes the domain for integrating x2.

2.2.6 Conditional Distribution

The statement AB in the product rule (2.12) shall now refer to any value of
a two-dimensional discrete random variable X1, X2. We obtain

P (X1 = x1j1
, X2 = x2j2

|C)

= P (X2 = x2j2
|C)P (X1 = x1j1

|X2 = x2j2
, C) (2.92)

and with (2.65)

p(x1j1
|x2j2

, C) =
p(x1j1

, x2j2
|C)

p(x2j2
|C)

. (2.93)

We call p(x1j1
|x2j2

, C) the conditional discrete density function or conditional

discrete distribution for X1 under the conditions that X2 takes on the value
x2j2

and that the background information C is available. The conditional
distribution for X1 is therefore found by dividing the joint distribution for
X1 and X2 by the marginal distribution for X2.

Since the statement AB in the product rule (2.12) may also refer to the
values of several discrete random variables, we obtain the conditional dis-
crete density function for the random variables X1, . . . , Xi of the discrete
n-dimensional random variable X1, . . . , Xn under the condition of given val-
ues for Xi+1, . . . , Xn by

p(x1j1
, . . . , xiji

|xi+1,ji+1
, . . . , xnjn

, C)

=
p(x1j1

, . . . , xiji
, xi+1,ji+1

, . . . , xnjn
|C)

p(xi+1,ji+1
, . . . , xnjn

|C)
. (2.94)

To find the conditional continuous density function for a two-dimensional
continuous random variable X1, X2 corresponding to (2.93), one has to be
aware that P (X2 = x2|C) = 0 holds for the continuous random variable X2

because of (2.53). The statement AB in the product rule (2.12) must there-
fore be formulated such that we obtain for the continuous random variable
X1, X2

P (X1 < x1, x2 < X2 < x2 + ∆x2|C)

= P (x2 < X2 < x2+∆x2|C)P (X1 < x1|x2 < X2 < x2+∆x2, C) .
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This leads with (2.71), (2.87), with the density function p(x1, x2|C) for X1

and X2 and with the variables t1 and t2 of integration to

P (X1 < x1|x2 < X2 < x2 + ∆x2, C)

=

∫ x2+∆x2

x2

∫ x1

−∞
p(t1, t2|C)dt1dt2∫ x2+∆x2

x2

∫ ∞

−∞
p(t1, t2|C)dt1dt2

. (2.95)

The probability P (X1 < x1|X2 = x2, C), which corresponds to the condi-

tional distribution function F (x1|x2), needs to be determined. It follows
from (2.95) by the limit process ∆x2 → 0. With the marginal density
p(x2|C) =

∫ ∞

−∞ p(t1, t2|C)dt1 from (2.89) we find

F (x1|x2) = lim
∆x2→0

P (X1 < x1|x2 < X2 < x2 + ∆x2, C)

=

∫ x1

−∞
p(t1, t2|C)dt1∆x2

p(x2|C)∆x2
. (2.96)

By differentiating with respect to x1 in analogy to (2.72) the conditional con-

tinuous density function p(x1|x2, C) for X1 is obtained under the conditions
that the value x2 of X2 and that C are given

p(x1|x2, C) =
p(x1, x2|C)

p(x2|C)
. (2.97)

Starting from the n-dimensional continuous random variable X1, . . . , Xn

with the density function p(x1, . . . , xn|C), the conditional continuous density
function for the random variables X1, . . . , Xi given the values xi+1, . . . , xn

for Xi+1, . . . , Xn is obtained analogously by

p(x1, . . . , xi|xi+1, . . . , xn, C) =
p(x1, . . . , xi, xi+1, . . . , xn|C)

p(xi+1, . . . , xn|C)
. (2.98)

If corresponding to (2.75) the discrete or continuous random variables are
arranged in the discrete or continuous random vectors

x1 = |X1, . . . , Xi|′ and x2 = |Xi+1, . . . , Xn|′ (2.99)

and as in (2.76) the values of the discrete random variables in

x1 = |x1j1
, . . . , xiji

|′ and x2 = |xi+1,ji+1
, . . . , xnjn

|′ (2.100)

or corresponding to (2.77) and (2.78) the values of the discrete or continuous
random variables in

x1 = |x1, . . . , xi|′ and x2 = |xi+1, . . . , xn|′ , (2.101)
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then we get instead of (2.94) and (2.98) the conditional discrete or continuous
density function for the discrete or continuous random vector x1 given the
values for x2 by

p(x1|x2, C) =
p(x1, x2|C)

p(x2|C)
. (2.102)

The conditional discrete density function (2.94) or (2.102) has to fulfill
corresponding to (2.66) or (2.67) the two conditions

p(x1j1
, . . . , xiji

|xi+1,ji+1
, . . . , xnjn

, C) ≥ 0

and

m1∑
j1=1

. . .

mi∑
ji=1

p(x1j1
, . . . , xiji

|xi+1,ji+1
, . . . , xnjn

, C) = 1 (2.103)

or

∞∑
j1=1

. . .

∞∑
ji=1

p(x1j1
, . . . , xiji

|xi+1,ji+1
, . . . , xnjn

, C) = 1 (2.104)

for a countable infinite number of values of the discrete random variables X1

to Xi. This follows from the fact that by summing up the numerator on the
right-hand side of (2.94) the denominator is obtained because of (2.82) as

m1∑
j1=1

. . .

mi∑
ji=1

p(x1j1
, . . . , xiji

, xi+1,ji+1
, . . . , xnjn

|C)

= p(xi+1,ji+1
, . . . , xnjn

|C) .

Correspondingly, the conditional continuous density function (2.98) or (2.102)
satisfies

p(x1, . . . , xi|xi+1, . . . , xn, C) ≥ 0 (2.105)

and ∫ ∞

−∞

. . .

∫ ∞

−∞

p(x1, . . . , xi|xi+1, . . . , xn, C)dx1 . . . dxi = 1 . (2.106)

2.2.7 Independent Random Variables and Chain Rule

The concept of conditional independency (2.31) of statements A and B shall
now be transferred to random variables. Starting from the n-dimensional
discrete random variable X1, . . . , Xi, Xi+1, . . . , Xn the statement A shall re-
fer to the random variables X1, . . . , Xi and the statement B to the random
variables Xi+1, . . . , Xn. The random variables X1, . . . , Xi and the random



2.2 Distributions 29

variables Xi+1, . . . , Xn are conditionally independent or shortly expressed in-

dependent, if and only if under the condition C

p(x1j1
, . . . , xiji

|xi+1,ji+1
, . . . , xnjn

, C) = p(x1j1
, . . . , xiji

|C) . (2.107)

If this expression is substituted on the left-hand side of (2.94), we find

p(x1j1
, . . . , xiji

, xi+1,ji+1
, . . . , xnjn

|C)

= p(x1j1
, . . . , xiji

|C)p(xi+1,ji+1
, . . . , xnjn

|C) . (2.108)

Thus, the random variables X1, . . . , Xi are independent of the random vari-
ables Xi+1, . . . , Xn, if and only if the density function for the n-dimensional
random variable X1, . . . , Xn can be factorized into the marginal density func-
tions for X1, . . . , Xi and Xi+1, . . . , Xn.

The factorization (2.108) of the density function for the n-dimensional
discrete random variable X1, . . . , Xn into the two marginal density functions
follows also from the product rule (2.32) of the two independent statements
A and B, if A refers to the random variables X1, . . . , Xi and B to the random
variables Xi+1, . . . , Xn.

By derivations corresponding to (2.95) up to (2.98) we conclude from
(2.107) that the random variables X1, . . . , Xi and Xi+1, . . . , Xn of the n-
dimensional continuous random variable X1, . . . , Xn are independent, if and
only if under the condition C the relation

p(x1, . . . , xi|xi+1, . . . , xn, C) = p(x1, . . . , xi|C) (2.109)

holds. By substituting this result on the left-hand side of (2.98) the factoriza-
tion of the density function for the continuous random variable X1, . . . , Xn

corresponding to (2.108) follows

p(x1, . . . , xi, xi+1, . . . , xn|C) = p(x1, . . . , xi|C)p(xi+1, . . . , xn|C) . (2.110)

After introducing the discrete or continuous random vectors x1 and x2 de-
fined by (2.99) and their values (2.100) or (2.101), we obtain instead of (2.108)
or (2.110)

p(x1, x2|C) = p(x1|C)p(x2|C) . (2.111)

The n statements A1, A2, . . . , An of the chain rule (2.27) shall now refer
to the values of the n-dimensional discrete random variable X1, . . . , Xn. We
therefore find with (2.65) the chain rule for a discrete density function

p(x1j1
, x2j2

, . . . , xnjn
|C) = p(xnjn

|x1j1
, x2j2

, . . . , xn−1,jn−1
, C)

p(xn−1,jn−1
|x1j1

, x2j2
, . . . , xn−2,jn−2

, C) . . . p(x2j2
|x1j1

, C)p(x1j1
|C) .

(2.112)
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The density function p(xiji
|C) takes on because of (2.65) the mi values

p(xi1|C), p(xi2|C), . . . , p(ximi
|C) , (2.113)

the density function p(xiji
|xkjk

, C) the mi × mk values

p(xi1|xk1, C), p(xi2|xk1, C), . . . , p(ximi
|xk1, C)

p(xi1|xk2, C), p(xi2|xk2, C), . . . , p(ximi
|xk2, C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p(xi1|xkmk
, C), p(xi2|xkmk

, C), . . . , p(ximi
|xkmk

, C) ,

(2.114)

the density function p(xiji
|xkjk

, xljl
, C) the mi × mk × ml values

p(xi1|xk1, xl1, C), p(xi2|xk1, xl1, C), . . . , p(ximi
|xk1, xl1, C)

p(xi1|xk2, xl1, C), p(xi2|xk2, xl1, C), . . . , p(ximi
|xk2, xl1, C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p(xi1|xkmk
, xl1, C), p(xi2|xkmk

, xl1, C), . . . , p(ximi
|xkmk

, xl1, C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p(xi1|xk1, xlml
, C), p(xi2|xk1, xlml

, C), . . . , p(ximi
|xk1, xlml

, C)

p(xi1|xk2, xlml
, C), p(xi2|xk2, xlml

, C), . . . , p(ximi
|xk2, xlml

, C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p(xi1|xkmk
, xlml

, C), p(xi2|xkmk
, xlml

, C), . . . , p(ximi
|xkmk

, xlml
, C)

(2.115)

and so on. The more random variables appear in the condition, the greater
is the number of density values.

We may write with (2.77) the chain rule (2.112) in a more compact form

p(x1, x2, . . . , xn|C) = p(xn|x1, x2, . . . , xn−1, C)

p(xn−1|x1, x2, . . . , xn−2, C) . . . p(x2|x1, C)p(x1|C) . (2.116)

In case of independency of random variables the chain rule simplifies. If Xi

and Xk are independent, we obtain with (2.31) or (2.107) for i > k

p(xi|x1, x2, . . . , xk−1, xk, xk+1, . . . , xi−1, C)

= p(xi|x1, x2, . . . , xk−1, xk+1, . . . , xi−1, C) . (2.117)

Thus, the random variable Xk disappears in the enumeration of the random
variables whose values enter the density function as conditions. An applica-
tion can be found in Chapter 5.5.2.

Corresponding to the derivations, which lead from (2.95) to (2.98), the
relations (2.116) and (2.117) are also valid for the continuous density func-
tions of continuous random variables. We therefore obtain for the discrete or
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continuous random vectors x1, . . . ,xn from (2.116)

p(x1, x2, . . . ,xn|C) = p(xn|x1, x2, . . . ,xn−1, C)

p(xn−1|x1, x2, . . . ,xn−2, C) . . . p(x2|x1, C)p(x1|C) . (2.118)

If the random vector xi is independent from xj , we obtain in analogy to
(2.117)

p(xi|xj , xk, C) = p(xi|xk, C) . (2.119)

If independent vectors exist among the random vectors x1, . . . ,xn, the chain
rule (2.118) simplifies because of (2.119).

2.2.8 Generalized Bayes’ Theorem

Bayes’ theorem (2.38), which has been derived for the probability of state-
ments, shall now be generalized such that it is valid for the density functions
of discrete or continuous random variables.

If x and y are discrete or continuous random variables, we obtain with
(2.102)

p(x|y, C) =
p(x, y|C)

p(y|C)

under the condition that values of the random vector y are given, which
because of (2.76) to (2.78) are also denoted by y. Furthermore, we have

p(y|x, C) =
p(x, y|C)

p(x|C)
. (2.120)

If these two equations are solved for p(x, y|C) and the resulting expressions
are equated, the generalized Bayes’ theorem is found in a form corresponding
to (2.38)

p(x|y, C) =
p(x|C)p(y|x, C)

p(y|C)
. (2.121)

Since the vector y contains fixed values, p(y|C) is constant. Bayes’ theorem
is therefore often applied in the form corresponding to (2.43)

p(x|y, C) ∝ p(x|C)p(y|x, C) . (2.122)

The components of the discrete or continuous random vector x are now iden-
tified with unknown parameters which were already mentioned in Chapter
2.2. The binomial distribution (2.61) possesses, for instance, the parameters
n and p. They may take on different values, but a pair of values determines
the binomial distribution. In the following example p is an unknown pa-
rameter. In general, unknown parameters are understood to be quantities
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which describe unknown phenomena. The values of the parameters are un-
known. To estimate them, measurements, observations or data have to be
taken which contain information about the unknown parameters. This was
already indicated in Chapter 2.2.

The vector of values of the random vector x of unknown parameters is
also called x because of (2.76) to (2.78). The set of vectors x, that is the set
of vectors which contains all possible values for the parameters, is called the
parameter space X , hence we have x ∈ X in (2.121) or (2.122). The values
y of the discrete or continuous random vector y represent given data. The
density function p(x|C) given the background information C contains infor-
mation about the parameters x before the data y have been taken. One calls
p(x|C) therefore prior density function or prior distribution for the parame-
ters x. It contains the prior information about the unknown parameters. By
taking into account the observations y the density function p(x|y, C) follows.
It is called posterior density function or posterior distribution for the param-
eters x. Via the density function p(y|x, C) the information available in the
data y reaches the parameters x. Since the data y are given, this density
function is not interpreted as a function of the data y but as a function of
the parameters x, and it is called the likelihood function. Thus,

posterior density function ∝ prior density function × likelihood function .

The data modify the prior density function by the likelihood function and
lead to the posterior density function for the unknown parameters.

Example 1: Under the condition C that a box contains m balls of equal
shape and weight, among which k red and m − k black balls are present,
the statement A refers to drawing a red ball. Its probability is according to
(2.24)

P (A|C) =
k

m
= p .

This probability is equal to the ratio p of the number of red balls to the total
number of balls. The experiment C is augmented such that the drawn ball is
put back and the box is shaken so that the new draw of a ball is independent
from the result of the first draw. The probability, to get x red balls after n
draws with replacements, then follows from the binomial distribution (2.61)
by

p(x|n, p, C) =

(
n

x

)
px(1 − p)n−x .

Let the proportion p of red balls to the total number of balls in the box now
be the unknown parameter to be determined by n draws with replacements.
The number x of drawn red balls is registered. The binomial distribution
given above is then interpreted as likelihood function p(n, x|p, C) for the
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unknown parameter p with the data n and x in Bayes’ theorem (2.122)

p(n, x|p, C) =

(
n

x

)
px(1 − p)n−x . (2.123)

The unknown proportion p takes because of (2.16) values in the interval
0 ≤ p ≤ 1. No prior information exists regarding the possible values of p.
The uniform distribution (2.59) is therefore chosen as prior density function
p(p|C) for the unknown parameter p

p(p|0, 1, C) =

{
1 for 0 ≤ p ≤ 1

0 for p < 0 and p > 1 .

The posterior density function p(p|n, x, C) for the unknown parameter p then
follows from Bayes’ theorem (2.122) with

p(p|n, x, C) ∝ px(1 − p)n−x for 0 ≤ p ≤ 1 (2.124)

where the term
(
n
x

)
of the binomial distribution is constant and therefore

need not be considered. If this density function is compared with the density
function (2.178) of the beta distribution, one recognizes that the unknown
parameter p possesses as posterior density function

p(p|n, x, C) =
Γ(n + 2)

Γ(x + 1)Γ(n − x + 1)
px(1 − p)n−x (2.125)

which is the density function of the beta distribution.

If we draw, for instance, x = 4 red balls in n = 10 trials, we obtain with
(2.173) the posterior density function for p

p(p|10, 4, C) = 2 310p4(1 − p)6 .

The graph of this posterior density function is shown in Figure 2.1. For the 10
draws which result in 4 red balls the prior density function for p with identical

p(p|10, 4, C)

p

0.2 0.4 0.6 0.8 1.0

1

2

3

�

�

Figure 2.1: Posterior Density Function for p



34 2 Probability

values of one is modified to the posterior density function for p of Figure 2.1
with the maximum at p = 0.4.

As will be shown by (3.30), an estimate p̂M of p may be determined such
that with p̂M the posterior density function for p becomes maximal. The
posterior density function is therefore differentiated with respect to p, and
the derivative is set equal to zero. We get

d(p(p|n, x, C))

dp
∝ xpx−1(1 − p)n−x − (n − x)px(1 − p)n−x−1

and

xp̂−1
M = (n − x)(1 − p̂M )−1

and finally the estimate p̂M of p

p̂M =
x

n
. (2.126)

An identical result follows, if in (2.63) the expected value E(X) is replaced
by the measurement x and the parameter p by its estimate p̂M . With the
values n = 10 and x = 4 of Figure 2.1 the estimate p̂M follows with p̂M = 0.4.
For these values p(p|10, 4, C) attains its maximum. ∆

As will be shown in Chapter 3, knowledge of the posterior density func-
tion suffices to estimate the unknown parameters, to test hypotheses for the
unknown parameters or to establish regions, within which the values of the
parameters lie with a given probability. For these problems Bayes’ theorem
(2.122) presents a solution.

The vector x of unknown parameters is defined in Bayes’ theorem as a
random vector with which a prior density and a posterior density function
is associated. This approach is contrary to the one of traditional statistics
which is not based on Bayes’ theorem and which defines the vector of un-
known parameters generally as a vector of constants. But this does not mean
that the vector x of parameters in Bayes’ theorem (2.122) may not represent
constants such as the coordinates of a point at the rigid surface of the earth.
By the prior and posterior density function for the unknown parameters the
probability is determined that the values of the parameters lie within cer-
tain regions. The probability expresses, as explained in Chapter 2.1.4, the
plausibility of these statements. The probability does not need to be inter-
preted as frequency of random experiments which may be inappropriate, as
the unknown parameters do not in general result from random experiments.
The probability serves the purpose to express the plausibility of values of the
parameters. The parameters may therefore represent constant quantities or
variable quantities, too, which vary for instance with time. By Bayes’ theo-
rem we obtain a posterior density function which characterizes the values of
the parameters which exist when recording the data.
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The density function in the denominator of (2.121) may be expressed by
a marginal density function. We obtain with (2.85) and (2.120) for a discrete
random vector y

p(y|C) =
∑
x∈X

p(x, y|C) =
∑
x∈X

p(x|C)p(y|x, C) (2.127)

and with (2.91) and (2.120) for a continuous random vector y

p(y|C) =

∫
X

p(x, y|C)dx =

∫
X

p(x|C)p(y|x, C)dx (2.128)

where the parameter space X denotes the domain over which x has to be
summed or integrated. Bayes’ theorem (2.121) then follows in a form corre-
sponding to (2.40) by

p(x|y, C) = p(x|C)p(y|x, C)/c (2.129)

with the constant c from (2.127) for a discrete random vector y

c =
∑
x∈X

p(x|C)p(y|x, C) (2.130)

or from (2.128) for a continuous random vector y

c =

∫
X

p(x|C)p(y|x, C)dx . (2.131)

Thus, it becomes obvious that c acts as a normalization constant which must
be introduced to satisfy (2.103), (2.104) or (2.106).

If instead of the vector y of data the vectors y1, y2, . . . ,yn are given, we
obtain instead of (2.122)

p(x|y1, y2, . . . ,yn, C) ∝ p(x|C)p(y1, y2, . . . ,yn|x, C) . (2.132)

Let the vector yi of data be independent of the vector yj for i �= j and
i, j ∈ {1, . . . , n}, then we get with (2.111) instead of (2.132)

p(x|y1, y2, . . . ,yn, C) ∝ p(x|C)p(y1|x, C)p(y2|x, C) . . . p(yn|x, C) . (2.133)

For independent data Bayes’ theorem may therefore be applied recursively.
We find with the data y1 from (2.122)

p(x|y1, C) ∝ p(x|C)p(y1|x, C) .

This posterior density function is introduced as prior density for the analysis
of y2, thus

p(x|y1, y2, C) ∝ p(x|y1, C)p(y2|x, C) .
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If one proceeds in this manner up to the data yk, the recursive application
of Bayes’ theorem follows corresponding to (2.45) by

p(x|y1, y2, . . . ,yk, C) ∝ p(x|y1, y2, . . . ,yk−1, C)p(yk|x, C)

for k ∈ {2, . . . , n} (2.134)

with

p(x|y1, C) ∝ p(x|C)p(y1|x, C) .

This result agrees with (2.133). By analyzing the observations y1 to yn the
knowledge about the unknown parameters x is sequentially updated.

Example 2: In Example 1 to Bayes’ theorem (2.122) x red balls were
drawn in n trials. They shall now be denoted by x1 and n1, thus x1 = 4 and
n1 = 10. Again, we draw and obtain x2 red balls in n2 trials, namely x2 = 6
and n2 = 20. Because of the setup of the experiment the data n1 and x1

are independent of n2 and x2. The posterior density function for p based on
the additional draws may therefore be derived by the recursive application of
Bayes’ theorem by introducing the posterior density function obtained from
the data n1 and x1 as prior density function for the analysis of the data n2

and x2. We find with (2.134)

p(p|n1, x1, n2, x2, C) ∝ p(p|n1, x1, C)p(n2, x2|p, C) (2.135)

where the prior density function p(p|n1, x1, C) is identical with the posterior
density (2.124), if n and x are substituted by n1 and x1 and if the likelihood
function again follows from (2.123). Thus, we get instead of (2.135)

p(p|n1, x1, n2, x2, C) ∝ px1(1 − p)n1−x1px2(1 − p)n2−x2

or by a comparison with (2.178) the density function of the beta distribution

p(p|n1, x1, n2, x2, C)

=
Γ(n1 + n2 + 2)

Γ(x1 + x2 + 1)Γ(n1 + n2 − (x1 + x2) + 1)
px1+x2(1 − p)n1+n2−(x1+x2).

(2.136)

Instead of deriving recursively the posterior density function (2.136) by ana-
lyzing first the data n1 and x1 and then the data n2 and x2, the data may
be also evaluated jointly. We replace in (2.125) just n by n1 + n2 and x by
x1 + x2 and obtain immediately the posterior density function (2.136).

For the data n1 = 10, x1 = 4, n2 = 20, x2 = 6 we find because of (2.173)

p(p|10, 4, 20, 6, C) = 931 395 465 p10(1 − p)20 .

The posterior density function p(p|10, 4, 20, 6, C) is shown together with the
prior density function p(p|10, 4, C) for the unknown parameter p in Figure
2.2. As can be recognized, the posterior density function is considerably
more concentrated around its maximum value than the prior density function
because of the additional observations. The maximum is also shifted.
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p(p|10, 4, 20, 6, C)

p(p|10, 4, C)

p
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Figure 2.2: Prior and Posterior Density Function for p

The estimate p̂M of p follows from (2.126) by

p̂M =
x1 + x2

n1 + n2
(2.137)

which is p̂M = 0.333 for the given data. ∆

An additional example for the recursive application of Bayes’ theorem is
presented in Chapter 4.2.7.

2.3 Expected Value, Variance and Covariance

2.3.1 Expected Value

The expected value or the expectation denoted by µ or E(X) of a discrete
random variable X with the density function p(xi|C) for i ∈ {1, . . . , m} is
defined by

µ = E(X) =

m∑
i=1

xip(xi|C) (2.138)

and for i ∈ {1, . . . ,∞} in analogy to (2.138) by

µ = E(X) =

∞∑
i=1

xip(xi|C) . (2.139)

Because of the condition (2.47) that the summation of the density function
p(xi|C) gives one, the expected value can be expressed according to (4.20)
as a weighted arithmetic mean with the density values p(xi|C) as weights

µ = E(X) =

m∑
i=1

xip(xi|C)/

m∑
i=1

p(xi|C) .
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Thus, the expected value E(X) of a random variable X may be interpreted
as a mean value.

The expected value E(X) is computed by the density function p(xi|C).
It therefore depends on the condition concerning the information C. This
could be expressed by the notation E(X |C) which will be dispensed with in
the following for the sake of simplification. Later in Chapters 2.6.3 and 4 it
will be necessary to introduce this notation.

Example 1: We obtain from (2.138) the expected value E(X) of the
random variable X with the binomial distribution (2.61) by

E(X) =

n∑
x=0

x

(
n

x

)
px(1 − p)n−x =

n∑
x=1

n!

(x − 1)!(n − x)!
px(1 − p)n−x

= np
n∑

x=1

(n − 1)!

(x − 1)!(n − x)!
p(x−1)(1 − p)n−x .

By substituting j = x − 1 we find with the binomial series

E(X) = np

n−1∑
j=0

(n − 1)!

j!(n − j − 1)!
pj(1 − p)n−j−1

= np[p + (1 − p)]n−1

= np . ∆

The expected value (2.138) is a special case of the definition of the ex-
pected value µi or E(Xi) of the random variable Xi of the n×1 discrete ran-
dom vector x = |X1, . . . , Xn|′ with the density function p(x1j1

, . . . , xnjn
|C)

with jk ∈ {1, . . . , mk} and k ∈ {1, . . . , n} from (2.65)

µi = E(Xi) =

m1∑
j1=1

. . .

mn∑
jn=1

xiji
p(x1j1

, . . . , xnjn
|C) . (2.140)

Correspondingly, the expected value E(f(Xi)) of the function f(Xi) of the
random variable Xi follows with

E(f(Xi)) =

m1∑
j1=1

. . .

mn∑
jn=1

f(xiji
)p(x1j1

, . . . , xnjn
|C) . (2.141)

Example 2: To derive the variance V (X) of a random variable X , the
expected value E(X2) needs to be computed, as will be shown with (2.147).
For a random variable X with the binomial distribution (2.61) one obtains

E(X2) =

n∑
x=0

x2

(
n

x

)
px(1 − p)n−x =

n∑
x=1

xn!

(x − 1)!(n − x)!
px(1 − p)n−x

=

n∑
x=1

[ (x − 1)n!

(x − 1)!(n − x)!
+

n!

(x − 1)!(n − x)!

]
px(1 − p)n−x .
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As was shown in Example 1 to (2.138), summing the second term gives np,
hence

E(X2) =

n∑
x=2

n!

(x − 2)!(n − x)!
px(1 − p)n−x + np

= n(n − 1)p2
n∑

x=2

(n − 2)!

(x − 2)!(n − x)!
px−2(1 − p)n−x + np

= n(n − 1)p2 + np .

This finally leads with (2.147) to

V (X) = E(X2) − [E(X)]2 = np − np2

= np(1 − p) .
∆

The expected value µ or E(X) of the continuous random variable X with
the density function p(x|C) is in analogy to (2.138) defined by

µ = E(X) =

∫ ∞

−∞

xp(x|C)dx . (2.142)

Example 3: The expected value E(X) of the random variable X with
the exponential distribution (2.189) follows from

E(X) =
1

µ

∫ ∞

0

xe−x/µdx =
1

µ

[
e−x/µ(−µx − µ2)

]∞
0

= µ .

∆

Definition (2.142) is a special case of the definition of the expected value
µi or E(Xi) of the continuous random variable Xi of the n × 1 continuous
random vector x = |X1, . . . , Xn|′ with the density function p(x1, . . . , xn|C)

µi = E(Xi) =

∫ ∞

−∞

. . .

∫ ∞

−∞

xip(x1, . . . , xn|C)dx1 . . . dxn . (2.143)

Correspondingly, the expected value E(f(Xi)) of the function f(Xi) of the
random variable Xi follows with

E(f(Xi)) =

∫ ∞

−∞

. . .

∫ ∞

−∞

f(xi)p(x1, . . . , xn|C)dx1 . . . dxn . (2.144)

If the marginal distribution p(xi|C) for the random variable Xi from
(2.89) is substituted in (2.143), we obtain

µi = E(Xi) =

∫ ∞

−∞

xip(xi|C)dxi . (2.145)

The expected value lies in the center of the marginal density function p(xi|C),
as shown in Figure 2.3. This is true, because the xi axis can be imagined as
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a bar with the density p(xi|C). The mass center xs of the bar is computed
by the laws of mechanics by

xs =

∫ ∞

−∞

xip(xi|C)dxi/

∫ ∞

−∞

p(xi|C)dxi

whence xs = E(Xi) follows because of (2.74).

E(xi)

p(xi|C)

xi� �

�

Figure 2.3: Expected Value

For the computation with expected values the following relation holds

E(Ax + By + c) = AE(x) + BE(y) + c (2.146)

where A denotes an m × n, B an m × o matrix, c an m × 1 vector of
constants, x = |X1, . . . , Xn|′ an n × 1 random vector and y = |Y1, . . . , Yo|′ a
o × 1 random vector. To derive the result (2.146), we define d = Ax with
d = (di), e = By with e = (ei), A = (aij), B = (bij) and c = (ci) and
obtain with (2.144)

E(di + ei + ci) = E(

n∑
j=1

aijXj +

o∑
k=1

bikYk + ci)

=

n∑
j=1

aijE(Xj) +

o∑
k=1

bikE(Yk) + E(ci) .

The constant ci is introduced by ci = f(Xl) as a function f(Xl) of a random
variable Xl with the density function p(xl|C). Thus, with (2.57) and (2.144)
E(ci) = E(f(Xl)) = ci

∫ ∞

−∞ p(xl|C)dxl = ci.

Example 4: The expected value E((X − µ)2) for the random variable
X with the expected value µ = E(X) shall be computed by (2.146). It leads
because of (2.151) to the variance V (X) of X . We get

V (X) = E((X − µ)2) = E(X2) − 2µE(X) + µ2

= E(X2) − µ2 .
(2.147)

∆
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2.3.2 Variance and Covariance

Expected values of random variables are specializations of the multivariate
moments of random variables. They will be defined in the following for
continuous random variables only. The definitions for discrete random vari-
ables follow corresponding to the definition (2.141) of the expected value
for the function of a random variable in a discrete random vector. Let
x = |X1, . . . , Xn|′ be the n × 1 continuous random vector with the den-

sity function p(x1, . . . , xn|C), then µ
(k)
x1,...,xn with k =

∑n
i=1 ki and ki ∈ N

denotes the kth multivariate moment of X1, . . . , Xn

µ(k)
x1,...,xn

= E(Xk1
1 Xk2

2 . . . Xkn

n )

=

∫ ∞

−∞

. . .

∫ ∞

−∞

xk1
1 xk2

2 . . . xkn

n p(x1, . . . , xn|C)dx1 . . . dxn .

(2.148)

It gives with ki = 1 and kj = 0 for i �= j the expected value µi or E(Xi) of
the random variable Xi defined in (2.143).

Moments about the expected values µi of the random variables Xi are
called central moments

E((X1 − µ1)
k1(X2 − µ2)

k2 . . . (Xn − µn)kn) . (2.149)

The second central moments are of particular interest.
The second central moment σij or C(Xi, Xj) of the random variables Xi

and Xj is called the covariance

σij = C(Xi, Xj) = E((Xi − µi)(Xj − µj))

=

∫ ∞

−∞

. . .

∫ ∞

−∞

(xi − µi)(xj − µj)p(x1, . . . , xn|C)dx1 . . . dxn

(2.150)

and the second central moment σ2
i or V (Xi) of the random variable Xi the

variance

σ2
i = V (Xi) = σii = C(Xi, Xi) = E((Xi − µi)

2)

=

∫ ∞

−∞

. . .

∫ ∞

−∞

(xi − µi)
2p(x1, . . . , xn|C)dx1 . . . dxn . (2.151)

Considering (2.74) it is obvious from the definition of the variance that σ2
i ≥ 0

holds. The positive square root of σ2
i is called the standard deviation σi, thus

σi =
√

σ2
i .

Example 1: The variance V (X) of the random variable X with the
exponential distribution (2.189) follows with E(X) = µ from Example 3 to
(2.142) and with (2.147) by

V (X) =
1

µ

∫ ∞

0

x2e−x/µdx − µ2

=
1

µ

[
e−x/µ(−µx2 − 2µ2x − 2µ3)

]∞
0

− µ2 = µ2 .
∆
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The variance σ2
i is a measure of dispersion of the random variable Xi

about its expected value µi and therefore a measure for the accuracy of a
random variable which represents a measurement, since we obtain by the
marginal density function p(xi|C) for Xi from (2.89) instead of (2.151)

σ2
i =

∫ ∞

−∞

(xi − µi)
2p(xi|C)dxi . (2.152)

If most of the area under the graph of the marginal density function p(xi|C)
sketched in Figure 2.3 lies near the expected value E(Xi), the variance σ2

i

is small. On the other hand σ2
i is large, if the area is spread out. A small

variance of a measurement means a high accuracy, a large variance a low
accuracy.

The covariance σij is a measure of dependency of two random variables
Xi and Xj. To explain this we have on the one side

σij = 0 , (2.153)

if the random variables Xi and Xj are independent.

To show this, σij is computed with (2.150) by

σij = E(XiXj) − µjE(Xi) − µiE(Xj) + µiµj

= E(XiXj) − E(Xi)E(Xj) . (2.154)

Furthermore, we get with (2.148) and the marginal density function p(xi, xj |
C) for Xi and Xj from (2.89)

E(XiXj) =

∫ ∞

−∞

∫ ∞

−∞

xixjp(xi, xj |C)dxidxj .

Because of the independency of Xi and Xj we obtain with (2.110) the factor-
ization p(xi, xj |C) = p(xi|C)p(xj |C). Thus, E(XiXj) = E(Xi)E(Xj) follows
with (2.145) and finally (2.153).

On the other side we obtain, if the covariance σij is normalized, the cor-

relation coefficient ρij of Xi and Xj as

ρij = σij/(σiσj) for σi > 0 and σj > 0 , (2.155)

and the relation, see for instance Koch (1999, p.98),

−1 ≤ ρij ≤ 1 . (2.156)

We get ρij = ±1, if and only if there is a linear relation between the random
variables Xi and Xj with probability one, that is P (Xj = cXi + d|C) = 1
with c and d being constants.
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The variances and covariances of a random vector x = |X1, . . . , Xn|′ are
collected in the covariance matrix D(x), also called variance-covariance ma-

trix or dispersion matrix

D(x) = (σij) = (C(Xi, Xj)) = E((x − E(x))(x − E(x))′)

=

∣∣∣∣∣∣∣∣
σ2

1 σ12 . . . σ1n

σ21 σ2
2 . . . σ2n

. . . . . . . . . . . . . . . . . . .
σn1 σn2 . . . σ2

n

∣∣∣∣∣∣∣∣
.

(2.157)

From (2.150) follows σij = σji so that the covariance matrix is symmetric. In
addition, it is positive definite or positive semidefinite, see for instance Koch

(1999, p.100).
Let the n×1 random vector x with the covariance matrix D(x) be linearly

transformed with the m × n matrix A and the m × 1 vector b of constants
into the m×1 random vector y by y = Ax+b. Its m×m covariance matrix
D(y) follows with

D(y) = D(Ax + b) = AD(x)A′ , (2.158)

since we obtain with the definition (2.157) of a covariance matrix D(y) =
E((y − E(y))(y − E(y))′) and with (2.146) D(y) = E((Ax + b − AE(x) −
b)(Ax − AE(x))′) = AE((x − E(x))(x − E(x))′)A′.

In case of nonlinear transformations the matrix A contains as elements
the derivatives of the transformed values of the random vector x with respect
to the values of x, see for instance Koch (1999, p.100). In such a case (2.158)
is called the law of error propagation.

Example 2: The 3 × 1 random vector x with x = (Xi) and with the
3 × 3 covariance matrix Σx is linearly transformed by

Y1 = X1 + X2 + X3

Y2 = X1 − X2 + X3

into the 2 × 1 random vector y with y = (Yi). The 2 × 2 covariance matrix
Σy of y then follows from Σy = AΣxA′ with

A =

∣∣∣∣ 1 1 1
1 −1 1

∣∣∣∣ .
∆

Let D(x) = Σ be the n×n positive definite covariance matrix of the n×1
random vector x = |X1, . . . , Xn|′. The n × n matrix P

P = cΣ−1 , (2.159)

where c denotes a constant, is then called the weight matrix and the diagonal
element pii of P = (pij) the weight of the random variable Xi. If the ran-
dom variables are independent, the covariance matrix Σ simplifies because



44 2 Probability

of (2.153) to the diagonal matrix Σ = diag(σ2
1 , . . . , σ

2
n). The weight pi of Xi

then results from

pi = pii = c/σ2
i . (2.160)

The smaller the variance of the random variable Xi the larger is its weight
and the higher is the precision or the accuracy for a random variable which
represents a measurement.

If the m × 1 random vector z is decomposed with z = |x′, y′|′ into the
n × 1 random vector x = (Xi) and the p × 1 random vector y = (Yj) with
m = n + p, then C(x, y) denotes the n × p covariance matrix of the random
vectors x and y. Corresponding to the definition (2.150) and (2.157) we have

C(x, y) = (C(Xi, Yj)) = E((x − E(x))(y − E(y))′) . (2.161)

The covariance matrix D(z) of the random vector z then follows with C(x, x)
= D(x) and C(y, y) = D(y) from

D(z) = D(

∣∣∣∣ x

y

∣∣∣∣) =

∣∣∣∣ D(x) C(x, y)
C(y, x) D(y)

∣∣∣∣ . (2.162)

If x and y are two n×1 random vectors and if u = x−y is the n×1 random
vector of their difference, then

u = x − y = |I,−I|
∣∣∣∣ x

y

∣∣∣∣ .

The covariance matrix D(x−y) is therefore obtained from (2.158) and (2.162)
by

D(x − y) = D(x) − C(x, y) − C(y, x) + D(y) . (2.163)

If two random vectors x and y are linearly transformed by Ax + a and
By + b, where the matrices A and B as well as the vectors a and b contain
constants, the covariance matrix of the linearly transformed vectors follows
with

C(Ax + a, By + b) = AC(x, y)B′ , (2.164)

since based on the definition (2.161) we obtain with (2.146)

C(Ax + a, By + b) = AE((x − E(x))(y − E(y))′)B′ = AC(x, y)B′ .

2.3.3 Expected Value of a Quadratic Form

Let the n × 1 random vector x have the n × 1 vector E(x) = µ of expected
values and the n × n covariance matrix D(x) = Σ, then the expected value
of the quadratic form x′Ax with the symmetric n × n matrix A is given by

E(x′Ax) = tr(AΣ) + µ′Aµ . (2.165)
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This result follows from the fact that the quadratic form is a scalar, thus
with (2.154)

E(x′Ax) = E(tr(x′Ax)) = E(tr(Axx′))

= tr(AE(xx′)) = tr(A(Σ + µµ′))

whence (2.165) follows.

2.4 Univariate Distributions

The simplest univariate distribution for a continuous random variable, the
uniform distribution, was already introduced in (2.59). In this chapter ad-
ditional distributions needed later are shortly presented and some of their
properties are mentioned. For their derivations from experiments or from
known distributions see for instance Box and Tiao (1973), Johnson and
Kotz (1970), Koch (1990) and Zellner (1971). Formulas for computing
the distribution functions and the percentage points of the distributions are
found, for instance, in Koch (1999).

2.4.1 Normal Distribution

A random variable X is said to be normally distributed with the parameters
µ and σ2, which is written as X ∼ N(µ, σ2), if its density function p(x|µ, σ2)
is given by

p(x|µ, σ2) =
1√
2πσ

e−(x−µ)2/2σ2

for −∞ < x < ∞ . (2.166)

It can be shown that the normal distribution fulfills the two conditions (2.57).
If X ∼ N(µ, σ2), then

E(X) = µ and V (X) = σ2 . (2.167)

Thus, the parameter µ of the normal distribution is determined by the ex-
pected value and the parameter σ2 by the variance of the random variable X .
For the multivariate normal distribution the corresponding relation (2.196) is
valid, which is one of the reasons that the normal distribution is the most im-
portant distribution. It is frequently applied, since for an experiment based
on measurements, the expected value and the variance are at least approxi-
mately known. These quantities determine already the normal distribution.

The central limit theorem gives a further reason for the frequent applica-
tion of the normal distribution. This theorem is also valid for the multivari-
ate normal distribution. It states that for n independent random variables
with any distributions the distribution of the sum of these random variables
moves under certain but very general conditions asymptotically towards a
normal distribution, if n goes to infinity. Very often a random variable re-
sulting from a measurement can be thought of as originating from a sum of
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many independent random variables with different distributions, for instance,
the electro-optical distance measurement, which results from many influences
caused by the instrument and the atmosphere. Measurements or observations
can therefore generally be assumed as being normally distributed.

Finally, the normal distribution is obtained, if the expected value and
the variance of a random variable are known and if one chooses among the
distributions the one which except for this information contains the highest
measure of uncertainty, i.e. maximum entropy. This will be dealt with in
Chapter 2.6.2.

The distribution function F (xF ; µ, σ2) of the random variable X with
X ∼ N(µ, σ2) for the value xF follows from (2.55) with (2.166)

F (xF ; µ, σ2) =
1√
2πσ

∫ xF

−∞

e−(x−µ)2/2σ2

dx . (2.168)

By the transformation of the variable with

z = (x − µ)/σ and dz = dx/σ (2.169)

this integral is transformed together with zF = (xF − µ)/σ into

F (zF ; 0, 1) =
1√
2π

∫ zF

−∞

e−z2/2dz . (2.170)

This is the distribution function of the random variable Z with the stan-

dard normal distribution N(0, 1), thus Z ∼ N(0, 1). Values for F (zF ; 0, 1)
are tabulated and there are approximate formulas for (2.170). Furthermore,
F (zF ; 0, 1) is found as a function of compilers.

Example: The probabilities P (µ − σ < X < µ + σ|C) and P (µ − 3σ <
X < µ+3σ|C) regarding the random variable X with the normal distribution
X ∼ N(µ, σ2) are computed given the information C with (2.52) and (2.168)
by

P (µ − σ < X < µ + σ|C) =
1√
2πσ

∫ µ+σ

µ−σ

e−(x−µ)2/2σ2

dx .

Transforming the variable according to (2.169) gives because of the symmetry
of the normal distribution

P (µ − σ < X < µ + σ|C) =
1√
2π

∫ 1

−1

e−z2/2dz

= F (1; 0, 1) − (1 − F (1; 0, 1))

and with F (1; 0, 1) = 0.8413

P (µ − σ < X < µ + σ|C) = 0.683 .
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Similarly, with F (3; 0, 1) = 0.9987 we obtain

P (µ − 3σ < X < µ + 3σ|C) = 0.997 .
∆

The last result establishes the so-called 3σ rule. It says that with a probability
of nearly 100% the values of a normally distributed random variable lie within
the interval (µ − 3σ, µ + 3σ).

The value xα for which with (2.170)

F (xα; 0, 1) = α (2.171)

holds is called the lower α-percentage point of the standard normal distribu-
tion and x1−α the upper α-percentage point. Tables or approximate formulas
can be used for obtaining the percentage points.

The normal distribution has been defined here. It may also be derived as
the distribution of experiments, for instance, as distribution of observational
errors.

2.4.2 Gamma Distribution

A random variable X has the gamma distribution G(b, p) with the real-valued
parameters b and p, written as X ∼ G(b, p), if its density function is given
by

p(x|b, p) =
bp

Γ(p)
xp−1e−bx for b > 0 , p > 0 , 0 < x < ∞ (2.172)

and by p(x|b, p) = 0 for the remaining values of X with Γ(p) being the gamma
function. The density function of the gamma distribution is unequal to zero
only for positive values of X . As will be shown later, it is therefore used
as the distribution of the reciprocal value of a variance. The distribution
of a variance therefore follows from the inverted gamma distribution, see
the following chapter. The gamma distribution satisfies the two conditions
(2.57). For p ∈ N and p > 0 we have

Γ(p) = (p − 1)! (2.173)

and

Γ(p +
1

2
) =

(2p − 1)(2p − 3) . . . 5 × 3 × 1

2p

√
π . (2.174)

Furthermore, for X ∼ G(b, p) we obtain

E(X) = p/b and V (X) = p/b2 . (2.175)

The gamma distribution, which has been defined here, may be also derived
as a waiting-time distribution.
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2.4.3 Inverted Gamma Distribution

If a random variable X has the gamma distribution X ∼ G(b, p), then the
random variable Z with Z = 1/X has the inverted gamma distribution Z ∼
IG(b, p) with the density function

p(z|b, p) =
bp

Γ(p)

(
1

z

)p+1

e−b/z for b > 0 , p > 0 , 0 < z < ∞ (2.176)

and p(z|b, p) = 0 for the remaining values of Z. For Z ∼ IG(b, p) we obtain

E(Z) = b/(p− 1) for p > 1

and

V (Z) = b2/[(p − 1)2(p − 2)] for p > 2 . (2.177)

2.4.4 Beta Distribution

Let the random variables Y and Z with Y ∼ G(b, α) and Z ∼ G(b, β) be
independent, then the random variable X = Y/(Y + Z) has the beta distri-

bution B(α, β) with the real-valued parameters α and β, thus X ∼ B(α, β),
defined by the density function

p(x|α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1 for 0 < x < 1 (2.178)

and p(x|α, β) = 0 for the remaining values of x. The distribution function
of the beta distribution is called the incomplete beta function. It may be
computed by a series expansion.

2.4.5 χ2-Distribution

Let the random variables X1, . . . , Xn be independent and normally distributed
according to Xi ∼ N(0, 1) with i ∈ {1, . . . , n}, then the sum of squares
X =

∑n
i=1 X2

i has the χ2-distribution (chi-square distribution) χ2(n) with
the parameter n, thus X ∼ χ2(n). The density function is given by

p(x|n) =
1

2n/2Γ(n/2)
x(n/2)−1e−x/2 for 0 < x < ∞ (2.179)

and p(x|n) = 0 for the remaining values of X . The parameter n is also called
degree of freedom. As a comparison with (2.172) shows, the χ2-distribution
follows as special case of the gamma distribution with b = 1/2 and p = n/2.

If an n × 1 random vector x has the multivariate normal distribution
N(0,Σ) defined in (2.195) by the vector 0 and the positive definite n × n



2.4 Univariate Distributions 49

matrix Σ as parameters, that is x ∼ N(0,Σ), then the quadratic form
x′Σ−1x has the χ2-distribution with n as parameter

x′Σ−1x ∼ χ2(n) . (2.180)

To compute the distribution function F (χ2; n) of the χ2-distribution for
the value χ2, finite and infinite series exist depending on n. The lower α-
percentage point χ2

α;n is corresponding to (2.171) defined by

F (χ2
α;n; n) = α . (2.181)

The percentage points may be taken from tables or be iteratively computed.

2.4.6 F -Distribution

Let the random variables U and V be independently χ2-distributed like U ∼
χ2(m) and V ∼ χ2(n), then the random variable X = (U/m)/(V/n) has the
F -distribution F (m, n) with the parameters m and n, thus X ∼ F (m, n).
The density function is given by

p(x|m, n) =
Γ(m

2 + n
2 )m

m
2 n

n
2 x

m
2 −1

Γ(m
2 )Γ(n

2 )(n + mx)
m
2 + n

2
for 0 < x < ∞ (2.182)

and p(x|m, n) = 0 for the remaining values of X .
The distribution function F (F0; m, n) for the value F0 may be computed

by the infinite series of the incomplete beta function, the distribution function
of the beta distribution. The lower α-percentage point Fα;m,n of the F -
distribution is defined as in (2.171) by

F (Fα;m,n; m, n) = α . (2.183)

The percentage points can be taken from tables or computed by approximate
formulas whose results may be iteratively corrected.

2.4.7 t-Distribution

If two random variables Y and U with Y ∼ N(0, 1) and U ∼ χ2(k) are
independent, the random variable X with

X = Y/
√

U/k

has the t-distribution t(k) with the parameter k, thus X ∼ t(k), and with the
density function

p(x|k) =
Γ(k+1

2 )√
kπΓ(k

2 )

(
1 +

x2

k

)−k+1
2

for −∞ < x < ∞ . (2.184)
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Under the assumptions, which lead to the t-distribution, the F -distribution
follows for X2 because of (2.182), thus

X2 ∼ F (1, k) and X ∼ t(k) with X = Y/
√

U/k . (2.185)

Values of the distribution function of the t-distribution may therefore also
be computed by using the distribution function of the F -distribution. The
α-percentage point Fα;1,k of the random variable X2 with the F -distribution
X2 ∼ F (1, k) follows from (2.183), if p(x2|m, n) denotes the density function
for X2,

P (X2 < Fα;1,k) =

∫ Fα;1,k

0

p(x2|m, n)dx2 = α .

Transforming the variable X2 into X gives P (±X < (Fα;1,k)1/2) and because
of (2.185) the quantity tα;k of the t-distribution which is equivalent to the
α-percentage point Fα;1,k of the F -distribution

tα;k = (Fα;1,k)1/2 (2.186)

with

P (−tα;k < X < tα;k) = α , (2.187)

since X > −tα;k follows from −X < tα;k. However, one has to be aware
that tα;k is not the α-percentage point of the t-distribution, one rather gets
because of the symmetry of the t-distribution∫ tα;k

−∞

p(x|k)dx = 1 − (1 − α)/2 = (1 + α)/2 . (2.188)

2.4.8 Exponential Distribution

A random variable X has the exponential distribution with the parameter µ,
if its density function p(x|µ) is given by

p(x|µ) =
1

µ
e−x/µ for 0 ≤ x < ∞ and µ > 0 (2.189)

and p(x|µ) = 0 for the remaining values of X . The exponential distribution
fulfills the two conditions (2.57).

If a random variable X has the exponential distribution, we obtain from
Example 3 to (2.142) and Example 1 to (2.151)

E(X) = µ and V (X) = µ2 . (2.190)

The double exponential distribution

p(x|µ) =
1

2µ
e−|x|/µ for −∞ < x < ∞ and µ > 0 (2.191)

is also called Laplace distribution.
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2.4.9 Cauchy Distribution

A random variable X has the Cauchy distribution with the parameters θ and
λ, if its density function p(x|θ, λ) is given by

p(x|θ, λ) = (πλ)−1
[
1 +

1

λ2
(x − θ)2

]−1

for −∞ < x < ∞ and λ > 0 . (2.192)

As is obvious, θ represents a translation and λ a scale parameter. The graph
of the Cauchy distribution has a similar form as the normal distribution.
For this reason, the Cauchy distribution may be used as the envelope of the
normal distribution. This will be shown in Chapter 6.3.6.

The distribution function F (xc; θ, λ) of the Cauchy distribution for the
value xc is computed according to (2.55) by

F (xc; θ, λ) =
1

πλ

∫ xc

−∞

[
1 +

1

λ2
(x − θ)2

]−1

dx

=
[ 1

π
arctan

( 1

λ
(x − θ)

)]xc

−∞

or using arctan(−∞) = −π/2 by

F (xc; θ, λ) =
1

π
arctan

( 1

λ
(xc − θ)

)
+

1

2
. (2.193)

Because of λ > 0 and

F (∞; θ, λ) = 1 (2.194)

the conditions (2.57) are satisfied for the Cauchy distribution.

2.5 Multivariate Distributions

Multivariate distributions for continuous random variables, which will be
needed later, are like the univariate distributions only shortly presented and
some properties are mentioned. Derivations may be found for instance in
Box and Tiao (1973), Johnson and Kotz (1972), Koch (1990, 1999)
and Zellner (1971).

2.5.1 Multivariate Normal Distribution

An n × 1 random vector x = |X1, . . . , Xn|′ is said to have the multivariate

normal distribution N(µ,Σ) with the n × 1 vector µ and the n × n positive
definite matrix Σ as parameters, thus x ∼ N(µ,Σ), if its density function
p(x|µ,Σ) is given by

p(x|µ,Σ) =
1

(2π)n/2(detΣ)1/2
e−

1
2 (x−µ)′Σ−1

(x−µ) . (2.195)
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It can be shown that the multivariate normal distribution fulfills the two
conditions (2.74) and that it may be derived from the univariate normal
distribution.

If the random vector x is normally distributed according to x ∼ N(µ,Σ),
then

E(x) = µ and D(x) = Σ . (2.196)

The parameters µ and Σ of the normal distribution are therefore determined
by the vector E(x) of expected values and the covariance matrix D(x) of the
random vector x.

Let the n×1 random vector x with the normal distribution x ∼ N(µ,Σ)
be decomposed with x = |x′

1, x
′
2|′ into the k × 1 and (n − k) × 1 random

vectors x1 and x2. With a corresponding partition of the parameters µ and
Σ into

µ = |µ′
1, µ

′
2|′ and Σ =

∣∣∣∣ Σ11 Σ12

Σ21 Σ22

∣∣∣∣ with Σ21 = Σ′
12

the marginal distribution for x1 follows by

x1 ∼ N(µ1,Σ11) (2.197)

and correspondingly for x2. The marginal distributions for x1 and x2 are
therefore again normal distributions.

When decomposing the normally distributed random vector x into the
random vectors x1 and x2 as for (2.197), the distribution for x1 under the
condition that the second random vector takes on the values x2 is obtained
by

x1|x2 ∼ N(µ1 + Σ12Σ
−1
22 (x2 − µ2), Σ11 − Σ12Σ

−1
22 Σ21) (2.198)

and the distribution for x2 under the condition of the values x1 by exchanging
the two indices.

If random variables are independent, their covariances are equal to zero
according to (2.153). The converse of this statement holds true for normally
distributed random variables. If the random vector x with x ∼ N(µ,Σ) is
partitioned into the k random vectors xi with x = |x′

1, . . . ,x
′
k|′, the random

vectors xi are independent, if and only if for the corresponding partition of
the covariance matrix Σ = (Σij) the relation is valid

Σij = 0 for i �= j and i, j ∈ {1, . . . , k} . (2.199)

Example 1: Let the random variables Xi of the normally distributed
n × 1 random vector x = |X1, . . . , Xn|′ be independent, then we get from
(2.199)

x ∼ N(µ,Σ) with Σ = diag(σ2
1 , . . . , σ2

n) (2.200)
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and from (2.197)

Xi ∼ N(µi, σ
2
i ) for i ∈ {1, . . . , n} (2.201)

where µi denotes the expected value and σ2
i the variance of Xi. The density

function p(x|µ,Σ) for x follows with (2.195) by

p(x|µ,Σ) =
1

(2π)n/2(
∏n

i=1 σ2
i )1/2

exp
(
−

n∑
i=1

(xi − µi)
2

2σ2
i

)

=
n∏

i=1

( 1√
2πσi

e
− (xi−µi)

2

2σ2
i

)
.

Thus in agreement with (2.111), we obtain the joint distribution for the n in-
dependent random variables Xi by the product of their marginal distributions
(2.201). ∆

The m× 1 random vector z which originates from the linear transforma-
tion z = Ax+c, where x denotes an n×1 random vector with x ∼ N(µ,Σ),
A an m × n matrix of constants with rankA = m and c an m × 1 vector of
constants, has the normal distribution

z ∼ N(Aµ + c , AΣA′) . (2.202)

Thus, normally distributed random vectors are again normally distributed
after a linear transformation.

Example 2: Let the n independent random variables Xi be normally
distributed with Xi ∼ N(µ, σ2), then the distribution of the random vector
x = |X1, . . . , Xn|′ is according to (2.200) and (2.201) given by

x ∼ N(µ,Σ) with µ = |µ, . . . , µ|′ and Σ = diag(σ2, . . . , σ2) .

The mean X̄ = 1
n

∑n
i=1Xi has therefore according to (2.202) with A =

|1/n, 1/n, . . . , 1/n| and c = 0 the normal distribution

X̄ ∼ N(µ, σ2/n) . (2.203)

∆

2.5.2 Multivariate t-Distribution

Let the k×1 random vector z = |Z1, . . . , Zk|′ be normally distributed accord-
ing to z ∼ N(0, N−1) with the k×k positive definite matrix N . Let further-
more the random variable H with values h have the distribution H ∼ χ2(ν)
with ν as parameter and let H and z be independent. The k × 1 random
vector x with values

xi = zi(h/ν)−1/2 + µi for i ∈ {1, . . . , k}
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then has the multivariate t-distribution with the k × 1 vector µ = (µi), the
matrix N−1 and ν as parameters, thus x ∼ t(µ, N−1, ν), whose density
function p(x|µ, N−1, ν) for x is given by

p(x|µ, N−1, ν) =

νν/2Γ((k + ν)/2)(detN )1/2

πk/2Γ(ν/2)
(ν + (x − µ)′N(x − µ))−(k+ν)/2 .

(2.204)

The multivariate t-distribution is the multivariate generalization of the t-
distribution, as becomes obvious from the following example.

Example: We obtain with k = 1, x = x, µ = µ and N = f instead of
(2.204)

p(x|µ, 1/f, ν) =
Γ((ν + 1)/2)√

πΓ(ν/2)

(
f

ν

)1/2 (
1 +

f

ν
(x− µ)2

)−(ν+1)/2
. (2.205)

This is the density function of a random variable X with the generalized
t-distribution t(µ, 1/f, ν), thus X ∼ t(µ, 1/f, ν). The standard form of this
distribution leads to the density function (2.184) of the t-distribution and
follows from the transformation of the variable x to z with

z =
√

f(x − µ) . (2.206)

The density function for the random variable Z follows with dx/dz = 1/
√

f
from, see for instance Koch (1999, p.93),

p(z|ν) =
Γ((ν + 1)/2)√

νπΓ(ν/2)

(
1 +

z2

ν

)−(ν+1)/2
. (2.207)

The random variable Z has because of (2.184) the t-distribution t(ν) with the
parameter ν, thus Z ∼ t(ν). ∆

If the random vector x has the multivariate t-distribution x ∼ t(µ, N−1,
ν), then

E(x) = µ for ν > 1

and

D(x) = ν(ν − 2)−1N−1 for ν > 2 . (2.208)

If the k × 1 random vector x with x ∼ t(µ, N−1, ν) is decomposed into
the (k − m) × 1 vector x1 and the m × 1 vector x2 by x = |x′

1, x
′
2|′ and

correspondingly µ = |µ′
1, µ

′
2|′ as well as

N =

∣∣∣∣ N11 N12

N21 N22

∣∣∣∣ with N−1 =

∣∣∣∣ I11 I12

I21 I22

∣∣∣∣ ,
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then the random vector x2 has also the multivariate t-distribution, that is,
x2 has the marginal distribution

x2 ∼ t(µ2, I22, ν) (2.209)

with

I22 = (N22 − N21N
−1
11 N 12)

−1 .

A corresponding marginal distribution is valid also for the random vector x1.
The m× 1 random vector y which originates from the linear transforma-

tion y = Ax + c, where x is a k × 1 random vector with x ∼ t(µ, N−1, ν),
A an m × k matrix of constants with rankA = m and c an m × 1 vector of
constants, has again a multivariate t-distribution

y ∼ t(Aµ + c, AN−1A′, ν) . (2.210)

Finally, there is a connection between the multivariate t-distribution and the
F -distribution (2.182). If the k× 1 random vector x is distributed according
to x ∼ t(µ, N−1, ν), then the quadratic form (x − µ)′N(x − µ)/k has the
F -distribution F (k, ν) with k and ν as parameters

(x − µ)′N (x − µ)/k ∼ F (k, ν) . (2.211)

2.5.3 Normal-Gamma Distribution

Let x be an n × 1 random vector and τ be a random variable. Let the
conditional density function p(x|µ, τ−1V ) for x with values xi under the
condition that a value for τ is given be determined by the normal distri-
bution N(µ, τ−1V ). Let τ have the gamma distribution τ ∼ G(b, p) with
the parameters b and p and the density function p(τ |b, p). The joint density
function p(x, τ |µ, V , b, p) for x and τ then follows from (2.102) by

p(x, τ |µ, V , b, p) = p(x|µ, τ−1V )p(τ |b, p) .

It is the density function of the so-called normal-gamma distribution NG(µ,
V , b, p) with the parameters µ, V , b, p, thus

x, τ ∼ NG(µ, V , b, p) .

The density function is obtained with (2.172), (2.195) and (det τ−1V )−1/2 =
(detV )−1/2τn/2 by

p(x, τ |µ, V , b, p) = (2π)−n/2(detV )−1/2bp(Γ(p))−1

τn/2+p−1 exp
{ − τ

2
[2b + (x − µ)′V −1(x − µ)]

}
(2.212)

for b > 0 , p > 0 , 0 < τ < ∞ , −∞ < xi < ∞.
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If x and τ have the normal-gamma distribution x, τ ∼ NG(µ, V , b, p),
then x has as marginal distribution the multivariate t-distribution

x ∼ t(µ, bV /p, 2p) (2.213)

and τ as marginal distribution the gamma distribution

τ ∼ G(b, p) . (2.214)

2.6 Prior Density Functions

To apply Bayes’ theorem (2.122), the prior density function is needed by
which the information is expressed that already exists for the unknown pa-
rameters. If no information on the unknown parameters is available, nonin-
formative prior density functions are used. If information exists, it is impor-
tant that the prior density function contains only the information which is
available and beyond that no information. This is achieved by applying the
principle of maximum entropy. If a prior density function can be treated ana-
lytically, it is helpful that the prior density and the posterior density function
belong to the same class of distributions. Such a density function is called a
conjugate prior.

2.6.1 Noninformative Priors

If nothing is known in advance about the unknown parameter X , it can take
on values x between −∞ and +∞. Its noninformative prior p(x|C) under
the condition of the information C is then assumed to be

p(x|C) ∝ const for −∞ < x < ∞ (2.215)

where const denotes a constant. The density is an improper density function,
since with

∫ ∞

−∞
p(x|C)dx �= 1 the condition (2.57) is not fulfilled so that the

density function cannot be normalized. This is not a serious drawback, since
the normalization of the posterior distribution can be achieved, if a likelihood
function to be normalized is selected. For an n × 1 vector x of parameters
with values x = (xi)

p(x|C) ∝ const for −∞ < xi < ∞ , i ∈ {1, . . . , n} (2.216)

is chosen corresponding to (2.215) as noninformative prior.
If an unknown parameter like the variance σ2 from (2.151) can only take

on values between 0 and ∞, we set

x = ln σ2 (2.217)

and again

p(x|C) ∝ const for −∞ < x < ∞ .
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By the transformation of x to σ2 with dx/dσ2 = 1/σ2 from (2.217), see for
instance Koch (1999, p.93), the noninformative prior for the variance σ2

follows by

p(σ2|C) ∝ 1/σ2 for 0 < σ2 < ∞ . (2.218)

Very often it is more convenient to introduce the weight or precision parameter

τ instead of σ2 with

τ = 1/σ2 . (2.219)

By transforming σ2 to τ with dσ2/dτ = −1/τ2 the noninformative prior
density function for τ follows instead of (2.218) by

p(τ |C) ∝ 1/τ for 0 < τ < ∞ . (2.220)

The prior density function (2.218) for σ2 is invariant with respect to the
transformation (2.219), since independent from choosing the prior density
function (2.218) or (2.220) identical probabilities are obtained by the poste-
rior density functions. To show this, the probability that σ2 lies in the inter-
val dσ2 is computed from (2.56) by the posterior density function p(σ2|y, C),
which follows with (2.218) and the likelihood function p(y|σ2, C) from Bayes’
theorem (2.122),

p(σ2|y, C)dσ2 ∝ 1

σ2
p(y|σ2, C)dσ2 .

If the parameter τ from (2.219) is used, we obtain with the identical likelihood
function

p(τ |y, C)dτ ∝ 1

τ
p(y|σ2, C)dτ .

Because of dσ2/dτ = −1/τ2 and dσ2/σ2 ∝ dτ/τ finally

p(σ2|y, C)dσ2 ∝ p(τ |y, C)dτ (2.221)

follows so that independent of the parameters σ2 or τ the posterior density
functions lead to identical probabilities.

Based on the invariance of a transformation Jeffreys (1961, p.179)
derived a general formula for obtaining noninformative priors which include
the density functions (2.215), (2.216) and (2.218) as special cases, see for
instance Koch (1990, p.11).

2.6.2 Maximum Entropy Priors

Entropy is a measure of uncertainty. The principle of maximum entropy is
applied to derive prior density functions which contain the prior information
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on the unknown parameters, but beyond this they are as uncertain as possi-
ble. By performing an experiment or a measurement to obtain information
about an unknown phenomenon, uncertainty is removed which was existing
before the experiment or the measurement took place. The uncertainty which
is eliminated by the experiment corresponds to the information which was
gained by the experiment.

The uncertainty or the information I(A) of a random event A should be
equal to zero, if P (A) = 1 holds. Furthermore, we require I(A1) > I(A2) for
P (A1) < P (A2) so that the smaller the probability the larger the uncertainty
becomes. Finally, the uncertainty should add for independent events. Then
it may be shown, see for instance Koch (1990, p.16), that

I(A) = −c ln P (A) (2.222)

where c denotes a constant. If the expected value of the uncertainty is formed
for a discrete random variable with the density function p(xi|C) for i ∈
{1 . . . , n} given the information C, then the discrete entropy Hn follows with
c = 1 by

Hn = −
n∑

i=1

p(xi|C) ln p(xi|C) (2.223)

and correspondingly the continuous entropy for a continuous random variable
with values x in the interval a ≤ x ≤ b and the density function p(x|C) by

H = −
∫ b

a

p(x|C) ln p(x|C)dx . (2.224)

Since the prior information is in general incomplete, the prior density function
should be except for the prior information as uncertain as possible. The prior
density function is therefore derived such that under the constraint of the
given prior information, like the known expected value and the variance of a
random variable, the entropy becomes maximal.

It can be shown that a random variable which is defined in the interval
[a, b] and whose density function maximizes the entropy has the uniform
distribution (2.59). A random variable X with given expected value E(X) =
µ and variance V (X) = σ2 which is defined in the interval (−∞,∞) and
whose density function maximizes the entropy has the normal distribution
(2.166). A random variable X with known expected value E(X) = µ which
is defined in the interval [0,∞) and whose density function maximizes the
entropy has the exponential distribution (2.189). A random variable with
given expected value and variance which is defined in the interval [0,∞)
and whose density function maximizes the entropy has the truncated normal
distribution, see for instance Koch (1990, p.17).
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2.6.3 Conjugate Priors

A density function is called a conjugate prior, if it leads after being multiplied
by the likelihood function to a posterior density function which belongs to
the same family of distributions as the prior density function. This property
is important, if one starts with an analytically tractable distribution, for in-
stance with the normal distribution, and obtains as posterior density function
again an analytically tractable density function. Without entering into the
derivation of conjugate priors, see for instance Bernardo and Smith (1994,
p.265), DeGroot (1970, p.159), Raiffa and Schlaifer (1961, p.43) or
Robert (1994, p.97), it will be shown in the following that for the linear
model which will be treated in Chapter 4 the normal distribution and the
normal-gamma distribution lead to conjugate priors, if the likelihood func-
tion is determined by the normal distribution. Without mentioning it, the
density function of the beta distribution was obtained as conjugate prior in
Example 2 to (2.134). The prior density and the posterior density function
in (2.135) result from a beta distribution, if the likelihood function is defined
by a binomial distribution.

Let β be the u × 1 random vector of unknown parameters, X the n × u
matrix of given coefficients with rankX = u, y the n × 1 random vector
of observations with the vector Xβ = E(y|β) of expected values and the
covariance matrix D(y|σ2) = σ2P−1 where σ2 designates the variance fac-
tor, which frequently is an unknown random variable, and P the positive
definite known matrix of weights of the observations from (2.159). Let the
observations be normally distributed so that with (2.196) the distribution
follows

y|β, σ2 ∼ N(Xβ, σ2P−1) (2.225)

whose density function gives the likelihood function.
As mentioned in connection with (2.138) and (2.139), it is now necessary

to indicate by E(y|β) the condition that the expected value of y is computed
for given values of β, since β is a random vector. Correspondingly, D(y|σ2)
and y|β, σ2 in (2.225) have to be interpreted such that β and σ2 mean given
values.

First it will be assumed that the variance factor σ2 is known. The density
function of the normal distribution

β ∼ N(µ, σ2Σ) (2.226)

is chosen as prior for the unknown parameters β. It is a conjugate prior, since
the posterior density function for β follows again from the normal distribution

β|y ∼ N
(
µ0, σ

2(X ′PX + Σ−1)−1
)

(2.227)

with

µ0 = (X ′PX + Σ−1)−1(X ′Py + Σ−1µ) .
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The reason is that according to Bayes’ theorem (2.122) the posterior density
function p(β|y, C) for β results with (2.195) and (2.225) in

p(β|y, C) ∝
exp

{ − 1

2σ2
[(β − µ)′Σ−1(β − µ) + (y − Xβ)′P (y − Xβ)]

}
.

We obtain for the expression in brackets of the exponent

y′Py + µ′Σ−1µ − 2β′(X ′P y + Σ−1µ) + β′(X ′P X + Σ−1)β

= y′Py + µ′Σ−1µ − µ′
0(X

′PX + Σ−1)µ0

+(β − µ0)
′(X ′PX + Σ−1)(β − µ0) . (2.228)

If the term dependent on β is substituted only, since constants do not have
to be considered, we find

p(β|y, C) ∝ exp
{ − 1

2σ2
[(β − µ0)

′(X ′PX + Σ−1)(β − µ0)]
}

and with (2.195) the normal distribution (2.227).
Example: Let an unknown quantity s, for instance, a distance or an

angle be measured n times so that the observation vector y = |y1, y2, . . . , yn|′
is obtained. Let the measurements be independent and normally distributed
like yi|s ∼ N(s, σ2) where the variance σ2 is known. Thus

s = E(y1|s) with V (y1) = σ2

s = E(y2|s) with V (y2) = σ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
s = E(yn|s) with V (yn) = σ2 ,

(2.229)

and we obtain in (2.225) X = |1, 1, . . . , 1|′, β = s and P = I because of
(2.199).

Let the prior density function for the quantity s be normally distributed
with given expected value E(s) = µs and given variance V (s) = σ2σ2

s . Then
we get in (2.226) µ = µs and Σ = σ2

s because of (2.196). From (2.227) with
µ0 = µ0s

µ0s =

∑n
i=1 yi + µs

σ2
s

n + 1
σ2

s

=
( 1

n )−1 1
n

∑n
i=1 yi + (σ2

s)−1µs

( 1
n )−1 + (σ2

s)−1
(2.230)

follows and with

σ2
0s =

1

( 1
n )−1 + (σ2

s)−1
(2.231)

as posterior distribution for s the normal distribution

s|y ∼ N(µ0s, σ
2σ2

0s) . (2.232)



2.6 Prior Density Functions 61

The quantity µ0s is because of (2.167) the expected value of s. It is computed
from (2.230) as weighted mean of the prior information µs for s and of the
mean (1/n)

∑n
i=1 yi of the observations, because the variance of µs is σ2σ2

s

and the variance of the mean σ2/n according to (2.203). The reciprocal
values of these variances give according to (2.160) with c = σ2 the weights in
(2.230). ∆

Let the variance factor σ2 now be a random variable and unknown. To
obtain the conjugate prior for the unknown parameters β and σ2 we in-
troduce with τ = 1/σ2 according to (2.219) instead of σ2 the unknown
weight parameter τ . The likelihood function then follows with (2.195) and
(det τ−1P−1)−1/2 = (detP )1/2τn/2 from (2.225) by

p(y|β, τ, C) = (2π)−n/2(detP )1/2τn/2 exp[−τ

2
(y−Xβ)′P (y−Xβ)]. (2.233)

As prior for β and τ the density function (2.212) of the normal-gamma dis-
tribution

β, τ ∼ NG(µ, V , b, p) (2.234)

is chosen. It is a conjugate prior, since the posterior density function for β

and τ is again obtained from the normal-gamma distribution

β, τ |y ∼ NG(µ0, V 0, b0, p0) (2.235)

with

µ0 = (X ′PX + V −1)−1(X ′Py + V −1µ)

V 0 = (X ′PX + V −1)−1

b0 = [2b + (µ − µ0)
′V −1(µ − µ0) + (y − Xµ0)

′P (y − Xµ0)]/2

po = (n + 2p)/2 . (2.236)

To show this results, the posterior density function p(β, τ |y, C) for β and τ
is derived with (2.122), (2.212) and (2.233) by

p(β, τ |y, C) ∝ τu/2+p−1 exp
{ − τ

2
[2b + (β − µ)′V −1(β − µ)]

}
τn/2 exp[−τ

2
(y − Xβ)′P (y − Xβ)]

∝ τn/2+p+u/2−1

exp
{ − τ

2
[2b + (β − µ)′V −1(β − µ) + (y − Xβ)′P (y − Xβ)]

}
.
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The expression in brackets of the exponent follows with

2b + y′Py + µ′V −1µ − 2β′(X ′P y + V −1µ) + β′(X ′PX + V −1)β

= 2b + y′P y + µ′V −1µ − µ′
0(X

′PX + V −1)µ0

+(β − µ0)
′(X ′PX + V −1)(β − µ0)

= 2b + y′P y + µ′V −1µ − 2µ′
0(X

′P y + V −1µ)

+µ′
0(X

′PX + V −1)µ0 + (β − µ0)
′(X ′PX + V −1)(β − µ0)

= 2b + (µ − µ0)
′V −1(µ − µ0) + (y − Xµ0)

′P (y − Xµ0)

+(β − µ0)
′(X ′PX + V −1)(β − µ0) . (2.237)

Substituting this result gives by a comparison with (2.212) the normal-gamma
distribution (2.235).



3 Parameter Estimation, Confidence

Regions and Hypothesis Testing

As already indicated in Chapter 2.2.8, the knowledge of the posterior den-
sity function for the unknown parameters from Bayes’ theorem allows to
estimate the unknown parameters, to establish regions which contain the
unknown parameters with given probability and to test hypotheses for the
parameters. These methods will be presented in the following for continuous
random vectors. The integrals which appear to compute the probabilities,
marginal distributions and expected values have to be replaced for discrete
random vectors by summations, in order to obtain the probabilities accord-
ing to (2.69), the marginal distributions from (2.85) and the expected values
according to (2.140).

3.1 Bayes Rule

The task to estimate parameters or to test hypotheses can be simply for-
mulated as a problem of decision theory. This is obvious for the test of
hypotheses where one has to decide between a null hypothesis and an alter-
native hypothesis. When estimating parameters one has to decide on the
estimates themselves.

To solve a problem, different actions are possible, and one has to decide for
one. The decision needs to be judged, because one should know whether the
decision was appropriate. This depends on the state of the system for which
the decision has to be made. Let the system be represented by the continuous
random vector x of the unknown parameters. Let data with information on
the system be available. They are collected in the random vector y. To make
a decision, a decision rule δ(y) is established. It determines which action is
started depending on the available data y.

The loss which occurs with the action triggered by δ(y) is used as a
criterion to judge the decision. Depending on x and δ(y) the loss function

L(x, δ(y)) is therefore introduced. The expected loss will be considered which
is obtained by forming the expected value of the loss function. Let p(x|y, C)
be the posterior density function for the parameter vector x which follows
from Bayes’ theorem (2.122) with the prior density function p(x|C) for x and
with the likelihood function p(y|x, C) where C denotes the information on
the system. The posterior expected loss which is computed by the posterior
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density function p(x|y, C) is obtained with (2.144) by

E[L(x, δ(y))] =

∫
X

L(x, δ(y))p(x|y, C)dx (3.1)

where the parameter space X introduced in connection with Bayes’ theorem
(2.122) denotes the domain for integrating the values x of the unknown pa-
rameters. A very reasonable and plausible choice for the decision rule δ(y) is
such that the posterior expected loss (3.1) attains a minimum. This is called
Bayes rule.

Bayes rule may be also established like this. In traditional statistics not
the unknown parameters x but the data y are random variables, as already
mentioned in Chapter 2.2.8. The expected loss is therefore computed by the
likelihood function p(y|x, C) and is called the risk function R(x, δ)

R(x, δ) =

∫
Y

L(x, δ(y))p(y|x, C)dy (3.2)

where Y denotes the domain for integrating the random vector y of observa-
tions.

The risk function depends on the unknown parameters x. To obtain the
expected loss, one therefore has to average also over the values of x. By the
prior density function p(x|C) for the unknown parameters x we compute the
so-called Bayes risk by

r(δ) =

∫
X

R(x, δ)p(x|C)dx . (3.3)

Bayes rule minimizes Bayes risk because of

r(δ) =

∫
Y

E[L(x, δ(y))]p(y|C)dy . (3.4)

Thus, r(δ) is minimized, if E[L(x, δ(y))] from (3.1) attains a minimum. The
function p(y|C) is according to (2.128) the marginal density function for y.
The relation (3.4) follows from (3.3) with (2.121), (3.1) and (3.2)

r(δ) =

∫
X

∫
Y

L(x, δ(y))p(y|x, C)p(x|C)dydx

=

∫
Y

[ ∫
X

L(x, δ(y))p(x|y, C)dx
]
p(y|C)dy

=

∫
Y

E[L(x, δ(y))]p(y|C)dy .

In the following we will assume that decisions have to be made in a sys-
tem which is represented by the complete vector x of unknown parameters.
However, if with x = |x′

1, x
′
2|′ and with the parameter spaces X1 ⊂ X and
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X2 ⊂ X the vector x is partitioned into the vectors x1 ∈ X1 and x2 ∈ X2

and if one is interested only in the vector x1 of unknown parameters, the
posterior marginal density function p(x1|y, C) for x1 from (2.91) needs to be
computed with

p(x1|y, C) =

∫
X2

p(x1, x2|y, C)dx2 . (3.5)

It is used in (3.1) instead of the posterior density function p(x|y, C) =
p(x1, x2|y, C).

3.2 Point Estimation

Values for the vector x of unknown parameters shall be estimated. This is
called point estimation in contrast to the estimation of confidence regions
for the unknown parameters to be dealt with in Chapter 3.3. Bayes rule
is applied. Possible decisions are represented by possible estimates x̂ of the
unknown parameters x which are obtained by the observations y, thus δ(y) =
x̂. The true state of the system is characterized by the true values x of the
unknown parameters. The loss is a function of the estimates x̂ and of the true
values x of the parameters. The loss function L(x, x̂) must express how good
or how bad the estimate x̂ is. It therefore has to increase for bad estimates.
Three different loss functions are introduced in the following.

3.2.1 Quadratic Loss Function

A simple loss function results from the sum of squares (x− x̂)′(x− x̂) of the
errors x − x̂ of the estimates x̂ of the unknown parameters x. This sum of
squares is generalized by means of the covariance matrix D(x) = Σ defined
in (2.157) for the random vector x. It shall be positive definite. Its inverse
Σ−1 is according to (2.159) proportional to the weight matrix of x. Thus,
the quadratic loss function

L(x, x̂) = (x − x̂)′Σ−1(x − x̂) (3.6)

is chosen where the squares of the errors x−x̂ are weighted by Σ−1. This loss
function leads to the well known method of least squares, as will be shown
in Chapter 4.2.2.

To determine the posterior expected loss (3.1) of the quadratic loss func-
tion (3.6), the expected value of (3.6) has to be computed by the posterior
density function p(x|y, C) for x. We obtain

E[L(x, x̂)] =

∫
X

(x − x̂)′Σ−1(x − x̂)p(x|y, C)dx (3.7)

where X denotes again the parameter space over which the values of x have to
be integrated. With (2.146) and the following identity we obtain the expected
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value of the loss function by

E[L(x, x̂)] = E[(x − x̂)′Σ−1(x − x̂)]

= E{[x− E(x) − (x̂ − E(x))]′Σ−1[x − E(x) − (x̂ − E(x))]}
= E[(x − E(x))′Σ−1(x − E(x))] + (x̂ − E(x))′Σ−1(x̂ − E(x)) (3.8)

because of

2E[(x − E(x))′]Σ−1(x̂ − E(x)) = 0 with E[x − E(x)] = 0 .

The first term on the right-hand side of (3.8) does not depend on the estimate
x̂, while the second one attains a minimum for

x̂B = E(x|y) , (3.9)

since Σ−1 is positive definite. It is stressed by the notation E(x|y), as already
mentioned in connection with (2.225), that the expected value is computed
according to (3.7) with the posterior density function for x whose values for
y are given.

Thus, Bayes rule leads to the estimate x̂B which is called Bayes estimate,
if the quadratic loss function (3.6) is applied. By forming the expected value
as in (3.7) the Bayes estimate x̂B follows with (3.9) by

x̂B =

∫
X

xp(x|y, C)dx . (3.10)

As was already pointed out in Chapter 2.2.8, the vector x of unknown param-
eters is a random vector. Its Bayes estimate x̂B from (3.9) or (3.10) is a fixed
quantity. The same holds true for the median x̂med of x in (3.21) and the
MAP estimate x̂M of x in (3.30). In traditional statistics it is the opposite,
the vector of unknown parameters is a fixed quantity, while its estimate is a
random variable.

To express the accuracy of the Bayes estimate x̂B, the covariance matrix
D(x|y) for the vector x of unknown parameters is introduced with (2.150)
and (2.157) by the posterior density function p(x|y, C). The covariance ma-
trix expresses because of (3.9) the dispersion of x about the Bayes estimate
x̂B. It is therefore representative for the accuracy of the estimate

D(x|y) = E[(x − E(x|y))(x − E(x|y))′]

=

∫
χ

(x − x̂B)(x − x̂B)′p(x|y, C)dx . (3.11)

The posterior expected loss (3.1) follows for the Bayes estimate x̂B from
(3.8) with (3.9) and (3.11) by

E[L(x, x̂B)] = E{tr[Σ−1(x − x̂B)(x − x̂B)′]}
= tr[Σ−1D(x|y)] . (3.12)
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Example: In the example to (2.227) the posterior distribution for the un-
known quantity s, which is measured n times and for which prior information
is available, was derived as the normal distribution (2.232)

s|y ∼ N(µ0s, σ
2σ2

0s)

with µ0s and σ2
0s from (2.230) and (2.231). The Bayes estimate ŝB of the

quantity s therefore follows because of (2.167) from (3.9) by

ŝB = µ0s (3.13)

and the variance V (s|y) of s from (3.11) by

V (s|y) = σ2σ2
0s . (3.14)

∆

The Bayes estimate distributes large errors of individual observations be-
cause of the weighted sum of squares of the loss function (3.6). This effect is
disadvantageous, if outliers are suspected in the observations and need to be
detected. This will be dealt with in Chapter 4.2.5.

3.2.2 Loss Function of the Absolute Errors

To diminish the effects of large errors x − x̂, the absolute value of errors
is introduced instead of the squares of errors as loss function. With x =
(xi), x̂ = (x̂i) and i ∈ {1, . . . , u} we obtain the loss function

L(xi, x̂i) = |xi − x̂i| . (3.15)

Bayes rule requires that the posterior expected loss (3.1)

E[L(xi, x̂i)] =

∫
X

|xi − x̂i|p(x|y, C)dx (3.16)

attains a minimum.
Let the parameter space X over which one has to integrate be defined by

the intervals

xli < xi < xri for i ∈ {1, . . . , u} . (3.17)

We then obtain with (2.74) instead of (3.16), since |xi − x̂i| is positive,

E[L(xi, x̂i)] =

∫ x̂u

xlu

. . .

∫ x̂1

xl1

(x̂i − xi)p(x|y, C)dx1 . . . dxu

+

∫ xru

x̂u

. . .

∫ xr1

x̂1

(xi − x̂i)p(x|y, C)dx1 . . . dxu

= x̂iF (x̂) −
∫ x̂u

xlu

. . .

∫ x̂1

xl1

xip(x|y, C)dx1 . . . dxu

+

∫ xru

x̂u

. . .

∫ xr1

x̂1

xip(x|y, C)dx1 . . . dxu − x̂i(1 − F (x̂)) (3.18)
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where F (x̂) with

F (x̂) =

∫ x̂u

xlu

. . .

∫ x̂1

xl1

p(x|y, C)dx1 . . . dxu (3.19)

denotes the distribution function defined by (2.73) for the values x̂. To
find the minimum of (3.18), we differentiate with respect to x̂i and set the
derivatives equal to zero. Since the derivatives with respect to the limits x̂i

of the integrals in (3.18) and (3.19) cancel, we obtain

∂E[L(xi, x̂i)]/∂x̂i = F (x̂) − 1 + F (x̂) = 0 (3.20)

or

F (x̂med) = 0.5 . (3.21)

Thus, if the absolute error (3.15) is introduced as loss function, Bayes rule
gives the estimate x̂med which is also called the median of the posterior den-
sity function p(x|y, C). The median is determined by the value for which the
distribution function (3.19) is equal to 0.5. The median minimizes (3.16),
since the second derivatives ∂2E[L(xi, x̂i)]/∂x̂2

i are positive, as becomes ob-
vious from (3.20). The application of the loss function (3.15) for the search
of outliers in the observations is dealt with in Chapter 4.2.5.

Example: In the example to (2.227) the posterior distribution of an
unknown quantity s, which is determined by n measurements y = |y1, y2, . . . ,
yn|′ and by prior information, was obtained by the normal distribution

s|y ∼ N(µ0s, σ
2σ2

0s)

with µ0s and σ2
0s from (2.230) and (2.231). By the transformation (2.169) of

the random variable s into the random variable y with

y = (s − µ0s)/(σσ0s) (3.22)

the standard normal distribution follows for y

y ∼ N(0, 1) .

Because of the symmetry of the standard normal distribution we obtain with
(2.170)

F (0; 0, 1) = 0.5 .

Thus, the median ŷmed of y follows with

ŷmed = 0

and from (3.22) the median ŝmed of s with

ŝmed = µ0s . (3.23)
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This estimate is for the example identical with the Bayes estimate (3.13).
The reason is the symmetry of the normal distribution for s|y.

Let the quantity s now be a discrete random variable with the n values
y1, y2, . . . , yn of the measurements. Let the discrete densities be identical
with

p(yi|C) =
1

n
for i ∈ {1, . . . , n} (3.24)

because of (2.47). If the data are ordered according to increasing magnitude

y1 ≤ y2 ≤ . . . ≤ yn ,

the median ŝmed of the quantity s follows with (2.50) by

ŝmed = y(n+1)/2 , (3.25)

if n is odd, and

yn/2 ≤ ŝmed ≤ yn/2+1 , (3.26)

if n is even. For yn/2 < yn/2+1 the estimate is nonunique, and one generally
chooses

ŝmed =
1

2
(yn/2 + yn/2+1) , (3.27)

if n is even.
As will be shown in Chapter 4.2.5, the results (3.25) and (3.26) are also

obtained by a direct application of the loss function (3.15). ∆

3.2.3 Zero-One Loss

Zero-one loss means costs or no costs. It is suited for the estimation but also
for hypothesis tests, as will be shown in Chapter 3.4. It leads to the loss
function

L(xi, x̂i) =

{
0 for |xi − x̂i| < b

a for |xi − x̂i| ≥ b
(3.28)

where a and b with b > 0 mean constants and where a = 1 may be set without
restricting the generality. Bayes rule requires that the posterior expected loss
(3.1) attains a minimum. By introducing the intervals (3.17) in order to define
the parameter space for the integration, we obtain with (2.74)

E[L(xi, x̂i)] =

∫ x̂u−b

xlu

. . .

∫ x̂1−b

xl1

p(x|y, C)dx1 . . . dxu

+

∫ xru

x̂u+b

. . .

∫ xr1

x̂1+b

p(x|y, C)dx1 . . . dxu

= 1 −
∫ x̂u+b

x̂u−b

. . .

∫ x̂1+b

x̂1−b

p(x|y, C)dx1 . . . dxu .
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The posterior expected loss E[L(xi, x̂i)] is minimized, if∫ x̂u+b

x̂u−b

. . .

∫ x̂1+b

x̂1−b

p(x|y, C)dx1 . . . dxu (3.29)

attains a maximum.
The special case b → 0 only will be discussed. Thus, the estimate x̂M of

x follows from (3.29) as value which maximizes the posterior density function
p(x|y, C)

x̂M = argmax
x

p(x|y, C) . (3.30)

We call x̂M the MAP estimate, i.e. the maximum a posteriori estimate.
Example: In the example to (2.227) the normal distribution (2.232) was

derived as posterior distribution for the unknown quantity s

s|y ∼ N(µ0s, σ
2σ2

0s)

whose density function is given according to (2.166) by

p(s|y) =
1√

2πσσ0s

e
−

(s−µ0s)2

2σ2σ2
0s . (3.31)

The MAP estimate ŝM of the quantity s follows according to (3.30) with the
value µ0s for which the density function (3.31) becomes maximal. This result
may be also obtained by differentiating the density function with respect to
s and by setting the derivative equal to zero. This gives

1√
2πσσ0s

exp
[
− (s − µ0s)

2

2σ2σ2
0s

](
− s − µ0s

σ2σ2
0s

)
= 0

and again the solution

ŝM = µ0s . (3.32)

The MAP estimate for this example agrees with the Bayes estimate (3.13)
and the median (3.23). The reason is the symmetric normal distribution for
s|y, as already mentioned in connection with (3.23). ∆

If the prior density function p(x|C), with which the posterior density
function p(x|y, C) follows from Bayes’ theorem (2.122), is a constant, as
mentioned with (2.216), the maximum-likelihood estimate x̂ML of the vector
x of unknown parameters

x̂ML = arg max
x

p(y|x, C) (3.33)

is obtained instead of the MAP estimate. It is determined by the value for
which the likelihood function p(y|x, C) in Bayes’ theorem (2.122) becomes
maximal. The maximum-likelihood estimate is often applied in traditional
statistics.
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3.3 Estimation of Confidence Regions

In contrast to the point estimation of Chapter 3.2, for which estimates of
the values of the vector x of unknown parameters are sought, a region shall
now be determined in which the parameter vector x is situated with a given
probability. This problem can be immediately solved by Bayesian statistics,
since the parameter vector x is a random vector with a probability density
function, whereas in the traditional statistics the estimation of confidence
regions is generally derived via hypothesis testing.

3.3.1 Confidence Regions

By means of the posterior density function p(x|y, C) for the parameter vector
x from Bayes’ theorem (2.122) the probability is determined according to
(2.71)

P (x ∈ Xu|y, C) =

∫
Xu

p(x|y, C)dx (3.34)

that the vector x belongs to the subspace Xu of the parameter space X with
Xu ⊂ X . One is often interested to find the subspace where most of the
probability, for instance 95%, is concentrated. Given a probability there are
obviously many possibilities to establish such a subspace. A region of values
for x within the subspace, however, should be more probable than a region of
equal size outside the subspace. It will be therefore required that the density
of each point within the subspace is equal to or greater than the density of
a point outside the subspace. The region of highest posterior density, also
called H.P.D. region, is thus obtained.

Let p(x|y, C) be the posterior density function for the vector x of un-
known parameters, the subspace XB with XB ⊂ X is then called a 1 − α
H.P.D. region, Bayesian confidence region or shortly confidence region, if

P (x ∈ XB|y, C) =

∫
XB

p(x|y, C)dx = 1 − α

and

p(x1|y, C) ≥ p(x2|y, C) for x1 ∈ XB , x2 /∈ XB . (3.35)

If the vector x contains only the random variable X as component, the confi-

dence interval for X is defined by (3.35). The value for α is generally chosen
to be α = 0.05, but also α = 0.1 or α = 0.01 are selected.

If the posterior density function p(x|y, C) is constant in the area of the
boundary of the confidence region (3.35), the boundary cannot be determined
uniquely. But the confidence region has the property that its hypervolume is
minimal in comparison to any region with probability mass 1 − α. To show
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this, let such a region be denoted by X ′
B. We then find with (3.35)∫

XB

p(x|y, C)dx =

∫
X ′

B

p(x|y, C)dx = 1 − α .

If the integration over the intersection XB ∩X ′
B is eliminated, we obtain with

the complements X̄B = X \ XB and X̄ ′
B = X \ X ′

B∫
XB∩X̄ ′

B

p(x|y, C)dx =

∫
X ′

B
∩X̄B

p(x|y, C)dx .

The confidence region XB fulfills p(x1|y, C) ≥ p(x2|y, C) for x1 ∈ XB ∩ X̄ ′
B

and x2 ∈ X ′
B ∩ X̄B because of (3.35). Thus,

hypervolumeXB∩X̄ ′
B
≤ hypervolumeX ′

B
∩X̄B

follows. If the hypervolume of XB ∩X ′
B is added to both sides, we finally get

hypervolumeXB
≤ hypervolumeX ′

B
.

Example: Let the posterior density function for the unknown u × 1
parameter vector x be determined by the normal distribution N(µ,Σ) with
the density function p(x|µ,Σ) from (2.195). A hypersurface of equal density
is determined by the relation

(x − µ)′Σ−1(x − µ) = const

which follows from the exponent of (2.195). It has the shape of a hyperell-
lipsoid with the center at µ, see for instance Koch (1999, p.298). A confi-

dence hyperellipsoid is therefore obtained. The density function p(x|µ,Σ) is a
monotonically decreasing function of the quadratic form (x−µ)′Σ−1(x−µ).
It has according to (2.180) and (2.202) the χ2-distribution χ2(u) with u as
parameter. The 1 − α confidence hyperellipsoid for the parameter vector x

is therefore determined according to (3.35) by

P
(
(x − µ)′Σ−1(x − µ) < χ2

1−α;u

)
= 1 − α

and its shape by

(x − µ)′Σ−1(x − µ) = χ2
1−α;u (3.36)

where χ2
1−α;u denotes the upper α-percentage point of the χ2-distribution

defined in (2.181). The orientation of the axes of the confidence hyperellipsoid
is obtained by the matrix C of the eigenvectors of Σ with

C′C = I and therefore C ′ = C−1, C = (C ′)−1 . (3.37)



3.4 Hypothesis Testing 73

The semi-axes ci of the confidence hyperellipsoid follow with the matrix Λ

of eigenvalues of Σ

C′ΣC = Λ and Λ = diag(λ1, . . . , λu) (3.38)

by

ci = (λiχ
2
1−α;u)1/2 for i ∈ {1, . . . , u} . (3.39)

∆

3.3.2 Boundary of a Confidence Region

One has to ascertain for one method of testing hypotheses, whether a point
x0 lies within the confidence region XB defined by (3.35). This is the case,
if the inequality

p(x0|y, C) > p(xB|y, C) (3.40)

is fulfilled where xB denotes a point at the boundary of the confidence region
XB. If its density pB is introduced by

pB = p(xB|y, C) , (3.41)

a point x0 lies within the confidence region XB, if

p(x0|y, C) > pB . (3.42)

Example: In the example to (3.35) a 1 − α confidence hyperellipsoid
was determined by (3.36). The density pB of a point at the boundary of
the confidence hyperellipsoid follows with the density function (2.195) of the
normal distribution by

pB =
1

(2π)u/2(detΣ)1/2
exp

( − 1

2
χ2

1−α;u

)
. (3.43)

If this result is substituted on the right-hand side of (3.42) and if on the
left-hand side the density function of the normal distribution is introduced,
one obtains instead of (3.42)

(x0 − µ)′Σ−1(x0 − µ) < χ2
1−α;u . (3.44)

If this inequality is fulfilled for a point x0, it is situated within the confidence
hyperellipsoid. ∆

3.4 Hypothesis Testing

Propositions concerning the unknown parameters may be formulated as hy-
potheses, and methods for deciding whether to accept or to reject the hy-
potheses are called hypothesis tests.
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3.4.1 Different Hypotheses

Let X0 ⊂ X and X1 ⊂ X be subspaces of the parameter space X and let
X0 and X1 be disjoint, i.e. X0 ∩ X1 = ∅. The assumption that the vector
x of unknown parameters is element of the subspace X0 is called the null

hypothesis H0 and the assumption that x is element of X1 the alternative

hypothesis H1. The null hypothesis H0 is tested against the alternative
hypothesis H1, i.e.

H0 : x ∈ X0 versus H1 : x ∈ X1 . (3.45)

The null hypothesis and the alternative hpothesis are mutually exclusive
because of X0 ∩ X1 = ∅.

Often X1 is the complement of X0, thus

X1 = X \ X0 . (3.46)

The hypothesis is then exhaustive which means either H0 or H1 is true.
It is assumed that the subspaces X0 and X1 contain more than one vector,

respectively. We therefore call (3.45) a composite hypothesis contrary to the
simple hypothesis

H0 : x = x0 versus H1 : x = x1 (3.47)

where the subspace X0 only contains the given vector x0 and the subspace
X1 only the given vector x1.

If there is only the vector x0 in X0 and if X1 according to (3.46) is the
complement of X0, the point null hypothesis follows

H0 : x = x0 versus H1 : x �= x0 . (3.48)

If instead of the parameter vector x itself a linear transformation Hx of x

shall be tested where H denotes a given matrix of constants, we formulate
instead of (3.45)

H0 : Hx ∈ XH1 versus H1 : Hx ∈ XH2 (3.49)

where XH1 and XH2 denote subspaces of the parameter space XH of the
transformed parameters Hx. The corresponding point null hypothesis fol-
lows with the given vector w by

H0 : Hx = w versus H1 : Hx �= w . (3.50)

This hypothesisis is often tested in the linear model, as will be shown in the
Chapters 4.2.1, 4.2.6, 4.3.1 and 4.3.2.

The point null hypothesis (3.48) or (3.50) is not always realistic, since the
information to be tested might be better described by a small region around
the given point x0 or w rather than by the identity with x0 or w. Thus,



3.4 Hypothesis Testing 75

the composite hypothesis (3.45) or (3.49) should have been formulated. As
a consequence of a nonrealistic point null hypothesis the hypothesis test of
traditional statistics reacts too sensitive, i.e. the null hypothesis is rejected,
although additional information not entering the test speaks against it. By
means of Bayesian statitistics less sensitive tests can be derived (Koch 1990,
p.88; Riesmeier 1984).

3.4.2 Test of Hypotheses

Let the two mutually exclusive and exhaustive hypotheses (3.45) satisfying
(3.46) be tested. By means of Bayes rule explained in Chapter 3.1 we will
decide whether to accept the null hypothesis H0 or the alternative hypothesis
H1. The system for which the decision needs to be made is characterized by
the two states x ∈ X0 or x ∈ X1 which trigger the two actions accept H0

or accept H1. Four values of the loss function need to be defined, and it is
reasonable to work with the zero-one loss (3.28), which introduces no costs
for the correct decision. We obtain

L(x ∈ Xi, Hi) = 0 for i ∈ {0, 1}
L(x ∈ Xi, Hj) �= 0 for i, j ∈ {0, 1}, i �= j . (3.51)

Thus, for the correct decision to accept H0, if x ∈ X0 is valid, and H1, if
x ∈ X1, the loss function is equal to zero, and for the wrong decision it is
unequal to zero.

The expected value E[L(H0)] of the loss function for accepting H0 is
computed according to (3.1) with the discrete posterior density functions
p(H0|y, C) and p(H1|y, C) for H0 and H1 given the data y and the informa-
tion C about the system by

E[L(H0)] = p(H0|y, C)L(x ∈ X0, H0) + p(H1|y, C)L(x ∈ X1, H0)

= p(H1|y, C)L(x ∈ X1, H0) (3.52)

because of (3.51). Correspondingly, the posterior expected loss for accepting
H1 follows with

E[L(H1)] = p(H0|y, C)L(x ∈ X0, H1) + p(H1|y, C)L(x ∈ X1, H1)

= p(H0|y, C)L(x ∈ X0, H1) . (3.53)

Bayes rule requires to make the decision which minimizes this posterior loss.
Thus, the null hypothesis H0 is accepted, if

E[L(H0)] < E[L(H1)]

holds true. This means after substituting (3.52) and (3.53), if

p(H0|y, C)L(x ∈ X0, H1)

p(H1|y, C)L(x ∈ X1, H0)
> 1 , accept H0 . (3.54)
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Otherwise accept H1.
This decision is also valid, if not the hypothesis (3.45) in connection with

(3.46) is tested but the general hypothesis (3.45). To the two states x ∈
X0 or x ∈ X1 of the system, for which the decision is needed, the state
x ∈ X0 ∪ X1 = X \ (X0 ∪ X1) has then to be added which is determined by
the complement of X0 ∪ X1. In addition to the two actions accept H0 or
accept H1, the action H̄ needs to be considered that neither H0 nor H1 are
accepted. But this action is not investigated so that only the two values have
to be added to the loss function (3.51)

L(x ∈ X0 ∪ X1, Hi) = a for i ∈ {0, 1} (3.55)

which are assumed to be identical and have the constant magnitude a. The
posterior expected loss for accepting H0 or H1 is then computed with the
posterior density function for H0 and H1 and with p(H̄|y, C) for H̄ instead
of (3.52) by

E[L(H0)] = p(H0|y, C)L(x ∈ X0, H0) + p(H1|y, C)L(x ∈ X1, H0)

+p(H̄ |y, C)L(x ∈ X0 ∪ X1, H0)

= p(H1|y, C)L(x ∈ X1, H0) + ap(H̄ |y, C) (3.56)

and instead of (3.53) by

E[L(H1)] = p(H0|y, C)L(x ∈ X0, H1) + p(H1|y, C)L(x ∈ X1, H1)

+p(H̄ |y, C)L(x ∈ X0 ∪ X1, H1)

= p(H0|y, C)L(x ∈ X0, H1) + ap(H̄ |y, C) . (3.57)

Bayes rule requires to accept the null hypothesis H0, if

E[L(H0)] < E[L(H1)]

which leads to the decision (3.54).
If wrong decisions obtain identical losses which will be assumed for the

following, Bayes rule requires according to (3.54), if

p(H0|y, C)

p(H1|y, C)
> 1 , accept H0 . (3.58)

Otherwise accept H1. The ratio V

V =
p(H0|y, C)

p(H1|y, C)
(3.59)

in (3.58) is called the posterior odds ratio for H0 to H1.
The posterior density functions p(H0|y, C) and p(H1|y, C) in (3.52) and

(3.53) are discrete density functions. They express according to (2.46) proba-
bilities. If (3.46) holds, either H0 or H1 is true and one obtains p(H0|y, C)+
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p(H1|y, C) = 1 from (2.22). The probability that H0 is true or that H1 is
true is then computed with (3.59) by

P (H0|y, C) =
V

1 + V
and P (H1|y, C) =

1

1 + V
. (3.60)

The hypotheses are formulated for the unknown parameters x. The dis-
crete posterior density functions in (3.58) for H0 and H1 may therefore be
determined by the posterior density function for the parameters x. Since
p(H0|y, C) and p(H1|y, C) express probabilities according to (2.46), we ob-
tain with (2.71)

p(Hi|y, C) =

∫
Xi

p(x|y, C)dx for i ∈ {0, 1} . (3.61)

For the test of the composite hypothesis (3.45)

H0 : x ∈ X0 versus H1 : x ∈ X1

Bayes rule therefore leads according to (3.58) to the decision, if the posterior
odds ratio∫

X0
p(x|y, C)dx∫

X1
p(x|y, C)dx

> 1 , accept H0 . (3.62)

Otherwise accept H1.
To test the point null hypothesis (3.48) by means of (3.62), the subspace

X0 has to shrink to the point x0. This, however, gives p(H0|y, C) = 0
from (3.61), since the posterior density function is assumed to be continuous,
and furthermore p(H1|y, C) �= 0. The point null hypothesis (3.48) therefore
cannot be tested unless a special prior density function is introduced for the
hypotheses, as explained in the following Chapter 3.4.3.

In order to test the simple hypothesis (3.47), we let the subspaces X0

and X1 shrink to the points x0 and x1 where the posterior density function
p(x|y, C) may be considered as constant and obtain instead of (3.62)

lim∆X0→0

∫
∆X0

p(x|y, C)dx/∆X0

lim∆X1→0

∫
∆X1

p(x|y, C)dx/∆X1
=

p(x0|y, C)

p(x1|y, C)
(3.63)

where ∆X0 and ∆X1, respectively, with ∆X0 = ∆X1 represent small spaces
around x0 and x1. Thus, we find for the test of the simple hypothesis (3.47)

H0 : x = x0 versus H1 : x = x1

according to (3.62), if

p(x0|y, C)

p(x1|y, C)
> 1 , accept H0 . (3.64)
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Otherwise accept H1.
Example: In the example to (2.227) the normal distribution (2.232)

s|y ∼ N(µ0s, σ
2σ2

0s)

was obtained as posterior distribution for the unknown quantity s. The
simple hypothesis

H0 : s = s0 versus H1 : s = s1

shall be tested. With the density function (2.166) of the normal distribution
we obtain according to (3.64), if

exp
( − 1

2σ2σ2
0s

(s0 − µ0s)
2
)

exp
( − 1

2σ2σ2
0s

(s1 − µ0s)2
) > 1 , accept H0 .

Thus, if |s0−µ0s| < |s1 −µ0s| holds true, then H0 is accepted, otherwise H1.
∆

3.4.3 Special Priors for Hypotheses

The tests of hypotheses treated in the preceding chapter are based according
to (3.61) on the computation of the posterior density functions for the hy-
potheses by the posterior density functions for the parameters. Special prior
density functions shall now be associated with the hypotheses. If the poste-
rior density function p(H0|y, C) in (3.58) for the null hypothesis is expressed
by Bayes’ theorem (2.122), we obtain

p(H0|y, C) =
p(H0|C)p(y|H0, C)

p(y|C)
(3.65)

where p(H0|C) denotes the prior density function for the hypothesis. With
a corresponding expression for the posterior density function p(H1|y, C) the
posterior odds ratio V follows from (3.59) with

V =
p(H0|y, C)

p(H1|y, C)
=

p(H0|C)p(y|H0, C)

p(H1|C)p(y|H1, C)
. (3.66)

The ratio B of this relation

B =
p(y|H0, C)

p(y|H1, C)
(3.67)

is called Bayes factor. It expresses the change of the ratio p(H0|C)/p(H1|C)
of the prior density functions for the hypotheses by the data y, since with
(3.66) we have

B =
p(H0|y, C)/p(H1|y, C)

p(H0|C)/p(H1|C)
. (3.68)



3.4 Hypothesis Testing 79

The hypotheses are formulated for the unknown parameters x. Special prior
density functions are therefore associated with the hypotheses by introducing
a special prior density function p(x|C) for the unknown parameters x with

p(x|C) =

{
p(H0|C)p0(x|C) for x ∈ X0

p(H1|C)p1(x|C) for x ∈ X1 .
(3.69)

The density functions p0(x|C) and p1(x|C) are defined in the subspaces X0

and X1 of the hypotheses H0 and H1. They fulfill (2.74) and describe the
manner, how the density functions are distributed over the subspaces. If X1

forms with (3.46) the complement of X0, we get

p(x|C) =

{
p(H0|C)p0(x|C) for x ∈ X0

(1 − p(H0|C))p1(x|C) for x ∈ X \ X0 ,
(3.70)

since the condition
∫
X

p(x|C)dx = 1 from (2.74) has also to be fulfilled.
We express in the posterior odds ratio (3.66) the posterior density func-

tion for the hypotheses as in (3.61) by the posterior density functions of the
unknown parameters x with the prior density function (3.69) and the likeli-
hood function. We then obtain for testing the composite hypothesis (3.45)

H0 : x ∈ X0 versus H1 : x ∈ X1 ,

if the posterior odds ratio

p(H0|C)
∫
X0

p0(x|C)p(y|x, C)dx

p(H1|C)
∫
X1

p1(x|C)p(y|x, C)dx
> 1 , accept H0 . (3.71)

Otherwise accept H1. The Bayes factor B follows for this test with (3.66)
and (3.68) from (3.71) by

B =

∫
X0

p0(x|C)p(y|x, C)dx∫
X1

p1(x|C)p(y|x, C)dx
. (3.72)

To test the simple hypothesis (3.47)

H0 : x = x0 versus H1 : x = x1 ,

we let again as in (3.63) the two subspaces X0 and X1 shrink to the points x0

and x1. Because of
∫
X0

p0(x|C)dx = 1 and
∫
X1

p1(x|C)dx = 1 from (2.74)

we obtain instead of (3.71), if

p(H0|C)p(y|x0, C)

p(H1|C)p(y|x1, C)
> 1 , accept H0 . (3.73)

Otherwise accept H1. For testing the point null hypothesis (3.48)

H0 : x = x0 versus H1 : x �= x0
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we finally get with (3.70) instead of (3.71), if the posterior odds ratio

p(H0|C)p(y|x0, C)

(1 − p(H0|C))
∫
{x �=x0}

p1(x|C)p(y|x, C)dx
> 1 , accept H0 . (3.74)

Otherwise accept H1. The two Bayes factors for the tests (3.73) and (3.74)
follow again corresponding to (3.72).

If a point null hypothesis is tested with (3.74), results may follow which
do not agree with the ones of traditional statistics. This happens, if the
prior density function p1(x|C) is spread out considerably because of a large
variance resulting from an uncertain prior information. Then, the likelihood
function averaged by the integral in (3.74) over the space of the alternative
hypothesis becomes smaller than the likelihood function p(y|x0, C) for the
null hypothesis. Thus, the null hypothesis is accepted although a test of
traditional statistics may reject it. This discrepancy was first detected by
Lindley (1957), and it is therefore called Lindley’s paradox, see also Berger

(1985, p.156).
Example: Let the point null hypothesis

H0 : β = β0 versus H1 : β �= β0 , (3.75)

where β denotes a u × 1 vector of unknown parameters and β0 a u × 1
vector of given values, be tested by the posterior odds ratio (3.74). Let the
likelihood function be determined by the normal distribution (2.225) where
y denotes the n × 1 vector of observations in a linear model. Let the prior
density function for β be determined by the normal distribution (2.226). The
likelihood function in (3.74) then follows with the density function (2.195) of
the normal distribution by

p(y|β0, C) =
1

(2π)n/2(det σ2P−1)1/2

exp
{ − 1

2σ2
(y − Xβ0)

′P (y − Xβ0)
}

. (3.76)

The exponent is transformed as in (2.228) and one obtains

(y − Xβ0)
′P (y − Xβ0) = y′P y − µ̄′X ′PXµ̄

+ (β0 − µ̄)′X ′PX(β0 − µ̄) (3.77)

with

µ̄ = (X ′PX)−1X ′Py .

The prior density function from (2.226) is determined by

p1(β|C) =
1

(2π)u/2(detσ2Σ)1/2
exp

{ − 1

2σ2
(β − µ)′Σ−1(β − µ)

}
.
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The posterior density function for β then follows with

p1(β|C)p(y|β, C) =
1

(2π)(n+u)/2(detσ2Σ detσ2P−1)1/2

exp
{ − 1

2σ2

[
(β − µ)′Σ−1(β − µ) + (y − Xβ)′P (y − Xβ)

]}
. (3.78)

The exponent is transformed as in (2.228)

(β − µ)′Σ−1(β − µ) + (y − Xβ)′P (y − Xβ)

= y′Py + µ′Σ−1µ − µ′
0(X

′PX + Σ−1)µ0

+(β − µ0)
′(X ′PX + Σ−1)(β − µ0) (3.79)

with

µ0 = (X ′PX + Σ−1)−1(X ′Py + Σ−1µ) .

The posterior density function for β has to be integrated to find the posterior
odds ratio (3.74). The point β0 to be excluded is of no concern, since the
posterior density function is continuous. After substituting (3.79) in (3.78)
we find

1

(2π)u/2[det σ2(X ′PX + Σ−1)−1]1/2∫ ∞

−∞

. . .

∫ ∞

−∞

exp
{ − 1

2σ2
(β − µ0)

′(X ′PX + Σ−1)(β − µ0)
}
dβ = 1

(3.80)

where the constants are chosen according to (2.195) such that the integration
gives the value one. Then instead of (3.74), the decision follows with (3.76)
to (3.80), if the posterior odds ratio

p(H0|C)[detΣ]1/2

(1 − p(H0|C))[det(X ′PX + Σ−1)−1]1/2

exp
{ − 1

2σ2

[
(β0 − µ̄)′X ′P X(β0 − µ̄) − µ̄′X ′P Xµ̄

−µ′Σ−1µ + µ′
0(X

′P X + Σ−1)µ0

]}
> 1 , accept H0 . (3.81)

With large variances for the prior information detΣ becomes large so that
the posterior odds ratio (3.81) becomes greater than one. This was already
pointed out in connection with (3.74).

To apply (3.81), the point null hypothesis

H0 : s = s0 versus H1 : s �= s0

shall be tested for the example to (2.227) in addition to the hypothesis of
the example to (3.64). With X = |1, 1, . . . , 1|′, β = s, P = I, µ = µs,Σ =



82 3 Parameter Estimation, Confidence Regions and Hypothesis Testing

σ2
s , β0 = s0 we obtain

µ̄ = s̄ =
1

n

n∑
i=1

yi

as well as µ0 = µ0s and σ2
0s from (2.230) and (2.231). The posterior odds

ratio (3.81) then follows with

p(H0|C)

1 − p(H0|C)

(σ2
s + 1/n

1/n

)1/2

exp
{
− 1

2

[ (s0 − s̄)2

σ2/n
− s̄2

σ2/n
− µ2

s

σ2σ2
s

+
µ2

0s

σ2σ2
0s

]}
.

Furthermore we get

µ2
0s

σ2σ2
0s

=
1

σ2σ2
s + σ2/n

(
nσ2

s s̄2 + 2s̄µs +
µ2

s

nσ2
s

)

and therefore the decision, if

p(H0|C)

1 − p(H0|C)

(σ2
s + 1/n

1/n

)1/2

exp
{
− 1

2

[ (s0 − s̄)2

σ2/n
− (µs − s̄)2

σ2σ2
s + σ2/n

]}
> 1 ,

accept H0.
It is obvious like in (3.81) that for large values of σ2

s the decision is reached
in favor of the null hypothesis. ∆

3.4.4 Test of the Point Null Hypothesis by Confidence Regions

Lindley’s paradox of the preceding chapter indicates a test of a point null
hypothesis by Bayesian statistics whose results need not agree with the ones of
traditional statistics. In general, different decisions have to be expected, since
the hypotheses are differently treated in Bayesian statistics and traditional
statistics. In traditional statistics the null hypothesis is as long maintained as
knowledge from the data speaks against it. In Bayesian statistics, however,
the null and the alternative hypothesis are treated equally. If according to
(3.58) the posterior density function of the null hypothesis becomes larger
than the one of the alternative hypothesis, the null hypothesis is accepted,
or if it is smaller, the alternative hypothesis.

However, if one proceeds when testing hypotheses as in traditional statis-
tics, one gets by Bayesian statistics the test procedures of traditional statis-
tics. For instance, the point null hypothesis (3.48) in the linear model of tra-
ditional statistics for the vector of unknown parameters or the more general
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point null hypothesis (3.50) for a vector of linear functions of the parameters
are accepted, if the point of the null hypothesis lies within the 1 − α confi-
dence region for the parameter vector or for the vector of linear functions of
the parameters, see for instance Koch (1999, p.301).

The problem to decide whether a point x0 lies within a confidence region
was already solved by the inequality (3.42)

p(x0|y, C) > pB

where pB denotes the posterior density of a point at the boundary of the
confidence region for the parameter vector x. If the inequality is fulfilled, the
point lies within the confidence region. Thus, for the test of the point null
hypothesis (3.48)

H0 : x = x0 versus H1 : x �= x0

the density pB of a point xB at the boundary of the 1−α confidence regionXB

for the parameter vector x is needed according to (3.41). The test procedure
of traditional statistics is obtained with (3.42), i.e. if

p(x0|y, C) > pB , accept H0 (3.82)

with a significance level of α. Otherwise H0 is rejected. Correspondingly,
the density of a point at the boundary of the confidence region for a linear
transformation of the parameters has to be introduced for the test of the
general point null hypothesis (3.50). As was already shown with (3.44) and
as will be demonstrated with (4.26), (4.98), (4.145) and (4.175), the density
pB can be replaced in the linear model by an upper percentage point. Thus,
the test procedures of traditional statistics are readily obtained.

The test procedure (3.82) of traditional statistics for the point null hy-
pothesis (3.48) may be also derived as a test of a hypothesis of Bayesian
statistics which is different from (3.48). The test of the simple hypothesis

H0 : x = x0 versus H1 : x = xB , (3.83)

where xB again denotes a point at the boundary of the confidence region XB

for the parameter vector x, leads with (3.64) to the decision, if

p(x0|y, C)

pB
> 1 , accept H0 .

Otherwise accept H1. This decision is identical with (3.82).



4 Linear Model

Measurements are taken and data are collected to gain information about
unknown parameters. In order to estimate the values of the unknown pa-
rameters by the methods explained in Chapter 3.2, the functional relations
between the unknown parameters and the observations need to be defined
and the statistical properties of the observations have to be specified. These
definitions determine the model of the data analysis.

Frequently linear relations are given between the unknown parameters
and the observations which lead to a linear model. Nonlinear relations may
in general be transferred, as will be shown in Chapter 4.1, by a linearization
into a linear model. The linear model is therefore often applied and will be
explained in detail in the following.

4.1 Definition and Likelihood Function

Let X be an n × u matrix of given coefficients with full column rank, i.e.
rankX = u, β a u × 1 random vector of unknown parameters, y an n × 1
random vector of observations, D(y|σ2) = σ2P−1 the n×n covariance matrix
of y, σ2 the unknown random variable which is called variance factor or
variance of unit weight and P the known positive definite weight matrix of
the observations. Then

Xβ = E(y|β) with D(y|σ2) = σ2P−1 (4.1)

is called a linear model.
Out of reasons which were explained in Chapter 2.4.1 the observations y

are assumed as normally distributed so that with (2.196) and (4.1)

y|β, σ2 ∼ N(Xβ, σ2P−1) (4.2)

follows. The expected values of the observations, i.e. the mean values or the
“true” values of the observations, are expressed in (4.1) as linear combinations
Xβ of the unknown parameters β subject to the condition that the values
for β are given. This is indicated, as already mentioned in connection with
(2.225), by the notation E(y|β). In the same way β and σ2 in D(y|σ2) and
in y|β, σ2 denote given values.

Because of rankX = u we have n ≥ u. But one should strive for keeping
the number n of observations larger than the number u of unknown parame-
ters in order to diminish the influence of the variances and covariances of the
observations y on the estimates of the unknown parameters β. If, however,
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prior information is introduced for the unknown parameters β as in Chapters
4.2.6, 4.2.7, 4.3.2 and 4.4.2, n < u may be valid.

For n > u the system Xβ = y of equations is in general not consistent. By
adding the n×1 random vector e of errors of the observations the consistent
system

Xβ = y + e with E(e|β) = 0

and D(e|β, σ2) = D(y|σ2) = σ2P−1 (4.3)

is obtained, since E(e|β) = 0 follows with E(y|β) = Xβ from (4.1) and
D(e|β, σ2) = σ2P−1 with e = −y + Xβ from (2.158). An alternative for-
mulation of the model (4.1) is therefore obtained with (4.3). The equations
Xβ = E(y|β) = y + e are called observation equations.

If the positive definite covariance matrix of y is denoted by Σ, D(y|σ2) =
Σ = σ2P−1 or P = σ2Σ−1 follows from (4.1). Thus, c = σ2 has been set in
the definition (2.159) of the weight matrix P to obtain the covariance matrix
D(y|σ2) in (4.1). With P = I follows D(y|σ2) = σ2I. The variances of the
observations then result from the variance factor σ2.

Example 1: Let the unknown quantity s again be measured n times like
in the example to (2.227) so that the observation vector y = |y1, y2, . . . , yn|′
is obtained. Let the observations be independent and have different weights
pi for i ∈ {1, . . . , n} defined in (2.160). The following observation equations
with the errors ei and the variances V (yi|σ2) are then obtained

s = E(y1|s) = y1 + e1 with V (y1|σ2) = σ2/p1

s = E(y2|s) = y2 + e2 with V (y2|σ2) = σ2/p2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
s = E(yn|s) = yn + en with V (yn|σ2) = σ2/pn .

By setting X = |1, . . . , 1|′, e = |e1, . . . , en|′ and P−1 = diag(1/p1, . . . , 1/pn)
the linear model (4.1) follows or its alternative formulation (4.3). ∆

Since the observations y are normally distributed according to (4.2), the
likelihood function p(y|β, σ2) follows with (2.195) by

p(y|β, σ2) =
1

(2π)n/2(detσ2P−1)1/2
e− 1

2σ2 (y − Xβ)′P (y − Xβ)

or

p(y|β, σ2) =
1

(2πσ2)n/2(det P )−1/2
e− 1

2σ2 (y − Xβ)′P (y − Xβ) . (4.4)

In general, nonlinear relations will exist between the unknown parameters
and the observations so that we get corresponding to (4.3)

h1(β1, . . . , βu) = y∗
1 + e1

h2(β1, . . . , βu) = y∗
2 + e2

. . . . . . . . . . . . . . . . . . . . . . . .
hn(β1, . . . , βu) = y∗

n + en

(4.5)
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where hi(β1, . . . , βu) with i ∈ {1, . . . , n} are real-valued differentiable func-
tions of the unknown parameters β1, . . . , βu and y∗

i the observations with their
errors ei. Let approximate values βj0 with βj = βj0 +∆βj and j ∈ {1, . . . , u}
be given for the parameters βj so that the corrections ∆βj are unknown and
have to be estimated. Then, we may linearize by the Taylor expansion which
is cut off at the linear term. We find with β0 = (βj0)

hi(β1, . . . , βu) = hi(β10 + ∆β1, . . . , βu0 + ∆βu)

= hi(β10, . . . , βu0) +
∂hi

∂β1

∣∣∣
β0

∆β1 + . . . +
∂hi

∂βu

∣∣∣
β0

∆βu . (4.6)

By substituting

y = |y∗
1 − h1(β10, . . . , βu0), . . . , y

∗
n − hn(β10, . . . , βu0)|′

β = |∆β1, . . . ,∆βu|′ (4.7)

and

X =

∣∣∣∣∣∣∣∣∣

∂h1
∂β1

∣∣∣
β0

. . . ∂h1
∂βu

∣∣∣
β0

. . . . . . . . . . . . . . . . . . . . . .
∂hn
∂β1

∣∣∣
β0

. . . ∂hn
∂βu

∣∣∣
β0

∣∣∣∣∣∣∣∣∣
(4.8)

the linear model (4.1) or (4.3) is obtained instead of (4.5). The expansion
(4.6) is only valid, if the corrections ∆βj are small quantitites. If these pre-
requisites are not fulfilled, one has to estimate iteratively by introducing the
approximate value βj0 plus the estimate of ∆βj as approximate value βj0 for
the next estimate. At each step of the iterations the observations according
to (4.7) and the derivatives from (4.8) have to be recomputed.

Example 2: The coordinates xi, yi of points in a plane with the ap-
proximate coordinates xi0, yi0 which are collected in the vector β0 shall be
determined by measuring the distances between the points. Let sij be the
planar distance between the points i and j and eij its error, we then obtain
by the theorem of Pythagoras instead of (4.5)

(
(xi − xj)

2 + (yi − yj)
2
)1/2

= sij + eij . (4.9)

The coefficients of the matrix X follow with (4.8) by

∂sij

∂xi

∣∣∣
β0

=
xi0 − xj0

sij0
,

∂sij

∂yi

∣∣∣
β0

=
yi0 − yj0

sij0

∂sij

∂xj

∣∣∣
β0

= −xi0 − xj0
sij0

,
∂sij

∂yj

∣∣∣
β0

= −yi0 − yj0
sij0

(4.10)

with

sij0 =
(
(xi0 − xj0)

2 + (yi0 − yj0)
2
)1/2

.
∆
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Only one observation appears in each of the nonlinear relations (4.5) be-
tween the observations and the unknown parameters. However, if we want
to fit a line through the measured coordinates of points in a plane or to fit a
curve or a surface through points in the three-dimensional space, more than
one observations shows up in the relations for determining the parameters of
the fit. The same holds true, if the parameters of transformations between
points have to be computed whose coordinates are measured in two different
coordinate systems. By introducing additional unknown parameters these
relations may be transformed to the equations (4.5). This will be shown for
a general case after presenting Example 3.

Example 3: Let a circle be fitted through the points Pi in a plane with
the measured coordinates xi and yi and i ∈ {1, . . . , m}. The coordinates
a and b of the midpoint of the circle and the radius r are the unknown
parameters. The nonlinear relations are obtained, if exi

denotes the error of
xi and eyi

the error of yi

(xi + exi
− a)2 + (yi + eyi

− b)2 = r2 .

In contrast to (4.5) not only the observation xi appears, but also the obser-
vation yi. As will be shown in the following, this relation may be transferred
to the form (4.5) by introducing an additional unknown parameter. ∆

Let y1, y2, . . . ,yk be independent vectors of observations with yi = (yij),
i ∈ {1, . . . , m}, j ∈ {1, . . . , k} and the covariance matrices D(yi|σ2) = σ2P−1

i

like in (4.1) and (4.3) or dependent vectors with a joint covariance matrix.
Instead of (4.5) we have the nonlinear relations

f1(y11 + e11, y12 + e12, . . . , y1k + e1k, β1, . . . , βu) = 0
f2(y21 + e21, y22 + e22, . . . , y2k + e2k, β1, . . . , βu) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
fm(ym1 + em1, ym2 + em2, . . . , ymk + emk, β1, . . . , βu) = 0

where eij denotes the error of yij . These relations are solved for yi1 + ei1

with i ∈ {1, . . . , m} so that the relations gi(. . .) are obtained which shall
be differentiable and where yij + eij with i ∈ {1, . . . , m}, j ∈ {2, . . . , k} are
regarded as unknown parameters which are denoted by ȳij . To determine
each additional unknown parameter ȳij , the additional observation equation
ȳij = yij + eij is introduced. Thus, we obtain

g1(ȳ12, . . . , ȳ1k, β1, . . . , βu) = y11 + e11

ȳ12 = y12 + e12, . . . , ȳ1k = y1k + e1k

g2(ȳ22, . . . , ȳ2k, β1, . . . , βu) = y21 + e21

ȳ22 = y22 + e22, . . . , ȳ2k = y2k + e2k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
gm(ȳm2, . . . , ȳmk, β1, . . . , βu) = ym1 + em1

ȳm2 = ym2 + em2, . . . , ȳmk = ymk + emk .
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These relations correspond to (4.5), since only one observation appears in
each equation between the observations and the unknown parameters. They
are linearized by means of approximate values for the unknown parameters, as
is shown with (4.6) to (4.8). The approximate values cause in the observation
equations ȳij = yij + eij with i ∈ {1, . . . , m} and j ∈ {2, . . . , k}, which are
already linear, an increase of the accuracy of the numerical computation.
An application can be found in Koch et al. (2000) where the parameters
of the tranformation between points are estimated whose coordinates are
determined in two three-dimensional coordinate systems.

Real-valued parameters β are assumed in the linear model (4.1). When
analyzing data of the Global Positioning System (GPS), however, baseline
coordinates appear as unknown parameters which are real-valued and phase
ambiguities which are integers. For estimating the unknown parameters and
the confidence regions for the baseline coordinates in this special linear model
see for instance Betti et al. (1993) and Gundlich and Koch (2002).

4.2 Linear Model with Known Variance Factor

The variance factor σ2 in (4.1) is first assumed to be known so that only
the parameter vector β is unknown. In Chapter 4.3 then follows the linear
model with the unknown variance factor. As prior density function for β a
noninformative prior is assumed for the following, in Chapters 4.2.6 and 4.2.7
an informative prior.

4.2.1 Noninformative Priors

With the noninformative prior density function (2.216), which is determined
by a constant, the posterior density function p(β|y) for the vector β of un-
known parameters results with Bayes’ theorem (2.122) immediately from the
likelihood function (4.4) by

p(β|y) ∝ e− 1
2σ2 (y − Xβ)′P (y − Xβ) (4.11)

where terms which do not depend on β are not considered, since they are con-
stant. The statement C refering to the background information, which enters
Bayes’ theorem (2.122) as a condition, is omitted for the sake of simplifying
the notation. This happens for all applications of the linear model.

The exponent in (4.11) is transformed like (2.228) by

(y − Xβ)′P (y − Xβ) = y′Py − 2β′X ′Py + β′X ′PXβ

= y′Py − µ′
0X

′PXµ0 + (β − µ0)
′X ′PX(β − µ0) (4.12)

with

µ0 = (X ′PX)−1X ′Py . (4.13)
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After substituting (4.12) in (4.11) a comparison of the term depending on
β with (2.195) reveals that the posterior distribution for the vector β of
unknown parameters is the normal distribution

β|y ∼ N(µ0, σ
2(X ′P X)−1) . (4.14)

The Bayes estimate β̂B of the unknown parameters β therefore follows from
(3.9) with (2.196) by

β̂B = (X ′PX)−1X ′Py (4.15)

and the associated covariance matrix D(β|y) from (3.11) by

D(β|y) = σ2(X ′PX)−1 . (4.16)

Because of rankX = u also rank(X ′PX) = u holds true so that (X ′PX)−1

exits and β̂B and D(β|y) are uniquely determined. The linear equations

X ′P Xβ̂B = X ′Py for β̂B are called normal equations and X ′P X the
matrix of normal equations.

Since the posterior density function (4.11) results immediately from the

likelihood function, the MAP estimate β̂M of the vector β of unknown pa-
rameters is because of (3.30) identical with the maximum likelihood estimate

(3.33). The MAP estimate β̂M is found at the maximum of the posterior
density function for β, i.e. at the point where the quadratic form S(β) in
the exponent of (4.11) has a minimum, thus

S(β) = (y − Xβ)′P (y − Xβ)/σ2 → min . (4.17)

With (4.12) and

∂S(β)/∂β = (−2X ′P y + 2X ′PXβ)/σ2 = 0 (4.18)

the MAP estimate follows by

β̂M = (X ′P X)−1X ′P y (4.19)

which is identical with the Bayes estimate β̂B from (4.15). The reason is the
symmetry of the density function of the posterior distribution (4.14) for β,

which is a normal distribution. The MAP estimate β̂M is also obtained by
the posterior density function from (4.14) which attains at µ0 the maximum,
as can bee seen with (2.195).

For the numerical computation of the estimates and for the check of the
computations see for instance Koch (1999, p.165).

Example 1: For the Example 1 to (4.3) we obtain with β̂B = β̂M =
ŝ from (4.15) and (4.19) and with X ′P = |p1, . . . , pn| the estimate ŝ as
weighted arithmetic mean by

ŝ =
1∑n

i=1 pi

n∑
i=1

piyi (4.20)
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with the variance V (s|y) from (4.16)

V (s|y) = σ2/

n∑
i=1

pi . (4.21)
∆

Example 2: To compute the estimates β̂B or β̂M of the unknown param-
eters β, the matrix X ′P X of normal equations and the absolute term X ′P y

need to be built up by means of the coefficient matrix X. If the weight matrix
P is a diagonal matrix, for instance, for independent observations because
of (2.153) and (2.159), it might be computationally advantageous to avoid
setting up the coefficient matrix X and to compute directly the contribution
of each observation equation to the normal equations.

Let the weight matrix be diagonal with P = diag(p1, . . . , pn) and let the
coefficient matrix X be represented by its rows x′

i with X = |x1, . . . ,xn|′
and i ∈ {1, . . . , n}. With y = (yi) and e = (ei) from (4.1) and (4.3) the
observation equation for yi then follows with

x′
iβ = E(yi|β) = yi + ei and V (yi) = σ2/pi .

The matrix X ′PX of normal equations and the vector X ′Py of absolute
terms result with X ′P = |p1x1, . . . , pnxn| from

X ′PX = |p1x1x
′
1 + . . . + pnxnx′

n|
X ′Py = |p1y1x1 + . . . + pnynxn| .

Thus, the contribution of each observation equation is added to form the
normal equations. ∆

Example 3: Let a periodic function, which is determined at points tn

by the independent measurements y(tn) with identical variances, be approxi-
mated by a sum of harmonic oscillations of different amplitudes and frequen-
cies. The observation equation where e(tn) denotes the error is then obtained
from (4.3) by, see for instance Koch and Schmidt (1994, p.8),

A0

2
+

K∑
k=1

(Ak cos kω0tn + Bk sinkω0tn) = y(tn) + e(tn)

with

V (y(tn)) = σ2

and

tn = − π

ω0
+

2π

ω0

n

N
for n ∈ {0, 1, . . . , N − 1} .

The coefficients A0, Ak and Bk for k ∈ {1, . . . , K} are the unknown parame-
ters and ω0 the given fundamental frequency. With N observations 2K + 1
unknown parameters have to be estimated so that

N ≥ 2K + 1
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must hold true.
The coefficient matrix X follows from (4.3) or (4.8) by

X =

∣∣∣∣∣∣∣∣
1/2 cosω0t0 sinω0t0 . . . cosKω0t0 sin Kω0t0
1/2 cosω0t1 sinω0t1 . . . cosKω0t1 sin Kω0t1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1/2 cosω0tN−1 sinω0tN−1 . . . cosKω0tN−1 sin Kω0tN−1

∣∣∣∣∣∣∣∣
and with it the matrix X ′X of normal equations because of P = I. The sine
and cosine functions are mutually orthogonal with

N−1∑
n=0

cos kω0tn cosmω0tn =

{
0 for k �= m

N/2 for k = m and k > 0

and the corresponding equation for the sine function and with

N−1∑
n=0

sin kω0tn cosmω0tn = 0 .

Furthermore,

N−1∑
n=0

cos kω0tn = 0

is valid and the corresponding equation for the sine function. The matrix of
normal equations therefore results as the diagonal matrix

X ′X = (N/2)diag(1/2, 1, 1, . . . , 1) .

With its inverse and the vector of absolute terms the estimates Âk and B̂k

of the unknown parameters Ak and Bk follow from (4.15) or (4.19) by

Âk =
2

N

N−1∑
n=0

y(tn) cos kω0tn for k ∈ {0, 1, . . . , K}

B̂k =
2

N

N−1∑
n=0

y(tn) sin kω0tn for k ∈ {1, 2, . . . , K} .

If the periodic function is not determined at discrete points, but if it is given
continuously, the Fourier series follows from these results. ∆

The confidence region for the vector β of unknown parameters is ob-
tained with the normal distribution (4.14) as posterior distribution. As in
the example to (3.35) a hypersurface of equal density follows by the relation,
which results from the exponent of the density function (2.195) of the normal
distribution,

(β − µ0)
′X ′PX(β − µ0)/σ2 = const .
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It has the shape of a hyperellipsoid, and the 1 − α confidence hyperellipsoid
for β is given according to (3.36) by

(β − µ0)
′X ′PX(β − µ0)/σ2 = χ2

1−α;u (4.22)

where χ2
1−α;u denotes the upper α-percentage point (2.181) of the χ2-distribu-

tion with u as parameter. The axes of the confidence hyperellipsoid and their
orientations are found as in (3.38) and (3.39).

With the normal distribution (4.14) as posterior distribution for β hy-
potheses may be tested, too, as explained in Chapter 3.4.

Example 4: The point null hypothesis (3.50)

H0 : Hβ = w versus H1 : Hβ �= w (4.23)

where H denotes an r × u matrix with rankH = r and r < u shall be tested
according to (3.82) by the confidence hyperellipsoid for Hβ. The posterior
distribution for Hβ follows from the posterior distribution (4.14) for β with
(2.202) by

Hβ|y ∼ N(Hµ0, σ
2H(X ′P X)−1H ′) . (4.24)

The 1 − α confidence hyperellipsoid for Hβ is obtained corresponding to
(4.22) by

(Hβ − Hµ0)
′(H(X ′PX)−1H ′)−1(Hβ − Hµ0)/σ2 = χ2

1−α;r . (4.25)

If H = |0, I,0|, for instance, is substituted, the confidence hyperellipsoid for
a subset of unknown parameters in β follows.

The point null hypothesis (4.23) is accepted according to (3.44) and (3.82),
if

(Hµ0 − w)′(H(X ′PX)−1H ′)−1(Hµ0 − w)/σ2 < χ2
1−α;r . (4.26)

∆

4.2.2 Method of Least Squares

The observations y contain information about the unknown parameters β,
the expected values E(y|β) of the observations therefore depend on β. Let
the deviations of the data y from their estimated expected values s[E(y|β)]
determine the loss of the estimation. The quadratic loss function (3.6) is
therefore chosen which is caused by the difference y−s[E(y|β)] and weighted
by the inverse of the covariance matrix D(y|β) = Σ of the observations y.
The unknown parameters β are estimated such that the loss function attains
a minimum, thus

(y − s[E(y|β)])′Σ−1(y − s[E(y|β)]) → min . (4.27)
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The estimation of the unknown parameters β according to (4.27) is called
method of least squares or least squares adjustment, see for instance Gra-

farend and Schaffrin (1993) and Wolf (1968, 1975, 1979). It is fre-
quently applied in traditional statistics. For the linear model (4.1) we obtain
instead of (4.27) the quadratic form S(β) to be minimized

S(β) = (y − Xβ)′P (y − Xβ)/σ2 → min . (4.28)

If y now denotes given data, i.e. values of the random vector y, then (4.28)

is identical with (4.17). The estimate β̂ of the unknown parameters β by the
method of least squares therefore follows with

β̂ = (X ′PX)−1X ′Py (4.29)

and agrees with the MAP estimate β̂M from (4.19) and also with the Bayes

estimate β̂B from (4.15).
The estimate of the unknown parameters β by the method of least squares

in traditional statistics proceeds with corresponding considerations so that
the result is identical with (4.29). The interpretation of the estimate, how-

ever, is different. The estimates β̂B, β̂M and β̂ of the random parameters
β of Bayesian statistics are fixed quantities, which was already mentioned
in connection with (3.10), since the estimates are determined by given fixed
values for the observations y. In traditional statistics, however, the vector
β of the linear model, which is called Gauss-Markov model in traditional
statistics, is a vector of fixed unknown parameters and its estimate β̂, which
is identical with (4.29), is a random vector obtained by a linear transforma-
tion of the random vector y of observations. Also the variance factor σ2 is
like β a fixed and in general an unknown parameter.

An unbiased estimation is a property which is often required in traditional
statistics. It means that the expected value of the estimate has to be equal
to the quantity to be estimated. The estimate β̂ of traditional statistics
fulfills this requirement because of (4.29), since we obtain with (2.146) and
E(y) = Xβ from (4.1)

E(β̂) = (X ′P X)−1X ′P E(y) = β . (4.30)

The covariance matrix D(β̂) of the estimate β̂ of traditional statistics follows
with (2.158) and D(y) = σ2P−1 from (4.1) by

D(β̂) = σ2(X ′PX)−1X ′P P−1PX(X ′PX)−1

= σ2(X ′PX)−1 . (4.31)

This matrix is identical with D(β|y) from (4.16).

4.2.3 Estimation of the Variance Factor in Traditional Statistics

The Bayes estimate of the variance factor σ2 will be dealt with in Chapter
4.3.1 and 4.3.2, since the variance factor σ2 is assumed as known for the Chap-
ter 4.2. Nevertheless, the maximum likelihood estimate σ̄2 of σ2 of traditional
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statistics shall be derived for a comparison with the results of Chapter 4.3.1
and 4.3.2. Hence, the estimate σ̄2 is according to (3.33) determined such that
the likelihood function (4.4) attains a maximum. The likelihood function is
therefore differentiated with respect to σ2 and the derivative is set equal to
zero. To simplify the derivation, not p(y|β, σ2) but ln p(y|β, σ2) is differenti-
ated. It is admissible, since the likelihood function like the density function of
the normal distribution is positive and with ∂ ln p(y|β, σ2)/∂σ2 = 0 follows
[1/p(y|β, σ2)]∂p(y|β, σ2)/∂σ2 = 0 and therefore ∂p(y|β, σ2)/∂σ2 = 0. One
gets from (4.4)

ln p(y|β, σ2) = −n

2
ln(2π) − n

2
ln σ2 +

1

2
ln detP

− 1

2σ2
(y − Xβ)′P (y − Xβ) .

With

∂ ln p(y|β, σ2)

∂σ2
= − n

2σ2
+

1

2(σ2)2
(y − Xβ)′P (y − Xβ) = 0

the estimate σ̄2 of σ2 follows with

σ̄2 =
1

n
(y − Xβ̂)′P (y − Xβ̂) (4.32)

where the vector β of unknown parameters is replaced by the vector β̂ of
estimates from (4.29).

If the estimates β̂ are substituted in the observation equations Xβ = y+e

from (4.3), the vector ê of residuals is obtained instead of the vector e of errors

ê = Xβ̂ − y . (4.33)

Thus, the variance factor is estimated by the weighted sum of squares of the
residuals Ω

Ω = ê′P ê (4.34)

which is minimal because of (4.28). This can be easily shown, see for instance
Koch (1999, p.158).

The requirement of unbiasedness of an estimate, which was discussed in
connection with (4.30), is not fulfilled for the estimate σ̄2 of σ2. To show

this, we substitute β̂ from (4.29) in (4.33) and obtain

ê = −(I − X(X ′P X)−1X ′P )y (4.35)

and for Ω from (4.34)

Ω = y′(P − PX(X ′PX)−1X ′P )y . (4.36)
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The expected value E(Ω) follows from (2.165) and (4.1) with

E(Ω) = σ2tr(I − P X(X ′P X)−1X ′)

+β′X ′(P − PX(X ′P X)−1X ′P )Xβ

= σ2(n − tr[(X ′PX)−1X ′P X])

= σ2(n − u) . (4.37)

We therefore obtain from (4.32)

E(σ̄2) =
1

n
E(Ω) =

σ2

n
(n − u) �= σ2 . (4.38)

However, the estimate σ̂2 of σ2 with

σ̂2 =
1

n − u
Ω (4.39)

is unbiasesd, as can be readily seen by forming the expected value E(σ̂2).
Example: For the Example 1 to (4.3) we get from (4.20) and (4.33)

ê = |ŝ−y1, ŝ−y2, . . . , ŝ−yn|′ and ê
′
P = |p1(ŝ−y1), p2(ŝ−y2), . . . , pn(ŝ−yn)|.

The unbiased estimate σ̂2 of the variance factor σ2 is therefore obtained with

σ̂2 =
1

n − 1

n∑
i=1

pi(ŝ − yi)
2 . (4.40)

∆

4.2.4 Linear Model with Constraints in Traditional Statistics

The parameters of a linear model with constraints in traditional statistics are
estimated in a simple manner by the method of least squares. This model is
defined by

Xβ = E(y) with Hβ = w and D(y) = σ2P−1 . (4.41)

The r × u matrix H with rankH = r and r < u contains known coefficients
and w is a known r × 1 vector. In the interpretation of traditional statistics
β denotes a vector of fixed unknown parameters and y a random vector. To
estimate the unknown parameters β by the method of least squares, (4.28)
has to be minimized subject to the constraints Hβ = w. The Lagrange
function w(β) is therefore set up

w(β) = (y − Xβ)′P (y − Xβ)/σ2 + 2k′(Hβ − w)/σ2

where the r × 1 vector 2k/σ2 contains Lagrange multipliers. The derivative
of w(β) with respect to β is set equal to zero. One obtains with (4.18)

∂w(β)/∂β = (−2X ′P y + 2X ′PXβ + 2H ′k)/σ2 = 0 .
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Thus, together with the constraints the estimate β̃ of β follows from∣∣∣∣ X ′PX H ′

H 0

∣∣∣∣
∣∣∣∣ β̃

k

∣∣∣∣ =

∣∣∣∣ X ′Py

w

∣∣∣∣ . (4.42)

The values for β̃ and k are uniquely determined, since we have with rankH

= r

det

∣∣∣∣ X ′P X H ′

H 0

∣∣∣∣ = det(X ′P X) det(−H(X ′PX)−1H ′) �= 0 .

If β̃ is eliminated from (4.42), we obtain

−H(X ′P X)−1H ′k = w − H(X ′PX)−1X ′Py . (4.43)

This result is substituted in (4.42), the estimate β̃ then follows with

β̃ = (X ′PX)−1[X ′Py + H ′(H(X ′PX)−1H ′)−1

(w − H(X ′PX)−1X ′Py)] (4.44)

and from (2.158) the covariance matrix D(β̃) of β̃ with

D(β̃) = σ2[(X ′PX)−1 − (X ′PX)−1H ′(H(X ′PX)−1H ′)−1

H(X ′PX)−1] . (4.45)

For inverting the matrix on the left-hand side of (4.42) the matrix identity
is needed, see for instance Koch (1999, p.33),∣∣∣∣ A B

C D

∣∣∣∣
−1

=∣∣∣∣ A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

∣∣∣∣ ,

(4.46)

where A and D denote regular matrices. In the following, two identities will
be used in addition, see Koch (1999, p.34),

(A − BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1 (4.47)

and

D−1C(A − BD−1C)−1 = (D − CA−1B)−1CA−1 . (4.48)

Substituting N = X ′PX in (4.42) gives with (4.46)∣∣∣∣ N H ′

H 0

∣∣∣∣
−1

=∣∣∣∣ N−1 − N−1H ′(HN−1H ′)−1HN−1 N−1H ′(HN−1H ′)−1

(HN−1H ′)−1HN−1 −(HN−1H ′)−1

∣∣∣∣ .
(4.49)
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The matrix which is needed for computing D(β̃) from (4.45) stands at the
position of X ′PX in the inverse matrix. The estimate β̃ and its covariance
matrix D(β̃) may therefore be obtained from (4.42).

To estimate the variance factor σ2 of the model (4.41) by the maximum
likelihood method, the Lagrange function following from the likelihood func-
tion (4.4) and the constraints Hβ = w is differentiated with respect to σ2

and the derivative is set equal to zero. Corresponding to (4.32) the estimate
¯̄σ2 of σ2 is obtained by

¯̄σ2 =
1

n
(y − Xβ̃)′P (y − Xβ̃) . (4.50)

By introducing as in (4.33) the vector ẽ of residuals

ẽ = Xβ̃ − y (4.51)

it becomes obvious that the estimate ¯̄σ2 follows from the weighted sum of
squares ΩH of the residuals which is minimal like (4.34)

ΩH = ẽ′P ẽ . (4.52)

Again the estimate ¯̄σ2 is biased. To show this, we compute ΩH with (4.29)
and (4.35)

ΩH = (X(β̃ − β̂) + Xβ̂ − y)′P (X(β̃ − β̂) + Xβ̂ − y)

= (Xβ̂ − y)′P (Xβ̂ − y) + (β̃ − β̂)′X ′PX(β̃ − β̂) .

We substitute (4.29) in (4.44) and the result in the second term. We then
obtain with (4.34)

ΩH = Ω + R with

R = (Hβ̂ − w)′(H(X ′PX)−1H ′)−1(Hβ̂ − w) . (4.53)

The matrix (H(X ′P X)−1H ′)−1 is positive definite because of rankH = r.
Thus, R ≥ 0 so that by introducing the constraints Hβ − w = 0 the sum
of squares Ω of the residuals in general increases. As was shown with (4.26)
in connection with (4.13) and as will be shown with (4.145) and (4.197), the
quadratic form R is used for the test of point null hypotheses. It is checked
by this test, how much the constraint Hβ − w = 0, which is introduced by
the point null hypothesis, causes the quadratic form R to increase.

The expected value E(ΩH) is computed from (2.165) with (4.37) and

with E(Hβ̂ − w) = Hβ − w = 0 because of (4.30) and D(Hβ̂ − w) =
σ2H(X ′PX)−1H ′ from (2.158) and (4.31) by

E(ΩH) = E(Ω) + σ2tr[(H(X ′PX)−1H ′)−1H(X ′PX)−1H ′]

= σ2(n − u + r) . (4.54)
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In contrary to (4.50) the unbiased estimate σ̃2 of the variance factor σ2

therefore follows with

σ̃2 = ΩH/(n − u + r) . (4.55)

Instead of estimating parameters in the linear model with constraints we
may apply the model without constraints, if the constraints are introduced as
observations with very small variances (Koch 1999, p.176). The estimates
in the linear model with constraints can be also derived as a limiting pro-
cess of a sequence of Bayes estimates with an appropriate sequence of prior
distributions (Pilz 1983, p.82). But the derivation by the method of least
squares is simpler.

4.2.5 Robust Parameter Estimation

In the course of measurements some observations may be out of any reason
grossly falsified. These observations are called outliers. Outliers may con-
siderably influence the estimation of parameters. Outliers should therefore
be eliminated from the observations. This is achieved by tests for outliers, if
only a few outliers are present in observations which control each other, see
for instance Koch (1999, p.302).

If a larger number of outliers exists, the tests for outliers fail and one
needs an estimation of the parameters which is insensitive to outliers. Such
an estimation is called robust. The estimates of the parameters derived so
far are not robust. They possess according to (4.17) or (4.28) the property
that their weighted sum of squares of the residuals from (4.34) or (4.52) is
minimal. The effect of an outlier is therefore not eliminated but distributed
over the remaining observations.

Outliers change the probability distribution of the observations. Thus, the
normal distribution should not be exclusively applied as done so far. Hu-

ber (1964; 1981, p.71) proposed the density function p(x|c) of the random
variable X which is well suited for a robust estimation of the parameters

p(x|c) ∝ e−x2/2 for |x| ≤ c (4.56)

p(x|c) ∝ e−c|x|+c2/2 for |x| > c . (4.57)

The quantity c denotes a constant whose value depends on the portion of
outliers in the data (Huber 1981, p.87). In general c = 1.5 is chosen. The
middle part (4.56) of the density function p(x|c) is formed because of (2.166)
by the standard normal distribution N(0, 1), while the tails (4.57) of the
density function p(x|c) are represented by the Laplace distribution (2.191).
At the tails of the distribution more probability mass is concentrated than
at the tails of the normal distribution. Outliers are thus taken care of.

The robust estimation of the parameters is applied for the linear model
(4.1) whose variance factor σ2 is supposed to be known. Independent ob-
servations are assumed for simplicity, small modifications only are needed
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to work with dependent observations (Yang et al. 2002). Thus, we have
because of (2.153) in (4.1)

P = diag(p1, p2, . . . , pn) . (4.58)

If we define X = (x′
i) and y = (yi), the observation equations are obtained

from (4.1) and (4.3) as in the Example 2 to (4.15) by

x′
iβ = E(yi|β) = yi + ei and V (yi) = σ2/pi , i ∈ {1, . . . , n} . (4.59)

Instead of the error ei = x′
iβ−yi of the observation yi the standardized error

ēi is introduced

ēi =
√

pi(x
′
iβ − yi)/σ with E(ēi|β) = 0 , V (ēi|β) = 1 (4.60)

whose variance V (ēi|β) is equal to one because of (2.158). We therefore may
assume that the density function p(ēi|β) is given by the density functions
(4.56) and (4.57). By transforming ēi to yi we obtain p(yi|β) ∝ p(ēi|β). The
observations y are independent by assumption. Thus, the likelihood function
p(y|β) follows with (2.110) from

p(y|β) ∝
n∏

i=1

p(ēi|β) . (4.61)

As in Chapter 4.2.1 the noninformative prior density function (2.216) is in-
troduced as prior for the vector β of unknown parameters. It is determined
by a constant. The posterior density function p(β|y) for β therefore follows
with Bayes’ theorem (2.122) immediately from the likelihood function (4.61)
where β is variable and not fixed

p(β|y) ∝
n∏

i=1

p(ēi|β) . (4.62)

The vector β of unknown parameters shall be estimated based on this
posterior density function. The MAP estimate (3.30) will be applied. De-
pending on β not the maximum of p(β|y) but of ln p(β|y) and the minimum
of − ln p(β|y), respectively, is sought as for (4.32)

− ln p(β|y) ∝
n∑

i=1

− ln p(ēi|β) . (4.63)

If we introduce the score function ρ(ēi) with

ρ(ēi) = − ln p(ēi|β) , (4.64)

we obtain from (4.56) and (4.57)

ρ(ēi) ∝ ē2
i /2 for |ēi| ≤ c (4.65)

ρ(ēi) ∝ c|ēi| − c2/2 for |ēi| > c . (4.66)
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Thus, the MAP estimate is determined with (4.63) by

n∑
i=1

ρ(ēi) → min . (4.67)

It leads, if the score function (4.65) only is applied, to the score function
(4.28) of the method of least squares.

With the derivative ψ(ēi) = ∂ρ(ēi)/∂ēi of the score function, with β =
(βl), x

′
i = (xil) and with (4.60) we obtain

∂

∂βl
ρ(ēi) = ψ(ēi)

√
pixil/σ for l ∈ {1, . . . , u} . (4.68)

The MAP estimate β̂M of β, which is because of (4.62) identical with the
maximum-likelihood estimate (3.33) and which for the robust estimation of
parameters is therefore called M-estimate, follows with (4.67) by

1

σ

n∑
i=1

√
piψ(ˆ̄ei)xil = 0 for l ∈ {1, . . . , u} (4.69)

where ˆ̄ei denotes corresponding to (4.33) the standardized residual

ˆ̄ei =
√

pi(x
′
iβ̂M − yi)/σ . (4.70)

By introducing the weights

wi = piψ(ˆ̄ei)/ˆ̄ei (4.71)

we find instead of (4.69)

1

σ2

n∑
i=1

wi(x
′
iβ̂M − yi)xil = 0

or with W = diag(w1, . . . , wn)

X ′WXβ̂M = X ′Wy . (4.72)

This system of equations has to be solved iteratively, since the weights wi

depend according to (4.71) on the standardized residuals ˆ̄ei which are deter-

mined because of (4.70) by the estimates β̂M . The estimate (4.19) is chosen

as first approximation β̂
(0)

M , thus

β̂
(0)

M = (X ′PX)−1X ′Py . (4.73)

The (m + 1)th iteration gives

β̂
(m+1)

M = (X ′W (m)X)−1X ′W (m)y (4.74)
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with

W (m) = diag(w
(m)
1 , . . . , w(m)

n ) . (4.75)

Huber (1981, p.184) proves the convergence of the iterations.

To determine the weights w
(m)
i , the derivative ψ(ˆ̄ei) is computed with

(4.65) and (4.66) by

ψ(ˆ̄ei) ∝ ˆ̄ei for |ˆ̄ei| ≤ c (4.76)

ψ(ˆ̄ei) ∝ cˆ̄ei/|ˆ̄ei| for |ˆ̄ei| > c . (4.77)

The plausibility of the derivative of the only piecewise continuous differen-
tiable function |ˆ̄ei| may be checked by ∂

√
|ˆ̄ei|2/∂ ˆ̄ei = ˆ̄ei/|ˆ̄ei|. We obtain with

the residual êi = x′
iβ̂M − yi in (4.70) and with (4.71), since a constant need

not be considered in the weights because of (4.72),

w
(m)
i = pi for

√
pi|ê(m)

i | ≤ cσ (4.78)

w
(m)
i = cσ

√
pi/|ê(m)

i | for
√

pi|ê(m)
i | > cσ . (4.79)

By iteratively reweighting the estimates β̂
(m+1)

M according to (4.74) with the
weights (4.78) and (4.79) we obtain a robust estimation, if the derivative
ψ(ˆ̄ei), which is proportional to the so-called influence function (Hampel

et al. 1986, p.40,101), is bounded. This is the case, since ψ(ˆ̄ei) for |ˆ̄ei| > c
is constant.

Based on the posterior density function (4.62) for the unknown parame-
ters from a robust estimation of parameters also confidence regions for the
unknown parameters may be established and hypotheses may be tested, as
explained in Chapters 3.3 and 3.4. Examples for determining confidence re-
gions are given in Chapters 6.2.5 and 6.3.6. Detecting outliers by using prior
information has been proposed by Gui et al. (2007).

Instead of combining the normal distribution (4.56) and the Laplace dis-
tribution (4.57) the Laplace distribution (2.191) only shall now be chosen for
taking care of outliers. We obtain

p(x) ∝ e−|x| (4.80)

and instead of (4.65) and (4.66)

ρ(ēi) ∝ |ēi| (4.81)

and from (4.67)

n∑
i=1

|ēi| → min . (4.82)

Thus, the sum of the absolute values of the standardized errors or of the
errors in case of observations with identical weights has to be minimized
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which leads to the L1-norm estimate. The absolute value of the errors as
loss function was already introduced in Chapter 3.2.2 and gave the median
as estimate.

We obtain the derivative of the score function ρ(ēi) as in (4.77) with

ψ(ˆ̄ei) ∝ ˆ̄ei/|ˆ̄ei| (4.83)

which is bounded so that the L1-norm estimate is robust. We get instead of
(4.78) and (4.79), since a constant may be omitted because of (4.72),

w
(m)
i =

√
pi/|ê(m)

i | . (4.84)

By iteratively reweighting (4.74) with (4.84) the robust L1-norm estimate is
computed. However, one has to be aware that the L1-norm estimate is not al-
ways unique and that nonunique solutions are not detected by the reweighting
with (4.84), whereas the Simplex algorithm of linear programming is pointing
them out, see for instance Späth (1987, p.58).

Example: As in the example to (2.227) let an unknown quantity s be
measured n times giving the observations yi which shall be independent and
have equal variances. The L1-norm estimate from (4.69) leads with pi =

1, xil = 1, β̂M = ŝM and (4.83) to

n∑
i=1

ŝM − yi

|ŝM − yi| = 0 .

The sum is equal to zero, if the difference ŝM − yi is as often positive as
negative. This condition is fulfilled for the median ŝmed of s from (3.25) and
(3.26), thus ŝmed = ŝM .

The median is extremely robust because among 3 observations 1 gross
error can be detected, among 5 observations 2 gross errors, among 7 obser-
vations 3 gross errors and so forth. In 4 observations 1 gross error may be
identified, in 6 observations 2 gross errors and so on. The number of gross
errors to be detected goes for n observations towards the maximum possible
number of n/2, since with a larger number of outliers one cannot differentiate
between the observations and the outliers. ∆

The parameter estimation (4.74) does not react in a robust manner in
case of outliers in leverage points. These are data which lie because of their
geometry far away from the rest of the data so that they may have a consid-
erable influence on the estimation of the parameters. Leverage points ask for
a special approach to the robust estimation of parameters, see for instance
Rousseeuw (1984), Rousseeuw and Leroy (1987), Koch (1996),(1999,
p.263), Junhuan (2005), Xu (2005).

4.2.6 Informative Priors

In contrast to the preceding chapters where noninformative prior density
functions for the vector β of unknown parameters were applied, it will now be
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assumed that prior information on β is available. Let the vector E(β) = µ of
expected values for β and the positive definite covariance matrix D(β) = σ2Σ

be given and let the unknown parameters β be normally distributed so that
with (2.196) the prior distribution follows

β ∼ N(µ, σ2Σ) . (4.85)

Let the observations y have the normal distribution (4.2) and let the variance
factor σ2 be given. The density function of the prior distribution (4.85) is
then a conjugate prior, as the comparison with (2.225) and (2.226) shows,
since the posterior density function for the unknown parameters β follows
with (2.227) from the normal distribution

β|y ∼ N
(
µ0, σ

2(X ′PX + Σ−1)−1
)

(4.86)

with

µ0 = (X ′PX + Σ−1)−1(X ′Py + Σ−1µ) .

The Bayes estimate β̂B of the unknown parameters β from (3.9) is obtained
because of (2.196) by

β̂B = (X ′PX + Σ−1)−1(X ′Py + Σ−1µ) (4.87)

with the associated covariance matrix D(β|y) from (3.11)

D(β|y) = σ2(X ′PX + Σ−1)−1 . (4.88)

As can be seen with (2.195) the density function of the normal distribution

(4.86) becomes maximal at µ0. The MAP estimate β̂M of β according to
(3.30) therefore leads to the estimate which is identical with (4.87)

β̂M = (X ′P X + Σ−1)−1(X ′P y + Σ−1µ) . (4.89)

The Bayes estimate β̂B from (4.87) and the MAP estimate β̂M from
(4.89), respectively, may be also derived as estimate (4.29) of the method of
least squares by introducing the prior information as an additional vector µ

of observations for β with the covariance matrix σ2Σ. Thus, we set

X̄ =

∣∣∣∣ X

I

∣∣∣∣ , ȳ =

∣∣∣∣ y

µ

∣∣∣∣ , P̄ =

∣∣∣∣ P 0

0 Σ−1

∣∣∣∣ , (4.90)

and apply (4.29) with X̄, P̄ and ȳ and obtain

β̂ = (X ′PX + Σ−1)−1(X ′Py + Σ−1µ) . (4.91)

If β̂ is an estimate of traditional statistics, we get E(β̂) = β, since E(µ) = β

has been supposed and the vector y of observations is assumed to be a random
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vector with E(y) = Xβ. An unbiased estimate in the sense of traditional
statistics is therefore found.

By comparing the estimates (4.87), (4.89) or (4.91) under the assumption
of prior information with the estimates (4.15), (4.19) or (4.29) without prior
information, it becomes obvious that the estimate with prior information
results as weighted mean (4.20) from the estimate without prior information
and from the prior information. The weight matrices are obtained with c = σ2

in (2.159) by X ′P X from (4.16) and by Σ−1 from the prior information.
Thus, we get

β̂ = (X ′PX + Σ−1)−1(X ′PX(X ′PX)−1X ′Py + Σ−1µ) .

Example 1: In Example 1 to (4.3) we will now assume that in addition
to the observations for determining the unknown quantity s the prior infor-
mation E(s) = µ and V (s) = σ2σ2

s for s is available. With β̂B = β̂M = β̂ =
ŝ, µ = µ,Σ = σ2

s and X ′P = |p1, . . . , pn| we obtain from (4.87), (4.89) or
(4.91)

ŝ =
1∑n

i=1 pi + 1/σ2
s

( n∑
i=1

piyi + µ/σ2
s

)

with the variance V (s|y) of s from (4.88)

V (s|y) = σ2
( n∑

i=1

pi + 1/σ2
s

)−1
.

The variance of the weighted mean of the observations follows from (4.21) by
σ2/

∑n
i=1 pi and the variance of the prior information is σ2σ2

s . We obtain with
c = σ2 from (2.160) the weights

∑n
i=1 pi and 1/σ2

s . The estimate ŝ therefore
is the weighted mean of the weighted arithmetic mean of the observations
and of the prior information. ∆

Applying the matrix identities (4.48) and (4.47) gives

(X ′P X + Σ−1)−1X ′P = ΣX ′(XΣX ′ + P−1)−1 (4.92)

(X ′P X + Σ−1)−1 = Σ − ΣX ′(XΣX ′ + P−1)−1XΣ (4.93)

by which the estimates β̂B, β̂M and β̂, respectively, from (4.87), (4.89) and
(4.91) are transformed to

β̂B = β̂M = β̂ = µ + ΣX ′(XΣX ′ + P−1)−1(y − Xµ) . (4.94)

The covariance matrix D(β|y) from (4.88) follows with (4.93) by

D(β|y) = σ2(Σ − ΣX ′(XΣX ′ + P−1)−1XΣ) . (4.95)

It can be recognized from these results which changes the prior information
µ undergoes in the estimate (4.94) and the prior information σ2Σ in the



106 4 Linear Model

covariance matrix (4.95) by adding the observation vector y. If n < u, the
dimensions of the matrices to be inverted in (4.94) and (4.95) are smaller
than in (4.87) and (4.88) so that (4.94) and (4.95) have to be preferred to
(4.87) and (4.88) for numerical computations.

Example 2: The u×1 vector β of unknown parameters shall be estimated
by the n1×1 vector y1 of observations with the n1×n1 positive definite weight
matrix P 1 and by the independent n2 × 1 vector y2 of observations with the
n2 × n2 positive definite weight matrix P 2. Let X1 and X2 denote the
associated coefficient matrices of the linear model (4.1) or (4.3) which are
determined by the linearization (4.8) if necessary. Let the coefficient matrix

X1 have full column rank. Let the estimate β̂1 of β from (4.15), (4.19) or
(4.29) by the observation vector y1

β̂1 = (X ′
1P 1X1)

−1X ′
1P 1y1

and the covariance matrix from (4.16)

D(β1|y1) = σ2(X ′
1P 1X1)

−1

serve as prior information to estimate β by y2. Thus, the prior distribution
(4.85) follows with

β ∼ N(β̂1, σ
2(X ′

1P 1X1)
−1) .

The estimate β̂ of β is then obtained from (4.87), (4.89) or (4.91) by

β̂ = (X ′
1P 1X1 + X ′

2P 2X2)
−1(X ′

1P 1y1 + X ′
2P 2y2)

with the covariance matrix from (4.88)

D(β|y1, y2) = σ2(X ′
1P 1X1 + X ′

2P 2X2)
−1 .

This approach corresponds to the recursive application (2.134) of Bayes’ the-
orem. An identical result is obtained, if the vectors y1 and y2 of observations
are jointly analyzed to estimate β, i.e. if (4.15), (4.19) or (4.29) are applied
in the linear model∣∣∣∣ X1

X2

∣∣∣∣β = E(

∣∣∣∣ y1

y2

∣∣∣∣ |β) with D(

∣∣∣∣ y1

y2

∣∣∣∣ |σ2) = σ2

∣∣∣∣ P−1
1 0

0 P−1
2

∣∣∣∣ .

The alternative estimate (4.94) follows by

β̂ = β̂1 + (X ′
1P 1X1)

−1X ′
2(X2(X

′
1P 1X1)

−1X ′
2 + P−1

2 )−1

(y2 − X2β̂1)

and the covariance matrix (4.95) by

D(β|y1, y2) = σ2
(
(X ′

1P 1X1)
−1

−(X ′
1P 1X1)

−1X ′
2(X2(X

′
1P 1X1)

−1X ′
2+P−1

2 )−1X2(X
′
1P 1X1)

−1
)

.
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As was mentioned in connection with (4.94) and (4.95), the change of the
prior information by adding observations is recognized from these results.
If β and β̂ get the index m and the index 1 is replaced by m − 1 and the
index 2 by m, we obtain the formulas for a recursive estimate of βm by β̂m

from β̂m−1. ∆

The 1−α confidence hyperellipsoid for β is given corresponding to (4.22)
with the posterior distribution (4.86) and with (4.91) by

(β − β̂)′(X ′PX + Σ−1)(β − β̂)/σ2 = χ2
1−α;u . (4.96)

In addition, hypotheses for β may be tested by means of the posterior dis-
tribution (4.86).

Example 3: The point null hypothesis (4.23)

H0 : Hβ = w versus H1 : Hβ �= w

shall be tested by the confidence hyperellipsoid for Hβ which follows corre-
sponding to (4.25) by

(Hβ−Hβ̂)′(H(X ′PX+Σ−1)−1H ′)−1(Hβ−Hβ̂)/σ2 = χ2
1−α;r . (4.97)

By substituting H = |0, I,0|, for instance, the confidence hyperellipsoid for
a subset of the unknown parameters in β is obtained.

The point null hypothesis is accepted as in (4.26), if

(Hβ̂ −w)′(H(X ′PX + Σ−1)−1H ′)−1(Hβ̂ −w)/σ2 < χ2
1−α;r . (4.98)

∆

4.2.7 Kalman Filter

The unknown parameters of the linear models considered so far do not change
with time. Parameters of dynamical systems which are functions of time shall
now be introduced. The differential equations which govern, for instance, the
orbits of artificial satellites or the currents of oceans establish such dynamical
systems. The unknown parameters of the system, for instance, the position
and the velocity of a satellite at a certain time, have to be estimated.

Let βk be the u× 1 random vector of unknown parameters at the time k.
It is called state vector. Let it be linearly transformed by the u×u transition

matrix φ(k+1, k) into the unknown u×1 state vector βk+1 at the time k+1.
The matrix φ(k + 1, k) is assumed to be known. A u × 1 random vector wk

of disturbances which is independent of βk is added. Let E(wk) = 0 and
D(wk) = Ωk hold true and let the u × u positive definite covariance matrix
Ωk be known. If N different moments of time are considered, the linear

dynamical system is obtained

βk+1 = φ(k + 1, k)βk + wk
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with

E(wk) = 0 , D(wk) = Ωk , k ∈ {1, . . . , N − 1} (4.99)

after linearizing the generally nonlinear differential equations, see for instance
Jazwinski (1970, p.273) and Arent et al. (1992).

Observations are available which contain information on the unknown
state vectors. Let the relations between the observations and the state vectors
be given, if necessary after a linearization, by the linear model (4.1) which
for the dynamical system reads

Xkβk = E(yk|βk) with D(yk) = σ2P−1
k . (4.100)

Here, Xk denotes the n×u matrix of given coefficients with rankXk = u, yk

the n × 1 random vector of observations and P k the n × n positive definite
weight matrix of the observations. The variance factor σ2 is being assumed
as given. The estimation of the parameters with unknown σ2 can be found
for instance in Koch (1990, p.96) and West and Harrison (1989, p.117).

Let the disturbances wk and wl and the observations yk and yl be inde-
pendent for k �= l. In addition, let wk and yk be independent and normally
distributed, hence

wk ∼ N(0,Ωk) (4.101)

and

yk|βk ∼ N(Xkβk, σ2P−1
k ) . (4.102)

Based on the observations yk at the time k the posterior density function of
the unknown random vector βk shall be determined. The prior information
is given by the posterior distribution for βk−1 which is obtained by the ob-
servations yk−1 at the time k−1. The posterior distribution for βk−1 on the
other hand uses the prior information which stems from yk−2 and so forth.
Bayes’ theorem is therefore applied recursively according to (2.134). This is
possible, because the vectors of observations are independent by assumption.

Let the prior information for the state vector β1 at the first moment of
time be introduced by the prior distribution

β1|y0 ∼ N(β̂1,0, σ
2Σ1,0) (4.103)

whose parameters, the vector β̂1,0 and the covariance matrix σ2Σ1,0, are

given by the prior information. The first index in β̂1,0 and Σ1,0 refers to
the time for which β1 is defined and the second index to the time when the
vector y0 of observations has been taken. No observations are available at
the beginning so that the vector y0 is not used anymore in the sequel.

As a comparison with (2.225) and (2.226) shows, the density function
of the prior distribution (4.103) in connection with the likelihood function
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(4.102) for k = 1 is a conjugate prior. The posterior density function for β1

therefore results again from the normal distribution. By transforming β1 to
β2 with (4.99) also β2 is normally distributed of the form (4.103) so that
a prior distribution is obtained for β2. This will be shown immediately for
the time k, since Bayes’ theorem is recursively applied with (2.134). Let the
prior distribution for βk be given according to (2.134) as in (4.103) by

βk|y1, . . . ,yk−1 ∼ N(β̂k,k−1, σ
2Σk,k−1) . (4.104)

This conjugate prior leads according to (2.227) together with the likelihood
function from (4.102) to the posterior distribution for βk

βk|y1, . . . ,yk ∼ N
(
µ0, σ

2(X ′
kP kXk + Σ−1

k,k−1)
−1

)
(4.105)

with

µ0 = (X ′
kP kXk + Σ−1

k,k−1)
−1(X ′

kP kyk + Σ−1
k,k−1β̂k,k−1) .

Equivalently to (4.87), (4.89) or (4.91), the estimate β̂k,k of βk is then ob-
tained by

β̂k,k = (X ′
kP kXk + Σ−1

k,k−1)
−1(X ′

kP kyk + Σ−1
k,k−1β̂k,k−1) (4.106)

and with (4.88) the covariance matrix D(βk|y1, . . . ,yk) = σ2Σk,k of βk by

Σk,k = (X ′
kP kXk + Σ−1

k,k−1)
−1 . (4.107)

With the identities (4.92) and (4.93) the result (4.106) and with (4.93)
the result (4.107) is transformed to

β̂k,k = β̂k,k−1 + F k(yk − Xkβ̂k,k−1) (4.108)

with

F k = Σk,k−1X
′
k(XkΣk,k−1X

′
k + P−1

k )−1 (4.109)

and

Σk,k = (I − F kXk)Σk,k−1 . (4.110)

Thus, the estimate β̂k,k and the covariance matrix σ2Σk,k is recursively com-

puted from β̂k,k−1 and σ2Σk,k−1.
It remains to be shown, how the prior density distribution (4.104) for βk

results from the posterior distribution for βk−1. With (4.105) to (4.107) we
find the posterior distribution

βk−1|y1, . . . ,yk−1 ∼ N(β̂k−1,k−1, σ
2Σk−1,k−1) . (4.111)
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By the linear dynamical system (4.99) the state vector βk−1 is transformed
to βk. The distribution for βk is therefore obtained with (2.202), since βk−1

and wk−1 are independent by assumption,

βk|y1, . . . ,yk−1 ∼ N(β̂k,k−1, σ
2Σk,k−1) (4.112)

with

β̂k,k−1 = φ(k, k − 1)β̂k−1,k−1 (4.113)

and

σ2Σk,k−1 = σ2φ(k, k − 1)Σk−1,k−1φ
′(k, k − 1) + Ωk−1 . (4.114)

The normal distribution (4.112) is identical with (4.104) so that the prior
distribution for βk has been found. It was therefore justified to start the
derivation of the distributions immediately at the time k instead of at the
first moment of time.

The recursive estimation (4.108) to (4.110) together with (4.113) and
(4.114) establishes the Kalman filter, also called Kalman-Bucy filter. It com-
putes new estimates of the state vector, as soon as new observations arrive.
It may therefore be applied in real time.

If one assumes that the observations are not normally distributed but
have the density functions (4.56) and (4.57), which take care of outliers in the
observations, a robust Kalman filter is obtained (Koch and Yang 1998b).
For adaptive Kalman filters see for instance Yang and Gao (2006).

4.3 Linear Model with Unknown Variance Factor

Contrary to Chapter 4.2 the variance factor σ2 of the linear model (4.1) is
now assumed as unknown random variable. Noninformative priors are first
introduced for the unknown parameters, then, informative priors in Chapter
4.3.2. Since the variance factor σ2 is now an unknown parameter, it is re-
placed, as proposed for the conjugate normal-gamma distribution (2.234), by
the unknown weight parameter τ from (2.219)

τ = 1/σ2 . (4.115)

We then obtain as in (2.233) instead of (4.4) the likelihood function

p(y|β, τ) = (2π)−n/2(det P )1/2τn/2 exp
[− τ

2
(y−Xβ)′P (y−Xβ)

]
. (4.116)

4.3.1 Noninformative Priors

The noninformative prior density function (2.216) which is determined by a
constant is selected for the vector β of unknown parameters and the nonin-
formative prior density function (2.220), which is proportional to 1/τ , for the
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weight parameter τ . Bayes’ theorem (2.122) then gives with the likelihood
function (4.116) the posterior density function p(β, τ |y) with

p(β, τ |y) ∝ τn/2−1 exp
[ − τ

2
(y − Xβ)′P (y − Xβ)

]
(4.117)

where only terms depending on β and τ need to be considered. The exponent
in (4.117) may be transformed as in (2.237) and (4.12) by

(y − Xβ)′P (y − Xβ) = y′Py − 2β′X ′Py + β′X ′PXβ

= y′Py − 2µ′
0X

′Py + µ′
0X

′PXµ0 + (β − µ0)
′X ′P X(β − µ0)

= (y − Xµ0)
′P (y − Xµ0) + (β − µ0)

′X ′PX(β − µ0) (4.118)

with µ0 from (4.13)

µ0 = (X ′PX)−1X ′Py . (4.119)

By substituting this result in (4.117) a comparison with (2.212) shows because
of n/2 − 1 = u/2 + (n − u)/2 − 1 and because of (4.39) that the posterior
density function (4.117) results from the normal-gamma distribution

β, τ |y ∼ NG(µ0, (X
′PX)−1, (n − u)σ̂2/2, (n − u)/2) . (4.120)

The posterior marginal distribution for the vector β of unknown parameters
is then according to (2.213) determined by the multivariate t-distribution

β|y ∼ t(µ0, σ̂
2(X ′PX)−1, n − u) (4.121)

with the vector of expected values from (2.208)

E(β|y) = µ0 . (4.122)

The Bayes estimate β̂B of β therefore is obtained from (3.9) by

β̂B = (X ′PX)−1X ′Py (4.123)

and in agreement with this result the MAP estimate β̂M of β from (3.30),
since the density function (2.204) of the multivariate t-distribution has a
maximum at the point µ0, thus

β̂M = (X ′P X)−1X ′P y . (4.124)

These two results are identical with the two estimates (4.15) and (4.19) and
with the estimate (4.29) of the method of least squares. The estimates for
the unknown parameters β are therefore identical independent of the variance
factor σ2 being known or unknown. Assumed are for both cases noninforma-
tive priors. With (4.165) a corresponding result is obtained for informative
priors.
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The covariance matrix D(β|y) if found from (4.121) with (2.208) and
(3.11) by

D(β|y) =
n − u

n − u − 2
σ̂2(X ′PX)−1 . (4.125)

Except for the factor (n− u)/(n− u− 2) which goes for large values of n− u
towards one, this is also a result of traditional statistics. It follows from
(4.31) after substituting σ2 by σ̂2 from (4.39).

The marginal distribution for the weight parameter τ obtained from the
posterior distribution (4.120) is the gamma distribution because of (2.214)

τ |y ∼ G((n − u)σ̂2/2, (n− u)/2) . (4.126)

The inverted gamma distribution therefore results from (2.176) for the vari-
ance factor σ2

σ2|y ∼ IG((n − u)σ̂2/2, (n− u)/2) (4.127)

with the expected value from (2.177)

E(σ2|y) =
n − u

n − u − 2
σ̂2 . (4.128)

We therefore get the Bayes estimate σ̂2
B of σ2 from (3.9) by

σ̂2
B =

n − u

n − u − 2
σ̂2 . (4.129)

Except for the factor (n−u)/(n−u−2) this is again a result of the traditional
statistics, as shown with (4.39).

The variance V (σ2|y) of σ2 follows with (2.177) and (3.11) by

V (σ2|y) =
2(n − u)2(σ̂2)2

(n − u − 2)2(n − u − 4)
. (4.130)

The corresponding result of traditional statistics is V (σ2) = 2(σ̂2)2/(n − u),
see for instance Koch (1999, p.244).

The confidence region for the vector β of unknown parameters is obtained
by the multivariate t-distribution (4.121). Its density function is according
to (2.204) a monotonically decreasing function of the quadratic form (β −
µ0)

′X ′PX(β − µ0)/σ̂2. A hypersurface of equal density is therefore given
with (4.29) and (4.119) by the relation

(β − β̂)′X ′PX(β − β̂)/σ̂2 = const

which has the shape of a hyperellipsoid. The quadratic form has because of
(2.211) the F -distribution (2.182)

(β − β̂)′X ′PX(β − β̂)/(uσ̂2) ∼ F (u, n − u) . (4.131)
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The 1 − α confidence hyperellipsoid is therefore corresponding to (3.36) de-
termined by

(β − β̂)′X ′PX(β − β̂)/(uσ̂2) = F1−α;u,n−u (4.132)

where F1−α;u,n−u denotes the upper α-percentage point of the F -distribution
defined in (2.183). The confidence interval for the variance factor σ2 follows
from (4.127).

Example 1: We find for the unknown quantity s in the Example 1 to
(4.3) with ŝ from (4.20) according to (4.131) the distribution

(s − ŝ)2
n∑

i=1

pi/σ̂2 ∼ F (1, n − 1) . (4.133)

With (4.21) we define σ̂2
s by

σ̂2
s = σ̂2/

n∑
i=1

pi . (4.134)

It is the variance of the quantity s which is computed by the estimated
variance factor σ̂2. With the definition (2.183) of the upper α-percentage
point of the F -distribution in (4.132) we find

P ((s − ŝ)2/σ̂2
s < F1−α;1,n−1) = 1 − α . (4.135)

The quantity t1−α;n−1 of the t-distribution from (2.186) which is equivalent
to the upper α-percentage point F1−α;1,n−1 of the F -distribution

t1−α;n−1 = (F1−α;1,n−1)
1/2 (4.136)

gives because of (2.187)

P (−t1−α;n−1 < (s − ŝ)/σ̂s < t1−α;n−1) = 1 − α . (4.137)

This finally leads to the 1 − α confidence interval for s

P (ŝ − σ̂st1−α;n−1 < s < ŝ + σ̂st1−α;n−1) = 1 − α . (4.138)

This confidence interval may also be derived from the posterior marginal
distribution (4.121). With (4.20) and (4.134) the generalized t-distribution
follows by

s|y ∼ t(ŝ, σ̂2
s , n − 1) (4.139)

and the t-distribution from the transformation (2.206) into the standard form
(2.207)

(s − ŝ)/σ̂s ∼ t(n − 1) . (4.140)
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Then, because of (2.187) the relation (4.137) is valid which leads to the con-
fidence interval (4.138). ∆

By the posterior distribution (4.121) for β and (4.127) for σ2 also hy-
potheses for β and σ2 may be tested as explained in Chapter 3.4.

Example 2: Let the point null hypothesis (4.23)

H0 : Hβ = w versus H1 : Hβ �= w (4.141)

be tested with (3.82) by the confidence hyperellipsoid for Hβ. The distri-
bution of the linear transformation Hβ follows from (2.210) with (4.121)
by

Hβ|y ∼ t(Hµ0, σ̂
2H(X ′PX)−1H ′, n − u) . (4.142)

Furthermore, we get with (2.211), (4.29) and (4.119)

(Hβ−Hβ̂)′(H(X ′P X)−1H ′)−1(Hβ−Hβ̂)/(rσ̂2) ∼ F (r, n−u) . (4.143)

The 1−α confidence hyperellipsoid for Hβ is therefore obtained correspond-
ing to (3.36) and (4.132) by

(Hβ−Hβ̂)′(H(X ′PX)−1H ′)−1(Hβ−Hβ̂)/(rσ̂2) = F1−α;r,n−u . (4.144)

It is identical with the confidence hyperellipsoid of traditional statistics, see
for instance Koch (1999, p.300). If we substitute H = |0, I,0|, for instance,
the confidence hyperellipsoid for a subset of the unknown parameters in β

follows.
Corresponding to (3.44) and (3.82) the point null hypothesis (4.141) is

accepted, if

(Hβ̂−w)′(H(X ′PX)−1H ′)−1(Hβ̂−w)/(rσ̂2) < F1−α;r,n−u . (4.145)

This is the test procedure of traditional statistics for the hypothesis (4.141),
see for instance Koch (1999, p.280). ∆

Example 3: The point null hypothesis for the unknown quantity s in
Example 1 to (4.3)

H0 : s = s0 versus H1 : s �= s0 (4.146)

shall be tested. With r = 1, w = s0, H = 1, ŝ from (4.20) and σ̂2
s from

(4.134) the null hypothesis is accepted according to (4.145), if

(ŝ − s0)
2/σ̂2

s < F1−α;1,n−1 . (4.147)

∆

Example 4: To detect movements of buildings, the coordinates βi of
points connected with the buildings are determined by the measurements
yi with i ∈ {1, . . . , p} at p different times. The observation vectors yi of
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the different times are independent and have the positive definite weight
matrices P i. The associated matrices of coefficients are X i. If necessary,
they are determined from (4.8) by a linearization. They are assumed to have
full column rank. It is suspected that the positions of a subset of points
whose coordinates are denoted by βfi remain unchanged during the p times
of the measurements, while the positions of the remaining points with the
coordinates βui have changed. The coordinates βfi shall appear first in the

vector βi of coordinates, thus βi = |β′
fi, β

′
ui|′ with i ∈ {1, . . . , p}. The null

hypothesis that the points with the coordinates βfi did not move shall be
tested against the alternative hypothesis that the points have moved.

The linear model (4.1) for estimating the unknown coordinates βi is given
by ∣∣∣∣∣∣∣∣

X1 0 . . . 0

0 X2 . . . 0

. . . . . . . . . . . . . . . . . . .
0 0 . . . Xp

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
β1

β2

. . .
βp

∣∣∣∣∣∣∣∣
= E(

∣∣∣∣∣∣∣∣
y1|β1

y2|β2

. . .
yp|βp

∣∣∣∣∣∣∣∣
)

with D(

∣∣∣∣∣∣∣∣
y1

y2

. . .
yp

∣∣∣∣∣∣∣∣
|σ2) = σ2

∣∣∣∣∣∣∣∣
P−1

1 0 . . . 0

0 P−1
2 . . . 0

. . . . . . . . . . . . . . . . . . . . . .

0 0 . . . P−1
p

∣∣∣∣∣∣∣∣
.

According to (4.123) or (4.124) the estimate β̂i of βi is obtained with∣∣∣∣∣∣∣∣
X ′

1 0 . . . 0

0 X ′
2 . . . 0

. . . . . . . . . . . . . . . . . . .
0 0 . . . X ′

p

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
P 1 0 . . . 0

0 P 2 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 . . . P p

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
X ′

1P 1 0 . . . 0

0 X ′
2P 2 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . X ′

pP p

∣∣∣∣∣∣∣∣
from the normal equations∣∣∣∣∣∣∣∣

β̂1

β̂2

. . .

β̂p

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
(X ′

1P 1X1)
−1 0 . . . 0

0 (X ′
2P 2X2)

−1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . (X ′

pP pXp)
−1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
X ′

1P 1y1

X ′
2P 2y2

. . . . . . . .
X ′

pP pyp

∣∣∣∣∣∣∣∣
,
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thus

β̂i = (X ′
iP iXi)

−1X ′
iP iyi .

The null hypothesis means that the coordinates βfi between successive
times of measurements remain unchanged. The point null hypothesis

H0 :

∣∣∣∣∣∣∣∣
βf1 − βf2

βf2 − βf3

. . . . . . . . . . . .
βf,p−1 − βfp

∣∣∣∣∣∣∣∣
= 0 versus H1 :

∣∣∣∣∣∣∣∣
βf1 − βf2

βf2 − βf3

. . . . . . . . . . . .
βf,p−1 − βfp

∣∣∣∣∣∣∣∣
�= 0

therefore shall be tested. We apply (4.145) so that first the matrix H needs
to be specified. We obtain corresponding to the partitioning of β in

β = |β′
f1, β

′
u1, β

′
f2, β

′
u2, . . . ,β

′
fp, β

′
up|′

the matrix H with

H =

∣∣∣∣∣∣∣∣
I 0 −I 0 0 0 . . . 0 0 0 0

0 0 I 0 −I 0 . . . 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 0 . . . I 0 −I 0

∣∣∣∣∣∣∣∣
,

by which we get

Hβ =

∣∣∣∣∣∣∣∣
βf1 − βf2

βf2 − βf3

. . . . . . . . . . . .
βf,p−1 − βfp

∣∣∣∣∣∣∣∣
.

If the inverse of the matrix of normal equations given above is split according
to the partitioning βi = |β′

fi, β
′
ui|′ into the part (X ′

iP iXi)
−1
f , which belongs

to βfi, and into the part belonging to βui, which is of no further interest and
which is denoted in the following equation by , we obtain for the product
H(X ′PX)−1 in (4.145)

H(X ′PX)−1

=

∣∣∣∣∣∣∣
(X ′

1P 1X1)
−1
f −(X ′

2P 2X2)
−1
f 0 0 . . .

0 0 (X ′
2P 2X2)

−1
f −(X ′

3P 3X3)
−1
f . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣
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and for the product (H(X ′P X)−1H ′)−1

(H(X ′PX)−1H ′)−1 =

∣∣∣∣∣∣∣
(X ′

1P 1X1)
−1
f + (X ′

2P 2X2)
−1
f

−(X ′
2P 2X2)

−1
f

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−(X ′
2P 2X2)

−1
f 0 0 . . .

(X ′
2P 2X2)

−1
f + (X ′

3P 3X3)
−1
f −(X ′

3P 3X3)
−1
f 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∣∣∣∣∣∣∣
−1

.

This matrix contains for larger dimensions many zeros which should be con-
sidered when inverting it, see for instance George and Liu (1981). Fur-
thermore, the estimate σ̂2 of the variance factor σ2 needs to be computed in
(4.145). With (4.34) and (4.39) we obtain

σ̂2 =
1

n − u

p∑
i=1

(X iβ̂i − yi)
′P i(X iβ̂i − yi)

where n denotes the number of all observations and u the number of all
unknown coordinates. Finally, r in (4.145) denotes the number of hypotheses,
that is the number of all coordinate differences in H0. Thus, all quantities
are given for the test of the point null hypothesis according to (4.145). ∆

4.3.2 Informative Priors

To estimate the parameters of the linear model (4.1), prior information shall
now be available as in Chapter 4.2.6 for the vector β of unknown parameters.
It is given by the vector E(β) = µ of expected values and by the covariance
matrix D(β) of β. The variance factor σ2 is also unknown. Prior information
is therefore assumed by the expected value E(σ2) = σ2

p and by the variance
V (σ2) = Vσ2 of σ2. Thus, the covariance matrix D(β) of β known by prior
information is introduced by D(β) = σ2

pΣ. A conjugate prior shall be applied.
The normal-gamma distribution (2.234) is therefore chosen for the parameter
vector β and the weight parameter τ with τ = 1/σ2 from (4.115)

β, τ ∼ NG(µ, V , b, p) . (4.148)

Its parameters are determined by the prior-information, as will be shown in
the following.

The vector β has with (2.213) because of (4.148) as prior marginal dis-
tribution the multivariate t-distribution

β ∼ t(µ, bV /p, 2p) (4.149)

with the vector of expected values from (2.208)

E(β) = µ (4.150)
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in agreement with the prior information. The covariance matrix D(β) of β

is obtained with (2.208) and with the prior information by

D(β) =
b

p − 1
V = σ2

pΣ . (4.151)

The prior marginal distribution for τ follows with (2.214) by τ ∼ G(b, p).
The variance factor σ2 = 1/τ therefore possesses with (2.176) the inverted
gamma distribution

σ2 ∼ IG(b, p) (4.152)

with the expected value and the variance from (2.177) and from the prior
information

E(σ2) =
b

p − 1
= σ2

p (4.153)

and

V (σ2) = b2/[(p − 1)2(p − 2)] = Vσ2 . (4.154)

We obtain with (4.151) and (4.153)

V = Σ (4.155)

and from (4.154)

p = (σ2
p)2/Vσ2 + 2 (4.156)

and finally from (4.153) and (4.156)

b = [(σ2
p)2/Vσ2 + 1]σ2

p . (4.157)

Thus, the parameters of the distribution (4.148) are determined by the prior
information.

By comparing the likelihood function (4.116) and the prior distribution
(4.148) with (2.233) and (2.234) it becomes obvious from (2.235) that the
posterior distribution for β and τ is the normal-gamma distribution

β, τ |y ∼ NG(µ0, V 0, b0, p0) (4.158)

with the parameters from (2.236), (4.150) and (4.155) to (4.157)

µ0 = (X ′PX + Σ−1)−1(X ′Py + Σ−1µ)

V 0 = (X ′PX + Σ−1)−1

b0 = {2[(σ2
p)2/Vσ2 + 1]σ2

p

+(µ − µ0)
′Σ−1(µ − µ0) + (y − Xµ0)

′P (y − Xµ0)}/2

p0 = (n + 2(σ2
p)2/Vσ2 + 4)/2 . (4.159)
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The posterior marginal distribution for β is with (2.213) and (4.158) the
multivariate t-distribution

β|y ∼ t(µ0, b0V 0/p0, 2p0) (4.160)

with the vector of expected values for β from (2.208)

E(β|y) = µ0 . (4.161)

The Bayes estimate β̂B of β therefore follows from (3.9) and (4.159) by

β̂B = (X ′PX + Σ−1)−1(X ′Py + Σ−1µ) (4.162)

and in agreement with this result the MAP estimate β̂M of β from (3.30)
corresponding to (4.124) by

β̂M = (X ′P X + Σ−1)−1(X ′P y + Σ−1µ) . (4.163)

The Bayes estimate β̂B and the MAP estimate β̂M , respectively, may be
also derived as estimate (4.29) of the method of least squares. If we define
as in (4.90)

X̄ =

∣∣∣∣ X

I

∣∣∣∣ , ȳ =

∣∣∣∣ y

µ

∣∣∣∣ , P̄ =

∣∣∣∣ P 0

0 Σ−1

∣∣∣∣ (4.164)

and compute the estimate β̂ of β by substituting X̄, P̄ and ȳ in (4.29), we
obtain in agreement with (4.162) and (4.163)

β̂ = (X ′PX + Σ−1)−1(X ′Py + Σ−1µ) . (4.165)

The estimate β̂B, β̂M or β̂ agrees with the estimate from (4.87), (4.89) or
(4.91). Independent of the variance factor σ2 being known or unknown the
estimates of the unknown parameters β are identical. Informative priors
were assumed. This result was already mentioned in connection with the
corresponding result (4.124) for noninformative priors.

The marginal distribution of the posterior distribution (4.158) for the
weight parameter τ is according to (2.214) the gamma distribution. The
variance factor σ2 = 1/τ has because of (2.176) the inverted gamma distri-
bution

σ2|y ∼ IG(b0, p0) (4.166)

with the expected value from (2.177)

E(σ2|y) = b0/(p0 − 1) . (4.167)
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Hence, the Bayes estimate σ̂2
B of σ2 is obtained from (3.9) with (4.159) and

(4.165) by

σ̂2
B = (n + 2(σ2

p)2/Vσ2 + 2)−1
{
2[(σ2

p)2/Vσ2 + 1]σ2
p

+ (µ − β̂)′Σ−1(µ − β̂) + (y − Xβ̂)′P (y − Xβ̂)
}

(4.168)

and the variance V (σ2|y) of σ2 from (2.177) by

V (σ2|y) =
2(σ̂2

B)2

n + 2(σ2
p)2/Vσ2

. (4.169)

The covariance matrix D(β|y) of β follows with σ̂2
B from (4.168) and with

(2.208), (4.159) and (4.160) by

D(β|y) = σ̂2
B(X ′PX + Σ−1)−1 . (4.170)

Example 1: We now assume for the Example 1 to (4.3) that in addition
to the measurements y = |y1, y2, . . . , yn|′ with the variances V (yi) = σ2/pi

for determining the quantity s prior information for s is available by the
expected value E(s) = µ and the variance V (s) = σ2

pσ2
s . Furthermore, prior

information for the variance factor σ2 is given by the expected value E(σ2) =

σ2
p and the variance V (σ2) = Vσ2 . With β̂B = β̂M = β̂ = ŝ, µ = µ,Σ =

σ2
s , P = diag(p1, . . . , pn) and X ′P = |p1, . . . , pn| we then obtain from (4.162),

(4.163) or (4.165) or from (4.87), (4.89) or (4.91) the estimate ŝ with the
variance V (s|y) of the Example 1 to (4.91).

The Bayes estimate σ̂2
B of the variance factor σ2 follows from (4.168) by

σ̂2
B = (n + 2(σ2

p)2/Vσ2 + 2)−1
{
2[(σ2

p)2/Vσ2 + 1]σ2
p

+ (ŝ − µ)2/σ2
s +

n∑
i=1

pi(ŝ − yi)
2
}

(4.171)

with the variance V (σ2|y) from (4.169). ∆

The confidence region for the vector β of unknown parameters is obtained
by the multivariate t-distribution (4.160). Its density function is because of
(2.204) a monotonically decreasing function of the quadratic form p0(β −
µ0)

′V −1
0 (β −µ0)/b0. A hyperellipsoid of equal density is therefore found by

p0(β − µ0)
′V −1

0 (β − µ0)/b0 = const .

The quadratic form has with (2.211) the F -distribution (2.182)

p0(β − µ0)
′V −1

0 (β − µ0)/(ub0) ∼ F (u, 2p0) .

Thus, the 1−α confidence hyperellipsoid is determined with (4.159), (4.165)
and (4.168) corresponding to (3.36) by

(n + 2(σ2
p)2/Vσ2 + 4)(β − β̂)′(X ′PX + Σ−1)(β − β̂)/

[u(n + 2(σ2
p)2/Vσ2 + 2)σ̂2

B] = F1−α;u,n+2(σ2
p)2/V

σ2+4 (4.172)
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where F1−α;u,n+2(σ2
p)2/V

σ2+4 denotes the upper α-percentage point defined by

(2.183) of the F -distribution with u and n + 2(σ2
p)2/Vσ2 + 4 as parameters.

The confidence interval for the variance factor σ2 is obtained from (4.166).
Based on the posterior distributions (4.160) for β and (4.166) for σ2

hypotheses for β and σ2 may be tested, as described in Chapter 3.4.
Example 2: Let the point null hypothesis (4.23)

H0 : Hβ = w versus H1 : Hβ �= w (4.173)

be tested with (3.82) by means of the confidence hyperellipsoid for Hβ. We
obtain with (4.160) the distribution of the linear transformation Hβ from
(2.210) by

Hβ|y ∼ t(Hµ0, b0HV 0H
′/p0, 2p0) . (4.174)

Hence, we find from (2.211)

p0(Hβ − Hµ0)
′(HV 0H

′)−1(Hβ − Hµ0)/(rb0) ∼ F (r, 2p0) .

This result leads to the confidence hyperellipsoid for Hβ as in (4.144). Corre-
sponding to (4.145) and (4.172) the point null hypothesis (4.173) is accepted,
if

(n+2(σ2
p)

2/Vσ2 +4)(Hβ̂−w)′(H(X ′PX +Σ−1)−1H ′)−1(Hβ̂−w)/

[r(n + 2(σ2
p)2/Vσ2 + 2)σ̂2

B] < F1−α;r,n+2(σ2
p)2/V

σ2+4 . (4.175)
∆

4.4 Linear Model not of Full Rank

So far, it has been assumed that the coefficient matrix X in the linear model
(4.1) has full column rank. This supposition is, for instance, not fulfilled for
the analysis of variance and covariance, see for instance Koch (1999, p.200
and 207). A coefficient matrix not of full rank results also from observations
which determine the coordinates of points of a so-called free network, since the
observations do not contain information on the position and the orientation
of the network, see for instance Koch (1999, p.187). The linear model not

of full rank

Xβ = E(y|β) with rankX = q < u and D(y|σ2) = σ2P−1 (4.176)

therefore needs to be considered, too, where X, β, y and P are defined as
in (4.1). By allowing a rank deficiency for X the likelihood functions (4.4)
and (4.116) do not change. When estimating the vector β of unknown pa-
rameters, however, we have to be aware that because of rankX = q also
rank(X ′PX) = q is valid. The matrix X ′PX of normal equations is there-
fore singular. Its inverse does not exist, a symmetric reflexive generalized
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inverse (X ′PX)−rs of the matrix X ′PX is therefore introduced. It is chosen
to be symmetric, since X ′PX is symmetric, and it is chosen to be reflexive
because of

rank(X ′P X) = rank(X ′P X)−rs = q . (4.177)

In addition we have

X ′PX(X ′PX)−rsX
′ = X ′ (4.178)

and ∣∣∣∣ X ′PX B′

B 0

∣∣∣∣
−1

=

∣∣∣∣ (X ′PX)−rs . . .
. . . 0

∣∣∣∣
where a (u−q)×u matrix B is selected such that the matrix on the left-hand
side becomes regular so that it can be inverted to compute (X ′PX)−rs, see
for instance Koch (1999, p.51,52,60).

When estimating the unknown parameters β and the variance factor σ2

one has to distinguish between the case of noninformative and informative
prior information.

4.4.1 Noninformative Priors

It will be first assumed that the variance factor σ2 is known. If we set instead
of (4.13)

µ0 = (X ′PX)−rsX
′Py , (4.179)

the transformation (4.12) is valid because of (4.178). The posterior density
function for the vector β of unknown parameters is therefore obtained with
(4.11) from the normal distribution by

p(β|y) ∝ e− 1
2σ2 (β − µ0)

′X ′PX(β − µ0) . (4.180)

Because of det(X ′PX)−rs = 0 from (4.177) this density function cannot be
normalized which follows from (2.195). If we restrict ourselves, however, to q
components in the vector β and if we choose the corresponding elements in
(X ′PX)−rs, the resulting matrix is regular because of (4.177) and the density
function of the normal distribution can be normalized. With β = (βi), µ0 =
(µi), Σ = (σij) = (X ′PX)−rs and k − j + 1 = q we define

βj··k = (βl), µ0,j··k = (µl) and Σj··k = (σlm)

with l, m ∈ {j, j + 1, . . . , k} (4.181)

and obtain because of

rankΣj··k = q (4.182)
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from (4.180) the normal distribution

βj··k|y ∼ N(µ0,j··k, σ2Σj··k) (4.183)

which can be normalized.
The q components of the vector β may be arbitrarily chosen. Thus, the

Bayes estimate β̂B, the MAP estimate β̂M and also the estimate β̂ of the
method of least squares of the unknown parameters β follow instead of (4.15),
(4.19) and (4.29) by

β̂ = β̂B = β̂M = (X ′PX)−rsX
′Py (4.184)

and the covariance matrix instead of (4.16) by

D(β|y) = σ2(X ′PX)−rs . (4.185)

In traditional statistics we find for the model (4.176) not of full rank, see
for instance Koch (1999, p.183),

E(Ω) = σ2(n − q) (4.186)

instead of (4.37). The unbiased estimate σ̂2 of the variance factor σ2 therefore
follows with

σ̂2 =
1

n − q
Ω (4.187)

instead of (4.39). Correspondingly, we obtain for the linear model not of full
rank with constraints instead of (4.55)

σ̃2 = ΩH/(n − q + r) . (4.188)

When testing the point null hypothesis (4.23) one has to be aware that

rankH(X ′PX)−rsX
′PX = r (4.189)

must be fulfilled. The matrix H(X ′PX)−rsH
′ is then regular (Koch 1999,

p.196). Hence, because of (4.26) the point null hypothesis is accepted, if

(Hβ̂ − w)′(H(X ′PX)−rsH
′)−1(Hβ̂ − w)/σ2 < χ2

1−α;r . (4.190)

If the variance factor σ2 is unknown, the transformation (4.118) is also
valid with µ0 from (4.179) because of (4.178). The normal-gamma distribu-
tion therefore follows with (4.181) and (4.187) instead of (4.120) by

βj··k, τ |y ∼ NG(µ0,j··k,Σj··k, (n − q)σ̂2/2, (n − q)/2) . (4.191)

The marginal distribution for the vector β of unknown parameters is then
obtained corresponding to (4.121) by

βj··k|y ∼ t(µ0,j··k, σ̂2Σj··k, n − q) . (4.192)
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The q components of the vector β may be arbitrarily chosen. The estimates
therefore follow instead of (4.123), (4.124) and (4.29) by

β̂ = β̂B = β̂M = (X ′PX)−rsX
′Py (4.193)

in agreement with (4.184). The covariance matrix D(β|y) is obtained from
(4.125) with (4.187) by

D(β|y) =
n − q

n − q − 2
σ̂2(X ′P X)−rs . (4.194)

Finally, we find instead of (4.129)

σ̂2
B =

n − q

n − q − 2
σ̂2 (4.195)

and instead of (4.130)

V (σ2|y) =
2(n − q)2(σ̂2)2

(n − q − 2)2(n − q − 4)
. (4.196)

With observing (4.189) the point null hypothesis (4.141) has to be accepted
corresponding to (4.145), if

(Hβ̂−w)′(H(X ′PX)−rsH
′)−1(Hβ̂−w)/(rσ̂2) < F1−α;r,n−q . (4.197)

4.4.2 Informative Priors

Prior information for the vector β of unknown parameters is introduced by
the vector E(β) = µ of expected values of β and in case of a known variance
factor σ2 by the covariance matrix D(β) = σ2Σ of β, as was described
in Chapter 4.2.6, and in case of an unknown σ2 by D(β) = σ2

pΣ, as was
explained in Chapter 4.3.2. If the matrix Σ is positive definite which was
assumed so far, then

rank(X ′P X + Σ−1) = u (4.198)

holds true, since X ′P X is positive semidefinite. The matrix X ′PX + Σ−1

in (4.86) and in (4.159) is then regular so that under the assumption of the
positive definite matrix Σ all results of Chapter 4.2.6 and 4.3.2 of the model
with full rank are valid in case of a known or unknown variance factor σ2.

We will now consider a singular matrix Σ. It appears, if the prior in-
formation for the vector β of unknown parameters is introduced by already
available observations yp with the associated weight matrix P p and the co-
efficient matrix Xp of the linear model. The covariance matrix D(β|yp) of

β then follows with the matrix X ′
pP pXp of normal equations in the model

of full rank from (4.16) by

D(β|yp) = σ2(X ′
pP pXp)

−1 .
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The prior information for the vector β, which is introduced by the covariance
matrix σ2Σ or σ2

pΣ, is therefore expressed by the inverse (X ′
pP pXp)

−1 of
the matrix of normal equations, thus

Σ = (X ′
pP pXp)

−1 or Σ−1 = X ′
pP pXp . (4.199)

By defining the prior information in this manner the matrix Σ−1 results,
which in the model (4.176) not of full rank becomes singular because of

rank(X ′
pP pXp) = q (4.200)

from (4.177). To derive the estimates for this model from the estimates of
the model of full rank, Σ−1 is replaced by X ′

pP pXp. Furthermore, it holds

rank(X ′P X + X ′
pP pXp) = q . (4.201)

Let the variance factor σ2 first be known. We set corresponding to (4.86)

µ0 = (X ′PX + X ′
pP pXp)

−
rs(X

′Py + X ′
pP pXpµ) , (4.202)

where (X ′P X +X ′
pP pXp)

−
rs again means a symmetric reflexive generalized

inverse of X ′P X + X ′
pP pXp. It fulfills after substituting X ′ by |X ′, X ′

p|
and P by diag(P , P p) in (4.178)

(X ′P X + X ′
pP pXp)(X

′PX + X ′
pP pXp)

−
rs|X ′, X ′

p| = |X ′, X ′
p| .

With this result we may transform like in (2.228). The posterior density func-
tion for the unknown parameters β therefore follows as the density function
of the normal distribution by

p(β|y) ∝ exp
{− 1

2σ2
[(β−µ0)

′(X ′P X +X′
pP pXp)

−
rs(β−µ0)]

}
. (4.203)

This density function cannot be normalized like the density function (4.180).
If we restrict ourselves, however, to q components of the vector β, we obtain
like in (4.181) to (4.183) the normal distribution which can be normalized.

The Bayes estimate β̂B , the MAP estimate β̂M and the estimate β̂ of the
method of least squares are obtained instead of (4.87), (4.89) and (4.91) by

β̂ = β̂B = β̂M = (X ′PX +X′
pP pXp)

−
rs(X

′Py +X ′
pP pXpµ) . (4.204)

The covariance matrix D(β|y) of β follows instead of (4.88) with

D(β|y) = σ2(X ′PX + X ′
pP pXp)

−
rs . (4.205)

Provided that (4.189) holds, the point null hypothesis (4.23) is accepted
because of (4.98), if

(Hβ̂−w)′(H(X ′PX+X′
pP pXp)

−
rsH

′)−1(Hβ̂−w)/σ2 < χ2
1−α,r . (4.206)
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If the variance factor σ2 is unknown, the prior information E(σ2) = σ2
p

and V (σ2) = Vσ2 for σ2 is introduced, as explained in Chapter 4.3.2 . The
prior information for the vector β of unknown parameters which is obtained
by the covariance matrix D(β) = σ2

pΣ of β is then given according to (4.199)
by the matrix

Σ−1 = X ′
pP pXp . (4.207)

Thus, µ0 and V 0 in (4.159) follow for the model not of full rank with

µ0 = (X ′PX + X ′
pP pXp)

−
rs(X

′P y + X ′
pP pXpµ)

V 0 = (X ′PX + X ′
pP pXp)

−
rs . (4.208)

If again we restrict ourselves to q components in the vector β, we obtain
instead of (4.158) and (4.160) the normal-gamma distribution and the mul-
tivariate t-distribution which both can be normalized. The Bayes estimate
β̂B, the MAP estimate β̂M and the estimate β̂ of the method of least squares
of β are therefore obtained instead of (4.162), (4.163) and (4.165) by

β̂ = β̂B = β̂M = (X ′PX +X′
pP pXp)

−
rs(X

′Py +X ′
pP pXpµ) . (4.209)

This result agrees with (4.204).
The Bayes estimate σ̂2

B of σ2 follows instead of (4.168) with

σ̂2
B = (n + 2(σ2

p)2/Vσ2 + 2)−1
{
2[(σ2

p)2/Vσ2 + 1]σ2
p

+ (µ − β̂)′X ′
pP pXp(µ − β̂) + (y − Xβ̂)′P (y − Xβ̂)

}
(4.210)

and the covariance matrix D(β|y) of β instead of (4.170) with

D(β|y) = σ̂2
B(X ′PX + X ′

pP pXp)
−
rs . (4.211)

Finally, under the assumption of (4.189) the point null hypothesis (4.173) is
accepted because of (4.175), if

(n + 2(σ2
p)2/Vσ2 + 4)(Hβ̂ − w)′(H(X ′PX + X ′

pP pXp)
−
rsH

′)−1

(Hβ̂ − w)/[r(n + 2(σ2
p)2/Vσ2 + 2)σ̂2

B ] < F1−α;r,n+2(σ2
p)2/V

σ2+4 .

(4.212)

Example: Observations y are given which have to be analyzed in the
model (4.176) not of full rank. Let the prior information on the vector β of
unknown parameters be introduced by the observations yp with the weight
matrix P p. They have been taken at an earlier time and are analyzed with
the associated coefficient matrix Xp also in the model (4.176). The vector
µ of expected values from the prior information for the vector β of unknown
parameters in (4.204) or (4.209) therefore follows with (4.184) or (4.193) by

µ = (X ′
pP pXp)

−
rsX

′
pP pyp . (4.213)
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The prior information for β which is introduced by the covariance matrix
D(β) shall be determined with (4.199). By substituting (4.213) in (4.204) or
(4.209) we then obtain because of (4.178)

β̂ = β̂B = β̂M = (X ′PX + X ′
pP pXp)

−
rs(X

′Py + X ′
pP pyp) . (4.214)

This estimate with prior information for β, which is obtained by the vector
yp of observations, is identical with the estimate obtained from (4.184) or
(4.193), if the observations y and yp are assumed as being independent and
if they are jointly analyzed. ∆



5 Special Models and Applications

In the following two special linear models are presented, the model of pre-
diction and filtering and the model with unknown variance and covariance
components. The model with variance components is augmented by a vari-
ance component for prior information so that the regularization parameter
of a type Tykhonov regularization can be estimated by the ratio of two vari-
ance components. The reconstruction and the smoothing of digital three-
dimensional images and pattern recognition in two-dimensional images are
covered. Finally, Bayesian networks are presented for making decisions in
systems with uncertainties.

5.1 Prediction and Filtering

As was explained in Chapter 2.2, measurements are the results of random
experiments, the results therefore vary. The disturbances should be removed
from the measurements. This is also true, if measurements are taken as func-
tions of time or position. Measurements depending on time belong to the
stochastic processes and depending on position to the random fields, see for
instance Koch and Schmidt (1994) and Meier and Keller (1990). One
does not only want to remove the disturbances of the measurements which is
called filtering, but also to forecast the measurements at times or at positions
when or where no measurements were taken. This task is called prediction.
Wiener (1949) solved the problem of prediction and filtering by minimizing
the expected value of the quadratic error of the prediction and the filtering,
see for instance Koch and Schmidt (1994, p.233). The prediction and filter-
ing was not only applied for the interpolation of measurements but by Heitz

(1968) and Moritz (1969) also for estimating unknown parameters. It was
generalized by Krarup (1969) and Moritz (1973, 1980) to the so-called
collocation for which it is assumed that the measurements are represented
by signals as linear functions of unknown parameters and by a trend which
allows to assume the expected value zero for the signals.

In traditional statistics the prediction and filtering is developed from the
mixed model which contains the unknown parameters as constants and as
random variables. The unknown parameters of the trend represent the fixed
quantities of the prediction and filtering, while the unknown parameters of the
signals are the random parameters, see for instance Koch (1999, p.221). The
joint appearance of fixed parameters and of random parameters in the model
of prediction and filtering of the traditional statistics is not easily interpreted.
Difficulties also arise when to decide which parameters are constant and which
parameters are random. This becomes apparent for applications in physical
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geodesy where frequently the coordinates of points at the surface of the earth
are defined as fixed parameters and the parameters of the earth’s gravity field
as random parameters.

The model of prediction and filtering is much clearer interpreted by the
linear model of Bayesian statistics which defines the unknown parameters as
random variables, as was explained in Chapter 2.2.8. One does not have to
distinguish between fixed parameters and random parameters. One differen-
tiates between the unknown parameters by their prior information only. This
means for the model of prediction and filtering that no prior information is
assumed for the parameters of the trend, while the parameters of the signals
are introduced with the prior information that the expected values are equal
to zero and that the variances and covariances are given. As will be shown
in the following chapter, the estimates of the parameters are then obtained
which are identical with the estimates of the model of prediction and filtering
of the traditional statistics, see for instance Koch (1990, p.117).

If prior information is assumed only for the unknown parameters of the
signals, an improper prior density function is obtained for the unknown pa-
rameters. It is simpler to introduce prior information for the parameters of
the trend as well as for the parameters of the signals. This leads to a special
linear model which is also well suited for practical applications. It readily
gives, as shown in Chapter 4, the estimates, the confidence regions and the
hypothesis tests not only for the unknown parameters of the trend but also
for the unknown parameters of the signal. Afterwards, the prior information
may be restricted (Koch 1994). By this manner prediction and filtering is
covered in the following.

The method of prediction in geostatistics is called kriging and Bayesian
kriging if Bayesian statistics is applied, see for instance Cressie (1991,
p.170), Menz and Pilz (1994), Pilz and Weber (1998). The latter corre-
sponds to the procedure derived here.

5.1.1 Model of Prediction and Filtering as Special

Linear Model

The linear model (4.1) is introduced in the form

X̄β̄ = E(y|β̄) with D(y|σ2) = σ2P̄
−1

(5.1)

or in the alternative formulation (4.3)

X̄β̄ = y + e with E(e|β̄) = 0

and D(e|β̄, σ2) = D(y|σ2) = σ2P̄
−1

. (5.2)

If we substitute

X̄ = |X , Z| , β̄ =

∣∣∣∣ β

γ

∣∣∣∣ , P̄
−1

= Σee , (5.3)
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the model of prediction and filtering, also called mixed model, is obtained

Xβ + Zγ = E(y|β, γ) with D(y|σ2) = σ2Σee (5.4)

or in the alternative formulation

Xβ + Zγ = y + e with E(e|β, γ) = 0

and D(e|β, γ, σ2) = D(y|σ2) = σ2Σee . (5.5)

Here, X means an n × u and Z an n × r matrix of known coefficients, β

the u × 1 vector of unknown parameters of the trend, γ the r × 1 vector
of unknown signals, y the n × 1 vector of observations, e the n × 1 vector
of their errors, σ2 the unknown variance factor and Σee the known positive
definite n × n matrix, which multiplied by σ2 gives the covariance matrix
of the observations and the errors, respectively. Thus, the observations y

and their errors e are represented with (5.5) by the linear function Zγ of the
unknown signals γ and by the linear function Xβ of the unknown parameters
β of the trend.

The model of prediction and filtering is therefore defined as a special
linear model. As prior information for the unknown parameters β̄ and the
unknown variance factor σ2 in (5.1) the expected values of β̄ and σ2 and the
variances and covariances of β̄ and σ2 are introduced as in Chapter 4.3.2

E(β̄) = E(

∣∣∣∣ β

γ

∣∣∣∣) = µ̄ =

∣∣∣∣ µ

0

∣∣∣∣ , D(β̄) = D(

∣∣∣∣ β

γ

∣∣∣∣) = σ2
pΣ̄

= σ2
p

∣∣∣∣ Σβ 0

0 Σγγ

∣∣∣∣ , E(σ2) = σ2
p , V (σ2) = Vσ2 . (5.6)

As was already mentioned in Chapter 5.1, it is feasible because of the trend,
to use the prior information E(γ) = 0 for the unknown signals γ. If one
substitutes the matrices and vectors (5.3) and the prior information (5.6) in
the distribution (4.158) so that it becomes valid for the model (5.1), the pos-
terior distribution for the unknown parameters β and γ and for the unknown
weight parameter τ with τ = 1/σ2 follows as normal-gamma distribution by

∣∣∣∣ β

γ

∣∣∣∣ , τ |y ∼ NG(

∣∣∣∣ β0

γ0

∣∣∣∣ , V 0, b0, p0) . (5.7)

With

X̄
′
P̄ X̄ + Σ̄

−1
=

∣∣∣∣ X ′

Z ′

∣∣∣∣Σ−1
ee |X, Z| +

∣∣∣∣ Σ−1
β 0

0 Σ−1
γγ

∣∣∣∣
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the parameters in (5.7) are obtained from (4.159) by∣∣∣∣ β0

γ0

∣∣∣∣ = V 0

∣∣∣∣ X ′Σ−1
ee y + Σ−1

β µ

Z ′Σ−1
ee y

∣∣∣∣ (5.8)

V 0 =

∣∣∣∣ X ′Σ−1
ee X + Σ−1

β X ′Σ−1
ee Z

Z ′Σ−1
ee X Z ′Σ−1

ee Z + Σ−1
γγ

∣∣∣∣
−1

(5.9)

b0 =
{
2
[
(σ2

p)2/Vσ2 + 1
]
σ2

p

+(µ − β0)
′Σ−1

β (µ − β0) + γ′
0Σ

−1
γγ γ0

+(y − Xβ0 − Zγ0)
′Σ−1

ee (y − Xβ0 − Zγ0)
}
/2 (5.10)

p0 =
(
n + 2(σ2

p)2/Vσ2 + 4
)
/2 . (5.11)

The posterior marginal distribution for β and γ follows with (5.7) from
(4.160) as the multivariate t-distribution∣∣∣∣ β

γ

∣∣∣∣ |y ∼ t(

∣∣∣∣ β0

γ0

∣∣∣∣ , b0V 0/p0, 2p0) . (5.12)

The Bayes estimates β̂B and γ̂B, the MAP estimates β̂M and γ̂M and the

estimates β̂ and γ̂ of the method of least squares of the unknown parameters
β and γ are therefore obtained with (4.162), (4.163) and (4.165) from (5.8)
by

β̂ = β̂B = β̂M = β0 and γ̂ = γ̂B = γ̂M = γ0 . (5.13)

After multiplying both sides of (5.8) from the left by V −1
0 in (5.9) the second

equation leads to

γ̂ = (Z ′Σ−1
ee Z + Σ−1

γγ )−1Z ′Σ−1
ee (y − Xβ̂) (5.14)

and the identity (4.48) to

γ̂ = ΣγγZ ′(ZΣγγZ ′ + Σee)
−1(y − Xβ̂) . (5.15)

If (5.14) is substituted in the first equation following from (5.8), we obtain

{
X ′[Σ−1

ee − Σ−1
ee Z(Z ′Σ−1

ee Z + Σ−1
γγ )−1Z ′Σ−1

ee ]X + Σ−1
β

}
β̂

= X ′[Σ−1
ee − Σ−1

ee Z(Z ′Σ−1
ee Z + Σ−1

γγ )−1Z ′Σ−1
ee ]y + Σ−1

β µ . (5.16)

The identity (4.47) is applied to the matrices in brackets leading to

β̂ = (X ′(ZΣγγZ ′ + Σee)
−1X + Σ−1

β )−1

(X ′(ZΣγγZ ′ + Σee)
−1y + Σ−1

β µ) . (5.17)
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The posterior marginal distributions valid for β and for γ are obtained
with (2.209) from (5.12) by computing the inverse on the right-hand side of
(5.9) with (4.46) and for β in addition by the identity (4.47) so that the two
multivariate t-distributions for β and γ are obtained by

β|y ∼ t(β̂, b0(X
′Σ−1

ee X + Σ−1
β − X ′Σ−1

ee Z

(Z ′Σ−1
ee Z + Σ−1

γγ )−1Z ′Σ−1
ee X)−1/p0, 2p0) (5.18)

γ|y ∼ t(γ̂, b0(Z
′Σ−1

ee Z + Σ−1
γγ − Z ′Σ−1

ee X

(X ′Σ−1
ee X + Σ−1

β )−1X ′Σ−1
ee Z)−1/p0, 2p0) . (5.19)

The two multivariate t-distributions are simplified by the indentity (4.47)
and follow with

β|y ∼ t(β̂, b0(X
′(ZΣγγZ ′ + Σee)

−1X + Σ−1
β )−1/p0, 2p0) (5.20)

γ|y ∼ t(γ̂, b0(Z
′(XΣβX ′ + Σee)

−1Z + Σ−1
γγ )−1/p0, 2p0) . (5.21)

With these results confidence regions for β and γ may be computed or hy-
potheses for β and γ may be tested. The covariance matrices for β and γ

are obtained with (2.208) and (3.11) by

D(β|y) =
b0

p0 − 1
(X ′(ZΣγγZ ′ + Σee)

−1X + Σ−1
β )−1 (5.22)

D(γ|y) =
b0

p0 − 1
(Z ′(XΣβX ′ + Σee)

−1Z + Σ−1
γγ )−1 (5.23)

where b0 and p0 are determined by (5.10) and (5.11). An alternative repre-
sentation of the posterior marginal distribution (5.21) for γ, which is needed
in the following chapter, is obtained by applying again the identity (4.47)

γ|y ∼ t(γ̂, b0(Σγγ − ΣγγZ ′(ZΣγγZ ′ + Σee + XΣβX ′)−1ZΣγγ)/

p0, 2p0). (5.24)

The n × 1 vector yf of filtered observations is found from (5.5) by

yf = y + e = Xβ + Zγ (5.25)

with its distribution as linear function Xβ + Zγ of β and γ from (2.210),
(5.12) and (5.13)

|X, Z|
∣∣∣∣ β

γ

∣∣∣∣ |y ∼ t
(|X, Z|

∣∣∣∣ β̂

γ̂

∣∣∣∣ , b0|X, Z|V 0

∣∣∣∣ X ′

Z ′

∣∣∣∣ /p0, 2p0

)
. (5.26)

The estimate ŷf of the filtered observations yf is therefore obtained by

ŷf = Xβ̂ + Zγ̂ . (5.27)
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Correspondingly, the q × 1 vector yp of predicted observations follows with

yp = X∗β + Z∗γ (5.28)

where X∗ and Z∗ denote the q × u and q × r matrices of coefficients which
express the trend and the signal at the positions of the predicted observations.
The distribution of yp is found from (5.26) by substituting X = X∗ and
Z = Z∗ and the estimate ŷp of yp by

ŷp = X∗β̂ + Z∗γ̂ . (5.29)

As was already mentioned in Chapter 5.1, the case is also dealt with that
prior information is only introduced for the unknown parameters γ of the
signals. Thus, we set in (5.6)

E(β) = µ = 0 and Σ−1
β = 0 (5.30)

which means the expectations zero with very large variances. The joint pos-
terior distribution for β, γ and τ is then obtained from (5.7) by substituting
(5.30) in (5.8) to (5.10) and the posterior marginal distribution for β and γ

by substituting in (5.12). The estimates β̂ and γ̂ of β and γ then follow from
(5.15) and (5.17) by

β̂ = (X ′(ZΣγγZ ′ + Σee)
−1X)−1X ′(ZΣγγZ ′ + Σee)

−1y (5.31)

γ̂ = ΣγγZ ′(ZΣγγZ ′ + Σee)
−1(y − Xβ̂) . (5.32)

These are the estimates of the unknown parameters β and γ of the model of
prediction and filtering of traditional statistics, see for instance Koch (1999,
p.223).

We find the posterior marginal distribution for β by substituting (5.30)
in (5.20). However, (5.21) is not valid as posterior marginal distribution for
γ, since Σβ does not exist because of (5.30). The distribution follows from
(5.19) after substituting (5.30). This marginal distribution shall be presented
in a form which is needed in the following chapter. The matrix identity (4.47)
gives

A = (Z ′Σ−1
ee Z + Σ−1

γγ )−1

= Σγγ − ΣγγZ ′(ZΣγγZ ′ + Σee)
−1ZΣγγ (5.33)

and furthermore we obtain with the same identity instead of (5.19)

γ|y ∼ t(γ̂, b0(A + AZ ′Σ−1
ee X(X ′Σ−1

ee X

− X ′Σ−1
ee ZAZ ′Σ−1

ee X)−1X ′Σ−1
ee ZA)/p0, 2p0) . (5.34)

The Bayes estimate of the variance factor σ2 in the model (5.4) or (5.5) of
prediction and filtering is obtained with (3.9) and (4.167) by

σ̂2
B = b0/(p0 − 1) (5.35)
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where b0 and p0 result from (5.10) and (5.11). The variance V (σ2|y) of σ2

follows from (4.169) by

V (σ2|y) =
2(σ̂2

B)2

n + 2(σ2
p)2/Vσ2

. (5.36)

5.1.2 Special Model of Prediction and Filtering

It is often assumed for the model (5.4) or (5.5) of prediction and filtering
that the products of matrices

Σss = ZΣγγZ ′ and Σγy = ΣγγZ ′ with Σyγ = Σ′
γy (5.37)

are given. This can be explained by interpreting because of (2.158) the ma-
trix σ2Σss as covariance matrix of the signal Zγ and the matrix σ2Σγy as
covariance matrix of γ and y, since we obtain with (2.164) and (5.6)

C(γ, |X , Z|
∣∣∣∣ β

γ

∣∣∣∣) = |0,Σγγ |
∣∣∣∣ X ′

Z ′

∣∣∣∣ = ΣγγZ ′ .

The sum σ2(Σss+Σee) may, furthermore, be interpreted in traditional statis-
tics as the covariance matrix of the observations y, because β contains fixed
parameters.

By substituting (5.37) in (5.20) and in (5.24) the posterior marginal dis-
tributions for β and γ follow with

β|y ∼ t(β̂, b0(X
′(Σss + Σee)

−1X + Σ−1
β )−1/p0, 2p0) (5.38)

γ|y ∼ t(γ̂, b0(Σγγ − Σγy(Σss + Σee + XΣβX ′)−1Σyγ)/p0, 2p0)

(5.39)

and the estimates β̂ and γ̂ from (5.15) and (5.17) with

β̂ = (X ′(Σss + Σee)
−1X + Σ−1

β )−1(X ′(Σss + Σee)
−1y + Σ−1

β µ)

(5.40)

γ̂ = Σγy(Σss + Σee)
−1(y − Xβ̂) . (5.41)

If the signals are directly measured by the observations y, we set

s = Zγ (5.42)

where s denotes the n × 1 vector of signals. By substituting in (5.5) the
special model of prediction and filtering is obtained

Xβ + s = y + e . (5.43)

The posterior distribution for s follows as a linear function of Zγ with (2.210)
and (5.37) from (5.39)

s|y ∼ t(ŝ, b0(Σss − Σss(Σss + Σee + XΣβX ′)−1Σss)/p0, 2p0) (5.44)
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where the estimate ŝ = Zγ̂ of s is obtained from (5.41)

ŝ = Σss(Σss + Σee)
−1(y − Xβ̂) , (5.45)

the parameter b0 from (5.10) with (5.13), (5.15) and (5.37)

b0 =
{
2[(σ2

p)2/Vσ2 + 1]σ2
p + (µ − β̂)′Σ−1

β (µ − β̂)

+(y − Xβ̂)′(Σss + Σee)
−1Σss(Σss + Σee)

−1(y − Xβ̂)

+(y − Xβ̂ − ŝ)′Σ−1
ee (y − Xβ̂ − ŝ)

}
/2 (5.46)

and the parameter p0 from (5.11).
The vector yf of filtered observations is found by substituting (5.42) in

(5.25), its distribution follows from (5.26) and its estimate from (5.27). The
predicted observations yp result from (5.28)

yp = X∗β + s∗ with s∗ = Z∗γ . (5.47)

In addition to Σss and Σγy in (5.37) the following matrices are often given

Σs∗s∗ = Z∗ΣγγZ∗′ and Σs∗s = Z∗ΣγγZ ′

with Σss∗ = Σ′
s∗s (5.48)

where σ2Σs∗s∗ because of (2.158) is interpreted as covariance matrix of the
predicted signal and σ2Σs∗s because of (2.164) as covariance matrix of the
predicted signal and the original signal. The posterior distribution for s∗

follows with (2.210), (5.47) and (5.48) from (5.39)

s∗|y ∼ t(ŝ∗, b0(Σs∗s∗ −Σs∗s(Σss +Σee +XΣβX ′)−1Σss∗)/p0, 2p0) (5.49)

with the estimate ŝ∗ of s∗ from (5.41)

ŝ∗ = Σs∗s(Σss + Σee)
−1(y − Xβ̂) . (5.50)

The estimate ŷp of the predicted signal is obtained from (5.29) with (5.40),
(5.47) and (5.50) by

ŷp = X∗β̂ + ŝ∗ . (5.51)

If the prior information is restricted such that with (5.30) prior information
is only introduced for the parameters γ, the posterior marginal distribution
for β is found from (5.38) and the posterior marginal distribution for γ from
(5.33) and (5.34) with (5.37) by

γ|y ∼ t(γ̂, b0

[
Σγγ − Σγy(Σss + Σee)

−1Σyγ

+(Σγy − Σγy(Σss + Σee)
−1Σss)Σ

−1
ee X(X ′Σ−1

ee X

−X′Σ−1
ee (Σss − Σss(Σss + Σee)

−1Σss)Σ
−1
ee X)−1

X ′Σ−1
ee (Σyγ − Σss(Σss + Σee)

−1Σyγ)
]
/p0, 2p0) . (5.52)
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The distributions for the signal s and the predicted signal s∗ follow with this
distribution as (5.44) and (5.49) from (5.39).

An application of the special model of prediction and filtering for the
deformation analysis is given, for instance, by Koch and Papo (2003).

Example: Let temperatures Ti be measured at certain times ti with
i ∈ {1, . . . , n}. They are collected in the vector y = (Ti) of observations. Let
the measurements be independent and have identical but unknown variances
σ2. The covariance matrix D(y|σ2) of the observations y in model (5.4) and
(5.5) is therefore determined by

D(y|σ2) = σ2Σee and Σee = I . (5.53)

Let the measurements y be represented according to (5.43) by the vector s of
the signals, which are the deviations of the temperatures from the trend, and
by the trend Xβ, which results from a polynomial expansion. The matrix X

of coefficients is therefore built up depending on the times ti by a polynomial
of degree u − 1 such that u unknown parameters appear in β. One gets
X = |x1, . . . ,xn|′ where x′

i denotes the ith row of X with

x′
i = |1, ti, t

2
i , . . . , t

u−1
i | , i ∈ {1, . . . , n} . (5.54)

The temperatures T ∗
j at given times t∗j have to be predicted by yp = (T ∗

j )
and j ∈ {1, . . . , q} according to (5.47). In addition, the 1 − α confidence
interval for the component s∗j of the predicted signal s∗ with s∗ = (s∗j ) and
j ∈ {1, . . . , q} has to be determined.

Let the elements σik of the matrix Σss in (5.37) with Σss = (σik) and
i, k ∈ {1, . . . , n}, which define with σ2Σss the covariance matrix of the sig-
nals, be given by the covariance function σ(ti − tk), for instance by

σik = σ(ti − tk) = ab−(ti−tk)2 (5.55)

where ti and tk denote the times of the measurements and a and b constants.
The elements σj∗l∗ of the matrix Σs∗s∗ with Σs∗s∗ = (σj∗l∗) and j∗, l∗ ∈
{1, . . . , q} and the elements σj∗i of the matrix Σs∗s in (5.48) with Σs∗s =
(σj∗i) shall be determined by the same covariance function, thus

σj∗l∗ = σ(t∗j − t∗l ) = ab−(t∗j−t∗l )2 (5.56)

and

σj∗i = σ(t∗j − ti) = ab−(t∗j−ti)
2

. (5.57)

The times t∗j and t∗l indicate the times of the signals to be predicted and

σ2Σs∗s∗ the covariance matrix of the predicted signals and σ2Σs∗s the co-
variance matrix of the predicted and the original signals.
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To predict the temperatures T ∗
j at the given times t∗j with j ∈ {1, . . . , q},

the estimate ŷp of yp = (T ∗
j ) has to be computed with (5.51) from

ŷp = X∗β̂ + ŝ∗ .

The coefficient matrix X∗ follows corresponding to (5.54) with X∗ = |x∗
1, . . . ,

x∗
q |′ and

x∗
j
′ = |1, t∗j , t

∗2
j , . . . , t

∗(u−1)
j | , j ∈ {1, . . . , q} . (5.58)

The estimates β̂ of the trend parameters are obtained from (5.40) with (5.53)
and with µ and Σβ which according to (5.6) come from prior information on
β. The estimates ŝ∗ of the predicted signals are computed from (5.50) and
the estimates of the predicted observations are obtained with ŷp = (T̂ ∗

j ).

To find the confidence interval for the component s∗j of the predicted
signals s∗ with s∗ = (s∗j ), the posterior marginal distribution for s∗j is formed
with (2.209) from (5.49). With ŝ∗ = (ŝ∗j ) the generalized t-distribution

s∗j |y ∼ t(ŝ∗j , 1/f, 2p0) (5.59)

is obtained with

1/f = b0(Σs∗s∗ − Σs∗s(Σss + I + XΣβX ′)−1Σss∗)jj/p0 , (5.60)

with b0 from (5.46) and p0 from (5.11). By the transformation (2.206) of
the generalized t-distribution to the standard form the t-distributed variable
follows with (2.207) by

(s∗j − ŝ∗j )
√

f ∼ t(2p0) . (5.61)

We therefore obtain with (2.187) the relation

P (−t1−α;2p0 < (s∗j − ŝ∗j )
√

f < t1−α;2p0) = 1 − α (5.62)

where t1−α;2p0 because of (2.186) denotes the quantity of the t-distribution
which is equivalent to the upper α-percentage point F1−α;1,2p0 of the F -
distribution. Thus, the 1 − α confidence interval for s∗j follows from (5.62)
with

P (ŝ∗j − t1−α;2p0/
√

f < s∗j < ŝ∗j + t1−α;2p0/
√

f) = 1 − α . (5.63)

The Bayes estimate σ̂2
B of the unknown variance factor σ2 in (5.53) and its

variance V (σ|y) are obtained from (5.35) and (5.36) with b0 from (5.46) and
p0 from (5.11). ∆
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5.2 Variance and Covariance Components

If the variance factor σ2 in the linear model (4.1) is unknown, it is esti-
mated by (4.39), (4.129) and in case of prior information by (4.168). Thus,
the covariance matrix of the observations y in (4.1) may be expressed by
means of the estimated variance factor σ2. Often data have to be analyzed
which contain different types of observations, for instance, angle and distance
measurements or terrestrial and satellite observations. The variance factors
belonging to these subsets of observations are called variance components.
In general, they are unknown and have to be estimated. If factors for the
covariances of different subsets of observations have to be introduced, they
are called covariance components which also need to be estimated.

5.2.1 Model and Likelihood Function

Let the n×1 random vector e of errors of the observations in the linear model
(4.3) be represented by

e = |U1, . . . ,U l|
∣∣∣∣∣∣

γ1

. . .
γl

∣∣∣∣∣∣ (5.64)

where the n× ri matrices U i contain constants and γi denote unknown and
unobservable ri × 1 random vectors with E(γi) = 0 and C(γi, γj) = σijRij

with σij = σji and Rji = R′
ij for i, j ∈ {1, . . . , l}. The covariance matrix

D(e|β, σ) of the vector e then follows with (2.158) by

D(e|β, σ) = σ2
1U1R11U

′
1 + σ12(U1R12U

′
2 + U2R21U

′
1)

+ σ13(U1R13U
′
3 + U3R31U

′
1) + . . . + σ2

l U lRllU
′
l . (5.65)

The k × 1 vector σ contains the components

σ = |σ2
1 , σ12, σ13, . . . , σ1l, σ

2
2 , . . . , σ

2
l |′ (5.66)

with k = l(l + 1)/2. Furthermore, we set

V 1 = U1R11U
′
1 , V 2 = U1R12U

′
2 + U2R21U

′
1, . . . ,

V k = U lRllU
′
l (5.67)

and obtain the covariance matrix D(y|σ) = Σ of the observations y with
D(y|σ) = D(e|β, σ) because of (2.158) and (4.3) by

D(y|σ) = Σ = σ2
1V 1 + σ12V 2 + . . . + σ2

l V k . (5.68)

We will represent the covariance matrix of the observations y in the linear
model (4.1) by this manner.
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Hence, let X be an n × u matrix of given coefficients with full column
rankX = u, β a u × 1 random vector of unknown parameters, y an n × 1
random vector of observations, whose n × n covariance matrix D(y|σ) = Σ

is positive definite, and e the n × 1 vector of errors of y. We then call

Xβ = E(y|β) = y + e

with D(y|σ) = Σ = σ2
1V 1 + σ12V 2 + . . . + σ2

l V k (5.69)

the linear model with unknown variance components σ2
i and unknown co-

variance components σij for i ∈ {1, . . . , l}, i < j ≤ l and l ≤ k ≤ l(l + 1)/2.
The variance and covariance components are unknown random variables and
according to (5.66) components of the k × 1 random vector σ. The n × n
matrices V m with m ∈ {1, . . . , k} are known and symmetric.

Example: To determine the coordinates of points, let distances be mea-
sured collected in y1 and angles be measured collected in y2. Let the mea-
surements y1 and y2 be independent and let the weight matrix of y1 be P 1

and the one of y2 be P 2 from (2.159). Let the constant in (2.159) be defined
for the distance measurements y1 by the unknown variance component σ2

1

and for the angle measurements y2 by the unknown variance component σ2
2 .

The covariance matrix of the observations y1 and y2 is then obtained from
(5.69) by

D(

∣∣∣∣ y1

y2

∣∣∣∣ |σ2
1 , σ2

2) = σ2
1

∣∣∣∣ P−1
1 0

0 0

∣∣∣∣ + σ2
2

∣∣∣∣ 0 0

0 P−1
2

∣∣∣∣ .

If the measurements y1 and y2 are dependent and if the covariance matrix
C(y1, y2) = σ12R12 of y1 and y2 defined by (2.161) is known except for the
factor σ12 which is introduced as unknown covariance component σ12, the
covariance matrix of the observations y1 and y2 is obtained with (5.69) and
R21 = R′

12 by

D(

∣∣∣∣ y1

y2

∣∣∣∣ |σ2
1 , σ12, σ

2
2) = σ2

1

∣∣∣∣ P−1
1 0

0 0

∣∣∣∣ + σ12

∣∣∣∣ 0 R12

R21 0

∣∣∣∣
+ σ2

2

∣∣∣∣ 0 0

0 P−1
2

∣∣∣∣ .

∆

Out of reasons explained in Chapter 2.4.1 the observations y are assumed
to be normally distributed. We therefore obtain with (2.195), (2.196) and
(5.69)

y|β, σ ∼ N(Xβ,Σ) (5.70)

and

p(y|β, σ) =
1

(2π)n/2(detΣ)1/2
e− 1

2 (y − Xβ)′Σ−1(y − Xβ) . (5.71)
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Only the vector σ of unknown variance and covariance components is of
interest. We therefore introduce for the vector β of unknown parameters
the noninformative prior density function (2.216), which is determined by
a constant, and eliminate the vector β from the density function (5.71) by
an integration. Thus, the marginal density function for σ is computed with
(2.89). We transform with

β̂ = (X ′Σ−1X)−1X ′Σ−1y (5.72)

the exponent in (5.71) corresponding to (4.118) and obtain

(y − Xβ)′Σ−1(y − Xβ) = (y − Xβ̂)′Σ−1(y − Xβ̂)

+ (β − β̂)′X ′Σ−1X(β − β̂) . (5.73)

Substituting this result in (5.71) and integrating over β gives

∫ ∞

−∞

. . .

∫ ∞

−∞

exp
[ − 1

2
(β − β̂)′X ′Σ−1X(β − β̂)

]
dβ

= (2π)u/2(detX ′Σ−1X)−1/2 , (5.74)

since the normal distribution fulfills the second condition in (2.74), as already
mentioned in connection with (2.195). If we set in addition

(y − Xβ̂)′Σ−1(y − Xβ̂) = y′Wy (5.75)

with

W = Σ−1 − Σ−1X(X ′Σ−1X)−1X ′Σ−1 , (5.76)

the likelihood function follows from (5.71) with

p(y|σ) ∝ (detΣ detX ′Σ−1X)−1/2 exp(−y′Wy/2) . (5.77)

It is only dependent on the vector σ of unknown variance and covariance
components. Constants have not been considered.

The likelihood function (5.77) is also obtained, if by a linear transforma-
tion of the observation vector y the density function (5.71) is decomposed
into the factors L1 and L2 where L1 is identical with (5.77) (Koch 1987)
and therefore only dependent on σ. L2 is a function of β and σ and leads
with the maximum likelihood estimate (3.33) to the conventional estimate
(5.72) of β, if σ is assumed as known. Using (5.77) the maximum likelihood
method gives the following estimate of σ (Koch 1986) which is identical with
the MINQUE estimate and with the locally best invariant quadratic unbi-
ased estimate (Koch 1999, p.229). Instead of σ the vector σ̄ is iteratively
estimated by ˆ̄σ with

ˆ̄σ = S̄
−1

q̄ (5.78)
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and

σ̄ = | . . . , σ̄2
i , . . . , σ̄ij , . . . |′ , σ = | . . . , α2

i σ̄
2
i , . . . , αij σ̄ij , . . . |′

for i ∈ {1, . . . , l}, i < j ≤ l

S̄ = (trW̄ V̄ mW̄ V̄ n) for m, n ∈ {1, . . . , k} , l ≤ k ≤ l(l + 1)/2

q̄ = (y′W̄ V̄ mW̄y) = (ê′
Σ−1

0 V̄ mΣ−1
0 ê)

V m = V̄ m/α2
i or V m = V̄ m/αij

W̄ = Σ−1
0 − Σ−1

0 X(X ′Σ−1
0 X)−1X ′Σ−1

0

Σ0 =
k∑

m=1

V̄ m, W̄ = W̄Σ0W̄ , ê = Xβ̂ − y . (5.79)

Thus, the variance and covariance components σ2
i and σij are divided for the

estimation by their approximate values α2
i and αij to obtain the components

σ̄2
i and σ̄ij . They can be assumed of having values close to one. The ap-

proximate values are absorbed in the matrices V m which then become V̄ m,
i.e. we obtain in (5.69) for instance σ2

1V 1 = (σ2
1/α2

1)α
2
1V 1 = σ̄2

1V̄ 1 with
σ2

1/α2
1 = σ̄2

1 and α2
1V 1 = V̄ 1.

The estimates ˆ̄σ2
i and ˆ̄σij from (5.78) therefore depend on the approximate

values α2
i and αij . Thus, they are iteratively computed by introducing α2

i
ˆ̄σ2

i

and αij ˆ̄σij as new approximate values, until at the point of convergence the
estimates reproduce themselves, that is until

ˆ̄σ = |1, 1, . . . , 1|′ (5.80)

is obtained. If this result is substituted in (5.78), we obtain with (5.79)

k∑
j=1

tr(W̄ V̄ iW̄ V̄ j) = tr(W̄ V̄ i) (5.81)

and therefore the estimate

ˆ̄σ = H̄q̄ (5.82)

with

H̄ =
(
diag[1/tr(W̄ V̄ i)]

)
, i ∈ {1, . . . , l} (5.83)

(Förstner 1979; Koch 1999, p.234). Iteratively applied it gives results
which agree with (5.78).

If the likelihood function (5.77) is used together with a noninformative
prior, to derive the posterior density function for σ with Bayes’ theorem
(2.122), the estimate based on this posterior distribution will only slightly
differ from (5.78). This will be shown with (5.118) for the variance compo-
nents. In addition to the estimation of σ, confidence regions for σ may be
established and hypotheses for σ may be tested by means of the posterior
distribution.
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5.2.2 Noninformative Priors

Noninformative priors shall be introduced for the vector σ of unknown vari-
ance and covariance components. By the formula of Jeffreys for deriving
noninformative priors, which was mentioned in connection with (2.221), one
obtains (Koch 1987; Koch 1990, p.126)

p(σ) ∝ (detS)1/2 (5.84)

with

S = (trWV iWV j) for i, j ∈ {1, . . . , k} . (5.85)

This prior density function leads together with the likelihood function (5.77)
because of Bayes’ theorem (2.122) to the posterior density function p(σ|y)
for σ, where for simplifying the notation the condition C referring to the
background information has been omitted, as was already mentioned at the
beginning of Chapter 4.2.1,

p(σ|y) ∝ (detS)1/2(detΣ detX ′Σ−1X)−1/2 exp(−y′Wy/2) . (5.86)

This density function is because of S from (5.85), Σ from (5.69) and W from
(5.76) a function of the variance and covariance components σ2

i and σij .
Integrals over the posterior density function (5.86) for computing the

Bayes estimate of σ, for establishing confidence regions for σ or for testing
hypotheses for σ could not be solved analytically. The numerical methods
treated in Chapter 6 therefore have to be applied.

5.2.3 Informative Priors

It will be now assumed that prior information is available for the unknown
variance and covariance components σ2

i and σij . As described in Chapter
4.3.2 for the variance factor σ2 of the linear model, the prior information will
be given by the expected values and the variances

E(σ2
i ) = µσi

and V (σ2
i ) = Vσi

for i ∈ {1, . . . , l}
E(σij) = µσij

and V (σij) = Vσij
for i < j ≤ l , l ≤ k ≤ l(l + 1)/2 .

(5.87)

Variance components σ2
i must take on like the variance factor σ2 only pos-

itive values. In the linear model σ2 is replaced by the weight factor τ with
τ = 1/σ2 from (4.115), and the gamma distribution is assumed for τ , if as
conjugate prior the normal-gamma distribution (4.148) is applied. The in-
verted gamma distribution (2.176) then follows for σ2. The inverted gamma
distribution is therefore also chosen as prior distribution for the variance com-
ponent σ2

i , see for instance Koch (1990, p.132). If the l variance components
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σ2
i are assumed to be independent, the prior density function p(σ2

i )l for the
l components follows from (2.110) and (2.176) without the constants by

p(σ2
i )l ∝

l∏
i=1

( 1

σ2
i

)pi+1
e−bi/σ2

i . (5.88)

The product has to be taken over the l variance components σ2
i , and bi and pi

are the parameters of the distributions of the individual variance components.
They are obtained because of (2.177) from the prior information (5.87) by

pi = µ2
σi

/Vσi
+ 2 , bi = (pi − 1)µσi

. (5.89)

The truncated normal distribution mentioned in Chapter 2.6.2 may also
be introduced as prior distribution for the variance components σ2

i instead
of the inverted gamma distribution (Koch 1990, p.133).

The covariance components σij take on positive as well as negative values.
The density function (2.166) of the normal distribution is therefore chosen as
prior density function. If the k − l covariance components σij are assumed
as independent, the prior density function p(σij)kl for the k − l components
is obtained with (2.110) and (5.87) by

p(σij)kl ∝
k−l∏
1

exp
[ − 1

2Vσij

(σij − µσij
)2

]
. (5.90)

The product has to be taken over the k − l covariance components σij .
The posterior density function p(σ|y) for the vector σ of unknown vari-

ance and covariance components follows with Bayes’ theorem (2.122) and
with (5.77), (5.88) and (5.90) by

p(σ|y) ∝
l∏

i=1

( 1

σ2
i

)pi+1
e−bi/σ2

i

k−l∏
1

exp
[ − 1

2Vσij

(σij − µσij
)2

]
(detΣ detX ′Σ−1X)−1/2 exp(−y′Wy/2) . (5.91)

Integrals over this density function for computing the Bayes estimate of σ,
for establishing confidence regions for σ or for testing hypotheses for σ could
not be found analytically. Thus, the numerical methods of Chapter 6 have
to be used.

5.2.4 Variance Components

The linear model (5.69) with the unknown variance and covariance compo-
nents simplifies, if the variance components σ2

i only with i ∈ {1, . . . , k} are
considered. We get

Xβ = E(y|β) = y + e (5.92)
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with

X =

∣∣∣∣∣∣∣∣
X1

X2

. . .
Xk

∣∣∣∣∣∣∣∣
, y =

∣∣∣∣∣∣∣∣
y1

y2

. . .
yk

∣∣∣∣∣∣∣∣
, e =

∣∣∣∣∣∣∣∣
e1

e2

. . .
ek

∣∣∣∣∣∣∣∣
,

D(y|σ) = Σ = σ2
1V 1 + σ2

2V 2 + . . . + σ2
kV k ,

σ = |σ2
1 , σ2

2 , . . . , σ
2
k|′ ,

V i =

∣∣∣∣∣∣∣∣∣∣

0 . . . 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . P−1
i . . . 0

. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 . . . 0

∣∣∣∣∣∣∣∣∣∣
. (5.93)

Thus, the unknown variance components σ2
i are related to the independent

vectors yi of observations whose weight matrices P i from (2.159) are known.
As mentioned for (5.78) the variance components are iteratively esti-

mated. In the following we assume that we do not iterate to compute σ̄

by (5.78) but the vector σ of variance components itself, which leads to a
simpler notation. By substituting α2

i = σ2
i in (5.79) we obtain

V i = V̄ i/σ2
i and by setting P −1

i = P̄
−1
i /σ2

i (5.94)

we find

Σ0 =

∣∣∣∣∣∣∣∣∣
P̄

−1
1 0 . . . 0

0 P̄
−1
2 . . . 0

. . . . . . . . . . . . . . . . . . . . . .

0 0 . . . P̄
−1
k

∣∣∣∣∣∣∣∣∣
, Σ−1

0 =

∣∣∣∣∣∣∣∣
P̄ 1 0 . . . 0

0 P̄ 2 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 . . . P̄ k

∣∣∣∣∣∣∣∣
(5.95)

as well as

Σ−1
0 V̄ iΣ

−1
0 =

∣∣∣∣∣∣∣∣∣∣

0 . . . 0 . . . 0

. . . . . . . . . . . . . . . . . . .
0 . . . P̄ i . . . 0

. . . . . . . . . . . . . . . . . . .
0 . . . 0 . . . 0

∣∣∣∣∣∣∣∣∣∣
. (5.96)

By substituting (5.93) and (5.95) in (4.15), (4.19) or (4.29) we find the esti-

mate β̂ of the vector β of unknown parameters by

β̂ = N−1(
1

σ2
1

X ′
1P 1y1 + . . . +

1

σ2
k

X ′
kP kyk) (5.97)

with N being the matrix of normal equations

N =
1

σ2
1

X ′
1P 1X1 + . . . +

1

σ2
k

X ′
kP kXk . (5.98)
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With (5.96) and (5.97) we get from (5.79)

q̄ = (ê′
iP̄ iêi) , i ∈ {1, . . . , k} (5.99)

with

êi = Xiβ̂ − yi . (5.100)

Because of

tr(W̄Σ0) = tr(I − Σ−1
0 X(X ′Σ−1

0 X)−1X ′)

= tr(I) − tr((X ′Σ−1
0 X)−1X ′Σ−1

0 X) = n − u

the quantity ri is interpreted with

ri = tr(W̄ V̄ i) and

k∑
i=1

ri = n − u (5.101)

as partial redundancy, that is as contribution of the observation vector yi to
the overall redundancy n−u. The estimate σ̂2

i of the variance component σ2
i

is obtained from (5.82) with (5.79), (5.94), (5.99) and (5.101) by

σ̂2
i = ê

′
iP iêi/ri , i ∈ {1, . . . , k} . (5.102)

As mentioned for (5.94) the estimates are iteratively computed.

The computation of the partial redundancy ri in (5.101) can be simplified.
The matrix W̄ follows from (5.79) with (5.94), (5.95) and (5.98) by

W̄ =

∣∣∣∣∣∣∣∣
1
σ2

1

P 1 . . . 0

. . . . . . . . . . . . . . . . . . .

0 . . . 1
σ2

k

P k

∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣
1
σ2

1

P 1 . . . 0

. . . . . . . . . . . . . . . . . . .

0 . . . 1
σ2

k

P k

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣

X1

. . .
Xk

∣∣∣∣∣∣N−1

∣∣X ′
1, . . . ,X

′
k

∣∣
∣∣∣∣∣∣∣∣

1
σ2

1

P 1 . . . 0

. . . . . . . . . . . . . . . . . . .

0 . . . 1
σ2

k

P k

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1
σ2

1

P 1 . . . 0

. . . . . . . . . . . . . . . . . . .

0 . . . 1
σ2

k

P k

∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣

1
σ2

1

P 1X1N
−1X ′

1

(
1
σ2

1

P 1

)
. . . 1

σ2
1

P 1X1N
−1X ′

k

(
1
σ2

k

P k

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
σ2

k

P kXkN−1X ′
1

(
1
σ2

1

P 1

)
. . . 1

σ2
k

P kXkN−1X ′
k

(
1
σ2

k

P k

)
∣∣∣∣∣∣∣∣∣

.



5.2 Variance and Covariance Components 147

The products W̄ (σ2
1V 1), . . . , W̄ (σ2

kV k) are obtained by

W̄ (σ2
1V 1)=

∣∣∣∣∣∣
I . . . 0

. . . . . . . . .
0 . . . 0

∣∣∣∣∣∣ −
∣∣∣∣∣∣∣∣

1
σ2

1

P 1X1N
−1X ′

1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . .
1
σ2

k

P kXkN−1X ′
1 . . . 0

∣∣∣∣∣∣∣∣
, . . . ,

W̄ (σ2
kV k)=

∣∣∣∣∣∣
0 . . . 0

. . . . . . . . .
0 . . . I

∣∣∣∣∣∣ −
∣∣∣∣∣∣∣∣

0 . . . 1
σ2

1

P 1X1N
−1X ′

k

. . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 1
σ2

k

P kXkN−1X ′
k

∣∣∣∣∣∣∣∣
. (5.103)

The partial redundancy ri therefore follows from (5.101) by

ri = ni − tr
( 1

σ2
i

X ′
iP iXiN

−1
)

, i ∈ {1, . . . , k} (5.104)

where ni denotes the number of observations yi with
∑k

i=1 ni = n. The value
for the variance component σ2

i is taken from its estimate σ̂2
i and is updated

with each iteration.
For the computation of the partial redundancies r1, . . . , rk in (5.104) the

inverse N−1 of the matrix of normal equations from (5.98) is needed. How-
ever, it might not be available for large systems of normal equations which
are only solved and not inverted. In such a case, we can use the stochastic
trace estimation, as proposed for computing variance components by Koch

and Kusche (2002), see also Kusche (2003). We apply the theorem by
Hutchinson (1990), see also (2.165),

E(u′Bu) = trB (5.105)

where B denotes a symmetric n × n matrix and u an n × 1 vector of n
independent samples from a random variable U with E(U) = 0 and V (U) =
1. If U is a discrete random variable which takes with probability 1/2 the
values −1 and +1, then u′Bu is an unbiased estimator of trB with minimum
variance.

To apply (5.105) symmetric matrices have to be present in (5.104). They
may be obtained by a Cholesky factorization of the matrices X ′

iPXi of nor-
mal equations. If these matrices are ill-conditioned, the Cholesky factoriza-
tion will not work properly. It is therefore preferable, to apply the Cholesky
factorization to the weight matrices P i which will be already diagonal or
have strong diagonal elements. With

P i = GiG
′
i , (5.106)

where Gi denotes a regular lower triangular matrix, we obtain instead of
(5.104)

ri = ni − tr
( 1

σ2
i

G′
iXiN

−1X ′
iGi

)
, i ∈ {1, . . . , k} . (5.107)
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The Cholesky factorization may be approximately computed, for instance,
by

Gi = diag
(√

pi11, . . . ,
√

pinini

)
with P i = (pijk) , (5.108)

because the results can be checked and improved with
∑k

i=1 ri = n− u from
(5.101). By inserting the symmetric matrices of (5.107) into (5.105) the
products

u′G′
iXiN

−1X ′
iGiu (5.109)

need to be determined. Since the computation of the inverse N−1 shall be
avoided, the unknown parameter vectors δi are defined

δi = N−1X ′
iGiu (5.110)

and the linear equations

Nδi = X ′
iGiu (5.111)

are solved for δi so that (5.109) follows with

u′G′
iXiδi . (5.112)

Different vectors u of independent samples of U give different values for the
estimator of the trace so that the trace is obtained by the mean. Golub and
von Matt (1997) recommend just one sample vector u to compute the trace
by (5.112) which was found to be sufficient by Koch und Kusche (2002).

5.2.5 Distributions for Variance Components

The likelihood function (5.77) of the linear model (5.92) with the unknown
variance components may be expanded into a series. One gets with the vector
êi of residuals from (5.100), which are computed by the iterative estimation
of the variance components with (5.102), at the point of convergence (Ou

1991; Ou and Koch 1994)

p(y|σ) ∝
k∏

i=1

( 1

σ2
i

) ri
2 exp

( − 1

2σ2
i

ê′
iP iêi

)
. (5.113)

First, it will be assumed that no prior information is available for the variance
components and afterwards that prior information is given.

a) Noninformative Priors
The noninformative prior density function (5.84) for the model (5.92) may
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be also expanded into a series. One obtains approximately (Ou and Koch

1994)

p(σ) ∝
k∏

i=1

1

σ2
i

. (5.114)

This prior density function is a reasonable generalization of the noninfor-
mative prior for the variance factor σ2 of the linear model (4.1) which is
according to (2.218) proportional to 1/σ2.

Bayes’ theorem (2.122) leads with (5.113) and (5.114) to the posterior
density function for the vector σ of variance components

p(σ|y) ∝
k∏

i=1

( 1

σ2
i

) ri
2 +1

exp
( − 1

2σ2
i

ê′
iP iêi

)
. (5.115)

This density function is formed by the product of the density functions of
the k variance components σ2

i which according to (2.176) have the inverted
gamma distribution. By adding the constants the posterior density function
p(σ2

i |y) for the variance component σ2
i is obtained with

p(σ2
i |y) =

(1

2
ê′

iP iêi

) ri
2 Γ

(ri

2

)−1( 1

σ2
i

) ri
2 +1

exp
( − 1

2σ2
i

ê′
iP iêi

)
. (5.116)

Since the joint posterior density function (5.115) follows from the product of
the posterior density functions (5.116) for the variance components σ2

i , the
variance components are independent because of (2.110). We may therefore
estimate the variance components σ2

i with (5.116), compute confidence inter-
vals for them or test hypotheses. The Bayes estimate σ̂2

iB of σ2
i is obtained

with (2.177) and (3.9) by

σ̂2
iB =

êiP iêi

ri − 2
(5.117)

or with substituting (5.102) by

σ̂2
iB =

ri

ri − 2
σ̂2

i . (5.118)

This Bayes estimate differs for larger values of the partial redundancy ri only
slightly from the estmate σ̂2

i in (5.102). Tables for computing the confidence
interval (3.35) for σ2

i are found in Ou (1991).

b) Informative Priors
The inverted gamma distributions shall again serve as informative priors for
the variance components σ2

i . The informative prior density function for σ is
therefore obtained with (5.88) by

p(σ) ∝
k∏

i=1

( 1

σ2
i

)pi+1
e−bi/σ2

i (5.119)
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whose parameters bi and pi are determined by (5.89). Bayes’ theorem (2.122)
leads with the likelihood function (5.113) to the posterior density function
for the vector σ of variance components

p(σ|y) ∝
k∏

i=1

( 1

σ2
i

) ri
2 +pi+1

exp
[ − 1

σ2
i

(1

2
ê′

iP iêi + bi

)]
. (5.120)

This density function is formed again like (5.115) by the product of the
density functions of k inverted gamma distributions for σ2

i . With the appro-
priate constants the posterior density function for σ2

i is obtained according
to (2.176) by

p(σ2
i |y) =

(1

2
ê
′
iP iêi + bi

) ri
2 +pi

Γ
(ri

2
+ pi

)−1

( 1

σ2
i

) ri
2 +pi+1

exp
[ − 1

σ2
i

(1

2
ê′

iP iêi + bi

)]
. (5.121)

The joint posterior density function (5.120) follows from the product of the
k density functions (5.121). The variance components σ2

i are therefore in-
dependent because of (2.110). Thus, the estimate of σ2

i , the computation of
confidence intervals and the test of hypotheses is accomplished with (5.121).
The Bayes estimate σ̂2

iB of σ2
i follows with (2.177), (3.9) and after substituting

(5.102) by

σ̂2
iB =

riσ̂
2
i + 2bi

ri + 2pi − 2
. (5.122)

The interpretation of this result as weighted mean of the prior information
and the estimate σ̂2

i is found in Ou and Koch (1994). To compute the
confidence interval (3.35) for σ2

i , the tables of Ou (1991) may be used.

5.2.6 Regularization

To extract information about a physical system from measurements, one has
to solve an inverse problem. A typical example in geodesy and geophysics is
the determination of the gravity field of the earth from satellite observations.
The normal equations for estimating the unknown parameters of the grav-
ity field, generally the coefficients of an expansion of the geopotential into
spherical harmonics, tend to be ill-conditioned. For stabilizing and smooth-
ing the solution a regularization is often applied, see for instance Reigber

et al. (2005), which generally is the Tikhonov-regularization (Tikhonov

and Arsenin 1977, p.103). It means that one adds to the matrix of normal
equations a positive definite matrix times a regularization parameter which
generally is unknown. This regularization is also known as ridge regression,
see for instance Vinod and Ullah (1981, p.169). Its estimation of the
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unknown parameters can be obtained as Bayes estimate (4.87) with prior
information, see also O’Sullivan (1986).

To estimate the regularization parameter, we recall that the Bayes esti-
mate (4.87) with prior information can be derived with (4.90) by adding an
additional vector µ of observations with the covariance matrix σ2Σ to the
linear model. The additional observations will be defined such that they lead
to the estimate of the Tikhonov-regularization. Inverse problems are often
solved by different kinds of data, like satellite-to-satellite tracking beween
two low flying satellites and between a low flying and a high flying satel-
lite for computing the geopotential. The proper weighting of these different
data needs to be determined which can be solved by estimating variance
components, see the example to (5.69). To determine the regularization pa-
rameter in addition, the observations leading to the estimate of the Tikhonov-
regularization are added to the linear model (5.92) with unknown variance
components. The regularization parameter is then determined by means of
the ratio of two variance components (Koch and Kusche 2002).

The prior information on the unknown parameters β formulated as ob-
servation equation is introduced with (4.90) by

β = µ + eµ with D(µ|σ2
µ) = σ2

µP−1
µ (5.123)

with the u × 1 vector µ being the prior information on the expected values
for β and with the variance component σ2

µ times the inverse of the u × u
weight matrix P µ being the prior information on the covariance matrix of β.
By adding (5.123) to the model (5.92) we obtain instead of (5.93)

X =

∣∣∣∣∣∣∣∣
X1

. . .
Xk

I

∣∣∣∣∣∣∣∣
, y =

∣∣∣∣∣∣∣∣
y1

. . .
yk

µ

∣∣∣∣∣∣∣∣
, e =

∣∣∣∣∣∣∣∣
e1

. . .
ek

eµ

∣∣∣∣∣∣∣∣
,

D(y|σ) = Σ = σ2
1V 1 + . . . + σ2

kV k + σ2
µV µ ,

σ = |σ2
1 , . . . , σ2

k, σ2
µ|′ ,

V i =

∣∣∣∣∣∣∣∣∣∣

0 . . . 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . P−1
i . . . 0

. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 . . . 0

∣∣∣∣∣∣∣∣∣∣
, V µ =

∣∣∣∣∣∣∣∣∣∣

0 . . . 0

. . . . . . . . . . . .
0 . . . 0

. . . . . . . . . . . .

0 . . . P−1
µ

∣∣∣∣∣∣∣∣∣∣
. (5.124)

The estimates β̂ of he unknown parameters β are obtained instead of (5.97)
and (5.98) by

β̂ = N−1(
1

σ2
1

X ′
1P 1y1 + . . . +

1

σ2
k

X ′
kP kyk +

1

σ2
µ

P µµ) (5.125)
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with N being the matrix of normal equations

N =
1

σ2
1

X ′
1P 1X1 + . . . +

1

σ2
k

X ′
kP kXk +

1

σ2
µ

P µ . (5.126)

In case there is only one type of observations y1 together with the prior
information µ, we find with k = 1 in (5.125) and (5.126) the normal equations

( 1

σ2
1

X ′
1P 1X1 +

1

σ2
µ

P µ

)
β̂ =

1

σ2
1

X ′
1P 1y1 +

1

σ2
µ

P µµ . (5.127)

By introducing the regularization parameter λ with

λ =
σ2

1

σ2
µ

(5.128)

we obtain

(X ′
1P 1X1 + λP µ)β̂ = X ′

1P 1y1 + λP µµ . (5.129)

With µ = 0 the solution vector for the Tikhonov-regularization or the ridge
regression is obtained. For two different types of observations we find with
k = 2 in (5.125) and (5.126) with

λ =
σ2

1

σ2
µ

and ω =
σ2

1

σ2
2

(5.130)

the normal equations

(X ′
1P 1X1+ωX ′

2P 2X2+λP µ)β̂ = X ′
1P 1y1+ωX′

2P 2y2+λP µµ (5.131)

where λ again is the regularization parameter and ω expresses the relative
weighting of the observations y2 with respect to y1.

The estimates of the variance components σ2
i and σ2

µ follow with (5.102)

and êµ = β̂ − µ by

σ̂2
i = ê

′
iP iêi/ri , i ∈ {1, . . . , k} ,

σ̂2
µ = ê′

µP µêµ/rµ (5.132)

with the partial redundancies ri and rµ from (5.104)

ri = ni − tr
( 1

σ2
i

X ′
iP iXiN

−1
)

, i ∈ {1, . . . , k} ,

rµ = u − tr
( 1

σ2
µ

P µN−1
)

. (5.133)
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If the inverse N−1 has not been computed, the partial redundancies r1, . . . ,
rk, rµ can be obtained by the stochastic trace estimate following from (5.107)

ri = ni − tr
( 1

σ2
i

G′
iXiN

−1X ′
iGi

)
, i ∈ {1, . . . , k} ,

rµ = u − tr
( 1

σ2
µ

G′
µN−1Gµ

)
(5.134)

Noninformative priors are introduced for the variance components σ2
i so

that they are according to (5.116) independently distributed like the inverted
gamma distribution with the posterior density function

p(σ2
i |yi) =

(1

2
ê′

iP iêi

) ri
2

Γ
(ri

2

)−1( 1

σ2
i

) ri
2 +1

exp
(
− 1

2σ2
i

ê′
iP iêi

)
. (5.135)

By replacing the index i by µ the posterior density function p(σ2
µ|µ) follows.

To obtain the posterior density function for the regularization parameter λ in
(5.128) or for the parameter ω of the relative weighting in (5.130) the density
function for the ratio v

v = σ2
i /σ2

j (5.136)

of two variance components σ2
i and σ2

j is needed. Since σ2
i and σ2

j are in-
dependently distributed, their joint posterior density function follows from
(2.110) and (5.135) by

p(σ2
i , σ2

j |yi, yj) ∝
( 1

σ2
i

) ri
2 +1

exp
(
− 1

2σ2
i

ê′
iP iêi

)
( 1

σ2
j

) rj

2 +1

exp
(
− 1

2σ2
j

ê′
jP j êj

)
(5.137)

where the constants need not be considered. The transformation σ2
i = vσ2

j

of variables according to (5.136) with ∂σ2
i /∂v = σ2

j leads to, see for instance
Koch (1999, p.93),

p(v, σ2
j |yi, yj) ∝

(1

v

) ri
2 +1( 1
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) ri+rj

2 +1
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v
ê
′
iP iêi+ ê

′
jP j êj
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.

(5.138)

To obtain the marginal density function for v, the variance component σ2
j is

integrated out

p(v|yi, yj) ∝
(1

v

) ri
2 +1( 1

2v
ê′

iP iêi +
1

2
ê′

jP j êj
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ê′
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− 1

2σ2
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(1

v
ê′

iP iêi + ê′
jP j êj

))
dσ2

j . (5.139)
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As a comparison with (2.176) shows, integrating over σ2
j means integrating

the density function of a special inverted gamma distribution so that we
finally obtain the posterior density function for the ratio v of two variance
components

p(v|yi, yj) ∝
(1

v

) ri
2 +1( 1

2v
êiP iêi +

1

2
ê
′
jP j êj

)−
ri+rj

2

. (5.140)

An analytical integration of this density function could not be achieved
so that the normalization constant is not derived. However, confidence inter-
vals for the ratio v of two variance components or hypotheses tests for v are
obtained by the numerical methods of Chapter 6.3.3, because random values
can be generated which have the posterior density function (5.140). Random
variates for the standard gamma distribution, for which b = 1 is valid in
(2.172), may be drawn in case of large parameters, for instance for large par-
tial redundancies, by the log-logistic method (Dagpunar 1988, p.110). The
generated random values are transformed to random variates of the gamma
distribution and then to the ones of the inverted gamma distribution (2.176)
so that random values follow for the variance component σ2

i with the density
function (5.135). By independently generating random values for σ2

i and σ2
j

random variates for the ratio v from (5.136), hence for the regularization
parameter λ from (5.128) or for the parameter ω of relative weighting from
(5.130) are then obtained. Examples for computing confidence intervals of
regularization parameters for determining the gravity field of the earth are
given by Koch and Kusche (2002).

Mayer-Gürr et al. (2005), for instance, determined the gravity field of
the earth from a kinematical orbit of the satellite CHAMP, which extended
over one year, but which was broken up into short arcs. For each arc the
variance factor of the contribution to the matrix of normal equations was
iteratively estimated as a variance component and in addition the variance
component for the regularization parameter by (5.132). Xu et al. (2006)
proposed improvements of estimated variance components by removing biases
in the sense of traditional statistics caused by a regularization parameter.
However, Koch and Kusche (2007) pointed out that no biases occur when
introducing the prior information (5.123), see the comments to (4.91).

5.3 Reconstructing and Smoothing of Three-dimensional

Images

The reconstruction and smoothing of digital images from data of different
sensors is a task for which Bayesian analysis is well suited, because prior in-
formation leading to smooth images can be introduced. However, the smooth-
ing has to stop at the edges of the image where in case of three-dimensional
images sudden changes of the intensities of the voxels, i.e. volume elements,
occur which represent the image. The solution of such a task is given here
for reconstructing and smoothing images of positron emission tomography.
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5.3.1 Positron Emission Tomography

Positron emission tomography is applied to study metabolic activities like
the distribution of a pharmaceutical in a part of a body of a human being or
an animal. The pharmaceutical is combined with a radioactive isotope which
produces a positron. The positron finds a nearby electron and annihilates
with it to form a pair of photons. The two photons move in opposite direc-
tions along a straight line and collide at nearly the same time with a pair
of detectors, thus establishing a coincidence line. The detectors are placed
around the body on several rings forming a tube. The three-dimensional im-
age of the positions of the photon emitters is reconstructed from the photon
counts for all coincidence lines, see for instance Leahy and Qi (2000) and
Gundlich et al. (2006). The image is represented by a three-dimensional
array of voxels with intensities proportional to the number of photon emis-
sions.

For a statistical analysis of the photon counts it is assumed that the counts
are Poisson distributed. The maximum likelihood estimation is then solved
by the expectation maximization (EM) algorithm independently proposed by
Shepp and Vardi (1982) and Lange and Carson (1984). This algorithm
has two disadvantages, it is slow to converge and the reconstruction has
high variance so that it needs smoothing to reduce the noise. For a faster
convergence gamma distributed priors have been introduced by Lange et al.
(1987) and Wang and Gindi (1997). For the smoothing one should keep in
mind that the intensities of the voxels of the image represent a random field
for which the Markov property can be assumed, because the intensity of a
voxel is mainly influenced by the ones of the voxels of the neighborhood, see
for instance Koch and Schmidt (1994, p.299). Because of the equivalence
of Markov random fields and neighbor Gibbs fields the prior information
can be expressed by the Gibbs distribution. It may be defined such that
large density values of the posterior distribution follow for smooth images
and small ones for rough images so that a smooth image is obtained from
the prior information, see Geman and McClure (1987). However, the
smoothing has to stop at the edges where sudden changes of the intensities
of the voxels occur.

A promising way of handling the edges has been obtained by modeling
the Gibbs distribution by the density functions (4.56) and (4.57) of Huber

(1964) for the robust parameter estimation, see for instance Fessler et al.
(2000) and Qi et al. (1998). Voxels beyond edges are considered outliers
and are accordingly downweighted. A similar effect results from the use of
the median root prior (Alenius and Ruotsalainen 1997) which gives good
spatial details, as shown by Bettinardi et al. (2002). For a better edge
preserving property Koch (2005a) modified Huber’s density function such
that pixels beyond edges of two-dimensional images do not contribute to the
smoothing. The method was tested for photographic images and showed an
excellent edge preserving quality. The same modification of Huber’ s density
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function is also applied in the following chapter.

5.3.2 Image Reconstruction

Let Ω be the set of voxels forming a three-dimensional array with L+1 rows,
M + 1 columns and O + 1 slices

Ω = {j = (l, m, o), 0 ≤ l ≤ L, 0 ≤ m ≤ M, 0 ≤ o ≤ O} ,

u = (L + 1)(M + 1)(O + 1) (5.141)

and let βj with j ∈ {1, . . . , u} be the unknown intensity of voxel j which is
proportional to the number of photon emissions of voxel j. The vector β with
β = (βj) is therefore the vector of unknown parameters of the reconstruction.

As mentioned in the previous chapter, the emission of two photons in
opposite directions establishes a coincidence line between a pair of detectors.
Let yij be the number of photons emitted by voxel j along a coincidence line
and counted at detector pair i. It cannot be observed, because more than
one voxel will be cut by the coincidence line and will emit photons along that
line which are counted. The expected value ȳij of yij is connected to the
unknown intensity βj of voxel j by

ȳij = E(yij) = pijβj (5.142)

where pij gives the probability of detecting an emission from voxel j at de-
tector pair i. It is a deterministic quantity and results from the geometry of
the scanner. It is therefore known. By summing over the voxels j which are
cut by the coincidence line between detector pair i the observation yi, i.e.
the photon count, and its expectation ȳi follow with (5.142) from

yi =
∑

j

yij and ȳi = E(yi) =
∑

j

pijβj (5.143)

and the expectation ȳ of the vector y of observations from

ȳ = E(y|β) = P β (5.144)

with P = (pij). The matrix P represents an approximation only, it has to
be corrected for a number of effects to find the so-called system matrix for
the linear relation between ȳ and β, see for instance Leahy and Qi (2000).

The random number yij results from counting photons so that it is as-
sumed as Poisson distributed, see for instance Koch (1999, p.87). Since
the yij are independent, their sum, which gives the measurement yi with
expectation ȳi, is also Poisson distributed with density function

p(yi|β) =
ȳyi

i exp (−ȳi)

yi!

=
(
∑

j pijβj)
yi exp (−∑

j pijβj)

yi!
. (5.145)



5.3 Reconstructing and Smoothing of Three-dimensional Images 157

The measurements yi are independent, too, the joint density function for y

therefore follows with (2.110) from

p(y|β) =
∏

i

(
∑

j pijβj)
yi exp (−∑

j pijβj)

yi!
. (5.146)

This is the likelihood function for the Bayesian reconstruction.
The intensity βj of voxel j with j ∈ Ω represents a Markoff random field,

as already mentioned in the previous chapter. A special Gibbs distribution
defined for cliques with two sites of the three-dimensional neighborhood Np

of order p, i.e. for voxel j and for each voxel in the neighborhood Np of voxel
j, is therefore chosen as prior distribution (Koch 2005a)

p(β) ∝ exp
{
− cβ

2

∑
j∈Ω

∑
s∈Np

(βj − βj+s)
2
}

. (5.147)

This is a normal distribution where ∝ means proportionality. The constant
cβ acts as a weight and determines the contribution of the prior information.
The index s defines the index of a voxel in half of the neighborhood of voxel j,
because one has to sum in (5.147) over all cliques with two sites in the set Ω.
This is accomplished by summing over the cliques of half the neighborhood
Np (Koch and Schmidt 1994, p.277). A three-dimensional neighborhood,
for instance, which extends over a distance of two voxels on each side of
the central voxel j contains 32 voxels. The larger the intensity difference in
(5.147) between voxel j and voxel j + s the smaller is the density value. The
reconstruction of a rough image is therefore less likely than the reconstruction
of a smooth one.

If voxel j and voxel j+s are seperated by an edge, a sudden change in the
intensity, the voxel j + s should not contribute to the smoothing of voxel j.
We therefore assume that the density function resulting from a given index
s in (5.147) is defined by the density function in (4.56) and (4.57) of Huber

(1964) for a robust parameter estimation. It is modified such that we use in
(5.147) (Koch 2005a)

p(βj) ∝ exp − {(βj − βj+s)
2/2} for |βj − βj+s| ≤ c

p(βj) = 0 for |βj − βj+s| > c
(5.148)

where the constant c is set according to the jumps in the intensities of the
edges which one wants to preserve.

The prior (5.147) together with (5.148) and the likelihood function (5.146)
gives by Bayes’ theorem (2.122) the posterior density function for β

p(β|y) ∝ exp
{
− cβ

2

∑
j∈Ω

∑
s∈Np

(βj − βj+s)
2
} ∏

i

(
∑

j

pijβj)
yi

exp (−
∑

j

pijβj) . (5.149)
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The conditional density function for βj given the unknown intensities ∂βj in
the neighborhood Np of voxel j follows from (5.149) with t being now the
summation index by

p(βj |∂βj, y) =
1

C
exp

{
− cβ

2

∑
±s∈Np

(βj − βj+s)
2
}∏

i

(
∑

t

pitβt)
yi

exp (−
∑

t

pitβt) (5.150)

where C denotes the normalization constant and where the sum has to be
extended over the whole neighborhood Np of voxel j so that the index s
becomes positive and negative (Koch and Schmidt 1994, p.262).

5.3.3 Iterated Conditional Modes Algorithm

Because of the large number of unknown intensities βj we do not estimate
β from (5.149), but derive the MAP estimate (3.30) for the unknown inten-
sity βj from (5.150) and apply it iteratively for j ∈ Ω. Thus, the iterated
conditional modes (ICM) algorithm of Besag (1986) results. Taking the
logarithm of (5.150)

ln p(βj |∂βj , y) = − cβ

2

∑
±s∈Np

(βj − βj+s)
2 +

∑
i

(yi ln
∑

t

pitβt

−
∑

t

pitβt) − ln C (5.151)

and the derivative with respect to βj

d ln p(βj |∂βj , y)

dβj
= −cβ

∑
±s∈Np

(βj − βj+s) +
∑

i

(
pijyi∑
t pitβt

− pij) (5.152)

and setting the result equal to zero gives the condition the MAP estimate for
βj has to fulfill given in a form explained below

1 =
1∑

i pij + cβ

∑
±s∈Np

(βj − βj+s)

∑
i

pijyi∑
t pitβt

. (5.153)

It leads to the ICM algorithm given for the kth step of the iteration

β
(k+1)
j =

β
(k)
j∑

i pij + cβ

∑
±s∈Np

(β
(k)
j − β

(k)
j+s)

∑
i

pijyi∑
t pitβ

(k)
t

. (5.154)

The prior information of this algorithm is weighted by cβ with respect to
the contribution of the observations yi. If cβ is too large, the iterations will
not converge anymore, because the intensities will continuously increase un-
constrained by the observations. If cβ is very small or equal to zero, the
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expectation maximization (EM) algorithm of Shepp and Vardi (1982) and
Lange and Carson (1984) is obtained, see also Vardi et al. (1985). The
second parameter, which controlls the prior information in the ICM algo-
rithm, is according to (5.148) the constant c which determines the intensity
difference of the edges one wants to preserve.

Green (1990) proposed the one step late (OSL) approximation in order
to solve the Bayesian reconstruction also by the EM algorithm. The name
was chosen, because the derivative of the prior density function with respect
to the unknown intensity βj of voxel j is evaluated at the current estimate
of the unknown parameter during the iterations. It was already mentioned
that one has to sum over all cliques with two sites in the set Ω of voxels for
computing the prior density function (5.147). When taking the derivative
of (5.147) with respect to the unknown intensity βj of voxel j, the differ-

ence β
(k)
j − β

(k)
j+s which results has therefore to be summed over the whole

neighborhood Np of voxel j. Thus, the ICM algorithm (5.154) is obtained
so that the OSL approximation and the ICM algorithm are identical for the
prior density function (5.147) chosen here. To show this, the condition for
the MAP estimate in the form (5.153) had been chosen. It leads to the ICM
algorithm in the shape of the OSL algorithm. Examples for estimating inten-
sities of voxels of the positron emission tomography by the ICM algorithm
(5.154) are given by Koch (2006).

Instead of iteratively applying the ICM algorithm random samples for
the intensities distributed like the posterior density function (5.149) may be
generated by the Gibbs sampler covered in Chapter 6.3.2 together with the
sampling-importance-resampling (SIR) algorithm explained in Chapter 6.2.1.
The generated samples lead to estimates, confidence regions and hypothesis
tests for the unknown parameters, as described in Chapter 6.3.3. However,
this method takes considerably more computer time than the ICM algorithm
(Koch 2007).

5.4 Pattern Recognition

The human being is able to recognize objects in two-dimensional images by
their texture, form, boundary or color. To transfer this capability to com-
puters is called pattern recognition. Digital images are produced by sensors
frequently in different spectral bands. The images shall be analyzed automat-
ically to detect the shown objects. From these tasks of digital image analysis,
which at present is the subject of intensive research, the segmentation only,
i.e. the decomposition of a digital image based on the textures of the objects,
shall be discussed here as an application of Bayesian statistics. For further
reading of this topic see for instance Niemann (1990), Ripley (1996) and
Bishop (2006).

Information on the objects to be detected, so-called characteristics or
features, are taken from the digital images, for instance, the grey values
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of a pixel of a digital image in different frequency bands. Based on these
characteristics the objects have to be allocated to classes which represent the
objects. This is called classification or discriminant analysis.

5.4.1 Classification by Bayes Rule

Let u different classes ωi occur which in turn represent an object. Let the
p × 1 random vector y contain p characteristics which are observed. Let the
density function for the vector y of characteristics under the condition that
y originates from the class ωi be p(y|y ∈ ωi). Let the prior density function
that y ∈ ωi holds true be pi. If for the sake of simplifying the notation
the condition C of the background information is omitted, Bayes’ theorem
(2.122) leads to the posterior density function p(y ∈ ωi|y) that the vector
y of characteristics is assigned to the class ωi under the condition that y is
given

p(y ∈ ωi|y) ∝ pip(y|y ∈ ωi) for i ∈ {1, . . . , u} . (5.155)

The classification is a decision problem for which it is advisable to work
with the zero-one loss (3.28). Let L(ωj, y ∈ ωi) denote the loss function for
classifying y into ωi, while actually the class ωj is present. It takes the values

L(ωj, y ∈ ωi) =

{
0 for i = j

a for i �= j .
(5.156)

The loss is equal to zero, if the classification is correct, and equal to a, if it
is not correct.

The posterior expected loss of the classification of y into ωi is computed
from (3.1) with (5.155) by

E[L(y ∈ ωi)] =

u∑
j=1
j �=i

L(ωj , y ∈ ωi)p(y ∈ ωj |y) . (5.157)

Bayes rule requires to minimize the posterior expected loss. This leads to the
decision rule that the vector y of characteristics is assigned to the class ωi, if

u∑
j=1
j �=i

L(ωj , y ∈ ωi)p(y ∈ ωj |y) <

u∑
j=1
j �=k

L(ωj, y ∈ ωk)p(y ∈ ωj |y)

for all k ∈ {1, . . . , u} with i �= k . (5.158)

If the misclassifications obtain equal losses,

L(ωi, y ∈ ωj) = L(ωk, y ∈ ωl)
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follows and with (2.47) instead of (5.158)

(1 − p(y ∈ ωi|y)) < (1 − p(y ∈ ωk|y))

for all k ∈ {1, . . . , u} with i �= k .

The decision rule now says that the vector y of characteristics is assigned to
the class ωi, if

p(y ∈ ωi|y) > p(y ∈ ωk|y) for all k ∈ {1, . . . , u} with i �= k . (5.159)

Thus, the vector y of characteristics is classified into the class ωi which max-
imizes the posterior density function p(y ∈ ωi|y).

Example: Digital images of the surface of the earth are received by
satellites with special cameras which decompose the images into pixels and
measure the grey values of the pixels in p different frequency bands of the
visible and invisible light. The grey values of one pixel form the p× 1 vector
y of characteristics. If u objects ωi have to be identified in the digital image
based on different textures, each pixel is assigned according to (5.159) by
the vector y of characteristics into a class ωi. By classifying in this manner
each pixel is looked at isolated from its neigborhood. This disadvantage is
overcome by the method of segmentation described in Chapter 5.4.3. ∆

A real-valued discriminant function di(y) for i ∈ {1, . . . , u} depending on
the vector y of characteristics is defined for classifying y into ωi, if

di(y) > dk(y) for all k ∈ {1, . . . , u} with i �= k . (5.160)

As will become obvious in the following chapter, the computations can be
simplified, if the discriminant function is determined by

di(y) = ln p(y ∈ ωi|y) (5.161)

or with (5.155), since constants need not be considered in (5.160),

di(y) = ln p(y|y ∈ ωi) + ln pi . (5.162)

5.4.2 Normal Distribution with Known and Unknown Parameters

The distribution of the vector y of characteristics has not been specified yet.
The simple case is being dealt with first that the vector y is according to
(2.195) normally distributed with known parameters. Thus, we obtain in
(5.155)

p(y|y ∈ ωi) ∝ (detΣi)
−1/2 exp

[ − 1

2
(y − µi)

′Σ−1
i (y − µi)

]
(5.163)

with the p × 1 vector µi and the p × p positive definite matrix Σi as known
parameters. We then find from (5.162) the discrimant function

di(y) = −1

2
(y − µi)

′Σ−1
i (y − µi) −

1

2
ln detΣi + ln pi (5.164)
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for the decision rule (5.160). The boundary between the classes ωi and ωj

following from the decision is defined by the vector y of characteristics which
fulfills for the indices i, j ∈ {1, . . . , u} with i �= j the relation di(y) = dj(y).
The boundary is represented because of the quadratic form in (5.164) by a
surface of second order.

By assuming Σi = Σ and pi = c for all i ∈ {1, . . . , u} the discriminant
function (5.164) simplifies, since constants in the discriminant function need
not be taken care of because of (5.160), as negative discriminant function to

−di(y) = (y − µi)
′Σ−1(y − µi) (5.165)

which is called Mahalanobis distance. The vector y of characteristics is there-
fore assigned to the class ωi from which it has the shortest Mahalanobis
distance.

Since constants may be neglected, we introduce instead of (5.165) the
discriminant function

di(y) = y′Σ−1µi −
1

2
µ′

iΣ
−1µi . (5.166)

It is like (5.165) a linear function of the vector y of characteristics. The
decision boundary di(y) = dj(y) with i �= j is formed by a hyperplane
which cuts the plane spanned by two coordinate axes in straight lines, if the
coordinate planes are not parallel to the hyperplane.

If finally Σ = σ2I is valid, we obtain from (5.165) after omitting the
constant σ2 the negative discriminant function

−di(y) = (y − µi)
′(y − µi) (5.167)

which is called minimum distance classifier. Instead of (5.166) we get

di(y) = y′µi −
1

2
µ′

iµi . (5.168)

If ideal prototypes or templates are available for the classes ωi which are
represented by the vectors µi, the classification by (5.168) means a template
matching for which in analogy to (2.150) the covariance or after a normal-
ization the correlation of the vector y of characteristics and of the template
µi is computed. For instance, standardized numbers may be automatically
read by first decomposing them into pixels and then comparing them with
templates represented by pixels of equal size.

In general, the parameters µi and Σi of the normal distribution (5.163) for
the vector y of characteristics are not given, but have to be estimated because
of (2.196) as expected values and covariances of the vectors of characteristics.
For the estimation training samples, i.e. classified vectors of characteristics,
are needed, thus

y11, y12, . . . ,y1n1
from ω1

y21, y22, . . . ,y2n2
from ω2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
yu1, yu2, . . . ,yunu

from ωu

(5.169)
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where the p × 1 vectors yij of characteristics are independent and normally
distributed like

yij ∼ N(µi,Σi) for i ∈ {1, . . . , u}, j ∈ {1, . . . , ni} . (5.170)

The vector yij of characteristics of class ωi for i ∈ {1, . . . , u} contains with
yij = (yijk), j ∈ {1, . . . , ni} and k ∈ {1, . . . , p} as mentioned p characteris-
tics. The estimates µ̂i with µ̂i = (µ̂ik) of the expected values µi of these

characteristics and the estimates Σ̂i with Σ̂i = (σ̂ikl) and k, l ∈ {1, . . . , p} of
the covariance matrices Σi of the characteristics are obtained with p ≤ ni−1
in the multivariate linear model from the observations (5.169) arranged in
the following table, see for instance Koch (1999, p.251),

y′
i1 = |yi11, yi12, . . . , yi1p|

y′
i2 = |yi21, yi22, . . . , yi2p|

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y′

ini
= |yini1, yini2, . . . , yinip| .

We get

µ̂ik =
1

ni

ni∑
j=1

yijk for k ∈ {1, . . . , p}

or

µ̂i =
1

ni

ni∑
j=1

yij (5.171)

and

σ̂ikl =
1

ni − 1

ni∑
j=1

(µ̂ik − yijk)(µ̂il − yijl) for k, l ∈ {1, . . . , p}

or

Σ̂i =
1

ni − 1

ni∑
j=1

(µ̂i − yij)(µ̂i − yij)
′ . (5.172)

The parameters µi and Σi have to be replaced for the classification by their
estimates µ̂i and Σ̂i in the discriminant functions (5.164) to (5.168). An im-
provement of this method, which takes care of different sizes ni of the training
samples, may be found by the predictive analysis of Bayesian statistics, see
for instance Koch (1990, p.142).

5.4.3 Parameters for Texture

So far, the vector y of characteristics was assumed to be normally distributed
according to (2.195) with the parameters µi and Σi determined by the vector
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of expected values and the covariance matrix of y. If a texture is registered
by the vector y of characteristics, for instance, such that y contains the grey
values of a pixel of a digital image in several frequency bands, the parameters
of the distribution should also characterize the texture. The digital image
can then be segmented based on the textures. Distributions with parameters
for textures may be derived from Gibbs distributions which were already
mentioned in Chapter 5.3.1.

Let r with r ∈ Ω be a pixel of a digital image and Ω the set of pixels.
Furthermore, let yr with yr = (yrb) and b ∈ {1, . . . , B} be the B × 1 vector
of characteristics which contains for the pixel r the B grey values of a digital
image in B frequency bands. The textures of the image are numbered and
let ε with ε ∈ {1, . . . , T} be the number of one of the T textures and Ωε the
set of pixels of the texture ε. Let the measurement yrb and its error erb of the
grey value of the frequency band b for the texture ε in pixel r with r ∈ Ωε be
represented in form of the observation equation (4.3) of the linear model by
the observations yr+s in the neighborhood Np of pixel r. They are multiplied
by the unknown parameters βsεb valid for the texture ε and summed over the
neighborhood∑

s∈Np

βsεb(yr+s,b − µεb + yr−s,b − µεb) = yrb − µεb + erb . (5.173)

Here, µεb denotes the expected value of the observations yrb for the texture ε
with r ∈ Ωε. The index s defines the index of a pixel in half of the neighbor-
hood Np as in (5.147) so that with r+ s and r− s the whole neighborhood of
pixel r is covered as in (5.150). Pixels which lie symmetrically with respect
to r obtain identical parameters βsεb for the texture which therefore have to
be multiplied by yr+s,b and yr−s,b. Thus, the neighborhood of a pixel is taken
care of and a texture is parameterized.

Let the observations yrb in the different frequency bands be independent.
The covariance matrix D(yr) of yr then follows because of (2.153) from
the diagonal matrix D(yr) = diag(σ2

ε1, σ
2
ε2, . . . , σ

2
εB), where σ2

εb denotes the
variance of yrb with r ∈ Ωε in the frequency band b. If, in addition, it is
assumed that the vector yr of characteristics is normally distributed, we get
from (2.195) with (5.173) the density function for yr by

p(yr|∂yr, εr, ∂εr) ∝ exp
{ −

B∑
b=1

{ 1

2σ2
εb

[yrb − µεb

−
∑

s∈Np

βsεb(yr+s,b − µεb + yr−s,b − µεb)]
2}} (5.174)

subject to the condition that the vectors yr of characteristics in the neigbor-
hood Np of pixel r, denoted by ∂yr, and εr as well as ∂εr are given. The
random variable εr with εr = ε and ε ∈ {1, . . . , T} denotes the label of the
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pixel r and expresses its affiliation to a texture by the number of the tex-
ture to which the pixel belongs. The quantity ∂εr denotes the textures of
the pixels in the neighborhood of r. The random variable εr is an unknown
parameter, which has to be estimated, in order to solve the problem of seg-
mentation by attributing each pixel r to a texture. The density function
(5.174) is the likelihood function for the estimation.

This density function is given by means of the Markov property which says
that vectors of characteristics, which do not belong to the neigborhood Np of
the pixel r, are independent from the vector yr of characteristics. According
to (2.117) the components of these vectors of characteristics therefore do not
appear in the density function (5.174). It can be shown that the density
function (5.174) of the normal distribution is a special Gibbs distribution
(Koch and Schmidt 1994, p.308; Klonowski 1999, p.30).

The parameters µεb, σ
2
εb and βsεb in (5.174) are unknown and have to be

estimated. Because of the observation equations (5.173), where the expected
value µεb is subtracted from the measurements yrb, the parameters βsεb for
texture are invariant with respect to µεb. To show this, we sum the pixels r
over the set Ωε of pixels belonging to the texture ε and obtain by assuming∑

r∈Ωε
erb ≈ 0 in (5.173)

∑
r∈Ωε

∑
s∈Np

βsεb(yr+s,b − µεb + yr−s,b − µεb) =
∑
r∈Ωε

(yrb − µεb) .

Because of r + s ∈ Ωε and r − s ∈ Ωε we get in addition∑
r∈Ωε

(yrb − µεb) =
∑
r∈Ωε

(yr+s,b − µεb) =
∑
r∈Ωε

(yr−s,b − µεb) �= 0

so that by exchanging the two summations over r and s we have∑
s∈Np

βsεb = 0, 5 . (5.175)

Substituting this result in (5.173) leads to∑
s∈Np

βsεb(yr+s,b + yr−s,b) = yrb + erb (5.176)

which shows the invariance of the parameters βsεb with respect to µεb. This
property of invariance is not desired, if identical textures, which have different
expected values of grey values, shall be distinguished for instance based on
different colors. For estimating the parameters the constraint may therefore
be introduced∑

s∈Np

βsεb = 0 (5.177)
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which leads with (5.173) to∑
s∈Np

βsεb(yr+s,b + yr−s,b) = yrb − µεb + erb (5.178)

so that the invariance is removed.
In a supervised classification the parameters µεb, σ

2
εb and βsεb in (5.174)

are estimated from training sets and in an unsupervised classification from
an approximate segmentation which is iteratively improved. The parameter
µεb may be estimated in advance as the mean µ̂εb by

µ̂εb =
1

nε

∑
r∈Ωε

yrb (5.179)

if nε denotes the number of pixels in Ωε. Let the joint distribution of the
vectors yr of characteristics be approximately determined by the product of
the density functions (5.174). The maximum likelihood estimate (3.33) of
the parameters βsεb for texture in the frequency band b then leads to the
method (4.28) of least squares, since the sum of squares in the exponent of
the density function (5.174) has to be minimized. The observation equation
of the measurement yrb for this parameter estimation follows from (5.173)
with ∑

s∈Np

βsεb(yr+s,b − µ̂εb + yr−s,b − µ̂εb) = yrb − µ̂εb + erb . (5.180)

This observation equation has to be set up for all pixels r ∈ Ωε. The es-
timates of the parameters βsεb for texture and the estimate of the variance
σ2

εb of the observation yrb follow from (4.29) and (4.39) or when introducing
the constraints (5.177) from (4.42) and (4.55), see also Koch and Schmidt

(1994, p.328) and Klonowski (1999, p.36).
Textures contain in general not only a few pixels but extend over a larger

part of the digital image. This prior information may be used to define the
prior density function p(εr|∂εr) for the label εr, the affiliation of the pixel r
to a texture, as Gibbs distribution (Koch and Schmidt 1994, p.313)

p(εr|∂εr) ∝ exp
{ − [αε +

∑
s∈N0

βs(I(εr, εr+s) + I(εr, εr−s))]
}

(5.181)

by means of the indicator function

I(εr, εq) =

{
1 for εr �= εq

0 for εr = εq .
(5.182)

It registers, whether pixels in the neighborhood N0 of the pixel r belong to
different textures. The unknown parameters βs control with βs > 0 the affi-
liation to the same texture, since for large values of βs pairs of pixels from
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different textures obtain large negative exponents and therefore small values
for the density function p(εr|∂εr). The unknown parameters αε control the
number of pixels which are related to the texture ε with ε ∈ {1, . . . , T}. With
αε > 0 large values for αε give rise to associating few pixels to the texture
ε. The parameters αε and βs may be estimated from given segmentations
(Koch and Schmidt 1994, p.326).

The posterior density function p(εr|yr, ∂yr, ∂εr) for the unknown label
εr, the affiliation of the pixel r to the texture ε with ε ∈ {1, . . . , T}, follows
from Bayes’ theorem (2.122) with the prior density function (5.181) for the
label εr and the likelihood function (5.174) by

p(εr|yr, ∂yr, ∂εr) ∝ exp
{ − [αε +

∑
s∈N0

βs(I(εr, εr+s) + I(εr, εr−s))]

−
B∑

b=1

{ 1

2σ2
εb

[yrb −µεb −
∑

s∈Np

βsεb(yr+s,b −µεb + yr−s,b −µεb)]
2}} .

(5.183)

The parameters αε, βs, µεb, σ
2
εb and βsεb are assumed as known by their esti-

mates.
The conditional density function (5.183) can be used to estimate the labels

εr of all pixels r ∈ Ω of a digital image by an iterative deterministic proce-
dure like the ICM algorithm mentioned in Chapter 5.3.3 or by a stochastic
procedure like the Gibbs sampler presented in Chapter 6.3.2, see also Koch

and Schmidt (1994, p.323).
For the extension of the described method of texture recognition to the au-

tomatic interpretation of digital images see for instance Klonowski (1999),
Koch (1995b), Köster (1995) and Modestino and Zang (1992).

5.5 Bayesian Networks

5.5.1 Systems with Uncertainties

Bayesian networks are designed for making decisions in systems with uncer-
tainties. The system is represented by an n-dimensional discrete random
variable X1, . . . , Xn. Dependencies exist between the discrete values which
the random variables X1 to Xn may take on. They are expressed by the
n-dimensional discrete density function defined in (2.65) for the random vari-
ables X1, . . . , Xn and by their probability, respectively,

p(x1j1
, . . . , xnjn

|C) = P (X1 = x1j1
, . . . , Xn = xnjn

|C)

with jk ∈ {1, . . . , mk} , k ∈ {1, . . . , n} (5.184)

or in a more compact notation with (2.77)

p(x1, . . . , xn|C) = P (X1 = x1, . . . , Xn = xn|C) . (5.185)
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The dependency of the values of the random variables X1, . . . , Xn is there-
fore not deterministically controlled but governed by uncertainty which is ex-
pressed by the density function (5.184) or (5.185), where C gives additional
information on the system. The n-dimensional random variable X1, . . . , Xn

with its density function defines the system where the uncertainties appear.
The values of the random variables X1, . . . , Xn represent the state of the
system and the density function of the random variables the probability and
the uncertainty, respectively, of this state. The values of the random vari-
ables may be expressed by numbers which represent certain states. This
corresponds to the definition of the random variables given in Chapter 2.2
by statements in form of real numbers. The values of the random variable,
however, may also be given by propositions about certain states.

Example: It has to be decided, whether documents shall be delivered on
foot, by a bicycle, a motorcycle or a car. The decision depends first on the
weight of the documents which is expressed by the random variable X1 in
(5.184) with the values x11 = 1 (1 to 500 gr), x12 = 2 (500 to 1000 gr), x13 = 3
(1000 to 1500 gr), x14 = 4 (1500 to 2000 gr), x15 = 5 (above 2000 gr). Then,
the weather X2 with the values x21 = 1 (snow), x22 = 2 (ice), x23 = 3 (rain)
and so on has to be considered for the decision. Furthermore, the persons
who deliver the documents influence the decision. They are determined by
the values of the random variable X3 with x31 = 1 (person A), x32 = 2
(person B), x33 = 3 (person C), if three persons are available. The traffic
conditions X4 are considered with x41 = 1 (light traffic), x42 = 2 (heavy
traffic) and so on. The random variable X5 finally describes the possibilities
to deliver the documents. It takes on the values x51 = 1 (on foot), x52 = 2
(bicycle), x53 = 3 (motorcycle), x54 = 4 (car). The probabilities of the values
of the random variables express the uncertainty in the system for which one
has to decide upon the way of delivery. ∆

To reach a decision with respect to a random variable, for instance, Xi of
the system, the probabilities of the values xi of the random variable Xi have
to be computed from (5.185). We obtain according to (2.83) as marginal
density function p(xi|C) for Xi

p(xi|C) =
∑
x1

. . .
∑
xi−1

∑
xi+1

. . .
∑
xn

p(x1, . . . , xi−1, xi, xi+1, . . . , xn|C) . (5.186)

As will be explained in connection with (5.197), the marginal density function
p(xi|C) may be interpreted as posterior density function in the sense of Bayes’
theorem (2.122). Thus, we decide with Bayes rule and the zero-one loss
according to (3.30) for the MAP estimate x̂Mi of the random variable Xi,
which maximizes the posterior density function and therefore the probability,

x̂Mi = argmax
xi

p(xi|C) . (5.187)

Decisions in a system with uncertainties, which is represented by the n-
dimensional discrete random variable X1, . . . , Xn, can therefore be made, if
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the density function (5.185) of the random variable is known. It will be diffi-
cult for a large number of random variables, however, to determine their joint
distribution. It is more advantageous, to replace the joint distribution with
using the chain rule (2.116) by the conditional distributions and thus by the
probabilities of the individual random variables so that the knowledge about
the system with uncertainties is expressed by the probabilities. This was
already mentioned in Chapter 2.1.3. Furthermore, independencies will exist
between the random variables which simplify the conditional distributions.

5.5.2 Setup of a Bayesian Network

The density function (5.185) is expressed by the chain rule (2.116) to obtain

p(x1, x2, . . . , xn|C) = p(xn|x1, x2, . . . , xn−1, C)

p(xn−1|x1, x2, . . . , xn−2, C) . . . p(x2|x1, C)p(x1|C) . (5.188)

The conditional density functions on the right-hand side of the chain rule
may be graphically represented by a network whose nodes denote the random
variables X1, . . . , Xn. The conditional density functions are shown by arrows.
Thus, the joint density function is related to a network which is formally
proved by Neapolitan (1990, p.173). The head of an arrow points to the
random variable, whose conditional density function is expressed, and the
end of the arrow is connected with the random variable whose value appears
as condition in the density function. By this manner a directed acyclical

graph is developed, that is a graph with directed edges which do not produce
cycles.

Example 1: A directed acyclical graph is shown in Figure 5.1 for the
representation of (5.188) in case of n = 6. ∆

The directed acyclical graph which represents (5.188) has one root node,
from where arrows start only, and one leaf node, where arrows end only. The
root node is represented by the random variable X1 and the leaf node by the
random variable Xn.

As mentioned independencies between random variables can be assumed
for large systems. The chain rule (5.188) then simplifies, as was shown already
with (2.117). If the random variable Xi is independent from Xk and if i > k
holds true, then the arrow directed from the random variable k to the random
variable i drops out of the directed acyclical graph. This graph resulting from
the independencies of the random variables is called a Bayesian network.

Example 2: Let in the Example 1 with Figure 5.1 the random variable
X2 be independent from X1, the random variable X4 independent from X1

and X3 and the random variable X6 independent from X1, X2, X3 and X5.
Figure 5.2 shows the directed acyclical graph, the Bayesian network, which
results. It has in comparison to Figure 5.1 two root nodes and two leaf nodes.
By means of the Bayesian network of Figure 5.2 the density function of the six
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dimensional random variable X1, . . . , X6 may be immediately written down

p(x1, . . . , x6|C) = p(x6|x4, C)p(x5|x1, x2, x3, x4, C)p(x4|x2, C)

p(x3|x1, x2, C)p(x2|C)p(x1|C) . (5.189)
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Figure 5.1: Directed Acyclical Graph

In the conditional density functions of the random variables X1 to X6 on the
right-hand side of (5.189) only the values of the random variables enter as
conditions from which arrows are pointing to random variables.
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Figure 5.2: Bayesian Network

Of course, the density function (5.189) is also obtained, if the chain rule
(5.188) is applied for n = 6 and the independencies between the random
variables are then considered according to (2.117). ∆

This example shows how to proceed when setting up a Bayesian network.
The system with uncertainties is represented by the n-dimensional random



5.5 Bayesian Networks 171

variable X1, . . . , Xn with the random variables Xi for i ∈ {1, . . . , n} as nodes
of the network. Dependencies in the Bayesian network are identified by ar-
rows. The magnitude of the dependencies is expressed by the conditional
density functions. The arrows point from the random variables whose values
enter as conditions to the random variables whose probabilites have to be
specified or generally speaking from the conditions to the consequences.

Information on the system with uncertainties, which is represented by the
Bayesian network, is introduced as observations or measurements depending
on the random variables of the Bayesian network. The density function for
a node Xk takes on according to (5.188) with i < j < k the form

p(xk|xk−j , . . . , xk−i, C) . (5.190)

If the node Xk represents a leaf node of the Bayesian network, this density
function may be interpreted as density function for an observation Xk de-
pending on the random variables Xk−j to Xk−i. Leaf nodes may therefore
express observations or data. If observations exist for the random variable
Xi, which is not a leaf node, the leaf node Xk need only be appended to
Xi, see Figure 5.3, in order to introduce the density function p(xk|xi, C) for
the data Xk depending on Xi. If the data Xk depend on additional random
variables, arrows have to be inserted from these random variables to Xk and
the conditional density function for Xk has to be specified correspondingly.
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Xi p(xk|xi, C)

Xk

Figure 5.3: Leaf Node Xk for Data

As can be seen from (5.188) or (5.189), a root node of a Bayesian net-
work, for instance Xi, has the density function p(xi|C). This density function
may be interpreted in the sense of Bayes’ theorem (2.122) as a prior density
function stemming from prior information. Root nodes are therefore distin-
guished by relating prior information to them. But this does not mean that
only root nodes can have prior density functions. If based on prior infor-
mation a prior density function exists for the node Xi which is not a root
node, the leaf node Xk is inserted, whose value is given by Xk = xk0 as a
constant, see Figure 5.4. The prior density function for Xi follows with the
density function p(xk0|xi, C) where xk0 is a constant and only xi varies. The
density function p(xk0|xi, C) therefore depends only on the values for Xi and
is identical with the density function p(xi|C), if Xi is a true root node.

The density function p(xi|C) of a root node Xi need not be interpreted
as prior, it may be also understood as density function of an observation Xi
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of the Bayesian network. Leaf nodes as well as root nodes may therefore
represent data.
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Xi p(xk0|xi, C)

Xk = xk0

Figure 5.4: Leaf Node Xk for Prior Information

Example 3: To solve the decision problem of the example to (5.184),
the Bayesian network of Figure 5.2 of the Example 2 is applied. The pos-
sibilities to deliver documents on foot, by a bicycle, a motorcycle or a car
are represented by the random variable X5, that is by the node 5. These
possibilities of delivery are dependent on the weight X1 of the documents,
the weather X2 at the time of the delivery, the person X3, which takes care
of the delivery, and of the traffic conditions X4 to be encountered for the de-
livery. The random variables X1 to X4 are represented by the nodes 1 to 4.
The traffic conditions X4 also depend on the weather X2. The employment
of the person X3 for the delivery is also influenced by the weather X2 and
in addition by the weight X1. Based on experience prior information on the
root node 1, that is on the weight X1 of the documents, is available and the
weather forecast provides prior information for the root node 2, that is for
the weather X2. The random variable X6, i.e. the leaf node 6, represents
prior information on the traffic conditions X4. As will be explained in the
following chapter, additional knowledge may be introduced into the Bayesian
network, if values of the random variables are known, for instance, the weight
of the documents to be delivered or the actual weather at the time of the
delivery. ∆

Deterministic variables instead of random variables are also allowed as
nodes of a Bayesian network. The values xk of the variable Xk shall depend
on the values of Xk−j to Xk−i for i < j < k deterministically with

xk = f(xk−j , . . . , xk−i) (5.191)

where f(xk−j , . . . , xk−i) denotes a function of xk−j , . . . , xk−i. The node for
Xk is then designated as leaf node, because the remaining random vari-
ables of the network cannot depend on Xk but only on Xk−j to Xk−i.
The function (5.191) takes the place of the conditional density function
p(xk|xk−j , . . . , xk−i, C). Bayesian networks with deterministic variables are
called decision networks.

Thus, Bayesian networks may be set up in a flexible manner to describe
systems with uncertainties. The system is represented by the values of ran-
dom variables. Prior information on the random variables is introduced by
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prior density functions and information on the random variables by observa-
tions. The magnitude of the dependencies between random variables result
from the conditional density functions. The simplest way for obtaining them
is to compute them from (2.24) as relative frequencies based on the knowl-
edge about the system. The probabilities for the random variables of the
system represent the uncertainties. The computation of these probabilities
is the subject of the following chapter.

5.5.3 Computation of Probabilities

Based on the information, which enters the Bayesian network via the con-
ditional density functions, decisions are made by computing the probability
of a random variable of the Bayesian network and then applying (5.187).
Additional information may be brought into the Bayesian network by instan-

tiating random variables, that is by assigning values to them. Data, which
have been taken, determine the values of random variables which represent
the data, but also the remaining random variables, which do not denote data,
may be instantiated. Based on this information the marginal density func-
tion p(xi|C) for any random variable Xi is computed from (5.186) with the
chain rule (5.188). A decision is then made with (5.187).

Let the information first be determined by the conditional density func-
tions of the network only. We then obtain the marginal density function
p(xi|C) for Xi from (5.186) with (5.188) by

p(xi|C) =
∑
x1

p(x1|C)
∑
x2

p(x2|x1, C) . . .
∑
xi−1

p(xi−1|x1, . . . , xi−2, C)

p(xi|x1, . . . , xi−1, C)
∑
xi+1

p(xi+1|x1, . . . , xi, C)

. . .
∑
xn

p(xn|x1, . . . , xn−1, C) . (5.192)

The summation over the values of Xn to Xi+1 leads because of (2.103) to
one, thus

p(xi|C) =
∑
x1

p(x1|C)
∑
x2

p(x2|x1, C) . . .
∑
xi−1

p(xi−1|x1, . . . , xi−2, C)

p(xi|x1, . . . , xi−1, C) . (5.193)

The remaining summations over the values of Xi−1 to X1 do not give one.
This is true, because when summing over the values of Xi−1 each value of
the density function p(xi−1|x1, . . . , xi−2, C) is multiplied by a different value
of p(xi|x1, . . . , xi−1, C). Thus,∑

xi−1

p(xi−1|x1, . . . , xi−2, C)p(xi|x1, . . . , xi−1, C) �= 1 (5.194)
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follows. The same holds true for the summations over the values of Xi−2 to
X1.

Let the information of the Bayesian network now be determined in addi-
tion by the instantiation of random variables. For example, let the value xk0

with xk0 ∈ {xk1, . . . , xkmk
} from (5.184) be assigned to the random variable

Xk with i < k < n. We then obtain instead of (5.192)

p(xi|C) = α
∑
x1

p(x1|C)
∑
x2

p(x2|x1, C) . . .
∑
xi−1

p(xi−1|x1, . . . , xi−2, C)

p(xi|x1, . . . , xi−1, C)
∑
xi+1

p(xi+1|x1, . . . , xi, C)

. . .
∑
xk−1

p(xk−1|x1, . . . , xk−2, C)p(xk0|x1, . . . , xk−1, C) , (5.195)

since summing over the values of the random variables Xn to Xk+1 which are
not instantiated gives one because of (2.103). On the contrary, the summation
over the values of Xk−1 leads to a value unequal to one out of the same reason
as explained by (5.194).

The quantity α in (5.195) denotes the normalization constant. It must
be introduced so that (2.103) is fulfilled for p(xi|C). The reason is that the
value xk0 is assigned to the random variable Xk and it is not summed over
the remaining values of Xk. A normalization constant is therefore always
mandatory, if a marginal density function is computed in the presence of
instantiated random variables. If a random variable is instantiated which
has a prior density function, the prior density gives a constant which can be
absorbed in the normalization constant α.

We have first to sum in (5.195) over the values of Xk−1, then over the
ones of Xk−2 and so on until over the values of Xi+1. Then, the summation
over Xi−1 to X1 follows. If we set

λ(x1, . . . , xk−1) = p(xk0|x1, . . . , xk−1, C)

λ(x1, . . . , xk−2) =
∑

xk−1

p(xk−1|x1, . . . , xk−2, C)λ(x1, . . . , xk−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ(x1, . . . , xi) =
∑

xi+1

p(xi+1|x1, . . . , xi, C)λ(x1, . . . , xi+1)

(5.196)

we obtain instead of (5.195)

p(xi|C) = α
∑
x1

p(x1|C)
∑
x2

p(x2|x1, C) . . .
∑
xi−1

p(xi−1|x1, . . . , xi−2, C)

p(xi|x1, . . . , xi−1, C)λ(x1, . . . , xi) . (5.197)

This marginal density function may be interpreted in the sense of Bayes’
theorem (2.122) as posterior density function, if λ(x1, . . . , xi) denotes the
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likelihood function which originates from the instantiation of a random vari-
able, for instance of an observation. The summations over the remaining
conditional density functions and their multiplications give the prior density
function.

If the marginal density function p(xi|C) has to be computed for each node
of the Bayesian network, it can be seen from (5.196) that the likelihood func-
tion may be obtained in advance for each random variable by a summation.
However, the part which is interpreted as prior density function in (5.197)
cannot be determined in advance independent from the likelihood function,
since one has to sum over the values x1 to xi−1 on which the likelihood func-
tion is also depending. Hence, for each node Xi of the Bayesian network the
product

p(xi|x1, . . . , xi−1, C)λ(x1, . . . , xi)

has to be computed. The result is then multiplied by the conditional density
function for Xi−1 and the product has to be summed over the values of Xi−1.
This procedure is repeated up to the random variable X1. The computational
effort, to get the marginal density function p(xi|C) of each node in a larger
Bayesian network, is therefore quite considerably.

The discussion of computing the marginal density function was based on
the chain rule (5.188) where independencies of random variables have not
been considered. By independencies random variables disappear in the list
of the variables whose values enter as conditions in the conditional density
functions, as was shown with (5.189) for the example of the Bayesian network
of Figure 5.2. The number of density values and therefore the number of
summations decreases by the factor ml, if the random variable Xl with ml

values disappears from the list of conditions. This can be seen from (2.115).
Because of the independencies more than one leaf node or one root node
might appear, as was already mentioned in the preceding chapter.

The computation of the marginal density function is especially simple,
if not only the likelihood function as in (5.196) but also the prior density
function can be separately determined from each other for every node of
the network. A local computation is then possible by giving the contribu-
tion of each node of the Bayesian network to the marginal density function.
Prerequisite of such a procedure, which goes back to Pearl (1986), is the
singly connected Bayesian network for which only one path exists between
any two nodes, the directions of the arrows not being considered. These net-
works are treated in the following three chapters where the computation of
the probabilities is derived. Methods for transforming networks with multi-
ple connections into singly connected ones are given in (Pearl 1988, p.195;
Dean and Wellman 1991, p.289).

Applications of the Bayesian networks, e.g. for the navigation of roboters,
are described in (Dean and Wellman 1991, p.297), for the interpretation of
digital images in (Koch 1995a; Kulschewski 1999), for decisions in con-
nection with geographic information systems in (Stassopoulou et al. 1998)
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and for industrial applications in (Oliver and Smith 1990, p.177). Hints
for setting up Bayesian networks and for computer programs to determine
the probabilities are found in (Jensen 1996, p.33).

Before concluding the chapter three simple examples shall be presented.

Example 1: It has to be decided which means of transportation shall
be chosen depending on the weather. As means of transportation, which is
represented by the random variable T , a bicycle and a car are available. Not
integers with special meanings shall be assigned to the values of the random
variables, as done in the example to (5.184), but the meanings are introduced
immediately as values. The random variable T therefore gets the two values t

t =

∣∣∣∣ bicycle
car

∣∣∣∣ .

The weather represented by the random variable W is provided with the
meanings w

w =

∣∣∣∣∣∣
rain

overcast
sun

∣∣∣∣∣∣ .

The values of the density function p(t|w, C) for T given w and C, where C
denotes the information about the habit of choosing a means of transporta-
tion, result, for instance, according to (2.24) as relative frequencies based on
the habits from the following table. It is set up corresponding to (2.114) by

bicycle car
0.2 0.8 rain

p(t|w, C) = 0.7 0.3 overcast
0.9 0.1 sun .

The density function p(w|C) of the prior information on the weather W is
determined by

p(w|C) =
0.3 rain
0.5 overcast
0.2 sun .

Prior information V = v0 exists for the choice of the means of transportation
T with

p(v0|t, C) =
0.6 bicycle
0.4 car .

Summarizing we obtain the Bayesian network shown in Figure 5.5.
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means of transportation T
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p(t|w, C)

p(v0|t, C)

Figure 5.5: Bayesian Network of Example 1

The marginal density function p(t|C) for the means of transportation T
follows with (5.195) by

p(t|C) = α
∑
w

p(w|C)p(t|w, C)p(v0 |t, C)

= α

∣∣∣∣ (0.3 × 0.2 + 0.5 × 0.7 + 0.2 × 0.9) × 0.6
(0.3 × 0.8 + 0.5 × 0.3 + 0.2 × 0.1) × 0.4

∣∣∣∣
=

1

0.354 + 0.164

∣∣∣∣ 0.354
0.164

∣∣∣∣
=

0.68 bicycle
0.32 car .

Based on the information, which is contained in the conditional density func-
tions of the Bayesian network for the choice of a means of transportation, a
probability of 68% results for the bicycle and a probability of 32% for the
car. Because of (5.187) the bicycle is chosen for the transportation.

Information is now added such that the random variable W is instantiated
by “w = overcast”. The prior density function for W then gives a constant
which can be absorbed in the normalization constant, as was already men-
tioned in connection with (5.195). However, this possibility is not chosen
here in order to continue as before

p(t|w = overcast, C)

= α p(w = overcast|C)p(t|w = overcast, C)p(v0|t, C)

= α
0.5 × 0.7 × 0.6
0.5 × 0.3 × 0.4

=
0.78 bicycle
0.22 car .

For a clouded sky the probability of taking the bicycle is considerably greater
than the one of choosing the car. Because of (5.187) the bicycle is therefore
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selected as means of transportation. With “w = rain” we obtain

p(t|w = rain, C)

= α p(w = rain|C)p(t|w = rain, C)p(v0|t, C)

= α
0.3 × 0.2 × 0.6
0.3 × 0.8 × 0.4

=
0.27 bicycle
0.73 car .

The car will therefore be taken. ∆

Example 2: Not only the weather W but also the feeling of the person
choosing the means of transportation T influences the choice of transporta-
tion. Let the feeling, the random variable B, have the values b

b =
fresh
tired .

The values of the density function p(t|w, b, C) for T given w, b and C result
from the following two tables which are built up like (2.115)

bicycle car
0.2 0.8 rain

p(t|w, b = fresh, C) = 0.7 0.3 overcast
0.9 0.1 sun

bicycle car
0.1 0.9 rain

p(t|w, b = tired, C) = 0.6 0.4 overcast
0.8 0.2 sun .

The prior information on the feeling B is contained in the prior density
function p(b|C). It expresses the fact that the person, who selects the means
of transportation T , is often tired

p(b|C) =
0.3 fresh
0.7 tired .

The prior information on the weather and the means of transportation is de-
termined by the prior density functions of Example 1. The Bayesian network
shown in Figure 5.6 is obtained.
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means of transportation T

prior information V

p(t|w, b, C)

p(v0|t, C)

feeling B weather W

Figure 5.6: Bayesian Network of Example 2

The marginal density function p(t|C) for the means of transportation T
follows with (5.195) by

p(t|C) = α
∑

b

p(b|C)
∑
w

p(w|C)p(t|w, b, C)p(v0|t, C)

= α
(
0.3

∣∣∣∣ (0.3 × 0.2 + 0.5 × 0.7 + 0.2 × 0.9) × 0.6
(0.3 × 0.8 + 0.5 × 0.3 + 0.2 × 0.1) × 0.4

∣∣∣∣
+ 0.7

∣∣∣∣ (0.3 × 0.1 + 0.5 × 0.6 + 0.2 × 0.8) × 0.6
(0.3 × 0.9 + 0.5 × 0.4 + 0.2 × 0.2) × 0.4

∣∣∣∣ )

=
0.62 bicycle
0.38 car .

Despite the fact that a tired feeling B prevails, the bicycle is chosen as means
of transportation.

The weather W shall now be instantiated by “w = overcast”. We then
obtain

p(t|w = overcast, C)

= α
∑

b

p(b|C)p(w = overcast|C)p(t|w = overcast, b, C)p(v0|t, C)

= α
(
0.3

∣∣∣∣ 0.5 × 0.7 × 0.6
0.5 × 0.3 × 0.4

∣∣∣∣ + 0.7

∣∣∣∣ 0.5 × 0.6 × 0.6
0.5 × 0.4 × 0.4

∣∣∣∣ )

=
0.72 bicycle
0.28 car .

With a clouded sky the probability increases like in Example 1 to use the
bicycle.

If the random variables feeling B and weather W are instantiated by “b =
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tired” and “w = overcast” we get

p(t|b = tired, w = overcast, C) = α p(b = tired|C)

p(w = overcast, C)p(t|w = overcast, b = tired, C)p(v0|t, C)

= α
(
0.7

∣∣∣∣ 0.5 × 0.6 × 0.6
0.5 × 0.4 × 0.4

∣∣∣∣ )

=
0.69 bicycle
0.31 car .

Despite a tired feeling the bicycle is chosen, when the sky is overcast. ∆

Example 3: As is well known, the weather influences the feelings of
persons. Instead of introducing a prior density function for the feeling B, as
done in Example 2, the feeling B shall now depend on the weather W . The
density function p(b|w, C) has the values shown in the following table which
is set up like in (2.114) by

fresh tired
0.2 0.8 rain

p(b|w, C) = 0.4 0.6 overcast
0.7 0.3 sun .

The Bayesian network of Figure 5.7 is therefore obtained for choosing the
means of transportation T . This network by the way does not belong to the
singly connected Bayesian network, because two paths exist from the random
variable W to the random variable T . The probabilities for the random
variables of this network therefore cannot be computed by the formulas given
in the following three chapters.
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means of transportation T

prior information V

p(t|w, b, C)

p(v0|t, C)

feeling B weather W

p(b|w, C)

Figure 5.7: Bayesian Network of Example 3

The marginal density function p(t|C) for the means of transportation T
follows from (5.195) with the prior density functions for W and T of Exam-
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ple 1 and the conditional density function for T of the Example 2 by

p(t|C) = α
∑
w

p(w|C)
∑

b

p(b|w, C)p(t|w, b, C)p(v0|t, C)

= α
(
0.3

∣∣∣∣ (0.2 × 0.2 + 0.8 × 0.1) × 0.6
(0.2 × 0.8 + 0.8 × 0.9) × 0.4

∣∣∣∣
+ 0.5

∣∣∣∣ (0.4 × 0.7 + 0.6 × 0.6)× 0.6
(0.4 × 0.3 + 0.6 × 0.4)× 0.4

∣∣∣∣
+ 0.2

∣∣∣∣ (0.7 × 0.9 + 0.3 × 0.8)× 0.6
(0.7 × 0.1 + 0.3 × 0.2)× 0.4

∣∣∣∣ )

=
0.63 bicycle
0.37 car .

The dependency of the feeling B on the weather W changes in comparison
to the Example 2 slightly the propabilities for the transportation by bicycle
or by car.

Let the weather W be instantiated again by “w = overcast”. Then the
marginal density function for T follows with

p(t|w = overcast, C) = α p(w = overcast|C)∑
b

p(b|w = overcast, C)p(t|w = overcast, b, C)p(v0|t, C)

= α
(
0.5

∣∣∣∣ (0.4 × 0.7 + 0.6 × 0.6) × 0.6
(0.4 × 0.3 + 0.6 × 0.4) × 0.4

∣∣∣∣ )

=
0.73 bicycle
0.27 car .

If we put “b = tired” and “w = overcast”, we find

p(t|b = tired, w = overcast, C) = α p(w = overcast, C)

p(b = tired|w = overcast, C)p(t|w = overcast, b = tired, C)p(v0|t, C)

= α
( ∣∣∣∣ 0.6 × 0.6 × 0.6

0.6 × 0.4 × 0.4

∣∣∣∣ )

=
0.69 bicycle
0.31 car .

For the first case a small change of the probabilities for the two means of
transportation follows in comparison to Example 2, for the second case no
change occurs. ∆

5.5.4 Bayesian Network in Form of a Chain

A singly connected Bayesian network where only one path exists between any
two nodes of the network is in its simplest form a chain which is depicted in
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Figure 5.8. The random variable Xi depends only on the random variable

� � � � � �. . . . . .
 
 

 

 


X1 X2 Xi−1 Xi Xi+1 Xn

Figure 5.8: Bayesian Network as Chain

Xi−1 for i ∈ {2, . . . , n}. We therefore get with (2.117) and the chain rule
(5.188)

p(x1, . . . , xn|C) = p(x1|C)p(x2|x1, C) . . . p(xi−1|xi−2, C)

p(xi|xi−1, C)p(xi+1|xi, C) . . . p(xn|xn−1, C) . (5.198)

This is the density function of a Markov chain with transition probabilities
p(xi|xi−1, C), see for instance Koch and Schmidt (1994, p.183).

The marginal density function p(xi|C) for the random variable Xi follows
from (5.198) with (5.192)

p(xi|C) =
∑
x1

p(x1|C)
∑
x2

p(x2|x1, C) . . .
∑
xi−1

p(xi−1|xi−2, C)

p(xi|xi−1, C)
∑
xi+1

p(xi+1|xi, C) . . .
∑
xn

p(xn|xn−1, C) . (5.199)

In contrast to (5.197) the prior density function, which will be called π(xi),
in the marginal density function p(xi|C) can now be computed independently
from the likelihood function λ(xi). We therefore obtain

p(xi|C) = απ(xi)λ(xi) (5.200)

with

π(x1) = p(x1|C)

π(x2) =
∑
x1

π(x1)p(x2|x1, C)

π(x3) =
∑
x2

π(x2)p(x3|x2, C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π(xi−1) =
∑

xi−2

π(xi−2)p(xi−1|xi−2, C)

π(xi) =
∑

xi−1

π(xi−1)p(xi|xi−1, C)

(5.201)
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and

λ(xn−1) =
∑
xn

p(xn|xn−1, C)λ(xn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ(xi+1) =
∑

xi+2

p(xi+2|xi+1, C)λ(xi+2)

λ(xi) =
∑

xi+1

p(xi+1|xi, C)λ(xi+1) .

(5.202)

Again, α denotes the normalization constant in (5.200), since corresponding
to (5.195) instantiated random variables shall be introduced. Beginning with
the random variable X1 the prior density function π(xi) can be computed for
each random variable Xi with i ∈ {1, . . . , n}. Starting from Xn the likelihood
function λ(xi) is obtained for each random variable Xi with i ∈ {n−1, . . . , 1}
after defining λ(xn) as follows.

If the leaf node Xn is not instantiated,

λ(xn) = 1 (5.203)

holds true for all values xn, because the summation over the density function
for Xn in (5.202) has to give the value one, as was already mentioned in
connection with (5.192). If the leaf node is instantiated by

Xn = xn0 , xn0 ∈ {xn1, . . . , xnmn
} (5.204)

because of (5.184),

λ(xn0) = 1 and λ(xn) = 0 for the remaining values xn (5.205)

must hold true so that from (5.202)

λ(xn−1) = p(xn0|xn−1, C) (5.206)

follows. If with i < k < n the node Xk is instantiated by

Xk = xk0, xk0 ∈ {xk1, . . . , xkmk
} , (5.207)

we obtain corresponding to the derivation of (5.195)

λ(xn) = 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ(xk+1) = 1

λ(xk0) = 1 and λ(xk) = 0 for the remaining values xk

λ(xk−1) = p(xk0|xk−1, C) .

(5.208)

The computations for the node Xi shall be summarized (Pearl 1988,
p.161). Let the node Xi be denoted by X , Xi−1 as parent of X by U and
Xi+1 as child of X by Y . Instead of (5.200) we then obtain

p(x|C) = απ(x)λ(x) (5.209)
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with the prior density function π(x) from (5.201) which the parent U gives
to its child X

π(x) =
∑

u

π(u)p(x|u, C) (5.210)

and with the likelihood function λ(x) from (5.202) which the child Y reports
to its parent X

λ(x) =
∑

y

p(y|x, C)λ(y) . (5.211)

To obtain from (5.209) the marginal density function p(x|C) of each node X
of the Bayesian network in form of a chain, the prior density function π(y)
which the node X gives to its child Y has to be computed from (5.210) and
the likelihood function λ(u) from (5.211) which the node X sends to parent
U , thus

π(y) =
∑

x

p(y|x, C)π(x)

λ(u) =
∑

x

p(x|u, C)λ(x) .
(5.212)

5.5.5 Bayesian Network in Form of a Tree

A further example of a singly connected Bayesian network, for which the
prior density function can be given separately from the likelihood function
for each node of the network, is the Bayesian network in form of a tree. Each
node has several children but only one parent, as shown in Figure 5.9. The
nodes X1 to Xn possess the parent Ul which in turn has (UUl)p as parent.
The nodes Y1 to Ym are the children of Xi, (Y Y1)1 to (Y Y1)my1 the children
of Y1 and (Y Ym)1 to (Y Ym)mym

the children of Ym. If the independencies
are considered according to (2.117), the joint density function of the random
variables of the Bayesian network follows with the chain rule (5.188) by

p(. . . , (uul)p, . . . , ul, x1, . . . , xi, . . . , xn, . . . , y1, . . . , ym, (yy1)1, . . . ,

(yy1)my1 , . . . , (yym)1, . . . , (yym)mym
, . . . |C)

= . . . p((uul)p| . . .) . . . p(ul|(uul)p, C)p(x1|ul, C) . . .

p(xi|ul, C) . . . p(xn|ul, C) . . . p(y1|xi, C) . . . p(ym|xi, C)

p((yy1)1|y1, C) . . . p((yy1)my1 |y1, C) . . .

p((yym)1|ym, C) . . . p((yym)mym
|ym, C) . . . (5.213)
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and with (5.195) the marginal density function p(xi|C) for the random vari-
able Xi because of instantiated random variables by

p(xi|C) = α
[
. . .

∑
(uul)p

p((uul)p| . . .) . . .
∑
ul

p(ul|(uul)p, C)

∑
x1

p(x1|ul, C) . . . p(xi|ul, C) . . .
∑
xn

p(xn|ul, C) . . .

∑
y1

p(y1|xi, C) . . .
∑
ym

p(ym|xi, C)
∑

(yy1)1

p((yy1)1|y1, C) . . .

∑
(yy1)my1

p((yy1)my1 |y1, C) . . .
∑

(yym)1

p((yym)1|ym, C) . . .

∑
(yym)mym

p((yym)mym
|ym, , C) . . .

]
. (5.214)
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Figure 5.9: Bayesian Network as Tree

As in (5.200) the prior density function π(xi) in the marginal density
function can be separately computed from the likelihood function λ(xi), thus

p(xi|C) = απ(xi)λ(xi) (5.215)
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with

π(xi) =
∑
ul

p(xi|ul, C)πXi
(ul) (5.216)

where πXi
(ul) denotes the contribution to the prior density function which

the parent Ul gives to the child Xi. We obtain with (5.214)

πXi
(ul) =

∑
(uul)p

πUl
((uul)p)p(ul|(uul)p, C)

∑
x1

p(x1|ul, C) . . .

∑
xi−1

p(xi−1|ul, C)
∑
xi+1

p(xi+1|ul, C) . . .
∑
xn

p(xn|ul, C) . . . (5.217)

and in addition

λ(xi) =
∏
j

λYj
(xi) (5.218)

where λYj
(xi) names the contribution to the likelihood function which the

node Yj delivers to the parent Xi. We obtain with (5.214) and (5.218)

λYj
(xi) =

∑
yj

p(yj |xi, C)
∑

(yyj)1

p((yyj)1|yj , C) . . .

∑
(yyj)myj

p((yyj)myj
|yj , C) . . .

=
∑
yj

p(yj |xi, C)
∏
k

λ(Y Yj)k
(yj)

=
∑
yj

p(yj |xi, C)λ(yj) . (5.219)

With this result and with (5.216) we finally get instead of (5.217)

πXi
(ul) =

∑
(uul)p

πUl
((uul)p)p(ul|(uul)p, C)

∏
k �=i

λXk
(ul)

= π(ul)
∏
k �=i

λXk
(ul) . (5.220)

The marginal density function p(xi|C) for the node Xi therefore follows
from (5.215) together with (5.216), (5.218), (5.219) and (5.220). The contri-
bution πYj

(xi) to the prior density function which the node Xi transmits to
each of its children Yj is computed from (5.220) by (Pearl 1988, p.169)

πYj
(xi) = π(xi)

∏
k �=j

λYk
(xi) (5.221)
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and the contribution λXi
(ul) from (5.219) to the likelihood function which

Xi sends to the parent Ul by

λXi
(ul) =

∑
xi

p(xi|ul, C)λ(xi) . (5.222)

If Yk is a leaf node and not instantiated,

λ(yk) = 1 (5.223)

holds true for all values yk as in (5.203). If Yk is a leaf node or an arbitrary
node and if it is instantiated by

Yk = yk0 , yk0 ∈ {yk1, . . . , ykmk
} (5.224)

from (5.184),

λ(yk0) = 1 and λ(yk) = 0 for the remaining values yk (5.225)

result as in (5.205) or (5.208) and in case of an arbitrary node

λ((yyk)l) = 1 for all children (Y Yk)l of Yk . (5.226)

5.5.6 Bayesian Network in Form of a Polytreee

A last example for a singly connected Bayesian network is a Bayesian network
as a polytree. Each node may have any number of parents and any number
of children, but there is only one path from an arbitrary node to another one,
see Figure 5.10. The node X possesses the parents U1 to Un. The node U1

has besides X the children (Y U1)1 to (Y U1)ny1
and Un the children (Y Un)1

to (Y Un)nyn
and so on, as shown in Figure 5.10. The joint density function

of the random variables of the Bayesian network is given with

p(. . . , (uu1)1, . . . , (uu1)nu1 , . . . , (uun)1, . . . , (uun)nun
, u1, . . . , un,

(yu1)1, . . . , (yu1)ny1 , . . . , (yun)1, . . . , (yun)nyn
, x, y1, . . . , ym, . . . ,

(uy1)1, . . . , (uy1)mu1 , . . . , (uym)1, . . . , (uym)mum
, . . . ,

(yy1)1, . . . , (yy1)my1 , . . . , (yym)1, . . . , (yym)mym
, . . . |C) . (5.227)

By applying the chain rule (5.188) with considering the independencies ac-
cording to (2.117) and by computing the marginal density function p(x|C)
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for the random variable X from (5.195) we obtain

p(x|C) = α
[ · · · ∑

(uu1)1

p((uu1)1| . . .) . . .
∑

(uu1)nu1

p((uu1)nu1 | . . .) . . .

∑
(uun)1

p((uun)1| . . .) . . .
∑

(uun)nun

p((uun)nun
| . . .)

∑
u1

p(u1|(uu1)1, . . . , (uu1)nu1 , C) . . .
∑
un

p(un|(uun)1, . . . , (uun)nun
, C)

∑
(yu1)1

p((yu1)1|u1, . . . , C) . . .
∑

(yu1)ny1

p((yu1)ny1 |u1, . . . , C) . . .

∑
(yun)1

p((yun)1|un, . . . , C) . . .
∑

(yun)nyn

p((yun)nyn
|un, . . . , C) . . .

p(x|u1, . . . , un, C)
∑
y1

p(y1|x, (uy1)1, . . . , (uy1)mu1 , C) . . .

∑
ym

p(ym|x, (uym)1, . . . , (uym)mum
, C) . . .

∑
(uy1)1

p((uy1)1| . . .) . . .
∑

(uy1)mu1

p((uy1)mu1 | . . .) . . .

∑
(uym)1

p((uym)1| . . .) . . .
∑

(uym)mum

p((uym)mum
| . . .) . . .

∑
(yy1)1

p((yy1)1|y1, . . . , C) . . .
∑

(yy1)my1

p((yy1)my1 |y1, . . . , C) . . .

∑
(yym)1

p((yym)1|ym, . . . , C) . . .
∑

(yym)mym

p((yym)mym
|ym, . . . , C) . . .

]
.

(5.228)

The prior density function π(x) and the likelihood function λ(x) in the
marginal density function may be separated again as in (5.215)

p(x|C) = α π(x)λ(x) (5.229)

with

π(x) =
∑

u1,...,un

p(x|u1, . . . , un, C)

n∏
i=1

πX(ui) (5.230)

where πX(ui) denotes the contribution to the prior density function which
the node Ui delivers to its child X . If one bears in mind that in (5.228) the
density functions of the nodes are not given, which in Figure 5.10 are only
indicated by arrows, one obtains
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Figure 5.10: Bayesian Network as Polytree

πX(ui) =

nyi∏
l=1

[ ∑
(yui)l

∏
...

. . .
∑
...

p((yui)l|ui, . . . , C)
∏
...

. . .
]

∑
(uui)1,...,(uui)nui

p(ui|(uui)1, . . . , (uui)nui
, C)

nui∏
k=1

[ ∏
...

. . .
∑
...

p((uui)k| . . .)
∏
...

. . .
]

. (5.231)

The likelihood function λ(x) in (5.229) follows from

λ(x) =

m∏
j=1

λYj
(x) (5.232)

where λYj
(x) denotes the contribution which the node Yj delivers to the
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parent X . We obtain with (5.228)

λYj
(x) =

∑
yj

myj∏
l=1

[ ∑
(yyj)l

∏
...

. . .
∑
...

p((yyj)l|yj, . . . , C)
∏
...

. . .
]

∑
(uyj)1,...,(uyj)muj

p(yj |x, (uyj)1, . . . , (uyj)muj
, C)

muj∏
k=1

[∏
...

. . .
∑
...

p((uyj)k| . . .)
∏
...

. . .
]

. (5.233)

The contribution πX(ui) finally follows with (5.233) by

πX(ui) =

nyi∏
l=1

λ(Y Ui)l
(ui)

∑
(uui)1,...,(uui)nui

p(ui|(uui)1, . . . , (uui)nui
, C)

nui∏
k=1

πUi
(uui)k (5.234)

and λYj
(x) with (5.232) and (5.234) by

λYj
(x) =

∑
yj

λ(yj)
∑

(uyj)1,...,(uyj)muj

p(yj |x, (uyj)1, . . . , (uyj)muj
, C)

muj∏
k=1

πYj
(uyj)k . (5.235)

Thus, the marginal density function p(x|C) for the random variable X is
obtained from (5.229), (5.230), (5.232), (5.234) and (5.235). The contribution
πYj

(x) to the prior density function which the node X delivers to the child
Yj follows from (5.234) by

πYj
(x) =

∏
l�=j

λYl
(x)

∑
u1,...,un

p(x|u1, . . . , un, C)

n∏
k=1

πX(uk) (5.236)

and the contribution λX(ui) which X sends to the parent Ui from (5.235) by

λX(ui) =
∑

x

λ(x)
∑

uk :k �=i

p(x|u1, . . . , un, C)
∏
k �=i

πX(uk) (5.237)

in agreement with Pearl (1988, p.183), who by the way normalizes the
contributions πYj

(x) and λX(ui). The values for λ(yk) of an instantiated or
not instantiated leaf node Yk or of an instantiated arbitrary node Yk follow
from (5.223) to (5.226).

Example: The marginal density function p(x2|C) for the random vari-
able X2 of the Bayesian network of Figure 5.11 shall be computed. We obtain
from (5.229)

p(x2|C) = α π(x2)λ(x2)
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and from (5.230)

π(x2) =
∑

u2,u3,u4

p(x2|u2, u3, u4, C)πX2 (u2)πX2(u3)πX2(u4)

and from (5.232), (5.234) and (5.235)

πX2(u2) = λX1(u2)p(u2|C)

λX1 (u2) =
∑
x1

λ(x1)
∑
u1

p(x1|u1, u2, C)πX1 (u1)

πX1(u1) = p(u1|C)

πX2(u3) =
∑

(uu3)1,(uu3)2

p(u3|(uu3)1, (uu3)2, C)p((uu3)1|C)p((uu3)2|C)

πX2(u4) = p(u4|C) .

Thus, π(x2) finally follows from

π(x2) =
∑

u2,u3,u4

p(u2|C)
∑
x1

λ(x1)
∑
u1

p(u1|C)p(x1|u1, u2, C)

∑
(uu3)1,(uu3)2

p((uu3)1|C)p((uu3)2|C)p(u3|(uu3)1, (uu3)2, C)

p(u4|C)p(x2|u2, u3, u4, C) .

The likelihood function λ(x2) is obtained with (5.232) by

λ(x2) = λY1(x2)λY2(x2)λY3 (x2)

where with (5.235)

λY1(x2) =
∑
y1

2∏
l=1

λ(Y Y1)l
(y1)p(y1|x2, C)

λ(Y Y1)1(y1) =
∑

(yy1)1

λ((yy1)1)p((yy1)1|y1, C)

λ(Y Y1)2(y1) =
∑

(yy1)2

λ((yy1)2)p((yy1)2|y1, C)

λY2(x2) =
∑
y2

λ(y2)p(y2|x2, C)

λY3(x2) =
∑
y3

λ(y3)p(y3|x2, C) ,

thus

λ(x2) =
∑

y1,y2,y3

∑
(yy1)1,(yy1)2

λ((yy1)1)p((yy1)1|y1, C)

λ((yy1)2)p((yy1)2|y1, C)p(y1|x2, C)λ(y2)p(y2|x2, C)λ(y3)p(y3|x2, C) .
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If the random variable (Y Y1)1 only is instantiated by

(Y Y1)1 = (yy1)10 ,

summing the conditional density functions for the random variables U1, X1,
Y2, Y3 and (Y Y1)2 gives with (5.223) to (5.226) the values one, as was ex-
plained already for the derivation of (5.193). We obtain for π(x2) and λ(x2)

π(x2) =
∑

u2,u3,u4

p(u2|C)
∑

(uu3)1,(uu3)2

p((uu3)1|C)p((uu3)2|C)

p(u3|(uu3)1, (uu3)2, C)p(u4|C)p(x2|u2, u3, u4, C)

λ(x2) =
∑
y1

p((yy1)10|y1, C)p(y1|x2, C) .
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Figure 5.11: Example of a Bayesian Network as Polytree

To check this derivation, the joint density function for the random variables
of the Bayesian network of Figure 5.11 is written down by applying the chain
rule (5.188), the marginal density function for the random variable X2 is
then formed with (5.186) and the random variable (Y Y1)1 is instantiated.
The marginal density function p(x2|C) obtained with (5.195) agrees with the
result given above. ∆
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The posterior density function p(x|y, C) for the continuous random vector x

of the unknown parameters has to be integrated for the Bayes estimate from
(3.10), for computing confidence regions with (3.35), for the test of hypothe-
ses with (3.62), (3.71) or (3.74) and for determining marginal distributions
with (3.5). Often, these integrals cannot be solved analytically so that nu-
merical techniques have to be applied. Special methods of approximation
exist, see for instance Press (1989, p.73), which however become inefficient,
if the number of parameters is large. The stochastic method of Monte Carlo
integration in Chapter 6.2 helps to overcome this deficiency. Random values
have to be generated for the Monte Carlo integration from a distribution
which approximates the posterior distribution for the unknown parameters.

Instead of integrals sums appear for discrete random variables, as already
mentioned at the beginning of Chapter 3. The problem of integration there-
fore does not appear.

A different stochastic method is based on sampling from the posterior
density function p(x|y, C) itself. These random values contain all the in-
formation for the statistical inference on the unknown parameters. Bayes
estimates, MAP estimates, covariance matrices, marginal distributions can
be computed from these samples and hypotheses be tested. Markov Chain
Monte Carlo methods of Chapter 6.3 provide the main tools to sample from
the posterior distributions for the unknown parameters.

6.1 Generating Random Values

One distinguishes between generating random numbers, that are values of a
random variable which possesses the uniform distribution (2.59) in the inter-
val [0, 1], and generating values of random variables with given distributions.
Both mothods give random values, also called random variates.

6.1.1 Generating Random Numbers

To solve integrals by stochastic methods, very many random numbers are
needed. They are generated by computers. Deterministic procedures are ap-
plied so that pseudo random numbers instead of true random numbers are
obtained. However, one strives for generating pseudo random numbers with
such properties that they can be used as true random numbers. One therefore
talks of random numbers only.

Random numbers, i.e. values of a random variable X uniformly distrib-
uted in the interval [0, 1], are often generated by the linear congruential gen-
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erator

xi+1 = (axi + c)(modn) for i ∈ {1, 2, . . .} (6.1)

where the multiplicator a and the increment c denote nonnegative integers.
The modulo notation modn means that

xi+1 = axi + c − nli

holds true where li = [(axi + c)/n] gives the largest positive integer in (axi +
c)/n. Values in the interval [0, 1] are obtained by xi/n. Considerations for an
appropriate choice of the constants in (6.1) and further methods are found, for
example, in Dagpunar (1988, p.19), Ripley (1987, p.14) and Rubinstein

(1981, p.20).

If the random variable U with the values u has the uniform distribution
in the interval [0, 1], values x for the random variable X which according
to (2.59) is uniformly distributed in the interval [a, b] are obtained by the
transformation

x = a + (b − a)u . (6.2)

This result is obvious, but it is also proved in the Example 1 to the inversion
method (6.5).

6.1.2 Inversion Method

An important procedure for generating random variates is the inversion

method. It is based on generating random numbers.
Let X be a random variable with the distribution function F (x) from

(2.55). Since F (x) is because of (2.58) a monotonically increasing function,
its inverse function F−1(u) is defined for any value of u between 0 and 1 by
the smallest value for x which fulfills F (x) = u, thus

F−1(u) = min{x : F (x) = u , 0 ≤ u ≤ 1} . (6.3)

If the random variable U is uniformly distributed in the interval [0, 1], the
random variable

X = F−1(U) has the distribution function F (x) . (6.4)

This may be shown by the definition (2.52) of the distribution function, since
for every x ∈ R

P (X < x|C) = P (F−1(U) < F−1(u)|C) = P (U < u|C) = u = F (x)

holds true because of F (u; 0, 1) = u from (2.60).
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To generate a value x of the random variable X with the distribution
function F (x) by the inversion method, the following two steps are necessary:

1. a random number is generated, i.e. a value u of the random

variable U uniformly distributed in the interval [0, 1],

2. the value x follows from x = F−1(u) .

(6.5)

Thus, the inversion method presents itself, if the distribution function F (x)
and its inverse function can be analytically given.

Example 1: Let values of the random variable X with the uniform
distribution (2.59) be generated in the interval [a, b]. We obtain (x− a)/(b−
a) = u from the distribution function (2.60) and from (6.5) the relation

x = a + (b − a)u

which was already given in (6.2). ∆

Example 2: Let values x of the random variable X having the Cauchy
distribution (2.192) be generated. We obtain with the distribution function
(2.193)

1

π
arctan

( 1

λ
(x − θ)

)
+

1

2
= u

and therefore

x − θ = λ tan
(
π(u − 1

2
)
)

or simplified, since with u also u − 1
2 is uniformly distributed in the interval

[0, 1],

x − θ = λ tan(πu) . (6.6)
∆

Additional examples like generating random values for the exponential dis-
tribution or the triangular distribution are found in Devroye (1986, p.29).

The inversion method is also well suited, to generate values of discrete
random variables. Let F (xi) be the distribution function (2.50) of a discrete
random variable X with the values xi and xi ≤ xi+1, i ∈ {1, . . . , n}. The
inverse function of F (xi) follows with (6.3) by

F−1(u) = min{xi : F (xi) ≥ u , 0 ≤ u ≤ 1} (6.7)

so that the following steps have to be taken when generating:

1. a random number u of the random variable U distributed

uniformly in the interval [0, 1] is generated and i = 1 is set,

2. as long as F (xi) < u is valid, i is replaced by i + 1,

3. else xi is obtained . (6.8)
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To accelerate the steps of the computation, the random number xi may not
be searched sequentially, but the algorithm has to start at a better point than
i = 1, see for instance Ripley (1987, p.71). The method of guide tables, for
instance, accomplishes this (Devroye 1986, p.96).

The inversion method presented here for a discrete random variable with
a univariate distribution is also valid for a discrete random vector with a
multivariate distribution by applying a coding function which puts the vector
into a one-to-one correspondance with the nonnegative integers of the real
numbers (Devroye 1986, p.559; Hörmann et al. 2004, p.297).

6.1.3 Rejection Method

Random variates can be generated by the rejection method for a random
variable with a density function which is not normalized. This happens,
if the density function results from Bayes’ theorem (2.122). Let X be the
random variable and p̄(x) its density function which is not normalized and
whose normalization constant follows from (2.131). For the application of the
rejection method it is assumed that a density function g(x) exists for which
random numbers can be generated and for which

C ≥ p̄(x)/g(x) for every x ∈ R (6.9)

holds true where C means a constant with C ≥ 1. Thus, Cg(x) is the
envelope of the density function p̄(x) which is not normalized. The rejection
method is accomplished by the following steps, see for instance Dagpunar

(1988, p.53), Devroye (1986, p.40), Rubinstein (1981, p.45) and Smith

and Gelfand (1992):

1. a random value x for the random variable X with the density

function g(x) is generated,

2. a random number u for the random variable U uniformly

distributed in the interval [0, 1] is generated,

3. if u < p̄(x)/(Cg(x)) holds true, x is a random value with the

normalized density function p(x), else the steps 1. to 3. have

to be repeated. (6.10)

The values x are predominantly accepted as random variates where p̄(x)
approximates Cg(x). The constant C should therefore be chosen subject to
the constraint (6.9) such that it becomes minimal. A simple proof of the
rejection method can be found in Dagpunar (1988, p.54). An example is
given in Chapter 6.3.6.

The rejection method is not only valid for a random variable with a uni-
variate distribution but also for a random vector with a multivariate distribu-
tion. If the bound C in (6.9) cannot be determined, there is an alternative to
the rejection method, the sampling-importance-resampling (SIR) algorithm
derived in Chapter 6.2.1.
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6.1.4 Generating Values for Normally Distributed

Random Variables

As explained in Chapter 2.4.1, the normal distribution is very often applied.
It is therefore important to generate random variates for the normal distri-
bution, and a number of techniques exist. A review is found, for instance,
in Dagpunar (1988, p.93) and Devroye (1986, p.379). A method of-
ten applied goes back to Box and Muller (1958) with a modification of
Marsaglia and Bray (1964) for fast computations.

In general, values z for the random variable Z with the standard normal
distribution N(0, 1), i.e. Z ∼ N(0, 1), are generated. To obtain values x
for the random variable X with the normal distribution X ∼ N(µ, σ2), the
transformation (2.169) because of (2.202) is applied

x = σz + µ . (6.11)

If random values for the n×1 random vector x with the multivariate normal
distribution x ∼ N(µ,Σ) shall be generated, where the covariance matrix Σ

is assumed to be positive definite with (2.195) and (2.196), first n independent
values for Z ∼ N(0, 1) are generated and collected in the n×1 vector z which
has the distribution N(0, I) because of (2.199). If the transformation is
applied, which is based on the decomposition (3.38) of the covariance matrix
Σ of the random vector x into its eigenvalues by C ′ΣC = Λ, the n×1 vector
x of random values for the random vector x follows from

x = CΛ1/2z + µ . (6.12)

The vector x has according to (2.202) because of CΛC ′ = Σ from (3.37) and
(3.38) the distribution x ∼ N(µ,Σ) we are looking for. The transformation

(6.12) may be interpreted such that with Λ1/2z independent random vari-
ables with the variances λi are obtained and by the following transformation
with C dependent random variables with the covariance matrix Σ.

If a Cholesky factorization of the positive definite covariance matrix Σ by,
say Σ = GG′, is applied where G denotes a regular lower triangular matrix,
see for instance Koch (1999, p.30), the transformation is obtained

x = Gz + µ , (6.13)

since the distribution x ∼ N(µ,Σ), which we are looking for, follows with
(2.202).

6.2 Monte Carlo Integration

The Monte Carlo integration is based on generating random variates with a
density function which approximates the density function which needs to be
integrated. The integral is then computed by a summation.
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6.2.1 Importance Sampling and SIR Algorithm

Let x be a random vector of unknown parameters with x ∈ X , where X
denotes the parameter space, and p(x|y, C) the posterior density function
from Bayes’ theorem (2.121). The integral I with

I =

∫
X

g(x)p(x|y, C)dx = Ep(g(x))x∈X (6.14)

needs to be computed where g(x) denotes some function. The integral is
equal to the expected value Ep(g(x))x∈X of g(x) computed by p(x|y, C) for
x ∈ X . If p(x|y, C) is intractable, which means that random values cannot
be generated from p(x|y, C), and if u(x) is a tractable density function which
approximates p(x|y, C), we rewrite the integral to obtain

I =

∫
X

g(x)(p(x|y, C)/u(x))u(x)dx = Eu(g(x)(p(x|y, C)/u(x)))x∈X

= Ep(g(x))x∈X (6.15)

where Eu(g(x)(p(x|y, C)/u(x)))x∈X is the expected value of g(x)(p(x|y, C)
/u(x)) computed by u(x) for x ∈ X .

A sequence of m independent and identically with the density function
u(x) distributed random vectors xi, i ∈ {1, . . . , m} is now being generated.
Because u(x) approximates the density function p(x|y, C), the random values
are generated at points which are important, that is at points where large
values of p(x|y, C) are concentrated.

The estimate Î of I from (6.15) follows as arithmetic mean, see for instance
Leonard and Hsu (1999, p.275), by

Î =
1

m

m∑
i=1

g(xi)(p(xi|y, C)/u(xi)) . (6.16)

This is called the importance sampling of the Monte Carlo integration.
Let g(xi)(p(xi|y, C)/u(xi)) be independent and have equal variances σ2

V (g(xi)(p(xi|y, C)/u(xi))) = σ2 for i ∈ {1, . . . , m} . (6.17)

The variance V (Î) of the estimate Î then follows with (2.158) by

V (Î) =
1

m
σ2 . (6.18)

If m goes to infinity, the variance goes to zero

V (Î)m→∞ = 0 (6.19)

and we obtain in the limit

Îm→∞ = I . (6.20)
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The number m of random variates depends on the variance V (Î) in (6.18),
one wants to achieve. It also depends on, how well p(x|y, C) is approximated
by u(x). If u(x) is a poor choice, m needs to be large.

As shown in Chapter 4, one usually works because of Bayes’ theorem
(2.122) with a posterior density function which is not normalized. We will
call it p̄(x|y, C), thus

p(x|y, C) = p̄(x|y, C)/c with c =

∫
X

p̄(x|y, C)dx (6.21)

where c denotes the normalization constant (2.131). Its estimate ĉ follows
with g(xi) = 1 from (6.16) by

ĉ =
1

m

m∑
i=1

p̄(xi|y, C)/u(xi) (6.22)

and the estimate Î of the integral I, if p̄(x|y, C) is applied, by

Î =

m∑
i=1

g(xi)(p̄(xi|y, C)/u(xi))/

m∑
i=1

(p̄(xi|y, C)/u(xi))

=

m∑
i=1

wi g(xi) (6.23)

with wi

wi = (p̄(xi|y, C)/u(xi))/

m∑
i=1

(p̄(xi|y, C)/u(xi)) (6.24)

being the importance weights. Because of
∑m

i=1 wi = 1 the estimate Î can
be interpreted as the weighted arithmetic mean (4.20) of g(xi). For m → ∞
we find in the limit with (6.14), (6.15) and (6.20) because of g(x) = 1 in the
intgral of (6.21)

Îm→∞ = Eu(g(x)(p̄(x|y, C)/u(x)))x∈X/Eu(1(p̄(x|y, C)/u(x)))x∈X

= Ep̄(g(x))x∈X/Ep̄(1)x∈X

=

∫
X

g(x)p̄(x|y, C)dx/

∫
X

p̄(x|y, C)dx =

∫
X

g(x)p(x|y, C)dx

= I (6.25)

If the prior density function p(x|C) in Bayes’ theorem (2.122) gives a
good approximation for the posterior density function p(x|y, C) and if it is
tractable, it can be used as approximate density function u(x). The impor-
tance weights wi then follow from (6.24) because of (2.122) by the likelihood
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function p(y|x, C) evaluated at the random variates xi generated by the prior
density function p(x|C). Thus,

wi = p(y|xi, C)/
m∑

i=1

p(y|xi, C) . (6.26)

To interpret the importance weights wi in (6.24), we substitute g(x) = 1
in (6.14) and introduce the restricted parameter space X0 ⊂ X with X0 =
{x1 ≤ x10, . . . , xu ≤ xu0} and its complement X̄0 = X\X0. This splits the
integral I into two parts, the first part becomes the distribution function
F (x ∈ X0) for p(x|y, C) from (2.73) and the second part the rest, thus

I = F (x ∈ X0) +

∫
X̄0

p(x|y, C)dx (6.27)

with

F (x ∈ X0) =

∫
X0

p(x|y, C)dx = P (x1 ≤ x10, . . . , xu ≤ xu0)

= Ep(1)x∈X0 (6.28)

The Monte Carlo estimate F̂ (x ∈ X0) follows with (6.23) by using again
p̄(x|y, C) instead of p(x|y, C) from

F̂ (x ∈ X0) =
∑

xi∈X0

(p̄(xi|y, C)/u(xi))/

m∑
i=1

(p̄(xi|y, C)/u(xi))

=
∑

xi∈X0

wi (6.29)

where only the importance weights wi for xi ∈ X0 are summed. For m → ∞
we find with (6.25) in the limit

F̂ (x ∈ X0)m→∞ = Eu(1(p̄(x|y, C)/u(x)))x∈X0/Eu(1(p̄(x|y, C)/u(x)))x∈X

= Ep̄(1)x∈X0/Ep̄(1)x∈X

=

∫
X0

p̄(x|y, C)dx/

∫
X

p̄(x|y, C)dx =

∫
X0

p(x|y, C)dx

= F (x ∈ X0) (6.30)

The samples xi for xi ∈ X can therefore be interpreted as values of a discrete
distribution approximating p(x|y, C) with the importance weights wi from
(6.24) as probabilities, because the sum (6.29) of these probabilities for xi ∈
X0 gives according to (6.30) in the limit the distribution function for the
posterior density function p(x|y, C).
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If we sample from the posterior density function p̄(x|y, C) so that u(x) =
p̄(x|y, C), we obtain from (6.24) the constant weights wi = 1/m which are
interpreted as constant probabilities for the samples xi. Summing over the
probabilities 1/m for g(xi) = 1 in (6.23) gives Î = 1 in agreement with (2.74)
that the integral over a density function is equal to one.

The interpretation of the samples xi having probabilties wi leads to the
sampling-importance-resampling (SIR) algorithm of Rubin (1988), see also
Smith and Gelfand (1992), as an alternative to the rejection method (6.10):

1. Draw let say M samples xi for xi ∈ X from a tractable density

function u(x) approximating the target function p(x|y, C).

2. Draw from these samples having probabilities equal to the im-

portance weights wi in (6.24) k samples x∗
i for k < M . They

have the distribution p(x|y, C) in case of M → ∞. (6.31)

Methods for sampling from a discrete distribution have been discussed in con-
nection with (6.8). The samples x∗

i are drawn with replacemant, that is, they
are not removed from the M samples. If there are only a few large weights
and many small weights, Gelman et al. (2004, p.316) suggest sampling
without replacement to avoid that the same large weights will be picked up
repeatedly, see also Skare et al. (2003). If the posterior density function is
well approximated by the prior density function, the importance weights wi

may be computed from (6.26), see Smith and Gelfand (1992) and Koch

(2007).
The SIR algorithm has been applied for a recursive Bayesian filtering by

Gordon and Salmond (1995) who called their method bootstrap filter, see
also Doucet et al. (2000). The use of the Gibbs sampler together with the
SIR algorithm is pointed out in Chapter 6.3.2.

6.2.2 Crude Monte Carlo Integration

The simplest approximation to the posterior density function p(x|y, C) in
(6.14) is given by the uniform distribution for u(x) which in its univariate
form is defined by (2.59). If the domain X , where the values of the random
vector x are defined, can be represented by parallels to the coordinate axes,
the density function of the multivariate uniform distribution is obtained with
x = (xl) and l ∈ {1, . . . , u} by

u(x) =

⎧⎨
⎩

u∏
l=1

[1/(bl − al)] for al ≤ xl ≤ bl

0 for xl < al and xl > bl .
(6.32)

The estimate Î of the integral I of (6.14) then follows from (6.16) with

Î =
u∏

l=1

[
(bl − al)

] 1

m

m∑
i=1

g(xi)p(xi|y, C) . (6.33)
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This is the crude Monte Carlo integration for which the values g(xi)p(xi|
y, C)

∏u
l=1(bl − al)/m have to be summed. The number m of generated vec-

tors must be large, because the uniform distribution is in general not a good
approximation of any posterior density function p(x|y, C). The advantage of
this technique is its simple application.

If the domain X cannot be expressed by parallels to the coordinate axes,
the multivariate uniform distribution is obtained with the hypervolume VX

of the domain X by

u(x) = 1/VX (6.34)

and Î by

Î = (VX /m)

m∑
i=1

g(xi)p(xi|y, C) (6.35)

where the vectors xi have to be generated in X .

6.2.3 Computation of Estimates, Confidence Regions

and Probabilities for Hypotheses

As already mentioned for (6.21), a posterior density function is because of
Bayes’ theorem (2.122) frequently applied which is not normalized and which
follows from the right-hand side of (2.122). It will be denoted by p̄(x|y, C),
thus

p̄(x|y, C) = p(x|C)p(y|x, C) . (6.36)

The normalization constant c for p̄(x|y, C) is obtained with (2.129) and
(2.131) by

p(x|y, C) = p̄(x|y, C)/c from c =

∫
X

p̄(x|y, C)dx . (6.37)

By importance sampling the estimate ĉ is computed with (6.22) by

ĉ =
1

m

m∑
i=1

p̄(xi|y, C)/u(xi) . (6.38)

The Bayes estimate x̂B of the random vector x of the unknown parameters
is obtained from (3.10) with (6.37) by

x̂B = E(x|y) =
1

c

∫
X

xp̄(x|y, C)dx

and the estimate by importance sampling with (6.23) and (6.38) by

x̂B =
1

ĉm

m∑
i=1

xip̄(xi|y, C)/u(xi) =

m∑
i=1

wixi . (6.39)
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where wi are the importance weights for xi defined by (6.24). The MAP
estimate x̂M of the unknown parameters x is computed from (3.30) by

x̂M = argmax
xi

p̄(xi|y, C) , (6.40)

since the density functions p(x|y, C) and p̄(x|y, C) become maximal at iden-
tical points.

The covariance matrix D(x|y) of the unknown parameters x is given with
(6.37) by (3.11)

D(x|y) =
1

c

∫
X

(x − E(x|y))(x − E(x|y))′p̄(x|y, C)dx .

Its estimate by importance sampling follows from (6.23) with (6.38) and
(6.39) by

D̂(x|y) =

m∑
i=1

wi(xi − x̂B)(xi − x̂B)′ . (6.41)

To determine the 1 − α confidence region for the vector x of unknown
parameters, the integral has to be solved according to (3.35) and (6.37)

1

c

∫
XB

p̄(x|y, C)dx = 1 − α

with

p̄(x1|y, C) ≥ p̄(x2|y, C) for x1 ∈ XB , x2 /∈ XB .

To apply (6.23) with (6.38), the density values p̄(xi|y, C) are sorted in de-
creasing order and the sequence p̄(xj |y, C) for j ∈ {1, . . . , m} is formed. It
leads to the sequence wj for j ∈ {1, . . . , m} of the importance weights. By
summing up to the index B for which

B∑
j=1

wj = 1 − α (6.42)

holds true, the point xB at the boundary of the confidence region and its
density value pB from (3.41) is obtained with

pB = p̄(xB|y, C)/ĉ . (6.43)

The vectors xj contain generated random values so that (6.42) can only be
approximately fulfilled. If the vectors xj of the space X are graphically
depicted as points and if neighboring points are selected with smaller density
values than pB in (6.43) and with larger ones, the boundary of the confidence
region is obtained by interpolating between these points.
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To test the composite hypothesis (3.45), the ratio V of the integrals

V =

∫
X0

p̄(x|y, C)dx/ĉ∫
X1

p̄(x|y, C)dx/ĉ

has to be computed because of (3.62). Hence, m random vectors xi are
generated and as in (6.29) the importance weights wi for xi ∈ X0 and xi ∈ X1,
respectively, are summed

V̂ =
∑

xi∈X0

wi/
∑

xi∈X1

wi . (6.44)

Correspondingly, the ratio of the integrals in (3.71) for the test of the com-
posite hypothesis (3.45) and the integral in (3.74) for the test of the point
null hypothesis have to be solved. To test a point null hypothesis by means of
a confidence region according to (3.82), the density value pB at the boundary
of the confidence region is determined by (6.43).

6.2.4 Computation of Marginal Distributions

If estimates have to be computed, confidence regions to be established or
hypotheses to be tested only for a subset of the unknown parameters x,
which is collected in the vector x1 with x = |x′

1, x
′
2|′, the posterior marginal

density function p(x1|y, C) is determined from (3.5) with

p(x1|y, C) =

∫
X2

p(x1, x2|y, C)dx2 (6.45)

by a Monte Carlo integration. With random variates for x1, which have
the marginal density function p(x1|y, C), the vector x1 is then estimated,
confidence regions for x1 are computed or hypotheses for x1 are tested by
the methods described in Chapter 6.2.3. Random variates for x1 have to be
generated from a density function which approximates the marginal density
function for x1. In addition, random variates for x2 with the density function
p(x1, x2|y, C) are generated given the value for x1. This is the first method
for determining marginal distributions which is presented in the following. If
it is not possible to generate random variables for x2, a second method is
being dealt with which is based on generating random variates for the entire
vector x = |x′

1, x
′
2|′. An approximate method which determines the marginal

distribution for x1 by substituting estimates for x2 instead of generating
random values for x2 has been proposed by Koch (1990, p.58).

The first method for solving the integral (6.45) starts from the vector
x1i of random variates generated for the random vector x1. Since the den-
sity function p̄(x1, x2|y, C) from (6.36) and the marginal density function
p̄(x1|y, C) are used which both are not normalized, the integral has to be
solved

p̄(x1i|y, C) =

∫
X2

p̄(x1i, x2|y, C)dx2 . (6.46)
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To apply (6.16), l random values x2j for the random vector x2 are gener-
ated by the density function u(x2) which approximates the density function
p̄(x1i, x2) for x2 given x1i. We obtain

p̄(x1i|y, C) =
1

l

l∑
j=1

p̄(x1i, x2j |y, C)/u(x2j) . (6.47)

For the random vector x1 altogether m values x1i with the density func-
tion u(x1) are generated which approximates the marginal density func-
tion p̄(x1|y, C) not being normalized. The normalization constant c1 for
p̄(x1|y, C) is corresponding to (6.37) defined with

p(x1|y, C) = p̄(x1|y, C)/c1 by c1 =

∫
X1

p̄(x1|y, C)dx1 . (6.48)

Its estimate ĉ1 is obtained as in (6.38) by

ĉ1 =
1

m

m∑
i=1

p̄(x1i|y, C)/u(x1i) (6.49)

with p̄(x1i|y, C) from (6.47). Thus, l values x2j are generated for each of the
m generated values x1i .

The Bayes estimate x̂1B of the vector x1 of the unknown parameters
follows corresponding to (6.39) from

x̂1B =
1

ĉ1m

m∑
i=1

x1ip̄(x1i|y, C)/u(x1i) =
m∑

i=1

w1ix1i (6.50)

where w1i denote the importance weights fom (6.24) for x1i. The MAP
estimate x̂1M is obtained as in (6.40) from

x̂1M = argmax
x1i

p̄(x1i|y, C) . (6.51)

The 1 − α confidence region for the random vector x1 is determined by a
summation according to (6.42) up to the index B, for which

B∑
j=1

w1j = 1 − α (6.52)

holds true. The sequence of the importance weights w1j is formed by sorting
the density values p̄(x1i|y, C) in decreasing order. The density value pB of a
point at the boundary of the confidence region for x1 is obtained from (6.43)
by

pB = p̄(x1B|y, C)/ĉ1 . (6.53)
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The ratio (3.62) of the two integrals for the test of the composite hypothesis
(3.45) follows from (6.44) by

∑
x1i∈X10

w1i/
∑

x1i∈X11

w1i (6.54)

where X10 and X11 denote the domains over which x1 is integrated. The
remaining integrals for testing hypotheses are correspondingly obtained. To
test a point null hypothesis by means of a confidence region according to
(3.82), the density value pB at the boundary of the confidence region is
determined by (6.53).

An example for computing a confidence region for the random vector x1

by means of (6.53) is given in the following Chapter 6.2.5.
For the second technique to determine the marginal distribution for x1,

let again the posterior density function p̄(x1, x2|y, C) which is not normalized
be available from (6.36). Its normalization constant c is determined by (6.37).
Thus, the integral needs to be solved

p(x1|y, C) =
1

c

∫
X2

p̄(x1, x2|y, C)dx2 . (6.55)

By means of the density function u(x), which approximates p̄(x1, x2|y, C), m
vectors xi = |x′

1i, x
′
2i|′ of random values are generated. As explained for the

SIR algorithm (6.31), the samples xi are interpreted as values of a discrete
distribution having the importance weights wi from (6.24) as probabilities.
To obtain the marginal distribution according to (2.82), one has to sum the
probabilities wi over the values x2. However, one has to keep in mind that
in the discrete density function p(x1j1 , x2j2 , . . . , xiji

|C) for each value x1j1

also each value x2j2 , each value x3j3 and so on are given. This is not the
case for the density values wi = p̄(x1i, x2i|y, C)/(ĉmu(xi)), since the vectors
xi = |x′

1i, x
′
2i|′ originate from generating random variates. To sum over x2i,

the space X1 with x1 ∈ X1 and x2 ∈ X2 is therefore devided by intervals
on the coordinate axes into small subspaces ∆X1j with j ∈ {1, . . . , J}, for
instance, the plane into small squares by parallels to the coordinate axes. The
density values wi are then summed for all values x1i ∈ ∆X1j and x2i ∈ X2, in
order to obtain values pd(x1j |y, C) for the discrete marginal density function

pd(x1j |y, C) =
∑

x1i∈∆X1j,x2i∈X2

wi , j ∈ {1, . . . , J} . (6.56)

Here, x1j denotes a value which represents the space ∆X1j . If Ij vectors x1i

are located in the space ∆X1j , the value x1j may be introduced as mean

x1j =
1

Ij

Ij∑
i=1

x1i with x1i ∈ ∆X1j (6.57)
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or x1j defines the midpoint of ∆X1j . The summation of the density values
wi gives according to (2.69) the probability P (x1j ∈ ∆X1j |y, C) that x1j lies
in the space ∆X1j and therefore the discrete density function. The contin-
uous marginal density function p(x1j |y, C) for x1j follows because of (2.72)
approximately by dividing the probability by the hypervolume V∆X1j

of the
space ∆X1j

p(x1j |y, C) = pd(x1j |y, C)/V∆X1j
. (6.58)

The Bayes estimate x̂1B of x1 is obtained corresponding to (2.140) and
(3.10) with (6.56) by

x̂1B =
J∑

j=1

x1jpd(x1j |y, C) . (6.59)

If the density values pd(x1j |y, C) are arranged in decreasing order such that
the series pd(x1l|y, C) with l ∈ {1, . . . , J} is obtained, the index B for the
point x1B at the boundary of the confidence region for x1 follows from (6.42)
with

B∑
l=1

pd(x1l|y, C) = 1 − α . (6.60)

The density value pB is found with the hypervolume V∆X1B
of the subspace

∆X1B with the point x1B from (6.58) by

pB = pd(x1B|y, C)/V∆X1B
. (6.61)

The ratio (3.62) of the two integrals for testing the composite hypothesis
(3.45) follows from (6.44) with∑

x1j∈X10

pd(x1j |y, C) /
∑

x1j∈X11

pd(x1j |y, C) (6.62)

where X10 and X11 denote the domains over which to integrate x1. Corre-
spondingly, the remaining integrals to test hypotheses are obtained. To test
a point null hypothesis by means of a confidence region according to (3.82),
the density value pB at the boundary of the confidence region is obtained by
(6.61).

An example for determining with (6.61) the confidence region for the
random vector x1 is given in the following chapter.

6.2.5 Confidence Region for Robust Estimation of

Parameters as Example

Confidence regions will be determined from (3.35) for the unknown parame-
ters β which are computed by the robust estimation of parameters presented



208 6 Numerical Methods

in Chapter 4.2.5. Since the integration over the posterior density function
p(β|y) for β from (4.62) could not be solved analytically, importance sam-
pling (6.16) is applied. Thus, a distribution needs to be given which ap-
proximates the posterior density function p(β|y) from (4.62) and for which
random values can be generated.

The density function p̄(ēv|β) with v ∈ {1, . . . , n} in (4.62), which is not
normalized, is determined by the right-hand sides of (4.56) and (4.57). If it is
approximately assumed that the observations contain no outliers, the normal
distribution (4.56) is valid, and one obtains instead of (4.62) with ēv from
(4.60) and P from (4.58)

n∏
v=1

p̄(ēv|β) =

n∏
v=1

exp(−ē2
v/2)

= exp
( − 1

2σ2

n∑
v=1

pv(x
′
vβ − yv)

2
)

= exp
( − 1

2σ2
(y − Xβ)′P (y − Xβ)

)
.

This posterior density function is identical with (4.11) so that the distribution
for β follows from (4.14) and (4.29) with

β|y ∼ N(β̂,Σ) (6.63)

and

β̂ = (X ′PX)−1X ′Py and Σ = σ2(X ′PX)−1 . (6.64)

This normal distribution is an approximate distribution for the posterior dis-
tribution for β from (4.62).

Confidence regions for β are determined with respect to the estimate β̂.
The transformation into the vector βT

βT = β − β̂ (6.65)

is therefore applied. We then obtain with (2.202) instead of (6.63) the dis-
tribution

βT |y ∼ N(0,Σ) . (6.66)

A confidence region will not be established for all u parameters βT but only
for a subset of r parameters so that βT is partitioned into the r × 1 vector
βt and the (u − r) × 1 vector βq together with a corresponding partitioning
of the u × u covariance matrix Σ

βT =

∣∣∣∣ βt

βq

∣∣∣∣ and Σ =

∣∣∣∣ Σtt Σtq

Σqt Σqq

∣∣∣∣ . (6.67)
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A confidence region will be determined for the vector βt of unknown param-
eters by the two methods presented in Chapter 6.2.4.

For the first method an approximate distribution for βt is needed on the
one hand. It follows as marginal distribution from (6.66) with (2.197) and
(6.67) by

βt|y ∼ N(0,Σtt) . (6.68)

On the other hand, an approximate distribution for βq has to be specified
for given values of βt. It is obtained as conditional normal distribution from
(6.66) with (2.198). The rejection method, to be applied in Chapter 6.3.6,
needs for generating random values for βq the constants in the exponent of
the conditional distribution, which is therefore derived in the following.

The coefficient matrix X in (6.64) is split up corresponding to the parti-
tioning of βt and βq into

X = |Xt, Xq| . (6.69)

We then obtain for X ′PX in (6.64)

X ′PX =

∣∣∣∣ X ′
tP Xt X ′

tPXq

X ′
qPXt X ′

qP Xq

∣∣∣∣ . (6.70)

The joint density function for βt and βq therefore follows from (6.66) with
(2.195) by

p
( ∣∣∣∣ βt

βq

∣∣∣∣ |y) ∝ exp
( − 1

2σ2
|β′

t, β
′
q|

∣∣∣∣ X ′
tPXt X ′

tPXq

X ′
qPXt X ′

qP Xq

∣∣∣∣
∣∣∣∣ βt

βq

∣∣∣∣ )
.

(6.71)

We are looking for the density function p(βq|βt, y) of βq given the values for
βt.

The exponent in (6.71) is rewritten

β′
tX

′
tPXtβt + 2β′

qX
′
qP Xtβt + β′

qX
′
qPXqβq

= c1 + (βq + β̂q)
′X ′

qPXq(βq + β̂q) + c2 (6.72)

with

β̂q = (X ′
qPXq)

−1X ′
qPXtβt

c1 = β′
tX

′
tPXtβt

c2 = −β̂
′

qX
′
qP Xqβ̂q . (6.73)

If βt is given, then β̂q is a constant vector and c1 and c2 are constants. Hence,
the conditional density function p(βq|βt, y) being looked for is determined
by

p(βq|βt, y) ∝ exp
( − 1

2σ2
(βq + β̂q)

′X ′
qPXq(βq + β̂q)

)
(6.74)
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so that the associated distribution follows by a comparison with (2.195) from

βq|βt, y ∼ N(−β̂q, σ
2(X ′

qPXq)
−1) . (6.75)

This distribution is identical with the conditional distribution from (2.198),
since the matrix identity (4.46) gives with (6.64), (6.67) and (6.70)

1

σ2

∣∣∣∣ X ′
tP Xt X ′

tPXq

X ′
qPXt X ′

qP Xq

∣∣∣∣ =

∣∣∣∣ Σtt Σtq

Σqt Σqq

∣∣∣∣
−1

=

∣∣∣∣ · · · · · ·
−(Σqq − ΣqtΣ

−1
tt Σtq)

−1ΣqtΣ
−1
tt (Σqq − ΣqtΣ

−1
tt Σtq)

−1

∣∣∣∣ .

(6.76)

This result leads from (6.75) to

βq|βt, y ∼ N(ΣqtΣ
−1
tt βt,Σqq − ΣqtΣ

−1
tt Σtq)

in agreement with (2.198).
To establish the confidence region for βt by the first method of Chapter

6.2.4 with (6.53), m vectors βti of random values have to be generated for
the r× 1 random vector βt with the approximate distribution (6.68). Hence,
r independent random variates with the normal distribution N(0, 1) are gen-
erated by the technique mentioned in Chapter 6.1.4 and put into the r × 1
vector zi. By the decomposition (3.38) of the covariance matrix Σtt from
(6.68) into eigenvalues with

C′
tΣttCt = Λt (6.77)

we obtain by the transformation (6.12)

βti = CtΛ
1/2
t zi for i ∈ {1, . . . , m} (6.78)

the m vectors βti of random values with the distribution (6.68) whose density
function follows from (2.195) by

p(βti|y) ∝ exp
( − 1

2
β′

tiΣ
−1
tt βti

)
(6.79)

with

Σ−1
tt = CtΛ

−1
t C ′

t (6.80)

from (3.37) and (6.77). The exponent in (6.79) is therefore obtained with
(3.37) and (6.78) by

β′
tiΣ

−1
tt βti = z′

iΛ
1/2
t C′

t(CtΛ
−1
t C′

t)CtΛ
1/2
t zi

= z′
izi , (6.81)
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thus

p(βti|y) ∝ exp
( − 1

2
z′

izi

)
. (6.82)

For each value βti we have to generate l random variates βqj for the (u −
r) × 1 random vector βq with the distribution (6.75). Thus, u − r random
values with the normal distribution N(0, 1) are generated and collected in
the (u− r)× 1 vector zj . The decomposition (3.38) of the covariance matrix
in (6.75) into its eigenvalues by

σ2C ′
q(X

′
qPXq)

−1Cq = Λq (6.83)

leads with the transformation (6.12)

βqj = CqΛ
1/2
q zj − β̂q for j ∈ {1, . . . , l} (6.84)

to the l vectors βqj of random values with the distribution (6.75) whose
density function follows from (2.195) with

p(βqj |y) ∝ exp
( − 1

2σ2
(βqj + β̂q)

′X ′
qPXq(βqj + β̂q)

)
. (6.85)

As in (6.80) to (6.82) we obtain

p(βqj |y) ∝ exp
( − 1

2
z′

jzj

)
. (6.86)

For each vector of random values for the vector βT of unknown param-
eters, which is obtained with βti and βqj , the standardized errors ēv with
v ∈ {1, . . . , n} are computed from (4.60) which lead to the posterior density

function p(β|y) in (4.62). The transformation βT = β − β̂ according to
(6.65) corresponds to the transformation of the standardized error ēv into
the transformed standardized error ēTv = ēv − ˆ̄ev. It is obtained because of
(4.60), (4.70) and because of β = βT + β̂ and β̂M = β̂ by

ēTv = ēv − ˆ̄ev

=
√

pv(x
′
v|β′

ti, β
′
qj |′ + x′

vβ̂ − yv)/σ −√
pv(x

′
vβ̂ − yv)/σ

and finally by

ēTv =
√

pvx
′
v|β′

ti, β
′
qj |′/σ for v ∈ {1, . . . , n} . (6.87)

The transformation causes special observations yv to be assumed for which
x′

vβ̂ − yv = 0 is valid. The observations therefore do not enter into the
computation of the posterior density function, they only serve to determine
the midpoint of the confidence region by means of β̂.
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The posterior density function p̄(βT |y) for the transformed vector βT is
obtained with the density functions p̄(ēTk|β) of the right-hand sides of (4.56)
and (4.57) from (4.62) by

p̄(βT |y) =
n∏

v=1

p̄(ēTv|βti, βqj) (6.88)

where the density functions are not normalized. The marginal density func-
tion p̄(βti|y) for a vector βti of random values for βt, which is also not
normalized, follows from (6.47) and (6.86) by

p̄(βti|y) =
1

l

l∑
j=1

n∏
v=1

p̄(ēTv|βti, βqj)/ exp
( − 1

2
z′

jzj

)
(6.89)

and the normalization constant ĉ1 for p̄(βt|y) from (6.49) and (6.82) by

ĉ1 =
g

m

m∑
i=1

p̄(βti|y)/ exp
( − 1

2
z′

izi

)
(6.90)

where g denotes the normalization constant of the normal distribution (6.68).
It is computed with (2.195), (3.37), (6.77) and Λt = diag(λ1, . . . , λr) by

g = (2π)r/2(detΣtt)
1/2 = (2π)r/2 det(ΛtC

′
tCt)

1/2

= (2π)r/2
r∏

i=1

λ
1/2
i . (6.91)

The density values p̄(βti|y) are sorted in decreasing order and the values
with the index p are obtained. They are then summed up to the index B for
which according to (6.50) and (6.52)

g

ĉ1m

B∑
p=1

p̄(βtp|y)/ exp
( − 1

2
z′

pzp

)
= 1 − α (6.92)

is valid. The density value pB of a point at the boundary of the 1 − α con-
fidence region for the random vector βt is then obtained from (6.53) with
(6.90) by

pB = p̄(βtB|y)/ĉ1 . (6.93)

The vectors βti are graphically depicted as points. Neighboring points are
selected with smaller density values than pB from (6.93) and larger ones.
The boundary of the confidence region for the vector βt of the unknown
parameters then follows by an interpolation.

Example 1: Let the polynomial model used by Koch and Yang (1998a)
be given. Examples of confidence regions for points of a simple network of
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distances are found in Gundlich (1998). The observation equations of the
polynomial model corresponding to (4.59) are determined by

β0 + xvβ1 + x2
vβ2 = yv + ev, pv = 1, σ2 = 1, v ∈ {1, . . . , 6} (6.94)

where β0, β1 and β2 denote the three unknown parameters. The six values
for the abszissa are

x1 = 0.0, x2 = 0.5, x3 = 1.0, x4 = 1.5, x5 = 2.0, x6 = 2.5 . (6.95)

By means of the density value pB from (6.93) the confidence region with
content 1 − α = 95% shall be determined for the two unknown parameters
β0 and β1. To obtain a smooth boundary for the confidence region by the
interpolation, very many random values were generated, that is m = 20 000
for βt with βt = |β0− β̂0, β1− β̂1|′ and l = 10 000 for βq with βq = |β3− β̂3|.
The density value

pB = 0.0066

was obtained and the confidence region with content 95% for β0 and β1 shown
in Figure 6.1.
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Figure 6.1: Confidence Region for β0 and β1 by the First Method of
Chapter 6.2.4

∆

The confidence region for βt will be also determined with the second
technique of Chapter 6.2.4 by (6.61). We generate m random values βTi



214 6 Numerical Methods

with

βTi = |β′
ti, β

′
qi|′ (6.96)

for the u × 1 random vector βT transformed by (6.65) with the distribution
(6.66). This means that u independent random variates with the normal
distribution N(0, 1) are generated and collected in the u × 1 vector zi. By
the decomposition (3.38) of the covariance matrix Σ from (6.66) into its
eigenvalues by

C′ΣC = Λ (6.97)

the m vectors βTi of random values

βTi = CΛ1/2zi for i ∈ {1, . . . , m} (6.98)

are obtained by the transformation (6.12) with the distribution (6.66). As in
(6.79) to (6.82)

p(βTi|y) ∝ exp
( − 1

2
z′

izi

)
(6.99)

follows. The transformed standardized errors ēTv for v ∈ {1, . . . , n} are
computed from (6.87) with βTi from (6.96) and (6.98). The density function
p̄(βT |y), which is not normalized, for the transformed vector βT is then
obtained as in (6.88) by

p̄(βT |y) =

n∏
v=1

p̄(ēTv|βti, βqi) . (6.100)

The discrete marginal density function pd(βtj |y) for βtj follows from (6.56)
with (6.99) by

pd(βtj |y) =
∑

β
ti
∈∆X1j ,β

qi
∈X2

n∏
v=1

(
p̄(ēTv|βti, βqi)/ exp(−1

2
z′

izi)
)/

m∑
i=1

n∏
v=1

(
p̄(ēTk|βti, βqi)/ exp(−1

2
z′

izi)
)

,

j ∈ {1, . . . , J} . (6.101)

Here, X1 and X2 denote with βt ∈ X1 and βq ∈ X2 the spaces where βt and
βq are defined, ∆X1j with j ∈ {1, . . . , J} small subspaces into which X1 is
divided by intervals on the coordinate axes and βtj the midpoint of ∆X1j .

The density values pd(βtj |y) from (6.101) are arranged in decreasing order
so that the values pd(βtp|y) for p ∈ {1, . . . , J} are obtained. The index B for
which according to (6.60)

B∑
p=1

pd(βtp|y) = 1 − α (6.102)
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is valid determines because of (6.61) the density value pB for the point βtB

at the boundary of the 1 − α confidence region for βt by

pB = pd(βtB|y)/V∆X1B
(6.103)

where V∆X1B
denotes the hypervolume of the subspace ∆X1B with the point

βtB. The boundary of the confidence region B follows again by interpolation
like for the first method with pB from (6.93).

Example 2: The confidence region of content 1 − α = 95% shall be
determined again for the unknown parameters β0 and β1 in (6.94) of the
Example 1 to (6.93). The large number m = 20 000 000 of random values was

generated for βT = |β0 − β̂0, β1 − β̂1, β2 − β̂2|′, in order to obtain a smooth
boundary for the confidence region by the interpolation. With dividing the
plane, where β0 and β1 are defined, into 20 000 surface elements the density
value pB from (6.103) was obtained by

pB = 0.0064

in good agreement with the value for Example 1 to (6.93). Figure 6.2 shows
the confidence region with content 95% for β0 and β1. It is almost identical
with the confidence region of Figure 6.1.
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Figure 6.2: Confidence Region for β0 and β1 by the Second Method of
Chapter 6.2.4

∆
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6.3 Markov Chain Monte Carlo Methods

The numerical methods of the Monte Carlo integration rely on generating
random samples from distributions which approximate the posterior den-
sity function p(x|y, C) for the random vector x of unknown parameters from
Bayes’ theorem (2.122). Numerical methods are now covered which are based
on generating random variates from the posterior density function p(x|y, C)
itself. For special cases p(x|y, C) might be tractable so that random samples
can be drawn. There are also cases, when p(x|y, C) is intractable but results
from the ratio of tractable density functions. Random variates can then be
computed by the ratios of the random samples for the tractable density func-
tions, as explained for the posterior density function (5.140). Furthermore,
it is possible to generate samples from normally distributed observations and
transform them by the estimates of the unknown parameters to obtain ran-
dom variates for the parameters, see Koch (2002) and Alkhatib und Schuh

(2007).
General methods for generating random variates for the posterior density

function p(x|y, C) are given by the Markov Chain Monte Carlo methods.
They simulate a Markov chain in the parameter space X for the unknown
parameters x so that the limiting distribution of the chain is the target
distribution, the distribution with the posterior density function p(x|y, C).
Random variates for x are generated from an approximate distribution and
then moved towards a better approximation of the target distribution. The
samples are drawn sequentially, and the distribution of one sample depends
on the previous draw so that a Markov chain is formed. At each step of
the simulation the approximate distribution is improved, until it converges
to the target distribution. Two Markov Chain Monte Carlo methods will be
presented, the Metropolis algorithm and the Gibbs sampler.

6.3.1 Metropolis Algorithm

The Metropolis algorithm was the first Markov Chain Monte Carlo method
to be developed and goes back to Metropolis et al. (1953). It does not
need a special distribution to sample from and can be applied for a posterior
density function p̄(x|y, C) from (6.37) which is not normalized because ratios
of density functions are computed, as will be seen in (6.104).

One samples a proposal x∗ from a jumping or proposal distribution pt(x
∗|

xt−1) for t ∈ {1, 2, . . .} with xt−1 being the previous generated vector. The
jumping distribution has to be symmetric. This restriction is overcome by
the Metropolis-Hastings procedure, see for instance Gelman et al. (2004,
p.291), which will not be considered here. Symmetry means that the prob-
ability of drawing x̄ from x is equal to the one of obtaining x from x̄. The
ratio r of the density functions

r =
p(x∗|y)

p(xt−1|y)
(6.104)
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is computed. One sets

xt =

{
x∗ with probability min(r, 1)

xt−1 otherwise.
(6.105)

This means, if r ≥ 1, the proposal x∗ is accepted. If r < 1, a random number
u for the random variable U is generated with (6.1) uniformly distributed
in the interval [0, 1] and x∗ is accepted, if u < r since P (U < u) = u from
(2.60).

A simple algorithm which is frequently applied is the random-walk Metro-
polis, see for instance Liu (2001, p.114). The last generated vector xt−1 is
perturbed by a random vector εt−1 to obtain the proposal x∗ = xt−1 + εt−1.
The components of εt−1 are assumed as being independent and identically
distributed usually like the normal distribution which is symmetric. The
vector εt−1 is then readily generated by (6.11).

The Metropolis algorithm is easy to apply. However, if the proposal dis-
tribution is far off the target distribution, the Metropolis algorithm becomes
inefficient because of its slow convergence especially in higher dimensions. For
the proof of convergence of the Metropolis algorithm to the target distribution
see for instance Gelman et al. (2004, p.290). A variant of the Metropo-
lis algorithm is the technique of simulated annealing by Kirkpatrick et
al. (1983), although it is an optimization method instead of a simulation
method. A scale parameter, called temperature, is introduced into the target
distribution and gradually decreased to avoid that the annealing is trapped
in local minima.

6.3.2 Gibbs Sampler

The Gibbs sampler was introduced by Geman and Geman (1984) for the
Bayesian restoration of digital images and was then frequently used for differ-
ent tasks of digital image analysis, see for instance Geman and McClure

(1987), Geman et al. (1987), Koch and Schmidt (1994, p.310). After
Gelfand and Smith (1990) showed that the Gibbs sampler can be used for
a variety of problems of Bayesian inference, see also Smith and Roberts

(1993), O’Hagan (1994, p.225), Gilks (1996) and Gelman et al. (2004,
p.287), it became a frequently applied Markov Chain Monte Carlo method.

The Gibbs sampler decomposes the parameter space by sampling from the
conditional distributions of the posterior distribution for each parameter xk

of the vector x = (xk) of unknown parameters, thus diminishing the problem
of high dimensions. The conditional density functions of the posterior density
function p(x|y, C) are obtained with (2.102) by

p(xk|x1, . . . , xk−1, xk+1, . . . , xu, y, C)

=
p(x1, . . . , xn|y, C)

p(x1, . . . , xk−1, xk+1, . . . , xn|y, C)
for k ∈ {1, . . . , u} . (6.106)
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The posterior density function p(x|y, C) is uniquely determined by these
conditional density functions for xk (Besag 1974). Since only xk is variable,
while fixed values are assigned to the remaining components, the denominator
on the right-hand side of (6.106) corresponds to a normalization constant, as
a comparison with (6.37) shows. The conditional density function for xk

at the left-hand side of (6.106) is therefore found such that in the posterior
density function p(x|y, C) only the component xk is considered being variable
and that the appropriate normalization constant is introduced. The latter is
not necessary, if the rejection method (6.10) is applied or the SIR algorithm
(6.31) in case, the constant C in (6.9) cannot be determined. We therefore
asssume that random values for xk can be generated from the conditional
density functions. An example of using the SIR algorithm for the Gibbs
sampler is given by Koch (2007), as already mentioned in Chapter 5.3.3.

The Gibbs sampler begins with arbitrary starting values

x
(0)
1 , . . . , x(0)

u . (6.107)

Then random values are sequentially drawn for xk with k ∈ {1, . . . , u} from
(6.106) to complete one iteration. For the qth iteration we generate

x
(q)
1 from p(x1|x(q−1)

2 , . . . , x
(q−1)
u , y, C)

x
(q)
2 from p(x2|x(q)

1 , x
(q−1)
3 , . . . , x

(q−1)
u , y, C)

x
(q)
3 from p(x3|x(q)

1 , x
(q)
2 , x

(q−1)
4 , . . . , x

(q−1)
u , y, C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x
(q)
u from p(xu|x(q)

1 , . . . , x
(q)
u−1, y, C) .

(6.108)

The sequence of random variates generated by the iterations forms a Markov
chain. It will assumed that after o iterations convergence is reached so that

the distribution of the generated random vector with values x
(o)
1 , . . . , x

(o)
u is

close enough to the target distribution. In the limit o → ∞ it is the target
distribution with density function p(x|y, C) (Geman and Geman 1984).
Conditions for the convergence are found, for instance, in Roberts and
Smith (1994). The process with o iterations is repeated with new starting
values m times so that m random variates xi generated for x are obtained
which will be denoted by

xi = |x1i, . . . , xui|′ with i ∈ {1, . . . , m} . (6.109)

One frequently generates only one Markov chain and discards during a burn-
in phase of o iterations, until convergence is reached, all random samples.
Afterwards, the random variates of only each sth iteration are collected to
obtain the sample xi in (6.109), because subsequent samples are correlated.
The value of s, of course, depends on the correlation between the samples
which in turn depends on the correlation of the unknown parameters.
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In case of strong correlations it is helpful to use a grouping, also called
blocking technique (Liu 2001, p.130). The vector of unknown parameters
is grouped into subvectors, for instance x = |x′

1, . . . ,x
′
r|′ where strongly

correlated components of x are clustred in the same subvector. Sampling
from the conditional density functions for the subvectors xk for k ∈ {1, . . . , r}
leads instead of (6.108) to the following algorithm: draw for the qth iteration

x
(q)
1 from p(x1|x(q−1)

2 , . . . ,x
(q−1)
r , y, C)

x
(q)
2 from p(x2|x(q)

1 , x
(q−1)
3 , . . . ,x

(q−1)
r , y, C)

x
(q)
3 from p(x3|x(q)

1 , x
(q)
2 , x

(q−1)
4 , . . . ,x

(q−1)
r , y, C)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x
(q)
r from p(xr|x(q)

1 , . . . ,x
(q)
r−1, y, C) .

(6.110)

After discarding the random variates of the first o iterations either in m
parallel runs or after collecting the random variates of each sth iteration in
a single run, the m random variates xi are obtained

xi = |x′
1i, . . . ,x

′
ri|′ with i ∈ {1, . . . , m} . (6.111)

An example for the Gibbs sampler (6.108) is given in Chapter 6.3.6 and for
the Gibbs sampler (6.110) in Chapter 6.3.5.

6.3.3 Computation of Estimates, Confidence Regions

and Probabilities for Hypotheses

The random variates xki with i ∈ {1, . . . , m}, k ∈ {1, . . . , u} generated for
the component xk of the random vector x of unknown parameters have the
marginal density function p(xk|y, C) of the joint density function p(x|y, C).
The mean of these random values therefore gives an estimate of the expected
value E(xk|y) of xk. Thus, the Bayes estimate x̂kB of xk follows with (3.9)
from

x̂kB =
1

m

m∑
i=1

xki (6.112)

and the Bayes estimate x̂B of the entire vector x of unknown parameters
with (6.109) from

x̂B =
1

m

m∑
i=1

xi . (6.113)

The MAP estimate x̂M of x is obtained from (3.30) by

x̂M = argmax
xi

p(xi|y, C) . (6.114)
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The result (6.113) may be also derived as Bayes estimate (6.39) of a Monte
Carlo integration. If the random values xi in (6.39) which have the density
function u(xi) are generated by the Gibbs sampler, the importance weights
wi in (6.24) take on the values

wi = 1/m (6.115)

so that (6.113) follows immediately from (6.39).
The estimate of the covariance matrix D(x|y) is obtained from (6.41)

with (6.115) by

D̂(x|y) =
1

m

m∑
i=1

(xi − x̂B)(xi − x̂B)′ . (6.116)

The index B for a point at the boundary of the 1−α confidence region for x

is determined by (6.42) with (6.115). If the density values p(xi|y, C) with xi

from (6.109) are sorted in decreasing order so that the sequence p(xj |y, C)
with j ∈ {1, . . . , m} is obtained, the index B follows from (6.42) with (6.115)
by

B = m(1 − α) (6.117)

and the density value pB for the point xB at the boundary of the confidence
region from (3.41) by

pB = p(xB|y, C) . (6.118)

The estimate V̂ of the ratio of the integrals for testing the composite hypoth-
esis (3.45) is obtained from (6.44) with (6.115) by

V̂ = n0/n1 (6.119)

where n0 denotes the number of xi ∈ X0 and n1 the number of xi ∈ X1.
To test a point null hypothesis by means of a confidence region according
to (3.82), the density value pB at the boundary of the confidence region is
determined by (6.118).

If instead of the posterior density function p(x|y, C) the posterior density
function p̄(x|y, C) from (6.37) and instead of (6.106) the conditional density
function

p̄(xk|x1, . . . , xk−1, xk+1, . . . , xu, y, C) for k ∈ {1, . . . , u} (6.120)

are available which both are not normalized, random values for xk may be
generated nevertheless by the rejection method (6.10) or the SIR the algo-
rithm (6.31), as already mentioned in connection with (6.106). The nor-
malization constant c in (6.37) for p̄(x|y, C), however, cannot be directly
computed by the Gibbs sampler. But the results (6.112) to (6.114), (6.117)
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and (6.119) can be given, since the MAP estimate (6.114), as already men-
tioned in connection with (6.40), is valid also for the density functions which
are not normalized. To determine the index B from (6.117), also density
values not normalized may be sorted in decreasing order. By means of the
index B the boundary of the confidence region is then determined by the not
normalized density values, as described for (6.42). A point null hypothesis
may be also tested with (3.82) by density functions which are not normalized.

If one needs instead of p̄(x|y, C) the normalized posterior density function
p(x|y, C), it has to be estimated from the random variates xi with i ∈
{1, . . . , m} in (6.109). The parameter space X with x ∈ X is divided as
in (6.56) by intervals on the coordinate axes into small subspaces ∆Xj with
j ∈ {1, . . . , J}, for instance, the plane into small squares by parallels to the
coordinate axes. Let xj represent the space ∆Xj either by (6.57) as a mean of
the random variates xi ∈ ∆Xj or as the midpoint of ∆Xj and let p(xj |y, C)
be the value of the density function of p(x|y, C) for xj . It is estimated
corresponding to (6.56) by summing over the importance weights wi of the
subspace ∆Xj which gives with (6.115)

p(xj |y, C) =
∑

xi∈∆Xj

wi/V∆Xj
= n∆Xj

/(mV∆Xj
) for j ∈ {1, . . . , J}

(6.121)

where V∆Xj
denotes the hypervolume of the subspace ∆Xj and n∆Xj

the
number for which

xi ∈ ∆Xj for j ∈ {1, . . . , J} (6.122)

is valid. The estimate corresponds to the computation (2.24) of probabili-
ties from the relative frequencies of the generated random variates so that
a discrete density function is obtained. Dividing by V∆Xj

because of (2.72)
gives corresponding to (6.58) approximately the continuous density function
p(xj |y, C).

The estimate (6.121) may produce a ragged form of the posterior density
function p(x|y, C). To improve it, the kernel method of estimating density
functions can be applied, see for instance Silverman (1986, p.76),

p(xj |y, C) =
1

mhu

m∑
i=1

K{ 1

h
(xj − xi)} for j ∈ {1, . . . , J} (6.123)

where h denotes the width of the window, u the number of unknown pa-
rameters and K the kernel function for which usually a radially symmetric
unimodal density function is chosen, for instance, the density function of the
multivariate normal distribution (2.195) for a u × 1 random vector x with
µ = 0 and Σ = I. A useful kernel function for u = 2 has been introduced
for the example of Chapter 6.3.6.
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6.3.4 Computation of Marginal Distributions

If not all unknown parameters x have to be estimated but only a subset
of x, the estimates (6.112) to (6.114) are still valid. If a confidence region
needs to be established for a subset of the unknown parameters which is
collected in the vector x1 with x = |x′

1, x
′
2|′, the posterior marginal density

function p(x1|y, C) has to be determined from (6.45). We therefore generate
by the Gibbs sampler m values xi which are seperated corresponding to the
decomposition of x into

xi = |x′
1i, x

′
2i|′ . (6.124)

As in (6.56) we divide the space X1 with x1 ∈ X1 and x2 ∈ X2 by intervals
on the coordinate axes into small subspaces ∆X1j with j ∈ {1, . . . , J} and
introduce the point x1j which represents the space ∆X1j either as the mean
(6.57) or as the midpoint. To estimate the value pd(x1j |y, C) of the discrete
marginal density function, we sum the importance weights wi for all random
variates x1i ∈ ∆X1 and x2i ∈ X2 and obtain with (6.56) and (6.115)

pd(x1j |y, C) =
∑

x1i∈∆X1j,x2i∈X2

wi = n∆X1j
/m

for j ∈ {1, . . . , J} (6.125)

where n∆X1j
denotes the number of random variates xi for which

x1i ∈ ∆X1j and x2i ∈ X2 (6.126)

is valid. The continuous marginal density function p(x1j |y, C) for x1j follows
approximately from (6.58) with

p(x1j |y, C) = pd(x1j |y, C)/V∆X1j
(6.127)

where V∆X1j
denotes the hypervolume of the subspace ∆X1j .

A more accurate method of estimating the marginal density function is
the kernel method (6.123). We replace xj in (6.123) by x1j and xi by x1i

and obtain the estimate of the marginal density function p(x1j |y, C) for x1j

by

p(x1j |y, C) =
1

mhu1

m∑
i=1

K{ 1

h
(x1j − x1i)} for j ∈ {1, . . . , J} (6.128)

where h denotes the width of the window, u1 the number of unknown pa-
rameters in x1 and K the kernel function discussed for (6.123). This kernel
estimate has been applied for the example of Chapter 6.3.6.

If the density values pd(x1j |y, C) from (6.125) or with (6.127) from (6.128)
for the discrete marginal density function are arranged in decreasing order



6.3 Markov Chain Monte Carlo Methods 223

such that the series pd(x1l|y, C) for l ∈ {1, . . . , J} is obtained, the index B
of a point x1B at the boundary of the 1− α confidence region for x1 follows
with (6.60) by

B∑
l=1

pd(x1l|y, C) = 1 − α (6.129)

and the density value pB of the point x1B from (6.127) or (6.128) by

pB = p(x1B|y, C) . (6.130)

If the density values pd(x1j |y, C) are computed by (6.125), it may happen
that identical density values are obtained for more than one subspace ∆X1j .
If a point x1l with one of these identical density values obtains the index
B according to (6.129), the boundary of the confidence region cannot be
uniquely determined by the interpolation. To avoid such a situation the
kernel method (6.128) needs to be applied.

The ratio (3.62) of the two integrals to test the composite hypothesis
(3.45) for x1 is found corresponding to (6.119) by

V̂ = n0/n1 (6.131)

where n0 denotes the number of x1i ∈ X10, n1 the number of x1i ∈ X11

and X10 and X11 the domains for the integration of x1. The reason is that
the random values x1i generated for x1 have the marginal density function
p(x1|y, C) of the joint density function p(x|y, C).

To use the conditional density functions which are obtained by the poste-
rior density function p(x|y, C), Gelfand and Smith (1990) propose, see also
Gelfand et al. (1992), the following computation of the marginal density
function p(xk|y, C) for xk based on (6.106)

p(xk|y, C) =
1

m

m∑
i=1

p(xk|x1i, . . . , xk−1,i, xk+1,i, . . . , xui, y, C) (6.132)

where the density values are summed, which are obtained except for xki

by the m generated random variates from (6.109). By partitioning x into
x = |x′

1, x
′
2|′ the posterior marginal density function p(x1|y, C) for x1 follows

correspondingly by

p(x1|y, C) =
1

m

m∑
i=1

p(x1|x2i, y, C) (6.133)

where x2i with i ∈ {1, . . . , m} denote the vectors of random variates gener-
ated for x2, which are contained in the set (6.109) of generated values. How-
ever, computing the marginal density functions by (6.132) or (6.133) needs
the normalization constants for p(xk|x1, . . . , xu, y, C) or p(x1|x2, y, C) which
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generally are not available. If a normalized conditional density function is
known which approximates p(x1|x2, y, C), an importance weighted marginal
density estimation may be used, as proposed by Chen et al. (2000, p.98).

The method of computing the marginal density function from (6.133) can
be justified by the Monte Carlo integration. We obtain with (2.102) instead
of (3.5)

p(x1|y, C) =

∫
X2

p(x1|x2, y, C)p(x2|y, C)dx2 .

The integral expresses the expected value of p(x1|x2, y, C) which is computed
by the density function p(x2|y, C). This expected value follows from (6.133)
by the Monte Carlo integration (6.16), since the values x2i generated for the
vector x2 by the Gibbs sampler have the density function p(x2|y, C).

6.3.5 Gibbs Sampler for Computing and Propagating Large

Covariance Matrices

When estimating unknown parameters, their covariance matrix (3.11) is
needed to judge the accurcy of the estimates. Further quantities are often
derived from the unknown parameters and their covariance matrices might
be of greater interest than the covariance matrix of the unknown parameters.
The covariance matrices of the derived quantities are obtained according to
(2.158) by propagating the covarince matrix of the unknown parameters. For
instance, when determining the gravity field of the earth from satellite ob-
servations, the geopotential is generally expanded into spherical harmonics
whose coefficients are the unknown parameters. Several ten thousands of
harmonic coefficients are estimated in linear models so that it takes a con-
siderable computational effort to compute the covariance matrix of the har-
monic coefficients by inverting according to (4.16), (4.88), (4.125) or (4.170)
the matrix of normal equations. The harmonic coefficients are transformed
into gridded gravity anomalies, geoid undulations or geostrophic velocities.
By orbit integration the positions of satellites result from the harmonic co-
efficients. The covariance matrices of these derived quantities are obtained
in case of linear transformations by multiplying the covariance matrix of the
harmonic coefficients from the left by the matrix of the linear transformations
and from the right by its transpose, see (2.158). For nonlinear transforma-
tions the matrix of transformations contains the derivatives of the transfor-
mations, as mentioned in connection with (2.158). These propagations of
covariance matrices lead in case of many unknown parameters to cumber-
some computations which are simplified by applying the Gibbs sampler. The
covariance matrix of nonlinear tranformations of the unknown parameters
can be directly computed by the Gibbs sampler, thus avoiding to determine
the derivatives of the nonlinear transformations. In addition, only a few sig-
nificant figures are needed when specifying the accuracy by variances and
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covariances. Estimating these quantities by the Gibbs sampler can take care
of this advantage.

Let the u × 1 vector β of unknown parameters be defined in the linear
model (4.1). In case of a variance factor σ2 known by σ2 = 1, the posterior
density function for β is given by the normal distribution (4.14)

β|y ∼ N(β̂, D(β|y)) (6.134)

with the Bayes estimate β̂ of β from (4.15)

E(β|y) = β̂ = (X ′PX)−1X ′Py (6.135)

and the covariance matrix D(β|y) of β from (4.16)

D(β|y) = N−1 = (X ′PX)−1 = V (6.136)

with N = X ′PX being the matrix of normal equations for β. The u × 1
vector e of errors, the difference between β and E(β|y), is introduced by

e = β − E(β|y) = β − β̂ . (6.137)

Its distribution follows from (2.202) and (6.134) by

e ∼ N(0, V ) (6.138)

with expectation and covariance matrix

E(e) = 0 and D(e) = D(β|y) = V . (6.139)

We will use the Gibbs sampler to generate random variates ei with i ∈
{1, . . . , m} for the error vector e. They lead with (6.137) to random variates
βi for the vector β of unknown parameters

βi = β̂ + ei for i ∈ {1, . . . , m} . (6.140)

Let f(β) be a vector of nonlinear or linear transformations of β. Its co-
variance matrix D(f (β)), where the conditioning on y is omitted for simpler
notation, follows with (2.144) and (3.11) by

D(f(β)) =

∫
B

(
f (β) − E(f (β))

)(
f(β) − E(f(β))

)′

p(β)dβ (6.141)

where B denotes the parameter space of β. The Monte Carlo estimate
D̂(f (β)) of D(f(β)) is obtained with (6.116) and (6.113) by means of the
random variates βi from (6.140) by

D̂(f(β)) =
1

m

m∑
i=1

(
f (βi) − Ê(f (β))

)(
f (βi) − Ê(f (β))

)′

(6.142)
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with

Ê(f(β)) =
1

m

m∑
i=1

f(βi) . (6.143)

If f(β) represents a linear transformation of the unknown parameters β,
we obtain with the matrix F which has u columns and with (6.137)

f(β) = Fβ = F (β̂ + e) (6.144)

so that with (6.139)

E(f(β)) = F β̂ (6.145)

follows and finally

f(β) − E(f(β)) = Fe . (6.146)

The estimated covariance matrix D̂(Fβ) of the covariance matrix of the
linear transformation Fβ results therefore from (6.142) by

D̂(Fβ) =
1

m

m∑
i=1

(Fei)(Fei)
′ . (6.147)

With F = I we find the estimate D̂(β|y) of the covariance matrix of the
unknown parameters β, see also (6.116), by

D̂(β|y) = V̂ =
1

m

m∑
i=1

eie
′
i . (6.148)

If one uses (6.142), to compute the covariance matrix of quantities derived
by nonlinear transformations of the vector β of unknown parameters, or if
(6.147) is applied, to obtain the covariance matrix of linearly transformed
quantities, the covariance matrix of β estimated by (6.148) is obviously not
needed. This reduces the number of computations especially, if the vectors
f(β)) or Fβ are much shorter than β. In contrast, the covariance matrix
D(β|y) of the unknown parameters is always needed, if we propagate the
covariance matrices by (2.158).

To sample random variates ei from (6.138), we need the covariance matrix
V of the unknown parameters which, however, is not known. If the Gibbs
sampler is applied, the samples are drawn from conditional density functions
which can be expressed by the elements of the matrix N of normal equations,
as shown by Harville (1999) who used the Gibbs sampler (6.108). To take
care of strongly correlated unknown parameters, the Gibbs sampler (6.110)
for grouped unknown parameters is applied here, as proposed by Gundlich



6.3 Markov Chain Monte Carlo Methods 227

et al. (2003). The vector e of errors is therefore divided into two subvectors
el and et and the matrices N and V accordingly

e =

∣∣∣∣ el

et

∣∣∣∣ , N =

∣∣∣∣ N ll N lt

N tl N tt

∣∣∣∣ , N−1 = V =

∣∣∣∣ V ll V lt

V tl V tt

∣∣∣∣ . (6.149)

The conditional distribution for el given et is defined because of (6.138) by
the normal distribution (2.198)

el|et ∼ N(V ltV
−1
tt et, V ll − V ltV

−1
tt V tl) .

We compute V −1 by (4.46) and apply the matrix identity (4.47) to ob-
tain N ll = (V ll − V ltV

−1
tt V tl)

−1 and the identity (4.48) to find N lt =
−N llV ltV

−1
tt which gives −N−1

ll N lt = V ltV
−1
tt so that the conditional dis-

tribution is defined by the subblocks of the matrix N of normal equations

el|et ∼ N(−N−1
ll N ltet, N

−1
ll ) . (6.150)

The Gibbs sampler (6.110) for the grouping technique shall be applied to
take care of correlated unknown parameters. This is necessary for the exam-
ple of determining the gravity field of the earth from satellite observations
mentioned above, because the matrix of normal equations tend to be ill-
conditioned. A reordering of the harmonic coefficients by the order of their
expansion gives an approximate block diagonal structure of the matrix of
normal equations and its inverse so that correlated unknown parameters can
be grouped, see Gundlich et al. (2003).

As in (6.110) the error vector e is now subdivided into r subvectors e1 to
er and the matrices N and V accordingly

e =

∣∣∣∣∣∣
e1

. . .
er

∣∣∣∣∣∣ , N =

∣∣∣∣∣∣
N11 . . . N1r

. . . . . . . . . . . . . . .
N r1 . . . Nrr

∣∣∣∣∣∣ , V =

∣∣∣∣∣∣
V 11 . . . V 1r

. . . . . . . . . . . . . . .
V r1 . . . V rr

∣∣∣∣∣∣ . (6.151)

At the qth iteration of the Gibbs sampler (6.110) we draw el given e
(q)
1 , . . . ,

e
(q)
l−1, e

(q−1)
l+1 , . . . ,e

(q−1)
r from the conditional distribution obtained from (6.150)

el|e(q)
1 , . . . ,e

(q)
l−1, e

(q−1)
l+1 , . . . ,e(q−1)

r

∼ N
(
− N−1

ll

(∑
j<l

N lje
(q)
j +

∑
j>l

N lje
(q−1)
j

)
, N−1

ll

)
. (6.152)

To sample from this normal distribution, (6.13) may be applied. Collecting
the m samples of each sth iteration after a burn-in phase of o iterations gives
the vectors ei of random variates

ei = |e′
1i, . . . ,e

′
ri|′ for i ∈ {1, . . . , m} . (6.153)

The distance s between the collected samples ei depends on the correlation
between the samples which can be computed, as shown by Gundlich et al.
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(2003). By means of the random variates ei the covariance matrix for f (β),
Fβ and β can now be estimated by (6.142), (6.147) and (6.148).

The estimate V̂ in (6.148) can be improved. The inverse N−1 in (6.149)
is computed by (4.46) to obtain V ll = N−1

ll + N−1
ll N ltV ttN tlN

−1
ll which

gives instead of (6.148) the estimate V̄ ll

V̄ ll = N−1
ll +

1

m

m∑
i=1

N−1
ll N ltetie

′
tiN tlN

−1
ll . (6.154)

The second identity N lt = −N llV ltV
−1
tt , which leads to (6.150), gives V lt =

−N−1
ll N ltV tt and instead of (6.148) the estimate

V̄ lt =
1

m

m∑
i=1

−N−1
ll N ltetie

′
ti . (6.155)

An improvement with respect to computational efficiency results from the
estimates

V̄ ll = N−1
ll +

1

m

m∑
i=1

µliµ
′
li and V̄ lt =

1

m

m∑
i=1

µlie
′
ji

for l, j ∈ {1, . . . , r}, l �= j (6.156)

where the vector µli is obtained at the end of each sth iteration from the
vector

−N−1
ll

(∑
j<l

N lje
(q)
j +

∑
j>l

N lje
(q−1)
j

)

computed for generating random variates from (6.152) for the Gibbs sampler.
The estimate (6.156) is generally nonsymmetric which can be avoided, if
only the elements on the diagonal and above the diagonal are estimated.
Monte Carlo methods and also the Gibbs sampler are well suited for parallel
computing. Koch et al. (2004) therefore implemented the Gibbs sampler
using (6.152) for the estimate (6.156) on a parallel computer formed by a
cluster of PCs.

It is obvious that the estimate (6.156) of the covariance matrix V improves
the estimate (6.148), if the matrix N of normal equations has approximately
a block diagonal structure. The inverse N−1

ll of the block diagonal N ll for
l ∈ {1, . . . , r} then gives a good approximation for V ll so that the Gibbs
sampler improves by (6.156) the approximation. This is also generally true,
because the variance of the estimate (6.156) is smaller than the one of (6.148),
as shown by Gundlich et al. (2003). The estimate (6.156) results from an
estimation by conditioning, also called Rao-Blackwellizaton, see for instance
Liu (2001, p.27). It means that by intoducing a conditional density function
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a part of the integration can be solved analytically so that the variance of
the estimate is reduced.

Only a few significant figures are needed for specifying the accuracy by
variances and covariances. To determine the accuracy of the estimate (6.156)
Gundlich et al. (2003) used the scaled Frobenius norm

d =
( 1

u2max(vii)2

u∑
i=1

u∑
j=1

(v̄ij − vij)
2
)1/2

(6.157)

where u denotes the number of unknown parameters β, v̄ij and vij the el-
ements of V̄ and V . The norm d gives approximately the variance of the
estimate v̄ij averaged over all elements of V̄ and scaled by the maximum
variance vii because of |vij | ≤ max(vii). By taking the square root the
scaled averaged standard deviation is obtained. Thus, d indicates the num-
ber of significant digits not distorted by errors of the estimate. For instance,
d = 1 × 10−3 means on the average three significant digits in the estimated
elements v̄ij of V̄ .

For computing d from (6.157) the covariance matrix V is needed which
is only available for test computations. However, the estimated covariance
matrix V̄ follows from (6.156) as the mean value of random variates. The
variance of this mean can be easily obtained, if the samples are independent.
This can be approximately assumed because of the grouping technique and
because only each sth generated sample is selected as random variate. The
variances thus obtained can be used to compute the Frobenius norm (6.157)
with a good approximation. Applying a parallel computer these approxima-
tions are available during the sampling process, as shown by Koch et al.
(2004).

To determine by hypothesis tests the maximum degree of harmonic co-
efficients in a geopotential model, parallel Gibbs sampling was applied by
Koch (2005b) to compute random variates for the harmonic coefficients.
They were nonlinearly transformed to random variates for quantities whose
density functions were computed by these random values for the hypothesis
tests.

6.3.6 Continuation of the Example: Confidence Region for

Robust Estimation of Parameters

As in Chapter 6.2.5 confidence regions shall be determined with (3.35) for
the unknown parameters β whose estimates are determined by the robust
estimation presented in Chapter 4.2.5. Since the integration of the posterior
density function p(β|y) for β from (4.62) could not be solved analytically,
the Gibbs sampler is applied.

The posterior density function, which is not normalized and again is called
p̄(βT |y), for the vector βT = β− β̂ of the unknown parameters transformed
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by (6.65) is obtained by (6.88) with ēTv from (6.87)

p̄(βT |y) =

n∏
v=1

p̄(ēTv|βT ) . (6.158)

The conditional density function for βk with βT = (βk) given the remaining
components of βT which are collected in the vector βt follows with (6.158)
corresponding to (6.106), where the denominater does not need to be consid-
ered, because the density function is not normalized,

p̄(βk|β1, . . . , βk−1, βk+1, . . . , βu) =
n∏

v=1

p̄(ēTv|βk, βt)

and k ∈ {1, . . . , u} . (6.159)

Random variates for βk have to be generated by the Gibbs sampler with
(6.108). The rejection method (6.10) is applied which gives the random
values we are looking for, even if the density function used for the generation
is only available in the form (6.159) which is not normalized. However, an
envelope must be found for the density function (6.159).

As was shown in Chapter 6.2.5, the conditional normal distribution (6.75)
is an approximate distribution for (6.159). We obtain, since βt contains the
components of βT without βk,

βk|βt, y ∼ N(−β̂k, σ2
k) (6.160)

with

β̂k = (x′
kPxk)−1x′

kPXtβt

σ2
k = σ2(x′

kP xk)−1 (6.161)

from (6.73) and X = (x′
k) as in (4.59). An envelope of the standard normal

distribution is formed by the Cauchy distribution (2.192) with the translation
parameter θ = 0 and the scale parameter λ = 1 (Devroye 1986, p.46). An

envelope of the normal distribution (6.160) is obtained with θ = −β̂k and in
addition with λ = σk, as will be shown in the following.

First we set θ = 0 and β̂k = 0 and determine the minimum of the constant
C from (6.9) depending on βk. We obtain with (2.166) and (2.192)

C =
1√

2πσk

e
− β2

k

2σ2
k /

( λ

π(λ2 + β2
k)

)
. (6.162)

Extremal values for C follow after taking the logarithm of (6.162) from

d

dβk

[
ln

1√
2πσk

− ln
λ

π
− β2

k

2σ2
k

+ ln(λ2 + β2
k)

]
= 0
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or

−βk

σ2
k

+
2βk

λ2 + β2
k

= 0 . (6.163)

The first extremal value C1 is obtained for βk = 0, thus from (6.162)

C1 =
λ

σk

√
π

2
. (6.164)

The second extremal value C2 is found from (6.163) for

β2
k = 2σ2

k − λ2 with λ2 < 2σ2
k or λ/σk <

√
2 ,

hence from (6.162)

C2 =

√
2πσk

eλ
e

λ2

2σ2
k for λ/σk <

√
2 . (6.165)

For λ/σk <
√

2 the constant C attains the maximum (6.165) with β2
k =

2σ2
k−λ2 and the minimum (6.164) with βk = 0. For λ/σk ≥ √

2 the maximum
(6.164) of the constant C is reached with βk = 0. Thus, the minimum of the
constant C has to be looked for λ/σk <

√
2 which is attained at

λ/σk = 1 (6.166)

and therefore from (6.165)

C =

√
2π

e
. (6.167)

To generate random variates with the density function (6.159) by the
rejection method, random values have to be generated with the Cauchy dis-
tribution (2.192). Because of (6.160) we have θ = −β̂k and because of (6.166)
λ = σk. The random values βki for βk therefore follow with (6.6) from

βki = σk tan(πu) − β̂k . (6.168)

For the rejection method (6.10)

uCg(x) < p̄(x) (6.169)

needs to be fulfilled where g(x) denotes the density function of the Cauchy
distribution and p̄(x) the density function (6.159). When computing g(x)
one has to keep in mind that the normal distribution (6.160) contains the
constants given in (6.73) which depend on the random values βti given for βt.
If they are taken into account and if as approximate normalization constant
for (6.159) the normalization constant of the normal distribution (6.160) is
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used, one obtains with (2.192), (6.73), (6.161), (6.167) and (6.168) instead of
(6.169)

u

√
2π

e

σk

π

1

σ2
k + (βki + β̂k)2

e− 1
2σ2 (c1+c2) <

1√
2πσk

n∏
v=1

p̄(ēTv|βki, βti)

with

c1 = β′
tiX

′
tP Xtβti

c2 = −σ2β̂2
k/σ2

k (6.170)

or

u
2√
e

σ2
k

σ2
k + (βki + β̂k)2

e− 1
2σ2 (c1+c2) <

n∏
v=1

p̄(ēTv|βki, βti) . (6.171)

By introducing (6.166) and (6.167) the Cauchy distribution becomes the
envelope of the normal distribution (6.160), but it has to be checked also,
whether the Cauchy distribution is the envelope of the distribution (6.159).
Thus, according to (6.9) together with (6.171)

2√
e

σ2
k

σ2
k + (βki + β̂k)2

e− 1
2σ2 (c1+c2) ≥

n∏
v=1

p̄(ēTv|βki, βti) (6.172)

has to be fulfilled. When numerically checking this inequality for the follow-
ing example, it turns out that it is not fulfilled for large values of βki. The
constant C from (6.167) therefore needs to be increased so that for a largest
possible value βki the inequality becomes true. However, the constant C
may not be chosen too large to avoid an inefficiency of the rejection method.
Random values βki not fulfilling (6.172) do not have the distribution (6.159),
we are looking for, but a distribution which approximates the Cauchy distri-
bution. This approximation can be accepted, if it happens for large values
for βki and thus for small density values.

By applying the Gibbs sampler (6.108) in connection with the rejection
method (6.10) for the density function (6.159), random values βTi with the
posterior density function p(βT |y) from (4.62) in connection with (6.65) are
obtained, although it is only available in the form (6.158) which is not normal-
ized. If confidence regions for a subset from (6.67) of the set βT of unknown
parameters have to be computed or hypotheses to be tested, values of the
marginal density function are computed from (6.125) or with (6.127) from
(6.128), in order to determine with (6.129) a point at the boundary of the
confidence region. For testing hypotheses (6.131) is applied.

Example: Again the confidence region of content 1 − α = 95% for the
unknown parameters β0 and β1 in (6.94) of the Example 1 to (6.93) is com-
puted. The marginal distribution for β0 and β1 will be estimated by the



6.3 Markov Chain Monte Carlo Methods 233

kernel method (6.128). For βT = |β0 − β̂0, β1 − β̂1, β2 − β̂2|′ the random
variates βTi, i ∈ {1, . . . , m} with the density function (6.159) were there-
fore generated by the Gibbs sampler together with the rejection method in
m = 2 000 000 repetitions with a burn-in phase of o = 200, as explained for
(6.109). It was already mentioned for (6.172) that the density function of the
Cauchy distribution is not an envelope of the density function (6.159) so that
the fivefold of (6.167) was introduced as constant. For values smaller than
0.0059 on the right-hand side of (6.172) the inequality is not fulfilled, the
maximum value on the right-hand side is equal to one. This approximation
is sufficiently accurate.

The plane where β0 and β1 are defined is subdivided into J = 20 000
surface elements of equal area. With βTc = |β0 − β̂0, β1 − β̂1|′ the midpoints
of the area elements are denoted by βTcj with j ∈ {1, . . . , J}. The m random
variates βTi generated for βT also contain the random values for βTc, these
values are denoted by βTci with i ∈ {1, . . . , m}. They are used to estimate the
marginal density values p(βTcj) for the midpoints βTcj of the area elements
by the kernel method (6.128)

p(βTcj |y, C) =
1

mh2

m∑
k=1

K
{ 1

h
(βTcj−βTci)

}
for j ∈ {1, . . . , J} (6.173)

with the kernel (Silverman 1986, p.76)

K(z) =

{
3π−1(1 − z′z)2 for z′z < 1

0 otherwise

and

z =
1

h
(βTcj − βTci) .

The window width h is chosen to be the fourfold of the side length of a
surface element (Koch 2000). When applying (6.173) the contribution of
each generated random vector βTci to the density values of the midpoints
βTcj is computed and then the m contributions are added to obtain the
density values p(βTcj |y). They are ordered to obtain with (6.127) from
(6.129) the index B of a point at the boundary of the confidence region.
Its density value pB follows with

pB = 0.0062

in good agreement with the values of the Example 1 to (6.93) and of the
Example 2 to (6.103). The confidence region is shown in Figure 6.3. It is
nearly identical with the ones of Figure 6.1 and 6.2.
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Figure 6.3: Confidence Region for β0 and β1 by the Kernel Estimation of
the Marginal Density Function
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Signale. Dümmler, Bonn.

Koch, K.R. and Y. Yang (1998a) Konfidenzbereiche und Hypothesentests
für robuste Parameterschätzungen. Z Vermessungswesen, 123:20–26.

Koch, K.R. and Y. Yang (1998b) Robust Kalman filter for rank deficient
observation models. J Geodesy, 72:436–441.
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Xu, P. (2005) Sign-constrained robust least squares, subjective breakdown
point and the effect of weights of observations on robustness. J Geodesy,
79:146–159.

Xu, P., Y. Shen, Y. Fukuda and Y. Liu (2006) Variance component
estimation in linear inverse ill-posed models. J Geodesy, 80:69–81.

Yang, Y. and W. Gao (2006) An optimal adaptive Kalman filter. J

Geodesy, 80:177–183.

Yang, Y., L. Song and T. Xu (2002) Robust estimator for correlated
observations based on bifactor equivalent weights. J Geodesy, 76:353–
358.

Zellner, A. (1971) An Introduction to Bayesian Inference in Econometrics.
Wiley, New York.



Index

accuracy, 42,66,224,229
alternative chain rule, 11
- hypothesis, 74,80,82,115
associative law, 5
axioms of probability, 10

Bayes estimate, 66,90,94,104,112,
119,123,132,149,202,219

- factor, 78,79
- risk, 64
- rule, 64,66,68,69,76,160,168
Bayes’ theorem, 13,14,16,31,35,60,63,

71,89,100,108,142,168,202
Bayesian confidence region, see

confidence region
- kriging, 130
- network, 167,169,173,181,184,187
- statistics, 1,94,130
beta distribution, 33,36,48,59
bias, see unbiased estimation
binomial distribution, 20,32,38
- series, 21,38
blocking technique, see grouping

technique
Boolean algebra, 5,10

Cauchy distribution, 51,195,230
central limit theorem, 45
- moment, 41
chain rule, 11,29,169,182,184,187
characteristics, 159,161,162
χ2 (chi-square)-distribution, 48,72,93
Cholesky factorization, 147,197
classical definition of probability, 9
classification, 160,163
collocation, 129
commutative law, 4
composite hypothesis, 74,77,79,204,

206,220,223
conditional density function, 26,55,

169,217,233,226,228
- distribution, 26,52,169,217,227
- - function, 27
- probability, 5,10
conditionally independent, 11,29
confidence hyperellipsoid, 72,93,107,

113,121
- interval, 71,113,138
- region, 71,82,203,205,207,213,215,

220,223,229,234
congruential generator, 193
conjugate prior, 59,61,104,109,117
conjunction, 4
connectivity, 3
constraint, 96,99
continuous entropy, 58
- density function, 19,23
- distribution, 19
- - function, 18
- probability density function, 19,23
- probability distribution, 19
- random variable, 18,22
correlation, 42,162,219,227
- coefficient, 42
covariance, 41,42,52,85
- component, 140,142,144
- matrix, 43,52,66,85,90,104,118,123,

131,139,151,197,203,220,224
crude Monte Carlo integration, 201

data, 3,17,32,63,75,99,171
De Morgan’s law, 5
decision network, 172
- rule, 63
deductive reasoning, 3
degree of freedom, 48
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density function, 17,19,22,27,29,37,
51,64,89,99,143,168,196,217,230

deterministic variable, 172
die, 6,8,12
digital image, 9,154,159,217
- - reconstruction, 154,156
- - smoothing, 154,157
directed acyclical graph, 169
discrete density funtion, 17,22,172,

206
- distribution, 17,200
- entropy, 58
- multivariate distribution, 22
- probability density function, 17,22
- - distribution, 17,22
- random variable, 17,22,26,28,31,37,

167,195
- value, 17,22,167
discriminant analysis, 160
- function, 161,162
disjunction, 4
dispersion, 42,66
- matrix, 43
distribution, 17,19,20,22,24,26,32,

45,51,85,90,107,131,193,216
- function, 18,22,25,27,46,194
distributive law, 5

edge preserving property, 155
eigenvalue, 73,197,210,214
eigenvector, 72
elementary event, 9
EM algorithm, 155,159
entropy, 46,58
envelope, 51,230
error, 43,86,95,100,102,131,139,225
- propagation, 43
estimation, 63,65,71,93,99,228
- by conditioning, 228
exhaustive, 8,13,19
expectation, 37,225
- maximization algorithm, 155,159
expected value, 37,40,45,52,59,66,85,

98,112,118,143,198

exponential distribution, 39,50,58,195

F -distribution, 49,50,55,112,138
failure, 6,12,21
features, see characteristics
filtering, 129,135
Fourier-series, 92
Frobenius norm, 229

gamma distribution, 47,55,112,119,
154

- function, 47
Gauss-Markov model, 94
generalized Bayes’ theorem, 31
- inverse, 121,125
- sum rule, 7
Gibbs distribution, 155,157,164,166
- field, 155
- sampler, 159,217,224,229
graph, 169
grouping technique, 219,227

harmonic oscillation, 91
histogram, 9
H.P.D. region, 71
hypervolume, 71,202,207,221
hypothesis, 74,78,82,93,107,114,121,

123,204,206,220
- test, 75,78,82,93,107,114,121,123,

204,206,220

ICM algorithm, 158,167
ill-conditioned, 147,150
importance sampling, 198,202,208
- weight, 199,201,203,205,220,222
impossible statement, 7,18,20
improper density function, 56,130
incomplete beta function, 48,49
independent, 11,16,29,42,52,86,88,91,

99,107,145,156,163,197
inductive reasoning, 3
influence function, 102
informative prior, 103,111,117,124,

143,149
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instantiate, 173,183,187,192
inverse problem, 150
inversion method, 194
inverted gamma distribution, 48,112,

119,149,150,153
iterated conditional modes algorithm,

see ICM algorithm

jumping distribution, 216

Kalman filter, 107,110
Kalman-Bucy filter, 110
kernel method, 221,222,233
kriging, 130

Lagrange function, 96,98
Laplace distribution, 50,99,102
law of error propagation, 43
leaf node, 169,171,183,187,190
least squares adjustment, see method

of least squares
leverage point, 103
likelihood, 13
- function, 32,59,61,64,85,95,100,109,

139,157,165,175,182,188,199
Lindley’s paradox, 80,82
linear dynamical system, 107,110
- model, 85,96,107,130,140,164
- - not of full rank, 121
- - with constraints, 96
linearize, 87
L1-norm estimate, 103
loss function, 63,65,67,75,93,103
- - of the absolute errors, 67,103
lower α-percentage point, 47

M-estimate, 101
Mahalanobis distance, 162
MAP estimate, 70,90,100,104,111,119,

123,132,158,168,203,205,219
marginal density function, 24,65,168,

173,182,185,188,204,222
- distribution, 24,52,55,56,132,204,

209,222

- - function, 25
Markov chain, 216,218
- - Monte Carlo method, 216,217
- random field, 155,157
mass center, 40
matrix identity, 97,105,132,134,210,

227
- of normal equations, 90,92,124,150
maximum a posteriori estimate, see

MAP estimate
- entropy, 57
- -likelihood estimate, 70,90,94,98,

101,141,166
measurement, 17,44,58,60,99,114
median, 68,103
method of least squares, 65,94,96,

99,104,119,123,132,166
Metropolis algorithm, 216
minimum distance classifier, 162
mixed model, 131
model, see linear and mixed model
- of prediction and filtering, 131,135
Monte Carlo integration, 197,201,216,

220
multidimensional distribution, 22
multivariate distribution, 22,51
- moment, 41
- normal distribution, 51,197
- t-distribution, 53,56,111,126,132
mutually exclusive, 7,13,18,20

negation, 4,6
neighbor Gibbs field, 155
n-dimensional continuous probabil-

ity density function, 23
- continuous random variable, 22,25,

29
- discrete probability density function,

22
- discrete random variable, 22,28,167
noninformative prior, 56,89,100,110,

122,143,148
normal distribution, 45,58,59,80,90,

104,122,140,157,161,164,197,208
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- equation, 90,92,124,150
normal-gamma distribution, 55,61,

111,118,123,131
normalization constant, 14,35,174,

183,199,202,205,212,220,231
null hypothesis, 74,115

observation, 3,17,32,60,85,93,99,
104,108,140,171

- equation, 86,91,100,164
one step late algorithm, 159
OSL algorithm, 159
outlier, 67,99,110,208

parallel computer, 228
parameter, 20,45,47,51, see also

unknown parameter
- estimation, 63,99,207,229
- space, 32,64,71,74,198,200,221,225
partial redundancy, 146,147
pattern recognition, 159
percentage point, see lower and upper

α-percentage point
pixel, 9,155,160 162,164
plausibility, 5,6,34
plausible reasoning, 3,5
point null hypothesis, 74,77,81,82,

93,107,114,121,124,204,220
- estimation, 65,71
Poisson distribution, 156
polynom, 137,213
polytree, 187
positron emission tomography, 155
posterior density function, 32,59,61,

65,71,78,90,143,168,193,202,217
- distribution, 32,56,60,68,90,131
- expected loss, 63,65,67,69,75
- marginal density function, 65,204,

222
- odds ratio, 76,78,80
- probability, 13
precision, 44
- parameter, 57
prediction, 129,135

prior density function, 32,56,59,63,78,
89,100,110,143,166,175,182,200

- distribution, 32,108,157
- information, 33 104,108,117,124,

143,151,154
- probability, 13,15
probability, 3,5,6,7,10,13,17,22,46,

58,71,77,167,173,207
- density function, 17,19,22
- distribution, 17,19
product, 4,6,11
- rule, 6,11,26
propagation of a covariance matrix,

224
proposal distribution, 216
proposition, 5,6,73,168
pseudo random number, 193

quadratic form, 44,49,55,90,94,162
- loss function, 65,93

random event, 1,3,5,9,10,58
- field, 130,155,157
- number, 193,194,195,196,206
- value, see random variate
- variable, 16,17,18,22,26,28,37,45,

58,85,164,167,172,176,194
- variate, 193,194,196,199,204,216,

218,219,221,225,230
- vector, 23,28,31,40,51,59,63,85,96,

139,197,219
- -walk Metropolis, 217
Rao-Blackwellization, 228
recursive, 16,36,108,110
regularization, 150,152
- parameter, 150,152,154
rejection method, 196,201,230
relative frequency, 9,10,176,221
residual, 95,101
ridge regression, 150,152
risk function, 64
robust estimation, 99,207,229
- Kalman filter, 110
root node, 169,171



Index 249

sampling-importance-resampling,
159,201,218

segmentation, 159,165
signal, 129,135
simple hypothesis, 74,77,79
Simplex algorithm, 103
simulated annealing, 217
singly connected Bayesian network,

175,181,184,187
SIR algorithm, 159,201,218
standard deviation, 41
- normal distribution, 46,99,197,230
standardized error, 100,211
- residual, 101
state vector, 107,110
statement, 3,5,6,7,10,12,16,18,22,24,

28,168
- algebra, 5
- form, 4,5
- variable, 3
stochastic process, 129
- trace estimation, 147,153
success, 6,12,21
sum, 4,7
- rule, 7,12,18
sure statement, 6
system with uncertainties, 167,170

t-distribution, 49,54,113,138
test, 75,78,82,93,107,114,204,220
texture parameter, 163
3σ rule, 47
Tikhonov-regularization, 150,152
traditional statistics, 1,5,9,16,34,64,

82,94,96,104,112,114,129,134
transition matrix, 107
tree, 184
trend, 129,137
truth table, 4

unbiased estimation, 94,96,99,105,
147

uncertainty, 46,57,167,170
uniform distribution, 20,33,58,193,

194,196,201
univariate distribution, 19,45,196
unknown parameter, 17,31,59,65,85,

89,107,131,140,156,198,216,225
upper α-percentage point, 47,93,113,

121,138

variance, 41,45,58,85,105,113,118,
135,198,229

- component, 139,144,148,151,154
- factor, 85,94,99,108,112,118,123,

131,139
- of unit weight, see variance factor
- -covariance matrix, see covariance

matrix
Venn diagram, 5
voxel, 154,156,159

weight, 43,59,101,105, see also im-
portance weight

- matrix, 43,59,65,85,108,115,124,
140,145

- parameter, 57,61,110,117
weighted mean, 61,90,105,199

zero-one loss, 69,75,160,168
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