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Preface

Within the ACARE Vision 2020, ambitious goals have been set for air traffic
of the next decades. These include a reduction of emissions by 50% and
a decrease of the perceived external noise level by 10–20 dB. Continuous
improvement of conventional technologies will not be sufficient to achieve
these goals, however, a technological leap forward is required. The combined
efforts of industry and academia will be necessary to harness new flow control
technologies and entirely new configurations for use in future aircraft design
and development. This will require significant improvement and enhancement
of the capabilities and tools of numerical simulation, which has become a key
technology in recent years.

Although numerical simulations of entire aircraft configurations are rou-
tinely performed in industry today, the time required is still on the order of
hours and days, posing a significant obstacle to aerodynamic design and keep-
ing it at a conservative level. Consequently, enhanced CFD capabilities for
reducing design cycle and cost are indispensable for industry. The majority
of the aerodynamic simulation tools currently used in the aeronautical indus-
try for routine applications are based on second-order finite volume methods.
Being bound to second-order numerical schemes the simulation of real-life
applications requires a large amount of mesh points and computing time.
Significantly fewer degrees of freedom are required for higher-order methods
than for classical second-order schemes to reach the same level of accuracy.
Hence the development of higher-order methods for Euler and Navier-Stokes
equations is currently a hot research topic all over the world. However, in or-
der to be competitive, these methods have to be designed in such a way that
the associated increased computational complexity is more than balanced.

In order to add a major step towards the development of next generation
CFD tools with significant improvements in accuracy and efficiency the spe-
cific targeted research project ADIGMA (Adaptive Higher-Order Variational
Methods for Aerodynamic Application in Industry) was initiated within the
3rd Call of the 6th European Research Framework Programme. The goal of
ADIGMA was the development and utilization of innovative adaptive higher-
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order methods for the compressible flow equations enabling reliable, mesh
independent numerical solutions for aerodynamic applications in aircraft de-
sign. A critical assessment of the newly developed methods for industrial
aerodynamic applications should demonstrate their potential compared to
the classical approaches and should identify the best numerical strategies for
integration as major building blocks for the next generation of industrial flow
solvers With the help of a highly skilled consortium, well balanced between
upstream research, applied research and aerospace industry, the ADIGMA
project was aiming at scientific results and algorithms/methods which are
novel in an industrial environment.

After a general project overview (Chapter 1), this volume compiles tech-
nical papers of the ADIGMA partners, in which the major research activi-
ties and achievements are discussed (Chapter 2). Research areas covered are
the development of continuous and discontinuous higher-order finite element
methods, the development and enhancement of corresponding solution algo-
rithms as well as the development of innovative adaptation techniques. The
results and findings of the industrial assessment are discussed in chapter 3. Fi-
nally, the major conclusions drawn from the collaborative European research
effort and recommendations for future research paths are presented.

The editors would like to express their particular thanks to Dr. D. Knörzer,
the European Commissions scientific officer of the ADIGMA project, for his
constant technical interest and administrative help.

Thanks are due to all partners who have contributed in the context of the
ADIGMA project in a very open and collaborative manner. The knowledge
and engagement of each individual contributed to the success and world wide
appreciation of the ADIGMA project.

Finally, the editors would like to express gratitude to M. Wagler and
Dr. J. Held for technical support in compiling this book. Acknowledgements
are due to Prof. Dr. W. Schröder, the general editor of the Springer Series
“Notes on Numerical Fluid Mechanics and Multidisciplinary Design”, and to
his colleague A. Hartmann for their help and editorial advice.

February 2010 Norbert Kroll, Braunschweig
Heribert Bieler, Bremen

Herman Deconinck, Rhode-St-Genése
Vincent Couaillier, Châtillon Cedex

Harmen van der Ven, Amsterdam
Kaare Sørensen, Manching
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Chapter 1
The ADIGMA Project

Norbert Kroll

Abstract. Computational Fluid Dynamics is a key enabler for meeting the strate-
gic goals of future air transportation. However, the limitations of today’s numerical
tools reduce the scope of innovation in aircraft development, keeping aircraft design
at a conservative level. Within the 3rd Call of the 6th European Research Framework
Programme, the strategic target research project ADIGMA was initiated. The goal of
ADIGMA was the development and utilization of innovative adaptive higher-order
methods for the compressible flow equations, enabling reliable, mesh independent
numerical solutions for large-scale aerodynamic applications in aircraft design. A
critical assessment of the newly developed methods for industrial aerodynamic ap-
plications allowed the identification of the best numerical strategies for integration
as major building blocks for the next generation of industrial flow solvers. In order
to meet the ambitious objectives, a partnership of 22 organizations from universities,
research organizations and aerospace industry from 10 countries with well proven
expertise in CFD was set up, guaranteeing high level research work with a clear
path to industrial exploitation. The project started September 2006 and finished at
the end of 2009.

1 Introduction

Computational Fluid Dynamics (CFD) has become a key technology in the devel-
opment of new products in the aeronautical industry. During the last years the aero-
dynamic design engineers have progressively adapted their way-of-working to take
advantage of the possibilities offered by new CFD capabilities based on the solution
of the Euler and Reynolds averaged Navier-Stokes (RANS) equations. Significant
improvements in physical modelling and solution algorithms have been as important
as the enormous increase of computer power to enable numerical simulations in all

Norbert Kroll
German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology,
Lilienthalplatz 7, 38108 Braunschweig, Germany
e-mail: Norbert.Kroll@dlr.de

N. Kroll et al. (Eds.): ADIGMA, NNFM 113, pp. 1–9, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



2 N. Kroll

stages of aircraft development. In particular, better automation of mesh generation
techniques due to unstructured mesh technology and a generalized block-structured
grid approach with non-matching and overlapping grids resulted in the ability to
predict the flow physics and aerodynamic data of highly complex configurations.

However, despite the progress made in CFD, in terms of user time and computa-
tional resources, large aerodynamic simulations of viscous high Reynolds number
flows around complex aircraft configurations are still very expensive and time con-
suming. The requirement to reliably achieve results at a sufficient level of accuracy
within short turn-around time places severe constraints on the application of CFD
for aerodynamic data production, and the integration of high-fidelity methods in
multidisciplinary simulation and optimization procedures. The limitations of today’s
numerical tools used in industry reduce the scope of innovation in aircraft develop-
ment, keeping aircraft design at a conservative level. Consequently, enhanced CFD
capabilities for reducing design cycle and cost are indispensable for industry.

2 State of the Art

The majority of the aerodynamic simulation tools used in the aeronautical indus-
try for routine applications are based on second-order finite volume methods [4].
In the case when complex configurations are considered very often the accuracy of
these methods ranges between first and second-order due to irregular and highly
stretched meshes. The results of the AIAA Drag Prediction Workshops DPW I,
DPW II, DPW III and DPW IV (see e.g. [3, 2, 5]) indicate that CFD technology
currently in use may not produce sufficiently accurate results on meshes with typi-
cal grid sizes that are used in an industrial environment. Nearly mesh independent
solutions are required to achieve confidence in numerical simulations. The separa-
tion of numerical and modelling errors allows systematic statements concerning the
correctness or deficits of the physical modelling (turbulence and transition) for the
flow problem under consideration. For meeting these objectives with second-order
methods, very fine meshes with a large number of grid points are required which, in
the case of complex applications, lead to enormous computing times. Higher-order
methods and reliable adaptation techniques are the appropriate strategies to signif-
icantly reduce computational effort while maintaining accuracy. The advantage of
higher-order methods are expected to become even more profound for DES/LES
simulations due to the very high mesh resolution demands required for this type of
simulation.

Over the last years the development of higher-order methods for Euler and
Navier-Stokes equations has been a hot research topic all over the world. Signif-
icantly fewer degrees of freedom are required for higher-order methods than for
classical second-order schemes to reach the same level of accuracy. However, in
order to be competitive, these methods have to be designed in such a way that the
associated increased computational complexity is more than balanced. Various ap-
proaches are known in the literature including ENO/WENO reconstruction schemes
for finite volume methods, Discontinuous Galerkin finite element methods, spectral
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difference methods, spectral finite volume and difference methods and residual dis-
tribution schemes. Recent reviews of the state of art concerning higher-order accu-
rate methods for aerodynamics can be found for example in [1] and [6]. Despite the
advantages and capabilities, the higher-order methods are not yet mature and cur-
rent implementations are subject to strong limitations for their applications to large
scale industrial problems related to aerodynamic aircraft design. Crucial aspects are
efficiency (both in terms of memory storage and computing time) and robustness
in particular for turbulent high Reynolds number flows, higher-order boundary rep-
resentation and the preservation of monotonicity over discontinuities. Significant
further research is required to overcome current obstacles and to push higher-order
methods into industrial design processes.

Another well known strategy for minimizing the cost of a computational simu-
lation while achieving a given level of accuracy is adaptive mesh refinement. The
basic idea is to locally refine the mesh in regions which most adversely affect the
accuracy of the solution and to coarsen the mesh in more benign areas. Local mesh
refinement is available in many of the finite volume codes used by the aeronau-
tical industry. A number of adaptation techniques have been developed to refine
and de-refine isotropic volume meshes driven by feature-based sensors. They have
clearly demonstrated their capability for relevant industrial applications. However,
continuous local refinement of the dominant features of the flow does not necessarily
guarantee that certain measures of the global error will be simultaneously reduced.
Research is still ongoing to find computationally efficient and reliable adaptation
sensors and error estimators. Recent work on adjoint methods has shown a lot of
promise regarding reliable mesh adaptation. Indeed, adjoint methods have enabled
the development of error estimators for general functionals of the solution such as
lift or drag. However, further research is necessary in order to utilize this novel
adaptation approach for industrial use. This in particular includes applications to
turbulent high Reynolds number flows around 3D complex configurations and to
multiple target quantities. Moreover, in order to fully explore the capabilities of
adaptation, significant development activities with respect to the hp-refinement as
well as anisotropic refinement for compressible flows are required.

3 Goals and Major Objectives

In order to add a major step towards the development of next generation CFD tools
with significant improvements in accuracy and efficiency the specific target research
project ADIGMA was initiated within the 3rd Call of the 6th European Research
Framework Programme. The main objective of the ADIGMA project was the de-
velopment and utilization of innovative adaptive higher-order methods for the com-
pressible flow equations, enabling reliable, mesh independent numerical solutions
for large-scale aerodynamic applications in aircraft design. A critical assessment
of the newly developed methods for industrial aerodynamic applications allowed
the identification of the best numerical strategies for integration as major building
blocks for the next generation of industrial flow solvers.



4 N. Kroll

The ADIGMA project concentrated on technologies showing the highest po-
tential for efficient higher-order discretizations. These are Discontinuous Galerkin
(DG) methods and Continuous Residual Distribution (CRD) schemes. The main
scientific objectives of the ADIGMA project are summarized as follows:

• Further development and improvement of key parts of higher-order space dis-
cretization methods for compressible Euler, Navier-Stokes and RANS equations

• Development of higher order space-time discretizations for unsteady flows in-
cluding moving geometries

• Development of novel solution strategies to improve efficiency and robustness of
higher-order methods, enabling large-scale aerodynamic applications

• Development of reliable adaptation strategies including error estimation, goal-
oriented isotropic and anisotropic mesh refinement and the combination of mesh
refinement with local variation of the order of accuracy (hp-refinement)

• Utilization of innovative concepts in higher-order approximations and adaptation
strategies for industrial applications

• Critical assessment of newly developed adaptive higher-order methods for in-
dustrial aerodynamic applications; measurement of benefits compared to state-
of-the-art flow solvers currently used in industry

• Identification of the best strategies for the integration as major building blocks
for the next generation industrial flow solvers.

4 Partner Consortium

The ADIGMA consortium was comprised of 22 organizations which included the
main European aircraft manufacturers, the major European research establishments
and several universities, all being well recognized for playing an active role in the
development and utilization of advanced high fidelity CFD methods for aerody-
namic applications. The role of the different organizations was quite complemen-
tary. Universities were dealing with upstream research and their main objective was
to provide new technologies with improved capabilities. The national research cen-
ters were addressing applied research and thus closing the gap between upstream
research and industry. In terms of computational methods, new algorithms and tech-
nologies developed at universities are adapted and enhanced for large scale applica-
tions. The role of industry covered the specification of requirements for future CFD
tools and the final assessment of newly developed technologies based on industry
relevant application.

Industrial partners in ADIGMA were Alenia Aeronautica (Italy), Airbus (France
and Germany), Dassault Aviation (France), EADS-MAS (Germany) and CENAERO
(Belgium). Research organizations involved were ARA (United Kingdom), DLR
(Germany), INRIA (France), NLR (The Netherlands), ONERA (France), and VKI
(Belgium). Participating Universities were Universit degli Studi di Bergamo (Italy),
Ecole Nationale Suprieure d’Arts et Mtiers Paris (France), University of Notting-
ham (United Kingdom), Charles University Prague (Czech Republic), University
of Wales Swansea (United Kingdom), University of Stuttgart (Germany), Uppsala
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University (Sweden), University of Twente (The Netherlands), Warsaw University
of Technology (Poland), Nanjing University (China). The project was co-ordinated
by DLR.

5 Technical Project Description

As mentioned above the project focused on the discretization and solver parts of
compressible CFD codes, modelling issues were not explicitly treated. The technical
work in ADIGMA was split into 5 work packages (WP) (see Fig. 1).

In WP2 industrial partners specified the requirements and the evaluation proce-
dure for the newly developed methods. A test case suite of increasing complexity
was specified including the necessary data in order to provide a firm basis for com-
parison at midterm and the end of the project.

Work package WP3, the core of the ADIGMA project, aimed at the improvement
and enhancement of higher-order discretizations for the solution of the Navier-Stokes
equations at high Reynolds numbers, covering the flow regimes of aeronautical ap-
plications. From the state-of-the-art it became clear that two variational technologies
have the highest chance for success, namely Discontinuous Galerkin (DG) meth-
ods and Continuous Residual-Based discretizations. The first category uses a discon-
tinuous polynomial representation in space, generalizing to finite elements the well
known first and second-order finite volume methods. The second approach is a class
of continuous-in-space-finite element methods including stabilized finite element
methods like Galerkin Least Squares, Residual Distribution Schemes and Residual-
Based Compact finite volume methods. Although these methods had shown their
potential for improved accuracy, many aspects are incomplete and need

Fig. 1 Work package struc-
ture of the ADIGMA project
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further development, especially with respect to efficiency and robustness for complex
applications. The objective of this work package was therefore to improve key parts of
higher-order spatial discretization related to stabilization and monotone shock captur-
ing for hyperbolic conservation laws, discretization of turbulent high Reynolds num-
ber Navier-Stokes equations, ensuring higher-order accuracy in presence of complex
bodies with curved boundaries and in cases of highly stretched meshes needed in high
Reynolds number boundary layers.

Since computational efficiency is a crucial aspect for higher-order methods,
work package WP4 was dedicated to the development of solution strategies which
meet the industrial requirements in terms of memory storage, computing time and
efficient utilization of parallel low cost computers. Research activities included
improvements and further developments with respect to multigrid strategies (h-p
multigrid) and fully implicit schemes based on Newton-type methods.

Work package WP5 addressed the effectiveness and reliability of adaptation
techniques in combination with higher-order methods developed in the previous
work packages. New approaches were developed in order to achieve accurate flow
features and flow quantities with minimal amount of degrees of freedom and com-
putation time. Main emphasis was on refinement indicators, error estimation and
combination of h- and p-refinement. The novel adaptation algorithms should be ex-
tended to industrial relevant applications.

Finally, work package WP6 dealt with the critical assessment of the methods and
technologies developed in ADIGMA under the specific aspect of a later industrial
use for complex aerodynamic problems. The assessment was based on the evalua-
tion plan and the test case suite defined in WP2. As reference results obtained with
well established state-of-the-art industrial codes were provided. Identification of
the best strategies and best practice guidelines should ensure technology transfer to
industry.

Details of the project structure are given in Fig. 2.

6 Dissemination and Exploitation

In general, dissemination of the project achievements had been strongly encour-
aged both inside as well as outside the consortium. Inside the partnership an open
communication strategy had been adopted to keep all partners informed. The knowl-
edge gained in the ADIGMA project, the computational methods and the particular
results generated had been disseminated in various forms. Important means are de-
tailed technical reports, publications in journals and presentation at national and
international conferences. In particular, two open ADIGMA/VKI Lecture Series
courses ([7, 8]), the public closing workshop and the final report published as a
dedicated book in the Springer Series “Notes on Numerical Fluid Mechanics and
Multidisciplinary Design Notes” are seen as important channels to disseminate the
project results.

The ADIGMA objectives enabled a strong co-operation between universities (up-
stream research), aircraft industry (end user) and research establishments (bridge
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Fig. 2 Flow chart describing the structure of ADIGMA

between basic research and application). According to their role the organizations
applied different dissemination and exploitation strategies.

The aircraft industry is directly involved in the transfer process from basic re-
search and development into industrially applicable simulation methods and tools.
The newly developed discretization schemes and numerical solution algorithms
were explored on industrially relevant test cases. With the help of the research es-
tablishments as central providers of highly sophisticated CFD simulation tools for
the aircraft industry the most promising methods will be further explored on even
more complex cases from daily aerodynamic work.

The research organizations participating in ADIGMA directly exploited the
knowledge gained in the project by improving their numerical tools. In particular,
ADIGMA had been an important step towards the establishment of the next gener-
ation of CFD tools which can cope with the future requirements of the aeronautical
industry. By providing the improved CFD methodologies to their customers and
partners in industry and academia, the research organizations actively contribute to
the dissemination of the ADIGMA results.

The universities taking part in ADIGMA exploited the ADIGMA findings of ad-
vanced numerical algorithms and procedures for teaching and training students and
researchers. The close co-operation with industry had led to the training of quali-
fied personnel with knowledge of the industrial requirements, thereby increasing the
potential of graduates for employment within industry. The project outcome allows
universities to pursue their goals in the field of applied mathematics and computa-
tional fluid dynamics, both in research and education.
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In summary, on the one hand the ADIGMA project fostered the scientific co-
operation between the universities, research establishments and the aeronautical
industry resulting in numerous significant and novel research contributions, an im-
proved transfer from innovative upstream CFD technologies into the industrial de-
sign cycle as well as considerable improvements and enhancements in education of
highly qualified personnel. On the other hand the novel higher-order adaptive meth-
ods developed within ADIGMA should yield essential progress on several items
like

• Improved simulation accuracy in reduced time and at lower cost
• Enabling automatic and reliable shape optimization and multi-disciplinary simu-

lation and optimization through improved flow solvers
• Enabling accurate flow control simulations based on advanced physical modeling

of flow control phenomena e.g. controlled flow, receptivity issues
• Mesh independent predictions of aerodynamic forces through error estimation

and goal-oriented adaptation
• Automatic and reliable resolution of physical effects that have become relevant to

aerodynamic design (confluent boundary layers, vortex sheets, trailing vortices,
etc.)

• Support and exploitation of advanced physical models (DES, LES)
• Provision of highly accurate aerodynamic input for aero-acoustic simulations.

7 Conclusion

Within the 6th European Research Framework Programme the project ADIGMA
was set up to significantly improve the capabilities of the aerodynamic simulation
tools for aircraft design. The project focused on the development and utilization of
innovative higher-order variational methods in combination with reliable adaptive
solution strategies. The project gathered well known partners from academia and re-
search organizations in Europe with proven expertise in this particular field of CFD.
The involvement of the European aircraft industry ensured that the research work
has a clear path to industrial exploitation. The project started end of 2006 and ran for
36 month wit a 4-month prolongation. The project has proven to be very successful.
It has enabled the European partners to improve and enhance their knowledge on
advanced adaptive higher-order methods. The results achieved demonstrate the high
potential of the new methodology but they also indicate limitations and open issues
still to be tackled for full industrialization of the new methods.

In summary, the ADIGMA project is seen as an important corner stone to support
the competitiveness of both the European research community and European aircraft
manufactures. It has to be stated that the collective outcome of the European project
ADIGMA is seen to be far greater than what could have been expected by each
individual partner. In the following chapters the developments and results achieved
within the project are discussed in detail.
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Chapter 2
Exploiting Data Locality in the DGM
Discretisation for Optimal Efficiency

Koen Hillewaert

Abstract. Near-optimal CPU efficiency for the basic operations of the Newton-
Krylov-BILU iterations for the discontinuous Galerkin method (DGM) can be ob-
tained by exploiting its data locality, as it allows to rewrite these operations in terms
of BLAS/LAPACK operations on contiguous vectors and matrices of considerable
size. Further significant enhancements are obtained by using single precision pre-
conditioners and by exploiting data alignment to improve cache efficiency. The un-
derlying data structures and operations are explained, followed by the comparison of
the obtained floating point operation (FLOP) efficiency to the theoretical optimum.

1 The Discontinuous Galerkin Method

We use the following notation for a system of Nv convective-diffusive equations

∂um

∂ t
+∇ · fm (u)+∇ ·dm (u,∇u) = 0 , m = 1 . . .Nv

dk
m =

d

∑
l=1

Dkl
mn

∂un

∂xl

(1)

This equation is to be solved on the computational domain Ω , with appropriate
boundary conditions imposed at the boundaryΓ . Here u, f and d denote the solution,
the convective and the diffusive flux respectively whilst the sub- and superscript
indices relate to variables and coordinates respectively.

The discontinuous Galerkin method (DGM) approximates the solution compo-
nents um by functions ũm defined in the function space Φ . As illustrated in Fig. 1
Φ is composed of functions that are polynomial functions on each of the elements
ω of the tesselation, but are potentially discontinuous across the element interfaces.

Koen Hillewaert
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Fig. 1 Discontinuous finite element interpolation

Here the polynomials are defined elementwise in terms of parametric coordinates ξ
defined in a reference element. Both the solution ũ and the coordinates x are then
defined as a linear combination of the respective basis functions φi and χ j:

ũm(ξ ) =
Nφ

∑
i=1

uimφi(ξ ) , φi ∈Φ

x(ξ ) =
Nχ

∑
k=1

Xiχi(ξ ) , χi ∈ Ξ

(2)

As suggested by the notation, the degrees-of-freedom (dof) uim are stored in matrix
format, see [4]; the first index refers to the associated shape function, and the second
to the variable. We choose both φi and χi to be Lagrangian interpolants based on
nodes, equidistantly spaced in the reference element. A major advantage is that on
any of the element faces only the functions associated to nodes on that boundary are
non-zero, thus greatly reducing the work associated to boundary contributions.

The variational formulation combines a classical DGM discretisation for the con-
vective terms with the Symmetric Interior Penalty method for the discretisation for
the viscous terms (see Arnoldi et al. [2] for an overview of viscous discretisations).
The weighted residual for variable m, associated to shape function i, is given by:

rim =−
∫
ω
∇φi · fm dV︸ ︷︷ ︸

CV

+
∮
γ
φi Hm

(
ũ−, ũ+,n

)
dS︸ ︷︷ ︸

CI

−
∫
ω
∇φi ·dm dV︸ ︷︷ ︸

DV

+
∮
γ
[[φi]]k

〈
Dkl

mn ·
∂ ũn

∂xl

〉
dS︸ ︷︷ ︸

DI

+
∮
γ
[[ũn]]k

〈
Dkl

nm · ∂φi

∂xl

〉
︸ ︷︷ ︸

DT

+
∮
γ
σ [[ũm]] [[φi]]dS︸ ︷︷ ︸

DP

[[u]] = (u+n+ + u−n−) , 〈u〉 = (u+ + u−)/2
(3)
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The superscripts + and − denote the outward resp. inward limit of the solution when
approaching the interface γ , while n is the local unit normal; H is an (approxi-
mate) Riemann solver, defining an upwind flux across the face in function of both
states on either side of the interface. The Dirichlet boundary conditions are applied
to the convective interface (CI) and the penalty terms (DT, DP) by providing an ap-
propriate external state; the Neumann boundary conditions for the diffusive terms
(DI) replace the average diffusive fluxes in DI appropriately.

The resulting system of non-linear equations is solved using a combination of
damped inexact Newton iterations with block ILU preconditioned, Jacobian-free
GMRES iterations, see ao. Chisholm et al. [5]. Although the Jacobian matrix is not
used for the Krylov iterations, the ILU preconditioner necessitates its construction
and storage. We will show in the next sections how we can implement the related
operations efficiently, relying on the data localisation of the DGM.

Since any of the shape functions φi is associated to one element only, we can
reinterprete the discretisation as a set of high-order finite element problems defined
per element ω ; the element solutions are coupled across element interfaces γ by
enforcing appropriate “boundary conditions”, either through a Riemann solver for
the convective or penalty terms for the diffusive part of the equations. It is further
important to notice that within each element the organisation of its associated dof is
the same: DGM is in fact a hybrid between a structured method on the element level
and an unstructured method at the interface level. This has important implications
for efficiency: all of the elemental data can be stored in dense matrix format and the
bulk of the computational work can be recast as linear algebra operations on dense
vectors and matrices of relatively large size.

2 BLAS and LAPACK Reference Performances

We compare the performance of different implementations (native, Atlas and MKL)
of BLAS and LAPACK on an Intel Core2TM machine clocked at 2.5GHz, with a
L1 data cache of 32KB and a unified L2 cache of 6MB. All of the operations are
performed on contiguous data (ie. no strides). We want to test these operations in
configurations that are close to their use within the code, in order to provide an es-
timate of the ideal performance. The performances are measured in GFlops, ie. in
billions of Floating point Operations per Second. By aligning data, this CPU can
perform up to 4 double precision floating operations per cycle, corresponding to a
maximal speed of 10 GFlops. Due to further data alignment, single precision arith-
metic can be performed twice as fast, as on most modern processors - obviously a
very appealing feature, currently under investigation for accelerating double preci-
sion linear algebra [1, 3].
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2.1 Scaled Vector Addition

Level 1 blas defines the scaled vector addition operation axpy as:

y ← αx + y

α ∈ R, x,y ∈ R
n (4)

As only 2 floating point operations are performed per pair of entries in the vectors,
the axpy operation is very sensitive to cache size. Figure 2 shows the performance
for a realistic scenario, corresponding to the use of axpy during the Jacobian assem-
bly (see section 4); in this case we systematically replace the output vector y by the
next vector in memory whilst keeping the addendum x constant.
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Fig. 2 CPU measurements for vector sum operation when y is systematically replaced - sin-
gle (saxpy) versus double precision (daxpy) for different BLAS implementations

In figures 2(a) and 2(b) we sample the performance per increment of 200 of the
vector size. However if we perform more detailed measurements we get the results
shown in Figs. 2(c) and 2(d): for single precision operations, we found up to 50%
difference between the performance for odd- and even-sized vectors; moreover, mul-
tiples of 4 are usually most efficient. This could be a data alignment issue, yet it is
surprising that the performance is impacted so heavily, and only in single precision.
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2.2 Scaled Matrix Vector Multiplication

Level 2 BLAS defines the matrix-vector product gemv as

y ← α A ·x +βy

α,β ∈ R, y ∈ R
m, x ∈ R

n, A ∈ R
m×n (5)

The number of operations for gemv is given by 2mn, which is proportional to the
number of data involved; hence this operation is again very sensitive to cache miss.

We will use gemv in the back-and forward substitution steps (see section 3),
where the memory access is almost random; the distance between successive ac-
cesses to the vector only being limited by the bandwidth of the Jacobian. In practice
this means that we will systematically run into cache miss. In Fig.3 we compare
the speeds for two configurations. Thereto contiguous blocks of 400 matrices and
vectors are allocated; in the first configuration we access both matrices and vectors
in a sequential manner. In the second realistic scenario, memory is accessed ran-
domly within those two blocks. We see a very dramatic loss of performance for the
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Fig. 3 CPU measurements for the scaled matrix-vector multiplication and addition - single
(sgemv) vs double (dgemv) precision (left-right) and organised versus random acces (top-
bottom)
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second scenario from the point where the level 2 cache (6 MB) is no longer capable
of containing all matrices and vectors.

2.3 Scaled Matrix-Matrix Multiplication and Addition

Level 3 BLAS defines the matrix-matrix multiplication gemm as follows:

A ← α B ·C+β A

α,β ∈ R, A ∈ R
m×o, B ∈ R

m×n, C ∈ R
n×o (6)

The number of floating point operations is 2mno + 2mo. The number of operations
is high with respect to data transfer, and as a consequence the operation is not very
sensitive to cache. Typical timings for (m = n = o) are shown in figure 4, this time
only for a random access to memory (cfr.2.2). The performance is dependent on
matrix size, this time both in single and double precision, with a particular good
efficiency for multiples of 4 in double, and multiples of 8 in single precision.

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300  350  400

G
Fl

op
s

n

(a) sgemm(n,n,n)

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300  350  400

G
Fl

op
s

n

MKL
Atlas
Native

(b) dgemm(n,n,n)

 0

 5

 10

 15

 20

 150  160  170  180  190  200

G
Fl

op
s

n

(c) sgemm(n,n,n) - detail

 0

 5

 10

 15

 20

 150  160  170  180  190  200

G
Fl

op
s

n

(d) dgemm(n,n,n) - detail

Fig. 4 CPU measurements for the scaled matrix-matrix multiplication and addition - single
(sgemm) vs double precision (dgemm); bottom graphs are zooms
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2.4 Matrix Inversion

Measurements for the matrix inversion show similar trends and dependency on vec-
tor lengths as for matrix-matrix multiplications, although the maximum speed is
about twice as low, probably due to pivoting.

3 Jacobian Matrix

The Jacobian matrix L = ∂r
∂u is stored in blocked sparse format. Each diagonal block

entry Laa corresponds to the coupling between all variables within the element a
while the off-diagonal entries Lab and Lba correspond to the direct neighbour cou-
pling induced by the interface between elements a and b. Each block is a fully dense
matrix of size n = NφNv, stored contiguously in memory. We further partition Lab

in a quadrilateral raster of submatrices Lkl
ab corresponding to the coupling between

variables k and l. Within each subblock, the variables are further arranged according
to shape function indices i and j. We will denote scalar entries in the block Lab, with
indices k, l refering to variable and i, j to shape function combinations, as

(Lab)
kl
i j =

∂ra
im

∂ub
jn

(7)

3.1 Matrix Operations

All matrix operations use dense block operations from BLAS and LAPACK. During
(incomplete) block LU decomposition, the row reduction operation is rewritten as a
combination of dense matrix inversions and matrix-matrix products (gemm):

Lbc := Lbc −Lba ·L−1
aa ·Lac , ∀c > a (8)

Matrix-vector operations such as backward substitution are then recast as dense
matrix-vector products (gemv):

ac := ac −∑
a>c

Lab ·ab (9)

Given the large dimensions of the blocks, any cost related to block indexing will
be small with respect to the effective operations, and as a consequence we can use
a very flexible datastructure to store the matrix structure. It consists of maps for
each row / column a, providing links between the off-diagonal column resp. row
index b and the corresponding dense block Lab resp. Lba. This structure allows for
dynamic block allocation, dynamic decomposition strategies such as ILUt, dynamic
renumbering strategies and even variable block size without noticeable overhead.
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3.2 Storage Requirements and Precision

In 3D all elements except those on the boundary are connected to 4 other elements.
Hence the storage requirements amount to slightly less than 5n2 floating point values
per element, with n = NφNv. Considering that Nφ scales as the cube of the interpo-
lation order, it is not surprising that the memory required for the Jacobian is much
larger than that for all other data; eg. for 4th order interpolation we need 1.2MB per
element in double precision, as compared to the solution vector which only requires
1.4 kB. The memory footprint is quite terrifying, so the prospect of halving it by
storing L in single precision is quite appealing; however, the important question is
whether this will not deteriorate or even impede convergence ?
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Fig. 5 Effect of preconditioner precision on Newton-GMRES-ILU(1) convergence

Figure 5 shows the impact of the precision of the ILU(1) preconditioner on the
convergence of the Newton-GMRES iterations when using the different linear alge-
bra librairies. We see that in this particular case, but also in general, that the preci-
sion has only as much impact as the choice of linear algebra library; the differences
between libraries are due to operation order and a different pivoting strategy during
the inversion of the diagonal blocks. Although we cannot prove that single preci-
sion is sufficient, nor provide conditions for convergence, we can put the following
elements forward:

• the GMRES iterations are used for inexact Newton iterations, and hence a full
convergence is not required - typically only two orders of magnitude will do.
This related to the iterative refinement procedure (see ao. Golub and Van Loan
[6], section 3.5.3 and Baboulin et al. [3]), a method that provides double preci-
sion solutions to a linear system of equations, using Newton steps with single
precision linear updates.

• since we use a Jacobian-free GMRES, the matrix-vector product needed for the
Krylov iterations is formed by finite differences and the Jacobian matrix is only
used for preconditioning. Hence the product retains full precision. Arioli and
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Duff [1] prove convergence of FGMRES iterations to double precision accuracy,
preconditioned using a single-precision LU factorisation of the matrix, as long
as the condition number of the matrix does not exceed the inverse of the relative
single precision round-off error; numerical experiments seem to indicate that the
algorithm works reasonably well even beyond this point.

3.3 Efficiency

The storage of the matrix in single precision is also good for performance: referring
to section 2 we know that the basic operations such as pivot inversion, row reduction
and back and forward substitution are about twice as fast in single precision as in
double precision. This is not specific to the processor used for this study, but holds
for most modern processors. We can further speed up the computation by padding
the blocks, i.e. by artificially increasing the block sizes to the nearest multiple of 8
in single, and 4 in double precision.

The effects of precision and block padding on the floating performance as a func-
tion of the interpolation order p are illustrated in Fig.6(a). The reference optimal
performance has been computed from the measured flop rates for the gemm and in-
version operations, taking into account the number of times they were called and the
number of flops involved in each, not counting the extra work due to padding. The
performance is close to the optimal performance of the underlying BLAS/Lapack
operations; the performance of the decomposition is close to the peak flop rate of
the processor, as it is mainly based on gemm.

In Fig. 6, the speed of the substitution steps is compared to predicted optimal
performance. The flop rates are low due to the random access to a large number of
blocks, resulting in a memory typically outside of the L2 cache.
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4 Optimising Assembly

The convective (CV) and diffusive (DV) volume terms are assembled as

CVim =
∫
ω
∇φi · fm dV =

Nμ

∑
q=1

wq

(
|J|

d

∑
k=1

d

∑
u=1

∂φi

∂ξ u

∂ξ u

∂xk
fk
m

)
μq

DVim =
∫
ω
∇φi ·dn dV =

Nμ

∑
q=1

wq

(
|J|

d

∑
k=1

d

∑
u=1

∂φi

∂ξ u

∂ξ u

∂xk dk
m

)
μq

(10)

where μq defines the location of the q-th integration point, wq the corresponding
weight and |J|μq the determinant of the mapping Jacobian. We require an integration
to be accurate up to order 2p + 1 in the element, and 2p on the element boundaries.
The integration rules and taken from Segeth et al. [7].

The associated linearisations read

∂CVin

∂u jm
=

Nμ

∑
q=1

d

∑
u=1

wq

(
∂φi

∂ξ u φ j

)
μq︸ ︷︷ ︸

Cu
q,i j

·
(
|J|

d

∑
k=1

∂ξ u

∂xk

∂ fk
n

∂um

)
μq︸ ︷︷ ︸

κu
q,mn

∂DVim

∂u jn
=

Nμ

∑
q=1

d

∑
u=1

d

∑
v=1

wq

(
∂φi

∂ξ u

∂φ j

∂ξ v

)
μq︸ ︷︷ ︸

Duv
q,i j

·
(
|J|

d

∑
k=1

d

∑
l=1

∂ξ u

∂xk Dkl
mn

∂ξ v

∂xl

)
μq︸ ︷︷ ︸

δ uv
q,mn

(11)

Equation 11 implies that for each quadrature point q and variable combination
(m,n), we add precomputed parametric convection Cu

q and stiffness Duv
q contribu-

tions to the Jacobian matrix subblocks Laa
mn with respective weights κk

q,mn and δ uv
q,mn.

This procedure is illustrated in Fig.7. We can get a close estimate of the computa-
tional cost by only counting the number of operations involved in the addition of the
influence matrices. Taking into account the sparsities of the three convective flux
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Fig. 7 Naive linearisation of the volume terms CV and DV. ∂DV
∂u is taken as example.
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Jacobians and of the diffusive flux Jacobians Dkl
mn, denoted fc and fd respectively,

we have for the convective and diffusive term a total of 2 ·( fc +d · fd) ·d ·Nμ ·Nv
2 ·N2

φ
operations. For an interpolation order of 4, using a 2p + 1-accurate quadrature rule,
this amounts to 38.106 floating point operations per element.

Adding quadrature point contributions directly to the subblocks of the Jacobian
matrix leads to Nφ vector additions (axpy) of very limited dimension (Nφ ), since the
none of the blocks Lmn

aa are stored contiguously in memory and have to be added
row by row. Consequently the assembly is not very efficient.

...

...
D33

Nμ

D12
1

D11
1 δ 11

1,12

δ 11
1,11

δ 11
1,NvNv

δ 33
Nμ ,NvNv

Fig. 8 Linearisation of volume terms using padded intermediate vectors. ∂DV
∂u is taken as

example.

If we preassemble all quadrature point contributions in an intermediate matrix
(see Fig. 8) that vertically aligns all N2

v subblocks unrolled as vectors of size N2
φ , we

can add Cu
q and Duv

q in a single step. This results in a much more efficient assembly,
as axpy is applied to vectors of size N2

φ . Only at the very end the assembled sub-
blocks are added to the subblocks of the final Jacobian matrix. This final addition
needs to be done only once for every Nq · ( fc + fdd) · d quadrature steps. We can
further take advantage of the large differences in speed between odd and even sized
vectors, by padding the vectors to the next multiple of 4.

Figure 9 compares the different versions to the underlying axpy operation; for the
padded operations only the effective work is counted. We see that the assembly in
single precision is up to 30% faster than the same operation in double precision, ex-
cept for the original implementation. Padding is necessary to maintain the advantage
of single precision operations with respect to double for p = 4.

Similar optimisations have been applied to both interface and boundary terms.
Figure 10 shows the evolution of the computational time for the different terms. The
optimised version is globally 3 times than the original, and the increase in compu-
tational complexity as a function of interpolation order is compensated to a large
extent by the increase in computational efficiency, especially for the lower orders.
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Fig. 10 Assembly time per element as a function of interpolation order. Computational com-
plexity is illustrated in terms of flop count.
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5 Conclusions

The Newton-Krylov-ILU strategy can be implemented very efficiently for DGM,
reaching very high and sometimes near-peak flop rates, especially matrix decompo-
sition but also for matrix assembly. Near-optimal performance, with low overhead
with respect to the relevant basic operations, has been obtained. This allows one to
take advantage of the efficient implementation of BLAS and LAPACK implemen-
tation and the speed of single precision arithmetic.

The use of a Jacobian-free GMRES with single precision preconditioner for
DGM thus leads to an economical method, both in terms of memory and CPU time,
in comparison to a more classical implementation.

The significant efficiency that has been obtained for the assembly of the ma-
trix and its decomposition, particularly with respect to the hard-to-optimise residual
assembly, shift the balance somewhat towards matrix-based methods. Without pro-
nouncing ourselves as yet on the outcome, these results in any case indicate the need
for an optimised implementation in the assessment of iterative techniques for DGM.
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Chapter 3
Very High-Order Accurate Discontinuous
Galerkin Computation of Transonic Turbulent
Flows on Aeronautical Configurations

F. Bassi, L. Botti, A. Colombo, A. Crivellini, N. Franchina,
A. Ghidoni, and S. Rebay

Abstract. This chapter presents high-order DG solutions of the RANS and k-ω tur-
bulence model equations for transonic flows around aeronautical configurations. A
directional shock-capturing term, proportional to the inviscid residual, is employed
to control oscillations around shocks. Implicit time integration is applied to the fully
coupled RANS and k-ω equations. Several high-order DG results of 2D and 3D
transonic turbulent test cases proposed within the ADIGMA project demonstrate
the capability of the method.

1 Introduction

The combination of high-order discretization, equations stiffness and flow
discontinuities makes the DG solution of the RANS and k-ω turbulence model equa-
tions for high Reynolds number transonic flows very challenging. The discretiza-
tion should preserve high-order accuracy on highly stretched and curved grids, the
shock-capturing technique should be able to provide sub-cell resolution of discon-
tinuities while having minimal impact away from shocks, time integration should
be robust and efficient. In this chapter we summarize the progress on such topics
achieved within the ADIGMA project and demonstrate the capability of the DG
code MIGALE on several challenging test cases.
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2 DG Solution of the RANS and k-ω Equations

Turbulent flow solutions presented in this chapter have been computed by using the
linearly implicit Euler method to solve the system of ODEs in time deriving from
the DG space discretization of the RANS and k-ω turbulence model equations. The
governing equations and the realizability constraints used in the implementation of
the k-ω turbulence model have already been reported in [4] and here we only present
an improved solid-wall boundary condition for ω that has been implemented in the
course of the ADIGMA project.

2.1 Solid Wall Boundary Condition for ω

A popular approach to prescribe the wall boundary condition ωw is that proposed by
Menter [10], whereby the prescribed wall value ωw is related to the first cell height
y1 according to the relation

ωw =
6ν

β (αMy1)2 , (1)

with αM = 1/
√

10. Instead, according to the results of DG computations of flat plate
flows on differently refined grids reported in [4], a good agreement between experi-
mental and numerical skin friction distributions of flat plate flows was obtained us-
ing α = 0.5366×10−1. However, solutions presented in [4] were only computed up
to P2 polynomial approximation. As higher degree polynomials can follow closer
and closer the exact near wall distribution of ω , it seems reasonable, as also sug-
gested by Hartmann [9], to makeω values set at solid walls dependent on the degree
of polynomial approximation. For this purpose we define∫

y1

φω̃ dy =
∫

y1

φω̃ex dy, (2)

where ω̃ex is the near-wall analytical behavior of ω̃ , i.e.,

ω̃ex = log

(
6ν
β

)
−2logy, (3)

and φ is the one-dimensional polynomial basis adopted to define ω̃ . From Eq. (2)
we can then compute ω̃k

w = ω̃(0) for any desired polynomial degree k.
These values can be compared to that of Menter in terms of the first cell height

fraction, αk, by setting

ω̃k
w = log

6ν
β (αky1)2 , (4)

and thus obtaining

αk =
1
y1

√
6ν
β

1

eω̃k
w
. (5)
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k αk

0 0.5
1 0.1304
2 0.6150×10−1

3 0.3604×10−1

4 0.2375×10−1

5 0.1685×10−1

6 0.1259×10−1

7 0.9765×10−2

8 0.7797×10−2

9 0.6370×10−2

10 0.5303×10−2

Fig. 1 Cell height fraction, αk, vs. polynomial degree k

Figure 1 shows the values of the cell height fraction, αk for k = 0, . . . ,10. In order
to be roughly consistent with the value of α used in the computations reported in [4],
for a Pk computation we have employed the α corresponding to k+1. The boundary
condition for ω has been tested on the flat plate flow reported by Wieghardt [13].
The computational grid, taken from the NPARC Alliance Validation Archive, [12],
is the coarsest one used for the validation of the WIND code and corresponds to
y+ = 30 for the first grid point off the wall. The Figure 2 displays the skin-friction
distribution along the plate and the profiles of u velocity component and of turbu-
lence quantities at x/L = 0.923 resulting from the P4 and P5 solutions. The differ-
ence of near wall behavior of k+ between DG results and “average” experimental
data is an effect produced by the high-Reynolds number k-ω model here employed,
that disappears using the modified coefficients of the low-Reynolds number version
of the model.

2.2 DG Space Discretization

The governing equations can be written in compact form as

∂u
∂ t

+∇ ·Fc(u)+∇ ·Fv(u,∇u)+ s(u,∇u) = 0, (6)

where u,s∈RM denote the vectors of the M conservative variables and source terms,
Fc,Fv ∈ RM ⊗RN denote the inviscid and viscous flux functions, respectively, and
N is the space dimension.
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Fig. 2 Flat plate: skin-friction, velocity profiles and turbulence quantities

The weak form of Eq. (6) reads

∫
Ω
φ
∂u
∂ t

dx−
∫
Ω
∇φ ·F(u,∇u) dx +

∫
∂Ω

φF(u,∇u) ·n dσ

+
∫
Ω
φs(u,∇u) dx = 0, (7)

where φ denotes any arbitrary, sufficiently smooth, test function and F is the sum
of the inviscid and viscous fluxes. The DG discretization of Eq. (7) is defined on
a triangulation Th = {K} of an approximation Ωh of Ω , consisting of a set of
non-overlapping hybrid-type elements. The following space setting of discontinu-
ous piecewise polynomial functions for each component uhi = uh1 , . . . ,uhM of the
numerical solution uh is assumed:

uhi ∈Φh
def=
{
φh ∈ L2 (Ω) : φh|K ∈ Pk (K) ∀K ∈ Th

}
(8)
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for some polynomial degree k ≥ 0, being Pk (K) the space of polynomials of global
degree at most k on the element K.

The discontinuous approximation of the numerical solution requires introducing
a special treatment of the inviscid interface flux and of the viscous flux. For the
former it is common practice to use suitably defined numerical flux functions which
ensure conservation and account for wave propagation. For the latter we employ the
BR2 scheme, presented in [6, 5] and theoretically analyzed in [7, 2] (where it is
referred to as BRMPS), to obtain a consistent, stable and accurate discretization of
the viscous flux. Accounting for these aspects, the DG formulation of problem (7)
then requires to find uh1 , . . . ,uhM ∈Φh such that

∫
Ωh

φh
∂uh

∂ t
dx−

∫
Ωh

∇hφh ·F(uh,∇huh + r([[uh]])) dx

+
∫
Γh

[[φh]] · f̂
(
u±

h ,(∇huh +ηere([[uh]]))
±) dσ

+
∫
Ωh

φhs(uh,∇huh + r([[uh]])) dx = 0, (9)

for all φh ∈ Φh. In Eq. (9) we have introduced the jump [[·]] and average {·} trace
operators as well as the lifting operators r and re, as defined in [6, 5]. The inviscid
and viscous parts of the numerical flux f̂ are treated independently. For the former we
usually employ the Godunov flux or, alternatively, the van Leer-Hänel flux-splitting
scheme, [8]. The numerical viscous flux is given by

f̂v
(
u±

h ,(∇huh +ηere([[uh]]))
±) def= {Fv (uh,∇huh +ηere([[uh]]))}, (10)

where, according to [7, 2], the penalty factor ηe must be greater than the number of
faces of the elements. The BR2 viscous flux discretization is as compact as possible
because, for each element K, it only involves the nearest neighbor elements. This
feature is obviously very attractive for the implicit implementation of the method.

2.3 Time Integration

The DG space discretized Eq. (9) represents a system of (nonlinear) ODEs in time
for the global vector of degrees of freedom of the solution. By applying the linearly
implicit Euler method to this system of ODEs, the linear system to be solved at each
time step until convergence to steady state can be written as[

M
Δ t

+
∂R(Un)
∂U

](
Un+1 −Un)+ R(Un) = 0, (11)

where M is the global block diagonal mass matrix and J = ∂R(Un)/∂U is the
Jacobian matrix of the residual R(U) resulting from the DG discretized space op-
erators of Eq. (9). The matrix-based or the matrix-free GMRES algorithm can be
used to actually solve Eq. (11), see [3] for a comparative discussion. In both cases
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system preconditioning is required to make the convergence of the GMRES solver
acceptable in problems of practical interest. The ILU(0) factorization of the Jaco-
bian matrix J turns out to be one of the more effective preconditioning approaches
for the implicit solver here employed. The Jacobian matrix implemented in our code
has been derived analytically and takes full account of the dependence of the resid-
ual on the unknown vector and on its derivatives, including the implicit treatment
of the lifting operators and of the boundary conditions. If coupled with a suitably
accurate time integration scheme, this allows to employ the implicit solver also for
accurate unsteady computations.

The choice of the time step can significantly affect both the efficiency and the ro-
bustness of the method. For steady computations we have implemented the pseudo-
transient continuation strategy with the local time step given by

Δ tK = CFL
hK

c + d
,

where

c = |v|+ a, d = 2
μe +λe

hK
, hK = N

ΩK

SK
,

define convective and diffusive velocities and the reference dimension of the generic
element K, respectively. The coefficients μe and λe are the effective dynamic viscos-
ity and conductivity, while ΩK and SK denote the volume and the surface of K. All
quantities depending on uh in the above relations are computed from mean values
of uh. Devising an effective and robust strategy to increase the CFL number as the
residual decreases is not an easy task, especially for turbulent computations. The
rule here proposed is essentially the result of intensive numerical experimentation
and aims at controlling the evolution of CFL number on the basis of both the L∞ and
the L2 norms of the residual. Denoting with y the CFL number, the rule is as follows{

y = y0
xα if x ≤ 1

y = ye +(y0 − ye)e
α y0

y0−ye
(1−x)

if x > 1
(12)

where, denoting by xL2 = max(|Ri|L2/|Ri0|L2) and xL∞ = max(|Ri|L∞/|Ri0|L∞) for
i = 1, . . . ,M, {

x = min(xL2 ,1) if xL∞ ≤ 1

x = xL∞ if xL∞ > 1,

and y0 = CFLmin, ye = CFLexp and α are the user-defined minimum CFL number,
the maximum CFL number of explicit schemes and the exponent (usually ≤ 1) gov-
erning the growth rate of the CFL number, respectively. The strong CFL number
control based on the L∞ norm of residual has been found useful to prevent sud-
den breakdown of computations once the CFL number has already reached quite
high values. For relatively simple test cases, such as the BTC0 problem shown in
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Fig. 3 BTC0: Mach number contours of P4 solution and residuals convergence history P0→4

Figure 3 (232969 DOFs), the implicit time integration combined with the above
CFL number rule provides quadratic Newton convergence to machine accuracy.

2.4 Shock-Capturing Approach

The shock-capturing approach consists of adding to the DG discretized equations
an artificial viscosity term that aims at controlling the high-order modes of the nu-
merical solution within elements while preserving as much as possible the spatial
resolution of discontinuities. The shock-capturing term is local and active in every
element, but the amount of artificial viscosity is proportional to the (inviscid) resid-
ual of the DG space discretization and thus it is almost negligible except than at
locations of flow discontinuities. The shock-capturing term added to Eq. (9) reads

∑
K

∫
K
εp(u±

h ,uh)(∇hφh ·b)(∇huh ·b) dx, (13)

with the shock sensor and the pressure gradient unit vector defined by

εp(u±
h ,uh) = Ch2

K
|sp(u±

h ,uh)|+ |dp(uh)|
p(uh)

fp(uh), b(uh) =
∇h p(uh)

|∇h p(uh)|+ ε
,

(14)
and

sp(u±
h ,uh) =

M

∑
i=1

∂ p(uh)
∂uhi

si(u±
h ), dp(uh) =

M

∑
i=1

∂ p(uh)
∂uhi

(∇h ·Fc(uh))i . (15)
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The components si of the function s, defined by the solution of the problem∫
Ωh

φhs(u±
h ) dx =

∫
Γh

[[φh]] ·
(̂

fc(u±
h )−Fc(uh)

)±
dσ , (16)

are actually the lifting of the interface jump in normal direction between the numer-
ical and internal inviscid flux components. The further factor fp(uh) in Eq. (14) is a
pressure sensor defined by

fp(uh) =
|∇h p(uh)|

p(uh)

(
hK

k

)
, (17)

which improves the accuracy of solutions in regions with high but otherwise smooth
gradients and allows using the same value of the user-defined parameter C (typically
C = 0.2) for different degrees of polynomial approximation. Finally, the element
dimension hK is defined as

hK =
1√

1
(Δx)2 + 1

(Δy)2 + 1
(Δ z)2

, (18)

where Δx,Δy and Δz are the dimensions of the hexahedral enclosing K, scaled in
such a way that their product matches the volume of K. The shock-capturing tech-
nique outlined above is highly non-linear and residuals convergence of steady state
solutions can be quite difficult, even implementing a fully (linearized) implicit dis-
cretization of the shock-capturing term (13). This is in fact the case for the solu-
tion of the transonic flow around the RAE 2822 airfoil (M∞ = 0.730, α = 3.19◦,
Re∞ = 6.5×106, 80860 DOFs), shown in Figure 4, that requires quite a large num-
ber of Newton iterations for convergence.

Fig. 4 RAE2822: Mach number contours of P3 solution and residuals convergence history
P

0→3
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3 Numerical Results

In this section we present the results of high-order DG solutions around two wing
models, the ONERA M6 and the DPW-W1, and around the DLR-F6 wing-body
transport configuration. All the computations have been performed in parallel, start-
ing higher-order solutions from the lower-order ones. Solutions have been advanced
in time using the linearly implicit backward Euler method and the linear system (11)
has been solved using the default solver available in PETSc, i.e., the restarted GM-
RES algorithm preconditioned with the block Jacobi method with one block per
process, each of which is solved with ILU(0). The computational grids here em-
ployed consist of hexahedrons with curved, eight-node faces.

The flow around the ONERA M6 wing has been computed up to P2 approxi-
mation for the conditions of Test 2308, [11], i.e., M∞ = 0.8395, α = 3.06◦, chord-
based Re∞ = 11.72×106, on a grid with 215632 hexahedral elements. Figure 5 and
Table 1 summarize the computational results of this test case. In particular, the
shock-capturing technique proves capable of providing accurate resolution of the
lambda shock structure all along the suction surface of the wing. The flow around

Fig. 5 ONERA M6: pressure coefficient of P2 solution (◦ 2156320 DOFs) compared with
the experiments ()
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Table 1 ONERA M6: lift and drag coefficients of DG solutions

Cl Cd Cdp Cdf

P0 0.231900 0.0555007 0.0502764 0.00522416
P1 0.274433 0.0184980 0.0133475 0.00515066
P2 0.275279 0.0180224 0.0123096 0.00571281

the DPW-W1 wing, [1], has been computed up to P2 polynomial approximation
for the conditions M∞ = 0.76, α = 0.5◦, chord-based Re∞ = 1×107 on a grid with
188928 hexahedral elements. In Figure 6 the pressure coefficient distribution of the
P2 solution is compared with solutions of the TAU and FUN3D codes, [1], com-
puted on finer and adapted grids for Re∞ = 5×106. Despite the relatively coarse
grid employed, the shock resolution of the high-order DG solution appears also in
this case remarkably good.

Fig. 6 DPW-W1: pressure coefficient of P2 solution (◦ 1889280 DOFs) compared with TAU
(– – – 17053510 DOFs) and FUN3D (– · – 11459041 DOFs)
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The flow around the DLR-F6 wing-body transport configuration, [1], has been
computed for the conditions M∞ = 0.75, Cl= 0.5, chord-based Re∞ = 5×106. The
DG solutions have been computed up to P3 and up to P2 polynomial approxima-
tion on two nested grids with 50618 and 404944 hexahedral elements, respectively.
The coarse and fine grid computations have been run in parallel using, respectively,
128 and 512 cores of the CASE cluster facility at DLR in Braunschweig. Pres-
sure contours and residuals convergence for the corse grid solution are shown in
Figure 7, while Table 2 reports the force and pitching moment coefficients on the
two grids. The discrepancy between the more accurate results on the two grids is
still to be understood and no conclusion can be drawn about the asymptotic conver-
gence of the two solutions. One issue could be the poor geometrical approximation
of solid surfaces when using only quadratic mappings for the faces of very coarse
meshes. Figure 8 shows how the pressure coefficient distribution of the P3 solution

Fig. 7 DLR-F6: pressure contours of P3 solution and residuals convergence history P0→3

on the coarse grid

Table 2 DLR-F6: force and pitching moment coefficients of DG solutions

(a) coarse grid

P
0

P
1

P
2

P
3

DOFs 50618 202472 506180 1012360
α 2.34000 0.22500 -0.07000 -0.07000
Cl 0.49973 0.49996 0.49998 0.49986
Cd 0.16745 0.04232 0.02822 0.02832
Cdp 0.15201 0.02905 0.01672 0.01531
Cdf 0.01544 0.01327 0.01151 0.01301
Cm 0.03812 -0.12468 -0.14526 -0.14642

(b) fine grid

P
0

P
1

P
2

DOFs 404944 1619776 4049440
α 1.34600 0.10600 0.35700
Cl 0.50002 0.50005 0.49994
Cd 0.11738 0.03045 0.02890
Cdp 0.10306 0.01874 0.01727
Cdf 0.01432 0.01171 0.01163
Cm -0.03781 -0.13714 -0.12528
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Fig. 8 DLR-F6: pressure coefficient of P3 solution (◦ 1012360 DOFs) compared with TAU
(—— 5102446 DOFs) and CFL3D (– – – 2256896 DOFs, – · – 7689088 DOFs, – ·· –
26224640 DOFs)

on the coarse grid compares with reference results of the TAU and CFL3D codes
taken from [1]. Finally, we remark the capability of higher order methods to capture
complex fluid features on coarse meshes by showing in Figure 9 the detail of flow
separation near the tip of the ONERA-M6 wing and at the wing-root juncture of the
DLR-F6 wing-body configuration.

3.1 Conclusion

In this chapter we have demonstrated the capability of the DG code MIGALE to
provide high-order solutions of complex transonic turbulent flows. Progresses on
time integration and on the implicit implementation of shock capturing achieved
within the ADIGMA project have been crucial for being able to obtain convergence
of residuals for shocked flows. Subsonic turbulent flow solutions can now be com-
puted quite efficiently but a fully satisfactory compromise between efficiency and
robustness is still lacking. The shock-capturing approach turned out to be robust and
accurate. However, the highly non-linear character of the shock-capturing term has
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Fig. 9 Flow separation near the tip of the ONERA M6 wing and at the wing-root juncture of
the DLR-F6 wing-body configuration

an adverse impact on the regularity of convergence of residuals and hence on the
computational efficiency.

References

1. Third AIAA Computational Fluid Dynamics Drag Prediction Workshop (June 2006),
http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/

2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

3. Bassi, F., Botti, L., Crivellini, A., Ghidoni, A., Rebay, S.: D4.2.2–Investigation of Ja-
cobian and Jacobian-free Newton-Krylov methods for implicit DG methods. Technical
report, ADIGMA (2009), http://www.dlr.de/as/adigma

4. Bassi, F., Crivellini, A., Rebay, S., Savini, M.: Discontinuous Galerkin solution of the
Reynolds-averaged Navier-Stokes and k-ω turbulence model equations. Comput. & Flu-
ids 34, 507–540 (2005)

5. Bassi, F., Rebay, S.: A high order discontinuous Galerkin method for compressible
turbulent flows. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous
Galerkin Methods. Theory, Computation and Applications, Lecture Notes in Computa-
tional Science and Engineering, vol. 11, pp. 77–88. Springer, Heidelberg (2000)

6. Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high-order accurate dis-
continuous finite element method for inviscid and viscous turbomachinery flows. In:
Decuypere, R., Dibelius, G. (eds.) Proceedings of the 2nd European Conference on Tur-
bomachinery Fluid Dynamics and Thermodynamics, Antwerpen, Belgium, March 5-7,
pp. 99–108. Technologisch Instituut (1997)

7. Brezzi, F., Manzini, M., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin ap-
proximations for elliptic problems. Numer. Methods Partial Differential Equations 16,
365–378 (2000)

8. Hänel, D., Schwane, R., Seider, G.: On the accuracy of upwind schemes for the solution
of the Navier–Stokes equations. AIAA Paper 87-1105 CP, AIAA (1987)

http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Workshop3/
http://www.dlr.de/as/adigma


38 F. Bassi et al.

9. Hartmann, R.: Private discussion on solid wall boundary conditions for the k-ω turbu-
lence model in the framework of Discontinuous Galerkin methods. DLR, Braunschweig
(March 2009)

10. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applica-
tions. AIAA Journal 32(8), 1598–1605 (1994)

11. Schmitt, V., Charpin, F.: Pressure distributions on the ONERA-M6-wing at transonic
Mach numbers. Advisory Report 138, AGARD (1979)

12. Slater, J.W.: NPARC Alliance CFD Verification and Validation Web Site (2003),
http://www.grc.nasa.gov/WWW/wind/valid/archive

13. Wieghardt, K., Tillman, W.: On the turbulent friction layer for rising pressure. Technical
Memorandum 1314, NACA (1951)

http://www.grc.nasa.gov/WWW/wind/valid/archive


Chapter 4
Incorporating a Discontinuous Galerkin Method
into the Existing Vertex-Centered Edge-Based
Finite Volume Solver Edge

Sven-Erik Ekström and Martin Berggren

Abstract. The discontinuous Galerkin (DG) method can be viewed as a general-
ization to higher orders of the finite volume method. At lowest order, the standard
DG method reduces to the cell-centered finite volume method. We introduce for the
Euler equations an alternative DG formulation that reduces to the vertex-centered
version of the finite volume method at lowest order. The method has been success-
fully implemented for the Euler equations in two space dimensions, allowing a local
polynomial order up to p = 3 and supporting curved elements at the airfoil boundary.
The implementation has been done as an extension within the existing edge-based
vertex-centered finite-volume code Edge.

1 Introduction

The finite volume (FV) method is presently the most widely used approach to dis-
cretize the Euler and Navier–Stokes equations of aerodynamics. A basic choice
when implementing a finite volume method is whether to employ a cell-centered or
vertex-centered approach. The control volumes coincide with the mesh cells in the
cell-centered approach (left in Figure 1), whereas in the vertex-centered approach,
the control volumes are constructed from a dual mesh, consisting in two dimensions
of polygons surrounding each vertex in the original primal mesh (right in Figure 1).

The vertex-centered approach has a number of features that helps to explain its
current popularity. A vertex-centered scheme has about half the memory footprint
on the same mesh as a cell-centered scheme, and has more fluxes per unknown,
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Km Km

Fig. 1 Control volume choices for finite volume methods. A computational node (white cir-
cle) is either associated with a mesh cell center (left) or a mesh vertex (right), giving a cell-
centered or a vertex-centered control volume respectively.

as discussed by Blazek [7]. Also, for instance Abgrall [1] argues that reconstruction
schemes are more easily formulated for vertex-centered control volumes. Moreover,
as opposed to cell-centered schemes, the treatment of boundary conditions are facil-
itated by the fact that control volume centers are located precisely on the boundary.
The main computational effort in a typical finite volume code concerns the resid-
ual computations. A solver using a vertex-centered scheme may be implemented to
support what Haselbacher et al. [16] call grid transparency: to assemble the resid-
ual, the solver loops over all edges in the mesh, regardless of the space dimension
or the choice of mesh cell type (triangles, quadrilaterals, tetrahedrons, prisms, hex-
ahedrons). Note, however, that an analogous construction is also possible for cell-
centered methods, by looping over a list of cell surfaces. For a detailed discussion on
cell-centered versus vertex-centered methods, we refer to Blazek’s book [7] and the
review by Morton and Sonar [20]. Also, there are other numerical schemes, besides
finite volumes, that use vertex-centered control volumes or loop over edges. Some
examples are residual distribution schemes [2, 10], edge-based finite elements [19],
and edge-based SUPG [8].

Since the discontinuous Galerkin (DG) method constitutes a higher-order gen-
eralization of the finite volume method, it is tempting to reuse and extend existing
finite volume codes to higher orders to avoid a costly rewrite of a complex and famil-
iar software system. A hurdle for such an approach is that the standard discontinuous
Galerkin method is a higher-order version of the cell-centered finite-volume method
whereas many of today’s codes, such as DLR-Tau [22], Edge [12, 14], Eugenie [13],
Fun3D [15], and Premo [23], are vertex-centered.

The contribution of Uppsala University to the ADIGMA project consists of a
case study in which a vertex-centered version of the discontinuous Galerkin method
is implemented within the Edge system [12, 14] so the user, depending on the
need for accuracy, can choose whether to use a classical finite volume scheme or a
discontinuous Galerkin discretization. The vertex-centered discontinuous Galerkin
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method we use was first introduced by Berggren [5] in the context of a linear first-
order hyperbolic model problem. A further analysis of the method was presented by
Berggren, Ekström, and Nordström [6] for higher-order elements and for a nonlin-
ear problem with a shock. Here, we present for the first time the use of the scheme
for the Euler equations. We first introduce the basic scheme of the method and then
further discuss the method as developed within the Edge system.

2 The Discontinuous Galerkin Method

The target application for the proposed scheme is aeronautical CFD with the Euler
and Navier–Stokes equations, where computations of steady states are particularly
prominent. We here present the scheme for the steady Euler equations, written in
the compact form

∇ ·F (U) = 0 in Ω , (1)

where U = [ρ ,ρu,ρE]T is the solution vector of conservative variables (mass den-
sity ρ , momentum density ρu, and total energy density ρE), F is the Euler flux
function, and Ω the computational domain. We also need to impose appropriate
boundary conditions in the far field and at solid walls. The flux function for the
Euler equations is

F (U) =

⎛⎝ρu
ρu⊗u+ Ip
ρuH

⎞⎠ , (2)

where ρH = (ρE + p) is the total enthalpy density, and the pressure p satisfies the
equation of state

p = (γ−1)
[
ρE − |ρu|2

2ρ

]
, (3)

in which γ = 1.4 for air.
We divide the domain, Ω , into a set of non-overlapping control volumes Km such

thatΩ =
⋃M

m=1Km. Denote by V d+2
h , where d is the space dimension, the space of

numerical solutions to equation (1). Each component of a vector function in V d+2
h

belongs to the space Vh, which comprises functions that are continuous inside each
Km but in general discontinuous across boundaries between control volumes. The re-
striction on each Km of functions in Vh are polynomials for the standard DG method.
Here we consider a different choice of functions, as described in Secion 3. Each
Vh ∈ V d+2

h can be expanded as

Vh(x) =
M

∑
m=1

Nm

∑
i=1

V m
i φm

i (x) =
Ndof

∑
i=1

Viφi(x), (4)

where M is the number of control volumes, Nm is the number of local degrees of
freedom in control volume Km, {φm

i }Nm
i=1 is the set of basis functions associated

with control volume Km, Ndof is the total number of degrees of freedom, and φi are
the basis functions in a global numbering.
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The DG method is obtained by multiplying equation (1) by a test function Vh ∈
V d+2

h , integrating over each control volume, integrating by parts, and introducing
the numerical flux F ∗ on the boundaries. This procedure yields that Uh ∈ V d+2

h
solves the variational problem∫

∂Km

Vh · F ∗(UL,UR, n̂)ds−
∫

Km

∇Vh ·F (Uh)dV = 0, ∀Km ⊂Ω , ∀Vh ∈ V d+2
h , (5)

where subscripts L and R denote local (“left”) and remote (“right”) values on the
boundary ∂Km of control volume Km, and n̂ is the outward unit normal. The remote
values are either taken from the neighboring control volume’s boundary or, when
∂Km intersects the domain boundary, from the supplied boundary condition data.
Thus, the boundary conditions are imposed weakly through the numerical flux.

In our implementation, we use the Roe numerical flux by default,

F ∗
ROE(UL,UR, n̂) =

1
2

n̂ · (F (UL)+F (UR)
)− 1

2
R̄|Λ̄∗|L̄−1(WR −WL), (6)

where the last term in expression (6) is a dissipation term whose factors are de-
scribed in the following. Let matrices Λ and R be the diagonal eigenvalue matrix
and the right eigenvector matrix in the eigendecomposition of the Jacobian with
respect to the conservative variables, that is,

∂ (n̂ ·F )
∂U

= RΛR−1. (7)

Moreover, let W = [ρ ,u, p]T be the primitive variables vector, and let matrix L
satisfy

L−1(WR −WL) = R−1(UR −UL). (8)

Explicit expressions of L, R, and Λ can for example be found in the books by
Blazek [7] and Hirsch [17]. The elements of matrices R̄, Λ̄∗, and L̄−1 in expres-
sion (6) are evaluated using the Roe averages

ρ̄ =
√
ρLρR, ū =

uL
√ρL + uR

√ρR√ρL +
√ρR

,

H̄ =
HL

√ρL + HR
√ρR√ρL +

√ρR
, c̄ =

√
(γ−1) [H̄ −|ū|2].

(9)

Also, to prevent the eigenvalues to vanish, we utilize a standard entropy fix

|λ̄ ∗
i | =

⎧⎨⎩
λ̄ 2

i − δ 2

2δ
, |λ̄i| ≤ δ ,

|λ̄i|2, |λ̄i| > δ .
(10)
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Also available in our implementation is the much simpler Local Lax–Friedrichs flux

F ∗
LLF(UL,UR, n̂) =

1
2

n̂ · (F (UL)+F (UR)
)− C

2
(UR −UL), (11)

where C is an upper bound for the absolute values of the eigenvalues of the Jacobian,
∂ (n̂ ·F (U))/∂U . We use

C = max(|n̂ ·uL|+ cL, |n̂ ·uR|+ cR) , (12)

where c =
√
γ p/ρ is the speed of sound. The choice of Roe or Local Lax–Friedrichs

numerical flux appears not to cause any significant differences performance wise,
neither regarding computational effort nor accuracy.

Boundary conditions are usually imposed simply by appropriate modifications
of the remote condition UR. At the outer free stream, we apply UR = U∞ where U∞
is the free stream values of the solution vector. To impose the solid wall boundary
condition, we have implemented two options: the first imposes symmetry and the
second uses an explicitly modified flux to enforce non penetration. Both give similar
results, both with respect to computational effort and accuracy.

The first option uses the the same Roe or Local Lax–Friedrichs flux at the wall
as everywhere else, but imposes symmetry by defining UR from UL using a reflected
momentum vector:

ρR = ρL, (ρu)R = (ρu)L −2(n̂ · (ρu)L)n̂, (ρE)R = (ρE)L. (13)

The second option uses the numerical flux

F ∗
W(U, n̂) =

⎛⎝ 0
pn̂
0

⎞⎠ , (14)

that is, F ∗
W(U, n̂) = n̂ ·F (U)|n̂·u=0 at the wall, instead of the Roe or Local Lax–

Friedrichs flux.
The discussion above covers both the usual cell-centered formulation of the DG

method and our vertex-centered scheme. In the next sections, we introduce the par-
ticularities with our approach: the construction of a macro element on the dual mesh
and the use of curved boundaries for these elements.

3 The Vertex-Centered Macro Element

The finite elements of the standard (cell-centered) DG method use polynomials de-
fined separately on each mesh cell, which means that the control volumes Km dis-
cussed in Section 2 coincide with the mesh cells, typically triangles or quadrilaterals
in two space dimensions. In our vertex-centered DG method we use another choice
of control volumes Km, defined on a so-called dual mesh.
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A preprocessor constructs the dual mesh and necessary data structures; Figure 2
illustrates the procedure. From the primal mesh, top left in Figure 2, the prepro-
cessor constructs the dual mesh shown in top right in Figure 2. A dual mesh can
be constructed in several ways, as discussed by Barth [3]; here we choose just to
connect the centroids of adjacent triangles to each other with a new edge. Although
Figure 2 shows a uniform mesh, dual meshes can be constructed for any nondegen-
erate mesh. Next we triangulate the dual mesh (bottom left in Figure 2) and define
our finite element on each dual cell as the macro element consisting of standard
triangular Lagrange elements of order p. That is, the functions are continuous on
each Km, and piecewise polynomials of degree p on each sub triangle of Km. Note
that we allow discontinuities in the solution between adjacent dual cells, but that
the solution within each dual cell is continuous. Thus, no flux evaluations are nec-
essary at the internal edges between the sub triangles in the dual cells. Indeed, any
internal flux contribution would vanish since the left and right states are identical
due to the continuity of the approximating functions across such edges. Note also
that the element type and order may be different on different dual cells. At the bot-
tom right in Figure 2, we see an example where all boundary macro elements and
the leftmost of the three inner macro elements are of constant type (p = 0), which
corresponds to the vertex-centered FV method, whereas the center and right inte-
rior macro elements are linear (p = 1) and quadratic (p = 2), respectively. Note the
multiple nodes, associated with the possibility of jump discontinuities, occurring at
boundaries of the dual cells.

A common method to solve a problem such as the discrete version of equation (1)
is to march an unsteady version of the equation to steady state using an explicit

Fig. 2 Preprocessing stages for generating macro elements on the dual mesh. From the primal
mesh (top left) the preprocessor constructs a dual mesh (top right) that contains as many
polygonal dual cells Km as the number of mesh vertices in the primal mesh. We triangulate
each dual cell (bottom left) and define a macro element on each dual cell (bottom right),
where the white circles are the computational nodes.
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Runge–Kutta scheme. This strategy is often combined with convergence acceler-
ation strategies such as local time stepping and multigrid; both have been imple-
mented and the multigrid approach is discussed in our other contribution to this
volume [11]. A crucial step in such an algorithm is the computation of the residual,
which is a vector of dimension equal to the number of degrees of freedom for Vh for
each equation that is solved.

As mentioned in the introduction, implementations of the residual calculation for
vertex-centered FV methods are typically edge-based, and we now shortly indicate
how to extend this approach to the current DG method.

Pointers to the degrees of freedom for V d+2
h as well as geometric information

are stored in a list associated with the edges in the primal mesh. An additional
list associated with the domain boundary edges is also required to set boundary
conditions.

For each edge in the primal mesh, we associate the two primal mesh vertices
i and j connected by the edge, and the normal vector ni j (with

∣∣ni j
∣∣ = ∣∣∂Ti j

∣∣) to
the intersection of the boundaries of control volumes Ki and Kj . To compute the
contribution to the residual associated with this edge, the values of the unknowns
at nodes i and j, and the normal ni j constitute all the information that is needed for
p = 0 (the finite volume case). For higher orders, we also associate two sub triangles,
Ti and Tj, of control volumes Ki and Kj, and a larger set of nodes indices (i1, i2, . . . ;
j1, j2, . . . ) associated with the added degrees of freedom (left in Figure 3). Nodes i1
and j1 coincide with primal mesh vertices i and j of the FV method.

To impose boundary conditions, we utilize a list of boundary edges. For each such
edge that is not curved, as illustrated to the right in Figure 3, we associate boundary
vertices i and j connected by the edge and boundary normals nib and n jb (of equal
length, so stored as one normal ni jb = nib + n jb) associated with the intersection of
the boundaries of control volumes Ki and Kj with the domain boundary. For curved
boundaries, more nodes are needed along the boundary together with miscellaneous
additional information, as discussed in Section 4.

i1

i3 j3

U i
h Uj

h

i2 j2

j1

Ti Tj

∂Tij
n̂ij

j6

j5

j4

n̂ib n̂jb

i1 j1
∂Tib ∂TjbU i

h Uj
h

UBC

Fig. 3 Edge data structures with geometric data and spatial placement of the computational
nodes. Left: The triangles Ti and Tj share the boundary ∂Ti j, and the outward unit normal ofTi

on ∂Ti j is n̂i j. Restrictions of the function Uh ∈ V d+2
h onto Ti and Tj are denoted Ui

h and U j
h .

Right: The boundary edge is the union of ∂Tib and ∂Tjb, and the domain boundary outward
unit normals are n̂ib and n̂ jb. The domain boundary data, which is given by the boundary
condition, is denoted uBC.
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A pseudo-code version of the algorithm can be found in the the article by
Berggren et al. [6]; in essence, it is the same loops as for the FV code plus the
volume integral of the DG scheme. Standard tabulated Gauss quadrature rules, as
given, for example, in the book by Solin et al. [24], are used to evaluate the integrals,
and the evaluation of the basis functions at these points are done once and for all in
the beginning of the computation.

The numerically observed convergence rate s in ‖u − uh‖L2(Ω) ≤ Chs for the
model problem investigated in [6] is of optimal order for the vertex-centered
scheme, that is, s = p + 1. Also, as expected, the number of degrees of freedom
necessary to attain a given error bound is substantially decreased by increasing the
order of the method.

4 Curved Geometries

A higher order scheme, such as DG, also needs a higher-order representation of
the geometry, and curved elements have to be introduced when curved objects, for
example airfoils, are present in the computations. Bassi and Rebay [4] and Cock-
burn et al. [9], for example, has showed that a piecewise-linear approximation of the
boundary does not yield satisfactory results. We also observed strong oscillatory so-
lutions in our scheme when using piecewise-linear approximations of the boundary
in combination with orders p ≥ 1.

To account for the curved boundaries, we use a common finite-element strat-
egy, namely polynomial approximations of the curved element edges combined with
evaluations of the integrals on reference elements using coordinate transformations.
The nodes marked a, b, and c to the left in Figure 4 are vertices in the primal mesh.

1

2

3

4 5

a

b

c

Fig. 4 Boundary elements. Left: The piecewise-linear boundary as obtained by constructing
the dual mesh similarly as in the interior. Points a,b, and c are vertices on primal mesh.
Triangle 1 is associated to macro element a and triangles 2,3,4, and 5 are associated to macro
element b. A boundary edge is marked in gray together with its associated normal. Right: The
same part of the boundary as in the left image but taking into account the curvature of the
boundary. Now a specific normal, each precomputed, is associated with each quadrature point
on the boundary.
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If dual meshes are constructed at the boundary in the same way as in the interior,
the result will be as depicted to the left in Figure 4. This piecewise-linear boundary
generated massive spurious oscillations at the boundary for p ≥ 1. A simple strategy
that yields a somewhat more accurate approximation of the boundary is to move the
nodes on the dual mesh that are located between primal nodes (for instance the dou-
ble nodes located in between nodes a and b in the left of Figure 4) so that they lie at
the underlying curved boundary. This change did not significantly reduce the oscil-
lations. Krivodonova’s [18] simplified approach to represent a curved boundary was
not successful either. However, a polynomial approximation of the boundary and
associated normals at a sufficiently high order, as visualized in the right of Figure 4
and as shortly outlined below, worked well.

There will be at most one side that is curved in any sub triangle, since the other
two triangle sides are located inside the domain. Now consider a boundary edge
and the two associated curved triangles, Ti and Tj (for instance the gray triangles
to the right in Figure 4). Denote by T̂ the reference triangle with corners at (0,0),
(1,0), and (0,1). If we use the polynomial order pb to approximate the boundary
shape, and we use the polynomial order p for the basis functions of the elements, we
will have subparametric elements if pb < p, isoparametric elements if pb = p, and
superparametric elements if pb > p. Our mesh generator is implemented such that
any order pb can be chosen, regardless of element order p. Numerical experiments
indicate that a pb ≥ 2 is qualitatively sufficient for the calculations we have made
for p = 0,1,2,3.

Denote by Φ the mapping from reference triangle T̂ to any curved triangle T (Ti

or Tj) and by Φ−1 the inverse mapping,

Φ(ξ ,η) =
(

x
y

)
, Φ−1(x,y) =

(
ξ
η

)
. (15)

Points (ξ ,η) ∈ T̂ are transformed into points (x,y) ∈ T according to

x =
pb

∑
m=0

pb−m

∑
n=0

γmnξmηn, y =
pb

∑
m=0

pb−m

∑
n=0

δmnξmηn, (16)

where pb is the polynomial order of the boundary and γmn,δmn are constants that are
computed in the preprocessor. The Jacobian J of Φ ,

J(ξ ,η) = ∇Φ(ξ ,η)

=
pb

∑
m=0

pb−m

∑
n=0

( ∂
∂ξ γmnξmηn ∂

∂η γmnξmηn

∂
∂ξ δmnξmηn ∂

∂η δmnξmηn

)

=
pb

∑
m=0

pb−m

∑
n=0

(
γmnmξm−1ηn γmnnξmηn−1

δmnmξm−1ηn δmnnξmηn−1

)
,

(17)
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will not be constant for pb > 1. The Jacobians are precomputed at each quadrature
point, and are stored and used during computations. For a function F on a curved
triangle T , we have ∫

T
F dV =

∫
T̂

F ◦Φ |J|dV, (18)

where |J| denotes the determinant of J. The gradient of a function g on T is trans-
formed to corresponding function ĝ = g ◦Φ on T̂ according to

∇g = J−T∇ĝ, (19)

where the left- and right-hand sides are evaluated at corresponding points related by
mapping Φ . Finite element basis functions φi on the curved triangle T are defined
by the mapping φi = φ̂i ◦Φ , where φ̂i are the standard Lagrangian basis functions
on the reference triangle T̂ . Let Fm be row m (m = 1, 2, or 3) of flux function (2)1.
By expressions (18) and (19), it follows that row m of the second term (the volume
integral term) in equation (5) can be written∫

T
∇φi ·Fm(Uh)dV =

∫
T̂

J−T∇φ̂i ·Fm(Uh ◦Φ)|J|dV

≈
NT

ep

∑
k=1

wkJ(ξk,ηk)−T∇φ̂i(ξk,ηk) ·Fm(Uh ◦Φ(ξk,ηk)) |J(ξk,ηk)|
(20)

where wk, (ξk,ηk), and NT
ep are the weights, coordinates in T̂ , and number of evalu-

ation points for some appropriate integration rule for triangles.
Let the curved side ∂T ∩ ∂Ω be the image of the restriction of the map Φ to

Î = (0,1)×{0} (the intersection of T̂ with the x-axis). Also, let F ∗
m(UL,UR, n̂) be

row m in the numerical flux function. The curved-boundary contribution from the
first term in equation (5) can then be written∫

∂T∩∂Ω
φi F

∗
m(UL,UR, n̂)ds =

∫
Î
φ̂i F

∗
m(UL ◦Φ,UR ◦Φ,J−T n̂)|J|ds

≈
NI

ep

∑
k=1

zkφ̂i(χk,0) |J(χk,0)|F ∗
m(UL ◦Φ(χk,0),UR ◦Φ(χk,0),J(χk,0)−T n̂k)

(21)

where NI
ep is the number of evaluation points for the chosen integration rule on the

unit interval, and zk,χk are the corresponding weights and coordinates. Note that a
specific normal nk = |J(χk,0)|J(χk,0)−T n̂k is used for each evaluation point, and
that all normals are precomputed in the preprocessor. Since the curved boundary
part of the domain is typically much smaller than the rest of the domain, this extra
storage and computational work is mostly negligible.

1 The rows correspond to the mass, momentum, and energy equations, respectively. Note
that the first and third rows are scalar equations, whereas the second row is a system of d
equations.
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5 Results

In Figure 5 we present results from one of the Mandatory Test Cases (MTC) of
the ADIGMA project, MTC1. The figures depict the pressure coefficients using
successively higher order elements, p = 0,1,2,3, on the same mesh. The element
sizes around the airfoil are visible in the p = 0 solution at the top left in Figure 5.
Some overshoots are visible for the linear element solution, p = 1 (top right of
Figure 5). At the bottom left of Figure 5, the p = 2 solution, small kinks are visible
in the element on the leading edge, which vanish for the p = 3 solution at the bottom
right of Figure 5.
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Fig. 5 MTC1 of the ADIGMA project: Pressure coefficients, 2D Euler, NACA0012, M = 0.5,
α = 2.0◦. The actual discontinuous functions, of order p = 0,1,2,3, are plotted without any
postprocessing or smoothing.

In Figure 6 we show two solutions for MTC2 on the same mesh, but with dif-
ferent order elements. The left picture of Figure 6 depicts the pressure coefficient
for constant, p = 0 elements, solved with a second order central flux, i.e. a standard
finite volume solution provided by Edge. Both shocks are rather poorly resolved and
a finer mesh would be required. The right picture of Figure 6 depicts the pressure
coefficient for linear, p = 1, elements. Note that the oscillations due to shocks are lo-
calized to elements adjacent to the shock, and that the oscillations do not spread out
into the domain. No shock capturing technique is used. An hp-adaption along the
lines previously developed for model problems [6] could be used to better resolve
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Fig. 6 MTC2 of the ADIGMA project: Pressure coefficients, 2D Euler, NACA0012, M = 0.8,
α = 1.25◦. Left: p = 0, central flux (2nd order). Right: p = 1, upwind flux (2nd order). The
actual discontinuous functions, of order p = 0,1, are plotted without any postprocessing or
smoothing.

the shock; another strategy would be to use the sub-cell shock capturing with arti-
ficial viscosity by Persson and Peraire [21]. The use of higher orders, p = 2,3, for
this transonic case and on this mesh appears to require a shock capturing technique;
the solution blows up when approaching a steady-state solution.

6 Conclusions

The effort reported here constitutes a pioneering, first-ever implementation for the
Euler equations of the current vertex-centered DG scheme. To the best of our knowl-
edge, this is also the first time that a DG scheme has been implemented within the
framework of an edge-based FV code of the type very common in the aeronautical
industry.

Acceleration techniques such as local time stepping and agglomerated multigrid
has been implemented successfully; the latter is further discussed in our other con-
tribution to this volume [11].

The data structures needed for the current scheme are complex, but compact and
memory efficient. The local polynomial approximations take place on the sub el-
ements within the macro elements. Thus, the appropriate grid-size parameter h is
the size of the sub elements, and not the size of the primal mesh elements. Since
no fluxes need to be computed at the boundaries occurring strictly inside the macro
elements, the current implementation will be significantly more memory efficient
compared to a standard DG based on a mesh with comparable interpolation bound.

Artificial oscillations have been shown to stay localized around shocks. Never-
theless, shock handling will still need to be implemented in order to stabilize higher
order approximations and improve the convergence properties of the solver. Another
research issue is h-adaption in the current context, which may be more complicated
to implement compared to the case for the standard DG scheme.
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Although our results are encouraging, more research is needed to decisively de-
termine the benefit of the vertex-centered DG approach. In particular, the method
needs to be evaluated on viscous, 3D and turbulent calculations. In addition, par-
ticular effort should be guided towards unsteady and aeroacoustic calculation, since
the need for high accuracy everywhere in the computational domain may be even
more crucial in such cases, compared to steady aerodynamic calculations.
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Chapter 5
Explicit One-Step Discontinuous Galerkin
Schemes for Unsteady Flow Simulations

Arne Taube, Gregor Gassner, and Claus-Dieter Munz

Abstract. In the following, we describe an explicit discontinuous Galerkin scheme
for the compressible Navier-Stokes equations. The scheme is of arbitrary order of
accuracy by choosing the polynomial degree of the approximation. It is kept very
local so that the solution in each cell only depends on the von Neumann neighbors.
Apart from the standard DG framework the computational efficiency is increased by
the use of a mixed approach using a modal and a nodal set of basis functions. For
the approximation of the viscous fluxes an approximation based on local Riemann
solutions is used. At the end we show a high order approximation of the unsteady
laminar flow over a NACA0012 profile.

1 Introduction

The aim of our ongoing research is the construction of explicit schemes to simulate
unsteady fluid flow in complex geometries. Our explicit space-time expansion dis-
continuous Galerkin (STE-DG) scheme as described in [15, 9], is formulated in the
space-time domain by using a space-time Taylor expansion as a predictor. The dis-
cretization is arbitrary order accurate in space and time and due to the scheme’s local
character enables us to do p-refinement in a very efficient manner. For the Navier-
Stokes equations, we solve the diffusive generalized Riemann problem (dGRP) with
the flux presented in [8].

In Sect. 2, we list the Navier-Stokes equations and introduce the diffusion ma-
trices. Section 3 contains the description of the proposed DG scheme based on a
space-time expansion. The nodal approach increasing the computational efficiency
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of the scheme is described in Sect. 4 followed by an example for our high order
numerical scheme in Sect. 5. We draw our conclusion in Sect. 6.

2 Compressible Navier-Stokes Equations

The three dimensional unsteady compressible Navier-Stokes equations written in
the flux formulation are given by:

Ut +∇ ·Fa (U)−∇ ·Fd (U,∇U) = S, (1)

where U is the vector of the conservative variables U = (ρ ,ρv1,ρv2,ρv3,ρe)T . The

Euler fluxes are written in a short hand notation as a row vector Fa :=
(
Fa

1 ,Fa
2 ,Fa

3

)T

which has as coefficients the fluxes into x, y- and z-direction:

Fa
l (U) =

⎛⎜⎜⎜⎜⎝
ρ vl

ρ v1vl + δ1l p
ρ v2vl + δ2l p
ρ v3vl + δ3l p
ρ evl + pvl

⎞⎟⎟⎟⎟⎠ , l = 1,2,3. (2)

Here, we use the usual notation of the physical quantities: ρ , v = (v1,v2,v3)
T , p, and

e denote the density, the velocity vector, the pressure, and the specific total energy,
respectively. The system is closed with the equation of state of a perfect gas

p = ρRT = (γ−1)ρ
(

e− 1
2

v ·v
)

and e =
1
2

v ·v+ cvT (3)

with the specific gas constant R = cp − cv. The adiabatic exponent is γ = cp
cv

with
the specific heats cp,cv depending on the fluid and assumed to be constant. The

diffusion terms are also written in this flux formulation Fv :=
(
Fv

1 ,Fv
2 ,Fv

3

)T
with

Fv
l (U,∇U) =

⎛⎜⎜⎜⎜⎝
0
τ1l

τ2l

τ3l

∑ j τl jv j −ql

⎞⎟⎟⎟⎟⎠ , l = 1,2,3, (4)

in which τi j denotes the components of the viscous stress tensor and q = (q1,q2,q3)
T

denotes the heat flux,

τ := μ
(
∇v+(∇v)T − 2

3
(∇ ·v) I

)
, q := −k∇T, with k =

cpμ
Pr

. (5)

Here, the viscosity coefficient μ and the Prandtl number Pr depend on the fluid and
are assumed to be constant. S denotes a source term.
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The diffusion fluxes may be re-written with the help of the diffusion matrices.
For the two-dimensional case, we get

D
11

=
μ
ρ

⎛⎜⎜⎝
0 0 0 0

− 4
3 v1

4
3 0 0

−v2 0 1 0
−( 4

3 v2
1 + v2

2 + γ
Pr

(
e− v2

)) (
4
3 − γ

Pr

)
v1
(
1− γ

Pr

)
v2

γ
Pr

⎞⎟⎟⎠

D
12

=
μ
ρ

⎛⎜⎜⎝
0 0 0 0

2
3 v2 0 − 2

3 0
−v1 1 0 0

− 1
3 v1v2 v2 − 2

3 v1 0

⎞⎟⎟⎠ , D
21

=
μ
ρ

⎛⎜⎜⎝
0 0 0 0

−v2 0 1 0
2
3 v1 − 2

3 0 0
− 1

3 v1v2 − 2
3 v2 v1 0

⎞⎟⎟⎠

D
22

=
μ
ρ

⎛⎜⎜⎝
0 0 0 0

−v1 1 0 0
− 4

3 v2 0 4
3 0

−(v2
1 + 4

3 v2
2 + γ

Pr

(
e− v2

)) (
1− γ

Pr

)
v1
( 4

3 − γ
Pr

)
v2

γ
Pr

⎞⎟⎟⎠ ,

(6)

in the form
Fv

l = D
l1

Ux + D
l2

Uy, l = 1,2 . (7)

This form allows the application of ‘two integration by parts’ to the diffusion terms.
For the definition of the numerical fluxes, the rotational invariance of both, the in-
viscid Euler fluxes and the diffusion fluxes, are used to reduce the multidimensional
problem into a one dimensional problem in interface normal direction. For this one
dimensional approximation, the fluxes derived in Sect. 3.4 are used. For the approx-
imation of the Euler flux, the HLLC flux of Toro is used, see [20] for details.

3 The STE-DG Scheme

We take the Navier-Stokes equations (1) as an example for a system of advection
diffusion equations which is formulated in conservation form.

3.1 Variational Formulation

For the approximation, the domain Ω is subdivided in non-overlapping spatial grid
cells Qi with surfaces ∂Qi. As usual the intersection of two grid cells is an edge,
a point, or empty in two space dimensions or a surface, an edge or empty in three
dimensions.

To obtain a weak formulation of the Navier-Stokes equations (1), we first mul-
tiply each component with a spatial test function φ = φ (x) and integrate over an
arbitrary space-time cell Qn

i := Qi × [tn,tn+1] to obtain∫
Qn

i

(
Ut +∇ ·

(
Fa (U)−Fd (U,∇U)

))
φ dxdt = 0. (8)
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Next, in the finite element framework we apply integration by parts with respect to
the space variables in order to get a coupling between the grid cells:∫

Qn
i

Utφ dxdt −
∫

Qn
i

Fa (U) ·∇φ dxdt +
∫

Qn
i

Fd (U,∇U) ·∇φ dxdt

+
∫

∂Qn
i

Fa (U) ·nφ dsdt −
∫

∂Qn
i

Fd (U,∇U) ·nφ dsdt = 0,
(9)

where n denotes the normal vector into the outer direction of the space-time cell’s
side faces ∂Qn

i := ∂Qi ×
[
tn,tn+1

]
.

Using this variational formulation as a basis for the discontinuous Galerkin
scheme results in non-optimal convergence behavior with respect to the diffusion
terms, as the scheme is not adjoint consistent, [1]. To overcome this problem, Bassi
and Rebay [3] introduced a mixed finite element approach, where they reformulate
the second order problem into a first order system. However, the disadvantage of
this approach is that auxiliary variables are introduced, resulting in an increase of
the computational effort, especially for systems of equations. In Gassner et al. [8]
a new variational formulation for diffusion problems is introduced, where the need
for auxiliary variables is circumvented by the application of a second integration by
part. We recognize that the volume integral of the diffusion term in (9) still allows
a second integration by parts to the viscous volume integral, using the homogeneity
property (7) of the viscous flux with respect to the gradient.

Inserting this into (9) yields the weak formulation of the Navier-Stokes equations
as ∫

Ωn
i

Ut ·Φ dxdt +
∫

∂Ωn
i

(Fa
n −Fv

n ) ·Φ dsdt −
∫
Ωn

i

(Fa −Fv) · (∇Φ) dxdt

+
∫

∂Ωn
i

h(U,n,∇Φ) dsdt = 0,
(10)

with the additional diffusion flux

h(U,n,∇Φ) := U ·Fvv
n (U,∇Φ)− [U ·Fvv

n (U,∇Φ)]INT . (11)

To get this diffusion flux in (11) we use the artifice of Bassi and Rebay [3], who
use partial integration back and forth to introduce the global lifting operator. The
expression in brackets, [:]INT , in (11) denotes that only the state from inside the cell
is used. Considering the discontinuous Galerkin discretization in the next section
this generates an additional diffusion flux, h(U,n,∇Φ), which gives adjoint con-
sistency and is similar to the ‘symmetric term’ in the Symmetric Interior Penalty
(SIP) method as proposed by Hartmann and Houston [12] and the term of the BR2
scheme of [3] involving the global lifting operator. If the function U is continuous,
then this flux is zero. With the definition of suitable numerical fluxes and a suitable
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numerical state for the second diffusion surface integral we get an adjoint consistent
formulation and thus a discretization with optimal order of convergence. We come
back to this point within the section about numerical diffusion fluxes 3.4.

3.2 The Fully Discrete Scheme

At each fixed time level, the approximative solution Uh = Uh (x,t) is a piecewise
polynomial in space. In the grid cell Qi it is represented by

Ui (x, t) =
N (d,p)

∑
l=0

Ûi,l (t)φi,l (x) , (12)

where φi,l = φi,l (x) are basis functions which span the space of polynomials of
degree p with support Qi and Ûi,l (t) , l = 1, ..,N , are the time dependent degrees
of freedom (DOF) in the grid cell Qi. The number of DOF depends on the space
dimension d and on the polynomial degree p and is given by

N (d, p) =
1
d!

d

∏
j=1

(p + j) . (13)

We use a set of orthonormal basis functions which are constructed using the Gram-
Schmidt orthogonalization algorithm yielding a diagonal mass matrix, even for el-
ements with curved boundaries. The temporal evolution of the degrees of freedom
is represented by discrete values at the different time levels, e.g. at the time level tn,
we have

Ui (x,tn) =
N (d,p)

∑
l=0

Ûi,l (tn)φi,l (x) =:
N (d,p)

∑
l=0

Ûn
i,lφi,l (x) . (14)

We insert this trial function into the weak formulation (10) and choose the test func-
tions equal to the basis functions φi,l = φi,l (x).

As the global approximation Uh may be discontinuous across element interfaces,
we have to introduce suitable numerical flux functions, to guarantee stability and
consistency of the discretization. The numerical fluxes are denoted by Gn, Gv

n, and
gvv

n for the Euler flux Fa
n and the two diffusion fluxes Fv

n and h, respectively. They
are defined and discussed in detail in Sect. 3.4.

3.3 Prediction Based on a Local Approximate Solution

To keep the whole scheme explicit, we use a predictor that approximates the time
evolution of the data in the considered time step, but only within the grid cell Qi.
This may be considered as to solve the Cauchy problem

Ut +∇ ·Fa (U) = ∇ ·Fv (U,∇U) in R
d × [0,Δ t]

U (x,0) = Ui (x, tn) ∀x ∈ R
d ,

(15)
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where Ui (x, tn) is the DG polynomial at time t = tn in grid cell Qi extended to Rd .
In this predictor no values from the neighboring grid cells are included. We use this
solution in the space-time grid cell Qn

i to determine in the variational formulation
the space-time volume integrals and to get the arguments for the numerical fluxes
from the interior for the surface integrals. There are different approaches to get an
approximate solution of this Cauchy problem (15) in Qn

i or better at the Gauss points
of the time quadrature formulae.

3.3.1 Space-Time Expansion and the Cauchy-Kovalevskaya Procedure

For our scheme, it is important to get approximate values at the space-time Gauss
points. The basis of the proposed time discretization approach is a Taylor expansion
in space and time,

U (x,t) = U (xi,tn)+
p

∑
j=1

1
j!

(
(t − tn)

∂
∂ t

+(x−xi) ·∇
) j

U (xi, tn) , (16)

about the element Qi’s barycenter xi at time tn. This space-time Taylor expansion
provides approximate values for U and ∇U at all space-time points (x,t) ∈ Ωn

i , if
the values of the space-time derivatives at the state of the expansion are known.

While the pure space derivatives at (xi, tn) are readily available within the DG
framework, the time derivatives and mixed space-time derivatives can be computed
using the so-called Cauchy-Kovalevskaya (CK) procedure. The use of a Taylor ex-
pansion in space-time at the barycenter has already been proposed by Harten et
al. [11] within the ENO finite volume framework. Later Toro et al. used the CK
procedure in [19, 21] for the multi-dimensional Euler equations within the ADER-
FV (Arbitrary order using DERivatives Finite Volume) schemes to get a high order
approximation of the generalized Riemann problem. This idea was extended to the
ADER-DG schemes by Dumbser and Munz [4, 5].

3.4 The Numerical Fluxes

For the approximation of the fluxes normal to a grid cell’s edge, the Navier-Stokes
equations’ rotational invariance is used. The following description is done for two
space dimensions, but its implementation in 3D is straightforward. In a first step,
every Gauss point χk

j on the edge Sk ∈ ∂Qi, the state vector U and the gradient of
the state vector ∇U are rotated from the global (x,y)-system into the edge aligned
(x̃, ỹ)-system. With the two dimensional rotation matrix

R := R
(
χk

j

)
=

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 n1

(
χk

j

)
n2

(
χk

j

)
0

0 −n2

(
χk

j

)
n1

(
χk

j

)
0

0 0 0 1

⎞⎟⎟⎟⎟⎠ , (17)
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the transformation reads as,

U := RU, Un := R (Ux n1 +Uy n2) and Ut := R (−Ux n2 +Uy n1) (18)

for every surface Gauss point χk
j . We denote the derivative into normal and tangen-

tial direction in the local coordinate system with Un and Ut, respectively.
For the inviscid Euler flux, a number of different numerical fluxes have been

proposed in the past, see e.g. [20]. A recent investigation of different numerical flux
functions within the RKDG scheme is given by Qiu et al. [18]. In our calculations,
we chose the HLLC flux,

Gn

(
U±
(
χk

j,τm

))
:= R−1GHLLC

(
U −

(
χk

j,τm

)
,U +

(
χk

j,τm

))
, (19)

evaluated at every edge’s space-time Gauss point
(
χk

j,τm

)
. Here, U ± denotes the

values of the limit at the grid cell edge from the two sides with respect to the outer
normal direction.

For the approximation of the diffusion fluxes, we also use the viscous fluxes’
rotational invariance

Fv
n (U,∇U) = Fv

1 (U,∇U) n1 + Fv
2 (U,∇U) n2 (20)

= R−1Fv
1

(
U ,(Un,Ut)

T
)

, ∀n ∈ R
2,

to reduce the two dimensional problem to a one dimensional problem into the direc-
tion normal to the edge:

Gv
n

(
U±
(
χk

j,τm

)
,∇U±

(
χk

j,τm

))
:= R−1G v

(
U ±,

(
U ±

n ,U ±
t

)T
)

. (21)

We further split the flux G v into the normal and tangential part

G v
n := D11

(
U ±)U ±

n , G v
t := D12

(
U ±)U ±

t , (22)

respectively.
In [8], Gassner et al. construct a diffusion flux in one space dimension which

is based on the solution of the generalized Riemann problem for systems of lin-
ear diffusion equations and called it the dGRP-flux (diffusive Generalized Riemann
Problem). They also show in [8] how to extend this numerical flux to nonlinear dif-
fusion problems. An important difference to the hyperbolic case is that for diffusion
problems piecewise constant initial data leads to an inconsistent flux approxima-
tion. At least piecewise linear initial data are necessary to take the character of the
second order differential equation into account. In the following, we adopt this ap-
proach from [8] to the approximation of the viscous flux (22) of the Navier-Stokes
equations.

The first step of the approximation is to linearize the nonlinear diffusion flux G v
n

at a suitable state. As diffusion does not prefer any direction, a natural choice for
the trace of the approximation on the edge Sk is the arithmetic mean
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U
∣∣
Sk
≈ {U } :=

1
2

(
U + +U −) . (23)

The part of the numerical diffusion flux into normal direction is then based on the
initial value problem for the linearized diffusion system with piecewise linear data

∂
∂ t

V = D11 ({U }) ∂ 2

∂ x̃2 V,

V (x̃,0) =
{

U + + x̃U +
n , for x̃ > 0,

U − + x̃U −
n , for x̃ < 0,

(24)

where x̃ denotes the coordinate into the normal direction. For physically meaning-
ful states U , the diffusion matrix can be diagonalized and the system (24) can be
transformed into a decoupled system of equations. The exact solution of the scalar
diffusion problem for piecewise linear initial values can be calculated and used to
define the time averaged diffusion flux in the diagonalized form. The transformation
back leads to the diffusion flux approximation for the Navier-Stokes equations, for
more details see [8].

The two numerical fluxes can be written in the form

G v
dGRP∗

(
U ±,

(
U ±

n ,U ±
t

)T
)

= Fv
1

(
{U },

(
η
Δxk

[[U ]]+{Un},{Ut}
)T
)

(25)

and

gvv
n

(
U±,n,∇Φ−)≈ 1

2
R−1
(

D11

(
{U }

(
χk

j,τm

))[[
U
(
χk

j,τm

)]])
·
(
Φ−

n

(
χk

j

))
.

(26)

The parameter η depends on the parabolic time step restriction and is specified in
Sect. 2.1 in Chapter 30. It may be considered as a penalization parameter of the
jump. Hence, equation (25) has a similar form as the symmetric interior penalty
flux as proposed in [12]. A main difference between the SIP-DG flux and the dGRP
flux is a jump term of U [1] = ρ in the continuity equation. Numerical experiments
show that this causes the SIP-DG approach to be only sub-optimal for trial functions
with even order p.

4 Nodal Integration of Fluxes

In this section we focus our considerations to different sets of basis functions on a
grid cell Q ⊂ Rd .

4.1 The Nodal Elements

The elements of the monomial basis {πi}i=1,...,N of the space of polynomials with
degree less or equal than p can be written as
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πi (x) = x
α i

1
1 · ... · xα

i
d

d with 0 ≤ α i
1 + ...+α i

d ≤ p . (27)

The dimension N of this space depends on the polynomial degree p and on the
spatial dimension d and is given by (13). Based on the monomial basis {πi}i=1,...,N ,
a construction of an orthonormal basis {ϕi}i=1,...,N with property∫

Q

ϕi (x)ϕ j (x) dx = δi j, (28)

can be done for any grid cell shape using the Gram-Schmidt orthogonalization pro-
cedure. With this modal basis we are able to define also sets of nodal basis functions.
Given a set of interpolation points {ξ j} j=1,...,MI ⊂ Qi we construct the nodal La-
grange basis {ψ j} j=1,...,MI and the nodal degrees of freedom Û from the conditions

ψ j (ξ i) = δi j,

U (x) :=
N

∑
j=1

Ûjϕ j (x) !=
MI

∑
i=1

Ũiψi (x) .
(29)

Combining these conditions yields the transformations

V Û = Ũ and V T ψ = ϕ , (30)

where V denotes the generalized Vandermonde matrix with entries

Vi j = ϕ j (ξ i) , i = 1, ...,MI; j = 1, ...,N , (31)

and where Û , ϕ , ũ, and ψ denote the vectors with components Ûi, ϕi for i = 1, ...,N

and Ũj, ψ j for j = 1, ...,MI , respectively. For clarity we introduced an underline for
these vectors to differ them from the spatial vectors.

For MI �= N the inverse of the Vandermonde matrix is not uniquely defined.
To avoid this problem, one has to extend the modal basis from dimension N to
dimension MI . We refer to Lörcher and Munz [16] for a strategy to find basis ex-
tensions for non-tensor product interpolation on a Cartesian grid. The extension of
this approach to the general case is not straightforward, since the non-singularity
of the Vandermonde matrix is not guaranteed. To overcome this issue a singular
value decomposition based strategy is used to define the following pseudo-inverse
transformations

Û = V−1Ũ and ψ = V−Tφ . (32)

Using the pseudo-inverse Vandermonde matrix, condition (29) is only satisfied in
the least squares sense.
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4.2 The Nodal Integration Approach

We restrict our attention to sets of interpolation points ΩI := {ξ i}i=1,...,MI which
have first been described in [10] and discuss the nodal approach to increase the
computational efficiency of the scheme.

In the standard modal DG implementations, the evaluation of the integrals is usu-
ally done with Gauss integration. For instance we get the following approximation
for the first volume integral in the variational formulation (9)

∫
Qi

F1 (Uh)
∂φ j

∂x1
(x) dx ≈

pd

∑
j=1

F1 (Uh (χ j, t))
∂φ j

∂x1
(χ j)ω j, (33)

where ω j and χ j are the Gauss weights and Gauss positions, respectively. If we
consider a hexahedron with a p = 5 approximation, we get pd = 125 evaluation
points with this strategy for the first volume integral, and, following [10] with π =
(0,0), MI = 80 evaluation points for the nodal DG scheme. Keeping in mind that
the Gauss type approach needs additionally (p+1)(d−1) Gauss evaluation points for
each of the six sides to approximate the surface integral, it is obvious that the nodal
framework enhances the efficiency of modal DG implementations.

We again focus for simplicity on the approximation of the first volume integral
of the modal formulation (33). But instead of using Gauss integration, we use the
nodal elements of Sect. 4.1 to build a high order interpolation of the flux F1

F1 (Uh) ≈ ψT F̃1, (34)

where again
(

F̃1

)
j

:= F1
(
Uh
(
ξj
))

. Inserting this into the volume integral yields

∫
Q

F1 (Uh)
∂φ j

∂x1
(x) dx ≈ K1F̃1, (35)

where the general stiffness matrix is given by

K1 :=
∫
Q

∂φ
∂x1

(x)ψT (x) dx = K1,MV−1. (36)

The evaluation of the stiffness matrix can be done with Gauss integration in an
initial phase of the simulation, yielding a quadrature free approach. The surface
integrals are treated in a similar manner. Comparing with the ‘traditional’ modal
implementation, we have now with this approach approximately the computational
complexity of the nodal DG scheme, but with only N modal degrees of freedom
per grid cell, compared to MI nodal degrees of freedom.
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5 High Order Numerical Results

Gassner and Lörcher already demonstrated the STE-DG scheme’s experimental
order of convergence with an inhomogeneous problem for the two- and three-
dimensional Navier-Stokes equations in [6, 14, 7], where an exact solution for the
inhomogeneous problem is constructed in a simple way by inserting some reason-
able functions into the homogeneous equations. The obtained residuum is then pre-
scribed as a source term and an exact solution of the non-homogeneous problem
is found. This model problem has been solved with the modal STE-DG scheme
with nodal integration and the results show that the optimal order of convergence
EOC = p + 1 is achieved.

5.1 Laminar Flow past a NACA0012 Profile

The following section deals with the numerical simulation of the fluid flow around a
symmetric two dimensional NACA0012 airfoil. The flow has the following parame-
ters, angle of attack α = 2◦, free stream Mach number Ma∞ = 0.5 and the Reynolds
number is Re∞ = 5000 based on the length of the airfoil c = 1.0. For the high order
results, the treatment of curved boundaries is an important issue in DG schemes as
shown for example by [2, 13, 17].

It is a laminar but yet unsteady flow computation till tend = 0.4. The simulation
has been carried out with fixed approximation order O6 and with 6th-order boundary
representation as described by Lörcher [14]. In the following Fig. 1, 20 equally
spaced Mach contour lines are plotted from Ma = 0.05 . . .0.6 along with the mesh.
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Fig. 1 Fluid flow around NACA0012 for Re∞ = 5000, Ma∞ = 0.5. C-type mesh (left) and

Mach contour lines (right) at 6th-order. STE-DG: DOF=134400, 95.58 [piu]
ms .

The test case shows non-stationary behavior and the mesh’s structured charac-
ter yields to a rather fine zone in the profile’s wake which is giving way to a nice
resolution of the occurring vortex street in that region. Nevertheless, a minimum res-
olution or number of DOF is required for the vortex street to show up. The increase
in order and accuracy goes hand in hand with an increase in degrees of freedom
(DOF) and eventually CPU-time, measured in ADIGMA performance index units
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[piu]. It could be shown that the high order STE-DG scheme can produce much
higher resolved results with less DOF on coarser meshes.

6 Conclusion

We have described our explicit space-time expansion discontinuous Galerkin (STE-
DG) scheme and its building blocks in detail. The space-time discretization is kept
explicit by starting with a predictor which gives the approximate values at the inter-
mediate time levels needed for higher order accuracy in time. The numerical fluxes
at the grid cell interfaces are based on approximative Riemann solvers for the hy-
perbolic Euler fluxes as well as for the parabolic diffusion terms and are integrated
using nodal elements. This explicit approximation leads to a compact discretization
for which data is only needed from the direct adjacent grid cells.

Compared to the state of the art, the nodal type integration allows for a reduction
of interpolation and flux evaluation points and thus increases efficiency.

Furthermore, it is possible to run the scheme on parallel computers very effi-
ciently. Therefore, it is an ideal building block towards high fidelity simulation of
turbulent flow.

Acknowledgements. We gratefully acknowledge funding of this work by the target research
project ADIGMA within the 6th European Research Framework Programme.
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Chapter 6
RKDG with WENO Type Limiters

Jianxian Qiu and Jun Zhu

Abstract. The discontinuous Galerkin (DG) method is a spatial discretization pro-
cedure for convection dominated equations, which employs useful features from
high resolution finite volume schemes, such as the exact or approximate Riemann
solvers serving as numerical fluxes and limiters, which is termed as RKDG when
TVD Runge-Kutta method is applied for time discretization. It has the advantage of
flexibility in handling complicated geometry, h-p adaptivity, and efficiency of paral-
lel implementation and has been used successfully in many applications. However,
the limiters used to control spurious oscillations in the presence of strong shocks
are less robust than the strategies of essentially non-oscillatory (ENO) and weighted
ENO (WENO) finite volume and finite difference methods. In this chapter, we will
describe the procedure of using WENO and Hermite WENO finite volume method-
ology as limiters for RKDG methods on unstructure meshes, with the goal of ob-
taining a robust and high order limiting procedure to simultaneously obtain uniform
high order accuracy and sharp, non-oscillatory shock transition for RKDG methods.

1 Introduction

The discontinuous Galerkin (DG) method for solving hyperbolic conservation laws
and its extension to time-dependent convection dominated equations [8, 7, 6, 4, 9,
1, 10, 11] are high order finite element methods employing the useful features from
high resolution finite volume schemes, such as the exact or approximate Riemann
solvers serving as numerical fluxes, and total variation bounded (TVB) limiters [20].
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The DG method is a spatial discretization procedure for convection dominated equa-
tions, which is termed as RKDG when TVD Runge-Kutta method is applied for time
discretization. DG method has the advantage of typical finite element methods in an
easy handling of complicated geometry, arbitrary triangulations, and also the added
advantage due to the discontinuous nature of the solution and the test function space,
in an explicit time marching, local communications hence high efficiency in paral-
lel implementation [2], and easy h-p adaptivity. For these reasons, they have been
widely used in applications, see for example the the survey paper [5], and other
papers in that Springer volume, which contains the conference proceedings of the
First International Symposium on Discontinuous Galerkin Methods held at New-
port, Rhode Island in 1999. The review paper [11] is a good reference for many
details.

An important component of RKDG methods for solving hyperbolic conservation
laws (1): {

ut + f (u)x + g(u)y = 0
u(x,y,0) = u0(x,y)

(1)

with strong shocks in the solutions is a nonlinear limiter, which is applied to de-
tect discontinuities and control spurious oscillations near such discontinuities. Many
such limiters have been used in the literature on RKDG methods. For example, we
mention the minmod type TVB limiter [8, 7, 6, 4, 9], which is a slope limiter using a
technique borrowed from the finite volume methodology; the moment based limiter
[2] and an improved moment limiter [3], which are specifically designed for dis-
continuous Galerkin methods and work on the moments of the numerical solution.
These limiters tend to degrade accuracy when mistakenly used in smooth regions of
the solution. However, the limiters used to control spurious oscillations in the pres-
ence of strong shocks are less robust than the strategies of essentially non-oscillatory
(ENO) and weighted ENO (WENO) finite volume and finite difference methods. In
[16], Qiu and Shu initiated a study of using the WENO methodology as limiters for
RKDG methods on structured mesh. The following framework has been adopted:

Step 1: First, identify the “troubled cells”, namely those cells which might need
the limiting procedure.

Step 2: Then, replace the solution polynomials in those troubled cells by recon-
structed polynomials using the WENO methodology which maintain the original
cell averages (conservation), have the same orders of accuracy as before, but are
less oscillatory.

This technique works quite well in one and two-dimensional test problems in [16]
and in the followup work [15] and [17] where the more compact Hermite WENO
methodology was used in the troubled cells.

In this chapter based on [23, 24, 25] which were partially supported by the Eu-
ropean project ADIGMA on the development of innovative solution algorithms for
aerodynamic simulations, we will describe the procedure of using WENO and Her-
mite WENO finite volume methodology as limiters for RKDG methods on unstruc-
ture meshes, with the goal of obtaining a robust and high order limiting procedure to
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simultaneously obtain uniform high order accuracy and sharp, non-oscillatory shock
transition for RKDG methods.

2 Description of RKDG Methods with WENO Type Limiter

In this section we give the details of the procedure using the WENO and Hermite
WENO reconstruction as a limiter for the RKDG method.

2.1 Description of RKDG Methods

Given a triangulation consisting of cells j, Pk( j) denotes the set of polynomials of
degree at most k defined on j. Here k could actually change from cell to cell, but for
simplicity we assume it is a constant over the whole triangulation. In the DG method,
the solution as well as the test function space is given by V k

h = {v(x,y) : v(x,y)| j ∈
Pk( j)}. We emphasize that the procedure described below does not depend on the
specific basis chosen for the polynomials. We adopt a local orthogonal basis over a

target cell, such as 0: {v(0)
l (x,y), l = 0, . . . ,K;K = (k + 1)(k + 2)/2−1}:

v(0)
0 (x,y) = 1,

v(0)
1 (x,y) =

x− x0√|0|
,

v(0)
2 (x,y) = a21

x− x0√|0|
+

y− y0√|0|
+ a22,

v(0)
3 (x,y) =

(x− x0)2

|0| + a31
x− x0√|0|

+ a32
y− y0√|0|

+ a33,

v(0)
4 (x,y) = a41

(x− x0)2

|0| +
(x− x0)(y− y0)

|0| + a42
x− x0√|0|

+ a43
y− y0√|0|

+ a44,

v(0)
5 (x,y) = a51

(x− x0)2

|0| + a52
(x− x0)(y− y0)

|0| +
(y− y0)2

|0| + a53
x− x0√|0|

+a54
y− y0√0

+ a55,

. . .

where (x0,y0) and |0| are the barycenter and the area of the target cell 0, respec-
tively. Then we would need to solve a linear system to obtain the values of a�m by
the orthogonality property:∫

0

v(0)
i (x,y)v(0)

j (x,y)dxdy = wiδi j (2)

with wi =
∫
0

(
v(0)

i (x,y)
)2

dxdy.
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The numerical solution uh(x,y,t) in the space V k
h can be written as:

uh(x,y,t) =
K

∑
l=0

u(l)
0 (t)v(0)

l (x,y), (x,y) ∈0,

and the degrees of freedom u(l)
0 (t) are the moments defined by

u(l)
0 (t) =

1
wl

∫
0

uh(x,y,t)v(0)
l (x,y)dxdy, l = 0, · · · ,K.

In order to determine the approximate solution, we evolve the degrees of freedom

u(l)
0 (t):

d
dt

u(l)
0 (t) =

1
wl

(∫
0

(
F(uh(x,y, t))

∂
∂x

v(0)
l (x,y)+ g(uh(x,y,t))

∂
∂y

v(0)
l (x,y)

)
dxdy

−
∫
∂0

( f (uh(x,y,t)),g(uh(x,y,t)))T ·n v(0)
l (x,y)ds

)
, l = 0, . . . ,K. (3)

where n is the outward unit normal of the triangle boundary ∂0.
In (3) the integral terms can be computed either exactly or by suitable numerical

quadratures which are exact for polynomials of degree up to 2k for the element
integral and up to 2k + 1 for the edge integral. In this paper, we use AG Gaussian
points (AG = 6 for k = 1 and AG = 7 for k = 2) for the element quadrature and EG

Gaussian points (EG = 2 for k = 1 and EG = 3 for k = 2) for the edge quadrature:∫
0

(
f (uh(x,y,t))

∂
∂x

v(0)
l (x,y)+ g(uh(x,y,t))

∂
∂y

v(0)
l (x,y)

)
dxdy (4)

≈ |0|∑
G

σG

(
f (uh(xG,yG,t))

∂
∂x

v(0)
l (xG,yG)+ g(uh(xG,yG, t))

∂
∂y

v(0)
l (xG,yG)

)
∫
∂0

( f (uh(x,y,t)),g(uh(x,y, t)))T ·n v(0)
l (x,y)ds (5)

≈ |∂0|∑
G

σ̄G

(
f (uh(x̄G, ȳG, t)),g(uh(x̄G, ȳG,t)))T ·n v(0)

l (x̄G, ȳG

)
where (xG,yG) ∈ 0 and (x̄G, ȳG) ∈ ∂0 are the Gaussian quadrature points,
and σG and σ̄G are the Gaussian quadrature weights. Since the edge integral is
on element boundaries where the numerical solution is discontinuous, the flux
( f (uh(x,y,t)),g(uh(x,y,t)))T ·n = F(u)ṅ is replaced by a monotone numerical flux.
The simple Lax-Friedrichs flux:

F(u(Gk,t)) ·n ≈ 1
2

[(
F(u−(Gk,t))+ F(u+(Gk, t))

) ·n−α
(
u+(Gk, t)−u−(Gk,t)

)]
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is used in all of our numerical tests. where α is taken as an upper bound for |F ′(u) ·n|
in the scalar case, or the absolute value of eigenvalues of the Jacobian in the n
direction for the system case, and u− and u+ are the values of u inside the cell 0

and outside the cell 0 (inside the neighboring cell) at the Gaussian point Gk. The
semi-discrete scheme (3) is discretized in time by a non-linear stable Runge-Kutta
time discretization, e.g. the third-order version

u(1) = un +Δ tL(un),

u(2) =
3
4

un +
1
4

u(1) +
1
4
Δ tL(u(1)), (6)

un+1 =
1
3

un +
2
3

u(2) +
2
3
Δ tL(u(2)).

The method described above can compute solutions to (1), which are either smooth
or have weak shocks and other discontinuities, without further modification. If the
discontinuities are strong, however, the scheme will generate significant oscillations
and even nonlinear instability. To avoid such difficulties, we borrow the technique
of a slope limiter from the finite volume methodology and use it after each Runge-
Kutta inner stage (or after the complete Runge-Kutta time step) to control the nu-
merical solution.

2.2 Troubled Cell Indicators

In the first step of limiter procedure, we will use the TVB type limiter adopted
in [9] only to detect “troubled cells”. The main procedure is as follows. We use
(xm�

,ym�
), � = 1,2,3, to denote the midpoints of the edges on the boundary of the

target cell 0, and (xbi ,ybi), i = 1,2,3, to denote the barycenters of the neighboring
triangles i, i = 1,2,3, as shown in the left of Figure 1.

We then have

xm1 −xb0 = α1(xb1 −xb0)+α2(xb3 −xb0), ym1 −yb0 = α1(yb1 −yb0)+α2(yb3 −yb0)
(7)
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Fig. 1 The limiting diagram (left); The big stencil T for reconstruction (right)
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with nonnegative α1, α2, which depend only on (xm1 ,ym1) and the geometry. We
then define

ũh(xm1 ,ym1 , t) ≡ uh(xm1 ,ym1 , t)−u(0)
0 (t) (8)

u(xm1 ,ym1 ,t) ≡ α1(u
(0)
1 (t)−u(0)

0 (t))+α2(u
(0)
3 (t)−u(0)

0 (t)) (9)

Using the TVB modified minmod function [20] defined as

m̃(a1,a2) =

⎧⎨⎩
a1 if |a1| ≤ M|0|{

s min(|a1|, |a2|) if s = sign(a1) = sign(a2)
0 otherwise

otherwise

(10)
where M > 0 is the TVB constant whose choice is problem dependent, we can
compute the quantity

ũmod = m̃(ũh(xm1 ,ym1 , t),γu(xm1 ,ym1 , t)) (11)

with γ > 1 (we take γ = 1.5 in our numerical tests). If ũmod �= ũh(xm1 ,ym1 , t), 0 is
marked as a “troubled cell” for further reconstruction. This procedure is repeated for
the other two edges of 0 as well. Since the WENO or Hermite WENO reconstruc-
tion maintains high order accuracy in the troubled cells, it is less crucial to choose
an accurate M. There are several troubled cell indicators which can be used for the
purpose, the detail discussion about these troubled cell indicators refers to [18].

2.3 WENO Limiter on Two Dimensional Unstructured Meshes

In the second step of limiter procedure, we reconstruct the polynomial solutions
while retaining their cell averages in the troubled cells. In other words, we recon-

struct the degrees of freedom u(l)
0 (t), l = 1, . . . ,K and retain only the cell average

u(0)
0 (t).

For the k = 1 case, we summarize the procedure to reconstruct the first order

moments u(1)
0 (t) and u(2)

0 (t) in the troubled cell 0 using the WENO reconstruction
procedure. For simplicity, we relabel the “troubled cell” and its neighboring cells as
shown in the right of Figure 1.

Step 1. We select the big stencil as S = {0,1,2,3,11,12,21,22,
31,32}. Then we construct a quadratic polynomial P(x,y) to obtain a third order
approximation of u by requiring that it has the same cell average as u on the target
cell 0, and matches the cell averages of u on the other triangles in the set S\{0}
in a least-square sense, see [12].

Step 2. We divide S into nine smaller stencils:

S1 = {0,1,2}, S2 = {0,2,3}, S3 = {0,3,1},
S4 = {0,1,11}, S5 = {0,1,12}, S6 = {0,2,21},
S7 = {0,2,22}, S8 = {0,3,31}, S9 = {0,3,32}.
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We then construct nine linear polynomials qi(x,y), i = 1, . . . ,9, satisfying

1
|�|

∫
�

qi(x,y)dxdy = ū�, for � ∈ Si. (12)

Remark: When some triangles merge in the stencils, we can always use the next
layer of triangles to overcome this situation.

Step 3. We find the combination coefficients, also called linear weights, denoted

by γ(l)
1 , ...,γ(l)

9 , l = 1,2, satisfying

∫
0

P(x,y)v(0)
l (x,y)dxdy =

9

∑
i=1

γ(l)
i

∫
0

qi(x,y)v
(0)
l (x,y)dxdy, l = 1,2 (13)

for the quadratic polynomial P(x,y) defined before. The linear weights are achieved
by asking for

min

(
9

∑
i=1

(γ(l)
i )2

)
, l = 1,2. (14)

By doing so, we can get the linear weights uniquely but can not guarantee their
positivity. We use the method introduced in [12, 19] to overcome this difficulty.

Step 4. We compute the smoothness indicators, denote by βi, i = 1, . . . ,9, for the
smaller stencils Si, i = 1, . . . ,9, which measure how smooth the functions qi(x,y),
i = 1, . . . ,9 are in the target cell 0. The smaller these smoothness indicators, the
smoother the functions are in the target cell. We use the same recipe for the smooth-
ness indicators as in [14]:

βi =
k

∑
|�|=1

|0||�|−1
∫
0

(
∂ |�|

∂x�1∂y�2
qi(x,y)

)2

dxdy (15)

where � = (�1, �2).
Step 5. We compute the non-linear weights based on the smoothness indicators:

ωi =
ω̄i

∑9
�=1 ω̄�

, ω̄� =
γ�

(ε +β�)2 . (16)

Here ε is a small positive number to avoid the denominator to become zero. We take
ε = 10−6 in our computation.

The moments of the reconstructed polynomial are then given by:

u(l)
0 (t) =

1∫
0

(v(0)
l (x,y))2 dxdy

9

∑
i=1

ω(l)
i

∫
0

qi(x,y)v(0)
l (x,y)dxdy, l = 1,2.

(17)

For the k = 2 case, the procedure to reconstruct the first and second order moments

u(1)
0 (t), u(2)

0 (t), u(3)
0 (t), u(4)

0 (t) and u(5)
0 (t) in the troubled cell 0 is analogous to that
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for the k = 1 case. The troubled cell and its neighboring cells are shown in the right
of Figure 1.

Step 1. We select the big stencil as T = {0,1,2,3, 11,12,21, 22,
31,32, 112,121,212, 221,312,321}. Then we construct a fourth degree
polynomial Q(x,y) to obtain a fifth order approximation of u by requiring that it has
the same cell average as u on the target cell 0 and matches the cell averages of u
on the other triangles in the set T \ {0} in a least-square sense.

Step 2. We divide T into nine smaller stencils:

T1 = {0,1,11,12,3,32}, T2 = {0,1,11,12,2,21},
T3 = {0,2,21,22,1,12}, T4 = {0,2,21,22,3,31},
T5 = {0,3,31,32,2,22}, T6 = {0,3,31,32,1,11},
T7 = {0,1,11,12,112,121}, T8 = {0,2,21,22,212,221},
T9 = {0,3,31,32,312,321}.

We can then construct quadratic polynomials qi(x,y), i = 1, . . . ,9, which satisfy the
following conditions

1
|�|

∫
�

qi(x,y)dxdy = ū�, for � ∈ Ti. (18)

The remaining steps 3, 4 and 5 are the similar to those for the k = 1 case. Finally,

the moments u(l)
0 (t), l = 1,2,3,4,5 of the reconstructed polynomial are given by:

u(l)
0 (t) =

1∫
0

(v(0)
l (x,y))2dxdy

9

∑
i=1

ω(l)
i

∫
0

qi(x,y)v
(0)
l (x,y)dxdy. (19)

2.4 Hermite WENO Limiter on Two Dimensional Unstructured
Meshes

We summarize the HWENO reconstruction procedure to reconstruct the first order

moments u(1)
0 (t) and u(2)

0 (t) in the troubled cell 0 for the case k = 1.
Step 1. We select the big stencil as S = {0,1,2,3}. Then we construct

polynomial P(x,y) to approximate u by requiring that it has the same cell average
as u(0)(t) on the target cell 0, and matches the cell averages of u(0)(t), u(1)(t) or
u(2)(t) on the other triangles in the set S \ {0} in a least square sense.

Step 2. We then construct six linear polynomials qi(x,y), i = 1, . . . ,6, satisfying:

1
|�|

∫
�

qi(x,y)dxdy = u(0)
� , (20)

1∫
�x

(v(�x)
1 (x,y))2dxdy

∫
�x

qi(x,y)v
(�x)
1 (x,y)dxdy = u(1)

�x
, (21)
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1∫
�y

(v(�y)
2 (x,y))2dxdy

∫
�y

qi(x,y)v
(�y)
2 (x,y)dxdy = u(2)

�y
. (22)

For

i = 1, � = 0,1,2; i = 2, � = 0,2,3; i = 3, � = 0,3,1; i = 4, � = 0, �x = 1, �y = 1;

i = 5, � = 0, �x = 2, �y = 2; i = 6, � = 0, �x = 3, �y = 3.

The remaining steps 3, 4 and 5 are the similar to those of k = 1 case in the procedure
WENO reconstruction.

The moments of the reconstructed polynomial are then given by:

u(l)
0 (t) =

1∫
0

(v(0)
l (x,y))2 dxdy

6

∑
i=1

ω(l)
i

∫
0

qi(x,y)v(0)
l (x,y)dxdy, l = 1,2.

(23)

For the k = 2 case, the procedure to reconstruct the first and second order moments

u(1)
0 (t), u(2)

0 (t), u(3)
0 (t), u(4)

0 (t) and u(5)
0 (t) in the troubled cell 0 is analogous to that

for the k = 1 case. The troubled cell and its neighboring cells are shown in Figure 1.
Step 1. We select the big stencil as S = {0,1,2,3, 11,12,21, 22,

31,32}. Then we construct polynomial Q(x,y) to approximate u by requiring
that it has the same cell average as u(0) on the target cell 0 and matches the cell
averages of u(0), u(1) or u(2) on the other triangles in the set S \ {0} in a least
square sense.

Step 2. We can then construct quadratic polynomials qi(x,y), i = 1, . . . ,9, which
satisfy the following conditions:

1
|�|

∫
�

qi(x,y)dxdy = u(0)
� , (24)

1∫
�x

(v(�x)
1 (x,y))2dxdy

∫
�x

qi(x,y)v
(�x)
1 (x,y)dxdy = u(1)

�x
, (25)

1∫
�y

(v(�y)
2 (x,y))2dxdy

∫
�y

qi(x,y)v
(�y)
2 (x,y)dxdy = u(2)

�y
. (26)

For

i = 1, � = 0,1,11,12,3,32; i = 2, � = 0,1,11,12,2,21; i = 3, � = 0,2,21,22,1,12;

i = 4, � = 0,2,21,22,3,31; i = 5, � = 0,3,31,32,2,22; i = 6, � = 0,3,31,32,1,11;

i = 7, � = 0,1,11,12, �x = 1, �y = 1; i = 8, � = 0,2,21,22, �x = 2, �y = 2;

i = 9, � = 0,3,31,32, �x = 3, �y = 3.
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The remaining steps 3, 4 and 5 are the similar to those of k = 1 case in the pro-

cedure WENO reconstruction. Finally, the moments u(l)
0 (t), l = 1,2,3,4,5 of the

reconstructed polynomial are given by:

u(l)
0 (t) =

1∫
0

(v(0)
l (x,y))2dxdy

9

∑
i=1

ω(l)
i

∫
0

qi(x,y)v
(0)
l (x,y)dxdy. (27)

3 Numerical Results

In this section we provide numerical results to demonstrate the performance of the
WENO and HWENO reconstruction limiters for the RKDG methods on unstruc-
tured meshes described in section 2.

We consider Mandatory Test Case 2 (MTC 2) and MTC 3 in ADIGMA project.
The MTC 2 and MTC 3 are Euler and Navier-Stokes transonic flow past a single
NACA0012 airfoil configuration with M∞ = 0.8, angle of attackα = 1.25◦ and Mach
number M∞ = 0.5, angle of attackα = 2◦, Reynolds number Re = 5000, respectively.
For MTC 3, we use local DG method [1, 10, 25] to treat the diffusion term. The
mesh used in the computation is Mesh 4 in Unstructured MTC-Grids-v1.2-070212
mesh which was provided by ARA, one of the ADIGMA partners. The second and
the third order DG schemes with the WENO and HWENO limiters with the TVB
constant M = 100 are used in the numerical experiments. All the computations are
performed on the DELL-1950, CPU Xeon-3.0GHz with 16GB ram.

The convergence criteria is ||ECl || ≤ 5.0× 10−3, ||ECd || ≤ 5.0× 10−4, ||ECm || ≤
5.0 × 10−4, for the both test cases, convergence parameter values are shown in
Table 1 and 2, respectively. Distributions of mach number and pressure are shown
in Figures 2–5, respectively.

Table 1 MTC2 settings and results. RKDG with the WENO and HWENO limiters

limiter O cl cd cm CPU time [Sec.][piu] #Cell #DOF
WENO 2 1.50E-1 1.33E-2 5.63E-3 1078 266 2402 7206
WENO 3 1.64E-1 1.19E-2 5.82E-3 2358 582 2402 14412

HWENO 2 1.64E-1 1.42E-2 5.96E-3 1074 265 2402 7206
HWENO 3 1.58E-1 1.80E-2 4.20E-3 2165 535 2402 14412

Table 2 MTC3 settings and results. RKDG with the WENO and HWENO limiters

limiter O cl cd cm CPU time [Sec.][piu] #Cell #DOF
WENO 2 7.35E-2 4.60E-2 5.90E-4 6153 1519 2402 7206
WENO 3 4.25E-2 5.55E-2 -4.42E-3 10476 2587 2402 14412

HWENO 2 7.57E-2 4.56E-2 1.09E-3 5996 1480 2402 7206
HWENO 3 4.14E-2 5.53E-2 -4.51E-3 10437 2577 2402 14412
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Fig. 2 Transonic Flow around the NACA0012 Airfoil (MTC 2). Pressure distribution. RKDG
with the WENO limiter, second order (top left), third order (top right) and RKDG with the
HWENO limiter, second order (bottom left), third order (bottom right).

Fig. 3 Transonic Flow around the NACA0012 Airfoil (MTC 2). Thirty equally spaced Mach
number contours from 0.172 to 1.325. RKDG with the WENO limiter, second order (top left),
third order (top right) and RKDG with the HWENO limiter, second order (bottom left), third
order (bottom right).
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Fig. 4 Transonic Flow around the NACA0012 Airfoil (MTC 3). Pressure distribution. RKDG
with the WENO limiter, second order (top left), third order (top right) and RKDG with the
HWENO limiter, second order (bottom left), third order (bottom right).
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Fig. 5 Transonic Flow around the NACA0012 Airfoil (MTC 3). Thirty equally spaced Mach
number contours from 0.020 to 0.629. RKDG with the WENO limiter, second order (top left),
third order (top right) and RKDG with the HWENO limiter, second order (bottom left), third
order (bottom right).
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4 Concluding Remarks

We have developed the limiters for the RKDG methods solving convection-diffusion
problems using finite volume high order WENO and HWENO reconstructions on
unstructured meshes. The idea is to first identify troubled cells subject to the WENO
or HWENO limiting, using a TVB minmod-type limiter, then reconstruct the poly-
nomial solution inside the troubled cells by the WENO or HWENO reconstruction
using the cell averages of neighboring cells or the cell averages and cell derivative
averages of neighboring cells, while maintaining the original cell averages of the
troubled cells. Numerical results are provided to show that the method is stable,
accurate, and robust in maintaining accuracy.
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Chapter 7
IPG Discretizations of the Compressible
Navier-Stokes Equations

Vı́t Dolejšı́, Martin Holı́k, and Jiřı́ Hozman

Abstract. We deal with the numerical solution of the system of the compress-
ible (laminar) Navier-Stokes equations with the aid of the discontinuous Galerkin
method. Particularly, we employ the so-called interior penalty Galerkin (IPG) dis-
cretizations, namely symmetric, non-symmetric and incomplete variants. We de-
scribed the space semi-discretization and discuss the choice of stabilization terms.
Then a set of numerical experiments, demonstrating the stability, convergence and
accuracy of the method are presented.

1 Introduction

Our aim is to develop a sufficiently robust, efficient and accurate numerical scheme
for the simulation of unsteady compressible flows. The discontinuous Galerkin
method (DGM), using discontinuous piecewise polynomial approximation, per-
fectly suits for this task. Among several variants of DGM we prefer the so-called
interior penalty Galerkin (IPG) discretizations. This approach is based on the pri-
mal formulation where any auxiliary variable are not introduced. The inter-element
continuity is replaced by the interior penalty terms. We deal with three variants of
IPG, namely the symmetric interior penalty Galerkin (SIPG), non-symmetric in-
terior penalty Galerkin (NIPG) and incomplete interior penalty Galerkin (IIPG)
techniques, which were studied and analysed in many papers for a scalar nonlin-
ear problems, e.g. [2], [16], [5], [10], [9]. A generalization from the scalar case to
the system of the Navier-Stokes equations is not straightforward, it requires a little
heuristic approach, which is discussed within this chapter.
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82 V. Dolejšı́, M. Holı́k, and J. Hozman

2 Problem Formulation

2.1 Compressible Flow Problem

Let Ω ⊂ IRd, d = 2,3 be a bounded domain and T > 0. We set QT = Ω × (0,T )
and by ∂Ω denote the boundary of Ω which consists of several disjoint parts.
We distinguish inlet ∂Ωi, outlet ∂Ωo and impermeable walls ∂Ωw, i.e. ∂Ω =
∂Ωi ∪∂Ωo ∪∂Ωw. The system of the Navier-Stokes equations describing a motion
of viscous compressible fluids can be written in the dimensionless form

∂w
∂ t

+∇ · f(w) = ∇ ·R(w,∇w) in QT , (1)

where w = (ρ , ρv1, . . . ,ρvd , e)T is the state vector, f(w) = (f1(w), . . . , fd(w)) with
fs(w) = (ρvs, ρvsv1 + δs1 p, . . . , ρvsvd + δsd p, (e + p)vs)T, s = 1, . . . ,d are the so-
called inviscid (Euler) fluxes and R(w) = (R1(w), . . . ,Rd(w)) with

Rs(w,∇w) =

(
0, τs1, . . . , τsd ,

d

∑
k=1

τskvk +
γ

Re Pr
∂θ
∂xs

)T

, s = 1, . . . ,d (2)

are the so-called viscous fluxes. Symbols∇ and ∇· mean the gradient and divergence
operators. We consider the Newtonian type of fluid, i. e., the viscous part of the stress
tensor has the form

τsk =
1

Re

[(
∂vs

∂xk
+
∂vk

∂xs

)
− 2

3

d

∑
i=1

∂vi

∂xi
δsk

]
, s,k = 1, . . . ,d. (3)

We use the following notation: ρ – density, p – pressure, e – total energy, v =
(v1, . . . ,vd) – velocity, θ – temperature, γ – Poisson adiabatic constant, Re –
Reynolds number, Pr – Prandtl number.

In order to close the system, we consider the state equation for perfect gas and
the definition of the total energy

p = (γ−1)(e−ρ |v|2/2), e = cVρθ +ρ |v|2/2, (4)

where cV is the specific heat at constant volume which we assume to be equal to one
in the dimensionless case. The system (1) – (4) is of hyperbolic-parabolic type. It
is equipped with a suitable initial and boundary conditions, see, e.g. [13]. We only
mention that we prescribe Dirichlet conditions for density and velocity on the inlet,
the vanishing velocity on the impermeable walls. Otherwise we prescribe homoge-
neous Neumann boundary conditions.

The problem to solve the compressible Navier-Stokes equations (1) – (2) with
constitutive relations (3) – (4), equipped with the initial and boundary conditions
will be denoted by (CFP) (compressible flow problem).
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Finally, we present some properties of the inviscid and viscous fluxes f(·) and
R(·, ·), respectively. These properties are fundamental for introducing the lineariza-
tion of the nonlinear fluxes, which is the base of semi-implicit time discretization
schemes.

The inviscid fluxes fs, s = 1, . . . ,d satisfy (see [13, Lemma 3.1]) fs(w)= As(w)w,
where As(w) ≡ Dfs(w)/Dw, are the Jacobi matrices of the mappings fs. Then, we
define a matrix

P(w,n) ≡
d

∑
s=1

As(w)ns, (5)

where n = (n1, . . . ,nd) ∈ IRd, n2
1 + . . .+ n2

d = 1, which plays a role in the definition
of a numerical flux and the choice of boundary conditions.

Furthermore, the viscous terms Rs(w,∇w) can be expressed in the form

Rs(w,∇w) =
d

∑
k=1

Ks,k(w)
∂w
∂xk

, s = 1, . . . ,d, (6)

where Ks,k(·) are (d + 2)× (d + 2) matrices nonlinearly dependent on w, see, e.g.,
[13] or [8].

3 Discretization

3.1 Triangulations

Let Th (h > 0) be a partition of the domain Ω into a finite number of closed
d-dimensional mutually disjoint (convex or non-convex) polyhedra K i.e., Ω =⋃

K∈Th
K. We call Th = {K}K∈Th a triangulation of Ω and do not require the con-

forming properties from the finite element method. In 2D problems, we choose usu-
ally K ∈ Th as triangles or quadrilaterals. In 3D, K ∈ Th can be, e. g., tetrahedra,
pyramids or hexahedra, but we can construct even more general elements K. By ∂K
we denote the boundary of element K ∈Th and set hK = diam(K), h = maxK∈ThhK .
Symbol ρK is the radius of the largest d-dimensional ball inscribed into K and |K|
is the d-dimensional Lebesgue measure of K.

By Fh we denote the smallest possible set of all open (d −1)-dimensional faces
(open edges when d = 2 or open faces when d = 3) of all elements K ∈Th. Further,
F I

h means the set of all Γ ∈ Fh that are contained in Ω (inner faces). Moreover,
we denote by Fw

h , F i
h and F o

h the set of all Γ ∈ Fh such that Γ ⊂ ∂Ωw, Γ ⊂ ∂Ωi

and Γ ⊂ ∂Ωo, respectively. Furthermore, FD
h is the set of all Γ ∈ Fh where the

Dirichlet type of boundary conditions is prescribed at least for one component of
w (i.e., FD

h ≡ Fw
h ∪F i

h) and by FN
h the set of all Γ ∈ Fh where the Neumann

type of boundary conditions is prescribed for all components of w (i.e., FN
h ≡ F o

h ).
Obviously, Fh = F I

h ∪FD
h ∪FN

h . For a shorter notation we put F io
h ≡ F i

h ∪F o
h ,

F ID
h ≡ F I

h ∪FD
h and FDN

h ≡ FD
h ∪FN

h = Fw
h ∪F i

h ∪F o
h .
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Finally, for each Γ ∈ Fh we define a unit normal vector nΓ . We assume that
nΓ , Γ ∈ FDN

h has the same orientation as the outer normal of ∂Ω . For nΓ , Γ ∈F I
h

the orientation is arbitrary but fixed for each edge.

3.2 Discontinuous Finite Element Spaces

To each K ∈ Th, we assign a positive integer pK (local polynomial degree) . Then
we define the vector p ≡ {pK,K ∈ Th}.

Over the triangulation Th, we define the finite dimensional space of discontinu-
ous piecewise polynomial functions associated with the vector p by

Shp ≡ {v; v ∈ L2(Ω), v|K ∈ PpK (K) ∀K ∈ Th}, (7)

where PpK (K) denotes the space of all polynomials on K of degree ≤ pK , K ∈ Th.
We seek the approximate solution in the space of vector-valued functions

Shp ≡ Shp× . . .×Shp (d + 2 times). (8)

For each Γ ∈ F I
h we denote by symbols 〈v〉Γ and [v]Γ the mean value and the

jump with respect to nΓ of v ∈ Shp. The value [v]Γ depends on the orientation of nΓ
of course but the value [v]Γ nΓ does not. For Γ ∈ FDN

h we introduce the notation
〈v〉Γ = [v]Γ = v|Γ .

In case that [·]Γ and 〈 · 〉Γ are arguments of
∫
Γ . . . dS, Γ ∈ Fh we omit the sub-

script Γ and write simply [·] and 〈 · 〉, respectively.

4 System of the Navier-Stokes Equations

Within this section, we apply the discontinuous Galerkin finite element method to
the system of the compressible Navier-Stokes equations.

The crucial item of the IPG formulation of (CFP) is the treatment of the viscous
terms. Let w ∈ Shp, then multiplying the viscous term ∇ ·R(w,∇w) from (1) by
ϕ ∈ Shp, integrating over K ∈Th, summing over all K ∈ Th and using the boundary
conditionsand (6), we obtain

∑
Γ∈F ID

h

∫
Γ

d

∑
s=1

〈Rs(w,∇w)〉ns · [ϕ ]dS− ∑
K∈Th

∫
K

d

∑
s=1

Rs(w,∇w) · ∂ϕ
∂xs

dx (9)

= ∑
Γ∈F ID

h

∫
Γ

d

∑
s,k=1

〈
Ks,k(w)

∂w
∂xk

〉
ns · [ϕ]dS− ∑

K∈Th

∫
K

d

∑
s,k=1

(
Ks,k(w)

∂w
∂xk

)
· ∂ϕ
∂xs

dx

In virtue of numerical analysis from [9], [10], we add to this expression a stabiliza-
tion term which we obtain by the formal exchange of arguments w and ϕ in the
linear part of last term of (9), i.e.,
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θ ∑
Γ∈F ID

h

∫
Γ

d

∑
s=1

〈
d

∑
k=1

Ks,k(w)
∂ϕ
∂xk

〉
ns · [w]dS, (10)

where θ = −1,0,1 depending on the type of stabilization, i.e., NIPG, IIPG or SIPG
variants of DGM. However, numerical experiments indicate that this choice of sta-
bilization is not suitable. It is caused by that fact that for ϕ = (ϕ1,0, . . . ,0)T, ϕ1 ∈
Shp, ϕ1 �= const, we obtain a non-vanishing term (10) whereas both terms in (9)
are equal to zero since the first rows of Rs, Ks,k, s,k = 1, . . . ,d, vanish, see (2).
Therefore, in virtue of [4], [14], we employ the stabilization term

θ ∑
Γ∈F ID

h

∫
Γ

d

∑
s=1

〈
d

∑
k=1

KT
s,k(w)

∂ϕ
∂xk

〉
ns · [w]dS, (11)

which avoids the drawback mentioned above. Here, KT denotes the matrix trans-
posed to K.

Therefore, we define for w, ϕ ∈ Shp the forms

(w,ϕ) = ∑
K∈Th

∫
K

w ·ϕ dx, (12)

ãh(w,ϕ) = ∑
K∈Th

∫
K

d

∑
s=1

(
d

∑
k=1

Ks,k(w)
∂w
∂xk

· ∂ϕ
∂xs

)
dx (13)

− ∑
Γ∈F ID

h

∫
Γ

d

∑
s=1

〈
d

∑
k=1

Ks,k(w)
∂w
∂xk

〉
ns · [ϕ ]dS

−θ ∑
Γ∈F ID

h

∫
Γ

d

∑
s=1

〈
d

∑
k=1

KT
s,k(w)

∂ϕ
∂xk

〉
ns · [w]dS

+θ ∑
Γ∈FD

h

∫
Γ

d

∑
s=1

d

∑
k=1

KT
s,k(w)

∂ϕ
∂xk

ns ·wB dS,

b̃h(w,ϕ) = ∑
K∈Th

{∫
∂K

d

∑
s=1

fs(w)ns ·ϕ dS−
∫

K

d

∑
s=1

fs(w) · ∂ϕ
∂xs

dx

}
, (14)

J̃
σ
h (w,ϕ) = ∑

Γ∈F ID
h

∫
Γ
σ [w] · [ϕ]dS− ∑

Γ∈FD
h

∫
Γ
σwB ·ϕ dS, (15)

where the penalty parameter σ is chosen by

σ |Γ =
CW

d(Γ )Re
, Γ ∈ F ID

h , (16)

where d(Γ ) = diam(Γ ) and CW > 0 is a suitable constant.
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The state vector wB prescribed on ∂Ωi ∪ ∂Ωw is given by the boundary condi-
tions, in particular, we have

wB = (ρ |∂Ωw ,0, . . . ,0,ρ |∂Ωwθ |∂Ωw) on ∂Ωw, (17)

wB = (ρD,ρD(vD)1, . . . ,ρD(vD)d ,ρ |∂Ωi
θ |∂Ωi

+
1
2
ρD|vD|2) on ∂Ωi,

where ρD,vD and θD are given functions from the boundary conditions and ρ |Γ and
θ |Γ are the values of density and temperature extrapolated from interior of Ω on the
appropriate boundary part, respectively. More detailed determination of (13) – (17)
is given in [7].

Let w(t) denotes the function on Ω such that w(t)(x) = w(x,t), x ∈Ω . Then with
the aid of (12) – (15) the IPG formulation for the Navier-Stokes equations reads

d
dt

(w(t),ϕ)+ ãh(w(t),ϕ)+ b̃h(w(t),ϕ)+ J̃σh (w(t),ϕ) = 0 (18)

for w(t),ϕ ∈ Shp, t ∈ (0,T ).
In order to evaluate the boundary integrals in (14) we use the (“finite volume”)

approximation

d

∑
s=1

fs(w)(n∂K)s ·ϕ
∣∣∣∣∣
∂K

≈ H
(

w|(in)
Γ ,w|(out)

Γ ,n∂K

)
·ϕ
∣∣∣
∂K

, (19)

where w|(in)
Γ , w|(out)

Γ are the traces of w on ∂K from the interior and the exterior of
element K ∈ Th, respectively and H(·, ·, ·) is a numerical flux, for details, see, e.g.
[12] or [13]. Then with the aid of (14) and (19) we define the form

b̄h(w,ϕ) ≡ ∑
Γ∈Fh

∫
Γ

H
(

w|(p)
Γ ,w|(n)

Γ ,nΓ
)
· [ϕ]Γ dS− ∑

K∈Th

∫
K

d

∑
s=1

fs(w) · ∂ϕ
∂xs

dx,

(20)
where w|(p)

Γ and w|(n)
Γ are the traces of w ∈ Shp on Γ from positive and negative

orientation of nΓ . In order to employ the concept of semi-implicit schemes we need
that the numerical flux H has a form suitable for a linearization. Hence, in our appli-
cations we employ the Vijayasundaram numerical flux, see [17], [12], Section 7.3 or
[13], Section 3.3.4. The matrix P(w,n) defined by (5) is diagonalizable, i.e., there
exist matrices Λ and T such that

P(w,n) = TΛT−1, Λ = diag (λ1, . . . ,λd+2), (21)

where λ1, . . . ,λd+2 are the eigenvalues of P. We define the “positive” and “negative”
part of P by

P±(w,n) = TΛ±T−1, Λ± = diag (λ±
1 , . . . ,λ±

d+2). (22)
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Then the Vijayasundaram numerical flux reads

H(w1,w2,n) ≡ P+
(

w1 + w2

2
,n
)

w1 +P−
(

w1 + w2

2
,n
)

w2. (23)

It is necessary to specify the meaning of w|(n)
Γ for Γ ∈ FDN

h . We use the approach
known from the inviscid flow simulation, see, e.g., [13], [18]. For Γ ∈ F io

h we pre-
scribe mn components of w on Γ and extrapolate mp = d + 2−mn components of
w from K to Γ (Γ ⊂ ∂K) where mn is the number of negative eigenvalues of matrix

P(w,n). Thus, we define w|(n)
Γ = LRP(w|(p)

Γ ,wD,nΓ ), where LRP(·, ·, ·) represents
a solution of the local Riemann problem considered on edge Γ ∈ F io

h and wD is a
given state vector (e.g. from far-field boundary conditions). For details, see [11].

For Γ ∈ Fw
h , the impermeability condition

v ·n = 0 (24)

is prescribed. Then in virtue of (19) we put∫
Γ

H(w(t)|(p)
Γ ,w(t)|(n)

Γ ,nΓ ) ·ϕ dS :=
∫
Γ

FW (w(t),nΓ ) ·ϕ dS, Γ ∈ FW
h , (25)

where FW (w,n) ≡ (0, pn1, . . . , pnd ,0)T.
The approximate solution of (CFP) is sought in the space of discontinuous

piecewise polynomial functions Shp defined by (8). We introduce the semi-discrete
problem.

Definition 1. Function wh is a semi-discrete solution of (CFP), if

a) wh ∈C1(0,T ;Shp), (26)

b)

(
∂wh(t)
∂ t

,ϕh

)
+ ãh(wh(t),ϕh)+ b̄h(wh(t),ϕh)+ J̃σh (wh(t),ϕh) = 0

∀ϕh ∈ Shp, ∀t ∈ (0,T ),

c) wh(0) = w0
h,

where w0
h ∈ Shp denotes an Shp-approximation of the initial condition w0 from initial

condition.

Here C1(0,T ;Shp) is the space of continuously differentiable mappings of the inter-
val (0,T ) into Shp. The problem (26), a) – c) exhibits a system of ordinary differen-
tial equations (ODEs) for wh(t) which has to be discretized by a suitable method.

We employ the so-called semi-implicit time discretization method, which is based
on a formal linearization of viscous and inviscid terms, and the linear terms are
treated implicitly and the nonlinear ones explicitly. The resulting scheme has a high
order of accuracy with respect to the time and space, it is practically unconditionally
stable and at each time level we have to solve only one linear algebra system. This
approach is described in Section II.2 of this book.
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5 Numerical Examples

In this section we numerically study the stability, convergence and accuracy of the
proposed IPG methods. We present two steady-state two-dimensional numerical ex-
amples. The first one is a basic benchmark of steady viscous flow around a flat plate.
The second one represents a flow around NACA 0012 profile.

5.1 Blasius Problem

We consider the laminar flow on the adiabatic flat plate {(x1,x2); 0≤ x1 ≤ 1, x2 = 0}
characterised by the freestream Mach number M = 0.1 and the Reynolds number
Re = 104. The computation domain is viewed in Figure 1, where two used triangular
grids are plotted together with their details around the leading edge. We prescribe
the adiabatic boundary conditions at the flat plate, the outflow boundary conditions
at {(x1,x2); x1 = 1, −1.5 ≤ x2 ≤ 1.5} and the inflow boundary conditions on the
rest of the boundary.

B1

-1

0

1

-2 -1 0 1
-0.03

0

0.03

-0.06 0 0.06 0.12

B2

-1

0

1

-2 -1 0 1
-0.03

0

0.03

-0.06 0 0.06 0.12

Fig. 1 Blasius problem, computational grids B1 and B2, the coarser one B1 having 662 el-
ements (top) and the finer one B2 having 2648 elements (bottom), the whole computational
domain (left) and their details around the leading edge (right)

5.1.1 Stability of the Method

We compared the NIPG, IIPG, SIPG variants of the DGM using piecewise linear,
quadratic and cubic space approximation. Our aim is to find a suitable value of the
constant CW in (16) which ensures the stability of the scheme, i.e., a convergence
to the steady-state solution. Firstly, we carried out computations for the values of
CW = 1, 5, 25, 125, 625, 3125 and consequently, several additional values of CW

were chosen in order to find a limit value of CW . These results obtained on the grid
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B1 are shown in Table 1, where an indication of a convergence of the appropriate
variants of the IPG with a given value CW is marked, namely,

• “convergence” (C), i.e., the stopping condition was achieved after less than 200
time steps,

• “quasi-convergence” (qC), i.e., the stopping condition was achieved after more
than 200 time steps,

• “no-convergence” (NC), i.e., the stopping condition was not achieved after 500
time steps.

The “quasi-convergence” in fact means that the appropriate value CW is just under
the limit value ensuring a reasonable convergence to the steady-state solution.

Table 1 Blasius problem, the convergence (C), non-convergence (N) or quasi-convergence
(qC) of the NIPG, IIPG and SIPG methods for P1, P2 and P3 approximations for different
values of CW (symbol “-” means that the appropriate combination of the method, the degree
of approximation and the value of CW was not tested)

1 5 10 25 100 125 250 300 400 500 625 1 000 3 125
P1 C C - C - - - - - - C - C

NIPG P2 C C - C - - - - - - C - C
P3 C C - C - - - - - - C - C
P1 C C - C - - - - - - C - C

IIPG P2 N C C C - - - - - - C - C
P3 N N C C - - - - - - C - C
P1 N N - N N C - - - - C - C

SIPG P2 N N - N - N N qC C C C - C
P3 N N - N - N - - N N qC C C

From Table 1 we observe that

• NIPG variant converges for any CW ≥ 1 independently on the degree of polyno-
mial approximation,

• IIPG variant requires higher values of CW for P2 and P3 approximations, namely
CW = 5 and CW = 10 are sufficient, respectively. On the other hand, P1 approxi-
mation converges for any CW ≥ 1.

• SIPG variant requires significantly higher values of CW . We observe that CW ≥
125 for P1, CW ≥ 400 for P1 and CW ≥ 1000 for P3. This is in a good agreement
with the theoretical results from [15] carried out for a scalar quasilinear elliptic
problem, where the dependence CW = cp2, c > 0 is employed (p denotes the
polynomial degree of approximation).

5.1.2 Accuracy of the Method

We compared the numerical solutions with the “theoretical” one, which can be ob-
tained from the well-known Blasius problem represented by an incompressible flow
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mesh B1
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Fig. 2 Blasius problem, skin friction coefficient computed on meshes B1 and B2 by P1
(’P 1’), P2 (’P 2’) and P3 (’P 3’) approximation in comparison with the Blasius formula (’ex-
act’), distributions along the whole plate (left), their details around the leading edge (right)

along a flat plate. Figure 2 shows the comparison of the computed skin friction co-
efficient c f achieved by P1, P2 and P3 approximations on meshes B1 and B2 with
the exact solution given by the Blasius formula. We observed a good agreement
with the Blasius solution. However, P2 and P3 approximations give in fact the same
value of c f at the first element on the flat plate. Similar results were obtained in [3,
Fig. 2] where the difference among P1, P2 and P3 approximations on the first cell
of the flat plate is almost negligible. We suppose that it can be caused by the singu-
larity of the solution at x1 = x2 = 0 which decreases the local order of accuracy of
the IPG method. This phenomenon was numerically verified for a scalar nonlinear
convection-diffusion equation in [9].

5.2 Steady-State Flow around NACA0012 Profile

In Section 5.1, we studied the influence of the value of the penalty parameter CW

introduced in (16) to the stability of the NIPG, IIPG and SIPG variants (26). We
do not observed any essential influence of CW to, e.g., the skin friction coefficient.
Nevertheless, the influence of CW to the numerical solution should be investigated
by a quantitative characteristic of the flow. Hence, we consider a flow around the
profile NACA0012 at the free stream Mach number M = 0.5, the angle of attack
α = 0◦ and Reynolds number Re = 5000. The walls of the profile are adiabatic. The
Reynolds number is near to the upper limit for the steady laminar flow. A character-
istic feature of this flow problem is the linear separation of the flow occurring near
to the trailing edge.

We carried out computations on a set of six successively generated ADIGMA
grids N1 – N6 from [1]. The numbers of elements (= #Th) and mesh sizes (=
1/

√
#Th) of grids N1 – N6 are shown in Table 2 (top). We investigated a “conver-

gence” of the drag coefficient cD for “h → 0” for the NIPG variant with
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Table 2 NACA 0012 profile (M = 0.5, α = 0◦, Re = 5000), numbers of elements (= #Th)
and mesh sizes (= 1/

√
#Th) of grids N1 – N6 and the corresponding values of the drag

coefficient cD computed by the NIPG method for different values of CW

mesh N1 N2 N3 N4 N5 N6
#Th 1148 2262 4216 8482 17888 40440

1/
√

#Th 2.95E-02 2.10E-02 1.54E-02 1.09E-02 7.48E-03 4.97E-03

Pk CW N1 N2 N3 N4 N5 N6
P1 1 0.03322 0.04913 0.05288 0.05429 0.05470 0.05492
P1 5 0.04289 0.04945 0.05150 0.05356 0.05459 0.05488
P1 25 0.04692 0.04749 0.04910 0.05203 0.05379 0.05448
P1 250 0.04157 0.04217 0.04605 0.05093 0.05271 0.05379
P2 1 0.05538 0.05548 0.05489 0.05482 0.05486 –
P2 5 0.05431 0.05423 0.05436 0.05467 0.05473 –
P2 25 0.05167 0.05199 0.05373 0.05458 0.05473 –
P2 250 0.04796 0.05137 0.05337 0.05428 0.05459 –
P3 1 0.05939 0.05599 0.05500 0.05492 – –
P3 5 0.05783 0.05523 0.05467 0.05468 – –
P3 25 0.05475 0.05393 0.05374 0.05471 – –
P3 250 0.05178 0.05232 0.05477 0.05480 – –

several choices of CW . (We observed the same behavior as well as for the IIPG and
SIPG techniques.) The values of cD are presented in Table 2 and also visualized in
Figure 3. We easily observe a non-negligible dependence of cD on CW on coarser
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0.05
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0.004 0.006 0.008 0.01 0.012 0.014

’P_1’
’P_2’
’P_3’

Fig. 3 NACA 0012 profile (M = 0.5, α = 0◦, Re = 5000), visualization of results from
Table 2, the dependencies of the drag coefficient cD on mesh size (= 1/

√
#Th) obtained by

the NIPG method for different values of CW and P1, P2 and P3 approximations on meshes N1
– N6 (left) and its detail on meshes N3 – N6 (right)
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’CF_P1’
’CF_P2’
’CF_P3’
’overkill’

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.02 0.04 0.06 0.08 0.1

’CF_P1’
’CF_P2’
’CF_P3’
’overkill’

Fig. 4 NACA 0012 profile (M = 0.5, α = 0◦, Re = 5000), distribution of the skin friction co-
efficient (left) with a detail around leading edge (right) obtained by piecewise linear (CF P1),
quadratic (CF P2) and cubic approximations (CF P3) on mesh A1 in comparison with “an
exact” solution obtained by an “overkill” computation

grids but for increasing number of elements #Th the influence of CW to cD decreases
and cD converges to an asymptotic value. All values of cD obtained on the finest
employed meshes are within the range size 0.00113 (≈ 2% of the value cD) for P1

approximation, 0.00027 (≈ 0.5%) for P2 approximation and 0.00024 (≈ 0.5%) for
P3 approximation.

Finally, we carried out additional computations on an adaptively refined grid
A1 (obtained by the anisotropic adaptation technique [6] having 2 600 elements.
Figure 4 show the corresponding distributions of the skin friction coefficient in com-
parison with an “exact” solution obtain by an “overkill” computation.We observe an
increase of accuracy for increasing polynomial degree of approximation.

6 Conclusion

We presented the IPG space semi-discretization of the system of the Navier-Stokes
equations. We discuss the choice of stabilization terms and presented a set of nu-
merical experiments demonstrating the stability, convergence and a high order of
accuracy of the proposed method.
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Chapter 8
Development of Discontinuous Galerkin Method
for RANS Equations on Multibloc Hexahedral
Meshes

F. Renac

Abstract. This article concerns the implementation of a Discontinuous Galerkin
method for laminar and turbulent flow computations. The compressible Reynolds-
averaged Navier-Stokes equations coupled with the k − ω turbulence model of
Wilcox are discretized using the BR1 scheme [Bassi and Rebay, JCP, 131, 1997] on
structured meshes with hexahedral elements and an explicit Runge-Kutta technique
for the time integration. The boundary condition treatment is performed through a
reconstruction of the solution at the physical boundary which avoids the use of a
ghost cell technique. This method allows space discretization with overlapping and
non-matching multidomains as well as high order polynomial approximations of
the solution. Numerical results concern laminar and turbulent flow computations on
two-dimensional and three-dimensional domains.

1 Introduction

Over the last decade there has been a strong interest in the development of Discon-
tinuous Galerkin (DG) methods for the discretization of compressible fluid flows
(see Ref. [1] and references cited therein for a review). Many DG methods have been
applied to solve non-linear convection-diffusion equations: the local Discontinuous
Galerkin method [2], the BR1 and BR2 schemes [3, 4], the compact Discontinuous
Galerkin method [5], the symmetric interior penalty method [6] (see Ref. [7] for an
unified analysis of some of these schemes).

This article concerns the development of a Discontinuous Galerkin method for
laminar and turbulent flow computations performed in the context of the European
project ADIGMA [8]. We present the numerical simulation of the compressible
Navier-Stokes and Reynolds-averaged Navier-Stokes (RANS) equations using a DG
space discretization. We reformulate the equations as a first-order system in space
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using the BR1 scheme introduced by Bassi and Rebay [3]. The two-equation k−ω
turbulence model of Wilcox [9] is considered for the RANS equations.

The numerical approach is introduced in Sect. 2 and numerical results are pre-
sented in Sect. 3 for inviscid, laminar and turbulent test cases from the ADIGMA
project. The convergence of global functions with mesh refinement is then explored.
Finally, we end with some concluding remarks in Sect. 4.

2 Numerical Approach

2.1 RANS Equations

Let Ω ⊂ Rd with d = 2 or d = 3 be a bounded domain, ∂Ω denotes the boundary of
Ω . In the following, we introduce the DG discretization for turbulent flow simula-
tions. A similar approach is applied for the discretization of laminar flow equations.

We consider the system of RANS equations coupled with the Wilcox’s k −ω
two-equation turbulence model. The system in conservative form reads:

∂u
∂ t

+∇ ·Fc(u)+∇ ·Fv(u,∇u) = S(u,∇u), (1)

where u = (ρ ,ρu,ρv,ρw,ρE,ρk,ρω)t denotes the conservative variable vector and
t is the transpose operator,ρ stands for the density, V = (u,v,w)t denotes the velocity
vector, and E = p/(γ− 1)ρ + V2/2 is the total energy per unit of mass with p the
static pressure and γ the specific heat ratio. The turbulent variables are the kinetic
energy of turbulence k and the specific rate of dissipation ω . The convective fluxes
Fc, the viscous fluxes Fv, and the source terms a are defined by (see Ref. [9] for
details on the parameters):

Fc =

⎛⎜⎜⎜⎜⎝
ρV

ρV⊗V+ pI
(ρE + p)V

ρkV
ρωV

⎞⎟⎟⎟⎟⎠ , Fv =

⎛⎜⎜⎜⎜⎝
0

−τ− τr

q+ qt − (τ+ τr) ·V
−(μ +σkμt)∇k
−(μ +σωμt)∇ω

⎞⎟⎟⎟⎟⎠ ,

and

S =

⎛⎜⎜⎜⎜⎝
0
0
0

τr : ∇V−β �ρkω
γ�ω

k τr : ∇V−βρω2

⎞⎟⎟⎟⎟⎠ ,

where μ stands for the kinematic viscosity. We use the model of Newtonian fluid
for the viscous stress tensor and the Fourier’s law for the heat transfer vector:
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τ = − 2
3μ(∇ ·V)I+ μ(∇V+∇VT ) ,

q = −Cpμ
Pr ∇T.

The system is completed by the Boussinesq assumption:

τr = − 2
3 (ρk + μt∇ ·V)I+ μt(∇V+∇VT ) ,

qt = −Cpμt
Prt

∇T.

where the turbulent viscosity is defined by μt = ρk/ω . Finally, numerical values of
the constants of the model are set as follows

β � = 0.09 , β = 0.075 , σ� = σ = 0.5 , γ� =
β
β �

−σ
κ2√
β �

= 0.5532 ,

and κ = 0.41 denotes the von Kàrmàn constant.

2.2 Space Discretization

The domain Ω is discretized with hexahedral elements: Ωh = ∪N
i=1Ki. The spatial

discretization of the diffusive and source terms is constructed by regarding the gra-
dient of the conservative variables as additional unknowns of the problem

G(u) =∇u (2)

so we have Fv = Fv(u,G) and S = S(u,G).
Multiplying equations (1) and (2) by a test function φ and integrating by parts

element by element leads to the weak formulation of the problem. The discrete
version of the weak formulation of the system (1-2) in each element is

∫
Ki

φGhdΩ −
∮
∂Ki

φ ûh ⊗ndS +
∫

Ki

∇φ ⊗uhdΩ = 0 , (3a)∫
Ki

φ
∂uh

∂ t
dΩ +

∮
∂Ki

φ(F̂c + F̂v)dS−
∫

Ki

(Fc + Fv) ·∇φdΩ

−
∫

Ki

φSdΩ = 0 , (3b)

where n is the outward unit normal vector and

Gh =
n

∑
j=1

G jφ j(x) , uh =
n

∑
j=1

U jφ j(x) (4)
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represent approximate solutions of the initial equations (1-2) where U j stand for
the degrees of freedom of the problem. The functions φ j represent a basis of the
function space of piecewise discontinuous polynomials of degree k inside each cell:

Vh = {φ ∈ L2(Ωh) : φ |Ki ∈ Pk(Ki),1 ≤ i ≤ N} (5)

where Pk(Ki) represents the space of polynomials in element Ki of degree at most
k. We use the monomials 1, (x− xi), (x− xi)2, (x− xi)(y− yi), etc. as basis of the
function space Vh where xi = (xi,yi,zi)t represents the centroid of the element Ki.

The numerical fluxes in contour integrals of equation (3) are chosen so as to
be uniquely defined at the boundary ∂Ki of each element and to satisfy the con-
sistency and conservativity conditions. We use a centred scheme for the gradient
construction:

ûh =
u−

h + u+
h

2
, (6)

where u+
h denotes the trace of the internal variable uh evaluated on the interface and

u−
h denotes the trace on the interface of the variable in the neighbouring element.

The numerical flux at a boundary is evaluated through an appropriate value ûh =
uBC which ensures that the boundary condition is verified. The boundary value uBC

is computed by imposing physical boundary data for Dirichlet conditions and the
Riemann invariant associated to outgoing characteristics evaluated from u+

h .
The convective fluxes of the mean flow quantities are discretized by using a local

Lax-Friedrichs flux with artificial dissipation:

F̂c = Fc

(u−
h + u+

h

2

)
·n− k2ρs(u+

h −u−
h ) ·n , (7)

where the spectral radius is defined by ρs = max{‖V+
h ‖+ c+

h ,‖V−
h ‖+ c−h }, ch de-

notes the speed of sound and the artificial viscosity parameter is set at k2 = 0.25 for
viscous calculations and at k2 = 0.05 for inviscid computations. The numerical flux
at a boundary is evaluated by F̂c = Fc(uBC) ·n− k2ρs(u+

h −uBC) ·n where uBC has
been defined above.

The viscous fluxes are replaced by a centred scheme

F̂v =
(Fv(u−

h ,G−
h )+ Fv(u+

h ,G+
h )

2

)
·n. (8)

The boundary treatment for uh is similar to the convective flux: F̂v = Fv(uBC,GBC) ·
n and GBC is imposed if there are boundary conditions on ∇u ·n, otherwise we set
GBC = G+

h .
The surface and volume integrals in equation (3) are evaluated by means of Gauss

quadrature formulae in the brick reference element KB = {ξ = (ξ1,ξ2,ξ3)t : −1 ≤
ξ j ≤ 1,1 ≤ j ≤ 3} associated to a linear mapping from the reference element to the
physical cell. The integrand is evaluated at each Gauss point by using the polynomial
approximation of the conservative variables uh and of their gradients Gh.
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Finally, the time integration of the system is accomplished with an explicit four-
stage Runge-Kutta method of second order accuracy in time. The same time scheme
is used for mean and turbulent variables. In order to keep the modular feature of the
solver, the time integration procedure is based on a decoupling between RANS and
k−ω systems of equations. This allows the use of specific numerical flux for each
system and we use either the local Lax-Friedrichs flux (7) or a Roe flux for the
turbulent quantities.

3 Applications

3.1 Inviscid Test Cases

Figure 1 presents an Euler validation of the DG method for a 3D transonic flow
around the Onera M6-wing set at α = 3.06◦ of incidence and with a freestream
Mach number of M = 0.84. The space is discretized with a 3D structured grid with
one block. Results of the DG method are obtained with P1 elements as approxima-
tion of the solution. The volume and contour integrals in (3) are calculated with
second-order Gauss quadrature formulae.

Results are shown in Fig. 1. As shown by the residual history, the computa-
tion converges to machine accuracy. The Cp-distribution, obtained with the P1 DG
method, is in agreement with that obtained with a classical second-order Jameson
finite volume (FV) method and demonstrates the shock capturing capability of the
DG method.

We also computed two inviscid flows around the NACA0012 airfoil using a struc-
tured C-grid with 225×33 nodes: a subsonic flow at a freestream Mach number of
M = 0.5 and with an angle of attack of α = 2◦ and a transonic flow at a freestream
Mach number of M = 0.8 and with an angle of attack of α = 1.25◦. Figures 2 and
3 display the Mach number contours in both regimes. The upper and lower shocks
are well captured in the transonic regime.

Convergence of global functions with mesh refinement is evaluated on four grids
with different mesh sizes. The global functions are the pressure contributions to lift,
drag and pitching moment coefficients. The computations are summarized in Tabs. 1
and 2 for both flows and for each grid. Grid convergence has been achieved for lift
and pitching moment coefficients, while the drag moment coefficient presents poor
convergence properties. Note that this coefficient has low amplitude compared to
other coefficients.

The extension of the DG discretization to higer order approximation P2 is shown
in Fig. 2 and Tab. 1. Results highlight similar trends with a faster convergence of
global quantities with mesh refinement compared to the P1 approximation.

3.2 Viscous Test Cases

Figure 4 presents the computation of the laminar flow on an adiabatic flat plate at
a freestream Mach number of M = 0.5 and a Reynolds number of Re = 5× 103
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Fig. 1 Euler computation of the Onera M6-wing: (top) logarithmic plot of the residuals;
(middle) computations (CFL number of 0.4) of static pressure coefficients along the wing
surface at y = 0.44 and comparison with experiments [10]; (bottom) iso-Cp distributions on
the upper side of the wing (ΔCp = 0.05 between two levels and dashed lines refer to negative
values).
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Fig. 2 Mach number contours of the inviscid subsonic flow around a NACA0012 airfoil with
M = 0.5 and α = 2◦ (225×33 grid): P1 approximation (left) and P2 approximation (right)

Fig. 3 Mach number
contours of the inviscid
transonic flow around a
NACA0012 airfoil with
M = 0.8 and α = 1.25◦
(225×33 grid, P1 approxi-
mation)

Table 1 Drag, lift and pitching moment coefficients for the Euler subsonic flow around a
NACA0012 airfoil for P1 (top) and P2 approximations (bottom)

Test case Grid CD,p CL,p CM,p

M = 0.5, α = 2◦ 113×17 5.295e−3 2.775e−1 −2.488e−3
225×33 1.297e−3 2.816e−1 −2.528e−3
449×65 4.360e−4 2.831e−1 −2.680e−3
897×129 3.890e−4 2.831e−1 −2.525e−3

M = 0.5, α = 2◦ 113×17 3.570e−3 2.761e−1 −6.880e−4
225×33 8.900e−4 2.795e−1 −1.610e−3
897×129 6.690e−4 2.741e−1 −1.040e−3
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Fig. 4 Laminar flow on an adiabatic flat plate (M = 0.5 and Re = 5×103): (top) logarithmic
plot of the residuals; computations of the non-dimensional profiles of axial (middle) and
vertical (bottom) velocity components and comparison with the Blasius theoretical solution.
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Table 2 Drag, lift and pitching moment coefficients for the Euler transonic flow around the
NACA0012 airfoil; P1 approximation

Test case Grid CD,p CL,p CM,p

M = 0.8, α = 1.25◦ 113×17 2.518e−2 3.361e−1 −3.457e−2
225×33 2.267e−2 3.465e−1 −3.670e−2
449×65 2.224e−2 3.476e−1 −3.825e−2
897×129 2.088e−2 3.522e−1 −3.478e−2

Fig. 5 Laminar flow around
the NACA0012 airfoil with
M = 0.5, Re = 5× 103

and α = 2◦ (161×41 grid,
P1 approximation): Mach
number contours
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based on freestream quantities and plate length. A Cartesian grid with 81×57 nodes
is used as space discretization and P1 elements are considered. Computations of
non-dimensional axial and vertical velocities agree well with the theoretical Blasius
solution.

The second viscous test case concerns the 2D laminar flow around the NACA0012
airfoil at α = 2◦ of incidence with a freestream Mach number of M = 0.5 and a
Reynolds number, based on freestream quantities and chord length, of Re = 5×103.
A non slip condition is applied on adiabatic wall. Computations have been per-
formed on a structured C-grid with 161×41 nodes. Results with the P1 approxima-
tion are depicted in Fig. 5. The method allows describing the recirculation bubble
in the wake region of the airfoil. Table 3 presents the grid convergence of global co-
efficients with pressure and viscous contributions. Pressure parts of the coefficients
achieve better convergence than the corresponding viscous parts.

3.3 Turbulent Test Case

The DG method has been applied to a turbulent test case. This test case consists
in a turbulent flow around a RAE2822 airfoil at an incidence of α = 2.79◦ with a
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Table 3 Drag, lift and pitching moment coefficients for the NACA0012 airfoil; P1 approxi-
mation. Laminar subsonic flow (M = 0.5, Re = 5000, α = 2◦).

Grid CD,p CD,v CD

161×41 2.797e−2 2.807e−2 5.604e−2
321×81 2.518e−2 2.948e−2 5.466e−2
641×161 2.478e−2 3.126e−2 5.603e−2

Grid CL,p CL,v CL

161×41 3.653e−2 −1.260e−4 3.640e−2
321×81 3.806e−2 7.800e−4 3.814e−2
641×161 4.217e−2 3.070e−4 4.248e−2

Grid Cm,p Cm,v Cm

161×41 1.682e−2 −3.020e−4 1.652e−2
321×81 1.639e−2 −2.370e−4 1.616e−2
641×161 1.783e−2 −1.980e−4 1.709e−2

freestream Mach number of M = 0.73 and a Reynolds number, based on freestream
quantities and chord length, of Re = 6.5×106. The wall is assumed to be adiabatic
with non slip condition. The domain is discretized by using a structured C-grid with
369×89 nodes. The RANS equations are coupled to the k−ω turbulence model of
Wilcox as detailed in Sect. 2.1.

Figure 6a presents the convergence history of the residuals associated to the mean
flow equations and Fig. 6b depicts the evolution of the global lift coefficient CL as
a function of the iteration number. Despite of the low convergence levels of the
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Fig. 6 Turbulent flow around the RAE2822 airfoil (M = 0.73, Re = 6.5×106, α = 2.79◦):
logarithmic plot of the residuals (left) and convergence history of the aerodynamic coeffi-
cients (right)
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Table 4 Drag, lift and pitching moment coefficients for the NACA0012 airfoil; P1 approxi-
mation. Turbulent flow (M = 0.73, Re = 6.5×106, α = 2.79◦).

Grid CD CL CM

185×45 7.078e−1 1.500e−2 −7.637e−2
369×89 7.806e−1 1.749e−2 −8.897e−2
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Fig. 7 Mach number contours around the RAE2822 airfoil (M = 0.73, Re = 6.5×106, α =
2.79◦): comparison between a finite volume computation (left) and a DG P1 computation
(right)

residuals, the global coefficient achieves a quick convergence to a steady value.
Table 4 presents the evolution of global coefficients with mesh refinement.

Figure 7 displays the Mach number distribution obtained with the P1 approxima-
tion and compares results to a second order FV computation. Compared to the FV
computation, the shock structure is well defined with the P1 approximation. Like-
wise, the separation region in the trailing edge region and the recirculation bubble
are better described.

4 Conclusion

Flow computations with a discontinuous Galerkin scheme for 3D laminar and turbu-
lent flows on multidomain hexahedral meshes with polynomial expansion order of
p ≤ 2 have been reported in this work. The compressible RANS equations coupled
with the two-equation k−ω turbulence model of Wilcox are considered. The DG
scheme is based on the introduction of an auxiliary variable for the gradient of the
conservative variable vector in order to reduce the problem to a first order differen-
tial system [3]. An explicit Runge-Kutta scheme is applied for the time integration.
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Results show the capability of computing 2D Euler flows with P1 and P2 approx-
imations and 3D Euler flows with P1 approximations. 3D laminar and 2D turbulent
flow computations give also satisfactory results with P1 approximation. The reso-
lution of rotational regions and shock structure are improved by the DG method
compared to second order finite volume computations.
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Chapter 9
Construction of High-Order Non Upwind
Distribution Schemes

R. Abgrall, A Larat, and M. Ricchiuto

Abstract. In this paper we consider the very high order approximation of solutions
of the Euler equations. We present a systematic generalization of the Residual Dis-
tribution method of [8] to very high order of accuracy, by extending the preliminary
work discussed in [17]. We present extensive numerical validation for the third and
fourth order cases with Lagrange finite elements. In particular, we demonstrate that
we an both have a non oscillatory behavior, even for very strong shocks and com-
plex flow patterns, and the expected accuracy on smooth problems. We also extend
the scheme to laminar viscous problems.

1 Introduction

We are interested in the numerical approximation of steady hyperbolic problems

div f(u) = S(u) (1)

which are defined on an open set Ω ⊂ Rd , d = 2,3 with weak Dirichlet boundary
conditions u = g. defined on the inflow boundary1

∂Ω− = {x ∈ ∂Ω ,n ·∇uf < 0}.
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In (1), the vector of unknown u belongs to Rp, and the flux f is

f = ( f1, . . . , fd).

In (1), S is a source term which here only depends on the unknown u.
The main target example we are interested in is the system of the Euler equations

with the vector of unknown
u = (ρ ,ρu,E)T .

The density is ρ , u is the velocity and E is the total energy. The flux, in the case
d = 2 to make things simple, is given by, using u = (u1,u2)T ,

f1 =

⎛⎜⎜⎝
ρu1

ρu2
1 + p

ρu1u2

u1(E + p)

⎞⎟⎟⎠ , f2 =

⎛⎜⎜⎝
ρu2

ρu1u2

ρu2
2 + p

u2(E + p)

⎞⎟⎟⎠ . (2)

The system is closed by an equation of state that relates the pressure p to u. Here we
assume a perfect gas equation of state. In the case of the Euler equations, we have
several types of boundary conditions, we come back to this in due time.

In the recent years, there have been many researches to develop really robust and
high order schemes for equations of the type (1) and in particular for (2). In this
paper we are concerned with the approximation of these equations on conformal
unstructured meshes. We restrict our-self to the case of two dimensional triangular
type meshes, even-though things can be made more general [1].

We have chosen to develop a different strategy than Discontinuous Galerkin
methods, the Residual Distribution schemes, where the stencil stays very local, as
in the DG methods, but the number of degrees of freedom grows less quickly, even
in 3D. The price to pay is to impose the continuity of the approximation u as in
standard finite element methods. Indeed, the RD schemes can be seen as finite el-
ements where the test functions may depend on the sought solution. This class of
scheme is having a growing interest (see [2, 3, 4, 5, 6, 7, 8], etc.) but has mainly
been developed for second order accuracy only, see however [9] for different but
related approach on structured meshes. In this paper, we are interested in showing
how the methods we have developed in previous papers can be extended to very
high accuracy, even in the case of the Euler equation, at a relatively moderate price.

In the first section, we present the general form of RD schemes that are formally
high order accurate. In the second section, we explicitly construct some examples
of schemes. Then numerical illustrations for scalar problems are presented, and we
show which type of difficulties our first solution leads to. Following a previous pa-
per, we present a simple and efficient fix, and show on numerical examples which
quality of solution we can reach. Then extension to the Euler equations are given, in
the steady case as well as in the unsteady one. We also develop an implicit version
of the scheme which is tested in several well known cases. A conclusion follows.
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2 High Order Residual Distribution Schemes for Inviscid Flows

2.1 Introduction

We consider the problem (1) on a domain Ω . On this domain, we assume a tes-
sellation τh which elements are triangles in 2D and tetrahedrons in 3D.2 A generic
element is denoted by T , there are nt such elements. The list of vertices of the mesh
τh is {Mi}i=1,...,ns . When dealing with an element T , we denote when there is no
ambiguity the list of its vertices by 1, . . . ,nd , nd being the number of vertices in T .

In the residual distribution schemes, the degrees of freedom are associated to
points, and not to control volumes as for finite volume methods or DG methods.
We denote by {σl}l=1....,ndo f the lists of degrees of freedom. In the case of a second
order RD scheme, they are exactly the vertices of the mesh, so that σl = Ml for any
l. If one wants to construct a higher order accurate scheme, there are two options :

1. To update a solution in an element T , one can use information out of the el-
ement T . This option have been followed by [12, 7]. The compactness of the
computational stencil is destroyed and need many indirections, which is not very
computationally efficient. From a more theoretical view point, the complexity of
codes becomes more and more important as one wishes to increase the order of
accuracy.

2. On may add a supplementary constraint to the scheme : in order to locally update
a degree of freedom belonging to the element T , only the degrees of freedom
inside T are needed. The scheme is very compact, there is no indirection, but the
situation is a bit more tricky.

We have chosen to follow the second option. For this we need to interpolate the un-
known {uσ}σ∈T in T and we have chosen to use a continuous piecewise polynomial
of degree k Lagrange interpolation. We denote by Pk(T ) the set of polynomials of
degree k defined on T .

The degrees of freedom are thus all the Lagrange points. To make things specific,
we need for:

• Quadratic interpolation : the vertices and the mid–point edges. This yields 3+ 3
points per triangle in 2D and 4 + 6 points per tetrahedron in 3D.

• Cubic interpolation: in the 2D case, we need the vertices, 2 points per edge and
the centroid, i.e. 3+2×3+1 points per element. In the 3D case, we need the 2D
dof per edge, the centroid of each face, i.e. 4 + 6×2 + 4 = 20 dofs

• etc.

A residual distribution scheme for (1) writes, for an internal degree of freedom σ ,
as

for all σ ∈ T, ∑
T�σ

ΦT
σ = 0. (3)

2 The parameter h denotes the maximum of the radius of CT , T ∈ τh, the circumscribed
circles/sphere to T .
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The residual in (3) must, following [13], satisfy the following conservation con-
straints

for any T, ∑
σ∈T

ΦT
σ =

∫
∂T

fh(uh) ·ndl −
∫

T
Sh(uh)dx := ΦT (4)

where fh(uh) and Sh(uh) are high order accurate approximations of the flux f(u) and
the source term S(u). Natural choices are either fh(uh) is a Lagrange interpolant of
f(u) at the degrees of freedom defining uh or the true flux evaluated for uh.

Moreover, we also assume that the residuals ΦT
σ depend continuously of their

arguments. Indeed, we impose a more severe constraint, we assume that ΦT
σ only

depend on the values of {uσ ′ }σ ′∈T .
If Γ is any edge/face of the inflow boundary of Ω , we consider a numerical flux

F which depends on the boundary condition u−, the inward normal n and the local
state uh. Then we assume that we have boundary residuals ΦΓ

σ which satisfy the
following conservation relation

for any Γ ⊂ ∂Ω , ∑
σ∈Γ

ΦΓ
σ =

∫
∂Γ

(
F (uh,u−,n)− fh(uh) ·n

)
dl := ΦΓ , (5)

the residuals ΦΓ
σ are assumed to be only dependant on the {uσ ′}σ ′∈Γ , continuous,

and the relation (4) has to be red, for any boundary node σ , as

for all σ ∈ ∂Ω , ∑
T�σ

ΦT
σ + ∑

Γ⊂∂Ω−,Γ�σ
ΦΓ
σ = 0. (6)

Then following [13], it is easy to show that if the sequence uh is bounded in L∞

when h → 0, and if there exists v such that uh → v when h → 0, then v is a weak
solution of (1). Additional constraints can be set to fulfil entropy inequalities.

Before going further, let us introduce some simplifications. Instead of the con-
servation relations (4) which a priori need exact integration, one can of course use
approximated quadrature. Hence, we replace the relations (4) and (5) by

for any T, ∑
σ∈T

ΦT
σ =

∮
∂T

fh(uh) ·ndl −
∮

T
Sh(uh)dx := Φ̃T . (7a)

and

for any Γ ⊂ ∂Ω−, ∑
σ∈Γ

ΦΓ
σ =

∮
∂Γ

(
F (uh,u−,n)− fh(uh) ·n

)
dl, (7b)

where the symbol
∮

denotes an integral evaluated by mean of a quadrature formula.
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2.2 Accuracy Constraints

Which quadrature formula should we use in practice ? This question is related to the
formal accuracy of the scheme. We first explore this for the scheme (3), (6) with the
conservation relations (4) and (5), and then we move to the more practical one with
approximated quadrature formula (3), (6), (7).

Following the results of [13], we define the following truncation error

E (uh,ϕh) = ∑
σ∈Ω

ϕ(σ)

(
∑

T�σ
ΦT
σ + ∑

Γ⊂∂Ω−,Γ�σ
ΦΓ
σ

)
(8)

where ϕh is the Lagrange interpolant of {ϕ(σ)}σ . The scheme is k-th order accu-
rate if the truncation error is O(hk) when uh is an interpolant of the exact solution,
assumed to be smooth enough. We have the following result:

Proposition 1. If the solution u is smooth enough and the residual, applied to the
Pk interpolant of u satisfy

ΦT
σ (uh) = O(hk+d) (9a)

and
ΦΓ
σ = O(hk+d−1), (9b)

if moreover the approximation fh(uh) is k + 1-order accurate, then the truncation
error satisfies

|E (uh,ϕh)| ≤C(ϕ , f,u) hk+1.

The constant C(ϕ ,u) depends only on ϕ and u.

From the previous analysis, if there exists a constant (in the scalar case) or a matrix
(in the system case) β T

σ such that

ΦT
σ = β T

σ

(∫
∂T

fh(uh) ·ndl −
∫

T
Sh(uh)dx

)
, (10a)

ΦΓ
σ = βΓ

σ

(∫
∂T

(
fh(uh) ·n−F (uh,u−,n)dl

)
, (10b)

or more generally we keep the condition (9b), then the condition (9) is fulfilled
provided that β T

σ is uniformly bounded. In practice, the conditions (10) are replaced
(if uh is any polynomial of degree k) by

ΦT
σ = β T

σ

(∮
∂T

fh(uh) ·ndl −
∮

T
Sh(uh)dx

)
, (11a)

ΦΓ
σ = βΓ

σ

(∮
∂T

(
fh(uh) ·n−F (uh,u−,n)dl

)
, (11b)
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It can be seen by using exactly the same arguments that the constraints on the
quadrature formula are the following :

• In (11a), we must have∫
∂T

fh(uh) ·ndl =
∮
∂T

fh(uh) ·ndl +O(hk+d) (12a)

and ∫
∂T

Sh(uh)dx =
∮
∂T

Sh(uh)dx +O(hk+d) (12b)

• In (11b), we must have for the integrated quantity∫
∂T

g(uh)dl =
∮
∂T

g(uh)dl +O(hk+d−1) (12c)

In order to obtain these errors, there are two possible ways. Either the quadrature
formula is exact on the approximated flux fh(uh) which basically means that f(uh)
is a polynomial of degree k at least since we need that f(u)− fh(uh) = O(hk+1),
or the quadrature formula is not exact but provides this error. In the paper, we have
followed the first method : in each element, the flux is reconstructed by the Lagrange
interpolation of the exact flux evaluated at the degrees of freedom in the element.
This is equivalent to a quadrature free approach. We come back to this point in
section 3.3 to discuss our actual implementation of the boundary conditions.

2.3 Getting High Order Accuracy and Monotonicity Preservation

All the schemes we are aware of have residual that can be written, when S ≡ 0, as

ΦT
σ = ∑

σ ′∈T

cσσ ′(uσ −uσ ′) (13)

so that that the relation (4) becomes for any σ

∑
T�σ

∑
σ ′∈T

cσσ ′(uσ −uσ ′) = 0.

In general, this is a very complex set of non linear equation that can be solved by
iterative methods. The simplest one is a Jacobi–like iteration.

un+1
σ = un

σ −ωσ

(
∑

T�σ
∑
σ ′∈T

cT
σσ ′(uσ −uσ ′)

)
(14)

where ωσ is a relaxation parameter. Note that the coefficient cσσ ′ may depend on u.
In the scalar case, we drop the bold symbol for the unknown u. It is easy to see

that if the initial condition is such that u0
τ ∈ [a,b], then un

τ ∈ [a,b] provided that for
any previous iteration we have
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• ∑
T�σ ,T ′�σ ′

cσσ ′ ≥ 0 for any σ , σ ′,

• for any σ , 1−ωσ

(
∑

T∈σ
∑
σ ′∈T

cT
σσ ′

)
≥ 0.

A simpler set of conditions can be written, they are local in T . They are obtained by
analogy with what is done for second order RD schemes. We first introduce the area
Cσ and C T

σ :

Cσ = ∑
T�σ

C T
σ , C T

σ =
|T |
nd

and set

• cσσ ′ ≥ 0 for any σ , σ ′,
• for any σ , ωσ is such that

ωσ max
T�σ

[
Cσ
C T
σ

(
∑
σ ′∈T

cT
σσ ′

)]
≤ 1.

These conditions do not imply that the iterative scheme (14) is convergent, but only
that a L∞ bound is preserved. A scheme that preserves L∞ bounds is said to be
monotonicity preserving in the rest of the paper.

It is known that a scheme that is monotonicity preserving with coefficients cσσ ′
constant cannot satisfy (9). This is true for second order RD scheme, see [14], and
the proof of [14] does not use the type of Lagrange interpolation and hence can be
extended to higher degree elements. This is a version of Godunov’s theorem. Thus
the scheme must be non linear.

There is a systematic way of constructing schemes that are both monotonicity
preserving and satisfy (9). We first start from a monotone (first order scheme) which
residuals are (for S = 0) ΦL

σ = ∑
σ ′∈T

cL
σσ ′(uσ − uσ ′). The coefficients cσσ ′ are all

positive. Since there is no ambiguity, we drop the superscript T . We assume that

∑
σ∈T

ΦL
σ = ΦT (=

∫
∂T

f h(uh) ·ndl) where the integral is evaluated with the Pk(T )

interpolant uh. Then, if ΦH
σ denote high order residuals, they also satisfy the same

conservation relation ∑
σ∈T

ΦH
σ = ΦT and

ΦH
σ = βσ

∫
∂T

f h(uh) ·ndl. (15)

Clearly∑σ βσ = 1 and this leads to introduce the parameters xσ defined by xσ =
ΦH
σ

ΦT

for which, thanks to the conservation relation, we also have ∑σ xσ = 1.

The next step is to write the formal identity ΦH
σ =

ΦH
σ

ΦL
σ
ΦL
σ =∑

σ ′

ΦH
σ

ΦL
σ

cL
σσ ′(uσ −

uσ ′) and we get a monotonicity preserving constraint if for each σ ∈ T we have
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ΦH
σ

ΦL
σ
≥ 0 because then cH

σσ ′ = ΦH
σ

ΦL
σ

cL
σσ ′ ≥ 0. All this can be rephrased in term of the

xσ s and βσ s :

1. Conservation. We have ∑
σ
βσ = 1 and ∑

σ
xσ = 1.

2. Monotonicity preservation. For any σ ∈ T , xσβσ ≥ 0.

These relations can be interpreted geometrically. Since there is no ambiguity, we can
assume that the degrees of freedom can be numbered from 1 to nd , an we identify
the dof σ to its number � in [1, . . . ,nd ].

Let us consider in Rnd nd linearly independent points S = {A�}�=1,···,nd . Note
they do not have connections with any physical points in the mesh. We can intro-
duce for any point M ∈ Rnd its barycentric coordinates {λ�(M)} with respect to S :

M =
nd

∑
�=1

λ�(M)A� or equivalently, for any O ∈ Rnd OM =
nd

∑
�=1

λ�(M)OA�. We have

by definition
nd

∑
�=1

λ�(M) = 1. Thus, we can interpret {xl} and {βl} as the barycen-

tric coordinates of the points L and H such that L =
nd

∑
�=1

x�A� and H =
nd

∑
�=1

β�A�. The

problem reduces to defining a mapping onto Rnd : L �→ H such that the constraints
x�β� ≥ 0 are true : the advantage of that interpretation is that the conservation prop-
erties are automatically satisfied.

There are many solution to that problem, one particularly simple one is an exten-
sion of the PSI “limiter” of Struijs :

β� =
x+
�

∑
�′

x+
�′

. (16)

There is no singularity in the formula since∑
�′

x+
�′ =∑

�′
x�′ −∑

�′
x−�′ ≥ 1. Throughout

the paper, we use (16).

2.4 An Example of First Order Scheme

We describe several examples for div f (u) = 0,x ∈ Ω . Using the Pk interpolant in
T , uh = ∑

σ∈T
uσψσ , the total residual ΦT can be written as, using the Green formula,

ΦT =
∫

T
div f (uh)dx =

∫
T
∇u f (uh) ·∇uh dx = ∑

σ∈T
uσ

∫
T
∇u f (uh) ·∇ψσdx.

We define kσ =
∫

T
∇u f (uh) ·∇ψσdx. The example that will be used here consists in

the extension of Rusanov’s scheme. It writes
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ΦT
σ =

1
nd

(
ΦT +αT ∑

σ ′∈T

(uσ −uσ ′
))

(17)

and a better and simpler formulation is

ΦT
σ =

ΦT

nd
+αT (uσ − ū) (18a)

with

ū =
∑
σ ′∈T

uσ ′

nd
. (18b)

From (17), the LxF/Rusanov’s residual have the form (13) with cσσ ′ =
kσ −αT

nd
and

cσσ ′ ≥ 0 if αT ≥ maxσ∈T |kσ |.
This scheme is extremely dissipative, but this is the one from which we start for

two reasons : it is very cheap and simple to code, even for systems; it is a good
candidate to demonstrate the efficiency of our approach.

Before going further, we present numerical illustrations in order to illustrate the
behavior of the scheme (11)–(16).

2.5 Preliminary Numerical Results and Fixes

2.5.1 Preliminary Numerical Results

We test the scheme on two simple linear advection problems of the form

λ ·∇u = 0 with inflow boundary conditions (19a)

on Ω = [0,1]2 with

λ = (1,1)T and u(x,y) =
{

1 if x = 0 and y > 0
0 if y = 0 and x > 0

(19b)

and
λ = (y,−x)T and u(x,y) = ϕ0(x) if x = 0 (19c)

We have set

ϕ0(x) =
{

cos2(2πx) if x ∈ [0.25,0.75]
0 else

The results are displayed in figure 1.
The behavior of the solutions is similar to what has been discussed in [8]. Indeed,

the solution is non oscillatory, quite clean in the case of the problem (19a)–(19b).
In the case of problem (19a)–(19c), the isolines should be circles. Instead of circles,
the isolines are wiggly. This is not a manifestation of any instability : the local
maximum principle is satisfied both theoretically and numerically. If one makes a
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S

problem (19a)–(19b) problem (19a)–(19c)

Fig. 1 Results obtained for the scheme (15)==(16) for P2 interpolation. The first order
scheme is (18).

cross–section, one can see that instead of a cos2 profile, one has a succession of
plateaux. In fact the scheme is much too over-compressive. The same results have
been obtained with the extension of the N scheme. Another manifestation of this
phenomena can be observed on the convergence history of the iterative schemes :
after a very quick drop of about two orders of magnitudes, the iterative residual
stagnates for ever, see [8] for example. Hence, the equation (3) is not solve exactly
but with an error of the order of h, so that the formal accuracy is destroyed.

In the case of second order schemes, this wiggly behavior has been corrected by
adding to the residuals (11) a term of the form

hT

∫
T

(
λ∇ψσ

)(
λ∇uh

)
dx. (20)

This term has a dissipative nature. Since this term is O(h3) when it is evaluated for
the interpolant of the exact solution, it does not destroy the formal accuracy of the
scheme. In fact, it removes the spurious modes that are existing, and improves the
quality of the solution. Details can be found in [8].

In the Pk case a similar strategy can be followed, but some difficulties arise.
In the P1 case, the gradients are constant so that the evaluation of this integral is
obvious. In the P

k case, the two terms λ∇ψσ and λ ·∇uh are a priori polynomials of
degree k−1. Hence, a strict application of the same method would require the exact
integration of a polynomial of degree 2(k−1) . . . which becomes quite expensive. In
particular, the evaluation of this term would become much more important than that
of the residual themselves. Let us describe a simple trick that reduces a lot the work
load. A better analysis of the structure and the role of the dissipative term helps to
reduce substantially the computational cost. In this section, we develop an abstract
form of the scheme (10)–(16). The precise formula (16) does not play any role. We
also ignore the role of boundary terms, knowing of course they have an important
role, but not for the purpose of this analysis.

We first write ΦT
σ = ΦT,c

σ +ΦT
σ −ΨT,c

σ , multiply (3) by ϕ(σ) and add all the
equality. Using the conservation relations, (5) is equivalent to∫

Ω
ϕh div f (uh)dx +∑

T

qT (ϕh,uh) = 0 (21a)
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with

qT (ϕh,uh) =
1

nd! ∑
σ ,σ ′∈T

(ϕ(σ)−ϕ(σ ′))
(
β T
σ Φ

T −ΨT,c
σ

)
(21b)

The modification introduced in [8] amounts to adding to the quadratic forms qT the
term (20). The question is to know which quadratic form can be added to qT such
that the scheme is dissipative, keeps the same formal accuracy, and preserves the
non oscillatory behavior of (21a).

The most natural way of proceeding is to consider a quadrature formula applied
to (20), say

dT (ϕh,uh) = |T | ∑
xquad

ωquad

[(
λ∇ϕσ

)
(xquad)

(
λ∇uh

)
(xquad)

]
(22)

such that

(ϕh,uh) �→
∫
Ω
ϕh div F(uh)dx +∑

T

(
qT (ϕh,uh)+θT hT dT (ϕh,uh)

)
is dissipative. Here, hT is a the radius of the circumscribed circle/sphere, and θT is
a parameter that is of the order of 0 in discontinuities and 1 elsewhere.

Let us first explain the role of θT . Looking at figure 1, we see that the original
scheme behaves very well in discontinuities. There is no reason to modify it. Thus,
the optimal choice would be θT = 0 in discontinuities. This choice is not convenient
elsewhere as the figure 1 again shows it.

It is complicated to find general criteria on the dT s to fulfill our goal. Using the
compactness of the stencil, it is sufficient to ask that the quadratic form

(ϕh,uh) �→ qT (ϕh,uh)+θT hT dT (ϕh,uh)

fulfill our goal.
The key remark is to see that, whatever the quadrature formula we use, and thanks

to the term θT hT in front of dT , we see that is uh is an interpolant of a function such
that λ ·∇u = 0, then ∣∣∣∣∣θT hT dT (ϕh,uh)

∣∣∣∣∣≤C(u)||∇ϕ || hk+d+1
T ,

so that the formal accuracy is not spoiled. Then, following the analysis of [8, 17], it
is enough to ask that ωquad > 0 and that the form

(ϕh,uh) �→ dT (ϕh,uh)

is positive definite when λ ·∇uh �= 0. Hence, one quadrature point is enough for
k = 1, 3 for k = 2, 6 for k = 3 and so on. Note that there is no need that the “quadra-

ture” formula be consistent with the integral
∫

T
(λ ·∇ϕ) (λ ·∇u)dx. We choose the
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“quadrature” points so that the formula are independent of the numbering of the
mesh points. In our examples, for k = 2 we choose the vertices of T , for k = 3 we
add to these points the mid edge points: since these points are degrees of freedom,
the additional cost is minimized. The weights are respectively ω = 1/3 and 1/6. In

the following, we denoteΨT
σ = |T | ∑

xquad

ωquad

[(
λ∇ψσ

)
(xquad)

(
λ∇uh)(xquad)

]
.

The last point is about the choice of the parameter θ . In [8], several good formula
have been given, they all are very local and only depend on the residual and the
values if uh in T . However the best choice seems to be the following

θT = 1−max
σ∈T

[
max
T ′�σ

(
|uσ − ūT |

|uσ |+ |ūT |+ ε

)]
(23)

with ε of the order of machine zero and ūT =
(
∑

σ∈T
uσ
)
/nd . Typically, θ = O(hT )

in a smooth region and θ ≡ 1 in a discontinuity. The relation (23) depends on values
of u that do not lie in T , thus it seems that the formula is not compact. Indeed
this is true, but from an algorithmic point of view, what is important is that the
implementation can be made compact. The algorithm 1 show the main operations
that are done (on an explicit algorithm) and show that the compactness of the method
is not destroyed. This can easily be generalized to other type of iterative scheme.

Algorithm 1. Sketch of the general algorithm showing how the compactness of the
algorithm is not destroyed by the evaluation of θT .

1: Initialize by θ 0
σ = 1 for all dofs.

2: for Do for k = 1 to kmax (maximum number of iterations) do
3: Set θ̃σT = 0 for each σ and Resσ = 0
4: for For each T do
5: evaluate

ΦT
σ = βT

σ Φ
T +θσhTΨT

σ , (24a)

6: evaluate

ξσ = max(θ̃σ ,
|uσ − ūT |

|uσ |+ |ūT |+ ε
) (24b)

7: set θ̃σ = ξσ ,
8: update

Resσ = Resσ +ΦT
σ .

9: end for
10: Swap : θσ = θ̃σ ,
11: Update : un+1

σ = un
σ −ωσResσ

12: end for
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2.6 Numerical Illustrations

To begin with, we rerun the same examples as those of figure 1. The accuracy is as
expected, as shown on table 1 The orders are fitted by least square.

Table 1 L2 errors for (19a)–(19b) with u(x) = ϕ0(x) on the inflow

h εL2(P1) εL2 (P2) εL2(P3)
1/25 0.50493E-02 0.32612E-04 0.12071E-05
1/50 0.14684E-02 0.48741E-05 0.90642E-07
1/75 0.74684E-03 0.13334E-05 0.16245E-07
1/100 0.41019E-03 0.66019E-06 0.53860E-08

O ls
L2 =1.790 O ls

L2 =2.848 O ls
L2 =3.920

The method also works well for non linear problems. To give an example, let us
consider the Burgers’s equation

∂u
∂y

+ 1
2
∂u2

∂x
= 0 if x ∈ [0,1]2

u(x,y) = 1.5−2x on the boundary.

The exact solution consists in a fan that merges into a shock which foot is located
at (x,y) = (3/4,1/2). Some results are displayed on figure 2. They are obtained on
the same mesh as for the previous example. For the sake of comparison, we give
the second and third order results on the same mesh (hence the P

2 results have
more degrees of freedom). There are no spurious oscillation accros the shock. The
resolution of the fan is better also.

S S

x

u

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

a

b

x

u

0 0.2 0.4 0.6 0.8 1

-0.5

0

0.5

1

1.5

a

b

P1 P2 cut at y = 0.3 at y = 0.6

Fig. 2 Burger equation, solution obtained with a P1 and P2 lagrange interpolant and the
scheme

3 The System Case

In this section, we describe the scheme for the system of the steady Euler equa-
tions described by (1) with the flux (2) and the conserved variables u = (ρ ,ρu,E)T .
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We assume a perfect gas equation of state, and γ = 1.4 in the applications. We de-
note by A (resp. B) the Jacobian matrix of the flux f1 (resp. f2) with respect to the
state u.

The scheme is a direct extension of what is done in the scalar case, with a major
modification because the natural unknown is a vector, not a scalar. We follow essen-
tially the procedure of [14, 8]. We provide the details of the scheme description on
a single element T since there is no ambiguity.

3.1 The First Order Scheme

The first order scheme is constructed on the Lax–Friedrichs scheme, i.e., for any
degree of freedom σ ∈ T ,

Φσ =
1
N

∮
∂T

f(uh) ·ndl +αT (uh − ū). (25)

Here N is the number of degrees of freedom in T , hence N = 6. The total residual∮
∂T f(uh) · ndl is evaluated by Simpson formula: if Γ = [a,b] is an edge of T and

c = a+b
2 , we set ∫

Γ
f (x)dl ≡ 1

6

(
f (a)+ 4 f (c)+ f (b)

)
,

which amounts, in our case, to use a quadratic interpolant of f in T . The average
state is ū = ∑

σ∈T

uσ/N, and αT is larger than the spectral radius of the flux Jacobians

at the degrees of freedom. In practice, it is set to twice this maximum.

3.2 Controlling the Oscillations

In the scalar part, the control of oscillations is achieved by “limiting” the ratios
Φσ/Φ . In the system case, this quantity has no meaning. Hence, we adapt the pro-
cedure presented in [14]. Using the average state ū, we compute the average flow

direction, i.e. n̄ =
ū

||ū|| = (n1,n2). Then we evaluate the Jacobian matrix

Kn̄ = A(ū)n1 + B(ū)n2 (26)

which is diagonalizable in R. The eigenvectors are rp for p = 1, · · · ,4 associated to
the eigenvalues

λ1,2 = ū · n̄ = ||ū||,λ3 = ||ū||− c̄,λ4 = ||ū||+ c̄.

Last, we denote by �p the right eigenvectors of the system, i.e. the linear forms such
that any state vector X ∈ R4 can be decomposed as X = ∑4

p=1 �p(X)rp. Our method
is then the following:
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1. We decompose the first order residualsΦσ into “characteristic” residuals, for each
σ ,Φσ = ∑4

p=1 �p(Φσ )rp. We denote the characteristic residual by ϕ p
σ = �p(Φσ ),

they satisfy the conservation relation: for each p ∈ {1, · · · ,4}, ∑
σ∈T

ϕ p
σ =

�p(Φ) := ϕ p

2. For any p = 1, · · · ,4, we “limit” the characteristic sub-residual by the same pro-

cedure as in the scalar case: β p
σ :=

(
ϕ p
σ

ϕ p

)+

/ ∑
σ ′∈T

(ϕ p
σ ′
ϕ p

)+

3. We construct the limited residual by

Φ�
σ :=

4

∑
p=1

β p
σϕ prp. (27)

The property (9) is satisfied in a suitable norm. Indeed, if A0 denotes the Hessian of
the mathematical entropy evaluated at ū, we know that we can find a set of eigen-
vectors rl that are are orthogonal for the metric defined by A0. Indeed, if we denote
by ( . , . )A0 the scalar product associated to A0. We have ϕ p

σ = (rp,Φσ )A0 so that
||Φ�

σ ||2A0
= ∑p |β p

σ |2|; |ϕ p|2 ≤ ∑p |ϕ p|2 ≤ ||Φ||2A0
where of course we have assumed

that the eigenbasis {rp} is orthogonormal.
The matrix A0 is not uniform, but we can nevertheless state that if the conserved

state is such that the density and the pressure are bounded from above and below,
all the norms defined by the A0(ū) are equivalent and the LP property is uniformly
satisfied.

The last step is to get an explicit form of such a basis. The standard eigenvectors
of the Euler equations are simple and good candidates for that since it can easily be
shown that they are orthogonal for the quadratic form defined by the entropy. Hence,
this is our practical choice. They are evaluated as the eigenvectors of (26) where n
is the normalized averaged velocity. It the case of a stagnation point, we choose the
x direction.

As for the scalar case, the scheme (7b)–(27) produces very good results in dis-
continuous regions, and very poor one in the smooth parts of the flow. Indeed the
iterative convergence is very poor, and the results are at most first order accurate.

To the same problem, we use the same cure. We add to (Φσ )� a correction of the
type

hT

∫
T

(
(A,B) ·∇ϕσ

)
τ
(

(A,B) ·∇u
)

dx (28)

where the matrix τ is a scaling matrix.
Several choices have been tested. A good choice seems to be τ = h−1

T N where the

N matrix is N =
(

3
∑

i=1
K+

i

)−1

= 2

(
3
∑

i=1
|Ki|
)−1

. In this relation, the summation is on

the three vertices of the triangle The Jacobian matrix are evaluated at the averaged
state ρ̄ = 1

6 ∑
σ∈T

ρσ , u = 1
6 ∑
σ∈T

uσ , p̄ = 1
6 ∑
σ∈T

pσ . It is shown in [5] that if the velocity

u �= 0, the matrix ∑3
i=1 K+

i is always invertible. To avoid this situation, we slightly
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modify the eigenvalues λ+ using Harten’s entropy fix. The second thing we do is to
simplify the expression (28) in the spirit of (22). Namely, the residual is

Φ��
σ = Φ�

σ +θTΨσ (29a)

with

Ψσ = |T | ∑
xquad

ωquad

[(
(A,B)(xquad)∇ψσ

)
(xquad)N

(
(A,B)(xquad)∇uh

)
(xquad)

]
.

(29b)
As in the scalar case, we have taken the smallest set of quadrature points, i.e.
the vertices of T . This also simplifies the evaluation of the Jacobian matrices.
The last feature is the parameter θT . It has to be of the order of unity in the
smooth regions, and of the order of zero when the gradient of the solution is
large. In the numerical experiments, we have chosen a sensor the entropy θT =

1−maxσ∈T maxT ′,σ∈T ′ maxσ ′∈T ′
|sσ ′ − sT ′ |
sσ ′ + sT ′

. where s = pρ−γ (in order to have a

positive quantity). Conservation is guarantied automatically.

3.3 Boundary Conditions

We have used a simplified version of the boundary conditions. If an element T has
an edge, ΓT , on the boundary, we need to add to the degrees of freedom on ΓT a
boundary residual. We denote it by ΦΓT

σ . These residuals should satisfy the conser-
vation relation ∑σ∈ΓT

ΦΓT
σ =

∫
Γσ
(
Fn(uh)− f (uh) · n

)
dl where Fn is a boundary

flux. In the examples of this paper, two types of boundary are considered:

• Wall boundary where u ·n = 0 is weakly imposed so that Fn(uh) =
(
0, p(uh)nx,

p(uh)ny,0)T

• Inflow/outflow boundary conditions. The state at infinity is U∞ and we take here
the modified Steger-Warming flux

Fn(uh) =
(
A(uh) ·n)+uh +

(
A(uh) ·n)+u∞.

By analogy with what is done in [5], we have chosen a ’centered’ version of the
boundary residuals, namely

ΦΓT
σ =

∫
ΓT

(
Fn(uh)− f (uh) ·n)ψσ (x)dl

where again ψσ is the Lagrange basis function defined in T for σ . This is ap-
proximated by a quadrature formula with positive weights. The quadrature formula
should be of order k+d−1, i.e. 3 for a third order scheme in 2D. The actual residual
is

ΦΓT
σ = |ΓT | ∑

quadrature points

ωquad
(
Fn(uh)− f (uh)

)
(xquad) ·n.
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In the case of interest (P2 interpolation), we approximate these relation with
Simpson’s formula : only one term appears in the sum.

3.4 Numerical Results

3.4.1 A Convection Problem

Our first example is the solution of the Euler system on [0,1]× [0,1] with the fol-
lowing inflow condition at y = 0, x = 1 and x = 0: ρ = 2 + sin(πx),u = 10, p = 1.
The flow is assumed to be supersonic at y = 1. The exact solution is ρ(x,y) =
2 + sin(πx),u(x,y) = 10, p(x,y) = 1 the problem is a simple convection one. How-
ever, we use the full Euler system and the scheme developped above to compute
the solution. The scheme is really third order accurate as it can be seen from the L2

errors on Figure 3.
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Fig. 3 L2 error for the second, third order and fourth order version of the scheme

3.4.2 Two NACA0012 Airfoils Cases

Our two examples are the flow over a NACA012 airfoil. The first one, which is
subsonic, has the following conditions at infinity: M = 0.5, Angle of attack 2◦ and
is referred as MTC Case 1. The second one, that is transonic, has the following
conditions at infinity: M = 0.8, Angle of attack 1.25◦ and is referred as MTC case
2. In both cases, the mesh has 10959 points and 21591. This corresponds to 43509
degrees of freedom.

• Subsonic test case. The isolines of the Mach number isolines, density, pressure
and entropy are displayed in figure 4, for the first test case. On figure Figure 4,
we have displayed the Mach number, the pressure coefficients en relative entropy
deviation for the third order versions of the scheme.

• Transonic test case. The isolines of the Mach number isolines, density, pressure
and entropy are displayed in figure for the first test case. On Figure 6, we have
displayed the Mach number, the pressure coefficients en relative entropy devia-
tion for the third order version of the scheme.

The solutions are fine. Note however a non physical overshoot in the entropy
accros the upper shock. If we compare th second order solution run with a mesh
constructed from the mesh we have used where the element would have been sub-
triangulated so that we would have had the same number of degrees of freedom
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(not shown), we would see an excellent agreement between the solutions with a
main difference however. In both cases, the shock with is one element, but one
element for the third order solution is roughly twice as large as an element for the
second order one. Hence, the shock look more diffused in the third order case.
However, the entropy levels are much lower, as we could see in the two sphere
subsonic case.

4 The Viscous Case

The viscous terms are approximated by the standard Galerkin method. We yet con-
sider a viscous flow around a NACA012 airfoil. The flow parameters are the fol-
lowing: Incidence: 0◦ of incidence; Mach: Ma = 0.5; Reynolds: Re = 500. This test
case is known to be steady. We have run second and third order computations on 8
different meshes containing between 609 and 230× 103 vertices. On Figure 8 are
represented the horizontal velocity in color and the density isolines at third order
for the finest mesh. We see that the global shape of the solution is the one expected,
with the boundary layer around the airfoil and its wake. Now, because the incidence
is null, the lift coefficient should be zero, but because the mesh is not symmetric,
the numerical value of the lift coefficient is non zero. And it should converge to
zero with the right order of convergence when the mesh gets finer. We have rep-
resented the value of the computed lift coefficients at steady state with respect to
h =

√
#{DoFs} on Figure 9. Except for one strange value at second order for the

Fig. 8 Third order solution on the finest mesh for the steady viscous NACA012 test case.
x-velocity in color and isolines of the density component.

Fig. 9 Convergence of the lift coefficient with respect to the mesh characteristic size
h =
√

#{DoFs} for 2nd and 3rd order simulation of the viscous NACA012 problem
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6th mesh, all the second order estimated lift coefficients are larger in absolute value
than their associated third order lift coefficients. Furthermore, the slope of the least
square line is larger for the 3rd order simulation than for the 2nd order one. This
means the third order scheme is doing a better job for viscous simulation. But on
the other hand the slope is not the one expected. If 1.7 is a good result for the ex-
pected slope 2, 2.1 is a bit far from the slope 3 expected and it is clear that the
convergence is not regular at all. The mix between the residual formulation of the
advective term and the Galerkin treatment of the second order diffusive term does
not seem to provide the right convergence rate. This might be explained by looking
at the variational formulation of the problem. However, the final result is not so bad,
because the mesh convergence is still acceptable and the solution is pretty nice.

5 Extension to 3D

The extension to 3D does not involve any conceptual effort. We have run the BTC0
test cases, for the Euler and Laminar viscous problem. The characteristics of the
flows are as follows :

• Euler BTC0 : M∞ = 0.5, incidence=0.5◦,
• Laminar BTC0 :M∞ = 0.5, incidence=0.5◦, Re = 500, Neuman conditions on the

boundary.

The figure 10 represents the density isolines obtained for the second and third or-
der scheme. The second order version uses two meshes, one with 176538 vertices
and 1022928 tetrahedrons (designed by VKI), and a fine mesh that is obtained by
refining regularly each tet using the mid points of the edges. Hence this mesh has
exactly the same degrees of freedom than those used for the third order scheme. The
calculation has been done on a 16 processor machine.

Second order Second order on fine mesh Third order

Fig. 10 Density isolines and entropy (in color) on the body for the second order scheme on
the coarse and a fine mesh with the same degrees of freedom than the third order result

The figure 11 provides preliminary results obtained on the laminar BTC0 test
case. The mesh has been designed using GmSh. The 3D results are not fully satis-
factory, especially near the boundary. In our opinion, one of the reasons is that the
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Fig. 11 Laminar BTC0 test case: the pressure is displayed in color, the density with isolines

mesh does not represent correctly the boundary geometry since we have no meshes
with curve elements.

6 Conclusion

We have described a systematic way of construction high order Residual distribu-
tion schemes fo unstructured meshes. The construction use a continuous representa-
tion of data. From this information, we evaluate a total fluctuation and a high order
mechanism for distribution these residual to the degrees of freedom is proposed and
evaluated.

The accuracy of the scheme is evaluated on scalar problems and subsonic flows
where it is known that the entropy stays uniform. The deviation of this quantity is
a simple manner to check the accuracy. We have shown that for a given number
of degree of freedom, our third order scheme is more accurate that a second order
version of the scheme.

The robustness of the method has been evaluated on subsonic, transonic, super-
sonic problems, as well as on complex configurations where many flow interaction
occur.

The extension to the Navier Stokes equations and to unsteady problem has also
been considered. Several numerical tests seem to indicate that the solution has a
correct behavior. However, it is not clear at all (and we believe this is not the case)
that the scheme has a residual structure, so that the formal accuracy is questionable.
A deeper investigation is currently beeing done, in a separate project.
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Chapter 10
High Order Residual Distribution Schemes
Based on Multidimensional Upwinding

N. Villedieu, T. Quintino, M. Vymazal, and H. Deconinck

Abstract. We present an extension of the multidimensional upwind distributive
schemes to high order solution spaces. We look into different high-order discretiza-
tion issues such as: quadratic and cubic boundary curvature; monotonicity of the
schemes in presence of solutions with discontinuities; discretisation of temporal
terms for unsteady applications and discretization of diffusive fluxes. Results of test
cases representative of all these issues are presented.

1 Introduction

We present the design of high order upwind schemes for systems of steady hyper-
bolic conservation laws given by the form

∇ ·F(U) = 0 ∀(x,y) ∈Ω (1)

where U is the m-vector of the conserved quantities, and F is a m × 2-tensor:
F = (fx, fy)(fx and fy being m-vectors).

1.1 Generalities and Notations

For a given domainΩ we denote by τh a generic triangulation ofΩ composed of a set
of non-overlapping triangles T ∈ τh. The elements of this triangulation are Pk finite
elements having M = (k + 1)(k + 2)/2 degrees of freedom, as plotted on figure 1.
Moreover, we sub-triangulate each triangle with a P1 conformal triangulation. This
means that ∀k ≥ 1 on a given T ∈ τh we introduce N = k2 sub-elements that we
denote by {Ts}s=1,N .
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Fig. 1 Sub-triangulations of Lagrangian elements

The solution is approximated by: Uh = ∑
i∈τh

ψPk

i Ui, where ψPk

i , the basis function

of node i, is a continuous piecewise polynomial of order k and Ui is defined by
Ui = Uh(xi,yi). On each T ∈ τh we also consider the set of vectors {n j} j∈T , defined

Fig. 2 Definition of the inward normals ni

by the inward normals to the edges of T facing each node j ∈ T . In the general Pk

case, with k > 1, we will assume that the n j’s are defined on a local sub-element
Ts ∈ T , as shown on figure 2 for the case k = 2. Finally, on each sub-element we

define the following upwind parameters: Kj =
1
2
∂F(U∗)
∂U

·ni where U∗ is a suitable

arbitrary average of U.
The residual distribution scheme consists of three steps:

1. Computation of the residual on each sub-element: φTs =
∫

Ts

∇ ·FdΩ =
∮
∂Ts

Fdl

2. Distribution of the residual to each node of the sub-element: φTs
i = BTs

i φ
Ts

3. Resolution of a system of nodal equations:∑
i,∈Ts

φTs
i = 0

This system is solved implicitly or explicitly by pseudo-time (τ) iterations:
∂U
∂τ

−∑
i∈Ts

φTs
i = 0.

In the hyperbolic case the schemes we consider are a particular case of the resi-
dual distribution (RD) schemes introduced by Abgrall [3].



High Order Residual Distribution Schemes Based on Multidimensional Upwinding 131

1.2 Linear Schemes

1.2.1 LDA Scheme

The first linear scheme is LDA. This scheme is multidimensionally upwind1 and order

preserving2. Its distribution coefficient is defined by: BTs,LDA(Pk)
i = K+

i (∑
j∈Ts

K+
j )−1

where K±
i = RΛ±R−1 where Ri is the matrix of the right eigenvectors of Ki and Λ±

i
the diagonal matrix of the positive (resp. negative) part of its eigenvalues.

1.2.2 N Scheme

The N scheme is 1st order, monotone3 when using P1 elements and upwind. We
directly define the distributed residual:

φN(Pk)
i = BLDA(Pk)

i φTs + dN,Ts
i with dN,Ts

i = ∑
j∈Ts

K+
i N K+

j (Ui −U j) (3)

where dN,Ts
i is a cross-wind dissipation involving only the nodes of the sub-elements

whereas φTs involves all the nodes of the element. That is the reason why the scheme
is not rigorously monotone, but is quasi non-oscillatory.

2 How to Treat Curvature Issues?

Until now, we have considered high order discretisation only for the solution and
from the geometrical point of view, the elements are linear. This causes some pro-
blems when we consider curved geometries as a NACA-0012. In this case all the
mid-points of the faces lying on the airfoil will not be on the body. This creates
some wiggles in the solution as shown on figure 3. On this figure, we consider a
subsonic flow (M = 0.5,α = 2◦) over a NACA-0012 and we look at the distribution

1 A scheme is multidimensional upwind if Bi = 0 when Ki ≤ 0.
2 Order preserving and Accuracy: In the steady case the condition to get k + 1-th order

schemes is that (see [3] for details)

ΦTs
j = O(hk+2) (2)

For the k-th degree polynomial approximation (1) we get ΦKs = O(hk+2), hence the accu-
racy condition is also expressed by ΦKs

j = O(ΦKs) meaning that the distribution coefficient
should be bounded (Order preserving condition).

3 Monotonicity: The rigorous definition of monotonicity for RD schemes resorts to the the-
ory of positive coefficients, see [3, 5] for details. In this paper we will define a scheme as
being monotone if, in practical computations, it gives a non-oscillatory approximations of
discontinuities. In particular, we are interested in schemes for which, across a discontinu-
ity, ΦTs

j ×ΦM
j ≥ 0, for some first order monotone splitting ΦM

j .
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of Cp on the NACA-0012. The first test was done using LDA(P2). If we zoom in on
the maximum of Cp, there are a lot of oscillations.
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Fig. 3 Approximation of curved geometries by linear elements

2.1 Krivodonova Methodology Applied to RDS

To solve this problem we first follow the approach of Krivodonova [1]. In this ar-
ticle the author explains that if one uses the exact normals of the geometry in the
integration points used to compute the corrective flux at the wall, then the results
are improved.

The method is an intermediate between the use of curved elements and the use of
P1P2 elements. Normally, when using a P1P2 element, the normal used to correct
the flux at the wall is the one of the element and it is the same for all the Gauss points
as illustrated on figure 4. However, for a P2P2 element the normals are defined per
Gauss points (figure 4). Here, we still use a straight element but we use the normals
of the geometry to compute the correction flux (figure 4).

Fig. 4 Approximation of curved geometries P1P2 face (left), P2P2 face (middle), P1P2 face
using exact normals (right)
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2.2 P2P2 Elements

In this strategy, we use a P2 discretisation both for the geometry and the solution.
The geometry of the curvilinear P2 element is defined by the following isoparame-
tric transformation to a parent element in ξ–η space (as shown in figure 5):

Fig. 5 Transformation of triangle geometry from reference to physical space using quadratic
Lagrange shape functions

x(ξ ,η) =
6

∑
i=1

ψh,2
i (ξ ,η) · xi y(ξ ,η) =

6

∑
i=1

ψh,2
i (ξ ,η) · yi (4)

where xi and yi are the known coordinates of the 6 nodes defined in physical space.
We can construct a mapping that transforms a face of the reference triangle in ξ–η
space to a face of a curvilinear triangle in x–y space (eq. (4)).

Since each shape function vanishes on a complete edge in ξ–η space, the bound-
aries of the triangle (defined by ξ = 0, η = 0 and ξ + η = 1 respectively) are
quadratic functions of one parameter ζ :

x = x(ζ )
y = y(ζ )

(5)

The sub-element residual φTs is computed by a contour integral:

φTs =
∮
∂Ts

F(Uh,2) · n̂dl (6)

The boundary ∂Ts is described by the transformation (4, 5). We integrate the fluxes
in (6) numerically using Gauss quadrature, 3-points per face f of the sub-element
as ∮

f
F(Uh,2) · n̂dl �

N

∑
q=1

wq[F(Uq) · n̂q]Jq, (7)

Jq =
√

ẋ2(ζq)+ ẏ2(ζq) (8)

where Jq is the Jacobian of transformation (5) at quadrature point q. We use the
transformation also to compute the normal nq.
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2.3 Subsonic Flow over a NACA-0012 Airfoil

We compare entropy generated by the LDA scheme in an inviscid subsonic flow over
an airfoil. The freestream Mach number is Ma = 0.5 and the angle of attack was set
to α = 2◦. Figure (6) shows entropy iso-lines in the interval 〈11.200,11.290〉 plotted
with step Δ = 0.002. We compare the results obtained when using P1P2 elements,
P1P2 elements with Krivodonova approach for the wall boundary conditions and
P2P2 elements. We can see that with simple P1P2 elements, lot of entropy is created
all around the airfoil. When using Krivodonova approach, the entropy deviation is
reduced but there is still an important layer at the trailing edge. Finally, the optimal
result is obtained with P2P2 elements.
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Fig. 6 Entropy iso-lines for different boundary discretizations. From left to right: P1P2 ele-
ments, P1P2 with Krivodonova boundary treatment and P2P2 elements.

3 Shock Capturing

3.1 RDS Shock-Capturing via Blending Schemes

To combine monotonicity and high order accuracy, the residual distribution method,
in accordance to the Godunov theorem [4], requires a non-linear high-order scheme
to be constructed. One way to construct such scheme is to blend the N scheme (1st

order monotone) with the LDA scheme (high order scheme) to obtain the residual
in the following form:

φB
i = θφN

i +(1−θ )φLDA
i (9)

This scheme relies on a good shock detection to properly capture the shock and
obtain both accuracy and monotonicity. There are many choices of different detec-
tors. Within this work, we will focus on an improved version of the Dobes shock-
detector, particular for the system of Euler equations, and introduced by Bonanni
[2]. It is based on the pressure gradients of the solution, and its definition is:

θ = min(1,scBon
2h), scBon =

⎛⎜⎜⎝
(∫

Ts

∇pdx

)
·v

δpv2 |Ts| ||v||

⎞⎟⎟⎠
+

(10)
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where p is the static pressure, δpv2 = (pmax − pmin)v̄2 is a global pressure variation
scale multiplied by the square of the magnitude of the mean velocity in the do-
main. This sensor is positive in a shock and compression, vanishes in expansions
and is of order O(1) in discontinuous regions. The shock detection is illustrated on
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Fig. 7 Transonic flow over a NACA-0012: Shock detector repartition on the airfoil

figure 7 where we plotted the repartition of θ for a transonic flow over a NACA-
0012 (M = 0.8,α = 1.25◦). We used linear discretisation of the solution to do this
simulation.

3.2 Transonic Flow over a NACA-0012 Airfoil

In this section we test the monotonicity and the accuracy of the Bx scheme. We
choose the transonic flow used to test the shock detector. We compare Bx(P1) and
Bx(P2) on meshes having the same number of degrees of freedom (3820 DOF). On
figure 8, we plot the Mach iso-lines. The solution of the Bx(P1) is behaving as a
monotone scheme. Bx(P2) shows few spurious oscillations that are advected until
the trailing edge. This phenomenon was expected since this scheme is not rigorously
monotone. However the better accuracy of the quadratic discretisation is visible on
figure 8. Indeed, the weakest shock is better resolved when we increase the order of
the discretisation.

Finally, we want to check that blending with a low order scheme does not imply
an increase of entropy at the leading edge. On figure 9 we can see that even if with
Bx(P1) there is a slight increase of entropy before the shock, with Bx(P2) the main
increase of entropy is located at the upper shock.
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Fig. 8 Transonic flow over a NACA-0012 airfoil (same number of degrees of freedom): Mach
iso-lines (ΔM = 0.03) (up)- zoom at leading edge (ΔM = 0.02) (down); P1P1 elements (left)
and P1P2 elements (right)
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Fig. 9 Transonic flow over a NACA-0012 airfoil: entropy deviation (ΔS = 0.002) using P1P1

(left) and P1P2 (right) elements



High Order Residual Distribution Schemes Based on Multidimensional Upwinding 137

4 Unsteady

4.1 Generalities and Notations

We describe a class of compact methods to approximate the unsteady solution of

∂U
∂ t

+∇ ·F(U) = 0 ∀(x,y, t) ∈Ωt = Ω × [0; t f ] (11)

To solve the unsteady problem of (11) we consider that time is a third dimension.
So, the domain Ωt is discretised by a succession of prismatic elements. To get high
order discretisation in time we use prisms with k + 1 levels, each level being a
Pk element of τh. As an example, on figure 10, P1 and a P2 prismatic elements
are plotted. For any given function U, its restriction on the prism K is defined by:

Uh =
n+1

∑
l=n−k+1

Hl(t)∑
i∈T

ψPk

i (x,y)Ul
i where Ul

i is the value of uh at node i and time

tl : Ul
i = Uh(xi,yi, tl) and ψPk

i (x,y) denotes the (mesh dependent) continuous k− th
order Lagrangian basis function. Hl is the 1D k− th order basis function of level l.

In each space-time element the (Un−l)k−1≤l≤0 are considered as known and Un+1

is the unknown which we compute using the process of a steady problem:

1. We compute the residual on each space-time sub-prism between n and n + 1:

φKs =
∫ tn+1

tn

∫
Ts

(
∂U
∂ t

+∇ ·F
)

dΩ dt.

2. We distribute the residual to the nodes of the sub-prism Ks. To respect the phy-
sical meaning of time, we would like to distribute only to the nodes of the level
n + 1. The consistency of the scheme is ensured by a constaint on the time step
called past-shield condition (for more details we refer to [14]). Under this con-
dition it is possible to distribute the residual ΦKs only to the nodes of the level
n + 1: φKs

i = φn+1
i = BiφKs .

3. The following system is solved by pseudo-time iterations: ∑
Ks,i∈Ks

φn+1,Ks
i = 0.

Fig. 10 Space-time P1 element (left) and P2 (right) with subdivision, definition of Δ t
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4.2 Space-Time Schemes

We extend the schemes of the steady case to the space-time framework by simply
replacing the spacial upwind parameter by the space-time one: k̃n+1

i = Δ t
2 ki +

|T |
3 .

To combine high order of accuracy and monotonicity , we consider the non-linear
limitation of the distribution coefficients of the ST-N scheme.

ST-NLim scheme. We limit the distribution coefficient of the N scheme4:

ΦTs
i = ΦST-Nlim

i = BST-Nlim
i ΦTs ,

BNlim
i = max(0,BST-N

i )/∑ j∈Ts max(0,BST-Nlim
j )

(12)

with BST-N
j = ΦST-N

i /ΦTs
i . The Nlim scheme verifies both the monotonicity re-

quirement (ΦTs
i ×ΦST-N

i ≥ 0), and the accuracy condition (2) (BST-Nlim
i bounded).

4.3 Results

Now, we want to test the monotonicity and the accuracy of ST-Nlim(P2). The double
Mach reflection test case was first proposed in [6]. It is very interesting to test the
accuracy and the robustness of a scheme. It consists of the interaction of a planar
right-moving M = 10 shock with a 30◦ ramp. We consider that the ramp is aligned
with the x-axis. The computational domain is [0;3]× [0;0.8] and the ramp start
at x = 1

6 . The initial shock forms an angle of 60◦ with the x-axis as sketched on
figure 11. On the top boundary, we impose the movement of the shock. We look at
the solution at t = 0.2 The real challenge of this test case is to catch the Kelvin-
Helmholtz instabilities. To see them, we zoom in on the triple point region and we
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Fig. 11 Double mach reflection: zoom in on the triple point density iso-lines at t = 0.2,
solution obtained with Nlim(P2) (left) and Nlim(P1) (right) with the same number of DOF
(h = 1/240)

4 In the case of a scalar problem the distribution coefficients of N scheme can be defined by
BST-N

j = ΦST-N
i /ΦKs

i . In the case of non-linear system of equations, this definition is not
any more valid. So, we use the wave decomposition proposed by Abgrall to demonstrate
the monotonicity of N scheme [7]. For more details on this methodology we refer to [14].
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use a mesh with mesh spacing of h = 1/240 (in the P1 mesh). We compare the
result obtained by Ricchiuto in [14] and by ST-Nlim(P2). First, the result obtained
with ST-Nlim(P2) is quasi non-oscillatory. Moreover, the shocks and the slip line
are better resolved with ST-Nlim(P2). Similarly, the instabilities are more developed
when using ST-Nlim(P2).

5 Viscous

5.1 Analogy with Petrov-Galerkin Method (PG)

Now, that we have described the design of high order RD scheme for system of hy-
perbolic conservation laws, we want to link RD formulation with Petrov-Galerkin
schemes. In both methods the solution is discretised by a combination of the conti-
nuous Lagrangian basis functions. However, upwind RD schemes such as LDA are
set for hyperbolic system of conservation laws whereas PG can be used for more
general conservation laws. Then, one idea to extend upwind RD to viscous term is
to use a Petrov-Galerkin approach. To do so, we need to find a weight function such
that RD and PG schemes are equivalent for hyperbolic conservation laws. Without
loss of generality we consider the linear scalar advection equation:

a ·∇u = 0 (13)

Lets look for the weight function ωPk

i such that if u is linear on each sub-element
PG and RD method would be equivalent. Then, we have:⎧⎪⎨⎪⎩

BTs
i

∫
Ts

a ·∇udΩ =
∫

Ts

ωPk
i a ·∇udΩ if i ∈ Ts

0 =
∫

Ts

ωPk
i a ·∇udΩ if i /∈ Ts

(14)

A weight function that verifies these conditions is:

ωPk
i |Ts

= ψPk
i +αTs

i STs (15)

where STs is the bubble function of the sub-element Ts and (xg,yg) is the gravity
centre of the sub-element Ts.

STs(x,y) =
{

0 if (x,y) ∈ ∂ (Ts)
1 if (x,y) = (xg,yg)

(16)

Finally, αTs
i is defined by:

αTs
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BTs
i |Ts|−

∫
Ts

ψPk
i dΩ∫

Ts

STs dΩ
if i ∈ Ts

−
∫

Ts

ψPk
i dΩ∫

Ts

STs dΩ
if i /∈ Ts

(17)
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Compared to the shape functionsψPk
i , the local regularity (within T ) of the bubble

function STs is quite low. However, ultimately both shape and bubble functions are
in the same functional space H1

0 (Ω) and share simple C0 continuity. In the next
section, we use this weight function to construct a consistent scheme to solve system
of conservation laws with a viscous term.

5.2 Extension to Viscous Terms

In this section, we consider the solution of a system of conservation laws with a
viscous term:

∇ ·F(U) = ∇ · (∇G(U)) ∀(x,y) ∈Ω (18)

To construct a consistent RD scheme to solve equation (18), we use the PG formu-
lation of the last section:

φPG,T
i = ∑

Ts∈T

∫
Ts

ωPG
i ∇ ·F(U)dΩ︸ ︷︷ ︸

I

+
∫

Ts

∇ωPG
i ∇G(U)dΩ︸ ︷︷ ︸

II

(19)

We previously saw that integral I is equivalent to RD so we will replace it by the
nodal residual of RD method. Finally, the nodal residual of the RD is:⎧⎪⎨⎪⎩

φTs
i = Bi

∮
∂Ts

F(U)dΩ +
∫

Ts

∇ωPG
i ∇G(U)dΩ i ∈ Ts

φTs
i = 0 +

∫
Ts

∇ωPG
i ∇G(U)dΩ i /∈ Ts

(20)

After assembling all the contributions, we end up solving the following system:

∑
T,i∈T

∑
Ts,Ts∈T

φTs
i = 0 (21)

With this method we achieve (k + 1) order scheme when using Pk elements. We
denote by LDA(Pk) these schemes using Pk discretisation.

5.3 Results

Finally, we consider the flow over a NACA-0012 at Mach 0.5 and Reynolds 5000
without angle of incidence. For this test case the Reynolds number is close to the
limit of steady laminar flow. The solution has a characteristic separation of the
flow near the trailing edge. This forms two symmetrical recirculation bubbles in
the near-wake region of the airfoil. The Mach number iso-lines computed using
the quadratic discretisation are plotted in figure 13. This solution was obtained on
the non-symmetrical mesh plotted on figure 12 which have 8564 degrees of freedom
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(nodes on the mesh), from which 200 are on the airfoil. We also plot the reparti-
tion of the pressure coefficient (figure 15) and of the friction coefficient (figure 14)
around the airfoil. These plots show that we obtain a symmetrical result.

Fig. 12 Viscous flow over a NACA-
0012: Type of mesh used

Fig. 13 Viscous flow over a NACA-
0012: Mach number iso-lines (ΔM =
0.02)
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Fig. 14 Skin friction coefficient
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Fig. 15 Pressure coefficient

Finally, on table 1, we compare the drag coefficient and the separation points
of literature to the ones obtained with LDA. It is difficult to drive any conclusion
from the value of Cd,pres because the value obtained with linear and quadratic dis-
cretisations are very similar. Concerning the viscous component, we can see that
already with the second mesh, we obtain a value very close to the one of literature
with LDA(P2), whereas with LDA(P1) even on the finest mesh it is still far from the
references. Similarly, on the coarsest meshes, we obtain already a good value of the
separation point when using a quadratic discretisation, although with the linear one
even on the finest mesh the result is a bit far from the expected result. To run the
3rd order scheme on the coarsest mesh 682s CPU time were necessary. To obtain a
similar result with the 2nd order scheme it is necessary to use the finest grid and then
it takes 2272s CPU time. This shows that it is faster to obtain a good result with a
high order scheme than with a low order one.
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Table 1 Comparison of Drag coefficients and separation point with literature

Mesh Cdp Cdv Separation point
4630 DOF (148 on wall) P1 0.02239 0.03132 94.5
4630 DOF (148 on wall) P2 0.02238 0.03414 82.5
8564 DOF (200 on wall) P1 0.02296 0.03130 87
8564 DOF (200 on wall) P2 0.02234 0.03294 82.3
17146 DOF (300 on wall) P1 0.02284 0.03181 82.9
17146 DOF (300 on wall) P2 0.02239 0.03274 82.1
Reference [11] 16384 0.0219 0.0337 81.9
Reference [12] 65536 0.0227 0.0327 81.4
Reference [13] 1024 (cubic elements) 0.02208 0.03303

6 Conclusion

We have presented an extension of upwind residual distributive schemes to high or-
der discretisations. In particular, we have described two ways to deal with curved
boundaries: Krivodonova approach and the use of P2P2 elements. Both strategies
decrease the creation of entropy. But the best result is obtained when using a high
order discretisation of the geometries. Then, we have considered the construction
of high order monotone schemes. In the steady case, we have used a blending
method,that allows to use a high order scheme in smooth region and a monotone
scheme (only 1st order accurate) on discontinuities. This strategy allows to get a
quasi non-oscillatory solution. In the unsteady case, to achieve accuracy and mono-
tonicity, we have limited the distribution coefficients of N scheme to get an order
preserving scheme. This scheme also give quasi monotone solutions. Finally, we
have used an analogy between Petrov-Galerkin method and Residual Distributive
method to extend RDS to viscous flow. We have compared the results obtained with
linear and quadratic discretisations and we have shown that the quadratic discretisa-
tion were more efficient.
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Chapter 11
Higher-Order Stabilized Finite Elements in an
Industrial Navier-Stokes Code

Frédéric Chalot and Pierre-Elie Normand

Abstract. This chapter covers Dassault Aviation’s contribution to Workpackage 3 of
the ADIGMA Project, which focuses on the extension of its stabilized finite element
industrial Navier-Stokes code to higher-order elements. Mesh generation aspects are
treated and especially the issue of highly-stretched curved elements close to the wall
boundary of Navier-Stokes meshes. The high-order approach is carefully assessed
using inviscid subsonic and transonic, laminar, and high Reynolds number turbulent
flows.

1 Introduction

Over the past two decades, modern CFD has gone from producing pretty pictures to
actually producing numbers which are crucial when improving the aerodynamic de-
sign of aircraft. Over this period of time, models have improved going from inviscid
Euler calculations to laminar and then turbulent Navier-Stokes. Turbulent models
have evolved from purely algebraic models to RANS models, to unsteady models
like LES and DES which are slowly making their way into the industrial world
[10]. The growth of computer power has also tremendously helped that change: the
power of the vector supercomputers of the 80’s is now available on laptop PC’s,
whereas the Top500 parallel computers are flirting with a few sustained Petaflops.
Most industrial CFD codes and commercial packages have made the transition from
early developments in finite differences to finite volumes, and are rapidly moving

Frédéric Chalot
Dassault Aviation, 78 quai Marcel Dassault, CEDEX 300, 92252 Saint-Cloud CEDEX,
France
e-mail: frederic.chalot@dassault-aviation.com

Pierre-Elie Normand
Université de Bordeaux, 341 cours de la Libération, 33405 Talence CEDEX, France
e-mail: pierre-elie.normand@external.dassault-aviation.com

N. Kroll et al. (Eds.): ADIGMA, NNFM 113, pp. 145–165, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



146 F. Chalot and P.-E. Normand

away from the apparent simplicity of structured and block-structured meshes to the
flexibility of unstructured meshes, often at the price of a lesser efficiency.

A large amount of work was also performed to develop stable and accurate spatial
numerical schemes for compressible flow calculations. Overly diffusive first-order
schemes were rapidly abandoned for second-order accurate schemes with mono-
tonic shock-capturing capabilities. Such a level of accuracy proved sufficient for
most industrial codes, even for applications such as LES and DES which were at
first developed with higher-order schemes [7]. Higher-order schemes seem reserved
for specific fields (DNS, aeroacoustics) where the enhanced accuracy is mandatory.

Today’s complex applications require an ever increasing number of grid points
for which mesh convergence can seemingly never be attained.

The European project ADIGMA proposed a unique framework to address many
of the accuracy and cost issues of current industrial CFD codes. The different part-
ners have put together innovative higher-order methods which will constitute key
ingredients for the next generation of industrial flow solvers. The participation of
Dassault Aviation was twofold: higher-order stabilized finite elements described
in the following sections, and adjoint-based adaptive mesh refinement detailed in
Chapter 26.

2 Higher-Order Stabilized Finite Element Schemes for the
RANS Equations

Although Dassault Aviation started from the beginning with unstructured meshes
and a Navier-Stokes code based on a finite element formulation, the claim that finite
elements can fairly effortlessly and in a straightforward manner go high in order
was never fully exploited. We currently still use for all Navier-Stokes calculations
linear elements which yield second-order accuracy [5, 9, 10]. A single but successful
attempt was made to compute the flow past a supersonic ramp [2] using quadratic
elements.

Higher-order (3rd and 4th order) finite elements in the SUPG/Galerkin-least
squares framework will be revisited. We will present our numerical method in the
following sections and highlight the adjustments required by higher-order elements.

2.1 General Description of Our Flow Solver

Dassault Aviation’s Navier-Stokes code, called AETHER, uses a finite element ap-
proach, based on a symmetric form of the equations written in terms of entropy
variables. The advantages of this change of variables are numerous: in addition to
the strong mathematical and numerical coherence they provide (dimensionally cor-
rect dot product, symmetric operators with positivity properties, efficient precondi-
tioning), entropy variables yield further improvements over the usual conservation
variables, in particular in the context of chemically reacting flows (see [4, 5]).
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The code can handle the unstructured mixture of numerous types of elements (tri-
angles and quadrilaterals in 2-D; tetrahedra, bricks, and prisms in 3-D). In practice
mostly linear triangular and tetrahedral meshes are used.

Different one- and two-equation Reynolds-averaged turbulence models are avail-
able: Spalart-Allmaras, K-ε , K-ω , K-�, K-KL. . . These models are either integrated
down to the wall, use a two-layer approach with a low-Reynolds modelization of
the near wall region, or adopt a wall function treatment of the boundary layer. More
advanced RANS models, such as EARSM and RSM, and extensions to LES and
DES are also available (see [7], [8], and [10]).

Convergence to steady state of the compressible Navier Stokes equations is
achieved through a fully-implicit iterative time-marching procedure based on the
GMRES algorithm with nodal block-diagonal or incomplete LDU preconditioning
(see [12]).

The code has been successfully ported on many computer architectures. It is fully
vectorized and parallelized for shared or distributed memory machines using the MPI
message passing library (IBM SP2 Series, IBM BlueGene, Itanium II- and Xeon-
based Bull NovaScale) or native parallelization directives (NEC SX-4) (see [6]).

2.2 The Symmetric Navier-Stokes Equations

As a starting point, we consider the compressible Navier-stokes equations written
in conservative form:

�,t +� adv
i,i =� diff

i,i (1)

where � is the vector of conservative variables; � adv
i and � diff

i are, respectively,
the advective and the diffusive fluxes in the ith-direction. Inferior commas denote
partial differentiation and repeated indices indicate summation.

Equation (1) can be rewritten in quasi-linear form:

�,t +�i�,i = (�i j�, j),i (2)

where �i = � adv
i,U is the ith advective Jacobian matrix, and � = [�i j] is the dif-

fusivity matrix, defined by � diff
i =�i j�, j. The �i’s and � do not possess any

particular property of symmetry or positiveness.
We now introduce a new set of variables,

� T =
∂H

∂�

where H is the generalized entropy function given by

H = H (� ) = −ρs

and s is the thermodynamic entropy per unit mass. Under the change of variables
� �→� , (2) becomes:
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�̃0�,t +�̃i�,i = (�̃i j�, j),i (3)

where

�̃0 = �,V

�̃i = �i�̃0

�̃i j = �i j�̃0.

The Riemannian metric tensor �̃0 is symmetric positive-definite; the �̃i’s are sym-

metric; and �̃ = [�̃i j] is symmetric positive-semidefinite. In view of these prop-
erties, (3) is referred to as a symmetric advective-diffusive system.

For a general divariant gas, the vector of so-called (physical) entropy variables,
� , reads

� =
1
T

⎧⎨⎩ μ−|�|2/2
�
−1

⎫⎬⎭
where μ = e+ pv−Ts is the chemical potential per unit mass; v = 1/ρ is the specific
volume. More complex equations of state are treated in [3]. We would like to stress
the formal similarity between the conservation variables � and the entropy vari-
ables � , which can be made more apparent if we write the conservation variables
in the following form:

� =
1
v

⎧⎨⎩
1
�

e + |�|2/2

⎫⎬⎭
where v = 1/ρ is the specific volume.

Taking the dot product of (3) with the vector � yields the Clausius-Duhem in-
equality, which constitutes the basic nonlinear stability condition for the solutions of
(3). This fundamental property is inherited by appropriately defined finite element
methods, such as the one described in the next section.

2.3 The Galerkin/Least-Squares Formulation

Originally introduced by Hughes and Johnson, the Galerkin/least-squares (GLS)
formulation is a full space-time finite element technique employing the discontinu-
ous Galerkin method in time (see [1, 13]). The least-squares operator ensures good
stability characteristics while retaining a high level of accuracy. The local control
of the solution in the vicinity of sharp gradients is further enhanced by the use of a
nonlinear discontinuity-capturing operator.

Let Ω be the spatial domain of interest and Γ its boundary. The semi-discrete
Galerkin/least-squares variational problem can be stated as:

Find � h ∈ S h (trial function space), such that for all � h ∈ V h (weighting
function space), the following equation holds:
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∫
Ω

(
W h ·�,t(� h) −� h

,i ·� adv
i (� h)+� h

,i ·�̃i j�
h

, j

)
dΩ

+
nel

∑
e=1

∫
Ω e

(
L� h

)
·�
(
L� h

)
dΩ

+
nel

∑
e=1

∫
Ω e

νhgi j� h
,i ·�̃0�

h
, j dΩ

=
∫
Γ
� h ·

(
−� adv

i (� h)+� diff
i (� h)

)
ni dΓ . (4)

The first and last integrals of (4) represent the Galerkin formulation written in inte-

grated-by-parts form to ensure conservation under reduced quadrature
integration.

The second integral constitutes the least-squares operator where L is defined as

L = �̃0
∂
∂ t

+�̃i
∂
∂xi

− ∂
∂xi

(�̃i j
∂
∂x j

). (5)

� is a symmetric time-scale matrix for which definitions can be found in [13].
The third integral is the nonlinear discontinuity-capturing operator, which is de-

signed to control oscillations about discontinuities, without upsetting higher-order
accuracy in smooth regions. gi j is the contravariant metric tensor defined by

[gi j] = [	,i ·	, j]−1

where 	 = 	(
) is the inverse isoparametric element mapping and νh is a scalar-
valued homogeneous function of the residual L� h. The discontinuity capturing
factor νh used for linear elements is an extension of that introduced by Hughes,
Mallet, and Shakib (see [11, 13]).

A key ingredient to the formulation is its consistency: the exact solution of (1)
satisfies the variational formulation (4). This constitutes an essential property in
order to attain higher-order spatial convergence.

2.4 Extension to Higher-Order Elements

In principle everything is contained in the weighted residual given by Eq. (4). There
is no new term to code, no interpolation technique specific to higher order to derive:
everything is already there. We just have to compute the integrals of (4), taking into
account the new higher-order shape functions.

The volume and surface integrals are numerically evaluated with quadrature
rules. All is needed is the values of the shape functions (and their gradients) at
the integration points. Higher-order functions only require more precise integration
rules. In general, we use 3-, 6-, and 12-point rules, respectively for linear, quadratic,
and cubic triangles. They have orders of accuracy which integrate exactly polyno-
mials of degrees 2, 4, and 6 respectively.
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For a given number of degrees of freedom, higher-order meshes contain much
fewer elements than P1 meshes. The ratio is 1/4th for quadratic elements, and 1/9th
for cubic. Although more integration points are required, the higher-order computa-
tion of (4) is actually cheaper. The extra cost comes from the implicit linear system
which possesses a much larger bandwidth. For a regular 2-D mesh with six triangles
connected to a given node, each line of the implicit matrix contains 7, 19, and 37
non-zero blocks, respectively for P1, P2, and P3 elements.

Preliminary quadratic and cubic element results obtained with the original sta-
bilization and discontinuity capturing term used for linear elements, appeared too
diffusive especially for MTC 2. This is an indication that the intrinsic time scale
matrix � must be reduced for higher-order elements. Theoretical study of the 1-
D scalar advection diffusion equation showed that the optimal � must indeed be
reduced in the advective limit for any higher-order element. The shock capturing
operator must also be tuned in a similar fashion.

In fact one term in the weighted residual must be specially treated in the context
of higher-order elements. The last term in (5) vanishes to zero for linear elements.
It appears in the second integral of (4). This term must be computed with higher-
degree shape and test functions in order to preserve consistency. In practice, it is
evaluated using an L2-projection.

One-dimensional studies showed that there was no significant differences be-
tween SUPG and Galerkin/least-squares. We have chosen to concentrate solely on
SUPG which is easier to implement.

As a final remark, we want to stress the fact that whatever the order of the ele-
ments, all operations remain local (viz. at the element level). Consequently higher-
order elements engender no implicitation nor parallelization issue (see [6]).

3 Isoparametric Meshes with Curved Boundaries

We have made the seemingly obvious choice of higher-order isoparametric ele-
ments. One of the advantages of these elements, besides the higher-order shape
functions, is the use of higher-order polynomials to represent curved boundaries.
They only ensure C0 continuity across elements, but locate all the nodes on the
actual surface.

We had thought at first that the slope discontinuity across element boundaries
could be minimized by adjusting the location of the extra nodes along the sides and
the faces of elements beyond P1. In practice it is very easy to generate negative
elements with “shamrock”-like edges if one tries to play with node location along
edges to optimize curvature. Consequently we sticked in this study to elements with
equally distributed nodes along the edges and faces.

All higher-order meshes were obtained by adding nodes to a coarse initial P1
mesh. We had previously checked that quadratic and cubic triangular meshes would
fit DASSAV data structure. Nested two-dimensional P1, P2, and P3 grids could
be generated with equally distributed boundary nodes. Local node numbering was
introduced into AETHER for cubic triangles, quadratic and cubic tetrahedra (linear
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a

b c

d e

Fig. 1 Higher-order mesh generation for inviscid test cases: original P1 mesh (a); P2 mesh
and corresponding P1 mesh (b and c); P3 mesh and corresponding P1 mesh (d and e)

and quadratic triangles, and linear tetrahedra were preexisting). Corresponding face
numbering for boundary elements was also introduced.

ARA provided sets of unstructured linear triangular grids for the Mandatory Test
Cases. We had to generate new series of higher-order P1, P2, and P3 meshes. The
first meshes used for the inviscid MTC’s (1 and 2) are depicted in Figure 1.

All inviscid higher-order meshes were obtained by adding nodes to a coarse
1106-node P1 mesh (see Fig. 1 a). This yields a 4336-node P2 mesh and a 9690-node
P3 mesh. The first P2 mesh is shown in Figure 1 b, whereas its P1 counterpart, which
contains exactly the same number of grid points, is shown in Figure 1 c. Figures 1 d
and e show the first cubic mesh and the matching linear grid. Four finer quadratic
grids (up to 1,088,896 nodes) and two finer cubic grids (up to 775,386 nodes) were
generated. All new nodes are added along the actual profile. This produces boundary
elements with curved edges. Elements not connected to the boundary have straight
edges.
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a

b c

d e

Fig. 2 Higher-order mesh generation for Navier-Stokes test cases: original P1 mesh (a); P2
mesh and corresponding P1 mesh (b and c); P3 mesh and corresponding P1 mesh (d and e)

Navier-Stokes meshes with their stretched elements along the boundary bring
a specific difficulty: extra nodes added along the boundary may produce negative
elements. Figure 2 a presents the initial coarse 1533-node mesh which is the starting
point of all grids generated for MTC 3. The corresponding 6034-node P2 and P1
iso-P2 grids, and 13,503-node P3 and P1 iso-P3 grids are shown respectively in
Figures 2 b–e. Four finer quadratic grids (up to 1,521,184 nodes) and two finer
cubic grids (up to 1,083,159 nodes) were generated.

Figure 3 depicts the mesh deformation technique used to generate stretched and
curved higher-order elements close to the airfoil boundary for the Navier-Stokes
cases. The initial grid is shown in Figure 3 a. P1 iso-P2 and P1 iso-P3 grids are
constructed with straight edges (see Figs. 3 b and d). The bold line represents the
actual boundary. Figures 3 c and e presents the P1 meshes after deformation. The
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a

b c

d e

f g

Fig. 3 Mesh deformation for isoparametric higher-order mesh generation for Navier-Stokes
test cases: original P1 mesh (a); P1 iso-P2 mesh before (b) and after (c) deformation; P1 iso-
P3 mesh before (d) and after (e) deformation; in (b) and (d) actual boundary is represented
with bold line; final P2 and P3 grids (f and g).

corresponding P2 and P3 grids are shown in Figures 3 f and g. Unlike the meshes
built for the inviscid test cases, these meshes contains elements with curved faces in
the volume away from the airfoil surface.
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A series of P1, P2, and P3 meshes was also generated for MTC 5. The same
mesh deformation technique used for MTC 3 grids was applied to obtain stretched
and curved higher-order elements close to the airfoil boundary. Highly stretched
elements are present close to the airfoil surface and in the wake with aspect ratios
up to 2×106!

4 Numerical Examples

Dassault Aviation computed four of the Mandatory Test Cases defined in Work-
package 2 of the ADIGMA Project. They cover a wide range of applications: from
inviscid subsonic and transonic flows (MTC’s 1 and 2), to laminar Navier-Stokes
(MTC 3), and finally a profile in transonic turbulent conditions (MTC 5). All four
test cases were run with the baseline second-order version of Dassault Aviation’s
industrial Navier-Stokes code AETHER and with the revisited or newly developed
third and fourth order extensions.

4.1 MTC 1: NACA0012, M = 0.50, α = 2◦, Inviscid

As an introductory comment, we should say that our code AETHER is really ded-
icated to Navier-Stokes applications. It can compute Euler flows but uses a strong
slip boundary condition at the nodes with the true normals to the geometry. We im-
pose a weak slip boundary condition at the trailing edge of airfoils and in regions
where the definition of a single normal is tricky. A more natural way of imposing
the inviscid slip condition in a finite element framework would be a weak condition
through the boundary integral everywhere. Nevertheless inviscid test cases are valu-
able since they allow the assessment of the higher-order stabilization operator in the
advection limit.

Higher-order MTC 1 results are compared with those obtained on the correspond-
ing P1 mesh with the same number of nodes in Figures 4–5. They clearly show the
advantage of the increased order of accuracy brought by quadratic and cubic ele-
ments. The entropy layer generated at the stagnation point is much reduced with
quadratic elements and virtually disappears with cubic elements. This directly im-
pacts the Mach number contours which traditionally present kinks near the wall on
coarse P1 meshes. These kinks are removed from higher-order calculations, which
also present much cleaner contours for the same number of degrees of freedom.

The kinks in Mach number contours observed in second-order solutions along the
profile are not due to a lower degree of accuracy boundary condition or boundary
integral computation as may have been suggested, but in fact to the level of spurious
entropy generated at the leading edge. It is convected along the profile and affects the
solution close to the airfoil. This fact will be confirmed in Chapter 26, where local
mesh refinement in the sole leading edge region suppresses the spurious entropy
production.
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P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Fig. 4 MTC 1: NACA0012, M = 0.50, α = 2◦, inviscid. Mach number contours on matching
P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P1 (9690 nodes)

Fig. 5 MTC 1: NACA0012, M = 0.50, α = 2◦, inviscid. Entropy contours on matching P1
iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.
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Fig. 6 MTC 1: NACA0012, M = 0.50, α = 2◦, inviscid. Convergence of force coefficients for
P1, P2, and P3 elements; estimated numbers of degrees of freedom and times for convergence.

Figure 6 presents the convergence of the drag and lift coefficients with respect
to the grid size given by its node number or “number of degrees of freedom per
equation.” The error bars represent the convergence definitions provided for the test
case: when a given coefficient reaches within the error bars, the solution is assumed
converged for that particular coefficient.

We can notice a dramatic increase in convergence rate with the order of the
scheme. Lift is converged for every tested higher-order mesh; drag requires more
effort, and may still gain from an increase in scheme order beyond 4 as shown in
the last plots of Figure 6. Even CPU time shows a gain with scheme order (note
that a few higher-order values in these plots have been extrapolated). The times for
convergence are scaled by the corresponding time for linear elements.
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4.2 MTC 2: NACA0012, M = 0.80, α = 1.25◦, Inviscid

MTC 2 is a transonic inviscid test case. It is interesting in its own respect, since it
can challenge the ability of higher-order elements to treat shocks with the help of
the discontinuity capturing operator.

Figure 7 shows Mach number contours on the same set of meshes used for
MTC 1. In spite of the presence of the shock wave, no obvious degradation in the
solution quality can be observed. P3 elements even produce the best result with a
well resolved slip line and a captured windward-side weak shock.

P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Fig. 7 MTC 2: NACA0012, M = 0.80, α = 1.25◦, inviscid. Mach number contours on match-
ing P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

Entropy contours displayed in Figure 8 show a reduction in the production of spu-
rious leading-edge entropy similar to MTC 1. However the entropy rise through the
normal shock does not look as controlled with higher-order elements. The perturba-
tions remain local though, thanks to the SUPG operator. Note that all these contours
are plotted on P1 meshes. Actual higher-order contours might be smoother.

Figure 9 presents the convergence of the drag and lift coefficients. As with
MTC 1, all higher-order meshes display a converged lift coefficient, whereas drag
requires more mesh points. The last two plots in Fig. 9 indicate that most of the gain
is obtained with third order elements. On the average, CPU time to convergence is
reduced by 80%.
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P1 (4336 nodes) P2 (4336 nodes)

P1 (9690 nodes) P3 (9690 nodes)

Fig. 8 MTC 2: NACA0012, M = 0.80, α = 1.25◦, inviscid. Entropy contours on matching
P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

4.3 MTC 3: NACA0012, M = 0.50, α = 2◦, Re = 5,000

We now come to MTC 3, one of the most interesting test cases in the selection.
It concerns the laminar computation of an airfoil. Although a Navier-Stokes test
case, it is still far from concrete industrial applications. We will see however that
it exemplifies the difficulty of getting converged Navier-Stokes solutions. One can
anticipate an even greater challenge with complex 3-D RANS computations.

Figure 10 presents pressure contours obtained on the coarsest quadratic and cubic
meshes. They are compared with results computed on corresponding linear meshes
containing the very same numbers of grid points. P1 results show the difficulty of
preserving a constant pressure through an underresolved boundary layer and highly
stretched elements. This difficulty is alleviated with the increasing order of the
elements.

Figure 11 presents the convergence of force coefficients: pressure drag and lift,
friction drag, and heat flux. The advantage of higher-order elements is even more
blatant than for the inviscid test cases described previously. Pressure drag and lift
converge faster with quadratic elements; cubic elements yield values close to the
asymptotic limit for every computed grid, even the coarser ones.

Unexpectedly viscous fluxes appear as a real challenge for this laminar test case.
Second order viscous drag is still not converged for the finest mesh which contains
over 1.5 million nodes: the asymptotic value is provided by the quadratic results.
The magnified plot is even more striking: linear elements have a hard time getting
within one drag count of the asymptotic value of the friction drag, whereas as all
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Fig. 9 MTC 2: NACA0012, M = 0.80, α = 1.25◦, inviscid. Convergence of force coeffi-
cients for P1, P2, and P3 elements; estimated numbers of degrees of freedom and times for
convergence.

higher-order results are within half of the same margin. Heat flux convergence plot-
ted in log scale shows the substantial advantage of higher-order elements. The error
in heat flux (which should be zero for an adiabatic wall condition) can be reduced
by several orders of magnitude.

The number of nodes and the CPU time for convergence are again reduced with
the order of the scheme used. Quadratic elements bring most of the reduction, except
for lift which seems to converge at a slower rate and may benefit from an element
order beyond 3.

Regarding CPU cost and memory requirements, we can be more specific for this
particular test case. For the same number of degrees of freedom, the extra cost of
P2 elements over P1 is only 30%; P3 elements are 2 to 2.5 times as expensive as
P1 elements. The overhead due to the L2 projection can be reduced. The CPU cost
increase is overtaken by the drastic reduction in the number of nodes required for
convergence. Consequently the CPU time for convergence decreases with the degree



160 F. Chalot and P.-E. Normand

P1 (6034 nodes) P2 (6034 nodes)

P1 (13,503 nodes) P3 (13,503 nodes)

Fig. 10 MTC 3: NACA0012, M = 0.50, α = 2◦, Re = 5,000. Pressure contours on matching
P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

of the scheme. Memory requirements are mostly due to the implicit Jacobian matrix.
They respectively gain 30% and 70% for quadratic and cubic elements.

4.4 MTC 5: RAE2822, M = 0.734, α = 2.79◦, Re = 6,500,000

The final test case deals with a transonic high Reynolds number RANS problem.
In the numerical method described in Section 2.1, the turbulence equations are

solved in a staggered manner, with a second-order residual distribution scheme, and
are weakly coupled to the Navier-Stokes field through the turbulent viscosity μt .

As a first step, for higher-order calculations, RANS turbulent equations are solved
on an underlying P1 mesh, and thus remain second order accurate. These first results
show the robustness of the SUPG finite element method. As for the more elementary
MTC’s (1, 2, and 3), the convergence of quadratic and cubic elements is similar to
that obtained for linear elements with the same CFL settings. High aspect ratios (up
to 2×106 in the considered set of meshes) do not seem to be an issue.

Figure 12 presents Mach number contours obtained with P1, P2, and P3 elements
on matching grids. On these fairly coarse meshes, it’s hard to see any difference
between the solutions.

The force coefficient convergence plots are gathered in Figure 13. The open sym-
bol curves represent the second-, third-, and fourth-order methods described above
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Fig. 11 MTC 3: NACA0012, M = 0.50, α = 2◦, Re = 5,000. Convergence of force and heat
flux coefficients for P1, P2, and P3 elements; estimated numbers of degrees of freedom and
times for convergence.
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Fig. 12 MTC 5: RAE2822, M = 0.734, α = 2.79◦, Re = 6,500,000. Mach number contours
on matching P1 iso-P2 and P2 grids, and P1 iso-P3 and P3 grids.

(with a second order turbulence model). There is no real distinction between the
three schemes. They converge at the same rate toward the same asymptotic values.
Nevertheless heat flux shows once more an indisputable advantage of higher-order
elements over linear ones. The error is smaller by as much as three orders of mag-
nitude. There is no additional benefit brought by cubic elements though.
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Fig. 13 MTC 5: RAE2822, M = 0.734, α = 2.79◦, Re = 6,500,000. Convergence of force
and heat flux coefficients for P1, P2, and P3 elements
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In an attempt to simulate a “higher-order” turbulence model, we used the inter-
polation of the μt field computed on the finest P1 mesh (2,669,536 nodes). The
outcome of this test is indicated in the different convergence plots of Fig. 13 with
filled symbols. We have only tested linear and quadratic elements. Results show that
the turbulence model has a huge impact on the convergence of force coefficients.
Quadratic elements have a slight edge over linear elements, especially for the coars-
est meshes. Heat flux convergence is unaffected. This demonstrate the need for a
higher-order turbulence model to fully exploit in RANS computations the benefit of
higher-order elements observed in inviscid and laminar test cases.

4.5 Concluding Remarks on Numerical Test Cases

In this study, many firsts have been accomplished:

• the implementation of higher-order (quadratic and cubic) stabilized finite ele-
ments for compressible flows in an industrial code;

• the systematic convergence study of increasingly difficult test cases: inviscid,
transonic, laminar, and turbulent flows;

• the proof that higher-order convergence can be achieved at a reasonable cost;
• the demonstration that higher-order elements are robust: same CFL rules where

applied in our simulations with convergences similar to linear elements and
sometimes significantly better;

• the verification that higher-order elements bring no particular complications in
terms of implicitation nor parallel efficiency.

Difficulties were encountered with the RANS test cases. We believe they can be
palliated with a stronger higher-order coupling between the Navier-Stokes solver
and the turbulence model, or the use of a genuine higher-order scheme for solving
the turbulence equations.

5 Towards Industrial Applications

As a conclusion we’ll comment on the transition towards industrial applications.
The extension to 3-D is readily available. To make it industrially viable, one needs
a dedicated way to generate higher-order meshes. Enriching P1 meshes yields way
too fine higher-order mesh sets in 2-D. This is even more true in 3-D.

The cost of higher-order elements is reasonable (at most a factor of 2 for P3 with
the same number of dof’s), and it can be worked upon.

Higher-order elements can handle high aspect ratios and same CFL’s as the stan-
dard second-order scheme with convergences often better than with linear elements.
They engender no implicit, nor parallel issue, which is mandatory for industrial
applications.

The coupling with RANS turbulence model must be improved. In the mean time,
higher-order elements might show a unique potential for Large Eddy Simulations.
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Chapter 12
A Third-Order Finite-Volume Residual-Based
Scheme on Unstructured Grids

Xi Du, Christophe Corre, and Alain Lerat

Abstract. A residual-based compact (RBC) scheme originally designed on struc-
tured grids has been extended to unstructured grids. A second and third-order finite-
volume (FV) formulations of the residual-based scheme have been proposed, which
rely on a linear or quadratic least-square based solution reconstruction and an orig-
inal dissipation flux. A simple matrix-free implicit scheme provides robustness and
fast-convergence to a steady-state. The schemes are extended from a steady inviscid
formulation to viscous and unsteady flows, keeping the same design principles and
successively including new contributions to the residual. Computations of 2D and
3D external flows proposed in the ADIGMA project are presented and analyzed.

1 Introduction

The RBC scheme was proposed by Lerat and Corre in the early 2000s [1] [2]. The
key idea is to take advantage of the residual r vanishing at steady-state to derive a
compact and accurate discrete steady solution for the system of conservation laws
wt + r = 0, where for instance r = f (w)x + g(w)y in the case of the 2D Euler equa-
tions. Another key ingredient is the design of matrix dissipation coefficients ensur-
ing the scheme’s dissipation hence robustness. A 3rd order FV RBC was designed in
[2] for solving the compressible Euler and Navier-Stokes equations and successfully
applied to the computation of transonic flows around airfoils on curvilinear grids.
The compactness of this third-order scheme (expressed on a 3× 3× 3 stencil for
the 3D Euler equations) allowed simple boundary treatments as well as enhanced
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e-mail: xi.du-4@etudiants.ensam.eu, alain.lerat@paris.ensam.fr

Christophe Corre
LEGI UMR5519, Domaine universitaire BP 53, 38041 Grenoble Cedex 9, France
e-mail: christophe.corre@grenoble-inp.fr

N. Kroll et al. (Eds.): ADIGMA, NNFM 113, pp. 167–180, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



168 X. Du, C. Corre, and A. Lerat

convergence to steady-state when coupled with a simple first-order implicit stage.
The scheme was further extended to unsteady flows within a dual or fictitious time
approach, that is looking for steady solutions of wτ + r = 0, with τ the dual time
and the residual r = wt + fx +gy now including the physical time-derivative [3] [5].
The scheme’s structure was left unchanged with respect to the steady-case when
expressed in terms of discrete expressions for the residual. Second- and third-order
RBC scheme were applied to the RANS and URANS equations with a RSM tur-
bulence modeling for computing flows with oscillating shocks in supersonic air in-
takes [6], in the frame of the French National Program ”Recherche Aronautique sur
le Supersonique”. In the course of the DGAC AITEC program, these same schemes
have also been implemented into the ONERA elsA code and applied to a variety
of realistic steady and unsteady turbomachinery configurations. More recently, the
RBC schemes have been extended to accuracy orders higher than 3 by constructing
compact residual expressions deduced from particular Pade fractions [7] [8] [9]. For
instance a 7th-order scheme using a 5× 5× 5 stencil has been applied to the 3D
Euler equations. These very high order RBC scheme have been applied to aeroa-
coustic problems of the TurboNoise-CFD European Program, RANS simulations
of oscillating shocks in nozzles and Euler simulations of spinning acoustic waves
in aircraft engine intakes. Motivated by the successful development of the RBC
schemes on structured grids, an effort toward their extension on unstructured grids
was initiated in the late 2000s. A second-order RB scheme for computing compress-
ible flows in general unstructured grids was proposed in [10]. Building on this first
step, a third-order formulation and an improved second-order one were derived and
systematically assessed within the ADIGMA project; these developments and some
key results are summarized in this contribution.

2 Space Discretization

2.1 Linear and Quadratic Solution Reconstruction

The Euler and Navier-Stokes equations can be written in the form of a system of
conservation laws:

∂U
∂ t

+∇ ·F = 0 (1)

where U is the conservative variable vector, F is the flux tensor, such that F =
FE(U) for inviscid flows and F = FE(U)−FV (U,∇U) for viscous flows. The
FV discretization of (1) can be expressed as follows :

∂Ui

∂ t
+

1
|Ωi| ∑

k∈I (Ωi)
∑
g
ωg(Hi,k)g|Γi,k| = 0 (2)

where Ui is the cell average value defined at the centroid of the control cell Ωi

with its volume |Ωi|; Γi,k is the k-th face of this cell and |Γi,k| its area. The set
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I (Ωi) contains all the faces of cell i. A Gauss quadrature point along Γi,k is
indexed g, with ωg its corresponding quadrature weight; (Hi,k)g denotes the nu-
merical flux approximating the physical flux projected onto the Γi,k face normal
direction ni,k at the Gauss point g. For the Euler equations, the inviscid numerical
flux (Hi,k)g = (H E

i,k )g approximates FE(U) ·ni,k; for the Navier-Stokes equations,

(Hi,k)g = (H E
i,k )g − (H V

i,k )g, with the numerical viscous flux (H V
i,k )g approximat-

ing FV (U,∇U) ·ni,k. The inviscid numerical flux of a conventional upwind scheme
(Roe, AUSM+ . . .) typically reads (H E

i,k )g = H E((UL
i,k)g,(UR

i,k)g;ni,k) where the

numerical flux formula H E depends on the scheme and (UL
i,k)g, (UR

i,k)g are the re-
constructed solutions at the Gauss-point g on face Γi,k, computed from polynomial
representation in the left- and right-side cells. For a second-order scheme, the states

(UL/R
i,k )g at the single Gauss-point (face center) are computed with the following

linear polynomial :

(UL/R
i,k )g = Ui/o(i,k) +φi/o(i,k)(rg − ri/o(i,k)) ·∇Ui/o(i,k) (3)

where r is a position vector, with g the Γi,k face Gauss point index, i and o(i,k)
the indices of the left and right cells sharing face Γi,k. The cell gradient ∇Ui/o(i,k) is
evaluated at the cell centroid Ci/o(i,k) using a linear least-square reconstruction with
a fixed centered stencil; φi/o(i,k) is the Barth limiter as modified by Venkatakrishnan
[11]. For a third-order scheme a quadratic polynomial is used to estimate states

(UL/R
i,k )g at each Gauss-point g on the face Γi,k (2 points per face in 2D) :

(UL/R
i,k )g = Ui/o(i,k) + ((1−σi/o(i,k))φi/o(i,k) +σi/o(i,k))(rg − ri/o(i,k)) · ∇̌Ui/o(i,k)

+
1
2
σi/o(i,k)(rg − ri/o(i,k))

T ·Hi/o(i,k) · (rg − ri/o(i,k)) (4)

where the second-order approximation ∇̌Ui/o(i,k) of the cell gradient and the first-
order approximation of the cell Hessian Hi/o(i,k) are computed at each cell centroid
using a quadratic least-square reconstruction, which makes use of an extended fixed
centered stencil [12]. The reconstruction formula also includes a sensor σi/o(i,k)
which allows a smooth transition between the limited linear reconstruction in high-
gradient flow regions (σi/o(i,k) → 0) and the quadratic reconstruction in smooth flow
regions (σi/o(i,k) → 1).

2.2 Numerical Flux Computation

The RB invisicd numerical flux takes the following form:

(H RB
i,k )g =

(
H c

i,k

)
g
− (di,k)g = H c((UL

i,k)g,(UR
i,k)g)− (di,k)g (5)

where
(
H c

i,k

)
g

is a purely centered (non-dissipative) approximation of the physical

normal flux vector (FE)⊥ computed at the Gauss-point g of face Γi,k; (di,k)g is the
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dissipation flux computed at the same Gauss point, which is fully specific to the RB
scheme since it does not rely on reconstructed states, as for conventional upwind
schemes, but on an estimate of the residual r associated with system (1). Note this
dissipation flux is computed only once on a given face Γi,k and shared by all the face
Gauss-points; its expression reads :

(di,k)g = di,k =
1
2

L⊥
i,kΦi,kRi,k (6)

where L⊥
i,k = rCi ,Co(i,k) · ni,k is the projection onto the face normal of the distance

between the cell centroids Ci and Co(i,k), Φi,k is a matrix coefficient of order O(1)
designed so as to ensure the dissipation of the scheme and Ri,k is an approximation
of the system residual Ri,k defined as :

Ri,k =
1

|Ωi,k|
∫
Ωi,k

r dΩ (7)

The shift cell Ωi,k on which the integral form Ri,k of the residual r is defined is
formed by the nodes N1

i,k, N2
i,kof face Γi,k and the two cell centroids Ci and Co(i,k) (see

Figure 1). Since L⊥
i,k = O(h), with h the characteristic mesh size, a second-order es-

timate for Ri,k will lead to a third-order dissipation and the global accuracy (second-
or third-order will be eventually controlled by the polynomial reconstruction used
in the purely centered flux H c.

In the inviscid case, the residual r is given by r =∇ ·FE , so that the second-order
approximation of (7) can be expressed as:

Ri,k =
1

|Ωi,k| ∑
l∈I (Ωi,k)

(
H E

c

)
l |Γl| (8)

with (H E
c )l an approximation of the normal physical inviscid flux (FE)⊥l at

the center of face Γl of the shifted cell Ωi,k. Using the trapezoidal rule on a
face Γl with vertices (N1

i,k,Co) (see Figure 1), this flux is computed as (H E
c )l =

1
2

(
FE(UN1

i,k
)+FE(UCo)

)
· nl . The required node values are computed from

Fig. 1 Shift cell used for
computing the RB dissipa-
tion in 2D
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neighboring cell-center values using the average formula proposed by Holmes and
Connell [13], which is found sufficient to yield a second-order dissipation. When
building the third-order RB scheme, a more accurate node estimate technique is
needed to ensure a second-order discretization of (8). Since the solution gradient
and Hessian are available in each cell, the node value can be extrapolated by using
(4) in each cell containing the node and averaging these reconstructed values.

In order to define the matrix dissipation coefficient Φi,k in (6), let us introduce
the normal and tangential Jacobian matrices associated with face Γi,k, respectively
(J⊥)i,k = AE

i,k(nx)i,k + BE
i,k(ny)i,k and (J‖)i,k = AE

i,k(tx)i,k + BE
i,k(ty)i,k, where AE , BE

are the Jacobian matrices of the inviscid fluxes f E and gE for the 2D Euler system,

ti,k is the unit vector tangent to Γi,k. Let us also denote λ (l)
⊥ (resp. λ (l)

‖ ) the lth eigen-
value of J⊥ (resp. J‖), T⊥ (resp. T‖ ) the matrix whose columns are the eigenvectors

associated with the eigenvalues λ (l)
⊥ (resp. λ (l)

‖ ). The dissipation matrix Φi,k has the

same eigenvectors as (J⊥)i,k, that is:

Φi,k = (T⊥)i,k ·Diag(φ (l)
i,k ) · (T−1

⊥ )i,k (9)

with the diagonal matrix Diag(φ (l)
i,k ) defined from the eigenvalues of J⊥ and J‖:

φ (l)
i,k = sign((λ (l)

⊥ )i,k)min(1,
|Γi,k|
|L⊥

i,k|
|(λ (l)

⊥ )i,k|
m(J‖)i,k

) (10)

where m(J‖) = minl(|λ (l)
‖ |). Eigenvalues and eigenvectors at face Γi,k are computed

by a Roe-average between the solutions in the cells sharing the face. More details
on the design principles of the residual-based scheme can be found in [1] [2].

The calculation of the viscous numerical flux H V
i,k requires an estimate of the

solution and its gradients at each Gauss point. For a second-order scheme, these
quantities are computed at the single Gauss point (face center M in Figure 2) using
a simple average of node quantities:

(Ui,k)g = UM = 1
2 (UN1

i,k
+UN2

i,k
) , (∇Ui,k)g = ∇UM = 1

2(∇UN1
i,k

+∇UN2
i,k

) (11)

using the aforementioned Holmes and Connell formula for node estimates. For the
third-order scheme, the solution at each Gauss point on face Γi,k is obtained by an
average of the quadratically reconstructed states on both sides of the face (Ui,k)g =
1
2 ((UL

i,k)g +(UR
i,k)g). The second-order gradient estimate at the quadrature point g is

computed as (∇̌Ui,k)g = 1
2 ((∇̌Ug)L +(∇̌Ug)R) where the reconstructed gradients are

obtained from the gradient and Hessian computed at each cell centroid :

(∇̌Ug)L = ∇̌Ui + Hi · ri,g , (∇̌Ug)R = ∇̌Uo + Ho · ro,g (12)

A fundamental difference between the RB scheme and a conventional upwind
scheme is the fact the residual used in the dissipation flux (6) adapts itself to the
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Fig. 2 Gauss quadrature
points used for flux integral
computation

problem solved. Since the residual associated to the Navier-Stokes equations reads
r = ∇ · (FE −FV ), the approximation of (7) becomes:

Ri,k =
1

|Ωi,k| ∑
l∈I (Ωi,k)

(
H E

c −H V
c

)
l |Γl|, (13)

where the inviscid numerical flux H E
c is computed as described in the inviscid case.

The numerical viscous flux H V
c at each face center of the shift cell is also computed

by the trapezoidal rule :

(H V
c )l =

1
2

(
FV (UN1

i,k
,∇UN1

i,k
)+ FV (UCo ,∇UCo)

)
·nl (14)

Since the gradient at cell centroid is already available, only node gradients intro-
duce extra computations. The node gradient is calculated by the linear least square
reconstruction with a centered stencil including all the cells sharing the node. Note
the definition of the dissipation matrix Φi,k in (6) remains unchanged with respect
to the inviscid case : this simple choice does not impact the overall accuracy (since
this term is O(1)) nor compromise the robustness.

2.3 Boundary Conditions

The specific design of the RB scheme requires to deal not only with the faces lo-
cated on the computational domain boundaries but also with the faces containing
a single boundary node (in 2D) since the state at this boundary node is involved
in the flux balance evaluated on the shift cell Ωi,k. Two types of boundaries have
been specifically considered : far-field and wall boundary. On the far-field bound-
ary the physical state is computed with a characteristic-based non-reflecting bound-
ary condition, using the interior solution and the prescribed far-field state; the flux
through the boundary face is then computed applying the physical flux formula with
this boundary state. No specific treatment on boundary nodes is performed at the
far-field. For inviscid flows, the slip-wall condition is imposed in the physical flux
computed on a wall face and this boundary condition is also imposed for wall nodes.
For viscous flows, the no-slip wall condition is similarly imposed.
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3 Time Integration

3.1 Implicit Time Integration for Steady Problems

In order to speed up the convergence to a steady-state, the solution update is obtained
from the following implicit scheme :

ΔUn
i

Δ ti
+

1
|Ωi| ∑

k∈I (Ωi)
(ΔH imp

i,k )n |Γi,k| = −Rn
i , (15)

where the explicit stage Rn
i =

1
|Ωi| ∑

k∈I (Ωi)
∑
g
ωg(Hi,k)g|Γi,k| is either based on

the RB scheme or on a conventional upwind scheme and Δφn = φn+1 − φn is
the time-increment of the grid quantity φ (solution Ui or implicit numerical flux
H imp

i,k ). Ideally, for maximal intrinsic efficiency, the implicit numerical flux should
be taken equal to its explicit counterpart Hi,k. However, such a choice would
lead to a large computational cost per iteration, cancelling out the benefit of high
intrinsic efficiency. Instead, the strategy followed is to retain for H imp a sim-
ple implicit stage, sufficient to ensure robustness (unconditional stability for large
time-steps, except for highly non-linear problems involving very strong discontinu-
ities) and leading to an inexpensive solution of the implicit stage. Following ideas
originally proposed in [14], the implicit numerical flux increment is computed as
(ΔH imp)n = (ΔH E(imp))n − (ΔH V (imp))n with the inviscid and viscous contribu-
tions defined as :⎧⎪⎪⎨⎪⎪⎩

(ΔH
E(imp)

i,k )n =
1
2
[(ΔFE

i,k)
n ·ni,k − (ρE

⊥)n
i,k(ΔUn

o(i,k) −ΔUn
i )]

(ΔH
V (imp)

i,k )n =
(ρV

⊥)n
i,k

|ri,o·ni,k| (ΔUn
o(i,k) −ΔUn

i )

(16)

where the scalar coefficients (ρE
⊥)n

i,k, (ρV
⊥)n

i,k are the respective spectral radii of the
normal inviscid and viscous Jacobian matrices. Inserting (16) into (15) leads to a
so-called matrix-free implicit scheme of the form:

Dn
i ΔUn

i = −Rn
i −

1
2|Ωi| ∑

k∈I (Ωi)

(
(ΔFE

i,k)
n ·ni,k −Cn

i,kΔUn
o(i,k)

)
|Γi,k| (17)

with the scalar coefficients Cn
i,k and Dn

i defined by:

Cn
i,k = (ρE

⊥)n
i,k +

2(ρV
⊥)n

i,k

|ri,o ·ni,k| , Dn
i =

1
Δ ti

+
1

2|Ωi| ∑
k∈I (Ωi)

Cn
i,k|Γi,k| (18)

System (17) is then solved by a simple Point-Jacobi relaxation technique with a very
low cost per iteration, which makes up for the limited intrinsic efficiency and yields
a globally efficient implicit strategy.
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3.2 Dual-Time Integration for Unsteady Problems

Unsteady solutions of the 2D Euler equations are found as steady-state with respect
to the fictitious or dual-time τ of the following implicit scheme :⎧⎪⎪⎪⎨⎪⎪⎪⎩

ΔUn,m
i

Δτn,m
i

+
3
2
ΔUn,m

i

Δ t
+

1
|Ωi| ∑

k∈I (Ωi)
(ΔH imp

i,k )n,m |Γi,k| = −Rn,m
i ,

Rn,m
i = T (Un,m

i ,Un
i ,Un−1

i )+
1

|Ωi| ∑
k∈I (Ωi)

∑
g

ωg
(
H E

i,k

)n,m

g
|Γi,k|,

(19)

where m and n are respectively the dual-time and physical-time iteration counter,
ΔUn,m

i = Un,m+1
i −Un,m

i with Un,0
i = Un

i and the three-level time-discretization op-
erator T is chosen such that :

T (Un,m
i ,Un

i ,Un−1
i ) =

3
2 (Un,m

i −Un
i )− 1

2 (Un−1
i −Un

i )
Δ t

= (Ut)n+1
i +O(Δ t2), (20)

When the pseudo-time marching reaches a steady solution Un+1 = Un,m+1 = Un,m,
scheme (19)-(20) yields an approximation of the physical unsteady flow solution at
order 2 in time and 2 or 3 in space, depending on the use of a linear or quadratic
solution reconstruction for a conventional scheme. When the RB numerical flux
formula (5) is used for computing H E

i,k in (19), care must be taken to compute
the third-order RB dissipation flux with a residual r that includes the physical time
derivative : r = Ut +∇ ·FE . The residual integral (7) is then discretized as Ri,k =
Rt

i,k +RE
i,k where RE

i,k approximates the inviscid flux balance over the shift cell Ωi,k

and remains unchanged with respect to the steady case (using Un,m instead of Un)
while Rt

i,k approximates the physical time-derivative over the shift cell as :

Rt
i,k =

1
2

(
T (Un,m

i ,Un
i ,Un−1

i )+T (Un,m
o(i,k),w

n
o(i,k),U

n−1
o(i,k))

)
. (21)

4 Numerical Results

Some selected results taken from the ADIGMA Mandatory and Baseline Test Cases
suites are now presented and analyzed from the viewpoint of assessing the interest
of the third-order RB scheme over the baseline second-order RB scheme.

4.1 MTC1: Subsonic Inviscid Flow over a NACA0012 Airfoil

The inviscid flow at upstream Mach number M∞ = 0.5 and angle of attack α = 2◦
over the NACA0012 airfoil is first considered. A series of 9 increasingly refined
unstructured meshes, provided within the ADIGMA project and mainly made of
quadrilateral elements, is used to assess the grid convergence properties of the
second- and third-order RB schemes. The coarsest grid, Mesh1, contains 206 dof
and 16 faces on the airfoil while the finest grid, Mesh9, contains 41685 dof and 926
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faces on the airfoil (see Fig. 3 for a view of mesh9 along with the computed Mach
contours on this fine grid). The evolution of the computed global aerodynamic co-
efficients (lift and drag - moment is not shown for space reason) is plotted in Fig. 4,
along with a so-called convergence zone defined by the value obtained on the finest
grid and a tolerance interval based on industrial experience and provided in the
ADIGMA project. The tolerance intervals for the lift, drag and moment coefficient
were respectively for MTC1 : ECl = 1×10−3, ECd = 1×10−4 and ECm = 2×10−4.
A key observation is all coefficients are converged within the tolerance interval on
mesh level 7 when RB O3 is used while mesh level 8 is needed when computing
with RB O2. With on one hand a ratio of dof of more than 2 between mesh7 and
mesh8, a faster convergence on the coarser grid mesh7 and on the other hand a cost
per point per iteration for RB O3 about 25% higher than RB O2, the CPU gain of-
fered by the third-order scheme with respect to the second-order one is about 60%
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Fig. 3 MTC1. Mesh9 (left) and Mach contours (30 levels from 0 to 0.7) computed with the
O3 RB scheme.
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Fig. 4 MTC1. Aerodynamic coefficients convergence with dof based on meshes from mesh1
to mesh9 obtained by the second and third-order FV-RB scheme.
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and the memory storage reduction goes up to 20%. Note the predicted lift coeffi-
cients on mesh9 differ of 0.7% only (CL = 0.282181 with RB O2, CL = 0.284150
with RB O3); the computed RB O3 drag coefficient is closer to its ideal zero value
(CD = 4.62×10−5 for RB O3 against CD = 1.67×10−4 for RB O2).

4.2 MTC2: Transonic Inviscid Flow Over a NACA0012 Airfoil

The FV RB schemes have also been applied to flow problems involving disconti-
nuities, such as the steady flow at upstream Mach number M∞ = 0.8 and angle of
attack α = 1.25◦ over the NACA0012 airfoil. The pressure coefficient distributions
computed with RB O2 and RB O3 on a rather fine unstructured mesh with 26384
pure triangle elements are plotted, along with a view of the grid, in Fig.5. The single
tuning parameter for the second-order scheme is the coefficient K used in the slope
limiter; for the third-order scheme, the parameters S and β appearing in the switch
from quadratic to limited linear reconstruction must also be tuned. The values even-
tually retained are summarized in Table 1; they have been systematically used for
transonic flows and found to yield oscillation-free results. The second-order and
third-order results are very close to each other and compare also well with a refer-
ence result obtained on a very fine grid by another ADIGMA partner.
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Table 1 Tuning parameters used with the FV-RB schemes for transonic flows. Computed
aerodynamic coefficients obtained on a triangular mesh with 26384 dof. The reference result
is a second-order DLR computation on a very fine structured C-mesh with 115584 dof.

Scheme K S β CL CD CM

RB O2 2 - - 0.358254 0.023006 -0.040901
RB O3 2 160 0.03 0.360094 0.022934 -0.041374

Ref. result - - - 0.357895 0.022736 -0.038646
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4.3 MTC3S: Subsonic Laminar Flow over a NACA0012 Airfoil

The performance of the FV-RB schemes for solving the Navier-Stokes equations is
assessed on a steady flow over the NACA0012 airfoil with upstream Mach number
M∞ = 0.5, zero angle of attack and Reynolds number (based on the airfoil chord and
the far-field conditions) Re∞,c = 500. A series of 5 increasingly refined triangular
meshes is used for the computations; the coarsest grid has 2262 dof and 16 faces
on the airfoil while the finest grid mesh5 contains 26384 dof and 700 faces on the
airfoil (see Fig. 6 for an overview of this grid and the computed Mach contours with
RB O3). The grid convergence analysis is performed following the methodology
described for MTC1 with ECl = ±1× 10−3, ECd = ±5× 10−4 and ECm = ±2×
10−4. The evolution of the global aerodynamic coefficients when the number of
dof increases is plotted in Fig.7. The prescribed tolerance intervals are found a bit
too loose; with more stringent requirements, the RB O2 scheme does not provide
grid-converged coefficients before mesh5 is used. Meanwhile, grid-convergence is
achieved on all coefficients using RB O3 on the grid level 4, containing 17210 dof.
Taking into account the extra-cost induced by the third-order scheme as well as the
faster convergence on a coarser grid, the gain offered by RB O3 with respect to RB
O2 amounts to a 24% CPU time reduction and 21% memory requirement reduction.
The computed coefficients using RB O2 and RB O3 on the finest mesh mesh5 are
provided in Table 2; these grid-converged values remain very close to each other.
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Fig. 6 MTC3S. Mesh5(left) and Mach number contours (right) computed with the FV-RB
O3 scheme.

Table 2 MTC3S. Aerodynamic coefficients obtained with the FV-RB scheme on mesh5.

Scheme Cl Cd Cdp Cdv Cm

O2 −1.56×10−4 0.181513 0.048751 0.132762 −2.31×10−5

O3 −1.04×10−4 0.181808 0.049580 0.132228 −2.59×10−5
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4.4 BTC0 Euler: Subsonic Inviscid Flow over a 3D Airfoil Body

The RB schemes are extended to the 3D Euler equations and applied to the compu-
tation of the subsonic flow over a 3D streamlined body, with upstream Mach number
M∞ = 0.5 and angle of attack α = 1◦. A grid convergence study is performed on a
limited series of 3 unstructured meshes made of pure tetrahedral elements and pro-
vided within the ADIGMA project. The coarsest grid Mesh1 contains 191753 dof
while the finest grid Mesh3 contains 440494 dof. The body geometry is displayed
in Fig.8 along with the surface mesh corresponding to Mesh3. The evolution of the
global aerodynamic coefficients computed with the RB O2 and O3 schemes for an
increasing number of dof is plotted in Fig.9. These 3D results differ from the pre-
vious 2D analysis on a smooth inviscid flow since second- and third-order results
remain systematically very close to each other, even on the coarsest grid. No benefit
from using RB O3 can be perceived on this test-case since the level of accuracy
similar to that of RB O2 is achieved for a higher cost, both in CPU and mem-
ory storage. Note also the drag coefficient is far from grid convergence; the value
of CD obtained by NLR on a fine structured grid containing 1572864 dof with a
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Fig. 9 BTC0. Aerodynamic coefficients convergence with dof based on meshes from Mesh1
to Mesh3 obtained by the second and third-order FV-RB scheme.

second-order discontinuous Galerkin method was found equal to Cd = 5.3076×
10−4 (vs Cd = 8.7147×10−4 on Mesh3 with the RB O3 scheme).

5 Conclusion

The improved efficiency of a third-order RB scheme over a second-order version
has been demonstrated for 2D inviscid and viscous compressible flows through
grid-convergence studies performed on series of increasingly refined unstructured
grids made available in the ADIGMA project. The benefits of using the third-order
scheme were not established however in the 3D case where both second- and third-
order schemes yielded very close results, probably because of the excessively large
stencils used to compute the cell gradient and Hessian estimates. A way of improve-
ment would be to compute the non-dissipative part of the RB numerical flux using
a face-centered least-square approach rather than the usual cell-reconstructed solu-
tions - the dissipative part remaining computed as described in the present paper;
this strategy will be investigated in the near future.
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Chapter 13
Investigation of Issues Relating to Meshing for
Higher-Order Discretizations

Craig Johnston and Jeremy Gould

Abstract. During the ADIGMA project ARA have investigated various aspects re-
lating to grid generation for higher-order solvers. Within the industrial hybrid mesh
generation code SOLAR we have both implemented a higher-order boundary repre-
sentation, and have propagated the influence of this boundary into the volume mesh.
Although subject to some minor limitations, this capability has a near industrial
level of robustness and has successfully generated grids for a variety of geometries
of industrial interest, including the ONERA M6 wing and DLR-F6 wing-body. A
mesh-quality toolkit for analysis of the SOLAR higher-order grids has been devel-
oped. This code has a modular design, to allow forsimple implementation of new
metrics, and currently includes a number of metrics which have been used to analyse
the grids generated within the project.

1 Introduction

In order to fully exploit the developments in higher-order solver algorithms from
within ADIGMA it is essential that appropriate meshes can be generated. Such
a mesh must allow the algorithms to be applied robustly and efficiently for 3D
complex industrial configurations. Within ADIGMA, ARA have investigated and
addressed several of the issues that needed to be resolved in order to allow the gen-
eration of meshes which achieve this aim.

One of the key motivations in this work is the fact that a higher-order solver has
a computational expense significantly higher than a standard second-order RANS
solver running on the same mesh. This increased cost is mitigated by the higher-
order scheme requiring fewer overall grid elements/points to achieve a solution
accuracy equivalent to that of the RANS solver. However, such a coarse mesh is
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still required to accurately represent the underlying geometry and, in particular, re-
solve regions of high curvature. This in turn motivates the need for a higher-order
boundary representation (HO-BREP) that will enable highly curved regions to be
accurately resolved with a reduced number of grid points. We describe in Section 3
how a HO-BREP was successfully implemented within the SOLAR mesh genera-
tion system [2, 3, 4, 5].

In terms of the overall mesh generation process, the HO-BREP cannot however
be viewed in isolation since it has a significant impact upon the volume mesh gen-
eration. Within our implementation the piecewise linear surface elements generated
by the standard SOLAR grid generation capability are instead replaced by quadratic
surface elements1. In the case of piecewise linear boundary elements it is a relatively
simple process to grow a highly stretched boundary layer mesh away from a curved
boundary in the underlying geometry; however once a quadratic (or higher-order)
BREP is introduced then issues of grid crossover can be encountered. In Section 4
we discuss how such issues were handled within SOLAR.

Finally, in Section 5 we discuss the mesh quality toolkit developed to allow anal-
ysis of the meshes generated using the approach described in Sections 3 and 4. It is
expected that higher-order solvers will impose more stringent demands upon mesh
quality than current second-order methods. This toolkit is intended to allow anal-
ysis of these issues, and to also allow the use of specific metrics during the mesh
generation process itself, so ensuring the suitability of the mesh for higher-order
simulations.

2 Background to SOLAR

Before describing how a higher-order mesh generation capability has been imple-
mented in SOLAR, it is worth briefly discussing the general operation of SOLAR,
since the work described here builds upon some of the standard volume mesh gen-
eration algorithms used by it.

2.1 SOLAR Mesh Generation

Over the past nine years, Airbus, BAE SYSTEMS, ARA and QinetiQ have collabo-
rated on development of the rapid-response RANS CFD system, SOLAR [2, 3, 4, 5].
Included within this system is an automatic mesh generation capability designed
to produce high quality meshes for viscous flow simulations on aerospace applica-
tions. The nearfield mesh is created using an advancing-layer technique [6] to march
away from an unstructured quadrilateral-dominant surface mesh. Edge-collapsing
and face-enrichment algorithms alter the topology of the layer automatically to take
into account the underlying concavity or convexity of the region being meshed,

1 Note that although in this work quadratic surface elements were used, there is in princi-
ple no reason why yet higher-order elements could not be used in conjunction with the
approaches we describe in Sections 3 and 4.
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with the layer growth factor being varied locally to achieve a smooth outer layer.
In three dimensions, the nearfield layer mesh is then coupled to either a Carte-
sian far-field mesh which uses cut cells to avoid overlap of the near and farfield
meshes [2], or alternatively to a tetrahedral farfield mesh, generated using a Delau-
nay method, via a buffer layer comprising pyramids and tetrahedra [3]. The latter
of these approaches has the key benefit of avoiding the arbitrary polyhedra which
are inevitably produced by a cut cell interface, and is the capability upon which our
work in ADIGMA is based. However, it is the nearfield meshing algorithm, common
to both approaches, which is of principal interest here.

2.1.1 Advancing Layer Mesh Generation

The basic methodology of the advancing-layer technique [6] is that the nearfield
mesh is produced as a result of the recursive generation of a layer of cells and its
subsequent placement on top of the previously generated layers (see Figure 1), start-
ing from a predefined surface mesh. At the simplest level this process is analogous to
the inflation of a balloon, with the surface topology being maintained in each layer,
but in practice the aforementioned edge-collapsing and face-enrichment algorithms
alter the topology of some layers in order to ensure a high quality mesh in concave
and convex regions. These algorithms are outside the scope of the current discussion
and will not be considered here (for details see [4] and [5]). The remaining two key
issues in the generation of each layer concern the evaluation of marching direction
and distance.

Fig. 1 Illustration of the
advancing-layer approach to
grid generation. The base
surface is projected out into
the flow domain to obtain
the top surface of the layer.
The top surface is then
used as the base surface for
generation of the subsequent
layer.

Top Surface

Base Surface

Calculation of the marching direction is discussed in [4], but is essentially based
upon the surface normal direction at each node, to ensure orthogonality of the mesh
close to the surface, with a degree of smoothing applied to ensure (a) discontinu-
ities in the direction of the marching vectors are removed; and (b) excessive mesh
skewness is avoided in convex and concave regions. It is however the calculation of
marching distance which is of most interest here since, as discussed later in Section
4, it is a extension to this algorithm which has enabled us to generate volume meshes
in which the HO-BREP is accounted for.
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For each surface node the marching distance is kept constant for the first n0 layers
and then increases at a local growth rate g according to the formula

hn = h0gn−n0 (n > n0), (1)

where h0 is the first cell height and hn is the height at a node on the nth layer.
The local growth rate is determined by a combination of the rate required to obtain
cells of unit aspect ratio in the outer layer and a limitation on this rate in order to
prevent intersection with another region of boundary layer mesh, such as can occur
in regions of concavity or between separate components in close proximity to one
another. The details of these algorithms are again outside the scope of the current
article, but the approaches outlined have been found to perform very well for a range
of complex problems within the aerospace sector. It is upon these algorithms that
we have based the work described in the following sections.

3 Implementation of a Higher-Order Boundary Representation

In looking to implement a HO-BREP within the SOLAR code base, one of the
main aims was to maximise, as far as reasonably possible, the reuse of existing
code and algorithms. Having considered a variety of approaches to how this could
be achieved, it was decided that the best overall approach was to restrict the code
changes to the volume meshing routines and apply the following general algorithm
to obtain the higher-order boundary representation:

• use the existing surface meshing functionality but tune the control parameters
to generate a surface mesh of coarseness appropriate for higher-order solvers
(coarser than would be used for 2nd order RANS solvers);

• use this surface mesh to provide corner nodes for the higher-order surface
elements;

• use knowledge of the underlying CAD geometry plus the corner nodes to iden-
tify where to insert additional nodes on element edges and faces, so generating
higher-order boundary elements. This was achieved by adding points at an ap-
propriate position along the edges and faces and then projecting to the surface of
the actual geometry;

• extract the HO-BREP from the volume mesh storage into an output file of appro-
priate format.

This process is illustrated schematically in Figure 2. Implementation of this ap-
proach required only relatively minor code changes, such as providing an interface
to the underlying geometry via an existing API (previously only used in the surface
meshing process), implementing a file writer for an appropriate mesh format, and
adding code to insert the higher-order nodes at appropriate locations.

In generating outputs, the pragmatic decision was made to provide meshes in
the format of the open-source tool Gmsh [1], since this was the only pre-existing
format found that could support higher-order variants of all the volume element
types SOLAR meshing can potentially generate (hexahedra, prisms, pyramids and
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(a) (b) (c)

Fig. 2 Illustration of the process for generating a higher-order boundary representation in
SOLAR. (a) illustrates the mesh that would be generated for use by a second order RANS
solver. To obtain the higher-order boundary representation the coarser mesh in (b) is first
generated using the existing surface meshing process. This mesh contains the corner nodes
(in black) used to define the extent of the element. In (c) the higher-order nodes (in grey) are
then added to provide the higher-order boundary discretization.

Fig. 3 Comparison of the surface meshes at the wing-symmetry plane junction of the
ONERA-M6 wing obtained using regular and higher-order SOLAR meshing

tetrahedra). Utilising this format, meshes on a variety of standard test cases were
generated. Results on the ONERA-M6 wing are illustrated in Figures 3 and 4, where
meshes obtained using the above algorithm are compared to those obtained using
regular SOLAR meshing. All user control parameters were identical, save for those
used to switch between the standard and higher-order surface meshing capabilities.
It can be seen from these figures that the above approach has successfully enabled
the generation of a higher-order boundary representation on a relatively coarse sur-
face mesh. In particular, the level of faceting observed in the highly curved regions
of the geometry (the wing leading edge and tip regions) is vastly reduced in the
higher-order mesh2. Similar results were obtained for significantly more complex

2 Note that the clear lines between high-order nodes in these and subsequent figures are
an artifact of the visualisation package representing higher-order faces by a set of regular
surface elements (triangles and quadrilaterals).
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Fig. 4 Comparison of the surface meshes on the leading-edge/wing-tip region of the
ONERA-M6 wing obtained using regular and higher-order SOLAR meshing

geometries (see Figure 12 for a further example). Considering these results, it is
our opinion that the above algorithm provides a sound basis upon which to build a
higher-order volume meshing capability.

4 Higher-Order Volume Meshing within SOLAR

Moving towards higher-order volume meshing based upon the advancing layer ap-
proach, the key issue is the need to prevent mesh crossover within the boundary layer
mesh. The potential cause for this problem is illustrated in Figure 5. Given this pos-
sibility, is it clear that to be of practical use the layer meshing process must take
account of the higher-order boundary. This is further illustrated by Figure 6 which
shows the crossover that was obtained for the ONERA-M6 mesh when naively us-
ing the regular SOLAR layer meshing algorithms with the higher-order boundary
representation from Section 3.

Again considering the pre-existing code algorithms, it was noted that the case
illustrated in Figure 5(c) is essentially the same as would occur with the regular layer
meshing, apart from the fact that there is no edge normal to the surface between the
higher-order nodes. Taking this idea further we introduce the idea of virtual edges
which are grown normal to the boundary from each of the higher-order nodes, in the
same way as edges are grown from each of the corner nodes on a face. These virtual
edges are not included in the output solver mesh, but are purely internal constructs
used by the layer meshing algorithms. By using virtual edges we can essentially use
the existing layer meshing algorithms to generate a higher-order layer mesh of the
type illustrated in 5(c).
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Fig. 5 Illustration of the
consequences of not ac-
counting for a higher-order
boundary representation
within the boundary layer
mesh. (a) illustrates regular
SOLAR meshing in which
a piecewise linear boundary
representation is used. In
this case there is not an issue
with mesh crossover, de-
spite the poor resolution of
the geometry. (b) illustrates
the mesh crossover that can
occur due to combining a
higher-order boundary rep-
resentation with piecewise
linear volume elements. (c)
illustrates the case when
the higher-order boundary
representation is accounted
for in the layer mesh.

(a)

(b)

(c)

Fig. 6 Illustration of mesh
crossover in the wing-tip
region of the ONERA-M6
geometry if the higher-order
boundary representation is
not accounted for. The figure
shows the surface of the first
layer of the boundary layer
mesh, through which the
surface mesh can be seen to
protrude.

At this stage it was decided, for pragmatic reasons, to limit the “true” higher-
order elements to the nearfield region of the volume mesh3. By doing this, the over-
all higher-order volume meshing problem is reduced in scope, since algorithms for
higher-order elements in the buffer and farfield regions do not have to be considered.
We do however impose the artificial constraint that the outer surface of the layer mesh
must have linear surface elements, to enable the buffer mesh to be generated using ex-
isting algorithms. We achieve this by varying the marching distance for virtual edges
in an appropriate manner. Without applying such a modification, we obtain a higher-

3 Linear volume elements can, of course, be treated as higher-order by inserting additional
nodes on required edges and faces.
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(a) (b)

Fig. 7 Effect of the marching distance algorithm for higher-order nodes. (a) shows the layer
mesh if we apply the same marching distance algorithm for all nodes. (b) illustrates the effect
of applying a marching distance modification to the higher-order surface nodes (correspond-
ing to the virtual edges).

Fig. 8 Basic algorithm used
in SOLAR to ensure a linear
outer surface to the layer
mesh. h0 is first identified
and then used to calculate h
using Equations 2 and 3.
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order layer mesh of the form illustrated in Figure 7(a). With appropriate changes to
the marching distance we can instead generate a mesh as shown in Figure 7(b).

Within SOLAR, the marching distance modification was implemented following
the algorithm illustrated in Figure 8. First the marching distance for a virtual edge
is obtained using the standard meshing algorithms and used to provide an initial
location for the higher-order node in the next layer. The corner nodes of the top
surface are used to define a planar surface and the distance h0 from this plane to the
initial higher-order node position identified. The higher-order node is then placed
along the vector described by the virtual edge, but at a distance h from where the
virtual edge intersects the plane, where for layer n

h = f (n)h0 0 ≤ f (n) ≤ 1. (2)

Provided f (N) = 0, where N is the number of layers in the nearfield mesh, this
ensures that linear faces are obtained on the outer surface of the layer mesh.

Through investigation it was identified that if f (n) decreases too rapidly in the
lower layers then issues with mesh crossover occur. In practice it was found that the
performance of the algorithm was best if f (n) remained at (or very near) zero until
n > N/2, with best results being found when using an expression of the form

f (n) =
{

1 + exp

(
(n− p)

σ

)}−1

. (3)
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Fig. 9 Effects of varying the parameters p and σ in Equation 3

This equation essentially describes a smoothed version of the well known step func-
tion, in which f (n) changes from 1 to 0 over a range determined by the value of σ
and centred about p. The effects of varying σ and p are illustrated in Figure 9. For
the implementation in SOLAR, values of p = 0.85Nlayers and σ = 1 were found to
perform well.

Use of the above algorithms allowed generation of the meshes illustrated in Fig-
ures 10 and 11 for the ONERA-M6 geometry. In Figure 10 it can be seen that the
chosen approach has successfully eliminated the issue of mesh crossover, the mesh
protrusion, readily apparent in the left hand figure, disappearing when the algo-
rithms described are used. Similarly, the outer surface of the nearfield mesh at vari-
ous layers is illustrated in Figure 11. Again it can be seen that there is no protrusion
of lower layers through the surface and it should be noted that the surface faces be-
come more linear as the layer count increases, indicating that the higher-order node
placement algorithm is working as intended.

Fig. 10 Illustration of how the described algorithms have successfully resolved the issue of
mesh crossover in the wing-tip region of the ONERA-M6 geometry. The figures show the
surface of the first layer of the boundary mesh before and after the use of algorithms which
allow for the higher-order boundary.
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Fig. 11 Visualisation of various layers of the higher-order boundary layer mesh on the
ONERA-M6 geometry. From top left: layer 15, layer 20, layer 25 and layer 28 (outermost
layer). Note the transition from higher-order to linear faces as the layer increases.

Moving to a more complex geometry, meshes generated for the DLR-F6 test case
are illustrated in Figures 12 and 13. As with the ONERA-M6 geometry it can be seen
that a high-quality higher-order representation of the nearfield has been successfully
obtained. Unlike the ONERA-M6 geometry however, this test case contains several
of the geometric features that often prove problematic to mesh generators, such as
the regions of high concavity in the the wing-body and wing-pylon junctions. Fur-
ther work will be required to guarantee the successful generation of a higher-order
grid on test cases containing features not considered here (for example the small gap
regions between wing and slats/flaps in high-lift geometries), but the results pre-
sented here give us confidence that extension of the described approach will prove
appropriate.
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Fig. 12 Higher-order surface mesh on the DLR-F6 geometry. From top left: full surface
mesh, wing-body junction region, wing-pylon junction and the wing tip.

Fig. 13 Illustration of the higher-order nearfield mesh for the DLR-F6 geometry. From top
left: the wing-pylon-nacelle region surface mesh, outer surfaces on layers 15 and 30, and the
outer surface of the nearfield mesh.
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5 Quality Toolkit for Higher-Order Meshes

The final part of our investigation within ADIGMA involved the development of a
framework for analysing the quality of the generated meshes. The framework was
implemented in a modular form, allowing relatively easy implementation of new
metrics. As well as extracting information about the mesh, such as the number of
cells of each type, this toolkit currently has metrics for evaluating:

• face area;
• face area ratio for mesh elements (maximum/minimum area for a given cell);
• edge curvature (perpendicular distance of the high-order node from vector join-

ing end nodes/length of this vector);
• cell volume;
• ratio of cell diagonals for hexahedral elements (minimum diagonal/maximum

diagonal).

The metrics for minimum face area and cell volume are self explanatory and are
aimed at identifying potential causes of numerical error. The other metrics are in-
stead aimed at identifying poor quality elements, such as those which are highly
skewed.

Table 1 Mesh metrics for the higher-order ONERA-M6 and DLR-F6 meshes

Metric ONERA-M6 DLR-F6
Minimum face area 6.293E-10 1.806E-10
Maximum face area ratio 25155 20362
Maximum edge curvature 0.203 0.203
Minimum cell volume 1.277E-8 2.423E-13
Maximum cell diagonal ratio 0.502 0.254

Lack of a suitably industrialised higher-order solver capable of running on
meshes containing all the elements potentially generated by SOLAR has precluded
a detailed study of how solution quality relates to that of the mesh, but the metrics
have been used to ensure the validity of the meshes generated using the approaches
detailed here. Example values for the ONERA-M6 and DLR-F6 meshes previously
considered are given in Table 1. It is expected that this capability will be of signifi-
cant utility in ongoing development of the higher-order meshing capability.

6 Conclusions

In the previous sections we have presented a novel approach for integrating a higher-
order meshing capability into an existing advancing-layer based mesh generator and
demonstrated that this technique can successfully generate such meshes on rela-
tively complex geometries of industrial interest. However there still remain a num-
ber of ways in which this capability could be developed further.



Investigation of Issues Relating to Meshing for Higher-Order Discretizations 193

Concerning the higher-order boundary representation discussed in Section 3, at
present a relatively naive algorithm is used when inserting the higher-order nodes, in
that these are simply placed at the midpoint between corner nodes and then projected
onto the geometry. This approach can easily lead to significant discontinuities in
the surface curvature between neighbouring faces and a poor approximation of the
underlying geometry. Work should be undertaken to investigate how the placement
of higher-order nodes can be optimised to minimise the error in the discretisation of
the geometry.

Moving to the volume meshing, one potential issue lies with the lack of higher-
order elements in the buffer and farfield regions. It would be a relatively trivial task
to modify the existing capability so that elements outside the nearfield are trans-
formed into higher-order equivalents. At a more practical level, the developments
discussed here were implemented with little emphasis on optimising the relevant
data structures and supporting algorithms within the code. As such, the capability is
somewhat slower and more resource intensive than would be ideal. Again, improve-
ments should be investigated, and implemented where appropriate.

Finally, in order to maximise the potential gains offered by higher-order solvers
it is essential that a method of mesh adaptation is implemented for higher-order
volume meshes, so that new nodes can be accurately inserted onto the surface of the
geometry. Once an industrial higher-order mesh generation capability is established,
the ability to adapt these meshes will assume a far higher level of importance, and
is a requirement that will provide the focus for future work in this area.
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Aerodynamics department at ARA, Prof. Paul Houston of Nottingham University and Dr.
Ralf Hartmann of DLR for numerous useful discussions throughout the duration of this work.
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Chapter 14
Synthesis Report on Shock Capturing Strategies

Arne Taube and Claus-Dieter Munz

Abstract. One key problem in higher-order methods is the preservation of mono-
tonicity across discontinuities such as shock waves. This synthesis report gives an
overview about the different approaches adopted by the ADIGMA partners, IN-
RIA, NJU, SERAM, UNBG, UNPR, UNST and VKI, who are all involved in the
shock capturing workpackage. It shows the current state-of-the-art of the shock
capturing capabilities. After a brief description of the different methods, these are
compared based on the results for two two-dimensional test cases, one unsteady
strong Ma = 10 shock (DMR) and one steady solution of a transonic flow around
a NACA0012 profile (MTC 2). The focus is put on a thin shock profile and the
least dissipative representation of the small scale instabilities for the DMR problem
and the accurate computation of the aerodynamic coefficients with the least entropy
error in the smooth flow region for the MTC 2 case.

1 Introduction

ADIGMA deals with the development of high-order methods for the Euler and
Navier-Stokes equations. These methods bear the potential to solve future CFD
problems for aerospace applications more efficiently, by making use of three differ-
ent advantages: the high order property, the fact that they can cope with unstructured
meshes, hence complex geometries, and adaptivity in polynomial order as well as
mesh refinement (p-, h- and hp-adaption).

In order to preserve monotonicity across discontinuities such as shock waves
different approaches are adopted by the ADIGMA partners. This synthesis report
gives an overview and shows the current state-of-the-art of their shock capturing
capabilities.
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First in Sect. 2, the test cases within the ADIGMA project to validate and to
compare the different approaches are presented. Two simple transient test problems
are chosen: a two-dimensional hypersonic problem containing strong shocks, and
the transonic NAC0012 test case from the MTC catalogue. With the help of these
proposed problems each partner demonstrates the shock-capturing property as well
as the high-order resolution possibility. After the description of the test problems, a
short overview about the different approaches that are used by the different partners
for shock-capturing is given in Sect. 3.

The summary in Sect. 4 is founded on each parter’s input as given in tabular
form in the appendix and endeavors to give an evaluation with respect to the shock
capturing capabilities developed within the ADIGMA project.

2 Numerical Test Cases for Shock Capturing Property

Apart from some one-dimensional test cases computed previously in the project,
the comparison of the results with the other ADIGMA partners is limited to two
two-dimensional test cases.

2.1 Two-Dimensional Problems

One of them is the double Mach reflection of a strong shock (DMR) and the other
is the transonic flow around the NACA0012 airfoil (MTC 2). These test cases are
well known and we have already gathered experience with them in the ADIGMA
project.

2.1.1 Double Mach Reflection of a Strong Shock (DMR)

This test problem is presented by Woodward and Colella in [14]. The setup in their
paper is as follows:

A Mach 10 shock in air which initially makes a 60◦ angle with a reflecting wall.
The undisturbed air ahead of the shock has a density of ρ = 1.4 and a pressure of
p = 1. The reflecting wall lies along the bottom of the problem domain, beginning
at x = 1/6. The shock makes a 60◦ angle with the x-axis and extends to the top
of the problem domain. The short region from x = 0 to x = 1/6 along the bottom
boundary at y = 0 is always assigned values for the initial post-shock flow. This
boundary condition forces the reflected shock to be ‘attached’ to the reflecting wall.
The left-hand boundary is also assigned values for the initial post-shock flow, and
at the right-hand boundary all gradients are set to zero. The values along the top
boundary are set to describe the exact motion of the initial Mach 10 shock. This
setup was chosen due to the fact that most numerical codes at that time were not
able to calculate boundaries of complex geometry, thus the setup was kept as simple
as possible. In order to facilitate the result comparison, this setup has been adopted
and rectangular meshes with Δx = Δy = 1

120 or derivatives of that are chosen. The
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total simulation time is chosen appropriate to the original setup by Woodward and
Colella [14] to tend = 0.2.

2.1.2 Transonic Flow around the NACA0012 Airfoil (MTC 2)

In the following, we compute the flow around the symmetric NACA0012 airfoil
as described in the ADIGMA list of test cases with an inflow Mach number of
M∞ = 0.8 and an angle of attack α = 1.25◦. The flow becomes locally supersonic
on both sides of the profile leading to a relatively strong shock at the suction side
and a very weak shock on the pressure side. Here, we use the unstructured meshes
from the ARA mesh catalogue.

3 Main Approaches to Shock Capturing

In order to achieve the shock capturing property for higher order schemes, one has to
take some action to avoid Gibbs-type oscillations. There are three main approaches:
reconstruction with limiting, the residual distribution approach and artificial viscos-
ity. Some remarks according to all methods are given in the following. In any case,
the first step is to detect the grid cells in which a strong gradient is situated and which
will produce spurious oscillations of the approximative piecewise polynomial. Only
in this case a correction is applied. The detection algorithm may be considered as a
separate step, but is often closely related to the form of the correction. An overview
of existing detection strategies for DG methods is given in [12].

3.1 Reconstruction and Limiting

So called limiting procedures have been proposed within the finite volume frame-
work. While the first order accurate flux calculations in FV schemes give a mono-
tone behavior, the higher order versions generate spurious oscillations, if values
from both sides, e.g. of a shock wave are used within the approximation. To avoid
this, one has to look to both sides and to take the values from the side where the
approximation is smoother. This has first been formulated in terms of the numeri-
cal flux values and the nomination flux limiter has been introduced (see, e.g. [13]).
Later, the approach of reconstructing the arguments of the flux function has become
widely accepted rather than the improvement of the flux values. The reconstruc-
tion is controlled in such a way that the stencil for the reconstructed polynomial
is chosen into the direction in which the data are smoother. Here, the established
approach is the WENO reconstruction (Weighted Essentially Non-Oscillatory). A
comprehensive overview may be found in [6, 7].

The simplest version for a DG scheme to establish shock-capturing would be to
locally reduce the discretization order to a monotone first order scheme. In this case,
the DG scheme coincides with the first order finite volume scheme guaranteeing
monotone shock resolution. In order to have a good shock resolution, it has to be
combined with local grid refinement. Here, the question remains: Is the accuracy
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preserved, if a smooth wave interacts with a discontinuity or if a narrow viscous
profile such as a boundary layer has to be captured? In any case, such an first order
approach should only be applied to the troubled cells. Hence, the first step is to detect
the troubled cells. These cells are then refined and the order of their approximation
polynomial is reduced. However, it might be, that a large number of low order cells
are created to yield a satisfactory accuracy. This would lead to high computational
costs.

An improvement of this FV based strategy is to use a reconstructed polynomial
to limit the slopes or to replace the DG polynomial in the troubled zones. The re-
construction methods allow for stable discretizations near discontinuities while still
maintaining a high order approximation. The problem in that case is that the de-
signed high order accuracy for FV schemes has often not been observed in practical
situations, especially on unstructured grids. Very recently, a more robust modifi-
cation of the WENO reconstruction technique is presented in [5] which seems to
perform better on unstructured grids. Nevertheless, there is another drawback: the
big advantage of strong locality is lost. To keep the stencil for the reconstruction
small the so-called HWENO approach seems to be more attractive. The reconstruc-
tion is based on Hermite interpolation combined with the WENO idea. It has been
presented in [11] and found application in [8]. Here, the values of both the func-
tion and its first derivatives are used within the reconstruction. Thus, only the von
Neumann neighborhood is required for a third order reconstruction.

3.2 Residual Distribution Approach

In standard approaches, such as the MUSCL or ENO/WENO approaches, one tries
to control the Gibbs phenomena by tuning the amount of artificial dissipation so that
in the end the solution is oscillation free without destroying the formal accuracy
of the scheme as it can be obtained by truncation error analysis. In the residual
distribution approach, the approach is different and does not use the structure of an
equivalent equation, it uses a comparison principle and is the result of a series of
simple remarks.

In a finite volume approach, for any control volume, the solution is updated by
the way the sum of fluxes changes around it. The natural unknown is the average
of the unknown quantities in these control volumes. In the RD approach, as for the
finite element method, the natural quantity is the approximation of the unknowns
at vertices and possibly other points in the mesh. Their values are updated by the
way the sum of the fractions of residual of the elements surrounding these points
evolves. Conservation is ensured if the scheme is stable and if, for any element, the
sum of the fractions of residual evaluated for that element sums up to the normal
flux over the boundary. This quantity is called the total residual.

There are many ways to construct these sub–residuals. Historically, one way is
to consider the N scheme. Another (simpler) solution is a generalization of the Ru-
sanov flux, re–interpreted in the RD framework. One can show that these schemes
are L2 and L∞ bounded under a CFL–like condition, hence are oscillation free.
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The second remark is that accuracy is obtained provided that for each element,
the total residual scales correctly, and second that the sub–residual has the same
scaling. The proof requires the problem to be steady. Unsteady problems can be
rephrased into steady ones and the same line of arguments applies, see [1, 4, 3].

The third remark is that one can construct a fully automatic way of constructing
a L∞ stable and formally high order accurate scheme. This method is obtained by
comparing the first-order sub-residual with the total residual, see [4]. Unfortunately,
this scheme is over compressive, and an entropy dissipation mechanism needs to be
added, see [2].

3.3 Artificial Viscosity

The third approach consists of locally adding some sort of dissipation, by which the
shock wave is rendered into a steep viscous profile which can then be resolved by
the numerical approximation. The basic principle dates back to von Neumann and
Richtmyer [9] from the early ‘50s and gave way to resolve shock profiles with finite
difference schemes. The drawback of this approach is that the artificial viscosity has
to be tuned by a problem dependent parameter. Hence, the second order accurate
Godunov-type schemes were celebrated more than 20 years ago as an approach to
parameter-free shock-capturing. Nevertheless, there are schemes for practical prob-
lems in the transonic regime with a sophisticated choice of the coefficients which
are quite successful.

For high order DG schemes, the artificial viscosity idea becomes attractive again.
Here, we may have large grid cells and higher order polynomials. This in combina-
tion with artificial viscosity may give rise to a sub-cell resolution of strong gradients,
i.e. shocks. Persson and Peraire [10] state that a steep gradient can be resolved by a
piecewise polynomial approximation with degree p on a width δS ∼ h

p . Thus, if p is
high, the shock can even be resolved at sub-cell level. Hence, the artificial viscosity
needed becomes smaller with increasing polynomial degree. The hope is that with
such a strategy of locally increasing the order at steep gradients and adding some
small amount of artificial viscosity, one can still use coarse grid cells near shocks.
Persson and Peraire apply this shock-capturing by p-refinement within an implicit
scheme. They describe two strategies, called Laplacian and physical artificial vis-
cosity [10]. Both approaches lead to local jumps in the viscosity distribution with
some oscillating time behavior. This approach can also be combined with an explicit
scheme, but the parabolic time step restriction may be more severe near shocks due
to the local strong artificial viscosity term. Other open questions are the form of the
artificial viscosity and keeping the method parameter-free.

4 Summary

The partner’s computations of the two-dimensional test cases provide the basis for
our evaluation and give a clear view on the current state-of-the-art of the numerical
shock capturing methods within the project.
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4.1 General Assessment

As stated before, different techniques are used for shock capturing and hence any
comparison is difficult, especially, since for the issue of shock capturing exact ref-
erence solutions are rare. Even if they are available shocks are singularities and
therefore it is not possible to assess a numerical scheme’s quality for example by its
rate of convergence.

4.1.1 DMR Results

With regard to the first test case, it is commonly agreed on in the ADIGMA project,
that in a first step it is necessary to successfully compute the DMR’s Ma = 10 shock
in a stable manner. A very good result, however, consists not only of a thin shock
profile, but also of the well resolved small scale structures and wiggles which are
smooth phenomena behind the shock in the contact region. The shape and exact
location of these instabilities, however, is not determined and therefore only a vi-
sual judgement can be applied. The numbers provided by the partners for the DMR
results are dressed in Fig. 1.
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Fig. 1 Measured shock thickness (left) and ‘wiggles’ (right) versus DOF efficiency

Figure 2 shows some of the results obtained by the ADIGMA partners for this
particular test case. A direct comparison of these figures, however, cannot be made
immediately, because the meshes and orders are very different. Nonetheless, the
plots give a flavor of the solution quality.

The shock thickness measured from the partners’ provided density contour plots
is put in relation to the CPU time in performance index units [piu] normalized per
degree of freedom (DOF). An optimal computation requires the least computational
effort per DOF and, in return, generates a very slim shock profile.

There are quite a few results with a rather thin shock and moderate CPU times,
but this is not the whole story. For a truly genuine DMR solution, the unstable con-
tact discontinuity roll-up behind the triple-point is required, as well. Therefore, it is
tried to find an assessment for that in Fig. 1 right graph. The chosen strong criterion
may be questionable, but if applied there are only few really efficient high order
results left for this test case.
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Fig. 2 Selected DMR results by the ADIGMA partners on different meshes

All in all, the most efficient and thus optimal shock capturing results for this
particular test case are the ones in the bottom left corner of all plots. These results
show a clear and slim shock profile as well as a good resolution of the fine structures
in the rolled-up contact discontinuity.

4.1.2 MTC 2 Results

The MTC 2 test case bears a steady solution. There, the strong shock on the profile’s
suction and the weak one on the pressure side shall be captured and resolved well. In
addition, there shall not be an entropy error in the nose region, but only behind the
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shock. Besides that, this test case consists of an aerodynamic profile and therefore
the aerodynamic coefficients shall match the reference data.

Figures 3 and 4 give a notion of each partner’s capabilities for this steady test
case. Figures 5 and 6 show some of the results obtained by the ADIGMA partners
for this particular test case. A direct comparison of the plots, however, cannot be
made immediately, because the meshes and orders are very different. Nonetheless,
the plots give a taste of the solution quality.

For the coefficient diagrams, the best solutions are located around the line marked
as TAU reference solution and most to the left, i.e. consuming the least CPU time.
The estimation of the entropy error is again based on visual judgement. In that case,
the best results are to be found in the bottom left corners of the plots at Fig. 4 right.

Clearly, the contributions focus on the shock capturing property. That may be the
reason, why some of the obtained aerodynamic coefficients violate the ADIGMA
convergence criterion. For the cm value this might be a matter of sign rule, but
some are nowhere near to the exact solution. Some of the entropy production in
the nose area, may however not stem from the shock capturing or limiter but is due
to the coarse approximation of the NACA0012 nose curvature by the unstructured
ADIGMA meshes.
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Fig. 3 Lift cl (left) and drag cd (right) coefficients versus DOF efficiency

Fig. 4 Moment coefficient cm (left) and entropy error in the profile’s nose area (right) versus
DOF efficiency



Synthesis Report on Shock Capturing Strategies 203

Fig. 5 Selected MTC 2 results by the ADIGMA partners on different meshes
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Fig. 6 Selected MTC 2 results by the ADIGMA partners on different meshes (continued)

4.2 Each Partner’s Assessment

INRIA

INIRA’s limitation technique is easy to handle without any experienced overshoots.
Its extension to any order or accuracy on arbitrary meshes is straight forward. The
technique can also be applied to DG problems because of a reformulation of DG-
schemes in terms of RD schemes. However, the implementation of wall boundary
conditions is not perfect and the best results are shown on the steady results, al-
though the boundary conditions are not fully satisfactory. Future work is going to
focus on a better implementation for the unsteady schemes.

NJU

NJU has developed the limiters for the RKDG methods solving hyperbolic conser-
vation laws using finite volume high order WENO and HWENO reconstructions on
unstructured meshes. The idea is to first identify troubled cells subject to the WENO
or HWENO limiting, using a TVB minmod-type limiter, then reconstruct the poly-
nomial solution inside the troubled cells by the WENO or HWENO reconstruction
using the cell averages of neighboring cells or the cell averages and cell deriva-
tive averages of neighboring cells, while maintaining the original cell averages of
the troubled cells. Numerical results show that the method is stable, accurate, and
robust in maintaining accuracy.
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SERAM

SERAM uses the Venkatakrishnan modified Barth limiter for the 2nd order FV-RB
scheme and the binary limiter for the 3rd order scheme. The computation of an
unsteady problem, DMR test case, shows that the combination of a temporal lim-
iter with the spatial limiters can remove most of the oscillations. However, for the
same number of degrees of freedom, the 3rd order RB scheme produces almost the
same quality of result as the 2nd order scheme. The RB scheme with the present
time residual limiter can compute a challenging test case such as the DMR, but an-
other type of limiter has to be designed for an economic use of the method on such
test-problems. The computational results obtained for the steady MTC 2 test case
are satisfactory.

UNBG

The shock-capturing approach for DG methods developed by UNBG aims at achiev-
ing an optimal balance among several contrasting objectives, such as accuracy,
robustness and no need of case-specific fine tuning of parameters. Moreover, its
applicability to steady and unsteady flows has always been considered highly de-
sirable. The results presented show that UNBG’s approach is capable of resolving
with excellent accuracy both shocks and contact discontinuities, while the topic of
the numerical shock structure inside elements needs further investigation.

UNPR

UNPR’s presented shock capturing technique (SCT) may produce some small over-
shoots and overshoots in the vicinity of discontinuities and the shock wave is spread
into two elements, hence for coarser grids the shock waves are smeared. This draw-
back can be reduced with the use of h-mesh adaptation. Furthermore, their technique
is robust, without having to change empiric constants for different test cases and is
able to significantly reduces the non-physical oscillations.

UNST

UNST’s approach depends on the exact shock detection and a good estimate for the
artificial viscosity. Given that, we can capture a shock with increasing order within
less grid cells until its full resolution within only one cell. However, once a shock is
detected, the right amount of viscosity added is crucial in order to get a very sharp
profile on one hand and not to spoil the solution on the other hand. Up to now, no
truly parameter free implementation of this approach is known. The strategy works
well for both test cases, whereas the numerical scheme simulates time accurately
and thus is optimized for non-stationary problems.
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VKI

The results obtained with Bx are quite satisfactory. With this scheme we have
achieved the combination of high order of accuracy in the smooth parts with a non-
oscillatory capture of the shock, keeping a good resolution of it. The main drawback
of the Bx scheme is that it needs a good tuning of the parameters to capture well
the shock. In particular, for the MTC 2 test case it is not easy to capture the shock
of the lower surface without adding some dissipation on the leading edge where the
pressure gradients are important. Anyway, the convergence of the scheme is quite
good and both shocks are well captured and do not show big spurious oscillations.

Concerning the unsteady shock capturing, we used the limiting strategy. This
method has the advantage of being parameter free. The results obtained are good
in terms of monotonicity, but the code still needs to be optimized concerning the
computational speed.

4.3 Outlook

There is no uniform solution to the problem of high order shock capturing. The test
cases presented in this report are very different, i.e. a non-stationary strong shock
and stationary weaker shock. Therefore, the different numerical methods and their
approaches to shock capturing may perform well in one case and not so well in the
other one. The assessment is solely based on the numerical values for the measured
shock thickness in the DMR and on the aerodynamic coefficients in the MTC 2
case. These are put in relation to the CPU time. The rating for the DMR’s contact
resolution and the MTC’s entropy error around the nose is rather soft, because it is
only a visual judgement.

Besides that, the methods are constantly under development and being improved.
Therefore, even not so successful candidates from the previously made analysis will
improve or have their strengths elsewhere. For example factors like the time and
effort taken for manually adjusting control parameters to obtain a stable and yet
highly accurate solution are not taken into account in the CPU times plots. Since,
the numerical methods differ, too, some may only play off their potentials when
using additional features like mesh adaptation or a finer mesh.

Acknowledgements. We gratefully acknowledge funding of this work by the target research
project ADIGMA within the 6th European Research Framework Programme.
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Chapter 15
Implicit Strategy and Parallelization of a High
Order Residual Distribution Scheme

R. Abgrall, R. Butel, P. Jacq, C. Lachat, X. Lacoste, A. Larat, and M. Ricchiuto

Abstract. This chapter describes the implicitation and parallelization strategies we
have developed, as well as some development and results using high performance
linear algebra softwares.

1 Introduction

The purpose of this chapter is to describe what has been the strategy we have used
for the implicitation and the parallelization of the high order residual distribution
scheme described in chapter 9. We first recall some elements on the numerical
method described in details in chapter 9. Considering a steady problem with bound-
ary conditions

div F(U) = 0 (1)
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on the domain Ω , where the flux term is the sum of the Euler flux and the diffusive
flux (if needed) and a partition of Ω made of triangle (in 2D) and tetrahedrons
(in 3D), we have developed so far two types of residual distribution schemes. The
second order version uses a continuous P1 interpolation in each element, and a third
order version which uses a continuous P2 interpolation. In the first case, the degrees
of freedom are the vertices of the mesh. In the second case (P2), the degrees of
freedom are the vertices of the mesh and the mid point of the edges. We denote by
σ a generic degree of freedom, and by T a generic element of the tessellation of Ω .

In each case, the scheme writes, for any dof σ

∑
T,σ∈T

ΦT
σ = 0 (2)

where the residuals ΦT
σ satisfies

• In the case of the Euler equation, we have the conservation relation

∑
σ∈T

ΦT
σ =

∫
∂T

F ·n(Uh)dl (3)

where n is the outward unit normal to ∂T , Uh is the interpolant of U .
• In the case of the Navier Stokes equation, F = Fe + Fv, the viscous flux are

discretised by a Galerkin approximation

ΦT,v
σ = −

∫
T
∇ϕσ ·Fv(Uh)dx

with ϕσ being the Lagrange basis function at σ , we set

ΦT
σ = ΦT,e

σ −ΦT,v
σ .

The set of relations (2) are solved by a linearized implicit method to be described in
section 2.

In practice, the residual Φσ are constructed so that the only arguments entering
in the formulations are the other degrees of freedom in T . Thanks to this property,
we see that if we partition the mesh, we only need an overlap of one element, what-
ever the degree of the interpolation. There are several ways of implementing this
strategy, we explain the simplest one in the following sections. We first describe the
implicitation strategy, then how the code has been parallelized.

2 Implicitation of the Scheme

For each degree of freedom, one has to solve the equation

∑
T,σ∈T

ΦT
σ = 0 (4)

where nodal residuals are given in the previous paragraphs.
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This is a set of complex non linear equations that are solved by an iterative
scheme. The scheme can either be explicit:

un+1
σ = un

σ −ωσ ∑
T,σ∈T

ΦT
σ (un)

or implicit
un+1
σ = un

σ −ωσ ∑
T,σ∈T

ΦT
σ (un+1).

In the first case, the local relaxation parameter ωσ is chosen to satisfy a CFL–like
condition. For the implicit scheme, one first proceeds an approximate linearisation
of the residuals ΦT

σ . Defining δuσ ′ := un+1
σ ′ −un

σ ′ for any σ ′, we have

δun
σ = −ωσ ∑

T,σ∈T
ΦT
σ
(
un+1

h

)
≈−ωσ ∑

T,σ∈T
ΦT
σ (un

h)−ωσ ∑
T,σ∈T

∑
σ ′∈T

∂ΦT
σ

∂uσ ′
·δuσ ′

and then we approximate the Jacobians of the residual by those of the LxF scheme,
see chapter 9. We end up to :(

I
ωσ

+ ∑
T,σ∈T

∂ΦLxF,T
σ

∂Uσ

)
δUσ + ∑

j �=σ

(
∑

T,σ∈T

∂ΦLxF,T
σ
∂Uj

)
δUj = − ∑

T,σ∈T
(ΦT

σ )�� (un
h) .

(5)
Another strategy has also been tested : the true Jacobian is evaluated by a finite
difference method. This has proved to be efficient for smooth flows, but we have
run into problems when a discontinuity exists in the flow.

The system 5 is solved by standard relaxation. We have chosen Gauss-Seidel or
GMRES with ILU(0) preconditioning.

3 Scheme Parallelization

For 3D test cases, our sequential code suffers from two limitations. A high memory
footprint and the computational time increase dramatically. So in this part, we will
discuss how to speed up the calculation with multiple processors via MPI.

3.1 Theory

The main idea used in a parallel computation is “divide and conquer”. If we have n
processors then we will split our computational domain into n sub-domains, this is
called mesh partitioning. To be efficient the partitions have to correctly balance the
computational cost, i.e. each domain should contains the same number of unknowns.

After the partitioning step we know which processor will compute which un-
known (see Fig 1). Unfortunately, the dependency domain of some unknowns is not
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Fig. 1 2 domains partitioning (P1 scheme): Processor’s 0 unknowns in red, Processor’s 1
unknowns in blue

Fig. 2 2 domains partitioning - Overlaps creation (P1 scheme): Processor’s 0 calculated un-
knowns in red, unknowns received from Processor 1 in blue, Overlap’s cells in Grey

complete, the missing unknowns are calculated by an other processor. To solve this
problem we have to build the “overlaps” by adding the missing unknowns to the
domain. These unknowns are not evaluated by the current processor, they receive
the missing information from the processor “owning” the unknowns (see Figures 2
and 3).

There are two cases to consider : P1 approximation (second order scheme) and P2
approximation (third order). It is essential, since the evaluation of the sub residuals
associated to an element T is done using only values associated to that element, not
to break this structure in the mesh partitioning.
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Fig. 3 2 domains partitioning - Overlaps creation (P1 scheme): Processor’s 1 calculated un-
knowns in blue, unknowns received from Processor 0 in red, Overlap’s cells in Grey

3.2 Implementation for P1 Scheme

Lets T be a triangulation, N be the nodes and E ∈ (N,N) be the edges of the tri-
angulation. Let us note P the partition, P(i) with i ∈ N, contains the number of the
processor computing the unknown i. The partitioning is done using the mesh par-
tionner SCOTCH [1].

In the P1 scheme the unknowns are located at the mesh nodes. The dependency
domain DP1 is composed of the first neighbors, i.e. the nodes the unknown shares
an edge with.

DP1(i) = { j ∈ N/(i, j) ∈ E} for i ∈ N

The construction of the overlap is described by the algorithm 1.

Algorithm 1. Overlap creation algorithm
for e = (i, j) ∈ E do

if P(i) �= P( j) then
add i to the overlap of processor P( j)
add j to the overlap of processor P(i)

end if
end for

3.3 Implementation for P2 Scheme

In the P2 scheme, the unknowns are located at the mesh nodes and in the middle of
the edges. Let us denote V (i) the neighboring elements of node i (V (e) the neigh-
boring elements of edge e). The dependency domain DP2 is defined as follow:
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DP2(i) = { j ∈ N/(i, j) ∈ E}∪{e ∈ E/e ∈V (i)} for i ∈ N
DP2(e) = {i ∈ N/i ∈V (e)}∪{e′ ∈ E/e′ ∈V (e)} for e ∈ E

For the P2 scheme, we keep the P1 partition, in particular for the partionning. the
difference with the P1 scheme is in the overlap definition. At this point, the parti-
tion P is defined for the unknowns located at the nodes, we have to find a way to
uniquely define the partition for the unknowns located at the edges. To do so we use
algorithm 2.

Algorithm 2. Modifying P2 partition
for e = (i, j) ∈ E do

if P(i) �= P( j) then
P(e) ← min(P(i),P( j))

else
P(e) ← P(i)

end if
end for

The construction of the P2 overlap is described by the algorithm 3.

Algorithm 3. P2 Overlap creation algorithm
for every element t ∈ T do

for every edge e = (i, j) of t do
if P(i) �= P( j) then

add i to the overlap of processor P( j)
add j to the overlap of processor P(i)

end if
for every node k of t do

if P(e) �= P(k) then
add e to the overlap of processor P(k)
add k to the overlap of processor P(e)

end if
end for

end for
end for

This partition is not optimal, we have balanced the number of nodes of the mesh,
which is not the number of unknowns. For instance, in a NACA test case with 16
processors, the processor with the most nodes has 2% more nodes than the average
number of nodes, and the processor with the most unknowns has 10% more un-
knowns than the average. A more efficient way of proceeding could be to consider
the graph of the third accurate scheme, to partition this graph while keeping the
locality in the residual definition. This point of view is examined in section 4.2.
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Fig. 4 2 domains partitioning (P2 scheme): Processor’s 0 unknowns in red, Processor’s 1
unknowns in blue

Fig. 5 2 domains partitioning - Overlaps creation (P2 scheme): Processor’s 0 calculated un-
knowns in red, unknowns received from Processor 1 in blue, Overlap’s cells in Grey

3.4 Results

In this part we show some results of 2D and 3D Euler P2 tests cases.

3.5 NACA 12

The first test we have run is a NACA 12 at Mach 0.4 with 0 degrees incidence (case
MTC1). The Figure 7 shows the mesh partitioning on 16 domains.

The Figure 8 shows the convergence rate of the sequential and parallel code. The
convergence rates are not exactly the same because of the iterative method used
to solve the system. The results given by the Gauss-Seidel method depends on the
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Fig. 6 2 domains partitioning - Overlaps creation (P2 scheme): Processor’s 1 calculated un-
knowns in blue, unknowns received from Processor 0 in red, Overlap’s cells in Grey

Fig. 7 NACA 12 - mesh partitioning : 16 domains

ordering of the unknowns, which is not the same in sequential and parallel. However
the difference in the iterative convergence is quite small.

The figure 9 shows the density contours on the 16 domains at convergence. The
figure 10 shows the speedup factor. For a small number of processors (less than 4),
we obtain almost the ideal speedup factor, then this degrades. This loss in perfor-
mance could be explained because of the architecture of the parallel computer we
used to do the calculation. This computer is made of computational nodes of 4 pro-
cessors, all the nodes are connected with infiniband. On a local node the time for
data exchange can be neglected, which is no longer the case between 2 processors
on different nodes.



Implicit Strategy and Parallelization of a High Order Residual Distribution Scheme 217

Fig. 8 NACA 12 - convergence

Fig. 9 NACA 12 - density contours : 30 levels
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Fig. 10 NACA 12 - Speedup factor

3.6 Adigma Test Case BTC0

Here is some results of the Adigma test case BTC0 (inviscid case). The mesh was
partitioned on 16 domains. Figure 11 shows the pressure on the boundaries, and Fig.
12 shows the density contours on the plane z=0. Theses results were obtained after
10 000 time steps. As we can see on Fig. 12 we have some spurious non-physical
oscillations near the boundary. This problem was already existing in the sequential
scheme and is likely due, as pointed out in chapter 9, to the boundary definition. In
this simulation, each triangle of the P1 boundary was subdivided into four smaller
sub-triangles by adding the new P2 degrees of freedom. This implies that the true
geometry is not better approximated that the P1 one.

Fig. 11 BTC0 - Pressure
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Fig. 12 BTC0 - Density contours : 30 levels on the plane z=0

4 Resolution of Linear Problems

Most of the computer time is spent in solving the implicit (non-)linear equation that
describes the implicit phase. The implicit scheme would write

F (Un+1) = 0

where the i-th component of the operator F is (2). Assuming that F is differen-
tiable, we make the assumption

F (Un+1) ≈ F (Un)+
∂F

∂U
(Un)

(
Un+1 −Un

)
so that we are led to a linear system

∂F

∂U
(Un)

(
Un+1 −Un

)
= −F (Un) (6)

where most of the computer time is spent. We have evaluated the following strat-
egy. When solving (6) with “simple” methods, say Gauss-Seidel or GmRes like
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techniques, a naive implementation at the boundary of sub-domains amounts basi-
cally to a Jacobi procedure at the interface. What about a truly parallel resolution of

(6) assuming that
∂F

∂U
(Un) is known ?

Building
∂F

∂U
(Un) is trivial (because the scheme is very compact) but solving it

efficiently can be tricky. Therefore we have chosen to use a library specialized in
solving linear systems in parallel : PASTIX [2]. PASTIX (Parallel Sparse matriX
package) is a scientific library that provides a high performance parallel solver for
very large sparse linear systems based on direct and block ILU(k) iterative methods.
We describe how we integrated this solver in our CFD code, and then we will present
some results obtained with it.

4.1 The PASTIX Solver

PASTIX solves sparse systems of equations of the form Ax = b using block LU (or
LLT for symmetric matrices) methods and block ILU(k) methods.

The LU method consists in writing the matrix A as the product of two matrices L
and U , L being a lower triangular matrix and U an upper triangular matrix. Details
on this method can be found in [3]. With A = LU , solving Ax = b is equivalent as
solving LUx = b which is done in two steps:

1. We solve Ly = b
2. We solve Ux = y

This two steps called forward and backward substitution are trivial because L and U
are triangular.

The ILU(k) method consists in computing two triangular matrices L and U so
that the residual matrix R = LU −A satisfies certain constraints such as having a
small fill-in. Reducing the fill-in means that reducing the amount of memory used
by the decomposition and also reducing the computational time by reducing the
number of operations. Details on theses methods can be found in [4].

To solve the system we first perform the forward and backward substitution as
in the LU method, but because LU is not equal to A we need to refine the solution.
This is done by performing an iterative method such as a GMRES method.

4.2 Implementation

PASTIX allows us to use its functionalities through 2 different interfaces. The
PASTIX interface and the MURGE [5] interface. MURGE is a generic interface
that allow the developers to use different solvers through the same function calls.
Because of its genericity we chose to use the MURGE interface.

The first thing to do to use PASTIX is to send the graph of the matrix. To do so
we have used the function MURGE_GRAPHEDGE. For every segment of the mesh
we send the ID of its vertices.
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DO i = 1 , Mesh%Nsegmt
CALL MURGE_GRAPHEDGE( Mesh%Nubo ( 1 , i ) , Mesh%Nubo ( 2 , i ) )

END DO

Mesh%Nsegmnt contains the number of segments in the mesh. Mesh%Nubo con-
tains the identities of the vertices of the segments.

Then we can get the mesh partition generated by PASTIX (PASTIX uses the
SCOTCH [1] partitionner). We can get the number of local nodes with MURGE_
GETLOCALNODENBR, and then we can get the list of the local nodes with
MURGE_GETLOCALNODELIST.

CALL MURGE_GETLOCALNODENBR( LocalNodes )
ALLOCATE( N o d e l i s t ( Loca lNodes ) )
CALL MURGE_GETLOCALNODELIST( N o d e l i s t )

After that we can send the values of our matrix to PASTIX with the function
MURGE_ASSEMBLYSETNODEVALUES. It takes the coordinates (i,j) and the
value we want to set in the matrix.

CALL MURGE_ASSEMBLYSETNODEVALUES( i , j , v a l u e )

The right hand side is sent with MURGE_SETLOCALRHS.

CALL MURGE_SETLOCALRHS( r h s )

The last step is to solve the system and get the solution. To do so we call the
function MURGE_GETLOCALSOLUTION

CALL MURGE_GETLOCALSOLUTION( s o l u t i o n )

4.3 Results

In order to see the improvements brought by the PASTIX solver we need to define
the efficiency of our code. Let n be the number of processors, Tseq the time needed
for the computation to run on 1 processor, and Tn the time of the computation on n
processors. We define the efficiency e of our program as:

e =
Tseq

nTn

e = 1 means that our parallelization is very efficient. It is really hard to get e = 1 in
practice, because it is difficult to have the same load balancing on every processors,
i.e. the processors do not do the same amount of work. The other problem when
we work in parallel is that we need to exchange data between the processors, this
operation cost time and is not present in the sequential algorithm.

An example of the efficiency we get with PASTIX for the MTC1 - level 9 test
case is shown Fig. 14. The domain decomposition used for 16 processors is shown
on Fig. 13. We can see that the efficiency is not very good, we get a bit more than
0.5 for 16 processors, this means we go only 8 times faster than the sequential
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Fig. 13 MTC1 - level 9 - mesh partitioning : 16 domains

Fig. 14 MTC1 - level 9 - efficiency
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Fig. 15 BTC0 - P2 calculation - Density isolines - Colored by pressure

program. This happens because the matrix is not large enough to scale on a lot of
processors. The time needed by each processor to complete its calculations is too
short compared to the time needed to exchange data, so the efficiency is not good.

With theses developments we are now able to run some 3D tests cases as we can
see in Fig. 15. This is a BTC0 laminar calculation, computed with a P2 Residual
Distribution scheme.

5 Concluding Remarks

We developed a parallel version of or third order Residual distribution scheme. This
code has been validated on smalls (and medium) 2D and 3D tests cases with satis-
factory results. The code is efficient, we are located around 95% of the ideal speedup
for computations with 16 processors, and we still have some leads on how to im-
prove it (“true” P2 partition with SCOTCH). We also have explored some parallel
strategies for solving the linear systems that need to be solved for implicit schemes.
The efficiency is larger than 50%, but we have run into the following problem : the
meshes are too small to use efficiently the PastiX and Hips libraries.
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Chapter 16
Hybrid Multigrid DG/FV Methods for Viscous
Turbulent Flows

V. Couaillier, F. Renac, and M.C. Le Pape

Abstract. This chapter presents the development of a hybrid technique for coupling
Discontinuous Galerkin (DG) and Finite Volume methods for compressible turbulent
flow computations in a block-structured code with the RANS system of equations.
This code developed at ONERA has been initially built from the following numerical
tools : multi-domain approach using structured grids with patched or overlapping in-
terfaces, cell-centered finite volume discretization, space-centered Jameson scheme,
multigrid and implicit acceleration techniques (IRS or LDU), boundary condition
treatment based on characteristic relations. It has been validated for the simulation
of inviscid and turbulent complex internal and external flow configurations and the
Finite Volume (FV) functionalities have been integrated in the elsA software environ-
ment developed at ONERA which is actually used both by aerospace manufacturers
and research laboratories. The code structure enables to re-use as much as possi-
ble existing multiblock and multigrid functionalities for the DG method. The RANS
system of equations coupled with a kω turbulence model are reformulated as a first-
order system in space using the mixed DG approach. The boundary condition treat-
ment is performed through a reconstruction of the solution at the physical boundary
which avoids the use of a ghost cell technique and improves stability. This method al-
lows space discretization with overlapping and non-matching multidomains as well
as high order polynomial approximations of the solution. Numerical examples for 3D
inviscid and turbulent flows are presented to demonstrate the capacity of the method,
as well as hybrid multidomain multigrid computations.

1 Introduction

The approach used by ONERA for implementing Discontinuous Galerkin (DG)
schemes was to directly use a multi-block structured code [1, 2] with industrial ca-
pacities in order to take into account as much as possible a complex flow simulation
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environment. This type of code is a standard for industrial applications due to its
efficiency for solving practical aerodynamic problems around complex geometries.
The DG method allows higher-order accuracy with a compact stencil well adapted
to several implementation aspects. ONERA has combined these two strategies by
developing a DG solver for 3D RANS/two-equation turbulence model simulations
on hexahedral meshes. Domain decomposition methods have been devised in order
to be able to combine the two strategies, FV and DG.

The compressible Reynolds-averaged Navier-Stokes (RANS) equations coupled
with a k−ω turbulence model are considered using a DG space discretization and
an explicit time integration based on a Runge-Kutta technique. We reformulate the
RANS and turbulence model equations as a first-order system in space using the
BR1 scheme [4]. The boundary condition treatment is performed through a recon-
struction of the solution at the physical boundary which avoids the use of a ghost
cell technique and improves stability. This method allows space discretizations with
overlapping and non-matching multidomains as well as high order polynomial ap-
proximations of the solution.

Domain decomposition methods have been devised in particular within the dis-
tributed computation framework, in which ONERA is concerned. Techniques have
been developed for the local grid refinement of block-structured grids, based on
patched grids or Hierarchical Mesh Refinement (HMR). Classical methods consist
in creating fictitious meshes and in interpolating values and derivatives. Their ex-
tension to the coupling of two different discretizations, such as a second-order finite
volume scheme and a higher-order DG method, requires the definition of compact
conditions which are based here on local fictitious cell reconstruction.

The H-multigrid method has been extensively used for practical 3D turbulent
flow configurations for many years in block-structured finite volume codes. In par-
ticular, ONERA has studied different strategies of coupling/decoupling approaches
for the solution of the RANS system associated to turbulent transport equation mod-
els, with various restriction and prolongation operators on hexahedral curvilinear
grids, in the context of classical second-order finite volume methods. Based on this
experience, the FV H-multigrid has been extended to DG H-multigrid by deriving
the schemes on the coarse grids and re-using partially the transfer and prolongation
operators.

The paper presents the FV and DG methods used as well as the hybrid coupling
and multigrid technique. Some numerical examples are then introduced.

2 Numerical Approach

Let Ω ⊂ R3 be a bounded domain, ∂Ω denotes the boundary of Ω . In the follow-
ing, we introduce the DG discretization for turbulent flow simulations. A similar
approach is applied for the discretization of laminar equations.

We consider the system of RANS equations coupled with the Wilcox’s k −ω
two-equation turbulence model in conservative form:
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∂u
∂ t

+∇ ·Fc(u)+∇ ·Fv(u,∇u) = S(u,∇u), (1)

where u = (ρ ,ρu,ρv,ρw,ρE,ρk,ρω)t denotes the conservative variable vector and
T is the transpose operator, ρ stands for the density, V = (u,v,w)t denotes the veloc-
ity vector, and E is the total energy per unit of mass. The turbulent variables are the
kinetic energy of turbulence k and the specific rate of dissipation ω . The convective
fluxes Fc, the viscous fluxes Fv and the source terms S are defined by (see [5] for
details on the parameters):

Fc =

⎛⎜⎜⎜⎜⎝
ρV

ρV ⊗V + pI
(ρE + p)V

ρkV
ρωV

⎞⎟⎟⎟⎟⎠ ,Fv =

⎛⎜⎜⎜⎜⎝
0

−τ− τr

q + qt − (τ + τr) ·V
−(μ +σkμt)∇k
−(μ +σωμt)∇ω

⎞⎟⎟⎟⎟⎠ ,S=

⎛⎜⎜⎜⎜⎝
0
0
0

τr : ∇V −β �ρkω
γω
k τr : ∇V −βρω2

⎞⎟⎟⎟⎟⎠,

where μ stands for the kinematic viscosity. The turbulent viscosity is defined by
μt = ρk/ω and p is the static pressure. The system is completed by the Boussinesq
assumption:

τ = − 2
3μ(∇ ·V )I + μ(∇V +∇V T ), q = −Cpμ

Pr ∇T,

τr = − 2
3(ρk + μt∇ ·V)I + μt(∇V +∇V T ), qt = −Cpμt

Prt
∇T.

2.1 Finite Volume Scheme

In a finite volume approach, the semi-discretized formulation of the system of equa-
tions reads :

du
dt

= − 1
Vi jk

⎛⎝∫
∂V

(FC(u)−FV (u,∇u))nds−D(u)

⎞⎠+ S(u,∇u) = R(u) (2)

where Vi jk is a volume element. The above residual operator R(U) contains the con-
tributions of convective fluxes FC(u), viscous fluxes FV (u,∇u), artificial dissipation
fluxes D(u) and source terms S(u,∇u).

More precisely the explicit stage is defined by the following expression:

EFC,FV ,S,D

(
u(0),u(q)

)
i jk

= − 1
Vi jk

⎛⎜⎝ ∫
∂Vi jk

(F (q−1)
C −FV

(0))nds−D(0)
i jk

⎞⎟⎠+ S(0)
i jk , (3)

in which the ”cell centered” spatial discretisation is performed with second order
space centered scheme. In the explicit stage the convective fluxes are recomputed
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at each Runge-Kutta step whereas the viscous fluxes, as well as the numerical dis-
sipation term and the source term, are frozen at step t(0), leading to a second order
time accurate scheme in the perfect fluid regions and to a first order time accurate
scheme in the viscous regions.

The time step Δ t is determined from the convective and viscous stabilitiy criteria
by the following expression :

Δ ti jk = CFL min

(
V

λES
,

V 2

ξμλNS
2
/2

)

where:

S
2 = max

(
S2

i+1/2 jk,S
2
i−1/2 jk

)
+max

(
S2

i j+1/2k,S
2
i j−1/2k

)
+max

(
S2

i jk+1/2,S
2
i jk−1/2

)
The quantities Slil j lk represent the oriented surface vector of faces from cell Vi jk.
The spectral radius λE of the convective Jacobian matrix dFC(u)/du is defined by
the following expression:

λE = |V | + C,

C being the sound speed. The spectral radius λN of the diffusive Jacobian matrix
dFV (u)/du is defined by the following expression :

λN =
γ
ρ

(
μ
Pr

+
μt

Prt

)
An analysis of the k −ω system shows that the linear stability criterion defined
by the convective and diffusive terms is less restrictive than that defined by the
analoguous terms of the mean flow system. Nevertheless, this turbulent system of
equations has strong non linear behaviour in regions where the level of turbulent
kinetic energy k is high, and then the level of eddy viscosity μt is also high, so we
introduced a coefficient ξμ greater than 1 in the time step evaluation. Numerical
tests lead to typical values inbetween 2 and 4.

The artificial viscosity is analogous to that proposed by Jameson et al. [3] in a cell
vertex approach, modified by Eriksson for the treatment of boundary conditions. It
is composed of a non linear second order term for the shock capture and of a linear
fourth oder term to ensure the Kreiss dissipative aspect of the scheme :

D(u)i jk = ∑
l=i, j,k

D(u)l

The artificial viscosity terms in the “i” direction are defined as follows:

D(u)i = δi

(
ε(2) δiu

)n

i jk
− δ 2

i

(
ε(4) δ 2

i u
)n

i jk

where the coefficients ε(2)
i±1/2 jk and ε(4)

i jk depend on local gemetry and aerodynamic
field:
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ε(2)
i±1/2 jk = K(2)max

(
ν(i)

i jk,ν
(i)
i±1 jk

)
λ i±1/2 jk,

ε(4)
i jk = max

[
0,K(4)− μiε

(2)
i jk

]
,

and

λ i±1/2 jk = λi±1/2 jk

⎛⎝1+ζ1max(li = i, i+1; l j = j±1/2, lk = k±1/2)

(
λlil j lk

λi±1/2 jk

)ζ2
⎞⎠

where the spectral radius of the matrix (AxSx + AySy + AzSz), is defined by the fol-
lowing relation :

λ = |V.S| + C|S|.
For meshes with high cell aspect ratio (this is typically the case for turbulent flows)

the parameters ζ1,ζ2 are set respectively to 1 and to 1/5. The sensor ν(i)
i jk, is based

on a combination of second order pressure difference and second order velocity
difference :

ν(i)
i jk = σg(i)(p) + (1− σ)g(i)(|V |)

with

g(i)(ζ ) =
|ζi+1 jk − 2ζi jk + ζi−1 jk|

ζi+1 jk + 2ζi jk + ζi−1 jk + ε

The coefficients K(2), K(4) are set to usual values (from 0.25 to 1 for K(2), and from
0.016 to 0.064 for K(4)), σ is a parameter allowing to balance the respective wheight
of pressure and velocity, and ε > 0 is a small parameter.

2.2 Runge-Kutta Time Integration

The numerical integration is performed using a four-step Runge-Kutta scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(0) = un

...

Δ ũ(q) = ũ(q)−u(0) = αqΔ tEFC,FV ,Q,D

(
u(0),u(q)

)
Irs Δu(q) = Δ ũ(q)

u(q) = u(0) +Δu(q)

...
un+1 = u(4)

In these expressions, EFC,FV ,S,D represents the explicit operator and IRS the implicit
operator. the coefficients αq are defined as follows :

α1 =
1
4

, α2 =
1
3

, α3 =
1
2

, α4 = 1. (4)
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2.3 Discontinuous Galerkin Scheme

We recall here the hexahedral DG method developed in the ADIGMA project (see
chapter ”Development of Discontinuous Galerkin Method for RANS equations on
Multibloc Hexahedral Meshes” foe mre details) .The domain Ω is discretized with
hexahedral elements: Ωh = ∪Vi jk. The spatial discretizations of the diffusive and
source terms are constructed by regarding the gradient of the conservative variables
as additional unknowns of the problem

G(u) = ∇u (5)

so we have Fv = Fv(u,G) and S = S(u,G).
Multiplying the system equations by the same test function φ and integrating by

parts element by element leads to the weak formulation of the problem. The discrete
version of the weak formulation of the system in each element reads

∫
Vi jk

φGhdΩ −
∮
∂Vi jk

φ ûh ⊗ndS +
∫

Vi jk

∇φ ⊗uhdΩ = 0, (6a)

∫
Vi jk

φ
∂uh

∂ t
dΩ +

∮
∂Vi jk

φ(F̂c + F̂v) ·ndS−
∫

Vi jk

(Fc + Fv) ·∇φdΩ

−
∫

Vi jk

φSdΩ = 0, (6b)

where n is the normal unit vector and

Gh =
n

∑
j=1

G jφ j(x), uh =
n

∑
j=1

U jφ j(x) (7)

represent approximate solutions of the equations where U j stand for the degrees of
liberty of the problem. The functions φ j represent a basis of the function space of
piecewise discontinuous polynomials of degree k inside each element:

Vh = {φ ∈ L2(Ωh) : φ |Ki ∈ Pk(Vi jk),1 ≤ i ≤ N} (8)

where Pk(Ki) represents the space of polynomials in element Vi jk of degree at most
k. We use the monomials 1, (x− xi), (x− xi)2, (x− xi)(y− yi), etc. as basis of the
function space Vh where xi = (xi,yi,zi)T represents the centroid of the element Vi jk.

The numerical fluxes in contour integrals of equation (6) are chosen so as to be
uniquely defined at the boundary ∂Vi jk of each element and to satisfy the consistency
relations. We use a centered scheme for the gradient construction:

ûh =
u− + u+

2
, (9)
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where u− denote the internal state evaluated at the interface and u+ denotes the
neighboring interface state. Likewise, the convective fluxes of the mean quantities
are discretized by using a Lax-Friedrichs flux with artificial dissipation:

F̂c = Fc

(u− + u+

2

)
− k2ρs(u+−u−), (10)

where the spectral radius is defined by ρs = max{‖V+‖+ c+,‖V−‖+ c−}, c de-
notes the speed of sound and the artificial viscosity parameter is set at k2 = 0.25 for
viscous calculations and at k2 = 0.05 for inviscid computations.

In order to keep the modular feature of the solver, the time integration procedure
is based on a decoupling between RANS and k −ω systems of equations. This
allows the use of specific numerical flux for each system and we use a Roe flux for
the turbulent quantities.

The viscous fluxes are replaced by a centered scheme

F̂v =
Fv(u−,G−)+ Fv(u+,G+)

2
. (11)

The surface and volume integrals in equation (6) are evaluated by means of Gauss
quadrature formulae in the brick reference element KB = {ξ = (ξ1,ξ2,ξ3)T : −1 ≤
ξ j ≤ 1,1 ≤ j ≤ 3} associated to a linear mapping form the reference element to
the physical cell. The integrands are evaluated at each Gauss point by using the
polynomial approximation of the conservative variables uh and of their gradients
Gh.

Finally, as for the FV scheme, the time integration of the system is accomplished
with an explicit four-stage Runge-Kutta method of second order accuracy in time.
The same time scheme is used for mean and turbulent variables.

3 Hybrid FV/DG Coupling

Domain decomposition methods have been devised in particular within the dis-
tributed computation framework, in which ONERA is concerned. Techniques have
been developed for the local grid refinement of block-structured grids, based on
patched grids or HMR. Classical methods consist in creating fictitious meshes and
in interpolating values and derivatives. Its extension to the coupling of two different
discretizations, such as a second-order finite volume scheme FV and a higher-order
DG method, requires the definition of compact conditions.

Then the coupling technique used for FV/DG is based on a one raw of external
cells at each boundaries to perform the coupling. It is based on a matching treatment
initially developed for FV/FV coupling and it is presented hereafter. Let us first
consider the different coupling techniques used for generalized matching conditions
with a FV scheme.
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3.1 Generalized Domain Matching Techniques

For the FV method the different stages in the explicit term evaluation in a current
inner cell are the following :
1) Evaluation of ∇ ·V , ∇V , ∇T
2) Calculation of τ , τr, q, qt , Fc −Fv

3) ∇ · (Fc −Fv)
4) S

Phases 2) and 4) of the explicit stage discretization consist of simple algebra from
quantities kwown at the centers of the cells. These calculations can be applied even
for boundary cells. On the contrary, phases 1) and 3) have to be modified when
applied to boundary cells, allowing to take into account the physical and matching
boundary conditions. Let us consider the evaluation of the quantity

GV =
1
V

⎛⎝∫
∂V

(φ(u,uv)nds

⎞⎠ (12)

where uv = ∇u and V is a cell C of domain D1, having a face B which lies on the
boundary of D1 as shown in Fig. 1.

The flux density φ(u,uv) on this face is calculated from values of u and uv esti-
mated on this face. Let us use the subscripts C and B to identify a value at the center
of face B. Three boundary types have to be considered :

- for a physical boundary, uB is estimated from uC and physical conditions using a
treatment based on characteristic relations, and uvB is a zero order approximation of
uvC .
- for a boundary between two adjacent domains with coincident points, uB (resp.
uvB) is the mean value of u (resp. uv) kwown at each adjacent cell, on each domain,
- for a boundary between two adjacent domains D1 and D2 with non coincident
points, or a boundary of D1 overlapped by D2, we define a fictitious cell A adjacent
to cell C; uB (resp. uvB ) is the mean value of uC (resp. uvC ) and uA (resp. uvA) is given
by a trilinear interpolation of domain D2.

For this third type of boundary, the definition of fictitious cell A is different wether
we consider adjacent or overlapping domains. Figure 1 (c) shows this definition
for an overlapped domain D1. We can notice that this approach is also usuable for
adjacent domains.

Figure 1 (b) shows that in the case of adjacent domains the fictitious cell of do-
main D1 (direction for mesh lines not included in the common plane and width in
this direction).

This type of construction of cell A has the nice property of giving the same bound-
ary treatment in the case of adjacent domains with coincident points as the direct
treatment without interpolation. Indeed in this case the cells A are identical to the
adjacent cells of domain D2.
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(a) Boundary cell notation

(b) Fictitious cell for adjacent domains

(c) Fictitious cell for overlapping domains

Fig. 1 Treatment of domain coupling : coincident, adjacent and overlapping meshes

Concerning the artificial dissipation we use the treatment proposed by Eriksson
to evaluate the non linear second order term and the linear fourth order term at
the physical boundaries. For the matching boundaries we use information from the
adjacent or overlapping domain to evaluate the various differerences appearing in
both artificial viscosity terms. For this we use the fictitious cells already defined in
the explicit stage.
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3.2 Extension to Hybrid FV/DG Coupling

The techniques presented above have been extended to FV/DG coupling. In the
case of a P0 approximation for the shape functions the reconstruction at cell faces
is based on one point located at the face centers, and then we directkly use the
techniques presented above, knowing that the artificial dissipation term in the fluxes
is simpler than in the FV approach.

For a DG/FV coupling we have to reconstruct the states at different Gauss points
of the boundary cell faces. In that case the technique used is to define on the FV
domain interface side the values at the same Gauss point than those needed for the
DG scheme. An example is presented in Fig. 2 for a 2D DGP1/FV coupling.

Fig. 2 Hybrid DGP1/FV coupling : Gauss point reconstruction at a common interface

4 Hybrid Multigrid Method

The time integration of this system of ordinary differential equations is carried out
using multi-stage Runge-Kutta scheme. To enhance convergence to steady state,
local time stepping as well as implicit residual smoothing are used.

The above mentionned iterative approach is well adapted for rapidly damping
high frequency error components on a given grid. The remaining errors, associ-
ated with the smoother low frequency error components, are responsible for the
slow convergence. These low frequency error components on the fine grid appear
as higher frequencies on the coarser grid. Thus, to ensure fast convergence of the
solution to steady state, a multigrid acceleration technique is developed in this study.
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This technique uses a sequence of successively coarser grids to efficiently damp the
perturbations. Denote the grid level by a subscript, a sequence of grids h1,..., hm, ...,
hM are then defined, where h1 denotes the finest grid and hM represents the coarsest
grid.

The multigrid strategy employed is the Full Approximation Storage (FAS)
scheme in conjunction with Runge-Kutta time stepping proposed by Jameson. This
strategy is used to improve the convergence rate of a multi-block solver for the solu-
tion of Euler and Reynolds-Averaged Navier-Stokes equations. The Jamesons FAS
algorithm for a simple V-Cycle can then be summarised as follows :

• Compute the residual Rh1 Rh1 and start with a q-stage Runge-Kutta time stepping
to update the solution on the finest level.

The following steps are repeated right up to the coarsest level m = 2, ...,M which
correponds to the Restriction step :

• Recompute the residual Rhm−1(uhm−1) on the previous level and calculate the
modified residual to be transferred from grid level hm−1 to the level hm:

R(∗)
hm−1

= Rhm−1(uhm−1)+ Phm−1,

where Phm−1 is the added forcing function defined below with Ph1 on the finest level.

• Transfer the solution and residual vectors from the previous grid hm−1 to the next
coarser grid hm using respectively the fine to coarse transfer operators T hm

hm−1
and

T̂ hm
hm−1

:

uhm = T hm
hm−1

uhm−1

Rhm = T̂ hm
hm−1

R(∗)
hm−1

• Compute the forcing function for the residuals on the grid level hm which is
the difference between aggregated residuals transferred from grid hm−1 and the
residuals recalculated on hm :

Phm = Rhm −Rhm(uhm),

• where Rhm(uhm) is the residual vector computed on the grid level hm using the
transferred solution vector uhm from the previous grid level hm−1.

• Start Runge-Kutta time stepping on the coarse level hm using the following re-
formulated version, to take into account the forcing function as well as to include
subiterations if necessary, coupled with an implicit smoothing technique (IRS or
LU) :
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u(0)
hm

= uhm ou u(q)
hm

Δ ũ(1)
hm

= α1
Δ thm

Ωhm

[Rhm(u(0)
hm

) + Phm ]

Θhm Δu(1)
hm

= Δ ũ(1)
hm

u(1)
hm

= u(0)
hm

+Δu(1)
hm

...

Δ ũ(q)
hm

= αq
Δ thm

Ωhm

[Rhm(u(q−1)
hm

)+ Phm]

Θhm Δu(q)
hm

= Δ ũ(q)
hm

u(q)
hm

= u(0)
hm

+Δu(q)
hm

Note that upon convergence, when the residual on the finest level goes to zero,

the term Rhm(u(0)
hm

) + Phm in the above equation which can be rewritten as

Rhm(u(0)
hm

) + [Rhm −Rhm(uhm)] goes as well to zero. Thus, no correction is com-
puted on the coarser levels and driven back to the finest level.

• Updated solution on coarse grid hm :

uhm = u(q)
hm

.

The accumulated corrections from each coarser grids are then successively passed-
back to finer levels by interpolation (m = M, ...,2). This represents the prolongation
step : Transfer the correction from the grid level hm to the next finer one hm−1.

• Transfer the correction from the grid level hm to the next finer one hm−1

u(+)
hm−1

= uhm−1 + Ihm−1
hm

(u(+)
hm

−uhm) avec u(+)
hM

≡ uhM ,

where Ihm−1
hm

is the coarse to fine grid prolongation or interpolation operator from
grid hm to the next finer one hm−1.

• Transfer grid operators

The implemented strategies include V and W cycles as well as options for full multi-
grid (FMG) versions. In the present multigrid approach, only full coarsening algo-
rithms are employed. Thus, a sequence of coarser grids is extracted from the initial
given fine grid by deleting every other grid line in each coordinate direction. Fur-
ther, the boundary conditions on the coarse grids are treated in the same way as in
the fine grid.

Special attention is given to the intergrid transfer operators in the cell-centered
formulations in which the variables are located at cell centers.Thus, the transferred
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variable locations change from one grid to another, which is not the case in a cell-
vertex or node centered formulation. For the fine to coarse operators, the standard
approach is used. The transfer of flow variables conserves mass, momentum and
energy by the rule:

uhm =
∑Ωhm−1 −uhm−1

∑Ωhm−1

and the residual transferred to grid hm is the sum of the residuals computed on the
eight cells of the fine grid :

Rhm = ∑R(∗)
hm−1

where the summations range over the cells on the fine grid composing each cell on
the coarser grid. For the coarse to fine operator, in order to damp the high frequency
errors, an efficient prolongation operator possessing inherent smoothing properties
and well adapted for multiblock computational mesh is introduced. The basic idea
is to project the cell centered corrections, denoted here by the symbol φ , in a con-
servative manner to the nodes of the coarse grid by the relation :

φ (N)
hm

=

∑
{C|N∈C}

Ω (C)
hm

φ (C)
hm

∑
{C|N∈C}

Ω (C)
hm

.

This conservative smoothing is found to be quite efficient in all our applications. For
multi-block computational mesh, the exact interfaces are also taken into account in
this cell-to-node projection process. For the finer four cells (in 2D) cells, which are
then exactly included in the coarser grid cell, a volume weighted interpolation is
used to compute the cell centered corrections :

φ (a)
hm−1

=
∑

i
Ωiφ

(i)
hm

Ω
.

where Ω is the volume of the coarse grid cell hm given by
with (in 2D) :

Ω = Ω (a)
hm−1

+Ω (b)
hm−1

+Ω (c)
hm−1

+Ω (d)
hm−1

and
Ω1 = 1

4Ω
(a)
hm−1

+ 1
2Ω

(b)
hm−1

+Ω (c)
hm−1

+ 1
2Ω

(d)
hm−1

Ω2 = 1
4Ω

(a)
hm−1

+ 1
2Ω

(d)
hm−1

Ω3 = 1
4Ω

(a)
hm−1

Ω4 = 1
4Ω

(a)
hm−1

+ 1
2Ω

(b)
hm−1
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which gives the usual linear interpolation stencil containing entries for the cell center
a on uniform grids.

For inviscid computations, this leads to an efficient procedure and good conver-
gence properties are obtained for a wide range of 3D applications. Further, to treat
complex multi-block configurations with limited number of cells in one direction,
the idea of using linear dissipation terms on the coarse grids is also implemented.
This consists in using a simple constant coefficient second order dissipation term on
the coarser grids instead of the nonlinear artificial dissipation model.

• Strategy for turbulent flows

In the case of the RANS equations, the approach adopted is to compute the viscous
terms on the coarser grids too. Thus, their influences are also taken into account in
the forcing functions on the coarser grids. Different turbulence models are available
in the solver ranging from algebraic models to two equation models. These models
are used to compute the turbulent quantities only on the finest grid level. On the
coarser grids, they are obtained by interpolating the values from the finest level.
This leads to a very direct approach with algebraic models, while with one or two
equation models, the corresponding turbulence model equations are solved sepa-
rately decoupled from the flow equations. In the solver, one Runge-Kutta iteration
is carried out to update the turbulent quantitites on the fine grid. Thus, different new
turbulence models can easily be included in the present environment.

• Strategy for multigrid cycles

In order to ensure robustness in V cycles without multigrid on turbulent quantities,
sub-iterations are performed on the corresponding equations (let say 2 subiterations
on k−ω system for a V cycle with 2 or 3 grids). Concerning the present multigrid
DG implementation, we have used a P1 approximation on the fine grid and a P0
approximation on the coarse grid, leading to small overcost when using multigrid
(20% additional cost per iteration).

5 Applications

5.1 Inviscid Test Cases: Hybrid Multigrid Method

Figures 3 and 4 present Euler computations of the DG method for two inviscid
flows around the NACA0012 airfoil using a DG discretization : a subsonic flow at
freestream Mach numer M = 0.5 with an angle of attack of α = 2◦, and a transsonic
flow at freestream Mach number M = 0.8 and α = 1.25◦. The space is discretized
with a 2D structured C-grid with 225x33 nodes. Results of the DG method are ob-
tained with a P1 approximation of the solution. The volume and contour integrals
in (6) are calculated with second-order Gauss quadrature formulae.

For the subsonic case, as shown by the residual history, both monogrid and multi-
grid computations converge well. In term of Performance Index Units the gain ob-
tained in CPU reduction is good, especially when considering the lift coeffocient
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evolution. Concerning the transonic case, the analysis of the L2 norm of the density
residual shows that whereas the multigrid computation better converges in a first
stage, it is not the case in the second stage. This residual evolution behaviour could
be generated by some local limit cycle due to numerical parameters which have not
been optimised. Nevertheless Fig. 4 shows a very good convergence for the multi-
grid computation, with a gain in CPU time better in this transonic case than that
obtained in the subsonic case. Concerning accuracy and for this relatively coarse
mesh the improvement obtained in shock wave representation by using the DGP1
scheme instead of the FV JST is clearly demonstrated in Fig. 5.

(a) Mean quadratic residuals (b) Lift coefficient

Fig. 3 Convergence history of the DGP1/FV hybrid multigrid computation - subsonic case -
Mesh (225×33 grid, P1 approximation)

(a) Mean quadratic residuals (b) Lift coefficient

Fig. 4 Convergence history of the DGP1/FV hybrid multigrid computation - transonic case
- (225×33 grid, P1 approximation)
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(a) FV JST scheme (b) DGP1 LLF scheme

Fig. 5 Iso-Mach number lines - FV and DGP1 computations - transonic case - (225× 33
grid)

5.2 Turbulent Test Case: FV/DGP1 Multidomain Coupling

The hybrid FV/DGP1 domain coupling method has been applied to a turbulent test
case. This test case consists in a turbulent flow around a RAE2822 airfoil at an in-
cidence of α = 2.79◦ with a freestream Mach number of M = 0.79 and a Reynolds
number, based on freestream quantities and chord length, of Re = 2.5× 106. The
wall is assumed to be adiabatic and a no slip condition is applied. The domain is
discretized by using a structured C-grid with 257× 129 nodes. The RANS equa-
tions are coupled to the k −ω turbulence model of Wilcox. Figure 6 presents the
mesh split into two domains and the iso-Mach number lines obtained for this hybrid
calculation. The convergence in the DGP1 domain (downstream domain) is slow
but reaches good level for a CFL number equal to 0.4 wich was impossible to use
for a full DG computation. This highlight that the stability problems we have got
in the full DGP1 turbulent computation were certainly due to boundary conditions
treatment of the turbulent variables.

5.3 ONERA M6 Wing: DGP1 RANS Computation

In order to validate the capacity of the implemented DGP1 RANS scheme to com-
pute 3D configurations the ONERA M6 wing [6] has been calculated. The flowfield
is computed here at a free stream Mach number of 0.836, an angle of attack of 6.06
deg. and a free stream Reynolds number of 11.7x106. The C-O mesh used for the
computations is composed of 193x49x65 points, corresponding to y+ = 1 almost
everywhere on the wing. The DGP1 computation has been performed on the fine
grid with a CFL number equal to 0.2 and one coarse grid has been used with the FV
JST scheme to accelerate the convergence. Figure 7 presents the iso pressure lines
on the upper surface.
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RAE2822 RANS Mesh - 2 Domains

(a) 2 domain mesh

RAE2822 RANS K-Omega - FV/DG

(b) FV/DGP1 computation

Fig. 6 RAE2822 airfoil: Hybrid FV/DGP1 RANS computation - (257x129grid)

ONERA M6 Wing - K-Omega - DGP1

Fig. 7 ONERA M6 Wing: DGP1 RANS computation - Mesh 193x49x65

6 Conclusion

A hybrid DG/FV domain coupling method has been developed in the 3D DG multi-
block structured solver. The method uses the DGP1 scheme on the fine grid devel-
oped by Onera in WP3.1 of the ADIGMA project. At the present time the DGP2
approximation has not been coupled to FV scheme but it is possible to implement it
in an analogous way to that used for DGP1/FV coupling. It is based on a solution
reconstruction on the FV interface side at the same Gauss points than those used in
the DG domain. It has been tested on 2D turbulent simulations and presents good
robustness properties. This technique needs now to be evaluated on more complex
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configurations in order to analyze the benefits compared to a full DG approach.
Moreover an hybrid multigrid technique has been implemented allowing the use of
DGP1 scheme on the fine grid and FV scheme on the coarse grid. The efficiency
obtained is higher than that obtained using DGP1 on the fine grid and DGP0 on
the coarse grids. The output is a unique software environment for solving flows on
multi-block meshes with the option of using classical Finite Volume (FV) methods
or DG methods (P0, P1 and P2 approximations), with the capacity of using FV in
particular domains and DG in other domains.
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Chapter 17
Semi-implicit Time Discretization of the
Discontinuous Galerkin Method for the
Navier-Stokes Equations

Vı́t Dolejšı́, Martin Holı́k, and Jiřı́ Hozman

Abstract. We deal with the numerical solution of the compressible Navier-Stokes
equations with the aid of the discontinuous Galerkin method. The space semi-
discretization leads to a stiff system of ordinary differential equations. In order to
accelerate a convergence to the steady-state solution we employ the semi-implicit
time discretization which leads to the solution of linear algebra system at each time
level. We focus on the solution of the arising linear algebra systems and propose a
new efficient strategy for the steady-state solutions. The efficiency is demonstrated
by a set of numerical experiments.

1 Introduction

In Section II.1 of this book, we presented the space semi-discretization of the com-
pressible Navier-Stokes equations with the aid of the interior penalty Galerkin (IPG)
method. This leads to a system of ordinary differential equations (ODEs) for wh(t)
which has to be discretized by a suitable method.

The explicit time discretization gives a strong restriction on the size of the time
step. On the other hand, a full implicit scheme leads to a necessity to solve a non-
linear system of algebraic equations at each time step which is rather expensive.
Therefore, we develop here a semi-implicit method which is based on a suitable
linearization of the Euler fluxes. The linear terms are treated implicitly whereas the
nonlinear ones explicitly which leads to a linear algebraic problem at each time step.
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Numerical solution of these linear algebra system by a “black box” iterative
solver consume approximately 95-99% of the total computational time. Therefore,
we focus on a significant reduction of computational time needed for the solution of
the linear algebra problems. Moreover, the amount of the used computer memory
has to be taken into account. We develop an efficient solution strategy for the men-
tioned algebraic problems, namely we deal with the choice of a stopping criterion
and the size of the time step.

2 Compressible Flow Problem

Let Ω ⊂ IRd, d = 2,3 be a bounded domain and T > 0. We set QT =Ω× (0,T ) and
by ∂Ω denote the boundary of Ω . The system of the Navier-Stokes equations de-
scribing a motion of viscous compressible fluids can be written in the dimensionless
form

∂w
∂ t

+
d

∑
s=1

∂ fs(w)
∂xs

=
d

∑
s=1

∂
∂xs

(
d

∑
k=1

Ksk(w)
∂w
∂xk

)
in QT , (1)

where w = (ρ , ρv1, . . . ,ρvd , e)T is the state vector, fs : IRd+2 → IRd+2, s = 1, . . . ,d
are the inviscid (Euler) fluxes and Ksk : IRd+2 → IR(d+2)×(d+2), s,k = 1, . . . ,d repre-
sent the viscous terms. The forms of vectors fs, s = 1, . . . ,d and matrices Ksk can be
found, e.g., in [4] or [9, Section 4.3]. The system (1) is equipped with a suitable set
of the initial and boundary conditions, see [3], [4].

Let us mention that the Euler fluxes fs, s = 1, . . . ,d satisfy (see [9, Lemma 3.1])
fs(w) = As(w)w, s = 1, . . . ,d where As(w) = Dfs(w)

Dw , s = 1, . . . ,d are the Jacobi
matrices of the mappings fs. Finally, we define a matrix

P(w,n) =
d

∑
s=1

As(w)ns, n = (n1, . . . ,nd). (2)

3 Interior Penalty Galerkin Discretization

3.1 Linearization

In Section II.1, we presented a discretization of inviscid, viscous and penalty terms
represented by the forms ãh, b̃h and J̃σh , respectively. In order to proceed to the
semi-implicit time discretization, we introduce the linearization of the inviscid and
viscous terms.

3.1.1 Inviscid Terms

For wh,w̄h,ϕh ∈ Shp, we define the forms
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bh(w̄h,wh,ϕh) = − ∑
K∈Th

∫
K

d

∑
s=1

As(w̄h)wh · ∂ϕh

∂xs
dx (3)

+ ∑
Γ∈F I

h

∫
Γ

(
P+ (〈w̄h〉,n)wh|(p)

Γ +P− (〈wh〉,n)wh|(n)
Γ

)
· [ϕh]dS

+ ∑
Γ∈F io

h

∫
Γ

(
P+ (〈w̄h〉,n)wh|(p)

Γ

)
· [ϕh]dS + ∑

Γ∈Fw
h

∫
Γ

FW (w̄h,wh,n) ·ϕh dS,

bB
h (w̄h,ϕh) = − ∑

Γ∈F io
h

∫
Γ

(
P− (〈w̄h〉,n) w̄h|(n)

Γ

)
· [ϕh]dS,

where As(·) = 1, . . . ,d are the Jacobi matrices of the mappings fs, s = 1, . . . ,d
P±(·, ·) are the positive and negative parts of the matrix P(·, ·) given by (2) which de-
fine the Vijayasundaram numerical flux [11] used for the approximation of inviscid
fluxes thoughΓ ∈Fh. This numerical flux is suitable for the semi-implicit time dis-
cretization. Moreover, F̃W (w̄h,wh,n) = (γ−1)DFW (w̄h,n)wh, where DFW (w,n) is
a (d + 2)× (d + 2) matrix obtained by a differentiation of fs, see [3], [4] or [7]. Fi-

nally, w̄|(n)
Γ = LRP(w̄|(p)

Γ ,wD,nΓ ), Γ ∈ F io
h where LRP(·, ·, ·) represents a solution

of the local Riemann problem considered on edge Γ ∈ F io
h and wD is a given state

vector (e.g. from far-field boundary conditions), see [6]. For more details, we refer
to [7].

3.1.2 Viscous Terms

For w̄h,wh,ϕh ∈ Shp, we define the forms

ah(w̄h,wh,ϕh) = ∑
K∈Th

∫
K

d

∑
s,k=1

(
Ks,k(w̄h)

∂wh

∂xk

)
· ∂ϕh

∂xs
dx (4)

− ∑
Γ∈F ID

h

∫
Γ

d

∑
s=1

〈
d

∑
k=1

Ks,k(w̄h)
∂wh

∂xk

〉
ns · [ϕh]dS

−θ ∑
Γ∈F ID

h

∫
Γ

d

∑
s=1

〈
d

∑
k=1

KT
s,k(w̄h)

∂ϕh

∂xk

〉
ns · [wh]dS,

aB
h (w̄h,ϕh) = −θ ∑

Γ∈FD
h

∫
Γ

d

∑
s,k=1

KT
s,k(w̄h)

∂ϕh

∂xk
ns ·wB dS.

The state vector wB prescribed on ∂Ωi ∪∂Ωw is given by the boundary conditions,
see [3] or [4]. The value of θ appearing in (4) defines different variant of IPG
method, namely θ = 1 – symmetric interior penalty Galerkin (SIPG), θ = −1 –
non-symmetric interior penalty Galerkin (NIPG), or θ = 0 – incomplete interior
penalty Galerkin (IIPG).



246 V. Dolejšı́, M. Holı́k, and J. Hozman

3.1.3 Interior and Boundary Penalties

For wh,ϕh ∈ Shp, we define the forms

Jσh (w,ϕ) = ∑
Γ∈F ID

h

∫
Γ
σ [w] · [ϕ]dS, JB,σ

h (ϕ) = ∑
Γ∈FD

h

∫
Γ
σwB ·ϕ dS, (5)

where wB is the boundary state and the penalty parameter σ is chosen by σ |Γ =
CW /(diam(Γ )Re ), Γ ∈ F ID

h , where Re is the Reynolds number and CW > 0 is
a suitable constant whose choice depends on the used variant of the IPG method
(NIPG, IIPG or SIPG) and the degree of polynomial approximation, see [4] where
a numerical study was presented.

3.2 Semi-implicit Time Discretization

In order to simplify the notation, for w̄h, wh, ϕh ∈ Shp, we put

ch (w̄h,wh,ϕh) = ah (w̄h,wh,ϕh)+ bh (w̄h,wh,ϕh)+ Jσh (wh,ϕh) , (6)

cB
h (w̄h,ϕh) = aB

h (w̄h,ϕh)+ bB
h (w̄h,ϕh)+ JB,σ

h (ϕh) .

It is possible to show (see, e.g., [3], [4]) that if w : Ω × (0,T ) → IRd+2 is a con-
tinuously differentiable function satisfying the Navier-Stokes equations (1) and the
corresponding initial and boundary conditions then

d
dt

(w,ϕ)+ ch (w,w,ϕ) = cB
h (w,ϕ) ∀ϕ ∈ Shp, (7)

where (·, ·) denotes the L2-scalar product over Ω .
In [4], we introduced the following method. Let 0 = t0 < t1 < t2 < .. . tr = T be

a partition of the time interval (0,T ) and wk
h ∈ Shp denotes a piecewise polynomial

approximation of wh(tk), k = 0,1, . . . ,r.

Definition 1. We define the approximate solution of (1) by the 1-step BDF-DGFE
(backward difference formulae - discontinuous Galerkin finite element) scheme as
functions wh,k, k = 1, . . . ,r, satisfying the conditions

a) wh,k ∈ Shp, (8)

b)
1
τk

(
wh,k, ϕh

)
+ ch

(
wh,k−1, wh,k, ϕh

)
= cB

h

(
wh,k−1, ϕh

) ∀ϕh ∈ Shp

c) wh,0 ∈ Shp is an approximation of w0.

Remark 1. The 1-step BDF-DGFE scheme (8), a) – c) has only the first order of
accuracy with respect to time which is sufficient for the seeking of the steady-state
solutions. For n-step BDF-DGFE scheme (n ≥ 2) see [4], [5].
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Remark 2. The resulting BDF-DGFE method is practically unconditionally stable,
has a high order of accuracy with respect to the time and space coordinates and
at each time step we have to solve only one linear algebra problem, which will be
discussed in the following section.

4 Solution of Linear Algebra Problems

4.1 Linear Algebra Representations

Since Shp is a finite dimensional space of discontinuous piecewise polynomial func-
tions, it is natural to construct its basis in such a way that the support of each basis
function lies within one K ∈Th. Then, let B = {ψ j, ψ j ∈ Shp, j = 1, . . . ,dof, μ ∈ I}
denote a basis of Shp with dimension dof.

Therefore, a function wh,k ∈ Shp can be written in the form

wh,k(x) =
dof

∑
j=1

ξk, jψ j(x), x ∈Ω , k = 0,1, . . . ,r, (9)

where ξk, j ∈ IR, j = 1, . . . ,dof, k = 0, . . . ,r. Moreover, for wh,k ∈ Shp, we define a
vector of its basis coefficients by ξ k =

{
ξk, j
}

j=1,...,dof ∈ IRdof, k = 0,1, . . . ,r. Using
(9) we have an isomorphism

wh,k ∈ Shp ←→ ξ k ∈ IRdof. (10)

Finally, if B is an orthonormal basis (which can be simply constructed by an orthog-
onalization procedure element-wise) then we have

‖wh,k‖L2(Ω) = ‖ξ k‖�2 (11)

for any wh,k ∈ Shp and the corresponding ξ k ∈ IRdof via (10).
Then the problems (8) can be written in the matrix form:

find ξ k ∈ IRdof :

(
1
τk

M+C(ξ k−1)
)
ξ k =

1
τk

m+ q(ξ k−1), k = 1, . . . ,r, (12)

where M is the block-diagonal mass matrix (if B is orthonormal basis with respect
L2 scalar product then M is the identity matrix) given by

M = {Mi, j}dof
i, j=1, Mi, j = (ψ j,ψ i), (13)

the matrix C(·) is the “flux” matrix corresponding to form ch(·, ·, ·) at tk defined by

C(ξ k−1) = {Ci, j(ξ k−1)}dof
i, j=1, Ci, j(ξ k−1) = ch

(
wh,k−1, ψ j, ψ i

)
, (14)
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q ∈ IRdof represents the right-hand-sides of (8), b) given by

q(ξ k−1) = {qi(ξ k−1)}dof
i=1, qi(ξ k−1) = cB

h

(
wh,k−1, ψ i

)
(15)

and
mk = {mi

k}dof
i=1, mi

k = −(wh,k−1, ψ i

)
. (16)

In virtue of the local character of basis B it is easy to observe that the matrix C have
a block structure.

Let us still mention that series of numerical experiments show that the Frobenius
norm of the diagonal blocks of C is slightly higher than the norm of its off-diagonal
blocks (in the same block-row). Moreover, the norm of the diagonal blocks of C
is approximately 103 times higher than the Frobenius norm of the corresponding
blocks of M.

4.2 General Solution Strategy

In case, when we seek the steady state solution, problem (12) has to be replaced by
the problem:

find ξ ∈ IRdof : C(ξ )ξ = q(ξ ). (17)

However, problem (17) represents a system of strongly nonlinear algebraic equa-
tions whose direct solution is impossible. Then it is natural employ an iterative
solver. The relation (17) offer to us to define a formal iterative process:

i) initiate ξ 0 ∈ IRdof (18)

ii) find ξ k ∈ IRdof : C(ξ k−1)ξ k = q(ξ k−1), k = 1, . . . ,

iii) ξ = lim
k→∞

ξ k.

However, numerical experiments show that this iterative process often fails which is
caused by the fact that usually we start from an unphysical initial state (represented
here by ξ 0) and then negative density or pressure often appear.

A usual way how to avoid this obstacle is a use of the unsteady formulation (12)
which can be also considered as a relaxation of method (18). It means that step ii)
in (18) is replaced by

find ξ k ∈ IRdof :

(
1
τk

M+C(ξ k−1)
)

︸ ︷︷ ︸
=:Ak(ξ k−1)

ξ k =
1
τk

m+ q(ξ k−1)︸ ︷︷ ︸
=:dk(ξ k−1)

, k = 1, . . . , (19)

where τk > 0, k = 1, . . . , can be considered as the size of the time step as well as the
relaxation parameter. The relation (19) represents a sequence of systems of linear
algebraic equations which has to be solved by a suitable solver. There arise two
fundamental questions:
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1. How to choose τk, k = 1, . . . ,?
2. How to solve (19)?

It seems to be suitable to use an iterative solver for the solution of (19) since the
solution from the old step k−1 can be used as the initial solution in the new step k.
Moreover, it is sufficient to know the solution of (19) only approximately since we
are interested only in the limit vector ξ = limk→∞ ξ k. Hence, the iterative solver for
the solution of (19) can be stop after not too high number of iteration. In our case,
we employ the restarted GMRES method ([10]) with the block diagonal precondi-
tioning (BDP). This approach is simple for an implementation, it is fast and requires
a small amount of additional memory.

Based on the previous consideration, we propose the following general solution
procedure:

Algorithm (A)

1. let ξ 0 ←→ w0
h be given

2. for k = 1 to r

a. set τk

b. from ξ k−1 evaluate Ak(ξ k−1), dk(ξ k−1)
c. solve Ak(ξ k−1)ξ k = dk(ξ k−1) by restarted GMRES with BDP by

i. ξ 0
k := ξ k−1

ii. ξ l+1
k := GMRES iter(ξ l

k), l = 1, . . . ,sk

iii. ξ k := ξ sk
k

3. ξ := ξ r.

In the previous algorithm r denotes the total number of used time steps and sk, k =
1, . . . ,r the number of inner iterative loops of the GMRES solver for the time level
tk. These values have to be chosen on the base of suitable stopping criteria which
are discussed in the following sections.

4.2.1 Steady-State Criterion

Within this section we discuss the steady-state stopping criterion, i.e., when to stop
the global loops in the algorithm (A) for k = 1, . . . ,r. The usual steady-state crite-
rion, often used for explicit time discretization, is∥∥∥∥∂wh

∂ t

∥∥∥∥≈ ηk :=
1
τk
‖wk

h −wk−1
h ‖L2(Ω) =

1
τk
‖ξ k − ξ k−1‖�2 ≤ TOL, (20)

where TOL is a given tolerance. However, this criterion makes not good sense for
the semi-implicit time discretization when very large time steps can be employed.
Then there exists a limit value of τk when Ak ≈ Ck and dk ≈ qk are independent of
τk (in the finite precision arithmetic) whereas (20) depends on τk. Then by a very
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large choice of τk we can achieve very small left-hand side in (20) although we are
far from the steady-state solution.

Therefore, in virtue of (17) we employ the following steady-state residual
criterion

SSres(k) := ‖C(ξ k)ξ k −q(ξ k)‖�2 ≤ TOL, (21)

which is independent of τk.
Another possibility when to stop the global loops in (A) follows from the physical

background of the considered problem. Many often, we are interested in the so-
called aerodynamic coefficients of the considered flow, namely coefficients of drag
(cD), lift (cL) and momentum (cM). Then the natural choice is stop global iterative
loops when these coefficients achieve a given tolerance, e.g.,

Δcx(k)
|cx(k)| ≤ tol, Δcx(k) := max

l=0.9k,...,k
cx(l)− min

l=0.9k,...,k
cx(l), (22)

where tol is a given relative tolerance, subscript x takes the value D, L and M (drag,
lift, momentum), cx(k) is the value of the corresponding aerodynamical coefficient
at kth-time step and the minimum and maximum in (22) are taken over last 10% of
the number of time steps.

Whereas the tolerance TOL in the preconditioned residuum (21) has to be chosen
empirically, the tolerance tol in (22) can be chosen only on the base of our accuracy
requirements (without any previous numerical experiments), e.g., tol = 0.01.

4.2.2 GMRES Stopping Criterion

Within this section we deal with the stopping criterion of the inner loop in (A), i.e.,
when to step the GMRES iterative process at each time step k = 1, . . . ,r. It is clear
that too weak criterion can decrease accuracy and on the other hand, too strong
criterion decreases the efficiency. Usually, one uses residuum criterion

‖Ak(ξ k−1)ξ k −dk(ξ k−1)‖ ≤ TOL (23)

or the preconditioned residuum criterion

‖QAk(ξ k−1)ξ k −Qdk(ξ k−1)‖ ≤ TOL, (24)

where Q is the matrix of preconditioning and TOL is a given tolerance. However,
there is a problem how to choose TOL since there is no indication from the theory.

Hence, inspired by the so-called inexact Newton method from [2] we propose the
following stopping criterion for GMRES method:

‖Ak(ξ k−1)ξ k −dk(ξ k−1)‖ ≤ δk‖Ak(ξ k−1)ξ k−1 −dk(ξ k−1)‖, (25)
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where δk ∈ (0,1) is a given value, the left hand-side is the residuum and the term
on the right hand side can be considered either as consistency residuum from the
previous time step or initial residuum since the solution of the previous time step is
taken as an initial solution on the next time step. Concerning δk, two choices were
proposed and analysed in [8]. However, numerical experiments presented in Section
5 show that for our purposes parameters δk can be chosen very simply.

4.2.3 Choice of the Time Step

The choice of the time step τk, k = 1, . . . ,r exhibits another important issue in the
efficient solution of the steady-state solution. At the beginning of computation, it
is necessary to choose τk small in order to avoid fails of computations caused by
the unphysical initial condition. Moreover, when the solution is approaching to the
steady-state, we are increasing the size of τk in order to accelerate the computa-
tional process. In other words we are decreasing the relaxation parameter (τ−1

k ). In
[5] we proposed the adaptive backward difference formulae technique which adapts
the size of the time step in order to keep the local discretization error under a given
tolerance and to minimize a number of time step. However, numerical experiments
show that the size of τk is very often underestimate when we seek steady state solu-
tions, i.e., the time step can be chosen larger.

Therefore, we propose here a new rather heuristic adaptive choice of the time
step according to the formula

τ1 :=
1

2Λk
, τk+1 :=

1
2Λk

(
ηk

η1

)−ω
, k = 1, . . . ,r−1, (26)

where ηk, k = 1, . . . ,r is given by (20), ω > 0 is a given constant usually chosen as
ω = 3/2 or ω = 2 and

Λk = max
K∈Th

|K|−1 max
Γ∈∂K

max
l=1,...,d+2

λl(wk
h|Γ )|Γ | (27)

where λl(wk
h|Γ ) is the spectral ration of the matrix (2) evaluated onΓ ∈ ∂K, K ∈Th.

This means that at the first step, τ1 is chosen in the same way as for an explicit time
discretization with CFL = 0.5, see [9]. Moreover, τk is exponentially increasing
when ηk is decreasing.

5 Numerical Examples

In the previous section we presented the new solution strategy for the solving the
steady-state solutions of the Navier-Stokes equations. However, there are still some
undefined parameters whose choice will be discussed in the following. We show
that these choices are very robust. Finally, we show a 3D illustrative example.
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5.1 Numerical Study of Inexact Newton Method

Within this section we numerically study two still open questions:

• Choice of δk in (25),
• Choice of the number of restarts in GMRES solver.

Finally, we present a comparison the new strategy with the former BDF-DGFE
method from [4].

We deal with a viscous compressible flow around NACA 0012 profile with inlet
Mach number Minlet = 0.5, angle of attack α = 2◦ and Reynolds number Re = 5000.
We employ a triangular grid having 2 394 elements (see Figure 1) and a piecewise
cubic polynomial approximation. The computational processes are stopped if con-
dition (21) is valid with TOL = 10−3 and condition (22) is valid with tol = 10−2 for
drag, lift and momentum coefficients.

Fig. 1 The used triangular mesh around NACA0012 profile with details around leading and
trailing edges

Figure 2 shows the dependence of SSres defined by (21) on the number of time
steps and the computational time in second for δ = δk = 0.9, 0.5, 0.1, 0.02, 0.005,
k = 1,2 . . .. We see that small values of δ increase the computational time whereas
there is almost negligible difference in computational time for δ ∈ [0.1;0.9]. Hence,
we can simply put, e.g., δ = 0.5 and this value will be (almost) optimal.

Moreover, Figure 3 shows the dependence of SSres on the number of time steps
and the computational time in second for different number of loops in GMRES
method after which the GMRES is restarted (namely 20, 30, 40, 50, 60 loops). We
observe that high number in inner loops within one restart is more efficient but the
difference between 50 and 60 is again almost negligible. Hence, we use the restart
after 50 loops in the following.

Furthermore, Table 1 shows a comparison of BDF-DGFE method presented in
[4] with the new approach developed here, namely the number of time steps and
computational time. The increase of efficiency (=decrease of computational time) is
evident. This table also contains relative computational costs necessary for prepara-
tion and itself solution of linear algebra problems. For the new method, this ratio is
equal almost to the optimal one 50 % : 50%.

Finally, Table 2 present the comparisons of relative computational costs neces-
sary for preparation and itself solution of linear algebra problems carried out by P1,
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P2 and P3 polynomial approximations for the mesh from Figure 1 and a finner one.
We simply observe that the ratios are close to the optimal one (50 % : 50%) and
moreover, it is still better for finner grids (at least for P1 and P2) and higher degrees
of polynomial approximations. Hence, our approach seems to be robust with respect
to h and p.
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Fig. 2 Dependence of SSres on the number of time steps and the computational time for
δ = 0.9, 0.5, 0.1, 0.02, 0.005 in (21)
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Fig. 3 Dependence of SSres on the number of time steps and the computational time for
restart after 20,30,40,50,60 loops in GMRES method
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Table 1 Comparison of BDF-DGFE method with inexact Newton, number of time steps,
computational time and relative computational costs necessary for preparation and itself so-
lution of linear algebra problems

method # time CPU (s) preparing solving
steps Ak, dk Akξ k = dk

BDF– DGFEM 273 10 774 12 % CPU 88 % CPU

inexact Newton 85 695 42 % CPU 58 % CPU

Table 2 Inexact Newton method, comparison of relative computational costs necessary for
preparation and itself solution of linear algebra problems for two grids and different degree
of polynomial approximations

Pk #Th dof preparing solving
Ak , dk Akξ k = dk

P1 2 394 28 728 31% CPU 69% CPU
P1 4 214 50 568 33% CPU 67% CPU
P2 2 394 57 456 36% CPU 64% CPU
P2 4 214 101 136 37% CPU 63% CPU
P3 2 394 95 760 42% CPU 58% CPU
P3 4 214 168 560 41% CPU 59% CPU

5.2 3D Test Case

Finally, we show an illustrative 3D laminar viscous flow around the ONERA M6 wing
with the inlet Mach number Minlet = 0.71, angle of attackα= 3.06◦ and the Reynolds
number Re= 5000 which was solved within the project ADIGMA [1]. Figure 4 shows

Fig. 4 ONERA M6 wing, distribution of the pressure
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a distribution of the pressure around the profiles. In order to obtain better resolution
an adaptive mesh refinement has to be employed.

6 Conclusion

We developed an efficient technique for the solution of steady state viscous com-
pressible flows. The key feature is a week stopping criterion of the linear algebra
systems arising from the semi-implicit time discretization. Numerical experiments
show that solution of these systems requires approximately the same computational
time as the setting of these systems itself. Moreover, this approach is robust with
respect to h and p.
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4. Dolejšı́, V.: Semi-implicit interior penalty discontinuous Galerkin methods for viscous
compressible flows. Commun. Comput. Phys. 4(2), 231–274 (2008)
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Chapter 18
Multigrid Optimization for Space-Time
Discontinuous Galerkin Discretizations of
Advection Dominated Flows

S. Rhebergen, J.J.W. van der Vegt, and H. van der Ven

Abstract. The goal of this research is to optimize multigrid methods for higher
order accurate space-time discontinuous Galerkin discretizations. The main anal-
ysis tool is discrete Fourier analysis of two- and three-level multigrid algorithms.
This gives the spectral radius of the error transformation operator which predicts
the asymptotic rate of convergence of the multigrid algorithm. In the optimization
process we therefore choose to minimize the spectral radius of the error transfor-
mation operator. We specifically consider optimizing h-multigrid methods with ex-
plicit Runge-Kutta type smoothers for second and third order accurate space-time
discontinuous Galerkin finite element discretizations of the 2D advection-diffusion
equation. The optimized schemes are compared with current h-multigrid techniques
employing Runge-Kutta type smoothers. Also, the efficiency of h-, p- and hp-
multigrid methods for solving the Euler equations of gas dynamics with a higher
order accurate space-time DG method is investigated.

1 Introduction

Space-time discontinuous Galerkin (DG) discretizations of time-dependent partial
differential equations result in a system of (non)-linear algebraic equations which
can be solved efficiently with multigrid methods. In this paper we will discuss the
optimization of multigrid techniques for higher order accurate space-time DG dis-
cretizations describing advection dominated flows. This research is a continuation of
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[3, 7] where we presented a multigrid algorithm in combination with a pseudo-time
integration method for second order accurate space-time DG discretizations of the
compressible Euler and Navier-Stokes equations. The main benefits of this multi-
grid algorithm are that no large global linear system needs to be solved and, through
the use of Runge-Kutta type smoothers, the locality of the DG discretization is pre-
served. The algorithm is easy to implement and parallelize, even on locally refined
meshes, and insensitive to initial conditions. For higher order accurate space-time
DG discretizations the multigrid performance was, however, not satisfactory. The
objective of this paper is to discuss improvements in the computational performance
of space-time DG discretizations when higher order polynomial basis functions are
used. The main tool to analyze the multigrid performance is three-level discrete
Fourier analysis. This analysis tool is used to optimize the multigrid performance
by minimizing the spectral radius of the multigrid error transformation operator.
In particular, the focus will be on searching for better coefficients in the multigrid
smoothing operator. More detailed information on the multigrid algorithms and the
analysis techniques used in this paper can be found in e.g. [1, 6, 10, 11].

The outline of this paper is as follows. After a brief introduction in Section 2
on the multigrid error transformation operator, a summary of the discrete Fourier
analysis of the multigrid algorithm will be given in Section 3. Next, we discuss the
optimization of the multigrid algorithm in Section 4. Results of the optimization
process will be given in Section 5 as well as a comparison in efficiency between h-,
p- and hp-multigrid methods. Finally, conclusions are drawn in Section 6.

2 Multigrid Error Transformation Operator

The main goal of the multigrid algorithm is to iteratively solve in an efficient way
a system of (non)-linear algebraic equations Lhvh = fh on a mesh Mh, with Lh a
linear or non-linear discretization operator and fh a given righthand side. In the h-
multigrid method we use a finite sequence Nc of increasingly coarser meshes Mnh,
n ∈ {1, · · · ,Nc} to generate approximations to the original problem. In addition, the
data on the different meshes are connected with restriction operators Rmh

nh : Mnh →
Mmh and prolongation operators Pnh

mh : Mmh →Mnh, with 1 ≤ n < m ≤Nc. On these
meshes a set of auxiliary problems is solved Mnh, 1 < n ≤ Nc, namely Lnhvnh = fnh,
in order to accelerate convergence. For non-linear problems we use the Full Approx-
imation Scheme (FAS), see e.g. [6], but in the analysis of the multigrid performance
we only consider linear problems.

In order to understand the performance of the multigrid algorithm we need to
consider the multigrid error transformation operator. Given an initial error eA

h , the
error eD

h after one full multigrid cycle with three grid levels is given by the relation

eD
h = M3g

h eA
h

with
M3g

h = Sν2
h (Ih −Ph

2h(I2h −Mγc
2h)L

−1
2h R2h

h Lh)S
ν1
h (1)
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and
M2h = Sν4

2h(I2h −P2h
4h L−1

4h R4h
2hL2h)S

ν3
2h. (2)

Here, Snh and Inh are, respectively, the smoothing and identity operator on the mesh
Mnh, νi, i = 1, · · · ,4, the number of pre- and post-smoothing iterations and γc the
cycle index. In the multigrid analysis and computations we will also consider the
effect of solving the algebraic system on the coarsest mesh approximately using νc

smoother iterations instead of using an exact inverse. Next to h-multigrid also p-
multigrid methods are possible in which on a single mesh coarser approximations
are obtained by using lower order discretizations. Of course, combinations of both
techniques are possible resulting in hp-multigrid methods.

3 Three-Level Multigrid Analysis

3.1 Discrete Fourier Analysis

Consider the infinite mesh Gh, which is defined as

Gh :=
{

x = (x1,x2) = (k1h1,k2h2) | k ∈ Z
2,h ∈ (R+)2}

.

On Gh we define for vh : Gh → C the norm

‖vh‖2
Gh

:= lim
N→∞

1
4N2 ∑

|k|≤m

|vh(kh)|2,

where |k|= max{|k1|, |k2|}. In the theoretical analysis we only consider linear prob-
lems, where the linear systems on the various meshes are described using stencil
notation

Lnhvnh(x) = ∑
k∈Jn

ln,kvnh(x + kh), x ∈ Gnh, (3)

with stencil coefficients ln,k ∈ Rmk×mk and finite index sets Jn ⊂ Z2 describing the
stencil. The restriction operators Rmh

nh , prolongation operators Pnh
mh and smoothing

operators Snh with 1 ≤ n < m ≤ Nc are also expressed using stencil notation, see e.g.
[6, 10, 11].

On the infinite mesh Gh, we define for x ∈ Gh the continuous Fourier modes with
frequency θ = (θ1,θ2)∈R2 as φh(θ ,x) := eiθ ·x/h with θ ·x/h := θ1x1/h1 +θ2x2/h2,
h ∈ (R+)2 and i =

√−1. We also define the space of bounded infinite grid functions
by F (Gh) :=

{
vh |vh : Gh → C with ‖vh‖Gh < ∞

}
. For each vh ∈ F (Gh) there ex-

ists a Fourier transformation, hence vh(x) can be written as a linear combination of
Fourier components

vh(x) =
∫
|θ |≤π

v̂h(θ )eiθ ·x/hdθ , x ∈ Gh, (4)
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with x/h := (x1/h1,x2/h2) = j ∈ Z2, and inverse transformation

v̂h(θ ) =
1

4π2 ∑
x∈Gh

vh(x)e−iθ ·x/h, −π ≤ θ j < π ,

see e.g. [1]. Due to aliasing, Fourier components with |θ̂ | := max{|θ1|, |θ2|} ≥ π
are not visible on Gh. These modes coincide with eiθ ·x/h, where θ = θ̂ (mod 2π).
Hence, the Fourier space F := span

{
eiθ ·x/h | θ ∈Θ = [−π ,π)2,x ∈ Gh

}
contains

any bounded infinite grid function.

3.2 Three-Grid Fourier Analysis

For the three-grid Fourier analysis we define the Fourier harmonics F4h(θ ) as

F4h(θ ) := span
{
φh(θα

β ,x) | α ∈ α2,β ∈ β2
}
, where

θ = θ 0
0 ∈Θ4h := [−π/4,π/4)2,

θβ = θ 0
0 − (β̄1 sign(θ1), β̄2 sign(θ2))π ,

θα
β := θβ − (ᾱ1sign((θ1)β ), ᾱ2 sign((θ2)β ))π ,

α2 := {α = (ᾱ1, ᾱ2) | ᾱi ∈ {0,1}, i = 1,2}
β2 := {β = (β̄1, β̄2) | β̄i ∈ {0,

1
2
}, i = 1,2}.

Note that we have 16 coupled Fourier harmonics, all related to θ 00
00 . In the transition

from G2h to G4h the modes θβ = θ 0
β are not visible due to aliasing.

The error eD
h after one iteration of a three-grid multigrid cycle is determined by

eD
h = M3g

h eA
h , with eA

h the initial error and M3g
h the three-level multigrid error trans-

formation operator defined by (1).
The properties of the error transformation operator can be investigated using dis-

crete Fourier analysis. For this purpose we introduce the following matrices

L̂2g
h (θβ ) = diag (L̂h(θ 00

β ), L̂h(θ 11
β ), L̂h(θ 10

β ), L̂h(θ 01
β )) ∈ C

4m×4m (5)

Ŝ2g
h (θβ ) = diag (Ŝh(θ 00

β ), Ŝh(θ 11
β ), Ŝh(θ 10

β ), Ŝh(θ 01
β )) ∈ C

4m×4m (6)

R̂2g
h (θβ ) = (R̂2h

h (θ 00
β ), R̂2h

h (θ 11
β ), R̂2h

h (θ 10
β ), R̂2h

h (θ 01
β )) ∈ C

m×4m (7)

P̂2g
h (θβ ) = (P̂h

2h(θ
00
β ), P̂h

2h(θ
11
β ), P̂h

2h(θ
10
β ), P̂h

2h(θ
01
β ))T ∈ C

4m×m (8)

where diag refers to a diagonal matrix consisting of m ×m blocks with m ∈ N.
The Fourier symbol of the linear operator Lnh is equal to L̂nh(θ ) = ∑k∈Jn ln,keiθ ·k.
Similar expressions can be derived for the Fourier symbols of the restriction opera-

tor R̂mh
nh (θ ), the prolongation operator P̂nh

mh(θ ) and the smoothing operator Ŝnh(θ ) on
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the various mesh levels. For more details, see e.g. [1, 6, 11]. We also introduce the
matrices

L̂3g
h (θ ) = bdiag

(
L̂2g

h (θ00), L̂
2g
h (θ 1

2
1
2
), L̂2g

h (θ 1
2 0), L̂

2g
h (θ0 1

2
)
) ∈ C

16m×16m

Ŝ3g
h (θ ) = bdiag

(
Ŝ2g

h (θ00), Ŝ
2g
h (θ 1

2
1
2
), Ŝ2g

h (θ 1
2 0), Ŝ

2g
h (θ0 1

2
)
) ∈ C

16m×16m

R̂3g
h (θ ) = bdiag

(
R̂2g

h (θ00), R̂
2g
h (θ 1

2
1
2
), R̂2g

h (θ 1
2 0), R̂

2g
h (θ0 1

2
)
) ∈ C

4m×16m

P̂3g
h (θ ) = bdiag

(
P̂2g

h (θ00), P̂
2g
h (θ 1

2
1
2
), P̂2g

h (θ 1
2 0), P̂

2g
h (θ0 1

2
)
) ∈ C

16m×4m

Q̂3g
h (θ ) = bdiag

(
L̂−1

2h (2θ00), L̂−1
2h (2θ 1

2
1
2
), L̂−1

2h (2θ 1
2 0), L̂

−1
2h (2θ0 1

2
)
) ∈ C

4m×4m.

The discrete Fourier transform of the error transformation operator for a three-level
multigrid cycle M̂3g

h (θ ) ∈ C16m×16m then is equal to [11]

M̂3g
h (θ ) =

(
Ŝ3g

h (θ )
)ν2
(

I3g − P̂3g
h (θ )Û3g(θ ;γc)Q̂

3g
h (θ )R̂3g

h (θ )L̂3g
h (θ )

)(
Ŝ3g

h (θ )
)ν1

(9)
with I3g the 16m× 16m identity matrix and θ ∈Θ4h \Ψ3g, where Ψ3g is defined as
Ψ3g :=

{
θ ∈Θ4h | L̂4h(4θ 0

0 ) = 0 or L̂2h(2θ 0
β ) = 0 or L̂h(θα

β ) = 0
}

. We still need to

obtain an explicit expression for Û3g(θ ;γc) ∈ C4m×4m. On the mesh G2h the modes
θα
β reduce after the restriction operator to modes 2θ 0

β , hence using the result of a
two-level analysis the coarse grid error transformation operator is equal to

M̂2g
2h (2θβ ) =

(
Ŝ2g

2h(2θβ )
)ν4
(

I2g − P̂2g
2h (2θβ )L̂−1

4h (4θ 0
0 )R̂2g

2h(2θβ )L̂2g
2h(2θβ )

)(
Ŝ2g

2h(2θβ )
)ν3 ,

with I2g the 4m× 4m identity matrix and θβ ∈ Θ2h := [−π/4,π/4)2 \Ψ2g, where

Ψ2g is defined as Ψ2g :=
{
θ ∈ [−π/4,π/4)2 | L̂4h(4θ 0

0 ) = 0 or L̂2h(2θ 0
β ) = 0

}
. The

matrices L̂2g
2h, Ŝ2g

2h, R̂2g
2h and P̂2g

2h are given by (5)-(8), respectively, with h replaced by
2h. The matrix Û3g(θ ;γc) then is equal to

Û3g(θ ;γc) = I2g − (M̂2g
2h(2θβ )

)γc .

The spectral radius of the error transformation operator gives a prediction of the
asymptotic rate of convergence of the multigrid method. This asymptotic conver-
gence is expressed in terms of the asymptotic convergence factor per cycle, which
is equal to

μ = sup
θ∈Θ3g\Ψ3g

ρ
(
M̂3g(θ )

)
, (10)

with ρ is the spectral radius. A requirement for convergence of the multigrid algo-
rithm is that the spectral radius satisfies the condition μ < 1. By minimizing the
spectral radius of the three-level multigrid error transformation operator (9), we ob-
tain optimized multigrid algorithms.
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4 Optimizing Multigrid for Space-Time DG Discretizations

The theory of the previous sections holds for general linear discretizations and
smoothing operators, but in this paper we are specifically interested in designing
optimized multigrid methods for higher order accurate space-time DG discretiza-
tions. For the optimization, we will consider the 2D advection-diffusion equation as
model problem

∂t u + a ·∇u−∇ · ( ¯̄A∇u) = 0, x ∈Ω ⊂ R
2, t ∈ R

+, (11)

where we assume that the advection velocity a ∈R2 and diffusion matrix ¯̄A∈ (R+)2

are constant, with ¯̄A11 = νx, ¯̄A22 = νy and ¯̄A12 = ¯̄A21 = 0. We do not discuss the
details of the space-time DG discretization for the advection-diffusion equation, but
refer to [3, 5] for more details. In the multigrid optimization we consider a uniform
space-time mesh with elements Δ t × Δx× Δy and periodic boundary conditions.
The discretization depends on the following dimensionless numbers:

CFL =
aΔ t

h
, Rex =

a(Δx)2

νxh
, Rey =

a(Δy)2

νyh
, AR =

Δy
Δx

,

in which h = Δx
√

1 + AR2 and a =
√

a2
x + a2

y . Furthermore, we introduce the flow

angle γ f low with respect to the x-axis so that ax = cos(γ f low)a and ay = sin(γ f low)a.

4.1 Pseudo-time Integration and Runge-Kutta Methods

The system of algebraic equations resulting from the space-time DG discretization
of the 2D advection-diffusion equation can be represented as

L (ûn; ûn−1) = 0, (12)

with ûn the expansion coefficients of a polynomial approximation of u and n refers
to the time index. To solve the system of coupled equations for the expansion coef-
ficients ûn in (12), a pseudo time derivative is added to the system [7]:

ΔxΔy
∂ û∗

∂τ
= − 1

Δ t
L (û∗; ûn−1), (13)

which is integrated to steady-state in pseudo-time. At steady state, ûn = û∗. For the
pseudo-time integration we introduce the dimensionless number λ = Δτ/Δ t and
use the pseudo-time CFL number, defined as CFLτ = λCFL. To solve (13) we con-
sider N-stage Runge-Kutta methods. For notational purposes, we set L (V̂ ∗;un−1) =
L (V̂ ∗). Initialize V̂ 0 = ûn−1. Then, an N-stage Runge-Kutta scheme is given by:
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(1 +β jλ I)V̂ j = V̂ 0 −λ
( j

∑
l=1

α j+1,lL (V̂ l−1)/(ΔxΔy)
)

+λβ jV̂
j−1, j = 1, ...,N,

with û∗ = V̂ N . We see that there are a number of free parameters in the Runge-
Kutta smoother. The smoother is therefore a good candidate for optimization. We
will minimize the spectral radius (10) by optimizing the parameters α and β . In this
paper only 5-stage Runge-Kutta schemes are considered for which we require that
they are second order accurate in pseudo-time. This requirement gives constraints
on the α coefficients. The β coefficients serve as the Melson correction to improve
stability for small values of λ ∼= 1, see Melson et al. [4].

4.2 Optimization Results

We now provide some examples of the optimization of the Runge-Kutta (RK)
smoothers for multigrid. We distinguish between diagonal RK schemes (dRK5) and
full RK schemes (fRK5) in which all coefficientsα j+1,l , with 1≤ l ≤ j ≤N, are non-
zero. We present optimized RK coefficients for the second (p = 1) and third (p = 2)
order accurate space-time DG discretizations of the 2D advection-diffusion equa-
tion. For this we use the optimization procedures fminsearch and fmincon,
available in Matlab. As constraint in the fmincon procedure, we require that both
the spectral radius of the smoother and the three-level multigrid error transformation
operator are less than 1. The optimization was performed for advection dominated
steady flows in which we fix the Reynolds numbers Rex = Rey = 100 and the CFL
number as CFL = 100. We also set the flow angle γ f low = π/4, the aspect ratio
AR = 1 and the number of pre- and post-smoothing steps ν1 = ν2 = 1. On the coars-
est grid, we use four smoother steps instead of an exact inverse. Furthermore, γ = 1.
As initial guess in the optimization procedure, we use the EXI RK method [7] for
the optimized dRK5 scheme. We then use the dRK5 scheme as initial guess to ob-
tain the fRK5 scheme. The optimized coefficients and spectral radii of the smoother
ρS and the 3-level multigrid operator ρMG are given in Table 1. As a compari-
son, we also give the spectral radius of the 3-level multigrid operator with EXI-RK
smoother, ρEXI−MG when using the given parameters. We see that for these param-
eters the multigrid algorithm with the EXI smoother is very unstable, while good
convergence can be achieved with our optimized schemes.

5 Testing Multigrid Performance

In this section we test the multigrid performance. We start in Section 5.1 by com-
paring the optimized h-multigrid algorithms of the previous sections to the original
EXI-EXV h-multigrid method [3]. For this we consider the 2D advection-diffusion
equation. In Section 5.2 we consider a more complex test case in which we solve
the Euler equations for inviscid flow over an NACA0012 airfoil. We will compare
the performance of h-multigrid with p- and hp-multigrid.
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Table 1 Optimized coefficients for the dRK5 and fRK5 smoothers for 3-level multigrid for
steady flows

dRK5 p = 1 fRK5 p = 1 dRK5 p = 2 fRK5 p = 2

α21 0.05768995298 0.0578331573 0.04865009589 0.04877436325
α31 - -0.0002051554736 - -0.0002188348438
α32 0.1405960888 0.1403808301 0.130316854 0.1300906122
α41 - 0.0003953470071 - 2.608884832e-05
α42 - -0.001195029164 - 2.444376496e-05
α43 0.267958213 0.2681810517 0.2729621396 0.2734805705
α51 - 0.0001441249202 - -0.001250385487
α52 - -0.0002608610327 - -0.0007838720635
α53 - -0.0003368070181 - -0.0004890887712
α54 0.5 0.8473374098 0.5 4.412139367
α61 - 0.4115573097 - 0.8097217358
α62 - -0.003144851878 - 0.08435089009
α63 - -0.0001096455683 - -0.01986799007
α64 - 0.001555741114 - 0.01359815476
α65 1.0 0.5901414466 1.0 0.1121972094
β1 0.05768995298 0.04887040625 0.04865009589 0.5551936269
β2 0.1405960888 0.1274785795 0.130316854 0.1333199239
β3 0.267958213 0.2287556298 0.2729621396 -1.332263675
β4 0.5 0.9547064029 0.5 -3.649588578
β5 1.0 2.52621971 1.0 0.46771792
CFLτ 0.8 0.8 0.4 0.4
ρS 0.98812 0.98914 0.98974 0.9896
ρMG 0.89151 0.81762 0.90049 0.89903

ρEXI−MG 167.06 - 124.02 -

5.1 The 2D Advection-Diffusion Equation

In order to demonstrate the performance of the optimized algorithms we consider
(11) on Ω = (0,1)2 with initial condition u(x,y,0) = 1− 1

2 (x + y) and boundary
condition u(x,y,t) = g(x,y). Here g(x,y) equals at the domain boundary the exact
steady state solution of (11) given by:

u(x,y) =
1
2

(
exp(a1/νx)− exp(a1x/νx)

exp(a1/νx)−1
+

exp(a2/νy)− exp(a2y/νy)
exp(a2/νy)−1

)
.

In the discretization we use a Shishkin mesh [3] which is suitable for dealing with
boundary layers. The parameters in the test cases are the following: we consider
a mesh with 32× 32 elements, one physical time step, with Δ t = 100, a =

√
2,

νx = νy = 0.01 and a flow angle γ f low = π/4. For the optimized RK schemes, we
used a local pseudo-time scaling to deal with viscous flows [9]. For the multigrid
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Fig. 1 Convergence results of second order space-time DG for three level multigrid algo-
rithms with different Runge-Kutta smoothers. (dRK5, fRK5 and the EXI-EXV scheme [2],
exact and approximate solution of equations on coarsest mesh).

computations we use νi = 1, i = 1,2,3,4 and γ = 1. On the coarsest mesh we inves-
tigate the effect of using νC = 4 smoother iterations or solving the discrete system
exactly.

In Figures 1 and 2, we show the convergence results of the different smoothers
for 3-level multigrid. We see that in all cases a big improvement is obtained with
the optimized Runge-Kutta smoothers over the original EXI-EXV smoother. For a
second order accurate space-time DG discretization the number of multigrid cycles
to obtain 4 orders of reduction in the residual is reduced from 3283 to 371. For
the third order accurate DG discretization the number of multigrid cycles reduces
from 21254 to 184. Furthermore, comparing dRK5 with fRK5, we see that the dif-
ferences for a second order accurate space-time DG discretization is negligible. For
a third order accurate space-time DG discretization this difference is, however, sig-
nificant. Using more Runge-Kutta coefficients enlarges the possibilities to optimize
the smoother.

The effect of solving the equations on the coarsest mesh with high accuracy is
very large. Without this the multigrid convergence significantly slows down after
a rapid initial decrease of the residual. In particular, for nonlinear problems it is
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Fig. 2 Convergence results of third order space-time DG for three level multigrid algorithms
with different Runge-Kutta smoothers. (dRK5, fRK5 and the EXI-EXV scheme [2], exact
and approximate solution of equations on coarsest mesh).

tempting to solve the algebraic system on the coarsest mesh only approximately, be-
cause otherwise a global Newton solver is required. The effect of accurately solving
the algebraic equations for the linear advection-diffusion equation on the coarsest
mesh is, however, non-negligible.

5.2 The Euler Equations

We now compare the performance of an h-multigrid method with p- and hp-
multigrid. Since the difference between EXI and the optimized RK smoothers for
the Euler equations is small we will only show the EXI results. As test case we con-
sider 2D steady subsonic flow around a NACA0012 airfoil with an angle of attack of
α = 2◦ and far-field Mach number Ma = 0.5 (MTC1 test case). Since this test case
is a steady-state flow problem, we consider a space-time DG discretization which is
only first-order accurate in time but third-order accurate in space. The grid around
the airfoil has 448×64 elements.
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Fig. 3 Mach contours of inviscid flow around an NACA0012 airfoil (α = 2◦,Ma = 0.5)

For single-grid, p- and hp-multigrid computations we used a pseudo-time CFL
number of CFLτ = 1.6, while for h-multigrid CFLτ = 0.8. Larger pseudo-time
CFL numbers for h-multigrid resulted in unstable calculations. For the p-multigrid
method we solve the lowest order problem approximately taking νC = 20. For the h-
and hp-multigrid methods we solve the coarsest grid problem approximately, also
taking νC = 20. Furthermore, for the h-multigrid method, we also solve the coarse
grid problem exactly using a matrix-free Newton method. In all cases, 5 pre- and
post-smoothing steps were taken on each multigrid level. The Mach contours are
given in Figure 3 while the convergence history plot is given in Figure 4.

We see that h-multigrid performs the worst while p- and hp-multigrid converge
six orders in approximately the same amount of work units. We, however, had to
take a twice as small CFLτ number in the h-multigrid calculation compared to the
other calculations. Furthermore, we see that after the high-frequency error modes
have been smoothed, h-multigrid efficiency quickly deteriorates. A possible reason
for this could be that the coarse-grid problem of the h-multigrid algorithm is not
solved well with respect to the characteristic components, see [12]. We also see
that there is hardly any difference in solving the coarse grid equations exactly with
the Newton method or approximately by performing νC smoothing steps. This in
contrary to the results obtained in Section 5.1, where we saw a large improvement
when the coarse grid problem was solved exactly.

Regarding the hp-multigrid, where we first start with p-multigrid and continue at
the lowest polynomial order with h-multigrid, we see that initially there is a signifi-
cant improvement in reduction of the residual compared to the single-grid computa-
tion, but in the asymptotic regime single-grid and hp-multigrid have approximately
the same residual reduction per work unit. The reason for this behavior is unclear
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Fig. 4 Convergence history of single-grid, h-, p- and hp-multigrid techniques for the solution
of inviscid flow around an NACA0012 airfoil (α = 2◦,Ma = 0.5)

yet. For the p-multigrid method, initial convergence is significantly faster than for
the single-grid computations, but in the asymptotic regime also a comparable con-
vergence history is obtained.

6 Conclusions

Using discrete Fourier analysis, we have analyzed two- and three-level multigrid
algorithms for the solution of linear algebraic systems originating from higher or-
der accurate space-time DG discretizations. For the 2D advection-diffusion equation
we have shown that by minimizing the spectral radius of the multigrid error trans-
formation operator, a significant improvement in the multigrid performance can be
achieved. The algorithms have been tested on a 2D problem containing boundary
layers, where the optimized Runge-Kutta smoothers show a significant improve-
ment compared to the original EXI-EXV Runge-Kutta smoother discussed in [2, 3].
Apart from optimizing the multigrid smoother, also the solution of the algebraic
system on the coarsest mesh has a big impact on the multigrid performance.

We also compared the performance of h-multigrid with p- and hp-multigrid
for solving the Euler equations. We considered subsonic inviscid flow around a
NACA0012 airfoil. No significant difference was observed between the EXI scheme
and the optimized Runge-Kutta smoothers. The main problem is the deterioration
of the convergence rate after the high frequency error modes are smoothed, in
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particular for h-multigrid. Also, the effect of solving the equations on the coarsest
mesh exactly or approximately is small. This in contrast with the 2D advection-
diffusion case. Furthermore, we saw that the p- and hp-multigrid methods show a
better convergence rate than the h-multigrid method.
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Chapter 19
COOLFluiD – A Collaborative Simulation
Environment for Research in Aerodynamics

T. Quintino and H. Deconinck

Abstract. The COOLFluiD platform is a collaborative simulation environment
where some parnters consolidated their developments during the ADIGMA project.
We define the principles behind the design of the environment and how it is com-
posed of components. We present this component architecture and explain how we
use it to stimulate synergetic research collaborations. We provide implementation
details of the building of components and doman representation.

1 Introduction

COOLFluiD is a Collaborative Simulation Environment (CSE) focused on complex
multi-physics simulations. It is targetted at a wide variety of fields, from Aerody-
namics to Structural Analysis, from Aeroacoustics to Heat Transfer. At the start of
the ADIGMA project, COOLFluiD already existed, but it has since then been im-
proved. Improvements came in many forms, but in this manuscript we will focus on
what allows multiple discretizations to coexist within the same platform.

The CSE is based on components which plug into a Kernel. Components are
solvers, equations, mesh formats, etc. Finite Volume, Finite Element methods and
Navier-Stokes and Magnetohydrodynamics equations are examples of isolated com-
ponents that collaborate together to form a simulation. The Kernel combines the
components together as building blocks, trying to use the best methodology for each
application. The aim is to create high-performant solvers, each dedicated to a spe-
cific application, while reusing the same components (algorithms). This approach
differs from typical monolithic solvers which employ only one methodology, and
thus are sub-optimal when applied to a variety of applications.

COOLFluiD is very flexible in the sence that every Physical Model or Numer-
ical Method is a separate plug-in component. External developers contribute with
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their own components as plug-in’s, in the form of numerical solvers, acceleration
methods, new physical models, equation terms, etc. These external plug-ins can be
loaded at run-time to plug into the already existing components.

2 Representing the Domain of Computation

The COOLFluiD environment was designed to support different types of discretiza-
tions, i.e. support the existence of multiple solvers that use different representations
of the domain and the solution. Depending on the type of computation, different
views of the domain are required. For example, computing the volume of the do-
main requires a global view, whereas computing the tangent to the surface point,
requires a localised view of the domain surface. The first distinction we use is be-
tween topology and geometry.

Topology focuses on the intrinsic structure of geometric objects, by distinguish-
ing qualitative geometry from ordinary geometry in which quantitative problems
are treated. Topology deals with geometric problems that depend not on the ex-
act shape of objects, but on how they are assembled together. For instance, the
topological view of the domain will show that an aircraft has wings, engines and
fuselage or that the landing gear is retracted.

Geometry focuses on questions related with size, shape and relative position of
objects. The geometric view of the domain will show how much is the length of
an aircraft and what is its wingspan.

Another distinction we use is between analytical information and numerical (dis-
crete) information of the domain.

Analytical information is described in terms of functions or sets of functions.
It provides information about the domain as a globally continuous object. For
instance, the analytical view will show what is the normal vector to the aircraft
surface or the curvature on the leading edge of the wing.

Numerical information is described in terms of isolated sets of numbers. It pro-
vides local information about points in the domain. For instance, the numerical
view will show how big is the deflection of the aircraft wing tip or what are the
coordinates of the aircraft nose.

Therefore, we have distinguished four different but complementary views of the
domain. The topological view is global and identifies discrete parts of the domain,
while the geometrical view provides information on locally continuous domain sub-
divisions. The analytical view is global and continuous, composed of surfaces and
bodies connected together, while the numerical view is local and discrete, made
of raw data in the form of collections of numbers. These views are depicted in
figure 1, where they present different information about the same domain.

One Concept per View. For each view, we introduce a concept to represent
it. Each concept generates one or more interfaces in the design that the numerical
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methods use to access the domain. In figure 1, we show these concepts together with
the views they represent, and we summarise them below.

Domain Model is the concept that represents the Analytical View. Its role is to
provide an access to the continuous definition of the model surfaces, possibly
providing an access to a CAD representation.

Topological Region is the concept that represents the Topological View. It de-
fines regions on the domain, where the numerical methods perform their tasks.
Regions are grouped in sets, for easier handling.

Geometric Entity is the concept that represents the Geometrical View. By using
a generic connectivity storage, it provides geometrical information for the nu-
merical methods to build the entities (cells, faces, edges). The numerical method
uses these geometric entities to perform its actions.

Data Storage is the concept that provides Numerical View. It stores the arrays
that contain all the numeric raw data. It also provides ways for different compo-
nents to share data.

Fig. 1 Relation of Domain Views to Solution Concepts (in red)

Many Concepts, One Access. All these concepts are relative to the same domain, so
it is sensible and convenient to group their access under the same generic interface,
which we call MeshData. This interface provides the access to each of the under-
lying concepts, in a centralised manner. This allows to create multiple MeshData
objects which coexist in the case of multi-domain simulations.

This MeshData follows an adapted Facade design pattern from [3]. The class
diagram is represented in figure 2. All concepts can be accessed by proper func-
tions, with the exception of GeometricEntity which is not explicitly present, instead
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represented by the ConnectivityStorage. Geometric entities depend on the numer-
ical method. Each method creates its own by using the connectivity information,
therefore only the latter is present.

M e s h D a t a

+getTRS(name:string): TRS*

+getDomainModel(): DomainModel*

+getDataStorage(): DataStorage*

+getConnStorage(): ConnStorage*

TopologicalRegionSet

+getTopologicalRegion(idx:int): TR*

DomainMode l

+computeCoord(tr:TR*,xi:Coord): Coord

DataStorage

+<<TYPE>> getStorage(): DataHandle<TYPE>

Connect iv i tyStorage

+getConnectivity(name:string): ConnTable*

Fig. 2 Class Diagram of MeshData Concepts

We allow each numerical method to create its own specialised data-structures.
Therefore, the framework loads the minimum mesh information into memory: the
coordinates of each mesh point, the variables of the solution, and the cell to node
connectivity. Then the MeshCreator delegates the rest of the building process to a
builder object, called MeshDataBuilder. As described by the class diagram of fig-
ure 2, this object is provided by each numerical method and it builds the remaining
structures according to the specific needs of the method. For example, the method
may need a reverse connectivity from nodes to cell or maps from surfaces to bound-
ary faces.

3 Representing the Topology

Topological Regions. To represent the topology of the domain we decompose the
domain into regions of interest, which we call TopologicalRegion’s (TR). These re-
gions represent the surfaces or volumes that form the domain. If the domain is a
simple sphere, then we can imagine that the surface of the sphere is one TR and
the volume is another TR albeit of different dimensionality. To these regions the nu-
merical methods apply their computation actions. For instance, we can calculate the
surface or the volume of the sphere by numerical integration.
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MeshDataBui lder

+build(): void

FEM_DataBui lder

+build(): void

FVM_DataBui lder

+build(): void

FSM_DataBui lder

+build(): void

MeshCreator

+createMeshData(): void
Numer ica lMethod

+getMeshBuilder(): MeshDataBuilder*

+solve(): void

get bui lder

delegate bui ld

Fig. 3 Collaboration diagram of MeshBuilder

Sets of Topological Regions. It is convenient to group together the regions that
have in common the same actions. Since order is not relevant, this group forms a
set, called TopologicalRegionSet (TRS). In figure 4, one TRS is the “Wings” and is
composed of all the CAD surfaces that define the aircraft wings. The same for the
fuselage and engines. Each surface is a TR. Note that a TRS may form a discontinu-
ous representation, in this case 2 separate wings.

Fig. 4 TRS’s are composed of TR’s

In figure 5, we show the relation between the classes that implement these con-
cepts. A TRS provides an interface to access each TR. It also gives access to all the
states (variables) and nodes (coordinates) in that TRS as a global group. The TR
provides the information that the numerical methods need to build GeometricEn-
tity’s (see section 5.2). This information is stored in large connectivity tables (class
ConnTable) and indicates which Node’s and State’s compose a given entity.
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TopologicalRegionSet

+getName(): string

+getAllStates(): vector<State*>

+getAllNodes(): vector<Node*>

+getTR(idx:int): TopologicalRegion

TopologicalRegion

+getNodeConn(): ConnTable*

+getStateConn(): ConnTable*

+getNodesInGeo(idxGeo:int): vector<Node*>

+getStatesInGeo(idxGeo:int)(): vector<State*>

1

*

contains

ConnTable

+nbCols(row:int): int

+nbRows(idxGeo:int): int

+operator(row:int,col:int): int

1

2

states and nodes
connect iv i ty

Fig. 5 Class diagram of TopologicalRegion’s

4 Representing the Analytical Model

Within COOLFluiD the analytical definition of the domain represents the CAD
model. This defines the form and shape of the surfaces of the boundary, typically
the wing and fuselage of the aircraft. This analytical definition is provided by the
DomainModel abstraction. This class, shown in Figure 6, provides functions to ac-
cess the definition of the surfaces. This information is used to perform mesh adapta-
tion near the boundary or to curve the high-order curvilinear elements that touch the
boundary.

DomainMode l

+computeCoord(tr:TR*,xi:Coord): Coord

+compute1stD(tr:TR*,xi:Coord): Vector

+compute2ndD(tr:TR*,xi:Coord): Matrix

Analyt ica lModel

+computeCoord(tr:TR*,xi:Coord): Coord

+compute1stD(tr:TR*,xi:Coord): Vector

+compute2ndD(tr:TR*,xi:Coord): Matrix

GET_Model

+computeCoord(tr:TR*,xi:Coord): Coord

+compute1stD(tr:TR*,xi:Coord): Vector

+compute2ndD(tr:TR*,xi:Coord): Matrix

VTM_Model

+computeCoord(tr:TR*,xi:Coord): Coord

+compute1stD(tr:TR*,xi:Coord): Vector

+compute2ndD(tr:TR*,xi:Coord): Matrix

GET CAD Library

VTM CAD Inter face

Fig. 6 Class diagram for the DomainModel

The functions present in the interface provide:

computeCoord transformation from parametric to physical coordinates
computeParamCoord inverse transformation from physical coordinates to parametric

space
compute1stDeriv first derivatives on physical coordinates
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compute2ndDeriv second derivatives on physical coordinates
computeAll physical coordinates and all derivatives in a single function call

Since each function will be a C++ virtual call, a computeAll function is provided to
compute all coordinates and derivatives in a single function call.

The model representation is usually piecewise analytical. As described in the pre-
vious sections, behind each surface there is a definition of each point in a paramet-
ric space (u,v) that maps to a point in the physical space. This parametric function
may use primitives like planes, spline curves, NURBS surfaces, etc. Using these
parametrisations we can compute not only positions, but also derivatives and curva-
tures of the surfaces.

Multiple Representations. For some definitions the underlying representation is
not analytical, but an approximation with a fine geometry discretisation. This is the
case of the STL [1] triangulated surface format, as used by the VTM CAD library of
Dorochenko [2]. The functions on the interface assume that the underlying model
is continuous and analytical. Its is up to the concrete implementation to mimic this
behaviour in case of non-analytical representations. As there are many CAD systems
on the market, one of the objectives of the COOLFluiD design is to be generic and
independent from any specific CAD system. To enable the use of any system, the
DomainModel class is abstract and leaves the work to the concrete implementations.

Within ADIGMA, two implementations have been developed: The GETModel and
the AnalyticalModel. Majewski, from University of Warsaw, developed the GET li-
brary which follows the NURBS approach described another chapter of this book.
The other implementation is the AnalyticalModel which allows the user to define an-
alytical functions for each surface. It parses these functions and maps them to each
boundary surface. However, in practice with the AnalyticalModel only very simple
geometries can be defined, therefore this model is used in the most simple cases for
testing and research (like cylinders, spheres, cubes, etc). The user defines explicitly
the direct transformation from parametric space to physical space as well as the first
and second derivatives (if necessary). The reverse transformation is computed nu-
merically using a Newton method to solve a non-linear minimum distance problem.

5 Representing Geometry

Most numerical discretisations are performed on some geometric entity: compute
the flux through a face, compute the heat source in a cell, compute the distance to
a wall, etc. All these computations require geometry information, like coordinates,
areas, volumes and solutions at certain points.

Geometric Entities. Within COOLFluiD design, GeometricEntity is the inter-
face that provides such geometric information. Geometric entities decouple the nu-
merical computations from the elements on which they are computed. This allows to
vary the element characteristics without changing the numerical algorithms. Some
examples are:

• program an algorithm that computes element distance to the nearest wall inde-
pendent of dimension (it will work for 2D as well as 3D).
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• program a finite element discretisation, independent of the element shapes: trian-
gles, quadrilaterals, tetrahedra, prisms, etc.

• program the same finite element discretisation, independent of the order of ap-
proximation of the solution. For example, for first order (P1) or higher order
elements (P � 2).

• select different solution spaces, for instance Lagrange nodal functions or Cheby-
shev modal functions.

Presented in figure 7, GeometricEntity provides geometry and solution related func-
tions. It is composed of Node’s and State’s. Nodes represent coordinates and States
represent solution variables. Given an ordered set of Node’s and a function defini-
tion, it provides a continuous representation of the geometry. Given an ordered set
of State’s and another function definition it provides a locally continuous solution
representation.

Geometr icEnt i ty

+getStates(): vector<State*>

+getNodes(): vector<Node*>

+getNeighbourGeoEnts(): GeometricEntity*

+getShape(): GeoShape

+computeVolume(): CFreal

+computeSolution(x:Coord): State

Cell

+getShape(): GeoShape

+computeVolume(): real

+computeSolution(x:Coord): State

GEOSF:ShapeFunction
SOLSF:ShapeFunction

Face

+getShape(): GeoShape

+computeVolume(): real

+computeSolution(x:Coord): State

GEOSF:ShapeFunction
SOLSF:ShapeFunction

Edge

+getShape(): GeoShape

+computeVolume(): real

+computeSolution(x:Coord): State

GEOSF:ShapeFunction
SOLSF:ShapeFunction

Node

S t a t e

1

*

1

*

Fig. 7 Class diagram for Geometric Entity

This element representation can, for example, provide solution interpolation or
compute the gradients on a finite element given the coordinates in the parametric
space inside the element. This is done by mapping the values in the parametric
space K̂ to the physical space K via a transformation F , as shown in figure 8. To
implement this, the concrete entities Cell, Face and Edge derive from GeometricEn-
tity and are parametrised by the functions that define the solution and the geometry.
These functions are C++ template parameters to ensure minimal performace loss.
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Only the function call across the GeometricEntity interface is virtual. Inside, the im-
plementation is made of static calls to the functions which increase the probability
of compiler optimisations. For this class this is very important since it is used in the
innermost computation loops.

Fig. 8 Transformation from parametric K̂ to physical space K

Using functions for describing the geometry and the solution independently is
the standard Finite Element way of describing elements [8]. Because this element
representation is very generic we assume it is enough to describe all elements for
every numerical method present in COOLFluiD. For example, the finite volume
cell-centered element is considered a P1 Lagrange function for the geometry and a
P0 (constant) Lagrange function of the solution.

Shape Functions. Finite element representation is generic because it uses a very
powerful mathematical abstraction: shape functions. They are used to describe the
solution or the geometrical space. This allows to write a generic numerical method
which can change its behaviour by choosing the proper function spaces. For exam-
ple, in structural analysis continuous Lagrangian spaces are preferred, but for MHD
applications the Raviart-Thomas [7] solution space solves the divergence free prob-
lem implicitly. As shown in figure 7, the concrete entities Cell, Face and Edge are
generic templates which take two ShapeFunction’s as type parameters. By avoiding
excessive subclassing, we reduce the size of the inheritance tree and simplify the
code. Below we see an example code that implements the interface class Geomet-
ricEntity and the implementation of Cell. Note how the pure virtual functions, like
computeGeoShapeFunc, are implemented in Cell by calling statically the function
computeShapeFunction in the shape function template.

typedef std:valarray<double> DVector;
class GeometricEntity {
public:
std::vector<State*>& getStates() { return m_states; }
std::vector<Node*>& getNodes() { return m_nodes; }
virtual double computeVolume() = 0;
virtual DVector computeGeoShapeFunc (const DVector& mapcoord) = 0;
virtual DVector computeSolShapeFunc (const DVector& mapcoord) = 0;

};

template <typename GEO_SHAPE_FUNCTION,
typename SOL_SHAPE_FUNCTION>

class Cell : public GeometricEntity {
public:
virtual double computeVolume ()
{
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return GEO_SHAPE_FUNCTION::computeVolume(m_nodes);
}
virtual DVector computeGeoShapeFunc (const DVector& mapcoord)
{
return GEO_SHAPE_FUNCTION::computeShapeFunction(mappedCoord);

}
virtual DVector computeSolShapeFunc (const DVector& mapcoord)
{
return SOL_SHAPE_FUNCTION::computeShapeFunction(mappedCoord);

}
};

Together with the self-registration techniques described in [5, 6], the developer can
register his own elements into the application by varying the parametrisation of the
Geometric Entities. Below we see a code list of the providers that are registered by
compiling and linking to this code.

/// Lagrange Triangle cell P1 geometry, P3 solution
ObjectProvider < Cell<LagrangeShapeFunctionTriagP1,

LagrangeShapeFunctionTriagP3> >
CellTriagLagrangeP1LagrangeP3("CellTriagLagrangeP1LagrangeP3");

/// Lagrange Quadrilateral cell P1 geometry, P2 solution
ObjectProvider < Cell<LagrangeShapeFunctionQuadP1,

LagrangeShapeFunctionQuadP2> >
CellQuadLagrangeP1LagrangeP2("CellTriagLagrangeP1LagrangeP2");

/// Lagrange Tetrahedron cell P2 geometry, P2 solution
ObjectProvider < Cell<LagrangeShapeFunctionTetraP2,

LagrangeShapeFunctionTetraP2> >
CellTetraLagrangeP2LagrangeP2("CellTetraLagrangeP2LagrangeP2");

The high-order shape functions, see figure 9, are commonly used to increase the so-
lution accuracy by improving the finite element approximation. In space, high-order
shape functions are used to define curved elements, suitable for curved geometries.
By combining solution and space variations, we can construct many different types
of finite elements.

Fig. 9 Example of shape functions of multiple orders
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The element type on the left of figure 10 is constructed with a first order poly-
nomial shape function (P1) for defining the geometry and a second order (P2) for
the solution. Because the space parametrisation is lower than the solution order, we
call it a subparametric element. The element in the right has the inverse setup, a P2
space parametrisation and a P1 solution approximation, therefore is a superpara-
metric element. The element in the middle we call isoparametric because it has the
same order (P2) for space and solution. This technique allows the three types of
parametrisations.

Fig. 10 Types of Element Parametrisations

The classes Node and State provide the access to the numerical data that the
shape functions use to compute the concrete values. They are stored globally in
large arrays of data but accessed locally via the GeometricEntity class. Using nodes
and states we can interpolate respectively the geometry and the solution in the entity,
following for instance expressions as presented below, where Nx,u

i , xi and ui are the
shape functions, the nodal and the state values:

x(ξ ) =∑
i

Nx
i (ξ )xi (1)

u(ξ ) =∑
i

Nu
i (ξ )ui (2)

5.1 Storage of Connectivity

To correctly associate the nodes and states to each geometric entity, it is necessary
to know the mesh connectivity information, which is stored in ConnTable objects.
This information is one of the most memory consuming in an unstructured simula-
tion, therefore ConnTable has been developed strictly for low memory consumption.
Figure 11 exemplifies the construction of ConnTable for a small mesh. Note that we
support hybrid meshes with elements of different types, therefore the table has this
mixed information. Nevertheless, to optimise memory alignment and avoid indi-
rections, we designed this table to be a rectangular matrix. The invalid entries are
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marked with the maximum integer possible to represent by the computer. In princi-
ple, these entries are never accessed directly by the algorithms. The marker is useful
to obtain the information of the number of valid columns per row of the matrix.
This design has been tested against many other alternatives, like vector of vectors,
or vector of pointers and it showed to have the fastest access time and the lighest
memory footprint. The code that implements this class is presented in [5].
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Fig. 11 Example of a connectivity table (ConnTable)

Each ConnTable object is stored in a ConnectivityStorage facility, accessed via
a MeshData interface. This allows each numerical method to create the dedicated
connectivity tables to correctly build their own geometric entities. The numerical
method associates a name to the connectivity when placing it in the storage, which
can then be reused by any other algorithm, like the mesh adaptation. Sharing the
connectivity tables avoids unnecessary double storage of large objects.

5.2 Building the Geometric Entities

When we first implemented the GeometricEntity design and compared the memory
usage to similar solvers, we were surprised to see that too much memory was used.
With further investigations we learnt that storing all GeometricEntity objects in a
simulation consumes too much memory. Therefore we introduced another concept
in the design, the GeoBuilder. Its responsibility is to build the geometric entities on-
the-fly, at the request of the numerical method, using the connectivity information.
This avoids to store the GeometricEntity’s. In this design, we do not store the objects
but just what they are made of.
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In figure 12 we see that the client, in this example an algorithm named FEM-
Command, accesses a FEMGeoBuilder object. This builder has a pool of Geomet-
ricEntities. These are pre-built and the algorithm accesses them by calling buildGE.
When the command has done its job, it returns the entity to the pool by using the
function releaseGE.

FEMGeoBui lder

-states: DataHandle<State*>

-nodes: DataHandle<Node*>

-pool: GeoEntPool

-data: FEMGeoData

+buildGE(): GeometricEntity*

+releaseGE()()

+getGeoData(): FEMGeoData

FEMCommand

buildGE

Client

GeoData

+trs: TopologicalRegionSet*

+cellID: unsigned int

GeoEntPool

+getGeoEnt(): GeometricEntity*

+returnGeoEnt(geoent:GeometricEntity*): void

Geometric
Entities

releaseGE

Fig. 12 Example of a GeoBuilder for the FEM method

In the next code listing we see how the client code uses the GeoBuilder. First the
client gets the GeoData from the GeoBuilder where it sets the connectivity infor-
mation (via the object TRS). This will inform the GeoBuilder from where to retrieve
the connectivity information to build the GeometricEntity. When the loop starts, the
client assigns each iteration the ID of the cell to build to the GeoData. The client
then requests the builder to build the GeometricEntity. Once built, the client uses the
entity for his computations. In the end, before continuing to the next entity he must
release the current entity. This allows the builder to reuse it again.

/// these usually are given to the function
TopologicalRegionSet cells = MeshData::getInstance().getTrs("cells");
FEMGeoBuilder geoBuilder;

// **** LOOP OVER CELLS **** //
FEMGeoBuilder::GeoData& geoData = geoBuilder->getGeoData();
geoData.trs = cells; // choose on which TRS to loop

const CFuint nbGeos = cells->getNbGeoEnts();
for (unsigned int cellID = 0; cellID < nbGeos; ++cellID)
{
// build the GeometricEntity
geoData.idx = cellID;
GeometricEntity& cell = *geoBuilder->buildGE();

// ... computation on the cell goes here ... //
vector<State*>& cell_states = cell.getStates();
vector<Node*>& cell_nodes = cell.getNode();
...

//release the GeometricEntity when done
geoBuilder->releaseGE(); }
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This design has shown not only to reduce memory usage, but in certain conditions
also speed up of the loop over the elements in the mesh, by improving memory
caching and reducing the memory that the processor needs to fetch.

Supporting multiple numerical methods. We have set all the ingredients to
enable a flexible building of specialised elements for each numerical method. We
can create a special GeoBuilder for each numerical method, which assembles the
entities on-the-fly. This builder gets the nodes, states and connectivity via the TRS
to build each entity. The builder selects the concrete type of entity according to the
shape functions best suited for the problem. If special connectivity tables are needed,
these can be created and registered in the ConnectivityStorage by the different nu-
merical methods. This way, we can create specialised discrete entities, potentially
very performant, without allocating unnecessary data structures. Moreover, the Ge-
ometricEntity provides convenient interpolation functions that allow the developer
to program arbitrary high-order discretisations with less effort.

6 Representing the Numerical Data

Storing Numerical Data. To provide general access to stored data related to the ge-
ometry, like coordinates and normals, we created the interface DataStorage. DataS-
torage allows numerical methods to declare a data array of arbitrary type and size,
and to store it with an associated name. This name works like a contract to a
database. Any method that knows the name and the type of the data can access it.
This allows for numerical methods to share data without having to explicitly declare
it in their interfaces.

void MethodA::do_something() // Numerical method A
{
DataStorage* ds = MeshData::getInstance().getDataStorage();
DataHandle< real > volumes = ds->createData<real>("volumes", size);

volumes[i] = ... /* computes the volumes */
}

void MethodB::do_stuff() // Numerical method B
{
DataStorage* ds = MeshData::getInstance().getDataStorage();
DataHandle< real > volumes = ds->getData<real>("volumes");

/* reuses the volumes without knowing who computed them */
}

Common Data Representation. More important than sharing, this design creates a
standardised format of data that all components in the environment use, thus improv-
ing coexistence of components. To handle the data in a uniform way, the methods
access it via the DataHandle interface which is explained in [5]. This interface also
shields the methods from the concrete communication paradigm that synchronises
the data in a parallel simulation.

This storage facility also decouples the way the data is placed in memory from
the handling of the data. This way the storage algorithm may be changed to more
efficient memory layouts without affecting the numerical methods. For example,
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when supported by the operating system, we are able to use growable arrays, as
described in [4].

7 Conclusion

In a multi-method platform each numerical method requires different information
the domain of computation. In our design, this information is categorised in dif-
ferent views of the domain. To completely represent the domain we have selected
four views. Each view is implemented by abstract interface. All four interfaces are
connected to each other, both conceptually and in terms of code implementation.
The TR links to the CAD definition that is provided by the DomainModel. The TRS
groups the TR’s and holds the connectivity of the GeometricEntity’s that are created
by a GeoBuilder which is method specific. The methods use the geometric entities
together with numerical data, like coordinates and variables, stored in DataStor-
age and accessed via DataHandle’s to perform their computations. With this design
COOLFluiD supports numerical methods as diverse as:

• Cell Centered Finite Volume - developed by the Von Karman Institute.
• Discontinuous Galerkin - developed by the Charles University of Prague within

ADIGMA.
• Continuous Finite Element - developed by the Von Karman Institute.
• Residual Distribution - developed by the Von Karman Institute.
• Spectral Finite Difference and Finite Volume - developed by the Vrij Universiteit

Brussels.
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Chapter 20
Robust and Efficient Implementation of Very
High-Order Discontinuous Galerkin Methods in
CFD

F. Bassi, A. Colombo, N. Franchina, A. Ghidoni, and S. Rebay

Abstract. Discontinuous Galerkin (DG) methods are a very powerful numerical
techniques, that offer high degree of robustness, accuracy and flexibility, nowadays
necessary for the solution of complex fluid flows. The drawback is the relatively
high computational cost and storage requirement. This work will focus on two ap-
proaches which can be adopted to enhance the computational efficiency of this class
of methods: (i) a DG discretization based upon co-located tensor product basis func-
tions, and (ii) a p-multigrid solution strategy. The effectiveness of the proposed ap-
proaches has been demonstrated by computing 3D inviscid and turbulent test cases.

1 Introduction

During the last two decades, the considerable advances in algorithm development
and the huge increase of computer power have made CFD a key discipline for the
industry. However the numerical technology used in standard industrial codes is
still mainly based on formally second-order accurate finite volume or finite element
schemes. In practice the accuracy provided by these methods is inadequate in appli-
cations such as large eddy simulation, direct numerical simulation, computational
aeroacoustic unless using prohibitively large computational resources, that are be-
yond the available capabilities. Higher-order accurate methods, such as discontin-
uous Galerkin (DG) methods, are therefore needed to cope with this class of flow
simulations. However the price to pay for their high degree of robustness, accuracy
and flexibility is the relatively high computational cost and storage requirement.
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The most commonly considered time integration schemes used with DG space
discretization are the explicit multistage Runge-Kutta (RK) methods and the implicit
schemes [8]. However, the former shows extremely slow convergence rate for large
scale simulations and/or for high-order polynomial approximations, while the latter,
even reducing the number of iterations needed to reach the steady state solution, is
characterized by an high computational demand, both in terms of the CPU time and
of the memory required to store the Jacobian matrix, which may be prohibitive for
a large scale problem and high-order solutions.

In the last years many solutions have been proposed to enhance the efficiency of
DG methods. We can mention, for example, the techniques developed in the context
of the spectral element methods (SEMs) [15] and p-multigrid (p-MG) [10, 13, 5,
4] solution strategies. In SEMs multidimensional basis functions are obtained as a
tensor product of 1D basis with coincident interpolation and quadrature nodes (i.e.
co-located bases). This technique allows to speed up the construction of the discrete
DG space discretization for quadrilateral and hexahedral elements. The basic idea
of the p-MG algorithm is instead to accelerate the convergence of standard iterative
schemes by solving the equations considering a series of progressively lower-order
approximations on the same grid.

In this paper the two approaches previously described have been analysed and
extended. In particular the nodal polynomial approximation described above and
presented in [3] has been extended to the 3D case and the effect of the coupling with
p-MG strategy introduced in [4] has been investigated. Moreover the p-MG strategy
proposed in [5] has been implemented in the implicit DG code MIGALE [2], and
has been applied to turbulent flows computation.

The organization of this paper is as follows: in Section 2 the DG space discretiza-
tion is briefly presented, in Section 3 Lagrangian polynomial approximations are
discussed, Section 4 describes the p-multigrid algorithm, and Section 5 shows the
computed results for the subsonic inviscid and turbulent flow around the ADIGMA
[14] BTC0 three dimensional body.

2 DG Space Discretization

The compressible flow equations (inviscid,viscous and turbulent) can be written in
compact form as

∂u
∂ t

+∇ ·Fc = ∇ ·Fv + s, (1)

where u,s ∈ RM are the vectors of conservative variables and source terms, Fc,Fv ∈
RM ⊗Rd the inviscid and viscous flux functions, M and d the number of equations
and the space dimension, respectively. Detailed description of these equations can
be found, e.g. , in [7, 6, 2].
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The weak form of Eq. (1) can be written as

∫
Ω
φ
∂u
∂ t

dx−
∫
Ω
∇φ ·F(u,∇u) dx+

∫
∂Ω

φF(u,∇u)·n dσ =
∫
Ω
φs(u,∇u) dx,

(2)

for any arbitrary, sufficiently smooth test function φ , where F is the sum of the
inviscid and viscous contributions, ∂Ω the boundary of Ω , and n the unit outward
normal vector to the boundary.

The DG discretization of Eq. (2) is defined on a mesh Th = {K} of an approxima-
tion Ωh of Ω , which consists of a set of non-overlapping elements K not necessarily
simplexes. The functions φ and u are approximated on Th as piecewise polynomial
functions φh ∈ Vh and uhi = uh1 , . . . ,uhM ∈ Vh, possibly discontinuous on element
interfaces, where the discrete space Vh is defined as

Vh
def=
{
φh ∈

(
L2 (Ωh)

)M
: φh|K ∈ P

k (K)M ∀K ∈ Th

}
, (3)

where Pk (K) are the polynomials of global degree at most k on K.
In order to introduce a coupling between adjacent elements and weakly impose

the boundary conditions a suitable numerical flux function f̂ has to be defined. The
inviscid contribution is computed by means of the “exact” Godunov flux function,
while the BR2 scheme is employed for the viscous part, see [11, 9, 12, 1].

Accordingly to these considerations, the DG formulation of Eq. (2) requires to
find uhi = uh1 , . . . ,uhM ∈Vh such that

∫
Ωh

φh
∂uh

∂ t
dx−

∫
Ωh

∇hφh ·F(uh,∇huh + r([[uh]])) dx

+
∫
Γh

[[φh]] · f̂
(
u±

h ,(∇huh +ηere([[uh]]))
±) dσ

+
∫
Ωh

φhs(uh,∇huh + r([[uh]])) dx = 0, (4)

for all φh ∈Vh. Γh is the set of boundary and internal faces, [[·]] is the jump operator
as defined in [1], re the lifting operator, which is assumed to act on the jumps of uh

componentwise, and ηe the penalty parameter, prescribed accordingly to [12, 1].
All integrals appearing in Eq. (4) are computed by means of Gauss quadrature

formulae with a number of points consistent with the accuracy required.
The discrete problem corresponding to Eq. (4) can be written as

M
dU
dt

+ R(U) = 0, (5)

where U is the global vector of unknown degrees of freedom, M is the global block
diagonal mass matrix, and R the residuals vector.
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3 Nodal Polynomial Expansion Basis

The choice of the expansion basis adopted for the discretization depends on several
issues, namely, i) numerical efficiency, ii) conditioning of the DG discrete operator,
and iii) capability of easily handling complex shaped grids.

Nodal basis functions defined on the reference space can well accomplish the first
two objectives. Indeed, expansion basis computed by means of the tensor product
technique on Gaussian nodes–usually exploited within spectral element methods–
do not exhibit the oscillations typical of functions defined on equispaced nodes and
many numerical operations can be performed efficiently. This approach, even if it
allows to evaluate exactly only integrals up to the linear contribution of the weak
form of the governing equations, does not show instability problems due to under-
integration of the equations nonlinearities.

Multi-dimensional expansions are easily obtained by combining the one-dimen-
sional functions. For the two-dimensional case, for example, the discrete quantity
uh for a polynomial approximation of degree k−1 on element K can be expressed
as

uh(x,t)|K =
k

∑
i=1

k

∑
j=1

φi(ξ )φ j(η)Ui j(t), uh ∈ P
k−1 ⊗P

k−1, (6)

where φi, j(·) are the Lagrange polynomials along the coordinate axis of the refer-
ence quadrilateral |(ξ ,η)| ≤ 1. These functions satisfy the cardinality property, i.e. ,
φi (ξ j) = δi j and for this reason they are particularly useful as interpolation basis. In
fact, any quantity of interest uh is coincident with the expansion coefficient Ui j and
thus straightforwardly available at each nodal point.

The effectiveness of the proposed basis functions has been demonstrated by com-
parison with nodal expansion bases defined on equispaced nodes, by considering the
operation count of functional and derivatives evaluation. Results are summarized in
Table 1. For further details see [3].

Table 1 Operation counts of functions and derivatives evaluation at node A for co-located
tensor product basis functions (sDGm) and for nodal basis function defined on equispaced
nodes (std-DGm). k−1 represents the degree of both polynomial approximations.

sDGm std-DGm

uh (x,t) |A 1 k2

∂uh
∂ξ |A k k2

∂uh
∂x |A 2k 2k2

∇uh|A 4k 4k2
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4 The p-Multigrid Algorithm

Standard iterative solvers are very effective at eliminating the high-frequency or
oscillatory components of the error in the first iterations, while leaving the low-
frequency or smooth components relatively unchanged. This behaviour produces a
fast deterioration of the convergence rate. The basic idea of the h-multigrid method
is to accelerate the convergence of these methods by adopting a sequence of progres-
sively coarser grids, which allow for an effective reduction of the solution error over
the entire frequency field. The p-MG approach is based on the same concepts as
the standard h-multigrid method except that lower-order approximations on a single
grid serve as coarse levels.

The various levels can be visited following different paths (V-cycle, W-cycle). At
each level, a number ν1 of pre-smoothing iterations is performed prior to restricting
the solution to the next coarser level (bullets), while, on the way back to finer level, a
number of ν2 post-smoothing iterations is performed after prolongation (circle). An
improvement of the algorithm is the full multigrid (FMG) strategy which exploits
the coarser level solution to obtain good initial guess to initialize the computation
on the finer grid. In the proposed algorithm the FMG V-cycle depicted in Figure 1
has been adopted and the solution at each level is prolongated to the finer level when
a selected residual-based criterion is met.

Fig. 1 V cycle full multigrid of P3 approximation (•: pre-smoothing; ◦: post-smoothing)

4.1 The p-Multigrid FAS Scheme

The entire multigrid strategy is based on a recursive application of the so-called
two-level algorithm—in which the “exact” solution on the coarser grid is used to
accelerate the solution on the finer grid. In practice, to avoid the prohibitively ex-
pensive exact solution on the coarse grid, the two level algorithm is recursively
applied to progressively coarser grids. The version of the two level scheme used
for nonlinear problem is called Full Approximation Scheme (FAS). In order to il-
lustrate FAS, a generic non linear problem Ap(up) = bp is considered, where up
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is the exact solution vector of a given approximation order, Ap(up) is the asso-
ciated nonlinear algebraic operator and the superscript p indicates the polynomial
degree of the approximation. Let vp be an approximation to the exact solution up

and rp(vp) = bp −Ap(vp) the discrete residual vector.
In the basic two level FAS algorithm, the exact solution on the coarse level is

used to correct the solution on the fine level. The correction is performed according
to the following steps:

1. restrict the solution and the residual to the coarse level,

vp−1
0 = Ĩp−1

p vp, rp−1 = Ip−1
p rp(vp), (7)

where Ĩp−1
p and Ip−1

p are the solution and the residual restriction operators from
level p to level p−1, respectively, to be defined in the following;

2. compute the forcing term for the coarse level:

sp−1 = Ap−1(vp−1
0 )− rp−1; (8)

3. solve the coarse level problem:

Ap−1(vp−1) = Ip−1
p bp + sp−1; (9)

4. calculate the coarse grid error:

ep−1 = vp−1 −vp−1
0 ; (10)

5. prolongate the coarse grid error and correct the fine level approximation:

vp = vp + Ĩp
p−1ep−1 (11)

where Ĩp
p−1 is the error prolongation operator.

The solution/error restriction and prolongation operators, Ĩp−1
p and Ĩp

p−1, are simply

L2 projections onto the low-order and high-order spaces, respectively. An explicit
expression of the residual restriction operator Ip−1

p can be obtained following the
approach proposed by Fidkowski, see e.g. [13], which shows that Ip−1

p = (̃Ip
p−1)

T .
The orthonormal and hierarchical basis functions implemented in the MIGALE

code allow to simply define the solution restriction and prolongation operators as:

Ĩp−1
p = δp,p−1, Ĩp

p−1 = δp−1,p. (12)

In practice the DOFs of the restricted solution are equal to the low-order subset of
the high-order solution, and the low-order subset of the prolongated error are the
same as the low-order error with null high-order DOFs.
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4.2 Semi-implicit Runge-Kutta Smoother

At each level pmin < p ≤ pmax the p-MG scheme presented in this work employs as
smoother the five stage semi-implicit RK scheme introduced in [5], which can be
written as:

u0 = un

DO k = 1, m[
M+αkΔ tD(u0)

]
δuk = −M(uk−1 −u0)−αkΔ tr(uk−1)

uk = uk−1 + δuk

END DO
un+1 = um,

(13)

where D(u0) is the block diagonal part of the full Jacobian matrix, which is com-
puted only at the first stage.

4.3 Backward Euler Smoother

At level pmin a linearized backward Euler iterative smoother is employed,(
Mpmin

Δ t
+
∂R(upmin)

∂u

)
Δupmin + R(upmin) = 0, (14)

where Mpmin denotes the mass matrix, upmin the vector of the unknowns and Rpmin

the residuals vector at level pmin. The fully coupled linear system is solved by means
of the GMRES algorithm and the incomplete LU factorization preconditioner.

5 Numerical Results

This section presents the results for two shockless test cases, the inviscid and tur-
bulent flow around BTC0 three dimensional body. The inviscid test case has been
computed with the spectral DG method based on the nodal basis functions described
in Section 3 (sDGm). The fully coupled linear system is solved by means of the
GMRES algorithm and the incomplete LU factorization preconditioner. The sDGM
computational efficiency has been compared with a DG method based on nodal
basis functions defined on equispaced points (std-DGm). The proposed basis func-
tions have been also implemented in the p-MG algorithm presented in [4], and the
effect of the coupling has been evaluated. The spectral p-MG is based on a FMG V-
cycle, a five stage semi-implicit RK smoother for Pk polynomial approximations (if
pmin < k ≤ pmax) and the implicit backward Euler smoother for Ppmin (with pmin = 0)
polynomial approximation (S-SIRK5+BE).

The turbulent test case has been computed to assess the performance of the p-
MG algorithm described in Section 4 (SIRK5+BE). The coarsest level value pmin
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has been taken equal to P0 and the coefficientsαi of the five stages semi-implicit RK
smoother have been taken from [5], i.e., αi=1,...,5 =

{
1
5 , 1

4 , 1
3 , 1

2 ,1
}

. The value of the
pre/post smoothing iterations has been empirically determined in order to minimize
the CPU time needed to reach a converged solution.

5.1 Spectral DG results

In this section the inviscid flow around BTC0 three dimensional body is computed
for a farfield Mach number M∞ = 0.5, and an angle of attack α = 1◦. The geometry
has been represented with bi-quadratic faces and a 768 hexahedral elements grid has
been used. In Figure 2 the mesh (left) and the corresponding Mach isolines (right)
of a P5 solution are depicted.

Fig. 2 Inviscid BTC0: 768 hexahedral P2 elements mesh (left) and Mach isolines of P5

solution (right)

The sDGm has been compared with std-DGm, evaluating the CPU time needed
to converge. Table 2 reports the CPU time and memory requirement for different so-
lution approximations Pk (k = 2, . . . ,4)). It can be observed that the sDGm achieves
a 10− 15% computational time reduction due to the speed-up of the matrices as-
sembling. The effectiveness of the approximation based on co-located tensor prod-
uct basis functions can be even more significant for methodologies where the time
spent in the DG discrete operator assembly “dominates” the overall computational
time effort, e.g. , p-MG solvers. The effect of the p-MG coupling with collocated
tensor product basis functions has been investigated, comparing the spectral p-MG
and the sDGm (S-IMP). Figure 3 (left) illustrates the density residual L2 norm con-
vergence history of both strategies for a P4 solution approximation, while Table 3
shows the CPU time and the memory required. The S-SIRK5+BE achieves a 25.4%
CPU time reduction and 87% memory saving with respect to S-IMP.
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Table 2 Inviscid BTC0: CPU time and memory requirement for Pk solutions using sDGm
and std-DGm

Pk Memory [GB] tstd−DGm [s] tsDGm [s]

2 1.5 3.0×102 2.7×102

3 8.2 2.0×103 1.8×103

4 30 8.1×103 7.1×103

Fig. 3 Inviscid BTC0: density residual L2 norm convergence history versus CPU time for
a P4 solutions with S-IMP and S-SIRK5+BE (left). Density residual L2 norm convergence
history versus FMG cycle for different soluttion approximations Pk (k = 1, . . . ,5) with S-
SIRK5+BE (right).

Table 3 Inviscid BTC0: convergence results obtained with S-SIRK5+BE and S-IMP. νc is
the number of smoothing iterations at coarsest level pmin. ν1,2 is the number of pre/post
smoothing iteration at level pmin < p < pmax. ν f is the number of smoothing iteration at
the finest level pmax. Nit is the number of iterations needed to reach a converged solution (it
can represents both the FMG iterations or implicit scheme iterations). Mem is the memory
requirement. t is the computational time.

Scheme νc ν1,2 ν f Nit Mem [GB] t [s]

S-SIRK5+BE 1 1-1 1-1 47 3.8 5.3×103

S-IMP - - - 19 30 7.1×103

On the right side of Figure 3 the density residual L2 norm convergence history
obtained with the spectral p-MG algorithm for different solution approximation Pk

(k = 1, . . . ,5) is illustrated. Table 4 resumes the number of multigrid (MG) iterations
needed to converge and the slope of the linear regression of each convergence curve
σ , showing the nearly p-independence property of the multigrid scheme.
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Table 4 Inviscid BTC0: MG iterations needed to reach a converged solution and slope of the
convergence curve of Pk solutions

P
k 1 2 3 4 5

NMG 15 8 11 13 11
σ -0.23 -0.42 -0.27 -0.21 -0.23

5.2 p-Multigrid DG Results

In the second test case the turbulent flow around BTC0 three dimensional body is
computed for a farfield Mach number M∞ = 0.5, an angle of attack α = 5◦ and a
Reynolds number Re = 107. The geometry has been represented with bi-quadratic
faces and two grids have been considered. The coarse grid is composed of 832 hex-
ahedral elements with a maximum stretching factor value equal to 8850, while the
fine grid has 7937 hexahedral elements with a maximum stretching factor value
equal to 20000. Figure 4 shows details of the fine grid, while Figure 5 illustrates
the corresponding pressure (left) and turbulence intensity (right) contours for a P3

spatial discretization. The comparison between the SIRK5+BE and the implicit MI-

Fig. 4 Turbulent BTC0: 7937 hexahedral elements mesh

GALE code (IMP) on the coarse mesh has been presented in Figure 6 (left), while
complete results have been resumed in Table 5. It can be seen that the SIRK5+BE
algorithm turns out to be less efficient than the IMP scheme in term of CPU time but
it shows a marked reduction of the memory requirement (70.7%). Figure 6 (right)
illustrates the density residual L2 norm convergence history as a function of the
FMG iterations of S-SIRK5+BE scheme for different solution approximation Pk

(k = 1, . . . ,3), showing that the p-MG algorithm satisfies perfectly the polynomial
order independent property.
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Fig. 5 Turbulent BTC0: pressure (left) and turbulence intensity (right) contours of a P3 so-
lution on the fine mesh

Fig. 6 Turbulent BTC0: density residual L2 norm convergence history versus CPU time
on the coarse mesh for different solution strategies. Dashed line: IMP scheme. Solid line:
SIRK5+BE scheme (left). Density residual L2 norm convergence history of the SIRK5+BE
as a function of FMG cycles on the coarse mesh for different solution approximations P

k

(right).

Table 5 Turbulent BTC0: convergence results obtained with p-multigrid algorithm
(SIRK5+BE) and implicit MIGALE code (IMP). νc is the number of smoothing itera-
tions at coarsest level pmin. ν1,2 is the number of pre/post smoothing iteration at level
pmin < p < pmax. ν f is the number of smoothing iteration at the finest level pmax. Nit is
the number of iteration needed to reach a converged solution (it can represents both the FMG
iteration and implicit scheme iteration). Mem is the memory requirement. t is the computa-
tional time.

Scheme νc ν1,2 ν f Nit Mem [MB] t [s]

SIRK5+BE 1 2-1 1 46 516 2004
IMP - - - 44 1760 1392
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6 Conclusions

Two different approaches to enhance the computational efficiency of DG methods
have been analysed. In particular a DG discretization based on co-located tensor
product basis functions has been presented, which allows to speed-up the DG dis-
crete operator assembly. The p-multigrid algorithm is the second approach pro-
posed, characterized by a marked reduction of the memory requirement with respect
to implicit scheme. The coupling of these two strategies has shown great potential-
ity, exploiting the advantages typical of both approaches and making the spectral p-
multigrid algorithm performances comparable with implicit schemes, both in term
of memory requirement and CPU time.
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Chapter 21
Agglomeration Multigrid for the
Vertex-Centered Dual Discontinuous Galerkin
Method

Sven-Erik Ekström and Martin Berggren

Abstract. Agglomoration multigrid is used in many finite-volume codes for aero-
dynamic computations in order to reduce solution times. We show that an ex-
isting agglomeration multigrid solver developed for equations discretized with a
vertex-centered, edge-based finite-volume scheme can be extended to accelerate
convergence also for a vertex-centered discontinuous Galerkin method. Preliminary
results for a subsonic as well as a transonic test case for the Euler equations in two
space dimensions show a significant convergence acceleration for the discontinuous
Galerkin equations using the agglomoration multigrid strategy.

1 Introduction

The particular discontinuous Galerkin (DG) method studied and implemented by
Uppsala University within the ADIGMA project is vertex centered, in contrast to
the standard cell-centered DG method. The method was introduced by Berggren et
al. [1, 2] for model problems and for the Euler equation in our other contribution
to this volume [4]. The method is designed to constitute a generalization to higher
order of the edge-based, vertex-centered finite volume (FV) discretization that is
particularly popular in many of the codes in engineering practice. Our implementa-
tion is done within a software system of this type, Edge [5, 6].

The use of multigrid is a common and often successful strategy for conver-
gence acceleration in FV solvers. We here describe how an existing agglomerated
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multigrid facility in Edge is adapted to support multigrid also for the DG discretiza-
tion. To explain the multigrid approach, we adopt a notation similar to the one used
in the Edge documentation [6].

We want to solve the steady state problem

∇ ·F (U) = 0 in Ω , (1)

where F is the standard flux function for the Euler equations [3, 4], and U =
[ρ ,ρu,ρE]T of dimension d + 2 (d is the space dimension) is the vector of conser-
vative variables. Let each components of Uh, the numerical solution to equation (1),
belong to the space Vh specified in [4]. The DG method is obtained by multiplying
equation (1) by a test function vector Vh ∈ V d+2

h , integrating over each control vol-
ume, integrating by parts, and introducing the numerical flux F ∗ on the boundaries.
This procedure yields that Uh ∈ V d+2

h solves the variational problem∫
∂Km

Vh · F ∗(UL,UR, n̂)ds−
∫

Km

∇Vh ·F (Uh)dV = 0, ∀Km ⊂Ω , ∀Vh ∈ V d+2
h , (2)

where subscripts L and R denote local (“left”) and remote (“right”) values on the
boundary ∂Km of control volume Km, and n̂ is the outward unit normal.

Variational expression (2) defines a nonlinear equation N (Uh) = 0. To solve this
equation, a common approach in the the CFD community is to time march equation

∂Uh

∂ t
+N (Uh) = 0 (3)

to steady state using Runge–Kutta time stepping. For efficiency, this procedure
needs to be accelerated by for example local time-stepping and multigrid, the lat-
ter which is the subject of this chapter. We start in Section 2 with a brief descrip-
tion of the existing agglomeration multigrid method as implemented in Edge. In
Section 3, we explain how the method has been extended to encompass also the
vertex-centered DG discretization. Sections 4 presents preliminary results of our
DG agglomoration multigrid approach, and we end with some concluding remarks
in Section 5.

2 Existing Finite Volume Agglomeration Multigrid in Edge

For use in the agglomoration multigrid process, the preprocessor of Edge generates
a sequence of L coarser and coarser dual meshes. First, a dual mesh (top right in
Figure 1) is generated from the primal mesh (top left in Figure 1). The data structures
needed to represent the dual mesh is a list of edges connecting adjacent vertices in
the primal mesh and a list, associated with these edges, of normals to the dual control
volumes. (Additional boundary information is also required [4], but for simplicity
not considered here).
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The meshes are indexed coarse to fine by 1, . . . , L, where mesh L refers to the
dual mesh generated from the supplied primal mesh. To generate a coarser mesh, a
set of adjacent dual cells are agglomerated into bigger cells, as shown in the bot-
tom left of Figure 1; this mesh would be number L− 1. The number of degrees of
freedom is equal to the number of cells, hence less for the coarser mesh, and the
location of each new node is computed by a weighted average of the nodes in the
dual cells (of the finer mesh) that constitute the agglomerated cell. A new list of
edges connecting nodes in the agglomerated mesh is generated, and new normals
are constructed by vectorially adding normals from the finer mesh. In the bottom
right of Figure 1, yet another agglomeration is shown, with even fewer elements,
using the same procedure to generate a new list of edges and normals; this mesh
would be numbered L−2.

Fig. 1 The preprocessor stages to generate computational meshes. Top left: The primal mesh.
Vertices are marked with gray circles. Top right: The dual mesh. The degrees of freedom for
the unknowns are associated with the nodes (located at the primal mesh vertices) marked with
white circles. The data structures involve lists, associated with the edges of the primal mesh,
of (pair of) node numbers and the normals of the dual cells. This is level L in the agglomerated
multigrid cascade of L meshes. Bottom left: Agglomeration one step, combining adjacent
dual cells to bigger cells. The (white) node in each agglomerated cell is weighted together
from the (gray) nodes in the finer cells constituting the agglomerated cell. A single normal for
each edge in the agglomerated mesh is constructed by vectorially adding normals from the
associated part of the cell boundary. This level would be L−1. Bottom right: Agglomeration
one more level with even bigger cells, at level L−2.
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The discrete Euler or Navier–Stokes equations on the finest mesh can be written

∂UL

∂ t
+NL(UL) = 0, (4)

where NL(UL) is the spatial discretization of the equations on the finest mesh, here
the FV discretization (or lowest order DG, p = 0). At each coarser mesh level l < L,
we have

∂Ul

∂ t
+Nl(Ul) = Fl, (5)

with initial value Ul = Il
l+1Ul+1, where Il

l+1 is the restriction operator for the un-
knowns, and Fl is a forcing function, defined recursively as

Fl = Nl(Il
l+1Ul+1)+ Îl

l+1

[
Fl+1 −Nl+1(Ul+1)

]
, (6)

with FL = 0. Moreover, Il
l+1 and Îl

l+1 are restriction operators of respectively the
unknowns and the residuals from finer mesh l + 1 to coarser mesh l. These are
defined cell by cell by summing contributions from the subcells on mesh level l +1
that constitute the cell on mesh level l. The restriction of Îl

l+1 to cell Km at mesh
level l is given by

Îl
l+1|mRl+1 =∑

n
Rl+1

n , (7)

where Rl+1 is the vector of residuals with components Rl+1
n associated with cell Km.

The restriction of Il
l+1 to cell Km is similarly defined, but with a weighting involving

the cell volumes:

Il
l+1|mUl+1 =

∑n V l+1
n Ul+1

n

∑n V l+1
n

(8)

in which V l+1
n is the cell volume of a subcell to Km.

Smoothing is accomplished at each level by integrating (4) and (5) with a few
Runge–Kutta steps, typically with local time stepping. When the solution has been
smoothed on coarsest mesh, l = 1, the following prolongation scheme successively
provides updated solutions Ū l , for l > 1:

Ū l = Ul + Il
l−1(U

l−1 − Il−1
l Ul). (9)

Operator Il
l−1 is the prologation operator (a simple injection operator), from mesh

level l −1 to mesh level l. For the standard V , W , and F cycle schemes, smoothing
is performed on the updated solution Ū l before proceeding to even finer meshes.

Different choices of fluxes can be chosen by the user on coarser meshes to reduce
the computational complexity for each multigrid sweep.

Full multigrid is also available within Edge. The calculations then start at the
coarsest mesh and continue until convergence, that is, until the residual is lower
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than a user-supplied threshold. After this, the solution is prolonged to the next finer
mesh level. Two-grid cycles are now used until convergence is attained again. Then
the solution is prolonged to the third mesh level and a three-grid cycle is used until
convergence. This procedure is repeated until all meshes are involved and solution
is given on the finest mesh. User-defined variables control the behavior of the solver,
for example the maximum number of cycles spent in each stage of the full multigrid.

3 Discontinuous Galerkin Agglomeration Multigrid

In this section, we discuss how we adapted the Edge code to support multigrid also
for the DG discretization.

The equation to solve at the finest mesh level L and for order p is

∂UL
p

∂ t
+N p

L (UL
p ) = 0, (10)

where N p
L is the spatial discretization operator defined by equation (2). The multi-

grid process acts through repeated smoothing, that is, by applying a few Runge–
Kutta iteration steps on equation (10), with successively modified initial conditions.
These initial conditions are obtained recursively by similar smoothing procedures
on lower-order approximations and on cruder meshes.

Assume now that ŪL
p is the result of applying a few Runge–Kutta iteration steps

to equation (10). At next multigrid level, we integrate on the same mesh, but at
lowest order p = 0:

∂UL
0

∂ t
+NL(UL

0 ) = F0
L , (11)

where

F0
L = N 0

L (J0
pŪL

p )− Ĵ0
p

[
N p

L (ŪL
p )
]
, (12)

and where J0
p and Ĵ0

p are the restriction operators for the solution and the residual,
respectively, as defined below. Since p = 0 is nothing else but an vertex-centered
finite-volume scheme, equation (11) can be integrated using the agglomeration
multigrid scheme in Edge outlined in section 2. Let ŪL

0 be the result of such an
integration. Then we may define

¯̄UL
p = ŪL

p + J p
0

(
ŪL

0 − J0
pŪL

p

)
(13)

and use ¯̄UL
p as a new initial condition for equation (10). The prolongation operator

J p
0 is specified below. For orders p > 1, it may also be advantageous to add a level

of p-multigrid instead of projecting directly on p = 0 as described above. We have
not yet implemented or tested such a general p multigrid strategy.
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In order to specify the restriction and prolongation operators, let

UL
q |m =

⎛⎜⎜⎜⎝
ρm

1 (ρu)m
1 (ρE)m

1
ρm

2 (ρu)m
2 (ρE)m

2
...

...
...

ρm
Nm

(ρu)m
Nm

(ρE)m
Nm

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

[Nm×d+2]

, (14)

be the piece, associated with macro element Km, of the solution vector UL
q of order

q at the finest mesh level L. The number of degrees of freedom Nm depends on the
order; Nm = 1 for q = 0, for instance. The restriction operator J0

p for the solution is
block diagonal on each piece UL

p |m. The diagonal blocks J0
p|m are defined by

UL
0 |m = (M00)−1M0p︸ ︷︷ ︸

J0
p|m

UL
p |m (15)

where M00 and M0p are the mass matrices

M00 =
∫

Km

dV, (16)

M0p =
(∫

Km

φ1 dV, . . . ,

∫
Km

φNm dV
)

︸ ︷︷ ︸
[1×Nm]

. (17)

The restriction operator for the residuals, Ĵ0
p, is also block diagonal. The diagonal

blocks Ĵ0
p|m are defined by

Ĵ0
p|m = M0p (Mpp)−1 , (18)

where

Mpp =

⎛⎜⎜⎜⎜⎝
∫

Km

φ1φ1 dV . . .
∫

Km

φ1φNm dV

...
...∫

Km

φNmφ1 dV . . .

∫
Km

φNmφNm dV

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

[Nm×Nm]

. (19)

Finally, each diagonal block of the prolongation operator J p
0 , is given by

J p
0 = (Mpp)−1 Mp0, (20)

where Mp0 =
(
M0p

)T
.
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4 First Results

In Figures 2 and 3, we show results for two Mandatory Test Cases of the ADIGMA
project, MTC1 and MTC2. The left displays in Figures 2 and 3 depict the pressure
coefficient for linear elements for the respective test cases. (The oscillations in the
pressure coefficient at the leading edge for the subsonic case vanish when using
higher-order elements, as shown in our other contribution to this volume [4].) The
right displays in Figures 2 and 3 show the iteration histories, in terms of the mass
conservation residuals, when solving MTC1 and MTC2 without and with multigrid.
The multigrid computations are initiated with FV solutions obtained with full multi-
grid, and two grid levels are used in addition to the projection from p = 1 to p = 0.
A clear reduction of number of iteration is attained in both test cases, although the
code has not yet been tuned and optimized in any way.
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Fig. 2 MTC1 of the ADIGMA project. Left: Pressure coefficient, p = 1, 2D Euler,
NACA0012, M = 0.5, α = 2.0◦. Right: Mass conservation (“ρ”) residual reduction without
multigrid and with initial full FV multigrid followed by DG with agglomeration multigrid.
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Fig. 3 MTC2 of the ADIGMA project. Left: Pressure coefficient, p = 1, 2D Euler,
NACA0012, M = 0.8, α = 1.25◦. Right: Mass conservation (“ρ”) residual reduction without
multigrid and with initial full FV multigrid followed by DG with agglomeration multigrid.
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5 Conclusions

Agglomeration multigrid is a common strategy to accelerate convergence in vertex-
centered finite-volume schemes. The implementation of a robust and effective ag-
glomeration multigrid algorithm requires a substantial man-power investment. The
availability of agglomeration multigrid in Edge was an important motivation to im-
plement of our vertex-centered DG scheme inside Edge instead of attempting an
implementation from scratch. To the best of our knowledge, this is the first time that
such an extension effort has been attempted.

A central issue has been positively resolved: agglomeration multigrid, as devel-
oped for vertex-centered finite-volume schemes, is indeed effective as a converge
acceleration also for the vertex-centered DG method. These first results certainly
motivate further study of the method. First, the implementation needs to be com-
pleted to accept arbitrary number of mesh levels and orders p > 1. Also, for p > 1,
it should be investigated whether a p-multigrid layer should be included before ag-
glomoration multigrid is activated.
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Chapter 22
Higher–Order Aerodynamic Computations
Using an Edge Based Finite Volume Scheme

G. Campagne, O. Hassan, K. Morgan, and K.A. Sørensen

Abstract. Methods of improving the computational performance of conventional
low order, unstructured grid, cell vertex, finite volume codes, for the simulation of
high speed compressible viscous flow, are considered. The objective is to improve
the performance without requiring that major changes be made to existing codes.
With this in mind, higher order discretisations and improved equation solution has
been attempted, within wall boundary layer regions only. This is possible, using
the structure that is present in the grids normally used to discretize the boundary
layer regions. A number of examples are included to illustrate the improvement in
computational performance that can be obtained in this way.

1 Introduction

In the industrial environment, inviscid flow simulations over complex aerodynamic
configurations are often now effectively, and economically, performed using an un-
structured tetrahedral mesh and a low order, edge based, finite volume solution algo-
rithm. Popular steady state algorithms generally employ a cell vertex formulation,
with centered or upwind stabilisation, and explicit multi–stage time stepping, with
agglomerated multigrid acceleration.

However, when the same techniques are applied to viscous flow simulations on
hybrid meshes, practical experience has show that, for many simulations of indus-
trial relevance, the computational performance of these methods deteriorates sig-
nificantly. This deterioration is believed to be due to the additional stiffness that is
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introduced into the problem by the presence of the viscous boundary layers. To ade-
quately resolve the solution, the meshes employed for viscous flow simulations are
normally required to have a large number of nodes, with highly stretched elements,
located within the boundary layer region.

Within the ADIGMA project, we have investigated two approaches designed to
improve the computational performance for viscous flow simulations, by attempting
to improve the treatment of the boundary layer. A major objective was to achieve
improvements within the context of techniques that could be readily implemented
in the current generation of industrial finite volume codes. To avoid duplication of
work, an investigation aimed at improving the basic efficiency of the solution proce-
dure was undertaken by EADS–MAS and involved solving the governing equations
implicitly along the wall–normal mesh lines. At Swansea, effort was focused on
the introduction of one dimensional higher–order discretisations in the wall–normal

Fig. 1 Detail, on the sym-
metry plane, of a typical
hybrid mesh generated for a
viscous flow simulation over
an aircraft configuration

direction. The objective here was to reduce the reduce the number of mesh points
required to resolve the boundary layer [6]. At the conclusion of the project, the two
developments were combined within a single 3D code, which was implemented by
EADS–MAS.

2 Development of a Hybrid Solution Algorithm

2.1 Background

The FLITE system [18] at Swansea provides a facility for performing steady aerody-
namic flow simulations. This system employs a cell vertex finite volume method for
the solution of the conservative form of the unsteady compressible Navier Stokes
equations on unstructured meshes. Stabilization, for transonic simulations, is ac-
complished by replacing the physical flux function with an unstructured mesh im-
plementation of the well known JST consistent numerical flux function [15]. The
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JST flux function consists of a blended combination of a second order pressure
switched approximation to a scaled harmonic operator and a scaled approximation
to a fourth order biharmonic operator [12]. The one equation model of Spalart and
Allmaras [23] is employed for the simulation of turbulent flows. The resulting equa-
tion system is constructed using an edge based data structure and is solved by ex-
plicit iteration.

Within the Swansea FLITE system, the unstructured mesh generation process is
controlled by means of a user specified function, that defines the desired distribution
of the mesh spacing [17]. Following the discretisation of the surface of the compu-
tational domain [16], according to the requirements of the mesh control function,
layers of tetrahedral elements are generated on viscous surfaces, using an advanc-
ing layers method [9]. This method employs advancing front concepts and generates
points on smoothed normals emanating from the surface, with the thickness of the
individual layers being specified by the user. This generation process stops when
the number of layers generated reaches a specified value or when the size of the
generated layer is comparable with the local mesh size specified by the mesh con-
trol function. Following this process, the structure of the generated layers is utilised
to merge appropriate combinations of tetrahedra, to form a hybrid mesh of hexa-
hedra, prisms and tetrahedral elements [19]. Prisms are located, where necessary
on the outermost of the generated layers. The remainder of the domain is then dis-
cretised into tetrahedral elements, using a standard Delaunay procedure with point

Fig. 2 Solution of a 1D
steady state convection dif-
fusion problem achieved
using a fourth order finite
volume method on the illus-
trated mesh

creation [24]. A detail of a mesh constructed in this fashion for flow over a 3D air-
craft configuration is given in Figure 1. This clearly shows, on a symmetry plane,
the consistent hybrid nature of the generated mesh.

In a series of papers, De Rango and Zingg [1, 2, 3] investigated the use of a glob-
ally fourth order accurate finite difference algorithm for computing steady flows
over 2D aerofoils. They demonstrated that significant computational savings could
be achieved, compared with the requirements of well established second order algo-
rithms. The Swansea work under the ADIGMA project was intended to investigate
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whether or not similar conclusions could be reached when a higher order finite vol-
ume discretisation was introduced into the Swansea FLITE code. The intention was
that the higher order discretisation would be attempted, only within the boundary
layers along solid surfaces, and would employ the structure present in the mesh
generated by the advancing layers approach.

2.2 Initial 1D Testing

The practicality of the basic idea was initially tested in 1D. The problem consid-
ered required the steady state solution of the unsteady linear convection/diffusion
equation. The problem was formulated on the spatial domain 0 ≤ x ≤ 1 for values
of the time t ≥ 0 and boundary conditions u = 1 at x = 0, u = 0 at x = 1 for all
t > 0 were imposed. For the convection dominated case, the steady state solution
involves a boundary layer near x = 1. Initially, a uniform fourth order finite volume
discretisation of all the terms in the governing equation was employed [8, 10, 11],
with the resulting equation system solved by explicit multi–stage iteration. The form
adopted for the initial condition only affected the number of explicit steps necessary
for convergence. A uniform grid was used first and then a non uniform stretched grid
was adopted. For the stretched grid, the discretisation was either achieved directly

Fig. 3 The L2 error norm
for the 1D steady state con-
vection diffusion equation:
comparison of the results
computed with a second or-
der (x) and a fourth order (o)
discretisation on different
meshes

in the physical space, with a non–uniform mesh spacing, or in a mapped space, with
uniform mesh spacing. The use of compact differencing stencils [13, 4, 5] was not
investigated, but this is an approach that would be worthy of further investigation.
An additional sophistication, meant to replicate the approach that would be followed
within the FLITE solver, was to employ the higher order discretisation within the
boundary layer only and the standard discretisation elsewhere. No background dis-
sipation was added.

In all cases, the method was found to work very well, as illustrated by the typical
solution illustrated in Figure 2 in which the results, to the eye, are indistinguishable
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from the exact. The results of a typical convergence study, comparing the variation
of the L2 norm of the error, obtained with second order and the fourth order dis-
cretisations, with the number of grid points employed is shown in Figure 3. These
results provided confidence in attempting to develop the method within the more
complex environment of the FLITE code.

2.3 2D Implementation

The initial studies, directed at employing the proposed approach for practical simu-
lations, were attempted in 2D. For 2D simulations, a detail of a typical hybrid mesh
of triangles and quadrilaterals generated for the analysis of flow over an aerofoil is
shown in Figure 4. When a mesh of this type is generated, the mesh generator is also

Fig. 4 Detail of a hybrid
mesh generated by the ad-
vancing layers method for
the simulation of transonic
flow over an aerofoil

used to identify the normal lines running through the boundary layers and to provide
the numbering of the consecutive nodes on each normal. Figure 5 indicates a typi-
cal situation, with the nodes numbered sequentially on one such line, and illustrates

Fig. 5 Illustration of the
consecutive numbering of
the nodes in the boundary
layer, on a normal to a 2D
surface, and the dual mesh
quadrilateral cell surround-
ing node I
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Fig. 6 Turbulent flow over
a NACA0012 aerofoil at a
free stream Mach number
of 0.3, a Reynolds number
of 1×106 and zero degrees
angle of attack: skin friction
distributions on the aerofoil
surface computed with the
new (HO) and the original
(LO) schemes on different
meshes

the finite volume, vertex centered, cell surrounding a given node I. Based upon the
experience gained with the 1D simulations, it was decided to employ fourth order
interpolation along these normal lines in the physical space to determine the flow
variables, and the flow gradients, at the mid points of the faces of the finite volume
cells which run parallel to the wall. With this implementation, the coefficients in the
interpolation formulae are different at each point and, for computational efficiency,
these coefficients are pre–computed and stored. These interpolated values are used
to replace the simple averaged values, normally used to evaluate the flux vectors in
the FLITE code, on these faces only.

The fourth order background stabilisation term also needs to be modified, to en-
sure that the projected benefits of the higher order discretisation are not swamped
by this term. In the classical FLITE procedure, a stabilising diffusion term

ADI = ∑
I∈ΛI

AIJ (VJ −VI) where VI = ∑
I∈ΛI

(UJ −UI) (1)

is added at each node I. Here ΛI denotes the set of edges in the mesh that are con-
nected to node I and VI is formed by constructing edge differences in the solution.
The simple scalar form AIJ = εαIJI is adopted for the dissipation matrix, where ε
is a user specified constant. The coefficient αIJ is evaluated for each edge as

αIJ =
1

KI + KJ
min

(
ΩI

Δ tI
,
ΩJ

Δ tJ

)
(2)

In this equation, KI denotes the number of edges connected to node I, Δ tI is a local
stability time step computed for node I and ΩI is the area of the finite volume cell
associated with node I.
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Fig. 7 Turbulent flow over an RAE2822 aerofoil at a free stream Mach number of 0.73, a
Reynolds number of 6.5× 106 and 3.19 degrees angle of attack: variation of the lift error
computed by the new method (HO) and the original FLITE procedure (LO) on a sequence of
meshes

The modified stabilisation is determined in a similar fashion, but is computed by
recycling twice the edge differences in the solution at each node. This means that,
in this case, the stabilization term added at node I is evaluated as

ADI = ∑
I∈ΛI

AIJ (WJ −WI) where WI = ∑
I∈ΛI

(VJ −VI) (3)

and VI is determined as before.
The procedure was initially tested for the case of turbulent subsonic flow over

a NACA0012 aerofoil at a free stream Mach number of 0.3, a Reynolds number of
1 million and zero degrees angle of attack. A general indication of the improvements
in solution quality offered by the use of the new approach are apparent in Figure 6,
which shows the computed distribution of the skin friction obtained using the new
and the original schemes on different grid levels.

2.4 Application to ADIGMA MTC5—Transonic RAE2822
Aerofoil

A better appreciation of the performance of the proposed approach can be gained
by considering its application to the ADIGMA MTC5 test case. This requires the
simulation of flow over an RAE2822 aerofoil at a Mach number of 0.73, a Reynolds
number of 6.5 million and 3.19 degrees angle of attack. For this case, 46 computa-
tions were performed on a set of different meshes. These meshes only vary in the
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Fig. 8 Turbulent flow over an RAE2822 aerofoil at a free stream Mach number of 0.73, a
Reynolds number of 6.5× 106 and 3.19 degrees angle of attack: variation of the drag error
computed by the new method (HO) and the original FLITE procedure (LO) on a sequence of
meshes

expansion rate of the point distribution in the boundary layer, while the thickness
of the boundary layer mesh remains constant in each case. The computed lift and
drag errors have been plotted against the inverse of the distance of the first node
from the wall in the boundary layer. Figure 7 shows the lift error for the different
meshes. It can be observed that, for a given mesh, the original FLITE code (LO)
gives a larger lift error than the new method (HO). The horizontal dashed lines rep-
resent the asymptotic value plus or minus the desirable engineering accuracy. The
FLITE computations, on the coarsest meshes that remain within the engineering ac-
curacy, require respectively 35, 29 and 26 layers. In comparison, the new approach
produces results that remain within the engineering accuracy on meshes containing
27, 21 and 18 layers. This means that the new method allows a reduction of between
23% to 31% in the numbers of layers required in the boundary layer. Similar con-
clusions may be drawn from a study of the corresponding drag error plots, shown
in Figure 8. On the same mesh, the new method gives a smaller drag error than the
original FLITE procedure. The drag error increases faster in the results produced by
the original FLITE procedure compared with the results of the new method, as the
distance of the first node in the boundary layer increases.

This 2D study helps to underline the performance of the new method. It is pos-
sible to deduce that, as the boundary layer represents 60% of the total number of
points of a mesh, the new approach allows for a reduction of about 20% in the total
number of mesh points required. Simultaneously, only small modifications need to
be made to the existing 2D FLITE code and the additional computation involved is
fairly small, resulting generally in an increase of the order of 3% in the required cpu
time.
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2.5 3D Implementation

The necessary modifications are also readily implemented within the 3D FLITE
solution procedure. However, the only application that was possible before the end
of the project was to apply the new method to a pseudo–3D problem, consisting of
flow over a wing of constant section. The wing section is taken to be in the form
of the same RAE2822 aerofoil and the flow conditions were again those associated
with the ADIGMA MTC5 test case. The simulations were performed on meshes that
were constructed by stacking, in the span direction, meshes generated for the 2D
aerofoil section. A detail of a typical discretization of this type is shown in Figure 9.
Full analysis of the lift and drag results indicate that the 2D results are reproduced
for this configuration. This gives confidence that the 3D implementation is correct.
Further 3D analysis involving both a truly unstructured mesh for this configuration
and an ONERA M6 turbulent test case are currently under investigation.

(a) (b)

Fig. 9 Pseudo–3D simulation of turbulent flow over a uniform wing, with RAE2822 aerofoil
sections, at a free stream Mach number of 0.73, a Reynolds number of 6.5× 106 and 3.19
degrees angle of attack: (a) indication of the structure of the stacked mesh used; (b) view of
the distribution of the computed pressure contours on the symmetry plane and on the wing
surface

3 Convergence Acceleration Developments

EADS-MAS modified two existing codes of industrial complexity in ADIGMA. For
the two-dimensional research, the second order multigrid accelerated finite volume
code developed at Swansea [18] was used as a basis. For this code, convergence
acceleration techiques for the standard, second order, discretization scheme were
developed. For 3D studies, EADS–MAS used the DLR Tau code [7] as a basis
and, in this case, both the implicit preconditioning and the higher order bound-
ary layer treatment were investigated in the same code. Here, the experiences ob-
tained at Swansea for the higher order wall–normal boundary layer discretization
were exploited. The particulars of the EADS–MAS pre–conditioner and the higher
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order line discretizations will be described and a few examples will be presented
that illustrate the application of the developed procedures to problems of different
complexity.

3.1 Line Generation

As has been described, the boundary layer mesh is normally constructed by prisms
or hexahedra in a layer–wise manner, resulting in a regular structure in a direction,
more or less, normal to viscous walls. The thickness of this region varies but, typi-
cally, meshes employed to resolve boundary layers consist of around 30 layers. The

Fig. 10 Illustration of the
line data structure in the
boundary layer. The passive
mesh is shown in black, the
active mesh in grey.

elements closest to the wall are highly stretched and there is a gradual increase in
the normal spacing as the distance to the wall increases. This means that the outer
elements are much less stretched (optimally isotropic). Given this grid structure, it
is relatively easy to construct lines emanating from wall nodes, following the edges
of the elements and terminating at the outer boundary layer surface, as illustrated in
Figure 1. The data structure for such lines can simply consists of registers, listing
the node indexes of the lines. However, to improve the speed of the code, and for
flexibility, a more complicated data structure was implemented in both the 2D and
3D versions of the code. The data structure implemented is illustrated in Figure 10,
showing that for each line, two tiny, but complete, dual mesh structures were gen-
erated. One data structure, termed the active mesh for the line, contains the edges
spanning internal line nodes. The other data structure, termed the passive mesh for
the line, contains all nodes required to complete a two–level flux computation for the
line node control volumes. The non–geometric data for the dual meshes are dynam-
ically allocated, when needed, to reduce the memory penalty of this data structure.

3.2 Line Implicit Pre–conditioner

The theoretical peak performance of a boundary layer pre–conditioner can be esti-
mated by completely solving, to convergence, for the boundary layer nodes before
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Fig. 11 Illustration of the
preconditioning effect ob-
tained by pre–solving the
boundary layer before
each multigrid cycle for
the MTC5 test case

every solver iteration. This test was performed on the MTC5 test case [20] and
is shown in Figure 11. The speed–up in convergence attained with respect to the
number of cycles compared with the standard multigrid algorithm is more than five
for this test case. For a subsonic version of the problem, the factor improves to
around seven. Although this process does not reach the convergence rates normally
achieved for Euler flow simulations, the improvements obtained are substantial and
demonstrate that it is worth looking at the boundary layer for performance improve-
ments for cases of this type.

To reduce the stiffness of the numerical system in the boundary layers, a pre–
conditioning strategy has been developed. The pre–conditioner is separated from
the main solver, which is an agglomerated multigrid approach, with Runge–Kutta
and LU–SGS relaxation for the 2D and 3D codes respectively. In this way, the pre–
conditioner is a separate solver, only inducing changes in the boundary layer, which
can be applied in an inter–leaved manner at regular intervals. This approach is some-
what different from other methods found in the literature, where the boundary layer
lines are used to provide a smoother for the multigrid solver [14]. Combining the
two solvers in this manner did not, however, prove to be straightforward, as not all
combinations run in a stable manner. This is mainly a problem if the pre–conditioner
is applied too often. This is because it is constructed with aggressive directional re-
laxation along the lines and, thus, needs the multigrid solver to smooth the tangential
components. On the other hand, if the pre–conditioning interval is too infrequent,
the convergence improvement is reduced.

The pre–conditioner works by treating the boundary layer nodes with an im-
plicit approach. For this, an analytic second order Jacobian matrix was implemented
containing most of the terms stemming from the Navier–Stokes equations and the
Spalart and Allmaras turbulence model. The Jacobian is stored as a block penta–
diagonal matrix. For the line, the system

(αDIJ + JIJ)ΔUJ = RI (4)
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is solved directly for the unknown increment at node I, ΔUI , using Gaussian elimi-
nation. In this equation, JIJ denotes the discrete Jacobian matrix obtained by analyt-
ically differentiating the discrete flux at node I with the unknown vector U at node
J, R is the flux residual, D is the unit diagonal vector, introduced for increasing the
stability, and α is a stability parameter. The Jacobian is updated at each iteration, but
this is probably not needed. This means that there remains a potential saving to be
achieved by computing the inverse of the relaxed Jacobian once and, subsequently,
only updating the fluxes in the iteration. This equation system is not completely
solved and, usually, between 3 and 5 iterations are performed. After the iterations
for the line are completed, a convergence check is performed to decide whether the
pre–conditioning contribution should be included for the line or not. Typically, for
optimal settings of the relaxation parameter, around 1% of the lines are rejected
in the pre–conditioning. The result is a relatively robust approach, with the pre–
conditioner influence added as a bonus in regions where it is well behaved. Here, a
line is defined as well behaved if the residual of the Newton–Raphson iteration is re-
duced by at least a factor of three. There are various alternatives that can be adopted
when updating the fluxes in equation (4). The approach chosen here is to only initial-
ize the tangential fluxes at the first iteration and not to update them at later iterations.
For this case, the data structure can be considerably reduced, as only the inner (ac-
tive) mesh needs to be stored. The main advantage for this approach is that the line
computations, while consistent, in effect decouple the tangential components of the
fluxes in the pre–conditioning step. The effect of this is best illustrated by looking
at the pre–conditioning performance on an initial velocity solution field consisting
of free stream values for all internal nodes and the non–slip boundary condition at
the wall. The task of the pre–conditioner can be thought of as generating a solu-
tion that looks like a classical boundary layer field. The lines are solved in a Jacobi
manner, where the lines are decoupled and use the flow field at the beginning of the
pre–conditioning step for the neighbouring (passive) nodes connected to the line.
For the initial iteration, the tangential fluxes are close to zero, as there are almost
no gradients in this direction for the initial free stream solution. However, due to
the boundary condition, the normal gradient is very large and the pre–conditioner
will attempt to smooth the velocity field in the normal direction. If the tangential
fluxes are updated within each internal Newton–Raphson iteration, the tangential
fluxes will influence the development of the boundary layer type velocity field. By
only adding the original tangential fluxes, computed on the free stream solution, the
boundary layer is allowed to evolve more freely. While this is a very aggressive ap-
proach, it is consistent as it will not change an already converged solution. It does,
however, decouple the lines and introduces an instability effect which must be coun-
tered by appropriate smoothing in the tangential direction. In the current implemen-
tation, this is performed by the multigrid solver. Typically one pre–conditioning step
is performed every 20–30 multigrid cycles. The relative cost of the pre–conditioning
varies somewhat depending on the relative number of nodes in the boundary layer
but, typically, is a factor of between one and three times as expensive as a multi-
grid cycle. The optimisation of the time taken to perform a pre–conditioning step
has not been a primary priority to date, even though a clear potential is believed to
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Fig. 12 Pressure plot for the
MTC5 test case

Fig. 13 Comparison of
the convergence between
the preconditioned and the
standard multigrid methods
for the MTC5 test case

exist. The effect of applying the pre–conditioner for the MTC5 test case is shown in
Figures 12 and 13. For this test case, a CPU time speed–up in the region of 2–2.5 is
achieved. For a subsonic version of this test case, the speed–up achieved improves
to around a factor of 3.

3.3 Coupling with the Hybrid Algorithm

The boundary layer is characterized by relatively smooth solution fields and is,
therefore, a good candidate region for the use of higher order discretizations. In
particular, since the largest gradients are in the direction normal to the wall, a direc-
tional higher order discretization along the normal lines is likely to induce savings in
the computational cost of resolving the boundary layers. The regular mesh structure
of the lines can be used to apply simple 1D discretization schemes of finite differ-
ence type. To be able to use 1D stencils, either the lines normal to the wall have to
be completely straight or they have to be mapped into a parametric space or ghost
nodes have to be introduced in the stencil. For the EADS–MAS implementation,
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the last approach was applied, mapping the outer node values in the four point flux
stencil onto ghost nodes on the central edge line using the expression

UI∗ = UI +
∂U
∂x

∣∣∣∣
I
rII∗ (5)

where UI∗ denotes the ghost node value, and rII∗ is the offset vector of the ghost
node I∗ from node I.

For the gradients, the stencils
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for first and second order derivatives respectively were applied, which are fourth
order accurate at the node for a regular mesh. Attempts were also made to include
the stretching in these formulae, making the scheme fourth order also for lines with
non–constant spacing. This was found to be unstable for the inviscid fluxes, but
was applied for the viscous terms. A higher order discretization of the volume inte-
gration of the source terms in the turbulence model, using the trapezoidal rule, was
attempted. Again, some instabilities were found using this approach and, due to time
constraints preventing fuller investigation, the standard central formula was used for
the results shown. For cases where the higher order source term treatment was sta-
ble, however, a relatively large effect was observed. This is something that should be
further analyzed. The standard JST stabilization term [15] was kept for the current
implementation in the TAU code, not transferring the work from Swansea on higher
order stabilization terms, again due to time constraints. The higher order scheme
was tested on the BTC0 testcase [21] and a view of the surface mesh employed is
given in Figure 14. This yielded an allowable reduction in the boundary layers by

Fig. 14 View of the sur-
face mesh for the BTC0
configuration
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Fig. 15 Mesh convergence
comparison between the
standard and the higher
order boundary layer dis-
cretization against the num-
ber of layers employed for
the BTC0 test case

Fig. 16 Comparison of the
convergence rates achieved
with the preconditioned and
the normal multigrid process
for the BTC0 test case

a factor of around 1.6, as illustrated in Figure 15, resulting in a total reduction in
the number of nodes in the mesh of around 30%. The added cost in CPU time of
extending the order is insignificant and there appears to be no extra stiffness intro-
duced. In addition, the implicit line preconditioning resulted in a speed–up factor of
around 2.5, as shown in Figure 16. The combined effect of the two approaches can,
thus, be said to result in a significant reduction, by around a factor of three, in the
computational time. The study also showed that the second order Jacobian for the
pre–conditioner works well in combination with the higher order discretization.

For cases where the boundary layer does not play a very important role for the
integral values, the convergence rate is largely unaffected by the pre–conditioning.
The reduction in the number of layers due to the higher order discretization does,
however, represent a reduction in the numerical system size, regardless of flow con-
dition. This also constitutes an improvement for cases where the boundary layer
effects are secondary. An illustration of a case where the contribution of the bound-
ary layer to the global integral values is minor is shown in Figure 17 and involves the
simulation of transonic flow over the VFE2 delta wing at high angle of attack [22].
Due to the fact that the pre–conditioned higher order TAU code was not parallelized,
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Fig. 17 Lift convergence
curves for the precondi-
tioned and the standard
scheme for the CTC3 delta
wing test case, using the
higher order boundary layer
discretization

this case had to be run on a coarse mesh. The runs illustrated that the approaches
implemented can also run in a stable manner for more complex flows even though
more experience is needed to enable general statements on the robustness and ease
of use of the new code.

4 Conclusions

Research has been undertaken to investigate ways in which the computational per-
formance of traditional low order unstructured mesh cell vertex finite volume codes,
for viscous aerodynamic simulations, could be improved without major algorithmic
changes. The research concentrated on two particular techniques. The first involved
the use of a higher order discretization in the wall–normal direction, employing the
structure present in the type of grids that are usually used to represent boundary
layers. The second aimed at improving the performance of the agglomerated multi-
grid equation solver by adding a boundary layer pre–conditioner. The results of the
research demonstrated that these approaches, when used in combination, offered
the possibility of significantly reducing the computer time required to achieve the
solution of a number of steady state viscous aerodynamic flow problems. However,
further work is required before general conclusions can be drawn about the practical
usefulness of these techniques for industrial flow simulations.
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Chapter 23
Dynamic Load Balancing for Parallelization of
Adaptive Algorithms

S. Gepner and J. Rokicki

Abstract. Mesh Adaptation is a technique allowing to solve of complex problems by
limiting the use of computational resources. In parallel simulation, adaptivity causes
perturbation in numerical load balance leading to decrease in overall parallel effi-
ciency. It is therefore vital to allow for dynamic load balancing if adaptive algoritms
are to be run in parallel. In this paper authors present results from implementation
of a dynamic load balancing algorithm to parallel and adaptive compressible flow
solver.

1 Introduction

Modern large scale flow computations require parallel approach to be effectively
dealt with. It is common to use domain decomposition as it is a relatively simple
and natural approach to parallelization. It requires the computational domain to be
partitioned in to subdomains, prior to the simulations. Figure 1 shows an example
of initial partitioning for a fighter plane like geometry.

If parallelization is to be used effectively, it is necessary that the partitioning satis-
fies certain conditions. Firstly the numerical load assigned to subdomains, should be
well distributed. Commonly numerical effort is proportional to the amount of mesh
entities assigned to a partition. As a consequence load balance might be achieved by
even distribution of mesh elements between processors. Quality partitioning should
also minimize the communication time spend on inter-processor communication.
This, however might strongly dependent on both, the hardware being used and the
problem being parallelized. In a general setting, it is difficult to speculate wether
certain partitioning is optimal as far as the communication volume is concerned.
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Fig. 1 Initial partitioning of a fighter airplane geometry - COOLFluiD project test-case [5]

Fig. 2 Surface mesh for Onera M6 wing geometry (left) after a series of adaptations steps,
and the resulting density field (right)
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Adaptive techniques allow for computation of localized phenomena (boundary
layers, shock waves, etc) with high resolution, while limiting the number of ele-
ments in less interesting regions. This increases the effectiveness of hardware use,
as the necessary amount of resources is kept limited [2]. Figure 2 shows computa-
tional mesh of Onera M6 wing geometry adapted to capture a complex shockwave
structure.

Adaptive algoritms introduce dynamic modifications to the computational mesh,
and if used for parallel applications might have negative influence on the existing
load balance. This in turn negatively affects the overall parallel effectiveness. If
adaptivity is to be used in parallel applications it is vital to ensure proper load bal-
ancing throughout the simulation run time. This creates the need for a dynamically
load balancing algorithm to be implemented.

Dynamic balancing of numerical load was considered in [6, 7, 8, 9, 10, 11, 12].
The present approach concentrates on merging the parallel anisotropic mesh refine-
ment on unstructured meshes with a DLB algorithm. The benefits of such approach
are evaluated in aerodynamically motivated applications. This paper presents re-
sults from implementation of the DLB algorithm into the in-house RED code [2] (a
parallel residual distribution flow solver).

2 The Quality of Partitioning

Quality partitioning for domain decomposition based parallelization should, as men-
tioned in Section 1, follow some rules. It is not clear as to how to estimate the
partitioning influence on the communication time [13, 14], since this might strongly
depend on the hardware being used or the problem computed. Considering this, it
is natural to measure the quality of partitioning by judging how far from the load
balanced state the partitioning remains.

Let W be a total numerical load, equal to the total number of mesh entities. If p
stands for the number of processor cores used, than the load considered optimal and
assigned to an i’th processor would be: wopt = W/p. The actual load assigned is wi,
so a load balance indicator is assumed in the following way:

β = max
0<i<p

wi

wopt
� 1 (1)

If defined in this way, the partitioning is of acceptable quality when load balance
indicator is close to one.

3 Parallel Adaptivity through Anisotropic Mesh Refinement

A general, parallel adaptation for three dimensional complex geometries is a non
trivial problem [2, 3, 4]. The algorithm implemented to enable parallel adaptivity in
the RED code is illustrated in Fig. 3. It works in the following manner:
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1. Gradient based error estimation is used to localize cell edges suitable for
adaptations.

2. Nodes are introduced to the edges marked as adaptable.
3. Since work is performed in a parallel environment Processes communicate to

ensure coherence in the overlap regions.
4. Cell topology is regenerated. The existing solution is interpolated on to the new

mesh.
5. The communication rules are reset and the overlap is reconstructed.
6. The solution process is restarted on the adapted mesh.
7. When an appropriate convergence criteria are not met, process is returned to point

one.

Fig. 3 Mesh refinement.
Edges of the first and second
cells have been marked
as adaptable. New nodes
are being created, and cell
structure is remade.

Figure 4 shows the result of applying the described adaptive algorithm to a stan-
dard NACA0012 test case. The calculations ware performed for angle of attack 1.25
at 0.8 Mach number. On the left shown is the initial mesh and the resulting density
contour. On the right hand side shown is the mesh and density contour after con-
secutive application of an adaptive algorithm. It might be observed that the regions
near the shocks are better resolved.

4 Repartitioning Phase

At some point during the run of an adaptive parallel simulation it is necessary to
perform a dynamic load balancing step. Commonly this event would be triggered
when a threshold of acceptable load unbalance is breached. This might happen after
the adaptation step is taken. Now it is necessary to calculate and apply a new better
balanced partitioning. It is accomplished using one of many available partitioning
tools. Subsequently the mesh entities are redistributed between processors according
to the obtained coloring.
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Fig. 4 NACA0012 test case. Initial mesh and resulting density field (left), case resulting from
application of an adaptive algorithm.

4.1 Mesh Partitioning Tool Graph Partitioner

To calculate mesh decomposition an outside tool is used. In this work the ParMETIS
[1] graph partitioner was used. It is based on the multilevel approach, and is capable
of computing graph partitions of good quality. Main factor in it’s selection was its
parallel efficiency and ease of use.

4.2 Mesh Partitioning

To perform dynamic load balancing procedure, the following steps have to be un-
dertaken:

1. Elements of the mesh being repartitioned have to be given unique numbering
throughout the whole partitioned domain. This makes mesh elements easily dis-
tinguishable throughout the parallel environment.

2. Grid topology has to be described as a connectivity graph. When working with
ParMETIS the so called distributed CSR format is used.
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3. With graph connectivity ready it is possible for ParMETIS to calculate new mesh
partitioning.

4. According to the calculated partitioning there are some data movement to be
performed. During this phase mesh elements are selected for communication or
deletion appropriately. This step is strongly dependent on the data structure used
by the simulation software.

Applying the new partitioning involves massive changes to the simulation data struc-
ture. Some mesh entities have to be send to other computing nodes while some must
be removed. Also the received data have to be added to the data structure accessi-
ble to a given CPU. It is a process strongly dependent on the data structure used
within the solver. Once the information is exchanged the solver is ready to restart
calculations.

Fig. 5 Partitions are being modified according to the previously calculated coloring. On the
left is the original partitioning and coloring, the middle picture shows original partitioning
with new coloring. On the right is the partitioning after elements have been sent / deleted.

This process is illustrated on Fig. 5 where a three dimensional domain is being
repartitioned. On the left shown is the initial partitioning. In the middle presented is
the new coloring calculated during the graph partitioning phase plotted onto original
partitioning. The rightmost picture shows the mesh after appropriate data migration
has been carried out.

5 Impact of DLB on Parallel Efficiency

To judge the merits of applying the DLB to an adaptive flow computation the case
shown on fig. 6 was considered. Adaptive algorithm was used in a parallel setting.
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On the right shown is the case where no balancing is applied. The value measuring
the quality (see Sec. 2 and [14]) is increasing with each adaptation step, thus indi-
cating a drop in parallel efficiency. On the left, for the same adaptive simulation load
balancing is applied. The load balance measure remains close to one, indicating that
the high efficiency is maintained.

Fig. 6 Mesh after consecutive refinement. Dynamic load balancing has been applied on the
left. The number next to the mesh denotes its load balance indicator (LBI).

Figure 7 shows convergence history as a function of computation time for both
considered cases. It might be observed that the use of dynamic balancing allowes
for convergence time to be reduced.

To investigate the cost of a single rebalancing step a three dimensional simulation
of the flow around Oner M6 wing was selected. Mesh of 5078927 nodes (32622210
cells) is used. Results ware obtained by running the RED solver on the cluster con-
taining 20 Quad-Core AMD Opteron processors (4 cores per processor) with 2 GB
of memory per core, connected by Fast Ethernet connection.

Numerical cost of rebalancing is relatively small in comparison to total simula-
tion time. Table 1 shows comparison of CPU time required to perform the simu-
lation with explicit Euler solver. Compared is the time of a single iteration, time
required to perform graph partitioning (ParMETIS run time) and a total time re-
quired to perform a full rebalancing step. It is worth noticing that total rebalancing
time decreases as the number of CPU’s grows.
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Fig. 7 Convergence as a function of computational time, with and without load balancing
used. For a case from Fig. 6

Table 1 Comparison of repartition time, graph partitioning time, average iteration time; case
of 5078927 nodes

No of cores Simulation time Total repartition time Partitioner Run time
32 311500 s 663 s 5 s
72 157500 s 165 s 2 s
80 129500 s 128 s 3 s

6 Scramjet Testcase

To test the effectiveness of the presented approach Scramjet test case was selected.
The geometry considered is shown on Fig. 8. The test was run in parallel using
meshes of different resolution (from coarsest to finest: SCRAM 1-4). The coarser
meshes ware adapted as the solution process was carried out. Residual distribution,
explicit Euler solver was used.

For the finest mesh (SCRAM4) of 1600054 isotropic elements it took 4806 sec-
onds to converge, using 80 computational cores. In this case no adaptation was
used. The results are comparable in quality to results on coarser but adapted meshes.
Figure 8 shows the Mach field resulting from calculation performed for an adap-
tive case. The original mesh of 18028 (SCRAM2) elements is adapted to capture
the shock structure. Mesh after adaptation is composed of 159309 elements. The
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Fig. 8 Mach field distribution calculated for a Scramjet geometry (SCRAM2). Mesh was
adapted from the original of 18028 elements to 159309 cells after final adaptation. Results
of comparable quality ware obtained by using much finer meshes with no adaptation, but at
higher numerical cost.

problem was run using 64 computational cores, and took 798 seconds to converge.
Dynamic load balancing was used for this calculation. This situation is shown in
Fig. 9. On the right shown is mesh configuration after consecutive adaptation steps.
On the left picture presented are consecutive meshes. The picture on the right show
partitioning resulting from use of a DLB algorithm. Data on the load balance mea-
sure with and without load balancing for the case shown on Fig. 9 are presented
in table 2. It might be observed the algorithm significantly improves the load
balancing.

Table 2 Load balance indicators (LBI) prior and after applying dynamic load balancing
(DLB) for SCRAM2 mesh on 64 CPU’s. See Fig. 9.

LBI prior to DLB LBI after DLB
Initial mesh 1.11 1.11
1’st adapt 1.94 1.10
2’nd adapt 1.90 1.11
3’rd adapt 1.74 1.10
4’th adapt 1.51 1.07
5’th adapt 1.33 1.08

Table 3 presents data on mesh sizes at specific moments of the simulation and
the total time required to converge for all considered cases. Difference in mesh sizes
is caused by doubled cells in the overlap regions.
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Fig. 9 Mesh adaptation and resulting partitioning for a case simulated on 64 CPU’s. The
initial mesh is SCRAM2.
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Table 3 Initial mesh size, after completing first adaptation and after final adaptation com-
pared with overall convergence time for a given case

Test: No. cores Init. mesh size 1’st adap. final mesh size Total sim. time

SCRAM1
16
32

2878
3094

4681
4937

22388
22612

721 s
536 s

SCRAM2
16
32
64

16572
17159
18028

25945
26623
26745

157680
158904
159309

2920 s
1215 s
798 s

SCRAM3
16
32
64

64709
65816
67503

93221
94611
95014

554023
557671
563500

4579 s
2765 s
1931 s

SCRAM4 80 1600054 – 1600054 4806 s

7 Conclusions

Parallelization and adaptation are both techniques allowing for solving complex
problem with time effectiveness. To use both it is necessary to ensure proper load
balancing. It was shown that dynamic load balancing algorithm allowes to couple
adaptivity with parallel processing. The rebalancing overhead is small in compari-
son to the overall simulation time (especially for larger problems).
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Chapter 24
Error Estimation and Adaptive Mesh
Refinement for Aerodynamic Flows

Ralf Hartmann, Joachim Held, Tobias Leicht, and Florian Prill

Abstract. We consider the adjoint-based error estimation and goal-oriented
mesh refinement for single and multiple aerodynamic force coefficients as well
as residual-based mesh refinement applied to various three-dimensional lam-
inar and turbulent aerodynamic test cases defined in the ADIGMA project.

1 Introduction

Important quantities in aerodynamic flow simulations are the aerodynamic
force coefficients like the drag, lift and moment coefficients. In addition to
the exact approximation of these quantities it is of increasing importance, in
particular in the field of uncertainty quantification, to estimate the error in
the computed quantities. By employing a duality argument error estimates
can be derived for estimating the error measured in terms of the aerodynamic
force coefficients. The error estimate includes primal residuals multiplied by
the solution to an adjoint problem related to the force coefficient. The error
estimate can be decomposed into a sum of local adjoint-based indicators
which can be employed to drive a goal-oriented adaptive mesh refinement
algorithm specifically tailored to the accurate and efficient approximation of
the aerodynamic force coefficient.

Provided the adjoint solution related to an arbitrary target functional is
sufficiently smooth the corresponding error representation can be bounded
from above by an error estimate which includes primal residuals but is
independent of the adjoint solution. By localizing this error estimate so-
called residual-based indicators are obtained. Mesh refinement based on these
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indicators leads to meshes which resolve all flow features irrespective of any
specific target quantity.

Before the start of the ADIGMA project the techniques of error estima-
tion, adjoint-based mesh refinement and residual-based mesh refinement were
available for 2d laminar compressible flows around simple airfoil geometries,
see e.g. [5, 11]. Within the ADIGMA project these techniques have been ex-
tended to 3d laminar compressible flows, see [13], as well as to 2d turbulent
and 3d turbulent compressible flows. Furthermore, the error estimation and
adjoint-based mesh refinement for single target quantities has been extended
to the treatment of multiple target quantities, see [6]. The algorithms are
applied to a range of test cases defined in the ADIGMA project.

2 Error Estimation and Adaptive Mesh Refinement

We consider the discontinuous Galerkin (DG) finite element discretization of
the compressible flow equations, see e.g. [12, 13]: Find uh ∈ Vh,p such that

N (uh,vh) = 0 ∀vh ∈ Vh,p, (1)

where the discrete function space Vh,p consists of discontinuous piecewise
polynomial functions of degree p ≥ 0. Given a target quantity J(u) like for
example the aerodynamic drag, lift or moment coefficient, a duality argument
can be employed, see e.g. [3, 9], to obtain following error representation

J(u) − J(uh) = −N (uh, z − zh) ≡ R(uh, z − zh) ≈ R(uh, z̃h − zh) (2)

for any discrete function zh ∈ Vh,p, where the exact adjoint solution z is
replaced by the solution z̃h to following discrete adjoint problem: Find z̃h ∈
Ṽh,p such that

N ′[uh](wh, z̃h) = J ′[uh](wh) ∀wh ∈ Ṽh,p. (3)

A possible choice of the adjoint discrete function space is Ṽh,p = Vh,p+1.
The approximate error representation in (2) can be localized

J(u) − J(uh) ≈ R(uh, z̃h − zh) ≡
∑

κ∈Th

η̃κ, (4)

where η̃κ are the so-called adjoint-based indicators which include the local
residuals multiplied by the discrete adjoint solution. These indicators can be
used to drive an adaptive mesh refinement algorithm tailored to the accurate
and efficient approximation of the target quantity J(u) under consideration.

The extension of the adjoint-based error estimation and mesh refinement
approach to multiple target quantities has previously been considered for the
inviscid Burgers’ equation in [10] and has been extended within the ADIGMA
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project to viscous compressible flows in [6]. Estimating the error in multiple
quantities of interest, Ji(u), i = 1, . . . , N , would require the computation of
the solutions z̃h,i ∈ Ṽh,p to N discrete adjoint problems:

N ′[uh](wh, z̃h,i) = J ′
i [uh](wh) ∀wh ∈ Ṽh,p, i = 1, . . . , N, (5)

and the evaluatation of the error representation for each of the quantities,

J(u) − J(uh) ≈ R(uh, z̃h,i − zh,i), i = 1, . . . , N. (6)

Instead, we compute the solution to following discrete error equation,

N ′[uh](ẽh,wh) = R(uh,wh) ∀wh ∈ Ṽh,p, (7)

and evaluate following approximation of Ji(u) − Ji(uh),

Ji(u) − Ji(uh) ≈ J ′
i [uh](e) ≈ J ′

i [uh](ẽh), i = 1, . . . , N, (8)

where e = u − uh. Furthermore, defining a suitable combination Jc(u) of
the original target quantities, see [6], we compute the solution to following
discrete adjoint problem

N ′[uh](wh, z̃c,h) = J ′
c[uh](wh) ∀wh ∈ Ṽh,p, (9)

and evaluate the error estimate

Jc(u) − Jc(uh) = R(uh, zc − zh) ≈ R(uh, z̃c,h − zh) ≡
∑

κ∈Th

η̃c
κ. (10)

The combined target quantity Jc(u) can be defined, see [6], such that the error
with respect to Jc(·) represents the sum of relative errors in the original target
quantities,

∑N
i=1 |Ji(u) − Ji(uh)|/|Ji(uh)|, or a weighted sum of absolute

errors,
∑N

i=1 αi|Ji(u) − Ji(uh)| with weighting factors αi > 0. The adjoint-
based indicators, η̃c

κ, obtained by localizing the estimate (10) can be used to
drive an adaptive algorithm for the accurate and efficient approximation of
all the target quantities, Ji(u), i = 1, . . . , N , under consideration.

Finally, we note that for a target quantity J(u) with a sufficiently smooth
adjoint solution the error representation (2) can be bounded from above as
follows

|J(u) − J(uh)| ≤
(∑

κ∈Th

(ηres
κ )2

)1/2

, (11)

see [6, 8, 11, 13], where the so-called residual-based indicators ηres
κ include the

primal residuals but are independent of the adjoint solution. Not depending
on a particular target quantity the mesh refinement using residual-based
indicators targets at resolving all flow features.
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3 Numerical Results

In this section we demonstrate the performance of the adjoint-based error
estimation, the goal-oriented and the residual-based mesh refinement for a
range of aerodynamic test cases defined in the ADIGMA project. The compu-
tations have been performed with the DLR PADGE code [7] which is based
on a modified version of the deal.II library [1].

3.1 ADIGMA BTC3: Laminar Flow around Delta
Wing

First we consider a laminar flow around a delta wing. The delta wing has a
sharp leading edge and a blunt trailing edge. A similar case has previously
been considered in [15]. The geometry of the delta wing can be seen from the
initial surface mesh in Figure 1(a). The delta wing is considered at laminar

(a) (b)

Fig. 1 Laminar delta wing: a) initial surface mesh: Top, bottom and side view of
the half delta wing with straight leading edges, b) solution plot showing streamlines
and a Mach number isosurface over the left half of the wing as well as Mach number
slices over the right half, [13].

conditions with inflow Mach number equal to 0.3, at an angle of attack α =
12.5◦, and Reynolds number Re = 4000 with isothermal no-slip wall boundary
condition imposed on the wing geometry. As the flow passes the leading edge
it rolls up, creates a vortex and a secondary vortex. The resulting vortex
system remains over long distances behind the wing, see Figure 1(b). In the
following the total drag, lift, and moment coefficients, Cd, Cl and Cm, will
be computed up to a predefined error tolerance TOL. The following industrial
accuracy requirements have been defined:

|JCl(u) − JCl(uh)| ≤ TOLCl = 10−2,
|JCd(u) − JCd(uh)| ≤ TOLCd = 10−3,
|JCm(u) − JCm(uh)| ≤ TOLCm = 10−3.

(12)
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By performing high order computations on fine meshes the following reference
values of the force coefficients have been obtained: JCl(u) = Cref

l = 0.34865,
JCd(u) = Cref

d = 0.16608, and JCm(u) = Cref
m = −0.03065.

In the following we compare the performance of various refinement strate-
gies in meeting these accuracy requirements. In particular, we consider the
single-target error estimation and mesh refinement approach for each of the
Cl, Cd, and Cm coefficients, separately. This results in three different se-
quences of locally refined meshes where on each mesh a flow problem (1) and
a discrete adjoint problem (3) are solved and the error estimate (4) is eval-
uated. This is compared to residual-based and to global mesh refinement.
Furthermore, we consider a multi-target error estimation and mesh refine-
ment approach for reducing the sum of relative errors of the Cl, Cd and Cm
coefficients. This results in one sequence of locally refined meshes which is
targeted at reducing the error in all three coefficients, simultaneously. Here,
on each mesh a flow problem (1), a discrete error equation (7), and a dis-
crete adjoint problem (9) are solved and the error estimates (8) and (10) are
evaluated.

In Figure 2(a)-(c) we see that for Cl and Cd the residual-based refine-
ment is more efficient than global mesh refinement which, however, is not
the case for Cm. Whereas the residual-based indicators target at resolving
all flow features, see the resolution of the vortex system in Fig. 3, they do
not necessarily result in meshes suitable for accurately approximating force
coefficients. In contrast to that we see that the adjoint-based refinement is
significantly more accurate than both, residual-based and global mesh re-
finement. Furthermore, we see that the accuracy of the single-target and the
multi-target adjoint-based mesh refinement is comparable. Finally, we see
that the enhanced force coefficients, C̃d/l/m = Cd/l/m +

∑
κ∈Th

η̃κ, in case of
the single-target algorithm and C̃d/l/m = Cd/l/m + J ′

i [uh](ẽh) in case of the
multi-target algorithm, are significantly more accurate than the original C�

values on the adjoint-based refined meshes. This demonstrates that the error
estimation for single as well as for multiple target quantities is accurate and
reliable.

Figure 2(d) shows the error in the drag coefficient vs. the computing
time relative to the extrapolated time required for global mesh refinement
to meet the tolerances (12). For meeting the tolerances (12) the residual-
based mesh refinement requires about 10% of the time required for global
mesh refinement. The adjoint-based mesh refinement requires about 2% and
the adjoint-based mesh refinement including error estimation requires in the
range of 0.1%. These time measurements include the time for solving the
flow problem and possibly the adjoint problem and the discrete error ac-
cumulated for the solutions on coarser meshes. The time comparison clearly
demonstrates the advantage of using error estimation and adjoint-based mesh
refinement.
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Fig. 2 Error in the (a) lift, (b) drag, and (c) moment coefficient for global,
residual-based, adjoint-based(single-target) and adjoint-based(multi-target) mesh
refinement vs. number of degrees of freedom. On the adjoint-based refined meshes
also the enhanced coefficients C̃l/d/m = Cl/d/m + est. are given. (d) Error in the
drag vs. computing time relative to the extrapolated time required for global mesh
refinement to meet the tolerances (12).

(a) (b)

Fig. 3 (a) Mach number isolines of flow solution on (b) the last but one residual-
based refined mesh
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3.2 ADIGMA BTC1: L1T2 High-Lift Configuration

In this section we consider a turbulent flow around the L1T2 three-element
airfoil, see Fig. 5(a), at a Mach number M = 0.197, a Reynolds number
Re = 3.52 · 106 and an angle of attack α = 20.18◦. This case has been
documented extensively in the literature, see e. g. [4, 14]. In particular, there
is data of two wind tunnel experiments (experiment 1 & 2) available, see [16].

A DG discretization of the RANS-kω equations is used which represents a
slight modification of the BR2 scheme proposed in [2]. Menter’s wall boundary
condition is used, where the first wall boundary layer grid spacing y1 is chosen
such that y+

1 is in the range of one.
First, we compare numerical results generated by the PADGE code with

results generated by the well validated finite volume code TAU [17] as well
as with experimental data. The PADGE computations were performed with
polynomial degrees p = 3 and p = 4, each on the same quadrilateral mesh
with 4 740 curved elements, see Figure 4. This mesh emerged from an original
75 840 element mesh by two agglomeration steps. The curved mesh represen-
tation in this case is realized by piecewise polynomials of degree 4 based on
additional points which have been extracted from the original mesh.

Fig. 4 L1T2 high lift configuration: Coarse grid of 4 740 curved elements

Figure 5(b) shows the pressure distribution over each of the airfoil ele-
ments, i.e., slat, main element and flap. Here, we see that the output by
the PADGE code is in good agreement with the experimental data and with
only minor differences compared to the TAU reference results. Furthermore,
Figure 6 shows the comparison for the skin friction distribution. Whereas
there are still considerable differences between the computed skin friction
distribution for p = 3, the result for p = 4 is overall in good agreement with
the TAU reference computation. We note that with a polynomial degree
p = 4 on cells near the wall boundary and p = 3 everywhere else the cp and
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Fig. 5 a) Geometry of the L1T2 three-element airfoil. b) Pressure distributions for
each L1T2 airfoil element computed by PADGE (solid line) compared to reference
results by TAU (dotted) and data of experiment 1 (open symbols) and experiment
2 (filled), [7].
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Fig. 6 L1T2 three-element airfoil. Comparison of computed skin friction distribu-
tions with details of the slat region, [7].

cf distributions were almost identical to that with the globally high p = 4
polynomials. The p = 4 solution has almost as many degrees of freedom as the
computation with the TAU code on the original mesh with 75 840 elements
and required about the same computing time as the TAU code.

In the following, we investigate the performance of the adjoint-based error
estimation and mesh refinement for this test case. Starting with a p = 1 so-
lution on the coarse mesh of 4 740 curved elements, we consider the adjoint-
based refinement targeted at efficiently approximating the drag coefficient
Cd. In Figure 7(a) we compare the convergence of Cd for the global and the
adjoint-based mesh refinement. We see that with the adjoint-based refine-
ment the Cd value converges significantly faster to the Cd reference value
than with global mesh refinement. Furthermore, we see that using the error
estimation on the adjoint-based refined meshes for computing enhanced drag
coefficients C̃d further improves the Cd value which demonstrates that the
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Fig. 7 L1T2 high lift configuration: (a) drag, Cd, coefficient values on globally and
adjoint-based refined meshes; on the latter also the enhanced C̃d values are given;
(b) Zoom of the adjoint-based refined mesh.

error estimation is accurate and reliable. Figure 7(b) shows a zoom of the
final adjoint-based refined mesh. We see that the mesh has been refined in
the neighborhood of the line which separates the recirculation zone behind
the slat from the flow which passes between the slat and the main element.
There is some refinement in the wake of the slat. Furthermore, the mesh has
been refined in the neighborhood of the stagnation streamline of the main
element. We note that, similarly, the stagnation streamlines of the slat and
flap are refined. Here, the adjoint solution indicates that the exact position
of the stagnation points, as well as the flow upstream of them is particularly
important for an accurate prediction of the drag coefficient.

3.3 ADIGMA BTC0: Turbulent Flow around a
Streamlined Body

We consider a turbulent flow around a streamlined body at a Mach number
M = 0.5, an angle of attack α = 5◦, and a Reynolds number Re = 10 · 106

with adiabatic noslip wall boundary conditions. Reference values JCl(u) =
0.006612 and JCd(u) = 0.0085646 have been obtained based on higher order
computations on very fine grids. The starting mesh of this computation, see
Figure 9(a), has 6 656 curved elements. The edges are given by polynomials
of degree 4 created by taking additional points from the nested finer grids.

In Figure 8(a) we compare the convergence of Cl for global, residual-based
and adjoint-based mesh refinement. We see that within the first refinement
step the Cl value for the adjoint-based refinement converges as fast as for
the residual-based refinement but both significantly faster than global mesh
refinement. However, from the second refinement step onwards the Cl values
for the adjoint-based mesh refinement are significantly more accurate than
for both residual-based and global mesh refinement. Furthermore, we see that
the error estimation on the adjoint-based refined meshes further improves
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the Cl value. In fact, computing the flow solution and its adjoint on the
coarsest mesh results in an enhanced C̃l value which almost coincides with
the reference value. Figure 8(b) shows the corresponding error plot. Here
we see that the enhanced Cl value already on the coarsest mesh is more
accurate than the prescribed ADIGMA tolerance TOLCl = 0.001 and is even
more accurate than the Cl value on the finest adjoint-based, residual-based
and globally refined meshes. Also, we see that for a stricter convergence
criterion, there is an increasing gain from using adjoint-based refinement in
comparison to residual-based and global mesh refinement. Figures 8(a)&(b)
show the corresponding plots for the Cd value. Here, we see that the enhanced
Cd value meets the ADIGMA tolerance, TOLCd = 0.0003, already on the first
adjoint-based refined mesh. Finally, Figure 9(b) shows the final residual-based
refined mesh and Figures 9(c) & (d) show the final adjoint-based refined
meshes targeted at the accurate and efficient approximation of the Cl and
Cd values, respectively. Here, we see that the adjoint-based refinement is
mainly concentrated near the body; indeed, the wake is almost unresolved.
This corresponds to the fact, that the flow solution in and near the boundary
layer is significantly more important for obtaining accurate aerodynamic force
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Fig. 8 ADGIMA BTC0 test case at turbulent conditions: (a) lift coefficients Cl

on globally and residual-based refined meshes; Cl and the enhanced values, C̃l, on
adjoint-based refined meshes vs. number of degrees of freedom; (b) the respective
error plot. (c)&(d) the respective plots for the drag coefficient Cd.
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(a) (b)

(c) (d)

Fig. 9 ADGIMA BTC0 test case at turbulent conditions: (a) The coarse mesh
with 6 656 curved elements. The edges are given by polynomials of degree 4. (b)
Mesh after 4 residual-based refinement steps. (c)&(d) Meshes after 3 adjoint-based
refinement steps targeted at Cl and Cd, respectively.

coefficients than the flow solution in the wake. In contrast to that the residual-
based indicator which is targeted at resolving all flow features also refines
elements in the vicinity of the wake.

3.4 Subsonic Turbulent Flow around the DLR-F6
Wing-Body Configuration

In this final example we consider a turbulent flow at Mach number M = 0.5,
a Reynolds number Re = 5 · 106 at an angle of attack α = −0.141 around
the DLR-F6 wing-body configuration without fairing. This is a modification
of the drag prediction workshop (DPW) III test case. In fact, a fixed angle
of attack has been assumed instead of a given target lift. Also, the Mach
number has been reduced from originally M = 0.75 to M = 0.5 in order
to ensure that the flow is subsonic. The original DPW mesh of 3.24 mio.
hexahedral elements has been agglomerated twice resulting in a coarse mesh
of 50 618 hexahedral elements. The additional points of the original mesh
have been used to define 50 618 curved elements where the curved lines are
represented by quartic polynomials. After some regularization this fifth order
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Fig. 10 DLR-F6 wing-body configuration: cp distribution and wall stream lines of
a 4th order solution on the coarse mesh of 50 618 curved elements

Fig. 11 DLR-F6 wing-body configuration: cp distribution on mesh of 582 350
curved elements after 4 residual-based mesh refinement steps

mesh has been used in a residual-based and an adjoint-based mesh refinement
algorithm.

In Table 1 we collect the Cl and Cd values obtained by PADGE for the
p = 2, 3 solutions on the coarsest and for the p = 2 solutions on a once globally
refined mesh in comparison with the values obtained by TAU on the original
mesh. Figure 11 shows the surface mesh near the wing-body junction and the
cp distribution and wall stream lines of a 4th order solution, i.e. for p = 3,
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Table 1 Subsonic turbulent flow around the DLR-F6 wing-body configuration:
Comparison of force coefficients by the PADGE code [7] for p = 2, 3 and the TAU
code [17]

coarse mesh once globally original mesh
p = 2 p = 3 refined, p = 2 TAU

Cl 0.424 0.413 0.416 0.423
Cd 0.0270 0.0251 0.0249 0.0237
Cm -0.122 -0.121 -0.123 -0.125

Fig. 12 DLR-F6 wing-body configuration: Density adjoint distribution, i.e., the
first comp. of discrete adjoint solution z̃h on a mesh of 202 314 curved elements
after two adjoint-based mesh refinement steps targeted at Cl.

on the coarse mesh. We clearly recognize a separation of the flow. Figure 11
shows the cp distribution on a mesh of 582 350 curved elements after four
anisotropic residual-based mesh refinement steps. Finally, Figure 12 shows
an example of an adjoint-based refined mesh; here for the target quantity Cl,
together with the adjoint solution connected to the Cl value.

4 Summary

Within the EU-project ADIGMA the techniques of error estimation, residual-
based and adjoint-based mesh refinement have been extended from 2d laminar
flows to 3d laminar and turbulent flows. They have been implemented in the
PADGE code [7] and successfully applied to various aerodynamic test cases
including a vortex dominated laminar flow around a delta wing, a turbulent
flow around the L1T2 three-element high lift configuration and a turbulent
flow around the DLR-F6 wing-body configuration. Furthermore, the error
estimation and adjoint-based mesh refinement have been extended from single
target quantities to the treatment of multiple target quantities.

The residual-based indicators which are targeted at resolving all flow fea-
tures have been shown to well resolve vortical systems over long distances.
Furthermore, it has been shown that using error estimation and adjoint-based
mesh refinement the aerodynamic force coefficients can be approximated sig-
nificantly more accurate and more efficient than with residual-based and
global mesh refinement.
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Current and future research is dedicated to extending the adaptation al-
gorithms from isotropic to anisotropic mesh refinement [13] as well as to
hp-refinement. The flow solver PADGE will be extended from purely hexahe-
dral to hybrid meshes. Furthermore, a p-multilevel algorithm for 3d turbulent
flows will be developed in order to replace the current implicit solver which
relies on the storage of the full Jacobian matrix.
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Chapter 25
Adjoint–Based Correction of Aerodynamic
Coefficients on Structured Multiblock Grids

L. Tourrette, M. Meaux, and A. Barthet

Abstract. The work performed at AIRBUS Operations S.A.S on adjoint–based
error estimation of functional outputs is presented. The ultimate goal of this tech-
nique aims at identifying areas where local mesh refinement and/or nodes displace-
ment may be applied to get closer to grid convergence. The method also provides
a correction term allowing to estimate the value of a given functional output if the
grid were globally refined. The theoretical background is recalled and the two in-
terpolation techniques implemented by way of prolongation operator are detailed.
Also, improvements to the numerical method for the adjoint state are described. The
adjoint–based correction is assessed for the lift and drag coefficients on two indus-
trially relevant test cases, the DLR–F6 Wing–Body and Wing–Body–Pylon–Nacelle
configurations.

1 Introduction

The work described herein falls within the framework of goal–oriented adaptation
and is based on preliminary results compiled in the PhD thesis of A. Barthet ([1]).
The ultimate goal of the implemented methodology aims at identifying areas where
local mesh refinement and/or nodes displacement may be applied to get closer to
grid convergence. As a by–product, the method also provides a correction term al-
lowing to estimate the value of a given functional output if the grid were globally
refined. The ability to compute the adjoint state relative to the chosen functional
output is an essential pre–requisite of this approach.
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The basic principles of the method are presented in section 2.
For the coarse grid to fine grid prolongation operator, interpolation methods

showed a much greater potential than local reconstruction techniques, especially
with respect to high order accuracy. Two interpolation techniques, namely trilinear
interpolation and tricubic interpolation, have been implemented. They are detailed
in section 3.

Modifications of the numerical method devoted to the resolution of the adjoint
state are described in section 4. They include a new artificial dissipation model for
accuracy and an elliptic smoother to enhance the robustness of the iterative algo-
rithm.

Section 5 is dedicated to the assessment of the adjoint–based correction for the lift
and drag coefficients on the DLR–F6 Wing–Body and Wing–Body–Pylon–Nacelle
configurations which are representative of the cases that are daily run at AIRBUS
by design engineers.

Finally, conclusive remarks are drawn with an outlook on future work in
section 6.

All flow solutions have been computed with the structured multi–block suite
built around the elsA flow solver developed at ONERA and the adjoint solutions
have been produced using the Optalia optimization suite based upon the same elsA
version.

2 Fundamentals of the Approach

The theoretical approach is described in details in [1]. The fundamentals of the
method are recalled below.

Let wH be the solution of the RANS equations on grid GH :

RH(wH) = 0 (1)

and let wh be the solution of the RANS equations on grid Gh (h = H/2):

Rh(wh) = 0 (2)

For a given functional output F (e.g. lift or drag coefficient), we wish to compute a
correction term CH that would bring FH closer to Fh:

Fh ≈ FH +CH (3)

Let uh be a perturbation of wh. A Taylor expansion gives:

Fh(wh) ≈ Fh(uh)+
∂Fh

∂wh
(uh)(wh −uh) (4)
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Similarly, a Taylor expansion of the residual gives:

Rh(wh) ≈ Rh(uh)+
∂Rh

∂wh
(uh)(wh −uh) = 0 (5)

The error wh −uh is then given by:

wh −uh = −
[
∂Rh

∂wh
(uh)
]−1

Rh(uh) (6)

that can be substituted into the Taylor expansion of the functional output F . Intro-
ducing the adjoint state λh (based on uh), defined by:[

∂Rh

∂wh
(uh)
]T

λh = −
[
∂Fh

∂wh
(uh)
]T

(7)

the Taylor expansion of the functional output F finally reads:

Fh(wh) ≈ Fh(uh)+λ T
h Rh(uh) (8)

In the above correction term, the adjoint state should be computed on the fine grid.
This is not viable from an industrial point of view and it is replaced by a prolongation
of λH onto Gh:

λh ≈ Lh
HλH (9)

In a similar way, uh is chosen as a prolongation of wH onto Gh:

uh ≈ Lh
HwH (10)

3 Interpolation

The prolongation operator has to be selected with great care, in particular regarding
the adjoint state, since the decision that consists in replacing the adjoint state on the
fine grid by a prolongation of the adjoint state computed on the coarse grid may be
risky.

In a first phase, the study was focused on local reconstruction techniques but ex-
tension to higher order appeared quite problematic. Considering the good results
obtained with the trilinear interpolation used at that time in comparison to the linear
local reconstruction technique, it has been decided to put the emphasis on interpo-
lation methods instead.

In the present approach, the fine grid is defined through a global refinement of the
coarse grid, in which each segment is divided into two equal–sized sub–segments.
As a consequence, each coarse cell centre (resp. boundary face centre) coincides
with a fine grid node. The interpolation methods rely on this assumption, which
considerably simplifies the implementation.
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For the two interpolation methods described below, the first step consists in trans-
ferring the values at coarse cell and boundary face centres onto the corresponding
fine grid nodes. Then the interpolation proceeds in three steps: (1) direction I, (2)
direction J and (3) direction K. As an essential pre–requisite to this three steps inter-
polation, for each fine grid block, values have to be prescribed for (a) every second
node on each of the twelve edges and (b) the eight corners. This is done through
an averaging based on the inverse distance to the closest nodes (2 neighbours for an
edge node, 3 neighbours for a corner node).

Finally, on the fine grid, the values at cell (resp. boundary face) centres are ob-
tained by an arithmetic averaging of the height (resp. four) nodal values.

3.1 Parameterization

Each interpolation method is based on a parameterization of the fine grid. Each node
(I,J,K) in a given block is identified with three parameters uI,J,K , vI,J,K and wI,J,K .
The parameter uI,J,K is defined in the following way:

uI,J,K =
{

0 for I = 1
∑I

i=2 d(Pi−1,J,K ,Pi,J,K) for I ≥ 2
(11)

In equation 11, d(Pi−1,J,K ,Pi,J,K) denotes the Euclidian distance between grid nodes
(i−1,J,K) and (i,J,K). Similar definitions hold for the two other parameters vI,J,K

and wI,J,K .

3.2 Trilinear Interpolation

On a given mesh line, let Pn and Pn+2 be two nodes where the values φn and φn+2

are known and let Pn+1 be a node in–between where the value φn+1 has to be inter-
polated. With tn, tn+1 and tn+2 the corresponding values of the parameter (t = u, v or
w depending on the nature of the mesh line), the interpolated value φn+1 is defined
through

φn+1 = (1−α)φn +αφn+2,α =
tn+1 − tn
tn+2 − tn

(12)

The great advantage of linear interpolation is that it inherently preserves positivity,
which is of utmost importance for the turbulence variables.

3.3 Tricubic Interpolation

The tricubic interpolation is based on the use of cubic spline curves, which are
particularly well presented in reference [2].

Suppose that we are given N + 1 points P0, . . . ,PN and associated parameter val-
ues ti ∈ [a,b] satisfying

a = t0 < t1 < · · · < tN−1 < tN = b (13)
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We denote the length of the subinterval [ti, ti+1] by Δ ti = ti+1 − ti. For each neigh-
bouring pair of points (Pi,Pi+1), we wish to construct an interpolating cubic curve
segment

Xi(t) = Ai(t − ti)3 + Bi(t − ti)2 +Ci(t − ti), t ∈ [ti,ti+1], i = 0, . . . ,N −1 (14)

The collection of all curve segments will make up the cubic interpolating spline
curve s. We require that s be twice continuously differentiable at each of the break
points P1, . . . ,PN−1: ⎧⎨⎩Xi(ti+1) = Xi+1(ti+1)

X ′
i (ti+1) = X ′

i+1(ti+1)
X ′′

i (ti+1) = X ′′
i+1(ti+1)

(15)

Fig. 1 The spline segment Xi

This leads to the so–called Hermite or Ferguson formula for a cubic spline curve:

Xi(t) = φi(2u3 −3u2 +1)+φi+1(−2u3 +3u2)+Δ ti
[
φ ′

i (u
3 −2u2 +u)+φ ′

i+1(u3 −u2)
]
(16)

with u = (t − ti)/(Δ ti) and where φi and φ ′
i (resp. φi+1 and φ ′

i+1) are the value and
slope at point Pi (resp. Pi+1) of the field being interpolated.

In general, the derivatives φ ′
i are unknown. They can be estimated (i.e. explicitly

prescribed) or alternatively, they can be determined from the requirement that s be
C2 continuous, which leads to the resolution of a tridiagonal linear system of N-1
equations in the N+1 unknowns φ ′

0, . . . ,φ
′
N . For i = 1, . . . ,N − 1, the ith line of this

system reads:

Δ tiφ ′
i−1 + 2(Δ ti−1 +Δ ti)φ ′

i +Δ ti−1φ ′
i+1 = 3

Δ ti−1

Δ ti
(φi+1 −φi)+ 3

Δ ti
Δ ti−1

(φi −φi−1)

(17)
There are several ways of choosing the two free boundary conditions to close the
system (see [2]). For the test cases presented in section 5, the so–called natural
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spline boundary condition has been adopted. It requires that the second derivatives
vanish at the boundary points φ0 and φN and leads to the following equations:{

Δ t0(2φ ′
0 +φ ′

1) = −3φ0 + 3φ1

Δ tN−1(φ ′
N−1 + 2φ ′

N) = −3φN−1 + 3φN
(18)

4 Numerical Method for the Adjoint State

On the Wing–Body (WB) and Wing–Body–Pylon–Nacelle (WBPN) configurations,
it has been observed during the first investigations that the lift correction was quite
sensitive to the level of artificial dissipation in the numerical scheme for the ad-
joint state. With the prospect to reduce the amount of artificial dissipation, several
numerical damping formulations already implemented in the elsA solver and using
a sensor–based blending of first and third differences have been investigated, but
all attempts were fruitless. A new artificial dissipation model based on Jameson’s
SLIP scheme (see [3], [4]) has been successfully implemented and is described in
subsection 4.1.

In addition, the robustness of the iterative method for the resolution of the adjoint
state, presented in [5], has been enhanced by introducing an elliptic smoothing, with
constant coefficient, detailed in subsection 4.2.

4.1 Artificial Dissipation Model

The artificial dissipation model originally used involved second differences scaled
by k(2)ρ , where ρ denotes the spectral radius of the Jacobian matrix of the Euler
equations,

ρ = |V ·S|+ cS (19)

and k(2) is a user defined coefficient usually set to 0.05. On the WB case, we tried
to reduce the value of k(2) but the adjoint calculation could not converge anymore
for values below 0.04. Moreover, with 0.04, the correction for the lift became worse
than with 0.05, whereas with values higher than 0.05, it improved. Three other arti-
ficial dissipation models were available within the elsA solver, derived from Jame-
son’s standard scalar centred scheme, characterized by different ways of blending
the first and third differences in the numerical flux for the artificial dissipation. None
of these approaches was able to converge on the wing body case and we decided to
introduce a new model.

Derived from Jameson’s work developed in references [3] and [4], the implemen-
tation of this new artificial dissipation model is based on a new implementation of
limiters inspired from upwind schemes. In order to define the artificial dissipation
flux at interface i+ 1/2 between cells i and i+ 1, let us introduce the left and right
adjacent states λL and λR. The artificial dissipation flux is then defined by

di+1/2 = αρi+1/2(λR −λL) (20)
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Let σi and σi+1 be the slopes at the centres of cells i and i + 1 respectively. In the
absence of limitation, the left and right states are defined in the following way:

λL = λi +
1
2
σi, λR = λi+1 − 1

2
σi+1 (21)

and the numerical flux in equation 20 becomes:

di+1/2 = αρi+1/2
[
Δλi+1/2 −A(σi,σi+1)

]
(22)

with

A(σi,σi+1) =
1
2
(σi +σi+1), Δλi+1/2 = λi+1 −λi (23)

The final form of the artificial dissipation flux is obtained by substituting a limited
average L to the arithmetic mean A:

di+1/2 = αρi+1/2
[
Δλi+1/2 −L(σi,σi+1)

]
(24)

Jameson suggests several limiters in [3]. In our case, we have selected Van Albada’s
limiter, since the equations for the adjoint state have been obtained by differentiating
Roe’s second order upwind scheme with Van Albada’s limiter. The definition of this
limiter is recalled below:

L(a,b) =

{
0 if ab ≤ 0
ab(a+b)
a2+b2 otherwise

(25)

The slopes σi and σi+1 can be defined in two ways, giving rise to two variants of the
artificial dissipation model. The first choice corresponds to Jameson’s SLIP scheme
(Symmetric LImited Positive):

σi = σi+1 = L(Δλi−1/2,Δλi+3/2) (26)

i.e. a unique slope is used in both adjacent cells, which is a limited average of the
slopes across the two faces adjacent to face i+ 1/2. The second choice is coherent
with the implementation in elsA of the MUSCL extrapolation for Roe’s second order
upwind scheme:

σi = L(Δλi−1/2,Δλi+1/2), σi+1 = L(Δλi+1/2,Δλi+3/2) (27)

i.e. the slope at the centre of the cell is a limited average of the slopes across its left
and right faces.

It can be easily verified that the second variant is twice less dissipative than the
first one. Regarding the value of α , Jameson demonstrates in [3] that the scheme
will be LED (Local Extremum Diminishing) as soon as α ≥ 1/2.
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4.2 Implicit Smoothing

Let us consider the three-dimensional parabolic equation

∂R
∂ t

= νΔR = ν
(
∂ 2R
∂x2 +

∂ 2R
∂y2 +

∂ 2R
∂ z2

)
(28)

An implicit discretization on a Cartesian grid (orthogonal grid with Δx = Δy = Δz)
gives:

Rn+1
i, j,k = Rn

i, j,k +VNN
(
δ (2)

I + δ (2)
J + δ (2)

K

)
Rn+1

i, j,k (29)

where δ (2)
I , δ (2)

J and δ (2)
K are the second difference operators along I, J and K direc-

tions respectively. VNN is the Von Neumann number:

VNN = ν
Δ t
Δx2 = ν

Δ t
Δy2 = ν

Δ t
Δz2 (30)

The linear system defined by equation 29 is solved using the symmetric Gauss–
Seidel iterative method. Homogeneous Neumann boundary conditions are applied
at block boundaries.

As explained in [5], the adjoint state λ is solution of a linear system Aλ = b. An
iterative process solves this linear system:

A′Δλ n = b−Aλ n (31)

where A′ is a diagonal dominant approximation of A. The smoothing operator de-
fined by equation 29 can be applied to b−Aλ n (pre-smoothing) and/or Δλ n (post-
smoothing). Experience has shown that pre– and post–smoothing were equivalently
efficient and that it was not worthwhile to combine pre– and post–smoothing.

Initially, implicit smoothing aimed at replacing the introduction of numerical
damping terms. Unfortunately, on complex cases, it was not possible to get rid of
artificial dissipation. However, since convergence was noticeably improved, it has
been decided to make a systematic use of implicit smoothing to enhance robustness
by damping possible high frequency modes in the error.

5 Assessment on Complex Test Cases

The methodology described in section 2 has been assessed on a series of test cases
with increasing complexity to compute the adjoint–based corrections of the lift and
drag coefficients. This section presents the results obtained for the two most com-
plex cases, namely the DLR–F6 Wing–Body and Wing–Body–Pylon–Nacelle con-
figurations of the DPW2.

The numerical method is Roe’s second order upwind scheme with Van Albada’s
limiter, since it is the numerical scheme underlying the discrete adjoint approach
implemented in elsA and Menter’s k−ω BSL turbulence model has been employed.
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The ”coarse” grid is the existing grid, the ”fine” grid is generated by global re-
finement of the coarse grid and a converged flow solution is obtained on both grids.
Then, the adjoint states for CL and CD are computed on the coarse grid. For a given
aerodynamic coefficient, the coarse flow solution and adjoint state are interpolated
on the fine grid and the flux differences based on the interpolated flow solution are
evaluated. Finally, the adjoint–correction is computed according to equation 8. In
the tables below, the ideal correction is defined as the difference between the values
of the aerodynamic coefficient on the fine grid from the converged solution and from
the prolongated flow field. The drag coefficient is expressed in drag counts.

The adjoint states relative to CD and CL have been computed using the first variant
(SLIP scheme) of the new artificial dissipation model with α = 1/2. Implicit post–
smoothing has been switched–on, with two iterations and VNN = 0.2.

The geometry does not include the FX2B fairing designed to alleviate the side–
of–body separation on the wing.

5.1 DLR–F6 Wing–Body Configuration

The aerodynamic configuration is defined as follows:

M∞ = 0.75, α = 0.52◦, Re1 = 21.25 106 m−1.

The in–house generated grid contains 29 blocks and 3615401 nodes. A view of the
mesh on the skin and in the symmetry plane can be seen on figure 2. The conver-
gence history for the flow solution on the coarse grid displayed on figure 3 exhibits

Fig. 2 Coarse grid – DLR–F6 Wing–Body
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Fig. 3 Convergence history on the coarse grid – DLR–F6 Wing–Body

Fig. 4 Convergence history for the adjoint states – DLR–F6 Wing–Body

perfectly stabilized aerodynamic coefficients. On the fine grid, the flow solution,
computed with 4 multigrid levels, is very well converged too (not shown). The con-
vergence histories shown on figure 4 indicate that the numerical method for the
adjoint state behaves quite satisfactorily. The adjoint–based error estimates for CL

and CD are given in tables 1 and 2 for the tricubic and trilinear prolongation opera-
tors respectively. They have the proper sign. However, for the lift, the absolute value
is fairly underestimated whereas for the drag, it is slightly overestimated. As regards
the drag coefficient, the differences between the two interpolators are marginal while
for the lift coefficient, the underestimation is more pronounced in the trilinear case.
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Table 1 Corrections using the tricubic interpolation – DLR–F6 Wing–Body

Ideal correction Computed correction Ratio (%)

CL −10.41 10−3 −2.47 10−3 23.7
CD −10.19 −11.65 114.3

Table 2 Corrections using the trilinear interpolation – DLR–F6 Wing–Body

Ideal correction Computed correction Ratio (%)

CL −10.43 10−3 −1.56 10−3 15.0
CD −10.90 −12.30 112.8

5.2 DLR–F6 Wing–Body–Pylon–Nacelle Configuration

The aerodynamic configuration is given by:

M∞ = 0.75, α = 1◦, Re1 = 21.25 106 m−1.

The in–house generated grid is made of 62 blocks, with a total of 5173658 nodes.
A view of the grid on the skin and in the symmetry plane is shown on figure 5. The
convergence history for the flow solution on the coarse grid, depicted on figure 6,
demonstrates that the aerodynamic coefficients are perfectly stabilized. On the fine

Fig. 5 Coarse grid – DLR–F6 Wing–Body–Pylon–Nacelle



366 L. Tourrette, M. Meaux, and A. Barthet

Fig. 6 Convergence history on the coarse grid – DLR–F6 Wing–Body–Pylon–Nacelle

grid, the flow solution, computed with 4 multigrid levels, is also extremely well
converged (not shown). The convergence histories on figure 7 indicate again that
the numerical scheme for the adjoint state is quite efficient and robust. The adjoint–

Fig. 7 Convergence history for the adjoint states – DLR–F6 Wing–Body–Pylon–Nacelle

based error estimates for the lift and drag coefficients are presented in tables 3 and 4
for the tricubic and trilinear interpolation techniques respectively. The computed
corrections have the right sign. For the lift coefficient, however, the absolute value is
again quite underestimated. The differences between the two prolongation operators
are minor.
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Table 3 Corrections using the tricubic interpolation – DLR–F6 Wing–Body–Pylon–Nacelle

Ideal correction Computed correction Ratio (%)

CL −1.16 10−2 −3.88 10−3 33.4
CD −23.47 −21.68 92.4

Table 4 Corrections using the trilinear interpolation – DLR–F6 Wing–Body–Pylon–Nacelle

Ideal correction Computed correction Ratio (%)

CL −1.17 10−2 −3.32 10−3 28.4
CD −23.75 −22.95 96.6

6 Conclusions and Outlook

A software package, acting as a post–processing tool, has been developed for evalu-
ating adjoint–based error estimates of functional outputs, in the framework of struc-
tured multiblock grids. Two interpolation techniques have been implemented and
assessed for the adjoint–based correction of the lift and drag coefficients on a series
of test cases of increasing complexity, including a Wing–Body and a Wing–Body–
Pylon–Nacelle. The results obtained for these two industrially relevant configura-
tions have been presented herein.

First attempts with the WB and WBPN cases lead to erroneous error estimates
for the lift coefficient and revealed a high sensitivity to the level of artificial dissi-
pation in the numerical scheme for the adjoint state. With the prospect to reduce the
amount of numerical damping, a new model inspired from Jameson’s SLIP scheme
has been implemented into the elsA solver. In addition, the robustness of the nu-
merical method for the adjoint state has been enhanced by the introduction of an
elliptic smoother. The new artificial dissipation model dramatically improved the
lift correction.

The main objective of this contribution was to assess the potential of the adjoint–
based correction method for relevant functional outputs on test cases sufficiently
complex to be representative of industrial applications. If the interest of the ap-
proach for industry is established, it can then be used to improve the accuracy for
the prediction of aerodynamic coefficients and design new sensors allowing more
economical grid refinement or grid quality improvement. Predicting aerodynamic
coefficients with higher accuracy would also have a positive impact on optimum
design applications.

The results presented in section 5 look quite promising, but the problem of the
underestimation of the correction for the lift remains to be solved.

Before the adjoint–based correction method becomes a fully industrial tool, sev-
eral issues still need to be addressed:
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• A separate tool should be implemented for computing the flux differences based
on the prolongated flow field. It would work on a block–by–block basis, in order
to minimize the memory requirement for large–scale problems. The elsA solver
presently assumes this task.

• Other objective functions than CL and CD should be considered that are of great
interest for design engineers as e.g. wave drag CDw or induced drag CDi but dif-
ficulties may be expected when the definition of the functional output gets more
complex.

• The adjoint part of the solver should be extended to grids with non–matching
block interfaces and chimera grids, which are more and more used for aircraft
configurations. The developments are under way in research establishments.

• The multigrid technique should be applied to accelerate the convergence of the
iterative method for the adjoint state. This would also benefit optimum design
studies. The development has been scheduled and should start soon.

• Application of the adjoint–based correction to grid improvement (nodes displace-
ment and/or grid refinement based on relevant sensors) should be considered.
Concerning mesh enrichment, a necessary pre–requisite is that the AMR tech-
nique available in the elsA solver proves to be mature enough and easy to use,
which may require a substantial effort. It would also be necessary to extend the
numerical method for the adjoint state to AMR grids.
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Chapter 26
Goal-Oriented Mesh Adaptation in an Industrial
Stabilized Finite Element Navier-Stokes Code

Frédéric Chalot

Abstract. This chapter describes Dassault Aviation’s contribution to Workpackage 5
of the ADIGMA Project. The adjoint operator developed in the framework of op-
timum design is used to estimate the error in the solution with respect to a given
target quantity. Local values of this error estimation are used as a criterion to refine
the mesh. This yields significant improvement over traditional criteria based on the
residual or on gradients of physical quantities. The method is carefully tested using
inviscid, transonic, laminar, and high Reynolds number turbulent flows.

1 Stabilized Finite Element Schemes for the RANS Equations

Dassault Aviation’s Navier-Stokes code, called AETHER, uses a finite element ap-
proach, based on a symmetric form of the equations written in terms of entropy
variables. The advantages of this change of variables are numerous: in addition to
the strong mathematical and numerical coherence they provide (dimensionally cor-
rect dot product, symmetric operators with positivity properties, efficient precondi-
tioning), entropy variables yield further improvements over the usual conservation
variables, in particular in the context of chemically reacting flows (see [1, 2]).

The code can handle the unstructured mixture of numerous types of elements (tri-
angles and quadrilaterals in 2-D; tetrahedra, bricks, and prisms in 3-D). In practice
mostly linear triangular and tetrahedron meshes are used.

The code has been successfully ported on many computer architectures. It is fully
vectorized and parallelized for shared or distributed memory machines using the
MPI message passing library (IBM SP2 Series, IBM BlueGene, Itanium II- and
Xeon-based Bull NovaScale) or native parallelization directives (NEC SX-4) (see
[3]).
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For details about the numerical method, the reader is referred to Chapter 11. We
just recall the semi-discrete Galerkin/least-squares variational problem which can
be stated as:

Find � h ∈ S h (trial function space), such that for all� h ∈ V h (weighting
function space), the following equation holds:∫
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2 Adjoint-Based Indicators for Stabilized Finite Element
Methods

In the following sections we describe how the adjoint operator developed in the
framework of optimum design can be used to estimate the error in the solution with
respect to a given target quantity. Local values of this error estimation are used as
a criterion to refine the mesh. This yields significant improvement over traditional
criteria based on the residual or on gradients of physical quantities.

2.1 Adjoint-Based Extrapolation

We assume that we have a solution of the Navier-Stokes equations V H solution of
(1): RH(V H) = 0 on a given mesh characterized by a mesh size parameter H, where
RH is the discrete residual associated with (1). We can compute some aerodynamic
function f of the solution (for instance drag or lift): f H(V H). Unfortunately, mesh
MH is too coarse to compute f H accurately. A finer mesh h whose characteristic
mesh size parameter h is smaller than H would yield a better estimate of f , viz.,
f h(V h). The question is “how can we estimate f h without explicitly computing V h,
which would require the solution of Rh(V h) = 0?” We will seek an estimate of f h in
the form

f h(V h) ≈ f h(V h
H)+ · · ·

where V h
H is the projection of V H onto mesh Mh.

The first order Taylor expansion of f h(V h) about V h
H reads:

f h(V h) = f h(V h
H)+

∂ f h

∂V h

∣∣∣∣∣
V h

H

(V h −V h
H)+ O

(
(V h −V h

H)2
)

(2)
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We can expand Rh(V h) in the same fashion

Rh(V h) = Rh(V h
H)+

∂Rh

∂V h

∣∣∣∣∣
V h

H

(V h −V h
H)+ O

(
(V h −V h

H)2
)

(3)

Since V h is the solution of (1) on Mh, we have

Rh(V h) = 0 (4)

Combining (2), (3), and (4), it results

f h(V h) ≈ f h(V h
H)− ∂ f h

∂V h

∣∣∣∣∣
V h

H

∂Rh

∂V h

∣∣∣∣∣
−1

V h
H

Rh(V h
H) (5)

Following the ideas of Giles [5], we introduce the adjoint problem[
∂Rh

∂V
(V h)

]T

Ψ h =
[
∂ f h

∂V
(V h)

]T

(6)

The adjoint of Rh with respect to the entropy variables V h was obtained from the
original FORTRAN code by automatic differentiation using TAPENADE [4] in
reverse mode.

Eq. (5) can be rewritten as

f h(V h) ≈ f h(V h
H)−Ψh ·Rh(V h

H)

In practice, we do not solve the adjoint problem on mesh Mh. Instead, we replaceΨh

withΨh
H , the projection onto mesh Mh ofΨH , solution of the adjoint problem (6) on

mesh MH . This adjoint problem is solved with a preconditioned GMRES algorithm.
Finally we can write the approximate of f h(V h) as

f h(V h) ≈ f h(V h
H)−Ψh

H ·Rh(V h
H) (7)

which can be computed cheaply with the projected solution of the adjoint problem
on the coarse mesh Ψh

H and a mere residual evaluation on the fine mesh using the
projection of the coarse mesh solution V h

H .

2.2 Error Estimation and Refinement Criterion

Similar ideas can be used to place error bounds on the estimated value of the aero-
dynamic function f h(V h

H) with respect to f h(V h):

f h(V h)− f h(V h
H) ≈−Ψh

H ·Rh(V h
H)+ (Ψh

H −Ψh) ·Rh(V h
H) (8)
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Let T h
H denote the correction term in (7):

T h
H =Ψh

H ·Rh(V h
H)

Then (8) becomes

f h(V h)− f h(V h
H) ≈−T h

H +(Ψh
H −Ψh) ·Rh(V h

H)

One can show that ∣∣∣(Ψ h
H −Ψh) ·Rh(V h

H)
∣∣∣ → 0, as h → 0

≤
∣∣∣Ψh

H ·Rh(V h
H)
∣∣∣

Consequently, ∣∣∣ f h(V h)− f h(V h
H)
∣∣∣≤C

∣∣∣T h
H

∣∣∣
with

C → 0, as h → 0

≤ 2

Finally

f h(V h
H)−C

∣∣∣T h
H

∣∣∣≤ f h(V h) ≤ f h(V h
H)+C

∣∣∣T h
H

∣∣∣ (9)

If Mh is a very fine mesh on which asymptotic convergence is reached, (9) represents
the error bound on f h(V h

H) with respect to the exact solution of (1).
As we will see shortly, T h

H can also be used as a goal-oriented mesh adaptation
criterion, which reveals area in the mesh where locals errors have the biggest impact
on the value of the target function f h. If we go back to equation (7), we can see that
if the “coarse mesh” MH (in fact the current mesh) produces a solution V H which is
accurate enough to give a satisfactory value of the target aerodynamic function f h,

f h(V h) ≈ f h(V h
H)

and
T h

H ≈ 0

The idea consists in refining the mesh where local values of |T h
H | are greater than

some specified limit ε . The refinement algorithm goes as follows:

1. on mesh MH , solve (1) for V H and compute the solution of the adjoint problem
ΨH with respect to some target function f H ;

2. generate a finer finer mesh Mh, typically obtained by a uniform (iso-P2) refine-
ment of MH ;

3. project V H and ΨH onto Mh and evaluate Rh(V h
H). Remark: (1) is not solved on

Mh;
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4. compute a local mesh adaptation parameter Ph
i at each node of mesh Mh

Ph
i = (Ψh

H)i ·Rh
i (V

h
H)

where the dot product is extended to the sole number of degrees of freedom at
node i;

5. project Ph onto mesh MH ;
6. if (PH

h )i < ε , refine the mesh locally and go back to step 1; otherwise the mesh is
fine enough and f H(V H) is computed with an adequate accuracy.

3 Numerical Examples of Goal-Oriented Refinement for 2-D
Flows

Dassault Aviation computed the same four Mandatory Test Cases defined in Work-
package 2 of the ADIGMA Project and already presented in Chapter 11. They cover
a wide range of applications: from inviscid subsonic and transonic flows (MTC’s 1
and 2), to laminar Navier-Stokes (MTC 3), and finally a profile in transonic turbulent
conditions (MTC 5). For each test case we compare the baseline results obtained us-
ing Dassault Aviation’s industrial Navier-Stokes codeAETHER on a set of uniformly
refined meshes with successive goal-oriented adaptation based on the same initial
coarse grid.

Local isotropic mesh enrichment is used: triangles tagged for adaptation are split
into four. Nodes added on the boundary are placed on the actual surface; if needed
mesh deformation techniques are used to make all elements positive. On the border
of a locally refined zone, hanging nodes are connected to the opposite vertex. In
order to control the aspect ratios in the adapted meshes, we allow only subdivision
of original triangles into four or two. A triangle with hanging nodes on two faces
will be split into four, propagating a new hanging node further away. Memory of
triangles split into two is kept to avoid later division. This technique ensures the
quality of the adapted grids.

3.1 MTC 1: NACA0012, M = 0.50, α = 2◦, Inviscid

For this inviscid subsonic test case, the drag coefficient CD was used as the target
quantity. The initial unadapted mesh around the NACA0012 airfoil contains 1106
nodes. Figure 1 presents the original mesh and five successive levels of goal-oriented
adaptive refinement together with the matching Mach-number contours.

Kinks in Mach number contours disappear after only two levels of adaptation
although refinement mostly occurs in the stagnation, suction, and trailing edge re-
gions. This is an indication that the entropy layer observed in coarse grid solutions
is not due to lower order boundary conditions. Instead spurious entropy is generated
at the leading edge and is convected along the profile.
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Figure 2 shows the convergence of force coefficients obtained with goal-oriented
mesh adaptation (mixed line) compared with those computed with global mesh re-
finement (solid line).

It is striking to see that CD, which is the target, converges better than CL as the
sizes of adapted meshes increase. The gain in the required number of degrees of
freedom for convergence is roughly a factor of 5. CPU gain is of the same order,
with an additional advantage for adapted meshes: they have fewer points in the
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Fig. 1 MTC 1: NACA0012, M = 0.50, α = 2◦, inviscid. Original 1106-node mesh and five
successive levels of goal-oriented refinement based on drag with corresponding Mach number
contours on the right.
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Fig. 2 MTC 1: NACA0012, M = 0.50, α = 2◦, inviscid. Convergence of force coefficients
compared with global mesh refinement.
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freestream, thus they require fewer time steps to reach convergence at a given CFL
number.

It must be noted that the threshold for refinement was fixed at 50% of the mean
criterion value. This yields a series of adapted meshes which nearly double in size
at each level of adaptation. This figure can certainly be reduced with a stricter re-
finement criterion limit.

3.2 MTC 2: NACA0012, M = 0.80, α = 1.25◦, Inviscid

The pressure drag coefficient CD was also used as the target quantity to produce the
adapted meshes for the transonic case MTC 2 shown in Figure 3. Mach number con-
tours corresponding to the initial grid and to the six subsequent levels of adaptation
are displayed on the right. The initial mesh is the same as the one for MTC 1.

In the beginning, refinement occurs more or less uniformly in the dependency
region. Only when the overall mesh size reaches a reasonable level, the criterion
hits more selectively at the shocks. Both leeward and windward side shocks are
accurately captured which would have been particularly challenging for a gradient-
based adaptation. As in the subsonic case, points are added at the surface of the
airfoil, in particular in the acceleration/expansion regions. The slip line at the trailing
edge is also detected in the final meshes.
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Fig. 3 MTC 2: NACA0012, M = 0.80, α = 1.25◦, inviscid. Original 1106-node mesh and
six successive levels of goal-oriented refinement based on drag with corresponding Mach
number contours on the right.

Figure 4 presents the convergence of force coefficients. The same criterion
threshold as MTC 1 was used. Again it produces a series of adapted meshes which
grow too fast in terms of degrees of freedom. Nonetheless the required number of
nodes to converge the drag coefficient is reduced by a factor of 2.3. The behavior of
lift coefficient is very disappointing. Even on the finest adapted grid (54,220 nodes),
it does not meet the convergence criterion. Goal-oriented mesh refinement based on
CL should be tested.
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Fig. 4 MTC 2: NACA0012, M = 0.80, α = 1.25◦, inviscid. Convergence of force coefficients
compared with global mesh refinement.
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3.3 MTC 3: NACA0012, M = 0.50, α = 2◦, Re = 5,000

Even though MTC 3 is a viscous test case, we have again used the pressure drag
coefficient CD as the target for goal-oriented mesh adaptation with the same criterion
threshold chosen previously.

Figure 5 shows the original 1533-node mesh and four successive levels of goal-
oriented refinement based on pressure drag together with the corresponding pressure
contours on the right. Refinement occurs at the leading edge, along the profile, and
in the wake. Mesh deformation was used at each level of adaptation to place the new
nodes along the actual profile.

Only four levels of refinement could be applied. A fifth adapted mesh was gener-
ated, on which the computation revealed unsteady. This behavior was observed by
other partners in the ADIGMA Project, although all our previous computations for
this Re = 5,000 test cases always converged to a steady state.
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Fig. 5 MTC 3: NACA0012, M = 0.50, α = 2◦, Re = 5,000. Original 1533-node mesh and
four successive levels of goal-oriented refinement based on pressure drag with corresponding
pressure contours on the right.

Figure 6 displays the convergence plots of the force and heat flux coefficients.
Once more the criterion threshold seems too lenient. The mesh size increases too
rapidly at each refinement step (by a factor of nearly 3). The required number of
degrees of freedom to converge pressure drag is barely reduced by 10%.
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Fig. 6 MTC 3: NACA0012, M = 0.50, α = 2◦, Re = 5,000. Convergence of force and heat
flux coefficients compared with global mesh refinement.

Although not targeted, lift convergence requirements drop by about 40%, those
of friction drag by about 20%. The convergence curves of friction drag and of heat
flux tend to flatten out with the finest adapted meshes. This might be an indication
of the forthcoming onset of unsteadiness.

3.4 MTC 5: RAE2822, M = 0.734, α = 2.79◦, Re = 6,500,000

The final test case is a transonic high Reynolds number RANS calculation past an
RAE2822 profile. We have still used the pressure drag coefficient CD as the target
for goal-oriented mesh adaptation. We have altered the criterion threshold from the
previous MTC’s though. It appeared that too heavy a refinement was applied at each
level, which somehow reduced the potential benefit of mesh adaptation. For MTC 5
we have tried to limit the refinement to the top 20% of the elements where the
criterion was the largest.

In doing so problems were encountered when refining under-resolved highly-
curved boundaries near the leading edge. Too little local refinement would prevent
mesh deformation from completing successfully: the locally refined region must be
thick enough to allow the deformation of the thinnest elements into the volume. The
refinement zone had to be extended respectively to the top 40 and 60% to permit
deformation of the first two adapted meshes. For the next two refined grids, no cri-
terion threshold value would yield no negative elements after deformation. We chose
to stick to our 20% rule and to skip mesh deformation all together. The final adapted
mesh was obtained with the top 20% criterion and with a successful mesh deforma-
tion. The five adapted meshes are presented in Figure 7 with the initial 2668-node
mesh; Mach number contours are shown on the right next to each corresponding
grid.
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Fig. 7 MTC 5: RAE2822, M = 0.734, α = 2.79◦, Re = 6,500,000. Original 2668-node mesh
and five successive levels of goal-oriented refinement based on pressure drag with corre-
sponding Mach number contours on the right.

At first goal-oriented adaptation driven by pressure drag refined the leading edge,
the suction region and the wake. Then it hit more specifically at the shock area.
Although intrinsically inviscid the chosen target seems to have tackled this high-
Reynolds number case rather well. Let’s have a look at the convergence of force and
heat flux coefficients presented in Figure 8 for a more quantitative analysis.

The number of degrees of freedom to converge pressure drag is reduced by a fac-
tor of 13 from 130,000 to about 10,000. This exemplifies the power of goal-oriented
mesh adaptation when used with a controlled refinement criterion level. The re-
quirement for lift is divided by a factor of nearly 3 (from 60,000 to about 23,000).
Viscous coefficients are less successful. Friction drag converges only slightly faster
than with a uniform grid refinement. Heat flux seems to reach an asymptotic value
of 10−4 and not converge any further. Again it would be worth testing more Navier-
Stokes specific target functions, such as friction drag, total drag, or heat flux.

In spite of the aforementioned mesh deformation difficulties, goal-oriented mesh
adaptation, even based on a pressure target, can handle high Reynolds numbers.
Feature based adaptation would probably miss some of the features of the flow.

4 Conclusion

Substantiated by various test cases, we have showed that goal-oriented adaptation
coupled with local isotropic mesh refinement, works for diverse situations: inviscid,
transonic, laminar, and high Reynolds number turbulent flows.

Adaptation based on local isotropic refinement requires a decent mesh to start
with, that is for instance stretched elements along the wall for Navier-Stokes calcu-
lations. On that condition, it can handle high aspect ratios. One must pay attention
though to underresolved curved boundary layer regions where mesh deformation to
match the surface definition can be an issue.

In order to maximize the gain over uniform grid refinement, the criterion thresh-
old needs to be tuned. Too much refinement at each adaptation level will slow down
the whole process. Nevertheless there is always a slight CPU advantage for adapted
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Fig. 8 MTC 5: RAE2822, M = 0.734, α = 2.79◦, Re = 6,500,000. Convergence of force
and heat flux coefficients compared with global mesh refinement.

meshes with an equivalent number of nodes: they have less points in the freestream
and thus require fewer time steps to converge at a given CFL number.

The different force coefficients converge at different rates. This is even more true
with goal-oriented adaptation. Only the targeted quantity tends to see the benefit of
the refinement; the adjoint does not seem to improve the solution globally. Other
cost functions should be tested, especially specific Navier-Stokes ones. Multiple
targeted adaptation might be the solution. In any case, goal oriented adaptation is
still more versatile than feature or residual based refinement: it works for shocks,
boundary layers, and wakes, even with a simple pressure cost function.

Local isotropic refinement not viable in 3-D; the number of nodes grows too
fast. Anisotropic refinement/derefinement or a remeshing capability are needed for
complex 3-D applications. For industrial use, an automated procedure is needed.
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Running several meshes for convergence is a turn down for the technique. Human
cost must not overwhelm the CPU advantage.

The method should possibly be coupled with higher-order elements for aug-
mented performance. In principle the adjoint obtained through automatic differenti-
ation should work as is with higher order elements.
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Chapter 27
Application of Feature-Based Grid Adaptation
to Helicopter Rotor Flow

H. van der Ven

1 Introduction

The simulation of rotorcraft aerodynamics is considerably more complex than the
simulation of fixed wing aircraft aerodynamics. Rotorcraft flow is inherently dy-
namic, the inertial and elastic forces of the rotor blades interact with the aerody-
namic forces, and aerodynamic interference of the rotor wake with the fuselage and
tail rotor is important in many flight conditions. The flow condition known as Blade-
Vortex Interaction (BVI) is an important example of such interactions. Especially in
low-speed descent, the rotor blades fly in their own wake. The interaction of tip vor-
tices and rotor blades may cause strong pressure fluctuations on the blade, responsi-
ble for the typical ‘wopwop’ sound of helicopters. Prediction of BVI is challenging:
the blade motion under inertial, elastic, and aerodynamic forces must be predicted
correctly and the convection of the tip vortices must be accurate enough to retain
the vortices for, typically, one and a half rotor revolution.

The requirement to correctly represent the blade motion has led to the develop-
ment of time-accurate flow solvers which are coupled with dynamics solvers or rotor
comprehensive codes (Buchtala et al. [3], Pomin et al. [11], Altmikus et al. [1]; the
reader is also referred to the excellent review paper on rotorcraft CFD by Datta et
al. [5]). Several efforts have been undertaken to improve the vortex capturing ca-
pability of standard flow solvers, such as local grid refinement (Bottasso et al. [2]),
Chimera techniques with specific vortex grid systems (Ochi et al. [10], Duraisamy
et al. [7]), and high order methods (Wake et al. [16]). None of these techniques
has been particularly successful or efficient, and successful BVI predictions have
only been obtained by brute-force methods, using meshes of 100 million cells (Lim
et al. [9]) and time-marching several rotor revolutions before structural dynamics,
trim, and aerodynamics have balanced out. Lim et al. use a series of grids of which
the fine grid contains 100 million elements and apply a time step of 0.05 azimuthal
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degrees. Although the simulations exhibit BVI, the authors are not satisfied with the
vortex resolution of the simulation as compared with experiment. They estimate a
mesh containing 7 billion elements is necessary for the simulations to agree with ex-
periment. This number is remarkably close to the estimates given by Caradonna [4]
in his review article. Clearly, such simulations cannot be run in a routine way and
despite the qualitative success so far, there is a need for more efficient algorithms.

In this paper, a grid adaptation strategy is described, which is specifically de-
signed to generate efficient meshes for the simulation of rotor wakes. Combining
local grid refinement with the four-dimensional solution algorithm of [14], allows
meshes which have the required uniform resolution in space and time, only where
and when a vortex is present. Such meshes may contain 20-50 times less degrees of
freedom than meshes with uniform resolution.

2 Numerical Algorithm

The discretization of the Euler equations is based on a space-time discontinuous
Galerkin method (Van der Vegt et al. [13]). Up to third order of accuracy can be
obtained. Local grid refinement is applied for the generation of meshes which are
uniform in the vortex core. A specific solution algorithm, called Multi-Time Multi-
Grid, is used for the solution of time-periodic problems [14]. The solution method
solves a time-periodic problem on a four-dimensional space-time mesh containing a
discretization of the time period. As the mesh contains all time levels, the multigrid
solution algorithim can be extended to the time dimension.

Apart from generating a periodic solution by construction, the main advantage of
the solution algorithm lies in the fact that it transforms a time-dependent (dynamic)
problem into a steady-state (static) problem. This has several advantages:

• as long as the solution process converges, the final solution is independent of
the solution process. The underlying discretised equations are unmodified, and,
moreover, there is no problem with the possible accumulation of numerical errors
from preceding time steps;

• local grid refinement can be extended to the time dimension. Since there is no
time direction in the solution algorithm, interpolation or the order of time steps
in the case of hanging nodes are no issue;

• combining local grid refinement and parallel processing does not lead to dynamic
load balancing problems. Since the local grid refinement no longer needs to be
applied at each time step, the number of grid adaptations reduces significantly
to about five times per simulation, which is the usual number for steady-state
simulations.

• time-accurate coupling with other physics models is straightforward. As all sim-
ulation all simulation data is available at all time steps, and the trust and moments
are readily available to trim the rotor. Moreover, a modification in the pitch sched-
ule will require only a small number of pseudo-time iterations for the flow solution
to conform to the new schedule. Another consequence of having the data avail-
able at all time steps is that the coupling between the aerodynamics and mechanics
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modules can be made genuinely implicit, without the need of predictor-corrector
mechanisms.

3 Grid Design and Expected Speedups

Combination of the adaptivity of the DG algorithm and four-dimensional nature of
the MTMG algorithm allows the design of grids in which the required resolution in
the vortex core is obtained only when and where a vortex is present. The accurate
convection of the tip vortices requires a uniform mesh in both space and time within
the vortex core. Let n be the number of cells which are required across the vortex
core. For the third order DG scheme n = 7, and for the second order scheme n = 15,
provide good estimates. With a core size of R/50 (Caradonna [4]), with R the rotor
radius, the mesh width in the vortex core is h = R/50n. The time step is based on
a physical, convective, CFL number of one, where the CFL number is based on the
freestream velocity u∞. Given the mesh width above, one easily computes that the
time step shall satisfy Δ t = T/100nπμ , where T is the blade revolution period and
μ is the advance ratio μ = ΩR/u∞ with Ω = 2π/T the angular speed of the rotor.

In order to allow an accurate representation of the induced velocity field of the
vortex, the region near the vortex core has to satisfy certain resolution requirements
as well. The approach followed here is that in a region at a distance of R/25 of the
vortex core the resolution should be at least twice the resolution in the vortex core.
This is repeated once more, in a region at a distance of R/12.5 the resolution should
be at least four times the resolution in the vortex core. The attained resolution in the
latter region is thus about R/12n. Note that the time step grows proportionally with
the mesh width.

The total number of grid cells in these regions is determined by the length of the
tip vortex. A good estimate of the convection velocity of the vortex is the freestream
velocity u∞. The average distance a vortex must travel to move outside the rotor
disk area is R, and hence the average time a vortex remains in the disk area is R/u∞.
Since the vortices are created at the blade tips which travels at a velocity of ΩR, the
average length of the vortices within the rotor disk area is (ΩR)(R/u∞) = R/μ .

So the required number of cells Ncore within the vortex core is equal to (Vcore is
the space-time volume of the core area)

Ncore = Vcore/(h3Δ t) = (R/μ)(π(R/50)2)T/((h3Δ t)

=
R
μ π( R

50 )
2
T

( R
50n )

3
(

T
100nπμ

) = 2π2502n4

So, for the third order scheme with n = 7 the number of cells in the four-dimensional
mesh in the vortex core alone is 118 million. For the second order method with
n = 15 it is 2.5 billion.

It is left to the reader to compute the number of cells in the two outer regions
about the vortex. However, as both mesh width and time step are doubled, the
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number of cells is considerably less: the first region contains about 22 million cells
for the third order scheme and the second region about 6 million cells.

The resolution outside these regions is much coarser. A generic spatial mesh
about a four-bladed rotor with geometry refinement contains about 200,000 cells. In
order to capture the blade-vortex interaction the time resolution of the geometry must
be the same as the time resolution in the vortex core. So the space-time mesh outside
the vortex regions but including the geometry contains 200,000(100nπμ)/nb cells,
where nb is the number of blades (the time period is T/nb). For n = 7 and realistic
advance ratio’s for a four-bladed rotor this number is roughly between 20 and 40
million cells.

Although these numbers may seem staggering, they should be compared with
the resolution required for a uniform mesh. The numbers are tabulated in Table 1.
The mesh size of the uniform spatial mesh size is obtained by a uniform mesh with
resolution R/50n in a computational domain of volume R3 = (πR2)(R/π), the rotor
disk with height R/π . Depending on the advance ratio, the four-dimensional meshes
contain 20-50 times less cells than a uniform mesh contains. This is under the as-
sumption that it is possible to generate such highly irregular meshes. This is the
subject of the next chapter.

Table 1 Estimated grid sizes and efficiency gains for a four-bladed rotor in forward flight
with different advance ratio’s. Mesh sizes in millions.

Number of cells across vortex core 7 15
Advance ratio 0.15 0.25 0.35 0.15 0.25 0.35
Mesh width (fraction of blade span) 0.0028 0.0028 0.0028 0.0013 0.0013 0.0013
Time steps (in degrees azimuth) 1.1 0.66 0.46 0.51 0.31 0.22
MTMG mesh (in millions) 183 172 162 3130 3150 3170
Average spatial mesh size 2.0 1.3 0.93 18 11 7.7
Uniform spatial mesh size 43 43 43 422 422 422
Efficiency gain 22 34 46 24 40 55

4 Adaptation Strategies

4.1 Introduction

For industrial applications the most common grid adaptation strategy is to use sen-
sors based on flow features. Shock sensors based on gradients in the flow have in
general been quite effective in resolving shocks. For tip vortices in the rotor wake
the effectiveness of feature-based sensors is not so clear. The straightforward vor-
ticity magnitude sensor does not discriminate between tip vortices, vortex sheets or
numerically induced boundary layers. More advanced sensors, such as the λ2 crite-
rion (Jeong et al. [8]), require significant resolution of the vortex to detect it. Such
a resolution is not present on the initial coarse meshes. Because of these findings, it
was concluded to opt for pre-adaptation, where the mesh is refined before the actual
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flow computation, based on the expected location of the tip vortices. This will be ex-
plained in detail later. In effect, the pre-adaptation strategy resembles unstructured
grid generation more than conventional mesh refinement. It is comparable to the
Chimera approach of Dietz et al. [6], where Chimera grids are constructed around
the expected tip vortex locations. The benefit of our approach is that it is still based
on the single-grid concept.

4.2 Adaptation on Streak Lines

By their nature, the location of the tip vortices is predominantly determined by the
trajectory of the tip. So, to a very good approximation, the vortex trajectories can
be taken to be the blade tip trajectories. The blade tip trajectories Γ (t) at time t are
cycloids, described by

Γ (t) = {(Rcos(Ω(t − s)),Rsin(Ω(t − s)),w(t − s))+ u∞s} ,

where w = w(t) is the flapping motion of the tip.
Based on this geometrical information, the mesh may be pre-adapted to increase

the resolution near the tip trajectories. Whenever a cell is within a given distance of a
tip trajectory and the mesh width or the time step is greater than a given threshold the
cell is refined. Eventually a mesh is ‘generated’ with uniform space-time resolution
in the expected vortex regions. The main benefit of this method is that there will
be no refinement in other regions, for instance in the vortex sheets, hence the total
number of grid cells is reduced compared to feature-based adaptation.

Of course, the assumption that the tip vortices follow the tip trajectories ignores
the effects of downwash, contraction and interaction. Hence the free stream veloc-
ity in the definition of the tip trajectories Γ (t) is replaced by the actual, computed
velocity field. That is, the blade tip trajectories are replaced by the streak lines of
particles released at the blade tips.

In this way, an iterative pre-adaptive procedure is constructed, where the accuracy
of the predicted tip vortex locations is increased with each iteration. The adaptation
strategy has been applied to the simulation of a four-bladed rotor in forward flight.
Details of the flow will be described in Section 5, but the adaptation strategy will be
illustrated in this section for this simulation.

In Figure 1, a comparison is made between the blade tip trajectories and the
streak lines of particles released at the blade tips. The difference increases with the
age of the vortex. The main difference between the two methods is that the second
accounts for the downwash of the rotor.

Let Mesh G0 be the initial mesh, which has local refinement near the blades in
both space and time but without local refinement for the vortices. Typically, the
resolution near the blades is four times finer than in the surrounding areas. Let G1

be the mesh the mesh obtained by pre-adaptation of G0 on the blade tip trajectories.
On Mesh G1 a high-order flow solution is computed, and from this flow solution
streak lines are computed which are used for the next pre-adaptation. This next pre-
adaptation is again executed on Mesh G0, that is, the previous pre-adapted mesh is
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(a) Perpendicular view (b) Perspective view

Fig. 1 Difference between the blade tip trajectories (dots) and streak lines (coloured lines)
for a four-bladed rotor in forward flight

discarded. The mesh G2 is generated in several adaptation steps, where each step
zooms in on the expected vortex location by reducing both the target mesh width
and the region in which the grid is refined (consistent with the grid design described
in Section 3). First the cells at a distance of 0.1R are refined with the target mesh
width 0.02R. Both distance and mesh width are decreased proportionally, and the
final step in the adaptation process has a target mesh width of 0.007R at a distance
of 0.035R. In the simulation described in Section 5, the adaptation on streak lines
is repeated once, and the final mesh G3 has 17.3 million elements. Due to memory
restrictions on NLR’s compute server, the resolution in the vortex core is restricted
to three cells across the core. The simulation with a third-order DG scheme requires
60GB of memory.

The 17.3 million elements of Mesh G3 are equivalent to 260 million degrees of
freedom per equation. Since the space-time mesh contains 64 time slabs, the average
number of degrees of freedom per time slab is 4 million. This clearly is a modest
number when trying to resolve the rotor wake.

It should be remarked that the target mesh width is not necessarily attained. A
cell is refined whenever the mesh width is more than two times the target mesh
width. Hence, on the final mesh, mesh widths will be between once and twice the
target mesh width. Moreover, out of practical considerations, the mesh adaptation is
stopped before saturation of the refinement criterion, and the quality of the mesh is
judged by inspection.

Figure 2 show Mesh G3 at a horizontal cross section at a certain time level. The
expected tip vortex locations are clearly visible as local refinement areas. Figure 4
illustrates the pre-adaptation algorithm in a grid plane through the rotor axis and
approximately perpendicular to the vortices. This figure clearly demonstrates the
adaptation strategy with its zooming characteristics.

It is clear from these figures that the mesh has been refined in a uniform way
near the predicted vortex locations, and nowhere else. Hence the pre-adaptation al-
gorithm is very effective in limiting the number of refined elements.
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Fig. 2 Illustration of the pre-adaptation strategy. An arbitrary horizontal slice of Mesh G3 is
shown. Clearly visible are the refinement regions near the expected vortex locations.

Fig. 3 As the previous figure, but a different horizontal plane, below the previous one
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Fig. 4 Impression of the mesh obtained from pre-adaptation on streak lines. The grid plane
shown is through the rotor axis (in the center of the figure) and almost perpendicular to the
vortices. The larger circles have a diameter of 0.1R (within the circles the target mesh width
is 0.02R); the smaller circles have a diameter of 0.035R (within the circles the target mesh
width is 0.007R).

5 Results

Data point 135 of the Helishape wind tunnel program is simulated [12]. This data
point concerns a high-speed level flight case at an advance ratio of 0.356 for the
isolated 7AD1 rotor with parabolic and anhedral tip. The blade has a radius R of
2.1m and a chord c of 0.14m (aspect ratio R/c = 15). In the experiment the rotor is
trimmed for a thrust coefficient of CT = Fz

πρ∞Ω2R4 = 0.0071 and zero flapping.
The flow displays (weak) shocks at the advancing side and the vortex wake con-

tributes to the vibratory loads at the rotor hub. Hence a CFD mesh must be generated
capable of resolving shocks and vortices.

The grid design for this simulation has been described in Section 4.2. In the
following the vortex system as computed by the third order DG method on Mesh G3

is described in detail. Other flow features, such as pressure distributions and forces,
including validation, are described in [15].

Figure 5 shows the vortex systems at an azimuth angle of 45 and 67.5 degrees, for
second and third order solutions. Clearly, the second order simulations show little
evidence of vortices at the shown vorticity levels: the vortices are present but weak.
The third order solutions show much improvement over the second order solutions.

In the following figures the vortex system is discussed in more detail. Each set
of figures shows the vortex system from above (for example, Figure 6(b)), and in
a cross-sectional vertical slice (for instance, Figure 7 and Figure 8). The figure
with the vortex system viewed from above also presents the location of the cross-
sectional plane, including numbered labels at locations where the vortices intersect
the plane. The numbers are repeated in figures of the cross-sectional slice, with an
additional letter, signifying whether the vortex is a tip vortex (‘T’) of root vortex
(‘R’).

In Figure 7, tip vortices of four ages are visible in the third order solution: T1, T2,
T4, and T5. Note that these vortices are barely visible in the second order solution.
Tip vortex T6 is the tip vortex with about the same age of vortex T1, and hence is
much clearer. The root vortices R3 and R4 are located near the tip vortices T2 and
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(a) second order at ψ = 45o (b) third order at ψ = 45o

(c) second order at ψ = 67.5o (d) third order at ψ = 67.5o

Fig. 5 Comparison of the vorticity contours for two orders of accuracy. Iso-contours are
shown at vorticity magnitude level of 2a∞/R and 5a∞/R, where a∞ is the speed of sound.

T4, and since they are of opposite rotation they are likely to destroy the tip vortices.
In reality the wake of the hub will have weaker interactional effects than the present
root vortices. Comparing the vortex locations and grid resolution in Figure 8, shows
that the grid has been refined in the correct locations.

Figure 10 shows the vortex system at a later stage and more on the advancing
side of the rotor. The two tip vortices T1 and T2 are clearly visible in the third order
simulation results, but the next tip vortex T3 is very weak. Note the different scale in
the vorticity levels: the tip vortices emanating from the blades in the second quad-
rant are weaker than the vortices emanating from the blades in the third quadrant
(compare Figure 7). As the blade loading is not significantly different for the two
quadrants, this is most probably due by lack of resolution (see Figure 11).

For all the cross-sectional planes discussed above, the adaptation algorithm ac-
curately refines the cells at the actual vortex locations. In general one can conclude
that the pre-adaptation on streak lines is an efficient and accurate way of generating
meshes with sufficient resolution in the vortex regions.
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(a) grid (b) vortex system

Fig. 6 Definition of the cross-sectional slice, shown in red, at ψ = 28o

Fig. 7 Comparison of vortex resolution in the slice defined in Figure 6 with second order
simulation (top) and third order simulation (bottom)

Fig. 8 Comparison of vortex resolution in the slice defined in Figure 6 with second order
simulation (top) and third order simulation (bottom)
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(a) grid (b) vortex system

Fig. 9 Definition of the cross-sectional slice, shown in red, at ψ = 56o

Fig. 10 Comparison of vortex resolution in the slice defined in Figure 9 with second order
simulation (top) and third order simulation (bottom)

Fig. 11 Comparison of vortex resolution in the slice defined in Figure 9 with second order
simulation (top) and third order simulation (bottom)
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6 Conclusions

A feature-based pre-adaptation strategy has been described which aims at resolving
the vortex wake of helicopter blades. The adaptation strategy is specifically designed
to generate efficient space-time meshes for rotor simulations. The algorithm has
been applied to the simulation of a rotor in forward flight. Given the limitations in
computational capability, the necessary resolution cannot be obtained. Nonetheless,
the vortex persistence is significantly improved by the local grid refinement.
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Chapter 28
High–Order hp–Adaptive Discontinuous
Galerkin Finite Element Methods for
Compressible Fluid Flows

Stefano Giani and Paul Houston

Abstract. This article is concerned with the construction of general isotropic and
anisotropic adaptive strategies, as well as hp–mesh refinement techniques, in com-
bination with dual–weighted–residual a posteriori error indicators for the discontin-
uous Galerkin finite element discretization of compressible fluid flow problems.

1 Introduction

The development of Discontinuous Galerkin (DG) methods for the numerical ap-
proximation of the Euler and Navier-Stokes equations is an extremely exciting re-
search topic which is currently being developed by a number of groups all over the
world, cf. [1, 2, 5, 8, 9, 10, 14], for example. DG methods have several important ad-
vantages over well established finite volume methods. The concept of higher-order
discretization is inherent to the DG method. The stencil is minimal in the sense that
each element communicates only with its direct neighbors. In particular, in con-
trast to the increasing stencil size needed to increase the accuracy of classical finite
volume methods, the stencil of DG methods is the same for any order of accuracy
which has important advantages for the implementation of boundary conditions and
for the parallel efficiency of the method. Moreover, due this simple communication
at element interfaces, elements with so–called hanging nodes can be easily treated,
a fact that simplifies local mesh refinement (h–refinement). Additionally, the com-
munication at element interfaces is identical for any order of the method which

Stefano Giani
School of Mathematical Sciences, University of Nottingham,
University Park, Nottingham NG7 2RD, UK
e-mail: Stefano.Giani@nottingham.ac.uk

Paul Houston
School of Mathematical Sciences, University of Nottingham,
University Park, Nottingham NG7 2RD, UK
e-mail: Paul.Houston@nottingham.ac.uk

N. Kroll et al. (Eds.): ADIGMA, NNFM 113, pp. 399–411, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



400 S. Giani and P. Houston

simplifies the use of methods with different polynomial orders p in adjacent ele-
ments. This allows for the variation of the order of polynomials over the compu-
tational domain (p–refinement), which in combination with h–refinement leads to
so–called hp–adaptivity.

Mesh adaptation in finite element discretizations should be based on rigorous
a posteriori error estimates; for hyperbolic/nearly–hyperbolic equations such esti-
mates should reflect the inherent mechanisms of error propagation (see [12]). These
considerations are particularly important when local quantities such as point values,
local averages or flux integrals of the analytical solution are to be computed with
high accuracy. Selective error estimates of this kind can be obtained by the opti-
mal control technique proposed in [4] and [3] which is based on duality arguments
analogous to those from the a priori error analysis of finite element methods. In the
resulting a posteriori error estimates the element-residuals of the computed solution
are multiplied by local weights involving the adjoint solution. These weights rep-
resent the sensitivity of the relevant error quantity with respect to variations of the
local mesh size. Since the adjoint solution is usually unknown analytically, it has to
be approximated numerically. On the basis of the resulting a posteriori error esti-
mate the current mesh is locally adapted and then new approximations to the primal
and adjoint solution are computed.

This article develops duality-based a posteriori error estimation of DG finite el-
ement methods, together with the application of these computable bounds within
automatic adaptive finite element algorithms. Here, a variety of isotropic and anisot-
ropic adaptive strategies, as well as hp–mesh refinement will be investigated.

2 Compressible Navier-Stokes Equations

In this article, we consider both two– and three–dimensional inviscid and laminar
compressible flow problems. With this in mind, for generality, in this section we
introduce the stationary compressible Navier-Stokes equations in three-dimensions:

∇ · (F c(u)−F v(u,∇u)) = 0 in Ω , (1)

where Ω is an open bounded domain in Rd with boundary Γ ; for the purposes
of this section, we set d = 3. The vector of conservative variables u is given by

u = (ρ ,ρv1,ρv2,ρv3,ρE)� and the convective flux F c(u) =
(
fc
1(u), fc

2(u), fc
3(u)
)�

is given by fc
1(u) = (ρv1,ρv2

1 + p,ρv1v2,ρv1v3,ρHv1)�, fc
2(u) = (ρv2,ρv2v1,ρv2

2 +
p,ρv2v3,ρHv2)�, and fc

3(u) = (ρv3,ρv3v1,ρv3v2,ρv2
3 + p,ρHv3)�. Furthermore,

fv
k(u,∇u) = (0,τ1k,τ2k,τ3k,τklvl +K Txk)

�, k = 1,2,3. Here ρ , v = (v1,v2,v3)�, p,
E and T denote the density, velocity vector, pressure, specific total energy, and tem-
perature, respectively. Moreover, K is the thermal conductivity coefficient and H is
the total enthalpy given by H = E + p

ρ = e + 1
2 v2 + p

ρ , where e is the specific static
internal energy, and the pressure is determined by the equation of state of an ideal
gas p = (γ−1)ρe, where γ = cp/cv is the ratio of specific heat capacities at constant
pressure, cp, and constant volume, cv; for dry air, γ = 1.4. For a Newtonian fluid,
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the viscous stress tensor is given by τ = μ
(
∇v +(∇v)�− 2

3 (∇ ·v)I
)
, where μ is the

dynamic viscosity coefficient; the temperature T is given by K T = μγ
Pr

(
E − 1

2 v2
)
,

where Pr = 0.72 is the Prandtl number. For the purposes of discretization, we rewrite
the compressible Navier–Stokes equations (1) in the following (equivalent) form:

∇ · (F c(u)−G(u)∇u) ≡ ∂
∂xk

(
fc
k(u)−Gkl(u)

∂u
∂xl

)
= 0 in Ω .

Here, the matrices Gkl(u) = ∂ fv
k(u,∇u)/∂uxl , for k, l = 1,2,3, are the homogeneity

tensors defined by fv
k(u,∇u) = Gkl(u)∂u/∂xl , k = 1,2,3.

3 DG Discretization

In this section we introduce the adjoint-consistent interior penalty DG discretization
of the compressible Navier–Stokes equations (1), cf. [11] for further details.

First, we begin by introducing some notation. We assume that Ω ⊂ R
d , d = 2,3,

can be subdivided into a mesh Th = {κ} consisting of tensor-product (quadrilater-
als, d = 2, and hexahedra, d = 3) open element domains κ . For each κ ∈ Th, we
denote by nκ the unit outward normal vector to the boundary ∂κ . We assume that
each κ ∈ Th is an image of a fixed reference element κ̂ , that is, κ = σκ(κ̂) for
all κ ∈ Th, where κ̂ is the open unit hypercube in Rd , and σκ is a smooth bijec-
tive mapping. On the reference element κ̂ we define the polynomial space Qp with
respect to the anisotropic polynomial degree vector p := {pi}i=1,...,d as follows:
Qp := span{Π d

i=1x̂ j
i : 0 ≤ j ≤ pi}. With this notation, we introduce the following

(anisotropic) finite element space.

Definition 1. Let p = (pκ : κ ∈ Th) be the composite polynomial degree vector of
the elements in a given finite element mesh Th. We define the finite element space
with respect to Ω , Th, and p by Vh,p = {u ∈ L2(Ω) : u|κ ◦σκ ∈ [Qpκ ]

d+2}.

In the case when the elemental polynomial degree vector pκ = {pκ ,i}i=1,...,d , κ ∈Th,
is isotropic in the sense that pκ ,1 = pκ ,2 = . . . = pκ ,d ≡ pκ for all elements κ in the
finite element mesh Th, then we write Vh,piso in lieu of Vh,p, where piso = (pκ : κ ∈
Th). Additionally, in the case when the polynomial degree is both isotropic and
uniformly distributed over the mesh Th, i.e., when pκ = p for all κ in Th, then we
simply denote the finite element space by Vh,p.

An interior face of Th is defined as the (non-empty) (d−1)–dimensional interior
of ∂κ+ ∩∂κ−, where κ+ and κ− are two adjacent elements of Th, not necessarily
matching. A boundary face of Th is defined as the (non-empty) (d−1)–dimensional
interior of ∂κ∩Γ , where κ is a boundary element of Th. We denote by ΓI the union
of all interior faces of Th. Let κ+ and κ− be two adjacent elements of Th, and x
an arbitrary point on the interior face f = ∂κ+ ∩ ∂κ−. Furthermore, let v and τ
be vector- and matrix-valued functions, respectively, that are smooth inside each
element κ±. By (v±,τ±), we denote the traces of (v,τ) on f taken from within the
interior of κ±, respectively. Then, the averages of v and τ at x ∈ f are given by
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{{v}}= (v+ + v−)/2 and {{τ}} = (τ+ + τ−)/2, respectively. Similarly, the jump of
v at x ∈ f is given by [[v]] = v+⊗nκ+ +v−⊗nκ− , where we denote by nκ± the unit
outward normal vector of κ±, respectively. On f ⊂ Γ , we set {{v}} = v, {{τ}} = τ
and [[v]] = v⊗n, where n denotes the unit outward normal vector to Γ .

The DG discretization of (1) is given by: find uh ∈ Vh,p such that

N (uh,v) ≡−
∫
Ω

F c(uh) : ∇hv dx + ∑
κ∈Th

∫
∂κ\Γ

H (u+
h ,u−

h ,n+) ·v+ ds

+
∫
Ω

F v(uh,∇huh) : ∇hv dx−
∫
ΓI

{{F v(uh,∇huh)}} : [[v]] ds

−
∫
ΓI

{{G�(uh)∇hv}} : [[uh]] ds+
∫
ΓI

δ (uh) : [[v]] ds+NΓ (uh,v) = 0 (2)

for all v in Vh,p. The subscript h on the operator ∇h is used to denote the discrete
counterpart of ∇, defined elementwise. Here, H (·, ·, ·) denotes the (convective) nu-
merical flux function; this may be chosen to be any two–point monotone Lipschitz
function which is both consistent and conservative. For the purposes of this article,
we employ the Vijayasundaram flux.

In order to define the penalization function δ (·) arising in the DG method (2),
we first introduce the local (anisotropic) mesh and polynomial functions h and
p, respectively. To this end, the function h in L∞(ΓI ∪Γ ) is defined as h(x) =
min{mκ+ ,mκ−}/m f , if x is in the interior of f = ∂κ+ ∩ ∂κ− for two neighboring
elements in the mesh Th, and h(x) = mκ/m f , if x is in the interior of f = ∂κ ∩Γ .
Here, for a given (open) bounded set ω ⊂ Rs, s ≥ 1, we write mω to denote the s–
dimensional measure (volume) of ω . In a similar fashion, we define p in L∞(ΓI ∪Γ )
by p(x) = max{pκ+,i, pκ−, j} for κ+, κ− as above, where the indices i and j are
chosen such that σ−1

κ+ ( f ) and σ−1
κ− ( f ) are orthogonal to the ith–, respectively, jth–

coordinate direction on the reference element κ̂ . For x in the interior of a bound-
ary face f = ∂κ ∩Γ , we write p(x) = pκ ,i, when σ−1

κ ( f ) is orthogonal to the ith–
coordinate direction on κ̂ . With this notation the penalization term is given by

δ (uh) = CIP
p

2

h
{{G(uh)}}[[uh]],

where CIP is a (sufficiently large) positive constant, cf. [7].
Finally, we define the boundary terms present in the form NΓ (·, ·) by

NΓ (uh,v) =
∫
Γ

HΓ (u+
h ,uΓ (u+

h ),n+) ·v+ ds+
∫
Γ
δΓ (u+

h ) : v⊗n ds

−
∫
Γ

n ·F v
Γ (uΓ (u+

h ),∇hu+
h )v+ ds−

∫
Γ

(
G�
Γ (u+

h )∇hv+
h

)
:
(
u+

h −uΓ (u+
h )
)⊗n ds,

where δΓ (uh) = CIP
p

2

h
GΓ (u+

h )(uh −uΓ (uh))⊗n. Here, the viscous boundary flux
F v

Γ and the corresponding homogeneity tensor GΓ are defined by

F v
Γ (uh,∇uh) = F v(uΓ (uh),∇uh) = GΓ (uh)∇uh = G(uΓ (uh))∇uh.
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Furthermore, on portions of the boundary Γ where adiabatic boundary conditions
are imposed, F v

Γ and GΓ are modified such that n ·∇T = 0. The convective bound-
ary flux HΓ is defined by HΓ (u+

h ,uΓ (u+
h ),n) = n · F c(uΓ (u+

h )). Finally, the
boundary function uΓ (u) is given according to the type of boundary condition im-
posed; for details, we refer to [11], for example.

4 A Posteriori Error Estimation

In this section we consider the derivation of an adjoint-based a posteriori bound on
the error in a given computed target functional J(·) of practical interest, such as the
drag, lift, or moment on a body immersed within a compressible fluid, for example.

Assuming that the functional of interest J(·) is differentiable, we write J̄(·; ·) to
denote the mean value linearization of J(·) defined by

J̄(u,uh;u−uh) = J(u)− J(uh) =
∫ 1

0
J′[θu+(1−θ )uh](u−uh) dθ ,

where J′[w](·) denotes the Fréchet derivative of J(·) evaluated at some w in V. Here,
V is some suitably chosen function space such that Vh,p ⊂ V.

Analogously, for v in V, we define the mean–value linearization of N (·,v) by

M (u,uh;u−uh,v)= N (u,v)−N (uh,v)=
∫ 1

0
N ′[θu+(1−θ )uh](u−uh,v) dθ .

Here, N ′[w](·,v) denotes the Fréchet derivative of u �→ N (u,v), for v ∈ V fixed,
at some w in V. Let us now introduce the adjoint problem: find z ∈ V such that

M (u,uh;w,z) = J̄(u,uh;w) ∀w ∈ V. (3)

With this notation, we may state the following error representation formula

J(u)− J(uh) = R(uh,z− zh) ≡ ∑
κ∈Th

ηκ , (4)

where R(uh,z− zh) = −N (uh,z− zh) includes primal residuals multiplied by the
difference of the adjoint solution z and an arbitrary discrete function zh ∈ Vh,p, and
ηκ denotes the local elemental indicators; see [8, 10] for details.

We note that the error representation formula (4) depends on the unknown ana-
lytical solution z to the adjoint problem (3) which in turn depends on the unknown
analytical solution u. Thus, in order to render these quantities computable, both u
and z must be replaced by suitable approximations. Here, the linearizations leading
to M (u,uh; ·, ·) and J̄(u,uh; ·) are performed about uh and the adjoint solution z is
approximated by computing the DG approximation z̄h ∈ V̄h,p, where V̄h,p is an ad-
joint finite element space from which the approximate adjoint solution z̄h is sought.
For the purposes of this article, we set V̄h,p = Vh,pd , where pd = p+ 1.
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In the following sections we consider the development of a variety of adaptive
mesh refinement algorithms in order to efficiently control the error in the computed
target functional of interest.

5 Anisotropic Mesh Adaptation

In this section we first consider the automatic design of anisotropic finite element
meshes Th, assuming that the underlying polynomial degree distribution is both
uniform and fixed, i.e., when uh ∈ Vh,p. To this end, elements are marked for re-
finement/derefinement according to the size of the (approximate) error indicators
|η̄κ |, based on employing a fixed fraction strategy, for example. Here, η̄κ is defined
analogously to ηκ in (4) with z replaced by z̄h.

To subdivide the elements which have been flagged for refinement, we em-
ploy a simple Cartesian refinement strategy; here, elements may be subdivided
either anisotropically or isotropically according to the three refinements (in two–
dimensions, i.e., d = 2) depicted in Figure 1. In order to determine the optimal
refinement, we propose the following strategy based on choosing the most compet-
itive subdivision of κ from a series of trial refinements, whereby an approximate
local error indicator on each trial patch is determined.

Algorithm 5.1 Given an element κ in the computational mesh Th (which has been
marked for refinement), we first construct the mesh patches Th,i, i = 1,2,3, based on
refining κ according to Figures 1(a), (b), & (c), respectively. On each mesh patch,
Th,i, i = 1,2,3, we compute the approximate error estimators Rκ ,i(uh,i, z̄h,i − zh) =
∑κ ′∈Th,i

ηκ ′,i, for i = 1,2,3, respectively. Here, uh,i, i = 1,2,3, is the DG approxima-
tion computed on the mesh patch Th,i, i = 1,2,3, respectively, based on enforcing
appropriate boundary conditions on ∂κ computed from the original DG solution
uh on the portion of the boundary ∂κ of κ which is interior to the computational
domain Ω , i.e., where ∂κ∩Γ = /0. Similarly, z̄h,i denotes the DG approximation to z
computed on the local mesh patch Th,i, i = 1,2,3, respectively, with polynomials of
degree pd, based on employing suitable boundary conditions on ∂κ∩Γ = /0 derived
from z̄h. Finally, ηκ ′,i, i = 1,2,3, is defined in an analogous manner to ηκ , cf. above,
with uh and z replaced by uh,i and z̄h,i, respectively.

(a) (b) (c)

Fig. 1 Cartesian refinement in 2D: (a) & (b) Anisotropic refinement; (c) Isotropic refinement
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 2 Cartesian refinement in 3D

The element κ is then refined according to the subdivision of κ which satisfies

min
i=1,2,3

|ηκ |− |Rκ ,i(uh,i, z̄h,i − zh)|
#dofs(Th,i)−#dofs(κ)

,

where #dofs(κ) and #dofs(Th,i), i = 1,2,3, denote the number of degrees of freedom
associated with κ and Th,i, i = 1,2,3, respectively, cf. [6].

The extension of this approach to the case when Th is a hexahedral mesh in
three-dimensions follows in an analogous fashion. Indeed, in this setting, we again
employ a Cartesian refinement strategy whereby elements may be subdivided ei-
ther isotropically or anisotropically according to the four refinements depicted in
Figures 2(a)–(d). We remark that we assume that a face in the computational mesh
is a complete face of at least one element. This assumption means that the refine-
ments depicted in Figures 1(b)–(d) may be inadmissible. In this situation, we replace
the selected refinement by either one of the anisotropic mesh refinements depicted
in Figures 2(e)–(g), or if necessary, an isotropic refinement is performed.

5.1 Numerical Experiments

In this section we present a number of experiments to numerically demonstrate the
performance of the anisotropic adaptive algorithm outlined in the previous section.

5.1.1 ADIGMA MTC3: Laminar Flow around a NACA0012 Airfoil

In this example, we consider the subsonic viscous flow around a NACA0012 airfoil.
At the farfield (inflow) boundary we specify a Mach 0.5 flow at an angle of attack
α = 2◦, with Reynolds number Re = 5000; on the walls of the airfoil geometry,
we impose a zero heat flux (adiabatic) no-slip boundary condition. Here, we con-
sider the estimation of the drag coefficient Cd; i.e., the target functional of interest
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Fig. 3 ADIGMA MTC3 test case: (a) Comparison between adaptive isotropic and anisotropic
mesh refinement; Anisotropic mesh after (b) 4 adaptive refinements, with 3485 elements; (c)
8 adaptive refinements, with 10410 elements

is given by J(·) ≡ JCd(·). The initial starting mesh is taken to be an unstructured
quadrilateral–dominant hybrid mesh consisting of both quadrilateral and triangular
elements; here, the total number of elements is 1134. Furthermore, curved bound-
aries are approximated by piecewise quadratic polynomials. In Figure 3(a) we plot
the error in the computed target functional JCd(·) using both an isotropic (only)
mesh refinement algorithm, together with the anisotropic refinement strategy out-
lined in Section 5. From Figure 3(a), we observe the superiority of employing the
anisotropic mesh refinement algorithm in comparison with standard isotropic sub-
division of the elements. Indeed, the error |JCd(u)−JCd(uh)| computed on the series
of anisotropically refined meshes designed using the proposed algorithm outlined
in Section 5 is (almost) always less than the corresponding quantity computed on
the isotropic grids. Indeed, on the final mesh anisotropic mesh refinement leads to
an improvement in |JCd(u)− JCd(uh)| of over 60% compared with the same quan-
tity computed using isotropic mesh refinement. The meshes generated after 4 and 8
anisotropic adaptive mesh refinements are shown in Figures 3(b) & (c), respectively.
Here, we clearly observe significant anisotropic refinement of the viscous boundary
layer, as we would expect.

5.1.2 ADIGMA BTC0: Laminar Flow around a Streamlined Body

In this second example we consider laminar flow past a streamlined three–dimen-
sional body. Here, the geometry of the body is based on a 10 percent thick airfoil
with boundaries constructed by a surface of revolution. The BTC0 geometry is con-
sidered at laminar conditions with inflow Mach number equal to 0.5, at an angle of
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Fig. 4 ADIGMA BTC0 test case (laminar): (a) Comparison between adaptive isotropic and
anisotropic mesh refinement; Anisotropic mesh after 3 adaptive refinements, with 2314 ele-
ments: (b) Boundary mesh; (c) Symmetry plane

attack α = 1◦, and Reynolds number Re = 5000 with adiabatic no-slip wall bound-
ary condition imposed. Here, we suppose that the aim of the computation is to calcu-
late the lift coefficient Cl; i.e., J(·)≡ JCl(·). In this example, the initial starting mesh
is taken to be an unstructured hexahedral mesh with 992 elements. In Figure 4(a) we
plot the error in the computed target functional JCl(·) using both an isotropic (only)
mesh refinement algorithm, together with the anisotropic refinement strategy out-
lined in Section 5. From Figure 4(a), we again observe the superiority of employing
the anisotropic mesh refinement algorithm in comparison with standard isotropic
subdivision of the elements. Indeed, the error |JCl(u)− JCl(uh)| computed on the
series of anisotropically refined meshes designed using Algorithm 5.1 is always less
than the corresponding quantity computed on the isotropic grids. Indeed, on the final
mesh the true error between JCl(u) and JCl(uh) using anisotropic mesh refinement is
over an order of magnitude smaller than the corresponding quantity when isotropic
h–refinement is employed alone. The mesh generated after 3 anisotropic adaptive
mesh refinements is shown in Figures 4(b) & (c). Here, we again observe significant
anisotropic refinement of the viscous boundary layer.

6 hp–Adaptivity on Isotropically Refined Meshes

In this section we now consider the case when both the underlying finite element
mesh Th and the polynomial distribution are isotropic; thereby, uh ∈ Vh,piso . The
extension to general anisotropic finite element spaces will be considered in the
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following section. In this setting, once an element has been selected for refine-
ment/derefinement the key step in the design of such an (isotropic) hp–adaptive
algorithm is the local decision taken on each element κ in the computational mesh
as to which refinement strategy (i.e., h-refinement via local mesh subdivision or p-
refinement by increasing the degree of the local polynomial approximation) should
be employed on κ in order to obtain the greatest reduction in the error per unit cost.
To this end, we employ the technique for assessing local smoothness developed in
the article [13], which is based on monitoring the decay rate of the sequence of
coefficients in the Legendre series expansion of a square–integrable function.

6.1 ADIGMA MTC1: Inviscid Flow around a NACA0012 Airfoil

In this section we consider the performance of the goal–oriented hp–refinement
algorithm outlined above for the ADIGMA MTC1 test case: inviscid compressible
flow around a NACA0012 airfoil with inflow Mach number equal to 0.5, at an angle
of attack α = 2◦. Here, we suppose that the aim of the computation is to calculate
the pressure induced drag coefficient Cdp; i.e., J(·) ≡ JCdp(·).

In Figure 5 we plot the error in the computed target functional JCdp(·), using both
h– and hp–refinement against the square–root of the number of degrees of free-
dom on a linear–log scale in the case of both a structured and unstructured initial
mesh. In both cases, we see that after the initial transient, the error in the computed
functional using hp–refinement becomes (on average) a straight line, thereby indi-
cating exponential convergence of JCdp(uh) to JCdp(u). Figure 5 also demonstrates
the superiority of the adaptive hp–refinement strategy over the standard adaptive h–
refinement algorithm. In each case, on the final mesh the true error between JCdp(u)
and JCdp(uh) using hp–refinement is almost 2 orders of magnitude smaller than the
corresponding quantity when h–refinement is employed alone. Finally, in Figure 6
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Fig. 5 ADIGMA MTC1 test case: Comparison between adaptive hp– and h–mesh refine-
ment. (a) Structured initial mesh; (b) Unstructured initial mesh.
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(a) (b)

Fig. 6 ADIGMA MTC1 test case: hp–Mesh distribution. (a) Structured initial mesh after 9
adaptive refinements; (b) Unstructured initial mesh after 7 adaptive refinements.

we show the hp–mesh distributions based on employing a structured and unstruc-
tured initial mesh after 9 and 7 adaptive refinement steps, respectively.

7 Anisotropic hp–Mesh Adaptation

Finally, in this section we consider the general case of automatically generating
anisotropically refined computational meshes, together with an anisotropic poly-
nomial degree distribution. With this in mind, once an element has been selected
for refinement/derefinement a decision is first made whether to carry out an h-
refinement/derefinement or p-enrichment/derefinement based on the technique out-
lined in Section 6, whereby the analyticity of the solutions u and z is assessed by
studying the decay rates of their underlying Legendre coefficients. Once the h– and
p–refinement flags have been determined on the basis of the above strategy, a deci-
sion regarding the type refinement to be undertaken — isotropic or anisotropic —
must be made. Motivated by the work in Section 5, we employ a competitive re-
finement technique, whereby the “optimal” refinement is selected from a series of
trial refinements. In the h–version setting, we again exploit the algorithm outlined in
Section 5. For the case when an element has been selected for polynomial enrich-
ment we consider the p–version counterpart of Algorithm 5.1 and solve local prob-
lems based on increasing the polynomial degrees anisotropically in one direction at
a time by one degree, or isotropically by one degree; see [7] for details.

7.1 ADIGMA MTC3: Laminar Flow around a NACA0012 Airfoil

In this section we again consider the ADIGMA MTC3 test case and again sup-
pose that the aim of the computation is to calculate the drag coefficient Cd, cf. Sec-
tion 5.1.1. In Figure 7(a) we plot the error in the computed target functional JCd(·),
using a variety of h–/hp–adaptive algorithms against the square–root of the num-
ber of degrees of freedom on a linear–log scale in the case when an unstructured
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Fig. 7 ADIGMA MTC3 test case: (a) Comparison between different adaptive refinement
strategies. Mesh distribution after 5 adaptive anisotropic hp–refinements, with 2200 elements
and 52744 degrees of freedom: (b) h–/px–mesh distribution; (c) h–/py–mesh distribution.

initial mesh is employed. In particular, here we consider the performance of the
following adaptive mesh refinement strategies: isotropic h–refinement, anisotropic
h–refinement, isotropic hp-refinement, anisotropic h–/isotropic p–refinement, and
anisotropic hp–refinement. Here, we clearly observe that as the flexibility of the
underlying adaptive strategy is increased, thereby allowing for greater flexibility
in the construction of the finite element space Vh,p, the error in the computed
target functional of interest is improved in the sense that the error in the com-
puted value of JCd(·) is decreased for a fixed number of degrees of freedom.
However, we point out that in the initial stages of refinement, all of the refine-
ment algorithms perform in a similar manner. Indeed, it is not until the struc-
ture of the underlying analytical solution is resolved that we observe the bene-
fits of increasing the complexity of the adaptive refinement strategy. Finally, we
point out that the latter three refinement strategies incorporating p–refinement all
lead to exponential convergence of JCd(uh) to JCd(u). Figures 7(b) & (c) show
the resultant hp–mesh distribution when employing anisotropic hp–refinement af-
ter 5 adaptive steps; here, Figures 7(b) & (c) show the (approximate) polyno-
mial degrees employed in the x– and y–directions, respectively. We observe that
anisotropic h–refinement has been employed in order to resolve the boundary layer
and anisotropic p-refinement has been utilized further inside the computational
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domain. In particular, we notice that the polynomial degrees have been increased
to a higher level in the orthogonal direction to the curved geometry, as we would
expect.
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Chapter 29
Treatment of the Non-polygonal Boundary with
the Aid of NURBS

Vı́t Dolejšı́

Abstract. Within this chapter we deal with the description of the nonpolygonal
boundaries of 3D domains which exhibits an important tool for a mesh adaptation
and a higher order discretization in CFD. We define our requirements, namely the
evaluation of the first and second order derivatives and the (pseudo)inverse mapping.
Furthermore, we show that an extension of the approach used in 2D leads to enor-
mous memory requirements. Hence, we propose the boundary description based on
a NURBS representation. A detailed comparison of both approaches is presented.

1 Introduction

The reatment of non-polygonal boundaries is an important and complex issue in
computational fluid dynamics. The most shape of wings, plains etc. are not de-
scribed by simple analytical functions and hence, there arises a necessity to describe
boundaries of computational domains by a sufficiently efficient and accurate way.
Such treatment of non polygonal boundaries is employed is higher order methods
as well as in a mesh adaptation. The aim is to describe the boundary shape by a
finite number of patches in such a way that each patch is a results of a mapping of a
reference rectangle, i.e.,

(u,v) → f(u,v) ∈ IR3, (u,v) ∈ (0,T1)× (0,T2), (1)

where
f(u,v) = ( f1(u,v), f2(u,v), f3(u,v)), (2)

see Figure 1.
Mesh adaptation algorithms and higher order discretizations handling with non-

polygonal boundaries require
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(u↪ v)

f

f (u↪ v)

Fig. 1 Example of a mapping of the reference rectangle to a non-polygonal patch

• evaluation of the function f for each (u,v) ∈ (0,T1)× (0,T2),
• evaluation of the first order derivatives of f, i.e.,

∂ fi

∂u
(u,v),

∂ fi

∂u
(u,v), (u,v) ∈ (0,T1)× (0,T2), i = 1,2,3, (3)

• evaluation of the second order derivatives of f, i.e.,

∂ 2 fi

∂u2 (u,v),
∂ 2 fi

∂u∂v
(u,v),

∂ 2 fi

∂v2 (u,v), (u,v) ∈ (0,T1)× (0,T2), i = 1,2,3 (4)

• evaluation of the “inverse mapping”

(u,v) = f−1(x1,x2,x3), (x1,x2,x3) ∈ {f(u,v); (u,v) ∈ (0,T1)× (0,T2)}. (5)

Here, we deal with two possible treatments of non-polygonal boundaries:

i) dense nodes representation (Section 2),
ii) NURBS representation (Section 3),

The first approach represents in fact a direct generalization of the approach devel-
oped in [1], [2] for the anisotropic mesh adaptation method for 2D domains. How-
ever, the studies and observations presented in Section 4 shows that this approach
can not be applied with success to 3D problems. Hence, we develop the second
technique which represents a more sofisticated approach which often used in engi-
neering for description of nonpolygonal boundaries. We compare both approaches
from the point of view of memory requirements and CPU time in Section 4.

2 Dense Nodes Representation

This approach represents in fact a direct generalization of approach developed in
[1], [2] for the anisotropic mesh adaptation method for 2D domains. There, the
nonpolygonal boundaries were approximated by a piecewise linear line over a large
set of nodes lying on the boundary. Then the mesh adaptation was carried out with
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the aid of this finite set. Hence, it was a semi-discrete representation. This approach
can be directly extended to 3D in the following way.

2.1 Dense Nodes Definition

Let us assume that the computational domain Ω ⊂ IR3 has the boundary ∂Ω which
consists of a finite number of surfaces Qk, k = 1, . . . ,N. These surfaces are images of
mappings Fk, k = 1, . . . ,N, of either reference square Ŝ = [0,1]× [0,1] or a reference
triangle T̂ = {(x,y), 0 ≤ y ≤ 1− x, 0 ≤ x ≤ 1}, i.e.

∂Ω = ∪N
k=1Qk, QK = Fk(T̂ ) or QK = Fk(Ŝ), (6)

where Fk : T̂ → IR3 or Fk : T̂ → IR3, k = 1, . . . ,N. For the simplicity we will consider
only Qk which are images of reference squares.

Let M is a given (sufficiently large) integer number, we define a set of Lagrangian
nodes of the reference element by

{P̂i, j; P̂i, j = (i/M, j/M), i, j = 1, . . . ,M} ∈ Ŝ. (7)

Then, for each surface Qk we define the set of images of reference nodes by

Nk := {Pi, j
k = Fk(P̂i, j), i, j = 1, . . . ,Mk}, k = 1, . . . ,N. (8)

(It is possible consider different spacing with respect to x and y coordinates and also
different M for each surface Qk.)

Finally, we put

N := {Pi, j
k ; Pi, j

k , i, j = 1, . . . ,Mk, k = 1, . . . ,N}. (9)

Obviously, N ⊂ ∂Ω . We call N the dense nodes set and it represents a dense
nodes representation of ∂Ω .

2.2 Evaluation of the Derivatives

The functions Fk, k = 1, . . . ,N, which map a reference element to the surfaces
Qk, k = 1, . . . ,N are not defined for any point of reference element but only for
the finite (but large) number of nodes P̂i, j, i, j = 1, . . . ,N. Therefore, it is necessary
to evaluate the first and second order derivatives with the aid of finite differences
very well-known from the finite difference methods, i.e,

∂Fk

∂u
(P̂i, j) ≈ Fk(P̂i+δ , j)−Fk(P̂i, j)

δ/M
, (10)

∂Fk

∂v
(P̂i, j) ≈ Fk(P̂i, j+δ )−Fk(P̂i, j)

δ/M
,
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∂F
k

∂u2 (P̂i, j) ≈ Fk(P̂i−δ , j)−2Fk(P̂i, j)+ Fk(P̂i+δ , j)
(δ/M)2 ,

∂F
k

∂v2 (P̂i, j) ≈ Fk(P̂i, j−δ )−2Fk(P̂i, j)+ Fk(P̂i, j+δ )
(δ/M)2 ,

∂F
k

∂u∂v
(P̂i, j) ≈ Fk(P̂i+δ , j+δ )−Fk(P̂i−δ , j+δ )−Fk(P̂i+δ , j−δ )+ Fk(P̂i−δ , j−δ )

4(δ/M)2 ,

where δ is a suitable chosen nonzero integer number. The first order derivatives are
approximated with the aid of forward (for δ > 0 ) or backward (δ < 0) difference
formulae and the second order derivatives with the aid of central formulae. In case
that we evaluate derivatives in P̂i, j for i or j equal to 0 or N it is necessary to avoid a
use of the central formulae. Smaller δ gives smaller discretization error but for very
large N it can cause an increase of rounding errors. Therefore, in order to have a
sufficiently robust evaluation of the derivatives, it is necessary to carried out several
computations for different δ .

Hence, let ∂δl
F, l = 1, . . . ,L denote formally an approximation of an derivative

given by (10) for a sequence of L different choices of δ such that δ1 < δ2 < .. . < δL.
In practical implementations, it is natural to put δl = l, l = 1, . . . ,L. Then we say
that a sequence

Δδl := |∂δl
F − ∂δl+1F|, l = L0, . . . ,L1, 1 ≤ L0 < L1 ≤ L−1 (11)

is L0,L1 reliable if Δδl ≤ Δδl+1, l = L0, . . . ,L1. The reliability means that the ap-
proximations of derivatives ∂δl

F, l = 1, . . . ,L numerically converge to a limit value.
Then the resulting approximation of derivative is taken the value (10) obtained with
δL0 where L0 is the minimal value for which the sequence (11) is L0,L0 + r reliable.
The r is user defined value, e.g., r = 3.

The evaluation of the derivatives is not to much accurate. However, in the mesh
adaptation algorithm, it is sufficient to have a reasonable approximation of these
derivatives, hence the presented approach is sufficient.

2.3 Evaluation of the Inverse Mapping

Let R ∈ IR3 be a node in a vicinity of surface Qk. Our aim is to find a node R̂ from an
reference element such that Fk(R̂) = R. If R �∈ Qk then such R̂ does not exist, hence
the task should be taken from a point of some extrapolation.

In the case of the dense nodes representation it is natural (for a given R) to find the
closest possible node Pi, j

k from N . Very naive technique (but always convergent) is
to find the closest node by checking all nodes from N .

The more efficient approach is a 2D generalization of the half-splitting method.
In practical applications, the node R lies in a triangular or rectangular surface of a
tetrahedral, hexahedral, etc. element.

Without any restriction we assume, that for a given R is a node lying in a triangle
defined by a triple of nodes (T1,T2,T3) lying on Qk. Let T̂i, i = 1,2,3 be nodes of T̂
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such that Fk(T̂i) = Ti, i = 1,2,3. This assumption is fulfilled in practice since node
R is usually a node of a given triangle surface. We describe the algorithm for a case
when the dense node set N is infinitely dense. Then we introduce some remarks
concerning implementation for finite N .

Algorithm

1. let s = 0 and initiate T s
i = Ti, T̂ s

i = T̂i, i = 1,2,3
2. look up is = 1,2,3 such that

|T s
is −R| ≥ |T s

i −R|, i = 1,2,3

3. put

T̂ s+1
i =

{
T̂ s

i if i �= is
(T̂ s

1 + T̂ s
2 + T̂ s

3 )/3 if i = is
, i = 1,2,3

4. if triangle (T̂ s+1
1 , T̂ s+1

1 , T̂ s+1
1 ) is sufficiently small (i.e, between them there is only

a few nodes from T ) then we stop the iteration else

a. T s+1
i = Fk(T̂ s+1

i ), i = 1,2,3
b. put s := s+ 1
c. goto step 2.

Finally, we look up the node closest to R by checking all (a few) nodes from refer-
ence element lying within element (T̂ s

1 , T̂ s
1 , T̂ s

1 ). Figure 2 illustrates this algorithm.
For finite set N it is necessary to slightly modify the second part of step 3 in order
to ensure that T s+1

i ∈ N and R lies within triangle (T s+1
1 ,T s+1

1 ,T s+1
1 ).

T 1
1 = T 2

1

T 1
2

T 1
3 = T 2

3 = T 3
3

T 2
2 = T 3

2 = T 4
2T 3

1 = T 4
1

T 4
3

R

Fig. 2 Illustration of the evaluation of inverse mapping for dense nodes representation
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3 NURBS

The so-called Non-Uniform Rational B-Splines, commonly referred as NURBS
(see, e.g., [3]), have become in fact the industry standard for the representation,
design, and data exchange of geometric information processing by computers. The
enormous success behind NURBS is largely due the fact that

• NURBS provide a unified mathematical basis for representing both analytic
shapes, such as conic sections and quadratic surfaces, as well as free-form en-
tities such as car bodies and ship hulls;

• designing with NURBS is intuitive; almost every tool and algorithm has an easy-
to-understand geometric interpretation;

• NURBS algorithms are fast and numerically stable;
• NURBS curves and surfaces are invariant under common geometric transforma-

tions, such as translation, rotation, parallel and perspective projections;
• NURBS are generalizations of non-rational B-splines and rational and non-

rational Bézier curves and surfaces.

3.1 Definition of NURBS Surfaces

3.1.1 B-Spline

Let U = {u0, . . . ,uk} be a non-decreasing sequence of real numbers. Each of them
is called knot and U is the knot vector. The i-th B-spline basis function of p-degree
denoted by Ni,p(u) is defined recursively as follows

Ni,0(u) =
{

1 if ui ≤ u ≤ ui+1

0 otherwise
, i = 0, . . . ,k−1 (12)

Ni,p(u) =
u−ui

ui+p −ui
Ni,p−1(u)+

ui+p+1 −u
ui+p+1 −ui+1

Ni+1,p−1(u), i = 0, . . . ,k− p−1,

with the convention 0/0 ≡ 0. These basis functions are key to define a NURBS
surface. It is possible to derive the recursive formulae for basis function derivative

N
′
i,p(u) =

p
ui+p −ui

Ni,p−1(u)− p
ui+p+1−ui+1

Ni+1,p−1(u). (13)

3.1.2 NURBS Surface

Let be given:

• p ≥ 1 and q ≥ 1 the degrees in the “u-direction” and the “v-direction”,
respectively,

• n ≥ p + 1 and m ≥ q + 1 corresponding to the number of used basic functions in
the “u-direction” and the “v-direction”, respectively,

• the real numbers:
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0 < up+1 ≤ up+2 ≤ . . . ≤ un < 1, (14)

0 < vq+1 ≤ vq+2 ≤ . . . ≤ vm < 1,

• the bidirectional control net

{Pi, j,Pi, j ∈ IR3, i = 0, . . . ,n, j = 0, . . . ,m} (15)

• weights {wi, j,wi, j ∈ IR, i = 0, . . . ,n, j = 0, . . . ,m}
Using values (14) we define the knot vectors U and V by

U = {
p+1︷ ︸︸ ︷

0, . . . ,0,up+1, . . . ,un,

p+1︷ ︸︸ ︷
1, . . . ,1} ∈ IRn+p+2, (16)

V = {0, . . . ,0︸ ︷︷ ︸
q+1

,vq+1, . . . ,vm,1, . . . ,1︸ ︷︷ ︸
q+1

} ∈ IRm+q+2,

over which we construct the corresponding B-spline basis functions of orders
p and q

{Ni,p(u),Ni,p(u) : (0,1) → IR, i = 0, . . . ,n}, (17)

{Nj,q(u),Nj,q(u) : (0,1) → IR, j = 0, . . . ,m}

using (12).
Then we define a mapping S(u,v) : (0,1)× (0,1)→ IR3 by

S(u,v)≡ ∑n
i=0∑

m
j=0 Ni,p(u)Nj,q(v)wi, jPi, j

∑n
i=0∑

m
j=0 Ni,p(u)Nj,q(v)wi, j

0 ≤ u,v ≤ 1, (18)

which is called a NURBS surface.

3.2 Evaluation of the Derivatives

The direct evaluation of the (first and second order) derivatives of (18) is com-
plicated. Therefore, we employ the so-called homogeneous coordinates. We rep-
resent three dimensional control net points Pi, j = (xi, j,yi, j,zi, j)T ∈ IR3 with their
weights wi, j by four-dimensional points Pw

i, j = (wi, jxi, j,wi, jyi, j,wi, jzi, j,wi, j)T ∈ IR4.
We introduce an equivalent definition of a NURBS surface. We define a mapping
A(u,v) : (0,1)× (0,1)→ IR4 by

A(u,v) ≡
n

∑
i=0

m

∑
j=0

Ni,p(u)Nj,q(v)Pw
i, j. (19)

Assembling the components of A(u,v) by

A(u,v) = (A(u,v)|3d,A(u,v)|ω )T (20)

= (A(u,v)|3d,ω(u,v))T, A(u,v)|3d∈ IR3, ω(u,v) ∈ IR,
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the mappings S(u,v) and A(u,v) satisfy the relation

A(u,v)|3d= ω(u,v)S(u,v) ∀u,v ∈ (0,1)× (0,1). (21)

Now, we evaluate the partial derivatives of A(u,v) with the aid of (13). By a simple
computation we get

A(k,l) ≡ ∂ k+lA(u,v)
∂ ku ∂ lv

=
n

∑
i=0

m

∑
j=0

N(k)
i,p (u)N(l)

j,q(v)P
w
i, j. (22)

Finally, we evaluate the derivatives of S(u,v). From (21) we derive by parts

A(k,l)|3d= (ωS)(k,l) =

(
k

∑
i=0

(
k
i

)
ω(i,0)S(k−i,0)

)(l)

=
k

∑
i=0

(
k
i

) l

∑
j=0

(
l
j

)
ω(i, j)S(k−i,l− j).

(23)
By an elimination of (23), we derive the recurrent formulae

ω S(k,l) = A(k,l)|3d −
k

∑
i=1

(
k
i

)
ω(i,0)S(k−i,l) (24)

−
l

∑
j=1

(
l
j

)
ω(0, j)S(k,l− j)−

k

∑
i=1

(
k
i

) l

∑
j=1

(
l
j

)
ω(i, j)S(k−i,l− j), k, l = 0,1, . . . .

Expressions (24) is used for the implementation exactly in the same manner as it
was derived. At first, the homogeneous derivatives A(k,l) are computed by (22) with
a recursive use of (13). This step gives us also all the necessary values of w(i, j) =
A(i, j)|w. Finally, with the aid of (24), we evaluate all desired derivatives of S(u,v).
For more details see [3].

3.3 Evaluation of the Inverse Mapping

Given a point P, assumed to lie on the NURBS surface S(u,v), point inversion is
the problem of finding the corresponding parameters ũ, ṽ such that S(ũ, ṽ) = P. For
numerical reasons, it is better to solve this problem as point projection. One can
not expect that point P lies precisely on surface S(u,v). Therefore, we look for the
nearest point on the surface, i.e., point which minimises distance to P. In other
words, we minimise length of vector r defined by

r = r(u,v) = S(u,v)−P. (25)

In what follows, we strictly distinguish between scalar product a ·b and tensor prod-
uct ab of two vectors. The necessary condition for minimiser of (25) reads
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g(ũ, ṽ) =
∇(r · r)

2
= r(ũ, ṽ) ·∇S(ũ, ṽ) = 0, (26)

where

∇S(u,v) = (S′u,S
′
v)

T =
(

∂
∂u

S(u,v),
∂
∂v

S(u,v)
)T

. (27)

We solve (26) by the Newton’s method. It should converge well since the distance |r|
is expected to be small (point P lies in the vicinity of NURBS surface). Let (ui,vi) be
i-th approximation generated by the Newton’s method. Obviously, the convergence
means that (ui,vi) → (ũ, ṽ) for i → ∞.

The Newton iteration process reads

(ui+1,vi+1) = (ui,vi)+ (δu,δv), (28)

where the difference δ = (δu(u,v),δv(u,v)) is solution of linear system

∇g(ui,vi) · δ = −g(ui,vi). (29)

For our specific choice of g (26), we get the following equations

[∇S∇S + r ·∇∇S]δ = −r ·∇S. (30)

All the involved functions here are evaluated in point (ui,vi). As we expected, |r| is
rather small. It encourage us to omit corresponding term on the left hand side, hence

[∇S∇S]δ = −r ·∇S, (31)

which means[
S′u(ui,vi) ·S′u(ui,vi) S′u(ui,vi) ·S′v(ui,vi)
S′v(ui,vi) ·S′u(ui,vi) S′v(ui,vi) ·S′v(ui,vi)

][
δu

δv

]
=
[

(P−S(ui,vi)) ·S′u(ui,vi)
(P−S(ui,vi)) ·S′v(ui,vi)

]
.

(32)
Sequential solution of this iteration step along with verification of intuitive stopping
rules is the heart of the method. The initial guess u0,v0) of the iterative process is
taken randomly.

4 Comparison of Both Representations

Within this section we compare the computational performance of the both non-
polygonal boundary representations presented above (dense nodes and NURBS),
namely their memory and CPU requirements.

An exact comparison of boundary representations from the point of view of mem-
ory and CPU is very difficult task since it depends on the complexity of considered
problem and the accuracy of the approximation of boundary representation. There-
fore, we will try estimate these requirement only qualitatively. We will considered
a simple test case whose geometry is similar to BTC0 test case of the ADIGMA
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project. Let us consider a viscous compressible flow around a closed airfoil Γ with
length lΓ = 1 and an average intersection 0.008 (which correspond to a circle with
diameter 0.1). Then the surface of Γ is |Γ | = 0.008.

Now, we try to estimate a number of triangle on the surface of profiles which
should be used in order to obtain sufficiently accurate compressible flow simulation
with the aid of discontinuous Galerkin method (DGM). The typical Reynolds num-
ber Re is about 106 −107 therefore the grid size in a direction perpendicular to the
profile is hY ≈ c/

√
Re ≈ 10−4 (c is a small positive number). Let us assume that

DGM can treat with elements with aspect ratio 1:10, then the grid size in a direction
parallel with the profile is hx ≈ 10−3. Hence the number of surface elements on Γ
can be estimated as

NΓ ≈ |Γ |
h2

x
≈ 8000. (33)

Both considered boundary representations (dense nodes and NURBS) requires a
division of the airfoil Γ into several simpler surfaces Qk, k = 1,N which will be
images of reference elements. We estimate that simple closed airfoil can consist,
e.g., of N = 15 simple surfaces. Then the number of surface elements for one surface
is

NQk =
NΓ
N

≈ 500. (34)

In the following we discuss the memory and CPU requirements of both boundary
representations and then we compare both approaches.

4.1 Requirements of Dense Nodes

4.1.1 Memory Requirements

Based on our experiences from 2D computations with in-house code ANGENER [1]
we expect that in order to generate sufficiently “smooth” grids the set Nk introduced
in (9) should contain at least 100 nodes corresponding to one real triangle lying on
Qk, i.e, using (34), Nk should contains Mk = 50000 nodes. Each node form Nk is
stores in memory by 3 real and (at least) 1 integer number.

4.1.2 CPU for Derivative Evaluation

The first and second order derivative are evaluated with the aid of finite differences
introduced in (10). The first order derivatives need 4 operations (addition or multi-
plication) and the second order derivatives need 7 operations. We estimate that in or-
der to find the “minimal”reliable difference (11) we need to evaluate each derivative
5 times. Moreover, the founding of the minimum (several repetition of if then
else cycles needs about 5 times more operation than the evaluation itself. Then
we estimate 100 operations for the first order deivative and 140 operations for the
second order derivatives.
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4.1.3 CPU for Inverse Mapping Evaluation

Evaluation of the inverse mapping, i.e., the founding of the closest node from Nk

to a given node defined in Section 2.3 needs at most (in optimal case) logM/ log2
iterations, where M is the number of possible nodes from Nk. Hence, the upper
estimate is M = Mk = 50000 and the bellow estimate is M = 100 which corresponds
to the case when the we know a good initial approximation of the solution. Hence
we consider for simplicity M = 1000.

The number of operations for each step of the algorithm from Section 2.3 is
given by 21 in 2nd step, 16 in 3rd step and approximately 20 in 4th step, which
is totaly 57 operations. Then the total number of operations can be estimated by
57logM/ log2 ≈ 570.

4.2 Requirements of NURBS

4.2.1 Memory Requirements

Without a lost of accuracy we assume that for each surface Qk, k = 1, . . . ,N we
have one (p,q),(n,m) NURBS surface, see Section 3.1.2. Then we have to store
(n + 1)(m + 1) nodes of control net, weights and knot vectors, i.e., 4(n + 1)(m +
1) + (m − p) + (n− q) real numbers. In practice n,m are relatively small integer
numbers, at most, let us say, 5 or 10. The integer numbers p,q are still smaller, at
most, let us say 3 or 5.

4.2.2 CPU for Derivative Evaluation

Each derivative N
′
i,p(u) according (13) needs 7np operations. Then evaluation of

A(k,l) according (22) needs approximately op = 3(7np + 7mq + 3nm) operations.
Finally, we estimate the number of operations needed for evaluation of S(k,l) ac-
cording (24), which gives op operations for S(0,0), 2op operations for S(1,1),S(0,1)

and 4op operations for S(2,0),S(2,1),S(0,2).

4.2.3 CPU for Inverse Mapping Evaluation

The inverse mapping is evaluated with the aid of the Newton method which practi-
cally converges in 3 – 5 steps if we have a good initial quest. The initialization of
matrix problem (32) needs two evaluation of the first order derivatives, i.e., 4op op-
erations (see previous section) and 8 additional operations. Moreover, the solution
of linear system needs 14 operations and update (30) 2 operations. Summing, we
have 4(4op + 24) operations.

4.3 Comparison of Dense Nodes and NURBS

Within this section we compare the memory and CPU requirements of dense nodes
and NURBS boundary representations. We assume that the airfoil Γ consists of 15
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surface Qk, k = 1, . . . ,15 and we use the cubic NURBS with p = q = 3 and N =
M = 5. Table 1 show the comparison of the memory and computational requirement
for both approaches based on the previous analysis.

Table 1 Comparison of memory and computational requirements for the dense nodes and
NURBS representations

dense nodes NURBS (units)
memory 2 250 000 2 020 (reals stores)

f (u,v) 3 1 080 operations
∂ 1 f (u,v) 100 2 160 operations
∂ 2 f (u,v) 140 4 320 operations
f−1(x,y,z) 570 17 376 operations

The results presented in Table 1 do not take into account memory manipulations
which is more time consuming for the dense nodes representations since it requires
significantly more memory. Hence, Table 2 shows the comparison of real computa-
tional times for evaluating of the zero and first order derivatives in more than 60 000
nodes, which were carried out by a simple test calculation. It shows that the differ-
ence of the real computational time between both approaches is not so drastic as in
the number of operations.

Table 2 Comparison of real computational times for the dense nodes and NURBS
representations

dense nodes NURBS
f (u,v) 0.008 s 0.296 s

∂ 1 f (u,v) 0.128 s 0.593 s

5 Conclusion

Based on the previous considerations and the numerical experiments, we conclude
that

• evaluation of the derivatives and inverse mapping is several times faster with the
aid of dense nodes boundary representations

• memory requirements for NURBS representations are many times smaller

Based on practical use where the mesh adaptation process takes a minor part of
the total computational time in comparison with itself solution of the Navier-Stokes
equations (see [2]) we prefer the significant save of memory than a small decrease
of the computational time. Therefore, the proposed NURBS representation seems to
be better technique for the treatment of nonpolygonal boundaries.
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Chapter 30
HP-Adaption in Space-Time within an Explicit
Discontinuous Galerkin Framework

Arne Taube, Gregor Gassner, and Claus-Dieter Munz

Abstract. Based on an explicit discontinuous Galerkin scheme for the compress-
ible Navier-Stokes equations we describe an adaptation framework which consists
of two building blocks. First, adaptation in time due to time accurate local time step-
ping and second, adaptation in space by mesh refinement and increase of the local
polynomial order in the element during runtime based on a feature based cell reso-
lution indicator – (h-, p- and hp-adaption). At the end we show simulations of the
unsteady laminar flow over a NACA0012 airfoil.

1 Introduction

The locality of our DG formulation allows for a drastic change in the usual time
advancement by doing adaptation in time. Hence, our scheme features local time
stepping and based on that, an adaptive approach allows for different discretizations
to be used in different subregions depending on the local flow behavior. High-order
accuracy on coarse grids may be applied in some subregions, while in other regions
a fine grid in combination with lower order may be better. We also employ high
order accuracy in order to capture strong gradients on relatively coarse grid cells.

The detection of under resolved regions is based on cell resolution indicators
is described in Sect. 3. It is followed by an overview about our current adap-
tation strategy describing the three different means of adjustment – (h-, p- and
hp-adaptation) – in Sect. 4. In Section 5, we show a numerical example of the
adaptation strategy to the ADIGMA MTC 3 test case computed in parallel, which
is a subsonic viscous flow with a laminar but unsteady vortex shedding. At the end,
we draw our conclusion in Sect. 6.
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2 Adaptation in Time

For an explicit scheme, the maximum permissible time step may strongly vary in
the computational domain. It depends on the local element size, the local order
of the trial function and the local value of the approximation. Standard explicit
DG schemes use one global time step oriented at the smallest element size and
highest wave speed to ensure stability as described in the following.

2.1 Time Step Restriction

As an explicit scheme, the STE-DG scheme has to satisfy a time step restriction for
stability. For the two-dimensional compressible Navier-Stokes equations, we use the
following estimation

Δ ti ≤ 1√
1

Δ t2
i,α

+ 1
Δ t2

i,β

, (1)

with the hyperbolic (Δ ti,α ) and parabolic
(
Δ ti,β

)
time step restriction

Δ ti,α = α
Δxi

max
Qi

(
|v|+√

2|c|
) , Δ ti,β = β

Δx2
i√

2max
Qi

(
4μ
3ρ , μκ

ρPr

) , (2)

and the reference length Δxi of grid cell Qi which is two times the minimal distance
between barycenter and cell boundary. The stability numbers α and β depend on
the degree p of the polynomial approximation according to (3) and the maximal α∗
and β ∗ are given in Table 1 as they were determined in numerical calculations for
the STE-DG scheme using the HLLC and dGRP flux.

Table 1 STE-DG scheme stability numbers

p 1 2 3 4 5
α∗ 1.3 1.1 0.9 0.7 0.7
β ∗ 1.5 0.7 0.35 0.25 0.13

α := α∗
2p+1 , β := β ∗

(2p+1)2 , (3)

The parameter η , which may be considered as the penalization parameter for
jumps in the calculation of the diffusion flux, depends on the time step restriction.
In all our calculations we choose

η := η (p) :=
1√

πβ (p)
=

2p + 1√
πβ ∗ (p)

, (4)

as proposed in [5] for pure diffusion.
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2.2 Time Consistent Local Time Stepping

To overcome the inefficiency of a global time stepping approach, Flaherty et al. [1]
proposed a second order time accurate local time stepping algorithm within the
RKDG schemes. In [9], Lörcher and Gassner show how to make use of the ap-
proximative space-time approach and the locality of the discontinuous Galerkin dis-
cretization to introduce a natural arbitrary high order accurate local time stepping.
This local time stepping modification can be adopted to the multi-dimensional STE-
DG discretization (see Sect. 3 in chapter 5) as shown in Lörcher and Gassner [6]. It
starts with the introduction of the actual local time ti in the grid cell Qi. The degrees
of freedom Ûi(ti) represent the solution at the local time ti in this grid cell.

Figure 1 shows a four step sequence with four adjacent cells starting from the
same time level, but with different time steps. The considered local time stepping
algorithm minimizes the total number of time steps to reach the prescribed end time.

1. 2.

3. 4.

Fig. 1 Sequence of a 4 step computation with 4 different elements and local time stepping as
described in Gassner et al. [3]

The time evolving process according to Fig. 1 takes the following steps:

1. First, the time increments Δ ti for the next step are calculated from the local sta-
bility criterion (1) for all grid cells. In addition, each grid cell’s volume integral
which is completely determined by the interior space-time approximate solution
from the space time expansion (STE) is computed according to Sect. 3.3.1 in
chapter 5 and the degrees of freedom are updated with this contribution. Cell Q2

is detected as satisfying the so-called ‘evolve condition’,
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tn+1
i ≤ min

{
tn+1

j

}
, ∀ j : Q j ∩Qi �= /0, (5)

and will be updated in time.
2. Q2 is updated and the flux time integral contributions, H2±1/2, are stored for the

neighboring elements Q1 and Q3 with negative sign in order to ensure that the
method is conservative. Now Q3 can be ‘evolved’.

3. In the evolution of Q3 a part of the flux time integral has already been added and
therefore only the missing contributions H3±1/2 are added and stored for further
use by the neighbors.

4. Then the next element to be updated is sought and the algorithm continues.

In the case where the difference of time levels of adjacent grid cells is very small,
the number of flux calculations may be reduced and the efficiency of the method
improved by locally synchronizing those time levels. A global synchronizing tech-
nique is used for the output at certain user-defined global time levels, as well.

3 Cell Resolution or Troubled Cell Indicators

Before adapting the mesh or employing a limiting strategy, the scheme’s approx-
imation error has to be estimated. Since an exact solution is only present within
academic examples, the scheme’s approximate solution itself has to give an estima-
tion of the solution’s quality. This process is called a posteriori error estimation.
The solution behavior is different over the whole domain with well approximated
regions and zones that require special treatment, because they are under-resolved or
may contain singularities like shocks. Once detected, an adaptation or shock captur-
ing/limiting strategy can be applied to those zones in order to improve the overall
solution.

In order to locate such zones different indicators are applied. These can be di-
vided into indicators that measure the solution’s smoothness inside a cell or the
jumps at the cell interface. The two main indicators used are described in the fol-
lowing, while the adaptation strategy is described in Sect. 4.

3.1 The Modified Spectral Decay Indicator

For a given local order pi in the ith element, the DG-approximation from (Eq. 12 in
page 57) reads as

Uh
i (pi) =

Ni(pi,d)

∑
j=1

Ûi, j ·φi, j . (6)

In the case of an orthogonal hierarchical basis, one can easily calculate the differ-
ences between the approximation to the full order pi and one order less pi−1. Thus
writing:
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Uh
i (pi)−Uh

i (pi −1,d) =
Ni(pi,d)

∑
j=Ni(pi−1,d)+1

Ûi, j ·φi, j =: ΔUh
i (pi) . (7)

This expression (7) represents the influence of the highest order moment to the so-
lution. Analogously to a Fourier series, one may expect that,

lim
pi→∞

(
ΔUh

i (pi)
)

= 0. (8)

Taking Eq. (7) and the orthonormality of the basis functions, one can formulate the
L2-norm for the so-called spectral decay indicator,

η
SDIL2
i =

∫
Qi

(
uh

i (pi)−uh
i (pi −1)

)2
dx∫

Qi

(
uh

i (pi)
)2

dx
=

Ni(pi,d)

∑
j=Ni(pi−1,d)+1

(ûi, j)
2

Ni(pi,d)

∑
j=1

(ûi, j)2

. (9)

This formulation does neither require function values at the Gauss points nor the
basis functions, but only the ith element’s degrees of freedom ûi, j. If this norm does
not decay, then there should be some sort of under-resolution or shock. If the under-
lying exact solution is smooth, the coefficients of the approximation should decay
fast. The smoothness sensor proposed in Persson and Peraire [10] is modified in the
form,

ηSDI
i (u) = log10

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
max

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
Ni(pi,d)

∑
j=Ni(pi−1,d)+1

(ûi, j)2

Ni(pi,d)

∑
j=1

(ûi, j)
2

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
Ni(pi−1,d)

∑
j=Ni(pi−2,d)+1

(ûi, j)2

Ni(pi−1,d)

∑
j=1

(ûi, j)
2

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(10)
For u = ρ , ηSDI

i (ρ) is a measure for the rate of the decay of the magnitude of
the two highest order density moments, which is further used in the cell flagging
criterion (14) for the adaptation strategy described in Sect. 4.1. In contrast to the
indicator by Persson and Peraire [10], Eq. (10) uses the maximum from the two
highest order moments in order to address the different approximation properties of
even and odd basis functions.

3.2 The Jump Indicator

The DG solution may have inter-element jumps in all cases, where the solution is
not well resolved. In Krivodonova et al. [8], it is stated that for the jumps over the
inflow boundary of the element Qi,
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Ii =
∫
∂Q−

i

(
uh

i −uh
i,nb

)
ds (11)

the following convergence criteria is valid:

Ii =

{
O
(
Δxpi+1

i

)
, if u|∂Qi

is smooth

O (Δxi) , if u|∂Qi
is discontinuous .

(12)

From that assumption an indicator of the form

η Jmp

i (u) =

∣∣∣∣∫∂Q−
i

(
uh

i −uh
i,nb

)
ds

∣∣∣∣
Δx

pi
2

i

∣∣∂Q−
i

∣∣ ∥∥uh
i

∥∥ , (13)

can be defined. It is based on a mean rate of convergence O(ΔxP/2).
For regions with a smooth solution,

(η Jmp

i (u) → 0) for Δxi → 0 or pi → ∞,

whereas close to singularities/discontinuities it is

(η Jmp

i (u) → ∞).

4 Adaptation Strategies

In principle, the mesh employed has a huge impact on the computational result, its
accuracy and efficiency. Using an inappropriate mesh can lead to the crash of the
simulation or may produce false non-physical results or may increase CPU time
unnecessarily. The flow phenomena to be investigated with a numerical simulation
and the region of their occurrence may a priori be unknown or require a lot of
experience from the user. Therefore, it is advisable to employ an adaptation strategy
in order to automatically adjust the mesh or discretization according to the problem
during the simulation run. Within our framework, we have three different means of
adjustment:

• p-adaptation
Our DG scheme features orthonormal and hierarchical polynomial basis func-
tions with an approximation order that may be changed locally.

• h-adaptation
The character h describes in this context a characteristic length scale within a grid
cell. Thus h-adaptation means splitting a larger cell into smaller ones or merging
smaller cells to a bigger one. Then the solution is projected from the old onto
these newly created elements.

• hp-adaptation
A combination of h- and p-adaptation yields hp-adaptation, where not only the
elements are split or merged but the approximation order is changed as well. In
such a case, the challenge is to decide, when which adaptation method is most
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suitable. In our case, we usually apply p-adaptation up to a maximum order and
then refine the grid.

4.1 Cell Flagging Using a Feature Based Indicator

The indicator have already been described in Sect. 3. The variable for the adaptation
control is the density ρ , because – contrary to the shock capturing, where the pres-
sure p would be advisable – the resolution around contact discontinuities shall be
enhanced, as well. Then, finding an element i in an under-resolved region is guided
by the following relation for its indicator value, ηi (ρ):{

ηi (ρ) > hpmax: u is under resolved → refine
ηi (ρ) < hpmin : u is too smooth → coarsen .

(14)

The values hpmax and hpmin are user defined bounds for the adaptation indicator.
The technical terms ‘refine’ and ‘coarsen’ in (14) do not necessarily mean that in

that case the mesh is adapted via h-adaptation. ‘Refine’ generally means that the res-
olution shall be increased by either increasing the order or splitting the element. The
same applies for the expression ‘coarsen’, where the resolution may be decreased
by either reducing the element’s order or merging elements together. If found nec-
essary by the above criterion, the adaptation strategy as described in the following
is applied.

4.2 p-Adaptation

The degree of polynomial approximation, p, can easily be changed from one time
step to the other. We use hierarchical and orthonormal polynomial approximation
functions as described in 3.1. Hence, if according to the cell flagging criterion (14)
more resolution is required, the sum in Eq. (6) is simply extended to a higher order
or may be reduced in regions where less resolution may be acceptable. In that way
more degrees of freedom or higher order moments are added or taken away. The
mean value or conservation property of the approximation, i.e. the 1st order moment,
remains unchanged.

4.3 h-Adaptation

Compared to the previously described p-adaptation, adapting the mesh is consider-
ably more complex. Due to our scheme’s local character and the local time stepping
feature, elements are as a general rule not on the same time level. This is a partic-
ular challenge to the coarsening strategy, i.e. the cell merging algorithm. However,
splitting or merging elements together can lead to a much more optimized mesh. As
each cell’s time step depends on its size, h-adaptation may in combination with the
local time steps drastically increase the performance. Furthermore, we can take into
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account local gradients in order to refine the mesh in an anisotropic manner in the
direction of such gradients.

Another advantage of our framework over classical CFD-implementations is the
use of an ‘object oriented’ programming concept. The elements and their sides are
stored as objects in interlinked lists. This approach enables us to easily manage
newly formed or deleted elements. Classical CFD-implementations normally store
the mesh information into data arrays which have to be buffered, deallocated and
newly allocated when the mesh is manipulated. For our framework, however, an
addition or removal of elements does not cause any problems due to the local and
interlinked objects.

Nevertheless, independent of the fact if an element is split or other elements
are merged together, a new Taylor series expansion (Eq. 14 in page 57) has to be
performed to evaluate the surface and volume integrals.

4.3.1 Cell Splitting (Refinement)

If the indicator marks an element for refinement, its sides and their corresponding
neighbor sides will be split. If each side of a triangle or quadrangle is simply split in
half, then we have isotropic h-refinement as shown in Fig. 2 left part. If the indicator

Fig. 2 Isotropic split rectangle and triangle (left) and anisotropic split rectangles and triangles
(right)

is evaluated sidewise, we can perform a split only on those sides having the highest
indicator value. This yields in an anisotropic split as shown in Fig. 2 right part. In a
second step, the new sides are constructed. These as well as some of the old sides
border the newly created elements. Finally, the solution is projected onto the new
elements, the old (original) element is deleted and the so-called ‘split-history’ is
increased. The split-history can be viewed as a family-tree of each element, which
facilitates a possible cell merging at a later stage.

In our approach, every refinement stage is recorded in the split-history. With ev-
ery split, the newly created elements receive a unique split index, which marks them
as member of one group. Figure 3 is a schematic sketch of such a split-history. The
first element is split in an isotropic way into four sub-elements with the same split
index. Additionally, the split level

(
Ni,split

)
is stored in order to reconstruct the num-

ber of splits to obtain a certain element. This may be used as a lower limit controlling
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the adaptation process. In a second step, one of the newly formed elements is split in
an anisotropic and another one in an isotropic manner. The resulting elements have
the same split level, but different split indices.

Fig. 3 An element’s split-history with three refinements

4.3.2 Cell Merging (Coarsening)

For 2D problems, one could use geometrical operations to guide the coarsening or
recombination process by finding neighboring elements which are tested if their
roundup yields a valid element. This procedure, however, is very complex and to
our mind impracticable for 3D applications. Furthermore, coarsening a once refined
mesh may lead to a different mesh than at the beginning or to a deadlock in the
adaptation process.

Therefore, we make use of the split-history for the coarsening process as shown
in Fig. 3. When searching for elements to be joined together, only elements with
the same split index will be taken. Hence, this history contains all information from
previous element splits in order to be able to return in subsequent coarsening steps
to the original mesh element. In fact, the coarsest mesh obtained may be the initial
mesh as constructed from the mesh generator.

Having found all elements with the same split index, all the newly formed el-
ement surrounding sides are joined together. Provided that a few of the old sides
form one new element side and where else it is possible, these sides as well as their
connected neighboring sides are merged. In a second step, the inner sides and nodes
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are deleted and the newly formed element is built. Finally, the solution from the old
elements is projected onto the new one and the old elements are deleted.

4.3.3 Local Synchronization

Using local time stepping, it has to be ensured that when coarsening all elements
involved are on the same time level. The reason for that is that the merged element
has a different space time Taylor expansion and therefore surface flux integral. As a
matter of fact, the neighboring elements have to be at least on the same or a lower
time level than the synchronization time for the merged element.

Fig. 4 Four elements before
merging

Figure 4 shows four elements Qi being on the
same time level (possibly at the start of a compu-
tation). Their space time elements Qi ×

[
tn
i , t̃n+1

i

]
are depicted with dashed lines. As the Taylor se-
ries expansion does not mark a full time step, the
upper time level is named t̃n+1

i . In the course of the
simulation, elements Q2 and Q3 shall be united.
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Fig. 5 Time step element Q2 (left). Time steps element Q4 with synchronization (middle).
First time step element Q3 with synchronization as a preparation to unite Q2 and Q3 (right).

According to the evolve condition (5), element Q2 in Fig. 5 left part is the first
to do its full time update by computing its surface integrals and making it available
to its left and right neighbor. Usually the new Taylor expansion for Q2 is computed
right away, but this is suppressed by setting t̃2

2 = t1
2 .

The next step consists of two time updates of the small element Q4 in order to
reach time level t2

4 , as in Fig. 5 middle.
Then, the synchronization steps in to prevent element Q1 from doing its time

update, as its neighbor element Q2 does not have a space-time Taylor expansion.
Normally element Q1 would perform its time step based on the available information
from its left and right side. Since, on the right side element Q2 does not provide
the necessary data, it is hindered. This enables the merge of cells Q2 and Q3 to a
new element Q2+3 with a different time step and space time Taylor expansion t̃2

2+3.
Afterwards, we continue in the normal fashion as described in Sect. 2.2.
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4.4 hp-Adaptation

Since both h- as well as p-adaptation are available within our framework, the ques-
tion is which to use and when. In our case, the shock capturing strategy as described
in Gassner et al. [2, 4], however, leaves us only one choice to use high order ele-
ments close to a shock which are required for the artificial viscosity approach. If,
however, no shock capturing is required, then the choice of which adaptation h− or
p− to do first is still open and requires further investigation.

5 High Order Numerical Results with hp-Adaptation

For each application a study finding the optimal settings is required. The ADIGMA
MTC 3 test case is a numerical simulation of the fluid flow around a NACA0012
airfoil with the following parameters, angle of attack α = 2◦, free stream Mach
number Ma∞ = 0.5 and the free stream Reynolds number Re∞ = 5000 based on
the length of the airfoil c = 1.0. We compute it as a laminar but yet unsteady flow
computation till tend = 0.4. The mesh used is the coarsest unstructured quads mesh
–level 1 for the viscous case– from the ARA mesh catalogue with 578 cells.

5.1 Laminar Flow Past a NACA0012 Profile with hp-Adaptation

For the hp-adaptation, the order varies between 2–8. The mesh used is rather coarse
and therefore the vortex street formation can only be observed in the simulations
with a resolution higher than second order. In addition, the simulations have been
carried out in parallel on up to 6 CPUs using ParMETIS (see e.g. [7]) for dynamic
load balancing at every synchronizing/output interval. Adapting the mesh and ad-
justing the order yields a good resolution of the vortex street.

Figure 6 shows the result in entropy as well as the order distribution around the
airfoil with 13855 DOFs on 815 cells.
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Fig. 6 Fluid flow around NACA0012 for Re∞ = 5000, Ma∞ = 0.5. 16 equally spaced Entropy
contour lines from [11.3, . . . ,11.5] for computation using hp-adaptation (left). The order on
the refined mesh varies between 2–8 (right).
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6 Conclusion

The STE-DG’s scheme explicit approximation leads to a compact discretization for
which data is only needed from the direct adjacent grid cells. This locality and the
space-time nature of our DG discretization allows to introduce local time steps and
thus radically change the usual time advancement. Without introducing much com-
putational overhead, every grid cell may run with its own time step adopted to the
local stability restriction. This possibility of using local time steps strongly increases
the efficiency for all problems which need different resolution in different regions
of the computational domain.

The further adaption strategy is based on finding under resolved regions during
the time dependant simulation with the help of a feature based indicator. There, the
mesh or the approximation order will be adjusted until the resolution measured by
the indicator lies within the user defined bounds. The mesh may be adapted regu-
larly with isotropic adaption or even irregularly and more efficient using anisotropic
adaption. For the coarsening process, the elements are synchronized and merged on
a local level without disturbing the overall flow of the local time stepping. Using
our split history for the coarsening process, the coarsest mesh obtained is the initial
mesh. Hence, creating such a mesh is quite a challenge, because it should be rather
coarse but yet should yield a good resolution of the geometry especially when it is
curved like in the NACA0012 cases.

When running in parallel mode with adaption, the processor loads have to be
readjusted from time to time. This is done at each synchronizing/output interval,
when all cells are forced to reach a certain common time.

Especially in connection with our shock capturing, up to now some user experi-
ence is required in order to adjust the adaption control parameters for each individual
test case. Thus, some preliminary studies like simulations with low order and on a
coarse mesh have to be performed prior to a fully optimized run with adaption. In
fact, however, this is the general approach in order to assess a simulation’s outcome.

The current framework is limited two dimensional transonic and viscous cases.
In three space dimensions, splitting and coarsening elements is much more difficult,
because the resulting elements would not be of the same type. This is a topic of
further studies. However, the p-adaptation in 3D is straight forward, because it does
not involve the creation and connection of new elements to the mesh. Furthermore,
depending on the test case to be simulated using a posteriori error estimation and
goal-oriented refinement for multiple target quantities instead of a feature based
indicator for the adaption would increase the efficiency of the adaption and thus of
the simulation as well. For such an approach, Hartman and Houston have developed
some promising strategies within the ADIGMA project.

Acknowledgements. We gratefully acknowledge funding of this work by the target research
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Chapter 31
Anisotropic Mesh Adaptation in the Presence of
Complex Boundaries

Jerzy Majewski and Jacek Rokicki

Abstract. Grid adaptation is a very powerful tool for optimizing CFD calculations.
However typical isotropic adaptation used for 3D flows still may result in excessive
number of elements. This is especially the case when lower+dimensional features
of the flow are dominant (boundary layers, shockwaves). The present paper investi-
gates anisotropic adaptation for flows with complex boundaries. Of particular inter-
est is the automatic adaptation for laminar / turbulent boundary layer for which case
new error indicator is proposed.

1 Error Estimation for Anisotropic Adaptation

The anisotropic adaptation depends on the specific definition of the cell spacing
provided by the means of a metric tensor field. This field is used for distance calcu-
lations inside grid generator in such a way that the generator tries to create a grid for
which the length of all cell edges is equal 1. The length of an edge e is calculated
according to the following approximated formula:

l =
√

eT M e (1)

where M is a metric tensor averaged on e (the matrix M must be symmetric and
positive definite).

The metric tensor M is used as a definition of the local spacing and should be
provided by the external error estimator. The metric tensor M can be interpreted
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as ellipsoid (ellipse in 2D) which is circumscribed on the optimal grid cell. Such
ellipsoid has three main axes and their length (hi) can be found using eigen-problem:

M = R ·

⎡⎢⎢⎣
1
h2

1
0 0

0 1
h2

2
0

0 0 1
h2

3

⎤⎥⎥⎦ ·R−1 (2)

The directions of main axes are defined by corresponding columns of the eigenvec-
tor matrix R.

In the following Sections two approaches used for anisotropic error estimator
will be presented. The first one, which is typically used in literature for anisotropic
adaptation, is based on a solution Hessian. The second one is based on a solution
gradient and after blending with the Hessian metrics, it is used for viscous high
Reynolds number simulations.

1.1 Calculation of the Metric - Hessian Based Approach

Details of the Hessian based approach can be found in ([7], [13], [3]) and here only
the main concept will be described.

Assume that E denotes a grid cell inside which a function u is being interpolated
and xc is the center of E . Then after dropping terms of higher order, the interpolation
error for E can be estimated as:

εE ≤ max
x∈E

(
x−xc)T |H |(x−xc

)
(3)

where H is a Hessian of u:

H =

⎡⎢⎢⎢⎣
∂ 2u
∂x2

∂ 2u
∂x∂y

∂ 2u
∂x∂ z

∂ 2u
∂x∂y

∂ 2u
∂y2

∂ 2u
∂y∂ z

∂ 2u
∂x∂ z

∂ 2u
∂y∂ z

∂ 2u
∂ z2

⎤⎥⎥⎥⎦= R ·Λ ·R−1 (4)

Consequently the |H | can be defined as:

|H | = R ·
⎡⎣ |λ1| 0 0

0 |λ2| 0
0 0 |λ3|

⎤⎦ ·R−1 (5)

The interpolation error in a given direction defined by the unit vector w, is propor-
tional to:

C = h2 wT |H |w (6)

where h denotes a length of a cell in the direction of unit vector w. In the present
approach w becomes a direction of a given edge and h becomes an edge length. The
construction of an optimal grid is based on the equidistribution of the interpolation
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error. This is equivalent to assuming that for every edge ei, the constant Ci is equal
to a global C. We can introduce now a scaled metric M :

M = C−1 |H | (7)

Additionally the eigenvalues in (5) are limited from above and below to avoid de-
generation of cells (see Section 1.3).

The actual calculation of the Hessian follows the Green formula approach
presented in [11].

1.2 Calculation of the Metric - Gradient Based Approach

When viscous flows are the subject to anisotropic adaptation the typical approach
based on Hessian shows unwanted behavior. The adapted grid tries to resolve area
with high second derivative solution. Unfortunately inside boundary layer the sec-
ond derivative is high at a distance from the wall (see Fig. 1). In consequence mesh
remains underrefined next to the wall boundary. This issue has been addressed else-
where ([7], [9]) by adding a metric tensor field which is defined near the viscous
boundary and relies on the user specified thickness of the viscous boundary layer.
This approach works well, however additional user input is necessary and the adap-
tation is no longer fully automatic (especially for shear layers).

Therefore another method has been proposed which in addition to standard Hes-
sian uses the gradient of magnitude of the fluid velocity v. This additional metric
tensor is defined in the following way:

w = ∇u u = |v| (8)

M = w⊗w = R ·Λ ·R−1 (9)

Λ = diag(w ·w,0,0) (10)

Such metric represents in correct way the thickness of a boundary layer in direction
of the gradient (which for typical flows is close to the vector normal to the wall)
but not in the tangent directions. Therefore this metric field has to be blended with
metric obtained with the Hessian based approach.

In order to compare Hessian-based and gradient-based approaches the grids were
generated using the same solution (NACA-0012 Re=5000 α = 2◦) as an input for
error estimator. Moreover the estimators were set in such a way that both grids have
approximately the same number of nodes. The result can be seen on Fig. 1 and
Fig. 2. The first one (Fig. 1) shows overview of the grid near NACA-0012 airfoil
while the second one (Fig. 2) shows details of the grids inside boundary layer. It
can be clearly seen that gradient-based approach produces the grid with much better
resolution. Another example can be found in the Section 4.3 which shows results
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a) b)

Fig. 1 Comparison of two approaches to the anisotropic error estimation applied for viscous
flows. a) grid generated for hessian-based approach. b) grid generated for gradient-based
approach.

a) b)

Fig. 2 Comparison of two approaches to the anisotropic error estimation applied for viscous
flows (details of the grid for boundary layer).
a) grid generated for hessian-based approach. b) grid generated for gradient-based approach.

for turbulent flow with high Reynolds number past RAE-2822 as well as Section 4.4
presenting results of the flow past multi element airfoil.

1.3 Metric Limiting

The process of limiting is necessary to avoid unrealistic values of the grid cells (in
fact the matrix defined by (5) is not yet positive definite). Assuming that values of
hmin and hmax (which are provided by the user) define the maximum and minimum
of the acceptable grid spacing the following modification ([13]) can be suggested:

λ̂i =
(

1
max(hmin,min(hmax,hi))

)2

(11)

where hi = 1/
√
λi. The metric M is subsequently calculated for every node of the

old grid and by means of interpolation is extended to form a continuous metric field.
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2 Anisotropic Grid Generation for Complex Geometries

A new grid in adaptation loop is obtained by means of remeshing, i.e., the grid
generator discards all information about the old grid and creates a new one from
a scratch using metric tensor field as a definition of cell spacing. The generator
in the presented approach relies on anisotropic Delaunay triangulation with point-
placement strategy based on creation along edges approach [13] or cell center ap-
proach [17].

The main interest here is related to proper treatment of the boundary. Typically
once the grid is created and sent to the solver, the information about domain bound-
ary is discarded. However in order to perform adaptation, the boundary information
must be present during the whole cycle.

The access to boundary information was accomplished through the specialized
GeT (Geometry and Topology) library which forms the minimalistic interface to the
CAD system. It handles:

• geometrical entities (e.g., Point, Curve, Surface)
• topological entities (e.g., Vertex, Edge, Face, BRep)

Another problem is the general definition of the so called Control Space which al-
lows for consistent evaluation of metric tensor M on various levels of hierarchical
mesh generation [13]. For this purpose various operators were defined and imple-
mented [14], e.g.:

• slicing operator (which extracts tensor M for lower dimensional entities)
• superposition operator (when the composition of two metrics are required)
• blending operator ( when more then one metric space is used for spacing defini-

tion - relies on metric intersection)

3 Anisotropic Adaptation Algorithm

Detailed description of the anisotropic grid generation algorithms can be found in
[13], [12] and [4]. The present one can be described by the following steps:

I. Generate initial grid G0 and set k ← 0

II. Solve flow equations on a grid Gk in order to obtain solution Sk.

III. Check the criterion to end the adaptation loop (e.g., whether the number of
grid nodes between Gk and Gk−1 does not vary significantly or k is equal to
kmax). If this criterion is satisfied, adaptation loop is finished.

IV. Using error estimator find metric tensor field M k for the solution Sk.

V. Generate a new grid Gk+1 in a Riemann space using metric tensor field M k.

VI. Interpolate solution Sk on the new grid Gk+1 (to obtain the initial guess for
Sk+1

VII. return to point II setting k ← k + 1.
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4 Numerical Results and Verification

4.1 Transonic Flow for Onera m6 Wing

This testcase is a standard problem of transonic inviscid flow past Onera m6 wing.
The Mach number is 0.8395 and angle of attack α = 3.06◦. The solution to the
problem is typical lambda shock wave formed on the upper surface of the wing.

The anisotropic adaptation was applied 6 times and results are shown on Figure 3.
The adaptation was based on standard Hessian based error estimator with Mach
number field used for input.

Surface grid was generated with in-house grid generator [10] coupled with GeT
library used for modeling of the geometry of the wing. The volume grid for initial
grid was generated with in-house volume generator which still is in the development
stage while for adapted grids the VKI Meandros grid generator was used. Due to
problems to properly recover highly anisotropic surface mesh inside volume grid the
metric tensor was limited to force cell aspect ratio (AR) to be less then 1.2. However
the volume grid was created without this restriction and as shown in section 4.5 the
gain over fully isotropic approach is essential. Final grid consist of 572586 nodes
and 3255350 cells.

The solution was calculated with Residual Distribution solver using LDAN
scheme.

Figure 3 shows Mach number field and surface grid for the solution after 6 adap-
tations for top view for the wing surface. The solution shows the thin and well
developed shock waves on the wing surface and also inside the domain.

4.2 Transonic Flow for Wing-Body-Nacelle Configuration
DLR-F6

This testcase was used as a verification of capabilities of the developed tools used
for simulation of complex geometries. This is the wing-body-nacelle configuration
DLR-F6 for which the definition of the geometry can be freely available in the form
of the STEP file [1]. The STEP file was imported with GeT library and was used
as a base for geometry definition. Again it was necessary to fix few problems with
topological connectivity and add definition for the external boundary. Subsequently
it was used as an input for surface grid generator. The volume grid was created with
VKI Meandros tool.

The solution was calculated with RDS LDAN solver (M=0.76 α = 0.5◦). The
grid was adapted 3 times. The Mach number field for grid after 3 adaptation steps
(287915 nodes and 1679514 cells) is shown on Fig. 4. Some details of the grid
and solution near the nacelle are shown on Fig. 5. Thanks to the adaptation it was
possible to improve quality of the solution without increasing the computational
cost in significant way - the final grid has only 2 times more degrees of freedom.
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a)

b)

Fig. 3 Mach number field and surface grid (after 6 adpatation steps), Onera m6 wing,
M=0.8395, α = 3.06◦ - top view

4.3 Turbulent Transonic Flow for RAE-2822 Airfoil

The flow past RAE-2822 airfoil was chosen as a first testcase to test the gradient-
based error estimator used for anisotropic adaptation for turbulent, high Reynolds
number problems. The flow conditions are Re = 6.5 ·106, α = 3.19◦ and M = 0.73.
Calculations were performed with THOR code developed at VKI (see [16]). It is
based on Residual Distribution Scheme coupled with Spalart-Almaras turbulence
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Fig. 4 Mach number field on grid after 3 adaptation steps, DLR-F6, M=0.76, α = 0.5◦ - top
view

Fig. 5 Mach number field and grid after 3 adaptation steps, DLR-F6, M=0.76, α = 0.5◦ -
nacelle close-up

model. In order to receive the final solution 13 adaptations were performed. The
initial grid was typical for inviscid calculations without capability to resolve the
boundary layer. The boundary layer was eventually properly discretized thanks to
the adaptation.

The sequence of adaptation steps (Mach number field and the corresponding grid)
is shown on Figures 6–7. It can be seen that starting from grid with no bound-
ary layer it was possible to obtain the grid which properly resolved the BL spacing
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a) b)

Fig. 6 Mach number field and grid without any adaptation (RAE-2822)

a) b)

Fig. 7 Mach number field and grid after 13 adaptation steps (RAE-2822)

a) b)

Fig. 8 Mach number field and grid after 13 adaptation steps - deatils near the shock wave
root (RAE-2822)

(thickness of the cells at the wall for 9th adaption grid is of magnitude of 10−5).
Some details of the final grid can be seen on Figure 8. Finally the comparison of the
computed pressure coefficient cp with experiment is shown on Figure 9.
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Fig. 9 Cp distribution ob-
tained on grid after 13 adap-
tation steps (RAE-2822),
compared with experimental
values (diamonds) [8] x
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4.4 Turbulent Subsonic Flow for L1T2 Multi-Element Airfoil

The flow past L1T2 multi-element airfoil [2] was used as a second verification of
the anisotropic adaptation applied to high Reynolds number turbulent flow. The flow
conditions were Re = 3.52 ·106, α = 20.18◦ and M = 0.197. For this conditions the
grid should adapt not only inside the boundary layer but also inside wakes which
emanate from slat, main profile and also from the flap. The calculations were started
once again with grid typical for inviscid computations. Then 8 steps of adaptation
were performed resulting with proper resolution of the boundary layer near the wall
together with all wakes.

The sequence of adaptation steps can be seen on Figures 10–11. The distribution
of pressure coefficient for final adaptation can be seen on Figure 12.

a) b)

Fig. 10 Mach number field and grid without any adaptation (L1T2)

4.5 Estimation of the Computational Gain for Anisotropic vs
Isotropic Adaptation

The final computations present difference between anisotropic and isotropic
adaptation applied for 3D problems. The Onera m6 wing transonic flow was
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a) b)

Fig. 11 Mach number field and the corresponding grid after 8 adaptation steps (L1T2)

Fig. 12 Cp distribution
obtained on grid after 8
adaptation steps (L1T2) 0 0.25 0.5 0.75 1 1.25
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chosen for calculation and one step of adaptation was done using both approaches
- anisotropic and isotropic. The only difference between both method is the mod-
ification of the metric tensor for isotropic case in such a way that all eigenvalues
are set to their maximum. It is forcing the size of the cell to be the same in all
directions.

Anisotropic grid consist of 574974 nodes and 3473850 cells while isotropic one
has 5078927 nodes and 32622210 cells. The anisotropic grid has almost 9 times
smaller number of cells then its isotropic counterpart. It is quite a significant ratio
especially if one takes into account that the surface grid had to be limited to cell
AR=1.2 in order to overcame problems with volume grid generation. Similar esti-
mation of the computational advantage of the anisotropic adaptation over isotropic
one was shown in [15] where authors received the gain factor close to 10. Details of
the shockwave for both type of grids can be seen on Figures 13.
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a) b)

Fig. 13 Grid details around the shock wave a) after isotropic adaptations (approximately 32.6
mln cells) b) after anisotropic adaptations (approximately 3.5 mln cells)

5 Conclusions and Future Work

In this paper an anisotropic approach to adaptation for complex domains was pre-
sented. It was also shown that the advantage of the grid adapted in anisotropic
way over isotropic one is substantial (for Onera m6 wing the gain factor is 9). The
anisotropic adaptation was also applied for high Reynolds number turbulent flows.
After adding gradient-based component to the Hessian-based error estimator it was
possible to discretize the boundary layer and wake in fully automatic way.

However promising the results are, there are also many problems to be addressed.
One of the main issues is reliable 3D anisotropic grid generator. At the current stage
of development there are some problems with proper reconstruction of the boundary
grid especially for very stretched elements. Also the quality of inner cells could be
improved (problem with slivers). Finally the adaptation for turbulent flows must be
extended for 3D complex configurations (e.g., DLR-F6).
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Chapter 32
Requirements and Assessment Methodology

H. Bieler and K.A. Sørensen

Abstract. In this chapter the procedure followed in the industrial evaluation of the
achievements in the ADIGMA project is described. This entails a specification of the
assessment criteria used in the evaluation as well as methods employed for conver-
gence analyses with the underlying goal of obtaining an as accurate and fair proce-
dure as possible, within the resources made available for such studies in ADIGMA.

1 Introduction

The title of ADIGMA underlines the importance of industrial relevance in the
project. This was reflected in the formulation of the assessment criteria where meth-
ods allowing for a fair and, as far as possible, accurate analysis, were sought. The
scope of the project is the analysis of the industrial attractiveness of higher order
methods and related technologies. This excludes the effects of modelling, the com-
parison of the flowfield results between partners is consequently of little importance
for many cases as the partners use different turbulence models and versions thereof.
For Euler and laminar flow, the comparison of results can be performed as a consis-
tency check, this issue is however not central in the project.

The critical assessment of the newly developed methods for industrial aerody-
namic applications was designed to allow for the identification of the best numerical
strategies for the next generation of industrial flow solvers. The industrial partners
in the project were given the task of specifying these assessment requirements and
to give guidelines to the evaluation procedure for the new methods. A test case suite
of increasing complexity was specified together with concise reporting templates
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in order to put the comparison of newly developed methods with traditional indus-
trial flow solvers on a firm basis. This industrial specification covered the following
aspects:

• Requirements and scope of assessment
• Definition of test cases
• Inquiry of technology status at project start

2 Requirements and Scope of Assessment

An ADIGMA project goal has been to assess the level of attractiveness of a partic-
ular implementation or method for industry. For this to be done in a proper manner,
the criteria of relevance to industry and their relative levels of importance must be
clarified. A discussion was conducted in the beginning of the project, mainly involv-
ing the industrial partners and the research institutions treating this issue. The result
was the following items

• Efficiency
• Applicability
• Robustness
• User friendliness
• Multidisciplinarity
• Implementational issues

Again, it is noted here that there is no direct reference to accuracy in this definition.
This is a reflection of the fact that modelling errors are not an issue in ADIGMA, it
is assumed that all implementations are consistent in that they converge to a unique
solution as the mesh spacing decreases and that this solution fulfils the modelled
governing equations.

2.1 Efficiency

In industry, a discrete system is traditionally defined as converged when the global
integral values of relevance have reached a clear value in the solution iteration pro-
cess. Since industry is always working with tolerances, and since it is well known
that the modelled equations only represent the non-modelled equations to within a
non-negligible tolerance, there is no gain in attempting to solve the numerical equa-
tions to within overly stringent convergence criteria. A common practice in industry
is to converge to within “engineering accuracy”, a level which is usually highly case
dependent. The efficiency of a given code on a given machine and number of CPU’s
or cores from an industrial viewpoint is thus the wall-clock time required to con-
verge to engineering accuracy on a mesh with resolution adequate for engineering
accuracy. There is thus no direct interest from an industrial viewpoint in how many
DOF’s there are in the discrete problem. The number of DOF’s are however relevant
in comparisons between approaches that have not yet matured to a level that can be
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considered state of the art, as an indication of the potential a code has to reduce the
convergence time through a reduction in the discrete problem size.

The industrial definition of convergence is not a constant, even the entities used
in the definition of convergence may vary. Normally however, the industrial aero-
dynamicist is focused on the full set of integral values for the forces and mo-
ments of the case. The usage of integral values was also considered useful for the
ADIGMA project since they are relatively easy to evaluate and their implementation
is normally performed at an early stage of a code development. This choice thus ef-
fectively has reduced the convergence criteria for each case down to a matter of
selecting the proper error bounds for a particular test case, considered to be realis-
tic accuracy expectations for industrial applications. In ADIGMA, the selection of
these convergence criteria was usually performed by the partner proposing the test-
case. Typically, engineering accuracy is of the order of 1-5% of a typical reference
value of the particular integral value. For the drag integral value, it makes sense to
report the pressure and viscous components as well as the total value. If the con-
vergence history of a given integral value is such that no point in the convergence
history can be found after which the value is bounded within the specified conver-
gence criteria, this was to be reported, and the convergence of this integral value was
to be set to the point in the convergence curve after which the convergence stagnates
(i.e. the fluctuation amplitude does not decrease and there is no apparent change in
the mean value). An effort was made to select cases and convergence criteria in a
way to reduce the likelihood of such behaviour.

2.2 Applicability

The applicability of a code can be said to be defined as the a-priori specification of
classes of problems in which a code can be expected to produce a solution. Some
codes are only capable of subsonic flows as there are not means implemented to
handle flow discontinuities. Other codes may not be applicable to high-Reynolds
number flows since there are no turbulence models implemented. The applicability
of a code can be reduced due to a low level of maturity of the implementation even
though there is no technical reason why such constraints should be imposed on the
underlying method. A more critical case is when the partner has not implemented a
feature due to problems in introducing the capability to a sufficient degree.

2.3 Robustness

Defining the robustness of a code as the likelihood of being able to produce a solu-
tion to a given problem within the applicability domain, it is clear that this is a very
important criterion of for industry. It must be noted that there is no reference in this
parameter to the effort of obtaining this solution. The robustness definition does not
overlap the definition of applicability, since applicability is an a-priori classification
of the domain of application of the code, while the robustness is an indicator applied
within the applicability domain.
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2.4 User-Friendliness

The user-friendliness of a code is inversely proportional to the manual labour re-
quired to produce a solution. A code could be very robust if there is a high probabil-
ity of obtaining a solution, but if this requires a lot of tweaking of parameters or the
generation of several meshes, the user-friendliness of the code is reduced. If several
meshes are indeed required, the efficiency analysis should be conducted only on the
mesh that produces the solution. A key ingredient for the success of a numerical
method in industry with end-users (design engineers) is the possibility to have a sin-
gle set of numerical parameters appropriate to the majority of the computations to
be performed.

2.5 Multidisciplinarity

As the codes in current industrial use are increasingly being applied to solve multi-
disciplinary problems, it is important that new approaches are also capable of such
computations. For the industries represented in ADIGMA, the fields of aeroelas-
ticity and aeroacoustics are of central interest, the new approaches should however
also be capable of efficiently solving problems involving combustion and electro-
magnetic effects.

2.6 Implementational Issues

The implementational issues related to a code describes the required datastructure,
parallelizability, implementational effort and hardware dependency of the approach.
Optimally, a new approach would be implemented easily into the already existing
industrial codes, so as to re-use highly optimized and tested components. However,
if a sufficient gain in performance and/or stability is obtained at the price of writing
a completely new code, this should of course not be ruled out.

The datastructure required is relevant with respect to code memory usage and
efficiency issues, for example. with respect to caching. The efficiency issues are
particularly important if the code is not optimized so as to be able to assess the
theoretical performance of this part of the code. The memory usage of a code is
important and should be compared with the current typical memory usage of a state
of the art industrial code. If a new approach does not significantly exceed, say by a
factor of two, the memory usage experienced in current state of the art codes, this
issue is of second priority in comparisons.

The parallelizability of the code should be reported, either in the form of the
experienced speed-up values if a parallel implementation exists, or the assessed par-
allelizability of the code if only a sequential version has been implemented. The
latter entails a statement of whether the code demands procedures that are inher-
ently sequential in nature and whether the parallelization has a direct influence
on the solver performance (such as increasing the iterations for convergence for
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multidomain solvers), as well as the amount of data that the approach requires to be
communicated between processors or cores.

The implementational effort of a code is important to industry. As mentioned
above, the optimal case would be a new approach that could be implemented into an
existing industrial code with relatively small changes. This would allow for the re-
usage of highly optimized and tested code components that could otherwise require
excessive resources to recreate. If a new code needs to be written to accommodate
an improved approach, this is of course not critical if the performance gains are suf-
ficiently high. If it turns out that a new scheme offers a relatively small performance
improvement, but that it can be implemented into existing codes in a straightfor-
ward way, it is still industrially relevant. This is likely not to be the case if the small
improvement requires excessive implementational effort.

3 Efficiency Analysis

As defined above, the efficiency of a method is dependent on first finding the small-
est mesh size required for the solution to stay within the defined error tolerance, and
then measure the time it takes to converge the discrete system on this mesh to within
the engineering accuracy.

The mesh convergence analysis of a discrete problem is a procedure to identify
how close a solution on a given mesh is to the solution resulting from the limit
where the number of degrees of freedom in the problem approaches infinity in a
regular way. Mesh convergence of a given mesh thus depicts how close the solu-
tion of the discrete system resulting from this mesh is to a solution from the same
solution procedure on an infinitely fine, regular mesh. In practice, infinite meshes
can not be considered, instead a series of successively finer meshes (with similar
point distributions) can be created until a point is reached where the difference in
the integral values between two consecutive meshes is much smaller than the con-
vergence criteria and that an asymptotic analysis of the integral value confirms that
the finest mesh is considerably closer to the asymptotic solution than the size of
the convergence criteria. For this analysis, it is important to converge the discrete
systems on each mesh to a higher degree than the engineering accuracy described
above, if possible, to ensure that the errors related to the solution procedure itself
do not interfere with the mesh convergence study. If a truly steady state solution is
not achievable, average values can be used in the analysis. The coarsest mesh that
is within the convergence criteria from the approximated asymptotic value is taken
as the converged mesh. The distribution of the points on the meshes could be op-
timized for the discretization scheme, but if a high level of (non-automatic) mesh
tailoring is needed for the code to be efficient, the user-friendliness of the approach
will be reduced.

In addition to using mesh cascades for convergence, the usage of the adjoint
error estimates can be applied on very fine meshes to increase the accuracy of the
analysis. It must however always be kept in mind that, due to issues such as non-
optimized meshes for a particular method, the asymptotic analysis is not of a very
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high accuracy there is thus a limit after which the increased accuracy in finding
asymptotic value is not necessary.

It must also be mentioned that a proper mesh convergence analysis requires a con-
siderable amount of computational resources, even for relatively simple problems.
The partners were therefore not forced to perform such analyses on every attempted
test case. An impression of the mesh convergence properties of a code should how-
ever be possible on a basis of simpler cases. The more complex test cases are still
relevant in the project for evaluations of characteristics such as robustness, ease of
use, memory usage and multidisciplinarity.

3.1 Asymptotic Convergence Analysis

An important issue in ADIGMA is the determination of the number of degrees of
freedom required for a given problem with a given accuracy level. Such questions
are best answered using asymptotic analyses, where a series of meshes, with similar
local resolution distributions, are analysed.

If convergence is measured in a physical variable (e.g. lift coefficient, pressure at
a given point etc.), and the problem is well-posed, the assumption

V = V∞ + cN−α (1)

holds for classical schemes if N is large enough. Here V,V∞,α and c are the asymp-
totic value of the variable, the number of degrees of freedom per equation, the order
of the scheme with respect to the number of degrees of freedom per equation and an
unknown constant respectively.

To find the unknowns for this equation, three nested solutions are needed. A
cascade of meshes thus have to be made, fulfilling the following requirements:

• The resolution adequate for eq. 1 to be approximately valid
• The different mesh resolutions should be significantly different (a factor of

1.5−2 recommended)
• The meshes should be nested, i.e. have a similar local refinement distribution

The meshes may be tailored for the code in question using an a priori approach.
This means that knowledge of the scheme applied may be used in the meshing.
If, for example, a discretization scheme is based on a classical second order FV
method, but with increased spatial order in the boundary layer, it is known a-priori
that the local spacings outside the boundary layer should equal those of standard
FV schemes, while the spacings in the boundary layers could be made coarser. Each
partner was to use common sense in deciding whether a point distribution strategy is
generally applicable to a class of problems without knowing the solution in advance
or whether the point distribution strategy represents a tailoring which is unrealistic
for industrial computations.

Subsequently, a solution must be computed for each mesh. The solutions should
be converged to a level where the convergence parameters have reached an asymp-
totic value (i.e. not to engineering accuracy). The nonlinear systems of equations
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obtained by inserting for V and N in eq 1 for the convergence parameters of the
three solutions are then solved by, for example, a Newton iteration approach. The
term

EV = cV N−αV (2)

is thus a representation of the discrete system size dependency of the error of the
integral value V , which can be used for approximating the number of degrees of
freedom per equation needed to reduce the error below a certain level. The order of
the scheme is defined using the local spacing, not the number of degrees of freedom.
Since the mesh cascade has similar local point distributions, the following formula
holds locally:

h = kN
1
n (3)

where h,k and n are the local spacing, a local coefficient (independent of N) and the
number of space dimensions respectively. The order of the scheme with respect to
the spacing, β , is thus given by:

β = αn (4)

For time-accurate computations, the time resolution required for obtaining results
within the accuracy limits should be identified. This is analogous to the mesh con-
vergence analysis, looking at time as the third (2D) or forth (3D) mesh dimension.

If the complexity of the problem was found to render the above procedure exces-
sively costly, the reduced approach of assuming the scheme order (based on experi-
ence on similar but smaller problems), could be applied. The solution of eq. 1 then
results in the Richardson formula. The partners were also allowed to use other ap-
proaches to find the convergence characteristics of a method. Some partners applied
curve-fitting approaches to determine the mesh convergence of their methods.

3.2 Performance Index

When comparing the wall-clock time two codes on different computers require for
convergence, a way has to be found to eliminate, or at least reduce, the effect of the
different machine speeds. This is a very complex subject since the performance ratio
of two codes on two different machines can be far from constant, highly depending
on issues such as cache-efficiency, vectorizability etc. In ADIGMA, the problem of
machine independency was addressed by the introduction of a dummy performance
index code, serving as an indicator of the hardware and compiler performance for
the partners. This code was written in both C and Fortran and consists of a 2D FV
Euler flux on a regularized mesh. The procedure works as follows:

• The performance index code is compiled on the same machine as the real com-
putation is to be performed, with the same compiler options

• The performance index code is run on the machine (which is otherwise idling),
replicating the running conditions of the real run (e.g. using the same amount of
cores on a processor), say requiring 10 s of wall clock time
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• The real code is run, say requiring 1000 s wall clock time for convergence
• The CPU time required for convergence is given in the performance index code

units, in this case convergence takes 100 PI units

For parallel speed-up exercises, the usage of the performance index does not affect
scaling issues and is thus straightforward.

3.3 Mesh Reporting Form

The mesh reporting form was created to enable a clear description of the meshes
used in the convergence analysis of the schemes, and is detailed enough to enable
the generation of similar meshes based on the form only. The form thus includes
not only the relevant size parameters of the mesh, such as the total number of nodes
and elements on the surface and in the volume, but also a coarse description of
the boundary layer mesh generation and the local point resolutions on the mesh.
The latter was typically described through characteristic spacings in the background
and around specific features, such as leading and trailing edges, in the mesh. The
mesh reporting forms are also important to remove ambiguities regarding the mesh
identification, used in the reporting for the computations.

3.4 Computation Reporting Form

To ensure that the correct procedure for the reporting of the computations was fol-
lowed, a computation reporting form template was supplied to the partners. This
template includes a section for each computation performed on the case, as well as
a heading and a conclusion part. The heading section requires the user to list the
code version applied as well as the flow conditions and convergence criteria used
to confirm that the parameters defined by industry were applied. The computation
sections includes issues such as the discretization scheme, the turbulence model and
the solver settings that were used. In addition, the identification of the mesh used
for the computation, with reference to the corresponding mesh report, was required.
The computational time and number of iterations required for convergence as well
as the fully converged values on this mesh were also to be reported. The conclu-
sions section treats the convergence analysis, asking for the computed scheme order
and discrete system size required for convergence. From this value, the partner was
to fill in the total sequential time required for convergence, measured in ADIGMA
performance index units.

4 Definition of Test Cases

A central part in the project was the definition of suitable test cases to be com-
puted within the project for the industrial analysis. Due to the different maturity
levels of the codes in the project, a balance between industrially relevant and more
basic cases was sought. The importance of a few simpler cases involving the basic
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ingredients required for a realistic industrial analysis, mainly turbulence and shocks,
was recognized, allowing for detailed efficiency studies which were not likely to be
performed on test cases of industrial complexity. The result of the deliberations were
three test case suites, namely

• MTC: 2D test cases of airfoils for inviscid, laminar, inviscid-time dependent and
turbulent flows

• BTC: 2D and 3D test cases of multi-element airfoils, streamlined bodies and
wings

• CTC: 3D test cases of aircraft, complicated wing flows and multidisciplinary
applications

The listing of each test case, with the defined convergence criteria, is given in the
next chapter.

5 Inquiry of Technology Status

In order to judge the progress made by ADIGMA in a fair manner, the technol-
ogy status, i.e. a summary of the state of the art of adaptive higher-order meth-
ods in Europe was compiled at the beginning of the project. This work was mainly
conducted by the academic partners, providing references and short descriptions of
their current experience and capabilities. This technology status was compiled in
a common report, reflecting the present status of higher-order methods (residual-
based and DG type schemes) and adaptive capabilities. This technology survey
contains a detailed technical description of the codes used by partners during the
ADIGMA project, treating both the existing reference codes and the methods to
be further developed in the project. The survey outcome was organized in tables,
detailing for every code which equations are solved (2-D/3-D, steady/unsteady,
Euler/Navier-Stokes...), the discretization method employed (finite volume/element,
residual based/DG, order of the approximation, cell vertex/centered...), the type of
grid used (structured/unstructured, hybrid), whether the code has adaptation capabil-
ities, and the solution strategy (implicit/explicit, parallel/sequential, multigrid accel-
eration...). A specific section contains the current experience and capabilities with
respect to adaptive higher-order methods.

6 Conclusions

In this chapter, the definition of the criteria relevant for an industrial assessment of
an approach, as well as the procedure to be followed to obtain these characteristics
have been treated. The industrial criteria decided upon were the efficiency, appli-
cability, robustness, ease of use, multidisciplinarity and implementational issues of
a method. To enable a rigorous study of the efficiency, the reasoning behind, and
description of, the method of asymptotic analysis were presented. This method al-
lows for both the description of the potential a method has to reduce the discrete
system size, as well as the potential for reducing the overall time it takes to obtain a



464 H. Bieler and K.A. Sørensen

convergence to within a certain level of accuracy for a given size of available com-
putational resources. To improve the quality of comparisons between computations
performed on different computers, a machine–neutral performance index was de-
fined. In addition, the unified reporting forms supplied to the project were described,
allowing for an as unbiased and quantitative industrial evaluation as possible for the
resources allocated to the subject within ADIGMA.



Chapter 33
Verification and Assessment

K.A. Sørensen and H. Bieler

Abstract. The results of the industrial evaluation of the ADIGMA project are pre-
sented. The analysis is primarily based on the computational results reported by the
project partners, where an attempt was made to perform a rigorous comparison with
the industrial baseline results to enable clear conclusions regarding criteria such as
efficiency and robustness. A short discussion treating the quality of the results and
lessons learned are also included.

1 Introduction

A central issue in the ADIGMA project has been the analysis of the developed ap-
proaches in an industrial setting, based on a series of computations performed on
testcases of varying complexity. The testcases were split into three suites, namely
the Mandatory Testcase Suite (MTC), the Baseline Test Case Suite (BTC) and the
Complex Test Case Suite (CTC). A short description of the various test cases are
listed in Tables 1- 3, together with the convergence criteria used for the analysis [1],
as discussed in the previous chapter. The evaluations were conducted within a dedi-
cated work package in the project, where subtasks were assigned with the industrial
baseline generation, the mid-term assessment of the new methods, the final evalu-
ation of the new methods and the technology transfer to industry. The synthesis of
these results are treated in [2, 3, 4]. In addition, several other cases were consid-
ered in the various technology work packages, providing more focused information
on specific issues such as shock capturing, adaptation and solution methods. The
partners of the project were also given the opportunity to give their own opinions
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Table 1 MTC suite test cases with industrial convergence criteria

Case Geometry Flow Conditions Convergence criteria

1 NACA0012 M = 0.5, α = 2◦, inviscid |εcl |< 5 ·10−3, |εcd |< 5 ·10−4,
|εcm | < 5 ·10−4

2 NACA0012 M = 0.8, α = 1.25◦, inviscid |εcl |< 5 ·10−3, |εcd |< 5 ·10−4,
|εcm | < 5 ·10−4

3 NACA0012 M = 0.5, α = 2◦, Re = 5000 |εcl |< 5 ·10−3, |εcd |< 5 ·10−4,
|εcm | < 5 ·10−4

3s NACA0012 M = 0.5, α = 2◦, Re = 500 |εcl |< 5 ·10−3, |εcd |< 5 ·10−4,
|εcm | < 5 ·10−4

4 NACA0012 M = 0.755, ᾱ = 0.016◦, invis-
cid, k = 0.1628, Δα = 2.51◦

|εcl |< 5 ·10−3, |εcd |< 5 ·10−4,
|εcm | < 5 ·10−4

5 RAE2822 M = 0.73, α = 3.19◦, Re = 6.5 ·
106

|εcl |< 2 ·10−2, |εcd |< 5 ·10−4,
|εcm | < 5 ·10−3

Table 2 BTC suite test cases with industrial convergence criteria

Case Geometry Flow Conditions Convergence criteria

0a Analytic Streamlined Body M = 0.5, α = 1◦, inviscid |εcl |< 1 ·10−3, |εcd |< 3 ·10−4,
|εcm | < 5 ·10−4

0b Analytic Streamlined Body M = 0.5, α = 1◦, Re = 5000 |εcl |< 1 ·10−3, |εcd |< 3 ·10−4,
|εcm | < 5 ·10−4

0c Analytic Streamlined Body M = 0.5, α = 5◦, Re = 1.0 ·107 |εcl |< 1 ·10−3, |εcd |< 3 ·10−4,
|εcm | < 5 ·10−4

1 L1T2 3 Element Airfoil M = 0.197, α = 20.18◦, Re =
3.52 ·106

|εcl |< 1 ·10−2, |εcd |< 1 ·10−3,
|εcm | < 1 ·10−3

2 ONERA M6 M = 0.84, α = 3.06◦, Re =
11.72 ·106

|εcl |< 1 ·10−2, |εcd |< 1 ·10−3,
|εcm | < 1 ·10−3

3 Delta Wing M = 0.3, α = 12.5◦, Re = 4 ·
104

|εcl |< 1 ·10−2, |εcd |< 1 ·10−3,
|εcm | < 1 ·10−3

4 DPW III Wing1 M = 0.76, α = 0.5◦, Re = 5 ·
106

|εcl |< 1 ·10−2, |εcd |< 1 ·10−3,
|εcm | < 1 ·10−3

Table 3 CTC suite test cases with industrial convergence criteria

Case Geometry Flow Conditions Convergence criteria

1 M219 Cavity M = 0.85, Re = 6.84 ·106 none defined
2a ALA SMJ config M = 0.8, CL = 0.45, inviscid |εcl |< 1 ·10−5, |εcd |< 1 ·10−4,

|εcm | < 2 ·10−4

2b ALA SMJ config M = 0.8, CL = 0.45, Re = 3.0 ·
107

|εcl |< 1 ·10−4, |εcd |< 1 ·10−3,
|εcm | < 2 ·10−3

3 VFE2 Delta, medium rad
LE

M = 0.869, α = 24.7◦, Re =
5.95 ·107

|εcl |< 1 ·10−2, |εcd |< 5 ·10−3,
|εcm | < 2 ·10−2

4 DLR F6 M = 0.3, α = 12.5◦, Re = 4 ·
104

|εcl |< 1 ·10−2, |εcd |< 5 ·10−3,
|εcm | < 2 ·10−2

5 Helishape DP 135 rotor M = 0.76, α = 0.5◦, Re = 5 ·
106

none defined
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of the potential of their codes, using a dedicated questionnaire [5]. The four major
development directions are treated in separate sections in the following, the first
two focusing on different discretization families and the last two looking into the
subjects of solver methods and adaptation with error analysis.

2 Discontinous Space Discretization Methods

A large part of the research in ADIGMA has focused on higher order discretiza-
tion approaches where the variables are allowed to be discontinous on interfaces
between elements, the so called Discontinous Galerkin (DG) methods. The ap-
proach has reached a level of maturity which is arguably the highest of the non-
industrially based methods, with three partners (UNBG, DLR,UNST) having codes
which include turbulence modeling and the application of complex 3D configura-
tions. The codes from UNBG and UNST are also capable of solving flows with
shocks, where the latter is optimized for time-accurate computations. In addition,
the partners UNNO, UNUP, UNPR, NJU, UNTW, NLR, ONERA and CENAERO
all have codes in the DG family, representing a large collection of different varia-
tions of this approach.

For inviscid 2D subsonic flow (MTC1) the DG family of methods show a po-
tential of reducing the number of DOFs for convergence with around a factor of 3,
compared with the industrial baseline (IB), Fig. 1. Some partners show results which
are closer to the IB. Even though the testcase is not of highest industrial relevance,
it supports the assumption that higher order discretizations are efficient in solving

Fig. 1 Illustration of the number of DOFs per equation required for mesh convergence for
various discretization schemes and the industrial standard for the MTC1 testcase



468 K.A. Sørensen and H. Bieler

Fig. 2 Illustration of the equivalent sequential wall clock time (in ADIGMA performance
index units) required to obtain a converged result for the MTC1 testcase

flow regions where no discontinuities are present and the inviscid components dom-
inate. The solution times required for convergence are however consistently higher
than the IB, Fig. 2. This is expected to be partly caused by the relatively low level of
maturity in the DG solvers used, but also indicates that higher order numerical sys-
tems are stiffer to solve. This supports the assumption that, for direct global mesh
refinement studies, the DOF reduction obtained by DG methods is a likely estimate
of the best CPU time decrease that can be realistically hoped for. The memory us-
age of the DG schemes for this testcase vary a lot, but it appears that for the current
solution methods a memory increase of a factor of more than 5 compared with the
IB seems to be typical, Fig. 3.

The MTC2 testcase features inviscid transonic flow and was introduced to an-
alyze the behaviour of the methods in the presence of shocks. The IB shows a
threefold increase in the mesh size for convergence for this testcase. The required
increase in DOFs for the DG methods seems to be roughly the same figure, if not
less, for many codes. This is a very interesting result, indicating that shock-capturing
is not as big a problem as is often assumed, at least by increasing the schemes to
third order. The result is that some DG methods outperform the IB with a factor
of typically around 3-4 w.r.t number of DOFs. The memory usage does not, as ex-
pected, seem to be influenced by the introduction of shocks in the solution field.

The MTC3 testcase is a subsonic laminar flow testcase of a NACA0012 airfoil at
two degrees angle of attack and a Reynolds number of 5000. This testcase has been
quite controversial as in the industrial baseline computations a separation bubble
occurred for some partners, resulting in very large mesh requirements to converge
to within the specified tolerances. This led to the introduction of another testcase,
the MTC3s, with a Reynolds number of 500 and symmetric flow. Some partners also
computed the case with the lower Reynolds number, but with a two degree angle of
attack. Only the MTC3s results show any consistency, unfortunately no IB results
are available for this testcase. The higher order results made available are however
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Fig. 3 Illustration of the memory usage required for a converged solution for the MTC1 test
case

interesting, with the results from UNNO showing that the DG(2) discretization has
better results than both the DG(1) and the DG(3), outperforming the DG(1) results
with a factor of around 5 w.r.t. the discrete system size.

For the time-accurate MTC4 testcase, only one result was published, namely that
of NLR. Here an attempt of a rigorous comparison with the IB was made using both
global as well as adaptive mesh refinement strategies. Due to the time-space dis-
cretization used by the partner, and the non-nested meshes resulting from resolution
differences in the time dimension, the analysis is not straightforward. The global re-
finement strategy appears to result in a time-space resolution of in the order of 108

DOFs per equation, the IB requires in the order of 5 ·106 DOFs per equation. There
thus does not seem to be an advantage in the (non-adaptive) time-space approach for
this testcase. It must be noted that basis functions of first order where applied, the
nominal order of accuracy is thus the same as for the industrial standard. It thus ap-
pears that there is no direct gain in the time-space solution scheme for this particular
application, but this picture might change if higher order elements are applied. In
addition, the method stores a four dimensional mesh, resulting in very large memory
requirements.

The MTC5 testcase is a transonic turbulent testcase and thus considered very
important in the industrial evaluation of the new approaches in ADIGMA. Unfortu-
nately, only two DG results are available for the analysis, namely those from UNBG
and ONERA, both of which are not of the quality to enable rigorous performance
studies. As a result, even though the industrial relevance of this case was repeatedly
stated during the project, no efficiency statements for the DG method on this case
are available.
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Fig. 4 Mesh convergence
for the MTC2 testcase as
reported by SERAM

Another important testcase is the BTC0, a streamlined body explicitly defined in
ADIGMA for 3D analysis purposes, Fig. 5. Inviscid, laminar and turbulent testcases
were defined. For the turbulent testcase, the unstructured computations performed
by EADS-MAS showed a very bad mesh convergence behaviour compared with the
structured grid results of DLR, where the unstructured results require around one
order of magnitude more DOFs to converge, both using the DLR Tau code. This
may be caused by problems related to the EADS-MAS unstructured meshes for the
Tau code, indeed for the laminar case it was not possible to generate a satisfactory
solution on these meshes, but the figures do not seem to be unrealistic considering
the convergence criteria, for the drag coefficient roughly representing a value of 4%.
The structured mesh results are however very good, even showing convergence rates
much higher than the theoretical limit. Due to this large difference in results, it is

Fig. 5 The definition of a half-model BTC0 streamlined body testcase. This case was intro-
duced to enable a simple 3D geometry for asymptotic mesh convergence studies, offering
the possibility of analytic higher order meshes. By enlarging the central extrusion section, a
primitive wing can be constructed.
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Fig. 6 Mesh convergence plots for the turbulent BTC0 case from DLR DG computations for
different discretization orders, showing considerable reduction in problem size when using
higher order methods

better to also discuss the structured and unstructured IB results separately. For the
DG method, only structured results, from DLR, were supplied, Fig. 6. The compu-
tations show a decrease in the DOFs per equation of a factor of about two for DG(3),
where DG(1) performs much worse than the IB for structured meshes. The situation
is thus not very clear, but the possibility of the higher order methods to converge on
meshes significantly smaller, say a factor around 2-3, seems to be possible for the
higher order DG methods for 3D turbulent subsonic flow. The DG(1) results, which
fit the unstructured IB results quite well also increase the suspicion that the struc-
tured IB results are, for some reason, unrealistically good. The computational time
required for convergence is considerably slower than the industrial baseline, but this
may very well be caused by the immaturity of the DG solver, as was also noted by
DLR in their report. For the inviscid testcase, the results surprisingly indicate that
the DG methods do not represent an improvement compared to the IB, computed by
VKI. The inviscid BTC0 could be considered a 3D generalization of the MTC1 case,
and one should expect at least a factor of 3 reduction in the DOFs per equation for
convergence. Since more MTC1 data is available and the analysis shows a clearer
trend, the inviscid BTC0 data are not given much weight in the conclusions. The
laminar version of the BTC0 case is somewhat problematic since the IB results are
not rigorous and feature integral values which are completely unrealistic. Ignoring
the IB, and assuming that the DLR DG(1) DOF values are indicative for 2nd order
FV codes, the speedup factor between DG(1) and DG(2) is more than 10, a very
impressive value. For this testcase, UNPR also show results, unfortunately the inte-
gral values are one order of magnitude smaller than the reference, this is probably
caused by a bug in the code. It must be noted that the unstructured meshes supplied
by EADS-MAS proved a major challenge to the industrial Tau code, in effect no
consistent analysis was possible. This was not reported a problem for the DG code
used by DLR, showing that DG methods may have a stability advantage compared
with the current industrial standard for meshes of reduced quality, something that
has been demonstrated in the project for other testcases as well. It can be concluded
that this 3D testcase has shown a clear potential for the DG methods with regard to
the number of DOFs required to converge. It must however also be noted that this
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Fig. 7 Results of the DLR adaptation study on the BTC0 testcase

Fig. 8 Illustration of the
memory usage of a the
third order DG scheme of
NLR showing the non-linear
increase with the discrete
problem on the laminar
BTC0 testcase

testcase is characterized by a very simple flowfield and that all major flow structures
appear in the solution of very coarse meshes. For more industrially relevant cases,
involving separation, vortex burst, shocks etc. it is often the case that a certain level
of refinement, often relatively fine, has to be obtained to enable all essential flow
features to even appear in the solution. It is thus not given that the promising results,
at least w.r.t. number of DOFs for convergence, are directly transferrable to more
industrially relevant problems. The non–linear memory dependence of some higher
order methods is illustrated in Fig. 8.

The L1T2 three-element airfoil of BTC1 was computed by DLR. There is some
dispute regarding the quality of the IB analysis for this case. Taking the DG analysis
for various discretization orders, the increase up to fifth order seems to reduce the
number of DOFs by one order of magnitude for this case. The speedup obtained for
the fifth order computation compared with the second order DG method is around a
factor of 6. The cost for convergence is apparently not quite linearly dependent on
the number of DOFs when increasing the order. Since no real convergence analysis
was performed using IB codes, the significance of these values is unclear.

For the BTC2 testcase, a laminar delta wing configuration is considered. The IB
work was performed by NLR, resulting in a requirement of around ten million DOFs
per equation for convergence, with the drag requirements being the most critical. For
lift and pitching moment, a mesh size requirement of magnitude one million is re-
quired. Comparing with the DLR PADGE results on the same structured meshes,
there appears to be an inconsistency since for DG(1), all values are converged for
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Fig. 9 Mesh convergence of
the MTC3 case, computed
by UNBG

less than one million DOFs per equation. It is probably unlikely that the second
order DG method is ten times more efficient than the IB, the drag convergence re-
quirements for the NLR computation is thus not given much weight in the compar-
ison. Still, the DLR results show a significant improvement in the discrete system
size by increasing the order to third (300 000 DOFs per equation) and fourth (100
000 DOFs per equation). This is a very promising result and in line with the gen-
eral observation that higher order methods are very efficient for vortex-dominated
flows. Solving the higher order systems proved to be much more difficult however,
resulting in convergence times twice that of the second order method. Again, this
can be a result of suboptimal solution strategies, as is also noted by the partner. An-
other important issue raised in the computational report is the dependency of the
higher order speedup on the convergence criteria. Even though it is thought that
the defined convergence levels reflect the industrial standard, an increased accuracy
level would shift the higher order advantages with respect to the size of the discrete
system considerably. The testcase is important in that thorough analyses have been
performed and that the DG method shows potential of significant improvements for
vortical flows. Also UNPR have contributed for this testcase, using the COOLFluid
platform for a second order discretization. Again, there seems to be a problem with
the coefficient evaluation, yielding values that are one order of magnitude too small.
This results in convergence criteria that are too lenient, the approach used applying
the finest mesh (with only 300000 DOFs per equation) as the asymptotic solution
is thus not accurate enough. Still, the report shows that a computation can be per-
formed for this case using the COOLFluid platform. The memory usage is however
about 20 times larger than the IB baseline for the same number of DOFs per equa-
tion, a problem that should be addressed.
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Fig. 10 Illustration of the
Mach field computed by
UNBG on the MTC5 test-
case using a Discontinous
Galerkin approach

Fig. 11 Illustration of the UNST CTC1 computation

The CTC cases are normally too complex for rigid performance studies, they
are included in the project to shed light upon other criteria such as applicability
and robustness. There have been a few DG computations performed in the CTC
suite, in general showing good behaviour of the methods. The CTC1 testcase, the
unsteady cavity, Fig. 11, was computed by UNST, using higher order discretization
schemes. The computations were performed with an LES approach for turbulence.
The use of the explicit timestepping scheme for solving these types of problems
is considered suboptimal. For the CTC2 testcase there were no contributions. For
the CTC3 testcase, the turbulent high AoA delta wing, UNBG have showed some
results, Fig. 12, illustrating the feasibility, albeit with some difficulties, of solving
such problems with the DG methods. The CTC4 testcase, an F6 configuration, was
solved by both UNBG and DLR. Even though neither the IB nor the DG results
were rigorously analysed, it can be concluded that the use of higher order elements
have the potential of significantly reducing the discrete system size, Fig. 13. The
CTC5 testcase was performed by NLR, showing the potential of the DG method for
multidisciplinary applications involving the simulation of elastic rotor blades.



Verification and Assessment 475

Fig. 12 Pressure coefficient plot comparison for the UNBG CTC4 computations for second
and third order discretizations

Fig. 13 Positive effects of
higher order methods on
the drag for the CTC4 case
from the UNBG results. The
squares, triangles, diamonds
and circles denote the re-
sults for the first, second,
third and fourth order DG
schemes respectively.

Almost all reported computations were performed with standard solver settings.
The DG codes thus seem to be easy to use within their respective area of appli-
cation. A trend can be observed from the results, pointing to a potential reduction
in the numerical system size. Typically, it appears that one can hope for a reduc-
tion factor of between 3 and 10 for the DG methods compared with the IB. It has
however become clear that these figures are strongly dependent on the convergence
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criteria. Unfortunately, there are however also indications that the resulting numeri-
cal system may be considerably more challenging to solve than for the current state
of the art discretization schemes, the partners using the DG approach have thus not
been able to prove a performance improvement stemming from the discretization
only. Even though this may change as the solvers are further developed, there are
no clear indications available that this will be successful, currently it can be said
that only very few of the codes come close to the performance of the IB, let alone
improving them. This issue thus has to be clarified before statements of any quality
can be made on the potential of the DG method for industrial use.

Seven partners, UNST, UNTW, NJU, NLR, Cenaero, UNPR and DLR, have sub-
mitted the industrial potential questionnaire for the DG approach. Most partners cite
the improvement potential with regard to efficiency as a major advantage of the DG
approach. The favourable performance of higher order methods for vortical flows
is pointed out as well as the expected performance increase for more stringent con-
vergence criteria. Regarding robustness, there are different opinions whether the DG
approach can be expected to run in a more stable manner than industrial codes, some
claim that the insensitivity to bad meshes is a distinct advantage of the method, oth-
ers cite from experience that the codes still exhibit convergence problems for com-
plex flows. The importance of proper higher order mesh generation to enable the full
advantages of the DG approach is also underlined in the questionnaires. For time-
accurate computations with changing boundaries as well as for multidisciplinary
problems, the time-space DG approach is claimed to be superior to the current state
of the art. The usage of adaptation and the adjoint, with error estimation, is con-
sidered to be of critical importance by some partners. Most partners mention the
solver as the weakest part of the code, requiring further development to enable effi-
cient computations. The need for robust turbulence model implementations is also
pointed out in the forms. Most partners expect to have a competitive code for 3D
turbulent computations within the 3-10 year timespan.

3 Continuous Space Discretization Methods

For approaches where the representation of the unknowns is continuous on element
interfaces, there are several approaches considered in ADIGMA. These continuous
space methods are referred to as CS methods in the following. One approach is
the Residual-Based Compact (RBC) schemes proposed by SERAM, introducing
compact stencils for multidimensional upwind schemes reaching higher order at
steady-state. Another method considered in the project is the Continuous Residual
Based (CRB) approach, described as a mixture of finite volume and finite element
approaches. This approach is developed or used in ADIGMA by the partners VKI,
INRIA and UNWA. Also operating on a continuous basis is the Galerkin Least
Squares (GLS) method developed by DASSAV, where the partner has based the
developments on the in-house second order industrial code of the same approach.
Unfortunately, the GLS computations reported were few in number and arrived at
a very late stage of the project. Another continuous discretization scheme directly
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implemented in codes of industrial standard is the approach investigated by UWS
and EADS-MAS, attempting a higher order FD-like approach in the wall-normal
direction in boundary layers.

For MTC1, most continuous space methods show little or no gain in the discrete
problem size compared with the IB. The exceptions to this are the computations
performed by VKI and DASSAV, which show a reduction factor of around 5 in the
DOFs per equation needed. It must be noted that the convergence criteria are not
very strict for this testcase. As for the DG methods, the convergence times and the
memory usage are in general considerably higher than for the industrial codes. The
exception to this is the higher order approach of DASSAV which shows a reduction
factor of around 5 not only in the discrete problem size, but also in computational
time required for convergence. This is a very interesting result, indicating that for
this method, the discrete system stiffness reported for almost all other global higher
order methods, is not present.

For the transonic inviscid flow case (MTC2), the continuous space methods from
VKI and SERAM show a reduction in the discrete system size for convergence,
Fig. 4. In the case of VKI, this reduction is dramatic, reaching a factor of 25. The
partner does however point out that this reduction in discrete system size comes
with a computational price. Again, as for the DG methods, these results show a
surprising indifference of the higher order methods to the presence of shocks in
the flowfield. The DASSAV results show similar impressive performance as for the
MTC1 testcase.

For the MTC3s case, the results from INRIA and SERAM show a similar per-
formance to the DG methods. The SERAM RB1 results are reported to be slightly
better than the RB2 data. This effect was also observed for the DG approach. It
thus seems that for this particular test case, there is little effect in increasing the dis-
cretization order beyond a value of around 3 with regard to the number of DOFs per
equation. It is also observed that the higher order discretizations are more expensive
to solve, per DOF, and that also the memory usage increases disproportionately with
the scheme order. Again, the DASSAV computations show a significant speedup,
measured in wall clock time, compared with the industrial baseline.

For the MTC4 testcase, no results were published for the higher order continuous
methods. The MTC5 testcase has contributions from UWS, SERAM and DASSAV.
UNSW, using the higher order boundary layer discretization, show an improvement
compared with a standard boundary layer approach of a factor of around 1.4. The
results from SERAM are inconclusive with regard to efficiency issues but shows a
capability of the code for solving 2D turbulent transonic flows in a stable manner.
The results from DASSAV were computed with higher order for all equations except
for the turbulence field, for which a solution on a finer mesh were interpolated. This
approach was chosen since the turbulence equation, which is treated differently in
the code, has not yet received a higher order discretization. The result from the
computation shows a decrease in the required discrete system size of around a factor
of five. In addition, no stiffness problems are reported, resulting in a wall-clock
speedup of a similar factor.
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For the inviscid BTC0, 3D streamlined body flow, VKI and SERAM have re-
ported. The mesh convergence results are however inconclusive, the data available
do however indicate that the gain obtained by the use or higher order methods falls
within the accuracy of the evaluation methods. It is thus not possible to identify im-
provements associated with the CS methods for this testcase. For the turbulent BTC0
case EADS-MAS shows results for the directional higher-order boundary layer dis-
cretization scheme. The studies conclude that the number of boundary layer levels
can be reduced by around a factor of 1.6, resulting in a reduction of around 20-30%
in the size of the numerical system compared with the IB.

The only CTC case computed by a higher order continuous approach is the CTC3
test case, the turbulent delta wing, which was treated by EADS-MAS illustrating
the robustness of the higher order directional boundary layer discretization for a
complex test case but not showing mesh convergence studies.

The continuous methods are in general observed to be in a less developed state
than many of the DG implementations. In particular, there are not many CS codes
capable of solving turbulent problems, making the analysis of the industrial appli-
cability of the methods difficult. For the cases where results do exist, the globally
higher order schemes mostly show similar performance, with respect to discrete
system size, as the DG approach. The localized higher order approach of UWS and
EADS-MAS show a small, typically 20-30%, but consistent, improvement com-
pared with the IB, a major advantage of this method is however the relative ease
of implementation into existing industrial codes. The results reported by DASSAV
however show a much larger potential in the reduction of the both the discrete sys-
tem size, but more importantly the convergence times. Due to the immaturity of
these results, particularly for turbulent flows, there is some uncertainty whether
these values can be realized for applications of industrial relevance. The method
does however seem very promising.

Unfortunately, for CS methods only 3 partners, INRIA, EADS-MAS and UWS,
have submitted the code industrial potential questionnaire. INRIA reports the issue
of efficiency as the most critical issue with the residual distribution schemes, and
since turbulence modeling is not yet available, it is difficult to assess the software for
realistic industrial cases. The boundary layer developments from UWS and EADS-
MAS have been applied to turbulent flow problems where the boundary layer plays
an important role and are believed to represent an improvement of around 30%
to existing industrial codes for such cases in the current form. Work still needs to
be performed in the treatment of the turbulence models which might improve the
results. Since the experience base is limited to only a few testcases, the statements
are considered to be of medium certainty.

4 Advanced Solver Methods

The efficient solution of the discrete system of equations is an important subject and
thus also under consideration in the ADIGMA project. Often, the solution scheme
is strongly dependent on the discretization approach in use, it is thus not always
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possible to evaluate a solution method without also taking into account the char-
acteristics of the discretization scheme used. For many DG and CS approaches, the
preferred solution method to date has been a Newthon-Rhapson type approach, with
the linear subsystems solved either directly or in an iterative fashion. This method
is suitable for the usually very stiff discrete problems arising from the higher or-
der discretizations, but is usually considerably slower than the methods used for
industrial codes and normally has much larger memory requirements. The partners
UNTW, UNBG, ONERA, NLR and UNUP have been considering the usage of non-
linear multigrid approaches as solvers for high-order problems. The improvement of
implicit approaches has been treated by UNBG and UNPR. For parallelization and
other software issues, the partners INRIA, NLR, VKI, UNBG and UNWA have con-
tributed. Other approaches have been considered by EADS-MAS, ONERA, UWS
and UNST.

UNTW has considered methods for improving multigrid convergence. Unfortu-
nately only results for the Euler equations are presented, where a reduction in the
number of cycles for convergence is achieved for isentropic meshes. This does how-
ever not in the current implementation translate to reduced computational times as
the cycles are more expensive. For stretched meshes, the performance is not im-
proved w.r.t the number of cycles compared with the baseline code. UNBG has con-
sidered the usage of p-multigrid strategies, showing promising results for inviscid
flow, where a small reduction in computational time is obtained compared with im-
plicit solvers. The memory usage of this spectral p-multigrid scheme is however not
considerably decreased. The performance of the scheme for transonic cases was not
considered, the results for stretched meshes seem to indicate that the approach expe-
riences the same stiffness problems as traditional multigrid schemes. The partner has
also investigated the use of h-multigrid, resulting in considerable speed-up factors,
even for viscous problems. The code is however new and the behaviour needs to be
further analysed. The results from ONERA also show the potential of the multigrid
method for higher order discretizations, where indications of improved performance
are shown, albeit with some oscillations. In general, it can be said that there have
been relatively little focus on the multigrid approach in ADIGMA which is unfortu-
nate since this is a central technology in the attempt of increasing the performance
of the higher order codes. For implicit solvers, some analysis regarding precondi-
tioning and the solution of the linear subproblems have been conducted by UNBG
and UNPR. These results show potential of improving the cost of the implicit solver
somewhat, the memory usage is still a critical issue. Regarding parallelization, the
results from INRIA, VKI, UNBG and UNWA show that the new approaches scale
in an efficient manner.

The EADS-MAS/UWS approach of enhancing the multigrid strategy by using
a line-implicit preconditioner has shown itself to be successful in cases where the
boundary layer has a significant influence on the convergence indicators, typically
yielding a speedup compared with the industrial standard of a factor between 2 and
3, as was seen in the MTC5 and BTC0 testcases. This comparison can be considered
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of being of relatively high resolution since the same code forms a basis for both ap-
proaches. The preconditioner seems to work equally well for both lower and higher
order discretizations, but if the number of layers required in the boundary layer is
significantly reduced, it is expected that the approach becomes less effective simply
because the stiffness in the boundary layer is reduced and the basic multigrid solver
works more efficiently. It is believed that there is potential to further increase the
efficiency of the preconditioner, the theoretical limit seems to be around a factor
two larger than what has been obtained so far, approaching, but not quite reaching,
typical Euler convergence rates. For cases where the boundary layer does not play
an important role for the integral values, such as for the CTC3 turbulent delta wing
case where a vortex is generated at the leading edge, the influence of the approach
is reported to be negligible.

In general, the focus on the solution of the discrete system has been small
in ADIGMA, resulting in uncertainties regarding the overall performance of the
schemes. Looking at the published results, the impression remains that the higher
order methods have, for most approaches, complicated the task of the solvers con-
siderably and that this could prove to be a major problem in the industrialization of
the higher order codes.

5 Adaptation and Error Estimation Strategies

Higher order methods introduce the possibility of locally adapting the discretization
order of the scheme, p-adaptation, in addition to the h-adaptation normally used for
industrial solvers. As for industrial codes, this can be performed on a local basis, as
a function of the gradients or residuals, or using some form of error analysis on a
global basis, usually through the computation of the adjoint problem. The advantage
of these approaches is the potential of reducing the numerical system size for a given
level of accuracy. The disadvantage of the approach is that, for h-refinement, new
meshes need to be generated, or modified, and that significant computational time is
often needed for analysing the current discretization, e.g. by computing the adjoint.
These factors have to be taken into account for the overall performance analysis of
the approaches. Contributors to the discipline in the ADIGMA projects were DLR,
A-F, DASSAV, ARA, NLR, UNNO, UNPR, UNST and UNWA, the large number
of participants underlining the importance of adaptation in the project.

The NLR CTC5 results for vortex flow show the positive effect of feature-based
adaptation with pre-input where the user can exclude regions known a-priori not
to require higher resolution for the problem in question. For the MTC4 case, the
adaptation procedures applied show a tendency towards an asymptotic solution,
the results are however not in a form allowing for a statement of the efficiency
of the approaches. UNPR shows the application of using second order derivatives
of primarily density and Mach number for refining shocks. UNWA shows the us-
age of anisotropic adaptation involving remeshing, where a mesh reduction factor
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of around 10 is reported. This approach does however involve a strongly coupled
interaction between solver and mesh generator, the cost of which must be further
analysed. A-F shows results of mesh adaptation and deformation using the adjoint
solution for 2nd order multiblock schemes, also resulting in error estimates. UNST
has demonstrated the usage of h-p adaptation for the MTC1 and MTC3 testcases.
The UNNO and DLR results on error estimation and goal oriented adaptation show
the potential accuracy inherent in the adjoint, allowing for local and global error
estimates for target functions. This method has the disadvantage of requiring a dual
computation for each target function. By solving for the discretization error, the
adjoint-adjoint problem, a single adjoint solution suffices for the entire error field
description. Since this method involves two subsequent approximation steps, the
accuracy level is somewhat reduced however. The methods was also not applied
to problems of industrial complexity in ADIGMA. For the BTC2 testcase, UNWA
have demonstrated the use of feature-based anisotropic mesh adaptation. For the
BTC0 and BTC3 cases, the DLR results show convergence with a reduction factor
of around 2-4 for the number of DOFs for convergence compared with global re-
finement. For the laminar BTC0 case, DLR show impressive DG(1) error analysis
results, where the active usage of the error estimation in conjunction with the ad-
joint adaptation allows for a mesh-converged drag DOF reduction factor of over 5,
Fig. 7. If the same factor would be realizable for DG(2), a combined speedup factor
of third order and error analysis compared with the second order results of over 50
would result. The DLR turbulent BTC0 case shows similar, or even better results
for adjoint refinement and error estimation, Fig. 5. For this case it is illustrated,
taking the computational time required for the adjoint computation into account, a
speedup compared with the standard DG(1) scheme of over 3 is obtained. It must
however be noted that for this figure each integral value was considered separately.
As previously noted, it is more usual to focus on all integral values, typically 6 in
3D, for the computations. For the CTC4 test case, several refinement strategies are
attempted by DLR. The general conclusion is not clear, but there are no strong in-
dications that the use of adaptation improves the mesh convergence significantly,
even when the adjoint is used. The error estimate stemming from the adjoint does
however seem to work well. It must here be noted that the error estimate was also
applied by A-F with the elsA industrial code, albeit with less accuracy than demon-
strated by the higher order code, presumably at least partly due to the early design
stage of the method. The error estimation can thus not be considered a method only
available for higher order FE schemes, but it might be that it is better suited and
more accurate when used in conjunction with such approaches. Some partners have
argued in ADIGMA that adjoint–based adaptation is not well suited for the FV
schemes in industrial use. Also demonstrated in the project is the usage of h-p re-
finement strategies where the importance of first ensuring a sufficient h-resolution
before p-adaptation is started is described. The methods show a large potential, espe-
cially if high accuracy requirements are posed on the solution. In general it appears
that adaptation approaches applied in ADIGMA are robust and to a high degree
automatic.
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6 Conclusions

The large amount of testcases considered in the industrial validation was a result of
the considerable differences in maturity levels of the codes developed in the project.
While the aircraft industry is almost exclusively interested in 3D RANS compu-
tations involving geometries of realistic complexity, many of the partners of the
project were limiting the scope of their studies to 2D and, more importantly, very
few codes were capable of solving turbulent flow in a stable manner. In hindsight, it
would probably have been more constructive to focus on a smaller amount of cases,
allowing the partners to spend more time on the asymptotic analyses, resulting in
clearer data for the industrial evaluation. It must however also be said that many
partners were not prepared to invest an adequate amount of resources into the evalu-
ation of testcases, choosing to focus on the development of their codes. As a result,
the conclusions of the evaluation, treated in the next chapter, were of reduced accu-
racy compared with what was planned for at the onset of ADIGMA. Still, this was
one of the first times an attempt has been made in an EU-funded project on CFD to
conduct a rigorous comparison of new approaches with the current industrial stan-
dard, an approach that allows projects to keep an industrial perspective. This not
only allows the industry to gain an impression of the attractiveness of the newest
approaches developed in academia, but also informs the universities and research
institutions of the needs of industry and the performance level they need to beat, as
well as their current relative position to this baseline. Even though the execution of
the industrial evaluation was partly unsatisfactory, it is thus believed that the exer-
cise was a very valuable feature of ADIGMA that should be considered for future
projects of industrial relevance.

References

1. ADIGMA Deliverable D2.2.2, Report of scope of assessment and assessment procedure
(2006)

2. ADIGMA Deliverable D6.3.1, Synthesis report on MTC suite for final assessment (2009)
3. ADIGMA Deliverable D6.3.2, Synthesis report on BTC suite for final assessment (2009)
4. ADIGMA Deliverable D6.3.3, Synthesis report on CTC suite for final assessment (2009)
5. ADIGMA form, Method Industrial Potential Questionnaire (2009)



Chapter 34
Conclusions and Recommendations

Norbert Kroll, Heribert Bieler, Herman Deconinck, Vincent Couaillier,
Harmen van der Ven, and Kaare Sørensen

Abstract. This chapter presents the major conclusions drawn from the col-
laborative European research effort ADIGMA on adaptive variational meth-
ods for aerodynamic applications in industry. Despite the fact that the
ADIGMA project has significantly further matured higher-order solvers for
the simulation of compressible flows, further research and improvements are
still required to realize their full potential for industrial use. Recommenda-
tions for future research paths are given.

Norbert Kroll
German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology,
Lilienthalplatz 7, 38108 Braunschweig, Germany
e-mail: norbert.kroll@dlr.de

Heribert Bieler
Airbus Operations GmbH, Airbusallee 1, 28199 Bremen, Germany
e-mail: heribert.bieler@airbus.com

Herman Deconinck
Von Karman Institute, Chausse de Waterloo, 72, 1640 Rhode-St-Gense, Belgium
e-mail: deconinck@vki.ac.be

Vincent Couaillier
ONERA BP 72-79 avenue de la Division Leclerc FR-92322 Chtillon Cedex
e-mail: vincent.couaillier@onera.fr

Harmen van der Ven
National Aerospace Laboratory, A. Fokkerweg 2, Amsterdam, The Netherlands
e-mail: venvd@nlr.nl

Kaare Sørensen
EADS-MAS, Aerodynamics & Methods, Rechliner Str., 85077 Manching, Germany
e-mail: kaare.sorensen@eads.com

N. Kroll et al. (Eds.): ADIGMA, NNFM 113, pp. 483–491, 2010.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



484 N. Kroll et al.

1 Higher-Order Discretization Methods

Major achievements

Throughout ADIGMA, the state-of-the-art of methods with discontinuous
bases, represented mostly by the generic family of Discontinuous Galerkin
(DG) Methods, has been further improved from the solution of viscous lam-
inar flows for simple configurations to turbulent flows around aerodynamic
configurations of moderate complexity (University of Bergamo, ONERA).
For example, the University of Bergamo has demonstrated its capability to
successfully conduct RANS simulation for the DLR-F6 wing/body configura-
tion up to 4th-order. Moreover, they have shown that in contrast to standard
finite-volume solvers, DG methods can be used on high-aspect ratio meshes
without severe convergence degradation as long as sufficient integration is
employed. Some novel formulations for DG discretization methods have been
investigated such as edge-based formulation (University of Uppsala), semi-
implicit discretization (University of Prague) and space-time discretization
strategies (University of Stuttgart, University of Twente). Since high-order
DG discretization raises many efficiency issues in terms of CPU and memory
usage, several aspects, that should have a significant impact on the code com-
plexity and efficiency, have been investigated. These include efficient ways
of implementing DG methods by mitigating the increased cost of higher-
order discretizations by casting the method in terms of global linear algebra
operations (CENAERO). Other partners have explored the type of shape
functions, the choice of quadrature formulae or the use of reduced quadra-
ture rules (zonal strategy, CENAERO). The results achieved have not always
been conclusive. However in many test cases it has been shown that, although
harder to optimize, higher-order DG methods are competitive to industrial
base line simulation codes, when targeting the same accuracy threshold.

The continuous high-order formulations were less mature and understood
at the start of the project than their discontinuous counterparts. Within
ADIGMA the continuous high-order formulations have been further devel-
oped up to maturity for computation of aerodynamic configurations of mod-
erate complexity. High-order accuracy has been demonstrated on a series of
test cases on external aerodynamic configurations, from subsonic to tran-
sonic flow regimes, both for inviscid and laminar flows. Promising prelimi-
nary results have also been shown for RANS simulations (Dassault Aviation,
SERAM), but these methods need a better understanding of the discretiza-
tion of the turbulence equations. Both VKI and INRIA have developed Resid-
ual Distribution (RD) methods starting from scalar equations up to laminar
Navier-Stokes equations and demonstrate some first RANS capabilities, with
VKI focusing on multidimensional upwind schemes and INRIA on simpler,
non-upwind, artificially stabilized methods.

One of the challenges in higher-order methods is the preservation of mono-
tonicity over discontinuities. It is a crucial requirement for the methods con-
cerning robustness for industrial aerodynamic applications. Many different
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shock capturing techniques have been investigated within the project. Some
partners have focused their activities on finding so-called “troubled cell indi-
cators” (University of Stuttgart, Nanjing University, VKI), while others have
relied on a global shock-sensing schemes (INRIA, Dassault Aviation). An
extensive comparison of the different shock capturing procedures, both for
continuous and discontinuous methods, has been performed under the same
test case conditions. No uniform solution to the problem of high-order shock
capturing has been found. However, the comparisons have helped to identify
some techniques which perform better for steady cases while others perform
better for unsteady cases.

In order to achieve the full potential of higher-order methods, the mesh
needs to represent the underlying geometry and in particular to resolve re-
gions of high curvature. However, several important bottlenecks exist in the
creation of such a boundary representation, particularly in case of highly
stretched boundary layer meshes around 3D configurations. Some aspects
have been tackled within ADIGMA including the treatment of curved wall
boundary conditions, as well as solution adaptive meshing, the development
of mesh deformation strategies to provide curved higher-order elements close
to the wall boundary and the specification of a set of mesh quality metrics
for higher-order simulations. ARA has extended its hybrid grid generation
system SOLAR to a higher-order meshing capability. An initial implementa-
tion of such a capability has been successfully demonstrated for the ONERA
M6 wing. It is clear though, that this puts an increased onus on the mesh
generation procedure.

In general, the partners developed their own independent software. There
was, however, a limited effort where the numerical methods of Warsaw Uni-
versity of Technology, University of Prague and VKI were integrated into a
collaborative software platform (COOLFluiD).

Challenges and recommendations

The competitiveness of higher-order methods to standard finite volume
solvers has been demonstrated for airfoil computations and 3D inviscid or
laminar flows around rather simple configurations. Only limited research ac-
tivities have been devoted to the discretization of the RANS equations with
higher-order methods, and it has become clear that this effort is in its infancy.
A dedicated effort towards the industrialization of the different higher-order
methods is required and in particular the understanding of the discretiza-
tion procedure needs to mature. Moreover, although work has been carried
out to mitigate the resource usage of higher-order methods, further research
needs to be invested in the area of algorithm optimization and complexity
reduction. Finally, as high-order methods target same accuracy levels with
coarser and coarser meshes as the approximation order increases, the quality
of the mesh generation becomes more important. Care must be placed into
generating meshes where higher-order elements with high aspect ratio have
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valid curved geometries. Achieving this on arbitrarily complex geometries is a
challenge for the future. Additionally, the interface with the underlying CAD
model information should not be lost, in order to support possible adaptation
procedures.

2 Solution Strategies

Major achievements

Computational efficiency is a crucial aspect for higher-order methods. Within
ADIGMA solution strategies have been identified and further developed
towards having the potential to meet the industrial requirements in terms of
memory storage, computing time and efficient utilization of parallel low cost
computers. According to the literature two major research lines have been fol-
lowed, namely capable multigrid strategies (p-multigrid, h-multigrid) on the
one side and efficient and robust implicit Newton-type techniques with partic-
ular focus on linearization, linear solvers and suitable preconditioners on the
other side. For the Discontinuous Galerkin discretizations a detailed two- and
three-level h-multigrid analysis has been conducted both for the advection-
diffusion and the linearizedEuler equations in two space dimensions (University
of Twente, NLR). These analysis tools have been successfully used to optimize
Runge-Kutta type smoothers, which resulted in a significant improvement in
convergence rate. A spectral p-multigrid DG algorithm for the solution of the
steady state Euler and Navier-Stokes equations have been investigated by the
University of Bergamo. Care has been taken to design efficient smoothers, in
particular for viscous flows. Compared to classical implicit schemes this ap-
proach provides similar efficiency along with significant memory savings of
about 75%. A hybrid multigrid approach has been proposed by ONERA in
the frame of a 3D multiblock structured solver using second- or third-order
Discontinuous Galerkin discretizations on the fine grid and classical second-
order finite volume formulations on the coarser grids. NLR has extended the
h-multigridalgorithmto four-dimensional (space-timeDGdiscretization) time-
accurate simulations targeted for helicopter applications including locally
refined meshes. With respect to fully implicit methods based on Newton-type
iterations, various aspects crucial for higher-order discretizations have been in-
vestigated. Particular focus has been put on linearization and efficiency of the
linear solvers associated with each Newton step using GMRES (University of
Bergamo,University ofPrague).The researchhas covered e.g. the choice of pre-
conditioners, the dimension of the Krylov subspaces and the number of itera-
tions and the relative tolerance for GMRES. Although in many cases progress
has been achieved in reducing the computational effort of higher-order meth-
ods, the findings have not always been conclusive, in particular with respect to
viscous turbulent flow problems. Efficient parallelization of the higher-order
methods has been another research topic within ADIGMA. Parallel versions
of discontinuous Galerkin methods (e.g. University of Bergamo) and Residual
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Based Distribution Schemes (INRIA, VKI) have been developed and analyzed.
Research work has been devoted to dynamic load balancing allowing for proper
parallel efficiency, particularly in case of local grid refinement (Warsaw Univer-
sity of Technology). It has been demonstrated that good parallel performance
can be achieved with higher-order methods; however, the tests have been lim-
ited to rather small number of processors. Finally, hybrid techniques based on
the heterogeneous domain approach coupling different discretization and inte-
gration strategies have been investigated within ADIGMA as a means to cut
computational cost while maintaining improved accuracy of higher-order dis-
cretization. A hybrid Discontinuous Galerkin/finite volume solver has been in-
vestigated by ONERA. First results for 2D turbulent flows look promising but
evaluationonmore complex configurations is required in order to assess theben-
efit compared to a full discontinous Galerkin approach.Ahybrid parallel frame-
work connecting different classes of methods (DG, FV, FD) on structured and
unstructured grids for the solution of different governing equations (linearized
Euler, nonlinear Euler and Navier-Stokes equations) has been investigated by
University of Stuttgart. This capability has been successfully demonstrated by
the simulation of laminar vortex shedding. An alternative approach has been
proposed by University of Wales Swansea and EADS-MAS. Higher-order dis-
cretizations and improved equation solution has been attempted within wall
boundary layer regions based on standard finite volume solvers. The benefit of
this methodology has been demonstrated for a number of examples. However,
furtherwork is requiredbefore general conclusions canbedrawnaboutpractical
usefulness of this approach for industrial flow simulations.

Challenges and recommendations

Although within ADIGMA various methods and strategies have been inves-
tigated and further enhanced to improve the solver efficiency of higher-order
methods, the development of memory and CPU efficient solvers for large-
scale industrial relevant applications still remains a major challenge. The
techniques developed have been mainly tested and adjusted for inviscid and
laminar flows with moderate geometric complexity. The results achieved so
far are not conclusive for turbulent complex flow problems. Further research
work including efficient adaptation to the new type of processors and com-
puter architectures is required in order to mature higher-order methods for
industrial use.

3 Adaptation and Error Estimation

Major achievements

Local grid refinement is an essential ingredient for higher-order methods to
be competitive with standard finite volume solvers. Traditionally, mesh adap-
tation for flow problems is based on feature-based sensors, which refine the
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computational mesh based on flow features such as shocks and vortices. The
mathematical framework of finite-element methods allows sensors targeted
at reducing the error in the computation, so-called goal-oriented adapta-
tion. Within ADIGMA existing goal-oriented algorithms for the Euler equa-
tions and single functionals have been extended to the laminar and turbulent
Navier-Stokes equations and multiple functionals (DLR). The same holds for
a posteriori error estimation algorithms and the extension to anisotropic re-
finement (DLR, University of Nottingham). The developed algorithms have
successfully been applied to the 2D high-lift test case, a turbulent 3D stream-
lined body and wing-body configuration, clearly showing the fast convergence
of the goal-oriented refinement strategy, especially when combined with er-
ror estimation. An important result is that the method is more efficient
than performing a grid convergence study in terms of turnaround time, even
though it requires an additional solution of the adjoint problem. As DG
methods allow variation of the polynomial order on a cell-to-cell basis, hp-
refinement strategies have been developed in the same context as the above
h-refinement strategies. For p-refinement both feature-based sensors (Univer-
sity of Stuttgart) and sensors based on the smoothness of the solution have
been developed (University of Nottingham). The efficiency of the anisotropic
hp-refinement algorithm has been demonstrated for 2D laminar flow problems
(University of Nottingham).

Challenges and recommendations

In order for local refinement strategies to be efficient, the starting mesh for
the computations should be as coarse as possible, but also represent the ge-
ometry accurately. This poses different requirements on grid generation than
the classical finite volume methods do. In case of turbulent simulations, an
additional complication is that the curvature of the geometry must be ex-
tended into the flow domain in order to avoid grid folding. In ADIGMA
only a small portion of the research effort has been devoted to this problem.
There are currently no grid generators available which can be routinely used
for this task. Thus the development of such grid generators is highly recom-
mended. The goal-oriented sensors and error estimation developments have
shown good progress. Nonetheless, maturation of the algorithms is required
for routine industrial use, especially for turbulent flow and/or p-refinement.
Another consideration in the application of goal-oriented adaptation and er-
ror estimation to turbulent flows is the balance between numerical and mod-
eling error. The error estimation algorithms will reduce the numerical error,
but will not improve upon the turbulence model. There will be a cross-over
point where the numerical error drops below the modeling error and further
reduction of the numerical error does not make sense. This cross-over point
is unknown and application-dependent. It is recommended to develop best
practices for stopping criteria for turbulent flows.
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4 Industrial Assessment

Major achievements

The assessment of the developed methods and technologies in an industrial
setting has been a central issue in the ADIGMA project. A specific activity
has been devoted to the specification of requirements that industrial aerody-
namic applications will be putting on future numerical simulation tools. In-
dustrial partners have expressed their needs in terms of accuracy, efficiency,
robustness, ease of use, applicability and implementation issues among oth-
ers. A test case suite of increasing complexity has been specified together with
clearly defined reporting templates in order to put the comparison of newly de-
veloped methods with traditional industrial flow solvers on a firm basis. The
large amount of test cases considered in the industrial assessment activity has
been a result of considerable differences in the maturity of the codes developed
in ADIGMA. Many of the partners had to limit their studies to 2D flows and
more importantly, very few codes were capable to treat turbulent flows. For
some test cases (especially for the more complex ones) just one partner con-
tributed with a newly developed method, and so the conclusion was somehow
limited to this specific run. Furthermore, the thorough asymptotic analysis
on order of accuracy has also been restricted to rather simple cases. In gen-
eral, the higher-order methods investigated within ADIGMA show a potential
for reducing the discrete system size by a factor of about 5–10 for most of the
test cases and accuracy levels considered. At the same time, the memory us-
age of the examined codes is typically at least one order of magnitude higher.
The gain in discrete system size, however, is not yet fully transferred to in-
creased runtime performance as available solver technologies are not adequate
for large scale applications. The treatment of flow discontinuities in transonic
flow problems does not seem to be a major problem regarding robustness or
efficiency and turbulence modeling does not represent a principal hindrance to
the higher-order approaches. The codes that have been used in ADIGMA ap-
pear to be readily parallelizable and some of them appear to be suitable for en-
hancements to a competitive code for industrial use within the next few years.
The solver part of the codes turned out to be the largest bottleneck and require
future research activities. Although the evaluation has not been as rigorous
as planned resulting in somewhat limited conclusion, a first attempt has been
made in an EU-funded CFD project to conduct a careful and thorough assess-
ment of new technologies with the current industrial standard. This approach
on the one hand allows industry to gain insight in new CFD technologies de-
veloped in academia and on the other hand provides universities and research
institutions industrial needs and performance levels to be beaten.

Challenges and recommendations

It has been realized during the execution of the test cases that, at the start
of the project, rather ambitious test cases were intended to be investigated.
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In order to keep the test case suites manageable for the majority of the
consortium members, adjustments and redefinitions were necessary. In some
cases this raised questions, whether the simplified test cases were still close
enough to industrial needs to raise the industrial awareness for this project.
Based on the experience gained in ADIGMA it is highly recommended to
include a rigorous well defined industrial assessment in any future planning
of adaptive higher-order R&T projects.

5 Dissemination and Exploitation

The knowledge gained in the ADIGMA project, the computational methods
and the particular results generated have been disseminated in various forms.
Important means are publications in journals and technical papers and pre-
sentation at national and international conferences. In particular, the two
ADIGMA VKI Lecture Series courses, the publicly open final workshop and
the final report published as a dedicated book in the Springer Series “Notes
on Numerical Fluid Mechanics and Multidisciplinary Design Notes” are seen
as important channels to disseminate the project results. Within the project a
comprehensive data base for the evaluation of adaptive higher-order methods
has been created. The data base includes specification of test cases, compu-
tational grids, solutions of higher-order obtained with various approaches as
well as reference solutions of standard industrial second-order methods. This
test case suite is of high interest to the CFD community to promote the pro-
liferation of high-order CFD tools. The ADIGMA objectives enabled a strong
cooperation between universities (upstream research), aircraft industry (end
user) and research establishments (bridge between basic research and ap-
plication). According to their role the organizations have applied different
dissemination and exploitation strategies. The aircraft industry is directly
involved in the transfer process from basic research and development into
industrially applicable simulation methods and tools. The newly developed
discretization schemes and numerical solution algorithms have been explored
on industrially relevant test cases. With the help of the research establish-
ments as central providers of highly sophisticated CFD simulation tools for
the aircraft industry the most promising methods will be further explored on
even more complex cases from daily aerodynamic work. The research organi-
zations participating in ADIGMA will directly exploit the knowledge gained
in the project by improving their numerical tools. In particular, ADIGMA
has been an important step towards the establishment of the next generation
of CFD tools which can cope with the future requirements of the aeronautical
industry. By providing improved CFD codes to their customers and partners
in industry and academia, the research organizations actively contribute to
the dissemination of the ADIGMA results. The universities taking part in
ADIGMA will directly exploit the ADIGMA findings of advanced numerical
algorithms and procedures for teaching and training students and researchers.
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The close cooperation with industry will lead to the training of qualified per-
sonnel with knowledge of the industrial requirements, thereby increasing the
potential of graduates for employment within industry. The project outcome
will allow universities to pursue their goals in the field of applied mathematics
and computational fluid dynamics, both in research and education.

6 Summary

The main achievements of the collaborative research project funded by the
European Union in the Sixth Framework Programme on Aeronautics and
Space are (1) significant progress in the development of adaptive higher-
order methods for aerodynamic applications with high scientific output (2)
unique approach for critical assessment of innovative methods for industrial
use, (3) creation of a comprehensive data base for performance assessment
of advanced CFD methods, (4) successful demonstration of the potential
and capabilities of higher-order methods, (5) identification of limitations and
research directions for further industrialization of higher-order methods as
well as (6) significant improvement of the collaboration between academia,
research organizations and industry on advanced CFD methods. Despite the
significant progress, it has to be mentioned that many achievements are still
far from industrial use. In order to realize the full potential of adaptive higher-
order methods, further concentrated research effort is required. Particular
research areas to be addressed are generation of coarse higher-order meshes
and memory-efficient solver strategies for large-scale simulations for turbulent
flow problems.
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