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Series Preface

The efficacy of sound to penetrate the seas made acoustic systems in the past
century the leading tools for sensing objects in and measuring properties of
the seas. For over sixty years The United States Office of Naval Research
(ONR) has been a major sponsor of undersea research and development at
universities, national laboratories, and industrial organizations. Appro-
priately ONR is the sponsor of this monograph series.

The intent of the series is to summarize recent accomplishments in, and to
outline perspectives for, underwater acoustics in specific fields of research.
The general field has escalated in importance and spread broadly with rich-
ness and depth of understanding. It has also, quite naturally, become more
specialized. The goal of this series is to present monographs that critically
review both past and recent accomplishments in order to address the short-
comings in present understanding. In this way, these works will bridge the
gaps in understanding among the specialists and favorably color the direction
of new research and development. Each monograph is intended to be a
stand-alone advanced contribution to the field. We trust that the reader will
also find that each is a critical introduction to related specialized topics of
interest as well.

ONR has sponsored the series through grants to the authors. Authors are
selected by ONR based on the quality and relevance of each proposal and the
author’s experience in the field. The Editorial Board, selected by ONR, has,
at times, provided independent views to ONR in this process. Its sole official
role, however, is to judge the manuscripts before publication and to assist
each author at his request through the process with suggestions and broad
encouragement.

Ralph R. Goodman, Ph.D.
Ira Dyer, Ph.D.

Homer P. Bucker, Ph.D.
Jeffrey A. Simmen, Ph.D.
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1 Introduction

The most widespread application of high-frequency underwater sound is ac-
tive sonar, the acoustic equivalent of radar. In oceanography, underwater
sound has found increasing use because it can provide large-scale coverage not
possible with traditional sampling instruments. Likewise, underwater acous-
tic imagery can extend to much greater ranges than optical imagery, which
is limited by high values of absorption and scattering, especially in turbid
coastal waters. When sonar is used to detect and classify targets such as
submarines, mines, underwater structures, animals, etc., sound scattering by
the seafloor is a source of interfering reverberation that degrades the desired
target echo signal. On the other hand, when sonar is used to observe or char-
acterize the seafloor, scattering provides the desired signal. In either case,
an understanding of scattering by the seafloor can provide benefits in sonar
design and application.

Active sonar employs widely different frequencies, in the range 100 Hz
to a few megahertz. The corresponding wavelengths range from a few me-
ters to less than a millimeter. Acoustic wavelength is not the only spatial
scale of interest in the seafloor scattering problem; equally important is the
distance that acoustic energy can propagate without undue attenuation. In
water, this can be hundreds of kilometers at the lowest frequencies and a
few tens of meters at the highest frequencies. As for propagation in seafloor
sediments, maximum propagation distances are much shorter, ranging from
hundreds of meters at lower frequencies to millimeters at the higher frequen-
cies. This monograph will emphasize small spatial scales and “high” frequen-
cies, very roughly, frequencies from 10 kHz to 1 MHz, with corresponding
wavelengths from 15 cm to 1.5 mm. With this restriction, one need only con-
sider properties of the upper portion of the seafloor, a few meters at lower
frequencies and a few centimeters at higher frequencies. Thus, by restricting
attention to high frequencies, the need to consider geological stratigraphy
(structure) on scales larger than a few meters is avoided. A better reason for
this restriction is that lower frequencies have received more scientific atten-
tion [Jensen et al. 1994, Frisk 1998], largely because of the interest in deep-
water antisubmarine warfare during the cold war. More recently, there has
been a greater interest in shallow water, the so-called littoral regions (this
includes regions from the continental shelf inward to shore as well as bays,
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sounds, and estuaries), and the research pendulum has swung accordingly.
The littoral environment is more complex and varied than the deep-water
environment, and the scientific problems (measurement, modeling, and pre-
diction) are correspondingly more difficult. Recent research has resulted in
significant progress, and this motivates the review given in this monograph.

1.1 Applications

In most sonar applications, operating frequency is determined by a com-
promise between range, which decreases as frequency increases, and angular
resolution, which improves as frequency increases. While there are several
military applications for high-frequency sonar, two applications in particular
have motivated research on high-frequency seafloor scattering: mine coun-
termeasures and acoustic homing torpedos. A mine countermeasure (MCM)
sonar often must find and then classify proud (lying on the seafloor) or buried
targets against a background of seafloor scattering. Frequencies of tens of kilo-
hertz allow detection at ranges of order 1 km with angular resolution in the
neighborhood of 1–10◦. Good angular resolution restricts the sonar beam to
a small patch of seafloor thereby reducing the level of interfering reverbera-
tion. For classification of targets by imaging, still better angular resolution is
needed. Frequencies of hundreds of kilohertz may be used to obtain angular
resolution of a fraction of 1◦ with a corresponding reduction in operating
range compared to lower-frequency detection sonar. Similar levels of resolu-
tion can be obtained at tens of kilohertz using synthetic-aperture sonar, with
techniques adapted from synthetic-aperture radar. In shallow water, bottom
scattering is often the dominant source of interference for acoustic homing
torpedos. Torpedos have severe restrictions on the allowable size of the sonar
array, which degrades angular resolution compared to larger ship-deployed
sonar. As a compromise, operating frequencies of tens of kilohertz are used
to provide moderate angular resolution and range.

Military, commercial, and scientific presence in the ocean has fostered
the development of acoustic communication as an important discipline. In
shallow water, propagation from transmitter to receiver is complicated by
multiple paths involving repeated “bounces” from the seafloor and sea sur-
face. This causes a smearing in the time domain of transmitted signals with
resultant interference between successive transmitted symbols. Schemes to
reduce intersymbol interference and increase data transmission rates benefit
from accurate propagation models which necessarily include acoustic inter-
action with the seafloor.

Nonmilitary use of high-frequency sonar has increased steadily in the last
few decades. The applications that relate most immediately to this mono-
graph are those in which sonar is used to map the seafloor or to determine
its physical properties. High-frequency sonar employing multiple downward-
pointing beams is used to measure seafloor relief (bathymetry). Side-scan
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sonar is used to image the seafloor, and some side-scan sonars can also mea-
sure bathymetry by means of an interferometric technique. In analogy with
radar, which is used to remotely sense certain properties of the earth’s surface,
recent research has attempted to utilize the output signal of multiple-beam
and side-scan sonar operating in the 10–300 kHz frequency range to measure
physical properties of the seafloor. Normal incidence sonar (10–50 kHz) is of-
ten used to infer sediment physical properties, often using inversion of acous-
tic impedance as measured from seafloor reflection. Still higher frequencies
(a few megahertz) are used in pencil-beam and mechanically scanned fan-
beam sonars to observe dynamic processes at the seafloor including bedform
development, sediment transport, and biological processes. Such applications
fall within the realm of Acoustical Oceanography [Medwin and Clay 1998],
in which acoustics is used to measure the ocean environment. Measurements
of this type are dependent on acoustic interaction with the seafloor, and
accurate models for this interaction can be beneficial.

1.2 Research on Seafloor Scattering

Sonar was used in World War II in submarine and antisubmarine warfare and
for bottom sounding. These sonars operated at high frequencies, and impor-
tant research on acoustic–environmental interactions was conducted during
the war [Bergmann and Spitzer 1946, Urick 1983]. At this early stage, scat-
tering by the seafloor was recognized as an important source of interference,
and the concept of “scattering strength” was developed to quantify scatter-
ing by the seafloor and the sea surface. Measurements during the war and in
the two decades following were made in an attempt to categorize the scat-
tering strength of various seafloor types, designating them by names such
as “rock, gravel, sand, silt” [Urick 1954, Urick 1956, Urick 1960, McKinney
and Anderson 1964, Wong and Chesterman 1968, Flowers and Hurdle 1972].
These measurements helped to identify the main characteristics of seafloor
scattering, but subsequent work has shown that simple categorizations are
inadequate, as apparently similar seafloor types may have quite different scat-
tering strengths. This issue is discussed in Ch. 12 of this monograph.

Motivated by applications in acoustic homing torpedos and minehunt-
ing, programs of seafloor scattering research were initiated by U.S. agencies,
NATO, the European Union, and others. These measurements have added
greatly to the existing data on seafloor scattering and, more importantly,
have often been accompanied by environmental measurements intended to
support physical modeling. Most of the acoustic measurements have been
dedicated to backscattering (also called monostatic scattering), as this is the
dominant seafloor reverberation mechanism in the most common sonar ap-
plications in which the source and receiver are colocated. Recent interest in
sonar employing receivers spatially separated from the source has prompted
so-called bistatic scattering measurements. Also, interest in targets buried
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in the seafloor (e.g., mines, pipelines, cables) has motivated measurement of
acoustic penetration of the seafloor. The results of such measurement pro-
grams appear in refereed journals as well as in the proceedings of specialized
conferences. An effort is made in this monograph to identify special issues
and proceedings of particular interest. This relatively recent work is a primary
source of material included in this monograph.

An acoustic measurement system used as part of the Coastal Benthic
Boundary Layer (CBBL) Program is illustrated in Fig. 1.1. This setup was
used to determine seafloor monostatic and bistatic scattering strengths. Fig-
ure 1.2 illustrates an experimental arrangement used by investigators at the
NATO Undersea Research Centre to measure both monostatic scattering and
penetration into the seafloor. Results of such measurements are given in Chs.
12 and 15 and in Appendix G.

Fig. 1.1. Benthic Acoustic Measurement System (BAMS) and a ship-deployed
receiving array used to measure acoustic scattering by the seafloor during the CBBL
Program. Seafloor properties were measured by a variety of techniques including
stereophotography, in situ probes, and sediment coring.

1.3 Organization of Monograph

It is expected that many readers will not wish to read the chapters of this
monograph in serial order but will instead begin with a chapter or section
of particular interest. To assist these readers, Ch. 2 provides a summary
of basic concepts and connects the geophysical and acoustic aspects of this
monograph. Together with the list of symbols given in the first appendix
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Fig. 1.2. Apparatus used to measure acoustic penetration into the seafloor. A para-
metric source on a movable tower was used in conjunction with a buried hydrophone
array. [From Maguer et al. 2000b]

of this monograph, it is hoped that this approach will reduce the amount
of preparatory reading required in the pursuit of any given subject. The
remainder of the monograph is divided into chapters covering oceanographic
and geophysical aspects of the subject (Chs. 3–7) and chapters on acoustic
topics (Chs. 8–16).

Chapter 3, “The Nature of Marine Sediments,” is a descriptive introduc-
tion to shallow-water sediments including the regional distribution of sedi-
ment types and morphology, types of sediment particles and their structure,
free gas in sediments, and the effects of biological and hydrodynamic pro-
cesses on sediment structure. This chapter supports following geophysical
chapters but can be read independently. It is hoped that this material will
provide a realistic picture of the seafloor and its dynamic nature for those at-
tempting to develop acoustic theory and models and perhaps even stimulate
interdisciplinary research connecting acoustics with oceanographic processes.
The next chapter, “Physical Properties,” describes sediment types and the
physical properties that are of importance to high-frequency acoustics. Ex-
amples include grain size, sediment density, porosity, and permeability. The
following chapter, “Geoacoustic Properties,” treats parameters whose mean-
ing derives from acoustics, e.g., wave speeds, attenuation, and impedance, and
presents empirical relationships to predict those parameters from sediment
physical properties. The remaining geophysical chapters, “Seafloor Rough-
ness” and “Sediment Heterogeneity,” describe the methods used to measure
and characterize these random properties in the manner required for acoustic
scattering models.

The acoustic chapters begin with “Fluid Theories,” providing the back-
ground needed for fluid–sediment scattering models, which constitute the
majority of models in current use. The next acoustic chapter, “Elastic The-
ories,” provides the background for scattering models incorporating shear
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effects, and Ch. 10 does the same for Biot (poroelastic) scattering models.
These theoretical chapters are followed by two chapters on acoustic data,
“Reflection” and “Seafloor Scattering Experiments.” The remaining acoustic
chapters cover models for roughness scattering, volume scattering, acoustic
penetration of the seafloor, and reverberation statistics. Model-data compar-
isons are presented where available. Several important and current topics
are omitted or only discussed briefly. These include numerical methods for
solving acoustic problems, time-domain methods, and use of acoustic data to
infer seafloor properties.

The first appendix is a list of mathematical symbols, and the following
seven appendices cover basic material that may be of general interest. The
remaining appendices are intended for the specialist and are not essential
reading for those more interested in applications than research. In part, these
appendices contain model derivations that were deemed too complicated for
the main text. Most of the discussion of scattering in these appendices em-
ploys the T-matrix (“transition matrix”) formalism. While this approach may
be less intuitive than others, once the essential definitions and relations (Ap-
pendix J) are understood, most of the models in this monograph can be
derived with efficiency and within a common framework.



2 Basic Concepts and Definitions

For our purposes, three topics within underwater acoustics are of primary in-
terest: the acoustic environment, theories for wave propagation in sediments,
and models derived from these theories. This chapter will give an introduc-
tory account of each of these topics, giving concepts and definitions essential
to later chapters. The intent is to provide more-or-less immediate access to
later chapters with minimal introductory reading.

2.1 Geophysical Properties

An understanding of the environment is essential for solution of many of the
problems in high-frequency, shallow-water acoustics. This requires that prop-
erties such as sediment mass density, sound speed, and acoustic attenuation
be known.It also requires knowledge of seafloor volume heterogeneity and
surface roughness. Given this information, virtually any acoustic problem
can be solved, in principle, because the equations of motion and boundary
conditions for the acoustic field are understood. Of course, computational
difficulties may arise; more significantly, there is some uncertainty as to the
applicability or accuracy of current theories for wave propagation in sedi-
ments. It is also important that sediment properties reflect seafloor condi-
tions at the time of acoustic measurements or modeling applications. As will
be shown in later chapters, seafloor properties in shallow water are not only
spatially variable (heterogeneity) but can also vary with time. For example,
seafloor morphology (roughness or ripple structure) changes rapidly in re-
sponse to wave action during storms and can be subsequently degraded due
to biological processes (Sect. 3.4).

The list of geophysical properties, or parameters, of interest is quite long,
due to the continual refinement of sediment acoustic theory and models.
Acoustic models can be broadly classified according to the wave theory em-
ployed (e.g., fluid, elastic, or poroelastic). Such theories sometimes require
knowledge of sediment structure at the microscopic level, and often require
knowledge of the centimeter-scale spatial dependence of the material param-
eters required by the underlying theory. Such spatial dependence includes the
random spatial variation responsible for scattering and the average variation
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with depth below the seafloor due to stratification. The various wave theories
will be discussed briefly in Sect. 2.2 and then more fully in Chs. 8 – 10.

For the sake of convenience, geophysical properties are divided into two
categories in this monograph: physical properties and geoacoustic properties.
Physical properties include those characteristics of sediment, sediment grains,
and pore fluid that are of interest to geologists and geotechnical engineers as
well as having applications to acoustics. These properties include sediment
mass density, porosity, permeability, and many other parameters associated
with sediment grains, pore fluid, the sediment frame, and the pore space.
Geoacoustic properties include speed and attenuation for both compressional
and shear waves. Acoustic impedance, the product of sediment mass density
and sound speed, is another important geoacoustic property. The properties
most commonly employed by current acoustic models will be introduced, and
methods developed to characterize the random roughness and heterogeneity
of the seafloor will be described.

The division of geophysical properties into physical and geoacoustic com-
ponents is motivated in part by efforts to predict geoacoustic properties given
measured values of one or more physical properties. This is one of the sub-
jects of Ch. 5. Typically, this involves the development of empirical regressions
giving wave speed or attenuation in terms of properties such as grain size or
porosity.

2.1.1 Physical Properties

Some sediment physical properties, such as mass density (hereafter referred
to as “bulk density”), are employed directly as input parameters in acous-
tic theory and models. Others, such as sediment type or mean grain size,
are used indirectly as empirical predictors of acoustic behavior. For example
[McKinney and Anderson 1964] relate scattering strength versus grazing an-
gle to bottom type, expressed in descriptive terms such as “sand” and “mud.”
In many applications of this type of model, a value of mean grain size is all
that is required. Grain size is one of the most commonly measured sediment
properties, and is usually given as equivalent particle diameter, either in mil-
limeters or in logarithmic units. Logarithmic units are convenient, because
many grain-size distributions are approximately lognormal. If the grain size is
d mm, the grain size is translated into base-two logarithmic units as follows:

φ = − log2 d . (2.1)

A table is provided in Ch. 4 to quickly compare different grain size scales.
As defined in this table, clay-sized particles have grain size less than 0.0039
mm (8 φ), silt-sized particles have grain size between 0.0039 mm and 0.0625
mm (8 φ to 4 φ), and sand-sized particles have grain size between 0.0625 mm
and 2.0 mm (4 φ to -1 φ). Particles larger than sand-sized are often referred
to as “gravel,” while clay- and silt-sized particles are collectively referred to
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as “mud.” Several measures of logarithmic grain-size statistics are used. The
most common is the “mean grain size,” denoted by the symbol Mz. Various
definitions are used for mean grain size, but the “graphical mean” definition
given in Sect. 4.1 will be used in this monograph. As the logarithmic scale is
used, the units of Mz are denoted φ.

A very broad classification into “siliciclastic” and “carbonate” sediments
is often used to define both origin and mineralogy, the former composed
of particles (e.g., quartz sand grains and clay minerals) derived from the
breakdown of primarily silicon-bearing rocks that have been transported some
distance from their origin, and the latter composed of calcite or aragonite
particles formed from the in situ breakdown of shells and reef material. The
term “clay” may be confusing to the casual reader as it refers both to the
size class defined above and to a large class of silicate minerals. Chapter
3 provides a brief description of the origin, classification, and structure of
particles that make up most shallow-water sediments.

Bulk density, ρ, is defined as the mass, M , of a suitably chosen small
volume of the sediment divided by the volume, V :

ρ =
M

V
. (2.2)

Bulk density is also considered a geoacoustic property by many (e.g., [Hamil-
ton 1971b, Hamilton 1980]).

Sediments are porous media, and one commonly used measure is fractional
porosity,

β =
Vw
V

, (2.3)

where Vw is the volume of water in the total sediment volume, V , assuming
the sediment has no gas (is “fully saturated”). Porosity is often expressed
in percent, denoted by the symbol η = 100β in this monograph. There are
numerous other sediment bulk properties, such as void ratio, water content,
degree of saturation, permeability, as well as grain shape, density, and bulk
modulus and pore fluid density, viscosity and bulk modulus that are de-
scribed in Ch. 4 and Appendix B. Many of these physical properties were
neither defined nor measured with high-frequency acoustic applications in
mind. However, Ch. 4 should provide the acoustic modeler insight into how
sediment physical properties are measured and reported, and how values of
these sediment properties should be interpreted relative to acoustic theory
and models.

2.1.2 Geoacoustic Properties

Geoacoustic parameters, such as speed and attenuation of waves propagating
in sediment, are the essential inputs to sediment wave propagation theories.
It follows that they are also needed for theory-based acoustic models. Acous-
tic impedance is another frequently encountered geoacoustic parameter whose
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utility stems from its ease of measurement and high degree of correlation with
other parameters. While the model builder has the luxury of choosing a cer-
tain set of geoacoustic parameters as inputs, the model user faces the problem
of obtaining values for these parameters. In a few cases (e.g., Biot theory),
some of the geoacoustic parameters can be calculated in terms of physical
parameters such as the densities and elastic moduli of the constituents (par-
ticles and pore water) as well as sediment bulk properties such as porosity and
permeability. Generally, however, one has neither a sufficient set of measured
physical parameters nor a sufficiently complete and accurate theory that this
approach can be used. Failing this, direct measurement of bulk density, and
in situ measurement of wave properties is the preferred method of obtaining
geoacoustic parameters. As wave speeds generally depend on frequency, it is
desirable that the measurement frequency be similar to the frequency of ap-
plication. Unfortunately, such detailed geoacoustic measurements are rare, as
they require instrumentation and expertise usually available only in carefully
planned field experiments. It is more likely that a few physical properties,
such as mean grain size and porosity, might be measured. In these cases, one
can use empirical regressions to estimate values of geoacoustic parameters
(Sect. 5.1.2). Acoustic inversion is another approach to this problem, but
this subject falls outside the scope of this monograph.

Fluid theory requires that the sediment be described in terms of three
parameters, usually taken to be the bulk density, compressional wave speed,
and compressional wave attenuation. Additional geoacoustic parameters are
needed if the seafloor is modeled as an isotropic elastic solid supporting shear
waves. In this case sediment bulk density and a set of four elastic properties
must be known. One such set consists of the compressional and shear wave
speeds and corresponding attenuations. Alternately, elastic moduli can be
used. Hamilton [Hamilton 1971a] presents a version of elasticity in which the
elastic constants (shear modulus and bulk modulus) are replaced with com-
plex constants with the real parts governing wave speeds and the imaginary
parts governing wave attenuations. This is the “linear viscoelastic” formal-
ism, but it will simply be called “elastic theory” in this monograph. Hamilton
assumes that the complex moduli are independent of frequency. As a result,
attenuation increases linearly with frequency and wave speeds are indepen-
dent of frequency (negligible speed dispersion). The proportionality constant,
k, connecting attenuation and frequency is widely encountered in the litera-
ture and is usually given in dB m−1kHz−1. The assumption that both k and
sound speed are independent of frequency is an approximation at best, as it
violates causality (Appendix I).

Sediments, particularly sands, can be treated as poroelastic media that
allow independent movement between the pore fluid and the “frame,” com-
prised of sediment particles in contact. Modeling scattering from a poroelastic
seafloor requires several physical parameters, many of which can be inferred
from geoacoustic parameters. This is a role reversal compared to fluid model-
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ing, where geoacoustic parameters are the model inputs and are often inferred
from physical parameters. The physical parameters required by poroelastic
theory can be broken into four sets characterizing the (1) fluid, (2) pore, (3)
grain, and (4) frame properties. The fluid parameters are density, viscosity,
and bulk modulus. The porometric parameters are porosity, tortuosity, pore
size, and permeability, and the grain parameters are density and bulk modu-
lus. The frame parameters are the bulk and shear moduli (real and imaginary
parts). Obtaining practical values for the several poroelastic parameters is an
unsolved problem that is approached with a combination of empiricism and
theoretical approximation.

The acoustic theories described above assume marine sediment is a single-
phase (fluid or solid) or two-phase (fluid–water) medium. In fact, sediments
are quite complex assemblages of a variety of particle types, pore fluid, or-
ganic matter, and, sometimes, free gas. Even a small amount of free gas
can greatly alter sediment compressional wave speed (compressibility), com-
pressional wave attenuation, and acoustic scattering (Sects. 3.3 and 14.1.7).
However, sediment density and shear wave speed and attenuation are not
affected as much by small amounts of free gas.

2.1.3 Characterization of Gradients and Randomness

Random roughness of the sediment–water interface causes scattering of sound
as does small-scale variability (heterogeneity) of sediment properties. Con-
sequently, scattering models require statistical characterization of this ran-
domness (Chs. 6, 7). This characterization is also needed to understand and
model the effect of randomness on acoustic reflection.

Statistical characterization of the randomness of the seafloor can vary
from a simple measure such as a variance to a more detailed measure such
as a power spectral density. The shorter term “spectrum” will be frequently
used in this monograph. Many roughness scattering models require a 2D
spectrum whose argument is the “wave vector” K = (Kx, Ky). Following a
convention used throughout this monograph, the two-dimensional vector, K,
is denoted by a boldface uppercase symbol. Three-dimensional vectors will
be denoted by boldface lowercase. The magnitude, K, of the wave vector is
called the wavenumber and is measured in radians/length. Wavenumber is
analogous to the temporal radian frequency, ω = 2πf , where f is frequency
in cycles/s. Often, “spatial frequency” is used in preference to wave vector
or wavenumber with an analogous factor of 2π involved.

An example of a 2D roughness spectrum (in spatial frequency) is shown in
Fig. 2.1. The seafloor in this case had been raked to produce artificial ripples,
and is an example of anisotropic roughness. Natural roughness may likewise
be anisotropic, especially if ripples are present, but is often approximately
isotropic. In fact, many natural roughness spectra are rather featureless, and
can therefore be adequately characterized by two parameters, a “spectral
strength” and a “spectral exponent” (Sect. 6.1). It is usually necessary to
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Fig. 2.1. False-color map of relief of a rippled sand seafloor (left panel) and resulting
two-dimensional power spectrum (right panel). Courtesy of A. P. Lyons. (see first
color insert)

Fig. 2.2. Positive X-radiograph of core sample taken near the mouth of the Eel
River, CA, USA, showing continuous heterogeneity as well as discrete (shell) inclu-
sions [Richardson et al. 2002b].

know the roughness spectrum over a wavenumber range that includes and
extends beyond the acoustic wavenumber in water, kw = 2π/λw, where λw
is the acoustic wavelength in water. In experimental tests of roughness scat-
tering models, it is important that roughness and acoustic measurements be
temporally and spatially concurrent. As will be seen in later chapters, biolog-
ical and hydrodynamic processes can cause significant temporal variability in
seafloor roughness.

Most models for scattering by sediment heterogeneity (Ch. 14) require sta-
tistical characterization of the volume heterogeneity of compressional wave
speed and sediment bulk density (Ch. 7). This typically includes determina-
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Fig. 2.3. A 2D slice through a 3D spectrum of density fluctuations obtained by
X-ray tomography [Pouliquen and Lyons 2002]. (see first color insert)

tion of correlation functions or spectra characterizing the spatial fluctuations
of sound speed and density.

An example of sediment heterogeneity is shown in Fig. 2.2. Scattering
models usually require 3D spectra for fluctuations, and Fig. 2.3 shows a
2D slice through such a 3D spectrum. In the three-dimensional case, the
argument of the spectrum is the wave vector k = (kx, ky, kz).

Other forms of sediment heterogeneity such as layering or inclusions such
as rocks or shells may be characterized either stochastically or determin-
istically depending on acoustic frequency and on the requirements of the
acoustic model. Work is needed in obtaining statistical descriptions for the
heterogeneity of poroelastic media, which would require spectra for several
material parameters. Hard seafloors such as those composed of solid rock or
coral pose another challenge. There has been no attempt in high-frequency
acoustic experiments to characterize the random heterogeneity of rock or
coral seafloor, yet models predict that this could be an important cause of
scattering (Sect. 14.2.3).

Gradients and/or layering are common in sediments; therefore density,
as well as compressional and shear wave speed and attenuation, must be
measured as functions of depth in the sediment (Chs. 4, 5, and 7). Although
this falls within the capabilities of present methods, the corresponding issue
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of layering in poroelastic seafloors has not been addressed, at least not with
regard to a complete characterization of the several parameters of interest.

2.2 Sediment Wave Theories

Theories for the acoustic behavior of sediments will be placed into three
classes. As noted in the previous section, these treat the sediment as a fluid,
an elastic solid, or a poroelastic medium. Some theories do not fit this simple
classification, for example, the theory of Buckingham [Buckingham 2000] has
elements of both fluid and elastic behavior. Each class of theory has partic-
ular equations of motion and boundary conditions, to be discussed in later
chapters. The older, simpler fluid models are by no means outmoded, as there
are problems for which the fluid approximation for the seafloor is sufficiently
accurate. A short, nonmathematical description of these three theories will
be given here with technical details left to Chs. 8–10. Before beginning this
description, it should be noted that this monograph does not discuss nu-
merical methods for solving the field equations, such as ray approximations,
modal expansions, fast-field methods, parabolic approximations, and finite
difference methods [Jensen et al. 1994]. Such numerical methods take into
account the spatial dependence of sound speed and other parameters in the
water column and seafloor, treating a number of interesting phenomena, such
as lateral waves and modal cutoff effects. Also omitted is any discussion of
nonlinearity (so-called finite-amplitude effects). In most cases of interest, the
acoustic field is weak enough that acoustic stresses are sufficiently small to
be within the linear (Hooke’s law) range.

For convenience in presentation, a distinction will be made between the
terms “theory” and “model.” The terms “wave theory,” “propagation the-
ory,” or, simply, “theory” will be applied to the field equations and bound-
ary conditions that determine the acoustically excited stresses and strains
within the sediment. Thus, the wave equation for pressure and the boundary
conditions for pressure and displacement at an interface between two fluids
constitute a “wave theory,” which will be denoted “fluid theory.” There are
analogous elastic and poroelastic theories. While use of the terms “wave the-
ory,” “fluid theory,” etc., in this sense is by no means universal in sediment
acoustics, it will be employed to avoid confusion with other products that
the acoustic modeler produces. Thus, one may combine a fluid theory with
an approximate rough-interface boundary condition to produce a scattering
model. One may conduct measurements to test either the fundamental theory
or a derived model. The theories to be discussed fall into the class of “effective
medium” theories, because they treat the granular sediment as a continuum
with properties such as density and elastic moduli obtained as averages over
their microscopically varying values. It follows that such theories must fail
at frequencies sufficiently high that the acoustic wavelength is comparable to
the grain or pore size.
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2.2.1 Fluid Theory

Seawater is a fluid, so it is not surprising that the first seafloor acoustic
theories treated sediments as fluids [Kuo 1964], [Urick 1983, Ch. 5]. Fluid
theory is discussed in detail in Ch. 8. The term “fluid” will be used in a very
limited and well-defined sense: it is assumed that the acoustic stresses in the
sediment can be described adequately by a pressure field and accompanying
wave equation. This definition might seem to admit only a single fluid theory,
but this is not the case. The differences lie in the dissipation mechanism(s)
assumed in the acoustic wave equation.

In the fluid models to be encountered later in this monograph, the essential
parameters, bulk density, compressional wave speed, and attenuation, are
often represented by the dimensionless parameters,

aρ =
ρ

ρw
, (2.4)

νp =
Vp
cw

, (2.5)

δp =
αpνpcw ln(10)

40πf
. (2.6)

In (2.4), aρ is called the “density ratio,” ρ is the sediment bulk density, and
ρw is the density of the overlying water. Similarly, in (2.5), νp is called the
“sound speed ratio” and will also be represented by the notation VpR. This
ratio involves Vp, the phase speed of the compressional (“P”) wave in the
sediment, and cw, the sound speed of the overlying water. The attenuation of
the compressional wave in sediment is denoted αp and usually has units dB
m−1. Equation (2.6) provides a means of converting this parameter into the
dimensionless “loss parameter,” δp. The acoustic frequency in Hz is denoted f .
Several other, equivalent, parameters are used in the literature to characterize
attenuation (Sect. 8.3).

Sound speed and attenuation generally depend on frequency, and these
two dependencies are related by the constraint of causality (Appendix I)
which simply states that the acoustic wave generated by a source cannot
occur before the excitation. Frequency dependence of wave speed results in
“dispersion,” distortion of the shape of a transmitted pulse as it propagates
through the medium.

Very fine sediments composed mostly of clay- or silt-sized particles
(< 62μm) are often “slow,” with sound speeds 1–5% less than the overly-
ing water. Sediments composed mostly of sand-sized particles (> 62μm) are
usually “fast,” with sound speeds 10–15% greater than water. Even though
these differences seem modest, there can be a marked difference in acoustic
behavior between slow and fast sediments. In a slow sediment, sound is re-
fracted downward toward the vertical, while in a fast sediment, it is refracted
toward the horizontal and tends to penetrate to a lesser depth. This gives rise
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to large differences in the amount of acoustic energy penetrating the seafloor
or redirected into the water column.

2.2.2 Elastic Theory

Sediments generally support static shear stresses, unlike true fluids, so it is
logical to apply the theory of elasticity in underwater acoustics (Ch. 9). The
relevant theory has largely been developed by geophysicists, who consider
both “P” (denoting “primary,” but to be understood as meaning “compres-
sional”) and “S” (originally denoting “secondary,” but now meaning “shear”)
waves in the earth’s crust [Telford et al. 1990, Aki and Richards 2002]. Com-
pressional waves are analogous to acoustic waves in fluids and in typical un-
lithified surficial sediments travel at speeds (1450 to 1850 m s−1) comparable
to the water sound speed, while shear waves travel at much lower speeds (5 to
200 m s−1). In lithified sediments, both compressional and shear speeds are
faster than the water sound speed. In an isotropic elastic medium, compres-
sional waves have particle motion parallel to the direction of propagation,
while shear waves have particle motion perpendicular to the direction of
propagation. Sediments are somewhat anisotropic owing to anisotropy in the
stresses caused by overburden. Nonetheless, the theory and models treated
in this monograph assume isotropy as an approximation. For an isotropic
medium, particle motion for a shear wave can be decomposed into “vertical”
and “horizontal” polarizations. These terms must be used with caution, as
particle motion may not be in the indicated directions unless the wave propa-
gates horizontally. The terms refer to the fact that particle motion is in either
a vertical plane (with the plane parallel to the direction of propagation) or a
horizontal plane.

An isotropic elastic medium is described by five parameters. Three param-
eters are analogous to those of the fluid model: bulk density, compressional
wave speed, and compressional wave attenuation coefficient. The two addi-
tional parameters are shear wave speed and shear wave attenuation. These
can be expressed in the dimensionless form of (2.5) and (2.6) with the replace-
ment of compressional wave speed and attenuation by the corresponding shear
values. The resulting parameters are denoted νt and δt in this monograph.
The parameter νt is defined as the ratio of sediment shear speed to water
sound speed, not the ratio of sediment shear speed to water shear speed,
as water does not support shear waves. The subscript “s” would be more
mnemonic, but “t” (for transverse) is employed because the subscript “s”
will be used to indicate “scattering.” As in the fluid case, elastic models dif-
fer in their description of dissipation, with constraints imposed by causality.
As noted in Sect. 2.1.2, in Hamilton’s approach [Hamilton 1971a], causality
is violated to a degree, though this violation may not be serious in applica-
tions where the frequency band of interest is narrow. The assumed frequency
independence of the elastic moduli is equivalent to frequency independence
of the dimensionless parameters νp, νt, δp and δt.
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2.2.3 Poroelastic Theory

Sediments are (at least approximately) two-phase mixtures of particles and
water and are candidates for the application of Biot’s theory for poroelas-
tic media [Biot 1956a, Biot 1956b, Biot 1962a, Biot 1962b, Deresiewicz and
Skalak 1963, Stoll 1974, Stoll 1989]. In this theory (Ch. 10), the medium con-
sists of a shear supporting, porous “frame” with the pore space saturated with
fluid. For sediments, the grains constitute the frame, with grain-to-grain con-
tacts providing a degree of rigidity and with seawater constituting the fluid.
Motion of the fluid relative to the frame provides an extra degree of freedom
compared to elastic theory. This extra degree of freedom is manifested as a
splitting of the compressional wave into two waves, the “fast” wave (essen-
tially an acoustic wave) and the “slow” wave. As in elastic theory, shear waves
of two polarizations are possible. While fluid theory requires three parameters
to characterize the medium, and elastic theory requires five to characterize an
isotropic medium, Biot theory requires a minimum of 13 parameters to char-
acterize an isotropic medium. As noted in Sect. 2.1.2, measurement of all the
required parameters is a difficult task, although it is usually agreed that fluid
properties can be assigned handbook values. Typical parameter values for
sandy sediments can be used to show that sands behave approximately as flu-
ids, that is, the “fast” wave is dominant, and both the shear and “slow” waves
have speeds of a few hundred meters per second and are not excited to an
appreciable degree in typical circumstances. One of the most striking predic-
tions of Biot theory is that dispersion will be significant. In particular, the fast
wave speed in sands should increase by roughly 10% as frequency increases
from a few hundred hertz to a few tens of kilohertz. Over this same frequency
range, attenuation is expected to vary nonlinearly with frequency, in contrast
to Hamilton’s assumption. In addition, poroelastic effects are predicted to
be significant in reflection [Stoll and Kan 1981, Chotiros et al. 2002b] and
scattering [Williams et al. 2002b] in sands.

2.3 Reflection and Scattering

Following common practice, “reflection” and “scattering” will be treated as
separate topics, although subsequent discussion will show that a clean sep-
aration is not usually possible. The term “reflection” will be used to imply
the interaction of sound with a nonrandom, flat seafloor, in which case the
seafloor behaves as a partially reflecting acoustic mirror, reflecting sound
(with some energy loss) at an angle equal to the angle of the incident sound,
which defines the “specular direction.” Reflection is discussed in Chs. 8–
11 and Appendix G. The term “scattering” refers to the equivalent process
when the roughness (Chs. 6 and 13) and/or heterogeneity (Chs. 7 and 14)
of the seafloor are important and result in a redistribution of acoustic en-
ergy over angles other than that of the incoming sound. Seafloor roughness
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on scales relevant to high-frequency acoustics is usually measured by means
of stereophotography and summarized in a power spectrum estimate, as in
Fig. 2.1. High-porosity sediments, such as silts and clays, have little acoustic
impedance contrast in comparison to the overlying water, consequently, the
sediment–water interface may not be a strong scatterer of acoustic energy.
This lack of contrast allows sound to penetrate deeper into soft sediments
than into sands. As a result, sound scattering by heterogeneity in physical
properties such as bulk density and sound speed is expected to be stronger
in mud than scattering by roughness.

In discussing reflection and scattering by the seafloor it is useful to define
a coordinate system that provides a means of specifying the directions of
incident and scattered acoustic energy. Figure 2.4 defines the angular coordi-
nate system to be used, following the usual practice in underwater acoustics
of measuring angles from the horizontal rather than from the vertical, thus
departing from the convention used in electromagnetics and optics. When
measured from the horizontal, angles will be referred to as grazing angles,
with the direction of incoming acoustic energy specified by the incident graz-
ing angle, θi, and the direction of the outgoing acoustic energy specified by the
scattered grazing angle, θs, and the bistatic angle, φs. For a flat, non-random
seafloor, the reflection is in the specular direction, for which the scattered
grazing angle is equal to the incident grazing angle, and the bistatic angle is
zero. In scattering, the monostatic case in which the scattered sound field is
observed at the same location as the source is quite common. This “backscat-
tering” direction has θs = θi, φs = π.

2.3.1 Reflection

Although the seafloor is never perfectly flat and homogeneous, it is useful
to consider this ideal case in which scattering is absent. This idealization
is sometimes a reasonable approximation to the true situation (Sect. 13.1)
and, in any case, allows definition of reflection and transmission coefficients
appearing in both reflection and scattering models. As a further idealization,
it will be assumed that the incident pressure field is a unit-amplitude plane
wave at the angular frequency ω. A source at great distance produces a
plane pressure wave with spatial dependence that can be approximated at
the interface as

Pi = Pi0e
iki·r , (2.7)

where Pi0 is the complex pressure amplitude at the origin, and ki is the wave
vector giving the direction of propagation of the plane wave. As indicated
in Fig. 2.4, the z-coordinate will be taken perpendicular to the seafloor. For
convenience, the coordinate system will be chosen so that the direction of
propagation of the plane wave lies in the x–z plane. Then the wave vector
has (x, y, z) components

ki =
ω

cw
(cos θ, 0,− sin θ) , (2.8)
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Fig. 2.4. Definition of angular coordinates used in treating reflection and scatter-
ing. If the seafloor has a preferred direction, for example due to a ripple field, it
may be desirable to assign an arbitrary azimuthal angle, φi, to the incident sound
as well.

where cw is the speed of sound in water. For simplicity, the subscript i has
been removed from the grazing angle, as there is only one angle of interest.
The reflected wave will be a plane wave having the same grazing angle, θ,
but generally will have reduced amplitude and shifted phase. That is, the
reflected pressure field is of the form

Pr = Vww(θ)Pi0e
ikr·r , (2.9)

where
kr =

ω

cw
(cos θ, 0, sin θ) . (2.10)

The complex parameter, Vww(θ), is the reflection coefficient, with the sub-
scripts ww added to indicate that the incident and reflected fields are both
measured in the water. In later chapters, transmission into the sediment will
be considered. The reflection coefficient is dimensionless and is a function
of grazing angle. Energy conservation imposes an upper limit of unity on
the magnitude of the reflection coefficient. The “bottom loss,” L, is usually
defined as the positive decibel quantity

L = −20 log10(|Vww(θ)|) . (2.11)

Bottom loss is sometimes denoted “BL.” Seafloor reflection is discussed in
Ch. 11 and Appendix G, and the use of decibels is discussed in Appendix H.
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Figure 2.5 shows two theoretical examples of bottom loss typical of sand
and clay seafloors. For the sand sediment, bottom loss is small for grazing
angles less than the “critical angle,” θcrit, where

θcrit = cos−1(1/νp) , (2.12)

and where νp is the compressional/water speed ratio (2.5) in the sediment.
In this example, νp = 1.1, giving a critical angle of 24.6◦. As the grazing
angle increases to values larger than the critical angle, bottom loss increases
owing to transmission of an increasing fraction of the incident energy into
the sediment. For the clay seafloor example, a sound speed ratio νp = 0.98
was chosen, and loss becomes large at the “angle of intromission,” about
10.5◦ in this case. These two examples show that sediment sound speed plays
an important role in determining bottom loss. Using language employed in
Sect. 2.2.1, the sand example is a “fast” seafloor, because the sediment–water
sound speed ratio is greater than unity. In this case, according to Snell’s law,
sound is refracted away from the interface normal. At the critical grazing
angle, sound energy is refracted into a horizontal direction. At still smaller
grazing angles, the sound field does not propagate in the sediment, so little
energy is lost due to transmission into the sediment. For a “slow” seafloor,
such as the clay example given above, refraction is toward the normal. There
is no critical angle in this case, but, at the angle of intromission, transmission
of sound across the interface is nearly perfect, resulting in a small reflection
coefficient and large bottom loss.
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Fig. 2.5. Theoretical bottom loss for representative sand and clay seafloors. The
acoustic parameters are the same as those used in computing the curves of Fig. 8.3.

These examples employ the simplest possible fluid model for sediment
acoustics and results have been given without derivation. Chapter 8 will give
a more complete account of reflection by the fluid–fluid boundary.
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2.3.2 Scattering

Acoustic waves are scattered randomly by irregularities in the seafloor, in-
cluding roughness of the water–sediment interface, spatial variations in sed-
iment physical properties, and by discrete inclusions such as shell pieces or
bubbles. These scattering processes are suggested by the highly schematic
Fig. 2.6. A seafloor that is perfectly stratified (flat with properties varying
only in the vertical direction) would exhibit no random scattering, only reflec-
tion (albeit with the possibility of multiple, interfering reflections from buried
interfaces between different sediment types). At high frequencies, all seafloors
have substantial irregularities on the scale of the acoustic wavelength, thus
scattering is ubiquitous. Published treatments of seafloor scattering at high
frequencies typically employ statistical methods, predicting various moments
of the acoustic field. The most commonly encountered statistical quantity
is the scattering cross section, which is proportional to the variance of the
scattered field. Scattering by random boundaries and random heterogeneities
is a large subject, and several books go into considerable depth on this
subject [Beckmann and Spizzichino 1963, Bass and Fuks 1979, Ogilvy 1991,
Voronovich 1994, Ishimaru 1997]. Figures 1.1 and 1.2 show two experimental
arrangements used for making seafloor scattering measurements.

Fig. 2.6. Sketch showing acoustic scattering due to the roughness of the water–
sediment interface and heterogeneity of the sediment.

It is typical in the formal treatment of scattering by random media to
discuss the mean, < P >, of the complex pressure field, and fluctuations
about this mean. The total field is decomposed as follows:

P =< P > +Ps . (2.13)

The mean-square fluctuation is of primary interest in discussions of scatter-
ing. This is equal to the variance of the field and can be expressed as follows:

< |Ps|2 >=< |P |2 > −| < P > |2 . (2.14)
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The “incident” field, that is, the field produced by the source in a hypothetical
unbounded medium, is non-random and can either be included in P or treated
separately. The subscript “s” is attached to the fluctuating part of the field, as
it is the scattered part of the field. The mean field can be described in terms of
the coherent reflection coefficient, Vwwc, defined in a manner equivalent to the
reflection coefficient of a flat surface. The magnitude of the coherent reflection
coefficient will be smaller than the magnitude of the reflection coefficient
of the corresponding nonrandom case (in which the seafloor has physical
properties equal to the mean of the properties of the heterogeneous medium).
This is because a portion of the field that is reflected from the nonrandom
medium is converted to an incoherent, scattered field in the random case.

The averaging symbol, <>, requires some explanation. It refers to an ide-
alized average over an infinite ensemble of different seafloors, using identical
experimental equipment and identical geometry. Each member of the hypo-
thetical ensemble of seafloors has different roughness and/or sediment het-
erogeneity, but all are “drawn” from a statistically homogeneous population.
In this monograph, this approach will be referred to as “formal averaging.”
This type of averaging exists only in the theorist’s imagination, of course,
so one may ask whether there is some practical approximation to this hy-
pothetical averaging process. Experimentalists face the task of “estimating”
(a statistician’s word) quantities such as the mean-square scattered pressure,
< |Ps|2 >, from a finite statistical population. Usually, each member of this
population is an echo from a different portion of seafloor, but at the same
altitude and vertical pointing direction for the source and receiver (“depres-
sion angle”). For this averaging to be meaningful, the statistical properties of
the seafloor must be “stationary,” that is, independent of position over some
reasonably well-defined region. If this is the case, an average can be achieved
using a ship-mounted sonar, a towed sonar, or a rotating sonar mounted on
the seafloor. With a fixed, rotating sonar, a complication enters if the scat-
tering properties of the seafloor depend on the azimuthal angle of the sonar
beam. This may happen if the seafloor has a well-defined field of directional
sand ripples. Such seafloors are “anisotropic,” but are within the capabilities
of current scattering models.

Scattering by the seafloor is usually quantified in terms of the “scattering
strength,” whose definition follows from the situation depicted in Fig. 2.4,
in which a small patch of seafloor having area A is situated in the far field
of a source (see Appendices F, J). If this patch is rough and/or heteroge-
neous on scales comparable to the acoustic wavelength, it will scatter sound
energy over a distribution of directions. In Fig. 2.4, the scattered pressure
field is measured at one particular point, hence a particular direction. If this
measurement is performed many times using the same geometry, but for an
ensemble of statistically equivalent seafloor patches, then the mean-square
pressure fluctuation (averaged over the ensemble of measurements) will be
proportional to both the area of the patch and the squared incident pressure,
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|Pi|2, and will be inversely proportional to the square of the distance, r, from
the patch. Thus,

< |Ps|2 >= |Pi|2Aσ 1
r2s

, (2.15)

where attenuation and refraction in the seawater are neglected. Examination
of (2.15) shows that the proportionality factor, σ, is dimensionless. It is some-
times referred to as the “scattering cross section per unit area per unit solid
angle” because the integral of σ over the upper solid angle hemisphere yields
the total mean scattered power, Us, through the relation

Us =
A|Pi|2
2ρwcw

∫
2π

σ(θi, θs, φs)dΩs . (2.16)

In (2.16), ρw is the mass density of seawater (about 1025 kg/m2), and the
product ρwcw is the acoustic impedance (Ch. 8) of seawater. The factor 2
in the denominator of (2.16) appears because time averages of squared si-
nusoidally oscillating functions are one-half the square of the peak magni-
tude. For brevity, σ(θi, θs, φs) will be simply referred to as the “scattering
cross section,” although this conflicts with its dimensionless nature. The more
widely used nomenclature, “bottom scattering strength” [Urick 1983] is ap-
plied to the decibel equivalent,

Sb = 10 log10 σ . (2.17)

It is important to remember that the scattering cross section is defined here
as a statistical average. Although ping-to-ping fluctuations in the scattered
pressure are large (Ch. 16), the scattering strength itself is not a random
quantity. The units of scattering strength are dB (Appendix H), although the
units are sometimes incorrectly given as dB per unit area or dB re 1 m. These
incorrect assignments of units imply that a change in the choice of length
unit, say a change from meters to feet, would result in a different numerical
value for Sb. Such is not the case, provided the same length units are used
in measuring area and range. The above discussion is intended to define
scattering strength and is inadequate to suggest measurement techniques,
which are outlined in Appendix G.

For the sake of brevity, the term “scattering strength” will be used
rather than “bottom scattering strength” or “seafloor scattering strength.”
There is some danger of misinterpretation here, because a “volume scattering
strength” is often used to quantify scattering from within the ocean water
column or from within the volume of the sediment. The definition just given
applies only to scattering from an approximately planar interface, and the
volume scattering concept will be needed in later treatment of scattering from
within the sediment volume. Even in this case, however, it is possible to treat
the scattering as if it were from a planar interface, if attenuation or refraction
limit acoustic penetration of the sediment to small depths as often happens.
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As defined here, scattering strength depends on properties of the seafloor
and the water immediately above it, acoustic frequency, and the angles that
define the directions of the incident and scattered acoustic energy. It is impor-
tant to note those parameters that scattering strength does not depend on.
These include measurement geometry and measurement system parameters
such as source level and pulse length. Water column properties are eliminated
if proper account is taken of propagation from the source to the seafloor and
back to the receiver. With reference to Fig. 2.4, scattering cross section de-
pends on three angular variables: a grazing angle for the incident field (θi)
and grazing and azimuthal angles for the scattered field (θs and φs). These
dependencies can be shown explicitly by writing the scattering cross section
as σ(θs, φs, θi). The angle φs is often referred to as the “bistatic angle.” If
the seafloor has a preferred direction, as would be the case if a ripple field
were present, an azimuthal angle, φi, is also required for the incident field.
In either case, σ is referred to as the “bistatic” scattering cross section. A
simpler and more common case is backscattering, the “monostatic” case, in
which the transmitter and receiver are situated at the same point in space.
For that case θs = θi = θ and φi = φs + π = φ, and Sb is referred to as the
“backscattering strength”. Only two angular variables, θ and φ, are needed.
If the random seafloor has no preferred direction, then the variable φ can be
eliminated.

Two important constraints are placed on the scattering cross section by
the fundamental principle of reciprocity [Morse and Ingard 1968, Pierce 1989,
Kinsler et al. 1999] and energy conservation. Reciprocity demands that the
cross section be unchanged if the source and receiver are interchanged. This
imposes the condition

σ(θi, φi, θs, φs) = σ(θs, φs, θi, φi) . (2.18)

It is necessary in (2.18) to use the most general form of the angular arguments
for the bistatic cross section in order to clearly state the reciprocity condition.
Energy conservation requires that the sum of the coherently reflected power,
Uc, and the incoherently scattered power, Us (2.16), be less than or equal to
the incident power. The power incident on the scattering patch is

Ui =
A|Pi|2
2ρwcw

sin θi , (2.19)

where the factor sin θi is required to project the area A in the direction of
the incident energy. Requiring Uc + Us < Ui gives the inequality∫

2π
σ(θi, θs, φs)dΩs + |Vwwc|2 sin θi < sin θi , (2.20)

where Vwwc is the coherent reflection coefficient mentioned earlier. The in-
equality results from energy dissipated in the seafloor. Expression (2.20) can
be used to set bounds on the backscattering cross section, useful in assessing
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the validity of experimental data. In high-frequency acoustics, the coherent
reflection coefficient is often expected to be much smaller than unity, essen-
tially vanishing in cases where the RMS relief of the seafloor is comparable
to or larger than the acoustic wavelength. In such cases, the inequality∫

2π
σ(θi, θs, φs)dΩs < sin θi (2.21)

provides a more useful bound than (2.20).

0 10 20 30 40 50 60 70 80 90
-60

-50

-40

-30

-20

-10

0

10

Grazing Angle (deg)

B
ac

ks
ca

tte
rin

g 
S

tr
en

gt
h 

(d
B

)

Typical

Maximum
 Lambert 

Strong

Fig. 2.7. Hypothetical backscattering strength curves. Although the curve labeled
“Typical” exceeds 0 dB over a small range of angles, it does not violate energy
conservation. The curve labeled “Maximum Lambert” is the highest level that max-
imally diffuse scattering can attain. The “Strong” case exhibits suspiciously high
scattering strengths that can be sustained only if scattered energy is preferentially
directed back toward the source (“backscatter enhancement”).

The inequality (2.21) does not place a strict upper limit on scattering cross
section, only a bound on its integral over all bistatic scattering directions.
Thus, the curve labeled “Typical” in Fig. 2.7 is perfectly legal, even though
it exceeds 0 dB near vertical incidence (“nadir”). Referring to Fig. 2.8(a),
the large values of cross section only occupy a small lobe in angular space
and do not contribute greatly to the integral in 2.21. The tendency for the
scattering cross section to have a near-specular peak does not imply a focusing
phenomenon, rather, it simply represents a sort of reflection degraded by the
randomness of the seafloor (Sect. 13.1). One may inquire whether there is a
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(a) (b)

Fig. 2.8. Polar plots of the bistatic scattering cross section for two hypothetical
cases with a plane wave incident from the left. (a) “Typical” seafloor scattering
with a peak in the specular direction, representing degradation of the flat-interface
reflection. (b) Strong scattering, with no peak in the specular direction and a peak
in the backward direction, so-called “backscatter enhancement.”

bound on scattering cross section for cases where angular dependence is weak,
so-called “diffuse” scattering. The most well-known such case is described by
Lambert’s law

σ(θi, φi, θs, φs) = μ sin θs sin θi . (2.22)

Note that reciprocity is obeyed and that there is no dependence on azimuth.
For backscatter, θs = θi, and the expression reduces to the form most common
in the ocean acoustics literature, σ = μ sin2 θi. Integrating the bistatic form
(2.22) over the upper 2π solid angle as in (2.21), one obtains [Lurton 2002,
p. 91],

μ <
1
π

. (2.23)

The case of strongest-possible Lambert scattering is shown in Fig. 2.7.
Although the case labeled “Strong” exhibits a backscattering cross sec-
tion that is everywhere greater than the maximal Lambert case, this need
not imply violation of energy conservation if the scattering is not dif-
fuse, but is concentrated in the backscatter direction, as illustrated in
Fig. 2.8(b). Such “backscattering enhancement” (at levels relative to scat-
tering in other directions of 3 dB and less) has been reported in op-
tics [Knotts et al. 1993, Maradudin et al. 1994] and ultrasonics [Bayer and
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Niederdraenk 1993,Ye and Alvarez 1998], and has been treated theoretically
in the context of seafloor volume scattering [Ivakin 1982]. Although this in-
teresting behavior is a possibility in extremely hard, rough seafloors, it has
not been observed to date.

On occasion, the measured backscattering strength seems to approach
a constant as grazing angle approaches zero [Wong and Chesterman 1968].
Such behavior indicates measurement error, most likely due to interfering
multipath arrivals or noise. This can be asserted with some confidence because
the scattering strength bounds given above force the bistatic cross section
to approach zero as the incident grazing angle approaches zero. Reciprocity
forces the same limiting behavior on the scattered grazing angle. Thus, the
backscattering cross section must approach zero at least as rapidly as sin2 θi.
This argument is not rigorous, as a very narrow and strong backscattering
enhancement peak could elevate the backscattering strength without con-
tributing greatly to the integral in (2.21). But all experimental and theoretical
evidence points away from this possibility, so any measured backscattering
strength that does not fall off rapidly as the grazing angle becomes small
should be viewed with suspicion.



3 The Nature of Marine Sediments

The discussion in this chapter will be restricted to surficial sediments (up-
per few meters) found on the continental shelf (beach to the continental
shelf-slope break, approximately to 100–130 m water depth) and in other
nearshore environments (lagoons, estuaries, and bays). This coastal area is
approximately 29 ×106 km2, or 8% of the world’s oceans and is characterized
by high spatial and temporal variability in both morphology and sediment
distribution [Reineck and Singh 1973]. Short-term temporal changes in the
seafloor, which occur at time scales of minutes to decades, are the result of
the interaction of hydrodynamic (waves, currents and tides, and deposition
from rivers), biological (bioturbation), and biogeochemical (mineral dissolu-
tion, precipitation, and in situ gas bubble formation) processes acting on the
seafloor. Longer-term changes in seafloor characteristics result from global
changes in sea level which alter regional sediment erosion, transport, and
depositional patterns and occur over geological time scales. These coastal
areas are the likely locations for high-frequency sonar operations and high-
frequency acoustic experiments. The general trends in sediment morphology
and characteristics described herein should reflect corresponding trends in
high-frequency acoustic behavior.

This chapter will include a general discussion of coastal morphology and
will describe global patterns of sediment distribution. Next, the structure
of sediments is discussed with the hope of providing developers of acous-
tic propagation theory with a realistic picture of the morphology, fabric,
and particle interactions of sediments. This structure provides the building
blocks for coastal marine sediment and has a great influence on the sedi-
ment physical and geoacoustic properties discussed in Chs. 4 and 5. Bubbles
in sediments are also considered, including their morphology and the condi-
tions that promote their existence. The chapter concludes with a discussion
of the hydrodynamic and biological processes that alter sediment morphol-
ogy, structure, and relief. Other diagenetic (post-depositional) changes that
occur in near-surface sediments related to consolidation and biogeochemical
processes are discussed within appropriate sections on sediment structure.
Together these environmental processes are responsible for vertical gradients
in sediment physical properties, create much of the random spatial variability
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treated in Chs. 6 and 7, and cause temporal changes in sediment properties
and seafloor morphology.

3.1 The Origin and Classification of Coastal Sediments

For roughly the last two million years, the larger-scale morphology and de-
positional patterns on continental shelves have been shaped by repeated ad-
vances (transgressions) and retreats (regressions) of the oceans across the
shelves, as sea level rose and fell in response to changes in global forcing dur-
ing glacial and interglacial stages of the Pleistocene Period. The most recent
sea level transgression (sea level rise) occurred during the Holocene Period
between about 18,000 and 6000 years BP (Before Present). During the last
period of low sea level stand, extensive areas of the inner and middle conti-
nental shelves were exposed to subaerial processes, while rivers crossed the
exposed shelf depositing their sediment loads on the outer shelf and slope en-
vironments. During that period, much of the inner continental shelf received
little or no sediment. The subsequent transgression during the Holocene rep-
resented a 100- to 130-m rise in sea level [Kennett 1982] that resulted in
a landward migration of the seashore and the development of estuaries, la-
goons, and drowned river channels that trapped sediment. As a result, the
middle and, in particular, the outer areas of many continental shelves (e.g.,
east coast of the United States) were deprived to some degree of recent (last
6000 years) sedimentation. The seafloor in these areas consists of relict sedi-
ments (70% of shelf sediments may be relict), areas of exposed bedrock, and
reef material that are not in equilibrium with present-day hydrodynamic pro-
cesses. Areas located near major river systems (e.g., Mississippi and Amazon
rivers) have developed significant deltas often composed of fine-grained silts
and clays. It is of interest that most high-frequency acoustic measurements
and experiments (Chs. 11–14) have been conducted on sediments that are
in equilibrium with present hydrodynamic processes, although most of the
sand-sized sediment particles are relict in origin.

Sediments are often characterized descriptively and texturally by type
(e.g., sand, silty clay) or by mean grain size (see Sect. 4.1). One of the ad-
vantages to the geologist is that such textural classification often reflects the
composition and events that occurred during erosion, transport, and depo-
sition. The other advantage is that textural types can be determined from
disturbed sediment samples, such as grab samples, whereas bulk properties
such as density, permeability, and sound speed are altered by these collec-
tion methods. Methods to determine sediment grain size and other textural
and bulk properties of sediment are discussed in Chs. 4 and 5. As a gen-
eral rule, depositional patterns tend to reflect distance from shore (i.e., water
depth). Coarse sediments (gravel and sand), for example, tend to accumulate
near shore, whereas fine sediments (silt and clay) tend to accumulate far-
ther from shore. However, this simple distribution pattern is modified by the



3.1 The Origin and Classification of Coastal Sediments 31

existence of relict sediments (usually sands) on some shelves, and the trans-
port and reworking of recently deposited sediments by hydrodynamic factors
(waves, tides, currents) and large storms (e.g., hurricanes). Global climate
also plays a significant role [Hayes 1967]. For example, sands, silts, and clays
derived from terrestrial erosion are ubiquitous on continental shelves and
in shallow-water seas, however, coral and coralline debris are primarily re-
stricted to shelf areas in tropical waters where mean temperatures exceed
21◦C [Bathurst 1975]. Rocky, gravelly sediments are more abundant on high-
latitude (polar and subpolar) shelves where glacial and meltwater transport
are common, or where they now exist as relict sediments and larger mor-
phological features (e.g., terminal moraines) left behind by the retreat of
the last Pleistocene ice sheets. The genesis of clay minerals (kaolinite, illite,
and smectite or montmorillonite) which make up the greater part of most
fine-grained marine sediments is highly dependent on climate. Kaolinite is
common in shelf sediments where high temperatures and abundant rainfall
on land contribute to intense chemical weathering of parent rock material.
In cooler, more temperate climates, chemical weathering is less intense and
kaolinite tends not to develop. Illite and smectite form in either environ-
ment with illite often the more ubiquitous. Clay minerals can also be derived
from the erosion of older sedimentary rocks (e.g., shales and mudstones). The
structure and importance of clay-mineral types to seafloor properties will be
discussed later in this chapter. The term “clay” is often used (loosely) when
referring to clay mineral composition. The term refers both to a size category
(> 3.9 μm; see Sect. 4.1) and to a group or class of minerals. Throughout
this monograph the term “clay” will be used as a grain size category unless
followed by the term “mineral.”

Sediments also can be classified by origin (hydrogenous, biogenous, or
lithogenous). Hydrogenous (derived from water) sediment deposits consist
of minerals such as salt, palygorskite, sepiolite, aragonite, etc. that form by
chemical reactions within the water column or as precipitates from super-
saturated oceanic or coastal waters. Quantitatively, hydrogenous sediments
are less important than biogenous (derived from organisms) and lithogenous
(derived from terrestrial, volcanic, and cosmic sources) sediments.

Lithogenic sediments are derived primarily from the mechanical and chem-
ical weathering of continental igneous, metamorphic, and sedimentary rock
consisting mostly, but not exclusively, of silicate minerals. The nature of
the weathering products is largely controlled by climate (temperature and
rainfall), topography, and parent rock material. Hot, humid climates facil-
itate intense chemical weathering. In cold climates, chemical reactions are
slow and the weathering is mechanical, e.g., expansion and contraction due
to differential heating causing rock surfaces to exfoliate, rock fragmentation
due to ice formation in cracks and crevasses, and pulverizing of rock ma-
terial under the weight of glaciers. Eighty-five to ninety percent of weath-
ering products are transported to coastal areas and to the open shelves by
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rivers and streams but only about 7% by ice. Transport by wind accounts
for less than 1% of surficial sediment particles and is quantitatively impor-
tant only in deep-sea sediments, where other sedimentary processes are slow
[Bryant and Bennett 1998]. It is important to note that, during transport,
particle size and shape can be mechanically altered by impact and abrasion
(during bed load transport in rivers and streams) and by grinding (due to
the movement of glaciers).

Biogenic materials in coastal and shelf sediments consist primarily of cal-
cite (crystalline calcium carbonate) which includes the skeletal remains of
animals and plants that live on or within the sediments and the debris from
breakdown of coral reef communities. The dominant taxonomic groups that
contribute to carbonate sediments include Mollusca (gastropods, bivalves and
scaphopods), Echinodermata (sea urchins, sand dollars, and crinoids), corals,
and calcareous algae. Approximately 50% of near-shore sediments contain a
significant percentage of calcareous remains, especially in tropical regions (be-
tween 30◦N and 30◦S). Differences in the physical properties of siliciclastic
(composed of silicon dioxide) and carbonate sediments are to be expected.
Carbonate sediments (also called calcareous sediments) are often composed
of weak, irregularly shaped, porous or hollow particles (as is illustrated in Fig.
3.12). As a result, porosity can be higher for a given mean grain size because
of the presence of both intra- and interparticulate porosity. This characteris-
tic in particular affects other sediment parameters (e.g., bulk density, sound
speed, attenuation, impedance). In addition, cementation at grain contacts
can increase sediment rigidity, resulting in high shear and compressional wave
speeds.

In summary, nearshore and continental shelf areas are complex environ-
ments for conducting sonar operations and high-frequency acoustic experi-
ments. This is due primarily to the wide spatial and temporal variability of
the sediments which are overwhelmingly siliciclastic and calcareous in nature.
Recently deposited sediments and shelf morphologies are in equilibrium with
present-day hydrodynamic processes and global climates; however, many shelf
areas are characterized by relict sediments that are a result of depositional
and physical processes during the last lower sea stand (18,000 years BP).

3.2 Sediment Structure

Sediments are primarily composed of solid particles (minerals), pore fluid,
free gas, and organic matter. Much of the discussion that follows will treat
sediments as two-phase media (solid particles and pore fluid). Sediment struc-
ture includes fabric, the structural arrangement and orientation of particles;
interactions between particles, mechanical and physiochemical; and interac-
tions of particles with organic matter or the pore fluid. These, in turn, control
sediment physical properties (bulk density, porosity, and permeability) and
sediment behavior (acoustic and geotechnical). Sediment is generally fully
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saturated (i.e., no free gas) except for nearshore sandy sediment where air
is entrained from breaking waves or in organic-rich sediment where methane
bubbles form in supersaturated pore water from the bacterial degradation of
organic matter [Martens et al. 1998, Richardson and Davis 1998]. Gas bub-
bles are discussed in Sect. 3.3, and their acoustic effects are treated in Sect.
14.1.7. Organic matter, common in fine-grained sediments, can also play an
important role, adhering to clay minerals and affecting sediment structure
and behavior (mechanical and acoustic). Sediment structure discussed in
this section should be distinguished from larger-scale heterogeneity, which in-
cludes the larger-scale laminations, feeding voids, burrows, and shells which
are discussed in Ch. 7, “Sediment Heterogeneity.” The discussion of sedi-
ment structure will be divided into clay microstructure, fabric of granular
sand and gravel, and structure of carbonates, because the structure, behav-
ior, and properties of clay, sand and gravel, and calcium carbonate sediments
can be quite different. Mixtures of granular material and clay are common,
and their behavior is often determined by whether the fabric is matrix or
particle/grain dominated. “Matrix-supported” refers to predominately clay-
size sediment with embedded sand-size particles which are not in contact.
“Grain-supported” refers to larger sand- or gravel-sized particles in contact
with clay-sized particles within the pore structure.

Traditional methods of characterizing sediment structure include imag-
ing thin sections of resin- or wax-impregnated sediments using optical mi-
croscopy. Recent observations of sediments using Transmission (TEM) and
Scanning (SEM) Electron Microscopy and high-resolution Computed Tomog-
raphy (CT) have greatly increased knowledge and thus improved models of
the fabric of both fine- and coarse-grained marine sediments [Bennett et al.
1991a, Mees et al. 2003]. High-resolution CT provides the best opportunity
to characterize sediment fabric without disturbing the original fabric. This
approach allows simultaneous measurement of acoustic, electrical, or ther-
mal properties during consolidation experiments with fine-grained mud or
packing experiments with sand. The aforementioned techniques combined
with more traditional techniques of mineral identification including optical,
chemical, or X-ray diffraction analyses provide the basis for characterizing
sediment structure. In addition, advances in theories of particulate mechan-
ics and computational methods, such as discrete element modeling, suggest
that it is possible to predict both the low-strain geoacoustic and high-strain
geotechnical behavior of sediments directly from knowledge of the size and
shape of particles, their arrangements, and the forces between them and with
organic matter. In this monograph, the more traditional effective medium
methods (Chs. 8–10) are used to describe wave propagation in these com-
plex and not yet fully understood media. However, knowledge of sediment
structure is important for current efforts to determine which wave propaga-
tion theories are appropriate for the variety of clay, granular sand and gravel,
carbonate, and mixed sediments common to coastal marine environments.
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3.2.1 Clay Microstructure

Much of the description presented here is derived from a review by [Bennett
and Hulbert 1986], a collection of papers edited by [Bennett et al. 1991b], and
from the text of [Mitchell 1993]. As indicated previously, clay microstruc-
ture includes both clay microfabric and physiochemical interactions. The
term “clay microfabric” refers to the spatial distribution, orientation, and
particle-to-particle relationships of clay particles and aggregates in sediments.
Physiochemical interactions are the expression of electrostatic and electrody-
namic forces among clay particles, organic matter, and the surrounding water-
hydrated ions. Together, both control the behavior (acoustic propagation and
geotechnical strength properties) and physical properties of clayey marine
sediments. Clay refers both to a type of sediment particle (phyllosilicates)
and to a size class (< 3.9 μm). Most clay-mineral and clay-sized particles are
derived from weathering of terrestrial rocks and soils that are transported to
the oceans by major river systems, and then deposited on the seafloor where
the clay structure is reworked by biological, chemical, hydrodynamic (waves
and currents), and consolidation processes (see Sect. 3.1). Clay mineral types
not only depend on the source deposit or parent rock but also can be altered
by a variety of physiochemical and biological processes during weathering,
transport, deposition, and subsequent diagenesis. Diagenesis refers to all of
the chemical, physical, and biological changes or transformations undergone
by sediment after initial deposition. All of these processes contribute to the
temporal evolution of clay mineralogy and microstructure. A discussion of
the structure and properties of clay minerals is required to understand the
evolution of clay microstructure in marine sediments.

Clay minerals belong to the phyllosilicate family and are hydrous alumi-
nosilicates that have a unique layered or plate-like structure (Fig. 3.1). The
most common clay minerals found in marine sediment are illite, kaolinite,
smectite, chlorite, and mixed-layer clays (clay minerals that consist of alter-
nating layers of two distinct clay types). Montmorillonite is the most common
species of smectite-group clay minerals, but the more general term “smectite”
is used in this monograph. Other common groups of phyllosilicates found in
marine sediments include talc, mica, and vermiculite. Common clay minerals
are composed of two simpler structural units, the silicon tetrahedron and the
aluminum or magnesium octahedron. The manner in which tetrahedron and
octahedron sheets are stacked and the ions, cations, and water layers that
glue the sheets together, provide the taxonomy and control the character-
istics of the different clay mineral groups. Mineralogy determines the size,
shape, and surface characteristics of clay plates, and the interactions of clay
particles with the fluid phase. The basic characteristics of the idealized forms
of these clay mineral groups are described below.

Kaolinite [Si4Al4O10(OH)8] is a two-layer, 1:1 (silica:alumina), clay min-
eral that consists of aluminum octahedral and silicon tetrahedral sheets with
strong O-OH hydrogen bonding and little isomorphic cation substitution
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Kaolinite Structure

Illite Structure

Smectite/Illite Mixed Layer

Chlorite Structure Smectite Structure

Fig. 3.1. Arrangement of silicon tetrahedron (trapezoids) and aluminum or magne-
sium octahedron (rectangles) for common clay minerals found in marine sediments:
kaolinite, smectite, illite, chlorite, and smectite/illite mixed layer clays, adapted
from [Mitchell 1993]. Octahedral sheets include gibbsite and brucite where the
cations are mainly aluminum or magnesium, respectively. Kaolinite is a two-layer
(1:1) or (T:O) clay mineral, whereas illite and smectite are three-layer clay minerals
(2:1) or (2T:O), and chlorite is a four-layer clay mineral (2:1:1) or (2T:O:brucite).

within layers. Kaolinite plates occur as six-sided flakes with a 7.2-Å basal
spacing, a lateral dimension of ∼ 0.1 to 4 μm, a thickness of 0.05 to 2 μm,
and kaolinite can occur in 3000 to 4000 sized stacks. The specific gravity is
2.60–2.68 with a specific surface area of 10–20 m2 g−1 and a cation exchange
capacity of 3–15 milliequivalent (mEq) per 100 g dry weight of clay.

Smectite [Si8(Al3.34Mg0.66/Na0.66)O20(OH)4·nH2O] is a three-layer (2:1)
clay mineral that consists of an aluminum octahedral and magnesium and
sodium tetrahedral sheets with weak interlayer bonding and isomorphic sub-
stitution by magnesium or other cations for aluminum in the octahedra
and aluminum for silicon in the tetrahedra. Smectite plates occur as equal-
dimensional flakes with basal spacing from 9.6 Å to almost complete separa-
tion (swelling to 18 Å) and have thicknesses of > 10 Å and lengths to 1–2
μm. The specific gravity is 2.35–2.70 with a primary specific surface area of
50–120 m2 g−1, a secondary specific surface area including the between layers
that are exposed by the swelling of 700–840 m2 g−1, and a cation exchange
capacity of 80–150 mEq per 100 g.

Illite [(K,H2O)2Si8(Al,Mg,Fe)4−6O20(OH)4] is a three-layer (2:1) clay
mineral that consists of (Al,Mg,Fe) octahedral and (Al,Si) tetrahedral sheets
with strong potassium bonding and some isomorphic substitution of silicon
with aluminum balanced by potassium within the tetrahedra. Illite plates
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occur as flakes with a basal spacing of 10 Å, a size of 0.1 to 10 μm, and
a thickness of 0.003–1 μm. The specific gravity is 2.60–3.00 with a specific
surface area of 65–100 m2 g−1, and a cation exchange capacity of 10–40 mEq
per 100 g.

Chlorite [(SiAl)8(MgFe)6O20(OH)4] with (MgAl)6(OH)12 interlayer is a
four-layer (2:1:1) clay mineral that consists of alternating (Mg,Fe) octahedral
and (Al,Si) tetrahedral sheets separated by a (Mg,Al) octahedral sheet and
isomorphic substitution of aluminum for silicon in the 2:1 layer and aluminum
for magnesium in the interlayer. Chlorite occurs as flakes with a basal spacing
of 14 Å with a size of approximately 1 μm. The specific gravity is 2.60–2.96,
and the cation exchange capacity is 10–40 mEq per 100 g.

Of the characteristics listed above, the ability of smectite to adsorb wa-
ter (designated by ·nH2O in the chemical formula), greatly expanding the
basal spacing between sheets, may be of greatest importance to predicting
differences in wave propagation in different clay mineral assemblages. This ex-
pansion, or swelling, not only leads to low values of bulk density but to an in-
crease in compressibility and a decrease in hydraulic conductivity (Sect. 4.4.1)
compared to illite or kaolinite. However, it must be remembered that these
are idealized characteristics of the pure clay minerals and that mixed-layer
clays with varied properties are also common. Smectite–illite with alternating
layers of expanded water-bearing and contracted non-water-bearing layers is
the most common mixed-layer clay mineral. In addition, coastal marine clays
usually contain mixtures of smectite, illite, kaolinite, and chlorite. Interac-
tions of clay minerals with their environment during weathering, transport,
exposure to cation- and anion-rich seawater, deposition, and subsequent di-
agenesis can alter the structure of the octahedral, tetrahedral, or interlayer
cations changing not only clay properties but also changing one clay species
or group to another. This is especially true for smectite which has the highest
cation exchange capacity. Therefore it is not surprising that clay mineralogy
is, at most, only indirectly taken into consideration in acoustic modeling of
fine-grained marine sediments [Anandarajah and Lavoie 2002].

Clay particles, because of their small size and platy nature, have a very
large surface area over which surface force interactions in the clay–seawater
electrolyte system can act. These forces influence the flocculation behavior of
clay particles in suspension and the consolidation behavior, compressibility,
and strength properties of natural sedimentary deposits. The physiochemi-
cal interactions between clay plates are primarily electrical and include, in
decreasing order of importance: Born repulsive forces, covalent bonds, elec-
trostatic interactions, hydrogen bonds, and van der Waals forces. These forces
control the structure and properties of the early developmental stages of clay
microfabric (particles in suspension). The clay plates form multiplate parti-
cles or domains which are the fundamental particle units or building blocks
of clay microfabric in marine sediments (Fig. 3.2). Together the mineralogy
and domain structure of clays determine the plasticity or cohesion, swelling,
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Fig. 3.2. Fabric models for aggregates or domains of clay plates from
[Bennett et al. 1991b]. These aggregates and domains form the fundamental parti-
cle units or building blocks of clay microfabric in marine sediments. A–C are multi-
plate domains in plan view and in cross section as would be observed using TEM;
D includes plan and cross-sectional views of shingle-type arrangements of domains
with offset plates; F is a plan view of edge-to-edge contacts of domains forming
long chains; G is a cross-sectional view of edge-to-face domains; E and H include
cross-sectional and plan views of clay plates formed by face-to-face arrangements.

compressibility, strength, and fluid conductivity in fine-grained marine sedi-
ments [Mitchell 1993, pp. 37–38]. In organic-rich sediments, organic material
may also play an important role by controlling the number and strength of
interparticle bonds [Bennett et al. 1999].

When clay minerals, transported by rivers, reach salt water, they aggre-
gate into larger sizes of particles (floccules) held together by van der Waals
forces after the electrostatic repelling forces are neutralized by cations and
anions in saline water. This flocculation provides the initial fabric or ran-
dom arrangement of domains common to clay floccules recently deposited on
the seafloor (Fig. 3.3). Floccules can combine with organic or inorganic ma-
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Fig. 3.3. Fabric of recently settled organic-rich clay aggregates from Eckernförde
Bay, Baltic Sea (TEM image from [Anandarajah and Lavoie 2002]). Note the very
high porosity (90%) or void ratio for these recently deposited sediments. Clay par-
ticles are arranged in domains in edge-to-edge (E-E) and edge to face (E-F) con-
figuration. A tangential arrangement of clay particles is found around some void
spaces (Vc). Smectite is characterized by its amorphous appearance.

terial to form chains, aggregates, agglomerates, or fecal pellets (collectively
called marine snow when in suspension) which are more rapidly transported
to the seafloor. These larger particles, rich in microbes, make up 90% of
suspended material in the ocean and, by inference, most of the deposited
clay minerals on the seafloor [Pierce 1991]. These aggregates mix with sed-
iments already at the seafloor creating organic-rich aggregates containing a
mixture of microbes, filamentous extracellular mucopolysaccharides, and ran-
domly arranged clay domains in the form of the chains and aggregates de-
picted in Fig. 3.2 and provide the initial conditions important in the develop-
ment of sediment microstructure [Ransom et al. 1998a, Ransom et al. 1998b,
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Fig. 3.4. Fabric of recently settled organic-rich clay aggregates from Eckernförde
Bay, Baltic Sea (TEM image from [Anandarajah and Lavoie 2002]). Note the large
void spaces, channels within and especially between clay aggregates, and abundant
organic matter within channels (OM fc), as discrete blobs (OM b), and as biogenic
remains.

Bennett et al. 1999, Hulbert et al. 2002]. The result is often a surficial sed-
iment with large void spaces, very high porosity (> 95%) and low density
(< 1.11 g cm−3) (Fig. 3.4). The importance of organic matter in binding
clay particles into larger aggregates may be greatly underestimated, and or-
ganic matter, in the form of long polymer strings, may be the dominant
bonding mechanism in recently deposited sediments. Subsequent reworking
by abundant benthic fauna, hydrodynamic effects of waves and currents, bio-
geochemical changes, and consolidation by dewatering in the upper meter of
sediment can restructure chains, aggregates, or pellets and more tightly pack
the clay domains, producing a surficial mud with porosity of 65–75%. The
rate of these processes depends on the initial microstructure of the deposited
material, clay mineralogy, percent and types of organic matter, rates of de-
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Fig. 3.5. Changes in void ratio of clay aggregates during consolidation by dewa-
tering (from [Bennett et al. 1991a]).

position, and the abundance and depth distribution of benthic fauna. Dewa-
tering or consolidation and the resultant clay microstructure depend strongly
on electrostatic forces between particles, clay surface area, hydration state,
and organic matter–clay particle interactions. These factors control both the
permeability and compressibility of sediments and provide input to models
of sediment consolidation [Toorman 1999, Boudreau and Bennett 1999]. Un-
der additional stress from consolidation, the random arrangement of domains
becomes reordered, with particle orientation normal to the vertical effective
stress, and the pore space, as measured by void ratio or porosity, is further
reduced (Fig. 3.5). The overall effect is an increase in sediment bulk density,
a decrease in porosity and permeability, an increase in speed of compres-
sional and shear waves, and a decrease in attenuation of both. Consolidation
produces gradients in sediment physical and geoacoustic properties. When
clay domains have a preferential orientation, consolidation may cause verti-
cal/horizontal anisotropy in permeability and wave speed as well.

In spite of considerable advances in SEM and TEM characterization of
the microfabric of naturally occurring and laboratory-consolidated clayey sed-
iments, physical models of sediment geotechnical and geoacoustic behavior
and properties which utilize that microfabric have lagged behind. Measure-
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ment of sediment porosity or void ratio from images of thin sections of embed-
ded clay sediments is well developed. Changes in clay microstructure during
consolidation are well documented and have been correlated with changes
in the shape, orientation, and spatial arrangement or distribution of clay
domains and aggregates. It is even possible to predict sediment permeabil-
ity based on sizes of pore throats, pore bodies, and number and degree of
interconnectivity of pore bodies [Vaughan et al. 2002]. Physiochemical inter-
actions between clay particles and between clay minerals and the pore fluid
are reasonably well known for the clay minerals commonly found in marine
sediments. The cation exchange capacity, effective surface area, and surface
potential for various clay minerals have been measured. However, physical
models that predict values of compressional or shear wave speed or attenua-
tion from clay microfabric and physiochemical interactions between particles
and pore fluid have not been highly successful. Yet, propagation theories that
treat clay sediment as a collection of noninteracting particles (similar to gran-
ular material) and neglect (a) the electrostatic forces between particles, (b)
the interactions between particles and the pore fluid, and (c) the cohesiveness
associated with organic matter often abundant in these surficial sediments
cannot capture all of the physics of sediment compressibility and shearing
associated with wave propagation through these complex sediments. Clay
microstructure studies coupled with acoustic research may provide a “spring-
board” for successful understanding and modeling of fine-grained sediment
behavior.

3.2.2 Fabric of Siliciclastic Sands

Sediments comprised of predominantly sand-size particles are common in
shallow-water, high-energy environments (waves and currents) and in offshore
areas where relict sands predominate. The types, size distribution, sorting,
density, bulk modulus, shape, and roughness features of individual particles,
together with packing, affect the fabric or the spatial arrangement of sand
grains in natural settings. Discussion of the morphology and physical prop-
erties of individual grains is found in Ch. 4 “Physical Properties.” In this
section, methods to characterize the spatial arrangement of grains in natu-
rally occurring sandy sediments and the effects of these particle arrangements
(fabric) on sediment physical properties relevant to wave propagation in co-
hesionless sediments will be presented. The extensive literature on laboratory
studies of artificially created or packed sediments will not be reviewed. The
term “cohesionless” (noncohesive) applies to assemblages of particles that
have little or no surface attraction, one to another, and is in contrast to
cohesive clayey sediments where physiochemical attractions among clay par-
ticles, organic matter, and pore water dominate stress–strain behavior. In
cohesionless sediments, friction between individual particles tends to dom-
inate stress–strain behavior. This fundamental difference in the low-strain
behavior between cohesive and noncohesive sediments should be taken into
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account when developing or using physical models of wave propagation in
sediments.

The fabric of sand-sized assemblages of particles (0.0625 to 2.0 mm in
diameter) traditionally has been characterized using either optical meth-
ods (petrographic microscopy) [Curry et al. 2004] or SEM [Reed et al. 2002]
applied to thin sections of resin-impregnated sediments. More recently, CT
methods [Mees et al. 2003] have been used with whole samples. Fundamental
to this characterization of fabric is particle orientation, contacts, and pack-
ing, as well as the size, shape, and orientation and connectivity of pore space.
Two-dimensional (2D) SEM or optical images can resolve pore-scale (10s of
micrometers) and grain-scale (10s to 100s of micrometers) structures in ma-
rine sands and have been used to determine bulk sediment properties, such
as porosity and density. Some inherent assumptions of 2D image analysis
are that the sediment system is homogeneous and isotropic, and that the im-
ages are large enough that small-scale, grain-size variations do not dominate
measurements (e.g., a minimum elemental volume is achieved). Provided the
system is two-phase (i.e., water and sand), 2D imaging and simple thresh-
olding techniques enable quick determinations of porosity and bulk density.
Bulk density is readily computed in terms of porosity, fluid density, and av-
erage grain density (see Table 4.5). Examples of 2D high-resolution SEM
images of resin-impregnated sand from the SAX99 experiment conducted off
Ft. Walton Beach Florida are shown in Fig. 3.6. As can be seen from these
images, the assumptions of homogeneity and isotropy in the distribution of
sand grains and pore space are sometimes violated, complicating the calcu-
lation of porosity, void ratio, and density. Two-dimensional images, such as
in Fig. 3.6, also complicate the determination of particle size, morphology,
contacts, and arrangement, as well as pore size and connectivity. Note that
most of the grains appear to be free-floating in a matrix of pore space. That
is not the case, either in nature or in the resin-impregnated samples depicted
in Fig. 3.6. The number of contacts is typically 5–10 per grain. As will be
seen next, properties of the fabric are often used to determine parameters
important to wave propagation in sediments such as permeability, tortuosity,
pore size, and grain contacts.

The CT methods can provide volumetric (3D) characterization of grain
arrangements and pore space from either resin-impregnated sediment or sam-
ples in the natural state [Reed et al. 2005]. High-energy linear accelerators or
synchrotron CTs also have been used to image unconsolidated sediments but,
because of their limited use and small sample size at high resolution, will not
be discussed here [Mees et al. 2003]. Typical medical CT imaging systems
have voxel (3D volume) resolution of approximately 0.5 mm2 with 1.0-mm-
thick slices, which is inadequate for fabric characterization of typical marine
sands [Mees et al. 2003]. Recent advances in micro-CT scanning (Fig. 3.7)
provide the resolution (5–20 μm) needed to determine values of sediment
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Fig. 3.6. Representative images of the microstructure of surficial sediments (upper
10 cm) collected from near Ft. Walton Beach, Florida [Reed et al. 2002]. The SEM
images (3.5 mm2) are from polished sections of resin-impregnated sand and depict
cases of homogeneity (A, B) and heterogeneity (C, D) from horizontally oriented
images. Examples of spatial isotropy (E, F) and anisotropy (G, H) are depicted from
pairs of vertical and horizontal images sliced from the same section. The mean grain
size of these predominately quartz sand grains as determined by conventional bulk
methods is 420 μm, the porosity is 36.6%, and the bulk density is 2074 kg m−3.
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Fig. 3.7. CT scan of resin-impregnated sediment collected with a diver core dur-
ing SAX99 (from A.H. Reed in [Richardson et al. 2005]). The volume of scanned
sediment is 82 mm3 with a calculated porosity of 39%. The mean inscribed radius
of the pores is 58 μm, the mean inscribed radius of the pore throats is 42 μm, and
the mean grain size is 375 μm. The mean pore coordination number (number of
interconnected pores) is 6.0, and the average grain coordination number (number
of grain contacts) is 7.1. The individual grain to the right has a volume of 2.5×108

μm3, surface area of 2.0× 106 μm2, and aspect ratio of 2.2. (see first color insert)

properties in sand relevant to acoustic propagation (Chs. 8–10), including
porosity, bulk density, permeability, tortuosity, and pore size parameter.

Another difference between low-resolution medical and high-resolution
microfocal CT images is the relationship between the source, detector, and
the sample to be imaged. In typical medical CT imaging systems, the X-ray
source and detectors rotate around the sample and data are collected from
multiple angles. For high-resolution CT scanners, the sample rotates between
a fixed source and receiver. CT scanners record the differences in the degree
of attenuation of X-rays, which is both material- and energy-dependent. X-
ray attenuation is a complex function of two processes: (1) the photoelectric
effect or photoelectric absorption, which is more prevalent at lower energies
(i.e., below 100 keV) and correlates with atomic number, and (2) Compton
scattering, which is more prevalent at high energies and correlates with ma-
terial density. A direct correlation between X-ray attenuation and particle
density does not exist; therefore correlations between attenuation data (i.e.,
voxel values) with sample density for different CT scanners have been de-
veloped for a variety of materials including quartz and carbonate sediments
[Wellington and Vinegar 1987, Orsi and Anderson 1999]. The differences in
the relationships clearly display the importance of atomic number, as well as
density, to X-ray attenuation [Orsi and Anderson 1999].

Once the differences in X-ray attenuation are determined, the images can
be segmented into two or more components, and the distributions of grain
and pore space can be determined. This can simply include the quartz grain
and pore space (resin) as depicted in Fig. 3.8, or the distribution of free gas
or other minerals can be determined if they are present. The simple thresh-
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Fig. 3.8. Volumetric CT image of quartz sand (SAX04) from which porosity and
bulk density were determined. Grains are false-color coded in the left panel, and
pores are false-color coded in the right panel. Courtesy of A. H. Reed. (see first
color insert)

olding techniques used to segment the 2D images described earlier sometimes
are inadequate because grain and pore phases are not clearly distinct. This
occurs as a result of volume averaging [Ketcham and Carlson 2001]. A bet-
ter technique is indicator kriging [Oh and Lindquist 1999] which relies on a
nearest-neighbor approach to assign ambiguous voxels to one or more of the
phases (e.g. grain or pore space in a two-phase medium). From these images,
bulk properties such as porosity, void ratio, and density can be determined.

3.2.3 Carbonate Structure

Carbonate structure differs from the siliciclastic structure (clay minerals and
sands) discussed in the previous section not only because of the differences
of chemical structure (carbonates are mostly composed of aragonite, low-
magnesian calcite, and high-magnesian calcite), but also because of differ-
ences in origin (mostly biological versus terrigenous), transport (produced
mostly in the vicinity, versus transported long distances by rivers), and shape
and structure (irregular shapes, often pitted or with hollow cavities). Other
differences may result because carbonates are often subject to higher levels
of subaerial exposure, and biochemical reactions (especially related to dis-
solution, precipitation, and cementation), which affect compaction, perme-
ability, and other physical properties [Bathurst 1975, Bennett et al. 1990b,
Rezak and Lavoie 1993, Richardson et al. 1997]. In the following discussion,
attention is restricted to modern shallow-water carbonates, as shallow water
is the primary realm of interest in high-frequency acoustics. Different types of
carbonate fabric will be illustrated with the use of photographic, TEM, SEM,
and CT images. This monograph will not consider the substantial literature
on microstructure and physical and geoacoustic properties of deep-sea de-
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posits including foraminifera and coccolith and pteropod oozes (for example,
see [Hamilton et al. 1982, Bachman 1984, Briggs et al. 1985]).

Most shallow-water carbonates occur in tropical and subtropical waters
where water temperatures remain above 18◦C, and coral reefs are common.
The main exceptions are hard grounds composed of shell material and relict
reefs that are essentially devoid of sediments (Fig. 3.9). These regions occur
mostly on sediment-starved coasts where the finer-grained sediments are win-
nowed out leaving shell and shell hash as lag deposits or in bays and sounds
where biological productivity is very high, and shell material produced in situ
is mixed with mud. Carbonate sediment is primarily derived from the debris
of skeleton-building plants and animals. Carbonate reef material includes the
skeletal remains from a wide variety of invertebrates (gastropods, bivalves,
echinoids, ophiuroids, barnacles, corals, alcyonarians, ascidians, bryozoans,
and benthic foraminifers), polychaete worm tubes, calcareous (in particular
Halimeda) and encrusting algae. This material is broken and transported
by hydrodynamic (waves and currents) and biological processes (especially
feeding and creation of fecal pellets), then deposited in the vicinity of a reef
in a bewildering array of sizes and shapes. The result is often sediments
that are very poorly sorted (having a variety of particle sizes) and composed
of mixtures of odd-shaped particles combined with living organisms (larger
macrofauna to bacteria-size organisms) and abundant organic matter (Fig.
3.10).

The techniques used to characterize sand-sized fabric in carbonate sedi-
ment are the same as used for clay mineral and siliciclastic sediments: opti-
cal, SEM, and TEM imaging of thin sections or polished surfaces of resin-
impregnated sediments and CT scanning of whole samples. Much of the early
work on carbonate sediments is summarized in [Bathurst 1975] and brought
up to date in [Bathurst 1993]. The importance of cementation in preserving
carbonate fabric and resisting consolidation is emphasized in those refer-
ences. In surficial carbonate sediments, the pore water is in contact with the
overlying ocean water, and carbonate sediments are exposed to a mixture of
postdepositional biological and biogeochemical processes that control frag-
mentation, dissolution, precipitation, and subsequent cementation of grains
and matrix material. Cementation of grains increases the rigidity of the sedi-
ment frame resulting in higher values of compressional and shear wave speeds.

Rezak and Lavoie [Rezak and Lavoie 1990, Rezak and Lavoie 1993] char-
acterize fabric in carbonate sediments using: (1) grain-to-grain relationships
(shapes, orientations, and the nature of grain-to-grain contacts), (2) grain-
to-matrix relationships (grain-supported versus matrix-supported), and (3)
matrix component relationships (shapes, sizes, orientations, and the na-
ture of particle-to-particle contacts). Carbonate sediments are considered
matrix-supported (Fig. 3.11, left panel) when larger grains are suspended
within a fine-grained matrix and grain-supported (Fig. 3.11, right panel)
when grains are mostly in contact with finer-grained material found between
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Fig. 3.9. Upper: Photograph of carbonate hard grounds on the west coast of Florida
north of Tampa Bay. Courtesy of R. I. Ray. These hard grounds are sediment-
starved and only a very thin layer of sand-sized carbonate sediment covers the
exposed reef material. Lower: Image of shell material within a muddy matrix col-
lected from Chesapeake Bay using the REMOTS interface camera system. Courtesy
of J. D. Germano.
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Fig. 3.10. SEM images of polished thin sections of embedded carbonate sediments
from the Dry Tortugas. Note the great variety of sizes and shapes of these mostly
sand-sized carbonate particles. Some particles are whole skeletal sections of reef-
dwelling plants or animals; others are highly degraded carbonate fragments and
other debris. These images are approximately 0.95 by 1.34 mm. Courtesy of D.
Lavoie.
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Fig. 3.11. Images of matrix-supported (left) and grain-supported (right) carbonate
fabric. The matrix-supported image is a SEM photomicrograph of sand-sized nearly
spherical ooids embedded within a matrix of silt- and clay-sized aragonite needles
and needle clusters from the Bahama Islands [Bennett et al. 1990b]. The grain-
supported image is from carbonate sediments from the Dry Tortugas. Courtesy of
D. Lavoie.

grains. Behavior, including geoacoustic behavior, of grain-supported and
matrix-supported carbonates can be quite different [Rezak and Lavoie 1990,
Bennett et al. 1990a, Bennett et al. 1990b]. In general, sediments with grain-
supported fabric are more resistant to compaction and have higher porosity
and permeability than matrix-supported sediments [Bennett et al. 1989].

The partitioning of porosity within (intraparticulate porosity) and be-
tween (interparticulate porosity) carbonate particles presents problems for
both empirical and physical models predicting sediment geoacoustic prop-
erties (wave speeds and attenuations) based on sediment porosity or bulk
density (see Ch. 5). In the example of Fig. 4.12 (Ch. 4), fragments or plates
of the calcareous algae, Halimeda, contained approximately 30% intrapartic-
ulate porosity or 10–15% of the total porosity [Richardson et al. 1997]. The
shear wave speed in these carbonate sediments was higher than for siliciclas-
tic sediments of comparable porosity, whereas the compressional wave speed
was lower than for siliciclastic sediments of comparable mean grain size. The
sound speed in the carbonate sands shown in Fig. 3.12 followed similar trends
[Fu et al. 2004].

An exception to the very poorly sorted carbonate sediments derived from
reef debris are the well-sorted oolitic sands common in the Bahama Islands.
Ooids are spherical accretionary grains formed in situ by precipitation of
supersaturated carbonate (mostly aragonite) when cold water upwells along
energetic coastal tropic shallow-water environments (Fig. 3.13). Because of
their mechanism of formation, ooids are well-sorted, medium-to-coarse sand-
sized particles that occur in mobile beds. Models for physical, acoustic, and
geotechnical properties that treat particles as spheres may be especially suited
to oolitic sands except when these beds lose mobility and ooids begin to be
cemented together.
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Fig. 3.12. SEM images of polished sections of resin-impregnated coral sand from
Waikiki, Hawaii [Fu et al. 2004]. These sands show no evidence of postdepositional
cementation within the upper 10 m of sediment. The range of mean grain size (0.19
to 0.25 mm), porosity (49–57%), bulk density (1780–1930 kg m−3), and sound speed
(1620 m s−1) are typical for coralline sands but values of porosity are higher and
values of sound speed are lower than for quartz sand of comparable mean grain
size.

Fig. 3.13. A comparison of high-resolution CT images of resin-impregnated quartz
sand (left) collected from near Ft. Walton Beach, Florida, and aragonite ooid sand
(right) collected south of Bimini in the Bahama Islands. Both images are 7.7 mm in
diameter and have roughly the same mean grain diameter and porosity: 0.375 mm
and 37% for the more angular quartz sand; 0.325 mm and 37% for the more spherical
ooid sand. However, the sound speed was higher (1836 m s−1) and the attenuation
was lower (120 dB m−1 at 400 kHz) in the well-sorted ooid sand compared to the
moderately well-sorted quartz sand (1775 m s−1, 175 dB m−1). Courtesy of A. H.
Reed.
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3.3 Bubbles in Sediment

Gas bubbles and associated methane seeps are ubiquitous in organic-rich,
muddy sediments of coastal waters and shallow adjacent seas [Judd and Hov-
land 1992, Richardson and Davis 1998, Fleischer et al. 2001, Judd 2004].
The depth and horizontal distributions of these gassy regions are often de-
termined from seismic profiling. One of the first examples of such profiles
(Fig. 3.14) comes from early sound profiling using an echo sounder in the
Baltic Sea [Schüler 1952]. The presence of gas bubbles often impedes acous-
tic characterization of sediments below the gas horizon (Fig. 3.15) and terms
such as acoustic masking or blanking, acoustic turbidity, bright spots, wipe-
outs, and pulldowns are used to characterize these gas-charged sediments
[Fleischer et al. 2001]. Gas bubbles also produce anomalously high acoustic
backscattering from the seafloor [Tang et al. 1994, Boyle and Chotiros 1995b,
Tang 1996b, Lyons et al. 1996, Chu et al. 1997, Fonseca et al. 2002] degrad-
ing the effectiveness of high frequency sonar (see Sect. 14.1.7). Sound speed
and attenuation in gassy sediments have unique frequency dependencies with
very high attenuation at frequencies near the acoustic resonance of bubbles
and low sound speed at frequencies significantly below the bubble resonance
[Anderson and Hampton 1980a, Anderson and Hampton 1980b, Bedford and
Stern 1983, Wilkens and Richardson 1998, Gardner and Sills 2001, Best et
al. 2004].

Fig. 3.14. One of the first echo soundings showing acoustic turbidity caused by
free gas bubbles in coastal marine sediments. The area between A and B was first
referred to as acoustic turbidity by [Schüler 1952] and masks the deeper higher
impedance subbottom glacial horizon found in Flensburger Förde in the Baltic
Sea.

Methane is the most abundant hydrocarbon gas in marine sediments and
can originate from biogenic or thermogenic degradation of organic matter
or by degassing and/or cooling of magma or igneous rocks in the mantle
[Judd 2003]. Most methane in shallow-water sediments is of biogenic origin,
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Fig. 3.15. Acoustic image obtained from 12 kHz echo sounder data dur-
ing experiments on gassy sediments in Eckernförde Bay in the Baltic Sea
[Richardson and Davis 1998]. A 50-m-wide “pockmark” is evident. At 5 m depth
(indicated by the horizontal white line), strong acoustic returns from glacial de-
posits are seen just outside the edges of the pockmark. These are masked elsewhere
by a layer of methane gas whose uppermost surface is visible as dark red outside the
pockmark and violet inside. Bubbles rising through the water column are visible
over the pockmark. (see first color insert)

whereas methane in gas seeps can be thermogenic (formed by thermocatalytic
degradation of organic matter at high temperature and pressure) or biogenic
in origin. Methane derived from abiotic sources in the mantle is thought to
be mostly associated with hydrothermal vents and is not considered here.
In addition to methane, benthic microalgae (e.g., diatoms, dinoflagellates,
cyanobacteria) can produce sufficient oxygen during respiration that pore
waters are supersaturated, forming oxygen bubbles that are trapped in sur-
ficial sands, especially in the presence of algae mats [Holliday et al. 2004].
The presence, concentrations, and thus importance of these types of bub-
bles to scattering from the seafloor are currently a subject of conjecture
[Boyle and Chotiros 1998, Greenlaw et al. 2004]. Concurrent measurements
of acoustic properties and gas characteristics could resolve this issue. Air
can be found trapped in intertidal sediments even during high tide when the
sediments are fully covered with seawater. Breaking waves in nearshore re-
gions can also inject air in the form of bubbles into otherwise fully saturated
sediments. The importance of this process to high-frequency acoustics and
the concentration or even presence of air in subtidal sediments are largely
unknown.
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Fig. 3.16. Types of seafloor bubbles. Top left: Type I, interstitial bubbles. Top
right: Type II, reservoir bubbles. Bottom left: Type III, sediment displacement
bubbles. From [Anderson et al. 1998].

Descriptions of three types of bubbles that commonly occur in marine
sediments (Fig. 3.16) have been given by [Anderson et al. 1998]. Type I, in-
terstitial bubbles, are small bubbles that are entirely contained within the
pore space between sediment particles. These bubbles are typically spheri-
cal and usually occur in sand-size sediments. Type II, reservoir bubbles, are
comprised of free gas in pockets that are larger than the pore space and
include sediment grains. This type of bubble is common in petroleum de-
posits and usually contains methane, ethane, and higher-molecular-weight
organic gases. Type II bubbles are also typical of air trapped in intertidal
or shallow subtidal sands. Type III, displacement bubbles, are larger than
the normal pore space but do not contain sediment particles. This type of
bubble is surrounded by a wall of sediment that has been displaced as the gas
bubble grows. Smaller Type III bubbles may be spherical but larger bubbles
tend to be coin-shaped or even irregularly shaped (resembling a corn flake)
[Anderson et al. 1998, Boudreau et al. 2005]. Type III bubbles are most of-
ten composed of methane and are the most abundant type of bubble encoun-
tered in high-frequency acoustic experiments [Richardson and Davis 1998].
The size, shape, and type of bubbles as well as bubble concentration have
a major effect on bubble resonance, sound speed, attenuation, and scatter-
ing characteristics of the sediment (see Sect. 14.1.7). The remainder of this
section will concentrate on biogenic methane in the form of Type III bubbles.
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The distribution of shallow-water gassy sediments generally correlates
with the distribution of fine-grained, organic-rich sediments, and these types
of sediments are most common in estuaries, bays, deltas, drowned coast-
lines and on the continental shelf near areas of major river discharges
(Fig. 3.17). The preponderance of reported cases of gassy sediment are
in and around North America and Europe and reflect more the distribu-
tion of field studies than any fundamental differences in sediment or gas
distribution. Most gas in surficial sediments originates from the genera-
tion of methane as a by-product of metabolism by methanogenic bacteria
[Floodgate and Judd 1992, Martens et al. 1998, Whiticar 2002]. In mud with
high organic content, aerobic respiration is usually restricted to the upper few
centimeters, or even the upper few millimeters, of the seafloor, an oxygen-rich
zone that is often brown in color. Below this zone, sulfur bacteria produce
black, odoriferous sediment rich in hydrogen sulfide. Still deeper, after all
of the sulfate is used as a terminal electron acceptor, methanogenic bac-
teria further reduce simple organic compounds, producing methane. Pore-
water methane concentrations increase until they exceed saturation levels
and free methane bubbles form in the sediment [Abegg and Anderson 1997].
Bubble volume in shallow-water sediments is typically less than 1% but
volumes as high as 6–9% have been reported from pockmarks (Fig. 3.18)
[Lyons et al. 1996] and as high as 12% from sites of very high anaerobic min-
eralization (Fig. 3.19) [Martens and Klump 1980].

Fig. 3.17. Global view of reported sites of free gas bubbles in shallow-water sedi-
ments based on [Fleischer et al. 2001]. (see first color insert)

A kinetic model has been developed by [Martens et al. 1998] for bacterial
methane production which includes: (a) methane consumption at the base
of the hydrogen-sulfide-reduced horizon, (b) advective and diffusive trans-
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Fig. 3.18. The left panel is a CT-scan showing methane gas bubbles from a sedi-
ment core collected from center of a pockmark in Eckernförde Bay, Baltic Sea (see
Fig. 3.15). False colors, based on X-ray densities, represent water (blue), sediment
(brown), core liner (white) and methane bubbles (black). The bubble volume was
as high as 4% as shown in the plot on the right. The core had been maintained at
in situ temperature and pressure (see [Abegg and Anderson 1997] for details). (see
first color insert)

Fig. 3.19. X-radiograph of a 2.5-cm-thick section of sediment (approximately 10
by 20 cm) collected by divers during summer months from the gassy sediments of
Cape Lookout, North Carolina [Martens and Klump 1980]. Large methane bubbles
appear as white (less dense) objects in this positive X-ray. Note the open bubble
tubes (light gray) leading to the sediment–water interface.
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port processes, (c) organic supply, and (d) sedimentation rates. They have
successfully used this model to predict methane and sulfate concentration
profiles, rates of biogeochemical reactions, and the depth distribution of dis-
solved and free gas in the sediments of Eckernförde Bay, Baltic Sea, and Cape
Lookout, North Carolina. The flux rate and quality (reactivity) of organic
matter deposited at the seafloor are the most important factors controlling
the distribution of methane in these sediments.

Methane saturation in sediments is controlled by temperature, salinity,
and pressure and has been modeled in Eckernförde Bay by [Wever and Fiedler
1995, Abegg and Anderson 1997, Wever et al. 1998] and in Chesapeake Bay by
[Hagen and Vogt 1999]. Gas bubble horizons migrate with seasonal changes
in sediment temperature and with rapid local changes in hydrostatic condi-
tions due to storm or tidal conditions [D. Jackson et al. 1998]. Gas ebullition
has been observed during rapid pressure changes [Martens and Klump 1980,
D. Jackson et al. 1998] and during changes in pore water salinity resulting
from increased ground water transport [Bussmann and Suess 1998].

Knowing total bubble volume alone is insufficient to model the acoustic
behavior of gassy sediments. The bubble size distribution, shape and spa-
tial and temporal distributions are important to both propagation (sound
speed and attenuation) and scattering. Individual bubble volume, size, shape,
and spatial and temporal distributions have been measured using a vari-
ety of techniques including: seismic profiling, geochemical methods, standard
X-radiography, and medical and high-resolution X-ray computed tomogra-
phy [Martens and Klump 1980, Richardson and Bryant 1996, Abegg and
Anderson 1997, Albert et al. 1998, Anderson et al. 1998, Boudreau et al.
2005]. Perhaps the most comprehensive study of the spatial distribution of
bubbles including size distribution and shape was conducted using medical
CT scanning of sediments collected from Eckernförde Bay, Baltic Sea, by
[Anderson et al. 1998]. These sediments were placed in pressure-tight con-
tainers by divers at the seafloor and were retained at in situ pressure and
temperature until imaged. Most bubbles were Type III bubbles and ranged
in size between 0.42 mm equivalent radius (the best resolution possible with
the medical CT system) and 10 mm (Figs. 3.18 and 3.20). The equiva-
lent radius is the radius of a sphere having the same volume as the mea-
sured bubble. The number of bubbles smaller than 0.42 mm is unknown,
but acoustic measurements suggest significant numbers as small as 0.25 mm
[Wilkens and Richardson 1998]. The size and number of bubbles varied con-
siderably both with depth and between cores collected within a few meters
of each other. Gas concentrations ranged from less than 0.1% to as high as
9% with high volumes associated with larger bubbles. Bubble shapes ranged
from almost spherical for the smaller bubbles to highly eccentric for the larger
bubbles. The most common shape was an oblate spheroid with the long axis
oriented vertically (Fig. 3.20). More recent work using a high-resolution CT
scanner [Boudreau et al. 2005] shows bubbles with a shape similar to a corn
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flake (Fig. 3.21). Growth of Type III displacement bubbles in soft sediment
can be modeled by fracture mechanics [Johnson et al. 2002] resulting in the
highly eccentric shapes shown in Figs. 3.18–3.21.

Fig. 3.20. A reconstructed slice from a medical CT scan showing the distribution
of methane gas bubbles from a sediment core collected from center of a pockmark
in Eckernförde Bay, Baltic Sea (see Figs. 3.15 and 3.18). False colors, based on
X-ray densities, represent water (blue), sediment (brown), core liner (white), and
methane bubbles (black). The core has been maintained at in situ temperature and
pressure (see [Abegg and Anderson 1997] for details). (see first color insert)

3.4 Effects of Hydrodynamic and Biological Processes

Predicting how high-frequency acoustic energy interacts with the seafloor of-
ten requires a thorough knowledge of sediment physical properties and mor-
phology of the seafloor. As will be shown in this section, the spatial distribu-
tion and temporal changes in sediment bulk properties and seafloor morphol-
ogy are controlled by a combination of biological, hydrodynamic, and deposi-
tional processes [Richardson and Young 1980, Bentley and Nittrouer 2003].
The links between hydrodynamic and biological processes, sediment physical
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Fig. 3.21. A 3D reconstruction of a bubble injected into fine-grained sediment using
high-resolution X-ray computed tomography [Boudreau et al. 2005]. The bubble is
blue and the injection capillary is yellow. The bubble is 20 mm across (A) and 7
mm thick (B) with a resulting volume of 0.3 cm3. (see first color insert)

and geoacoustic properties, and acoustic scattering, propagation, and pene-
tration are often overlooked during high-frequency acoustic experiments. Un-
derstanding these relationships may provide insights into understanding and
thus predicting temporal changes and spatial variability of high-frequency
acoustic–seafloor interactions. For example, winter storms can create periodic
roughness features (ripples) in a matter of hours that can increase seafloor
acoustic scattering strengths. These highly anisotropic features can in turn be
degraded by biological processes in a matter of days yielding a much reduced
isotropic pattern of scattering. It will be shown how modeling and predict-
ing acoustic–seafloor interactions will benefit from an understanding of how
biological and hydrodynamic processes create, destroy, or alter seafloor char-
acteristics. This is an important area of research that is still in its infancy.

Theories for acoustic propagation (fluid, elastic, viscoelastic, or poroe-
lastic) and models for scattering (roughness and volume) require exten-
sive characterization of sediment bulk properties (density, porosity, perme-
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ability, and pore-scale properties such as tortuosity and pore size distribu-
tion). In addition, poroelastic theory requires knowledge of the properties of
the pore fluid (fluid density, bulk modulus, and viscosity) and solid grains
(density and bulk modulus). Buckingham’s theory (Sect. 9.8) also requires
knowledge of grain shape, number and types of grain contacts, and surface
roughness. Many of the aforementioned physical properties are estimated
from grain size statistics. For some propagation theories the mean or ef-
fective values of these sediment properties are sufficient; but for predict-
ing volume scattering the statistical distributions of these properties (es-
pecially bulk density and sound speed) are required. Larger features such
as mud inclusions, shells, and gas bubbles are discrete scatterers of acous-
tic energy. Knowledge of the morphology of the seafloor (roughness and
slope), including deterministic or statistically defined rough-interface con-
ditions, are required by many scattering and penetration models. Biological,
hydrodynamic, erosional, and depositional processes all play major roles in
controlling mean values and statistical distributions of seafloor properties.
Acoustical oceanographers use acoustic–seafloor interactions to determine
the magnitude and rates of biological and hydrodynamic processes. This
is especially true for studies of sediment transport (for a recent review see
[Thorne and Hanes 2002]) and is beginning to be important for rate stud-
ies in benthic ecology [Jumars et al. 1996, Self et al. 2001]. High-frequency
sonar, including side-scan, normal-incidence echo sounders, and multibeam
systems, are used to determine sediment provinces, biotopes, and estimate
sediment physical properties [Diaz et al. 2004, Schock 2004].

There is a long history of studies of the interaction between hydrody-
namic and biological processes, sediment physical properties, sediment struc-
ture, and seafloor morphology, but these different disciplines have approached
the problem from different perspectives. Most benthic biological studies have
concentrated on the effects of sediment properties on the distribution and
abundance of benthic fauna. It was not until recently that the importance of
the behavior of benthic fauna on sediment structure and seafloor morphology
was emphasized. By contrast, most studies concerned with the interaction of
hydrodynamic processes and sediment structure have concentrated on the
effects of waves and currents on seafloor erosion and transport, deposition,
sediment distribution, and morphology. Recently the feedback of the effects
of seafloor physical properties and morphology on surface gravity waves was
recognized [Tolman 1994, Ardhuin et. al. 2003, Sheremet et al. 2005]. Both
of these fields will be reviewed in this section with emphasis on their in-
fluence on the sediment properties and structure important to acoustic–
seafloor interactions. For a more comprehensive coverage of interactions be-
tween biological processes and the seafloor, the reader is directed to reviews
by [Rhoads 1974, Carney 1981, Rhoads and Boyer 1982, Murray et al. 2002].
Hydrodynamic–seafloor interactions are covered in several textbooks in the
Advanced Series on Ocean Engineering from World Scientific; of particu-
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lar interest are [Fredsøe and Deigaard 1992] and [Nielsen 1992]. In addition,
[Middleton 1984, Julien 1995, Winterweap and van Kestern 2004] are excel-
lent sources of information on sediment erosion, transport, and deposition.

3.4.1 Hydrodynamic Processes

Bottom currents, surface gravity waves, and storms have major and often
predictable effects on the distribution of sediment types, formation of beach
profiles [Inman et al. 1993], types and shapes of sand ripples [Clifton 1976],
distribution of sand banks and ridges [Dyer and Huntley 1999], and seafloor
microtopography [Briggs 1989]. As a general rule, muddy sediments are more
common in low-energy environments because of the slow settling rates of clay-
and silt-sized particles. Biological processes, which will be discussed in the
next section, tend to control sediment physical properties and microroughness
in these environments, often destroying layering generated by floods or de-
positional events [Richardson and Young 1980, Bentley and Nittrouer 2003].
Sands are more common in high-energy environments where offshore bars and
berms, sand ridges, and sand ripples are the most obvious features. Where
storms or tidal currents are common, these features, which are in equilib-
rium with hydrodynamic processes, are predictable [Traykovski et al. 1999];
but, where storms are rare, larger features are relict or degraded by bio-
logical processes, and the time history of hydrodynamic processes must be
considered to predict sediment properties and roughness [Briggs et al. 2001].
An excellent review of the types of depositional features typical of nearshore
sedimentary regimes is provided by [Reineck and Singh 1973]. These features
include wave and current ripples, megaripples, sand ridges or dunes, scour
and markings caused by objects on the seafloor, beach profiles, and a variety
of bedding types. The following paragraphs will concentrate on the develop-
ment of tide-, storm-, and wave-induced sand ripples which are of a size to
scatter high-frequency acoustic energy (e.g., [Williams et al. 2002b]) and in-
fluence acoustic penetration into the seafloor (e.g., [D. Jackson et al. 2002]).
It is these features that are of most interest to current high-frequency acoustic
research.

Ripples are small bed features (wavelengths 10–200 cm) that form on
sandy beds with grain sizes smaller than 0.8 mm (coarse sand) when the flow
speeds exceed the threshold of sediment motion but are below that which
can wash out the ripples (sheet flow, Fig. 3.22). Current-generated ripples
are asymmetrical with steeper slopes on the downstream side of crest. They
form irregular patterns when viewed from above. Sediment transport or rip-
ple migration is in the direction of dominant flow, either downstream or in the
direction of the usually stronger ebb tidal flow. Wave-generated ripples are
often symmetrical about the crest in cross section, with the long crests being
relatively sharp. In water sufficiently shallow that waves interact with the
seafloor, the waves become asymmetrical and the ripples tend to migrate in-
shore in response to the asymmetry of the bottom wave velocity distribution.
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Fig. 3.22. Velocity thresholds versus grain size for different wave peri-
ods, T, based for grain movement, formation of ripple beds and sheet flow
[Clifton and Dingler 1984].

In coastal regions, wave-generated ripples tend to dominate except where
tidal currents are strong. All ripple types degrade with time due to physi-
cal and biological processes. A conceptual model of wave-generated bedform
states in nearshore sandy environments has been developed by [Clifton 1976].
This model is based on extensive observations by SCUBA divers after storms
(Fig. 3.23), and depends on sediment grain size, wave period, wave ampli-
tude, and the statistics (energy and skewness or asymmetry) of the incident
wave field (Fig. 3.24). Nearshore is defined in Clifton’s model as shoreward
of the depth at which asymmetric waves appear or shoaling first begins to
develop. Bedforms evolve in response to increasing wave energy (wave orbital
velocity) in a more-or-less predictable manner: from irregular ripples, to cross
ripples, to linear transition ripples, and finally to a flat bed at maximum wave
energy. Various bed states are illustrated in Fig. 3.25, which shows images
from a rotary-scanning sonar operating at 2.25 MHz [Hay and Mudge 2005].
The large features, “lunate megaripples,” appearing at high wave energy, oc-
cur infrequently. It is interesting that asymmetry (skewness) of surface waves
and the strength or direction of longshore currents appears uncorrelated with
bedform type. The surface wave nonlinearity does, however, generate sand
ripple asymmetry in which shoreward-facing ripple slopes are steeper than
seaward-facing slopes for cross- and linear-transition ripple states. This is
consistent with the observed shoreward ripple migration and onshore net
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Fig. 3.23. A sequence of wave-formed ripple structures commonly observed within
high-energy sandy environments. This depth-related sequence of bedforms was
based on observations made by scuba divers after storm events along the south-
ern Oregon coast, southern Spain, and Willapa Bay [Clifton 1976]. The similarity
with the bedforms observed by [Hay and Mudge 2005] using high-frequency sonar
(Fig. 3.25) demonstrates that these bed states are strong functions of incident wave
energy and have temporal as well as spatial dependence. Figure adapted by P.
Traykovski from [Clifton 1976].

sediment transport [Clifton 1976, Hay and Mudge 2005]. Each bed type has
its own high-frequency (MHz) acoustic scattering characteristics. The flat and
irregular rippled bedforms are nearly isotropic (uniform spectral densities),
with much lower scattering levels from the flat bedforms. The linear tran-
sition rippled bedforms exhibit the greatest anisotropy with strips of higher
scattering perpendicular to ripple strike (offshore and onshore). Cross-rippled
bedforms are intermediate with respect to symmetry and energy. Both cross-
rippled and linear transition ripples exhibit higher backscatter strengths in
the seaward direction, a result of asymmetry in ripple slopes. It was sug-
gested [Hay and Mudge 2005] that a spectrum-based anisotropy index could
be developed for automatic bed-state recognition from rotary sonar imagery.

A set of equations was developed by [Wiberg and Harris 1994] to predict
ripple type and geometry based on mean grain size, wave orbital diameter,
and estimated anorbital ripple height, η. Wave orbital diameter can be es-
timated from surface gravity wave height and period and the water depth,
using linear wave theory. For orbital ripples (Fig. 3.24) where the ratio of
orbital diameter, d0, to mean grain size, D, is less than 2000, the ripple
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Fig. 3.24. The canonical two-dimensional parameter space for wave-formed ripples
based on [Clifton and Dingler 1984].

wave length, λ, is a function of the wave orbital diameter (λ = 0.62d0),
and the ratio of ripple height to wavelength is constant (η/λ = 0.17). For
anorbital ripples where d0/D > 5000, the ripple wavelength is a func-
tion of the mean grain size (λ = 500D), and the ratio of wavelength to
ripple height is less for orbital ripples and decreases with wave height.
Suborbital ripples are intermediate between the other two ripple types.
More recent long-term, continuous observations using sector scanning sonar
(Fig. 3.25) tend to support the models of Clifton and Wiberg and Har-
ris [Traykovski et al. 1999, Crawford and Hay 2001, Hay and Mudge 2005].
These instruments are also called rotary or fan-beam sonars. It is interesting
that most studies of evolving bedforms have been conducted in high-energy
environments where ever-changing bedform types are in equilibrium with re-
cent wave or current events. In less energetic environments, bedform rough-
ness degrades with time to a state of low-amplitude isotropic roughness.
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Fig. 3.25. Bed state images obtained by [Hay and Mudge 2005] using a rotary
sonar with a “fan-beam,” narrow in the horizontal and wide in the vertical. Four
principal seafloor states are illustrated by images (2 x 4 m) collected during Sandy-
Duck97 near Duck, North Carolina. Wave energy increases moving from the lower
to the upper panels of the figure. The fifth bed state is featureless and therefore
not shown. Color scale indicates backscatter intensity, with blue corresponding to
low intensity and red to high intensity. (see first color insert)
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3.4.2 Biological Processes

Bioturbation of surficial coastal sediments can have profound effects on sed-
imentary characteristics [Rhoads 1974, Richardson and Young 1980, Carney
1981, Rhoads and Boyer 1982, Wheatcroft 1990, Murray et al. 2002, Crusius
et al. 2004]. Bioturbation in this context refers to the churning, stirring, mix-
ing, or reworking of sediments by organisms during such activities as feeding,
locomotion, or home building [Richter 1952]. The types of bioturbation are
as diverse as the fauna that inhabit the seafloor. The result of this biological
activity is an ever-changing, often heterogeneous, landscape that is called the
“benthic boundary layer.”

Deposit feeding is one of the dominant modes of feeding in fine-grained
sediments and includes the bulk ingestion and defecation of particles as ani-
mals move through the sediment. Two examples include conveyer-belt species
that feed at depth depositing sediments at the surface (Fig. 3.26) and tentac-
ular feeders that ingest particles recently deposited on the sediment creating
fecal pellets deposited on the surface or at depth. Also abundant are filter
feeders which collect organic-rich material from the water column, deposit-
ing it at or below the sediment surface. In fine-grained sediments, much of
the sediment surface can be transformed into sand-sized fecal pellets by these
deposit- or suspension-feeding processes (Fig. 3.27). Other animals selectively
feed on either large or small particles creating local heterogeneity in grain
size or graded bedding. Home building by benthic fauna can create a variety
of temporary or permanent structures such as tubes, burrows, or galleries.
Some animals collect larger particles incorporating them into their tubes or
burrows. Mobile surface deposit feeders create a variety of surface features
including trails, tracks, mounds, and pits that cover the seafloor. Others, such
as migrating sand dollars or sea cucumbers, destroy surface features at an
alarming rate (Fig. 3.28). Demersal fish, decapods, and other larger mobile
epifauna that feed near the sediment floor destroy sediment surface features
such as ripples and create new structures such as small pits, mounds, and
other feeding traces (Fig. 3.29). Other larger mobile benthic fauna, such as
octopi, collect and concentrate shells near their home. The length scales of
the features range from meters (ray pits) to decimeters (mounds created by
larger conveyer-belt feeders) in diameter, down to millimeter (worm trails;
amphipod tubes), to submillimeter scales (fecal pellets).

The activities of benthic fauna and the structures they construct have a
major effect not only on local sedimentary conditions but also impact larger-
scale geomorphological features and processes at scales of 50 meters to hun-
dreds of kilometers [Murray et al. 2002]. Interactions between benthic fauna
and sediments at the millimeter-to-meter scales (microscale interactions) in-
fluence sediment properties and processes associated with sediment stability,
erosion, transport, sedimentation, and consolidation, and can change larger-
scale sedimentary characteristics. Tubes and burrows increase large-scale per-
meability, which could increase dewatering and promote consolidation. How-
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Fig. 3.26. Sediment-profile photographs of sediments in Cape Cod Bay, show-
ing the cone-shaped mound created by Molpadia oolitica, a common conveyer-belt
species found in these silty-clay sediments [Rhoads and Young 1971]. The mound is
densely populated by tubedwelling sabellid polychaetes (A) which tends to stabilize
the sediment surface. The areas of intensive feeding by the holothurian M. oolitica
are easily recognized as sand-filled voids (C). A free-living (errant) deposit-feeding
polychaete (B) also occurs in the photograph. Feeding by this conveyer-belt species
thus creates considerable topographic roughness and a high degree of volume het-
erogeneity in sediment grain size, porosity, and bulk density.

Fig. 3.27. Sediment-profile photograph of sediments in Cape Cod Bay show-
ing a stable fecal cone populated by tube-dwelling suspension feeders (A)
[Rhoads and Young 1971]. The effective grain size of the near-surface fecal pellets
is much larger than the sediments below. Also note that the adjacent depression
(B) is filled with unconsolidated fecal-rich mud which is more easily resuspended
by tidal flow than the larger-size fecal pellets on top of the mound.
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Fig. 3.28. A sand dollar creating track in fine sand in shallow water off the western
Florida coast. Note the destruction of the wave-induced ripples. Photograph by R. I.
Ray.

Fig. 3.29. Pockmarks created by the feeding of pinfish during the SAX99 experi-
ments off in the northeastern Gulf of Mexico. Photograph by A.P. Lyons.
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ever, this is a point currently in debate, as tubes with more-or-less imper-
meable linings may actually resist dewatering. The tubes of benthic fauna
also help stabilize the sediment surface, increasing its resistance to erosion
and promoting sedimentation. Tubes, mucus, cementation, algae filaments,
and consolidation can increase sediment shear strength. Mixing of sediments
by benthic fauna can obliterate layering or structures created by hydrody-
namic processes or, alternatively, create layering, such as graded bedding,
by selective feeding. Suspension-feeding benthic fauna can completely filter
the water column in a matter of a few days, reducing suspended matter,
increasing visibility, and temporarily increasing rates of sediment deposi-
tion, often in the form of sand-size fecal pellets or more loosely compacted
pseudofaeces. Burrowing benthic fauna have been shown to compact sedi-
ment by increasing density and decreasing porosity compared to self-weight
consolidation. Benthic fauna have also been shown to fluff, dilate, or decrease
density in more compacted sediments. Changes in bed roughness (microto-
pography) can modify boundary layer flow near the sediment surface, either
increasing or decreasing turbulent flow near the bed depending on the bio-
genic roughness scales (size and density). Changes in biogenic roughness can
alter sediment stability, erosion, transport, and sedimentation patterns. Given
the omnipresence and wide variety of benthic fauna–seafloor interactions, it
is not surprising that attempts have been made to correlate high-frequency
acoustic bottom interactions to bioturbation or other biogenic processes.

A search of the term “bioturbation” from peer-reviewed papers on the ISI
Web of Science resulted in 1620 hits, most of which were from the marine
environment. At least 50 dealt directly or indirectly with acoustics-related
studies. In the following paragraphs, these relationships are explored. From
the perspective of the acoustician, the prediction of acoustic phenomena from
sediment physical properties or roughness (the forward problem) is of greatest
interest but, from a benthic ecologist’s perspective, acoustic remote charac-
terization of benthic biotopes (benthic physical habitats and their associated
biota) and high-frequency acoustic characterization of the spatial and tem-
poral effects of benthic fauna on sediment characteristics (inverse problems)
are of greater interest.

One of the first attempts to relate bioturbation by benthic animals to sed-
iment geoacoustic properties was provided by [Richardson and Young 1980].
In a review of the literature, they demonstrate how bioturbation profoundly
affects the physical properties of sediments. Activities such as burrowing,
ingestion/digestion/defecation, tube building, biodeposition, cementation,
and metabolic activities modify sediment porosity, grain size, bulk density,
rigidity, compressibility, and microroughness properties important to high-
frequency acoustics. Using an example of dewatering or compaction of a fine-
grained sediment they, perhaps naively, calculated the resulting changes in
sound speed and attenuation, impedance, reflection coefficient, and bottom
loss. Later experiments reported by [Rhoads and Boyer 1982, Richardson
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et al. 1983, Richardson 1983, Jones and Jago 1991, Jones and Jago 1993,
Briggs and Richardson 1997, Rowden et al. 1998, Richardson et al. 2002b]
all confirmed a relationship between bioturbation, sediment physical prop-
erties, and sediment geoacoustic properties. These studies and others have
shown that bioturbation alters sediment physical properties including grain
size and sorting, porosity or water content, bulk density, permeability, pack-
ing, tortuosity, electrical resistivity, and consolidation behavior. In addition,
bioturbation has been shown to alter the sediment fabric, affecting sediment
shear strength, shear modulus, and shear wave speed [Jones and Jago 1993].
Bioturbation can alter sediment density and porosity thus directly affect-
ing sound speed [Richardson 1983], often creating strong gradients in sound
speed and attenuation. As demonstrated by [Richardson et al. 1983], intense
bioturbation by surface-dwelling and deeper-living deposit feeders also can
thoroughly mix the sediment, destroying layering from previous storm de-
posits thus creating a spatially and temporally homogeneous deposit. Sound
speed and attenuation in these homogeneous deposits exhibit little vertical or
horizontal variability. Other species can create considerable variability in sed-
iment physical and geoacoustic properties as well as in sediment impedance
[Richardson et al. 2002b]. Most of the aforementioned studies correlated val-
ues of sediment physical, geoacoustic, and geotechnical properties to the pres-
ence, absence, abundance, or vertical distribution of fauna that are known
to alter seafloor properties. Therefore, in spite of the considerable work re-
lating bioturbation to sediment physical properties and to geoacoustic and
geotechnical behavior, predictive models relating bioturbation to sediment
properties and to behavior are rare (see [Rhoads and Boyer 1982] for one of
the few examples). In contrast, many bioturbation models have been devel-
oped to describe the sediment and pore water mixing process and those will
be described later in this section. These models have rarely been used to pre-
dict the mean values or spatial distribution of values of sediment properties.

High-frequency acoustic systems (side scan or normal-incidence echo
sounders) have been used to map the distribution of benthic communities
or assemblages based on the community association with particular sed-
iment characteristics (grain size, compactness, density, or bottom rough-
ness) or from the distinctive scattering from hard parts such as shells or
from habitat structures such as tubes or burrows (recent examples include
[Brown et al. 2002, Freitas et al. 2003, Diaz et al. 2004]). However, the gen-
eral conclusion from these acoustic habitat mapping studies is that acous-
tic classification techniques currently lack sufficient discrimination of benthic
habitats unless supplemented by considerable ground-truth, either in the form
of benthic surveys or sediment characterization [Diaz et al. 2004].

High-frequency (265 kHz and higher) acoustic detection of the diur-
nal vertical migration patterns of benthopelagic fauna has been reported
by Holliday, Greenlaw, and McGehee in [Richardson et al. 2001a] and by
[Kringel et al. 2003] for coastal and estuarine environments. Small crus-
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taceans, typically mysids or decapod shrimp, emerge from the seafloor at
night, presumably feeding in the water column, then reenter the seafloor for
protection from predation just before dawn. This behavior may be more com-
mon than predicted by emergence traps [Kringel et al. 2003] and can provide
another mechanism of sediment mixing or bioturbation.

High-frequency (40 kHz) bottom backscattering measurements made us-
ing a bottom-mounted scanning system [Dworski and Jackson 1994] have
shown evidence of the presence and movement of benthic fauna and the
temporal effects of bioturbation on seafloor scattering. Experiments have
included natural environments [Jumars et al. 1996, D. Jackson et al. 1996b,
Jones 1999, Jones and Jackson 2000] as well as artificial manipulations of live
fauna, fauna replicates, and seafloor roughness [Self et al. 2001, Williams
2001b, Richardson et al. 2002b] and Jumars and Self in [Richardson et
al. 2001b] The objectives of these experiments were to determine if high-
frequency acoustics could be used to quantify benthic faunal behavior and/or
qualitatively measure the effects of benthic processes on sediment physical
structure including micro-roughness. The results to date have been partially
successful. Acoustic scattering from larger fauna with hard parts was easily
determined from acoustic scans [Jumars et al. 1996] and vertical (diurnal)
and horizontal migrations have been quantified [Holliday et al. 2004]. This
should not be surprising as numerous high-frequency acoustic surveys have
noted strong backscatter strengths from hard-bodied benthic fauna living
at or near the sediment surface (e.g., [Fenstermacher et al. 2001]). Increased
values of backscatter strength have also been noted with the deliberate in-
troduction of larger numbers of smaller bivalves during acoustic experiments
[Self et al. 2001].

Temporal changes in backscattering, measured using correlation tech-
niques, have demonstrated changes in seafloor roughness and volume hetero-
geneity attributed to bioturbation by benthic fauna. Most of the temporal
decorrelation is attributed to phase changes in the acoustic signal rather than
changes in mean scattering level. This may indicate spatial reordering of bot-
tom microroughness or bulk density by benthic fauna rather than changes in
average sediment properties or in changes in roughness or volume heterogene-
ity spectra (see Chs. 6, 7). In sandy sediment, changes in seafloor roughness or
movement of discrete scatterers such as shells led to a rapid temporal decor-
relation of scattering strength (Jackson and Richardson, unpublished). Some
natural or artificial manipulations of fine-grained sediments having low bulk
density yield no measurable changes in high-frequency backscatter strengths.
The lack of sound speed contrast between the overlying water and high-
porosity sediments suggests even significant changes in bottom roughness
may not be detectable using high-frequency acoustics [Self et al. 2001].

Most seafloor microroughness in fine-grained sediments is biogenic in ori-
gin [Wheatcroft 1994]. In sand, roughness in the form of quasiperiodic rip-
ples is created by hydrodynamic processes (waves and currents) only to be
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destroyed by sediment mixing by a variety of organisms that inhabit the
benthic boundary layer. The rapid decay in backscatter strength of artifi-
cially created roughness was demonstrated by [Richardson et al. 2001b], the
result of active destruction of quasiperiodic roughness by bioturbation. Both
[Briggs et al. 2001] and [Pouliquen et al. 2004] have demonstrated fluctua-
tions in backscattering strength due to changes in roughness spectra. Both
attributed these changing roughness spectra to modification of seafloor rough-
ness by benthic fauna. These experiments will be discussed in more detail in
Ch. 6.

Mathematical models have been developed to describe the effects of bio-
turbation on both sediment particles and pore water. The most common
representation of bioturbation is the 1D biodiffusion model where Db(z) is
the bioturbation or mixing coefficient, a diffusion coefficient analogous to
the heat diffusion coefficient appearing in (4.24) [Guinasso and Schink 1975].
The mixing coefficient is often determined from the depth distribution of
impulsive or continuous tracers such as naturally occurring radionuclides
(Pb-210, Th-235, Cs-137, Be-7) or radionuclides associated with fallout from
nuclear testing (Pu-239, Pu-240). Vertical mixing coefficients and the maxi-
mum depth of mixing, Lb, have been determined for many coastal sites and
generally range between 10 and 100 cm2 yr−1 and 10–30 cm, respectively
[Boudreau 1998, Wheatcroft and Drake 2003, Crusius et al. 2004]. Values of
Db increase with increased sedimentation rate and decreased water depth,
perhaps in response to increasing availability of reactive/labial organic mat-
ter [Boudreau 1994]. Sediment mixing by benthic fauna tends to be advective
rather than diffusive, but, averaged over sufficient time, can be approximated
by a diffusive process. In general Db, as measured with tracers, appears to
decrease with depth and is often modeled by a variable mixing coefficient
[Boudreau 1986] or as discrete layers, each with a different value for the mix-
ing rate [Crusius et al. 2004]. At the site of the STRATAFORM experiments
off the northern California coast, high rates of sediment mixing (Db = 10–
100 cm2 yr−1) tend to fully mix or obliterate the signatures of thick (6–8
cm) depositional layers within 3–15 years [Wheatcroft and Drake 2003] and
destroy thinner layers or smaller structures even more rapidly. This suggests
that much of the heterogeneity described in Ch. 7 is of recent origin. Only
after the sediment structure is buried below the depth of mixing by ben-
thic fauna (Lb > 20 cm) will the sedimentary layer or biogenic structure be
preserved [Bentley and Nittrouer 2003]. Data also exist suggesting horizontal
mixing rates may be as much as 10 times greater than vertical mixing rates
[Wheatcroft 1991] providing higher rates of structural degradation.

More complex sediment mixing models that allow quantification of non-
diffusive mixing by individual processes have been developed and successfully
tested by [Boudreau and Imboden 1987, François et al. 1997, Shull 2001], and
reviewed by [Meysman et al. 2003] but are well beyond the scope of this
monograph. In an attempt to treat sediment mixing in a more mechanistic
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manner, Boudreau and colleagues developed a lattice-automaton bioturba-
tion simulator (LABS)[Choi et al. 2002]. The model treats sediment as a 2D
random lattice of particles, pore space, and organisms and allows the organ-
isms, as operators or automatons, to move particles according to well-defined
rules. Simulations with small deposit-feeding automatons mimic the diffusive
behavior of 1D biodiffusion models when allowed to operate over sufficient
time intervals. LABS should provide considerable insight into 3D bioturba-
tion processes, even allowing modeling of ripple decay due to bioturbation
at the sediment–water interface, which is important for seafloor roughness
studies (Ch. 6).

An attempt to combine a stochastic model of bioturbation with an
acoustic volume scattering model (Ch. 14) was made by [Jones 1999, Jones
and Jackson 2000] to predict time-dependent decorrelation of backscattering
strength. The mixing coefficient, Db, and mixing depth, Lb, of macrofauna
and meiofauna were used to predict the temporal evolution of bulk density
spectra (Ch. 7). Nonlocal mixing, for example feeding by a conveyer-belt
species, gave rise to spatial heterogeneity, while fine-scale mixing by smaller
animals resulted in diffusive decay of heterogeneity. This approach was used
to model temporal decorrelation of backscattering strength from silty-clay
sediment in West Sound, Orcas Island in Puget Sound, Washington. At this
site volume scattering rather than roughness dominated backscattering. The
general shape of the measured and predicted decorrelation of backscattering
were similar, suggesting it is possible to model changes in high-frequency
acoustic scattering due to the effects of bioturbation on sediment structure.
Equally important to benthic ecologists, it may be possible to measure rates
of biological processes using high-frequency acoustics.

3.5 Research Issues

Although this chapter has emphasized nonacoustic topics, the discussion re-
veals some challenging areas for future acoustic research. Foremost is the use
of knowledge of hydrodynamic, biological, and biogeochemical processes to
predict acoustic behavior. As an example, one might hope to build predictive
models for interface roughness incorporating the hydrodynamic growth and
biological decay of sand ripples (Fig. 3.30). Similarly, it might be possible to
develop a predictive model for sediment heterogeneity based on the lines of
existing models for sediment mixing due to bioturbation. This is the forward
problem, but its solution should suggest new inverse methods for acoustically
measuring hydrodynamic and biological benthic activity. Equally challeng-
ing (and equally rewarding) is the prospect of using knowledge of sediment
microstructure in wave-theoretic models with the goal of solving problems
apparent in current theory (e.g., poroelastic theory, see Ch. 10).



Fig. 3.30. A scheme for coupling hydrodynamic, biological, and acoustic models
to predict ripple structure and resultant acoustic behavior.



4 Physical Properties

In this chapter, surficial sediment physical properties relevant to high-
frequency acoustics will be discussed. The term “physical properties” denotes
such things as porosity, permeability, mean grain size, particle, pore fluid and
pore space characteristics, and sediment type. These properties will be dis-
tinguished in this monograph from “geoacoustic properties,” to be discussed
in Ch. 5. Geoacoustic properties include such things as compressional and
shear wave speeds, the corresponding attenuations, and impedance. The di-
vision into physical and geoacoustic properties is made for convenience and
is not followed universally in the literature. For example, compressional and
shear wave speed and attenuation are often considered sediment physical
properties by geologists and geophysicists but are of sufficient importance to
high-frequency acoustics to be treated separately. Empirical relationships be-
tween sediment physical and geoacoustic properties are given in Ch. 5. These
allow prediction of sediment geoacoustic properties based on measured val-
ues of sediment physical properties presented in this chapter. In many high-
frequency acoustic applications, values of sediment geoacoustic properties are
not available, and these relationships provide a reliable method to obtain es-
timates of the values of geoacoustic parameters needed in acoustic theories
and models (Chs. 8–15).

Methods used to measure sediment grain size distribution and define com-
mon descriptors used in sediment databases (such as “fine sand” or “silty
clay”) will be described first. Bulk properties associated with the relative per-
centages of solid, fluid, and gas phases in sediments will be described next,
followed by sediment properties associated with fluid, electrical, and heat
conductance. This chapter concludes with discussions of the characteristics
of sediment pore space followed by the characteristics of sediment particle
and pore water properties. The purpose of this chapter is not to provide an
exhaustive documentation of all methods used to characterize sediment phys-
ical properties but instead give the acoustic modeler insight into how these
properties are measured and reported, how values of these sediment proper-
ties should be interpreted relative to acoustic theory and models, and how
to sort through the bewildering array of jargon used by sedimentologists and
geotechnical engineers.
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4.1 Sediment Grain Size Distribution

The size distribution of particles in marine sediments covers almost eight
orders of magnitude from boulders hundreds of centimeters in size to particles
having sizes smaller than one micron. The type, size, shape, and orientation of
these particles provide useful information to the sedimentary geologist about
sediment particle origin, history during transport and deposition, and changes
during postdeposition processes. Other bulk properties of sediments, such as
porosity, permeability, and compressional and shear wave speeds, are either
dependent on, or at least empirically correlated with grain size. Particle size
distribution can be measured on sediment samples collected by grabs, cores,
or other nonquantitative collection tools, where the intactness of the sediment
is not requisite for analysis. Sediment mean grain size and sediment type (e.g.,
carbonate fine sand) are the most common descriptors found in sediment
databases and often are the only sediment physical descriptions available to
the acoustic modeler. More measurements of grain size distribution have been
reported in the literature than for all other physical properties combined. It
has been estimated [Syvitski 1991] that earth scientists perform 800,000 grain
size analyses each year.

Classic methods for particle size analysis in the earth sciences are de-
scribed in texts on sediment petrology [Krumbein 1938, Griffiths 1967, Folk
1980] and sediment marine geotechnology [Lamb and Whitman 1979]. The
field of powder technology, principally involving the chemical industry, has
developed many of the automated methods of particle size analysis. More
recently, acoustical, optical, and electrical methods have been developed to
measure in situ sediment particle size at or near the seabed [Syvitski 1991,
Crawford and Hay 1993, Schaafsma and Hay 1997, Agrawal and Pottsmith
2000, Thorne and Hanes 2002]. In one way or another almost all methods
of particle size analysis relate back to classical sieving and particle settling
techniques. Most of the emphasis in this section is therefore devoted to these
classic techniques. An accurate interpretation of particle-size data requires an
understanding of the nature and morphology of sediment particles, sediment
collection methods, dispersion of sediment samples prior to size analysis, ac-
curacy and precision of the size analysis techniques, and statistical methods
used to report the results. The terms “grain size” and “particle size” tend
to be used interchangeably, but it should be remembered that all sediment
particles are not grains (i.e., not discrete particulate or crystalline masses)
and can be composed of organic matter or other material that is neither a
mineral nor a rock fragment.

Grain size (φ, or “phi”) has been traditionally reported in the base-2 log-
arithmic scale devised by [Krumbein 1934], where φ = − log2 d, and d is the
particle size in millimeters. If one assumes the sediment size distribution is
lognormal, the phi-transformed size distribution becomes normal (Gaussian),
condensing a very broad range of grain diameters into a more restricted range
of values of phi, expanding the spectrum of very small grain sizes, thereby
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facilitating the calculation of grain size statistical parameters and the compar-
ison of statistical size distributions of different sediments. Natural processes,
such as weathering and sediment transport, break down and abrade small
sediment grains more rapidly than larger grains tending to create lognormal
distributions of particles. Natural processes that sort grains according to size
also tend to create lognormal distributions. Deviations from a lognormal dis-
tribution (parameterized as sorting, skewness, kurtosis, or the presence of
more than one mode) are included in the statistical summary of grain size
distribution. A visual method to equate phi, diameter in microns and millime-
ters, U.S. standard sieve mesh size, and the descriptive Udden–Wentworth
size classes is given in Table 4.1. Acoustic modelers can thus easily convert the
rather cryptic (at least to them) logarithmic phi size-distributions reported
by sedimentologists to more familiar metric units or descriptive sediment size
classes. Acoustic modelers should realize that the phi transformation is not
unlike that of the decibel, proportional to the base-10 logarithm of the ratio
of measured sound pressure to a reference sound pressure [McManus 1982].
Analogously for grain size analysis, phi is the ratio of the negative logarithm
(base 2) of measured grain size to a reference grain size of 1.0 mm. The
Udden-Wentworth grain-size scale may be the most widely used description
of sediment particles but is not the only such scale (for other examples see
[Krumbein 1938]). For example, geotechnical researchers often use 2 μm (9.0
φ), rather than the traditional 3.9 μm (8.0 φ), as the break between silt and
clay thus adding a category of very fine silt (8–9 φ) [Blott and Pye 2001]. If
one employs a scale in which the size-class descriptors differ from the standard
Udden–Wentworth scale, reference to that other scale should be given.

In the classical methods of particle size analysis devised by sedimentary
petrologists, the weight of each size class of sand- and gravel-sized parti-
cles is determined after particle disaggregation by dry or wet sieving us-
ing the appropriate U.S. Standard screen sizes. Silt- and clay-sized parti-
cle distribution is determined by pipette methods by which particles segre-
gate according to diameter during settling as described by Stokes’ law. The
size-range classes reported for marine sediment are usually restricted to −2
φ (large granules, 4 mm equivalent diameter) to 12 φ (0.24 μm). Particles
larger than granules are rare and not statistically represented in most small
geological samples. The weight frequency distribution of each size class is
plotted, and graphical methods are used to determine the statistics of the
sediment grain size distribution (mean, mode, sorting or standard deviation,
skewness, and kurtosis). There are many modifications to this general ap-
proach and the devil is in the details. Replacement of the classic techniques
(sieving and pipette methods) with modern automated and digital meth-
ods has been advocated [Syvitski et al. 1991b]. The reader is directed to the
excellent source of information on modern laboratory particle size analysis
techniques, [Syvitski 1991]. Specifics associated with measurement problems,
calibrations, and comparisons of the wide
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Table 4.1. Sediment grain size classification based on [Folk 1980]. The grade scale
proposed by [Udden 1914] and modified by [Wentworth 1922] is logarithmic where
each size class is twice as large as the next smaller size class. Phi (φ) is − log2(d)
where d is the equivalent spherical diameter in millimeters [Krumbein 1938]. Equiv-
alent diameter is also expressed in millimeters and microns. The U.S. standard wire
mesh (No. of wires/in2) for sieving granules, sands and coarse silt-size particles and
inches/opening for particles ≥ 6.3 mm is also given.

U.S. Standard Millimeters Micron Phi (φ) Udden-Wentworth
Wire Mesh No. Size Class

1024 −12 Boulder (−8 to −12 φ)
———— 256 ——— −8 ——————

128 −7 Cobble (−6 to −8 φ)
—2 1/2— 64 ——— −6 ——————

1 1/4 32 −5
5/8 16 −4
0.530 13.2 −3.75
7/16 11.2 −3.50
3/8 9.5 −3.25 Pebble (−2 to −6 φ)
5/16 8 −3.00
1/4 6.3 −2.75
3.5 5.6 −2.50
4 4.75 −2.25

——5—— 4.00 ——— −2.00 ——————
6 3.36 −1.75
7 2.83 −1.50 Granule (−1 to−2 φ)
8 2.38 −1.25

——10—— 2.00 ——— −1.00 ——————
12 1.68 −0.75
14 1.41 −0.50 Very coarse sand
16 1.19 −0.25

——18—— 1.00 ——— 0.00 ——————
20 0.84 0.25
25 0.71 0.50 Coarse sand
30 0.59 0.75

——35—— 0.50 —500— 1.00 ——————
40 0.42 420 1.25
45 0.35 350 1.50 Medium sand
50 0.297 300 1.75

——60—— 0.250 —250— 2.00 ——————
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Table 4.1. Continued

US Standard Millimeters Micron Phi (φ) Udden-Wentworth
Wire Mesh No. Size Class

70 0.210 210 2.25
80 0.177 177 2.50 Fine sand
100 0.149 149 2.75

——120—— 0.125 —125— 3.00 ——————
140 0.105 105 3.25
170 0.088 88 3.50 Very fine sand
200 0.074 74 3.75

——230—— 0.0625 —62.5— 4.00 ——————
270 0.053 53 4.25
325 0.044 44 4.50 Coarse silt
400 0.037 37 4.75

——450—— 0.031 —31— 5.00 ——————
500 0.023 23.4 5.50 Medium silt

——635—— 0.0156 —15.6— 6.00 ——————
0.0117 11.7 6.50 Fine silt

————— 0.0078 —7.8— 7.00 ——————
0.0045 4.5 7.50 Very fine silt

————— 0.0039 —3.9— 8.00 ——————
0.0020 2.0 9.00
0.00098 0.98 10.00
0.00049 0.49 11.00 Clay
0.00024 0.24 12.00
0.00012 0.12 13.00
0.00006 0.06 14.00

variety of automated techniques are beyond the scope of this monograph,
but a discussion of more classic techniques adequately describes many of the
issues associated with particle size analysis techniques and will allow the
acoustician to interpret grain size data. In addition, these classic techniques
have provided much of the worldwide database on sediment grain size and
are still used in many laboratories today. Most of the automated laboratory
methods of determination of grain size distributions are based, in part, on
these classic methodologies.

Sediment samples are generally collected remotely using grabs, gravity
cores, piston cores, or box cores, or collected in situ by divers using a va-
riety of hand tools including diver cores. Care must be taken to include
the entire sample and not allow fine-grained, silt- and clay-size particles
to winnow out of the sample. If the sample is too large for analysis, sub-
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samples must be prepared. Sediments are often vertically and horizontally
quite variable, therefore a sufficient number of samples must be collected
to adequately characterize vertical gradients and horizontal spatial hetero-
geneity [Richardson 1986, Richardson and Briggs 1996]. In most cases the
acoustic footprint or patch size for acoustic scattering measurements is much
larger than the sediment sample and larger particle size classes, such as shell
material and rocks, may be missed by typical grain-size analysis techniques.
For longer acoustic wavelengths, especially in fine-grained sediments, propa-
gation and scattering can occur from depths up to a few meters, therefore the
depth distribution of grain size statistics should match the depth of acoustic
penetration. Sediments used for grain size analysis can be somewhat dis-
turbed and stored for long periods of time without adverse effects, although
drying and disaggregation of clay particles could cause some problems. Con-
sequently, laboratory determination of grain size is usually the last step in
analysis of sediment physical properties.

The sand and mud (in this monograph, “mud” refers collectively to silt-
and clay-sized particles) fractions are usually segregated by wet sieving and
analyzed separately using the techniques described below. Preparation of sed-
iment samples often includes some form of mechanical disaggregation of sand-
, silt-, and clay-sized particles and subsequent dispersion of the suspension of
silt- and clay-sized particles [Matthews 1991a]. Unless sand-sized particles are
cemented, as in some carbonates, mechanical agitation will usually separate
unconsolidated sediments into individual particles. Silt- and clay-sized par-
ticles are dispersed using mechanical agitation, such as stirring or ultrasonic
energy; chemical reagents to remove organic binding material; or ionic disper-
sants such as sodium hexametaphosphate (Calgon r©). This provides analysis
of the size distribution of individual clay particles rather than clay mineral
floccules or aggregates. For example, fecal pellets that are commonly in the
size range of 500 to 3000 μm in muddy sediments are broken down to clay-size
particles in the 1 to 5 μm range. In fact, most clay-sized particles found in sur-
ficial sediments are bound in some form of aggregate, chain, crumb, or pellet
(see Sect. 3.2.1) by electrostatic forces and organic films. Whether character-
ization of the size distribution of individual dispersed particles or of larger
naturally occurring aggregates is most appropriate for high-frequency acous-
tics may depend on the specific application but has received little attention to
date. It should be noted, however, that in situ acoustic or optical methods are
used to measure particle size distribution of naturally occurring aggregates
in the water just above the seafloor [White 1998, Thorne and Hanes 2002].

The sand fraction is routinely separated into 0.25-φ intervals using stacks
of U.S. standard screens (ASTM standard E-11), and, after shaking, the par-
ticles retained on each screen are weighed. Other techniques to determine
sand-sized distribution include settling tubes [Syvitski et al. 1991a] and im-
age analysis. Recent advances in sieving techniques include automated meth-
ods for wet sieving and sonic, electromagnetic, and air-jet particle agitation
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instead of the traditional shaking and tapping. More recent techniques as-
sociated with settling tubes include measuring the accumulating weight of
sand-sized particles at the bottom of the settling tube, or the use of X-ray or
laser diffraction to determine particle settling rates. Most methods used to de-
termine silt- and clay-size distribution are based on particle settling velocity
in a dilute dispersant solution, with the particles assumed to have spherical
shape. Settling methods are generally restricted to particles in the 0.5 to 70
μm size range. Particles larger than 70 μm in the confined space of a settling
tube create turbulence thus accelerating settling velocities; particles smaller
than 0.5 μm are affected by Brownian motion and could theoretically remain
in suspension indefinitely [Griffiths 1967]. In the classic pipette method, the
dispersed silt- and clay-sized particles are distributed uniformly by vigorous
stirring in a cylinder of the dispersant and small aliquots (samples) are col-
lected at specific times and depths using a calibrated pipette. The samples
are dried, weighed, and corrected for dispersant weight and related to the
volume of the suspension from which each aliquot is drawn. The result is a
percent weight of each size class which can be combined with the weight of
gravel- and sand-size classes (Figs. 4.1–4.5). Silt-sized particles are usually
divided into ten 0.5-φ size bins and clay-sized particles into four 1.0-φ bins
down to 12 φ. The remaining particles finer than 12 φ are often divided evenly
between 13 φ and 14 φ.

Recently, a variety of optical attenuation, optical imaging (counting and
sizing), laser diffraction spectroscopy, X-ray attenuation (SediGraph), elec-
trical resistivity, photon correlation spectroscopy, and acoustic automated
techniques have been developed to measure grain size distribution of silt-
and clay-sized particles [McCave and Syvitski 1991]. These automated meth-
ods provide continuous measurements at greater resolution, are less prone to
operator eccentricities, and are much faster than classic pipette or sieving
methods. Proper calibration, however, is required to maintain precision and
accuracy. Both the U.S. Naval Oceanographic Office and The Naval Research
Laboratory use a Micromeritics Sedigraph to measure size distribution of silt-
and clay-sized particles down to 1 μm [Coakley and Syvitski 1991]. Sieves are
still used for the dried sand and gravel fractions.

The classic size distribution data are plotted as a histogram with both
size class (bin) frequency and cumulative frequency (see examples in Figs.
4.1–4.5). Each size class represents the weight of particles between two size
bin limits with the size class designated by the smaller-size bin limit. Thus,
in sieving, particles are assigned to the class corresponding to the screen
that retains them. Summary statistics (mean, median, standard deviation or
sorting, skewness, and kurtosis) are based on either analytical (arithmetic
based on first to fourth moments) or graphical analysis of the frequency
histograms of the mid-point of each size class using φ-percentile or metric-
percentile units. The most commonly used graphical measures were devised
by [Folk and Ward 1957] and include median,
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Fig. 4.1. Histogram of grain size distribution for sandy sediment collected during
the SAX99 high-frequency acoustic experiment (station 20-1) in 19-m water depth
in the northeastern Gulf of Mexico, October 1999 [Richardson et al. 2001a]. Grain
size statistics are given in Table 4.2. The sediment is moderately well sorted, coarse-
skewed, mesokurtic, medium sand. The silt- and clay-sized fractions accounted for
less than 2% of the total particulate weight and do not affect graphic grain size
statistics.
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Fig. 4.2. Histogram of grain size distribution for sandy sediments collected during
high-frequency acoustic scattering experiments (station T1-2) in 8-m water depth
off northern Italian coast (Tirrenia) in September 1997. Grain size statistics are
given in Table 4.2. The sediment is moderately sorted, strongly fine-skewed, lep-
tokurtic very fine sand. Courtesy of K. B. Briggs.
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Fig. 4.3. Histogram of grain size distribution for muddy sediment collected off the
California coast (Eel River) during the STRATAFORM experiments (station 75-1)
at 70-m water depth, June 1996 [Richardson et al. 2002b]. Grain size statistics are
given in Table 4.2. The sediment is very poorly sorted, coarse-skewed, platykurtic
silty clay.
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Fig. 4.4. Histogram of grain size distribution for shelly mud sediment collected
in the Arafura Sea (station 18-3), north of the Gulf of Carpentaria off the Aus-
tralian coast in 70-m water depth, May 1984 [Briggs et al. 1989]. Grain size statis-
tics are given in Table 4.2. The sediment is extremely poorly sorted, fine-skewed,
very platykurtic sandy clay.
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Fig. 4.5. Histogram of grain size distribution for muddy sediment collected off the
California coast (Eel River) during the STRATAFORM experiments (station 41-
1) at 70-m water depth, June 1996 [Richardson et al. 2002b]. Grain size statistics
are given in Table 4.2. The sediment is very poorly sorted, strongly fine-skewed,
leptokurtic clayey silt.

Table 4.2. Summary statistics for moderately well-sorted medium sand (SAX99),
moderately sorted very fine sand (Tirrenia), very poorly sorted silty clay (Eel
River), extremely poorly sorted mixtures of sandy mud (Arafura Sea), and clayey
silt from the Eel River. Frequency histograms for the grain size distributions for
these sediments are presented in Figs. 4.1–4.5, with the order of the figure cita-
tion corresponding to the order in the table. Grain size statistics are based on the
graphical methods of [Folk and Ward 1957].

Statistic Gravel % Sand % Silt % Clay % Mean Sorting Skewness Kurtosis

Location
SAX99 0.55 98.08 0.39 0.99 1.27 0.70 −0.11 1.20
Tirrenia 0.00 85.31 9.93 4.76 3.45 0.96 0.41 4.30
Eel River 75 0.00 0.10 28.14 71.74 9.69 2.45 −0.19 0.85
Arafura Sea 4.12 42.42 10.92 42.54 6.43 5.23 0.18 0.57
Eel River 41 0.00 2.44 72.86 24.71 6.95 2.27 0.59 1.28

Md = φ50 , (4.1)

graphic mean,
Mz = (φ16 + φ50 + φ84)/3 , (4.2)
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inclusive graphic standard deviation,

σI = (φ84 − φ16)/4 + (φ95 − φ5)/6.6 , (4.3)

inclusive graphic skewness,

SkI = (φ16+φ84−2φ50)/[2(φ84−φ16)]+(φ5+φ95−2φ50)/[2(φ95−φ5)] , (4.4)

and graphic kurtosis,

KG = (φ95 − φ5)/[2.44(φ75 − φ25)] . (4.5)

Graphic mean grain size,Mz, is one of the measures most often used and will
be simply referred to as “mean grain size” in this monograph. Additional
measures of the statistics for graphic grain size frequency distributions are
given in [Griffiths 1967]. Descriptive terminology for ranges of the grain size
statistics (sorting, skewness, and kurtosis) proposed by [Folk and Ward 1957]
are given in Table 4.3.

Other common statistical (arithmetic and geometric using either metric or
phi units) and descriptive measures of sediment-size distribution are reviewed
by [Krumbein 1938, Griffiths 1967, Folk 1980, Blott and Pye 2001]. The con-
sensus of marine geologists and soil scientists is that the graphical methods
of [Folk and Ward 1957] provide the most robust basis for comparisons of
variable sediment size distributions. This logarithmic approach defines sta-
tistical distributions of the central tendency of the data rather than outliers
in the tails of the distribution which are often ill-defined in standard grain
size analysis. The values and ranges for the descriptive terminology vary con-
siderably depending on which mathematical or graphical method is used to
determine the grain size statistics. Therefore a comparison between values
of statistical distributions derived from different statistical techniques is not
recommended [Blott and Pye 2001].

The statistical distribution of grain size has many uses in high-frequency
acoustics. Mean grain size is used as an empirical predictor of other sediment
physical and geoacoustic properties, such as porosity and sound speed (Ch. 5)
or used as a descriptor predicting scattering strength. This approach is sub-
ject to large errors (Ch. 12), but is sometimes the only physical description
of the sediment available. Mean grain size,Mz, as defined by Folk and Ward,
is a suitable descriptor for empirical predictions of other sediment properties
(Ch. 5), as these relationships tend to be logarithmic with respect to grain di-
ameter. For several other acoustic applications, such as scattering by discrete
particles and characterization of volume heterogeneity, a size frequency his-
togram, such as those presented in Figs. 4.1–4.5, is the preferred form of data.
For applications in which a physical relationship connects grain size to the
desired parameter, such as scattering from particles suspended in the water
column, grain size statistics derived from the arithmetic method of moments
may be preferred. A program is available [Blott and Pye 2001] to calculate
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Table 4.3. Descriptive terminology for the grain size statistics based on the graphic
measures of [Folk and Ward 1957]. Inclusive graphic standard deviation (σI) is a
measure of sorting, inclusive graphic skewness (SkG) is a measure of symmetry, and
graphic kurtosis (KG) is a measure of peakedness of the grain size distribution.

Sorting (σI) Descriptive terms
<0.35 very well sorted
0.35 to 0.50 well sorted
0.50 to 0.71 moderately well sorted
0.71 to 1.0 moderately sorted
1.0 to 2.0 poorly sorted
2.0 to 4.0 very poorly sorted
>4.0 extremely poorly sorted

Skewness (SkG)
1.00 to 0.30 strongly fine-skewed
0.3 to 0.1 fine-skewed
0.1 to −0.1 near symmetrical
−0.1 to −0.3 coarse-skewed
−0.3 to −1.0 strongly coarse-skewed

Kurtosis (KG)
> 0.67 very platykurtic
0.67 to 0.90 platykurtic
0.90 to 1.11 mesokurtic
1.11 to 1.50 leptokurtic
1.50 to 3.00 very leptokurtic
< 3.00 extremely leptokurtic

mean, standard deviation, skewness, and kurtosis from size-frequency data
using arithmetic, geometric, and logarithmic methods of moments with either
metric or phi units, thus allowing acousticians to calculate the appropriate
grain size statistics.

Another common approach to sediment classification is characterization
of sediments with respect to the relative percentages (by weight) of sand and
mud (silt and clay combined) or in a ternary phase diagram, where sediments
are characterized according to percentages of three classes of particles (e.g.,
sand:silt:clay or gravel:sand:mud). In the scheme of [Flemming 2000], sedi-
ments are divided into six textural classes based on the relative percentages
of sand and mud (Table 4.4). Numerous similar binary approaches exist.

Three of the most commonly used ternary diagrams were suggested by
[Shepard 1954] and by [Folk 1980] for sand, silt, and clay mixtures (Figs. 4.6
and 4.7), and by [Folk 1980] for the ratios of gravel, sand, and mud (silt and
clay combined, Fig. 4.8). There appears to be no standardized terminology
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Fig. 4.6. Ternary diagram of [Shepard 1954] based on sand–silt–clay ratios.
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Fig. 4.7. Ternary diagram of [Folk 1980] based on sand–silt–clay ratios.
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Table 4.4. Descriptive terminology for the six textural classes of sediments based
on sand–mud ratios [Flemming 2000].

Mud Content % Textural Class Mud Content % Textural Class
< 5 Sand 50-75 Sandy mud
5-25 Slightly muddy sand 75-95 Slightly sandy mud
25-50 Muddy sand > 95 Mud

Gravel

Mud Sand

Sand-Mud Ratio
1:9                                  1:1                                  9:1

Gravel %

Trace

5%

30%

80%

Gravel

Mud

 Slightly
Gravelly
  Mud

Gravelly Mud Gravelly Muddy Sand

Sandy Mud Muddy Sand

Slightly Gravelly
     Sandy Mud

Slightly Gravelly
   Muddy Sand

Muddy Gravel    Muddy
Sandy Gravel

Sandy
Gravel

Gravelly 
   Sand

Slightly
Gravelly
   Sand

Sand

Fig. 4.8. Ternary diagram of [Folk 1980] based on gravel–sand–mud ratios.

for these commonly used ternary diagrams. The papers of [Shepard 1954,
Folk 1980, Flemming 2000] describe over 10 different ternary phase diagrams
for various combinations of gravel-sand-silt-clay with identical descriptors
covering much different ratios of the three components. Some authors have
reported sediment textural characteristics in a form that implies quantitative
analysis using ternary diagrams but instead employ qualitatively estimated
relative percentages of gravel, sand, silt, and clay. Therefore, when reporting
sediment textural characteristics, reference should be given to the form of the
ternary diagram employed.

Based on quantitative analysis of sediment grain size, several descriptive
approaches to sediment classification have been proposed. The approach of
[Folk 1980] combines the description based on a ternary diagram with the
graphical statistics. For example, the four sediments having the distributions
shown in Figs. 4.1–4.5 are described as: (a) a medium sand, moderately well
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sorted, coarse-skewed mesokurtic; (b) a very fine sand, moderately sorted,
strongly fine-skewed, leptokurtic; (c) a silty clay, very poorly sorted, coarse-
skewed, platykurtic; (d) a sandy mud, extremely poorly sorted, fine-skewed,
very platykurtic; and (e) a clayey silt, very poorly sorted, fine-skewed, lep-
tokurtic. The U.S. Naval Oceanographic Office combines textural information
with modifiers denoting sediment origin (for example, carbonate clayey sand
or terrigenous sandy clay) giving over 400 sediment types. In this mono-
graph, sediment size distribution is classified using the Shepard ternary dia-
gram (Fig. 4.6), Wentworth size classification (Table 4.1), and Folk and Ward
(Table 4.3) graphical grain size statistics and descriptors.

Reported statistical values of sediment grain size distribution should be
used with careful consideration of their limitations. First of all, sediments
exhibit considerable variability on spatial scales of centimeters to meters to
kilometers and over temporal scales of hours to years. Because of this variabil-
ity, a few small sediment samples may not represent the larger footprint of the
acoustic system of interest. Second, most sediment analyses assume sediment
particles are spherical; they are not. Sieving techniques measure the smallest
cross-sectional area of particles, and plate-shaped clay minerals rarely settle
according to Stokes’ law for equivalent spheres. Particle density and shape
affect calculated size distributions for both sieve and settling techniques, and
particle interactions during settling may also affect the calculated size dis-
tributions [Matthews 1991b]. Furthermore, size characterization of particles
in the clay size range is controlled by the effectiveness of the disaggregation
procedure and the concentration of the dispersant. Often, when the clay par-
ticles are completely dispersed, the characterization does not reflect the in
situ particle size distribution. Different techniques cover different size classes,
usually requiring more than one technique to characterize the entire particle
size distribution of many types of marine sediment. Accuracy or precision
of grain size analyses are rarely reported, and different techniques often give
very different results [Syvitski 1991]. Statistical analyses of particles with no
lower size cutoff can present analytical problems. Two different sediments
with the same mean grain size can be physically diverse and acoustically
behave quite differently when one is a mixture of sand and mud (Fig. 4.4)
and the other is mostly silt (Fig. 4.5). For example, the clayey sand from the
Arafura Sea (mean grain size 6.46 φ) has a porosity of 82% and sound speed
of 1512 m s−1, whereas the clayey silt sediment from the Eel River (mean
grain size 6.95 φ) has a porosity of 56% and sound speed of 1565 m s−1.

4.2 Sand Grain Morphology

Grain morphology, as well as the grain size distribution described above, is an
important factor controlling packing, porometric properties associated with
fluid flow [Berryman and Blair 1986], electrical resistivity [P. Jackson et al.
1978], consolidation under loading, low-strain geoacoustic behavior described
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by contact mechanics [Buckingham 2000], and perhaps acoustic scattering
when wavelengths are comparable to grain size [Boyle and Chotiros 1995b,
Greenlaw et al. 2004]. However, grain morphology is rarely taken into account
in high-frequency acoustic applications. Numerous methods have been devel-
oped to characterize natural grain morphologies. These methods range in
complexity from visual evaluations summarized by [Folk 1980] to computer-
enabled and mathematically complex methods, such as Fourier transforms
[Ehrlich and Weinberg 1970], fractal analyses [Kaye 1978], two-point corre-
lation functions [Berryman and Blair 1986], and other less commonly used
approaches, such as mathematical morphology [Pirard 1994] and wavelet
transforms [Drolon et al. 2000]. These methods have been used to charac-
terize the morphology or surface of grains to provide information about po-
tential source locations [Ehrlich and Weinberg 1970], transport mechanisms
[Bagnold 1956, Drake 1990], settling rates [Le Roux 2002], and depositional
history [Hudson and Ehrlich 1980].

Naturally occurring sediment particles that are closest to idealized smooth-
surfaced, spherically shaped particles are carbonate ooids (formed by pre-
cipitation, see Sect. 3.2.3) and well-rounded beach sands. Most other sed-
iment particles deviate considerably from idealized spheres both in shape
and in surface roughness (Fig. 4.9). If all sediment particles were spherical,
a single parameter would fully characterize shape (e.g., radius, diameter,
circumference, or volume). A summary of much of the early work relat-
ing to shape and surface morphology of sediment particles has been given
by [Folk 1980]. Measures of particle morphology were divided into form,
sphericity, roundness, and surface features. Form is a measure of the re-
lationship of the three dimensions of an object and may qualitatively be
classed as compact (three axes having nearly equal lengths), elongated (rod-
like), or platy (disk-like). Sphericity is a measure of the equality of the
dimensions of a particle. Roundness is a comparison of the curvature of
a particle surface to the curvature of the largest inscribed sphere or cir-
cle within that particle. Particle surface characterization includes subjec-
tive visual observations and employs terms such as frosted, polished, or dull.
Subjective determination of particle form, sphericity, and roundness is of-
ten made by visual comparison to standard charts [Griffiths 1967]. Devel-
opment in computer technology has paved the way for more efficient and
exacting methods to analyze particle morphology. Fourier analysis tech-
niques [Ehrlich and Weinberg 1970] have been used to characterize grain
morphology (i.e., surface characteristics and markings) and to determine
source locations, method of transport, and depositional history for spe-
cific sediment deposits [Hudson and Ehrlich 1980, Ehrlich and Chin 1980].
Fractal dimensionality has been used to differentiate grains from different
sources or provinces [Orford and Whalley 1983]. Grain morphology charac-
terization in terms of two-point correlation functions has been used to de-
termine specific surface area of grains or exterior boundaries of the pore
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Fig. 4.9. SEM micrographs of quartz and carbonate grains. Top left: glass beads.
Top right: Ottawa sand. Bottom left: sand grains collected during SAX99 off Fort
Walton Beach Florida. Bottom right: carbonate skeletal remains from the Dry Tor-
tugas. A micron scale bar can be found in each image. Courtesy of R. I. Ray.

walls using high-magnification scanning electron microscope (SEM) images
[Krinsley and Takahashi 1962, Berryman and Blair 1986, Blair et al. 1996].

Sediment morphology reflects the mineralogy of sediment particles as well
as weathering, transport history, and depositional processes associated with
terrigenous and biogenic sediments. Mineral hardness affects the rate at which
particles become rounded during transport (carbonate shell material abrades
and rounds more easily than quartz); particles in high-energy environments,
such as beach and bar regimes, tend to be more rounded and spherical. Grain
morphology and roughness (roundness) have long been known to affect grain
packing, relative density (4.11) and to control porosity, bulk density, and
permeability in sediment [Fraser 1935]. It has been shown that particle an-
gularity influences the relationship between porosity and formation factor
[P. Jackson et al. 1978] (see Sect. 4.4.1 of this monograph). Grain morphol-
ogy also influences the number and area of grain contacts in sands. In spite
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of these obvious relationships between grain morphology and sediment phys-
ical properties, no high-frequency acoustic study has directly utilized grain
shape or morphology to determine wave propagation properties. Conceptu-
ally, measures of grain roughness are part of the theory of wave propagation
proposed by [Buckingham 2000], but shearing which he predicts will occur at
grain contacts during the passage of a wave may be quite difficult to measure
or predict based on the number of grain contacts and grain microroughness.
However, it is safe to assert that grain shape and morphology affect wave
propagation through sediment by their influence on porosity, density, perme-
ability, and the number and types of grain contacts and should be an area of
active research.

4.3 Phase Relationships: Porosity, Void Ratio, Water
Content, and Bulk Density

Sediments are composed primarily of solid minerals, pore fluid, free gas, and
organic matter, although most marine sediments are totally saturated (con-
taining no gaseous phase) and are often treated as two-phase media (solid
particles and pore fluid). Porosity, water content, void ratio, and bulk den-
sity are measures of the relationship between the mass and/or volume of
sediment particles and pore water in fully saturated sediments.

Several approaches have been devised to directly or indirectly measure
these properties in fully saturated sediments. The two most direct laboratory
methods are to measure the total weight, W , of a measured volume, V , of
sediment or to measure the weight loss, or water weight, Ww = W − Ws,
of a known weight, W , of sediment dried for 24 hours at 105–110◦C where
Ws is the weight of the dried solid fraction. For acoustic applications, it
is appropriate to correct the water weight, Ww, for pore water salt content
[Hamilton 1971b]. The volume-mass method provides the sediment saturated
bulk density, ρ, and the weight-loss technique (thermogravimetric) provides
the water content, w, from which the fractional porosity, β, or void ratio,
e, can be calculated, assuming the density of the solid particles, ρs, and
pore fluid, ρw, are known. The density of pore water is often calculated from
the temperature, salinity, and pressure (see Appendix B). The average par-
ticle density can be measured on dried samples with a pycnometer (NRL
uses a Quantachrome Ultrapycnometer) or derived from handbook values
for pure crystalline forms of minerals (Table 4.7). It has been shown by
[Lee and Chough 1987] that the volume-weight method can underestimate
bulk density by as much as 2–6% compared to the weight-loss method, pri-
marily due to the inclusion of air in the measurement tube.

The various measures of porous, water-saturated sediment are defined as
follows: bulk density is the total mass, M =W/g, of sediment divided by the
total sediment volume,
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ρ =
M

V
, (4.6)

water content is the weight of water divided by weight of solids,

w =
Ww

Ws
, (4.7)

fractional porosity is the ratio of pore water volume, Vw, to total volume,

β =
Vw
V

, (4.8)

and void ratio is the ratio of pore water volume to solid particle volume, Vs,

e =
Vw
Vs

=
β

1− β
. (4.9)

Porosity is also commonly reported as a percentage (η = 100β). Table 4.5
provides useful relationships between porosity, water content, void ratio, and
bulk density. For example, if the porosity is measured and the densities of
solid particles and pore water are known, bulk density can be calculated.

Table 4.5. Relationships among sediment fractional porosity, β, water content, w,
void ratio, e, and bulk density, ρ, for saturated marine sediments.

Porosity, β Water Content, w Void Ratio, e Bulk Density, ρ
β — w/(ρw/ρg + w) e/(e+ 1) (ρg − ρ)/(ρg − ρw)

w (ρw/ρg)β/(1− β) — e(ρw/ρg) (1− ρ/ρg)/((ρ/ρw)− 1)

e β/(1− β) ρgw/ρw — (ρg − ρ)/(ρ− ρw)

ρ ρwβ + ρg(1− β) ρw(1 + w)/(w + ρw/ρg) e(ρw − ρg)/(e+ 1) —
+ρg

Most wet-weight, dry-weight measurements of water content are not
corrected for the residue dry salts (see, e.g., [Bennett and Lambert 1971,
Richards et al. 1974]). Methods to correct the calculated seawater and mea-
sured sediment weights to account for the residue of dried salts that is in-
cluded with the dried sediment grains have been provided by [Hamilton 1971b].
These corrections are made prior to calculations of void ratio, porosity, water
content, or bulk density. Hamilton also suggests that uncorrected values of
porosity can be multiplied by 1.012 to derive approximate values of salt-free
porosity. This approximation is only valid for high-porosity sediments when
the salinity is near 35 ppt. More accurate calculations of true porosity, β, can
be obtained from

β = β0 + 0.036
(
Sp

35

)
− 0.0224

(
Sp

35

)
β0 , (4.10)
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where Sp is the pore water salinity in parts per thousand, and β0 is the uncor-
rected fractional porosity. All values of porosity reported in this monograph
have been corrected for salt content.

The bulk density of granular sediment (sands) can also be characterized
in terms of relative density, Dr, defined as

Dr = 100
emax − e

emax − emin
, (4.11)

where emax is the maximum value of void ratio, measured in laboratory
testing with minimum packing, and emin is the void ratio measured at max-
imum packing. The measured void ratio before laboratory testing is denoted
e (4.9). Bulk density of sandy sediments studied during SAX99 averaged
2074 kg m−3 based on laboratory testing [Richardson et al. 2001a], which
amounts to a relative density of 75%. Relative density in most sandy envi-
ronments is high (Dr = 65–85%) due to dense packing in response to hydro-
dynamic forces (waves and currents) on surficial sediments. However, during
prolonged periods of calm (lack of storm events), bioturbation may lead to
a moderately packed state with a corresponding decrease in relative density.
The state of relative density in sandy sediments has been shown to have a
profound effect on sediment bearing capacity and liquefaction by the geotech-
nical community [Youd et al. 2001]. Sandy sediments with low values of rel-
ative density have much lower values of bearing strength relative to similar
sediments with higher values of relative density and are more prone to liq-
uefy under stresses associated with earthquakes or pressure fluctuations from
surface gravity waves (i.e., high sea states). Shear wave speeds (Ch. 5) are
often used to predict liquefaction potential with lower sound speeds associ-
ated with lower values of relative density [Robertson et al. 1995]. The effects
of relative density on wave propagation have not received the attention they
deserve. However, it should be expected that sound speed will increase and
attenuation decrease with increasing values of relative density.

If free gas in the form of air, methane, or oxygen bubbles is present in
sediment, the degree of saturation, S, can be calculated as the percentage of
the pore volume, Vv, filled with water, with the water volume denoted Vw:

S = 100
Vw
Vv

. (4.12)

For fully saturated sediments the degree of saturation is 100%.
Methane gas bubbles are common in organic-rich muddy, coastal sedi-

ments [Fleischer et al. 2001] and rarely exceed 1% of the pore volume but,
on rare occasions, have been reported as constituting as high as 4–5% of
the pore volume [Martens et al. 1998]. Air can be entrained in shallow-water
sandy sediments by breaking waves, and the degree of saturation can descend
to less than 75% in the swash zone where waves roll up on the beach but
rarely falls below 95% in subtidal sediments. Algae mats generate oxygen as
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a metabolic by-product, and oxygen bubbles have been observed trapped in
the upper few millimeters of sediment [Nilsson et al. 1991]. A more detailed
discussion of free gas in sediments is presented in Sect. 3.3. Calculation of
the degree of saturation makes little sense in the case where oxygen bubbles
are present only at the sediment surface. The effects of gas in sediments on
acoustic scattering are discussed in Sect. 14.1.7.

Determination of sediment density, porosity, void ratio, or water content
from sediments collected with cores is subject to errors associated with sed-
iment disturbance during collection, transport, and storage of samples and
from loss of pore water during the volume-weight or weight-loss measure-
ment techniques. Fine-grained, muddy sediments may be compacted during
collection, transport, and subsequent storage, reducing porosity and increas-
ing density. The relative density of sandy sediments can be either increased
(tighter packing) or decreased (looser packing) during core collection and
transport. Some water loss is inevitable during laboratory manipulations.
Granular sediments (sands and gravels) collected with gravity or piston cor-
ers are disturbed to the extent that determination of sediment porosity or
density is not recommended. However, careful collection of these granular
sediments by divers or with large (0.25 m2) box corers may ameliorate most,
but not all, of these effects. The bow-wave effect of gravity or piston corers
may also blow away high-porosity near-surface sediments creating additional
problems in fine-grained sediments. Again, careful collection of sediments by
divers or using large box corers can preserve the sediment–water interface
and is the preferred method of sediment collection for high-frequency acous-
tic applications where properties of the upper few centimeters are important.
Recently, sediments collected with diver cores were evaluated to determine
the degree of alteration of sediments due to transport, storage, and laboratory
manipulations [Briggs and Richardson, unpublished]. The volume of sediment
was measured immediately after collection (the sediment–water interface was
marked on the outside of the sediment cores) and compared to the sediment
volume just before laboratory measurement (days to months after collection).
In most cases, the sediment volume changed less than 1% during transport
and storage for both muddy and sandy sediments, suggesting changes in
porosity or bulk density of less than 1% for carefully handled sand and mud
sediments. A comparison of values of porosity measured on sectioned cores
and entire (unsectioned) cores showed differences of less than 0.003 (0.3%),
suggesting manipulations during weight-loss measurements were insignificant.

Weight-loss methods used to determine porosity of sediments comprised
primarily of clay minerals (most marine mud) present additional issues associ-
ated with the physical association of water with clay minerals. Water present
between clay multiplate particles or domains is driven off by heating at tem-
peratures below 70◦C, water intercalated between crystalline folia or plates is
driven off at 100◦C, and formation water bound to the crystals is driven off at
temperatures above 200◦C [Bourbié et al. 1987]. The amount of water driven
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off at different temperatures depends on mineralogy and domain structure,
which differs among the dominant clay minerals (kaolinite, smectite, illite)
found in marine sediments (see Sect. 3.2.1). Standard weight-loss methods
call for drying sediments at 105–110◦C for 24 to 48 hours which may drive
off interparticulate water as well as water between crystalline folia or plates.
It is not known what role, if any, the water between folia or plates plays
during acoustic propagation in sediments nor is there general agreement on
what types of water should be considered part of an individual clay particle.
Future weight-loss determinations of porosity should use an oven thermostat
setting no higher than 70◦C if the water between crystalline folia is consid-
ered to be part of the clay particle. The importance of vicinal water (water
in the immediate vicinity of the surfaces of sediment particles) on acous-
tic propagation in clay-rich fully saturated sediments is generally unknown.
However, vicinal water, with its higher viscosity and density, may affect fluid
flow (permeability), and the swelling of clays may affect the sediment bulk
modulus [Murad and Cushman 1997].

In order to avoid disturbance issues associated with destructive types of
laboratory sediment density and porosity measurements, less invasive tech-
niques have been developed including electrical resistivity, X-ray attenuation
or scattering, and X-ray tomography. Only electrical resistivity and gamma-
ray attenuation techniques have developed to the point where in situ measure-
ments can be routinely made, allowing quantitative characterization of the
undisturbed spatial distribution of sediment bulk density and porosity. The
use of these nondestructive techniques to measure the spatial heterogeneity
of sediment density associated with acoustic volume scattering is extensively
reviewed in Ch. 7. All other techniques require sediments be removed from
the seafloor, and issues associated with sediment disturbance during core col-
lection and transport still apply. Laboratory and in situ techniques used to
measure sediment bulk density from larger bulk samples including vertical
gradients will be emphasized in the following paragraphs. Electrical resis-
tivity measurement techniques will be discussed in Sect. 4.4.2, but attempts
to develop predictive relationships between electrical resistivity and sediment
porosity will be presented in this section. Several attempts have been made to
provide empirical relationships that predict porosity from values of electrical
resistivity in a variety of sediment types [Boyce 1968, Kermabon et al. 1969,
Taylor-Smith 1971, P. Jackson et al. 1978, Lovell 1985a, Lovell 1985b, Bennett
et al. 1990a, Gerland et al. 1993, Erickson and Jarrard 1998a]. The empirical
relations are based on the power-law relationship between “formation factor”
and porosity first suggested by [Archie 1942]. Formation factor, F , is the
ratio of sediment and pore water resistivities (4.20), or, inversely, the ratio
of pore water to sediment conductivity. The power-law relationship between
formation factor and fractional porosity developed in [Winsauer et al. 1952]
is displayed in (4.21), where a and m are constants based on best-fit polyno-
mial regressions specific to different sediment types. Sediment bulk density
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can be estimated from porosity if pore water and grain density are known
or estimated (1000 kg m−3 and 2650 kg m−3 provide adequate estimates of
water and grain densities).

Winsauer’s version of Archie’s law in the specific form F = 1.30β−1.45

was found by [Boyce 1968] to fit data collected by gravity cores from the
Bering Sea. A third-order polynomial was used by [Kermabon et al. 1969]
to describe the relationship between percent porosity and formation fac-
tor of unconsolidated muddy sediments from the Tyrrhenian Sea (η =
171.25− 105.4F + 40.04F 2 − 5.9F 3). The relationships F = β−1.5 for sands
and F = β−2.0 for clays have been suggested by [Taylor-Smith 1971]. Using
laboratory experiments, [P. Jackson et al. 1978] reported that values of the
Archie exponent, m, were primarily controlled by particle shape and varied
from 1.2 to 1.9 for spheres to platy shell, from 1.4 to 1.9 as the ratio of shell
hash in sand increased, and from 1.4 to 1.6 for natural sands (Fig. 4.10). In
all cases Jackson set a = 1.0 to satisfy conditions where the fractional poros-
ity and formation factor are both 1.0. Further discussion of measurements of
this type is given in Sect. 4.4.2.

Using the same techniques and equipment as [P. Jackson et al. 1978],
[Lovell 1985a] found either a third-order polynomial (β = 1.386 − 0.463F +
0.0833F 2 − 0.0073F 3) or power law (F = 1.29β−1.42) fit the results for
9 samples of deep-sea mud. Lovell also found a third-order polynomial
(β = 1.4154 − 0.4799F + 0.067F 2 − 0.0033F 3) fit the results for nine
samples of deep-sea mud. The fits F = 1.27β−1.11 for oolitic sand and
F = 1.48β−1.11 for muddy oolitic sand on the Grand Bahama Bank were
obtained by [Bennett et al. 1990a]. A formation factor–porosity relationship
of F = 2.56β−2.51 was reported by [Erickson and Jarrard 1998a] for muddy
sands collected from the Amazon Fan. When these data, restricted to the
ranges of porosity and formation factor from the original measurements, are
plotted together, it is obvious that values of formation factor decrease with
increasing porosity and increase with sediment bulk density and mean grain
size, in more or less the power-law form first suggested by [Archie 1942]. How-
ever, special care must be exercised not to use these regressions outside of
their original range of measurement, because unrealistic predictions do occur.

The use of a single power law or polynomial regression to describe the
formation factor–porosity relationship over the entire range of shallow-water
sediments is not recommended. Factors such as mineralogy, tortuosity, pore
connectivity, grain morphology, orientation, sorting, packing, and cementa-
tion all complicate the relationship. Differences in laboratory consolidation
and natural packing and differences in the statistical methods of represent-
ing this relationship also complicate the problem. Clean sands and muddy
sediments seem to have different power-law relationships, and the effects of
particle shape, percent fine-grained material, and sediment matrix cemen-
tation yield different values of the coefficients a and m. Electrical resistivity
measurements might best be used to measure and quantify small-scale spatial
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Fig. 4.10. Formation factor versus porosity for a range of artificially packed natu-
ral and artificial clean sands. Changes in porosity–formation factors cover packing
state from minimum to maximum density for each sediment sample. Adapted from
[P. Jackson et al. 1978].

heterogeneity of porosity and density in sediments (see Ch. 7) rather than
provide a universal measure of porosity and density.

Nondestructive measurement of sediment density using gamma-ray at-
tenuation or scattering has a long history dating back to the 1950s and
1960s. Transmission techniques have generally been preferred because they
can be used on smaller samples such as sediments collected with cores and
can characterize the fine-scale vertical gradients in sediment density that
are of interest to geologists [Preiss 1968a]. In situ methods to measure den-
sity by gamma-ray scattering [Keller 1965] and attenuation [Preiss 1968b]
were developed in the 1960s. One of the more widely used systems is the
Gamma Ray Attenuation Porosity Evaluator (GRAPE) which was routinely
used to measure sediment density as part of the Ocean Drilling Program
[Boyce 1973]. Density resolution of the GRAPE is reported to vary from
0.015 g cm−3 to as much as 0.04 g cm−3 for typical deep-sea sediments
[Herbert and Mayer 1991]. Gamma-ray attenuation is one of the three sed-
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iment measurements made by core logger systems [Weaver and Schultheiss
1990]. Other logger measurements include sediment compressional wave speed
and magnetic susceptibility. Core logger systems provide a nearly continu-
ous, nondestructive, automated, rapid measurement of sediment properties
without opening cores. The gamma-ray source is Cs-137 and gamma-ray in-
tensity is measured with a scintillation counter. Gamma rays are attenuated
by Compton scattering with the attenuation factor proportional to density
[Best and Gunn 1999]. One of the major difficulties of using this methodology
is obtaining accurate calibration of the system.

The use of X-radiography to image sediment structure within a labo-
ratory setting has a long history in geology, geotechnical engineering, and
soil science [Bouma 1964, Howard 1968, Holyer et al. 1996]. However, most
traditional X-radiographic studies of sediments tend to be qualitative in
nature and do not provide accurate estimates of sediment bulk density.
Problems of interpretation of photographic film occur because of the loss
of image detail when three-dimensional structures (sediments in cores or
slabs) are projected onto two-dimensional photographic film, because of
the non-uniformity of typical X-ray films, and the effects of out-of-plane
scattering [Lyons and Pouliquen 2004]. Some, but not all, of these prob-
lems can be overcome with newer digital X-ray imaging systems which of-
fer expanded contrast or resolution of gray scales, uniform quality, and are
amenable to modern digital image processing algorithms [Migeon et al. 1999,
Lofi and Weber 2001]. The problems associated with both analog and digital
X-radiographic density characterization hve led several investigators to use
3D reconstructions associated with medical or high-resolution CT-scanning
[Orsi et al. 1994, Orsi et al. 1996, Orsi and Anderson 1999, Reed et al. 2002,
Muzi et al. 2004, Lyons and Pouliquen 2004]. Recent reviews of the use of
medical and high-resolution CT scanning to estimate sediment bulk den-
sity or porosity in sediments [Lyons and Pouliquen 2004] and in sedimentary
rocks [Van Geet et al. 2001] exist and will not be repeated here. The main
problems in measuring sediment density with CT scanning are associated
with eliminating artifacts, such as beam hardening, and with calibration of
the so-called CT numbers to actual values of density. CT number or the at-
tenuation (absorption) coefficient is a function of both sediment density and
atomic number. Thus separate calibration regressions are needed for different
sediments (Fig. 4.11) and for different types of CT scanners (monochromatic
versus polychromatic). CT scanning is especially useful for characterizing
density heterogeneity which is covered in Ch. 7.

4.4 Sediment Conductance

Water, heat, electrical current, and soluble material flow through sediments
are governed by Darcy’s law, Fourier’s law, Ohm’s law, and Fick’s law, re-
spectively, all of which have the same general form. Hydraulic, thermal, and
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Fig. 4.11. Regressions between CT number and bulk density for siliciclastic
sediments (squares) and carbonate sediments (circles) based on a comparison
of colocated laboratory measurement of bulk density and average CT numbers
[Orsi and Anderson 1999]. The average percent difference between measured and
bulk density predicted from these regressions is 2.7%.

electrical flow rates are a product of, respectively, the hydraulic, thermal, and
electrical conductivities and the hydraulic, thermal, and electrical gradients.
All these flow phenomena are in some way correlated to sediment fabric, the
grain-to-grain arrangements and pore characteristics of sediments that are
described in Sect. 3.2.

4.4.1 Permeability

The hydraulic flow rate through a porous medium is equal to the product of
the hydraulic conductivity and the negative of the gradient of the pressure
as expressed in Darcy’s law:

V = − K

gρf
∇P , (4.13)

where g is the acceleration of gravity, ρf is the fluid density, and P is the
pressure. The hydraulic flow rate, V, in volume/unit area/unit time is the
flow velocity averaged over the region of flow. The hydraulic conductivity,
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K, is also known as Darcy’s coefficient of permeability, and has dimensions
of length/time. The flow rate will depend on the viscosity of the fluid, so K
will depend on the fluid type. This dependence is removed by defining the
intrinsic coefficient of permeability, κ, such that

K = κ
gρf
μ

. (4.14)

Here, μ is the dynamic (or absolute) viscosity, denoted η in Ch. 10. The dy-
namic viscosity has units kg m−1 s−1, and the coefficient of permeability has
dimensions (length)2. The flow rate can be written in terms of the dynamic
viscosity as

V = −κ

μ
∇P . (4.15)

The hydraulic conductivity has a greater range (10 orders of magnitude)
and exhibits larger spatial variability than any sediment physical property
discussed in this chapter. It also exhibits a scale dependence that is not often
appreciated [Richardson et al. 2002b]. The largest values of permeability oc-
cur in highly porous coarse gravel and sand, and the smallest values are found
in practically impermeable clays (Table 4.6). Sediment hydraulic conductiv-
ity or permeability can be measured on sediment samples in the laboratory
using falling- or constant-head methods, measured in situ with probes us-
ing flow rate or pressure drop methods, calculated from mean grain size or
from descriptions of sediment fabric, or predicted empirically from other sed-
iment properties. In clays, permeability has been determined indirectly from
consolidation or triaxial laboratory tests. Generally, values of permeability
derived from consolidation testing are one to two orders of magnitude less
than values measured directly (see Sect. 4.4.4). The dissipation of excess
pore pressure developed from rapid insertion of penetrometers into the sedi-
ment has also been used to measure in situ permeability in low-permeability
clays [Robertson et al. 1992, Bennett et al. 1996]. However, the dissipation
of excess pore pressure in sand is too rapid to use this method except when
mud content reduces permeability. Permeability has also been predicted from
sound speed [Taylor-Smith 1971, Fang et al. 1993] and electrical resistivity
[Lovell 1985a].

During SAX99, four different methods were used to estimate sediment
hydraulic conductivity of a medium sand [Richardson et al. 2001a], including
a laboratory constant-head flow method (1.8 to 5.1 × 10−2 cm s−1), an in
situ constant-head flow pump (0.3 to 5.4 × 10−2 cm s−1), an in situ falling-
head permeameter (0.99 to 1.23 × 10−3 cm s−1), and effective medium theory
calculations from sediment microstructure images (3.5 ×10−3 ± 2.3 × 10−3

cm s−1). This example illustrates the variability as well as the difficulties
and uncertainties associated with permeability measurement. Permeability
strongly depends on sediment fabric, therefore any disturbance associated
with (1) emplacement of in situ probes, (2) high flow rates, or (3) collection,
transport, or manipulation of cored sediments can alter the permeability.
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Table 4.6. Range of values for sediment intrinsic permeability and porosity.

Sediment Type Grain Size, d (mm) Permeability, κ (m2) Porosity, β
Clayey < 0.002 10−18 − 10−15 0.5 - 0.9
Silty 0.002 - 0.05 10−16 − 10−12 0.35 - 0.5
Sandy 0.05 - 2 10−14 − 10−10 0.35 - 0.5
Gravelly > 2 10−10 − 10−7 0.25 - 0.4

The intrinsic coefficient of permeability, κ, is dependent on particle size
and shape, porosity or void ratio, mineralogy, and pore topology (size and
length of pore throats, size of pore bodies, coordination number, and tortu-
osity). This is often expressed in the form of the Kozeny–Carman equation
[Carman 1956],

κ =
e3

k0T 2S2
0(1 + e)

, (4.16)

where T is the hydraulic tortuosity factor, k0 is a pore shape factor, S0 is
the specific surface area (having dimensions area/volume = length−1) of a
sediment particle, and e is the void ratio [Mitchell 1993, Eq. 12.32]. The
hydraulic conductivity has also been expressed as

K =
gCD2

sρfe
3

μ(1 + e)
, (4.17)

where Ds is some characteristic grain diameter and C is a shape factor re-
lated to sediment fabric [Mitchell 1993, Eq.12.33]. These relationships apply
to fully saturated, well-sorted sand- and silt-sized assemblages of grains (cohe-
sionless sediments) but may not be appropriate with an appreciable fraction
of clay-sized particles. Numerous experimental observations (as reviewed in
[Mitchell 1993]) indicate that hydraulic conductivity and intrinsic permeabil-
ity vary directly with e3/(1+ e) and some measures of characteristic grain or
pore size supporting the functional relationships in (4.16) and (4.17). Rela-
tionships of this type have proven useful in predicting permeability based on
grain size distribution and packing.

Carbonates exhibit special problems with respect to relationships between
sediment fabric, porosity or void ratio, grain size, and permeability. Carbon-
ate sediments often contain a significant percentage of intraparticulate poros-
ity due to naturally occurring vugs (closed pores), thus not all void space that
contributes to porosity contributes to permeability [Bennett et al. 1990a] or
to acoustic propagation (Fig. 4.12). Carbonates that are matrix-supported
(larger grains embedded in smaller-grained matrix) can have a much lower
permeability (3–4 orders of magnitude) than grain-supported carbonates
(smaller particles within sand-size pore space) yet both having nearly the
same porosity or void ratio [Bennett et al. 1989].

Clay microfabric rarely exhibits a uniform distribution of pore sizes but
instead consists of chains, aggregates, agglomerates, or fecal pellets with large
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Fig. 4.12. TEM micrographs of fragments of Halimeda plates (calcareous algae)
collected from the Dry Tortugas [Richardson et al. 1997]. Left: entire fragment
showing both inter- and intraparticulate porosity; right: high magnification reveals
the porous nature of aragonite needles that made up the fragments of Halimeda
plates. The silt-sized plates contained approximately 30% intraparticulate porosity
and contributed 10–15% of the total porosity measured by weight-loss methods.
From [Richardson and Briggs 1996].

variations in pore body sizes and pore throat lengths and diameters. Sedi-
ments usually contain a mixture of sand-, silt-, and clay-sized particles. A
small volume of fines can effectively clog the pores of an otherwise coarse
material with an open pore network (grain-supported sediment) greatly re-
ducing the permeability. This is especially true for carbonate sediments which
are often very poorly sorted. The presence of coarser grains in an otherwise
clayey sediment (matrix supported) has little effect on permeability.

It has been suggested by [Mitchell 1993] that there are three scales of clay
fabric that have much different effects on permeability: microfabric, which
consists of particle aggregations through which little flow will occur; minifab-
ric, which includes larger aggregates and fecal pellets with much greater rates
of flow; and macrofabric, which includes cracks, fissures, tubes and burrows
for which the flow rate is so great as to obscure the other rates of flow. This
behavior has been observed in a fine-grained sediment for which permeability
measured in a bioturbated sample was much higher that than predicted from
grain size, mostly because of the large number of open tubes and burrows
(Fig. 4.13) which conducted water. However, these high values of permeabil-
ity were not consistent with values of sound speed and attenuation measured
on the same sediments [Richardson et al. 2002b]. A much lower permeabil-
ity that is characteristic of the sediment matrix is more consistent with the
measured sound speeds.

It can be concluded that permeability in clays and some muds is very
scale-dependent, therefore difficult to measure. The scale-dependent require-
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Fig. 4.13. X-radiograph positive image of slab subcore from a box core collected
at site S60 off the northern California coast [Richardson et al. 2002b]. Permeability
measured on sediment cores also collected from this site were much higher than
predicted from mean grain size based on the Kozeny–Carman equation. Thirteen
vertical burrow conduits (some are connected, continuous burrows) are evident in
this image. Burrows are lighter vertically oriented features. Remnants of buried
ripples are evident at 8 to 14-cm sediment depth.

ments for permeability may be much different for predicting sediment acous-
tic propagation than for predicting wave-driven ventilation flows in sands or
consolidation behavior in mud. Thus, care should be exercised when using
large-scale permeability measurements in propagation theory. Permeability
is less scale-dependent in well sorted, cohesionless sediments (gravel-, sand-,
and silt-sized sediment) and best measured using in situ techniques; perme-
ability in both cohesionless and cohesive sediments appears to be predictable
from sediment micro- and macrofabric characteristics.

4.4.2 Electrical Resistivity

The electrical flow rate through a conducting medium is governed by the
point form of Ohm’s law,

J = − 1
ρe
∇V , (4.18)
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where J is current density in amperes m−2, ρe is the electrical resistivity in
ohm m, and V is the electric potential in volts. Most of the electrical resis-
tivity techniques now in use to characterize surficial sediments were devel-
oped as part of the well-logging techniques used for geophysical prospecting,
where electrical resistivity is used to characterize the porosity, hydrocarbon
and water saturation, and permeability of hydrocarbon reservoirs. Electri-
cal resistivity is routinely measured on cores collected as part of the Ocean
Drilling Program [P. Jackson et al. 1993]. Two common in situ approaches
for measuring sediment electrical resistivity in near-surface sediments involve
penetrating the sediment with an electrode array [Wheatcroft 2002] or using
a planar array to inject a focused current into the sediment from the sediment
surface [P. Jackson 1975, P. Jackson et al. 1978, P. Jackson et al. 1981, Davis
et al. 1989, Davis et al. 1996, P. Jackson et al. 1996, Evans 2001, Richardson
et al. 2001a]. Both types of arrays have also been used for the laboratory
measurement of electrical resistivity on both natural sediments (collected
with coring devices) and artificially created sediments, where consolidation
or packing provided a range of values of electrical resistivity and porosity for
samples with the same grain morphology. A single-electrode arrangement has
been used by [Tang et al. 2002] to measure fine-scale variabilty of porosity
(Ch. 7).

Many of the probe systems use an array of four equally spaced electrodes
(Wenner array), where the outer pair of electrodes is used for current injection
and the inner pair is used to measure potential. An alternating current (100
Hz) is used to avoid electrode polarization or electrolysis from prolonged use.
The resistivity as determined by the Wenner array is

ρe = 2πa
ΔV

I
, (4.19)

where a is the distance between equally spaced electrodes, I is the current
passed between the outer two electrodes, and the potential difference (ΔV ) is
measured across the inner electrodes [P. Jackson 1975]. Electrical resistivity
is often expressed in terms of the formation factor, F , which is the ratio of
values of sediment resistivity, ρes, to pore fluid resistivity, ρew,

F =
ρes
ρew

. (4.20)

In this type of analysis, it is assumed that values of electrical resistivity
of the overlying water and pore water are identical [P. Jackson 1975]. Elec-
trical resistivity of sediments is primarily controlled by the resistivity of the
pore water, the porosity, and the pore morphology. Pore water resistivity is
a function of temperature, salinity, and pressure and can be calculated from
algorithms of [Fofonoff and Millard 1983] or from tabular values given in Ap-
pendix B when pore water or the overlying water resistivity is not measured.
However, the use of formation factors provides sediment characterization that
is independent of pore water resistivity and array configurations.
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The relationship between sediment fractional porosity, β, and forma-
tion factor was described by [Archie 1942] as a power law, where the ex-
ponent, m, is a function of grain shape and resultant pore morphology.
The following more general form has been used by [Winsauer et al. 1952,
P. Jackson et al. 1978]:

F = aβ−m , (4.21)

in which the constant factor a is added to Archie’s power-law relationship.
This form cannot be used in the limit as porosity approaches unity, where
the formation factor must also approach unity.

The values of the exponent m are obtained from packing or consolida-
tion experiments for individual sediment samples, where electrical resistivity
increases and porosity decreases with increased packing or consolidation. Us-
ing laboratory experiments, [P. Jackson et al. 1978] found that values of the
exponent, m, were primarily controlled by particle shape (see Fig. 4.10). In
all cases he set a = 1.0 to satisfy conditions where the fractional poros-
ity and formation factor are both 1.0. Values as high as m = 2 have been
calculated for high-porosity mud in Eckernförde Bay by P.D. Jackson (in
[Briggs et al. 1998]) and m = 1.9 to 2.6 for the carbonate sediments of the
Dry Tortugas [P. Jackson et al. 2002], in each case assuming a = 1.0. The
values F = β−1.5 for sands and F = β−2.0 for clays have been suggested by
[Taylor-Smith 1971], very similar to Jackson’s laboratory results for a variety
of sediment types and shapes (Fig. 4.14).

4.4.3 Thermal Conductivity

The thermal conductivity of sediments has an indirect effect on high-frequency
acoustics, as sediment temperature gradients cause corresponding gradients
in geoacoustic properties. The point form of Fourier’s law for heat flow is

Q = −kb∇T , (4.22)

where Q is heat flux in W m−2, kb is the thermal conductivity in W m−1

K−1, and T is the temperature in ◦C.
Most measurements of thermal conductivity in marine sediments have

been made in conjunction with heat flow investigations where both the
thermal conductivity and thermal gradient are needed to model heat flow
[Von Herzen and Maxwell 1959, Ratcliffe 1960, Sclater et al. 1969]. Labora-
tory measurements have been made using transient needle probe techniques
in which the temperature increase of a needle inserted into sediment is mea-
sured while being heated at a constant rate [Von Herzen and Maxwell 1959].
The transient needle method compares well (within 3–4%) with the more
direct and time-consuming, steady-state hot-plate method, where the tem-
perature difference across a sediment specimen (usually a sediment core) is
measured during the application of a steady-state heat flow [Ratcliffe 1960].
The transient needle probe techniques have also been used in situ to measure
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Fig. 4.14. A summary of laboratory packing experiments by
[P. Jackson et al. 1978] giving formation factor versus porosity. The solid
line is the mean for all measurements, and the dashed lines represent an envelope
containing most of the experimental data. Also included are the formation factor
versus porosity relationships for mud (F = η−2.0) and sand (F = η−1.5) proposed
by [Taylor-Smith 1971]. Figure adapted from [P. Jackson et al. 1978].
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thermal conductivity in clay-rich deep-sea sediments [Sclater et al. 1969]. The
decay of temperature elevations due to the friction associated with probe in-
sertion has also been used to measure thermal conductivity in sediments with
low conductivity [Lee and Von Herzen 1994]. Typical values of thermal con-
ductivity of deep-sea sediments range between 1.6 to 2.8 x 10−3 cal cm−1

s−1 ◦C−1 (0.67 to 1.17 W m−1 ◦C−1). A clear relationship between thermal
conductivity and porosity has been demonstrated by numerous investigators
for deep-sea sediments [Ratcliffe 1960]. However, this relationship is compli-
cated by differences in conductivity of the solid phase in sediments of different
mineralogical composition (e.g., carbonate versus siliciclastic clays). Studies
of thermal conductivity in shallow-water or in sandy sediments have been
mostly neglected with the exception of [Lovell 1985a, Lovell 1985b], although
several studies of temperature gradients in intertidal sandy beaches and mud
flats have been published (e.g., [Piccolo et al. 1993]). Studies of intertidal
temperature gradients are complicated by rapid temperature fluctuations as-
sociated with diurnal solar heating and radiant cooling, tidal inundation, and
the three-phase nature (air, water, sediment grains) of intertidal sediments
and are not discussed in this monograph.

It has been demonstrated using laboratory experiments [Lovell 1985a,
Lovell 1985b] that sediment thermal conductivity increases with decreasing
porosity for both sand and mud. Lovell proposed a simple geometric model to
predict sediment thermal conductivity, kb, from sediment fractional porosity,
β, and thermal conductivities of the pore fluid, kf , and solids, ks,

kb = k(1−β)
s kβf . (4.23)

A least-squares fit of his measurements yielded ks = 8.58 W m−1◦C−1 and
kf = 0.64 W m−1◦C−1.

Sediment thermal diffusivity, α2, is a function of sediment thermal con-
ductivity, kb, specific heat at constant pressure, Sp, and bulk density, ρ,

α2 =
kb
Spρ

. (4.24)

This parameter can be used in the heat diffusion equation to determine tem-
perature as a function of position and time:

∂T

∂t
= α2∇2T . (4.25)

Temperature depth-time series measured in the upper 2 meters of the
sandy sediments during SAX99 [Richardson et al. 2001a] were compared with
solutions of the heat diffusion equation by [D. Jackson and Richardson 2002].
These authors obtained a sediment thermal diffusivity of 0.006 cm2 s−1,
smaller than the value 0.012 cm2 s−1 obtained using (4.23) and (4.24) and
a handbook value Spρg = 1.97×106 J m−3 ◦C−1 for the specific heat of
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quartz. These results raise the question as to whether advective processes
such as ventilation from wave-induced pressure fluctuations, mixing by bio-
turbation, or an upward migration as a result of a hydraulic head produced by
groundwater aquifers could alter temperature gradients. Mixing by ventila-
tion or bioturbation would decrease the temperature gradient—the opposite
of what is observed. Furthermore, there is no evidence for freshwater advec-
tion. The difference between measured and modeled temperature gradients
in their work thus remains unsolved pending additional study.

Seasonal variations in gradients of sediment temperature and sound speed
and their effects on acoustic scattering have been investigated [Rajan and
Frisk 1992, D. Jackson and Richardson 2002]. In temperate regions, bottom
water temperature fluctuations are nearly sinusoidal, often exceeding 20◦C,
corresponding to sound speed fluctuations of 50–70 m s−1. It is often as-
sumed that sediment temperature is nearly the same as the overlying bottom
water temperature, but a lag in heat transport due to the finite thermal
diffusivity of sediments can create fluctuating gradients in sediment temper-
ature and sound speed (Fig. 4.15). Such gradients can have a substantial
effect on sound propagation at low acoustic frequencies (50 and 200 Hz)
[Rajan and Frisk 1992], but the effects on scattering strength or reflection
diminish at higher frequencies [D. Jackson and Richardson 2002].
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Fig. 4.15. Synthetic temperature profiles obtained by solving the one-dimensional
heat diffusion equation with diffusivity 0.006 cm2 s−1 for sand sediment (SAX99)
from the northeastern Gulf of Mexico [D. Jackson and Richardson 2002]. The
curves are labeled by the time (in days) after 0000 GMT, 5 October 1999.
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4.4.4 Conductance Measured in Consolidation and Packing
Experiments

Several of the laboratory studies of fluid flow (permeability), electrical re-
sistivity, and heat flow cited in the previous sections were conducted with
clay sediments that were artificially consolidated or with sandy sediments for
which packing states were altered. Laboratory consolidation testing occurs
over short time scales (seconds to days) and at high applied stress compared
to the much longer times scales (decades to millennia) and low applied stress
of natural consolidation. It is not known if the micro- or macrostructure
of artificially consolidated sediments mimics that of naturally consolidated
sediment. As a result, conclusions about sediment conductance phenomena
(electrical resistivity, heat flow, permeability, and chemical flow) derived from
laboratory experiments may be questioned when applied to natural condi-
tions. For example, laboratory-consolidation-derived permeability values are
between one and two orders of magnitude less than those measured directly
[Lovell 1985a]. In addition, experiments over the full range of packing states
for sand may include conditions that do not occur in nature, especially at
the tenuous minimum-density/maximum-porosity state. Laboratory consoli-
dation and packing experiments also exclude the effects of biological processes
(Sect. 3.4.2) on sediment structure and conductance phenomena. This does
not mean that the resultant relationships between sediment physical proper-
ties and conductance are not applicable to nature, but that the results should
be viewed with a bit of skepticism.

4.5 Grain Properties

The density and bulk modulus of sediment grains are important parameters
controlling compressional wave speed in sediments. This is true for the sus-
pension theory proposed by [Wood 1964], the elastic theory of [Gassmann
1951], the viscoelastic theory used by [Hamilton 1971a], the poroelastic the-
ory preferred by [Stoll 1989], or the theory proposed by [Buckingham 1997,
Buckingham 1998, Buckingham 2000].

4.5.1 Density of Sediment Particles

In general, the density of the sediment particles (or grains) contributes to the
overall bulk density of sediments. Particle density (also called grain density)
can be determined by weight-volume methods if the specimen is large enough,
but most constituents of sediments are much too small, consequently mean
density of sediment grains is often determined using a helium pycnometer.
Using this technique, average grain density is calculated from the dry weight
of the grains and the pressure difference of a known volume of helium in-
troduced into a sample chamber with and without the mineral sample. This
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method has an accuracy of about 1 kg m−3. Other techniques to measure
grain bulk density include X-ray crystallography, buoyancy in heavy liquids,
liquid displacement, and gas volumenometry [Johnson and Olhoeft 1984].
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Fig. 4.16. Sound speed (m s−1) as a function of grain density (kg m−3) for typical
sand of 37% porosity (top curve) and mud with 75% porosity (bottom curve) calcu-
lated using Wood’s equation (8.72). Grain and water bulk modulus are assumed to
be 36 GPa and 2.4 GPa, respectively, and water density is set at 1023 kg m−3. The
calculations represent the relative minimum sound speeds as the effects of frame
modulus, shear modulus, or any fluid–skeletal interactions were excluded. The re-
lationship nevertheless shows the relative decrease in sound speed with increasing
grain density (increasing bulk density) for both quartz sands and fine-grained sed-
iment dominated by clay minerals.

A compilation of densities of constituents commonly found in sediments
taken from handbooks and the peer-reviewed literature is presented in Table
4.7. Although there is a range of bulk densities, even within individual mineral
assemblages, most values of mineral or rock density are between 2500 and
2800 kg m−3. Based on sound speed calculations using the Wood equation
(8.72), this range of density translates into sound-speed differences in typical
sediments of up to 50 m s−1 (Fig. 4.16). The range in values of mineral density
reported in physical-properties handbooks often reflects differences in quality
or purity of the specimens analyzed, or the varying chemical compositions of
the mineral populations rather than differences in measurement techniques.
The density of quartz, the dominant mineral in most nearshore terrigenous
sands (35–50% of the terrigenous component), varies little from 2650 kg m−3.
Other constituents of sediments include metamorphic rock fragments (e.g.,
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Table 4.7. Typical values for density and bulk modulus of common constituents
found in coastal marine sediments. Numbers in parentheses are estimated percent-
ages of the terrigenous component (excluding biogenic or carbonate components)
found worldwide in coastal terrigenous sediments.

Particle Type Density Bulk Modulus
(g cm−3) (GPa)

Quartz (SiO2, 35-50%) 2.65 36-40

Feldspars (5-15%) 2.50-2.80 37.5
K-Feldspars (Orthoclase) 2.54-2.57
Na-Ca-Feldspars (Plagioclase) 2.62-2.76

Metamorphic Rock Fragments (5-15%)
Slate, Phyllite, Schist, Gneiss, Quartzite 2.50-3.00

Clay Minerals (25-35%)
Kaolinite 2.60-2.68 6-50
Smectite 2.35-2.70 6-50
Illite 2.60-3.00 6-50

Coarser hydrous phyllosilicates (0.1-0.4%)
Chlorite 2.60-3.30 86.9
Muscovite K2Al4(Si3AlO10)2(OH,F)4 2.70-3.10 40-60
Biotite (K2Mg4(Si3AlO10)2(OH,F)4 2.70-3.30 40-60

Heavy Minerals (0.1-1.0%) 50-230
Magnetite (Fe3O4) 5.18-5.20 180-217
Limonite (FeO - FeOH) 3.20 60
Pyrite (FeS2) 4.95-5.03 130-155
Hematite (Fe2O3) 5.25-5.28 200-230
Zircon (ZrSiO4) 4.68-4.70 200-210
Tourmaline 3.00-3.25
Rutile (TiO3) 4.18-4.25 210
Sphene (Ca Ti Si O5) 3.45-3.55
Ilmenite (FeTi O4) 4.70-4.78 210

Carbonates
Calcite (CaCO3) 2.71-2.72 64-75
Aragonite (CaCO3) 2.93-2.95 45
Dolomite (CaMg(CO3)2) 2.72-2.87 70-90
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slate, phyllite, schist, quartzite, and gneiss) which comprise 5–15% of the
terrigenous components of sediments, and feldspars derived from weathering
of igneous rocks which comprise roughly 5–15% of terrigenous components
of sediments. These low-porosity sand- or gravel-sized rock fragments have
values of density that reflect the density of the parent rock, 2730 kg m−3,
with igneous rocks having a slightly higher mean density than metamorphic
rocks [Johnson and Olhoeft 1984]. Carbonates derived from the breakdown
of skeletal material of a variety of plants and animals are only slightly denser
than quartz (2700–2950 kg m−3) and comprise nearly all the biogenic compo-
nents of nearshore sediments. Differences in density in the calcite group are
related to the crystalline structure, with minerals in the calcite and dolomite
groups having a hexagonal structure and the denser aragonite group an or-
thorhombic structure. Coarser (> 20 microns) mica-rich (muscovite and bi-
otite) or chlorite-rich particles, although abundant in source rock, are easily
broken down during transport and generally make up less than 0.5% of the
terrigenous fraction of sediments. Heavy minerals, as the name implies, all
have densities greater than quartz, carbonates, and clay minerals, but are
chemically or physically unstable under normal transport and sedimentary
conditions and thus typically comprise less than 1% of the terrigenous compo-
nent of coastal marine sediments [Louis and McConchie 1994]. Several heavy
minerals such as Ti and Fe oxides and hydroxides and other metallic minerals
that are common in sedimentary rocks are listed in Table 4.7.

Clay minerals are finely crystalline hydrous aluminum layer silicates (phyl-
losilicates) that have layered or sheet-like structure that is described in Sect.
3.2.1. Clay minerals are usually clay-sized (< 2 microns) but some silt-size
phyllosilicates exist in rocks and sediments. The density of clay minerals,
which make up 25 to 35% of the terrigenous component of sediments, ranges
from 2600 to 3000 kg m−3 (Table 4.7). However, issues associated with both
measurement techniques and the differences in the structure of these hydrated
clay minerals make application of these values to high-frequency acoustic
studies questionable. Measurement of the density of clay minerals, such as
those presented in Table 4.7, typically represent densities measured on larger
dried rock specimens or on sediment grains after the pore water between
clay clusters and between crystalline folia has been eliminated by drying
and only the formation water of the crystals remains (see Sect. 4.3). The
“effective density” of hydrated clay particles in saturated marine sediments
may, in many cases, be less than reported in rock physics handbooks or dry-
measured using a helium pycnometer, as some of the structural water may
have been driven off before density determination. This especially applies to
the smectite and vermiculite groups, because these groups have hydrous ex-
changeable cations and water within the interlayers which are very sensitive
to changes in temperature or the ionic composition of the pore fluid. The illite
and kaolinite groups, on the other hand, have an organized octahedral sheet
or fixed potassium layer, respectively, within interlayers and are therefore
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much less susceptible to changes in the ionic composition of the pore fluid,
or structural changes during drying, even at high temperature. Many clay-
sized particles in sediments are mixed-layer clays including both expandable
water-bearing and contracted non-water-bearing layers; smectite–illite is the
most common example [Mitchell 1993]. Swelling in the presence of seawater
can change the “effective density” of clay particles in marine sediments. The
amount of swelling varies between different clays depending on crystalline
structure which affects the types and amount of bound water, the cation
exchange capacity, and the specific surface area [Mitchell 1993].

In the NRL data set, comprised of over 1500 dried samples of siliciclas-
tic and carbonate sediments, including clay-sized to sand-sized particles, the
bulk density of the solid fraction of coastal sediments ranges between 2350
and 2800 kg m−3. The lowest values of grain density are found in organic-rich
mud and the highest values in carbonates, reflecting the trends presented in
Table 4.7. Predominately quartz sand sediments have values of particle den-
sity very near 2650 kg m−3, whereas values of average particle density in
carbonate sediments are slightly higher, 2700–2800 kg m−3. Clay minerals
have the greatest range in values of density because of differences in chemical
composition and the effects of temperature and pore water ionic composi-
tion on their structure. The measured density values cited above and the
representative values given in Table 4.7 provide bounds for acoustic model-
ing but, given the natural variability, may not be a substitute for laboratory
determination of sediment grain density using a helium pycnometer.

4.5.2 Bulk Modulus of Sediment Particles

Sediment-grain dynamic bulk modulus for a representative sediment sam-
ple is often calculated from bulk moduli corresponding to the crystalline
minerals that make up sediment grains of that sample [Hamilton 1971a,
Christensen 1996, Wang et al. 2001], by using either the Voigt–Reuss–Hill,
weighted Hashin–Shtrikman, or Kroner approximation averaging methods
[Hashin and Shtrikman 1962, Hill 1963, Kroner 1967]. Laboratory measure-
ments of the bulk modulus of small rock specimens or polycrystalline ag-
gregates are often based on static compression or dynamic (resonance bar
or ultrasonic) acoustic techniques or, more recently, by X-ray diffraction,
Brillouin scattering, and optical techniques. The values tabulated for the
common minerals that make up lithospheric rock [Simmons and Wang 1971,
Sumino and Anderson 1984, Mavko et al. 1998] are mostly based on mea-
surements of crack-free, gem quality crystals [Christensen 1996]. For the crys-
talline materials that make up most of the sediment particles in coastal re-
gions, such as quartz, calcite, aragonite, feldspars, silicates, etc., static and
dynamic methods yield about the same results at either 1 atmosphere or for
conditions of elevated pressure and temperature [Simmons and Brace 1965].

Using the Voigt–Reuss–Hill averaging method for determination of bulk
modulus in a mixture of mineral species [Hamilton 1971a] calculated the
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following values of aggregate bulk modulus for typical marine sediments:
nearshore fine sand, 51.2 GPa; clayey silt, 54.4 GPa; deep-sea silty clays, 50
GPa. Stoll, in a series of papers (1969 through 2002), consistently used 36
GPa, which is the average bulk modulus for crystalline quartz, for the av-
erage bulk modulus of all sand-, silt-, or clay-sized mixtures of particles in
sediments. Many other investigators, following Stoll’s approach, have adopted
the handbook values of quartz for both grain density (2560 kg m−3) and grain
bulk modulus (36 GPa) as standard or default input values in theories for
wave propagation in sediments. Values of bulk modulus for minerals and rocks
that make up most sedimentary particles are given in Table 4.7. Figure 4.17
shows sound speed versus porosity calculated using Wood’s equation (8.72)
for the range of values of grain bulk modulus presented in Table 4.7. For these
calculations, values of grain and water density are assumed to be 2650 and
1023 kg m−3, respectively, and the pore water bulk modulus is set at 2.4 GPa.
These calculations represent the relative minimum sound speeds as the ef-
fects of frame modulus, shear modulus, or any fluid–skeletal or grain-to-grain
interactions are excluded. Nevertheless, Fig. 4.17 demonstrates the relative
effects of grain bulk modulus on sound speed–porosity relationships, where
small changes in grain bulk modulus have the greatest effect at low values of
sediment porosity and for low values in grain bulk modulus. The effects on
sound speed of the differences in average grain bulk modulus recommended
by Hamilton (50 GPa) and used by Stoll (36 GPa) presented in Fig. 4.17 are
not great. However, values of grain bulk modulus (about 7 GPa) that are
much lower than those recommended by Hamilton or Stoll have been pro-
posed. When inserted in Wood’s equation (see Fig. 4.17), these lower values
give much lower sediment sound speeds than obtained using handbook val-
ues. The validity of the lower values for grain bulk modulus will be discussed
in the next paragraph. Given the obvious importance of grain modulus to
sound speed determination in sediments it is not surprising that these recent
controversies should arise.

Static measurements of compressibility of a mixture of sand-sized silici-
clastic sediment grains reported in an abstract by [Molis and Chotiros 1992]
suggest that values of bulk modulus of grains naturally occurring in surficial
marine unconsolidated sediments may be much lower than values typically
reported for crystalline minerals in rock physics handbooks. They proposed
that imperfections or microfractures, typical of rock specimens, might con-
tribute to the higher compressibility. These lower than tabulated handbook
values of grain bulk modulus (0.7×1010 Pa versus 3.6 to 4.0×1010 Pa for crys-
talline quartz in handbooks) have subsequently been quoted and/or used in
acoustic modeling of sediments by several investigators [Boyle and Chotiros
1995b, Chotiros 1995a, Chotiros 1995b, Buckingham 1997, Chotiros et al.
1997, Hickey and Sabatier 1997, Boyle and Chotiros 1998, Buckingham 1998,
Chotiros 1998]. The effect on sound speed of one or the other of these two
values of grain bulk modulus is evident in Fig. 4.17 where differences as great
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Fig. 4.17. Sound speed versus porosity calculated using Wood’s equation (8.72)
over a range of values of sediment grain bulk modulus (5–200 GPa). Sound speed
increases with increasing values of grain bulk modulus found in Table 4.7: 5, 7, 10,
20, 36, 50, 75, 100, 200 GPa.

as 150 m s−1 are predicted. The merit of these two values of quartz grain bulk
modulus was debated in comments in the Journal of the Acoustical Society
of America [Stoll 1998, Chotiros 1998].

More recent low-strain acoustic measurements by [Richardson et al.
2002a], using a suspension of quartz grains and beads suspended in a heavy
liquid, have shown that the bulk modulus of Ottawa sand and quartz sand
grains collected from the coastal sediments of the northeast Gulf of Mexico
ranged between 3.8 and 4.7 ×1010 Pa, with 95% confidence limits between
3.0 and 5.7 ×1010 Pa. These measured values of bulk modulus are consistent
with the range of handbook values for polycrystalline quartz (3.6 to 4.0×1010
Pa). The authors suggest that until more accurate low-strain measurements
of sediment grain bulk modulus are made, it is best to use the traditional
handbook values derived from static compression, or dynamic (resonance bar
or ultrasonic) acoustic measurements on small rock specimens or polycrys-
talline aggregates as inputs to sediment acoustic models.

The variations in bulk modulus reported for heavy minerals (Table 4.7)
may reflect the gem quality of the mineral being measured rather than dif-
ferences or inaccuracies in techniques. The relatively low concentrations of
heavy minerals in coastal marine sediments suggest that small variations in
values of bulk modulus, especially at these high values, would have little
effect on predictions of acoustic propagation theories. The same might be
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stated for carbonate particles which have a higher crystalline bulk modu-
lus than quartz or other metamorphic minerals such as feldspars. However,
most carbonate particles are biogenic, being skeletal fragments of plants and
animals often degraded by chemical and physical processes, and may not be-
have as their crystalline constituents. Measurements of bulk modulus using
the suspension techniques suggested by [Richardson et al. 2002a] on carbon-
ate sediment types archived from past sediment acoustic propagation studies
could provide insights into possible effects of biological and chemical degra-
dation on grain structure and compressibility and their resultant effect on
acoustic propagation in sediments. This methodology is especially appropri-
ate for examining the anomalous acoustic behavior associated with biogenic
carbonate sediments possessing intraparticulate porosity.

Measurements of the bulk modulus of clay minerals are rare because of
the small size of individual sheets (< 2 μm) and because of their intrinsic
properties such as swelling during hydration, reactions with organic polar
compounds, low permeability, and their varied and changing microstructure
given differences in temperature, pressure, and ionic composition of the pore
fluid. The manipulations required during measurements can change the clay
structure and significantly alter the bulk modulus [Vanorio et al. 2003]. These
possible changes can vary depending on the types of clay and the ionic com-
position of the bound fluid or pore water. As stated before, Hamilton, Stoll
and several others have generally assumed a value of bulk modulus for clays
between 36 and 50 GPa. However, more recent measurements are not all in
agreement with these values. Extrapolations from bulk modulus measured on
shale suggest a clay bulk modulus near 20 GPa [Castagna et al. 1995]. Mea-
surements on clay mixed with an epoxy resin by [Wang et al. 2001] suggest
somewhat higher values of bulk modulus for kaolinite (45 GPa) and illite
(60 GPa) and a lower value for smectite (10 GPa). Using theoretical con-
siderations, [Berge and Berryman 1995] arrive at a bulk modulus of 10–12
GPa for clay. The values of bulk modulus for clay minerals were determined
by [Vanorio et al. 2003] using a combination of acoustic pulse transmission
techniques on cold-pressed clay powders at different hydrostatic confining
pressures and during uniaxial stress compaction, and on suspensions of clay
particles. They concluded that the dynamic bulk moduli of clay particles, in-
cluding kaolinite, montmorillonite, and smectite, lay between 6 and 12 GPa
with little difference among clays. In summary, the bulk modulus of clay par-
ticles, including theoretical calculations, direct measurement, measurements
in clay–epoxy mixtures, and empirical extrapolations from measurements on
shale, show little agreement, with values ranging between 6 and 50 GPa.

As stated at the beginning of the previous paragraph, hydration state
and ionic composition of pore water may have an important effect on clay
structure, possibly leading to a wide variation in measured values of bulk
modulus. In addition, different clay types may react differently to changes in
temperature, pressure, and the ionic composition of the surrounding water,
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resulting in changes in crystalline structure which probably result in changes
in values of bulk modulus. This applies to both the laboratory measure-
ment conditions and the in situ conditions within marine sediments. Recent
laboratory experiments [Kim et al. 2003, Kim et al. 2004] have shown that
biological activity (bacterial reduction) can alter the clay structure at am-
bient pressure and temperature. This includes significant changes in lattice
spacing and ionic composition of interlayers. Therefore one of the difficul-
ties arises in matching the laboratory-measured bulk modulus to the state
of clay minerals in marine sediments. The values of bulk modulus suggested
by [Vanorio et al. 2003] may seem more appropriate for marine sediments,
because the sample state is closer to the natural hydrated state of clays than
in other measurements. However, if these low values of bulk modulus (6–
12 GPa) are assumed, values of sound speed calculated by Wood’s equation
(Fig. 4.17) are lower than typically measured in marine sediments, espe-
cially in lower-porosity mud. Shear speeds in mud, even at lower porosity, are
generally less than 50 m s−1, suggesting the contribution of shear modulus
to sound speed is almost negligible. The contribution of frame modulus to
sound speed, using the Gassmann equations (Sect. 10.1.1), must be much
larger than usually assumed or the “effective bulk modulus” is higher than
6–12 GPa. It is also possible that clay minerals in marine sediments cannot
be treated as discrete particles as required by elastic and poroelastic theories,
thus these models do not adequately describe acoustic propagation in high-
porosity marine clay sediments. Other approaches, such as discrete element
modeling, might better capture the physics of low-strain acoustic wave propa-
gation and dissipation in marine sediments where electrostatic attraction and
repulsion forces, organic binding, and small-scale deformation of clay parti-
cles are significant [Yao and Anandarajah 2003]. Other approaches include
treating the grain bulk modulus as a frequency-dependent complex number
accounting for movement of interlayer water into and out of the pore space
in response to low-strain acoustic wave propagation through the sediment
[Leurer 1997].

4.6 Factors Affecting Fluid Motion

In the Biot theory of propagation (Ch. 10), acoustic displacements of the fluid
are taken as averages over a suitably chosen local volume such that details
of flow within individual pores are lost. Four variables control average fluid
motion: pore water dynamic viscosity, μ, permeability, κ, structure factor, α
(also called tortuosity), and pore size parameter, a. Direct methods of mea-
suring permeability were discussed in Sect. 4.4.1, and pore water viscosity will
be adequately covered in Sect. 4.7.2. The remaining two variables are related
to the geometry associated with sediment fabric discussed in Sect. 3.2. It is
obvious that permeability, tortuosity, and structure factor are interrelated
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(see (4.16) and (10.16)), but these variables can be difficult to physically re-
late to the complex structure of marine sediments. Although it is appealing
to theoretically determine the permeability, structure factor, and pore size
parameter from microgeometry of the sediment fabric, [Stoll 1989] and many
others have instead estimated these parameters from experimental data (the
phenomenological approach).

Tortuosity is a term used to describe the sinuosity and interconnectivity
of pore space as it affects hydraulic transport through porous media. Defini-
tions of tortuosity are not universally accepted and are complicated by their
use in different transport fields [Clennell 1997]. Geometric tortuosity is often
defined as the ratio of the shortest path of interconnected points in pore fluid
space to the straight-line distance between those points. In practice, tortuos-
ity is an average property of a given volume of sediment and may vary with
direction and scale. The hydraulic tortuosity, T , appearing in the Kozeny-
Carman equation (4.16) is the ratio of the effective hydraulic path length
to the straight-line distance in the direction of flow. It is important to note
that the tortuosity factor, α, used in Biot theory is equal to the square of the
hydraulic tortuosity, α = T 2. This is because the overall factor by which the
flow is retarded is proportional to the effective path length squared. Tortu-
osity can be calculated from high-resolution images of pore structure (Figs.
3.6 - 3.8), measured using conductance experiments, or calculated from pore
size distribution. Stoll [Stoll 1989] set the structure factor to 1.25 for sand
and 3.0 for fine-grained sediments. However, theoretically, the structure fac-
tor can vary between 1.0 for parallel capillaries and 3.0 for capillaries with
random orientation.

The pore size parameter, a, with units of length, is the size of parallel
channels or slits through which fluid flows during the passage of an acoustic
wave. This is equivalent to the pore geometry (geometry and shape of pores
and pore tubes) described earlier in Sect. 4.4.1. Based on experimental data
[Stoll 1989] set the pore size parameter to 1/6 to 1/7 of the mean grain size for
sediments composed of predominately sand or silt. Other investigators have
related the pore size parameter to the mean and standard deviation of the
grain size distribution [Chotiros 1995a], mean and standard deviation of the
pore size distribution [Yamamoto and Turgut 1988], porosity and wetted sur-
face area of the grains [Hovem and Ingram 1979], and porosity, permeability,
and pore size parameter [Johnson et al. 1987].

4.7 Pore Water Properties

Pore water physical properties are usually assumed to be the same as those of
the overlying water and are not usually measured as part of the environmen-
tal characterization during high-frequency acoustic experiments. In a rare
exception, [Richardson et al. 2001a] found no difference in salinity and vis-
cosity of pore and overlying waters during the SAX99 experiments conducted
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in sandy sediments in the northeastern Gulf of Mexico. However, as will be
shown below, the assumption that pore water has the same properties as the
overlying seawater may not be accurate. Seawater properties are discussed in
some detail in Appendix B.

4.7.1 Pore Water Density

Pore water is usually assumed to have the same density as the overlying wa-
ter, with the density calculated from temperature, salinity, and water depth
using the Knudsen’s Hydrographic Tables, a polynomial regression adopted
by the UNESCO Joint Panel on Oceanographic Tables and Standards in 1980
[Fofonoff and Millard 1983], or the Gibbs thermodynamic potential function
proposed by [Feistel 2003] (see Appendix B for details). These precise poly-
nomial regressions are required for dynamical oceanographic calculations in
open-ocean waters where the dominant seawater constituents maintain rel-
atively constant ratios. In coastal waters, values of density calculated from
temperature, salinity, and pressure may deviate as much as 0.05 kg m−3

(5 × 10−5 g cm−3) for actual conditions, a result of variations in the com-
position of dissolved salts in the seawater [Fofonoff 1985, Millero 2000]. Pore
water with abundant inorganic matter may be significantly denser than the
overlying seawater. However, these differences may not be important for many
high-frequency acoustic applications, and a pore water density of 1000 kg m−3

is often assumed (e.g., [Stoll 1989]).

4.7.2 Pore Water Viscosity

Viscosity is the measure of a fluid’s internal, or molecular, resistance to shear
stress (velocity shear). The thicker or more consistent the fluid, the more
viscous is the fluid. Dynamic (or absolute) viscosity, μ, is the tangential
force per unit area required to produce unit flow velocity at unit distance
from a flat boundary where the velocity is zero. Thus, it has dimensions
force×(length)−2, or mass×(length)−1×(time)−1. Kinematic viscosity is de-
fined as the ratio μ/ρw.

Viscosity of open-ocean seawater is well documented, and tables can be
found in a variety of physical handbooks. Moreover, empirical formulas are
available to calculate seawater viscosity at a given water temperature, salinity
and pressure (see Appendix B). Seawater viscosity decreases with tempera-
ture, increases with salinity, but only slightly increases with pressure with a
range of 0.0007 to 0.0019 kg m−1 s−1 for most oceanic conditions. For applica-
tion of Biot theory, a dynamic viscosity of 0.001 kg m−1 s−1 is typically used
for pore water [Stoll 1989]. Using sensitivity analysis, [Williams et al. 2002a]
determined that sound speed and attenuation at high frequencies are not
sensitive to pore water viscosity in sandy sediments such as found in SAX99,
at least over the range predicted for filtered seawater (9.5 to 11.5 × 10−4 kg
m−1 s−1).
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Algae and bacteria secrete copious amounts of mucus exopolymers (slime)
into the water column, changing the rheological properties (i.e., flow charac-
teristics, including viscosity) of seawater [Jenkinson 1993]. Increased seawater
viscosity may inhibit particle sinking, may slow the locomotion and feeding
rates of plankton (especially those microorganisms that use cilia or flagella),
and may change flow dynamics [Jenkinson and Biddanda 1995, and refer-
ences cited therein]. Excess viscosity (that which is greater than predicted
for seawater at a given temperature and salinity) has been correlated to the
concentration of mucus in the water [Jenkinson 1993]. Jenkinson also found
that the seawater behaved as a non-Newtonian fluid in that the viscosity
increases with the rate of shear. At the lowest measured shear rate (0.0021
s−1), viscosity averaged 3.5 times that calculated for seawater at the same
temperature and salinity for samples collected from the Mediterranean and
averaged 52 times the calculated viscosity for samples collected in the Ger-
man Bight. These high-viscosity samples were collected intentionally during
plankton blooms where abundant mucus was expected, but the increased vis-
cosity in seawater due to biological productivity has been noted unexpectedly
by others. Sediment pore waters, which are also rich with bacteria and other
microorganisms that secrete all sorts of organic material, may also have ele-
vated viscosity. The possible effects of this elevated viscosity on permeability,
sound speed, and attenuation should be investigated.

4.7.3 Sound Speed and Attenuation

Precise algorithms to calculated sound speed from seawater temperature,
salinity, and pressure have been developed (see Appendix B). The Del Grosso
[Del Grosso 1974] algorithm has 19 coefficients compared to the 41 coeffi-
cients of the algorithm of [Chen and Millero 1977], which is accepted as part
of the international seawater equation of state. The differences in values of
sound speeds calculated from these algorithms is insignificant (less than 0.2
m s−1) in shallow water conditions (< 100 m) where high-frequency acoustics
often finds application. Pore water sound speed may be more than 10 m s−1

different than the overlying water, because of temperature differences or gra-
dients, effects of the abundant inorganic and organic matter typically present
in pore water, and diagenetic alteration of ionic concentrations in pore fluids.

A simplified algorithm to calculate sound speed from temperature, T ,
salinity, S, and depth in meters, D, has been suggested by [Medwin 1975]

Vp = 1449.2+4.6T −0.055T 2+0.00029T 3+(1.34−0.01T )(S−35)+0.016D .
(4.26)

Sound speed from this algorithm is less than 1 m s−1 different than sound
speed calculated using the Chen and Millero algorithm over the range of
environmental conditions in which high-frequency experiments are usually
conducted (0–40◦C, 0–40 PSU, 0–500 m). Sound absorption in seawater
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over the frequencies considered here (10–500 kHz) is dominated by mag-
nesium sulfate absorption and can be predicted by the algorithms given by
[Francois and Garrison 1982a, Francois and Garrison 1982b] which are given
in Appendix B. Graphical representations of attenuation over the high-
frequency band can also be used (Appendix B). Attenuation in turbid wa-
ters has been shown to degrade the performance of high-frequency sonar
[Richards et al. 1996, Richards 1998, Richards et al. 2003]; therefore scatter-
ing from particles found in pore waters must also increase attenuation, but
the effect on predictions of propagation theories should be slight.

4.8 Research Issues

Measurement of sediment physical properties is a fairly mature area of re-
search because of the many applications to geology, geophysics, and geotech-
nical engineering. Sediment type and mean grain size are routinely measured
and included in large databases. However, it can be questioned whether the
destructive techniques used in traditional grain size analysis are appropriate
for high-frequency acoustic applications or if the in situ, non-destructive tech-
niques developed by the sediment transport community are more appropriate.
The effects of grain shape and surface morphology on packing and conduc-
tance have been well documented, but their direct effects on wave propagation
(compressional and shear wave speed and attenuation) are at best subjects
of speculation and could provide ideal topics for laboratory studies. The rel-
ative density of typical marine sediments (sands) is generally unknown and
can have an important impact on sediment porosity and all of the conduc-
tance phenomena (permeability, electrical resistivity, thermal conductivity).
The effects of sediment collection, transport, and destructive manipulations
during measurements of porosity, bulk density, or water content and the de-
termination of packing (sand) or consolidation state (silts and clays) are all
hotly debated, which suggests improvements to nondestructive and in situ
measurements of these properties are needed. For example, small differences
in porosity (1%) can produce significant differences in sound speed. Addi-
tional studies on the effects of sediment structure on sediment conductance
properties are also needed. The appropriate values for high-frequency acous-
tics of particle density and bulk modulus, especially for clay minerals and
perhaps for carbonate skeletal material, are unknown. The assumption that
the physical properties of pore water are the same as the overlying seawater
should be investigated.
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The geoacoustic properties to be discussed in this chapter include speed and
attenuation of both compressional and shear waves, acoustic impedance (ex-
pressed as the “index of impedance”), and bulk density (which is included
in both the physical and geoacoustic categories in this monograph). The
speed and attenuation of waves propagating through seafloor sediments (body
waves) or at the sediment–water interface (interface waves) have been mea-
sured and modeled for over half a century. The types of measurements and
models are as varied as the motivations of the investigators (Exploratory
Geophysics, Sedimentology, Soil Engineering, Acoustic Modeling, Sediment
Dynamics). Measurements using widely different techniques make compar-
isons difficult, especially for wave attenuation. The frequency dependence of
wave speed (dispersion) and attenuation makes prediction of wave speed or
attenuation difficult when the measured and required acoustic frequencies
are substantially different. In spite of these problems, some generalizations
can be made, and values of wave speed and attenuation as well as their gra-
dients can be measured or predicted using physical and empirical models.
This chapter will concentrate on measurement and prediction of near-surface
(upper few meters), high-frequency wave speed and attenuation. Three types
of body waves will be considered: compressional, shear, and the Biot “slow
wave.” Interface waves (Love waves and Stonely waves) will only be discussed
where these techniques provide data on speed and gradients of shear waves.
Following common practice, the compressional wave speed in sediments will
often be referred to as the “sound speed.”

In fluids, which lack rigidity, only compressional (or longitudinal) waves
are present, whereas both compressional and shear waves propagate through
all known sediments, demonstrating that all sediments have some rigidity, and
that elastic theory (Ch. 9) or poroelastic theory (Ch. 10) may be required in
many cases. Shear waves traveling at speeds as low as 1.2 m s−1 have been
detected in slurries of natural clay-size marine sediment which have been
allowed to settle in laboratory cylinders [McDermott 1991], and shear wave
speeds as low as 5 m s−1 have been measured in very high porosity (90%)
mud in Eckernförde Bay, Baltic Sea [Richardson and Briggs 1996]. Poroelas-
tic theory [Biot 1962b, Stoll 1989], presented in Ch. 10 of this monograph,
predicts the existence of a second bulk longitudinal wave (“slow wave”). Al-
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though the slow wave has not been observed in field experiments, this is in
keeping with its expected low speed and very high attenuation. This does not
mean that poroelastic effects are insignificant in unconsolidated sediments.
As explained in Ch. 10 and later chapters, poroelasticity results in frequency-
dependent sound speed, nonlinear dependence of attenuation on frequency,
and reductions in the strength of reflection and scattering. In summary, al-
though elastic and poroelastic theory provide important refinements of fluid
acoustic theory, the ordinary compressional wave remains the most impor-
tant excitation in unconsolidated sediments, and its speed and attenuation
are the subject of most geoacoustic measurements. Sound speed and attenu-
ation embody poroelastic effects and, together with physical properties such
as density, provide the inputs needed for the majority of high-frequency re-
flection and scattering models described later.

In this chapter, a review will be given of the various laboratory and in
situ methods that have been used to measure wave speed and attenuation
for shear and compressional waves in near-surface marine sediments. The
term “speed” rather than “velocity” will be used, as most of the measure-
ments are reported as scalar rather than vector quantities. It is assumed
that all measurements involve excitation levels small enough to ensure that
the resulting strain levels are below the maximum for which linearity can
be assumed. This maximum strain level is sometimes taken to be 10−6

[Hamilton 1971a, Hamilton 1972, Hamilton 1980, Stoll 1989], but the less
conservative number 10−5 is reasonable. An even higher maximum level of
10−4 is given for shear strains by [Davis and Bennell 1986]. The shear modu-
lus decreases as strain increases to values above this maximum. As a point of
reference, a pressure of 1 atmosphere (101.3 kPa) causes a strain (divergence
of displacement) in water of about 4×10−5 (Sect. 8.1) and strain of similar
magnitude in sediment. Modeling the sediment as a poroelastic medium does
not alter this statement, as solid and fluid displacements are comparable in
magnitude (Sect. 10.1.5), hence the strains are similar. Thus, in assuming lin-
earity, one is assuming that acoustic pressures are substantially smaller that
1 atmosphere. The measurements reported here were conducted at acoustic
pressure levels in the linear region.

Measured attenuation includes all forms of energy loss, including the in-
trinsic attenuation modeled by effective medium wave propagation theories,
wave conversion at boundaries and other heterogeneities, and scattering. The
range and variability of compressional and shear wave speed and attenuation
for a variety of sediment types will be given as well as examples of near-
surface gradients. Empirical regressions for prediction of sediment acoustic
properties from easily measured physical properties are presented. In addi-
tion, regressions that can be used to predict sediment physical properties from
wave speeds and impedance will be given. The limited evidence for the exis-
tence of the Biot slow wave is then discussed. The literature on the frequency
dependence of attenuation and sound speed (dispersion) is also reviewed.
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5.1 Compressional Wave Speed and Attenuation

Speed and attenuation of waves propagating through unconsolidated sedi-
ments have been measured since the 1950s in order to (1) constrain inversions
of low-frequency geophysical data, especially related to oil and gas explo-
ration, (2) provide geoacoustic models in support of antisubmarine warfare,
(3) determine relationships between geotechnical and acoustic properties in
support of acoustic surveying techniques, (4) investigate the validity of the-
oretical formulations of wave propagation, (5) predict geotechnical behavior
of sediments, and more recently, (6) provide the necessary inputs to high-
frequency scattering and penetration models.

The compressional wave speed (or sound speed) will be denoted Vp, fol-
lowing common usage in the geoacoustic literature. The symbol cp is used
for compressional wave speed in the purely acoustic chapters and appendices
of this monograph, following standard practice in the underwater acoustics
literature. There is a difference in meaning, however, in these two symbols.
The parameter cp is complex, as its definition incorporates attenuation. The
parameter Vp is real, being the phase speed of the compressional wave. In
Ch. 8, the phase speed is denoted cpphase and is given by (8.22). Similar dual
notation is used for shear wave speeds.

5.1.1 Measurement Techniques

Early laboratory and in situ measurements of sound speed and attenuation
by [Hamilton 1956, Hamilton et al. 1956, Shumway 1956, Laughton 1957,
Nafe and Drake 1957, Sutton et al. 1957, Shumway 1958, Shumway 1960,
Hamilton 1963, Nolle et al. 1963, Wood and Weston 1964, Buchan et al.
1967, Hampton 1967, McCann and McCann 1969, Hamilton et al. 1970, Mc-
Cann 1972] provided the database necessary to determine the range of sound
speed and attenuation in surficial marine sediments and to develop empir-
ical predictive relationships among sediment acoustic and physical proper-
ties. The speed of sound in sediment was found to be correlated with sedi-
ment porosity and mean grain size with a sound speed minimum (3% lower
than seawater) in muddy sediments (70–90% porosity) and a maximum in
medium to coarse sands (porosity 35–40%). Attenuation was low and high-
est in sediments with intermediate grain size (30–125 microns) and porosity
(40–60%). Hamilton and Bachman, in a series of review papers, provided the
most widely used regressions to predict sound speed and attenuation from
easily measured sediment physical properties (porosity, bulk density, mean
grain size) [Hamilton 1972, Hamilton 1980, Hamilton and Bachman 1982,
Bachman 1985, Hamilton 1987, Bachman 1989].

Sediment sound speed and attenuation in unconsolidated sediments have
been measured in situ, in the laboratory, and remotely using a wide vari-
ety of techniques and over a frequency band from a few hertz to the mega-
hertz range. Sound speed and attenuation measurements using remote lower-
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frequency seismic techniques, including seismic reflection, refraction, and var-
ious inversion approaches, are beyond the scope of this monograph. In gen-
eral, seismic techniques provide estimates of average sound speed and atten-
uation over large patch sizes and to greater depths than are of interest for
high-frequency acoustic bottom interactions. Therefore the discussion in this
chapter will be mostly restricted to in situ and laboratory techniques used
to measure compressional wave speed and attenuation at frequencies greater
than 10 kHz (wavelengths less than 20 cm). This allows measurement and
prediction of near-surface sound speed and attenuation at the frequencies of
interest and provides information on the spatial variability and gradients of
wave propagation properties needed for high-frequency acoustic models.

In situ measurements have been made using a variety of probes pushed
into the sediment by divers, from submersibles, or by remotely operated
systems [Hamilton 1956, Richardson and Briggs 1996, Best et al. 1998,
Kraft et al. 2002]. Sound speeds are usually determined directly from mea-
surement of time-of-flight and distance between probes or by compari-
son to waves propagating through water. Attenuation is often measured
from the loss of energy (waveform amplitude) over different probe separa-
tions by comparison to a standard such as water. These and most other
in situ techniques assume spherical spreading. Other direct methods in-
clude impedance tubes [Dunlop 1992], bottom-mounted hydrophones and
geophones using a variety of sources within the water column and sedi-
ment [Best et al. 2001, Stoll 2002], and downhole [Fu et al. 1996, Wilkens
and Richardson 1998, Gorgas et al. 2002] or crosshole [Yamamoto 1995,
Rapids et al. 1998, Chu et al. 2001] tomographic methods.

Most laboratory measurements rely on pulse techniques, although higher-
strain resonance techniques are popular in geotechnical engineering. The U.S.
Naval Oceanographic Office developed one of the first pulse techniques to
measure sediment sound speed within cores [Winokur and Chanesman 1966].
This approach with some modification is still used at the Naval Research
Laboratory [Richardson 1986]. Sound speed has also been measured using
thin slices of sediments cut from core samples using a Hamilton frame
[Abernethy 1965, Boyce 1973]. These latter data have provided values of
sound speed for most of the shallow-water database used by Hamilton. One
of the most popular recent laboratory methods to measure sediment sound
speed in cores is the multi-sensor core logger [Weaver and Schultheiss 1990,
Schultheiss and Weaver 1992, Weber et al. 1997, Gunn and Best 1998, Best
and Gunn 1999]. This technique uses two rolling 500-kHz transducers that
maintain contact with the outside of the core liner. A water-filled core liner
serves as a standard to allow time-of-flight through the core liner and other
electronic time delays to be determined. Graduated aluminum slugs are used
for calibration of sediment bulk density measurements.

Any laboratory technique used to measure sound speed or attenuation re-
quires very carefully collected and maintained sediment samples. Removing
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sediments from cores to make acoustic measurements often results in changes
in packing in sand and consolidation state in mud and loss of water by drying
or draining in both types of sediments. Altering the packing of sandy sedi-
ment or the consolidation of muddy sediment can greatly change the sediment
structure and values of sound speed and attenuation measured on these sedi-
ments may not reflect in situ conditions. Sound speed in sediment varies with
temperature, pressure, and pore water salinity and should be corrected to a
common set of conditions before regressing against sediment physical prop-
erties. Hamilton and co-workers used laboratory conditions of 23◦C, atmo-
spheric pressure, and a salinity of 35 ppt to report sound speed in their earlier
work. Hamilton later instituted the term “velocity ratio,” VpR, which is the
ratio of measured sound speed of sediment to the sound speed of water at the
same temperature, salinity, and pressure. This ratio will be referred to here as
the “sound speed ratio” and will be denoted νp in the acoustic chapters of this
monograph. The sound speed of water, cw, can easily be calculated from tem-
perature, salinity, and depth or pressure (see Appendix B) and can be used
to calculate in situ sound speed from the sound speed ratio (Vp = VpR× cw).
The validity of this approach has been demonstrated in laboratory measure-
ments by [Shumway 1956, Laughton 1957, Shumway 1958, Hamilton 1971b,
Bennell 1979, Bell and Shirley 1980, Carbo and Molero 2002], where the dif-
ferences in sound speed in sediments for different conditions of tempera-
ture, pressure, and salinity were shown to be approximately proportional
to the changes in pore water sound speed over the same range of condi-
tions. This relationship was later extended by [Richardson and Briggs 1993,
Richardson and Briggs 2004b] to regressions between sediment impedance
and seafloor physical properties. The index of impedance, IOI, which is
defined as the product of sound speed ratio and density, is used to ac-
count for the dependence of impedance on pore water temperature, pres-
sure, and salinity (see Sect. 5.1.8). The effects of temperature or pressure
on attenuation in sediments have been rarely documented except under
laboratory conditions at very high frequencies (500 to 1000 kHz). Under
these conditions, attenuation in sands decreases with increasing tempera-
ture, whereas attenuation increases with increasing temperature in muddy
sediments [Bennell 1979, Carbo and Molero 2002]. Pressure appears to have
little effect on attenuation, at least over the range of pressure found in shallow
littoral regions. Whether these measurements can be extended to lower fre-
quencies is an open question, however, as any variations in attenuation caused
by seasonal fluctuations in temperature or with depth are likely to be masked
by the high variability of attenuation in naturally occurring sediments.

The technique developed by Richardson and Briggs [Richardson 1986] is
used for one of the primary data sets to be discussed in this chapter, and
will be described here in detail. The method uses travel time differences
(Δt) between 400-kHz signals (5- to 10-cycle pulsed sine wave) transmitted
through sediment cores and identical reference cores filled with distilled water
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to measure compressional wave phase speed (Vp, m s−1) and attenuation (αp,
dB m−1),

Vp =
cw

1− cwΔt/d
, (5.1)

αp =
20
d
log10

(
ew
es

)
, (5.2)

where cw (m s−1) is the sound speed of distilled water, d (m) is the inside
diameter of the core liner, and ew/es is the ratio of the received voltages from
waveforms transmitted through sediments and distilled water. Phase speed,
rather than group speed, is measured in this method, as time shifts are mea-
sured as shifts of signal peaks, that is, of the cycles making up the signal.
Group speed would result if the shift in the signal envelope were measured. If
dispersion is large, however, differential time shift between the envelope and
the signal cycles could make it difficult to make a correspondence between
cycles in the water and sediment signals. This is not a problem, because,
experimentally and theoretically, there is a negligible difference in time de-
lays for phase and group speed. Comparison of cross-correlation, envelope,
and peak-picking techniques showed no significant difference in calculated
sound speeds [Briggs and Richardson, unpublished]. Using parameters from
the SAX99 site and a frequency of 400 kHz, the theoretical ratio of group
speed to phase speed is 1.007 using Buckingham’s theory (Sect. 9.8) and
1.0014 using Biot theory (Sect. 10.1.3). These ratios correspond to differen-
tial envelope-cycle shifts less than one-tenth of a cycle, too small to cause
confusion in measurement.

The core tubes used for sediments and water standards were all taken
from a single extrusion with carefully controlled tolerances to reduce the
effects of differences in core diameter and core wall thickness. Transducers
are maintained at a constant distance in oil-filled rubber housings (Fig. 5.1).
Sound speed and attenuation are measured at 1-cm intervals along the core
tubes, usually within 24 hours of collection, using time-of-flight and ampli-
tude techniques (5.1) and (5.2). The resulting acoustic wavelengths are 0.35
to 0.45 cm which are about five times larger than the diameter of coarse sand.
This satisfies the requirement given in the introduction of Ch. 8 for treating
the sediment as a continuous medium. Following [Hamilton 1971b], sound
speed is reported as the dimensionless sound speed ratio, VpR, of measured
sediment sound speed to the sound speed of pore water at the same temper-
ature, salinity and pressure. Sound speed values are also reported for in situ
conditions and for the standard laboratory conditions favored by Hamilton
(23◦C, 35 ppt, and atmospheric pressure). These conditions correspond to
a water sound speed of 1529.4 m s−1 and a water density of 1024 kg m−3.
Attenuation is expressed as the “attenuation factor,” k = αp/fkHz, where
fkHz is the acoustic measurement frequency in kHz [Hamilton 1971b]. The
units of k are dB m−1 kHz−1.
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Fig. 5.1. Transducer setup used to measure sediment sound speed and attenua-
tion. Two identical transducers (transmit and receive) are maintained at a con-
stant distance across a 5.9-cm (inside diameter) sediment core by a rigid frame.
The transducers are disk-shaped ceramics mounted on brass slugs within oil-filled,
rubber housings. Travel-time and amplitude measurements (400 kHz) are made at
1-cm intervals.

After acoustic measurements on cores are concluded, sediments are ex-
truded and sectioned at 2-cm intervals to determine sediment porosity and
grain size distribution (Ch. 4). Porosity is determined from weight loss of
sediments dried at 105◦C for 24 hours and corrected for residual salt. Grain
density is determined using a pyncnometer. Sediment bulk density is calcu-
lated from the measured porosity and from the densities of pore water and
sediment grains. Sediment grain size is determined from disaggregated sam-
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ples by dry sieving for sand-sized particles and by either pipette methods or
Micromeritics Sedigraph for silt- and clay-sized particles.

The other primary data set to be discussed in this chapter was obtained
using various versions of an in situ sediment acoustic measurement system
(ISSAMS). In situ sediment geoacoustic measurements complement labo-
ratory measurements allowing independent confirmation of results as well
as covering frequencies and spatial scales not accessible in the labora-
tory. The in situ data presented here were measured remotely using a
hydraulically operated platform that drives geoacoustic probes into sedi-
ments [Griffin et al. 1996] or a diver-deployed version of the same system
[Barbagelata et al. 1991]. Compressional wave measurements use identical ra-
dially poled ceramic cylinders for both transmission and reception. Compres-
sional wave speed and attenuation are measured over path lengths ranging
from 30 to 100 cm at depths of 5–30 cm below the sediment–water inter-
face. Transmissions utilize 5- to 10-cycle pulsed sine waves, and the time
delays and voltages of received signals are used to determine values of sound
speed and attenuation. Measurements with the diver-operated system were
made at 58 kHz while the remotely operated system employed a frequency
of 38 kHz. The resulting acoustic wavelengths are between 2.5 and 4.5 cm.
Compressional wave speed and attenuation are calculated by comparison of
received signals transmitted through the sediment with those transmitted
through seawater overlying the sediments, using (5.1) and (5.2). Sound speed
(cw) and signal amplitude (ew) in the overlying water are substituted for
their respective values in distilled water. The attenuation measurement tech-
nique used here does not account for differences in transducer sensitivity
in water and sediment. Comparison of attenuation measurements made by
transposition, which eliminates the effects of differences in sensitivity and in-
sertion loss, with the methods used in this analysis suggests these effects are
small (0–10% of measured k) and within the natural variability of surficial
sediments [Richardson 1997b]. Recalculation of attenuation based on trans-
position techniques was only possible for a small subset of these data and did
not significantly change the results.

5.1.2 Data Sets and Regression Relations

Both empirical and physical models have been used to predict relationships
between seafloor geoacoustic and physical properties, but the empirical ap-
proach has significant advantages. Some of the parameters required by the
wave theories described in Chs. 8–10 are either very difficult (pore size, tor-
tuosity, grain roughness) or nearly impossible to measure (i.e., frame mod-
ulus). The predictive capability of these theories when applied to naturally
occurring sediments is accordingly limited. Often the empirical relationships
between acoustic and physical properties have been used to validate wave the-
ories or derive unknown constants (e.g., [Buckingham 2005]). For these rea-
sons, empirical regressions are the preferred means of relating geoacoustic and



5.1 Compressional Wave Speed and Attenuation 131

physical properties. Regressions among sediment physical properties (poros-
ity, bulk density, mean grain size) and geoacoustic properties (sound speed
and attenuation) have been developed by numerous authors [Nafe and Drake
1963, Buchan et al. 1972, Hamilton 1972, Akal 1974, Hamilton 1980, Hamilton
and Bachman 1982, Bachman 1985, Hamilton 1987, Bachman 1989, Richard-
son and Briggs 1993, Richardson 1997a, Richardson 1997b, Richardson et al.
1997, Kraft et al. 2002, Richardson and Briggs 2004a, Richardson and Briggs
2004b, Goff et al. 2004]. Many of these regressions are based on a limited
range of sediment types or on data collected using a variety of techniques. To
eliminate issues associated with intercomparison with different techniques,
two of the largest available compilations of measured values of near-surface
compressional wave speed, attenuation, and sediment physical properties will
be presented here. Each compilation is internally consistent in that the data
were obtained by identical or similar techniques. One compilation includes
nearly 800 cores collected from 67 shallow-water sites around the world (12
carbonate and 55 siliciclastic sites) [Richardson and Briggs 2004a].The other
compilation consists of in situ measurements made at 87 sites using various
versions of an in situ geoacoustic measurement system [Richardson 1997a].

5.1.3 Core Data Set

All the laboratory measurement values presented in Tables 5.1 and 5.2 were
made using the Richardson–Briggs technique, over a wide variety of sedi-
ment types, on carefully collected and maintained sediments, and all within
the upper 30 cm of the seafloor [Richardson and Briggs 2004a, Richardson
and Briggs 2004b]. The data include nearly 4500 data points resulting from
measurements or calculations (3922 siliciclastic and 621 carbonate) of the fol-
lowing parameters: sediment sound speed (Vp, m s−1), sediment sound speed
ratio (VpR, no units), attenuation (αp, dB m−1; k, dB m−1 kHz−1 ), mean
grain size (Mz, φ), sediment porosity (η, %), sediment bulk density (ρ, g
cm−3), index of impedance (IOI, g cm−3, see Sect. 5.1.8), and sediment type.
Each of these parameters has been determined for each core, so that empiri-
cal relationships between parameters are based on precise colocated sampling
(the same 1- cm to 2-cm slice of sediment). The sediments in these data sets
include most types commonly found in coastal regions. Most measurements
were made at the sites of high-frequency acoustic scattering experiments that
often include in situ measurements of compressional and shear wave speed
and attenuation. The disadvantages of this data set include (1) measurement
at a single high frequency (400 kHz) that may not be applicable to lower
frequencies because of dispersion, (2) possible disturbance of the sediments
during collection, transport and measurement, and (3) a limited number of
samples from coarser-grained sites (coarse sand and gravel). Similar regres-
sions based on in situ sound speed and attenuation measurements made at
lower frequencies, presented later in this chapter, overcome some of these
disadvantages and provide a method to evaluate some of these problems.
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Table 5.1. Summary of sediment physical and geoacoustic properties from 57
siliciclastic sites. These properties consist of sound speed (Vp, m s−1), sound speed
ratio (VpR, no units), attenuation (αp, dB m−1), mean grain size (Mz, φ), porosity
(η, %), bulk density (ρ, g cm−3), attenuation factor (k, dB m−1 kHz−1), index of
impedance (IOI, g cm−3, see Sect. 5.1.8), and sediment type. Values of all acoustic
parameters were determined at 400 kHz.

Site Vp VpR αp Mz η ρ k IOI Sediment
SABay 1518.9 0.993 38.7 10.94 89.14 1.170 0.097 1.162 clay
Diga 1480.4 0.968 58.0 10.05 69.12 1.506 0.145 1.458 silty clay
Eck93 1515.5 0.991 72.3 9.88 87.40 1.188 0.181 1.177 silty clay
Portovenere 1501.7 0.982 66.2 9.45 68.30 1.546 0.166 1.518 silty clay
Viareggio 1511.3 0.988 99.5 8.98 61.74 1.634 0.249 1.615 silty clay
STeresa 1502.4 0.982 122.3 8.78 66.98 1.569 0.306 1.541 silty clay
JDF7 1507.2 0.985 114.2 8.50 83.43 1.313 0.285 1.294 silty clay
CLBight 1521.9 0.995 114.0 8.10 86.50 1.223 0.285 1.216 silty clay
Orcas 1511.9 0.988 179.1 8.08 75.22 1.403 0.448 1.387 clayey sand
LISound 1503.1 0.982 — 7.64 76.64 1.411 — 1.386 clayey silt
EelRiver 1554.6 1.016 190.7 7.17 57.32 1.745 0.477 1.773 clayey silt
JDF4 1521.7 0.995 206.8 6.93 74.35 1.470 0.517 1.462 glacial till
RussRiver 1545.5 1.010 231.8 6.35 64.35 1.597 0.579 1.613 clayey sand
Tellaro 1614.4 1.055 184.7 6.08 50.70 1.820 0.462 1.921 sand-silt-clay
Arafura 1511.4 0.988 347.8 5.24 71.63 1.494 0.869 1.476 clayey sand
Monasteroli 1652.4 1.080 220.2 5.12 46.62 1.891 0.550 2.042 sand-silt-clay
Eck94 1609.7 1.052 210.7 4.59 59.38 1.659 0.527 1.745 sand-silt-clay
JDF1 1617.6 1.057 238.5 4.37 55.37 1.800 0.596 1.903 silty fine sand
VAzzura 1686.4 1.102 156.5 4.14 45.17 1.911 0.391 2.106 muddy sand
Misby/fine 1682.4 1.100 195.8 3.77 — — 0.489 — v. fine sand
Tirrenia 1683.1 1.100 127.6 3.72 45.76 1.906 0.319 2.097 v. fine sand
JDF6 1668.2 1.090 314.3 2.94 47.56 1.922 0.786 2.096 fine sand/s-s-c
Quinault 1709.3 1.117 177.2 2.94 41.76 1.971 0.443 2.202 fine sand
TBay/fine 1746.0 1.141 206.1 2.92 40.16 2.013 0.515 2.297 fine sand
PC84 1742.9 1.139 241.7 2.61 40.08 1.998 0.604 2.276 fine sand
ATB/G40 1651.9 1.080 219.8 2.56 56.61 1.716 0.549 1.853 fine sand
LTB 1716.8 1.122 317.1 2.54 43.57 1.929 0.793 2.165 fine sand
Duck 1758.8 1.150 116.2 2.53 39.54 2.051 0.291 2.357 fine sand
MVCO 1755.1 1.147 154.5 2.52 38.49 2.028 0.386 2.327 fine sand
PCB I&II 1755.1 1.147 176.1 2.34 39.72 2.018 0.440 2.315 fine sand
JDF5 1701.5 1.112 213.8 2.31 45.44 1.946 0.534 2.164 fine sand/s-s-c
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Table 5.1. Continued

Site Vp VpR αp Mz η ρ k IOI Sediment
PCB99 1764.2 1.153 133.5 2.24 39.33 2.020 0.334 2.329 fine sand
SWEAT 1747.6 1.142 213.3 2.23 40.38 2.007 0.533 2.292 fine sand
ATB/B14 1752.6 1.146 107.2 2.15 39.52 2.006 0.268 2.298 fine sand
SG98-8 1747.1 1.142 265.7 2.14 39.65 2.026 0.664 2.314 shelly fine sand
MonPt 1744.4 1.140 92.1 2.04 37.21 2.045 0.230 2.332 fine sand
JDF2 1771.6 1.158 179.5 2.03 39.10 2.039 0.449 2.361 medium sand
Charl/fine 1728.4 1.130 281.0 1.97 39.94 2.001 0.703 2.260 fine sand
NoSea 1779.0 1.163 155.7 1.93 37.56 2.054 0.390 2.388 med/fine sand
TOSSEX 1762.7 1.152 161.8 1.93 35.64 2.075 0.404 2.391 med/fine sand
NS 1735.0 1.134 226.1 1.87 41.07 2.046 0.565 2.320 medium sand
IRB 1745.2 1.141 281.2 1.77 40.63 2.023 0.703 2.307 medium sand
SG98-10 1752.1 1.145 164.1 1.62 40.69 1.979 0.410 2.266 medium sand
SG98-9 1747.1 1.142 206.7 1.56 39.45 2.010 0.517 2.295 medium sand
Charl/crse 1729.1 1.130 308.1 1.44 39.63 2.006 0.770 2.267 medium sand
TBay/crse 1754.2 1.147 610.2 1.36 44.85 1.966 1.526 2.254 coarse/fine sand
Hood Canal 1767.1 1.155 184.6 1.34 36.46 2.108 0.462 2.435 medium sand
KB/bar 1758.2 1.149 254.4 1.33 37.28 2.047 0.636 2.352 medium sand
PE99 1770.7 1.157 153.0 1.28 37.08 2.052 0.383 2.375 medium sand
SAX99 1766.3 1.154 177.5 1.27 37.27 2.066 0.444 2.385 medium sand
PE00 1774.1 1.160 149.5 1.21 37.32 2.050 0.374 2.377 medium sand
PC93 1708.5 1.117 404.0 0.98 40.93 2.008 1.010 2.242 coarse sand
Misby/crse 1762.4 1.152 145.4 0.95 — — 0.357 — coarse sand
KB/lyn 1709.2 1.117 586.9 0.90 40.14 2.020 1.467 2.256 shell hash
PCII 1716.4 1.122 391.2 0.85 41.09 2.000 0.978 2.244 c. sand/sh. hash
SG98-1 1713.0 1.120 430.2 0.84 40.66 2.053 1.076 2.299 shell hash
SG98-6 1649.6 1.078 632.5 0.08 43.47 2.001 1.581 2.158 shell/coral hash

Sediment geoacoustic and physical property measurements were made on
sediments collected with 45-cm-long, 5.9-cm-inside-diameter, clear, polycar-
bonate coring tubes. Most sediments were collected by divers, but sediments
collected from eight sites (Montauk Point, Quinault Range, Arafura Sea,
Russian River, Eel River, North Sea, TOSSEX, and Straits of Juan de Fuca),
which were too deep for diving operations, were subsampled from 0.25 m2

spade box cores. Cores were capped at both ends immediately after collection
to retain the overlying water and kept in an upright position during trans-
port to the laboratory for analysis. Collection, measurement, and handling
procedures were designed to minimize sampling disturbance and to maintain
an intact sediment–water interface within the coring tube.

In Tables 5.1 and 5.2, the siliciclastic and carbonate sites are arranged
in order of increasing mean grain size (decreasing values of phi), from clay
to coarse sand or shell hash. Sound speed ranges from values less than the
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Table 5.2. Summary of sediment physical and geoacoustic properties from 12
carbonate sites. Geoacoustic and physical properties consist of sound speed (Vp,
m s−1), sound speed ratio (VpR, no units), attenuation (αp, dB m−1), mean grain
size (Mz, φ), porosity (η, %), bulk density (ρ, g cm−3), attenuation factor (k, dB
m−1 kHz−1), index of impedance (IOI, g cm−3, see Sect. 5.1.8), and sediment type.
Values of all acoustic parameters were determined at 400 kHz.

Site Vp VpR αp Mz η ρ k IOI Sediment
Hawaii/mud 1495.3 0.977 68.6 8.67 84.02 1.296 0.171 1.267 calc. silty clay
DTortugas 1561.8 1.021 343.0 6.62 59.00 1.755 0.858 1.792 calc. s-s-clay
MarqKeys 1555.6 1.017 391.3 6.15 59.66 1.726 0.978 1.755 calc. s-s-clay
SG98-5 1560.8 1.020 322.3 5.85 59.59 1.748 0.806 1.783 calc. s-s-clay
LFK/fine 1581.3 1.034 365.8 5.40 57.19 1.759 0.914 1.818 calc. s-s-clay
Hawaii-4 1609.7 1.052 246.2 3.88 56.42 1.771 0.615 1.864 calc. silty sand
Hawaii-2 1671.6 1.093 438.3 2.33 47.68 1.933 1.096 2.112 calc. med. sand
SG98-3 1777.3 1.162 236.7 1.66 40.92 2.067 0.592 2.401 ooid/skel. sand
SG98-2 1669.4 1.091 383.1 1.57 49.47 1.921 0.958 2.096 crse. skel. sand
RebShoal 1733.1 1.133 279.1 1.26 43.85 2.022 0.698 2.290 carbonate sand
Hawaii/crse 1639.4 1.072 695.2 0.74 45.18 1.960 1.738 2.100 crse. coral sand
LFK/crse 1704.7 1.114 488.9 0.54 41.97 2.054 1.222 2.289 crse. coral sand

water sound speed in high-porosity muddy sediment to values almost as high
as 1800 m s−1 in low-porosity fine-to-medium sand.

5.1.4 Core Data Regressions

Figure 5.2 shows data and second-order regressions for sediment sound
speed and sound speed ratio. The regressions and coefficients of determi-
nation (r2) are given in Table 5.3. Sound speed ratio is highly correlated
with both bulk density and porosity, and to a lesser degree with mean
grain size. A similar second-order polynomial regression has been used by
[Hamilton and Bachman 1982]. Note that in all regressions, the sound speed
minimum can be lower than the water sound speed by 3–4%. This lower speed
is the result of the mass loading due to the grains in sediments that have low
frame bulk modulus and loosely follows the trend of Wood’s equation (8.72)
[Hamilton and Bachman 1982]. Regressions for siliciclastic and carbonate
sediments are not significantly different, and [Richardson and Briggs 2004b]
suggest using the regression for the sediment types combined (Table 5.3).
The fact that regressions between sound speed and sediment physical prop-
erties are similar for carbonate and siliciclastic sediments and differ very
little from regressions based on a much smaller data set presented by
[Richardson and Briggs 1993] suggests a universal applicability of the sound-
speed regressions presented here.
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Fig. 5.2. Sound speed and sound speed ratio as functions of bulk density, porosity,
and mean grain size. The lighter symbols represent carbonate sediments and overlay
the darker symbols which represent siliciclastic sediments. Regression equations are
given in Table 5.3.



136 5 Geoacoustic Properties

Table 5.3. Regressions for sediment physical and geoacoustic properties for silici-
clastic and carbonate sites. Geoacoustic and physical properties: sound speed ratio
(VpR, no units), mean grain size (Mz, φ), porosity (η, %), bulk density (ρ, g cm−3),
and attenuation factor (k, dB m−1 kHz−1). These regressions should not be used
outside of the range of data found in Figs. 5.2 and 5.3: 1100 < ρ (kg m−3) < 2200,
30 < η (%) < 95, 0 < Mz (φ) < 12.

Sediment Type Regression No. of Points r2

Siliciclastic VpR = 1.603− 0.0156η + 0.0001η2 3905 0.95
Carbonate VpR = 11.760− 0.0206η + 0.0001η2 609 0.91
All Sediments VpR = 1.606− 0.0158η + 0.0001η2 4514 0.95
Siliciclastic VpR = 1.585− 0.8991ρ+ 0.3352ρ2 3905 0.94
Carbonate VpR = 1.878− 1.2289ρ+ 0.4232ρ2 609 0.90
All Sediments VpR = 1.649− 0.9807ρ+ 0.3595ρ2 4514 0.93
Siliciclastic VpR = 1.184− 0.0288Mz + 0.0008M2

z 2392 0.82
Carbonate VpR = 1.161− 0.0308Mz + 0.0013M2

z 371 0.82
All Sediments VpR = 1.184− 0.0307Mz + 0.0010M2

z 2763 0.82
All Sediments k = 0.74− 0.07Mz − 0.02M2

z 2653 0.10
All Sediments k = −1.121 + 0.066η + 0.0006η2 4391 0.19

Attenuation is generally higher in the carbonate than siliciclastic sedi-
ments but is very poorly correlated with mean grain size or porosity (Fig.
5.3, Table 5.3). Attenuation as measured by the technique employed for the
data set represented here, however, includes both intrinsic attenuation and
the effects of scattering from both grains (such as shells) and larger-scale
heterogeneities. The attenuation relationships proposed by [Hamilton 1972,
Hamilton 1980, Hamilton 1987] and included in Fig. 5.3 are from a compila-
tion of in situ and laboratory values of attenuation. Hamilton’s attenuation
data set was obtained under a greater variety of conditions and generally
lower frequencies than his sound speed data set, which was collected under
laboratory conditions at a single frequency (200 kHz). The lower bounds of
attenuation measured at 400 kHz may come close to representing intrinsic
attenuation and, as such, closely mimic the attenuation values in the scatter
plots of [Hamilton 1972] which have the lowest values of attenuation in coarse-
to-medium sand and clay and higher values of attenuation in the fine-sand
to silt-sized range. Based on the data presented here, empirical relationships
among attenuation and sediment physical properties have little predictive
value at this high measurement frequency (400 kHz).

5.1.5 Gradients

A large number of studies have used naturally occurring or reconstituted sed-
iment samples to study the effects of consolidation (up to the equivalent of
100s of meters below the sediment surface) on wave propagation. As the pri-
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Fig. 5.3. Attenuation factor, measured at 400 kHz, as a function of porosity and
mean grain size. The lighter symbols represent carbonate sediments and overlay the
darker symbols which represent siliciclastic sediments. Equations for regressions are
given in Table 5.3. The relationships between attenuation factor and porosity and
mean grain size summarized by [Hamilton 1980] are in red. (see first color insert)

mary interest in this monograph is in predictions of near-surface in situ sound
speed and attenuation, these studies are not emphasized, and the reader is
directed to [Hamilton 1976b, Hamilton 1979a, Hamilton 1987, Kibblewhite
1989, Bowles 1997] for excellent reviews of gradients of sound speed and atten-
uation expected in marine sediments, based on laboratory consolidation and
lower-frequency seismic studies. Based on very limited data, [Hamilton 1979a,
Hamilton 1987] concluded that near-surface gradients of increasing sound
speed are higher in sand (20 s−1) than in mud (1 s−1). The scarcity of appro-
priate high-resolution, near-surface data and variability make gradients in at-
tenuation difficult to predict, but attenuation generally decreases with depth
in sand and increases with depth in mud at least in the upper 100 meters
of sediment [Hamilton 1976b, Hamilton 1987]. The sound speed and attenu-
ation profiles (Figs. 5.4–5.6) reported for the upper 20–30 cm of both silici-
clastic and carbonate sandy and muddy sediment often have higher gradients
than suggested by Hamilton [Richardson 1986, Richardson and Briggs 1996,
Briggs and Richardson 1997]. In sand, both sound speed and attenuation ex-
hibit strong positive gradients in the upper 20–30 cm. Sound speed gradients
of 50 s−1 or higher are common, and attenuation may double over this small
depth interval (tens of centimeters). In high-porosity mud, sound speed and
attenuation gradients can be either positive or negative. In general, these gra-
dients are difficult to predict without knowledge of the biological, physical,
and sometimes biogeochemical processes that control sediment structure and
properties. The reader is cautioned not to extrapolate the gradients reported
here beyond the measurement interval (0–30 cm).
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Fig. 5.4. Profiles of sediment sound speed, attenuation factor, porosity, and mean
grain size for high-porosity clayey sediment from Eckernförde Bay, Baltic Sea
[Richardson and Briggs 1996]. Sediments below 35 cm contained methane bubbles
and exhibited higher values of attenuation and slightly higher values of sound speed.
All acoustic measurements were made at 400 kHz.

Fig. 5.5. Profiles of sediment sound speed, attenuation factor, porosity, and
mean grain size for carbonate sediments collected from the Dry Tortugas
[Richardson et al. 1997]. The lines are best-fit power-law regressions and demon-
strate a rapid increase in sound speed in response to dewatering (reduction in
porosity) of the sediments by bioturbation. Note that the mean grain size does not
vary with depth, suggesting a single source of deposition. All acoustic measurements
were made at 400 kHz.
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Fig. 5.6. Profiles of sound speed ratio, attenuation factor, porosity, and
mean grain size for sediment collected at the SAX99 experimental site
[Richardson et al. 2001a]. Values of porosity and mean grain size vary little with
depth, whereas values of sound speed and attenuation increase. All acoustic mea-
surements were made at 400 kHz.

Spatial variability (in both the vertical and horizontal), evident in the
scatter of data points in Figs. 5.4–5.6, is discussed in Ch. 7 and quantified
for these and many other examples in Appendix C.

Further discussion of gradients is given in Ch. 7. That chapter addresses an
issue that is peculiar to the rather small depths of interest in high-frequency
acoustics: spatial variability may mask vertical trends in geoacoustic param-
eters. Accordingly, the vertical profile of a given geoacoustic parameter is
estimated after an average has been taken over the measurement ensemble.

5.1.6 In Situ Data Regressions

For the in situ measurements (made using the technique described previ-
ously) geoacoustic data are reported in the same form as the core data:
sound speed ratio, VpR, and attenuation factor, k. Core data of the type
described above were taken at the same sites, providing physical property
data and allowing comparison of the two methods. Sound speed, attenua-
tion, and physical property measurements were not colocated; therefore, av-
erages for each site were use to construct the regressions given in Table 5.4.
Values of sound speed followed the same trends as in the higher-frequency
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laboratory measurements (Fig. 5.7 compared to Fig. 5.2). Sound speed ratios
range from 0.978 (1428 m s−1) in the silty-clay sediments found in Eck-
ernförde Bay, Baltic Sea, to 1.170 (1767 m s−1) in coarse sand sediment
in the North Sea. The sound speed ratio was only slightly lower than de-
termined from the higher-frequency laboratory measurements at the same
locations (Fig. 5.8). At least part of this trend may be due to dispersion
predicted by poroelastic theory (Ch. 10). Recent evaluation of this in situ
measurement technique by [Buckingham and Richardson 2002] suggests that
tone-burst time-of-flight measurements between a single source and receiver
in close proximity may underestimate sound speed when compared to single-
source two-receiver configurations. These differences are generally less than
15 m s−1 for sandy sediments, such as the SAX99 sediments evaluated by
[Buckingham and Richardson 2002]. Attempts to reevaluate the entire data
set used here have proven difficult, as many of the measurements exist only
as analog plots, and spatial variability in sound speed over the measurement
paths increases the variability in values of measured sound speed and attenu-
ation. Of the thirty or so locations successfully re-analyzed, the same trends
were evident for similar sandy environments (10–15 m s−1 lower sound speed
for single-source receiver methods), but insignificant differences were found
in more muddy sediments.

Table 5.4. Regressions for sediment physical and geoacoustic properties for in
situ measurements using ISSAMS. Regressions are plotted in Figs. 5.7 and 5.9.
Geoacoustic and physical properties, sound speed ratio (VpR, no units), mean grain
size (Mz, φ), porosity (η, %), bulk density (ρ, g cm−3), and attenuation factor (k,
dB m−1 kHz−1). These regressions should not be used outside of the range of data
found in Figs. 5.7 and 5.8: 1200 < ρ (kg m−3) < 2100, 30 < η (%) < 90, 0 < Mz

(φ) < 10.

Property Regression No. Points r2

Density VpR = 1.705− 1.035× 10−3ρ+ 3.664× 10−7ρ2 86 0.92
Porosity VpR = 1.576− 0.015677η + 1.0269× 10−4η2 86 0.91
Mean Grain Size VpR = 1.190− 0.03956Mz + 1.9476× 10−3M2

z 86 0.92
Density k = 0.00332e0.00241ρ 87 0.45
Porosity k = 2.153e−0.0401η 87 0.43
Mean Grain Size k = 0.697e−0.183Mz 87 0.52

Plots of attenuation factor and sediment physical properties show an in-
crease in the coarser-grained, lower-porosity sediments (Fig. 5.9). Attenua-
tion, expressed as k (dB m−1 kHz−1), is often lower than measured at 400
kHz (Fig. 5.8), and the trend of highest attenuation in sediments in the fine-
sand or silt-size ranges summarized by [Hamilton 1972] is not evident, as
values of attenuation appear to increase with increasing grain size and de-
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Fig. 5.7. Sound speed ratio as a function of bulk density, porosity, and mean grain
size for average values of in situ sound speed ratio and average values of sediment
physical properties for 88 sites where the ISSAMS systems were deployed. The
data include both siliciclastic and carbonate sites. The regressions are an update
from similar regressions presented in [Richardson 1997a]. Sound speed measure-
ments were made at either 38 or 58 kHz depending on which version of ISSAMS
was used.
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Fig. 5.8. Comparison of sound speed ratio and attenuation factor for average
laboratory (400 kHz) and in situ (38 kHz) measurements at 78 sites worldwide,
where both cores and in situ measurements were available. The data include both
siliciclastic and carbonate sites. The regression lines are: Attenuation, k (lab) =
1.3276 × k (in situ) with r2 = 0.16; Vp (lab) = -0.0154 + 1.0187 × Vp (in situ)
with r2 = 0.089.

creasing porosity. Although regressions are given for attenuation factor versus
sediment physical properties, the coefficients of determination are low (r2 =
0.45–0.52). These regressions yield only approximate values of attenuation
and should be used with caution. Measured attenuations are much preferred.

5.1.7 Comparison with Other Regressions

The most widely used regressions of sound speed against density, porosity, and
mean grain size were compiled by [Hamilton and Bachman 1982] with later
versions by [Bachman 1985, Bachman 1989]. These regressions yield consis-
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Fig. 5.9. Attenuation factor (k, dB m−1 kHz−1) as a function of mean grain size,
porosity, and bulk density for the 78 siliciclastic and carbonate sites where in situ
measurements were made. Acoustic measurements were made at either 38 or 58
kHz.
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Fig. 5.10. Comparison of the predictions of sound speed ratio from sediment
mean grain size, porosity, and density based on the empirical regressions given by
[Hamilton and Bachman 1982] (dashed lines) and [Richardson and Briggs 2004a]
(solid lines). Hamilton’s measurements were made at 200 kHz, Richardson and
Briggs’ at 400 kHz.
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tently higher sound speeds for similar values of sediment physical properties
for sandy sediments than the regressions presented herein for both labora-
tory and in situ measurements. Figure 5.10 compares Hamilton’s regressions
with the regressions given here for core data at 400 kHz. The causes of these
differences remain a mystery, but additional in situ measurements, using a
variety of techniques at the same sites as the laboratory and in situ measure-
ments reported here, suggest that the regressions given in this monograph
are more suited to high-frequency applications. For example, sound speed
measurements made during the SAX99 experiments using a variety of in
situ probe techniques [Williams et al. 2002a] yielded lower sound speed val-
ues than predicted by Bachman (see Table 5.5) and were consistent with the
regressions given here. Recent in situ measurements using pulse techniques
(68 kHz) on the New Jersey coast [Goff et al. 2004] and near the Martha’s
Vineyard Coastal Observatory (Kraft, personal communication) both align
better with the regressions of [Richardson and Briggs 2004a] than with those
of Hamilton.

Most of the sound speed measurements that Hamilton and Bachman
based their regressions on were laboratory measurements at 200 kHz us-
ing a pulse technique and a Hamilton frame. Values of sediment phys-
ical properties were obtained using techniques very similar to those of
[Richardson and Briggs 2004a]. Density was measured with a weight-volume
method, drying the samples at 110◦C for 24–48 hours. Porosity was calculated
from the density and corrected for salt content. Grain size was determined
by first wet sieving the dispersed sediment samples to separate sand and
mud fractions. The sand fraction was analyzed using the Emery settling tube
and the fine fraction by pipette. Mean grain size was calculated using the
same graphic mean as Richardson and Briggs (Mz = (φ16 + φ50 + φ84)/3),
Sect. 4.1). It seems unlikely that differences in physical property measure-
ment techniques could account for the differences in the regressions. Other
possible causes include differences in acoustic measurement techniques, dis-
turbance of sediments measured with the Hamilton frame, or actual differ-
ences in the sediments. Comparison of the sand–silt–clay ratios presented
as Shepard ternary diagrams (Fig. 5.11) suggests higher concentrations of
silt-sized particles in the Hamilton–Bachman data set and fewer exam-
ples of sediments dominated by sand- or clay-sized particles when com-
pared to the sediments analyzed by [Richardson and Briggs 2004a]. Regard-
less of the cause, the regressions of [Richardson and Briggs 2004a] and those
given in this chapter should be preferred for prediction of sediment sound
speed for high-frequency acoustic experiments. It follows that the regressions
of [Richardson and Briggs 1993, Richardson and Briggs 2004b] that predict
sediment physical properties from impedance (Sect. 5.1.8) also are preferred
when using acoustic remote classification systems.

Section 11.2.1 gives “regressions” for density ratio and sound speed ra-
tio taken from [APL-UW TR 9407]. As noted in Sect. 11.2.1, these are not
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Table 5.5. Comparison of sound speed and sound speed ratio predictions based on
the empirical regressions of [Bachman 1989] and [Richardson and Briggs 2004a] us-
ing mean values of sediment physical properties appropriate to the SAX99 site. The
symbol / separates the two predictions, with Bachman’s on the left and Richardson–
Briggs’ on the right. The predicted values should be compared with the measured
values from Table 5.1, Vp = 1766.3 m s−1 and sound speed ratio = 1.154. The
average sound speed of the pore water during SAX99 is assumed to be 1536 m s−1.

Physical Property Sound Speed (m s−1) Sound Speed Ratio
Porosity = 37% 1847 / 1786 1.202 / 1.163

Density = 2074 kg m−3 1830 / 1785 1.191 / 1.162
Mz = 1.25 φ 1880 / 1764 1.224 / 1.149

Fig. 5.11. Comparison of the ratios of sand, silt, and clay for sediment included
in the acoustic-physical property regression of [Richardson and Briggs 2004a] (left)
and [Hamilton and Bachman 1982] (right). Note the ternary diagrams are rotated
120◦ relative to each other.

geoacoustic regression relations; rather, they are ad hoc relations designed to
improve acoustic model-data fits.

5.1.8 Index of Impedance Regressions

Many acoustic sediment classification systems use the amplitude of echo re-
turns to estimate seafloor acoustic impedance [Richardson and Briggs 1993].
Empirical relationships between seafloor impedance and sediment physical
properties are then used to map seafloor physical properties such as porosity,
bulk density, percent sand and gravel, or mean grain size as well as geoacous-
tic properties such as sound speed and attenuation [Richardson and Briggs
2004b]. Sediment impedance is the product of sediment sound speed and bulk
density with units kg m−1 s−1. Like sound speed, impedance is dependent
on pore water temperature and salinity and pressure (water depth). Sound
speed and thus the impedance at a single site can vary up to 10% over the
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range of seasonal conditions expected in coastal waters. Therefore, a pore-
water-independent index of impedance (IOI), which is the product of the
sediment bulk density and sound speed ratio, is used to calculate empiri-
cal relationships between sediment impedance and other sediment physical
properties.

The index of impedance provides excellent predictions of sound speed ra-
tio, bulk density, and porosity for both siliciclastic and carbonate sediments
(Figs. 5.12 and 5.13, Table 5.6). This is not surprising, as IOI is the prod-
uct of sound speed ratio and bulk density, and both sediment bulk density
and porosity are determined from the same wet loss measurements. Data
on sound speed, sound speed ratio, bulk density, and porosity for carbonate
and siliciclastic sediments fall within bands of width 14 m s−1, 0.001, 0.04 g
cm−3, and 4%, respectively, over the full range of values of IOI, suggesting
regressions for each parameter derived from the entire data set are appro-
priate (Table 5.6). The coefficients of determination (r2) between IOI and
sediment mean grain size and percent sand and gravel are lower for carbonate
than siliciclastic sediments. The lower values of r2 between IOI and grain
size properties, or scatter in the data, justify combined regressions using all
carbonate and siliciclastic data in spite of up to 0.6 φ and 17% differences
in predicted mean grain size and percent sand and gravel between the two
data sets. The predictions of attenuation based on the index of impedance are
not better, based on values of coefficient of determination, than similar re-
gressions between attenuation and other sediment physical properties (Table
5.3).

Most of the empirical relationships presented here were developed using
sound speeds measured at 400 kHz. Many echo sounders operate at 3.5 to
30 kHz, where sound speeds and thus impedance values may be lower. Biot
theory predicts that sound speed is dispersive (Ch. 10), with dispersion more
pronounced in sand compared to muddy sediments. Values of sound speed
ratio measured at 38 and 400 kHz for most sediments are nearly equal (Fig.
5.8). However, at the lower frequencies used with many acoustic sediment
classification systems, especially in sand, these regressions may not accu-
rately predict sediment physical properties from measured values of IOI. In
the example given by [Williams et al. 2002a] for the sand sediment of the
SAX99 experiments, measured sound speeds were up to 75 m s−1 higher at
400 kHz than at 3.5 kHz. Based on this degree of sound speed dispersion, sed-
iment properties predicted using the higher-frequency IOI regressions would
be different than if lower sound speeds predicted at 3.5 kHz were used to
calculate IOI: actual porosity would be 2.6% higher, bulk density would be
50 kg m−3 lower, mean grain size 0.69 φ unit higher (finer), and sound speed
44 m s−1 higher. Given the current state of knowledge of dispersion in sandy
sediment, corrections are premature; however, future research should attempt
to both define and model the dispersive behavior of sound speed in sediments
and the associated frequency dependence of attenuation.
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Fig. 5.12. Empirical relationships used to predict sediment physical and acoustic
properties from the index of impedance (IOI) for siliciclastic sediments. Data (Ta-
ble 5.1) and regressions (Table 5.6) are based on over 3900 measurements made on
cores collected from 55 shallow-water sites worldwide. The dashed lines denote the
95% confidence intervals.
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Fig. 5.13. Empirical relationships used to predict sediment physical and acoustic
properties from the index of impedance (IOI) for carbonate sediments. Data (Table
5.2) and regressions (Table 5.6) are based on 69 cores collected from 12 sites around
southern Florida and in the Hawaiian Islands. The dashed lines denote the 95%
confidence intervals.
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Table 5.6. Regressions for sediment physical and geoacoustic properties based
on the index of impedance (IOI) for siliciclastic and carbonate sediments. The
percentage of sand and gravel is denoted SG. The coefficient of determination (r2)
is given for each regression. These regressions should not be used outside of the
range of data found in Figs. 5.12 and 5.13: 1.05 < IOI (kg m−1 s−1) < 2.6.

Sediment Type Regression r2

Siliciclastic VpR = 1.149− 0.2821(IOI) + 0.1203(IOI)2 0.97
Carbonate VpR = 1.164− 0.3001(IOI) + 0.1253(IOI)2 0.96
All Sediments VpR = 1.164− 0.3001(IOI) + 0.1253(IOI)2 0.97
Siliciclastic k = −2.61 + 3.41(IOI)− 0.885(IOI)2 0.16
Carbonate k = −5.96 + 6.94(IOI)− 1.174(IOI)2 0.43
All Sediments k = −3.31 + 4.33(IOI)− 1.138(IOI)2 0.22
Siliciclastic η = 178.60− 94.60(IOI) + 14.86(IOI)2 0.99
Carbonate η = 186.18− 102.20(IOI) + 17.29(IOI)2 0.99
All Sediments η = 174.16− 89.12(IOI) + 13.37(IOI)2 0.99
Siliciclastic ρ = 1.01 + 1.22 ln(IOI) 0.99
Carbonate ρ = −0.52 + 1.81(IOI)− 0.305(IOI)2 0.99
All Sediments ρ = 1.02 + 1.21 ln(IOI) 0.99
Siliciclastic Mz = 17.7− 6.8(IOI) 0.85
Carbonate Mz = 19.3− 7.6(IOI) 0.75
All Sediments Mz = 17.9− 6.0(IOI) 0.84
Siliciclastic SG = −109.6 + 87.7(IOI) 0.82
Carbonate SG = −143.2 + 101.4(IOI) 0.73

The coefficient of determination, r2, between IOI and mean grain size is
much lower than the coefficient of determination between IOI and sediment
bulk density or porosity. This lower coefficient of determination is reflected
in the lack of a fundamental physical relationship between mean grain size
and either sediment bulk density or porosity (Fig. 5.14). In muddy sediments,
consolidation (dewatering) can lower porosity and increase density without
a change in mean grain size, as indicated by the horizontal arrow in Fig.
5.14. This increase in density occurs with little or no change in sound speed.
In sands, porosity can vary up to 10%, for a given grain size depending on
packing (horizontal arrow in Fig. 5.14). Given the same packing, a uniform
assemblage of spheres would theoretically achieve the same porosity regard-
less of grain diameter. Using values of mean grain size as an index, especially
in the silt-size range, may be very misleading because of major differences
in sorting (standard deviation of the particle size distribution) or due to the
effects of compaction and packing. Well-sorted sediment composed of wholly
silt-size particles may have the same mean grain size as poorly sorted sedi-
ment with a mixture of sand- and clay-size particles. The resultant density
and sound speed of these two sediments, however, can be very different. Given
the aforementioned issues, it is perhaps amazing that empirical regressions
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between grain size-related parameters and sediment density, porosity, sound
speed, or impedance have any predictive value.

Fig. 5.14. Scatter diagram of mean grain size versus porosity. The lighter-colored
symbols, which represent carbonate sediments, overlay the darker-colored symbols,
which represent siliciclastic sediments. The great range of porosity for a given mean
grain size indicated by the arrows reflects processes controlling sediment microstruc-
ture: compaction in clays, packing in sand, and both processes in silts. In addition,
the relative percentages of clay- and sand-sized particles in silt also control porosity.

5.2 Shear Wave Speed and Attenuation

Shear wave speed and attenuation have been measured using a variety of lab-
oratory and in situ techniques which will be reviewed in the next two sections.
Laboratory measurements are generally made at higher frequencies and in-
clude both naturally occurring sediments collected with cores and artificially
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created sediments. The emphasis of many of these laboratory measurements
is on consolidation behavior and geotechnical testing to determine values of
shear modulus. In situ measurements are generally at much lower acoustic fre-
quencies and include inversions of interface waves and seismic reflection and
refraction techniques. Recent in situ probe measurements by Richardson and
colleagues are used to develop the predictive relationships among shear wave
and sediment physical properties presented later in this chapter. Although
laboratory measurements can be converted to in situ values, issues associated
with sample disturbance and maintenance of in situ effective stresses, shear
strain amplitudes, and strain rates dictate a preference for in situ measure-
ments for high-frequency acoustic applications [Richardson et al. 1991a].

5.2.1 Laboratory Measurement Techniques

Shear wave speed and attenuation have been measured using a variety of labo-
ratory techniques including resonance columns, pulse techniques using quartz
crystal transducers, piezoceramic shear plates or radial expander transduc-
ers, torsional resonance columns [Davis and Bennell 1986], torsional cyclic
loading, and a variety of ceramic bimorph or bender elements (see review
of [Bennell and Taylor-Smith 1991]). The bender elements can be cantilever-
mounted where one end of the bender is clamped and the other end allowed
to vibrate [Shirley 1978, Shirley and Hampton 1978] or mounted free in a
compliant material [Bennett et al. 1991a, Barbagelata et al. 1991]. The can-
tilever mounting is best for laboratory measurements, and the free mounting
is better for in situ applications. Bender transducers are preferred because
they provide lower Q (wider bandwidth) and lower operating frequency.

Laboratory measurements of shear modulus and shear wave speed are
commonly used in geotechnical investigations of foundation loading, lique-
faction during earthquakes, or studies of consolidation behavior. For these
studies sediment shear modulus is often correlated with sediment void ratio
and “mean effective stress” or overburden pressure. Some definitions are re-
quired here. Static strain results from overburden, but these static stresses
and strains must be distinguished from the much smaller “dynamic” stresses
and strains due to the passage of compressional and shear waves. Dynamic
stress and strain are related through dynamic moduli (Ch. 9). Returning to
static stress, the mean effective stress is the stress due to the effects of grav-
ity through self-weight of the solid particles of the sediment. There are three
principal stresses, σxx, σyy, and σzz in the notation of (9.1). The pore water
pressure, Pf , is subtracted from these to obtain the components of effective
stress, e.g.,

σ′zz = σzz − Pf . (5.3)

The vertical (zz) component of effective stress may not be equal to the hor-
izontal components. Defining the “coefficient of earth pressure,” K0, as the
ratio of effective stress in the horizontal to that in the vertical, the “mean
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effective stress” is
σ′0 =

1 + 2K0

3
P0 , (5.4)

where P0 = σ′zz. The coefficient of earth pressure may range from 0.4 for
dense sands to 1.0 for very soft mud [Mitchell 1993].

Laboratory measurements of dynamic shear modulus with varying ef-
fective stress have been collated by [Bryan and Stoll 1988] who present the
following relationship to predict sediment shear modulus, μ, from void ratio,
e:

μ = 2526(σ′0)
0.448e−1.504e . (5.5)

Here, the symbol e is used in two ways, as the base of the natural logarithms
and, in the exponent, as the void ratio.

Shear wave speed can be determined from the shear modulus and sediment
bulk density using (9.10). As for the case of compressional wave speed, the
symbol ct is used for the complex shear speed in Ch. 9, while the symbol
Vs is used for the (real) shear phase speed. Here, the shear modulus will be
assumed to be real, so that (9.10) becomes

Vs =
√

μ

ρ
. (5.6)

Laboratory measurement of shear wave attenuation has been mostly ne-
glected except in the fields of soil mechanics and foundation engineering
[Stoll 1989]. Shear wave attenuation, αs (denoted αt in the acoustic chap-
ters of this monograph), will be presented in terms of the attenuation factor,
ks = αs/fkHz, and as the logarithmic decrement, Δs, which is preferred in
the geotechnical community. Adapting (8.26) and (8.29) to the present case,
the logarithmic decrement can be written in terms of the attenuation as

Δs =
αsVs ln(10)

20f
. (5.7)

With the exception of [Brunson and Johnson 1980], most values of shear
wave attenuation are based on various laboratory torsional decay techniques
which by their nature are fairly low in frequency (< 1 kHz). A good review of
these types of measurements is provided by [Stoll 1989]. Cantilever-mounted
bender elements were used by [Brunson and Johnson 1980] to measure shear
wave attenuation in laboratory sand over the frequency range of 0.45–7.0 kHz.
Shear wave attenuation in sands, glass beads, and kaolinite clay sediments
was measured by [Bell 1979, Bell and Shirley 1980] using bender elements.
Summaries of shear wave attenuation often include laboratory measurements
on artificially created or dried sediments which may not behave as fully sat-
urated naturally occurring sediments. This may, in part, explain the poor
predictability of shear wave attenuation which is discussed later.
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5.2.2 In Situ Measurement Techniques

A variety of interface waves (Love, Scholte, also known as Stonely waves,
Sect. 9.6) propagating at the sediment–water interface have been used to es-
timate shear wave speed and attenuation in marine sediments. In general,
the inversion of higher-frequency interface waves (>10 Hz) allows higher-
resolution characterization of near-surface shear wave properties. Most in-
version schemes take advantage of the dispersive nature of shear wave prop-
agation, i.e., strong positive gradients in shear wave speed resulting from
increased effective stress from overburden pressure. However, heterogeneity
of surface sediment properties may complicate interpretation of these in-
versions [Stoll et al. 1994, Winsborrow et al. 2003]. Interface-wave measure-
ments have employed ocean bottom seismometers (OBS) with a variety
of configurations of three-axis geophones as receivers [Bucker et al. 1964,
Rauch 1980, Rauch 1986, Muir et al. 1991, Bibee 1993]. Interface waves are
generated with man-made explosives, impact sources, torsional sources, or
naturally occurring bottom motion. Explosive sources can be placed at or
in the seafloor to directly generate interface waves, or explosions in the wa-
ter column can be used to generate interface waves through conversion of
compressional to shear wave energy at the seafloor. Towed sleds have been
used to measure shear wave speed with an array of geophones, coupled to
the seafloor using a rubber mat, towed at fixed distances behind a seis-
mic source [Davis et al. 1989, Haynes et al. 1997, Huws et al. 2000]. Near-
surface gradients of shear wave speeds have been inverted from Scholte
[Brekhovskikh and Godin 1990] and Love waves [Aki and Richards 2002, Ch.
7] using impulsive and torsional sources coupled to the seafloor followed by
a towed array of geophones [Bautista and Stoll 1995, Stoll 2002, and ref-
erences therein]. Yamamoto and colleagues have inverted profiles of shear
wave speed using seabed motion induced by surface gravity waves and mea-
sured with bottom mounted or buried seismometers [Yamamoto et al. 1989,
Trevorrow and Yamamoto 1991].

Seismic reflection and refraction techniques, where both sources and re-
ceivers are in the water column, have also been used to invert for shear
wave properties. However, the systems typically deployed by the petroleum
industry utilize low frequency sources (< 10 Hz) and do not have the resolu-
tion required for high-frequency applications (upper few meters of sediment).
Crosshole and downhole and seismic tomographic measurements have also
been used to measure shear wave speed and attenuation [Yamamoto 2001].
Geotechnical engineers often use seismic cone penetrometers (SCPT, for seis-
mic cone penetration test) to estimate gradients of shear wave speed for
evaluation of liquefaction potential during earthquakes (see [Robertson and
Wride 1998] for a review).

Reviews of shear wave speed and attenuation in marine sediments based
on the aforementioned measurements have been given by [Hamilton 1976a,
Hamilton 1976c, Hamilton 1987, Bryan and Stoll 1988, Kibblewhite 1989,
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Bowles 1997]. These reviews cover such a wide range of frequencies and depth
gradients that generalizations of near-surface (upper meter) shear wave prop-
erties are obscured. However, the following conclusions can be drawn from
these reviews: (1) all marine sediments support shear waves, (2) shear wave
speed is higher in sand than mud, (3) depth gradients in shear wave speed
follow a power law (with an exponent 0.25 to 0.33), (4) in situ shear wave
speeds are 15 to 60% higher than shear wave speeds derived from laboratory
measurements of shear modulus, (5) shear wave attenuation is between 1 and
2 orders of magnitude higher than for compressional waves, and (6) shear
wave attenuation decreases rapidly within the upper 5 m becoming nearly
constant at depths below 10–20 m. However, the data reviewed by these au-
thors are inadequate to provide the type of empirical regressions between
shear wave speed or attenuation and sediment physical properties developed
for compressional wave speed and attenuation (Figs. 5.2–5.7).

Over the past 20 years, measurements of shear wave speed have been
made using an in situ sediment geoacoustic measurement system (ISSAMS)
[Richardson 1997a]. The system utilizes “bimorph” ceramic benders to trans-
mit and receive shear waves [Richardson et al. 1987, Richardson et al. 1991a].
These transducers have been mounted on a variety of diver-deployed and re-
motely operated systems [Griffin et al. 1996] allowing measurement of near
surface shear wave speed at 87 locations worldwide. Shear wave speed is
measured as time-of-flight over known distances. More recently a transpo-
sition method using two transmit and two receive transducers was devel-
oped that allows measurement of shear wave attenuation without standards
[Richardson 1997b]. This new technique eliminates the need to know trans-
ducer sensitivity or to measure variable insertion losses. All measurements
were made within the upper 30 cm of sediment, usually at 10, 20, and 30 cm
below the sediment–water interface.

5.2.3 Shear Wave Data and Regressions

Empirical regressions among shear wave speed and sediment physical prop-
erties (porosity, density, and mean grain size) were previously reported by
[Richardson 1997a, Richardson 1997b]. These regressions were based on a
data set much smaller than used here. The number of deployments of IS-
SAMS where shear wave speed and sediment physical properties have been
measured has increased to 87 sites, and shear wave attenuation has now been
measured at 18 sites [Richardson et al. 1997, Wilkens and Richardson 1998,
Richardson et al. 2001a, Richardson et al. 2002b, Richardson 2002]. These
data, combined with sediment physical properties measured on carefully col-
lected core samples, were used to develop the regressions shown in Figs.
5.15–5.21 for carbonate and siliciclastic sediments. All in situ acoustic mea-
surements were made at 20–30 cm below the sediment–water interface, over
distances of 30–100 cm, and at frequencies ranging from 1 kHz in sands to
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Fig. 5.15. Shear wave speed versus porosity for 24 carbonate (open squares) and
63 siliciclastic (filled diamonds) sediment sites. Regressions for carbonate (Vs =
656e−0.0405η) and siliciclastic sites (Vs = 770e−0.0517η) accounted for 67% and 89%
of the variability. Porosity, η, is expressed as a percent.

as low as 100 Hz in high-porosity mud. Based on the combination of fre-
quency and shear wave speed, wavelengths ranged between 10 and 20 cm.
These are several times greater than the wavelengths associated with in situ
compressional wave measurements discussed here. Average shear wave speeds
are used for the regressions and include up to 8 separate measurements for
each of 1–4 deployments of ISSAMS at each site. Sediment physical proper-
ties were measured as described in previous sections and are average values
for one or more cores collected at each site with up to 15 measurements per
core.

Mean shear wave speed ranged from a low of 7.7 m s−1 in the very high
porosity sediments of Eckernförde Bay, Baltic Sea, to 150 m s−1 in shelly
coarse sand sediments found on the southeastern Florida shelf. Shear wave
speed increases with increasing density and mean grain size (expressed in
millimeters) and decreases with porosity and mean grain size (expressed in
phi units) for both carbonate and siliciclastic sediments. These are the same
general trends as found in the sound speed–physical property relationships.
Shear speed tends to be higher in carbonate sediments than in siliciclastic
sediments for similar values of porosity (Fig. 5.15). However, no difference
in shear wave speed was found for similar values of mean grain size. The
shear speed measurements that define the carbonate relationships are mostly
from the Florida Keys. It has been postulated [Richardson et al. 1997] that
intraparticulate porosity (the porosity of the particles themselves, approxi-



5.2 Shear Wave Speed and Attenuation 157

mately 20% within Halimeda plates) at these sites in the Florida Keys could
account for the differences between carbonate and siliciclastic relationships.
If only interparticulate porosity (i.e., the porosity that results if the 20% in-
traparticulate porosity is considered part of the particulate volume) is used
to determine porosity, the relationship between shear wave speed and poros-
ity is nearly identical for the two sediment types (Fig. 5.16). Until additional
measurements are made in carbonate sediments, it is suggested that the re-
gression given in Fig. 5.16 (Vs = 692e−0.0494η) be used to predict shear wave
speed from porosity in %. Interparticulate porosity should be used for carbon-
ate sediments where significant intraparticulate porosity is found. Regressions
between shear wave speed and bulk density and mean grain size are given in
Figs. 5.17 and 5.18.

0

20

40

60

80

100

120

140

160

20 30 40 50 60 70 80 90

Porosity (%)

S
h

ea
r 

W
av

e 
S

p
ee

d
 (m

/s
)

Fig. 5.16. Shear wave speed versus porosity for all 87 sediment sites. Porosity is
calculated as interparticulate porosity (see text) for the carbonate sediments from
the Florida Keys. Regression (Vs = 692e−0.0494η, r2 = 0.86) is nearly identical
to the regression for the siliciclastic sediment alone. Porosity, η, is expressed as a
percent.

The empirical regressions given here provide the most accurate method
to predict shear wave speed in near-surface sediment, however, they are only
appropriate to predict shear wave speed at 20–30 cm depth in the sedi-
ment. Near-surface measurements of shear wave speed (Fig. 5.19) show that a
power-law regression provides a good fit of the observed dependence of shear
wave speed upon depth for a particular site (also see [Richardson et al. 1991b,
Wilkens and Richardson 1998, Richardson 2002]). A more general empirical
prediction of the depth dependence was obtained, using a regression for shear
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Fig. 5.17. Shear wave speed versus bulk density (kg m−3) for 87 sediment sites.
Regression (Vs = 0.3823e0.00284ρ, r2 = 0.85). Shear wave speed for the carbonate
sediments from the Florida Keys was slightly higher than for siliciclastic sediments
with the same bulk density.
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Fig. 5.18. Shear wave speed versus mean grain size for 87 sediment sites. Regression
Vs = 141−16.65Mz+0.455M2

z . Regressions for carbonate and siliciclastic sediments
were nearly identical.
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Fig. 5.19. Profile of shear wave speed measured using ISSAMS at 1 kHz for a sandy
site in the North Sea (Richardson, unpublished). Best-fit linear (Vs = 72.3 + 232d)
and power-law (Vs = 186.5.8d0.27) regressions account for 83% and 81% of the
variability, respectively, where d is the depth below the sediment–water interface
in meters. The power-law relationship is preferred to the linear relationship for
extrapolation to depths greater than measured here.

wave speed as a function of void ratio from [Richardson et al. 1991a], where
values of shear speed and void ratio were measured between 20 and 30 cm
below the sediment–water interface,

Vs = 55.3e−1.1394 . (5.8)

Note that e is the void ratio, not the base of the natural logarithms. This ex-
pression was combined with appropriate depth gradients to obtain the follow-
ing empirical prediction for shear wave speed in the upper meter of sediment
[Richardson et al. 1991b]:

Vs = 79.5e−1.1394d0.3 , (5.9)

where d is depth below the sediment–water interface in meters, and e is
the void ratio. Some errors in the equations, as originally published, have
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Fig. 5.20. Shear wave speed versus void ratio for 87 sediment sites. Void ratio is
calculated from values of fractional porosity (e = β/(1 − β)) using the correction
for interparticulate porosity (see text) for the carbonate sediments from the Florida
Keys. Regression (Vs = 59.7e−1.12e, r2 = 0.86) is only slightly different than that
presented by [Richardson et al. 1991a] for a smaller data set. Note that e in the
exponent is the void ratio and not the base of the natural logarithms.

been corrected here. This predictive regression matched shear wave gradi-
ents calculated from inversions of Scholte waves, measured using a geophys-
ical sled, from a variety of sediments on the northern coast of California
[Huws et al. 2000].

The following empirical predictive equations for shear wave speed in the
upper meter of sediment were generated by combining the most recent em-
pirical relationships between sediment physical properties (Figs. 5.15–5.18,
5.20) with a depth dependence d0.3:

Vs = 992e−0.0494ηd0.3 , (5.10)

Vs = 0.549e0.00284ρd0.3 , (5.11)

Vs = [202.5− 23.9Mz + 0.6528M2
z ]d

0.3 , (5.12)

Vs = 85.7e−1.12ed0.3 , (5.13)

where d is depth in meters, η is porosity in percent, ρ is bulk density in
kg m−3, and Mz is mean grain size expressed in phi units. In (5.13) the
symbol e stands for both the base of the natural logarithms and (in the
exponent) the void ratio. These four predictive equations are preferred to
the more general equations given by [Hamilton 1976a, Hamilton 1987] or to
the empirical formula (5.5) derived by [Bryan and Stoll 1988] from laboratory
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data. It should be noted that in situ measurements by [Stoll 1989] gave values
of shear modulus between 1.3 and 2.5 times values obtained by laboratory
techniques using (5.5).

Shear wave attenuation was measured using ISSAMS and the transposi-
tion technique at 18 sites and is regressed against average sediment physical
properties from cores collected at the same sites (Fig. 5.21). The shear wave
attenuation factor (ks, dB m−1 kHz−1) is much higher than the compres-
sional wave attenuation factor at the same sites (see Fig. 5.3) and appears to
be slightly higher in high-porosity fine-grained sediments compared to lower-
porosity sandy sites.

Based on the sparse data set available at the time, [Hamilton 1976c,
Hamilton 1987] concluded that the logarithmic decrement (5.7) for low-strain
shear waves was 0.3 ± 0.15 for sands and 0.2 ± 0.10 for mud. Log decrements
calculated for shear wave attenuation summarized here (Fig. 5.22) are only
slightly higher than those summarized by [Hamilton 1987] for both sand and
mud sediments. Gradients of shear wave attenuation have also been noted in
near-surface sediments (Fig. 5.23). The lack of strong relationships between
attenuation of both compressional and shear waves and sediment physical
properties (Figs. 5.3, 5.9, and 5.21) may reflect the nature of attenuation
measured at these acoustic frequencies. Attenuation of both compressional
and shear waves includes a variety of intrinsic attenuation mechanisms as well
as scattering and conversion to other forms of energy due to heterogeneity.
Given the high variability in shear and compressional wave attenuation and
the generally poor predictability based on regressions with sediment physical
properties, it is interesting that a good relationship exists between the ratio
of compressional and shear wave attenuations and porosity (Fig. 5.24). Sim-
ilarly, compressional and shear wave speed have a strong relationship (Fig.
5.25).

5.3 Biot’s “Slow Wave”

Poroelastic theory ([Biot 1962b, Stoll 1989], Ch. 10) predicts the existence
of a second bulk longitudinal wave (a wave having particle and fluid dis-
placement parallel to the direction of propagation). The speed of this wave is
much lower than that of the usual compressional wave, hence the name “slow
wave.” For slow waves, the motion of the fluid is out of phase with that of
the skeletal fame, and the attenuation is very high. The laboratory studies
of [Plona 1980, Johnson and Plona 1982] are often cited to support the exis-
tence of the slow wave in water-saturated sediments. However, they were only
able to detect a slow longitudinal wave in fused glass beads (shear speeds of
1400 m s−1) and were unable to detect the slow wave or a shear wave in similar
unconsolidated water-saturated beads. The presence of the slow wave in lab-
oratory experiments on fused or cemented samples has been adequately doc-
umented by [Klimentos and McCann 1988, Smeulders 2005] and others, yet
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Fig. 5.21. Empirical relationships between shear wave attenuation factor (ks, dB
m−1 kHz−1) and sediment physical properties for 19 sites including both carbonate
and siliciclastic sediments. The regressions are ks = 42.2+2.2η, ks = 20.2+9.23Mz,
and ks = 321−0.136ρ, where η is porosity in %, Mz is mean grain size in phi units,
and ρ is bulk density in kg m−3.
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Fig. 5.22. Comparison of shear wave attenuation (shear logarithmic decrement)
and sediment physical properties for 19 sites including both carbonate and silici-
clastic sediments.
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Fig. 5.23. Profile of shear wave attenuation measured using ISSAMS (1 kHz) at
a sand site in the North Sea (unpublished data, M.D. Richardson). Best-fit linear
line (αs = 21.7 + 96d) and power-law (αs = 67.1d0.31) regressions account for 58%
and 62% of the variability, respectively where d is depth in meters. Shear wave
attenuation probably decreases below the depths measured here.
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Fig. 5.24. Relationship between sediment porosity and the ratio of shear and
compressional wave attenuation. All acoustic measurements were made in situ us-
ing probes deployed by ISSAMS and a transposition technique for calculation of
attenuation [Richardson 1997b].
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Fig. 5.25. Empirical relationship between sediment shear and compressional wave
speed measured at 87 sites worldwide. All measurements were made in situ using
probes deployed by ISSAMS. The regression line is Vs = −481 + 0.348Vp with
r2 = 0.85.

the slow wave has not been directly observed in field experiments nor has its
existence been unequivocally inferred from high-frequency reflection, scatter-
ing, and penetration experiments [Thorsos et al. 2000a, Simpson et al. 2003].

In addition to the fundamental question of the existence of the slow wave
in unconsolidated sediments, there is the question of the importance of
poroelastic effects in sands. That is, are there significant poroelastic effects
that are not predicted by fluid or elastic theory even when the slow wave
is unobservable? In fact, theory and experiment indicate that poroelasticty
can reduce reflection and scattering levels in sands by 1–3 dB [Stoll 1980,
Stoll and Kan 1981, Stoll 1985, Chotiros et al. 2002b, Williams et al. 2002b]
(Ch. 10 of this monograph). In high-frequency acoustic seafloor interactions
in sands, these effects are well approximated by the effective density fluid
approximation ([Williams et al. 2001a], Sect. 10.2 of this monograph). This
is not a conventional fluid approximation, as the density is reduced from its
true value according to a prescription obtained from Biot theory.

5.4 Sound Speed and Attenuation versus Frequency

Wave speed and attenuation are not always measured at the acoustic fre-
quency of interest, thus frequency-dependent relationships become important.
Comparison of the sound speed and attenuation measurements of different
investigators over a large frequency range (1 Hz to 1 MHz) is difficult given
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Fig. 5.26. Sediment compressional phase speed measurements from the SAX99
experiment. The figure is adapted from [Williams et al. 2002a], and the references
are from that article. These data are identical to those displayed in Fig. 10.9.

the diverse number of sediment types involved as well as the diversity of
laboratory and field measurement techniques. Furthermore, any conclusions
are further compromised by the range of wavelengths (millimeters to 100s
of meters) and varying scales of sediment heterogeneity. In spite of the nu-
merous attempts to measure or compile data on wave speed and attenuation
[Hamilton 1971a, Stoll 1977, Stoll 1980, Stoll 1985, Stoll 1989, Kibblewhite
1989, Turgut and Yamamoto 1990, Bowles 1997, Maguer et al. 2000b, Stoll
2002], these complications have prevented unambiguous validation of com-
peting wave propagation theories. The compilation of [Williams et al. 2002a]
shown in Figs. 5.26 and 5.27 is based on data from a single site spanning three
decades of frequency. Although several different methods were used to obtain
this frequency coverage, this data set provides a beginning for efforts to test
competing theories for propagation in sediments (See Ch. 10 of this mono-
graph). These theories (Hamilton, Biot-Stoll, Buckingham) require a large
number of input parameters that are often difficult and sometimes impossi-
ble to measure, may have ambiguous meaning, and must often be applied to
heterogeneous natural sediments, making prediction of seafloor geoacoustic
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Fig. 5.27. Sediment attenuation measurements from the SAX99 experiment. The
figure is adapted from [Williams et al. 2002a], and the references are from that
article. These data are identical to those displayed in Fig. 10.10.

properties from physics-based models difficult. Although unsatisfying from
a physics perspective, the best estimates of wave properties (speed and at-
tenuation) come from either direct measurements or empirical relationships
among seafloor properties. This topic is revisited in Sect. 10.3.

5.5 Bulk Density Regressions

Although bulk density is treated as a sediment physical property in Ch. 4, it
is an essential parameter in all sediment wave theories. The regressions given
here are based on the Richardson–Briggs data set and methods described
in Sect. 5.1.1. Both siliciclastic and carbonate sediments are included. The
regression for bulk density as a function of mean grain size is compared with
data in Fig. 5.28 and is

ρ = 2.17− 0.082Mz . (5.14)

The inverse regression for mean grain size in terms of density is
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Fig. 5.28. Comparison of regression for density as a function of mean grain size
with data from 12 carbonate and 55 siliciclastic sites. The dashed lines are 95%
confidence bounds.
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Mz = 22.11− 9.82ρ . (5.15)

Both regressions have a coefficient of determination, r2, of 0.80. This reflects
the high degree of scatter in the data, showing that grain size is not an
accurate predictor of bulk density, as is typical of earlier regressions, e.g.,
[Hamilton and Bachman 1982]. Nonetheless, in many circumstances this is
the only means available for estimating density at sites where density or
porosity data are lacking. If porosity has been measured, the expression given
in Table 4.5 can be used to obtain bulk density.

5.6 Properties of Rock

Rock or rock material in the form of large boulders or calcareous reefs is often
a source of acoustic scattering at the seafloor. The bulk density and com-
pressional and shear speeds (equivalently, bulk and shear modulus) of rocks
typically found at the seafloor are functions of the chemistry and mineralogy
of component minerals, the relative porosity and percent saturation (see Sect.
4.3 for definitions), and the rock microstructure. The bulk density and bulk
modulus of the common constituents of coastal marine sediments as well as
rock material are given in Table 4.7. Specific values for properties of differ-
ent rock types have been compiled in numerous handbooks of the physical
properties of rocks (e.g., [Mavko et al. 1998] and compressional- and shear-
wave speeds of marine rock are given in [Hamilton 1978, Hamilton 1979b].
For typical low-porosity (< 1%), saturated rock specimens, wet bulk density
is higher for basalts (2870 kg m−3) than granites (2660 kg m−3); whereas
higher-porosity (10–30%) sandstones and siltstones tend to have lower bulk
density (2100–2500 kg m−3) which is dependent on porosity. The bulk density
of calcareous reef material and shell material is also dependent on porosity
and can range from the bulk density of calcite or aragonite for shell ma-
terial (2700–2950 kg m−3) to as low as 2000 kg m−3 for higher-porosity
cemented reef material (see Sect. 3.2.3). Sound speed in low-porosity satu-
rated igneous and metamorphic rock samples is about 5–6 km s−1. Sound
speed in saturated sandstone and mudstones (sedimentary rocks) is a func-
tion of both porosity and the relative percentages of sand and mud and can
range between 2 and 6 km s−1 with lower sound speeds at higher porosities
[Erickson and Jarrard 1998b]. Sound speed in low-porosity carbonate mate-
rial (< 10%) can be as high as 5.5 to 6.0 km s−1 but is much lower in
higher-porosity cemented reef material. Average measured shear speeds tend
to be roughly 40–60% of the sound speed values. This translates into a Pois-
son’s ratio of 0.2 to 0.4 for most rock material. In contrast, unconsolidated
marine sediments have a Poisson’s ratio near 0.5. Attenuation in rocks is fre-
quency dependent and, at higher frequencies, more variable and thus difficult
to measure. Attenuation mechanisms are the subject of much debate and are
a topic which is well beyond the scope of this monograph.
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5.7 Research Issues

A consistent theme throughout this chapter is the importance of characteriz-
ing the frequency-dependent behavior of sound speed (dispersion) and atten-
uation for near-surface sediments (e.g., [Williams et al. 2002a]). An internally
consistent set of accurate measurements of sound speed and attenuation at
the same location and time and for a homogeneous section of sediment over
the frequency range of a few hundred hertz to hundreds of kilohertz does
not exist. Much of the problem is associated with the difficulties of making
accurate measurement of sound speed and attenuation, especially at lower fre-
quencies. The accuracies of most sound speed and attenuation measurements
are rarely reported. Understanding and predicting dispersion is not only im-
portant for making accurate predictions of sound speed from sediment physi-
cal properties (and the inverse) and for predicting sound speed at frequencies
other than those measured but also for determination of which theories best
account for wave propagation in near-surface sediments. Measurement of at-
tenuation presents additional problems. Attenuation measurements include
all types of energy losses including intrinsic attenuation, wave conversion
at boundaries and other heterogeneities, and scattering. These effects are
rarely separated, making frequency-dependent intrinsic attenuation difficult
to evaluate. The higher-than-predicted values in attenuation measured at
high frequencies (> 25 kHz) are sometimes ascribed to various scattering
mechanisms, but this has not been shown convincingly. The high variability
in attenuation presented herein and in most other studies may be real or a
result of measurement techniques. Comparison of frequency-dependent sound
speed and attenuation can also be complicated by gradients in sound speed
or attenuation or by layering.

A reasonable database of shear wave speed has recently been collected
using in situ measurement techniques. It does appear that shear wave speed
can be predicted from sediment physical properties. However, there is a very
sparse data set from which to predict shear wave attenuation, and more mea-
surements are needed. More data, from a variety of sediment types, on the
gradients of shear wave speed and attenuation are also needed to validate Eqs.
(5.9)–(5.13). The potential anisotropic behavior of shear wave propagation
also needs investigation. All of the measurements used to develop the shear-
wave versus physical property regressions given in this chapter were based
on horizontally generated stresses propagating in a horizontal direction. The
possible effects of anisotropy due to the distribution of effective stress (char-
acterized by K0) and by layering or particle orientation have been neglected.

The importance of poroelastic behavior to reflection and scattering levels
is an area of disagreement among high-frequency investigators. It is unlikely
that the “slow wave” will be detected in natural sediments by conventional
measurement methods. However, the losses in energy as compressional waves
are converted to “slow waves” might provide an indication of their presence.
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Seafloor roughness can be a dominant contributor to sound scattering at
higher acoustic frequencies, causing reverberation through backscattering and
altering propagation through forward scattering. Seafloor roughness, espe-
cially that associated with sand ripples, can also diffract sound downward
into the sediment promoting the seafloor penetration necessary for sonar de-
tection of buried objects. Together with sediment sound speed, attenuation,
and bulk density, a statistical characterization of seafloor roughness, often
in the form of RMS roughness, RMS slope, or power spectral density, is a
critical input to most scattering and penetration models described in Chs. 13
and 15. Much of the present body of knowledge, especially related to mea-
surement techniques and statistical characterization, comes from studies in
geology, geophysics, and oceanography, but an increasing effort is being di-
rected toward specific high-frequency acoustic applications. This recent work
is the primary subject of this chapter.

The morphology of the seafloor encompasses a wide range of spatial scales.
Larger-scale features traditionally studied in the fields of geology and geo-
physics include basinwide tectonic features, like the mid-Atlantic Ridge, re-
gional bathymetry, sand ridges, coral reefs, shell deposits and other hard
grounds, and beach profiles. Smaller-scale features studied in the fields of
benthic ecology, hydrodynamics, and sediment transport include sand rip-
ples, pits, craters, and mounds created by fish and decapods; smaller bio-
genic features such as trails, tracks, tubes, and burrows created by worms
and other centimeter-size organisms (Fig. 6.1); and, ultimately, grain-scale
features. It is these smaller-scale features that are of most interest in high-
frequency acoustic applications. While larger features are stable over tens to
thousands of years, smaller features, such as sand ripples and biogenic fea-
tures, are constantly being altered, which may change seafloor characteristics
over hours or days.

Generally, the needs of the acoustic modeler differ from those of the geol-
ogist or geophysicist with regard to the characterization of roughness. While
geologists and geophysicists seek information on recurring patterns in the
dimension, distribution, and shape of seafloor features over a large range
of spatial scales, high-frequency acoustic modelers are primarily interested
in a statistical analysis of small features on the scale of the acoustic wave-
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Fig. 6.1. Examples of seafloor roughness: (A) Fresh storm-generated ripples in a
medium sand sediment in 19-m water depth. (B) A fine sand with biogenic rough-
ness features such as mounds, trails, and track marks. (C) A sand dollar destroying
small 10-cm wavelength ripples. (D) A highly bioturbated muddy sand seafloor
with many examples of biogenic features such as fresh mounds, trails, and tracks.
(E) A shallow water ooid sand with a mixture of ripple types. (F) A field of 30- to
40-cm wavelength ripples in ooid (carbonate) sands from the Ocean Cay, Bahama
Islands (note the smaller set of secondary ripples formed 45◦ to the primary ripple
field). (G) Carbonate hard ground which is nearly devoid of sediments and covered
with sponges and corals. (H) A shelly seafloor with sea urchins. Note that hydrody-
namically induced roughness tends to be anisotropic whereas biologically induced
roughness tends to be isotropic. Courtesy of R. I. Ray. (see first color insert)
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length, so-called “microtopography.” For the purpose of understanding and
predicting interactions of high-frequency acoustic energy with the seafloor,
roughness features having scales comparable to acoustic wavelengths are re-
sponsible for sound scattering, while larger features cause changes in the
grazing angle of the acoustic wave with respect to the bottom (i.e., they de-
termine the seafloor slope). In the acoustic penetration problem, the ripple
amplitude and phase both affect the detection of buried objects. Statistical
characterization of seafloor roughness at spatial scales larger than the “en-
sonified region” adds little to the predictive nature of acoustic backscattering,
however spatial variations in roughness affect the statistics of sonar echoes
(Ch. 16). We therefore restrict most of our discussion to techniques used to
measure and quantify roughness at resolution scales of less than a few meters
to tenths of a millimeter. It must be realized that, depending on acoustic
wavelength, individual features such as shells and other roughness elements
at the sediment–water interface may be more appropriately characterized as
discrete scatters than as microtopography.

The most commonly used statistical measure of seafloor roughness is the
“power spectral density” (hereafter referred to as the “roughness spectrum”).
Definitions will be given in Sect. 6.1. Roughness measurement techniques are
described in Sect. 6.2, where it is noted that some techniques only provide re-
lief measurement along one-dimensional tracks or profiles across the seafloor.
In these cases, the estimated 1D spectrum must be converted to 2D, using
assumptions and methods outlined in this chapter. Other issues discussed in
this chapter include spatial and temporal stationarity and their effects on
seafloor scattering, the use of a single power-law to characterize roughness
over a range of spatial scales, relationships between sediment roughness and
sediment physical properties, and the importance biological and hydrody-
namic processes that create and alter seafloor roughness.

6.1 Statistical Characterization of Seafloor Roughness

Acoustic models for scattering due to interface roughness require various
statistical measures of roughness. This section will give essential definitions,
leaving technical details to Sect. D.1. The 2D interface relief can be expressed
as

z = f(R) , R = (x, y) , (6.1)

where f(R) is the “interface relief function,” with zero mean

< f(R) >= 0 , (6.2)

and mean square
h2 =< f2(R) > . (6.3)
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The parameter h will be referred to as the “RMS roughness.” The covariance
of the interface relief is required for the Kirchhoff (Sect. 13.3) and small-slope
(Sect. 13.4) approximations

B(R) =< f(R0 +R)f(R0) > . (6.4)

Note that 2D vectors are denoted by uppercase boldface characters. The
brackets <> in the equations above denote an average over an arbitrarily
large ensemble of different seafloor relief functions. This formal averaging
process can be approximated in practice by averaging over multiple realiza-
tions of seafloor relief derived from the acoustic, optical, electrical, or manual
tracing techniques described in Sect. 6.2. If the covariance is divided by the
mean-square roughness, the result is the “autocorrelation,” which has a peak
value of unity when the “lag,” R, is zero.

Equations (6.2–6.4) embody the assumption of spatial stationarity: all
statistical measures such as variance, covariance, and higher-order moments
are independent of the location at which they are evaluated. As a result, the
covariance depends only on the difference of the two coordinate vectors defin-
ing the two positions at which relief is measured. This is an approximation
whose utility depends on the scale over which the seafloor can be considered
statistically similar. If the roughness statistics can be regarded as similar
over an area large compared to the size of the area ensonified by the sonar
of interest, then the assumption of stationarity is reasonable.

Scattering models based on small-roughness perturbation theory (Sect.
13.2) require the roughness spectrum, which is the Fourier transform of the
relief covariance:

W (K) =
1

(2π)2

∫
B(R)e−iK·Rd2R . (6.5)

The variable K = (Kx, Ky) is a two-dimensional “wave vector,” whose

magnitude, K =
√
K2

x +K2
y , is called the “wavenumber.” Wavenumber and

wavelength, λ, are related by

K =
2π
λ

, (6.6)

so that small wavenumbers correspond to large wavelengths and vice versa.
The spectrum is normalized so that its integral over all Kx and Ky (positive
and negative) is equal to the mean-square roughness, h2:

h2 =
∫

W (K)d2K . (6.7)

The dimensions of the 2D spectrum are (length)4. As will be seen, roughness
measurements are usually presented as spectra, and, given the spectrum, the
covariance can be found using an inverse Fourier transform. This step may be
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taken numerically or formally, after a convenient function has been fitted to
the spectrum (Sect. D.1.1). Other measures of roughness can also be obtained
from the spectrum, such as the RMS roughness, h (6.3), and the RMS slope
(13.68).

In addition to the assumption of stationarity, it is often assumed that
seafloor roughness obeys Gaussian statistics. In this case, “second-order”
statistics (either the covariance or the spectrum) provide a complete charac-
terization from which any desired statistical property (e.g., higher statistical
moments) can be determined. This largely untested assumption is usually
made in implementing the Kirchhoff (Sect. 13.3) and small-slope (Sect. 13.4)
approximations in scattering models. Figure 6.1H is an example of seafloor
roughness that cannot obey Gaussian statistics.

If the seafloor roughness exhibits no directional features, such as ripples,
the spectrum will be “isotropic,” dependent only on the wavenumber, K.
Examples of isotropic and anisotropic roughness and corresponding spectra
are shown in Sect. 6.3.

Scattering models usually employ convenient functional forms for rough-
ness spectra. One of the simplest and most often used isotropic spectral forms
is the “power law,”

W (K) =
w2

Kγ2
. (6.8)

The parameter w2 is called the “spectral strength,” and the parameter γ2 is
called the “spectral exponent.” The power-law spectral form can only hold
over a finite range of scales, as the extension to zero and infinite scales causes
pathological behavior (Sect. D.1). If the power law holds over a sufficiently
wide range of scales, the relief can be regarded as “fractal,” possessing inter-
esting scaling properties. One such property is “self-similarity,” in which the
roughness appears statistically the same if it is scaled by any factor, with the
same scaling in both the horizontal and vertical. This behavior only occurs
for γ2 = 4. For the more general case, a different scaling is required in the
horizontal than in the vertical in order to restore similarity. Such behavior
is “self-affine,” and the validity of this idealization of the rough seafloor is
discussed in Sect. 6.5.

An important consequence following from power-law behavior is that RMS
roughness is a scale-dependent parameter, in spite of its widespread use in
quantifying roughness. As noted above, the mean-square roughness is the
integral of the spectrum over all Kx and Ky. With a power-law spectrum,
this integral is infinite, with the infinity arising from the limit Kx Ky → 0,
for which the spectrum approaches infinity. This unphysical result shows that
the power law cannot persist for very long wavelengths; the spectrum must
“roll over” as wavenumber becomes smaller than some finite value. The length
scale corresponding to this value is sometimes referred to as the “outer scale.”
This outer scale is apparently rather large (Sect. 6.5), certainly larger than
the field of view of typical seafloor relief measurements (Sect. 6.2). If RMS
roughness is determined from stereophotography, the field of view sets a size
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limit to the longest wavelengths that can be included. A finite RMS roughness
results from such measurements, just as one would obtain a finite value by
integrating the spectrum down to the smallest resolvable wavenumber. From
this, it follows that RMS roughness increases as the field of view increases in
size, until the field of view becomes larger than the outer scale. This point is
discussed in [APL-UW TR 9407] and Sect. D.1.1. In spite of this, comparison
of RMS roughness for different sites determined from photographs is still a
sensible procedure, provided the photographs all have similar-sized fields of
view and provided the relative nature of RMS roughness is acknowledged.

Some authors prefer spatial frequency (cycles/unit length) to wavenumber
as the spectral argument. The relation between wavenumber, K, and spatial
frequency, F , is analogous to the relation between temporal frequency, f ,
and angular frequency, ω, thus K = 2πF . In this case, the wave vector, K, is
replaced by spatial frequencies Fx and Fy, with Kx = 2πFx and Ky = 2πFy.
The 2D spectra are related as follows:

Φ(Fx, Fy) = (2π)2W (2πFx, 2πFy), (6.9)

where Φ(Fx, Fy) is the 2D spectrum in terms of spatial frequency.
In many instances, roughness measurements are confined to a 1D track.

The dimensions of 1D roughness spectra are (length)3. The resulting 1D
spectra can be converted to equivalent 2D form if the roughness is isotropic.
This conversion is not trivial and is described in Sect. D.1.2. Briggs’ published
spectra (see Table 6.1) are one-dimensional, and have spatial frequency as the
argument. These spectra will be denoted Φ1(F ) in this monograph. Analogous
to (6.9), the connection between the 1D spectrum in wavenumber, W1(K),
and the 1D spectrum in spatial frequency is

Φ1(F ) = 2πW1(2πF ) . (6.10)

Measured 1D spectra are often fit by the power law

Φ1(F ) =
φ1
F γ1

. (6.11)

The parameter φ1 is called the “intercept,” because in a log–log plot, the
power-law spectrum appears as a straight line intercepting the vertical line
(F = 1) at the value φ1 [Briggs 1989]. The slope of the spectrum in such a
plot is −γ1. That is, the spectral slope reported by Briggs is the negative of
the 1D spectral exponent. Examples will be given in Sect. 6.3, and Table 6.1
lists slope and intercept values for a large number of sites. The equivalent
2D parameters, w2 and γ2, can be found using relations given in Sect. D.1.2.
Section D.1.3 discusses the units of the parameters w2 and φ1.

6.2 Measurement of Seafloor Roughness

A variety of techniques have been used to quantitatively characterize seafloor
microtopography including manual tracing [Briggs 1989], stereophotography
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[Briggs 1989, Wheatcroft 1994, Lyons and Pouliquen 2004], electrical resis-
tivity probing [Briggs et al. 2002b, Tang 2004], laser line scanning [Moore
and Jaffe 2002], laser imaging (N. P. Chotiros in [Richardson et al. 2001a]),
ultrasound profiling (Y. Igarashi and R. L. Allman cited in [D. Jackson et al.
1986b]), towed acoustic multibeam and sidescan sonar [Stewart et al. 1994,
Briggs et al. 2005a], and bottom-mounted sector-scanning and pencil beam
sonar [Irish et al. 1999]. These physical, optical, electrical, and acoustic tech-
niques are used to develop one-dimensional (1D) linear elevation profiles or
two-dimensional (2D) maps of seafloor elevation, the elemental data required
for statistical characterization of seafloor topography. The roughness statis-
tics that are often extracted from these data have been chosen to meet the
input requirements of high-frequency scattering models rather than to study
the evolution of seafloor microtopography or the processes that create and
destroy that morphology. However, future studies may emphasize the use
of statistical characterization of microtopography and spatial and tempo-
ral variability in high-frequency acoustic scattering to quantify types and
rates of biological and hydrodynamic processes that alter seafloor microtopog-
raphy [Wheatcroft 1994, Traykovski et al. 1999, Pouliquen and Lyons 2002,
Self et al. 2001, Hay and Mudge 2005]. In the next few paragraphs a histor-
ical development of seafloor roughness measurement is presented.

Hull-mounted and towed multibeam sonar systems developed in the
1970s, and operating in the approximate frequency range of 12–30 kHz,
provided a unique 2D view of the seafloor and one of the first opportu-
nities to statistically characterize seafloor topography at resolution scales
of tens of meters to hundreds of kilometers. Fractal parameters, autocor-
relation, slope histograms, Gaussian statistics or other statistical methods
were developed to characterize topography of a variety of oceanic ridge
crest, seamount, abyssal plain, continental shelf, and continental rise terrains
(e.g., [Fox and Hayes 1985, Goff and Jordan 1989a, Goff and Jordan 1989b,
Goff and Tucholke 1997]). Fox and Hayes suggested that a single power-law
spectrum could be used over scales ranging from centimeters to kilometers.
This was based on data collected with a hull-mounted multibeam sonar, a
deep-towed profiling sonar, and stereophotographic images, all collected from
the continental rise along the Atlantic coast of the United States. The validity
of this hypothesis will be discussed in Sect. 6.5.

One of the earliest uses of stereophotographs to statistically quantify
seafloor microtopography is due to [Akal and Hovem 1978]. They developed
digital elevation maps from pairs of stereo bottom photographs and pro-
cessed these to obtain a two-dimensional autocorrelation function that pro-
vided information on the wavelength content and orientation of microtopog-
raphy. As will be seen, modern stereophotographic techniques are not sig-
nificantly different from those employed by Akal and Hovem. Several others
[Swift et al. 1985, Huntley and Hazen 1988, Hollister and Nowell 1991] also
resolved seafloor morphology at spatial scales appropriate for high-frequency
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modeling but focused on contouring sediment features rather than provid-
ing the statistical characterization needed for acoustic scattering models. All
of these early studies were restricted to a few images because of the large
computational time required to create 2D elevation maps at high-resolution
scales.

The first serious attempts to measure seafloor microtopography for high-
frequency acoustic modeling were made in the late 1970s and early 1980s.
One method, described in [Briggs 1989], employed a tracing system by which
divers manually drew 1.8-m-length profiles of seafloor roughness on a Mylar
sheet, thus creating digitized profiles of bottom microtopography. The sys-
tem was labor-intensive, but useful in conditions where the optical clarity of
the water is poor. Also in the early 1980s, Igarashi and Allman (as reported
in [D. Jackson et al. 1986b]) developed an acoustic microprofiler operating
at 5.75 MHz to obtain microroughness spectra. Early microroughness mea-
surements using stereophotography by investigators at a British Admiralty
laboratory are also reported in [D. Jackson et al. 1986b].

Fig. 6.2. A summary of photogrammetric techniques used by K. Briggs to measure
seafloor microtopography. Stereophotographs are made with a diver-operated 35-
mm camera, paired images are processed with a stereocomparator to obtain relative
height profiles, and power spectra are estimated from the profiles and then averaged
(see [Briggs 1989] for details).

The bulk of 1D microroughness data from stereophotography is due to
[Briggs 1989], who developed diver-operated stereophotogrammetric systems
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for shallow-water and remotely operated systems for deeper waters. In shal-
low water, divers navigate a 35-mm underwater stereo camera, which is at-
tached to a rigid frame to control focal distance (91 cm) and orientation,
along the seafloor to be characterized (Fig. 6.2). At greater depths a remote
system using a pair of 70-mm cameras is used to photograph the seafloor
from distances of 90–200 cm, depending on water clarity. Both systems are
self-contained and thus independent of surface electrical cables. Roughness
height values are digitized from stereo pairs with a stereocomparator along
linear profiles at intervals spaced according to the particular application and
picture quality. Typical resolutions of 1 mm in the vertical and 0.5 mm in
the horizontal are obtainable from high-quality images. Several profiles are
normally analyzed from each pair of photographs to obtain the roughness
power spectrum over path lengths of 30–100 cm. The digitized data from
each profile (with samples equally spaced and totaling a power of 2) are
prewhitened by taking the differences of adjacent points, and then possible
leakage is eliminated by subtracting the sample mean from the prewhitened
data. The resultant data are tapered with a 20% cosine bell and a fast Fourier
transform is used to compute a periodogram. The periodograms are smoothed
by ensemble averaging from all profiles from the same orientation or for all
orientations if the roughness is isotropic. In most cases, spectra from several
stereophotographs collected at each site are averaged. Normally the rough-
ness height profiles are oriented along the azimuthal direction of the acoustic
transmitters used in the experiments. Where sand ripple fields are present,
profiles are oriented parallel and orthogonal to the crest-to-crest ripple train.
Roughness is reported as the 1D spectral slope and spectral intercept and as
RMS along the same transects (Table 6.1).

A digital stereophotogrammetric system has been used at the NATO Un-
dersea Research Centre since 1997 [Lyons and Pouliquen 2004] to automati-
cally characterize 2D seafloor relief over scales from about 1 m to 1 mm (Fig.
6.3). Digital cameras (1280 x 960 pixels), mounted on a rigid frame at 91-cm
focal distance from the seafloor and hard-wired to either the shore or ship,
are used to produce stereo images of the seafloor. A Desktop Mapping System
(R-Wel, Inc.) using area-based mapping is used to construct 2D digital eleva-
tion maps from the stereo images. After data tapering, Fourier-transformed
height data are used to construct 2D roughness spectral density maps. These
steps are illustrated in Fig. 6.4. Either azimuthally averaged or azimuthal-
specific 2D roughness power spectra can then be calculated and used as inputs
to scattering models (see Sect. 13.2.4). This stereophotogrammetric system
has been used to characterize seafloor roughness near Elba Island, Italy, in
1997 [Lyons et al. 2002b] and again in 2003 [Pouliquen et al. 2004], near the
coast of Halifax, Canada, in 2001 [Pouliquen et al. 2004], in La Spezia Bay
[Pouliquen and Lyons 2002], and in the northeastern Gulf of Mexico during
SAX99 (A.P. Lyons in [Richardson et al. 2001a]). This system has since been
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Fig. 6.3. The digital stereo camera system described by [Lyons et al. 2002b,
Lyons and Pouliquen 2004] being deployed off the harbor of Marciana Marina, Is-
land of Elba, Italy (left) and collecting data from a sandy seabed in 10-m water
depth (right). The data acquisition, camera control, and power supply are connected
to the ship using an electromechanical cable.

Fig. 6.4. Upper: Overlapping stereophotographs (photo: SAX27) collected by A. P.
Lyons from the SAX99 experiment in the northeastern Gulf of Mexico. Lower left:
Digital elevation map. Lower right: Calculated two-dimensional power spectral den-
sity calculated from the digital elevation map. Note the isotropic nature of the mi-
crotopography. See text or [Lyons et al. 2002b] for description of methodology. The
spectrum color scale is for 10 log10[S(Fx, Fy)]. (see first color insert)
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improved by updating to higher-resolution cameras and improving the digital
elevation software.

Electrical resistivity probes have been used to measure seafloor microto-
pography [Briggs et al. 2002b, Tang 2004]. The abrupt increase in electrical
resistivity (expressed as formation factor, see Sects. 4.4.2 and 7.1) as elec-
trodes were inserted in the sediment was used to map the seafloor elevation at
1-cm horizontal resolution during SAX99 (Fig. 6.5). Roughness power spectra
estimated with the same techniques used for elevation profiles from stereopho-
tographs yielded statistically similar values of spectral strength and spectral
exponent, but did not include the highest spatial frequencies obtained with
stereophotography. A second electrical resistivity system (IMP2) was devel-
oped by [Tang 2004] to characterize seafloor relief along a longer path length
(4 m) but at a slightly lower resolution. This instrument provides the capa-
bility to measure the relief of buried interfaces as shown in Fig. 6.6.
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Fig. 6.5. Two-dimensional microtopography measured using IMP during SAX99.
Note that all three scales are different. Adapted from [Briggs et al. 2002b].

Using a laser line scanner, [Moore and Jaffe 2002] measured elevation over
a 1.35-m transect at < 1-mm resolution over a 9-day period during SAX99.
They reported larger-scale features such as ripples decreasing in amplitude
from 2.5 cm to 2.0 cm and smaller-scale features degrading after 20–30 hours.
Rapid changes in bottom features were attributed to feeding and locomotion
behavior of benthic and pelagic animals. Roughness power spectral slopes
and intercepts estimated from laser images were about the same as those
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Fig. 6.6. Formation factor measured along a 1D track using IMP2 during SAX04.
These data show a mud layer overlying rippled sand. The sand appears as red-
orange, while the mud appears as light blue-green with yellow inclusions of sand.
The light blue indicates seawater, and regions for which there are no data are dark
blue. Courtesy of D. Tang. (see second color insert)

measured from stereophotographic images over the spectral frequency range
0.02 to 2 cycles cm−1.

6.3 Examples of Seafloor Roughness Spectra

Figure 6.7 displays 1D spectra showing time variation of roughness at the
SAX99 site [Briggs et al. 2002b] over a period of one month. The 4 October
spectra are richer in long-wavelength features, which were storm-generated
ripples. As time progresses, these ripples decay, and smaller roughness fea-
tures grow, as evidenced by the increase in the high-frequency part of the
spectrum. Also evident in Fig. 6.7 is an apparent break in the slope of the
roughness spectra between 1 and 2 cycles cm−1 (see [Williams et al. 2002b].
Whether this change in slope is real or a function of the method of manual
digitization is not certain. In computing this type of spectrum, several data
manipulations are made in order to reduce bias. Several tracks are selected
from each pair of photographs to create digitized elevation maps using a stere-
ocomparator. The digital elevations maps are prewhitened and tapered prior
to calculation of individual power spectra. The power spectra from multiple
photographs collected on the same date are averaged. Averaging the rough-
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Fig. 6.7. Changes in 1D spectra derived from stereophotographs collected dur-
ing the SAX99 experiments in the northeastern Gulf of Mexico in 1999: 4 Oc-
tober (red), 19 October (green), 23 October (blue), and 5 November (purple)
[Briggs et al. 2002b]. The ordinate is 10 log10[S(F )]. (see second color insert)

ness power spectra assumes that the spatial and temporal seafloor relief is
a stationary, random process, at least over the spatial and temporal scales
photographed. This averaging may blur features that seem evident on casual
inspection of photographs. The human brain is good at recognizing regular
patterns, such as relatively faint ripple superimposed on random microto-
pography. If the ripples do not have a consistent wavelength and direction,
they may not stand out as a peak in the roughness spectrum. An example
showing a clear spectral peak due to ripple is shown in Fig. 6.8. These data
were obtained over a single track during SAX04 using IMP2.

For anisotropic conditions, such as rippled seafloors, 2D spectra give more
information than 1D spectra (Fig. 6.9). Alternately, 1D spectra determined
along specific azimuths can be used to reveal anisotropy, but it is difficult
to infer the 2D spectrum from such 1D data. It is important to realize that
slices through a 2D spectrum, such as those displayed in Fig. 6.10, are not
1D spectra in the corresponding directions. Connections between 1D and 2D
spectra are given in Sect. D.1.2.

A comparison of 2D anisotropic roughness spectra from sand ripples from
Marciana Marina, Elba Island, Italy, with a well-bioturbated sandy sediment
found in the Bay of La Spezia, Italy, demonstrates the importance of 2D
digital elevation mapping in determining relief spectra for anisotropic and
isotropic seafloors (Fig. 6.9). Two-dimensional roughness power spectra can
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Fig. 6.8. Roughness spectrum measured using IMP2 during SAX04. The measure-
ment track was orthogonal to the ripple crests, and a spectral peak due to the
ripples is evident. The ordinate is 10 log10[W1(K)]. Courtesy of D. Tang.

also be used to parameterize seafloor roughness at different azimuthal orien-
tations (Fig. 6.10).

Table 6.1 provides roughness data from sites where grain size as well as
seafloor roughness were measured. The table gives RMS roughness, spectral
slope, and spectral intercept. The uncertainties in these data (+2 dB to −3
dB for the 95% confidence limits) combined with typical errors in measured
acoustic data (± 2 dB in [Williams et al. 2002b]) are such that model-data
differences as large as 4 dB do not necessarily imply disagreement. Although
values of roughness parameters may not be applicable outside the measured
wavenumber range, it is not uncommon to extrapolate outside of this range,
assuming that the power law holds over a wide band of spatial frequency
(Sect. 6.5). The data in Table 6.1 will be used in Sect. 6.6 to demonstrate re-
lationships among values of roughness statistics and sediment physical prop-
erties.

6.4 Temporal Variability in Seafloor Roughness

As discussed in Ch. 4, the seafloor is dynamic with bottom features be-
ing constantly altered by competing hydrodynamic and biological processes.
Unfortunately, characterization of roughness during high-frequency acous-
tic experiments is often restricted to a single point in time. As will be
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Fig. 6.9. Single images of the paired stereophotographs from a fine sand sediment
near the Bay of La Spezia (left) and from a ripple seafloor near Elba Island (right)
collected by A.P. Lyons. The digital stereo images were used to develop digital eleva-
tion maps (middle panels) and two-dimensional relief spectra (bottom panels) and
visually demonstrate the difference between bioturbated isotropic sediments and
anisotropic rippled seafloors (see [Lyons et al. 2002b, Pouliquen and Lyons 2002]
for details). The color scale is for 10 log10[S(Fx, Fy)]. (see second color insert)

shown, the lack of temporally coincident acoustic and roughness measure-
ments may degrade comparisons of measured and predicted scattering. In
energetic sandy environments, seafloor roughness is often in equilibrium with
hydrodynamic forcing, resulting in anisotropic ripple fields (Fig. 6.11a). Un-
der these conditions, sand ripple type, height, and wavelength are gener-
ally predictable given sediment type (mean grain size), water depth, sur-
face wave conditions, and storm or tidal bottom current speed and direction
[Wiberg and Harris 1994, Traykovski et al. 1999, Hay and Mudge 2005]. In
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Fig. 6.10. Roughness height spectral density level slices of the 2D power spectral
density presented in Fig. 6.4. The slice directions are (a) 0◦, (b) 45◦, (c) 90◦, (d)
135◦. The ordinate (HSDL) is 10 log10[S(Fx, Fy)]. Courtesy of A. P. Lyons.

less energetic sandy environments, ripple fields created during major storms
are slowly destroyed by biological activity until an isotropic roughness regime
having a less steep spectral slope is achieved [Briggs et al. 2002b] (Fig. 6.11).
The rate of degradation of these wave- or current-induced features is largely
unknown. In less energetic, often fine-grained environments, bottom currents
and waves are rarely of such strength as to erode or resuspend sediments,
and roughness is dominated by a combination of depositional events and by
biological alteration of the surface. The seafloor has a smooth, often isotropic
relief after depositional events. However, biological processes soon begin to
create small-scale isotropic relief features, such as trails, pits, burrows, and
mounds, and the equilibrium state of roughness is often achieved within only
a few days [Wheatcroft 1994].

The importance of temporally concurrent roughness and acoustic mea-
surements is demonstrated by the results of three experiments. In these ex-
periments temporal changes in the bottom relief spectra were measured using
a combination of analog and digital stereophotography coupled with the mea-
surements of high-frequency acoustic backscattering strength. These are the
only examples known to the authors of concurrent temporal characteriza-
tion of seafloor roughness and measurement or prediction of high-frequency
acoustic backscattering strengths. During SAX99 in the northeastern Gulf
of Mexico, [Briggs et al. 2001] observed seafloor roughness features for a 30-
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(a) (b)

Fig. 6.11. Bottom photographs taken by A. P. Lyons during the SAX99 high-
frequency experiments: (a) sharp-crested, well-defined ripples were present at the
beginning of the experiment and (b) small pockmarks created by feeding fish. From
[Richardson et al. 2001a].

day period (4 October to 5 November 1999), during which a storm created
relatively sharp-crested, well-developed storm orbital ripples (50- to 70-cm
wavelength) on the sandy seafloor. Within 15 days after the storm, biological
processes reduced ripple heights to subtle undulations, resulting in a reduc-
tion in both the slope and intercept of the relief spectra (see Fig. 6.7). These
differences in relief spectra led to an approximate 2-dB reduction in modeled
backscatter strength at 40 kHz.

Also during SAX99, the seafloor was raked with 1.95-cm tine spacing
within the field of view of an acoustic tower [Richardson et al. 2001b]. These
artificial ripples were completely destroyed within 24 hours by biological pro-
cesses. The 2D power spectra derived from digital stereophotographs at a
raking site near the site of these acoustic experiments show the change from
an isotropic roughness just before the raking to a highly anisotropic rough-
ness just after raking and then a decay of the ripples back to the original
isotropic relief within 24 hours (Fig. 6.12). This rapid decay of ripple struc-
ture was commensurate with rapid changes in acoustic backscattering (Fig.
6.13). Note that the tine spacing of the rake was set to the approximate Bragg
frequency (1/2 wavelength at 40 kHz) for maximum effect (see Sect. 13.1).

In another observation of the temporal change of seafloor roughness,
[Pouliquen et al. 2004] collected stereophotographs using a bottom-mounted
system every 10 minutes for 10 days at a 10-m-deep site near Elba Island,
Italy. They attributed the rapid changes in roughness to competing biological
and hydrodynamic processes (wave-induced ripples). Figure 6.14 compares
the time evolution of roughness spectral parameters with time series for cur-
rent speed and wave height. Sand ripples were present between 1800 on day
date 146 to 1100 on day date 147 when winds exceeded 30 kts, with significant
wave heights greater than 1 m. It was during this period that the 2D relief
spectrum displayed anisotropy. After day date 147, sea states were low, and
the 2D relief spectrum quickly became isotropic with an almost continuous
decline in RMS roughness until the end of the experiment. Diurnal changes in
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Fig. 6.12. Photographic images and corresponding 2-D power spectra from SAX99.
These show temporal decay of ripples created by raking the seafloor. Courtesy of
A. P. Lyons. (see second color insert)
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Fig. 6.13. Decay of acoustic scattering after raking orthogonal to the direc-
tion of acoustic incidence. Background scattering strengths averaged −32 dB
over all measurement sites in SAX99, but were closer to −35 dB at this site
[Richardson et al. 2001b].

bottom relief, a result of burrow construction (60 to 80 mounds and funnels
per m2) by the mud shrimp Callianassa truncata, dominated the relief spec-
trum. Spectral strength and intercept seemed more sensitive to these diurnal
bottom relief changes than RMS roughness. Changes in calculated backscat-
ter strength based on the diurnal changes in relief spectra were as high as 10
dB (Fig. 6.14).

The information presented in this section suggests that considerable tem-
poral changes in backscattering strength are possible based on the temporal
evolution of bottom roughness. However, care must be exercised when inter-
preting and extrapolating the magnitude and rates of these processes. All
of the experiments described in this section, and many other observations
of temporal changes in bottom roughness features were made with sensors
attached to bottom-mounted platforms. The presence of these platforms may
alter the rates and magnitude of the temporal changes in roughness either
by altering the hydrodynamic flow around the platform, creating turbulence
and scour, or by attracting benthic and pelagic fauna to an otherwise bar-
ren location, the refugia or reef effect. However, it does appear that the rate
of destruction of larger-scale roughness is both a function of the size of the
features (large-scale features decay more slowly because of their larger mass)
and a function of the activity of the dominant fauna inhabiting the seafloor. It
must also be noted that good fits between modeled (predicted) and measured
backscatter strengths have not generally been achieved in these dynamic en-
vironments. This should be an area of active research, because the temporal
variability of backscatter strengths may on many substrates be greater than
the spatial variability.
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Fig. 6.14. Temporal evolution of roughness properties (RMS roughness, spectral
slope, and intercept) calculated from digital stereophotographs taken every 10 min-
utes compared to the temporal changes in significant wave height and bottom cur-
rents. (From [Pouliquen et al. 2004].) Bottom backscatter strength (lowest panel)
is calculated for 20◦ grazing angle at 100 kHz using first-order small-perturbation
theory for a fluid–fluid interface (see Ch. 13) using a bottom sound speed ratio
νp = 1.31, loss parameter δp = 0, and a density ratio aρ = 1.92.
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6.5 Validity of Power-Law Assumption for Roughness
Spectra

It is sometimes assumed that seafloor roughness power spectra have the sim-
ple power-law dependence, expressed in Eqs. (6.8) and (6.11), over a wide
range of spatial scales [Berkson and Matthews 1983, Fox and Hayes 1985,
D. Jackson et al. 1986a]. It has been noted that a single power law fits rough-
ness spectra over a very wide range of scales on the Atlantic coast continen-
tal rise, combining data from a multibeam bathymetric sonar operating at
12 kHz, a deep-towed profiling sonar operating at 30 kHz, and stereopho-
tography [Fox and Hayes 1985]. A more recent comparison of power spectra
[Briggs et al. 2005a] calculated from stereophotographs and data generated
from high-resolution multibeam bathymetry collected in the northeastern
Gulf of Mexico (Fig. 6.15) suggests two power laws. One power law applies
to wavelengths shorter than 10 cm, corresponding to features that may be
biogenic in origin and having roughness that may be rather stable in time
(Sect. 6.4). The other power law applies to wavelengths larger than 100 cm,
corresponding to long-lived morphological features. The 10- to 100-cm wave-
length portion of the spectrum corresponds to wave-generated ripple which
can vary considerably with time (Sect. 6.4).

More data relevant to the power-law question is provided by the extended-
track photogrammetric spectra presented in Fig. 6.16. These show some ten-
dency to roll over for wavelengths longer than 10 cm. The power law does
not seem to hold at the highest frequencies, owing to the change in slope
mentioned in connection with Fig. 6.7, but this break is not seen in most
spectra from other sites.

Fig. 6.15. 1D roughness power spectra, measured during SAX99, from multibeam
bathymetry (EW, NS profile directions) and close-range photogrammetry from fresh
and decayed ripples similar to those depicted in the spectra of Fig. 6.7. The ordinate
is 10 log10[S(F )]. Modified from [Briggs et al. 2005a].
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Fig. 6.16. Spectra determined from extended photogrammetric roughness profiles
oriented (a) NE and (b) NW. Spectra are from the SAX99 BAMS and STMS sites.
The ordinate is 10 log10[S(F )] [Briggs et al. 2002b].

There is no a priori reason to assume self-affine behavior (Sect. 6.1) over
such a wide range of spatial scales as in Fig. 6.15. In fact, the existence of
this type of relationship may be counterintuitive, given the variety of scales
over which biological and hydrodynamic processes alter seafloor morphology
(tens of meters to millimeters). Each hydrodynamic process or animal ac-
tivity operates over a limited spatial frequency band, and if these bands do
not overlap greatly, there is no reason to expect scale-free, power-law be-
havior. Rippled seafloors provide one clear example in which a narrow-band
process causes a departure from power-law behavior. On the other hand, it
can be argued that multiple processes acting on multiple overlapping scales
may give rise to power-law behavior. In the absence of ripple fields, it is rea-
sonable to inquire as to the spatial frequency limits of a given power-law fit
to the spectrum. Figure 6.16 suggests that extrapolation of the power law
to meter scales corresponding to frequencies of a few kHz is reasonable, but
more data are needed to verify this. Lacking such data, it is still possible to
bound the lower spatial frequency limit of any proposed power law by com-
puting the mean-square roughness as the integral of the spectrum down to



6.6 Relationships between Roughness and Sediment Physical Properties 193

the lower frequency limit. If the resulting RMS roughness (the square root of
the mean-square roughness) is greater than the height of known or expected
bathymetric features, it is clear that the power law has been overextended.
Extrapolation to decameter and larger scales may be of geologic interest, but
is not necessary for most high-frequency acoustic applications.

It has not been convincingly demonstrated that a single power-law re-
gression can adequately describe seafloor roughness over all measured scales.
Nonetheless, determination of roughness spectra over a wide spatial frequency
band is well within the capability of present measurement techniques and de-
serves further attention.

6.6 Relationships between Roughness and Sediment
Physical Properties

Although sediment type is often assumed to control, at least in part, the
morphology of bedforms, evidence of relationships between the statistics
of seafloor roughness relevant to high-frequency acoustics and sediment
grain size has only recently been sought by [Pouliquen et al. 2004] and
[Briggs et al. 2005a]. When seafloor roughness, as represented by RMS rough-
ness, is plotted as a function of mean grain size, the result is a scattering
of points across the range of sediment types (Fig. 6.17). In general, fine-
grained sediments (Mz < 5φ) have lower values of RMS roughness (< 0.75
cm), whereas coarser-grained sediments have varied values of RMS ranging
from 0.2 to 2.3 cm. In fine-grained, more cohesive sediments, hydrodynamic
forcing is weak, and roughness is generally thought to be the result of bio-
logical processes associated with benthic fauna feeding, locomotion, or habi-
tat construction [Richardson and Young 1980] (also see Figs. 6.1 and 6.9 in
this chapter). The result is an isotropic roughness of relatively low ampli-
tude. In coarser-grained sediments (sand), where hydrodynamic processes
such as waves and currents are stronger, sediment transport creates a vari-
ety of ripple types ranging from small-wavelength (10–50 cm) orbital ripples
to larger meter-scale lunate ripples [Clifton 1976, Wiberg and Harris 1994,
Hay and Mudge 2005]. The morphology of these bedforms depends on sedi-
ment grain size, water depth, and the strength of the hydrodynamic forcing
at the seafloor. In many high-energy shallow-water areas, bedforms are in al-
most constant dynamic equilibrium with active sediment transport processes,
and ripple morphology is predictable (e.g., LEO-15 off the New Jersey coast
[Traykovski et al. 1999]). In other areas, where storm conditions are intermit-
tent, bedforms may not be in equilibrium with hydrodynamic conditions (i.e.,
are relict) and are being degraded by biological activity [Briggs et al. 2002b].
Examples include the sites of the SAX99 and SAX04 high-frequency acoustic
experiments. Bedform morphology is difficult to predict under these lower
energy conditions. The overall result is a temporally varying RMS roughness
and no predictive relationship between RMS roughness and sediment mean
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grain size. The effects of biological and hydrodynamic processes on seafloor
roughness are treated in more detail in Ch. 3.
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Fig. 6.17. Plot of RMS roughness as a function of mean grain size based on profiles
of seafloor roughness derived from analog stereophotographs of the seafloor. The
data are from Table 6.1, and the figure is modified from [Briggs et al. 2005a].

The 2D spectral characteristics (spectral strength, w2, and spectral expo-
nent, γ2) are plotted against mean grain size in Fig. 6.18. The 2D spectral
parameters were obtained from the 1D values in Table 6.1 under the as-
sumption of isotropy. The relevant power law representations for 1D and 2D
spectra were given earlier in this section (6.8) and (6.11) and relationships
used to convert the 1D spectral slope and intercept to 2D spectral strength
and spectral exponent are given in Sect. D.1.2. As with the comparison with
RMS roughness (Fig. 6.17), no empirical relationships are evident between
roughness spectral exponent and grain size or between roughness spectral
strength and grain size. However, the measurements of spectral exponent
and strength appear to cluster according to sediment type, with separate
trends for sand and mud. The dashed lines in Fig. 6.18 are not regression fits
but an attempted delineation of trends for the different sediment types. Mea-
surements from sites that include roughness features such as storm ripples
and biogenic mounds and pits are distributed throughout the data and do not
align with the delineated trends. It is obvious that more data are needed if us-
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Fig. 6.18. Plots of 2D seafloor roughness spectral exponent, γ2, and spectral
strength, w2, as functions of mean grain size. The spectral parameters are cal-
culated from the 1D data presented in Table 6.1, and the figure is modified from
[Briggs et al. 2005a].

able predictive relations are to be established. Sediment mean grain size alone
may never yield the types of predictive relationships for roughness required
by high-frequency acoustic modelers unless the effects and rates of hydro-
dynamic and biological processes that create, modify and destroy roughness
features are incorporated into predictive relationships. A similar lack of pre-
dictability from grain size for 1D spectral slopes and intercepts has been
reported by [Pouliquen et al. 2003].

6.7 Relationship between Spectral Parameters

One-dimensional spectral slope, −γ1, as a function of the spectral inter-
cept, φ1, is plotted in Fig. 6.19 from a compilation of roughness data us-
ing stereophotogrammetric measurements made on continental shelf seafloors
since 1983 [Briggs et al. 2001] (also see Table 6.1). The relationships inferred
from this display may indicate important patterns that might help model
roughness scenarios and, ultimately, predict backscattering from sediment
type. Spectral slope is apparently related to intercept, with a positively sloped
trend. The dashed line in Fig. 6.19 gives the relation between spectral inter-
cept and slope for the family of 1D power-law spectra that all have the same
value, S(F0) = 7.1 × 10−5 cm3, at spatial frequency F0 = 0.05 cycle/cm.
This frequency corresponds to a ripple wavelength of 20 cm, a relatively
long wavelength in comparison to those of interest in high-frequency scatter-
ing. Thus the dashed line is the intercept–slope relationship expected if the
low-frequency portion of the spectrum is held fixed and the high-frequency
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Fig. 6.19. Relationships between 1D spectral intercept and slope determined from
analog stereophotographs. The data are from Table 6.1, and the figure is modified
from [Briggs et al. 2005a].

portion is varied, while maintaining the power-law behavior. Values occur-
ring in the direction of arrow “1” (to the left of the dashed line) represent
roughness spectra deviating from the trend by significant decreases in low-
frequency roughness relative to changes in high-frequency roughness. Values
occurring in the direction of arrow “2” (to the right of the dashed line) rep-
resent roughness spectra deviating from the trend by significant increases in
low-frequency roughness relative to changes in high-frequency roughness. Ex-
amples of an environment represented in the former scenario are muddy sites
with little biogenic roughness (Eckernförde Bay, Arafura Sea, Orcas Island) or
sands with fully decayed or low relief ripples (Charleston, Montauk Point).
It is not possible at present to deduce predictive relationships for seafloor
microtopography from the trends seen in Fig. 6.19, because widely different
seafloor types are not segregated in the plot (e.g., isotropic and anisotropic
roughness data somtimes are found in the same region). The natural decay of
ripple morphology at the SAX99 (BAMS) site, which was discussed in Sect.
6.4 and is seen in the spectra of Fig. 6.7, may be tracked from a point far
below and to the right of the dashed line (fresh ripples) to a point closer to
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the line but still to the right (decayed ripples). Longer-term decay (months)
and an eventual equilibrium between biogenic and hydrodynamic processes
may be responsible for the spectral parameters deviating to the left of the
trend line. The data plotted in Fig. 6.19, with the notable exceptions of the
SAX99 BAMS, Russian River, and PC89-91-III measurements, are only an
instant temporal sample of a dynamic process. It is possible that long-term
measurements showing the evolution of roughness spectra at various sites
would reveal regularities not evident in the “snapshots” presently available.

6.8 Summary

A statistical description of seafloor microroughness is required for predic-
tion of high-frequency scattering from or into the seafloor. For this pur-
pose, digital stereophotographs provide the best description of the seafloor
and allow for automated calculation of the high-resolution 2D relief spec-
tra that are required by many seafloor scattering models. If the seafloor
roughness is isotropic, 2D relief spectra can be calculated from averaged
1D relief spectra. These 1D relief spectra can be calculated from ana-
log stereophotographs using a stereo comparator or when water clarity is
poor from relief spectra determined from manual tracing, electrical resis-
tivity probes, or very high-frequency (MHz) acoustic profiles. The statis-
tics of 1D and 2D relief spectra derived from stereophotographs, together
with sediment sound speed, attenuation, and bulk density, have proven ad-
equate for predicting backscattering strength from sandy seafloors (e.g.,
[D. Jackson et al. 1996a, Williams et al. 2002b]).

Sediment microtopography is created and altered by a combination of geo-
logical, hydrodynamic, biological, and depositional processes. Hydrodynamic
processes, waves and currents, tend to create anisotropic relief spectra with
peaks in the direction and at the spacing of sand ripples. Biological processes
tend to create isotropic relief spectra which have lower average relief ampli-
tudes. Larger meter-scale bottom features tend to persist longer, sometimes
up to weeks or months, than smaller centimeter-scale features which can be
destroyed within hours. In environments dominated by hydrodynamic pro-
cesses, microroughness is spatially and temporally variable and relief spectra
are highly variable; whereas in environments where biological processes domi-
nate, roughness features rapidly change (exhibit temporal decorrelation), but
the relief spectra are relatively constant. Prediction of relief spectra from sed-
iment properties, such as sediment type or mean grain size, is unreliable and
direct measurement of relief spectra during high-frequency acoustic experi-
ments is highly recommended. Preliminary data suggest that it may not be
possible to approximate roughness spectra by a single power law over a wide
range of scales.
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6.9 Research Issues

Several issues remain relative to both the statistical approaches and mea-
surement techniques used to characterize seafloor microroughness. Histori-
cally, the statistical requirements of roughness scattering models (Ch. 13)
and the scientific objectives, methods, and statistical techniques used to study
seafloor morphology in the environmental sciences often have little overlap.
While most of the data in this chapter have been obtained with the acoustic
problem in mind, there are still issues as to the most appropriate methods
for statistical characterization of seafloor roughness. The widely used as-
sumption that roughness is a stationary Gaussian random process has not
been sufficiently tested. If this assumption is not valid, the averaging used
to obtain spectra will obscure potentially important roughness features, and
other statistical methods may be needed. It is not known whether a single
power law is adequate to characterize seafloor roughness over spatial scales
from kilometers to millimeters. If not, over what spatial frequency band will
a simple power law adequately predict roughness (single values of spectral
strength and spectral exponent)? The spatial and temporal stationarity of
seafloor roughness is assumed but not often validated during high-frequency
acoustic experiments. The temporal component of roughness varies with size
of features, bottom type, water depth, and dominant roughness-creating pro-
cesses and requires additional study if seafloor roughness is to be predicted.
For now, concurrent (in space and time) measurements of seafloor roughness
and acoustic properties are required to test high-frequency scattering mod-
els. For practical applications, there is a need for rapid remote methods for
determining seafloor roughness statistics. The typical size of the patches over
which the seafloor can be regarded as statistically stationary is not known.
Means of statistically characterizing the patchiness of the seafloor should be
developed. All the unknowns are directly related to the acoustic issue of how
roughness statistics affect the sonar echo signal (see Ch. 16).



Table 6.1. Seafloor roughness measured from a variety of sediment types in shallow
coastal sites by Kevin Briggs (NRL). Sediments are arranged in order of decreas-
ing mean grain size (increasing phi units) from coarse sand to clay. Roughness is
expressed as the RMS height (cm), slope, and intercept of the roughness power
spectrum. Anisotropic roughness measurements have been measured crest-to-crest
(c-c) and along-strike (a-s). Measurements are accomplished with diver-operated
35-mm stereo cameras, remote 70-mm stereo cameras, or a manual trace on My-
lar by divers. The units of the spectral slope, −γ1, and spectral intercept, φ1, are
discussed in Sect. D.1.3.

Site Mz Type RMS Meas. Slope Intercept Reference

(φ) (cm) Tech.

Panama City 1985 (c-c) 0.85 c. sand/sh. hash 1.81 35 mm -2.32 0.00136 Unpublished data

Panama City 1985 (a-s) ” ” 0.51 ” -2.37 0.000502 ”
Panama City 1989 (c-c) ” ” 4.10 ” -2.17 0.00282 ”
Panama City 1989 (a-s) ” ” 0.58 ” -2.64 0.00022 ”
Panama City 1991 (c-c) ” ” 1.08 ” -2.26 0.00132 [Briggs and Ray 1997]

Panama City 1991 (a-s) ” ” 0.62 ” -2.08 0.00156 ”
Kings Bay/Lynch site 0.90 hash 0.42 ” -1.47 0.00534 [Stanic et al. 1989]

Mission Bay/coarse 0.95 coarse sand 2.30 Trace -2.46 0.00570 [Richardson et al. 1983]

Panama City 1993 0.98 coarse sand 0.52 35 mm -2.12 0.00198 [D. Jackson et al. 1996a]

SAX99 (c-c) 1.27 rip.med sand 0.83 ” -2.54 0.00077 [Briggs et al. 2001]

Kings Bay/Bart. site (c-c) 1.33 rip.med sand 0.42 ” -1.90 0.00094 [Briggs 1989]

Kings Bay/Bart. site (a-s) ” ” 0.60 ” -2.06 0.00094 ”
Charleston/coarse 1.44 med sand 0.26 ” -2.05 0.00008 [Briggs et al. 1986]

SAX04 (c-c) 1.47 rip.med sand 1.81 ” -2.99 0.00014 Unpublished data

SAX04 (c-c) ” ” 1.09 Trace -2.69 0.00023 ”
SAX04 (a-s) ” ” 0.86 ” -2.40 0.00028 ”
Panama City 1998 1.65 med sand 0.65 35 mm -2.10 0.00212 ”
Indian Rocks 6 (c-c) 1.77 ” 0.59 ” -2.35 0.00043 [Stephens et al. 1997]

Indian Rocks 6 (a-s) ” ” 0.37 ” -2.34 0.00113 ”
Indian Rocks 7 (c-c) ” ” 0.98 ” -2.26 0.00116 ”
Indian Rocks 7 (a-s) ” ” 0.62 ” -2.59 0.00083 ”
Boca Raton NS01 1.87 med sand 0.71 ” -2.21 0.00211 ”
Boca Raton NS02 ” ” 0.71 ” -2.39 0.00112 ”
Boca Raton NS03 (c-c) ” ” 1.01 ” -2.86 0.00052 ”
Boca Raton NS03 (a-s) ” ” 0.90 ” -2.70 0.00095 ”
Boca Raton NS05 (c-c) ” ” 0.60 ” -2.44 0.00082 ”
Boca Raton NS05 (a-s) ” ” 0.68 ” -2.67 0.00036 ”
Boca Raton NS06 (c-c) ” ” 0.37 ” -2.00 0.00164 ”
Boca Raton NS06 (a-s) ” ” 0.63 ” -2.13 0.00141 ”
Boca Raton NS07 ” ” 0.82 ” -2.56 0.00095 ”
Charleston/fine 1.88 ” 0.36 ” -2.50 0.00009 [Briggs et al. 1986]

No. Sea C1 1.93 ” 0.67 70 mm -3.04 0.00014 Unpublished data

No. Sea B2 ” ” 0.58 ” -2.98 0.00013 ”
No. Sea TOSSEX6 ” ” 1.16 ” -3.03 0.00010 ”
No. Sea TOSSEX7 ” ” 0.50 ” -2.81 0.00028 ”
Charleston/fine (c-c) 1.97 rip. med sand 0.37 35 mm -2.29 0.00008 [Briggs et al. 1986]



Table 6.1. Continued

Site Mz Type RMS Meas. Slope Intercept Reference

(φ) (cm) Tech.

Charleston/fine (a-s) ” ” 0.36 ” -1.33 0.00054 ”
Montauk Point 2.04 fine sand 0.28 ” -2.72 0.00003 [Richardson et al. 1983]

Panama City 1984 2.61 ” 0.49 ” -1.89 0.00233 [Stanic et al. 1988]

Quinault Range (c-c) 2.94 rip. fine sand 1.65 70 mm -2.67 0.00033 [D. Jackson and Briggs 1992]

Quinault Range (a-s) ” ” 1.19 ” -2.92 0.00028 ”
Tirrenia Italy 3.72 v. fine sand 0.83 35 mm -3.01 0.000255 [Briggs et al. 2002c]

MissionBay/fine 3.77 fine sand 0.93 Trace -2.17 0.00123 [Richardson et al. 1983]

Arafura Sea 5.24 clayey sand 0.37 70 mm -2.18 0.00069 [D. Jackson and Briggs 1992]

Russian River 1988 6.35 ” 0.31 ” -2.46 0.00019 ”
Russian River 1989 (c-c) ” rip. clayey sand 0.43 ” -2.56 0.00013 ”
Russian River 1989 (a-s) ” ” 0.49 ” -2.73 0.00006 ”
Lower FL Keys 6.62 carb. s-s-clay 0.65 35 mm -2.29 0.00209 [D. Jackson et al. 1996a]

Juan de Fuca site 4 6.93 glacial till 0.48 70 mm -3.35 0.00020 [Briggs 1989]

Eel River 7.17 clayey-silt 0.21 ” -3.28 0.000056 [Richardson et al. 2002b]

Orcas Island 8.08 clayey sand 0.40 35 mm -3.23 0.000052 [Self et al. 2001]

Eckernförde Bay 9.88 silty clay 0.37 ” -2.42 0.00030 [D. Jackson et al. 1996a]



7 Sediment Heterogeneity

A variety of physical, biological, and geochemical processes create hetero-
geneity (or inhomogeneity) in sediment physical properties, that is, values of
sediment physical properties tend to be nonuniform with respect to depth
and horizontal position (for example, see Fig. 7.1). This heterogeneity can
manifest itself as a patchy distribution of sediment physical properties, such
as worm burrow or feeding voids, layered bedding created by alternating ero-
sion and deposition processes, or as individual scatterers such as large shells.
High-frequency acoustic volume scattering (Ch. 14) is caused by this hetero-
geneity and is dependent on its magnitude and spatial scale. The effects of
physical, biological, and biogeochemical processes on the internal 3D struc-
ture of sediments and the spatial distribution of values of sediment physical
properties were reviewed in Ch. 3.

From the viewpoint of modeling acoustic volume scattering, it is conve-
nient to divide heterogeneity into nonrandom and random parts. The non-
random part of a given sediment physical parameter is the average of that
parameter over the patch of seafloor of interest, and the random part is the
fluctuation about this average. For these definitions to be useful, there must
be a suitably large region of seafloor over which the random heterogeneity is
statistically the same, that is, spatially stationary. The average can be taken
(at least in principal) over horizontal coordinates with the result that the
nonrandom part depends only on the vertical (z) coordinate. Thus, the non-
random part of a given parameter is described by a profile or gradient while
the random part is described statistically, usually in terms of a variance,
covariance, or power spectrum.

The sediment properties of interest in this chapter are those that appear
in models for scattering. Some volume scattering models require spectra de-
scribing the spatial fluctuations of sediment bulk density and compressibility
(alternately, fluctuations of porosity and compressional wave speed). Other
volume scattering models require statistical descriptions of discrete acoustic
scatterers such as shells and rocks. The primary need is for statistics at scales
comparable to the acoustic wavelength, but scales larger than this are im-
portant to the question of patchiness and resulting non-Rayleigh backscatter
statistics (Ch. 16). For many applications, less ambitious measures of spatial
variation such as mean profiles and coefficients of variation (100% × stan-
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Fig. 7.1. (A) An X-radiograph of a 2-cm-thick slab of sediment collected from a
muddy site in Long Island Sound [Richardson et al. 1983]. The surface top layer (3–
5 cm) is well-mixed by reworking of the sediment by abundant benthic macrofauna.
The deeper layers are alternate layers of coarser more dense (darker) sediments and
finer less dense (lighter) sediments deposited during storms. With time, bioturba-
tion can mix sediments to depths of at least 20 cm. (B) An X-radiograph of the
upper 3 cm of the same sediment core showing a dense population of the bivalve Mu-
linea lateralis (exposure time reduced). The gray-scale density in the X-radiograph
can be considered a proxy for bulk density.

dard deviation/mean) are sufficient. These properties include mean grain
size, shear wave speed, compressional and shear wave attenuation, poromet-
ric parameters such as permeability, pore size and tortuosity, and pore water
and grain properties such as density and bulk modulus (these properties are
discussed in detail in Chs. 4, 5, and 10).

Biological (bioturbation) and physical (waves and currents; deposition
and consolidation) processes create, destroy, and alter sediment structure
at all scales including: large kilometer-scale facies, meter-scale sand ripples,
centimeter-scale mounds and pits, millimeter-scale burrows or feeding traces,
and micron-scale particle flocs and aggregates [Richardson and Young 1980].
The processes can be continuous in time (biological mixing) or episodic
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(storms, river flooding) as well as competing (operating at the same spatial
and temporal scales).

One of the best-documented examples of the evolution of spatial het-
erogeneity in near-surface sediments can be found in the published results
of ONR’s STRATAFORM program [Nittrouer and Kravitz 1996, Nittrouer
1999, Cutter and Diaz 2000, Richardson et al. 2002b, Bentley and Nittrouer
2003]. The effects of interacting processes such as (a) biological mixing, (b)
episodic sediment deposition as a result of river flooding, and (c) sediment
resuspension, mixing, and transport by waves and currents on the temporal
evolution and ultimate preservation of near-surface sediment structure were
well documented. Episodic floods off the northern California coast produced
5- to 10-cm-thick deposits of fine-grained sediments at middepths (50–70
m) on the continental shelf. These deposits were characterized by basal lay-
ers of silt-sized sediment, grading toward the interface into clay-size parti-
cles. Within 6 months the upper 3–5 cm of these deposits were fully mixed
by benthic fauna, resulting in a mottled distribution of sediment physical
properties. Resuspension and deposition of sediments by waves and currents
(storms) further mixed these near-surface sediments. Below ∼5 cm, deeper-
dwelling deposit feeders mixed sediments to depths of ∼20 cm over time
scales of 6–350 years. These interacting processes created a tiered distribu-
tion of sediment properties which is quite heterogeneous on both horizontal
and vertical scales. This spatial heterogeneity is evident in large-scale acous-
tic surveys of the study site (Fig. 7.2), and in X-radiographs (Fig. 7.3) and
CT scans (Fig. 7.4) from sediment collected with box corers. Many other
examples of heterogeneity of modern near-surface sediments, as well as the
structure preserved in the historical record, are well documented, but the
time scales over which heterogeneity and gradients evolve have only recently
received the attention it deserves. With regard to acoustic scattering, very
slow decorrelation in backscattering over time scales on the order of one
month have been reported for sites in which scattering by volume hetero-
geneity was dominant [Dworski and Jackson 1994, Jones and Jackson 1997].
In contrast, decorrelation times shorter than one day have been reported for
sites in which roughness scattering was dominant [D. Jackson et al. 1996b,
Richardson et al. 2001b].

The impacts of bioturbation and hydrodynamic processes tend to decrease
with depth in the sediments. Below a meter or so physical features such as
storm layers, graded bedding, and biogenic features such as tubes, burrows,
and feeding voids tend to remain relatively unchanged, even in the event
of major storms such as hurricanes. The area of interest for high-frequency
acoustics is roughly the upper 30 cm of sandy sediment and the upper 100 cm
in muddy sediments. These near-surface sediments are strongly affected by
biological and hydrodynamic processes and therefore exhibit high temporal
variability. Consolidation or dewatering is common in finer-grained sediment
resulting in positive gradients in density and sound speed (increasing with
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Fig. 7.2. Sediment acoustic impedance measured along tracks surveyed with the
Acoustic Sediment Classification System at 15 kHz on the Eel River shelf, northern
California. The red to yellow colors correspond to sand and the green to purple
correspond to muddy sediments [Richardson et al. 2002b]. (see second color insert)

depth) and negative gradients in porosity (Fig. 7.5). In most sands, sound
speed also increases with depth in response to increased packing (Fig. 7.6). As
shown in Ch. 5, values of shear wave speed in both sand and mud sediments
increase with depth as a result of increased overburden pressure (effective
stress, Sect. 5.2). Given the variety of processes and scales operating within
the benthic boundary layer there is no reason to assume a single statistic (e.g.,
mean, variance, or correlation length) would characterize the resultant struc-
ture over all scales. Even though the range of scales is broad, most scattering
models only require statistical characterization of sediment physical proper-
ties over a limited range of spatial scales (acoustic wavelength to patch size
of the acoustic footprint).

In this chapter, the techniques used to quantify heterogeneity of sediment
properties will be reviewed: traditional laboratory analysis of sediment cores,
X-radiography including CT (computed tomography), and in situ electri-
cal, optical, and acoustic methods. The methods used to characterize spatial
fluctuations in geoacoustic parameters in terms of correlation functions and
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Fig. 7.3. X-radiograph positive image of slab subcore collected from box core
46 from site S60 along the Eel River shelf, northern California coast, showing 13
vertical burrow conduits (some are connected, continuous burrows). Burrows are
lighter vertically oriented features. Remnants of buried ripples are evident at 8- to
14-cm sediment depth [Richardson et al. 2002b].

Fig. 7.4. Horizontal CT images with arrows pointing out bioturbation features
found in sediments on the Eel River shelf, northern California. The gray scale indi-
cates density, with higher-density regions being in lighter shades. Features include
vertical worm burrows, A, H; horizontal worm burrows, B, C, D, F; a shell fragment
G; and a burrow created by a larger animal, E [Richardson et al. 2002b].
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Fig. 7.5. Mean gradients in porosity, mean grain size, sound speed (velocity ra-
tio), and attenuation for fine-grain recent (Holocene) sediment in the Adriatic
[Richardson et al. 1992]. Sound speed and attenuation were measured at 400 kHz
using the system described in Sect. 5.1.1.
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Fig. 7.6. Measurements of compressional wave speed ratio (400 kHz) and bulk
density from several cores in the SAX99 experiment [Tang et al. 2002]. The pre-
cision of the bulk density measurements is such that numerous data points have
the same value and therefore overlap in the plot. Note that the compressional wave
speed data have a 1-cm vertical sampling interval, whereas the density data have a
2-cm vertical interval.

spectra will then be presented. This discussion includes the problem of obtain-
ing spectra for unmeasured parameters from those that are measured (e.g.,
compressibility from sound speed and density from porosity). The “bias” in
spectral estimates associated with the sample size (resolution) of physical
property measurements is also considered. This chapter includes discussion
of several recent attempts at statistical characterization of seafloor physical
properties, and these examples are followed by a “Research Issues” section
that summarizes areas requiring further study.

7.1 Measurement of Heterogeneity

Of the several sediment physical properties relevant to acoustics, only a few
have been subjected to measurements of heterogeneity in a manner meeting
the needs of high-frequency acoustic volume scattering models: bulk density,
porosity, and compressional wave speed. The traditional analysis of sediment
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cores described in Ch. 5 provides a low-resolution means of measuring het-
erogeneity. These techniques include sound speed measurements and weight
loss measurements on slices of extruded sediments for porosity or density
[Briggs 1994]. More recently, automated core logging techniques have been
employed [Schultheiss and Weaver 1992]. First- and second-moment averages
provide depth-dependent profiles and covariances [Briggs 1994, D. Jackson et
al. 1996a, Richardson and Briggs 1996, Briggs and Percival 1997]. Such core
measurements have poor spatial resolution relative to other methods due to
the finite size of core sections (typically 4–12 cm in diameter and 1–2 cm
in thickness or depth). One advantage of this method is that both compres-
sional wave speed and density can be measured on the same sample (Fig. 7.6),
allowing determination of the correlation between these two parameters, at
least in principle.

X-ray techniques have been used for over 40 years to provide non-
destructive means of characterizing structure of near-surface marine sed-
iments (for early examples see [Calvert and Veevers 1962, Bouma 1964,
Howard and Frey 1973]. Recently these techniques have been adapted to high-
frequency acoustic applications to provide a quantitative characterization of
the fine-scale distribution of sediment bulk density [D. Jackson et al. 1996a,
Holyer et al. 1996, Briggs et al. 1998, Lyons and Pouliquen 2004]. Two X-
ray techniques are commonly used to study heterogeneity: X-radiography
and computed tomography (CT). Standard X-radiography provides images
of heterogeneity which can be used to characterize sediment stratigraphy
or heterogeneity (e.g., [Richardson and Young 1980, D. Jackson et al. 1996a,
Wheatcroft 2002, Richardson et al. 2002b]). X-radiography of sediments col-
lected using gravity or piston cores is a standard method in the anal-
ysis of sediment stratigraphy in marine sediments (Fig. 7.3). These X-
radiographs often show sediment layering and biological structure not vis-
ible in split cores and combined with core logging (density and sound speed
described in Chs. 4 and 5) yield useful information to characterize past
and recent sedimentary events and provide a guide for more detailed sam-
pling of sediment layering. More recently, slabs or thin slices of sediment
have been collected by divers or from box cores which provide a larger
sample to create X-ray images without the distortion created by the vari-
able thickness of cylindrical cores [Richardson et al. 1983, Briggs et al. 1985,
Holyer et al. 1996, Richardson et al. 2002a]. A typical size of these sample
slabs is 35 × 40 cm by 2–3 cm thick [Holyer et al. 1996]. Until recently
X-radiographs from both sediment cores and slabs only allowed qualita-
tive descriptions of sediment structure or heterogeneity. New digital X-ray
imaging systems combined with modern image processing techniques pro-
vide quantitative analysis of the gray-scale images created by X-radiography
[Migeon et al. 1999, Lofi and Weber 2001]. Analysis techniques such as au-
tocorrelation and binary run length have provided means to characterize
periodic structures and provide quantitative analysis of anisotropy from sed-
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iment cores or slabs [Holyer et al. 1996, Briggs et al. 1998]. These new digi-
tal techniques have eliminated difficulties associated with the subjective vi-
sual analysis of X-radiographs and other drawbacks such as the quality of
film, limited range of contrast, variations within and between images, and
the image blurring effects due to out-of-plane scattering within the imaged
sediment [Migeon et al. 1999, Lyons and Pouliquen 2004]. However, these 2D
images still suffer from the visual ambiguities created by superimposing of
density features on the radiograph and a lack of constant thickness for cylin-
drical cores. To solve some of these problems, investigators have begun using
CT techniques to characterize 3D fine-scale heterogeneity in sediment cores
[Orsi et al. 1994, Lyons and Pouliquen 2004].

Imaging of sediment cores with CT provides very-high-resolution char-
acterization of the density distribution within sediments (Figs. 7.7 and
7.4). The 3D imaging process eliminates much of the ambiguity associ-
ated with superposition of density contrast typical of standard X-ray im-
ages and provides high quality digital images that are needed for modern
image processing software. The resolution of medical CT images is approx-
imately 0.5–1.0 mm (voxel size), and resolutions of about 10 μm are pos-
sible with high-resolution systems [Reed et al. 2005]. This approach could
potentially provide the high-resolution data required for the statistical char-
acterization needed by high-frequency acoustic models. As with standard
X-ray imaging, a high correlation between volumetric electron density and
the bulk density of sediment is assumed. A linear relationship has been
demonstrated (r2 > 0.98) between the electron density determined from
X-ray attenuation and bulk density measured using gravimetric methods
[Orsi et al. 1994, Orsi and Anderson 1999]. This makes it possible to use CT
images to determine the spatial statistics of bulk density.

There has been a significant effort to characterize the heterogeneity of
sediment density using medical CT-scanning techniques [Orsi et al. 1994,
Orsi et al. 1996, Orsi et al. 1997, Orsi and Anderson 1999, Tang and Orsi
2000a, Briggs et al. 2001, Pouliquen and Lyons 2002, Briggs et al. 2002a,
Lyons and Pouliquen 2004]. Of these studies, only those published after 1999
attempt to provide the random and nonrandom statistics required by the
volume scattering models described in Ch. 14. In addition to the statistical
characterization of density fluctuations, CT provides a useful nondestructive
method to characterize larger discrete scatterers, such as individual shells
or rocks, layers of shell hash or other forms of graded bedding, storm lay-
ers, gradients in density due to dewatering, gas bubbles, and the variety
of biological structures typical of marine sediments. Two examples are pre-
sented which demonstrate the usefulness of CT scanning. The first, from a
sandy sediment collected off Panama City, Florida, demonstrates the ability
to statistically characterize discrete scatterers such as shell hash (Fig. 7.8);
the second demonstrates the ability to characterize the size distribution of
methane bubbles in the gassy sediments of Eckernförde Bay, Baltic Sea (Fig.
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Fig. 7.7. Biological structures as seen in CT images, CBBL Tortugas site. Top
row (burrows/tubes): left (low-density structures, 87-mm depth); right (high-
density features, 235-mm depth). Middle row (shells/fragments): left (shell, 147-mm
depth); right (shell and fragment, 191-mm depth). Bottom row (miscellaneous): left
(urchin?, 165-mm depth); right (feeding structure, 149-mm depth). The outer di-
ameter of the core image is 8.3 cm [Briggs et al. 2002a].
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Fig. 7.8. Characterization of discrete scatterers from a shelly sand sediment col-
lected off the coast of Panama City, Florida. Top left is a 2D density image derived
from CT data; top right is a contour map of the shell hash which is more dense,
white material in the image to the left; bottom is a plot of shell size distribution
derived from 12 vertical images (slices) of the CT data from two cores. The particle
radius is given in terms of the base-10 logarithm. From [Lyons 2005]. (see second
color insert)

7.9). Some of the possible drawbacks associated with CT imaging of cores
include sediment disturbance during collection, transport, and manipulation;
the limited data set derived from CT imagery, primarily density contrasts;
and the relatively small sample size. In spite of these shortcomings, CT im-
ages provide the best current method to statistically characterize density
heterogeneity for modeling of high-frequency acoustic volume scattering.

Another technique for imaging sediments is provided by the sediment-
interface profile camera. The interface profile camera was originally designed
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Fig. 7.9. Methane bubble distribution from a pockmark in Eckernförde Bay, Baltic
Sea. Left is a 2D slice of sediment retained at in situ pressure and temperature,
white is the core liner, blue is water, brown is a silty-clay sediment, and black is
methane bubble; right is the methane gas bubble volume based on analysis of the
entire core [Lyons et al. 1996]. (see second color insert)

as a diver-operated underwater camera attached to a freshwater-filled Plexi-
glas prism inserted into the sediment [Rhoads and Cande 1971]. Later, a re-
motely operated version, “REMOTS,” was used to optically image an undis-
turbed vertical cross section of the upper 15–20 cm of the sediment (Fig.
7.10). This allows characterization of sediment structure, biochemical pro-
cesses, sediment reworking, and community succession in a variety of estu-
arine, coastal, and deep-sea environments [Rhoads and Germano 1982]. One
of the most obvious biochemical features is the “redox” discontinuity, the
interface between oxidized and reduced sediments, marked by a change in
sediment color. The profile camera has been used in both a survey mode
[Cutter and Diaz 2000] and for long-term studies [Diaz and Cutter 2001]. Re-
cent addition of digital cameras allows quantification of grain size distribu-
tion, subsurface methane bubbles, biogenic structures, etc. The potential for
REMOTS to provide at least qualitative characterization of sediment hetero-
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Fig. 7.10. Two images made with the REMOTS sediment interface camera in
Buzzards Bay, MA. The image on the left shows a worm tube at the surface and
numerous feeding voids and burrows at depth. The image at the right shows fine
sand covering silty-clay sediment with a prominent feeding void at about 8 -cm
depth. In both cases the structure and roughness of the sediment–water interface
are intact. Courtesy of J. Germano. (see second color insert)

geneity is demonstrated in images of changes in sediment structure along a
transect on the northern California coast [Cutter and Diaz 2000] during the
STRATAFORM experiments. The quantification of larger discrete objects
such as shells and feeding voids in these images is obvious.

Electrical resistivity probes and imaging systems have also been used to
quantify the 3D distribution of sediment bulk density [P. Jackson et al. 1996,
P. Jackson et al. 2002, Briggs et al. 2002a, Tang et al. 2002, Wheatcroft
2002, Tang 2004]. All of these systems exploit the relationship between sed-
iment electrical resistivity and porosity given by Archie’s law (see Sects. 4.3
and 4.4.2) to determine the spatial distribution of porosity or sediment bulk
density. Fluctuations in density are calculated from fractional porosity, β,
using the density–porosity relation given in Table 4.5, repeated here for con-
venience:

ρ = βρw + (1− β)ρg . (7.1)

Density fluctuations can be inferred from porosity fluctuations assuming that
the grain density, ρg, and water density, ρw, are known and constant over the
measurement volume. The mean value of porosity is usually determined from
a calibration, with porosity determined gravimetrically. A standard 4-probe
diver-deployed Wenner array was used by [Wheatcroft 2002] to measure gra-
dients of electrical resistivity at a sand site during SAX04 and at a carbonate
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Fig. 7.11. Fluctuations in fractional porosity measured with a diver-deployed mi-
croresistivity system in a sand sediment in the northeastern Gulf of Mexico. On
the left the depth gradient of average fractional porosity (with bars representing
± one standard deviation) and on the right three representative porosity profiles
(a) under a ripple crest, (b) under a mound, and (c) under a sand ripple trough
[Wheatcroft 2002].

site in the Bahamas (Fig. 7.11). He found evidence for strong 5- to 15-mm sur-
ficial gradients of porosity with 0.05 to 0.15 fluctuations in fractional porosity
around the mean with vertical length scales of 5–15 mm. He suggested that
these fluctuations were a result of grain packing caused by a combination of
hydrodynamic sorting and biological mixing.

A 16-probe resistivity array was developed by [Tang et al. 2002] to mea-
sure surface roughness and 3D fluctuations in porosity within the upper 10–15
cm of the sediment, the “In-Situ Measurement of Porosity” system (IMP).
The ratio of sediment to seawater resistivity is the “formation factor,” F , dis-
cussed in Sects. 4.3 and 4.4.2. Fractional porosity, β, is determined from resis-
tivity using Archie’s law (4.21) with the parameter a set to unity (F = β−m).
Porosity can then be converted to bulk density using (7.1). Combining (4.21)
with a = 1 and (7.1) yields

ρ = ρg − ρg − ρw
F 1/m . (7.2)

The exponent of Archie’s formation factor relationship, m, is usually de-
termined by calibration with sediment of known porosity. Calibration errors
of several percent are acceptable, as IMP is intended to measure fluctuations
of porosity or density. As will be seen, these fluctuations are small compared
to the mean, and errors as large as 10% in fluctuation amplitude are accept-
able from an acoustic modeling point of view, as they correspond to 1-dB
errors in scattering strength (Ch. 14). The 16-probe array can be mechani-
cally inserted into the sediment at depth intervals as small as 1 mm. Repeated
insertions after horizontal displacement allow both 2D and 3D images to be
generated (Fig. 7.12). The 1D vertical spectra determined from gradients of
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Fig. 7.12. Depth profiles of bulk density calculated from electrical resistivity mea-
surements made using IMP-1 from a sand sediment in the northeastern Gulf of
Mexico. The profiles are shifted by 1 g cm−3 for display purposes. The connected
circles near 10-mm depth represent the estimated sediment–water interface. From
[Tang et al. 2002].

electrical resistivity have a much higher resolution than those obtained with
cores (1–3 mm versus 1–2 cm) and are therefore of importance to model-
ing high-frequency volume scattering. Resolution will be discussed further
in Sect. 7.4. The horizontal resolution of resistivity measurements (about 1
cm) is not as good as the vertical resolution because of the necessary spacing
between array elements and possible sediment disturbance if successive inser-
tions have insufficient separation. The use of density profiles such as those in
Fig. 7.12 to calculate 1D vertical density fluctuation spectra will be discussed
in Sect. 7.5.

A second-generation electrical resistivity measurement system (IMP2)
with a single resistivity probe was developed for midfrequency (1–10 kHz)
applications [Tang 2004]. The system is mounted on a longer frame allowing
a 4-m horizontal coverage. IMP2 was deployed in the East China Sea during
the Asian Seas International Acoustic Experiment (ASIAEX). Note the con-
tinued increase with depth of bulk density shown in Fig. 7.13. The increase in
density (decrease in porosity) in these silty, fine-sand sediments is probably
a result of dewatering due to overburden pressure and bioturbation.

A noninvasive electrical resistivity technique has been developed by Peter
Jackson [P. Jackson et al. 1996, Briggs et al. 1998, P. Jackson et al. 2002].
An array of electrodes makes contact with the sediment interface, and a
focusing method is used to image sediment resistivity. Several versions of
these microresistivity arrays have been tested, including a 576-electrode 2D
array used to image soft muddy sediments from rectangular cores collected
by divers from Eckernförde Bay, Baltic Sea [P. Jackson et al. 1996] and from



216 7 Sediment Heterogeneity

0.8 1 1.2 1.4 1.6 1.8 2 2.2

8

6

4

2

0

2

4

6

8

ρ (g/cm3)

D
ep

th
 (

cm
)

-

-

-

-

Fig. 7.13. Depth profiles of sediment bulk density measured by electrical resistivity
profiling from the East China Sea. The light lines are individual profiles and the
solid line with circles is the mean profile [Tang 2004].

Fig. 7.14. Spatial variability of formation measured in carbonate sediment using a
focused microresistivity array. The sediments were collected from the Florida Keys
using a box corer [P. Jackson et al. 2002]. (see second color insert)
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carbonate sediments in the Florida Keys [P. Jackson et al. 2002]. The diver
cores were designed to collect rectangular slabs of relatively undisturbed sed-
iment (36 cm wide, 44 cm long and 3 cm thick). The electrode array was
placed flat against the larger (originally vertical) sediment surface. The re-
sult is a 2D image of sediment electrical resistivity in a vertical plane. Another
version of the system collected 3D images of electrical resistivity from larger
0.25-m2 box cores collected in the same carbonate sediment in the Florida
Keys (Fig. 7.14). A later version was a diver-deployed focused array used to
make in situ measurement of electrical resistivity of sand sediments during
SAX99 [Richardson et al. 2001a]. These studies demonstrated the feasibility
of using a 3D focused array to determine depth-dependent gradients in elec-
trical resistivity. Preliminary analysis of these data yielded average values of
electrical resistivity similar to those obtained using conventional 4-electrode
Wenner arrays, but the observed higher variability is probably the result of
the higher resolution possible with focused microresistivity imaging.

A variety of well-developed seismic exploration techniques are com-
monly used to determine the spatial distribution of sound speed, attenua-
tion and other seismic attributes in marine sediments [Telford et al. 1990,
Yamamoto 1995, Kearey et al. 2002, Chopra and Marfurt 2005]. These tech-
niques employ data acquired by towed hydrophone arrays, bottom geophone
arrays, and down-hole or cross-hole geophones. Ray-based inversions of ampli-
tudes and travel times between transducers are used to produce 2D or 3D im-
ages of sound speed and attenuation [Sheriff and Geldart 1995, Yilmaz 2001].
Full waveform inversion techniques are also applied to these data providing
images of sediment density and bulk modulus as well as sound speed and
attenuation [Watanabe et al. 2004]. Most applications of seismic exploration
techniques provide 2D or 3D images of much coarser-resolution (meter- to
kilometer-scale resolution) of sediment acoustic properties than are needed for
high-frequency acoustic modeling, where resolution of centimeters or less is re-
quired (Ch. 14). The spatial resolution for down-hole and cross-hole tomogra-
phy is limited by the acoustic wavelengths used for acoustic mapping and the
geometric configuration and size of the acoustic transducers [Chu et al. 2001].
Inversions from towed arrays are limited by size, orientation, and stability of
the array [Parkinson 2001] and have not yet been used for in situ sediment
characterization for high-frequency scattering studies. However, recent high-
frequency scattering studies from laboratory physical models utilizing mov-
able and fixed transducers with nonlinear full waveform inversions show some
promise for field applications [Watanabe et al. 2004, Lindwall 2006]. An eval-
uation of seismic tomographic measurement techniques and inversions is well
beyond the scope of this monograph but is adequately covered in several text-
books on seismic exploration [Sheriff and Geldart 1995, Yilmaz 2001]. Sev-
eral authors have attempted to measure the spatial fluctuations of sound
speed and attenuation in support of high-frequency acoustic volume scat-
tering experiments [Yamamoto 1995, Yamamoto 1996, Rapids et al. 1998,
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Rogers and Yamamoto 1999, Chu et al. 2001]. Most use two or more vertical
arrays pushed into the sediments and linear inversions of travel times (using
ray theory) to produce 2D images of sound speed. These efforts are reviewed
below.

Yamamoto summarized velocity variability measured by cross-hole acous-
tic tomography [Yamamoto 1995, Yamamoto 1996]. Measurements were made
at 1 kHz for sediments in Tokyo Bay and the Florida–Bahamas carbonate
platform but lacked the resolution needed for most high-frequency volume
scattering applications. Yamamoto also used sound speed variations deter-
mined from acoustic tomography techniques to create images of porosity,
density, permeability, shear wave speed, and shear strength having similar
resolution using empirical or physical models.

A tomographic system using two linear receive arrays and one source
array was developed by [Rapids et al. 1998]. The arrays are inserted into
the seafloor by scuba divers using water jets for liquefaction and PVC
pipes as well casings. Each array contains 16 transducer elements at 10-
cm increments for a total length of 1.5 m (Fig. 7.15). Experiments were
conducted in a medium sand with shell fragments off Ft. Pierce, Florida.
The transmitter array remained stationary while four locations ranging be-
tween 2 and 10 m distant were chosen for the receiver arrays. Transmit-
ter elements were driven with an FM sweep centered at 7.5 kHz. A lin-
ear inversion strategy using cross-correlation of the first arrivals between
all transmitter–receiver pairs was used to determine travel times and sound
speed fluctuations. Two-dimensional power spectra were derived from these
tomographic sections [Rogers and Yamamoto 1999] and used as inputs to
volume scattering models. Anisotropy was observed in the sound speed
spectra where vertical fluctuations had much shorter scale than horizon-
tal fluctuations. This was in agreement with the lower-resolution mea-
surements of [Yamamoto 1995, Yamamoto 1996] from Tokyo Bay and the
Florida–Bahamas carbonate platform. However, the resolution analysis of
[Chu et al. 2001] indicates that much of this anisotropy may have been an
artifact arising from the large horizontal–vertical aspect ratio of the measure-
ments.

A tomographic system using two identical 1-m vertical arrays and a
1-m horizontal array with transducer spacing of 5 cm was developed by
[Tang 1997, Chu et al. 2001] (Fig. 7.16). Inversion of travel times and rel-
ative amplitudes between all possible pairs of transducers (90 kHz with 40-
kHz composite bandwidth) were used to construct 2D images of sound speed
and attenuation of a muddy sediment in Hadley Harbor, MA (Figs. 7.17
and 7.18). The system is capable of spatial resolution of approximately 10
cm and can differentiate sound speed variations greater than 2%. Tang (in
[Richardson et al. 2001a]) used a high-resolution sediment acoustic imager
with 60 transducers arranged in a circle of 25-cm diameter to image sedi-
ments during the SAX99 experiments on sandy sediment in the northeastern
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Fig. 7.15. Tomographic techniques and results of [Rapids et al. 1998]. Upper left:
Cartoon depicting method used to bury arrays. Upper right: Overhead geometry
of the experiment. Lower left: Side view of the ray paths between A and B. Lower
right: Tomographic image obtained using the ray paths shown on the left; the gray
scale is given below.

Fig. 7.16. Drawing of the fine-scale acoustic imaging system used by
[Chu et al. 2001].
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Fig. 7.17. Tomographic sound speed image [Chu et al. 2001]. (see second color
insert)

Fig. 7.18. Tomographic attenuation image [Chu et al. 2001]. (see second color in-
sert)

Gulf of Mexico. The working principle is similar to a CT scanner and the
system is capable of obtaining 3D images of sediment sound speed and at-
tenuation with a 2-cm resolution. This is achieved by successively imaging
2D slices as the system is pushed into the sediment. The data have not yet
been fully exploited.

All of the acoustic tomography techniques reviewed above should be con-
sidered preliminary but show considerable promise in characterizing fluctua-
tions in sound speed and attenuation. Many have been validated by ground
truth and are to first order correct (capture gradients and large-scale varia-
tions). All experimental tomographic techniques are affected by uncertainty
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in source–receiver geometry, unknown effects of layering on ray paths, multi-
paths, distorted waveforms from scattering by shells, artifacts of the inversion
process, and poor resolution at the edges of the image. None, with the possible
exception of the acoustic imaging system of Tang [Richardson et al. 2001a],
provide the spatial resolution required by volume scattering models used at
higher frequencies (Ch. 14).

Comparisons of microresistivity imaging with other means of determining
density heterogeneity have been made by [P. Jackson et al. 2002]. The values
of sediment bulk density measured from cores in the laboratory, determined
from density contrasts using X-radiographs, and from inverted 2D and 3D
electrical microresistivity measurements yielded much different values of cor-
relation length. Vertical correlation lengths (Sect. 7.2) were consistently less
than horizontal correlation lengths for all methods and this may reflect the
natural layered nature of marine sediments and the gradients of sediment
density from consolidation and rates of biological mixing with depth. Simi-
lar relationships were reported by [Briggs et al. 1998] for muddy sediments
in Eckernförde Bay, Baltic Sea. Vertical correlation lengths determined from
fluctuations in electrical resistivity (2D system) and from the gravimetric
method applied to diver cores are on the average similar (2.1 versus 2.8 cm)
but both are approximately 10 times greater than correlation lengths deter-
mined from X-ray density contrasts. These issues are discussed in Sect. 7.4.
A related issue is failure of the X-radiographic methods to discern fine-scale
fluctuations in density. It was suggested [P. Jackson et al. 2002] that this may
be the result of the effects of the superposition of density contrasts (mainly
skeletal carbonate fragments) in these 3-cm-thick slabs and out-of-plane scat-
tering of X-rays. They conclude that the gravimetric and electrical resistivity
methods provide a more accurate description of density fluctuations in these
carbonate sediments and that correlation lengths are much longer in the hor-
izontal than vertical directions.

Each of the systems described herein to measure spatial fluctuations in
sediment physical properties has advantages and disadvantages. No single
system simultaneously provides the range of spatial scales and accuracy re-
quired by models for high-frequency acoustic volume scattering. The accu-
racy of many of the newer systems has not been established, especially at
very high resolutions. The X-radiographic, microresistivity ,and CT methods
only provide data on bulk density fluctuation and not compressibility (alter-
nately, sound speed) fluctuation. Vertical and horizontal fluctuation scales
can be much different, suggesting that 3D measurements are required. Sound
speed fluctuations measured from cores or using in situ probes or tomographic
methods provide spatial fluctuations in sediment bulk compressibility but at
resolution insufficient for most high-frequency applications. It is rather com-
mon to extrapolate lower-resolution measurements to smaller spatial scales
by assuming a single power-law relationship over the wavenumber scales re-
quired, but this procedure is not supported by available data. It is also possi-
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ble to assume that the spatial fluctuations of compressibility covary with bulk
density, at least in a statistical sense. This assumption is widely used and is
discussed in Sect. D.2.2, but it has not been validated. In situ measurement
of both density and compressibility is much preferred because removal of sed-
iment from the natural environment, even using very carefully collected diver
core or slab samples, can disturb sediment macrostructure and microstruc-
ture, the building blocks of density and compressibility fluctuations. This is
especially true when information on larger-scale fluctuations is required. Fi-
nally, acousticians typically worry about spatial stationarity, but temporal
stationarity should be a concern as well. The shallow littoral regions where
high-frequency experiments are conducted is dynamic, constantly changing
in response to biological mixing, hydrodynamic forcing (waves and currents),
sediment deposition, and biochemical processes.

7.2 Statistical Characterization of Continuous
Heterogeneity

Heterogeneity in sediments may be in the form of isolated discontinuities in
physical properties due to tubes, burrows, feeding voids, or shell pieces, or it
may involve more extensive and continuous fluctuations due to bioturbation,
sediment deposition, or hydrodynamic processes (Fig. 7.1). The continuous
form of heterogeneity has received the most attention with regard to statis-
tical characterization and is the focus of this section. Additional discussion
of the statistical approach to characterization of sediment heterogeneity is
given in Appendix D.

As noted in the beginning of this chapter, it is useful to break the spatial
dependence of a given sediment physical parameter, denoted α for generality,
into its average and fluctuating parts:

α(x, y, z) =< α(x, y, z) > [1 + γα(x, y, z)] . (7.3)

Note that the fluctuating quantity, γα, is normalized so as to be dimensionless.
That is, it has been defined as the fluctuation in α divided by the mean.
This definition is not universal, but is motivated by the requirements of the
acoustic models introduced in Ch. 14. Neglecting large-scale variability in
the horizontal, the average will be assumed to depend only on the vertical
coordinate,

< α(x, y, z) >= ᾱ(z) . (7.4)

From the point of view of the acoustic models discussed in Ch. 14, the essen-
tial properties of the fluctuations are contained in the covariance

< γα(x1, y1, z1)γα(x2, y2, z2) >= Bαα(x2 − x1, y2 − y1, z1, z2) . (7.5)
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The subscripts αα are used to specify that this is a second moment of param-
eter α. Acoustic models also require moments between two physical parame-
ters (e.g., density and compressional wave speed), so one must introduce the
more general covariance

< γα(x1, y1, z1)γβ(x2, y2, z2) >= Bαβ(x2 − x1, y2 − y1, z1, z2) (7.6)

between two parameters, α and β. The labels α and β are arbitrary and should
not be interpreted to represent particular parameters (e.g., not attenuation
and fractional porosity). Equations (7.5) and (7.6) express a key assumption
made in all the acoustic models of Ch. 14: the normalized fluctuations are
stationary random processes with respect to the horizontal coordinates, x and
y. Stationarity implies that statistical measures, such as probability densities
and moments, depend only on the difference in coordinates. Stationarity is
unlikely to apply in the vertical coordinate, as sediment properties, including
heterogeneity, often depend on depth. Nonetheless, many acoustic models
assume stationarity in z as an approximation, and this may be reasonable in
many cases if attention is confined to depths below the seafloor on the order
of 5–30 cm. As will be seen, statistics may be nonstationary with respect to
depth in the upper 1 cm or so. Also, significant non-stationarity at depths of 1
m and greater can be found owing to layering and the increasing overburden
pressure. This situation can be accommodated at least approximately by
assuming that stationarity in the vertical holds over each layer in the form

< γα(r1)γβ(r1 + r) >= Bαβ(r) , (7.7)

where r = (x, y, z), but where both r1 and r1+r are constrained to lie within
the layer. If the means are depth-independent within each layer, the normal-
ized fluctuations are simply proportional to the unnormalized fluctuations,
e.g., the density and compressional wave speed fluctuations are

γρ(r) =
δρ(r)
ρ̄

(7.8)

and

γp(r) =
δVp(r)
V̄p

. (7.9)

In the case of 3D stationarity, the 3D power spectral density (“spectrum”
for brevity) is obtained as a Fourier transform of the covariance

Wαβ(k) =
1

(2π)3

∫
Bαβ(r)e−ik·rd3r . (7.10)

If stationarity only holds over a layer of finite thickness, a different approach
must be followed. The consequences for scattering are discussed in Appendix
M. For the present, it will be assumed that the covariance falls to zero on
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scales comparable to the layer thickness so that the limits can be extended to
infinity. The 3D wave vector, k, has components kx, ky, and kz and mag-
nitude, k. The magnitude will be referred to as the “wavenumber.” The
wavenumber is related to the wavelength, λ, of fluctuation features as fol-
lows:

k =
2π
λ

. (7.11)

Expression (7.10) is the “cross-spectrum” between the two fluctuating pa-
rameters α and β. Appendix D discusses assumptions that modelers have
used to accommodate this situation. For the purposes of this chapter, the
ordinary spectrum (the case α = β) is of primary interest. The definition
of the spectrum is such that its integral over any given region of 3D wave
vector space gives the contribution of the corresponding wavelengths to the
normalized variance of the parameter in question. If the integral is carried
out over all k, ∫

Wαα(k)d3k = σ̂2α , (7.12)

where

σ̂2α =
< [δα(r)]2 >

ᾱ2 (7.13)

is the variance of the fluctuating parameter, α, divided by the square of its
mean. The term “normalized standard deviation” will be applied to σ̂α, and,
when expressed in percent (multiplied by 100), it will be called the “coefficient
of variation,” a statistical parameter often used in describing fluctuations of
geoacoustic parameters (Appendix C). This makes it possible to compare the
fluctuation strength of parameters having different measurement units. If the
fluctuations in a given random parameter are a stationary random process,
the coefficient of variation of that parameter will be independent of position.

The following form for fluctuation spectra is adapted from a more general
form used by [Yamamoto 1996]:

Wαβ(k) =
w3αβ

[Λ2k2x + Λ2k2y + k2z + L−2
c ]γ3/2

. (7.14)

Special cases of this spectrum have been used in scattering models and in
fitting measured heterogeneity data. The parameter w3αβ will be called the
“spectral strength,” with the subscript “3” indicating that the spectrum is
three-dimensional. The parameter γ3 is the “spectral exponent,” governing
the rate of falloff of the spectrum at large wavenumbers. Because the nor-
malized fluctuation parameter, γα, is dimensionless, the spectrum has units
(length)3. As a consequence, w3αβ will have dimensions (length)(3−γ3). The
parameter Lc will be referred to as the “correlation length.” It is sometimes
not used (set to infinity), but is necessary in principle to limit the spectrum
to finite values as spatial frequency approaches zero. This parameter is some-
times referred to as the “cutoff scale,” or“outer scale” of the random process.
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The degree of anisotropy is determined by Λ. If Λ > 1, the fluctuations have
greater high-frequency content (shorter correlation length) in the vertical di-
rection than in the horizontal directions and vice versa. Strictly speaking, Lc

is the vertical correlation length and Lc/Λ is the horizontal correlation length.
If Λ = 1, the fluctuations are statistically isotropic, with equal correlation
lengths in all directions.

The normalized variance is obtained by performing the integral (7.12):

σ̂2α =
π3/2w3ααL

γ3−3
c Γ(γ3−3

2 )
Λ2Γ(γ32 )

, (7.15)

where Γ is the gamma function. Certain special cases of the spectrum (7.14)
are often encountered. If the correlation length, Lc, is set to infinity, and the
aspect ratio is unity, the spectrum becomes a pure power law:

Wαα(k) =
w3αα

kγ3
. (7.16)

This form is often used in scattering models and has the advantage of requir-
ing only two parameters. This is a reasonable approximation if the correlation
length is larger than the acoustic wavelength. The pure power behavior can
only persist over a finite wavenumber range, as the integral giving the normal-
ized variance (7.12) would otherwise be infinite. It follows that the coefficient
of variation is undefined if the spectrum is modeled as in (7.16). In the case
γ3 = 3, the heterogeneity described by (7.16) is self-similar, meaning that,
viewed at any magnification, the random structure would look the same. This
self-similar property results in the parameter w3αα being dimensionless, and,
as noted in Ch. 14, implies that the sediment volume scattering contribution
to seafloor backscattering strength would be nearly frequency independent.
Another commonly encountered model spectrum has γ3 = 4 and Λ = 1:

Wαα(k) =
w3αα

(k2 + L−2
c )2

. (7.17)

In this case, an inverse Fourier transform can be performed analytically to
show that the covariance is an exponential in the spatial lag,

Bαβ(r) = π2w3αβLce
−r/Lc . (7.18)

Note that the normalized variance in this case is σ̂2α = π2w3ααLc. The ex-
ponential covariance is often assumed in fitting of core data for porosity and
density. It is an attractive choice because two parameters suffice to define the
covariance: the zero-lag value and the correlation length. Such a highly con-
strained form for the covariance suits the analysis of core data where only a
few lag values are usually available and the limited sample size does not allow
fitting of multiparameter functions. The exponential covariance results from
the first-order autoregressive model for random processes, and this provides
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additional motivation for its use in modeling [Briggs 1994, Tang et al. 2002].
The covariance in the first-order autoregressive model takes the form

B̃αα(nΔz) = B̃αα(0)φn , n = 0, 1, 2, · · · (7.19)

where φ is a dimensionless positive parameter smaller than unity, the “au-
toregressive coefficient.” The spatial interval between samples is denoted Δz
and is equal to the length of the individual core sections. The symbol B̃αα

is used for the covariance, because the random process of interest is not the
process described by Bαα, rather it is the process obtained when density (or
porosity) is averaged over core sections. While it is useful to estimate B̃αα

from core data, it is essential to make this distinction and accept the necessity
of translating properties of the section-averaged process into the properties
of the random process relevant to acoustic scattering models. This topic will
be discussed at some length in Sect. 7.4. If one ignores this distinction and
compares (7.18) and (7.19),

Lc =
−Δz

lnφ
. (7.20)

This differs from the definition due to [Yaglom 1987] and used in [Briggs 1994,
Tang et al. 2002], Lc = [1/2+φ/(1−φ)]Δz, but the numerical difference be-
tween these two definitions is negligible in the cases of interest. A means
of estimating the autoregressive parameters from core data is given by
[Tang et al. 2002].

Analysis of sectioned cores only yields the vertical dependence of het-
erogeneity. Since scattering models require the 3D dependence, relationships
between 1D and 3D spectra are needed. Appendix D treats this subject in
some detail and derives the 1D spectrum corresponding to (7.14)

Wzαα(kz) =
2πw3αα

(γ3 − 2)Λ2(k2z + L−2
c )(γ3−2)/2

. (7.21)

Given a measured 1D spectrum, one cannot in general obtain the correspond-
ing 3D spectrum, as there are an infinite number of possibilities. If isotropy
holds, however, a unique correspondence exists. In the pure power-law case,
inspection of (7.21) shows that the 1D spectrum

Wzαα(kz) =
w1αα

kγ1z
(7.22)

corresponding to the 3D spectrum (7.16) has

w1αα =
2πw3αα

γ3 − 2 (7.23)

and
γ1 = γ3 − 2 . (7.24)
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7.3 Relationships Connecting Fluctuating Parameters

Sediment volume scattering models (Ch. 14) require spectra representing the
fluctuation of parameters such as compressional wave speed, bulk density,
and compressibility. While porosity, sound speed, and bulk density may be
measured with spatial resolution sufficient to allow useful spectral estimates,
it is sometimes necessary to infer spectra for unmeasured parameters in terms
of measured spectra. Volume scattering models also require cross-spectra, for
example, between density and compressibility. Cross-spectra express corre-
lation between two parameters, and very little is known about such corre-
lations. Some of the relationships used to bridge the gap between measured
and unmeasured spectra are based on physical principles, but these alone are
not sufficient to meet all modeling needs, so various investigators have pro-
posed relationships based on arguments that are plausible but not rigorous.
The physically based relations will be presented here and the conjectured
relations are given in Appendix D.

For porosity and density, fluctuations are usually small compared to the
mean of the given parameter, allowing a useful connection to be made between
these two fluctuation types. Differentiating the density–porosity relation (Ta-
ble 4.5) while assuming that the water and grain densities are fixed, one finds
after some algebra

γρ = −1− ρw/ρ̄

1− β̄
δβ , (7.25)

where, in the notation of (7.3), γρ is the fluctuation in density divided by
the mean density, while δβ is the fluctuation in fractional porosity, β, not
divided by the mean. The assumption of spatially uniform grain density may
be questioned, but the bulk density–porosity regressions shown in Fig. 7.19
support the linear relationship between density and porosity. These data (M.
Richardson, unpublished) show some scatter, but most of this scatter is due
to the inclusion of data from many different sites. It is still an open question,
however, as to how much of density fluctuation is due to fluctuation in grain
density.

Assuming that (7.25) holds, the normalized standard deviation for density,
σ̂ρ, is related to the variance of porosity as follows:

σ̂ρ =
1− ρw/ρ̄

1− β̄

√
< δβ2 > . (7.26)

Some scattering models require statistical measures of compressibility fluc-
tuations as input (Ch. 14). Compressibility is not commonly measured in
sediments, but can be inferred from density and compressional wave speed.
Noting that compressibility, κ, is the inverse of the bulk modulus, Kb, (8.6)
can be written in the form

cp =
1√
κρ

. (7.27)
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Fig. 7.19. Bulk density versus fractional porosity measurements for siliciclastic
(upper) and carbonate (lower) sediments. The regression lines are ρ = 2.695 −
0.01697β (siliciclastic) and ρ = 2.794 − 0.01783β (carbonate) with r2 values of
0.9936 and 0.9906, respectively.
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This expression neglects shear effects, which should be an acceptable approx-
imation unless fluctuations of the (small) shear modulus are extraordinarily
large. Differentiating (7.27), the normalized fluctuations in compressibility
(fluctuations divided by the mean) can be expressed in terms of the normal-
ized fluctuations of compressional wave speed and density:

γκ = −2γp − γρ. (7.28)

In obtaining this expression, the mean of 1/
√
κρ has been approximated by

replacing compressibility and density in this expression by their means. The
error in this approximation is second-order in the fluctuations and negligi-
ble in the present context. Using (7.28), one can obtain the compressibility
covariances in terms of experimentally accessible covariances:

Bκκ(r) = 4Bpp(r) + 4Bρp(r) +Bρρ(r) (7.29)

and
Bρκ(r) = −2Bρp(r)−Bρρ(r) . (7.30)

Identical relations exist between the corresponding spectra.

7.4 Measurement Bias Due to Finite Resolution

All techniques for measurement of heterogeneity have finite resolution, lead-
ing to bias in estimates of first and second moments (profiles, covariances,
and spectra). This issue has been studied in connection with density statis-
tics obtained from core sections [Briggs and Tang 2002]. These authors used
Monte Carlo methods, creating simulated random density fields and then av-
eraging over volumes typical of core sections to produce synthetic data series.
The simulations employed an exponential correlation function with correla-
tion length Lc = 3.51 cm. The averaging resulted in estimated correlation
lengths greater than 15 cm, an extreme bias. This section will employ an
analytical approach to the bias problem. The method used is partly adapted
from unpublished work by D. Percival.

Averaging is equivalent to the application of a 3D low-pass filter to the
random function, γα(r). Thus, the measured parameter, γ̃α(r), is related to
the actual parameter through the 3D correlation integral

γ̃α(r) =
∫

γα(r′)y(r′ − r)d3r′ , (7.31)

where y(r) is a function that specifies the volume averaging inherent in a
finite-resolution measurement. While (7.31) is a correlation, it can be written
as a convolution between γα(r) and y(−r), thus as a filtering operation. As
the averaging produced by this filtering is unbiased when the parameter γα(r)
has no spatial dependence,
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Δz

a

.rz .Origin

Fig. 7.20. Averaging region appropriate to core sample measurements of porosity
and bulk density. The two dots show the origin of the coordinate system and an
arbitrary point within the averaging volume described by cylindrical coordinates,
(r, z). The azimuthal coordinate is not needed owing to symmetry.

∫
y(r)d3r = 1 . (7.32)

The nature of y(r) depends on the type of measurement. In measure-
ments of bulk density through core sections, this function is, in cylindrical
coordinates (Fig. 7.20),

y(r) = 1/V , |z| < Δz/2, r < a,

= 0 , otherwise , (7.33)

where Δz is the vertical length of the core section, a is the core inner radius,
and V = πa2Δz is the volume. This might be called a “hockey puck” function
owing to the shape and proportions relevant to core sectioning. It can be
considered as a sort of 3D “boxcar” function. Compressional wave speed
measurements on core samples are typically made by means of transmission
of sound horizontally through the core using source and receiving transducers
on opposite sides of the core. In this case, the averaging function might be
approximated as constant within a circular cylinder (with its axis horizontal)
and zero outside. In actuality, the averaging function should be continuous.

The averaging function for resistivity measurements using a spherical elec-
trode can be determined by assuming that the fluctuations in resistivity are
small compared to the mean. In this case, the averaging function is discon-
tinuous at the probe radius and continuous at larger radii:

y(r) =
a

4πr4
, r > a,

= 0 , otherwise . (7.34)
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Fig. 7.21. Averaging model results comparing true 1D spectrum and 1D spectrum
resulting from averaging over core sections having length 2 cm and diameters 3 cm
and 6 cm. The true 3D spectrum is given by (7.17) with wαα = 0.001 m−1 and
Lc = 0.04 m. The vertical dashed lines show the wavenumber range appropriate to
volume scattering models applied to the frequency range 10–100 kHz.

This expression takes no account of the disturbance of the sediment caused
by probe insertion. Spherical coordinates are used in (7.34), so the meaning
of r is different than in (7.33) where r is a cylindrical coordinate.

The mathematical details of the effect of finite resolution for the two
cases above are worked out in Sect. D.2.3. An example of the bias in spectral
estimation from core sections is shown in Fig. 7.21. This figure compares the
true spectrum and the biased 1D spectrum resulting from this expression
using parameters appropriate to typical core sampling. The true spectrum is
taken to be the isotropic spectrum (7.17) corresponding to the exponential
covariance. The true correlation length is taken to be 4 cm, comparable to
the core section dimensions, radius a = 3 cm, length Δz = 2 cm. The bias
is significant (5 dB or greater) over the wavenumber domain of interest for
high-frequency acoustics. The biased spectrum is lower at all frequencies than
the true spectrum.

The immediate output of core analysis is often the covariance rather than
the spectrum. The covariance of the averaged process can be found by per-
forming a multiple integral (D.43), but it is easier to perform an inverse FFT
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Fig. 7.22. Averaging model results comparing true covariance and covariance re-
sulting from averaging over core sections. The dashed curves indicate the biased
covariance resulting from averaging over entire sections, as in conventional analy-
sis. The dotted curves show the biased covariance resulting from averaging over the
horizontal extent of the core with no averaging over depth. The core sections are
assumed to have length 2 cm and radii 3 cm and 6 cm. The spectral parameters of
Fig. 7.21 are used.

on the result for the 1D spectrum. The result of this procedure is shown in
Fig. 7.22, which compares the covariances of the true process and the biased
process. Two different bias cases are shown. The first case is identical to that
of Fig. 7.21 in which averaging is over the entire core section. In the second
case, averaging is over a thin disk having radius equal to the core radius. This
type of averaging was used for the CT data of Figs. 7.24 and 7.25. All param-
eters are the same as those used to obtain Fig. 7.22, and the covariances have
been marked at 2-cm intervals, as these are the lag values typically measured
in core analysis. Although the true process has an exponential covariance,
the averaged processes do not. Both “hockey puck” and disk averaging cause
approximately the same bias, and bias is greater at small lags. The zero-lag
covariance (the variance) is reduced by about a factor of two by averaging
over core sections. If one wrongly assumes the section-averaged process has
exponential covariance, the value for the autoregressive coefficient would be
φ = ln[B̃(0)/B̃(2)] = 0.81, where lag is given in cm, and subscripts on the
covariance have been dropped for convenience. From this and the core section
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length of 2 cm, one would (wrongly) infer using (7.20) that the correlation
length was Lc = 9.5 cm, when the underlying true process had Lc = 4 cm.

This example is realistic in the magnitudes of the parameters used, but
may not be realistic in the choice of the “true” process as being first-order
autoregressive. Examples will be seen later in which the first-order autore-
gressive process provides reasonable fits to core-averaged data, consequently,
a more realistic example would replace the dashed curve in Fig. 7.22 with one
having exponential shape. The question then arises as to which true process
would yield an approximately exponential covariance after averaging. The
true process would have a sharper spike in the covariance at zero lag, and
a 3D spectrum that falls off more slowly than the k−4 of the autoregressive
process. The expressions derived above could be used to at least partially
determine the underlying random process, but this line of inquiry has not yet
been followed.
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Fig. 7.23. Averaging model results comparing true 3D spectrum and slightly biased
spectrum resulting from measurements with conductivity probe having radius 0.3
mm. The spectral parameters of Fig. 7.21 are used, and the vertical dashed lines
show the wavenumber range appropriate to volume scattering models applied to
the frequency range 10–100 kHz.

In summary, measurements on sectioned core samples produce a series of
random numbers that is a strongly filtered version of the underlying random



234 7 Sediment Heterogeneity

process. As the resulting bias is predictable, it may be possible to make
useful corrections. Resistivity probes average over much smaller volumes,
and the resulting bias is correspondingly smaller, as seen in Fig. 7.23. The
bias expected in CT determinations of heterogeneity spectra has not been
considered here and deserves attention.

7.5 Examples of Heterogeneity Statistics

This section gives measurement results for heterogeneity from several sources.
These examples include average vertical profiles, coefficients of variation,
correlation functions, and spectra. Such examples provide useful inputs for
acoustic models, but apparent inconsistencies appearing in some cases also
highlight the need for further research.

7.5.1 Coefficient of Variation

The coefficient of variation, defined in Sect. 7.2, provides a useful dimen-
sionless measure of the levels of fluctuation of geoacoustic parameters. This
allows comparisons of the fluctuation levels of different parameters (e.g., den-
sity and sound speed) in terms that correspond to their relative contributions
to acoustic scattering. Table C.1 in Appendix C gives the coefficient of vari-
ation for sound speed, attenuation, porosity, mean grain size, bulk density,
and grain density for sediment collected with cores from siliciclastic and car-
bonate sites [Richardson and Briggs 2004a, Richardson and Briggs 2004b].
These sites have roughly the same spatial scale as typical acoustic scat-
tering experiments (1 km2 or less). Most of the sediment samples were 1-
to 2-cm-thick sections of cores having approximate diameter 6 cm. Because
sound speed ratio and sound speed have identical values of the coefficient
of variation, this coefficient is only presented for sound speed ratio. For the
same reason, the coefficient of variation for the attenuation factor k (dB m−1

kHz−1) is given with the realization that αp (dB m−1) has the same coefficient
of variation. These data are mostly for sites of high-frequency acoustic exper-
iments and demonstrate the type of variability typical for sediment physical
and geoacoustic properties on scales of a kilometer or less. Note that the fine
centimeter-scale, within-core variability is combined with the larger meter-
scale, between-core variability in these calculations. Several general trends
are noted from the values of the coefficient of variation given in Appendix
C. The highest coefficients of variation are calculated for attenuation (mean,
32.53); the lowest for grain density (mean, 0.99) and sound speed (mean,
1.20). The next highest coefficients of variation are calculated for mean grain
size (mean, 18.74). Bulk density (mean, 2.95) and porosity (mean, 5.84) have
intermediate coefficients of variation. The coefficients of variation are higher
in carbonate compared to siliciclastic sediments, especially for mean grain size
and less so for porosity and density. Fine-grained sediments generally have
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higher values of the coefficient of variation for grain density, porosity, and
bulk density and lower values of the coefficient of variation for sound speed
and mean grain size. The coefficients of variation for attenuation exhibit no
apparent trends with respect to grain size.

7.5.2 Early Work on Fluctuation Spectra

The earliest examples of heterogeneity spectra were obtained using large-scale
data not suited to high-frequency application. Nevertheless, these techniques
could be applied at smaller scales. Porosity and density fluctuations in deep-
sea drilling cores have been analyzed by [Yefimov et al. 1988]. They fit the
resulting spectrum over the wavenumber range 0.2 to 100 m−1 with a power
law having γ3 = 3.5. This method could be applied to the very large data
sets available from deep-sea drilling.

The tomographic measurements of Yamamoto and collaborators are out-
lined in Sect. 7.1. Spectra for compressional wave speed fluctuations ob-
tained using cross-well tomography have been presented by [Yamamoto 1995,
Rogers and Yamamoto 1999]. These measurements had resolution appropri-
ate to acoustic application below 10 kHz. Higher-resolution measurements
were made by [Rapids et al. 1998], and two-dimensional power spectra were
derived from these tomographic sections by [Rogers and Yamamoto 1999]. As
noted in Sect. 7.1, the resolution analysis of [Chu et al. 2001] suggests that
the reported horizontal–vertical anisotropy may be in part a measurement
artifact.

Several examples of higher-resolution heterogeneity statistics obtained
from short core samples are provided in Table 14.1 of Ch. 14. The data
for the Arafura, San Francisco, and Orcas sites were obtained by Fourier
analysis of conventional core data. Section averaging has presumably biased
the spectral strength values downward, and comments on this are made in
Ch. 14. The data for the other two sites were obtained by Fourier analysis of
higher-resolution CT data and should not suffer from this bias.

7.5.3 CBBL Fine-Grained Sediment Measurements

Both CT and conventional core analysis were employed by [Briggs et al.
2002a], allowing comparison of the two techniques. Figure 7.24 compares
vertical profiles obtained at the CBBL site off the Dry Tortugas in the Florida
Keys where the sediment was a carbonate sand-silt-clay. Both sound speed
and density data show a transition in the first 5 cm from values appropriate
to low-density sediments to the higher values characteristic of the remainder
of the core samples. The CT density data show a less pronounced transition,
possibly due to settling of the cores in transit.

Covariance estimates from the same data set [Briggs et al. 2002a] are
shown in Fig. 7.25 in terms of the correlation coefficient obtained by di-
viding the covariance by its zero-lag value (the variance). The figure also
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Fig. 7.24. Averaged profiles of density and compressional wave speed ratio for
a site off the Dry Tortugas [Briggs et al. 2002a]. The CT data (x) show a less
abrupt transition in the uppermost portion of the cores compared to the data
obtained by conventional core analysis (+). The solid lines are a piecewise-linear
fit suitable for acoustic models that allow for stratification, while the dashed lines
represent extrapolation of surficial values as often done in models that do not allow
stratification.

shows curves obtained using the first-order autoregressive model with a cor-
relation length of 4 cm. The confidence bounds (95%) were obtained by a
Monte Carlo method. The autoregressive model fits the data reasonably well
for lags less than 5 cm, and the confidence bounds indicate that departures
from this model at larger lags are not statistically significant. The CT and
core-section data are similar which is interesting given that the CT data have
higher resolution than the core-section data. In fact, the resolutions are sim-
ilar, as the CT data were averaged over a square area equal to about 20%
of the core cross-sectional area, and the core sections employed 23–33% of
the cross-sectional area with the remainder saved for grain size analysis [K.
Briggs, private communication]. There is essentially no vertical averaging of
the CT data (the voxel vertical dimension is 2 mm), and the core-section data
are averaged vertically over 2 cm. This situation is modeled approximately
by the curves of Fig. 7.22 corresponding to a core diameter of 3 cm. On the
basis of that analysis, the measured CT and core-section covariances should
be similar with coefficients of variation approximately equal to 0.8 times the
true value. The measured coefficients of variation for density are 1.4% and
0.85%, respectively, for the core-section and CT data.
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Fig. 7.25. Correlation versus lag for sound velocity (a), density ratio determined
from core-section measurements (b), and density ratio determined from CT mea-
surements (c) for a site off the Dry Tortugas [Briggs et al. 2002a]. The CT data
and the data obtained by conventional core analysis show rather similar behavior.
A first-order autoregressive model having correlation length 4 cm is plotted for all
three cases (solid curve). The dashed curves are 95% confidence bounds obtained
using a Monte Carlo method, and a single Monte Carlo realization is plotted (x).
The legend of panel (a) applies to the other panels as well.

7.5.4 CBBL Coarse-Grained Sediment Measurements

An analysis of CT data has been carried out by [Tang and Orsi 2000a], us-
ing three cores from the CBBL Panama City site, where the sediments were
coarse-grained quartz sand with shell fragments. The CT measurements pro-
vide high resolution with voxel size 0.25 × 0.25 mm in the horizontal di-
mensions and 2 mm in the vertical dimension. The authors find that the
density fluctuations exhibit Gaussian statistics if outliers resulting from shell
and mud inclusions are eliminated. One-dimensional spectra in transverse
and vertical directions are shown in Fig. 7.26. There is a slight anisotropy in
the vertical as compared to the horizontal, but the two horizontal spectra in
orthogonal directions are essentially identical. The authors fit the data with
an isotropic 1D spectrum:

Wzρρ(k) =
a1

[1 + (L1k)2]β1
+

a2
[1 + (L2k)2]β2

, (7.35)
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Fig. 7.26. One-dimensional spectra obtained using CT data from the CBBL
Panama City site [Tang and Orsi 2000a]. The circles and solid line are the spectra
in orthogonal horizontal directions, and the dots are the spectrum in the vertical.

with a1 = 8.59× 10−7 m, a2 = 1.96× 10−10 m, L1 = 0.09 cm, L2 = 0.01 cm,
β1 = 2.8, and β2 = 2.1. By analyzing sample portions that do not contain shell
pieces, the authors conclude that the high-frequency part of the spectrum
(k > 1000 m−1) is primarily governed by intrinsic fluctuations in sand bulk
density due to sorting and packing of grains, while the lower-frequency part
is largely governed by heterogeneity due to shells and shell fragments. Note
that (7.35) is the sum of two terms of the form (7.21). Isotropy allows one
to obtain 3D spectral exponents γ3 = 7.6 and 6.2. These values are large,
but the pure power behavior is only apparent at very large wavenumbers
(k > 1000 m−1) corresponding to acoustic frequencies greater than about
100 kHz. As expected, the correlation lengths are much smaller than those
usually obtained from analysis of core sections owing to the relative lack of
averaging inherent in the measurement.

7.5.5 Pouliquen–Lyons Fine-Grained Sediment Measurements

High-resolution density spectra obtained from CT data by [Pouliquen and
Lyons 2002] are shown in Fig. 7.27. Each panel of the figure displays three
different 1D spectra. Two spectra are in orthogonal horizontal directions and
one is in the vertical direction. Except for the Tellaro site, the three spectra
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Fig. 7.27. One-dimensional spectra obtained from CT data
[Pouliquen and Lyons 2002]. The + and ∗ symbols are the spectra in orthogonal
horizontal directions, and the diamonds are the spectrum in the vertical.

overlap quite well indicating a high degree of isotropy. The authors fit the
3D spectra with the form (7.14) with Λ = 1. The fits are best at higher
frequencies (k > 300 m−1). At lower frequencies the measured spectra depart
from the model of (7.14) by failing to level off as wavenumber becomes much
smaller than the inverse of the correlation length. Table 7.1 summarizes the
results from the fits and also gives the mean grain size and voxel dimensions
applicable to each site. These sites had much finer-grained sediments than
either the CBBL or SAX99 sites. Interestingly, the power-law exponents and
correlation lengths are comparable to those of the dominant (first) term in
the spectrum (7.35) characterizing the CBBL site, even though the sediment
at that site was a coarse sand. The mean bulk density profile of each site was
fitted by the function

ρ̄(z) = ρs − ρs − ρ0
1 + az

, (7.36)
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where z = 0 at the sediment–water interface and z is positive downward into
the seafloor. The values of the parameters in this expression are given in
Table 7.1.

Table 7.1. Heterogeneity spectrum and vertical density profile parameters from
[Pouliquen and Lyons 2002]. The parameters in that reference have been translated
into the notation of this monograph.

Parameter Tellaro Venere Azzura Porto Venere P. D. Mariella
Mz(φ) 4.3 6.1 9.1 7.2
σ̂ρ 0.021 0.021 0.023 0.031
γ3 6.4 6.4 7.6 8.0

Lc (cm) 0.2 0.2 0.14 0.12
Voxel Dim. (mm) 0.35×0.35×2 0.25×0.25×2 0.35 x 0.35×2 0.25×0.25×2

ρs (g cm−3) 1.97 1.99 1.61 1.81
ρ0 (g cm−3) 1.52 1.37 1.18 1.1
a (m−1) 300 800 800 100
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Fig. 7.28. Mean density profile (line with dots) measured using IMP at the SAX99
site [Tang et al. 2002]. Also shown are curves denoting the mean plus and minus
one standard deviation.
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Fig. 7.29. One-dimensional spectrum in the vertical obtained from conductivity
probe data at the SAX99 site [Tang et al. 2002]. The data points are open circles
and the solid lines are a power-law fit (45) and corresponding 95% confidence inter-
vals. The dashed curves correspond to a first-order autoregressive model (exponen-
tial covariance) obtained from core-section analysis with 95% confidence intervals.

7.5.6 SAX99 Sand Measurements

High-resolution density measurements obtained using IMP (conductivity
probe) at the sandy SAX99 site have been presented by [Tang et al. 2002].
The IMP data provided much higher resolution than core sectioning, owing to
the small probe radius of 0.3 mm (see Fig. 7.23 for a model determination of
the bias expected due to finite resolution in this case). The density data are fit
reasonably well by a Gaussian probability density function, and the authors
suggest that departures from Gaussian statistics are due to shell fragments
and organic matter. Figure 7.28 shows the mean density profile obtained us-
ing IMP along with bands on either side of the mean profile showing the
depth-dependent standard deviation. The mean was fit by the closed-form
expression

ρ̄(z) = 1.98− 0.4e−3.5z0.6 , (7.37)

where z = 0 at the sediment–water interface and z is positive downward into
the seafloor. The measured standard deviation increases markedly near the
interface; this is evidence that the density fluctuations, in this case, are not a
stationary random process. The authors fit the depth-dependent normalized
standard deviation with the function
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σ̂ρ = 0.0152 + 0.096e−3.7z0.82 . (7.38)

The coefficient of variation is about 1.5% over most of the 6-cm measurement
depth, but increases to about 10% very near the interface. In order to perform
spectral analysis, γρ(r) was divided by this function to obtain a random
variable that has depth-independent (unit) standard deviation. This random
variable was then used to estimate the 1D vertical spectrum shown in Fig. 7.29
with the spectrum renormalized to yield the normalized standard deviation
of the main part of the data series, σ̂ρ = 0.0152. Also shown in the figure is
a power-law fit of the form (7.22).

The IMP data suggest a “transition layer” having a thickness of a few
millimeters, in which density begins at a very small value (about 1.5 g cm−3)
at the interface and increases rapidly to the at-depth value (about 2.0 g
cm−3). This implies that the sand has a very tenuous structure near the
interface, then exhibits a rapid increase in packing with depth. This is in
opposition to the conventional view of sands as sediments that are deposited
in a low-porosity state, while muds are deposited in a high-porosity state
with consolidation occurring as a function of depth and time. Further work
is needed to verify that this transition behavior is not a measurement ar-
tifact. In any case, the transition layer is so thin that it would have little
effect on acoustic behavior at frequencies below 100 kHz (A. Ivakin, private
communication)

These authors also employed conventional analysis of cores, allowing a
comparison of the two techniques. The sound-speed data interval was 1 cm
and that of the density data was 2 cm. The first-order autoregressive model
was fit to the compressional wave speed and density covariances obtained by
conventional core analysis. Correlation lengths of 2.55+0.95

−1.68 cm and 3.51+2.27
−1.03

cm for the compressional wave speed and density, respectively, were found,
with the 95% confidence intervals as indicated. The coefficients of variation
obtained from this analysis were 0.7% and 0.73%, respectively. Figure 7.29
compares the first-order autoregressive spectrum obtained from analysis of
sectioned cores with that obtained using high-resolution IMP data. The core
and IMP data overlap within the 95% confidence intervals, and the IMP data
have a 1D spectral exponent similar to that (γ1 = 2) of the first-order autore-
gressive process. In fact, this agreement is troubling, as the averaging model
predicts that the IMP spectrum should lie above the core-section spectrum
(represented by the autoregressive model). As the IMP data were obtained in
situ, it is difficult to imagine a mechanism that would reduce the strength of
measured fluctuations. One should not forget, however, that the conductivity
probe is invasive, and may alter porosity determinations in an unknown way.
One might also inquire whether there is any mechanism that could increase
the measured level of fluctuation obtained in the core sample analysis. The
authors argue against the possible effects of sectioning, noting that errors
in porosity due to sectioning are expected to be less than 0.003. Sectioning
error was evaluated by comparison of the mean of porosity values measured
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from sectioned cores with the porosity values measured from intact, unsec-
tioned cores collected from the same location. Equation (7.25) shows that
errors in fractional porosity will produce comparable fractional errors in the
bulk density. The porosity error, however, is not comfortably smaller than
the observed coefficient of variation, 0.73%. It appears that further study of
the error due to core sectioning is warranted.

The IMP data of [Tang et al. 2002] were also used to determine 1D spectra
in the horizontal. In keeping with the nonstationarity seen in the vertical, the
horizontal spectra are dependent on depth. Power-law fits of the form (7.22)
yield exponents in the range γ1 = 1.52–2.35, with the smaller exponents
appearing at the greatest depths (5–6 cm).

7.6 Research Issues

Some aspects of volume heterogeneity are understood, but much remains to
be learned. The various measurement techniques tend to suggest a variety
of forms for fluctuation spectra. This may indicate that there is no canon-
ical form, or it may be symptomatic of errors that are not yet understood.
CT and conductivity measurements both offer high resolution, but the CT
spectra show much steeper falloff at the highest wavenumbers, with 3D spec-
tral exponents as large as 6–8. The CT data offer support for the common
assumption of isotropy on the small scales relevant to high-frequency scat-
tering. The errors due to disturbance of the sediment by conductivity probes
deserve attention and further measurements of the thin transition layer seen
in measurements on sand are warranted. The bias resulting from averaging
over core sections is readily understood, but the random error due to core col-
lection and subsequent manipulations, including sectioning, deserves further
scrutiny, as does the possible degradation of cores in transit from the field to
a CT facility. More comparisons between techniques in laboratory-prepared
samples are needed to resolve some of these issues. Regarding correlations
between acoustic parameters, further study of the conventional core mea-
surement methodology is needed, and development of new high-resolution
methods should be given a high priority.

The issues outlined above relate primarily to fine-scale fluctuations in sed-
iment structure which have received the most attention to date. Isolated fluc-
tuations such as those due to shell fragments and bubbles have received less
attention, at least as regards the type of statistical characterization needed
for high-frequency acoustic modeling. Resolution of issues connected with
sediment volume scattering will require laboratory measurements and field
experiments in which comparable effort is dedicated to both acoustic and
geoacoustic measurements.
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The term “fluid theory” is to be interpreted in the nomenclature of Ch. 2.
That is, “wave theory,” “propagation theory,” or, simply, “theory,” refer to
systems of equations governing wave motion and boundary conditions for
sound pressure fields (and related fields) in sediments. The term “theory”
is distinct from the term “model” which is reserved for applications of the-
ory (often with simplifying approximations) to produce specific predictions,
e.g., of sound scattering. The next three chapters will consider, in order of
increasing complexity, fluid, elastic, and poroelastic theories. These theories
are required for the scattering and penetration models treated in Chs. 13–
15. The acoustic modeler will usually choose the simplest theory that can
account for the phenomena evident in the data at hand. Because of the close
relationships between the various theories, the discussion of research issues
will be unified and placed at the end of Ch. 10.

The parameters used in fluid theories are discussed in detail in Chs. 4
and 5, and in Appendix B. The parameters of interest are the sound speed,
attenuation, and bulk density of sediment and seawater. Methods to measure
sediment bulk density in the laboratory and in situ are presented in Ch. 4.
Sound speed and attenuation measurement techniques are discussed in Ch. 5,
and empirical regressions between these parameters and commonly measured
sediment physical properties (such as mean grain size and porosity) are also
given. Empirical relations to predict the relevant parameters of the water
column in terms of temperature, pressure, and salinity are given in Appendix
B.

Although sediments are composed of discrete particles, the theories dis-
cussed in this chapter and in Chs. 9 and 10 treat sediments as continuous
media. This approximation is reasonable provided the wavelength is much
larger than the size of the sediment grains [Bourbié et al. 1987]. The theories
of interest can be classified as effective medium theories in which physical
properties such as density and elastic moduli are spatial averages of some
sort. The term “bulk density” is a reminder of this averaging and serves to
distinguish sediment density from the constituent grain and water densities.
There is a possibility of confusion, however, because the term “bulk modu-
lus” is used as well, but here the modifier “bulk” refers to the volume change
in response to hydrostatic pressure, and is not meant to denote any sort of
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averaging. Thus, while the term “bulk” does not necessarily imply volume av-
eraging when applied to moduli, such averaging is assumed for the sediment
modulus and density in this chapter.

There should be no mystery surrounding effective medium theories, as
fluids and solids are routinely treated as continuous media even though they
are composed of discrete atoms, molecules, and/or crystal grains. For exam-
ple, a quartz crystal is often described in terms of elastic moduli, optical
refractive index, etc., without concern for its underlying atomic structure.
This structure becomes apparent, however, when X-rays are scattered by the
crystal, because the X-ray wavelength is comparable to the atomic spacing.
Returning to the main topic of this monograph, the discrete structure of
sediments will become apparent acoustically when the acoustic wavelength
becomes comparable to sediment particle size, particle separation, or pore
size. For the acoustic frequencies of interest, wavelengths (in water) range
from about 15 cm to 1.5 mm. As the coarser sand sediments have grain sizes
of order 1 mm, the continuum treatment should be adequate except at the
highest frequencies for the coarser sediments.

This picture implies averaging over a volume containing many sediment
particles, but doesn’t clearly specify the size of this averaging volume. If the
averaging volume is too small, containing only a few particles, the resulting
average density and modulus may have an extreme variation with position
and may not be physically meaningful. On the other hand, if the averaging
volume is chosen to be several acoustic wavelengths in size, the heterogeneity
responsible for acoustic volume scattering (Ch. 14) will be smoothed out and
lost. Thus, the idea of an effective medium is not as clear as it should be,
and the success of this approach is conditional (as previously noted) on the
acoustic wavelength. It will be assumed in this and in the following chapters
that geoacoustic measurements provide averages over suitable volumes, nei-
ther too small nor too large for the acoustic problem at hand. In Sect. 7.4
it is demonstrated that this optimistic view is not always justified, that is,
the averaging volume in geoacoustic measurements may be too large for the
acoustic application. One can believe, however, that as long as the acoustic
wavelength is much larger than the sediment particle size, suitable averaging
should be possible in principle, if not always in practice.

All the theories to be discussed in this and the two next chapters have
their beginnings in Newton’s second law which states that force equals mass
times acceleration. For a continuous medium, one considers the forces acting
on small volume elements and the resulting displacements and deformations.
These deformations (quantified in terms of strains) are assumed to be pro-
portional to the applied forces (quantified in terms of stresses). This approx-
imation is equivalent to Hooke’s law for springs and leads immediately to
linear behavior in which response is proportional to the strength of excita-
tion and superposition applies. That is to say, only linear acoustics will be
considered, a good approximation provided the deformation per unit length
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(strain) is small (typically, strains less than 10−5 fall in the linear regime).
Strains larger than this fall in the range of interest of sediment geotechniques
[Mitchell 1993]. The fluid, elastic, and poroelastic theories to be discussed
differ in the so-called constitutive relations that connect stress and strain,
where stress is force divided by the area over which it is applied.

In the following discussion, all quantities will be assumed to have exp(−iωt)
time dependence unless the time dependence is explicitly noted to be arbi-
trary. Fourier synthesis can be used to develop the time dependence resulting
from excitations having arbitrary time dependence. Much of the physics con-
tained in these theories is evident in the frequency dependence of parameters
such as sound speed and attenuation. In this chapter, such frequency depen-
dence is left unspecified, so the results can be applied to “dispersive” media
in which sound speed depends on frequency.

Fluid theories are commonly used to describe sediment acoustic properties
and have been found to be adequate for application to many of the scattering
models discussed later in this monograph. The various fluid theories differ
primarily in their energy loss mechanisms, an area of current research. With
exp(−iωt) time dependence, loss mechanisms can be modeled by replacing
the bulk modulus (or sometimes, the bulk density) by a complex, frequency-
dependent value. The following discussion will first treat the lossless case,
after which losses will be considered.

8.1 Equations of Motion

In classical fluid theory, wave motion is governed by the linearized Navier–
Stokes equation [Morse and Ingard 1968, Ch.6], [Pierce 1989, Ch. 10],
[Kinsler et al. 1999, Ch. 8], in which viscosity contributes a force term pro-
portional to velocity shear. Viscosity is discussed in Sects. 4.4.1, 9.8, 10.1.2,
and B.4. For the present, viscous effects will be ignored, and attention will
be restricted to simpler, lossless fluid theories leading to the Helmholtz equa-
tion, for which acoustic pressure, P , is the only stress to be considered. In
this case the force per unit volume, f , is equal to the negative gradient of
pressure

f = −∇P . (8.1)

Newton’s second law can be expressed on a per unit volume basis as

f = −ω2ρ u , (8.2)

where the −ω2 factor arises from the second time derivative of displacement,
u, giving acceleration, and ρ is the density. The displacement is a position-
dependent field whose three components at any point in the medium give
the (small) displacement of the medium due to passage of the acoustic wave.
Hooke’s law enters through the relation between pressure and the resulting
fractional decrease in volume, −∇ · u:
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P = −Kb∇ · u , (8.3)

whereKb is the dynamic bulk modulus of the fluid, the inverse of the dynamic
compressibility. For convenience, these terms will be shortened to “bulk mod-
ulus” and “compressibility” hereafter. This equation is a typical constitutive
relation connecting stress and strain. More complicated examples will be seen
in later chapters.

Equating (8.1) and (8.2) gives

∇P = ω2ρ u , (8.4)

and dividing (8.4) by ρ on both sides and taking the divergence, (8.3) can be
used to eliminate the unknown u, yielding the following equation of motion
for acoustic pressure:

ρ∇ · (1
ρ
∇P ) + ω2

c2p
P = 0 , (8.5)

where

cp =

√
Kb

ρ
(8.6)

is the sound speed. The subscript p denotes “P-wave” using seismic termi-
nology for consistency with later chapters. Both the density and sound speed
can be functions of position. Thus, (8.5) is capable of describing the reflection
and scattering properties of layered or otherwise heterogeneous sediments,
provided the fluid approximation is adequate.

Alternatively, an equation of motion for the displacement can be found
by taking the gradient of (8.3) and combining the result with (8.1) and (8.2)
to obtain

ω2ρ u+∇(Kb∇ · u) = 0 . (8.7)

As the unknown in this equation is a three-component vector field, the equa-
tion of motion for pressure (8.5) is usually preferred. If density (but not nec-
essarily sound speed) is position-independent, (8.5) reduces to the Helmholtz
equation,

∇2P +
ω2

c2p
P = 0 . (8.8)

In this case, applying the curl operator (∇×) to (8.4), one finds that the
displacement field is irrotational, that is, ∇× u = 0.

8.2 Plane Waves

If both density and sound speed are position-independent, (8.8) has plane-
wave solutions of the form
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P = P0e
ikp·r , (8.9)

where P0 is an arbitrary complex amplitude, and the magnitude, kp, of the
wave vector, kp, is called the wavenumber, equal to the ratio of angular fre-
quency and sound speed:

kp =
ω

cp
. (8.10)

The corresponding displacement can be found by using (8.4):

u = i
kp

k2pKb
P . (8.11)

Since displacement is parallel to the direction of propagation, this is a “lon-
gitudinal wave.” In dealing with horizontally stratified media such as the
seafloor, the vertical (z) coordinate takes on special significance, and it will
prove useful in later developments to break coordinate vectors and wave vec-
tors into horizontal and vertical parts. The two horizontal (x and y) compo-
nents will be collected in two-dimensional vectors indicated by bold upper-
case letters:

r = (R, z) , (8.12)

kp = (K,±kβp(K)) . (8.13)

In (8.12), R = (x, y), while in (8.13), K = (kx, ky). The magnitude of the

horizontal part of the wave vector is K =
√
k2x + k2y. The z-component of the

wave vector is written in a form that forces k2p = k2x + k2y + k2z . That is, once
kx and ky are known, kz is known up to a possible sign change, depending
on whether the wave vector is tilted upward or downward. This constraint is
imposed by the definition

βp(K) =

√
1− K2

k2p
, (8.14)

and the choice of (+) is made in (8.13) if the wave vector is tilted toward
the positive z-direction (upward), while the choice of (−) is made if the wave
vector is tilted toward the negative z-direction (downward). Note that βp(K)
can be interpreted as the sine of the angle of propagation measured from
the horizontal. As will be seen, this is a generalized sine that is sometimes a
complex number.

The square root in (8.14) requires some discussion. While the square root
usually has two values differing only in sign, β(K) is defined as the positive
square root, with the sign change (determining the upward or downward tilt
of the wave vector) specified elsewhere (as in (8.13)). An interesting situ-
ation arises if the magnitude, K, of the horizontal component of the wave
vector exceeds kp. With a coordinate vector, the analogous situation would
be impossible: the horizontal component, R, of r must always be less than
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the magnitude, r. In other words, R ≤ r. However, if K ≥ kp, the relation
k2p = k2x + k2y + k2z can still be satisfied if kz is imaginary so that its square
is negative. This means that the definition of βp(K) can be used without
change, as the square root will produce the necessary imaginary kz. To make
the definition unambiguous, the positive sign is chosen for the imaginary part
of the square root.

The situation in which kz is imaginary is not just a mathematical pe-
culiarity; it is the physically meaningful case of an evanescent wave. In this
case, the wave propagates horizontally but decays exponentially in the verti-
cal direction. Such waves will be first encountered in Sect. 8.5 in connection
with reflection at the water–sediment interface.

In the following section, losses due to energy dissipation are considered,
and are shown to lead to complex values for the wavenumber, kp. All of
the relations of this section hold without modification, requiring only the
understanding that kp is complex.

8.3 Losses and Energy Flux

In Chs. 9 and 10, specific acoustic loss mechanisms will be discussed. Even
without knowledge of specific mechanisms, it is possible to obtain useful
results regarding losses. Losses can be accounted for, at least approximately,
by replacing either the bulk modulus, Kb, or the bulk density, ρ, by complex,
frequency-dependent effective parameters. The complex bulk modulus can be
broken into the components

Kb = K ′
b − iK ′′

b , (8.15)

where both K ′
b and K ′′

b are real and positive. The imaginary part of the
modulus must be negative in order that loss leads to decaying rather than
growing wave amplitude. To understand this, note that a plane wave traveling
in the positive x-direction has spatial dependence exp(ikpx) and will decay
if kp has a positive imaginary part, that is,

kp = k′p + ik′′p , (8.16)

where both k′p and k
′′
p are real and positive. Because of the reciprocal relation

between wavenumber and sound speed (8.10), the sound speed must have
a negative imaginary part. Finally, as sound speed is proportional to the
square root of the modulus (8.6), the modulus must also have a negative
imaginary part. Similarly, (8.6) requires that complex density must have a
positive imaginary part,

ρ = ρ′ + iρ′′ , (8.17)

where both ρ′ and ρ′′ are real and positive. Complex moduli are encoun-
tered in the literature quite often (e.g., [Morse and Ingard 1968, Ch. 6],
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[Stoll and Kan 1981, Chotiros 1995a]), but complex densities are also used
(e.g., [Morse and Ingard 1968, Williams 2001b]). The use of one or the other
(or both) is not a matter of taste, but a matter of physics. As will be seen,
each results from different loss mechanisms and each has distinct physical
consequences. In either case, (8.6) yields a complex sound speed.

It is common, but not essential, to assume that the complex compressional
speed is independent of frequency. In this case, both k′p and k′′p increase
linearly with frequency, and the ratio of the imaginary and real parts,

δp =
k′′p
k′p

, (8.18)

is independent of frequency. This assumption translates into proportionality
of attenuation with frequency. While this assumption has some support in
experimental data ([Hamilton and Bachman 1982, Buckingham 2000]), it can
at best be an approximation owing to fundamental constraints imposed by
causality. These constraints, expressed by the Kramers–Kronig relations,
are discussed in Appendix I. As will be seen in Ch. 10, Biot theory predicts
that attenuation will have a nonlinear frequency dependence. In any case, it
should not generally be assumed that δp is independent of frequency.

Whether or not the assumption of frequency independence is made, an
attenuation coefficient, αp, measured in dB m−1 is commonly used. The re-
lation between k′′p and αp can be obtained by equating the factors expressing
the decrease in squared pressure magnitude for a plane wave propagating a
distance r:

e−2k′′
p r = 10−0.1αpr . (8.19)

This yields

αp =
20k′′p
ln(10)

. (8.20)

Since wave speed is complex in the lossy case, it is necessary to make a
connection with the measured speed, which is real by definition. The mea-
sured speed is usually the phase speed,

cpphase =
ω

k′p
. (8.21)

Because of the inverse relationship between wavenumber and wave speed, the
phase speed is not simply the real part of the complex speed, rather

1
cpphase

= Re
{
1
cp

}
. (8.22)

The notation cpphase is rather awkward, and the simpler form, Vp, is used
for compressional wave phase speed in Ch. 5. It is convenient to define the
complex speed ratio



252 8 Fluid Theories

ap =
cp
cw

, (8.23)

where cw is the sound speed in water. It is more common to use a real
parameter for the speed ratio, represented here by the symbol νp and in
earlier chapters by VpR:

νp =
cpphase
cw

. (8.24)

The relation between these two ratios can be found by using (8.10), (8.16),
(8.18), (8.21), (8.23), and (8.24) to obtain

ap =
νp

1 + iδp
. (8.25)

The attenuation coefficient can be written in terms of the dimensionless loss
parameter as

αp =
40πfδp

νpcw ln(10)
. (8.26)

There are other commonly used dimensionless measures of attenuation. The
loss (in dB) per wavelength, αpλ, is obtained by multiplying (8.26) by the
wavelength in sediment, cpphase/f , with the result

αpλ =
40πδp
ln(10)

. (8.27)

The “quality factor,” Qp, is

Qp =
1
2δp

, (8.28)

and the “logarithmic decrement,” Δp, is

Δp = 2πδp . (8.29)

The above definitions of loss or attenuation parameters are applicable to
the other wave types that will be encountered later in this monograph, with
the subscripting simply changed to denote shear waves and Biot waves.

The energy flux density of an acoustic wave is called the intensity. The
intensity is the average power per unit area carried by an acoustic wave
and can be computed from the product of pressure and velocity. In order to
understand the expression for intensity, one must appreciate the fact that
complex numbers P and v are being used to represent pressure and velocity,
but real, time-varying pressure and velocity are required to compute power.
The real time functions are obtained by taking the real part of the product
of the complex number (P or v) and exp(−iωt) (see Appendix E). Instanta-
neous power per unit area is the product Re{P exp(−iωt)}Re{v exp(−iωt)},
where Re denotes the real part. Averaging over one cycle to obtain average
power per unit area, one obtains the well-known expression for acoustic in-
tensity, I [Morse and Ingard 1968, Ch. 6], [Medwin and Clay 1998, Ch. 2],
[Kinsler et al. 1999, Ch. 5]:
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I =
1
2
Re{P ∗v} . (8.30)

Note that v = −iωu and that I is a vector whose direction is the direction
of power flow. For a plane wave, the connection between displacement and
pressure (8.11) can be used to obtain the magnitude of the intensity:

I =
|P |2
2
Re{ 1

ρcp
} . (8.31)

The product ρcp is the acoustic impedance of the fluid medium, a complex
quantity in lossy media.

8.4 Boundary Conditions

R

f

z

N

(R)

Fig. 8.1. Two-dimensional representation of an arbitrary boundary, z = f(R),
between two dissimilar media.

The boundary conditions of interest are the conditions for matching solu-
tions of the equation of motion (8.5) across a boundary such as that depicted
in Fig. 8.1. This figure shows two dissimilar media separated by an arbitrarily
shaped boundary specified by the equation

z = f(R) , (8.32)

where R = (x, y) is a two-dimensional vector comprised of the horizontal
coordinates. One boundary condition is continuity of pressure, which can be
expressed as

P |z=f(R)+ = P |z=f(R)− . (8.33)

This continuity condition can be inferred from (8.1) which states that the
acceleration is proportional to the gradient of pressure (volume force). A
step change in pressure across the boundary would yield an infinite gradient
and infinite acceleration, an impossibility. The other boundary condition is
continuity of displacement normal to the boundary
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N · u|z=f(R)+ = N · u|z=f(R)− , (8.34)

where
N = ez −∇f(R) (8.35)

is a vector normal to the boundary (Fig. 8.1), and ez is the unit-normal vector
in the z-direction. This boundary condition is also implied by the equations of
motion. In this case, (8.5) can be divided by the position-dependent bulk den-
sity, ρ, and integrated with respect to the z-coordinate. For convenience, the
coordinate system will be tilted so that the z-axis is normal to the boundary,
and the point of interest on the boundary will be placed at z = 0. If density
undergoes a step change across this boundary, the z-derivative portion of
the divergence may appear to be infinite at the boundary (it’s not), but the
integral can be performed to give

∂

∂x

[
∂P

∂x
|z=0

∫ z=0+

z=0−

dz

ρ(r)

]
+

∂

∂y

[
∂P

∂y
|z=0

∫ z=0+

z=0−

dz

ρ(r)

]
+

1
ρw

∂P

∂z
|z=0+ − 1

ρ

∂P

∂z
|z=0− = −ω2P

∫ z=0+

z=0−

dz

ρ(r)c2p(r)
. (8.36)

Here, ρ with no argument denotes the density immediately below the bound-
ary. The partial derivatives of pressure with respect to x and y have been
taken outside their respective integrals because continuity of pressure across
the boundary insures that these derivatives have no abrupt z-dependence at
the boundary. Because all the integrands in (8.36) are finite, the integrals van-
ish as the end points move toward the boundary. This leads to the continuity
condition

1
ρw

∂P

∂z
|z=0+ =

1
ρ

∂P

∂z
|z=0− . (8.37)

Finally, (8.4) shows that the left and right sides of (8.37) are proportional to
the z-component (normal component) of displacement, yielding continuity of
the normal component of displacement.

8.5 Reflection and Transmission

Figure 8.2 illustrates the geometry for a plane wave incident at grazing an-
gle θw on a perfectly flat seafloor. The water–sediment interface is assumed
to pass through the origin of the coordinate system, so that the equation
specifying the interface is simply z = 0. Although a perfectly flat seafloor
is an idealized situation, it illustrates several important features of acoustic
interaction with the seafloor and provides the simplest example of a model
derived from fluid theory. A more detailed account of the reflection problem
can be found in [Brekhovskikh and Godin 1990].
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θw

θ
p

θw

Fig. 8.2. Two-dimensional representation of a planar boundary, z = 0, between
two dissimilar fluids. The arrows indicate the wave vectors for an incident plane
wave and the resulting reflected and transmitted plane waves. All three have the
same horizontal components.

The pressure in the water at an arbitrary point, r = (R, z), z > 0 is

Pw(r) = eiK·R−ikwβw(K)z + Vwwe
iK·R+ikwβw(K)z , (8.38)

and the pressure within the sediment (z < 0) is

Pp(r) = Vwpe
iK·R−ikpβp(K)z . (8.39)

The subscripts w and p denote the acoustic wave in water and the compres-
sional wave in sediment, respectively. The pressure field in the water contains
two terms, a unit-amplitude, downgoing incident wave and a reflected, upgo-
ing wave. The complex amplitude of this wave is denoted Vww and is known
as the reflection coefficient (Ch. 2). The wave in the sediment has complex
amplitude, Vwp, the pressure transmission coefficient. Without loss of gener-
ality, the x-axis is assumed to be aligned with the vertical plane of incidence,
that is, the incident wave vector is parallel to the x–z plane:

K = kwex cos θw , (8.40)

where kw = ω/cw is the wavenumber in water. In this case, the function

βw(K) =

√
1− K2

k2w
(8.41)

is the sine of the incident grazing angle:

βw(K) = sin θw . (8.42)
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In (8.38) and (8.39) the dependence of all fields on the horizontal coordi-
nates is the same, namely, exp(iK ·R). If this were not true, the continuity
conditions of Sect. 8.4 could never be satisfied at all points along the z = 0
boundary. This fact leads to Snell’s law as follows. Equality of K ·R in the
water and in the sediment requires that K be the same in the water and in
the sediment:

K = kw cos θw = kp cos θp , (8.43)

or
cw

cos θw
=

cp
cos θp

. (8.44)

This is Snell’s law. This law can be applied to lossy seafloors simply by
asserting that the expression

βp(K) = sin θp , (8.45)

analogous to (8.42), defines the grazing angle in the sediment. Then

sin θp =
√
1− a2p cos2 θw . (8.46)

The grazing angle θp is a complex number and cannot be interpreted in the
usual geometric sense, although its real part will still approximately indicate
the wave propagation direction when the imaginary part is much smaller than
the real part.

Imposing the continuity of pressure condition (8.33) by equating (8.38)
and (8.39) for z = 0 yields

1 + Vww = Vwp . (8.47)

Similarly, (8.37) yields

kwβw(K)
ρw

(1− Vww) =
kpβp(K)

ρ
Vwp . (8.48)

Equations (8.47) and (8.48) can be solved for the pressure reflection coeffi-
cient:

Vww =
zwp − 1
zwp + 1

, (8.49)

with
zwp =

zp
zw

, (8.50)

where
zw =

ρwcw
sin θw

(8.51)

and
zp =

ρcp
sin θp

(8.52)
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are angle-dependent acoustic impedances for the two media with sin θp being
complex. The reflection coefficient depends only on dimensionless ratios of
density and sound speed, as can be seen by writing

zwp =
aρap sin θw
sin θp

, (8.53)

where the density ratio is defined as

aρ =
ρ

ρw
, (8.54)

and with ap given by (8.23).
Using (8.47), the pressure transmission coefficient, Vwp, is

Vwp =
2zwp

zwp + 1
. (8.55)

Both the transmission and reflection coefficient are dimensionless, being ratios
of pressures. Some authors define transmission and reflection coefficients in
terms of displacement or in terms of potentials for displacement or velocity.
In these cases, (8.49) still holds, but (8.55) must be altered.
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Fig. 8.3. Flat-interface reflection coefficient for representative sand and mud
seafloors. The acoustic parameters for the sand seafloor are νp = 1.1, aρ = 2.0,
and the parameters for the mud seafloor are νp = 0.98, aρ = 1.5. For each of
these two types, the lossless case (δp = 0) is shown as a dashed line and the lossy
case (δp = 0.01) is shown as a solid line. The critical and intromission angles are
indicated by vertical dotted lines.

The reflection coefficient reveals a great deal about the acoustic properties
of the sediment. Figure 8.3 shows two reflection coefficient examples, one for
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a sand seafloor and the other for a mud (muds are comprised of silt- and clay-
sized particles) seafloor. For each example, both lossless and lossy cases are
shown. The sand seafloor is an example of a “fast” seafloor for which sediment
sound speed is greater than the water sound speed. In this case, Snell’s law
dictates that the grazing angle in the sediment be smaller than the incident
grazing angle in the water (θp < θw). This statement only applies strictly to
the lossless case, as θp is complex in the lossy case. In fact, in the lossless
case, there exists a critical grazing angle, θcrit, for which θp = 0, that is,
the refracted acoustic energy travels horizontally. For incident grazing angles
smaller than the critical angle, refraction will prevent acoustic propagation
into seafloor. This results in total reflection back into the water, resulting in
unit magnitude for the reflection coefficient. Figure 8.3 shows this behavior
for the lossless sand case. The critical angle for the lossless case can be found
by taking cp to be real, setting the left-hand side of (8.46) equal to zero, and
solving for θw = θcrit. The result is

θcrit = cos−1(1/νp) . (8.56)

In the sand example of Fig. 8.3, θcrit = 24.6◦. Note that in the lossy case
the reflection coefficient has magnitude somewhat less than unity for grazing
angles smaller than the critical angle, but decreases rapidly for angles greater
than the critical angle. Thus, while the critical angle may not be perfectly
defined in the lossy case, the value given by (8.56) for the lossless case is
nonetheless useful. In optics, the critical angle is also known as the “angle of
total internal reflection.”

The mud examples in Fig. 8.3 are “slow” seafloors having sediment sound
speed smaller than the water sound speed. In this case, refraction is in the
downward direction and no critical angle exists. An interesting phenomenon
is evident in Fig. 8.3, however, which shows that, in the lossless case, the
reflection coefficient vanishes at one particular angle. This is the “angle of
intromission,” for which the incident acoustic energy passes into the seafloor
without any reflection. The angle of intromission can be found by setting
zwp = 1 for the lossless case and solving for the resultant angle, θw = θint:

θint = cos−1

(√
a2ρ − 1/ν2p
a2ρ − 1

)
. (8.57)

For the mud examples in Fig. 8.3, the angle of intromission is about 10.5◦.
In order to see that there is a physical difference between complex sound

speed and complex density, consider the normalized impedance for vertical
incidence:

zwp|θw=π/2 = aρap . (8.58)

If sound speed is complex, ap has a negative imaginary part, while if density is
complex, aρ has a positive imaginary part. Thus, each contributes oppositely
to the phase of the boundary impedance and each will contribute oppositely
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to the phase of the reflection coefficient. As noted in Sect. 11.3, this may
have implications for tests of the validity of the various wave theories (fluid,
elastic, Biot, and Buckingham).

The fluid reflection model is idealized and should not be expected to
faithfully model all acoustic seafloor interactions. Real seafloors are rough and
heterogeneous and may exhibit layering or other forms of vertical gradients
in physical properties. These problems are discussed in Chs. 13 and 14.

8.6 Nonplane Waves, Flat Seafloors

Acoustic sources have finite size and launch spherically diverging waves. A
useful idealization of this situation is a point source having no spatial ex-
tension. More complicated sources can be represented by superpositions of
point sources. This section will outline the wavenumber integration formalism
for point sources, often encountered in low-frequency underwater acoustics,
but also forming the basis for many treatments of high-frequency seafloor
scattering and penetration.

The solution of a wave equation, including all applicable boundary effects,
for a point source of unit amplitude is called the Green’s function. For a fluid,
the equation to be solved for the Green’s function is [Jensen et al. 1994, Eq.
2.81]

ρ(r)∇ · ( 1
ρ(r)

∇G(r, r′)) + ω2

c2p(r)
G(r, r′) = −4πδ(r− r′) . (8.59)

In this equation, δ(r− r′) = δ(x−x′)δ(y− y′)δ(z− z′) is a three-dimensional
delta function specifying a point source at the position r′. The factor −4π
is used for convenience, so that the pressure field in water having uniform
density and wavenumber, kw, is

G0(r, r′) =
eikw|r−r

′|

|r− r′| . (8.60)

Many authors do not include the factor 4π in the delta-function source term
with the result that it appears in the denominator of the Green’s function
[Jensen et al. 1994, Eq. 2.50]. With the convention adopted here, inspection
of (8.60) shows that the pressure has a magnitude of unity at a distance of
one unit of length. In the terminology of [Pierce 1989, p. 160], this is the case
of a point source with “unit monopole amplitude.” The field G0(r, r′) will be
referred to as the “free-space Green’s function.” If it is expanded as a Fourier
integral of plane waves, then it will be possible to use the previously derived
plane wave reflection and transmission coefficients to calculate the field of a
point source placed in the water over the seafloor. The required expansion can
be found in several references [Zipfel and DeSanto 1972], [Voronovich 1994,
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Ch. 2], [Jensen et al. 1994, Ch. 4], [Brekhovskikh and Godin 1999, Ch. 1],
and is

G0(r, r′) =
i

2πkw

∫
eiK·(R−R′)+ikwβw(K)|z−z′|

βw(K)
d2K . (8.61)

The integration is over the two variables kx and ky (recallK = (kx, ky)), with
limits ±∞. Thus, the magnitude, K, of the two-dimensional wave vector, K,
becomes larger than the wavenumber, kw, over part of the domain of inte-
gration. As noted in connection with (8.14), this is the domain of evanescent
waves where βw(K) becomes imaginary. Thus, the expansion of the free-space
Green’s function not only includes freely propagating plane waves, but also
contains evanescent waves that decay exponentially as the field point moves
vertically away from the source.

If cylindrical integration coordinates are used in (8.61), the angular inte-
gral can be performed, leaving

G0(r, r′) =
i

kw

∫ ∞

0
J0(K|R−R′|)eikwβw(K)|z−z′| KdK

βw(K)
, (8.62)

where J0 is the zeroth-order Bessel function of the first kind.
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Fig. 8.4. Time evolution of field due to a 20-kHz pulsed point source situated
5 m above a flat, homogeneous sandy seafloor. The acoustic parameters for the
seafloor are νp = 1.16, aρ = 2.0, δp = 0.01. The time evolution of the reflected and
refracted waves is clear, but the lateral and evanescent waves are not seen owing to
the particular geometry and loss used.
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To obtain an expression for the field due to a monopole source situated
at some arbitrary position r′ over a flat, homogeneous seafloor, as in Fig.
8.4, it is only necessary to take (8.61) as the plane-wave expansion of the
source field and apply the plane wave reflection coefficient to each Fourier
component, finally integrating over all plane waves:

Gww(r, r′) =

G0(r, r′) +
i

kw

∫ ∞

0
Vww(K)J0(K|R−R′|)eikwβw(K)(z+z′) KdK

βw(K)
. (8.63)

In (8.63), the subscript ww is used on the Green’s function to indicate that
both the source and field point are in the water, that is, z, z′ > 0. The
first term, G0(r, r′), represents the spherical wave emanating from the source,
and is evaluated using (8.60). The integral term represents the reflected wave,
which may exhibit rather complicated behavior. The factor exp(ikwβw(K)z′)
in (8.63) is the phase shift in moving vertically from the source to the interface
at z = 0, and is obtained by setting z = 0 in (8.61). The reflection coefficient
is generalized to include both evanescent and propagating waves. This is
simply a matter of using (8.42) and (8.45) in (8.53),

zwp(K) =
aρapβw(K)

βp(K)
, (8.64)

so that the reflection coefficient (8.49) is defined for all K (thus the reflection
coefficient is denoted Vww(K) in (8.63)).

The field within the sediment due to a source in the water is readily found
by using the same approach, with the transmission coefficient, Vwp, substi-
tuting for the reflection coefficient and with the appropriate phase factor for
propagation in the sediment used in place of the factor exp[ikwβw(K)z]:

Gwp(r, r′) =

i

kw

∫ ∞

0
Vwp(K)J0(K|R−R′|)eikwβw(K)z′−ikpβp(K)z KdK

βw(K)
(8.65)

Note that, in this expression, z′ > 0 and z < 0. Equations (8.63) and (8.65)
were used to compute the fields pictured in Fig. 8.4. This computation as-
sumed as an exciting waveform a Gaussian-shaped pure-tone pulse having a
5-kHz 3-dB full bandwidth centered at 20 kHz. The single-frequency Green’s
functions of (8.63) and (8.65) were computed at a few hundred equally spaced
frequencies covering the band of interest, multiplied by the Fourier transform
of the exciting waveform, and the result was inverse transformed. The main
features seen in Fig. 8.4 are the field reflected back into the water and the
field refracted into the sediment. In fact, there are other interesting effects
not obvious in the figure. One effect of importance at high frequencies is the
“evanescent” wave, the exponentially decaying vestige of the incident wave
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Fig. 8.5. Time evolution of field due to a 20-kHz pulsed point source situated 5 m
above a sandy seafloor showing detail for incidence below the critical angle. The re-
fracted wave is relatively weak in the lower two panels, having traveled through the
sediment at small grazing angle over a large distance. The enhanced field strength
very near the interface is due to evanescent penetration of the incident field. This
field is slightly retarded compared to the refracted field, which has traveled through
the sediment at higher speed than the waterborne incident wave. The acoustic pa-
rameters for the seafloor are νp = 1.2, aρ = 2.0, δp = 0.01.

in water that occurs when the grazing angle is smaller than the critical angle.
This phenomenon is visible in Fig. 8.5, for which the sound speed ratio, νp,
was increased to 1.2 in order to enhance the visibility of the evanescent wave.
While not dramatic in appearance, the evanescent wave can be important in
sonars designed to detect buried objects (see Chs. 1 and 15).

A phenomenon of some importance at low frequencies is the “lateral
wave,” resulting from reradiation into the water of energy traveling hori-
zontally in the sediment. At high frequencies, attenuation in the sediment
makes the horizontally traveling refracted wave weak, hence the lateral wave
is weak, even when the source is placed very near the interface, as in Fig. 8.6,
and both attenuation and sound-speed ratio are assigned unrealistic values
(too low and too high, respectively). Generally speaking, the lateral wave
is unimportant at high frequencies, but it may be an issue in close-range
measurements of reflection (Sect. 11.1).

An important property of the Green’s function can be found by consider-
ing the case of propagation from a point, r, within the sediment to a point,
r′, in the water. By simply interchanging indices in (8.65), one obtains
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Fig. 8.6. Time evolution of field due to a 20-kHz pulsed point source situated 0.05 m
above a sandy seafloor showing the lateral wave, the weak feature propagating in the
water away from the boundary. The lateral wave precedes the incident wave, having
originated from the rapidly traveling refracted wave. The acoustic parameters for
the seafloor are νp = 1.5, aρ = 2.0, δp = 0.0005.

Gpw(r′, r) =

i

kp

∫ ∞

0
Vpw(K)J0(K|R−R′|)eikwβw(K)z′−ikβp(K)z KdK

βp(K)
. (8.66)

By a similar interchange of indices, one can show that the sediment-to-water
pressure transmission coefficient is related to the water-to-sediment pressure
transmission coefficient as follows:

Vpw(K) = Vwp(K)
kpβp(K)

aρkwβw(K)
. (8.67)

Upon substitution in (8.66), one finds

Gpw(r′, r) =
1
aρ

Gwp(r, r′) . (8.68)

This is an expression of the fundamental principle of reciprocity, and a gen-
eral statement can be derived for fluid media having arbitrary position de-
pendence of sound speed and density. Using (8.59) and Green’s theorem, it
can be shown that, in general,
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G(r′, r)
ρ(r′)

=
G(r, r′)
ρ(r)

. (8.69)

This is a generalization of the expression encountered for homogeneous media
in which the density factors are absent [Pierce 1989, p. 199].

8.7 Wood’s Equation

Sediments have a certain degree of rigidity, that is, they can support static
shear stresses and are not fluids in the strict sense. This rigidity results from
contact between sediment grains, and, if the forces acting at these contacts
are ignored, a fluid approximation results. To characterize acoustic behavior
in this approximation, one must develop equations for the effective density
and bulk modulus of a volume of sediment that is large enough to contain
many grains, yet much much smaller than the acoustic wavelength. It is easy
to see that the bulk density, ρ, is

ρ = βρw + (1− β)ρg , (8.70)

where β is the fractional porosity, ρw is the density of the pore water, and ρg
is the density of the sediment grains. With pressure, P , applied, the fractional
volume change of the pore water is P/Kw, where Kw is the bulk modulus
of the water, and the fractional volume change of the grains is P/Kg, where
Kg is the bulk modulus of the grains. Overall, the fractional volume change
of a small quantity of saturated sediment will be Pβ/Kw +P (1− β)/Kg, so,
dividing this by pressure, the bulk modulus, Kb, of the sediment is given by
[Wood 1964]:

1/Kb = β/Kw + (1− β)/Kg . (8.71)

Sound speed can be determined using (8.70) and (8.71) in (8.6). The result
will be denoted c0 to distinguish it from other theoretical values for compres-
sional wave speed:

c0 =
1√

[β/Kw + (1− β)/Kg][βρw + (1− β)ρg]
. (8.72)

This equation is referred to as Wood’s equation, but it will be convenient
in later developments to refer to (8.70)–(8.72) collectively as Wood’s equa-
tions. Wood’s approach usually gives a rather poor prediction of sediment
sound speed [Hamilton 1971a, Hamilton and Bachman 1982], as it ignores
much of the dynamics of the grain-pore water system. First, contact between
grains produces forces not accounted in Wood’s treatment. These forces are
included in Gassmann’s equations (Sect. 10.1.1). Second, inertial and vis-
cous forces are neglected, yet become important at high frequencies. Wood’s
equations are useful, however, in the context of more ambitious sediment
acoustic theories [Buckingham 1997, Buckingham 1998, Buckingham 2000,
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Williams 2001b], and in interpretation of laboratory measurements in which
grain-contact and density-differential effects have been deliberately reduced
[Richardson et al. 2002a].

8.8 Research Issues

Sediment propagation theory is an active area of research, but fluid theory is
a special case. Consequently, discussion of research issues is deferred to Ch.
10.



9 Elastic Theories

Elasticity theory incorporates shear forces not included in fluid theory. Elas-
tic media support two types of waves: compressional waves analogous to the
acoustic waves of fluid theory and shear waves. Both types of waves are at-
tenuated due to energy loss, and the term “viscoelasticity” is often used to
designate the relevant theory [Hamilton 1971a]. In this monograph, elasticity
theory includes viscoelastic effects. In unconsolidated sediments such as clay,
silt, and sand, shear waves travel at considerably lower speeds than the water
sound speed (Sect. 5.2), and elasticity theory provides rather small corrections
to models based on the fluid approximation. The fluid approximation fails
entirely for rocky seafloors such as sandstone, granite, and basalt. In these
materials, the shear wave speed is often greater than the water sound speed,
and the theory of elasticity should be used. This chapter outlines elements of
elasticity theory and notation needed for later discussion of modeling. Shear
wave speed and attenuation are the two additional parameters required by
elasticity theory compared to fluid theory. In situ and laboratory techniques
commonly used to measure these parameters are presented in Sect. 5.2. Em-
pirical regressions that can be used to predict shear speed attenuation in
near-surface sediments are also given in Sect. 5.2 along with information on
vertical gradients.

Because an elastic medium can support shear stresses, pressure is not an
appropriate field for describing wave motion. In an elastic medium, deforma-
tion is defined in terms of the components of strain, which involve spatial
derivatives of the three components of the displacement vector. There are
nine such derivatives, organized in the strain tensor. Similarly, the force per
unit volume is expressed in terms of the stress tensor which also has nine com-
ponents. Hooke’s law, expressing the assumed linear relation between stress
and strain, can then be written as a tensor relation with a grand total of 81
elastic constants, or moduli. Fortunately, physical constraints and symmetry
considerations reduce many of the moduli to zero and provide relationships
that leave a relatively small number of independent moduli. In this mono-
graph, only isotropic elastic media will be considered, in which case there are
only two independent moduli and for which tensor notation can be largely
avoided. The stresses and strains of immediate interest are “dynamic,” and
in the linear regime (with stress less than 10−5). Larger static and dynamic
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strains are of geotechnical and seismic interest. In particular, large static
strain resulting from overburden is responsible for shear wave speed gradi-
ents (Sect. 5.2). Higher amplitude dynamic strains are typically discussed in
the geotechnical literature [Mitchell 1993].

The following development of the theory of waves in elastic media can be
supplemented by a number of references, including [Landau and Lifshitz 1970,
Brekhovskikh and Godin 1990].

9.1 Equations of Motion

The volume force equation for fluids (8.1) must be generalized for elastic
media. This generalization involves replacing the pressure with the stress
tensor, σij :

fi =
∑
j

∂jσij , (9.1)

where the indices i, j represent the coordinates (x, y, z), and ∂j = ∂
∂x ,

∂
∂y ,

or ∂
∂z . In an isotropic elastic medium, the stress tensor can be written in

terms of the displacement, u, as follows:

σij = λδij∇ · u+ μ(∂iuj+∂jui) , (9.2)

where δij is the Kronecker delta function, and the coefficients λ and μ are
the Lamé parameters. Combining this constitutive relation with the volume
force equation (9.1), Newton’s second law (8.2) yields the following equation
of motion:

ω2ρui + ∂i(λ∇ · u) +
∑
j

∂j [μ(∂iuj + ∂jui)] = 0 , (9.3)

where the density, ρ, and the parameters λ and μ can be functions of position.
Note that λ occupies a place in the equation of motion analogous to the bulk
modulus in the fluid case (8.7). The parameter μ multiplies the strain tensor,
(∂iuj+∂jui)/2. This parameter characterizes the medium’s ability to support
shear forces and, when μ = 0, (9.3) reduces to the fluid equation of motion.
Another special case of interest is the medium for which the Lamé parameters
are independent of position. In this case, (9.3) can be written in vector form:

ω2ρu+ (λ+ 2μ)∇(∇ · u)− μ∇×∇× u = 0 . (9.4)

It is convenient to express the displacement field in terms of scalar and
vector potentials [Brekhovskikh and Lysanov 1991]:

u(r) = ∇φ(r) +∇×ψ(r) . (9.5)
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The scalar potential, φ, describes compressional waves, and the vector po-
tential, ψ, describes shear waves. Without loss of generality, one can require

∇ ·ψ(r) = 0 . (9.6)

In homogeneous media, for which ρ, λ, and μ are independent of position,
(9.4) reduces to two uncoupled Helmholtz equations in the two potentials,

∇2φ+
ω2

c2p
φ = 0 (9.7)

and

∇2ψ +
ω2

c2t
ψ = 0 . (9.8)

In these equations, the compressional and shear waves speeds are

cp =

√
λ+ 2μ

ρ
(9.9)

and

ct =
√

μ

ρ
, (9.10)

respectively, where the subscript p denotes the compressional wave and the
subscript t denotes the shear wave. While the subscript “s” might be more
logical and consistent with seismic notation, it will be reserved for other
purposes, and “t” (for “transverse”) will be used to denote shear waves.
Note that compressional waves have “irrotational” displacement, ∇×u = 0,
since u = ∇φ. In contrast, shear wave displacement is “solenoidal,” having
∇·u = 0, since u = ∇×ψ. This means that shear waves do not produce any
time-varying change in the volume of the (homogeneous, isotropic) medium.

9.2 Plane Waves

As in the fluid case, plane-wave solutions exist for the displacement field if the
medium is homogeneous, that is, if ρ, λ, and μ are independent of position.
Compressional plane waves have potential of the form

φ(r) = φ0e
ikp·r , (9.11)

where
kp =

ω

cp
. (9.12)

Taking the gradient, the corresponding displacement is

u(r) = ikpφ0eikp·r . (9.13)
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Thus, displacement for a compressional wave is parallel to the direction of
propagation. A shear plane wave has vector potential of the form

ψ(r) = ψ0e
ikt·r , (9.14)

where
kt =

ω

ct
. (9.15)

Taking the curl, the displacement is

u(r) = ikt ×ψ0e
ikt·r . (9.16)

This shows that displacement for a shear wave is perpendicular to the di-
rection of propagation. As the complex vector amplitude ψ0 is arbitrary, the
vector ikt×ψ0 in (9.16) could be replaced by any complex vector that is per-
pendicular to the direction of propagation. The direction of this vector will
be said to define the “polarization” of the shear wave, somewhat analogous
to the polarization of an electromagnetic wave.

As in the fluid case, stratification of the seafloor gives special significance
to the vertical (z) direction, and it is useful to differentiate between those
plane waves whose propagation direction is tilted downward and those whose
propagation direction is tilted upward:

k±q (K) = (K,±kqβq(K)) , q = p, t. (9.17)

The wave equations obeyed by the potentials determine the relation between
the transverse and vertical components of the wave vectors. This gives the
following complex sines for the compressional and shear waves:

βq(K) =
√
1−K2/k2q . (9.18)

The following unit vectors specifying the directions of propagation are
also useful:

e±q (K) = k±q (K)/kq . (9.19)

There are two plane-wave shear polarizations to consider, both having
particle displacement normal to the direction of propagation. The shear wave
having particle displacement in the direction

e±h (K) = k±t (K)× ez/K = (Ky/K,−Kx/K, 0) (9.20)

will be referred to as “horizontally polarized” as the particle displacement is
in a horizontal plane. In this case, the polarization vector does not depend
on whether propagation is upward or downward, but the superscripts ± are
used for consistency with the vertical polarization case. A plane shear wave
having transverse wave vector, K, and particle displacement in the direction
of the unit vector
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e±v (K) = e±h (K)× e±t (K) = ∓Kβt/K + ezK/kt (9.21)

will be referred to as “vertically polarized,” as the displacement is in a vertical
plane. In this case, the polarization vector depends upon whether the wave
propagation direction is tilted upward or downward. Scattering by interface
roughness and inhomogeneities within the seabed cause conversion between
the wave types defined above. For example, while incidence of a plane com-
pressional wave in the water on a flat interface only gives rise to a vertically
polarized shear wave, scattering by interface roughness causes conversion of
compressional energy in the water to both the vertical and horizontal shear
polarizations. Scattering by heterogeneity of the seabed causes conversion
between all three wave types.

Figure 9.1 summarizes the conventions defined here for compressional and
shear plane waves as to propagation directions and directions of displacement.
Note that the horizontal polarization vector satisfies the relationship

e±h (K) = e±t (K)× e±v (K) . (9.22)

9.3 Losses

As in the fluid case, the simplest method of dealing with loss is to assume that
the density and elastic moduli (the Lamé parameters) have small imaginary
parts. If the complex moduli and the (possibly complex) density are inserted
in the expressions for compressional and shear wave speeds (9.9) and (9.10),
the resulting complex wave speeds will have small, negative imaginary parts,
and the corresponding wave vectors will have small, positive imaginary parts.

As in the fluid case, it is convenient to define complex speed ratios.

aq =
cq
cw

=
νq

1 + iδq
, q = p, t . (9.23)

The real parameters, νq, are the sediment/water phase speed ratios, and the
real parameters, δq, are the loss parameters, which can be used to obtain the
attenuation coefficients, αq, for the compressional and shear waves:

αq =
40πfδq

νqcw ln(10)
. (9.24)

The dimensionless attenuation parameters defined for the fluid case in Sect.
8.3 can be used here with the obvious change in subscripting.

9.4 Boundary Conditions

Consider the problem of matching wave solutions between water and an elas-
tic seafloor. As in Fig. 8.1, the media are separated by a boundary given by
the equation
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z = f(R) , (9.25)

where R = (x, y). As in the pure fluid case, one boundary condition is
continuity of the normal component of displacement

N · u|z=f(R)− = N · u|z=f(R)+ , (9.26)

where the normal vectorN is defined in (8.35). The other boundary condition
is continuity of normal and transverse tractions for the stress tensor,∑

j

Njσij |z=f(R)− =
∑
j

Njσ
w
ij |z=f(R)+ , (9.27)
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where the superscript, w, denotes the fluid medium (water) and no super-
script is used for the elastic medium (seafloor material). As with the pressure
continuity condition, this condition guarantees that the volume force will be
finite across the boundary. The traction boundary condition (9.27) is actually
three equations, so there are a total of four conditions that must be satisfied
in matching fields across the boundary.

9.5 Reflection and Transmission

When a plane acoustic wave is incident from water onto an elastic medium, an
acoustic wave is reflected, and compressional and shear waves are transmitted
into the elastic medium as shown in Fig. 9.2.

R

z    Incident 
Wave Vector

  Reflected 
Wave Vector

Transmitted 
Wave Vectors

Compressional

Shear

k-
p

k-
t

k i k r

Fig. 9.2. Two-dimensional representation of a planar boundary, z = 0, between
water and an elastic medium. The arrows indicate the wave vectors for an incident
plane wave and the resulting reflected wave and the two transmitted waves, one
a compressional wave and the other a shear wave. All four wave vectors have the
same horizontal component, Ki.

The scalar displacement potential in the water at an arbitrary point,
r = (R, z), z > 0, is

φw(r) = eiki·r + Vwwe
ikr·r , (9.28)

where
ki = Ki − ezkwβw(Ki) (9.29)

and
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kr = Ki + ezkwβw(K) . (9.30)

The scalar potential representing the compressional wave in the sediment is

φ(r) = Vwpe
ik−

p ·r , (9.31)

and the vector potential representing the shear wave in the sediment is

ψ(r) = −e−h Vwte
ik−

t ·r . (9.32)

The transmitted shear wave is vertically polarized, but the horizontal polar-
ization vector is used in the vector potential, because the curl operation will
then give displacement in the vertical plane. As in the treatment of reflec-
tion from a fluid–fluid interface, the x-axis is assumed to be aligned with the
vertical plane of incidence so that

K = kwex cos θw , . (9.33)

Imposition of the four boundary conditions is sufficient to determine the
four reflection and transmission coefficients. One of these, the transmission
coefficient for the horizontally polarized shear wave, vanishes. The reflection
coefficient is

Vww(θw) =
ze(θw)− 1
ze(θw) + 1

, (9.34)

where the normalized acoustic impedance, ze(θw), is

ze(θw) = zwp cos2 2θt + zwt sin2 2θt . (9.35)

Here,

zwp =
aρap sin θw
sin θp

(9.36)

is the normalized boundary impedance for compressional waves, identical to
(8.53), and

zwt =
aρat sin θw
sin θt

(9.37)

is the equivalent impedance for shear waves. The variables, θp and θt, are the
complex grazing angles of the compressional and shear waves in the seafloor
material, obtained from Snell’s law:

cos θq = aq cos θw , q = p, t . (9.38)

A trigonometric identity can be used to obtain

cos 2θt = 2a2t cos
2 θw − 1 . (9.39)

Equation (9.35) also requires
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sin2 2θt = 1− cos2 2θt (9.40)

as an input. In later applications of (9.35)–(9.40), the grazing angle in water,
θw, is sometimes replaced by the scattered grazing angle in water, θs. This will
require double subscripting of θt, either θti or θts. The reflection coefficient
is used to define the bottom loss, L (2.11).

The transmission coefficients for the potentials of compressional- and
shear-wave particle displacements are [Brekhovskikh and Godin 1990]

Vwp(θw) = −ap cos 2θt sin θw
sin θp

[1− Vww(θw)] (9.41)

and
Vwt(θw) = −at sin 2θt sin θw

sin θt
[1− Vww(θw)] . (9.42)
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Fig. 9.3. Flat-interface reflection coefficient for a sand seafloor, comparing the fluid
and elastic models. The acoustic parameters are cw = 1500 m s−1, νp = 1.1, aρ =
2.0, δp = 0.01, νt = 0.167, δt = 0.01. The shear speed is 250 m s−1, a rather large
value chosen so that the difference between the fluid and elastic models is clearly
visible.

Figure 9.3 shows the magnitude of the reflection coefficient for a sand
seafloor with and without inclusion of elastic effects. The calculation for the
fluid case uses the same values of νp, δp, and aρ as for the elastic case. The
shear speed is taken to be 250 m s−1; for a more realistic value of 100 m s−1

the difference between the two models is negligible.
While elastic theory provides only a modest correction to fluid theory for

unconsolidated sediments having shear speeds of a few hundred m s−1 or
less, it yields much different results for rock seafloors, where the shear speed
is typically greater than the water sound speed. Figure 9.4 shows that the
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difference between the two models can be quite dramatic. The fluid model
predicts very low loss for grazing angles below the compressional wave critical
angle, 66.4◦. The elastic model predicts large loss in the vicinity of the shear
wave critical angle, 39.7◦. This loss is mainly due to transmission of energy
into the seafloor and will be important when considering volume scattering
in rock in Ch. 14.
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Fig. 9.4. Flat-interface reflection coefficient for a rock seafloor, comparing the
fluid and elastic models. The material parameters are νp = 2.5, aρ = 2.5, δp =
0.02, νt = 1.3, δt = 0.1.

9.6 Nonplane Waves

The fields produced by a point source in the water column above a flat, ho-
mogeneous elastic seafloor can be computed using the approach given in Ch.
8 for fluid theory. The wavenumber integral expression for the field in water
is unchanged from (8.63), except that the elastic expression for the reflec-
tion coefficient is to be substituted for the fluid expression. Similarly, the
compressional and shear waves in the seafloor are computed using the ap-
propriate transmission coefficients and wave vector z-components. Like the
fluid case, lateral and evanescent waves are seen, but new effects emerge.
This can be anticipated by examining the integrand of the wavenumber in-
tegration, specifically either the reflection or transmission coefficients, which
are evaluated for all real values of wave vector, including those whose mag-
nitude is greater than the wavenumber in water, the evanescent domain.
Figure 9.5 shows a large peak corresponding to the Scholte (or Stonely) wave
[Brekhovskikh and Godin 1990]. Unlike the lateral and evanescent waves, the
Scholte wave is a true surface wave, decaying exponentially in both upward
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and downward directions. Although the reflection coefficient magnitude shows
a peak value greater than unity at the Scholte wavenumber, this does not vi-
olate energy conservation, as it occurs in the evanescent domain, where the
wave does not propagate away from the interface and therefore cannot trans-
port energy away from the interface. The reflection coefficient shows small
features near the compressional and shear wavenumbers. These wavenumbers
correspond to incident grazing angles near the corresponding critical angles.
The reflection coefficient nearly vanishes near the “Rayleigh” wavenumber
[Brekhovskikh and Godin 1990, p. 111]. This is due to the existence of the
“leaky Rayleigh wave,” which is not a true surface wave since it is not a freely
propagating mode in the lossless case. This does not mean that this wave
is unimportant. The near vanishing of the reflection coefficient due to this
wave renders the interface nearly transparent acoustically for angles slightly
smaller than the shear critical angle and will have important consequences
in scattering.
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Fig. 9.5.Magnitude of flat-interface reflection coefficient for a rock seafloor, plotted
as a function of horizontal wavenumber normalized by the wavenumber in water.
Points on the abscissa greater than unity correspond to evanescent waves. The
large peak just inside the evanescent domain is due to the Scholte wave. In order of
increasing wavenumber, the three vertical dashed lines correspond to the real parts
of the compressional, shear, and Rayleigh wavenumbers. The material parameters
are νp = 2.5, aρ = 2.5, δp = 0.02, νt = 1.3, δt = 0.1.

9.7 Gassmann’s Equations

Wood’s approach for saturated sediments (Sect. 8.7) has been generalized by
Gassmann [Gassmann 1951, Berryman 1999] to take account of the elastic
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properties of the “frame” of solid particles in fluid-saturated porous materials.
One of Gassmann’s equations gives the bulk modulus of a fluid-saturated,
porous sediment [Anderson and Hampton 1980a]

Kb = Kg
Kf +Q′

Kg +Q′ , (9.43)

where
Q′ = Kw

Kg −Kf

β(Kg −Kw)
, (9.44)

where β is the fractional porosity, Kg is the bulk modulus of the individual
sediment grains, Kw is the bulk modulus of the pore water, and Kf is the
bulk modulus of the frame, drained of water. The second Gassmann equation
states that the shear modulus of the saturated medium is the same as that
of the frame. In terms of the Lamé parameters, the sediment bulk modulus
is Kb = λ+2μ/3. The modulus λ+2μ = Kb+4μ/3 is convenient, as it gives
the compressional wave speed via (9.9).

Gassmann’s equations are appropriate when one can neglect the differen-
tial motion of the fluid and frame, typically when permeability is low, as in
mud [Stoll and Bautista 1998] and rock. The effects of movement of the pore
fluid with respect to the frame are incorporated in Biot theory (Ch. 10).

9.8 Buckingham’s Theory

Elastic theory as presented above treats attenuation empirically, without pro-
viding a physical explanation for the loss mechanism. This is in distinction
to Biot theory, which, as will be seen, ascribes at least a portion of acoustic
energy loss to viscous movement of water in the pores between sediment parti-
cles. One problem with the purely empirical approach is that one might inad-
vertently assign impossible frequency dependencies to sound speed and atten-
uation, that is, dependencies that violate causality (Appendix I). Buckingham
[Buckingham 1997, Buckingham 1998, Buckingham 2000, Buckingham 2005]
has developed a theory that postulates viscous-like forces between sediment
grains. For the purposes of this monograph, Buckingham’s theory will be di-
vided into two parts, a microscopic part and an effective medium part. At
the microscopic level, sediment grains come into contact, but lack bonding.
Thus the dynamic frame bulk and shear moduli are zero. Instead, two types
of shearing, translational and torsional, are assumed to occur at grain con-
tacts and act as stress relaxation mechanisms. This shearing, referred to as a
“stick-slip” mechanism by Buckingham, results from the applied strain and
the microroughness of the grains (Sect. 3.4). The three parameters character-
izing this process are the strain-hardening index, n, the compressional rigidity
coefficient, γp, and the shear rigidity coefficient, γt. The values of these pa-
rameters cannot be derived from microscopic properties in the present state of
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the theory. Instead, they are inferred from a relatively few field measurements
of sound speed and attenuation, shear wave speed, and sediment porosity and
mean grain size. In [Buckingham 2005] values of these parameters so obtained
are assumed to be universal and are used to predict the dependence of com-
pressional and shear wave speeds and attenuations on frequency, depth in
sediment, mean grain size, and porosity.

The microscopic stress relaxation mechanism may only be applicable to
sands. It seems doubtful that this relaxation mechanism can be applied to
muddy sediments where electrostatic repulsive and attractive forces and adhe-
sion of organic matter control particle-to-particle interactions, and the flexure
of clay particles may provide a dissipation mechanism. In addition, carbon-
ate sediments often exhibit interparticulate bonding, or cementation, which
should lead to significant values of frame bulk and shear moduli. Although
quite intriguing, it is obvious that additional research is needed to fully define
the physics of particle interactions required for the Buckingham theory.

Whether or not the microscopic part of Buckingham’s theory has universal
validity, the effective medium part can be examined independently, consider-
ing the parameters needed in Buckingham’s wave equation to be given. Even
in this restricted view, the theory makes testable predictions regarding prop-
agation, reflection, and scattering. This theory has the formally attractive
property of having causality “built in” at the outset.

Using arguments motivated by the microscopic picture, Buckingham ar-
rives at the following equation of motion :

ρ
∂v
∂t

= −∇p+ λp∇{∇ · [hp(t)⊗ v]}+ 4
3
ηt∇{∇ · [ht(t)⊗ v]}

−ηt∇×∇× [ht(t)⊗ v] = 0 , (9.45)

where v is the particle velocity

v =
∂u
∂t

, (9.46)

λp and ηt are “stress relaxation coefficients,” and ρ is the density given by
Wood’s equation (8.70). The relation between pressure, p, and displacement,
u, is

p = −Kb∇ · u , (9.47)

where Kb is the (real) bulk modulus given by Wood’s equation (8.71). Equa-
tion (9.45) is only applicable to homogeneous media and is written in the
time domain as opposed to the frequency domain representation used pre-
viously for fluid and elastic theories. The notational convention used pre-
viously in this monograph has been abused slightly in that u now repre-
sents real, time-dependent displacement rather than complex displacement
amplitude for time-harmonic excitation. Lowercase p is used to denote real,
time-dependent pressure as opposed to uppercase P , used for complex pres-
sure amplitude. This temporary excursion into the time domain is helpful
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because the essence of the theory is “memory” in the dissipation terms, ex-
pressed as temporal convolutions of “material impulse response functions”
(MIRFs), hp(t) and ht(t) with the velocity, e.g.,

h(t)⊗ v(t) =
∫ ∞

−∞
h(t′)v(t− t′)dt′ . (9.48)

The MIRFs are
hp(t) = t−1

p (1 +
t

tp
)−n (9.49)

and
ht(t) = t−1

t (1 +
t

tt
)−m , (9.50)

where these functions vanish for negative t, and the characteristic times tp
and tt are very short compared to the inverse of the acoustic frequency.
The parameters m and n are the “strain-hardening indices” and are not
integers as the notation might suggest. Buckingham’s equation reduces to
the linearized Navier–Stokes equation for acoustic waves in a viscous fluid
[Kinsler et al. 1999, Ch. 8] when the MIRFs are set equal to delta functions.
In this case, λp becomes the “bulk viscosity” and ηt becomes the “shear
viscosity.”

If the equation of motion is expressed in the frequency domain, with com-
plex displacements, etc., and exp(−iωt) time dependence, the convolutions
become products

ω2ρu+Kb∇(∇ · u)− iω[λpHp(ω) +
4
3
ηtHt(ω)]∇(∇ · u)

+iωηtHt(ω)∇×∇× u = 0 , (9.51)

where
Hp(ω) =

∫ ∞

−∞
hp(t)eiωtdt (9.52)

and
Ht(ω) =

∫ ∞

−∞
ht(t)eiωtdt . (9.53)

Equation (9.51) is in the form of the elastic equation of motion (9.4) with
complex Lamé parameters

λ+ 2μ = Kb − iω[λpHp(ω) +
4
3
ηtHt(ω)] , (9.54)

μ = −iωηtHt(ω) . (9.55)

From this it follows that there will be compressional and shear waves with
complex speeds
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cp =

√
λ+ 2μ

ρ
(9.56)

and

ct =
√

μ

ρ
. (9.57)

Buckingham gives the following approximations for Hp(ω) and Hs(ω):

Hp(ω) =
(

i

ωtp

)1−n

Γ (1− n) (9.58)

Ht(ω) =
(

i

ωtt

)1−m

Γ (1−m) , (9.59)

where Γ is the gamma function. Specializing to the case m = n, the complex
speeds are

cp = c0

√
1 +

3γp + 4γt
3ρc20

(−iωT )n (9.60)

and
ct = c0

√
γt
ρc20

(−iωT )n/2 , (9.61)

where

c0 =

√
Kb

ρ
(9.62)

is the (real) wave speed given by Wood’s equation (8.72). The parameters γp
and γt are called the compressional and shear relaxation coefficients and are
given by

γp =
λp
tp

(
tp
T

)n

Γ (1− n) (9.63)

and

γt =
ηt
tt

(
tt
T

)n

Γ (1− n) . (9.64)

The parameter T has the units of time and may be assigned any convenient
value (e.g., T = 1 s), as changes in T will be compensated by changes in γp and
γt so that the velocities remain unchanged. As in the elastic case, complex
ratios of compressional and shear speeds (9.23) can be defined along with
attenuation coefficients (9.24). Buckingham notes the simple result, obtained
from (9.61):

δt = tan(nπ/4) . (9.65)

Thus, the shear wave attenuation sets the value of n via the dimensionless
loss parameter, δt. Typically n << 1. The parameter γt can be related to
measurable quantities through (9.61) in the form



282 9 Elastic Theories

γt =
ρc2tphase cos

2(nπ/4)
(ωT )n

, (9.66)

with the shear wave phase velocity given by

1
ctphase

= Re
{
1
ct

}
. (9.67)

Equation (9.66) can be evaluated at any frequency for which phase velocity
is known. If the theory is reasonably accurate, γt should be essentially inde-
pendent of frequency. The remaining parameter, γp, can be determined by
forcing agreement between measured compressional wave phase speed at some
convenient frequency and phase speed as determined from (9.60). Again, the
relation between complex speed and phase speed is

1
cpphase

= Re
{
1
cp

}
. (9.68)

Thus, Buckingham’s theory predicts the frequency dependence of com-
pressional and shear phase speeds and attenuations given measurements
at a single frequency of the two phase speeds and the shear attenuation.
Such measurements are available for an experiment conducted in Florida
[Williams et al. 2002a], and result in the frequency dependencies shown in
Fig. 9.6. Speeds increase slowly with frequency and attenuations increase
approximately linearly with frequency. When phase speed changes with fre-
quency, propagating pulses will become distorted owing to propagation at dif-
ferent speeds of the frequency components making up the pulse. This effect
is known as “dispersion.” Dispersion must be accompanied by frequency-
dependent attenuation, and all frequency dependencies must satisfy the
Kramers–Kronig relations (Appendix I). Dispersion and attenuation in Buck-
ingham’s theory satisfy these relations.

Buckingham’s theory is compared with frequency-dependent sound speed
and attenuation data and Biot theory in Ch. 10. It is concluded that each
theory seems to explain some, but not all, features of propagation in the sand
sediment of SAX99. In addition to tests of frequency dependence, the wave-
theoretic part (as opposed to the microscopic part) of Buckingham’s theory
can be tested through measurements of reflection and scattering. At a fixed
frequency, Buckingham’s wave theory is equivalent to the elastic theory dis-
cussed in previous sections of this chapter, or, if shear effects are negligible, to
the fluid theory of Ch. 8. Thus any measurements that discriminate between
elastic or fluid theory and Biot theory can equally be said to discriminate
between Buckingham’s theory and Biot theory. As an example, for sandy
seafloors, Biot theory tends to predict somewhat lower levels of reflection
(Sect. 10.1.5) and scattering (Sect. 13.2.3) than fluid or elastic theory.
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Fig. 9.6. Phase speeds (a) and attenuations (b) versus frequency using Bucking-
hams’ theory [Buckingham 2000] with inputs from [Williams et al. 2002a]. These
inputs were determined from compressional wave speed measurement at 38 kHz
and shear wave speed and attenuation measurement at 1 kHz. These points are
shown as circles on the plots. The parameters are c0 = 1653.4 m s−1, ρ = 2074
kg/m3, γp = 2.48× 108 Pa, γt = 1.517× 107 Pa, and T = 1 s.

9.9 Research Issues

Alternative approaches to compressional and shear wave propagation in sed-
iments (such as Buckingham’s theory) are of current interest, but discussion
of research issues will be deferred to Ch. 10.



10 Poroelastic Theories

Sediments are porous, with the possibility that the fluid and granular phases
will vibrate differently in response to acoustic excitation. Poroelastic theory
(or Biot theory) treats both porosity and elasticity. As will be seen, poroe-
lastic effects are noticeable in sand, but are presumably less important in
softer sediments where Gassmann’s equations may be adequate. While this
theory has had some success in application to sediments, it appears likely
that a complete understanding of the acoustics of sediments may require a
modification or generalization of Biot theory. Some proposed modifications
are mentioned later in this chapter and in Ch. 11.

The application of Biot theory as described in this chapter requires val-
ues of 13 physical parameters. These include the physical properties of the
pore water (dynamic viscosity, bulk modulus, and density), sediment particles
(bulk modulus and density), and the sediment frame (permeability, tortuos-
ity, porosity, pore size parameter, and the real and imaginary parts of the
bulk and shear moduli). Methods to predict physical properties of pore wa-
ter are described in Sect. 4.7 and Appendix B. Methods to measure sediment
particle properties and typical values are given in Sect. 4.5. Techniques to
measure or predict permeability, porosity, tortuosity, and pore size are given
in Sects. 4.3 and 4.4. As noted in Sect. 10.3, accurate determination of several
of the Biot parameters is difficult, making rigorous tests of the theory nearly
impossible given the current state of measurement techniques as described
in Chs. 3 and 4. Given this situation, knowledge of the microscopic struc-
ture of sediments (Ch. 3) can be a guide in deciding which Biot parameters
are truly important for various sediment types. For example, permeability is
unlikely to be important in clays. One approach to the problem of determin-
ing the Biot parameters has been to use geoacoustic measurements (Ch. 5)
to constrain unmeasured parameters. The success of this approach would be
evident if the resulting Biot predictions were found to be valid outside the
range of frequencies of the original geoacoustic measurements.

10.1 Biot Theory

Biot theory accounts for the fact that, in a two-phase system such as
a sediment composed of grains and water (Fig. 10.1), these two com-
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ponents may move with different displacements when waves are excited.
In this theory, the sediment grains constitute an elastic “frame” coupled
to the pore fluid. One result of this coupling is that the acoustic wave
of the fluid (with longitudinal displacement) and the compressional and
shear waves of the frame become mixed together into three hybrid wave
types, two having longitudinal displacement and one being a shear wave
with transverse displacement (and two different polarizations). Of the two
longitudinal waves, one has speed similar to the water sound speed (the
“fast” wave) and one has speed an order of magnitude lower (the “slow”
wave). As indicated in Fig. 10.1, during passage of a longitudinal wave,
the grain and fluid displacement may differ. Rather complete treatments of
the subject are available [Biot 1956a, Biot 1956b, Biot 1962a, Biot 1962b,
Deresiewicz and Skalak 1963, Stoll 1974, Stoll 1989, Pierce et al. 2005], but
the discussion in this chapter is necessarily limited, giving results with some
explanation but little derivation. It will use notation and a development sim-
ilar to that of [Stoll and Kan 1981].

Fig. 10.1. Simulated section through a sandy sediment, with grains indicated as
white and pore fluid as black. The arrows indicate that longitudinal wave motion
may result in different average displacements for grains and fluid; they may even
move in opposite directions as in this illustration. The displacements suggested by
the arrows are greatly exaggerated.

10.1.1 Biot Constitutive Relations

In Biot theory, constitutive relations connecting stress and strain are nec-
essarily more complicated than for elastic media, where two moduli suffice
for the isotropic case. In an isotropic, elastic porous medium, two additional
moduli are required. The constitutive relation for stress is
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σij = [(H − 2μ)∇ · u− C∇ ·w]δij + μ(∂iuj + ∂jui) , (10.1)

where
w = β(u−U) (10.2)

is the relative displacement, a measure of the displacement of the pore fluid
relative to the frame. The displacement field of the frame is denoted u, and the
displacement field of the pore fluid is denoted U. These are spatial averages
over volumes large compared to the grain size, yet small compared to the
wavelengths of the three wave types that will be encountered. It must be
realized that averaging involves division not by the averaging volume, but
by the fraction of this volume that is occupied by each constituent. Thus,
the average is not “diluted” by the presence of the other constituent. The
definition of w is such that the integral of its normal component over an area
gives the negative of the volume of fluid transported relative to the frame.
Comparing (10.1) with the corresponding elastic relation (9.2), one sees that
H−2μ takes the place of the Lamé parameter, λ. The other Lamé parameter,
μ, is the shear modulus of the frame. An additional term not found in the
elastic case appears in (10.1) with an additional modulus, C, that couples the
fluid and frame motions. Expression (10.1) represents the total stress acting
on a small volume of both frame and fluid. A second constitutive relation
involves the pressure, Pf , of the pore fluid:

Pf =M∇ ·w − C∇ · u . (10.3)

This relation introduces a fourth complex, frequency-dependent modulus,M .
These four moduli can be related to parameters of the constituent media

following a procedure given by [Stoll 1974]. The relationships are

H = (Kg −Kf )2/(D −Kf ) +Kf + 4μ/3 , (10.4)

C = Kg(Kg −Kf )/(D −Kf ) , (10.5)

M = K2
g/(D −Kf ) , (10.6)

D = Kg[1 + β(Kg/Kw − 1)] , (10.7)

where Kg is the bulk modulus of the individual sediment grains, Kw is the
bulk modulus of the pore water, and Kf is the bulk modulus of the frame.
While Kg and Kw are usually taken to be real and frequency independent,
the frame bulk modulus, like the frame shear modulus, μ, is usually assumed
to be complex. The two complex frame moduli account for a portion of the
loss in porous materials. These moduli are usually assumed to be frequency
independent, although this entails a slight violation of causality (Appendix I),
being equivalent to the fluid assumption of complex, frequency-independent
compressional wave speed. Equation (10.4) is equivalent to Gassmann’s equa-
tion (9.43).
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10.1.2 Biot Equations of Motion

The volume force due to stress is given by (9.1), and Newton’s second law
applied to a small volume is∑

j

∂jσij = −ω2(ρui − ρwwi) , (10.8)

where
ρ = βρw + (1− β)ρg (10.9)

is Wood’s expression for density (8.70). The pore water density is denoted
ρw, and ρg is the density of the material comprising the sediment grains. In
(10.8), the factor −ω2 corresponds to a double time derivative. Note that the
right-hand side of (10.8) can be written in the more physically obvious form
−ω2[(1− β)ρgui + βρwUi].

A second equation of motion involves the fluid pressure gradient

−∂iPf = −ω2ρw(ui − α

β
wi) + iω

η̄

κ
wi . (10.10)

The double time-derivative terms represent inertia, and the single time deriva-
tive (iω) term represents viscous loss. The real parameter, α, is called the
“tortuosity” and models the increase in inertia due the complicated pore
structure as compared to flow in a straight line. If α = 1, the inertial terms
combine to form ρwÜi, as expected for the ordinary fluid equation of mo-
tion (8.4). The viscous term is a modified form of Darcy’s law for fluid flow
through a porous medium. The version of this law expressed in (4.13) can be
put in the form

−∇Pf =
η

κ
V , (10.11)

where η is the dynamic viscosity, replacing the symbol μ used in (4.13). The
permeability of the porous medium is denoted κ. This equation is analo-
gous to the point form of Ohm’s law for electrical conduction, with pressure
analogous to electrostatic potential, fluid velocity (V) analogous to current
density, and η/κ analogous to resistivity. Darcy’s law in this form has greater
predictive power than Ohm’s law in that the analog of resistivity is a ratio of
the viscosity, an intrinsic property of the fluid, and permeability, an intrinsic
property of the porous medium. Thus, this law makes predictions for the effect
of changing the type of fluid while keeping the porous medium the same and
vice-versa. Darcy’s law only applies strictly for steady flow. For oscillatory
flow, as frequency is increased, the effects of inertia will ultimately be felt.
Flow will decrease and will be shifted in phase. In Biot theory, this is modeled
by replacing the dynamic viscosity by a complex, frequency-dependent value,

η̄ = Fη (10.12)
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A common form for the complex correction factor, F , is obtained by consid-
ering oscillatory flow in straight tubes of circular cross section having radius
a:

F (ε) =
ε
4T (ε)

1− 2i
ε T (ε)

, (10.13)

with

T =
−√iJ1(ε

√
i)

J0(ε
√
i)

, (10.14)

where J0(ε
√
i) and J1(ε

√
i) are cylindrical Bessel functions, and

ε = a

√
ωρw
η

. (10.15)

The parameter a is called the “pore size.” Since the pores are not actually
circular cylinders, pore size is not a simple radius. The pore size can be
considered to be a material property characteristic of the medium, but some
authors [Johnson et al. 1987, Turgut 2000, Williams et al. 2002a, ?] use the
relation

κ =
a2β

8α
(10.16)

that is obtained by treating the pores as tubes of circular cross section and
radius a. Note that a single length scale is assigned to the pore size, although
[Hovem 1980, Yamamoto and Turgut 1988] have argued that multiple scales
are involved.

Figure 10.2 shows a typical dependence of the correction factor, F , on
frequency. In this example, the correction is slight for frequencies below 1
kHz, but becomes significant above 10 kHz. The viscous loss term is a large
contributor to attenuation in Biot theory as applied to sandy sediments, as
will be seen. The resulting frequency-dependent attenuation is consistent with
causality as expressed by the Kramers–Kronig relations (Appendix I) as it is
derived from a dynamic physical model rather than being imposed ad hoc.

Combining the constitutive relations with the force–acceleration equa-
tions, the following poroelastic equations of motion are obtained:

∂i [(H − 2μ)∇ · u− C∇ ·w] +
∑
j

∂j [μ(∂iuj + ∂jui)] = −ω2ρui + ω2ρwwi ,

(10.17)

∂i [C∇ · u−M∇ ·w] = −ω2ρw(ui − α

β
wi) + iω

η̄

κ
wi . (10.18)

These equations [Biot 1962b] apply to heterogeneous media, but are usu-
ally specialized to the homogeneous case in which the various parameters
are constant with respect to position. It is important, however, to have the
more general equations at hand when considering boundary conditions and
scattering by heterogeneity.
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Fig. 10.2. The correction factor (10.13) as a function of frequency. The parameter
values of Table 10.1 have been inserted in (10.13)–(10.16).

Specializing for the moment to the homogeneous medium, solutions that
correspond to pure longitudinal waves (analogous to compressional waves)
and shear waves can be found. These solutions are most readily obtained in
terms of the potentials φs, φf ,ψs,ψf :

u = ∇φs +∇×ψs , (10.19)

w = ∇φf +∇×ψf . (10.20)

In terms of these potentials, Biot’s equations for homogeneous porous media
become

H∇2φs − C∇2φf = −ω2ρφs + ω2ρwφf , (10.21)

C∇2φs −M∇2φf = −ω2ρwφs +
ω2αρw

β
φf +

iωFη

κ
φf , (10.22)

μ∇2ψs = −ω2ρψs + ω2ρwψf , (10.23)

and
−iωFη

κ
ψf = −ω2ρwψs +

ω2αρw
β

ψf . (10.24)

10.1.3 Plane Waves

Consider an infinite, homogeneous porous medium, and generalize the elastic
case to include an additional longitudinal wave (the slow wave). The various
plane waves have spatial dependence

exp(ik±q · r) , q = 1, 2, t,
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with the subscript q denoting the wave vectors for fast longitudinal waves
(1), slow longitudinal waves (2), and shear waves (t), respectively. As before,
the superscripts + and − denote the direction of the wave propagation, tilted
upward and downward, respectively.

The three-dimensional wave vectors can be written in terms of the hori-
zontal and vertical components,

k±q (K) = (K,±kqβq(K)) , (10.25)

with
βq(K) =

√
1−K2/k2q . (10.26)

The complex speed ratios
aq = cq/cw (10.27)

will prove useful in simplifying later expressions.
The following unit vectors specify the directions of propagation:

e±q (K) = k±q (K)/kq . (10.28)

The frequency dependencies of the three wavenumbers are found by inserting
plane wave solutions into Biot’s equations for the infinite medium. Consider
longitudinal waves of the form

φs = exp(ikq · r) , q = 1, 2 , (10.29)

φf = γq exp(ikq · r) , (10.30)

where q = 1, 2 correspond to the fast and slow waves, respectively, and where
the ± superscripts have been dropped as superfluous. When the plane-wave
solutions, (10.29) and (10.30) are inserted in Biot’s equations of motion, two
homogeneous, simultaneous linear equations result. Setting the corresponding
determinant to zero, one obtains

(Hk2q − ρω2)(mω2 −Mk2q + i
Fηω

κ
) + (Ck2q − ρwω

2)2 = 0 , (10.31)

with m = αρw/β, to be solved for the fast and slow wavenumbers. The ratio
of the two potentials, Φf/Φs, follows from the homogeneous equations as

γq =
ρc2q −H

ρwc2q − C
. (10.32)

Recalling the definitions of the two scalar potentials (10.19) and (10.20), the
displacement of the fluid is proportional to the displacement of the frame
according to the following relation:

U = (1− γq
β
)u , q = 1, 2 . (10.33)
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The analogous relations for shear waves are

ψs = eh(K) exp(ikt · r) , (10.34)

ψf = γteh(K) exp(ikt · r) , (10.35)

(μk2t − ρω2)(mω2 + i
Fηω

κ
) + ρ2wω

4 = 0 , (10.36)

γt =
ρ

ρw
− μ

ρwc2t
, (10.37)

U = (1− γt
β
)u . (10.38)

As in the elastic case, there are two plane-wave shear polarizations to
consider having displacements in the directions of the “horizontal” and “ver-
tical” unit vectors, e±h (K) and e±v (K). Again, only the vertically polarized
wave is excited at the plane boundary, but the corresponding vector potential
has direction parallel to e±h (K). For the fast and slow waves, displacement
is parallel to the unit vectors specifying propagation direction, e±1 (K) and
e±2 (K).

The dependence of wavenumber on frequency is found by solving (10.31)
for longitudinal (fast and slow) waves and (10.36) for shear waves. For the
longitudinal waves

kq =
−b±√b2 − 4ac

2a
, q = 1, 2. (10.39)

The (+) sign corresponds to the fast wave (q = 1) and the (−) sign cor-
responds to the slow wave (q = 2). The parameters appearing in (10.39)
are

a = C2
HC2

M − C4
C , (10.40)

b = −C2
HωΩ + 2C2

Cω
2 − ρ

ρw
C2
Mω2 , (10.41)

c =
ρ

ρw
Ωω3 − ω4 , (10.42)

C2
H =

H

ρw
, (10.43)

C2
M =

M

ρw
, (10.44)

C2
C =

C

ρw
, (10.45)

Ω = ω
α

β
+

iFη

ρwκ
. (10.46)
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The wavenumber for the shear wave is

kt = ωct , (10.47)

where

ct =

√
ρ− ωρw/Ω

μ
. (10.48)

The complex speed ratios and associated parameters are

aq =
cq
cw

=
νq

1 + iδq
, q = 1, 2, t . (10.49)

The real parameters, νq, are the sediment/water phase speed ratios, and the
real parameters δq are the loss parameters, from which attenuation in dB/unit
length can be obtained:

αq =
40πfδq

νqcw ln(10)
. (10.50)

The dimensionless attenuation parameters defined for the fluid case in Sect.
8.3 can be used here with a simple change in subscripting.

Phase speed is the ratio of angular frequency divided by the real part of
the wavenumber, thus

1
cqphase

= Re
{
1
cq

}
. (10.51)

Figure 10.3 shows typical frequency dependence for phase speed and loss
parameter for the fast and slow Biot waves. The fast wave phase speed de-
pends weakly, but significantly, on frequency, while the slow wave speed is a
strong function of frequency. The loss parameters for both waves are strong
functions of frequency, but losses are extremely high for the slow wave. As
frequency is reduced, the slow wave loss parameter approaches unity, which
is characteristic of solutions of the diffusion equation. Thus, the slow wave at
low frequencies is not really a wave in the usual sense.

Figure 10.4 presents another view of the fast-wave speed and attenuation
for the same parameters as used in plotting Fig. 10.3. The vertical dashed
line is placed at Biot’s characteristic frequency [Biot 1956a, Biot 1956b],

fc =
β2η

2πρwκ
. (10.52)

For frequencies much smaller than fc, the attenuation increases as the second
power of frequency, while for frequencies much greater than fc, the attenu-
ation increases as the square root of frequency. This behavior is evident in
the lower panel of Fig. 10.4. Additional attenuation results from the use of
complex frame moduli, but this is insignificant for the parameters used here
(Table 10.1), with frame moduli small compared to the bulk modulus of wa-
ter.
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Fig. 10.3. Phase speeds and loss parameters for the fast and slow Biot waves as
functions of frequency. The parameter values of Table 10.1 have been used.
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10.1.4 Boundary Conditions

The boundary conditions applying to the interface between two dissimilar
porous media are more involved than those for fluid or elastic media. Al-
though the main interest in this monograph is the sediment–water boundary,
it is useful to begin with the more general case of two porous media in con-
tact at an interface defined by z = f(R), with normal vector, N, given by
(8.35). The boundary conditions can be inferred from the equations of mo-
tion for the heterogeneous medium by considering a thin transition layer in
which the material properties change smoothly from one medium to the next.
This is analogous to the development in the fluid case (Sect. 8.4). Letting the
thickness of this layer approach zero, the following field quantities must be
continuous across the interface [Gurevich and Schoenberg 1999]:∑

j

Njσij = Tractions , (10.53)

Pf = Fluid Pressure , (10.54)

u = Frame Displacement , (10.55)

N ·w = Normal Component, Relative Displacement . (10.56)

These conditions are general enough to apply to interfaces between a porous
medium and a second medium that may be porous, elastic, or fluid. Note
there are a total of eight continuity conditions, sufficient to determine the
eight unknown wave amplitudes (two shear waves, two longitudinal waves
in each medium) for any given incident wave. For the fluid case, it is useful
to replace the continuity condition on N · w by the equivalent condition of
continuity of fluid flow

N · (u−w) = N · [(1− β)u+ βU)] . (10.57)

This condition is obtained by subtracting (10.56) from the normal compo-
nent of (10.55) and requires that the average displacement (frame plus fluid)
in the poroelastic medium be equal to the displacement of the fluid medium.
This formulation avoids the problem that the frame displacement, u, is un-
defined in the fluid because, if β = 1, the frame displacement disappears
from consideration in (10.57). To summarize the situation for the boundary
between a fluid and a porous medium, continuity of tractions, fluid pressure,
and fluid flow must be enforced. This is a total of five conditions, sufficient
to determine the five unknown wave amplitudes. Continuity of fluid flow
is the “open-pore” boundary condition, used by [Stoll and Kan 1981], and
discussed in the literature [Deresiewicz and Skalak 1963]. The “closed-pore”
boundary condition [Gurevich and Schoenberg 1999] is not applicable to the
problems of interest in this monograph.

If the boundary z = f(R) separates a homogeneous porous medium from
a homogeneous fluid (water), the boundary conditions can be expressed in
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terms of the potentials introduced earlier. These conditions are continuity of
tractions{

[(H − 2μ)∇2φs − C∇2φf ]N+ 2μ(N · ∇)(∇φs)
} |z=f(R)−

+ {μ(N · ∇)(∇×ψs) + μ∇(∇×ψs ·N)} |z=f(R)− = Kw∇2φwN|z=f(R)+ ,
(10.58)

continuity of fluid pressure

(M∇2φf − C∇2φs)|z=f(R)− = −Kw∇2φw|z=f(R)+ , (10.59)

and continuity of fluid flow

N · (∇φs −∇φf +∇×ψs −∇×ψf )|z=f(R)− = N · ∇φw|z=f(R)+ . (10.60)

The subscript w denotes the upper medium (water). In the last term on the
left-hand side of (10.58) the gradient operator acts on the curl but not on
the interface normal.

In the problem of reflection of a plane acoustic wave from a flat interface
between water and a porous seafloor [Stoll and Kan 1981], there are only
four boundary conditions, as required to determine four unknowns: the com-
pressional field in the water and three fields in the seafloor material (fast-
and slow-wave fields and the shear field having vertical polarization). Scat-
tering by the rough interface causes excitation of the other possible shear
polarization (horizontal), so the additional boundary condition is needed to
determine this additional unknown.

10.1.5 Reflection and Transmission

When a plane acoustic wave is incident from water onto a poroelastic medium,
an acoustic wave is reflected, and longitudinal (fast and slow) and shear waves
are transmitted into the poroelastic medium.

The scalar displacement potential in the water is

φw(r) = eiki·r + Vwwe
ikr·r , (10.61)

with all variables having the same meaning as in Sect. 9.5.
The scalar potentials representing the two longitudinal waves in the sed-

iment are
φsq(r) = Vwqe

ik−
q ·r , q = 1, 2 , (10.62)

φfq(r) = γqVwqe
ik−

q ·r , q = 1, 2 . (10.63)

The subscripts s and f identify the potentials for frame displacement (10.19)
and differential fluid-frame displacement (10.20), and the subscript q iden-
tifies the wave type. Similarly, the vector potentials representing the shear
wave in the sediment are
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ψs(r) = e−h Vwte
ik−

t ·r (10.64)

and
ψf (r) = e−h γtVwte

ik−
t ·r . (10.65)

The ratios of the pore fluid and frame potentials (10.33) and (10.38) have
already been determined in the free-space solution of the Biot equations and
are incorporated in (10.63) and (10.65), so there are a total of four unknown
coefficients. Imposition of the four boundary conditions gives the following
simultaneous equations:

AV = D , (10.66)

where

V =

⎡
⎢⎢⎣
V s
ww

V s
w1

V s
w2

V s
wt

⎤
⎥⎥⎦ , (10.67)

D =

⎡
⎢⎢⎣

kiz
ρwω

2

ρwω
2

0

⎤
⎥⎥⎦ , (10.68)

A =⎡
⎢⎣

kiz k1z(1− γ1) k2z(1− γ2) −Kx(1− γt)
−ρwω

2 k21(H − γ1C)− 2μK2
x k22(H − γ2C)− 2μK2

x −2μktzKx

−ρwω
2 k21(C − γ1M) k22(C − γ2M) 0

0 2Kxk1z 2Kxk2z k2tz −K2
x

⎤
⎥⎦ .

(10.69)
While these equations can be solved analytically, it is easy to employ

a numerical solution. Using the parameters of Table 10.1, the bottom loss
(−20 log10 |Vww|) obtained in this fashion is as shown in Fig. 10.5. For com-
parison, this figure also shows bottom loss computed in the fluid approxima-
tion using complex sound speed equal to the complex fast wave speed and
density equal to the total density (10.9). This choice is made as sound speed,
attenuation, and total density are often measured more-or-less directly and
used in bottom-loss calculations. As Fig. 10.5 makes evident, Biot effects lead
to a significant increase in bottom loss, about 2 dB, near normal incidence
in this case. This is true even though the slow wave is excited to an insignif-
icant degree in comparison to the fast wave. The ratio of the transmission
coefficients for these two waves provides a measure of their relative levels of
excitation. The magnitude of this ratio, |Vw2/Vw1|, in the present example is
0.0056 at normal incidence and about 0.0001 at small grazing angles. Given
the insignificance of the slow wave, it is natural to ask why the fluid model
does not match the Biot model better. The answer lies in the differential
movement of the pore fluid and frame for the fast wave. This behavior can-
not be mimicked by the simplest fluid model, but it can be approximated by
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a fluid model in which density is replaced by a reduced, or effective, value
(Sect. 10.2). This difference in reflection has been used as a method of dis-
criminating between fluid and Biot models and constraining Biot parameters
(Sect. 11.2.2).
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Fig. 10.5. Comparison of bottom loss using Biot and fluid theory. The Biot pa-
rameters are taken from Table 10.1, and the frequency is 20 kHz.

10.2 Effective Density Fluid Approximation

Williams has developed a fluid approximation to Biot theory [Williams 2001a].
Noting that the frame moduli are small compared to the grain and fluid mod-
uli (see Table 10.1), the frame moduli are set to zero. This reduces the number
of independent moduli to one and provides an effective fluid modulus

Keff = H = C =M = (
1− β

Kg
+

β

Kw
)−1 . (10.70)

Note that the effective modulus is the same as (8.71) used in obtaining Wood’s
equation. The equations of motion (10.17) and (10.18) become

∇[Keff∇ · (u−w)] = −ω2(ρu− ρww) , (10.71)

∇[Keff∇ · (u−w)] = −ω2(ρwu− ρw) + i
ωFη

κ
w . (10.72)

Defining the effective displacement

ueff = u−w = (1− β)u+ βU , (10.73)
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the variable w can be eliminated, leaving

∇[Keff∇ · ueff ] = −ω2ρeffueff , (10.74)

where the effective density is

ρeff =
ρρ̃− ρ2w

ρ̃+ ρ− 2ρw , (10.75)

ρ̃ =
αρw
β

+
iFη

κω
. (10.76)

Equation (10.74) is the same form as the fluid equation of motion, (8.7).
Equations (10.71) and (10.72) can be combined to show that the two dis-
placements have a fixed proportionality,

w = γ1u , (10.77)

with
γ1 =

ρw − ρ

ρ̃− ρw
. (10.78)

It can be shown that (10.32) does reduce to (10.78) for the case at hand.
The effective equation of motion can be written in the equivalent form

ρeff∇ · (1
ρ eff

∇Peff ) +
ω2

c21
Peff = 0 , (10.79)

where
Peff = −Keff∇ · ueff (10.80)

and

c1 =

√
Keff

ρeff
. (10.81)

This completes the derivation of the effective density fluid approxima-
tion, with constitutive relation and equation of motion for the inhomogeneous
medium in the same forms as those of the fluid case. Using the arguments of
Ch. 8, it follows that equivalent fluid boundary conditions must be used, that
is, continuity of normal effective displacement and continuity of effective pres-
sure. This is a proof of the boundary conditions assumed in [Williams 2001a].
It follows that the effective density approximation can be used in the fluid
interface roughness scattering models of Ch. 13 by the simple replacement
of density by effective density and use of the measured sound speed as the
compressional wave speed. In addition, because the effective density approx-
imation has been extended to the case of heterogeneous sediments, the fluid
volume scattering models of Ch. 14 can be extended to the poroelastic case
by means of the same replacements.
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In many practical applications, the complex speed, c1, is known, as phase
speed and attenuation are two of the most commonly measured geoacous-
tic parameters. In this case only one more parameter must be determined
in order to implement the effective density approximation. One may either
determine effective density from (10.75) or effective modulus from (10.70).
As the latter only requires readily available parameters (porosity, real grain
and fluid moduli), this method might be preferred in typical circumstances.
The effective density is complex and frequency dependent. Figure 10.6 shows
the real and imaginary parts of the effective density as functions of frequency
for the Biot parameters given in Table 10.1. The real part is smaller than the
true density and the imaginary part is positive as required for the exp(−iωt)
convention used here. At low frequencies, the pore fluid and frame move to-
gether and the effective density is equal to the true density (10.9). At high
frequencies, the real part of the effective density is lower than the true density
because the frame moves with lower amplitude than the fluid.
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Fig. 10.6. Real and imaginary parts of the effective density as functions of fre-
quency for the Biot parameters given in Table 10.1.

In Sect. 10.3, it will be seen that the effective density fluid approximation
closely matches the sound speed and attenuation behavior of Biot theory.
It has also been shown [Williams 2001a] that this approximation essentially
replicates Biot results for flat-interface reflection and rough-interface scat-
tering. Figure 10.7 compares the reflection coefficient magnitude at 20 kHz
using full Biot theory and the effective density fluid approximation. This ex-
ample uses the parameters of Table 10.1 and shows that the approximation
is quite accurate under these circumstances. An example of the usefulness of
this approximation for scattering models is given in Ch. 13.

A simple version of the effective density approximation results if one as-
sumes the effective density is real (as a further approximation), takes the
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pore water properties to be identical to the overlying water, and identifies
the fast wave as the compressional wave with real phase speed, cpphase. The
effective density definition can be written as cpphase =

√
Keff/ρeff . This

is identical to the effective density definition given by [Nolle et al. 1963], al-
though these authors evidently did not envision its application to situations
in which the fluid and grains had separate, differing displacements. Then the
Wood expression for bulk modulus, (10.70), gives

ρeff
ρw

=
1

ν2p [β + (1− β)Kw/Kg]
. (10.82)

Using the values of moduli in Table 10.1, Kg/Kw = 13.4. Equation (10.82)
can be evaluated using measured sound speed and porosity and substituted
for the density ratio in fluid models. This provides a readily implemented
means of estimating the magnitude of poroelastic behavior in sands. This
procedure requires measured values of compressional wave speed and porosity,
and must assume a value for the grain bulk modulus. Table 4.7 gives values
for the bulk modulus of typical constituents of shallow-water sediments. In
order to bound the uncertainty associated with the simple effective density
procedure, the range of bulk modulus for the two most common constituents,
quartz and calcite, will be used. Figure 10.8 shows bottom loss computed for
bulk modulus values from 32 GPa (highest bottom loss) to 75 GPa (lowest
bottom loss). The 32 GPa value is slightly below the range given in Table 4.7,
and is taken from Table 10.1. It can be seen that the simple EDFM prediction
is rather insensitive to the choice of grain bulk modulus, with an uncertainty
in bottom loss at normal incidence of about ± 0.5 dB for a 2:1 range of grain
bulk modulus.
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Fig. 10.7. Comparison of bottom loss at 20 kHz for Biot theory and the effective
density fluid approximation using the parameters given in Table 10.1.
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Fig. 10.8. Bottom loss computed using the simple EDFM procedure with various
values of grain bulk modulus, Kg = 32, 40, 64, and 75 GPa. The water bulk modulus
is taken as 2.395 GPa. The sound speed ratio, νp, is 1.16, and the porosity, β, is
0.40. The curves follow the order of the inverse of the grain bulk modulus, with the
highest bottom loss corresponding to the lowest modulus, etc.

Expression (10.82) can be used to show that the effective density will be
nearly equal to the bulk density in muds. In muds, Wood’s equation gives
a reasonable approximation to the sound speed. Inserting the corresponding
expression for the sound speed ratio in (10.82) gives ρeff = ρ.

10.3 Experimental Tests of Biot Theory

Considering the great deal of attention Biot theory has received in connec-
tion with seafloor acoustics, relatively little has been published regarding
tests of its validity. The principal feature of Biot theory at high frequencies
is the frequency dependence predicted for sound speed and attenuation, but
tests of the theory are also possible using reflection and scattering measure-
ments. Reflection data are compared with Biot predictions in Ch. 11 and
similar comparisons with scattering data are given in Sect. 13.2.4. The main
concern of this section is the frequency dependence of sound speed and atten-
uation. Laboratory measurements in the frequency range 20–300 kHz using
water-saturated glass beads [Hovem and Ingram 1979] showed “good agree-
ment with theory.” The field measurements of [Turgut and Yamamoto 1990]
show frequency dependence that is presented by the authors as support for
Biot theory. More indirectly, [Maguer et al. 2000b] used measurements of the
critical angle to obtain the frequency dependence of sound speed. Field mea-
surements supporting Biot theory were made by [Simpson et al. 2003] at a
sandy site over the frequency range 3–80 kHz. The measurement system used
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an omnidirectional source in the water and a receiver that could be set at
various depths in the sediment. The resulting data showed dispersion and
frequency-dependent attenuation consistent with the Kramers–Kronig rela-
tions (Appendix I). The results appear consistent with Biot theory, but atten-
uation is essentially a linear function of frequency over the measured range,
therefore consistent with Buckingham’s theory (Sect. 9.8).

One problem with experimental tests of Biot theory is the large num-
ber of parameters (13) that must be determined if completely rigorous tests
with no curve fitting are to be performed. Five of the Biot parameters, those
specifying the properties of pore fluid and sediment grains, can be assigned
handbook values, leaving 8 to be measured or inferred by some means. For
example, [Badiey et al. 1998] constrain some of the Biot parameters using
geophysical and geotechnical information. A compilation of the Biot param-
eters used by several investigators is given in [Chotiros 1995a], but many
of these parameters are inferred rather than measured. A parameter set in
which most have been measured is given in Table 10.1. These data are from
the SAX99 experiment [Williams et al. 2002a], with most parameters being
measured either in situ or in the laboratory, while a few were adjusted to im-
prove fits to the data shown in Figs. 10.9 and 10.10. The pore size parameter
in the table was computed using (10.16).

Table 10.1. Biot parameters from [Williams et al. 2002a].

Parameter Symbol Units Value
Bulk Modulus of Grains Kg Pa 3.2× 1010

Permeability κ m2 2.5× 10−11

Tortuosity α Dimensionless 1.35
Porosity β Dimensionless 0.385

Dynamic Viscosity of Water η kg m−1 s−1 0.00105
Mass Density of Grains ρg kg m−3 2690
Bulk Modulus of Water Kw Pa 2.395× 109

Mass Density of Water ρw kg m−3 1023
Shear Modulus of Frame μ Pa (2.92− i0.18)× 107

Bulk Modulus of Frame Kf Pa (4.36− i0.208)× 107

Pore Size a m 2.65× 10−5

Figure 10.9 compares the measured frequency dependence of sediment
sound speed (phase speed) with various theories: fluid, Buckingham, Biot,
and effective density. The observed dispersion is matched best by the Biot
and effective density theories. Figure 10.10 makes the same comparison of
measured attenuation with theoretical predictions. Here, Buckingham’s the-
ory provides a better fit, showing that there are fundamental issues yet to be
addressed in the theory of sediment acoustics.
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Fig. 10.9. Comparison of sediment phase speed measurements from the SAX99
experiment with various theories. The figure is from [Williams et al. 2002a], and
the references are from that article. The Biot sound speed prediction based on
measured parameter values is shown as a solid line while the dotted line results if
the adjusted values of Table 10.1 are used. The dashed line is the effective density
fluid approximation result (Sect. 10.2) using measured parameters. The upper dash-
dot curve is the prediction of Buckingham’s model using the parameters given in
Sect. 9.8, and the lower dash-dot curve is the Buckingham result with the same
parameters, except n = 0.085.

For the Biot parameter set used here, the slow wave phase speed at 20
kHz is 141 m s−1, to be compared with the fast wave speed, 1763 m s−1.
At 20 kHz, the fast wave attenuation coefficient is 7.0 dB m−1, while that of
the slow wave is 852 dB m−1. This extreme attenuation is one reason that
many authors discount the significance of the slow wave. At 20 kHz, the ra-
tio of fluid to frame displacement (10.33) is about 1.8 for the fast wave and
about −1.6 for the slow wave. Thus, the fluid and frame move in the same
direction for the fast wave but in opposition for the slow wave. Even if the
slow wave is unobservable, the properties of the fast wave are significantly
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Fig. 10.10. Comparison of sediment attenuation measurements from the SAX99
experiment with various theories. The figure is from [Williams et al. 2002a], and
the references are from that article. The various curves have the same significance
as in Fig. 10.9, and the upper dot-dash curve (Buckingham theory) employs the
same parameters as the upper curve in Fig. 10.9.

different than those of the ordinary compressional wave. This difference is
embodied in the effective density and provides a basis for additional exper-
imental tests beyond observations of frequency-dependent wave speed and
attenuation (Sects. 10.1.5 and 13.2.4, and Ch. 11).

10.4 Theoretical Alternatives

Biot theory as presented in this chapter is not the only existing formu-
lation, but is a commonly used form based largely on the work of Stoll
[Stoll 1974, Stoll and Kan 1981, Stoll 1989]. This approach is sometimes re-
ferred to as “Biot–Stoll” theory. A review of alternatives to this theory is
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beyond the scope of this monograph, but several examples will be cited to
illustrate possible directions of future research. One experimental fact mo-
tivating alternative versions of Biot theory is the same as that motivating
Buckingham’s theory: the tendency of attenuation to increase linearly with
frequency at high frequencies in such a manner as to exceed the attenu-
ation predicted by Biot theory (Fig. 10.10). Some of this “excess” atten-
uation has been attributed to scattering from larger shells or other forms
of heterogeneity [Richardson and Briggs 1996, Williams et al. 2002a]. How-
ever, measured high-frequency attenuation data at 400 kHz, collected during
SAX04 [Briggs et al. 2005b], where shells and other forms of local hetero-
geneity are nearly absent, were also much higher (92 dB m−1) than pre-
dicted by Biot theory. Excess attenuation might be accommodated within
the Biot–Stoll formalism by increasing the magnitude of the imaginary
part of the frame moduli, but this would cause a problem at low frequen-
cies [Pierce et al. 2005], where a quadratic frequency dependence is indi-
cated by the data. These authors suggest a modification to Biot theory
that would preserve the quadratic dependence at low frequencies while giv-
ing linear dependence at high frequencies. The frequency dependence due
to viscous losses in Biot theory would also be modified by the proposals
of [Hovem 1980, Yamamoto and Turgut 1988] to incorporate multiple pore
sizes. In another approach to this problem, [Chotiros and Isakson 2004] ar-
gue that fluid flow between grains (“squirt flow”) alters the high-frequency
behavior of the frame moduli. The above approaches are motivated by the
application of Biot theory to sands, but [Leurer 1997] has presented a squirt-
flow model for fine-grained sediments in which fluid flows between water lay-
ers formed by swelling of clays (Sect. 3.2.1) and the pore space. This process
leads to an effective (complex) frequency-dependent grain modulus. Another
alternative is discussed by [Hickey and Sabatier 1997] who note that Biot’s
original formulation allows an additional free parameter, the “coefficient of
fluid content.” This alternative was examined by [Chotiros 2002b] who also
considered the hypothesis that intraparticulate porosity (water trapped in
grains) and mobile solid material in the pore fluid may require alterations to
Biot theory.

10.5 Research Issues

Experimental efforts to validate theories for high-frequency acoustics in ma-
rine sediments have been partly successful, but have highlighted the need for
better data. Future work should employ a combination of field and laboratory
acoustic measurements. As will be seen in Ch. 11, reflection measurements
are an important adjunct to sound speed and attenuation measurements. As
suggested in Chs. 4 and 5, better and more accurate physical and geoacoustic
measurement techniques are needed, and the same can be said for reflection,
scattering, and penetration measurements. While the primary interest in this
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monograph is high frequencies, it appears that measurements are needed over
a wide range of frequencies (roughly 100 Hz to 500 kHz) to understand the
physics of sound propagation in sediments. Efforts are underway to develop
alternatives to the present theories, in some cases through generalization and,
in others, through less ambitious modification. One may say that there is a
search for a unified theory capable of treating a wide range of sediment types.
However, because of the fundamental difference in the nature of mud versus
sand sediments, it may be unrealistic to expect a single theory to apply to
both.
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In spite of its seeming simplicity, reflection by the seafloor is a difficult topic,
both experimentally and theoretically. The importance of reflection is three-
fold: (1) it is an essential component of propagation in shallow water, (2)
it is used to infer acoustic impedance and other properties of the seafloor,
and (3) it provides rather direct tests of theories for wave propagation in
the seafloor. In particular, reflection measurements have been advocated as a
means of measuring the poroelastic parameters of sediments [Chotiros 1995b,
Drevet et al. 1999, Chotiros 2002b, Isakson and Nielsen 2006]

Measurement of reflection by the seafloor has a long history, and a re-
view of much of the early work is given by [Zhitkovski and Lysanov 1967].
Most reflection measurements have been made at frequencies below 5 kHz
and will not be considered here owing to likely complication by layering and
gradients. Seafloor reflection at vertical incidence has become an important
means of classifying sediments [Parrott et al. 1980, Pace and Langhorne 1993,
Panda et al. 1994, Schock 2004], but this large subject is beyond the scope
of this monograph. Of high-frequency measurements, relatively few are ac-
companied by sufficient characterization of the seafloor to be of interest in
comparisons between theory and models. Although [Mackenzie 1960] is pri-
marily concerned with low-frequency reflection, some data were obtained at
16 kHz along with grain size information. This reference is also useful in giv-
ing a detailed explanation of the fluid reflection coefficient (8.49). References
to newer data sources will be given as the discussion proceeds.

Other parts of this monograph can be consulted for background on the
reflection problem. For example, Sect. 2.3.1 gives a brief outline of reflection,
and Sects. 8.5, 9.5, 9.6, and 10.1.5 provide examples of theoretical predictions
for reflection in fluid, elastic, and poroelastic theories. The effects of nonpla-
narity of the incident field are discussed in Sect. 8.6, and measurement issues
are treated in Sects. G.1 and G.2.2. The effects of roughness (Ch. 6) on scat-
tering are discussed in Sect. 13.1 where the incoherent reflection coefficient
is defined.

This chapter begins with a discussion of the considerable difficulties of
measuring reflection, and the remainder focuses on comparisons of reflection
data with theory and models as well as application of the geoacoustic re-
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gressions of Ch. 5. Reflection measurement results will be given in terms of
“bottom loss,” in decibels, as defined in (2.11).

11.1 Reflection Measurement Issues

Reflection measurements require care to avoid errors resulting from several
sources: interface roughness, volume scattering, layering, gradients in sed-
iment properties, and near-field effects. As in any acoustic measurement,
uncertainties in transducer calibration and in geometry must also be consid-
ered.

Error due to interface roughness falls into two categories: fluctuations in
signal level and scattering away from the specular direction. The antidote to
fluctuations is averaging over multiple reflections from different portions of
the interface [Chotiros 1995b]. In Sect. 13.1 and Appendix L, the coherent
and incoherent reflection coefficients, relevant to reflection from rough sur-
faces, are discussed. By averaging the squared pressure, an estimate of the
sum of the squared coherent and incoherent reflection coefficients is obtained.
This sum, in turn, is approximately equal to the squared magnitude of the
flat-interface reflection coefficient. It must be emphasized that other types of
average, e.g., average envelope or average signal level in dB, will be biased,
that is, will not lead to a good approximation to the true reflection coefficient.
The mean-square-average procedure is most successful if the scattered energy
falls within a narrow cone centered on the specular direction. That is, the
angular separation from the specular direction, measured in radians, is much
less than unity. The bistatic scattering models of Ch. 13 provide a means of
estimating this angular spread in terms of roughness statistics. If this scatter-
ing angle criterion is met, the magnitude of the flat-interface reflection coef-
ficient can be obtained, provided the source and receiver transducers are not
so directional as to exclude a portion of this energy. The scattering inversion
algorithm of Sect. G.2.2 provides a method of compensating for transducer
directivity in the case of normal-incidence measurements. The discussion of
this algorithm also makes the point that the echo elongation caused by scat-
tering can be a problem if it is comparable to or greater than the source pulse
length. Here again, the algorithm provides a means of compensation

Volume scattering occurs in all sediments, and usually at a level that is
comparable to, or even greater than, the level of scattering due to interface
roughness. For grazing incidence, one can estimate this level using the models
of Ch. 14. For normal incidence, one can hope to exploit the fact that vol-
ume scattering returns are somewhat delayed relative to interface roughness
returns. In the best of cases, there is still some overlap, and the algorithm of
Sect. G.2.2 can be used to attempt a separation.

Gradients (Sect. 5.1.5) and layering in sediment properties pose obsta-
cles to interpretation of reflection data. Bulk density and sound speed can
be expected to diminish as the interface is approached from below. That is,
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there is often a transition layer in which bulk density and sound speed change
from at-depth values to smaller values at the interface. Transition layers can
have strong effects on reflection, yet may not be evident in low-resolution
core data. The grain-size relations of [Mourad and Jackson 1989] are a crude
attempt to account for such gradients, and these authors present a sample
calculation which shows that a density transition layer of 3-cm thickness can
cause a 6-dB increase in bottom loss at normal incidence at 20 kHz. Scal-
ing this result, a similar transition layer of 3-mm thickness would cause a
6-dB increase in loss at 200 kHz. A more extensive treatment of this issue is
provided by [Lyons and Orsi 1998], who employ CT-measured density pro-
files in their calculations (see Sect. 7.5.5). These profiles were fitted by the
analytic function (7.36) with the parameter a assigned values in the approx-
imate range 10–200 m−1. Note that the value a = 200 m−1 corresponds to
a transition layer thickness of 5 mm. In some cases, large reductions in re-
flection coefficient (10 dB and greater) compared to the gradient-free case
are predicted. Positive gradients in sound speed (increasing downward) could
have strong effects on grazing angle dependence near the critical angle owing
to upward refraction of the wave in the sediment. The resulting interference
with the wave initially reflected from the interface can cause oscillations of
the reflection coefficient with respect to grazing angle. These issues require
attention and present challenges in geoacoustic measurement.

The strategy for measurement of the reflection coefficient outlined in
Sect. G.1 assumes that the plane-wave reflection coefficient will result from
the measurement even though the incident and reflected waves are spher-
ically diverging. This approximation is valid if the propagation distances
are many wavelengths and if the lateral wave (Sect. 8.6) can be ignored.
Spherical wave effects in reflection measurements have been examined by
[Camin and Isakson 2006]. While innocuous in many experiments, these ef-
fects can enter in short-range laboratory measurements. As an example, Fig.
11.1 compares the plane-wave bottom loss with values of a simulated mea-
surement situation. The simulations employed wavenumber integration (8.63)
to obtain the reflected pressure for an incident spherical wave due to a point
acoustic source. The simulations assumed a water sound speed of 1530 m s−1

and a sand sediment with geoacoustic parameters aρ = 2.0, νp = 1.16, and
δp = 0.01. Both source and receiver were assumed to be 10 cm above the in-
terface, with horizontal separation varied in order to vary the grazing angle.
The 200-kHz example shows significant departures from the plane-wave case,
while the 500-kHz example is better represented by the plane-wave case. The
oscillations occurring for angles less than the critical angle (30.5◦) are due to
interference of the reflected and lateral waves [Chin-Bing et al. 1982]. These
results can be scaled for application to other frequencies. For example, these
curves would apply to measurements at 20 and 50 kHz if the transducers
were 1 m above the seafloor.
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Fig. 11.1. Simulation of spherical-wave effects in measurement of the reflection
coefficient. The source and receiver are 10 cm above the sediment–water interface,
and the geoacoustic parameters are appropriate to sand. Wavenumber integration
is used to obtain the curves labeled “Spherical.”

11.2 Reflection Data Compared with Theory and
Models

Reflection measurement results will be divided into field data and data ob-
tained in the laboratory. Laboratory measurements allow greater control of
geometry and sediment parameters, and are preferred for tests of theory and
models. The natural environment is more complex, and field measurements
are required to verify that model simplifications have not obscured the true
behavior of the seafloor.

11.2.1 Field Measurements of Reflection

Normal-incidence reflection data obtained at 16 kHz were reported by [Macken-
zie 1960], and a rather large normal-incidence reflection data set was acquired
by [Parrott et al. 1980] who employed a broadband impulsive source and as-
sociated their acoustic data with grain size analyses from an earlier survey.
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Fig. 11.2. Bottom loss at normal incidence versus grain size as reported by
[Mackenzie 1960, Parrott et al. 1980, Mourad and Jackson 1989]. The “standard”
theoretical curve uses grain-size regressions given in this monograph while the “TR
9407” curve uses the ad hoc relations of [APL-UW TR 9407]. Both curves employ
the fluid approximation to the seafloor reflection coefficient.

More recently, [Mourad and Jackson 1989] presented data in the frequency
range 20–30 kHz. These data sets are shown in Fig. 11.2 along with theo-
retical curves using the fluid reflection coefficient and two different sets of
grain-size–geoacoustic relations. The “standard” relations are the regressions
presented in Table 5.4 and in Eq. (5.15). The “TR 9407” relations are those
first given by [Mourad and Jackson 1989] and expanded in a technical report
[APL-UW TR 9407] to cover a greater range of grain sizes. These relations
are

aρ = 0.007797M2
z − 0.17057Mz + 2.3139 , − 1 ≤Mz < 1 ,

= −0.0165406M3
z+0.2290201M

2
z−1.1069031Mz+3.0455 , 1 ≤Mz < 5.3 ,

= −0.0012973Mz + 1.1565 , 5.3 ≤Mz ≤ 9 , (11.1)

νp = 0.002709M2
z − 0.056452Mz + 1.2778 , − 1 ≤Mz < 1 ,

= −0.0014881M3
z+0.0213937M

2
z−0.1382798Mz+1.3425 , 1 ≤Mz < 5.3 ,
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= −0.0024324Mz + 1.0091 , 5.3 ≤Mz ≤ 9 , (11.2)

k = 0.4566 , − 1 ≤Mz < 0 ,

= 0.0245Mz+0.4556 , 0 ≤Mz < 2.6 ,

= 0.1245Mz + 0.1978 , 2.6 ≤Mz < 4.5 ,

= 0.20098M2
z − 2.5228Mz + 8.0399 , 4.5 ≤Mz < 6.0 ,

= 0.0117M2
z − 0.2041Mz + 0.9431 , 6.0 ≤Mz < 9.5 ,

= 0.0601 , 9.5 ≤Mz . (11.3)

Expressions (11.1) and (11.2) for the density and sound speed ratios are
adjustments of relations given by [Hamilton and Bachman 1982]. These ad-
justments are based on limited sets of acoustic and geoacoustic data, there-
fore, (11.1) and (11.2) should not be regarded as geoacoustic regressions.
Rather, they are empirical expressions intended to improve acoustic model-
data fits. Expression (11.3) for the attenuation factor, k (dB m−1 kHz−1), is
taken directly from [Hamilton 1972] and is therefore a geoacoustic regression.
Section 5.1.4 compares Hamilton’s results with more recent data.

As noted in Sect. 9.5, inclusion of shear would have a negligible effect on
the predicted bottom loss. Even though the data span a considerable range
in frequency, the theoretical reflection coefficient has no frequency depen-
dence given the assumed lack of layering and with the further assumptions
of frequency-independent sound speed and linear dependence of attenuation
on frequency.

The standard regressions fit the data of [Mackenzie 1960, Parrott et al.
1980] reasonably given the scatter of both the acoustic data and the geoacous-
tic data on which the regressions are based. The good fit of the “TR 9407”
relations to the data of [Mourad and Jackson 1989] is simply due to the fact
that these authors used this data set in developing these ad hoc relations.
These relations cannot be considered to be predictors of geoacoustic proper-
ties. Rather, they were intended to make up for shortcomings in reflection
and backscattering predictions as compared to data available at the time.
In fact, these relations perform well when used to predict more recent data
[Briggs et al. 2002c]. Compared to geoacoustic regression relations (Ch. 5),
these relations tend to give lower values of sound speed and density ratios for
fine-grained sediments. This may indicate that, at many of the shallow water
sites included in the acoustic data sets, bioturbation has increased the poros-
ity of the upper few centimeters of sediment [Mourad and Jackson 1989], but
this supposition is not supported by the measurements presented in Ch. 5.
As will be seen, the measurement sites considered here seem to fall into two
classes: those with loss in rough agreement of predictions based on standard
geoacoustic regressions and those with anomalously high loss.
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Fig. 11.3. Bottom loss at normal incidence versus porosity as reported by
[McLeroy 1972, Mourad and Jackson 1989]. The “standard” theoretical curve uses
grain-size regressions given in this monograph while the “TR 9407” curve uses
the ad hoc relations of [APL-UW TR 9407] and a porosity–grain-size relationship
given in that reference. Both curves employ the fluid approximation to the seafloor
reflection coefficient.

A rather large set of normal-incidence reflection data obtained at 12 kHz
and accompanied by grain-size analysis has been presented by [McLeroy 1972].
Figure 11.3 compares their data and those of [Mourad and Jackson 1989]
with theoretical curves based on the fluid approximation. The “standard”
and “TR 9407” curves have the same significance as in Fig. 11.2. The data
of [McLeroy 1972] agree rather well with predictions based on geoacoustic
regressions and fall into the “standard” loss class.

One of the earliest reflection data sets was obtained by [Liebermann 1948]
who used an interference technique to measure the reflection coefficient at 24
kHz at a grazing angle of 9◦. Rather than measuring the reflected pulse
amplitude directly, interference between the direct and reflected paths was
observed by slowly changing the depth of the receiving transducer. It appears
this technique gave results that were significantly biased toward higher loss
values owing to seafloor roughness. This can be understood by considering
a case of very low loss. In this case, the reflected and direct amplitude are
nearly equal, and one expects very deep interference nulls. Interface roughness
will alter the phase and amplitude of the reflected signal, however, “washing
out” these nulls. Thus, very low loss values will not be measured, even if the
bottom loss is, in fact, low.
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Fig. 11.4. Bottom loss versus grazing angle as reported by
[Mourad and Jackson 1989]. The “TR 9407” curves have the same signifi-
cance as in Fig. 11.2, and the curves labeled “Meas. Params.” use the following
values: Arafura, aρ = 1.456, νp = 0.988, δp = 0.024; Puget Sound, aρ = 1.74,
νp = 1.006, δp = 0.01; Quinault, aρ = 1.92, νp = 1.117, δp = 0.014. The EDFM
curve was computed using the Quinault parameters given above with aρ replaced
by (10.82) with β = 0.418 and Kg/Kw = 13.4.

The data of [Mourad and Jackson 1989] include small grazing angles as
well as normal incidence and are shown in Fig. 11.4. The loss curves labeled
“Meas. Params.” used measured values for density ratio, sound speed ratio,
and loss parameter. For Arafura and Quinault, these were taken from Table
5.1. For Puget Sound, the values reported by [Mourad and Jackson 1989]
were used. This data set exhibits anomalously high loss and was used in
determining the “TR 9407” relations. Note that the simple effective density
approximation (10.82) underestimates bottom loss at the sandy Quinault
site.

A broadband reflection data set was obtained by [McConnell and De-
Prospo 1994]. These data are averages over measurements at 1, 3, and 5
kHz and fall below the frequency range of other data in this chapter, but
are presented as another example of high-loss behavior. As seen in Fig. 11.5,
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Fig. 11.5. Bottom loss versus grazing angle as reported by
[McConnell and DeProspo 1994]. The “standard” and “TR 9407” curves have the
same significance as in Fig. 11.2.

these reflection data are matched better by the “TR 9407” curves than by
the standard regressions.

11.2.2 Laboratory Measurements of Reflection

Laboratory measurements of reflection offer better control of geometry and
interface roughness than field measurements, and have been used both
for testing wave theories and for inversion to obtain geoacoustic param-
eters. Most of these measurement have employed sandy sediments. Fig-
ure 11.6 presents measurements by [Nolle et al. 1963, Drevet et al. 1999,
Worley 2004]. The data of [Drevet et al. 1999] have a small, downward-
pointing bump just below the critical angle that may be due to spherical
wave effects. Figure 11.1 was computed for parameters similar to those of
this measurement, and shows similar behavior in the 500-kHz case. The data
from the three measurements are compared in Fig. 11.6 with various curves
computed using the parameters given in Table 11.1. These curves include
the fluid approximation, the effective density fluid approximation (EDFM),
and the “TR 9407” model. For the EDFM, (10.82) was used to obtain the
effective density for substitution in the fluid model with all other parameters
unchanged. The “TR 9407” model employed grain size from Table 11.1 in
the grain-size relations of [APL-UW TR 9407]. Table 11.1 gives parameters
reported by the cited references except, in the case of [Drevet et al. 1999],
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Fig. 11.6. Bottom loss versus grazing angle for laboratory measurements on
sand reported by: (top) [Nolle et al. 1963], (middle) [Drevet et al. 1999], (bottom)
[Worley 2004]. The curve labeled “Fluid” is computed in the fluid approximation
using values given in Table 11.1. This table also gives the parameters used to com-
pute the effective density fluid model and “TR 9407” curves.
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the sound speed ratio was determined by fitting the reflection loss data near
the critical angle, and, for [Nolle et al. 1963], the loss parameter was taken
to match that reported by [Mourad and Jackson 1989] for the Quinault site,
which had similar grain size.

In all three examples of Fig. 11.6, the fluid approximation yields bottom
loss significantly lower than the laboratory data. The “TR 9407” curve over-
estimates loss for [Nolle et al. 1963], and, overall, the EDFM curves come
closest to matching the three data sets. This is an indication that Biot effects
are significant for sandy seafloors. The last column of Table 11.1 gives the
ratio of effective density to true bulk density. These values appear reasonable
when compared to the value obtained by inserting the Biot parameter set of
Table 10.1 in the more complete EDFM equation (10.75). For a frequency of
250 kHz, ρeff/ρ = 0.657 + i 0.0046.

The data sets pictured in Fig. 11.6 have been used for geoacoustic in-
version by several investigators [Drevet et al. 1999, Chotiros 2002b, Wor-
ley 2004]. Reasonable fits are obtained in most cases using Biot theory, but
[Chotiros 2002b] advocates modifications to standard Biot theory in order
to improve the fits. Two different versions are proposed, “Composite ma-
terials: The possibility that the frame may contain fluid and that the pore
fluid may contain loose grains” and “Independent coefficient of fluid content:
The possibility that porosity may change with pore fluid pressure.” These
proposals and efforts by others to modify [Yamamoto and Turgut 1988,
Chotiros and Isakson 2004] or replace [Buckingham 2000, Buckingham 2005]
Biot theory show that this subject is not a closed book.

Table 11.1. Parameters associated with curves in Fig. 11.6.

Mean Grain Porosity Density Sound Speed Loss
Reference Size Ratio Ratio Parameter ρeff/ρ

Mz (φ) β aρ νp δp

[Nolle et al. 1963] 3.0 0.48 2.07 1.16 0.014 0.69
[Drevet et al. 1999] 2.0 0.41 1.973 1.155 0.0114 0.84

[Worley 2004] 2.0 0.403 2.00 1.173 0.01 0.81

Laboratory reflection experiments were carried out by [Yargus 2003] for
frequencies in the neighborhood of 250 kHz in Ottawa sand having mean grain
size Mz = 1.84 φ. Using normal-incidence reflection for various boundary
conditions, he was able to estimate some, but not all, of the Biot parameters.
The effective density was found to be consistent with the value resulting from
the parameter set of [Williams et al. 2002a] and comparable to the values in
Table 11.1 for [Drevet et al. 1999] and [Worley 2004].

One interesting possibility for future laboratory experiments is measure-
ment of the phase of the reflection coefficient. This may provide a means of
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distinguishing between Biot theory and the fluid, elastic, and Buckingham
alternatives. As noted in Sect. 8.5, the phase of the reflection coefficient at
normal incidence is opposite if losses are incorporated in the density rather
than in the moduli. With typical Biot parameters, the complex effective den-
sity dominates the losses due to complex frame moduli. Thus, with exp(−iωt)
time dependence, the imaginary part of the reflection coefficient at normal
incidence will be positive if poroelastic behavior is dominant and negative
if either fluid, elastic, or Buckingham theory is correct. Unfortunately, this
phase is very small, being comparable (when measured in radians) to the loss
parameter, δp.

11.3 Research Issues

Reflection measurements offer one of the most direct means of testing theories
for wave propagation in sediments. As noted at several points in this mono-
graph, poroelastic effects reduce the reflection coefficient relative to the values
expected on the basis of fluid or elastic theory. In this context, Buckingham’s
theory would fall in the class of fluid or elastic theories and would predict
lower reflection loss than Biot theory, given the same acoustic wave speed and
bulk density. Ambiguities remain in the interpretation of present data sets,
so future work must be undertaken with increased effort at characterization
of the medium. Both laboratory and field measurements are useful, and, in
both, roughness statistics should be determined. To combat roughness effects,
averaging over multiple echos from statistically equivalent seafloor patches is
required. Model calculations using measured roughness statistics can be used
to estimate bias due to scattering. Contamination of reflection data by scat-
tering from within the sediment volume deserves more attention than it has
received to date. Gradients due to transition layers immediately below the
interface must be accounted for in the interpretation of measurements, unless
the wavelength is much greater than the layer thickness. This point is illus-
trated by the occasional success of the ad-hoc “TR 9407” geoacoustic model
in fitting reflection data. This model yields smaller-than-normal sound speed
and bulk density for a given mean grain size. At higher frequencies (100–500
kHz), measurement of these gradients with the required millimeter resolution
is challenging. Computed tomography (CT, Sect. 7.1) can measure density
profiles with sufficient resolution if sediment samples are undisturbed, but
no means is available to measure sound speed with similar resolution. It is
unfortunate that the effects of a transition layer, of roughness, and those of
poroelasticity are similar: all cause a reduction in reflection coefficient com-
pared to the simplest fluid treatment. Discrimination between these effects
will require extreme care, and may only be possible in the laboratory.



12 Seafloor Scattering Experiments

This chapter will review published data on high-frequency scattering by the
seafloor, pointing out regularities (and lack of regularity as well) in the data
without attempting physical explanations. Discussion of physical mechanisms
will be reserved for Chs. 13 and 14, where data and scattering models are
compared. Attention will be restricted to measurements of scattering strength
(defined in Sect. 2.3.2). Reviews of seafloor sound scattering can be found in
[Bunchuk and Zhitkovskii 1980, McCammon 1993, Chotiros 2002a].

A universal problem with older seafloor scattering data is lack of physical
characterization, or at least lack of sufficient characterization to constrain
modern scattering models. Only since the 1980s have experimenters devoted
sufficient resources to the problem of characterization, and progress has been
aided by the development of new geoacoustic measurement techniques. Even
though older scattering data are unaccompanied by sufficient seafloor char-
acterization, they are useful in revealing trends such as angular dependence,
frequency dependence, and correlation of scattering level with seafloor type.

One can place seafloor scattering measurements in a hierarchy based on
the degree of control of experimental conditions. Reverberation data have
been gathered during naval fleet exercises in areas of operational interest.
This type of data gathering is often aimed at the development of “through-
the-sensor” capability [Brown and Barlett 2005] to assess the environment in
tactical situations. Such measurements may suffer from poor calibration, er-
rors in knowledge of measurement geometry, and lack of ground-truth, but
provide scattering strength data over a wide range of conditions. Similarly,
acoustic survey efforts have produced large data sets on seafloor scatter-
ing, generally with reasonable calibration and knowledge of geometry. Better
experimental control is possible if acoustic platforms are deployed on the
seafloor allowing acoustic measurements of improved accuracy and permit-
ting physical and geoacoustic characterization of the area surrounding the
acoustic platform. Such improved control comes at the price of smaller sta-
tistical samples. These types of experiment are typical of the present scien-
tific effort and are the dominant subject of this chapter and the model-data
comparisons of Chs. 13, 14, and 15. An even greater degree of experimen-
tal control is possible with seafloor-deployed systems if well-characterized
manipulations of the seafloor are carried out, e.g., [Richardson et al. 2001b].
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Laboratory experiments offer even greater control and rigor in model-data
comparisons, but may not mimic the natural world accurately. Here one
may use artificial sediments (e.g., small glass beads) or reconstituted nat-
ural sediments. The ultimate degree of control can be obtained in laboratory
measurements using model seafloors, e.g., plastic machined to have specified
roughness [Mellema 1999, Soukup et al. 2005].

Many different experimental setups have been used in field measurements
of seafloor scattering. One example is shown in Fig. 1.1, in which a rotating
sonar mounted on a tripod provided backscattering data, while also serving
as a source for bistatic measurements that employed a receiving array de-
ployed from a nearby vessel. Other investigators have used towed sonar plat-
forms (e.g., [D. Jackson et al. 1986b]), fixed seafloor-mounted platforms (e.g.,
[Stanic and Kennedy 1992]), diver-movable tripods [Williams et al. 2002b],
platforms moving on rails deployed on the seafloor [Maguer et al. 2000a,
Williams et al. 2005] (see Figs. 1.2 and 12.1), and autonomous underwater
vehicles.

Fig. 12.1. Transducers used by investigators at the NATO Undersea Research
Centre for seafloor acoustics experiments. The transmitter is a parametric source.
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In interpreting experimental results, it is important to realize that acous-
tic scattering measurements are challenging, and errors can be difficult to
identify and quantify. For example, backscattering strength at small grazing
angles is determined from the echo signal arising from ranges much greater
than the transducer height above the seafloor. In shallow water, such ranges
may be affected by multipath propagation or by unwanted scattering by the
sea surface. Such effects can be assessed by modeling of the experimental ar-
rangement or by acoustic tests of the direction of arrival, but this was not the
usual practice in older experiments. Other factors in measurement of seafloor
scattering strength are discussed in Sect. G.2.

12.1 Monostatic Experiments

Monostatic experiments usually provide measurements of the backscattering
strength of the seafloor, but may also provide information on signal envelope
statistics or spatial or temporal correlations (Ch. 16). The aim of the present
section is to draw broad conclusions regarding the dependence of backscat-
tering strength on grazing angle, acoustic frequency, and seafloor type. More
detailed conclusions will be reached in Chs. 13 and 14.

12.1.1 Grazing Angle Dependence

Figure 12.2 displays backscattering strength data as a function of grazing
angle for “mud” seafloors (mean grain size Mz ≥ 5 φ ). The same presen-
tation is given in Fig. 12.3 for sand (5 φ < Mz ≤ 0 φ), in Fig. 12.4 for
gravel (Mz ≤ 0 φ), and in Fig. 12.5 for rock. The older (pre-1985) data have
been edited to remove data at smaller grazing angles, which may be contami-
nated by multipath reverberation and therefore biased upward. Section 2.3.2
gives an argument that, in most cases, scattering strength must decrease
rapidly as grazing angle approaches zero. More recent data have typically
been subjected to scrutiny to detect the presence of unwanted scattered en-
ergy [Boehme et al. 1985, D. Jackson et al. 1986b] and have been found to
exhibit this rapid decrease at small angles.

Lambert’s law has been fitted to each of the data sets in Figs 12.2–12.5,
with the fit restricted to grazing angles less than 60◦. The Lambert parameter
10 log10 μ was computed by fitting each broad data grouping (mud, sand,
gravel, and rock) and used in plotting a Lambert-law curve for comparison
with the data. The data of Figs. 12.2 and 12.3 for mud and sand seafloors
have a grazing angle dependence that follows Lambert’s law reasonably well
for grazing angles less than about 60◦, but the data rise above Lambert’s law
for steep grazing angles, showing that scattering is not entirely diffuse, but
increases sharply near the specular direction. The data sets for scattering
by gravel, Fig. 12.4, and rock, Fig. 12.5, are very sparse, but show clearly
that seafloors of these types can be strong scatterers of sound. In fact, the
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extremely high scattering levels for the rock seafloor of [APL-UW TR 9407]
exceed the Lambert scattering limit (see Eq. (2.23) and Fig. 2.7) and are
suggestive of backscattering enhancement (Sect. 2.3.2).

0 10 20 30 40 50 60 70 80 90

60

50

40

30

20

10

0

Grazing Angle (deg)

S
ca

tte
rin

g 
S

tr
en

gt
h 

(d
B

)

D. Jackson and Briggs 1992, 20 kHz
D. Jackson and Briggs 1992, 40 kHz
Jones and Jackson 1997, 40 kHz
Gensane 1989, average over frequency
McKinney and Anderson 1964, 100 kHz
D. Jackson et al. 1996a, 40 kHz
D. Jackson et al. 1986b, PS1, 25 kHz
D. Jackson et al. 1986b, N. Sea, 35 kHz
Urick 1954, S6, 60 kHz
Urick 1954, S5, 60 kHz
Pouliquen and Lyons 2002, 140 kHz
Pouliquen and Lyons 2002, 140 kHz

Fig. 12.2. Backscatter data from selected sites having mud seafloors. The solid
curve is Lambert’s law (2.22) using 10 log10 μ = −19.7.

The best-fit Lambert’s law curve has 10 log10 μ = −19.7 dB for the mud
data and 10 log10 μ = −20.2 dB for the sand data. The spread in the range
of scattering strengths for mud and sand seafloors is very large, about ±5–8
dB. This large spread shows that sediment name is not a good predictor of
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Fig. 12.3. Backscatter data from selected sites having sand seafloors. The solid
curve is Lambert’s law (2.22) using 10 log10 μ = −20.2.
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Fig. 12.4. Backscatter data from selected sites having gravel seafloors. The solid
curve is Lambert’s law (2.22) using 10 log10 μ = −11.7.
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Fig. 12.5. Backscatter data from selected sites having rock seafloors. The solid
curve is Lambert’s law (2.22) using 10 log10 μ = −5.6.

scattering strength. Since average scattering strengths for sand are compara-
ble to those for mud, it can also be said that scattering strength is not a good
predictor of sediment type. Equivalently, there are large errors in predicting
scattering strength in terms of grain size and vice versa [Chotiros 2002a].
Even so, grain size is often used in lieu of any better seafloor descriptor
[Mourad and Jackson 1989, APL-UW TR 9407].

While measurement of scattering strength may allow coarse classification
into “hard” and “soft” seafloors (e.g., gravel and rock versus mud and sand),
finer classification requires additional information. Measurement of seafloor
reflection at normal incidence provides values for acoustic impedance. Since
impedance is well correlated with several sediment properties (Sect. 5.1.8),
reflection coefficient measurement in concert with backscatter measurement
offers the possibility of improved acoustic seafloor classification.

It is difficult to determine errors in measurements of scattering strength,
and many authors have avoided this issue, while some give rough error es-
timates or provide “error bars” showing the observed spread in measured
values. Errors arise from insufficient statistical sample size (Sect. G.2), errors
in calibration of transducer source level, receiving sensitivity, and directiv-
ity (Appendix F), errors in system gain, patchiness of the seafloor (see Ch.
16), and other causes. When all these errors are taken into account, it is un-
likely that the overall accuracy of the most careful measurement of scattering
strength will be better than about 2 dB, and larger errors are to be expected
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in most cases. Because scattering strength shows a rapid angular variation
near vertical incidence, the approximation used to obtain the simple sonar
equation (G.13) may fail, and the experimentalist may have to resort to a
more complicated means to extract scattering strength from echo data. The
problem is exacerbated by the fact that the angular resolution corresponding
to a given pulse length is poor near normal incidence. An approach to this
problem is given in Sect. G.2.2.

12.1.2 Frequency Dependence

Figures 12.6–12.9 show the frequency dependence of published backscattering
strength data for mud, sand, gravel, and rock at selected grazing angles.
The mud data show, on average, a slight increase in scattering strength with
increasing frequency, roughly 3 dB for each decade increase in frequency. Most
of the sand sites show a definite increase of scattering strength with frequency,
in the neighborhood of 6–8 dB/decade. The gravel and rock data are too
sparse and span too small a frequency range to allow definite conclusions.
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Fig. 12.6. Frequency dependence of backscatter strength at fixed grazing angle for
sites having mud seafloors. The straight line has a slope of 3 dB/decade.
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Fig. 12.7. Frequency dependence of backscatter strength at fixed grazing angle for
sites having sand seafloors. The straight line has a slope of 7.5 dB/decade.
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Fig. 12.8. Frequency dependence of backscatter strength at fixed grazing angle for
sites having gravel seafloors. The straight line has a slope of 3 dB/decade.
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Fig. 12.9. Frequency dependence of backscatter strength at fixed grazing angle for
sites having rock seafloors. The straight line has a slope of 0 dB/decade.

12.2 Bistatic Experiments

Bistatic seafloor scattering data are much more difficult to acquire than
monostatic data, largely because two separate platforms are required (one
for the source, one for the receiver). The positions of these platforms must be
known accurately, as must the pointing directions of the source and receiver.
Further complication arises from the fact that the ensonified region is not
sharply defined in the angular sense. The ensonified region is defined by the
product of the source and receiver directivity patterns and the intersection
of this product with an elliptical band defined by the source pulse.

An early observation of bistatic scattering at 22 kHz was made by
[Urick 1960] at a shallow-water (10–20 m) site near Panama City, Florida.
Because the directional source and directional receiver were separated by
a distance (3 km) much greater than the water depth, multipath prop-
agation prevents a direct use of these data in testing scattering mod-
els. The data are interesting, however, in showing little dependence of
scattering strength on the bistatic angle (Sect. 2.3.2). While Urick’s data
probe the azimuthal dependence of bistatic scattering, the measurements
of [Schmidt 1971] were intended to examine the grazing angle dependence.
These data were obtained over the frequency band 3.2–6.3 kHz. Unfortu-
nately, it appears that these measurements were compromised by surface-
reflected multipaths to a greater extent than appreciated by the author,
as can be seen by considering the simple model for these effects given
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by [Mourad and Jackson 1993]. Bistatic scattering near the backward direc-
tion was studied by [Stanic et al. 1991, Stanic et al. 1993] over the frequency
range 20–180 kHz. The measurements showed little variation in scattering
strength for small horizontal and vertical angles with respect to the backscat-
tering direction. Thus, these measurements showed no appreciable backscat-
tering enhancement, consistent with expectations for sandy seafloors having
moderate scattering strength (Sect. 2.3.2).

The discussion of more recent bistatic scattering data, which allow more
direct comparison with model predictions, will be deferred to Ch. 13.

12.3 Research Issues

While there have been many high-frequency seafloor scattering experiments,
there are still large gaps to be filled. It is important that future measure-
ments be accompanied by detailed geoacoustic measurements characterizing
roughness, discrete scatterers, gradients, and heterogeneity. With regard to
backscatter measurements, most previous experiments have had limited cov-
erage of either grazing angle or frequency (or both), and this has hampered
model-data comparisons. Temporal and spatial variations in the seafloor lead
to corresponding variations in acoustic, physical, and geoacoustic data Thus,
care should be taken in model-data comparisons that all data sets are concur-
rent in space and time. There is a relative lack of data for muddy and rocky
seafloors and corresponding weaknesses in model tests. Finally, further effort
on bistatic measurements is warranted, and this may entail development of
new methods of coping with geometric uncertainties. Laboratory measure-
ments may be especially helpful in allowing controlled experiments, but the
problem of scaling laboratory measurements to the natural world must be
appreciated.



13 Roughness Scattering Models

This chapter deals with models that predict the scattering cross section (Sect.
2.3.2) in terms of statistical information on seafloor roughness. Most research
in this area has assumed that seafloor relief can be described by a continuous
function of the two horizontal coordinates, that is, roughness is the type of
microtopography discussed in Ch. 6. This work is the primary subject of this
chapter, but recent work on scattering due to discrete roughness features,
such as shell fragments lying on the sediment–water interface, will be treated
briefly.

As a starting point for the discussion, Fig. 13.1 shows model curves for
backscattering strength for a sandy seafloor at 30 kHz. The curves were com-
puted using one of the roughness scattering approximations to be discussed
in this chapter and a volume scattering approximation to be discussed in Ch.
14. Several features evident in Fig. 13.1 are seen in other acoustic scattering
models and in data for sand seafloors. First, roughness scattering shows a
peak near vertical incidence. This is the remnant of the vertical reflection
that would occur if the seafloor were flat. Second, roughness scattering has
another peak near the critical grazing angle (about 25◦ in this example),
and decreases as grazing angle becomes greater than the critical angle. This
is because the interface becomes more “transparent” acoustically for angles
greater than the critical angle. At the same time, and for the same reason,
volume scattering increases for angles greater than the critical angle. For
soft sediments such as mud (sediments comprised primarily of silt- and clay-
sized particles, Table 4.1), the compressional wave speed is often less than
the water sound speed (Figs. 5.2 and 5.7), so there is no critical angle. In
such cases, volume scattering tends to dominate roughness scattering except
for angles near vertical. In the other extreme, for “hard” sediments, such as
coarse sand, one expects roughness scattering to dominate volume scattering,
although this may not always be the case. In fact, it is not clear that a sep-
aration into roughness and volume scattering components is always possible
or desirable, particularly for seafloors composed of gravel-sized grains or for
seafloors whose volume heterogeneity is partly due to vertical undulations of
a stratified sediment (see [Ivakin 1998a] and Sect. M.1.2). Nevertheless, this
separation is made in nearly all published models and will be used here.
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Fig. 13.1. Model curves for backscattering strength for seafloor showing the sep-
arate contributions of scattering by roughness and volume heterogeneity. The pa-
rameters listed were chosen arbitrarily, but are typical of a sand seafloor. These
parameters have been defined in previous chapters and will be encountered again
in this chapter and in Ch. 14. The roughness scattering contribution was computed
in the fluid small-slope approximation, and the volume scattering contribution was
computed in the fluid perturbation approximation.

In order to obtain numerically tractable models, investigators invariably
introduce approximations and idealizations in addition to those already con-
tained in the underlying theory. Thus, for example, there can be a variety of
fluid models for scattering by seafloor roughness. In order to make the main
results of scattering models for the seafloor readily accessible, this chapter
and the following chapter (on scattering by volume heterogeneity) will only
give the essential assumptions and final expressions for each model along
with a discussion of the physics involved and a comparison with data. In ad-
dition, the accuracy expected for several of the approximations is discussed.
The derivation of each model is given in the appendices, and the necessary
statistical characterizations of roughness are defined in Sects. 6.1 and D.1.
For deeper treatments of wave scattering, the reader can consult some of
the books and review articles on this subject, including [Bass and Fuks 1979,
Ogilvy 1991, Voronovich 1994, Ishimaru 1997, Elfouhaily and Guérin 2004].

13.1 General Properties of Roughness-Scattering
Models

This section takes the unusual approach of beginning with final mathematical
expressions for common scattering models, deferring explanation until later in
the chapter and placing derivations in the appendices. This choice was made
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to allow a classification of the various models prior to detailed discussion. This
classification is based on striking, but not widely appreciated, mathematical
similarities in the disparate models. This approach also makes the models
more accessible to the user, but may require some patience on the part of
those whose main interest is in the physics of the models.

The two most widely used approximations for scattering by seafloor
roughness are the small-roughness perturbation method (sometimes known
as Rayleigh–Rice perturbation theory) and the Kirchhoff approximation (also
known as the tangent-plane approximation). Each has its own separate do-
main of validity, with perturbation theory tending to be most accurate for
scattering at wide angles relative to the specular (flat-interface reflection) di-
rection [Thorsos and Jackson 1989] and the Kirchhoff approximation being
better for scattering near the specular direction [Thorsos 1990].

The object of primary interest here is the bistatic scattering cross section,
defined in Ch. 2. It is a function of the angles defining the direction from the
source to the scattering region and from the scattering region to the receiver.
These directions, in turn, can be specified in terms of wave vectors as follows:

ki = kw(ex cos θi cosφi + ey cos θi sinφi − ez sin θi) , (13.1)

ks = kw(ex cos θs cosφs + ey cos θs sinφs + ez sin θs) . (13.2)

Here, kw is the wavenumber in water, the incident direction is specified by
ki, and the direction toward the receiver is specified by ks. The angles used
here are defined in Fig. 2.4, where it is noted that one may set φi = 0 without
loss of generality if the seafloor is isotropic in the statistical sense. All three
components of the wave vectors cannot be specified independently, as the
magnitude must be equal to kw. Thus, the following horizontal components of
the wave vectors are sufficient to define the incident and scattered directions:

Ki = kw(ex cos θi cosφi + ey cos θi sinφi) , (13.3)

Ks = kw(ex cos θs cosφs + ey cos θs sinφs) . (13.4)

It is convenient to define the following wave vector differences:

Δk = ks − ki , (13.5)

ΔK = Ks −Ki , (13.6)

Δkz = ksz − kiz . (13.7)

Note
Δk2 = ΔK2 +Δk2z , (13.8)

where the magnitude of a difference vector is denoted without boldface.
The small-roughness perturbation, Kirchhoff, and small-slope approxi-

mations yield equations whose form does not depend on the particular wave
theory employed. This assertion is true in general for the perturbation and
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Kirchhoff approximations, but is only true for the small-slope approximation
when the seafloor is homogeneous (i.e., without gradients or layering). Given
these general forms, one has only to fill in a few blanks to obtain the complete
result within a given wave theory. Consequently, it is convenient to make the
major division of roughness scattering models along the lines of the scattering
approximation being used, rather than the wave theory employed. The basic
equations for each of these three approximations will be given next, without
derivation and with little explanation. This is done in order to expose the
formal similarities and differences in these approximations. Each approxima-
tion will then be discussed in some detail in separate sections of this chapter,
and appendices provide derivations.

The bistatic scattering cross section in the small-roughness perturbation
approximation is

σ = k4w|Aww|2W (ΔK) , (13.9)

where W (ΔK) is the roughness spectrum defined in Sect. 6.1. In the Kirch-
hoff approximation:

σ =
|Vww(θis)|2

8π
[

Δk2

ΔKΔkz
]2IK , (13.10)

and in the small-slope approximation:

σ =
k4w|Aww|2
2πΔK2Δk2z

IK . (13.11)

It is useful to note the similarities between these equations and to identify
the essential factors that must be supplied for each different choice of wave
theory. The factor Aww depends on choice of wave theory, but is common
to both the perturbation and small-slope approximations. The “Kirchhoff
integral”

IK =
ΔK2

2π

∫
e−iΔK·R[e−

1
2Δk2zS(R) − e−Δk2zh

2
]d2R (13.12)

does not depend on the choice of wave theory and is common to both the
Kirchhoff and small-slope approximations. Roughness statistics enter this
integral through the “structure function,” S(R), defined in Sect. D.1. The
reflection coefficient, Vww, appearing in the Kirchhoff expression depends on
the choice of wave theory, and is evaluated at the grazing angle

θis = sin−1(
Δk

2kw
) (13.13)

that corresponds to specular reflection from the source to the receiver with
the rough surface tilted in such a way as to provide such a reflection (Thorsos,
private communication as cited in [D. Jackson 1994]).
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In summary, wave theory must be applied to obtain Aww for the small-
roughness perturbation and small-slope approximations or, correspondingly,
Vww for the Kirchhoff approximation. Once these theoretical tasks are com-
plete, only numerical computation remains, including evaluation of (13.12).

The scattering cross section describes the angular dependence of the inco-
herent field. In general, one must also consider the coherent field, which can
be described in terms of the coherent reflection coefficient, Vwwc, discussed
in Ch. 2. The second term in the integrand of (13.12) represents subtraction
of the coherently reflected energy from the total energy leaving the interface
such that the remainder represents the incoherently scattered energy. For
both the Kirchhoff and small-slope approximations, the coherent reflection
coefficient is the flat-interface reflection coefficient, Vww(θ), reduced by an
exponential factor:

Vwwc(θ) = Vww(θ)e−2k2wh2 sin2 θi . (13.14)

This result is widely used and is often associated with [Eckart 1953], who
derived the analogous result for scattering by the sea surface. One must be
careful in applying (13.14) in acoustic simulations. This expression is some-
times used as the total reflection coefficient at the seafloor and scattering
is ignored. This approach assumes that the incoherently scattered energy is
“lost” and can be ignored in computations of the field at ranges beyond that
at which the reflection occurred. This may be a good approximation if the
scattering occurs predominantly at wide angles with respect to the specular
direction, but if this is not the case, the scattered field may be an important
component of the down-range field.

To this point, the three roughness scattering approximations are general
enough to treat the case of anisotropic roughness, e.g., seafloors with direc-
tional ripples. In the examples to follow, isotropy will be assumed for the sake
of simplicity. The spectrum (6.8) is an example of isotropy, as it depends only
on the magnitude, K, of its two-dimensional vector argument, K. Likewise,
in the isotropic case, the structure function will only depend on the magni-
tude, R, of its argument, R. In this case the Kirchhoff integral (13.12) can be
reduced to a one-dimensional integral by using polar integration coordinates
and integrating over the angular coordinate with the result

IK =
∫ ∞

0
J0(u)[e−

1
2Δk2zS(

u
ΔK ) − e−Δk2zh

2
]udu , (13.15)

where J0 is the zeroth-order cylindrical Bessel function of the first kind. For
the power-law case (6.8), h is infinite, and (D.11) can be used to put (13.15)
in the form

IK =
∫ ∞

0
J0(u)e−qu2αudu , (13.16)

where
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q =
1
2
C2
hΔk2zΔK−2α . (13.17)

The parameters Ch and α are given in terms of the power-law spectrum
parameters in (D.12) and (D.13). Evaluation of this integral requires spe-
cial consideration numerically [Drumheller and Gragg 2001]. Carefully cho-
sen, more general forms of the roughness spectrum can also lead to tractable
numerical integrals [Wurmser 2005].

A comparison of the three roughness-scattering approximations defined
previously is made in Fig. 13.2. Fluid theory is used to compute backscatter-
ing strength, and the parameters are appropriate to a medium sand seafloor.
For these parameters, the small-slope approximation is accurate over a wide
range of angles (though perhaps not at the smallest grazing angles). The
Kirchhoff approximation matches the small-slope approximation near verti-
cal incidence, but gives excessively large scattering strengths for moderate
and small angles. In fact, the increasing trend as grazing angle approaches
zero is an indication of the violation of energy conservation (see Ch. 2). Per-
turbation theory behaves in a fashion complementary to the Kirchhoff ap-
proximation, matching the small-slope approximation at small-to-moderate
angles and giving overlarge scattering strengths near vertical incidence. This
behavior, too, violates energy conservation and is in part an artifact due to
the singularity in the assumed roughness spectrum.

The complementary behavior of the Kirchhoff and perturbation approxi-
mations has led numerous investigators to combine the two in the “composite-
roughness” approximation discussed in some detail in Sect. 13.5. Most of this
work employed a version of the Kirchhoff approximation in which a high-
frequency limit is taken. The high-frequency Kirchhoff approximation is dis-
cussed in in Sect. 13.3 and Appendix L.

With the advent of the small-slope approximation, motivation for use of
the composite-roughness and Kirchhoff approximations is reduced. The small-
slope approximation provides a single expression that covers all angles and
is likely to be at least as accurate as either the Kirchhoff or perturbation ap-
proximations. The relationship between the three scattering approximations
can be clarified by considering various limiting cases. First, if the acoustic
wavelength is much smaller than the RMS roughness, h, the exponential fac-
tor containing the structure function in the Kirchhoff integral (13.12) can
be expanded to second order in kwh. Using the definition of the structure
function in terms of the covariance (D.6) and the Fourier transform relation
between the covariance and the spectrum, (6.5), it can be shown that the
small-slope cross section (13.11) reduces to the perturbation result (13.9).
This is not surprising, as the small-slope approximation was constructed to
reduce to the perturbation approximation in the small-roughness limit.

As is well known, the Kirchhoff and small-slope approximations for the
bistatic scattering cross section coincide near the specular direction. As shown
in Appendix L, this is a result of a general identity (L.9) linking the reflec-
tion coefficient and the first-order perturbation coefficient appearing in the
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Fig. 13.2. Comparison of backscattering strengths computed in the small-slope,
Kirchhoff, and small-roughness perturbation approximations using fluid theory. The
acoustic frequency is 30 kHz, and the input parameters are typical of a medium
sand seafloor: aρ = 1.845, νp = 1.1782, δp =0.01624, γ2 = 3.25, and w2 = 0.000141
m0.75. In this case, the curves for the small-slope and perturbation approximations
overlap for grazing angles smaller than about 70◦, and those for the Kirchhoff and
small-slope approximations overlap for angles larger than this.

small-slope cross section (13.11). Appendix L defines an incoherent reflec-
tion coefficient that is useful whenever the bistatic scattering cross section
is peaked near the specular direction. This reflection coefficient gives a sim-
ple means of applying the sonar equation to estimate the scattered intensity
near the specular direction. Because of the near equality of the Kirchhoff
and small-slope approximations in the vicinity of the specular direction, this
incoherent reflection coefficient is the same in both cases and equal to

|Vwwi(θi)|2 = |Vww(θi)|2 − |Vwwc(θi)|2 . (13.18)

This expresses a simple and physically reasonable property. If the interface
roughness does not spread the scattered energy far from the specular direc-
tion, the combined coherent and incoherent fields will yield the same intensity
as that reflected by a flat interface [McDonald and Spindel 1971]. In an op-
tical analogy, one may imagine sunlight reflected from a flat mirror. If the
surface of the mirror is deformed slightly, one would not expect the aver-
age intensity of the reflected sunlight to change. This incoherent reflection
coefficient gives the RMS incoherently scattered pressure near the specular
direction if it is inserted into the usual expression for flat-interface reflection.

This property of rough-interface scattering can be exploited to allow mea-
surement of the flat-interface reflection coefficient, even if the interface is
moderately rough. In such applications, the source and receiver must be non-
directional, or at least substantially less directional than the near-specular
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peak of the bistatic scattering cross section. Also, the derivation leading to
(13.18) assumes that the incident wave is a continuous sine wave. If a pulsed
source is used, the pulse length must be great enough that the scattered inten-
sity can reach the steady-state value that CW excitation would provide. This
situation is discussed in detail for the case of vertical-incidence measurements
in Sect. G.2.2.

13.2 Small-Roughness Perturbation Approximation

Small-roughness perturbation theory is widely employed in modeling acoustic
scattering by the seafloor and provides a basis for the composite-roughness
and small-slope approximations. Furthermore, perturbation theory yields
an intuitive picture of the physics of scattering. The roughness spectrum,
W (ΔK), appearing in the small-roughness cross section (13.9), is central to
this picture. The spectrum is evaluated at the so-called “Bragg wave vector,”
the difference of the scattered and incident horizontal wave vectors. A useful
and physically instructive mnemonic for the Bragg wave vector follows from
rearranging (13.6) to read Ks = Ki + ΔK. If, as in quantum mechanics,
one interprets wave vector as momentum, this relation expresses conserva-
tion of momentum, with the momentum of the scattered wave being equal to
the incident momentum plus the momentum gained by interaction with the
interface. If the roughness spectrum has a large peak at some wave vector,
K0, there will be strong scattering in the two directions corresponding to
Ks = Ki ±K0, the “Bragg condition,” a term originating in X-ray diffrac-
tion. If there is such a peak in the spectrum, the seafloor will have a strongly
rippled appearance, with the ripples perpendicular to the direction ofK0 and
having wavelength λ0 = 2π/K0. Two scattering directions exist, because the
spectrum is symmetric in the sense W2(K) =W2(−K), so the existence of a
peak at K0 requires a peak at −K0. The Helmholtz equation requires that
the z-component of the scattered wave vectors satisfy

ksz =
√
k2w −K2

s , (13.19)

so that all wave vectors have the same length, kw, as indicated by the dashed
semicircles in Fig. 13.3. Note also that Ks = Ki corresponds to the specular
direction, so the two scattered waves have directions above and below the
specular direction in the two-dimensional example of Fig. 13.3(a). If Ks is
sufficiently large, the z-component of the scattered wave vector will be imagi-
nary, that is, the wave will be evanescent and will not contribute significantly
to the scattered field in the water column (Fig. 13.3(b)).

If the roughness of the seafloor is random and nondirectional (isotropic),
the spectrum will be spread over a wide range of wave vectors, allowing the
Bragg condition to be satisfied at all angles. Most spectra have a peak at
or near the origin (in two-dimensional K-space), giving rise to a peak in
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Fig. 13.3. A two-dimensional example illustrating Bragg scattering by sinusoidal
ripple fields. In panel (a), the ripple wavelength is longer than the acoustic wave-
length, with the result that there are two scattering directions, both near the specu-
lar direction. In panel (b), the ripple wavelength is equal to the acoustic wavelength,
and one of the scattered waves has become evanescent and the other is in the back-
ward direction. The arrows represent the wave vectors of plane waves and do not
imply interaction at a single point on the interface. The interaction occurs over the
entire interface.

scattering near the specular direction. In the special case of backscattering,
the Bragg condition, obtained from (13.6), takes on the simple form

ΔK = 2kw cos θi , (13.20)

whereΔK is the Bragg wavenumber, kw is the acoustic wavenumber, and θi =
θs is the grazing angle. At small angles, this amounts to the statement that
the wavelength of the roughness features responsible for scattering is one-half
the acoustic wavelength. An experiment to demonstrate “Bragg scattering”
from artificially created ripples is reported in [Richardson et al. 2001b] and
discussed briefly in Sect. 6.4.

As noted earlier, the small-roughness perturbation approximation has
been applied to a variety of seafloor models, including the fluid, elastic, and
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poroelastic cases. Each of these cases will be treated in order, with the main
results contained in expressions for the factor Aww appearing in the scat-
tering cross section. The discussion of perturbation theory concludes with
comparisons of model predictions and data.

13.2.1 Fluid Model

The fluid perturbation model was among the first physics-based seafloor scat-
tering models to be developed. Expressions for the case of a lossless fluid sed-
iment were given by [Kuo 1964], and these are easily generalized to the case
of finite attenuation [D. Jackson and Briggs 1992]. This model assumes the
sediment is homogeneous, without layering or gradients of any form. Several
investigators have employed this model [Crowther 1983, Ivakin 1983, Stanic et
al. 1989, Mourad and Jackson 1989, D. Jackson and Briggs 1992, Stanic et al.
1993, Kuo 1995, D. Jackson et al. 1996a, Williams and Jackson 1997, Williams
and Jackson 1998]. Others have extended it to allow for gradients and layering
in the seafloor [Ivakin 1994b, Lyons et al. 1994, Moe and Jackson 1994].

A convenient expression for the factor Aww needed in the expression for
the scattering cross section (13.9) can be found in [D. Jackson 1994] and
derivations are given in Sects. K.1 and M.1.2:

Aww =
1
2
[1 + Vww(θi)][1 + Vww(θs)]G , (13.21)

where

G = (1− 1/aρ)[cos θi cos θs cosφs −B]− 1 + 1
a2paρ

, (13.22)

B =
sin θpi sin θps

a2paρ
, (13.23)

sin θpi =
√
1− a2p cos2 θi , (13.24)

sin θps =
√
1− a2p cos2 θs . (13.25)

As defined in Ch. 8, ap is the complex ratio of sediment compressional
wave speed to water sound speed, aρ is the sediment–water density ratio,
and Vww(θ) is the flat-interface reflection coefficient evaluated at the graz-
ing angle θ. Expression (13.23) is only applicable to the homogeneous fluid
case. A more general expression applicable to horizontally stratified seafloors
[Moe and Jackson 1994] can be obtained by replacing (13.23) with the fol-
lowing:

B = sin θi sin θs
[1− Vww(θi)][1− Vww(θs)]
[1 + Vww(θi)][1 + Vww(θs)]

aρ . (13.26)

Expressions (13.21), (13.22), (13.26) can be applied to seafloors with gradi-
ents and layering simply by using the appropriate reflection coefficient. In
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such cases ap and aρ appearing in (13.22) and (13.26) are to be evaluated
immediately below the sediment–water interface. It is assumed that gradi-
ents and layering are such that these parameters are substantially constant
over the range of vertical coordinate of the interface relief function. If this
is not true, the approach of [Ivakin 1998a] may be useful (see Sect. M.1.2).
The seafloor below the rough interface is assumed not to have any variations
in its properties with respect to the horizontal coordinates, and it must be
fluid-like in the region immediately below the rough interface. Apart from
those restrictions, the lower portion of the seafloor may consist of layers of
any type, fluid, elastic, or poroelastic. The effect of these lower layers is em-
bodied in the reflection coefficient, Vww(θ). Any attempt to model an elastic
or poroelastic upper layer by letting the thickness of the upper fluid layer
vanish will fail, as the boundary conditions at the rough interface will not be
satisfied.

Figure 13.4 illustrates the small-roughness perturbation model for two
different seafloor types, a “fast” sand seafloor having compressional wave
speed greater than the water sound speed (νp > 1) and a “slow” mud seafloor
having νp < 1. All other parameters are taken to be the same for both
cases except that the sand seafloor has greater density (aρ = 2.0) than the
mud seafloor (aρ = 1.5). The sediment is assumed to be homogeneous, and
the roughness spectrum has the power-law form of (6.8). A maximum in
scattering strength near the critical angle is evident for the sand case and
absent for the mud case. This feature becomes less sharp-edged as attenuation
increases (δp increases). The mud scattering strength is lower than the sand
scattering strength, owing to the reduced acoustic contrast in this case. As
will be seen, this deficit in scattering strength is often made up by increased
volume scattering in muddy sediments. The curve for mud shows no feature
at the angle of intromission (about 10.5◦). The scattering strength curves
for both cases become arbitrarily large as the grazing angle approaches 90◦.
As mentioned earlier, this artifact is due to the singularity in the idealized
roughness spectrum at K = 0.

The model represented by (13.21), (13.22), and (13.26) has only one rough
interface (the water–sediment interface), and all buried interfaces are required
to be smooth. Models with rough buried interfaces have been developed by
[McDaniel 1992, Lyons et al. 1994, Ivakin 1994b, Tang 1996a].

13.2.2 Elastic Model

As shown in Ch. 9, shear effects on the flat-interface reflection coefficient
only become significant when the shear wave speed becomes substantial
in comparison to the water sound speed. The same will be found true
in the small-roughness scattering approximation, where the inclusion of
shear effects is only a slight refinement of the fluid model for sands with
shear speeds on the order of 100 m s−1, but shear effects are dominant
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Fig. 13.4. Comparison of small-roughness perturbation model curves for backscat-
tering strength for sand and mud seafloors differing only in their sound speed and
density ratios. Note that the critical angle feature evident in the curve for sand
is absent in the mud case, where the compressional wave speed is assumed to be
smaller than the water sound speed. Model parameters common to both cases are
γ2 = 3.0, w2 = 0.0001 m, δp = 0.01.

in rock, where shear speeds of 2–4 km s−1 are seen (Sect. 5.6). Pertur-
bation theory has been applied to the elastic seafloor scattering problem
by several authors [Lapin 1964, Lapin 1966, Kuperman and Schmidt 1986,
Dacol and Berman 1988, Kuo 1992, Essen 1994, D. Jackson and Ivakin 1998],
using various approaches and notation, but the formalisms are basically
equivalent. The results to be presented here are valid only for homogeneous
seafloors, that is, seafloors with no spatial dependence in their geoacoustic
parameters.

To minimize the notational complexity, a compact formalism is developed
in Appendix K. The results can be expressed in terms of the expression for
the factor A appearing in the scattering cross section (13.9):

Aww =
1
2
(D1[1 + Vww(θs)][1 + Vww(θi)] +D2[1− Vww(θs)][1 + Vww(θi)]
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+D3[1 + Vww(θs)][1− Vww(θi)] +D4[1− Vww(θs)][1− Vww(θi)]) , (13.27)

where Vww(θ) is the usual flat-interface reflection coefficient, and the variables
Dn are

D1 = −1 + S +
1

a2paρ cos 2θts cos 2θti

−a2t [(a
−2
t − 2 cos2 θs − 2 cos2 θi + 2S)S + 2 cos2 θs cos2 θi]

aρ cos 2θts cos 2θti
, (13.28)

D2 = −4a
3
t sin θs sin θts

cos 2θts cos 2θti
[a−2

p sin2 θpi cos2 θs + (cos2 θi − S)S] , (13.29)

D3 = −4a
3
t sin θti sin θi

cos 2θts cos 2θti
[a−2

p sin2 θps cos2 θi + (cos2 θs − S)S] , (13.30)

D4 =
2a4taρ sin θs sin θi sin θts sin θti

cos 2θts cos 2θti
×

[2(a−2
t − 2S)S− 4 cos2 θs cos2 θi(1− 2a2ta−2

p )]− (aρ− 1) sin θs sin θi . (13.31)
The variable S is

S = cos θs cos θi cosφs , (13.32)

and the following complex cosines are found from Snell’s law

cos θp = ap cos θ , (13.33)

cos θt = at cos θ , (13.34)

where at is the complex shear speed/water sound speed ratio, the angle θ
may be either θi or θs, and the sines are obtained using

√
1− cos2 θ. The

cosines of the form cos 2θt can either be found using a trigonometric identity
or by using (9.39).

One advantage of the form given above for the cross section is that reci-
procity is manifest, that is, the cross section is obviously invariant under the
interchange of θi and θs, as it must be. This invariance is present, but hidden,
in most other published expressions, except in the small-slope formalism of
[Wurmser 1996].

Figure 13.5 compares scattering strengths at 30 kHz computed using elas-
tic perturbation theory with those computed using fluid theory. All param-
eters are equal for the two cases, except that the complex shear speed is
effectively zero for the fluid case. Note that, for the sand example, there
is only a slight difference between the two models, and this difference has
been exaggerated by assuming a rather high shear speed (250 m s−1). The
rock example shows major differences between the two models, indicating
that the fluid model has failed for this case in which the shear speed is
high (νt = 1.3). As for the reflection loss case, Fig. 9.4, the largest depar-
ture from the fluid model occurs near the shear critical angle. In fact, the
dip in scattering cross section appears near the so-called “Rayleigh angle”
[Berman 1991, Yang and Broschat 1994]. Geoacoustic parameters for rock
can be found in Sect. 5.6 and in [Hamilton 1978, Hamilton 1979b].
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Fig. 13.5. Comparison of fluid and elastic perturbation theory models for rough-
interface backscattering, with parameters appropriate for sand (a) and rock (b). For
the sand example, the parameters of Fig. 9.3 are used, and for the rock example,
the parameters of Fig. 9.4 are used. Both the sand and rock examples have the
same spectral parameters, w2 = 0.000141 m0.75, γ2 = 3.25, and the same acoustic
frequency, 30 kHz.

13.2.3 Poroelastic Model

This section presents expressions for first-order perturbation theory for the
poroelastic case. As with the elastic case presented previously, the results
to be given apply only to homogeneous seafloors. The expressions listed be-
low are taken from [Williams et al. 2001a], and an alternative derivation is
sketched in Appendix K. The development here employs the matrix method
of Ivakin [D. Jackson and Ivakin 1998] in order to reduce algebraic complex-
ity.

The factor Aww appearing in the general expression for the scattering
cross section in perturbation theory (13.9) is the first element of the column
matrix



13.2 Small-Roughness Perturbation Approximation 345

Aall(Ks,Ki) =

⎡
⎢⎢⎢⎢⎣
Aww(Ks,Ki)
Aw1(Ks,Ki)
Aw2(Ks,Ki)
Awv(Ks,Ki)
Awh(Ks,Ki)

⎤
⎥⎥⎥⎥⎦ . (13.35)

As noted in Appendix K, the elements of Aall(Ks,Ki) determine, to first
order in roughness amplitude, the plane-wave spectra (“T-matrices”) of waves
scattered into the water and into the seafloor in the form of fast (1), slow (2),
and shear waves. Two shear wave polarizations must be considered, vertical
(v) and horizontal (h). These wave types are discussed in Chs. 9 and 10. The
matrix Aall is computed as follows:

Aall(Ks,Ki) = Y1(Ks)[P (3)(Ks)]−1B(Ks,Ki)V (Ki) . (13.36)

In this equation, V (Ki) is a six-row column vector comprised of the five
reflection and transmission coefficients discussed in Ch. 10 and supplemented
with unity in the last row,

V (Ki) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Vww

Vw1
Vw2
Vwt

0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (13.37)

Note the transmission coefficient for horizontally polarized shear waves is
zero. The matrix B(Ks,Ki) is

B(Ks,Ki) =

k−1
w [(Ks1−Ki1)E(1)(Ki)+(Ks2−Ki2)E(2)(Ki)]−E(3)(Ki)Y2(Ki) . (13.38)

The matrices Y1 and Y2 are

Y1(K) =

⎡
⎢⎢⎢⎢⎣
νw(K) 0 0 0 0
0 ν1(K) 0 0 0
0 0 ν2(K) 0 0
0 0 0 νt(K) 0
0 0 0 0 νt(K)

⎤
⎥⎥⎥⎥⎦ , (13.39)

Y2(K) =

⎡
⎢⎢⎢⎢⎢⎢⎣

νw(K) 0 0 0 0 0
0 −ν1(K) 0 0 0 0
0 0 −ν2(K) 0 0 0
0 0 0 −νt(K) 0 0
0 0 0 0 −νt(K) 0
0 0 0 0 0 −νw(K)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (13.40)
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where
νq = βq(K)/aq , q = w, 1, 2, t . (13.41)

The factors βq(K) and aq are, respectively, the complex sines and speed
ratios for all wave types of interest, generalized slightly to include aw = 1.
The subscripts 1 and 2 on Y1 and Y2 do not relate to orders of perturbation
or fast and slow waves; they merely serve to distinguish between the two
matrices. There are three matrices E(n)(K), defined for each of the coordinate
indices, n = 1, 2, 3 corresponding to x, y , z:

E(n)(K) =

⎡
⎢⎢⎢⎢⎢⎣

P
(n)
w1 (K) P

(n)
11 (K) P

(n)
21 (K) P

(n)
v1 (K) P

(n)
h1 (K) | Q(n)

1 (K)
P
(n)
w2 (K) P

(n)
12 (K) P

(n)
22 (K) P

(n)
v2 (K) P

(n)
h2 (K) | Q(n)

2 (K)
P
(n)
w3 (K) P

(n)
13 (K) P

(n)
23 (K) P

(n)
v3 (K) P

(n)
h3 (K) | Q(n)

3 (K)
P
(n)
w4 (K) P

(n)
14 (K) P

(n)
24 (K) P

(n)
v4 (K) P

(n)
h4 (K) | Q(n)

4 (K)
P
(n)
w5 (K) P

(n)
15 (K) P

(n)
25 (K) P

(n)
v5 (K) P

(n)
h5 (K) | Q(n)

5 (K)

⎤
⎥⎥⎥⎥⎥⎦ ,

(13.42)
where the vertical bars in Eq.(13.42) separate it into the 5 × 5 matrices,
P (n)(K), and the column matrices, Q(n)(K). The five rows of E(n)(K) cor-
respond to the five boundary conditions: the first five columns correspond to
the five wave types: reflected and scattered pressure waves in water, fast and
slow waves in sediment, and vertically and horizontally polarized shear waves
in sediment. The sixth column corresponds to the incident wave in water.

The elements of P (n)(K) and Q(n)(K) are

P (n)
wm(K) = Kwkwδmn , m = 1, 2, 3, (13.43)

P
(n)
w4 (K) = −Kwkwδ3n , (13.44)

P
(n)
w5 (K) = −e+wn(K) , (13.45)

P
(n)
1m (K) = −k21k−1

w [(H − 2μ− γ1C)δmn + 2μe−1m(K)e
−
1n(K)] , m = 1, 2, 3,

(13.46)
P
(n)
14 (K) = −k21k−1

w (Mγ1 − C)δn3 , (13.47)

P
(n)
15 (K) = k1k

−1
w (1− γ1)e−1n(K) , (13.48)

P
(n)
2m (K) = −k22k−1

w [(H − 2μ− γ2C)δmn + 2μe−2m(K)e
−
2n(K)] , m = 1, 2, 3,

(13.49)
P
(n)
24 (K) = −k22k−1

w (Mγ2 − C)δn3 , (13.50)

P
(n)
25 (K) = k2k

−1
w (1− γ2)e−2n(K) , (13.51)
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P (n)
vm (K) = μk2t k

−1
w [e−tm(K)e

−
vn(K) + e−tn(K)e

−
vm(K)] , m = 1, 2, 3, (13.52)

P
(n)
v4 (K) = 0 , (13.53)

P
(n)
v5 (K) = −ktk−1

w (1− γt)e−vn(K) , (13.54)

P
(n)
hm (K) = −μk2t k−1

w [e−tm(K)e
−
hn(K)+e−tn(K)e

−
hm(K)] , m = 1, 2, 3, (13.55)

P
(n)
h4 (K) = 0 , (13.56)

P
(n)
h5 (K) = ktk

−1
w (1− γt)e−hn(K) , (13.57)

Q(n)
m (K) = Kwkwδmn , m = 1, 2, 3, (13.58)

Q
(n)
4 (K) = −Kwkwδn3 , (13.59)

Q
(n)
5 (K) = −e−wn(K) . (13.60)

In these expressions, δmn is the Kronecker delta (δmn = 1 if m = n, δmn =
0 otherwise), and Kw is the bulk modulus of the upper fluid (water) taken
equal to the pore fluid modulus. The unit vectors defined in Sect. 10.1.3
appear here in the form e±ηn, with n = x, y, z indicating the three spatial
components and with η = w, 1, 2, t, h, v. The unit vectors e±w are the obvious
extension of the propagation unit vectors for waves in the sediment to the
case of waves in the water. The coefficients γ1, γ2, and γt are defined in Sect.
10.1.3.

The small-roughness Biot model is compared with the fluid and effec-
tive density fluid approximation in Fig. 13.6. Note that the effective den-
sity approximation matches the Biot results very well and therefore provides
a simpler alternative for scattering strength modeling. The complex sound
speed and complex effective density for this approximation were computed
using (10.81) and (10.75), which were then inserted in the fluid model of
Ch. 8. The fluid approximation yields generally higher scattering strengths
than the Biot model, but this difference diminishes as frequency takes on
low values where the fluid and frame tend to move together. The lower two
frequencies in Fig. 13.6 are only included for the sake of illustration. These
frequencies are most likely below the band of applicability of the model, as
penetration of the seafloor at such low frequencies would be so deep as to
expose layering and gradients not included in the model.
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Fig. 13.6. Comparison of bottom backscattering strength computed in the small-
roughness perturbation approximation with the sediment treated using Biot, fluid,
and effective density fluid theory. The Biot parameters are taken from Table 10.1,
and the roughness parameters are w2 = 0.0000433 m0.96, γ2 = 3.04.

13.2.4 Experimental Tests of Small-Roughness Models

The small-roughness, fluid model has been compared with scattering data
for various seafloor types, but the clearest tests of the model come from ex-
periments on sand seafloors, where volume scattering can be assumed to be
relatively small. Figure 13.7 compares the model with data from six exper-
iments conducted at sandy sites. The model input parameters are given in
Table 13.1. These parameters differ slightly in some cases from those of the
original references, as they have been obtained by reprocessing (Kevin Briggs,
personal communication) the original data in a manner appropriate to the fre-
quency (35–40 kHz) of these model-data comparisons. Thus, the sound speed
and density ratios are averages over the upper 2 cm of the core samples rather
than averages over the entire length of the cores. The fit between the model
and data appears to be reasonably good, with the greatest model-data differ-
ence occurring for the two intermediate grain size cases represented in panels
(c) and (d) of Fig. 13.7. A detailed error analysis has been performed for
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the SAX99 data [Williams et al. 2002b], with the conclusion that the model-
data difference is significant and likely due to neglect of poroelastic effects,
to be discussed shortly. The similar model-data differences seen in panel (d)
[Stanic et al. 1988] may be due to the same cause. In any event, the fluid
small-roughness model appears to perform satisfactorily for the examples of
Fig. 13.7 in the neighborhood of 40 kHz. One significant point of agreement
between model and data is the scattering strength maximum occurring near
the critical angle, visible in (c), (d), and (e). No maximum is predicted or
seen for the finer grain sediment of (f).

Table 13.1. Geoacoustic input parameters used in model-data comparisons of Figs.
13.7 and 13.9.

Site Grain Size (φ) aρ νp δp γ2 w2

Jacksonville 0.51 1.956 1.087 0.049 2.47 0.00000455
Panama City 98 0.62 1.98 1.113 0.0324 3.12 0.00014
Panama City 93 0.68 1.948 1.097 0.032 3.12 0.0001475

SAX99 1.28 2.00 1.16 0.010 3.04 0.0000433
Falmouth 2 2.07 1.96 1.16 0.004 3.0 0.000035

Panama City 84 2.63 1.93 1.115 0.0185 1.89 0.000000356
Quinault 2.95 1.94 1.113 0.0115 3.92 0.0041
Key West 7.00 1.499 1.003 0.0153 3.29 0.000464

Bistatic measurements offer the possibility of stringent model tests, but
are difficult to carry out and may be subject to larger errors than backscat-
ter measurements. A bistatic measurement was conducted by [Day and
Yamamoto 1999] at frequencies of 3.75, 7.5, and 15 kHz at a sandy site
on the Florida Atlantic coast. The authors indicate that roughness scat-
tering was likely the dominant contributor, but lack of measured rough-
ness parameters prevented a definitive test of scattering models. Reasonable
agreement between bistatic data and the perturbation model was found by
[Choi et al. 2001] at 240 kHz, but the model parameters were assigned values
from the literature and not measured. Williams [Williams and Jackson 1997,
Williams and Jackson 1998] has conducted bistatic scattering measurements
at well-characterized sites using the apparatus depicted in Fig. 1.1. Figure
13.8 compares the fluid model with bistatic scattering data. The model em-
ploys the Kirchhoff approximation for angles near the specular direction and
small-roughness perturbation theory elsewhere, with a smooth interpolation
between the two approximations. The model-data agreement is consistent
with the measurement errors. It should be noted that no account is taken of
error in the model inputs, only in the acoustic measurements.

A further test of the small-roughness model is in the frequency depen-
dence it predicts for backscattering strength. If the frequency dependence
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Fig. 13.7. Comparison of fluid small-roughness perturbation model with data from
six experiments conducted at sandy sites. The examples are given in order of in-
creasing grain size, and the primary acoustic and geoacoustic data sources are: (a)
[Stanic et al. 1989], (b) [D. Jackson et al. 1996a], (c) [Williams et al. 2002b], (d)
[Stanic et al. 1988], (e) [D. Jackson and Briggs 1992], and (f) [Briggs et al. 2002a].
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Fig. 13.8. Comparison of fluid model with bistatic scattering data
[Williams and Jackson 1997]. The model uses interpolation between the Kirchhoff
approximation near the specular direction and perturbation theory for angles away
from the specular direction.

of the sediment sound speed and loss parameter (δp) can be neglected, the
factor Aww will have negligible frequency dependence, so that the product
k41W2(ΔK) governs the frequency dependence. Both k1 and ΔK are propor-
tional to frequency, f , so (13.9) in combination with (6.8) yields

σ = constantf4−γ2 . (13.61)

With typical spectral exponents in the range 3 < γ2 < 4, scattering strength
should increase with frequency at a negligible rate for γ2 = 4 to rates of 10
dB/decade for γ2 = 3. Figure 13.9 compares the frequency dependence pre-
dicted by the fluid model with data from six sandy sites for which roughness
scattering should be dominant over sediment volume scattering. The slopes
of the model curves match the slopes of the data reasonably well up to 100
kHz. Given likely errors of 2–3 dB for most of these data sets, the mismatch
of the model to the measured absolute scattering strengths is satisfactory
except for a tendency for the model to overpredict scattering at the Panama
City 98, SAX99, and Panama City 84 sites. As noted earlier, part of this
mismatch could be due to poroelastic effects. The data from Jacksonville and
Panama City 84 fall below the model for frequencies above 100 kHz, indi-
cating that the model has failed at these higher frequencies. The apparent
success of the model in predicting the relative lack of frequency dependence
of the Quinault data is tempered by the fact that the roughness was highly
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Fig. 13.9. Comparison of frequency dependence of fluid small-roughness
fluid perturbation model with data from six experiments conducted at sandy
sites. The grazing angle is fixed at either 10◦ or 20◦. The examples are
given in order of increasing grain size, and the primary acoustic and geoa-
coustic data sources are: (a) [Stanic et al. 1989], (b) [Stanic et al. 1998], (c)
[Williams et al. 2002b], (d) [D. Jackson et al. 1986b], (e) [Stanic et al. 1988], and
(f) [D. Jackson and Briggs 1992].
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directional [D. Jackson and Briggs 1992]. The isotropy implied by the spec-
tral parameters in Table 13.1 is not realistic, and a more detailed comparison
of model and data using an anisotropic spectrum is in order. Perturbation
theory was found to give a reasonable fit to backscatter data at 140 kHz
from a silty-sand site (“Tellaro”) [Pouliquen and Lyons 2002]. These authors
note that vertical gradients in sediment properties had a significant effect on
roughness scattering.

The Biot model has been compared with backscattering strength data by
[Williams et al. 2002b]. Figure 13.10 shows that, within the uncertainties of
acoustic measurement and the uncertainties in model inputs, the Biot model
provides a better fit to the data than the fluid model. The effective den-
sity approximation would give essentially the same result as the Biot model
and might be preferred on the grounds of simplicity. Arguments are given in
[Williams et al. 2002b] that, for the measurement site in question, roughness
scattering should dominate sediment volume scattering, at least for frequen-
cies below 100 kHz, so the comparison of the small-roughness Biot model
with data is appropriate. Figure 13.11, taken from [Williams et al. 2002b],
compares the frequency dependence of the Biot model with data at a fixed
grazing angle of 20◦. The agreement is satisfactory for frequencies of 100 kHz
or lower, but substantial disagreement is seen at 300 kHz. The falloff in the
model curves at frequencies above 150 kHz is caused by a change in slope of
the roughness spectrum at the corresponding Bragg wavenumber. The dif-
ference between the model and data at 300 kHz is tentatively ascribed to
volume scattering of unknown type.

13.3 Kirchhoff Approximation

The Kirchhoff approximation is used in electromagnetic scattering [Beck-
mann and Spizzichino 1963, Ogilvy 1991, Ishimaru 1997] and was applied to
acoustic scattering by the sea surface at a rather early date [Eckart 1953].
It is widely used in seafloor scattering, where its main utility is near
the specular direction (vertical incidence in the case of backscattering)
[D. Jackson et al. 1986a, de Moustier 1986]. The Kirchhoff approach has been
applied to elastic seafloors by [Dacol 1990], and approximations to the Kirch-
hoff integral (13.16) have been employed in monostatic [Mourad and Jackson
1989] and bistatic scattering models [Williams and Jackson 1998]. The Kirch-
hoff approximation has been applied to inverse problems, either for extracting
roughness parameters from vertical-incidence data [Matsumoto et al. 1993,
Michalopoulou et al. 1994, Premus and Alexandrou 1994, Talukdar et al.
1995, Michalopoulou and Alexandrou 1996] or sediment acoustic parameters
[Chotiros 1994, Chotiros 1995b]. In all these applications, expressions for the
scattering cross section in the Kirchhoff approximation have been employed
with the implication that average echo properties will be used. Pouliquen
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Fig. 13.10. Comparison of measured bottom backscattering strength at 40 kHz
with small-roughness perturbation fluid model (solid curves) and Biot model
(dashed curves). The Biot parameters are those of Table 10.1, and the nominal
roughness parameters are w2 = 0.0000433 m0.96, γ2 = 3.04. The upper and lower
curves in each case give the 95% uncertainty bounds for the models based on the
uncertainty bounds for the roughness data. The vertical error bars give the corre-
sponding 95% uncertainty bounds for the acoustic measurements. The data denoted
by asterisks were taken at the same site as the roughness measurements, whereas
the data denoted by open cicles were obtained using a different apparatus at a site
removed by a few hundred meters. The slight offset between these data sets may
be due to either acoustic calibration error, difference in roughness at the two sites,
or a combination of these two. From [Williams et al. 2002b].

and collaborators [Pouliquen et al. 1999, Bergem et al. 1999] use the Kirch-
hoff approximation without the formal averaging that yields the scattering
cross section. Instead, the Kirchhoff approximation is used to obtain an ap-
proximate boundary condition at the rough interface so that the scattered
field can be computed for individual roughness realizations. The formalism is
developed in the time domain and allows generation of synthetic time series
for seafloor reverberation.

The roughness scattering cross section in the Kirchhoff approximation is
derived in Sect. L.1. In applying the Kirchhoff approximation, the general
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Fig. 13.11. Comparison of measured bottom backscattering strength versus fre-
quency with the small-roughness Biot model for a grazing angle of 20◦. All pa-
rameters are as in Fig. 13.10, except the roughness spectrum departs from the
simple power law at high wavenumbers in keeping with measurement. The solid
lines denote 95% error bounds based on roughness spectrum uncertainty at spatial
frequencies corresponding to an acoustic frequency of 300 kHz, and the dashed lines
are bounds for 80 kHz. The acoustic data were obtained at three locations within
a few hundred meters of each other, and these locations are identified by different
symbols. The roughness data were taken at the site denoted by diamonds. From
[Williams et al. 2002b].

expression (13.10) is used with reflection coefficient, Vww, obtained for the
boundary conditions of interest, and evaluated at the angle corresponding
to specular reflection from an appropriately tilted flat surface (13.13). If the
sediment is treated as a fluid, or if the effective density approximation to
Biot theory is used, the reflection coefficient is obtained from (8.49). If the
shear wave properties of the sediment are to be considered, or if Bucking-
ham’s theory is employed, (9.34) can be used. If the sediment is modeled
using poroelastic theory, the reflection coefficient can be obtained by solving
(10.66). The final step in applying the Kirchhoff approximation is to evalu-
ate the Kirchhoff integral for the angles of interest. If the seafloor roughness
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statistics are not isotropic, the general expression (13.12) must be used. If
isotropy can be assumed, (13.15) can be used, and the further simplification
(13.16) results if the roughness spectrum obeys the power law (6.8). It should
be remembered that the Kirchhoff integral expressions given here are based on
the assumption that the seafloor relief function, f(R), is a two-dimensional
Gaussian random process. This assumption is not central to the Kirchhoff
approximation, but is made in the interest of tractability. The literature con-
tains examples of scattering formalisms that do not assume Gaussian relief
statistics [Beckmann 1973, Henyey and Wurmser 1990, Guérin 2002].

The Kirchhoff approximation predicts interesting frequency dependence
for backscattering near vertical incidence. An example is shown in Fig. 13.12.
In this case, an isotropic power-law roughness spectrum is assumed (6.8) with
exponent γ2 = 3.25. As frequency increases, the scattering strength becomes
less sharply peaked in the vertical direction. This is as expected based on
the simple argument that power-law spectra having γ2 < 4 represent seafloor
roughness that becomes relatively greater when viewed on smaller and smaller
scales. Thus, as frequency increases, energy is scattered over a wider range
of angles, leading to the behavior seen in Fig. 13.12.
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Fig. 13.12. Near-vertical backscattering strength in the Kirchhoff approximation
at several frequencies. A medium sand seafloor is assumed with all parameters as
in Fig. 13.2.

The widening and lowering of the backscattering strength curve as fre-
quency increases also occurs as the roughness (as determined by w2) increases
or as the spectral exponent, γ2, decreases. Thus, the angular and frequency
dependence of near-vertical backscattering can be used to determine, or at
least constrain, the parameters of the roughness spectrum [Demoustier and
Alexandrou 1991, Matsumoto et al. 1993, Dziak et al. 1993, Michalopoulou et
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al. 1994, Premus and Alexandrou 1994, Talukdar et al. 1995, Michalopoulou
and Alexandrou 1996].

13.3.1 High-Frequency Kirchhoff Approximation

A simplified form of the Kirchhoff formalism is often used, based on a high-
frequency limit. This further approximation is variously known as the high-
frequency Kirchhoff approximation, the geometric optics approximation, the
facet model, or the broken mirror model. As shown in Appendix L, (13.10)
reduces in the high-frequency limit to

σ =
1
4
|Vww(θis)|2Δk4

Δk4z
ps(s) , (13.62)

where θis is the specular angle given by (13.13) and

ps(s) =
1

2π||Bs||1/2 e
− 1

2 s
TB−1

s s (13.63)

is the bivariate Gaussian probability density function for interface slope,

s =
[
ΔKx/Δkz
ΔKy/Δkz

]
. (13.64)

This column matrix contains the x- and y-components of slope corresponding
to specular reflection, and

Bs =

(
< (∂f∂x )

2 > < ∂f
∂x

∂f
∂y >

< ∂f
∂x

∂f
∂y > < (∂f∂y )

2 >

)
(13.65)

is the covariance matrix for slope, with determinant ||Bs||.
The notation used in (13.62) and (13.63) requires a good deal of explana-

tion. The relevant geometry is illustrated in Fig. 13.13. The entire geometry
is specified once the incoming and outgoing directions for which the bistatic
cross section is desired, are given. These two directions are defined as the di-
rections of the incident and scattered wave vectors, ki and ks. The difference
wave vector defined earlier, Δk = ks − ki, plays a key role. This vector is
normal to the hypothetical plane surface that would give specular reflection
between the source and receiver. From Fig. 13.13, it follows that the slope of
the hypothetical surface is

s =
ΔK
Δkz

, (13.66)

where ΔK and Δkz are the horizontal and vertical components of Δk, as
defined in (13.6) and (13.7). To summarize, knowing the incident and scat-
tered directions, one can determine s and evaluate (13.63) from which the
cross section follows (13.62).
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Fig. 13.13. Diagram illustrating the geometry relevant to the high-frequency
Kirchhoff approximation.

The high-frequency Kirchhoff approximation has an appealing physical
interpretation that is suggested by Fig. 13.13. In this approximation, scat-
tering is due to specular reflection off those portions of the interface that
happen to be tipped in just the proper way [Barrick 1968]. This is analogous
to sunlight glinting off rippled water. For a given scattering direction, the
strength of the scattering is determined by the probability density function
for slope, evaluated at the slope giving specular reflection.

Equation (13.62) can be applied to bistatic scattering from seafloors with
anisotropic roughness statistics (e.g., directional sand ripples). It has a con-
servation property similar to that inherent in the Kirchhoff and small-slope
approximations. If the near-specular lobe of the scattering cross section has a
small angular width (<< 1 radian), the incoherent reflection coefficient will
be nearly equal to the flat-interface reflection coefficient. Thus, with a nondi-
rective source and nondirective receiver, the received RMS pressure level for
a sufficiently long transmitted pulse will be nearly equal to that received if
the surface is flat.

In the isotropic case, the slope covariance matrix is equal to the unit
matrix multiplied by a constant, and (13.62) becomes
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σ =
|Vww(θis)|2
8πσ2s

Δk4

Δk4z
e
− ΔK2

2σ2sΔk2z , (13.67)

where
σ2s =< (

∂f

∂x
)2 >=< (

∂f

∂y
)2 > (13.68)

is the RMS slope for a 1D track. In terms of the (isotropic) spectrum,

σ2s = π

∫
K3W (K)dK . (13.69)

The high-frequency Kirchhoff approximation is most commonly applied to
backscatter from a seafloor with isotropic roughness statistics, for which
(13.67) takes the form

σ =
|Vww(90◦)|2
8πσ2s sin

4 θi
e
− cot2 θi

2σ2s . (13.70)
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Fig. 13.14. Backscattering strength in the high-frequency Kirchhoff approxima-
tion for the indicated RMS slopes. A medium sand seafloor is assumed with all
parameters as in Fig. 13.2, except the roughness is characterized by RMS slope
rather than the spectral parameters w2 and γ2.

Backscattering strength curves computed using (13.70) are shown in Fig.
13.14. The curves are labeled with the values of RMS slope, σs. These results
differ from the full Kirchhoff approximation (Fig. 13.12) in two significant
ways. First, scattering strength is independent of frequency, and second, the
high-frequency approximation yields backscattering strength curves that are
concave downward without the inflection seen in the curves of Fig. 13.12. Both
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of these properties are due to the neglect of diffraction in the high-frequency
approximation, which includes only reflection from specular points.

The slope covariance matrix can be obtained from the roughness spectrum
as follows:

Bsmn =
∫

KmKnW (K)d2K , (13.71)

where m, n = x, y. This integral diverges except for spectra that fall off
more rapidly than K−4 at large wavenumbers, which excludes many spectra
of interest. In the examples given in Table 6.1, the “spectral slope” is the
rate of falloff of the 1D spectrum. Adding one to obtain the falloff rate of
the 2D spectrum, only four entries in the table fall off more rapidly than
K−4. Mean-square slope, then, is undefined unless a high-frequency cutoff
is introduced, either on physical or mathematical grounds. This exposes the
main weakness of the high-frequency Kirchhoff approximation as applied to
scattering by the seafloor. If a cutoff is invoked at a wavenumber moderately
greater than the upper limit of measurement (typically, this would correspond
to wavelengths on the order of 1 mm or less), the resulting RMS slopes
would be very large, approaching unity. These large slopes are due to short-
wavelength roughness features that are not of the gently undulating sort
that the Kirchhoff approximation can deal with. It can be reasonably argued
that such features can be neglected if their wavelength is much shorter than
the acoustic wavelength. In this view, a frequency-dependent cutoff might
be imposed on the integral (13.71), resulting in frequency-dependent slope.
Though ad hoc, this approach finds some support in the composite-roughness
approximation of Sect. 13.5.

13.3.2 Experimental Tests of the Kirchhoff Approximation

Comparison of the Kirchhoff approximation with data is hampered by the
lack of accurate near-specular measurements accompanied by roughness data.
One example in which an experimental test has been made is shown in Fig.
13.8. In this case, the Kirchhoff approximation has been used near the spec-
ular direction and gives reasonable agreement with the data. A compari-
son of measured near-vertical backscattering strength with the Kirchhoff ap-
proximation is made in [D. Jackson et al. 1986a], and Fig. 13.15 shows these
model-data comparisons near vertical incidence. Model-data differences as
large as 10 dB occur in this comparison, but these differences may be caused
by errors in measurement of the near-vertical scattering strength, as its an-
gular width is small. Appendix G discusses some of the problems that may be
encountered in field measurements. In controlled laboratory measurements,
[Thorne and Pace 1984] have found good agreement between measurements
of near-vertical scattering and Kirchhoff predictions, while at smaller graz-
ing angles, [Thorne et al. 1988] find that model and data are in “moderate
accord.”
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Fig. 13.15. Comparison of the Kirchhoff approximation with the data of
[D. Jackson et al. 1986a].

13.4 Small-Slope Approximation

The small-slope approximation was originally developed by [Voronovich 1985]
for scattering by the sea surface, but, as noted in Sect. 13.1, can be readily ap-
plied to other boundary conditions provided the lower medium (the seafloor
in the present case) is homogeneous, without layering or gradients. The small-
slope approximation is a systematic expansion [Thorsos and Broschat 1995]
that can be carried to higher orders in order to achieve greater accuracy
[Berman 1991, Broschat and Thorsos 1997]. In this monograph, the lowest-
order version of the small-slope approximation is used, in the interest of
simplicity. Even this version is an improvement over the more traditional
small-roughness perturbation and Kirchhoff approximations, as it provides
complete coverage of incident and scattering angles with a single approx-
imation and with no loss in accuracy (Sect. 13.7) compared to the tradi-
tional approximations. With regard to seafloor scattering, there has been
a substantial effort in applying the small-slope approximation to the fluid-
elastic boundary (which includes the fluid–fluid boundary as a special case)
[Berman 1991, Yang and Broschat 1994, Wurmser 1996, Gragg et al. 2001],
and the fluid–poroelastic case has also been considered [Yang et al. 2002].

In applying the lowest-order small-slope approximation to a given bound-
ary, one must first obtain the factor, Aww, appearing in the scattering cross
section (13.11). This is the same factor that must be evaluated in order to ap-
ply small-roughness perturbation theory, and can be obtained using (13.21)–
(13.23) for the fluid–fluid boundary, (13.27) for the fluid–elastic boundary, or
(13.36) for the fluid–poroelastic boundary. In comparing the predictions of the
small-slope approximation with data, one is restricted to well-characterized
seafloors for which density, sound speed, roughness, etc., have been mea-
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sured. This effectively reduces the set of available measurements to a subset
of those made on mud and sand seafloors, as these are the only types that
have been characterized sufficiently in the geoacoustic sense. In these cases,
the small-slope approximation produces essentially the same results as the
perturbation and Kirchhoff approximations when each is applied to the an-
gular region where it is the most accurate. This is evident in Fig. 13.2 and in
model–model comparisons made in [APL-UW TM 2-00]. Consequently there
is no need to consider model–data comparisons for the small-slope approxima-
tion, the discussions regarding the perturbation approximation in Sect. 13.2
and the Kirchhoff approximation in Sect. 13.3 suffice. Although no experi-
ments have yet been conducted on well-characterized gravel or rock seafloors,
[Soukup and Gragg 2003] find that fits of the small-slope model to scattering
data for rock seafloors yield plausible model parameters.

13.5 Composite-Roughness Approximation

The success of the composite-roughness approximation in modeling scat-
tering by the sea surface [Kur‘yanov 1963, Bachmann 1973, Galybin 1976,
McDaniel and Gorman 1982] led to subsequent application to seafloor scat-
tering [D. Jackson et al. 1986a, Mourad and Jackson 1989, Caruthers and No-
varini 1993]. Although this approximation can be derived from first principles
[Brown 1978, Brown 1980, McDaniel and Gorman 1983], the discussion here
will be heuristic, exploiting the fact that the composite-roughness approxi-
mation has a physically intuitive interpretation. The essence of this approx-
imation is a division of seafloor roughness into large- and small-scale parts
as illustrated in Fig. 13.16. In terms of the spectrum of seafloor roughness, it
is assumed that the small-scale (shorter-wavelength) roughness causes scat-
tering, while the large-scale (longer-wavelength) roughness simply tilts the
seafloor, altering the grazing angle and causing acoustic shadowing. In this
approach, scattering near vertical incidence is not treated. Application of the
composite-roughness near vertical incidence will be discussed near the end of
this section.

The division into large and small scales is made at the “cutoff” wavenum-
ber, Kc. The choice of the cutoff might be clear in some cases, for example,
if the seafloor roughness consists of a ripple field of relatively long wave-
length with random, shorter-wavelength roughness superimposed. If the rip-
ple wavelength is much larger than the acoustic Bragg wavelength, then the
cutoff wavenumber should be chosen somewhere between the ripple wavenum-
ber and the Bragg wavenumber. For backscattering, the Bragg wavenum-
ber is given by (13.20). Ideally, the scattering cross section computed in the
composite-roughness approximation will be insensitive to the choice of cut-
off wavenumber within the limits set by the boundaries of the large and
small scales. The division of the roughness spectrum into large- and small-
scale parts is illustrated in Fig. 13.17. In this example, a power-law spec-
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trum (6.8) is assumed, and the choice of the cutoff is not obvious owing to
the lack of any particular feature in the spectrum. Several authors, includ-
ing [Bachmann 1973, Brown 1978, Bass and Fuks 1979], recommend setting
the cutoff such that the roughness of the small-scale surface is sufficiently
small that perturbation theory is accurate (see Sect. 13.7). In particular,
[D. Jackson et al. 1986a] use the criterion

kwhs =
1
2
. (13.72)

Here, hs is the RMS roughness of the small-scale surface, obtained by inte-
grating the roughness spectrum over wave vectors whose magnitude is greater
than the cutoff wavenumber:

h2s =
∫
K>Kc

W (K)d2K . (13.73)

For the pure power-law spectrum of (6.8),

h2s =
2πw2

(γ2 − 2)Kγ2−2
c

. (13.74)

This can be inserted in (13.72) to obtain the cutoff wavenumber,

Kc =
(
8πw2k

2
w

γ2 − 2
)1/(γ2−2)

. (13.75)

The composite-roughness approximation can only be used if the cutoff
wavenumber is less than the Bragg wavenumber. This restricts application
to grazing angles less than the maximum found by setting ΔK = Kc and
solving (13.20) for θ. Knowing the cutoff wavenumber, the RMS slope, σsL,
of the large-scale surface can be found in terms of the second moment of the
spectrum

σ2sL =
1
2

∫
K<Kc

K2W (K)d2K . (13.76)

This expression is an adaptation of (13.85), derived in Sect. 13.7. For the
power-law spectrum,

σ2sL =
πw2K

4−γ2
c

4− γ2
. (13.77)

If the RMS slope of the large-scale surface is small, that is, if

σsL < 0.1 , (13.78)

and if the grazing angle is not too large (θ < 70◦), then the local grazing
angle pictured in Fig. 13.16 can be approximated as

θL = θ + sx , (13.79)
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where sx is the local value of large-scale slope in the vertical plane containing
the line connecting the source and scattering region. This slope is assumed
to be Gaussian-distributed with standard deviation σsL, and the scattering
cross section is obtained as an average over large-scale slope as follows:

σcr(θ) =
R(θ, σsL)√
2πσsL

∫ ∞

−θ

σ(θ + sx) exp(− s2x
2σ2sL

)dsx . (13.80)

In this expression, σ(θ) is the backscattering cross section computed in an
approximation suited to small roughness. First-order perturbation theory is
typically used, as it provides an analytic expression for insertion into the
above integrand. The lower limit of the integral is taken to be the negative of
the grazing angle, as more negative slopes must be shadowed. This shadowing
correction is not sufficient, as crests will cast shadows on some portions of the
surface regardless of slope. An additional shadowing correction is provided
by the factor [Wagner 1967]

R(θ, σsL) =
1− e−2Q

2Q
, (13.81)

where
Q =

1
4t
{π1/2e−t2 − t[1− erf(t)]} , (13.82)

with erf being the error function, and

t =
tan θ√
2σsL

. (13.83)

The composite-roughness approximation is compared with the small-
roughness perturbation model in Fig. 13.18. Each panel of the figure em-
ploys the parameters of the corresponding panel of Fig. 13.7. In most of the
cases illustrated, the corrections imposed by the composite-roughness ap-
proximation are small, except in panels (b) and (f) where the large-scale
RMS slopes are large, violating condition (13.78). In these two cases, the
composite-roughness corrections are suspect and do not improve the fit of
the model to data, as can be seen by comparing Figs. 13.7 and 13.18. The
composite-roughness approximation could not be employed for panel (d), for
which the spectral exponent was γ2 = 1.89, causing the integral for small-
scale RMS roughness (13.73) to diverge. A similar problem was noted by
[D. Jackson and Briggs 1992] where an exponent slightly less than 4 caused
the RMS slope to be unrealistically large. These problems stem from extrap-
olation of the power-law spectrum to regions outside its domain of validity
rather than from weakness of the composite-roughness approximation. The
composite-roughness approximation as developed here has an obvious weak-
ness, however. The cutoff wavenumber is dependent on a rather arbitrary
criterion (13.72), and different, but equally plausible, criteria would give dif-
ferent cutoffs. This, in turn, would result in substantially different values
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Fig. 13.18. Composite roughness corrections to the perturbation model results of
Fig. 13.7. The uncorrected model is shown as a solid line. The composite-roughness
result with both slope and shadowing corrections is shown as a dashed line, and
the result with slope but no shadowing correction is shown as a dotted line. The
composite roughness approximation could not be applied to the Panama City 84
case (panel d), as the spectral exponent is less than 2.

for the RMS large-scale slope, the primary determinant of the composite-
roughness corrections. Thus, for power-law spectra, the composite-roughness
approximation is sensitive to the choice of cutoff, and no unique criterion is
available for fixing the cutoff. One possible choice is to set the cutoff so as to
provide an approximate fit to a more accurate approximation, e.g., the Kirch-
hoff approximation near normal incidence [Novarini and Caruthers 1994] (see
Fig. 13.19).

In the approach outlined above, the large-scale part of the surface only
modulates the grazing angle and does not cause scattering. Especially near
vertical incidence, where the Bragg wavelength becomes large, large-scale
roughness may cause scattering through diffraction [McDaniel 1986]. One
approach [McDaniel and Gorman 1982] ascribes all scattering near vertical
incidence to the large-scale roughness, employing the high-frequency Kirch-
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hoff approximation. The spectrum is divided as usual into large- and small-
scale parts, and the RMS slope of the large-scale part is used in (13.70).
Following [Novarini and Caruthers 1994], the reflection coefficient in (13.70)
is replaced by the coherent reflection coefficient (13.14) evaluated using the
RMS roughness, hs, of the small-scale surface. With the criterion (13.72),
the result is simply division of the flat-interface reflection coefficient by

√
e

(where e is the base of the natural logarithms). The physical picture is that
near-vertical scattering is due to specular reflection off roughened facets. The
roughness of the facets scatters a portion of the incident acoustic energy at
wide angles relative to the vertical direction, and this energy is accounted for
by (13.80). As in the development given above for smaller grazing angles, the
choice of cutoff wavenumber is dependent on acoustic frequency, leading to
a frequency-dependent RMS slope for the large-scale surface. This, in turn,
imparts a frequency dependence to the near-vertical backscattering strength.

Examples of the composite-roughness approximation in the form de-
fined above applied to near-specular seafloor scattering can be found in
[Novarini and Caruthers 1994] who use (13.72) to divide the spectrum. These
authors use a version of (13.76) without the factor 1/2, so their large-scale
mean-square slope is twice that given by (13.77). Figure 13.19 shows com-
parisons between backscattering strength computed in the full Kirchhoff ap-
proximation and the high-frequency Kirchhoff approximation. In the latter
case, the large-scale slope is obtained using (13.77) and the coherent reflec-
tion coefficient is equal to the flat-interface coefficient divided by

√
e. The

correspondence between the two approximations is reasonable, but the high-
frequency approximation is consistently lower.

The high-frequency approximation yields scattering strength curves near
vertical incidence that lack the inflection seen in the full Kirchhoff approxima-
tion. This problem is less severe in the case of scattering by the sea surface,
where spectral exponents are relatively large (γ2 ≈ 4), and the Kirchhoff
approximation yields curves with little inflection.

Comparisons of data with the composite roughness model at smaller graz-
ing angles [D. Jackson et al. 1986a, Mourad and Jackson 1989] show agree-
ment within experimental errors, but the corrections in these examples are
small compared to the model-data differences. Together with the examples
of Fig. 13.18, this suggests the composite-roughness approximation may be
most useful where its corrections are small. Comparisons with exact calcula-
tions in the case of scattering by the sea surface (Sect. 13.7) tend to support
this conclusion. If this is the case, the composite-roughness approximation
does little to extend the domain of seafloor scattering models, at least when
the roughness spectrum can be approximated as a power law. One motiva-
tion for use of the composite-roughness approximation is numerical economy.
Present computing speeds are sufficient to allow use of the more accurate
Kirchhoff and small-slope approximations. If, however, the interface rough-
ness shows a clear separation of scales, say, prominent ripples with wave-
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Fig. 13.19. Comparison of the high-frequency Kirchhoff approximation with the
full Kirchhoff approximation at 20 kHz. The high-frequency Kirchhoff curves are
computed using a scheme similar to that of [Novarini and Caruthers 1994], with the
reflection coefficient replaced by the coherent reflection coefficient. This is found
using (13.14) with the mean-square roughness of the small-scale surface. A medium
sand seafloor is assumed with all parameters as in Fig. 13.2, except w2 is assigned
the values 0.0000422, 0.0001406, and 0.0004218. The corresponding RMS slopes,
σs, provided by the cutoff prescription are 0.0227, 0.0595, and 0.1432. In order
to identify the value of w2 for each curve, note that the width of the scattering
strength peak increases as w2 increases.

length much greater than the acoustic wavelength with superimposed small,
random roughness, the composite-roughness approximation may be useful.
The lowest-order small-slope approximation does not incorporate the effects
of large-scale tilting and shadowing.

13.6 Scattering by Discrete Features

The models described previously in this chapter ignore the possibility of
scattering by discrete features, such as rocks, shell fragments, or live animals
(e.g., sand dollars), lying on, or partially embedded in, the sediment–water
interface. More deeply buried scatterers are treated in Sect. 14.1.7. A model
for scattering by rock facets has been applied to low-frequency reverberation
data by [Dorfman and Dyer 1999]. A simple model for scattering by spheres
on an otherwise flat interface has been presented by [Stanton 2000]. He as-
sumes that the scatterers are large enough that the geometric scattering ap-
proximation can be employed (see Sect. 14.1.7). Further, the influence of the
water–sediment interface is neglected, so that the scatterers can be treated as
a thin layer suspended in water. It is shown that the seafloor backscattering
cross section at normal incidence in this case is the product of two dimension-
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less factors. One factor is the backscattering cross section of an individual
scatterer, normalized by division by the cross-sectional area of the scatterer.
This factor is expected to be essentially independent of frequency and scat-
terer size, but dependent on the composition of the scatterer. The second fac-
tor is the “packing factor,” the fraction of seafloor area covered by scatterers.
To account approximately for shadowing and other multiple scattering effects
expected at small grazing angles, the normal-incidence cross section is multi-
plied by the Lambert factor (Sect. 2.3.2), sin2 θ, where θ is the grazing angle.
Another single scattering model is given by [Williams et al. 2001b], who in-
clude geometric reflection by the seafloor. This model was found to agree
reasonably well with experimental data at 40 kHz from a sandy site at which
glass spheres (marbles of radius 1.75 cm) had been randomly distributed over
the seafloor. The results of both [Stanton 2000] and [Williams et al. 2001b]
suggest that scattering by discrete targets on the seafloor can be important in
some cases and therefore is deserving of further theoretical and experimental
study.

13.7 Mathematical Accuracy of Approximations

In considering the validity of the roughness scattering models discussed here,
it is important to distinguish between physical and mathematical accuracy.
Physical accuracy has to do with the geoacoustic model employed: Does it
faithfully model the important properties of the rough interface or does it
gloss over essential factors? This difficult question can only be answered by
measurement, and one may hope that if the model and data are in reasonable
agreement, the model is accurate in the both the mathematical and physi-
cal senses. The two accuracy issues may become confused in some cases.
There have doubtless been instances in which a poor geoacoustic model has
been combined with a bad mathematical approximation such that the two
errors tend to cancel and yield good agreement with data. The question of
mathematical accuracy is more straightforward: Given a geoacoustic model
specifying sediment roughness statistics and sediment bulk acoustic proper-
ties, do the approximations used in the scattering model fit the exact solution
of the given acoustic theory? That is, once a geoacoustic model and acoustic
theory have been settled on, there exists an exact solution which can usu-
ally be obtained only with considerable computational effort. Approximations
(perturbation theory, Kirchhoff, etc.) are used to give results with reasonable
computational effort. The question of mathematical accuracy is completely
different than that of physical accuracy and can be answered using compu-
tations rather than measurements.

As the various published criteria for mathematical accuracy of scattering
approximations depend on such roughness parameters as RMS roughness,
RMS slope, and correlation length, it is useful to connect these parameters
to the statistical roughness measures employed earlier in this monograph.
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First, the RMS roughness is the square root of the mean-square roughness,
h2, which is equal to the relief covariance evaluated at zero lag (D.2). Equation
(13.65) gives the slope covariance as a matrix involving derivatives of the relief
covariance. The trace of this matrix provides a convenient scalar measure of
mean-square slope:

< (
∂f

∂x
)2 > + < (

∂f

∂y
)2 >= −[∂

2B

∂x2
+

∂2B

∂y2
]R=0 . (13.84)

In the case of isotropic roughness, it is simpler to define, as before, the mean-
square slope, σ2s =< (∂f∂x )

2 >=< (∂f∂y )
2 >,

σ2s = −
∂2B

∂R2 |R=0 . (13.85)

The correlation length of the random function, f(R), can be defined in any
of several ways, but for the Gaussian-shaped covariance function,

B(R) = h2e−
R2

L2 , (13.86)

the parameter L is usually designated the correlation length. Because the
Fourier transform of a Gaussian is a Gaussian, the Gaussian relief covariance
yields a Gaussian-shaped spectrum. A general correlation length definition
that yields the correct value for the Gaussian-shaped covariance can be ob-
tained by expanding the Gaussian in a power series,

B(R) = h2[1− R2

L2 + · · ·] . (13.87)

Restricting attention to the isotropic case, the corresponding general defini-
tion of correlation length can be obtained by comparing the expansion of the
general covariance with (13.87) to obtain

L =
√
2h√

−∂2B
∂R2 |R=0

. (13.88)

This definition is inapplicable to 2D relief having a power-law spectrum with
exponent, γ2, less than 4, or to 1D relief with power-law spectrum exponent,
γ1 less than 3. For these cases, the second derivative of the relief covariance
is infinite at zero lag. Section 13.5 shows how an RMS slope can be defined
in these cases by truncating the spectrum at high wavenumbers. This issue
does not arise with the Gaussian covariance function or for power-law spectra
having sufficiently rapid falloff at high wavenumbers. Using (13.85) in (13.88),

L =
√
2h
σs

. (13.89)
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According to this definition, the correlation length is not an additional mea-
sure of roughness, but can be obtained from the ratio of RMS roughness and
RMS slope. As suggested, however, this definition is not universal, merely
convenient for the following discussion of mathematical accuracy of rough-
ness scattering approximations.

Most of the studies of the mathematical accuracy of the small-roughness
perturbation and Kirchhoff approximations have employed exact numerical
calculations for the pressure-release boundary condition. In order to make
these computations tractable, two-dimensional geometry has been assumed
in every case. Application of these results to the three-dimensional case is
generally not considered problematic, but requires care in choosing the one-
dimensional counterpart of the two-dimensional spectrum [Thorsos 1990].

Some of the accuracy studies employing the Gaussian-shaped covariance
and spectrum will be summarized here, although there are questions as to
their applicability to the seafloor scattering problem, not only due to the
inappropriate boundary condition, but also due to the single-scale nature of
the roughness. The term “single-scale” means that roughness features tend
to have similar wavelengths owing to the fact that the Gaussian spectrum is
finite at zero wavenumber and falls off rapidly with increasing wavenumber.
The idealized power-law spectrum often used to model seafloor roughness is
infinite at zero wavenumber and has a relatively slow fall off with increas-
ing wavenumber. As such, one cannot identify any particular wavelength for
the roughness features, and the random relief function can be characterized
as “multiscale.” Of course, if the seafloor has prominent ripples, with well-
defined wavelength this picture is not quite correct, but even with ripples
present, there remains a multiscale background. Fortunately, studies of accu-
racy with multiscale rough surfaces are available, and some of the key results
of this work will be summarized later.

The Gaussian relief covariance is completely characterized by RMS rough-
ness and correlation length, and the two dimensionless parameters, kwh and
kwL, are commonly used to delineate regions of accuracy. The RMS slope,
σs, is also used. For the most part, it is found that the Kirchhoff and pertur-
bation approximations are complementary, being accurate in disjoint regions
of kwh–kwL space. The use of dimensionless parameters allows scaling of
results so that frequencies and roughness parameters other than those used
in the numerical calculations can be treated. Such scaling is perfectly valid
in the mathematical world considered here, but questionable in the case of
experimental data owing to the complexity of the real seafloor.

Figure 13.20 summarizes work on the validity of perturbation theory
and the Kirchhoff approximation. The perturbation results are taken from
[Thorsos and Jackson 1989] who considered the Gaussian covariance for a
pressure-release interface. Exact numerical calculations and higher-order per-
turbation theory were used, and regions of validity in kwh–kwL space where
theory was accurate to within 1 dB were mapped out. The cross section
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computed in lowest-order perturbation theory was denoted σ(2), because it
is proportional to the second power of the RMS roughness. In the next or-
der of approximation, the cross section is denoted σ(4), as it includes terms
proportional to the fourth power of RMS roughness (Appendix K). Consid-
ering lowest-order perturbation theory, the region of accuracy is bounded
approximately by kwh < 0.6. The downturn of the bounding curve on the
left side restricts validity to moderately small slopes. This can be seen by
rewriting (13.89) to obtain σs =

√
2h/L. Perturbation theory is also inaccu-

rate at large correlation lengths such that the Gaussian spectrum has fallen
to very small values at the Bragg wavenumber. In this case the scattering
cross section is dominated by higher-order terms in the perturbation series.
This difficulty is not expected for multi-scale roughness. Results on the ac-
curacy of higher-order perturbation theory can be found in [Thorsos 1990,
Berman 1991, Thorsos and Jackson 1991, Broschat and Thorsos 1997].

Fig. 13.20. Contours for 1-dB accuracy of the bistatic scattering cross section for
one-dimensional random interfaces having the Dirichlet (pressure-release) boundary
condition and Gaussian covariance. The contour labeled σ(2) applies to lowest-order
perturbation theory, the form discussed in this chapter. The contour labled σ(4)

applies to the next higher order of perturbation approximation (K.13). The two
forms of perturbation theory are accurate to 1 dB or better over all bistatic angles
for the regions below the contours. The Kirchhoff approximation is accurate to 1
dB to the right of its contour, with angles near grazing excluded. Adapted from
[Kaczkowski and Thorsos 1994].

Similar studies have been made of the mathematical accuracy of the
Kirchhoff approximation for nonpenetrable rough interfaces with Gaussian
covariance [Thorsos 1988, Thorsos and Jackson 1991, Broschat and Thor-
sos 1997]. The Kirchhoff approximation is accurate for “gently undulat-
ing” rough interfaces. In the older literature [McDaniel and Gorman 1983,
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D. Jackson et al. 1986a], the accuracy criterion was given in terms of the
curvature of the interface, but [Chen and Fung 1988, Thorsos 1988] find that
accuracy depends on correlation length rather than curvature. As indicated in
Fig. 13.20, the Kirchhoff approximation is accurate to within 1 dB for bistatic
scattering from pressure-release surfaces with Gaussian-shaped roughness
spectra if

kwL > 6 . (13.90)

This condition must be supplemented by the condition that the incident and
scattered grazing angles be larger than 2σs, that is,

θi, θs > 2σs . (13.91)

If these angles are not larger than twice the RMS slope, shadowing and mul-
tiple scattering effects impair the accuracy of the Kirchhoff approximation.
Thorsos finds the Kirchhoff approximation can be accurate for kwL < 6 pro-
vided attention is restricted to scattering near the specular direction. Thus,
the Kirchhoff approximation is quite robust for near-forward scattering, which
includes near-vertical backscattering.

Figure 13.20 shows that there is a substantial gap in kwh–kwL space where
neither lowest-order perturbation theory nor the Kirchhoff approximation is
accurate. This gap can be filled in by using further terms in the perturba-
tion series or by using iterations of the Kirchhoff approximation. Neither
approach has found widespread use owing to the analytical complexity and
numerical effort involved. Instead, attention has focused on new approxima-
tion schemes, the most widely used being the small-slope method. Because
this approximation reduces to the perturbation and Kirchhoff approximations
in the appropriate limits, one might hope that it would fill in some of the
gap in kwh–kwL space. In fact, [Broschat and Thorsos 1997] find that this
is the case for higher-order small-slope approximations, but it is not evident
that the lowest-order small-slope approximation considered here dramatically
outperforms perturbation theory or the Kirchhoff approximation in the gap
region. Even so, the lowest-order small-slope approximation combines the
best features of perturbation theory and the Kirchhoff approximation, and
provides a convenient approach to scattering by multiscale roughness.

Studies have also been made of the mathematical accuracy of scatter-
ing models when applied to surfaces having multiscale roughness. Some of
these studies are listed in Table 13.2 which gives the boundary conditions
and parameters characterizing the rough interface. The idealized power-law
spectrum was not used in these studies owing to the singularities noted ear-
lier. For studies of scattering by the sea surface, the “Pierson-Moskowitz”
spectrum in the one-dimensional form

W1(Kx) =
α

4|Kx|3 e
− βg2

K2
xU4 (13.92)
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Table 13.2. Parameters for tests of mathematical accuracy in two dimensions of
scattering models applied to multiscale rough interfaces. The parameter γ1 gives the
asymptotic power behavior as wavenumber becomes large. The parameters given
here are a subset of those used in the references and are chosen as the largest
roughness case giving reasonable accuracy.

Reference Boundary Freq. (Hz) Spectrum γ1 kwh

[Thorsos 1990] Pressure- 200 Pierson- 3 1.79
Release Moskowitz,

U = 20 m s−1

[Berman 1991] Pressure- 150 Pierson- 3 1.34
Release Moskowitz,

U = 20 m s−1

[Berman 1991] Elastic 150 von Karmen 4 2.1
(Rock) Lc = 50 m

[Thorsos et al. 2000a] Fluid 20000 von Karmen 2 1.0
(Sand) Lc = 0.227 m

has been used. The exponential factor suppresses the spectrum as Kx → 0,
eliminating the singularity at large scales. For large Kx, the inverse third-
power term dominates, and is equivalent to γ2 = 4 in the two-dimensional
power-law spectrum. As such, the RMS slope is infinite and cannot be defined.
In (13.92), α = 8.1× 10−3, β = 0.74, g = 9.81 m2/s, and U is the wind speed
in m s−1 at an altitude of 19.5 m. For studies of scattering by the seafloor,
the “von Karman” spectrum has been used in the one-dimensional form

W1(Kx) =
w1

[K2
x + L−2

c ]
γ1
2

. (13.93)

Here, the exponent γ1 is related to the power-law exponent in two dimensions
by γ2 = γ1 + 1. The parameter Lc is a low-frequency cutoff that causes the
spectrum to approach a finite value as Kx → 0.

In order to interpret the multiscale results, it is necessary to express the
mean-square roughness and slope in terms of the relief spectrum. Equation
(6.5) can be used to show that

h2 =
∫

W (K)d2K , (13.94)

< (
∂f

∂x
)2 > + < (

∂f

∂y
)2 >=

∫
K2W (K)d2K . (13.95)

These are two-dimensional expressions. For the one-dimensional spectra given
above, the double integrals are replaced by single integrals over Kx:

h2 =
∫

W1(Kx)dKx , (13.96)
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σ2s =
∫

K2
xW1(Kx)dKx . (13.97)

With reference to Table 13.2, [Thorsos 1990] found that the Kirchhoff
approximation was accurate for near-specular bistatic scattering from a
pressure-release surface with Pierson-Moskowitz spectrum for rather large
RMS roughness (kwh = 1.79). Accuracy worsened for small incident grazing
angles (≤ 15◦), and was always poor at wide angles from specular, including
the backscattering direction. Interestingly, perturbation theory was found to
be quite accurate for this large-roughness case for bistatic angles not too
close to the specular direction. Note that the Kirchhoff approximation and
the perturbation approximation are performing in complementary fashion
with respect to angular coverage.

Tests of the composite-roughness approximation are also presented in
[Thorsos 1990] for sea-surface backscattering at 200 kHz with a Pierson-
Moskowitz spectrum. Two choices of cutoff were used, Kc = kw/2 and
Kc = kw. Wind speeds of 10 m s−1 and 20 m s−1 were assumed, corre-
sponding to kwh = 0.45 and kwh = 1.79, respectively, with large-scale RMS
slopes ranging from 0.072 to 0.117. For grazing angles of 15◦ and 20◦, the
composite-roughness corrections due to slope averaging were small, yielding
increases in scattering strength from 1 to 3 dB. These corrections improved
the accuracy of the perturbation approximation to 0.5 dB or less. At a graz-
ing angle of 10◦ and wind speed of 20 m s−1, composite roughness slope
averaging increased scattering strength 5–6 dB, where a 3-dB correction was
actually desired. Shadowing corrections reduced this discrepancy by only 0.5
dB.

The mathematical accuracy of the perturbation, Kirchhoff, and small-
slope approximations has been tested by [Berman 1991]. For a pressure-
release surface having Pierson-Moskowitz spectrum such that kwh = 1.34,
the Kirchhoff approximation performed well near the specular direction, while
the perturbation approximation was accurate over virtually the entire range
of scattering directions. One of the most severe tests in [Berman 1991] used
an elastic boundary condition appropriate to a rock seafloor and von Kar-
man spectrum with kwh = 2.1. The Kirchhoff approximation was accurate
to within about 2 dB for scattered grazing angles greater than 30◦ for an
incident grazing angle of 57◦. The small-slope approximation was tested at
second order (in this nomenclature, the small-slope approximation as used
in this monograph is first-order). Curiously, the small-slope approximation
did not perform as well as the Kirchhoff approximation, being accurate only
within about 20◦ of the specular direction.

In another example [Thorsos et al. 2000a], perturbation theory compared
well with exact calculations for a fluid seafloor with realistic von Karman
spectrum with kwh = 1.0 and parameters appropriate to a sandy bottom.
The incident grazing angle was 20◦, and 1-dB accuracy was observed over the
entire range of bistatic scattering angle (Figure 15.12 of this monograph).
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The picture regarding accuracy of the lowest-order small-slope approx-
imation as applied to multiscale surfaces is not especially clear. Given the
similarities with perturbation theory and the Kirchhoff approximation, how-
ever, it is reasonable to suppose that, if these are accurate, the lowest-order
small-slope approximation will be accurate as well.

13.8 Research Issues

Roughness scattering models based on the perturbation, Kirchhoff, and small-
slope approximations have been successfully applied to seafloors of moderate
roughness and more-or-less simple composition. It is common, however, to
encounter roughness conditions where these single-scattering approximations
fail. Higher-order small-slope approximations may be useful here if they can
be put into numerically tractable form. Rough, rocky seafloors are an espe-
cially challenging area for future research, both because of the lack of theo-
retical tools and the difficulty of geoacoustic characterization. The problem
of scattering by discrete objects on the seafloor, such as shell fragments, has
received relatively little attention and deserves further study.



14 Sediment Volume Scattering

Sediment heterogeneity can produce appreciable levels of sound scatter-
ing, particularly in soft sediments for which transmission into and out of
the seafloor is facilitated by the small contrast of sediment density and
sound speed compared to water. Heterogeneity, as demonstrated in Ch.
7, can take many forms: layering due to widespread erosional and de-
position processes, continuous spatial fluctuations in acoustic properties
due to the activity of benthic animals [Jones and Jackson 1997], buried
shell fragments [Ivakin 2005, Lyons 2005], gas bubbles [Tang et al. 1994,
Boyle and Chotiros 1995a, Lyons et al. 1996], and the inherent granularity
of the sediment itself [Williams et al. 1988, Chotiros 2002a, Greenlaw et al.
2004]. It is generally agreed that sediment volume scattering is an important
contributor to seafloor reverberation [Ivakin 1981, Ivakin and Lysanov 1981a,
Ivakin and Lysanov 1981b, D. Jackson et al. 1986a, Ivakin 1990, Hines 1990,
D. Jackson and Briggs 1992, Gensane 1993, Lyons et al. 1994, Pace 1994,
Boyle and Chotiros 1995b, Yamamoto 1996, Hines 1996, Pouliquen et al.
2000b, Pouliquen and Lyons 2002].

In the previous chapter, it was possible to organize the discussion of rough-
ness scattering on the basis of general expressions that were independent of
the wave theory employed. Similar general expressions do not exist for the vol-
ume scattering models to be considered, because volume interaction depends
directly on the particular wave theory employed. For example, including shear
waves in the theory provides an additional scattering mechanism compared
to a fluid model having only compressional waves. Because of this, volume
scattering models will be broadly categorized according to the wave theory
employed: fluid or elastic. Studies of volume scattering in poroelastic media
are at a very early stage [Yelton and Chotiros 1995, Gurevich et al. 1998] and
will not be discussed here. The effective density approximation (Sect. 10.2)
offers one promising approach, allowing application of fluid models to porous
sandy sediments.

As in Ch. 7, heterogeneity will be divided into random and nonrandom
parts. Nonrandom heterogeneity includes the effects of gradients and layering.
Specifically, the nonrandom part of a geoacoustic parameter is its average
value, assumed here to be a function of depth, but not of horizontal position.
The random part of a geoacoustic parameter is its difference, at a given
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position, with the average, nonrandom part. This division is motivated by
the perturbation approach that is widely used in modeling sediment volume
scattering.

14.1 Fluid Sediment Volume Scattering Models

Many of the published models for high-frequency sediment volume scatter-
ing employ a fluid model for the sediment. The simplest of these can be
cast in a common form, such that they differ only in the value of a volume
scattering parameter. More general cases [Ivakin 1998a] are treated in Ap-
pendix M. The simplest fluid models assume that the average complex sound
speed and average (possibly complex) density of the sediment are constant
with respect to depth. Complex sound speed and complex density are dis-
cussed in Sect. 8.3. This is a reasonable assumption at high frequencies and
low grazing angles, where acoustic penetration depths are relatively small,
but may be a poor approximation at steep grazing angles or at frequencies
below roughly 10 kHz, where deeper penetration may expose sediment lay-
ers. It may also be a poor approximation in some cases at frequencies above
100 kHz, because sediments may exhibit strong gradients in physical proper-
ties in the first few millimeters, the transition between water and sediment
[Lyons and Orsi 1998, Pouliquen and Lyons 2002, Tang et al. 2002].

14.1.1 Basic Volume Scattering Model

The basic fluid sediment volume scattering model depicted in Fig. 14.1 was
developed by [Stockhausen 1963]. The key assumptions are that (1) volume
scattering is sufficiently weak that the scattered acoustic field in the sediment
is much smaller than the incident field, (2) sediment volume scattering can
be characterized by a cross section that increases linearly with the ensonified
volume, (3) attenuation in the sediment limits penetration to depths that are
much smaller than the distances from the source and receiver to the scatter-
ing region, and (4) the scattering effects of the sediment–water interface are
negligible. More will be said later about the weak scattering assumption. The
second assumption may seem self-evident to those familiar with treatments of
volume scattering in the ocean water column. In this case, scattering by ma-
rine organisms is nearly always characterized by a volume scattering strength,
the decibel equivalent of a scattering cross section per unit solid angle per
unit volume. In fact, this assumption may not always be valid in the case
of sediment volume scattering [Jones and Jackson 1997, Briggs et al. 2002a],
where scattering may be limited to distances within a wavelength or so of the
water–sediment interface, so that the incident field may not be readily ap-
proximated by a plane wave and may vary significantly in strength over short
distances. The approach to be used here takes partial account of the nonplane
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nature of the incident field within the sediment, but does not completely ac-
count for the proximity of the interface. The assumption of small penetration
depth is generally a good one at high frequencies and allows treatment of sed-
iment volume scattering in terms of an effective interface scattering strength,
the decibel equivalent of scattering cross section per unit solid angle per unit
area. That is, sediment volume scattering at high frequencies can be treated
as an interface process and can be characterized both experimentally and
theoretically in the same terms as scattering by seafloor roughness. Clearly
there is a potential conflict between the requirement of small penetration
depth and the assumption that the interface is not too close to the scatter-
ers. The assumption that the interface is flat is introduced for simplicity and
cannot be strictly true. These issues will be discussed later in this chapter.

θ i

θs

Source

Receiver

dV = dA dz

Scattering
Area = A

ri

rs

Fig. 14.1. The geometry relevant to the simplest fluid sediment volume scattering
models. The figure is not to scale in that the ranges ri = |ri| and rs = |rs| are
assumed large compared to the depth of penetration.

Referring to Fig. 14.1, the mean-square pressure at the receiver, located
at rs, due to a unit point source (Sect. 8.6), located at ri, is

< |P (rs)|2 >=
∫
|Gwp(r, ri)|2|Gpw(rs, r)|2σv(r)dV . (14.1)
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The Green’s functions, Gwp and Gpw, are defined in Sect. 8.6. The function
Gwp(r, ri) is the Green’s function giving the field in the sediment at r due
to a unit point source in the water at ri. Similarly, Gpw(rs, r) is the Green’s
function giving the field in the water at rs due to a unit point source in the
sediment at r. This expression is a modest improvement over Stockhausen,
who used a ray method that predicts zero volume scattering for incident or
scattered grazing angles smaller than the critical angle. By employing the
Green’s functions, subcritical scattering, though usually small, will not be
ignored. The volume scattering level is expressed in terms of the volume
scattering cross section, σv(r), which has the units m2/m3 = m−1. The
scattering patch has area A, and it will be assumed that this area is small
enough that all quantities in the integrand can be treated as constants with
regard to the horizontal position variables, x and y, which are taken to be zero
at the center of the scattering patch. The squared Green’s function factors
give the propagation gain (< 1) from the source to the infinitesimal scattering
volume, dV , and from this volume to the receiver. It will be assumed that the
incident field can be approximated by a plane wave at the water–sediment
interface, so that

|Gwp(r, ri)|2  |Vwp(θi)|2
r2i

e2Im[kpβp(Ki)]z . (14.2)

Here, kp is the complex wavenumber in the sediment, and βp(Ki) is the com-
plex sine of the refracted angle in the sediment. The factor 1/r2i gives the
spreading loss from the source to the scattering region, the plane-wave trans-
mission coefficient, Vwp(θi), gives the pressure change across the interface
(assumed to be flat, see (8.55)), the exponential factor gives the subsequent
decay of the wave amplitude in the sediment, and Im denotes the imaginary
part. This decay is governed by the imaginary part of the z-component of
the wave vector, which, in turn, depends on Ki = kw cos θi. Note that, even
though the incident field is assumed to approximate a plane wave in the wa-
ter, it is not plane in the sediment owing to the decay factor. The negative
of the coordinate, z, is the distance of the infinitesimal volume below the
interface. It is assumed that the distance, −z, and the linear dimensions of
the scattering patch are much smaller than the source range, ri, so that the
incident plane-wave assumption is valid over the entire scattering volume. If
the field point range, rs, is similarly large, the reciprocity relation (8.69) can
be used to express the other squared Green’s function as

|Gpw(rs, r)|2  |Vwp(θs)|2
|aρ|2r2s

e2Im[kpβp(Ks)]z , (14.3)

where aρ is the sediment/water density ratio and Ks = kw cos θs. Since a unit
source is assumed, the squared incident pressure is

|Pi|2 = 1
r2i

. (14.4)
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Using these results, (14.1) can be rewritten as

< |P (rs)|2 >=

|Pi|2A|Vwp(θi)|2|Vwp(θs)|2
|aρ|2r2s

∫ 0

−∞
σv(z)e2(Im[kpβp(Ki)+kpβp(Ks)])zdz , (14.5)

where the volume scattering strength has been assumed to depend on the
vertical coordinate only. Comparison with (2.15) shows that, with the as-
sumptions given above, sediment volume scattering cannot be distinguished
from interface roughness scattering; that is, the scattered intensity has the
same dependence on range and ensonified area. Thus, one can identify the
equivalent interface bistatic scattering cross section

σ =
|Vwp(θi)|2|Vwp(θs)|2

|aρ|2
∫ 0

−∞
σv(z)e2kwIm[P (θi)+P (θs)]zdz , (14.6)

where
P (θ) =

√
a−2
p − cos2 θ , (14.7)

with ap being the complex compressional wave speed/water sound speed ra-
tio. If the volume scattering strength is independent of depth, the integral
can be performed, leaving

σ =
|Vwp(θi)|2|Vwp(θs)|2σv

2kw|aρ|2Im[P (θi) + P (θs)]
. (14.8)

While the assumptions and approximations that lead to this result may seem
restrictive, they are satisfied reasonably well in the majority of cases encoun-
tered in practice. The assumptions regarding range and size of the ensonified
region guarantee that the plane-wave approximation is satisfied. There are
subtle points in this connection that are discussed in Appendix J. It must
be realized that if the plane-wave assumption fails, then the concept of an
interface scattering cross section loses its usefulness. As noted in Appendix
J, there are unduly pessimistic accounts in the literature that might lead one
to discard the interface scattering strength even when it has utility.

Equation (14.8) forms the basis for several sediment volume scattering
models, which differ only in the assumptions used to obtain the volume scat-
tering cross section, σv [Stewart and Chotiros 1992]. The simplest approach
is to treat σv empirically, that is, as a quantity that must be obtained by
fitting data [D. Jackson et al. 1986a] rather than calculated on the basis of
theory. In [Mourad and Jackson 1989], the following dimensionless parameter
is used to quantify sediment volume scattering:

σ2 =
σv
αp

, (14.9)
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where αp is the attenuation in dB m−1, given by (8.26). Typical values of
σ2 range from 0.0001 to 0.004. Values larger than 0.004 may indicate fail-
ure of the weak scattering assumption, that is, they may signal the onset of
multiple scattering [D. Jackson et al. 1986a]. If σ2 is taken to be frequency
independent, then (14.8) will yield a scattering cross section that is nearly
frequency independent. This can be seen by noting that if attenuation in-
creases approximately linearly with frequency, then, according to (14.9), σv
will increase linearly with frequency, and this dependence is canceled by the
factor kw in the denominator of (14.8). Finally, the transmission coefficients
and P (θ) have only weak frequency dependence because they depend only
on the real sound speed ratio, νp, and the loss parameter, δp.

Examples of backscattering strength computed using (14.8) are shown in
Fig. 14.2. Of the three examples, one is a “slow” bottom with sound speed
ratio 0.98 and no critical angle. The other two examples have sound speed
ratios greater than unity and critical angles of about 18◦ and 25◦. For grazing
angles smaller than the critical angle, volume scattering is suppressed owing
to the relatively small depth of acoustic penetration into the sediment.
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Fig. 14.2. Backscattering strength curves computed using (14.8) for a frequency of
30 kHz with cw = 1500 m s−1, aρ = 1.5, δp = 0.015, σ2 = 0.002, and the indicated
values of sound speed ratio, νp.
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14.1.2 Roughness–Volume Interaction

The separation of scattering into separate, independent roughness and vol-
ume components is somewhat artificial, as noted in Ch. 13. At the very
least, the rough interface will alter the field entering the sediment from
that expected for a flat interface. A rather straightforward approach to
this problem is offered by [Ivakin and Lysanov 1981b], who employ an ap-
proximation analogous to the composite-roughness model. That is, account
is taken of the larger-scale slope of the seafloor by averaging the volume
scattering cross section over the expected distribution of local grazing an-
gles. This approach is readily implemented numerically via (13.80) as in
[D. Jackson et al. 1986a, Mourad and Jackson 1989], but neglects diffraction
by smaller-scale components of roughness. More difficult is the question of
correlation between roughness and volume scattering, which would be ex-
pected if the vertical undulations of sediment layers follow to some degree
the undulations of the sediment–water interface. In such cases, the division
between roughness and volume scattering is not clear, and more general ap-
proaches may be required (Sect. M.1.2).

14.1.3 Small-Perturbation Fluid Approximation

Fluctuations in sediment mass density and sound speed are always present
owing to biological, biogeochemical, and hydrodynamic activity. These fluc-
tuations result in smooth changes in sediment acoustic parameters as op-
posed to the abrupt changes due to the presence of discrete scatterers such
as shell inclusions or bubbles. Smooth heterogeneities are usually weak
enough that the method of small perturbations can be applied [Jones 1999].
This is a single scattering approximation in which it is assumed that the
scattered field is weaker than the incident field and is consistent with the
assumptions used in deriving (14.8). The perturbation approach is widely
used [Ivakin and Lysanov 1981a, Hines 1990, Tang 1991, Lyons et al. 1994,
D. Jackson 1994, Yamamoto 1996, Pouliquen and Lyons 2002] and appears
to be a satisfactory solution to at least part of the problem of sediment vol-
ume scattering. It is often referred to as the “Born approximation.”

The expression for the bistatic volume scattering cross section (14.8)
requires a means of obtaining the parameter σv. Two different theoretical
approaches have been used. The simplest is to neglect the presence of the
water–sediment interface and find the plane-wave scattering amplitude for
a localized heterogeneous region. This approach cannot treat the subcritical
case, where the x- and y-components of the incident and scattered wave vec-
tors are real, but the z-components are complex. The volume scattering cross
section for this more general case is given by several authors, and details are
provided in Appendix M. The central result is
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σv =
π|kp|4
2

×[
Wκκ(Δkp) + 2Re{

kps · kpi k∗2p
|kp|4 Wρκ(Δkp)}+

|kps · kpi|2
|kp|4 Wρρ(Δkp)

]
.

(14.10)
In this expression, kp is the compressional wavenumber, and the various vec-
tors subscripted p are to be defined later. The function Wκκ is the three-
dimensional spectrum for the fluctuations in normalized sediment compress-
ibility. The normalization consists in dividing the fluctuating part of the
compressibility (which is the inverse of the bulk modulus) by the mean com-
pressibility. Similarly, Wρρ is the spectrum for normalized density fluctua-
tions, and Wρκ is the cross-spectrum that expresses the correlation between
these two random variables. These spectra are discussed in Sects. 7.2, 14.1.4,
and D.2. Careful consideration of the bistatic angular dependence implied
by the factor kps · kpi would show that density fluctuations yield a dipole
scattering pattern in the sediment, with maxima along the direction of the
refracted incident wave. Compressibility fluctuations yield an omnidirectional
(monopole) scattering pattern. The term involving the cross-spectrum is the
product of monopole and dipole patterns. This simple division into monopole
and dipole terms motivates the use of density and compressibility as the pair
of random variables of interest. Other choices can be made; for example,
practical considerations suggest the use of density and sound speed, as these
are the most commonly measured pair. Equations connecting one pair to the
other will be developed later in this section.

The incident and scattered directions are defined by the in-water wave
vectors as in Ch. 13:

ki = kw(ex cos θi cosφi + ey cos θi sinφi − ez sin θi) , (14.11)

ks = kw(ex cos θs cosφs + ey cos θs sinφs + ez sin θs) . (14.12)

Using Snell’s law, the corresponding wave vectors for the incident and scat-
tered compressional waves in the sediment are

kpi = Ki − ezkwP (cos θi) , (14.13)

kps = Ks + ezkwP (cos θs) , (14.14)

where, as usual, the uppercase, boldface symbols represent the horizontal
components, which are the same in-water and in-sediment:

Ki = kw(ex cos θi cosφi + ey cos θi sinφi) , (14.15)

Ks = kw(ex cos θs cosφs + ey cos θs sinφs) . (14.16)

Note that
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kpi · kpi = kps · kps = k2p , (14.17)

with the complex compressional wavenumber

kp =
kw(1 + iδp)

νp
. (14.18)

The spectra in (14.10) are evaluated at the Bragg wave vector, Δkp. Unlike
the small-roughness perturbation case, where the relevant Bragg wave vector
is the difference of two-dimensional scattered (14.16) and incident (14.15)
wave vectors, in the case of volume scattering, the Bragg wave vector is
three-dimensional.

Δkp = Re{kps − kpi} . (14.19)

The fact that the Bragg wave vector is the real part of the wave vector
difference is derived in Appendix M. If the complex difference were required
instead, one would be faced with the issue of analytic continuation of the
spectrum to complex arguments. As will be seen, this issue cannot be avoided
when treating volume scattering in elastic or layered media.

14.1.4 Statistical Description of Continuous Fluid Heterogeneity

In the fluid small-perturbation model, spectra describing fluctuations in den-
sity and compressibility are needed. These spectra are discussed in detail in
Ch. 7 and Sect. D.2, consequently, only a few key definitions will be given
here. Normalized fluctuations are defined for density,

γρ =
δρ

< ρ >
, (14.20)

and compressibility,

γκ =
δκ

< κ >
. (14.21)

The relevant covariances are

Bρρ(r) =< γρ(r+ r0)γρ(r0) > , (14.22)

Bκκ(r) =< γκ(r+ r0)γκ(r0) > , (14.23)

and
Bρκ(r) =< γρ(r+ r0)γκ(r0) > . (14.24)

These are related to the spectra by three-dimensional Fourier transforms

Wαβ(k) =
1

(2π)3

∫
Bαβ(r)e−ik·rd3r , (14.25)

where αβ corresponds to all pairs of ρ and κ. Since the covariances are di-
mensionless, the spectra have dimensions (length)3. Although compressibility
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is a convenient variable in discussing sediment volume scattering (because it
yields simple monopole scattering) it is not commonly measured in sediments,
but can be inferred from density and sound speed measurements. Sections
7.3 and D.2.2 treat this topic.

In order to avoid the problem of determining all three of the fluctuation
spectra, various authors have made simplifying assumptions, as discussed in
Sect. D.2.2. Some neglect the correlation between sound speed and density
[Lyons et al. 1994], but, looking at the relation between density and sound
speed (Ch. 4), it is evident that there must be some correlation between
the two. In fact, it is common [Hines 1990, Yamamoto 1996, Hines 1996,
Ivakin 2001, Pouliquen and Lyons 2002] to assume that the two fluctuations
are perfectly correlated, that is, density and sound speed fluctuations have
the same ratio at every point in the sediment. Equivalently, [D. Jackson et
al. 1996a, Williams and Jackson 1998, Briggs et al. 2002a] have assumed that
density and compressibility fluctuations are perfectly correlated. The scatter
seen in plots of measured sound speed as a function of density, such as in
Ch. 4, suggests that the correlation cannot be perfect. In this case it might
seem that all points would lie on a single curved line. This picture is mis-
leading, however, as such plots combine data from many different sites. The
present issue is whether or not, for a given site, density and sound speed
have a deterministic relationship. To resolve this issue, density and sound
speed measurements could be made on single sediment samples in consolida-
tion (for mud samples) and packing experiments (for sand samples). If the
resulting density–sound speed plot shows little scatter, then the correlation
is high. This interesting issue has yet to be resolved. In the interim, a general
strategy is to assume an adjustable degree of correlation such that the com-
pressibility spectrum and density–compressibility cross-spectrum have the
same functional dependence as the density spectrum, but differing strengths:

Wκκ = μ2Wρρ , (14.26)

Wρκ = ρρκμWρρ . (14.27)

Without loss of generality, it is assumed that μ ≥ 0. The parameter ρρκ is the
density–compressibility correlation coefficient and is restricted to the range
−1 ≤ ρρκ ≤ 1.

Spectra for density fluctuations have been given by [Yefimov et al. 1988,
Tang and Orsi 2000a,Tang and Orsi 2000b, Tang et al. 2002, Pouliquen
and Lyons 2002], but both density (sometimes porosity) and sound speed
spectra can be found in [Lyons et al. 1994, Briggs 1994, Yamamoto 1995,
D. Jackson et al. 1996a, Briggs et al. 2002a]. Determination of cross spectra
such as Wρκ without the simplifying assumptions given above is difficult and
is a research topic rather than a routine undertaking.

Section 7.2 gives expressions for model spectra that have appeared in the
literature. Computations in this chapter will employ the simplest spectral
form, the pure power law. Repeating (7.16) for convenience,
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Wαβ(k) =
w3αβ

kγ3
. (14.28)

As noted in Sect. 7.2, the case γ3 = 3 is self-similar, and the parameter w3αβ
is dimensionless. It has been noted that γ3 = 3 gives a nearly frequency-
independent scattering cross section [Ivakin 1981, D. Jackson and Briggs
1992]. This can be seen by counting wavenumber factors: k−1 in (14.8), k4

in (14.10), and k−3 in the spectra. There will still be a weak frequency de-
pendence due to dispersion, that is, due to the frequency dependence of νp
and δp. As Fig. 12.6 suggests, interface scattering from soft sediments some-
times is substantially frequency independent, indicating that the self-similar
spectrum may be a reasonable approximation in some cases.

The correlation between density and compressibility has a strong effect
on the directionality of scattering [Ivakin 1998b, Jones and Jackson 2000,
Ivakin 2001, Jones and Jackson 2001]. As noted above, density fluctuations
scatter with a dipole radiation pattern with axis along the direction given
by Snell’s law for the incident wave in the sediment. Compressibility fluc-
tuations scatter with an omnidirectional pattern. If the correlation is zero,
the net pattern is the sum of the intensities of these two. With a nonzero
correlation, however, there will be interference between these two patterns.
For example, if μ = 1 and ρρκ = −1, the dipole and monopole patterns can-
cel in the forward direction, with substantial backscattering. This situation
is illustrated in the upper panel of Fig. 14.3. This is the case in which nor-
malized sound speed fluctuations are much smaller than normalized density
fluctuations (η << 1). This may happen for soft sediments where the sound
speed versus density curve has a stationary point (Ch. 4). The lower panel
of Fig. 14.3 shows that if the correlation vanishes, forward scattering is sub-
stantial. While the difference between the two cases illustrated in the figure is
dramatic, this difference will be somewhat obscured by roughness scattering,
which invariably has a strong peak in the specular direction.

14.1.5 Experimental Tests of the Small-Perturbation Fluid Model

In one of the earliest tests of the perturbation approximation for sediment vol-
ume scattering [Lyons et al. 1994], the model compared favorably with mea-
sured backscattering data at 6.5 kHz, falling within the ±5-dB data spread
over the measured grazing angle range of 12◦–57◦. The seafloor consisted of
a silt-clay layer overlying sand. The density and compressibility spectra were
estimated from fits of the exponential covariance to core data, and cross-
correlation was neglected.

Perturbation model predictions have been compared with data from a
soft-sediment site in the Straits of Florida [Rogers and Yamamoto 1999]. The
spectrum of sound speed was estimated from acoustic tomographic measure-
ments at the same frequencies used in the backscattering measurements (7.5
and 15 kHz). These measurements had resolution of approximately 10 cm, so
extrapolation of the measured spectrum was necessary to reach the smaller
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Fig. 14.3. Bistatic scattering strength (dB) for a mud seafloor with scattering
strength projected onto the seafloor at the position responsible for the scattering.
The source and receiver are located at x = ± 200 m, y = 0 (filled white circles), and
both are positioned 50 m above the seafloor. Scattering strength is computed using
(14.10) for a frequency of 35 kHz with cw = 1500 m s−1, aρ = 1.5, νp = 0.98, and
δp = 0.01. Roughness scattering is ignored. Power-law spectra of the form (14.28)
are used with γ3 = 3.0, w3ρρ = 0.0005, and μ = 1. The two panels differ only in
the assumed density–compressibility correlation, ρρκ = −1 in the upper panel and
ρρκ = 0 in the lower panel.

scales set by the Bragg wavenumber (2.5-cm resolution needed at 15 kHz).
The spectral exponent estimates ranged from γ3 = 2.3 to γ3 = 2.8. The per-
turbation model was in general agreement with the backscattering data, but
with differences as large as 10 dB for some grazing angles.

Figure 14.4 compares higher-frequency backscattering data obtained by
several different investigators with the perturbation model. These model-data
comparisons are the same, except for details, as those given in the primary
references, with geoacoustic parameters given in Table 14.1. The model-data
agreement is satisfactory, but many of the comparisons are not as rigorous as
one might wish. In particular, the volume heterogeneity data for the Arafura,
San Francisco, and Orcas sites were obtained from small-diameter, short core
samples and were analyzed in the vertical coordinate only. Thus, the aspect
ratio was not determined and isotropy was assumed. The heterogeneity pa-
rameters for these sites are subject to the uncertainties discussed in Sect.
7.4. In particular, bias in these parameters is expected due to averaging over
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core sections. In addition, bias may occur due to disturbance intrinsic to core
collection and subsequent manipulations, including sectioning (see Sects. 4.3
and 7.6). The Arafura site had a large concentration of buried shell fragments,
calling into question the use of the perturbation approach. In all cases, the
density–compressibility correlation was not measured, but assigned the com-
monly used value −1. In summary, the model-data comparisons are clouded
by uncertainties in the heterogeneity parameters, but offer support of the
perturbation model for sediment volume scattering.
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Fig. 14.4. Comparison of the fluid volume scattering perturbation model
with backscattering strength measured at five sites having soft sedi-
ments. The primary acoustic and geoacoustic data sources are: Arafura –
[D. Jackson and Briggs 1992], San Francisco – [D. Jackson and Briggs 1992], Or-
cas – [Jones and Jackson 1997], Porto Venere – [Pouliquen and Lyons 2002], Punta
della Mariella – [Pouliquen and Lyons 2002]. The volume heterogeneity parameters
for the Arafura and San Francisco sites were taken from [Yamamoto 1996].
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Table 14.1. Geoacoustic input parameters used in model-data comparisons of Fig.
14.4. The citations for the parameter values are given in Fig. 14.4. The units of w3

are m3−γ3 . The density–compressibility correlation coefficient, ρρκ, is taken to be
−1 for all sites, and the aspect ratio, Λ, is taken to be 1.

Site Grain Size (φ) aρ νp δp γ3 w3 Lc (m) μ

Arafura 5.6 1.39 0.988 0.0055 3.45 1.32×10−3 ∞ 1.389
San Francisco 6.4 1.41 1.002 0.0104 3.63 1.37×10−2 ∞ 1.200

Orcas 8.1 1.41 0.977 0.0019 4.00 6.44×10−3 0.032 0.934
Porto Venere 9.1 1.46 0.993 0.0011 7.60 5.13×109 0.0014 1.667

P. della Mariella 7.2 1.66 1.002 0.0028 8.00 3.20×1011 0.0012 1.667

14.1.6 Mathematical Accuracy of the Small-Perturbation Fluid
Model

Jones has used exact two-dimensional calculations to test the accuracy of
the perturbation approximation for volume scattering in fluid sediments
[Jones 1999, Jones and Jackson 2001]. The covariance for density fluctuations
was assumed to be exponential with a spectrum that is the 2D equivalent of
(7.17):

Wρρ(k) =
σ̂2ρ/(2πLc)

(k2 + L−2
c )3/2

. (14.29)

The parameter σ̂2ρ is the normalized variance of the density fluctuations (Sect.
7.2). The other spectra are assumed proportional to Wρρ as in (14.26) and
(14.27), with unit-magnitude, negative correlation between density and com-
pressibility fluctuations, ρρκ = −1. Figure 14.5 shows a comparison of exact
and perturbation calculations using parameters typical of a sandy sediment.
The computations were performed with the low-frequency cutoff length, Lc,
equal to the acoustic wavelength in water. Because of this, there is no
need to specify the absolute acoustic frequency. The figure shows two dif-
ferent perturbation calculations: one is the full perturbation method with
no additional approximations, and the other neglects the windowing effects
discussed in Appendix M (these are referred to as “half-space effects” in
[Jones and Jackson 2001]). These effects are neglected in most volume scat-
tering models, including those discussed in this chapter.

The exact calculations displayed in Fig. 14.5 show that windowing effects
are significant near the specular direction, but that the “ordinary” pertur-
bation model is quite accurate in other directions. While these computations
do not exhaustively explore the parameter space of the perturbation model,
they indicate that, with typical sediment parameters, the model is comfort-
ably within its realm of accuracy.
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Fig. 14.5. Comparison of exact and approximate calculations of the bistatic scat-
tering cross section due to volume heterogeneity. These are two-dimensional calcu-
lations with aρ = 2.0, νp = 1.10, δp = 0.00183, μ = 2, and σ̂ρ = 0.1. The incident
grazing angle is indicated in each panel, and the abscissa is the scattered grazing
angle. The dots are the result of exact Monte Carlo calculations with 50 realizations.
The solid curves are the results of the full perturbation model, while the dashed
curves show the more commonly used perturbation model in which windowing ef-
fects due to layer interfaces are neglected. From [Jones and Jackson 2001].

14.1.7 Scattering by Discrete Heterogeneity

Buried gas bubbles and shell fragments are discrete forms of heterogeneity
that cannot be modeled using perturbation theory in the form developed
above. The scattering model presented in this section is perhaps the simplest
available in the literature, and might be considered a tool for approximate
calculations and a starting point for more sophisticated models. Thus, the
single scattering assumption inherent in (14.8) will be employed, and a sim-
ple model will be used to obtain the volume scattering cross section, σv(z),
appearing in (14.6). The volume scattering cross section depends on the num-
ber of discrete scatterers per unit volume and the probability density function
for scatterer size, a. Both of these are incorporated in the “size distribution,”
N(a), the number of scatterers per unit volume per unit size. At this stage,
“size” has not been defined clearly; that definition will depend on the phys-
ical situation of interest. For example, in the case of spherical bubbles, the
“size” will be chosen to be the bubble radius. If the differential scattering
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cross section, σd(a), for individual discrete scatterers of size a is known, the
desired volume scattering cross section follows as an integral over all sizes
[Boyle and Chotiros 1995a]:

σv =
∫ ∞

0
N(a)σd(a)da . (14.30)

It should be noted that this simple model assumes that scattering is isotropic
so that knowledge of the angular orientation of each scatterer is not required.
If both the size distribution,N(a), and the individual scattering cross section,
σd(a), are known, (14.30) can be evaluated and inserted in (14.6) or, if the
volume scattering strength is independent of depth, in (14.8) to obtain the
desired seafloor scattering cross section.

Scattering by Buried Gas Bubbles

Methane is a common product of biochemical reactions occurring in sedi-
ments that are rich in organic material [Kaplan 1974, Martens et al. 1998].
Section 3.3 discusses the biochemical processes responsible for methane bub-
ble formation and presents CT and X-ray images of bubbles in sediments.
The acoustic effects of bubbles have been discussed by, e.g., [Anderson and
Hampton 1980a, Anderson and Hampton 1980b, Lyons et al. 1996, Wilkens
and Richardson 1998, Anderson et al. 1998, Medwin and Clay 1998, Ch. 8].
Bubble scattering is a difficult topic that is still under development. Rather
than attempting to fully document current models in this evolving research
area, a brief summary will be given at the end of this section. The differ-
ential scattering cross section for individual, spherical bubbles of radius a is
[Medwin and Clay 1998, Ch. 8]

σd(a) =
a2

[(ω0/ω)2 − 1]2 + δ2
. (14.31)

The differential scattering cross section has dimensions (length)2. Scattering
is omnidirectional, hence there are no angular variables in (14.31), as assumed
in (14.30). This expression applies to bubbles in an infinite fluid medium, and
so does not include any water–sediment interface effects. When bubbles are
large with respect to sediment grain or pore size (so-called Type III bub-
bles, Sect. 3.3) such as typically found in organic-rich muddy sediment, the
resonant frequency of spherical bubbles is [Anderson and Hampton 1980a,
Lyons et al. 1996, Gardner and Sills 2001]

ω0 =
1
a

√
3γP0

Aρ
+
4μ′

ρ
, (14.32)

where
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A = (1 +B2)
[
1 +

3(γ − 1)
X

(
sinhX − sinX
coshX − cosX

)]
, (14.33)

B = 3(γ−1)
[

X(sinhX + sinX)− 2(coshX − cosX)
X2(coshX − cosX) + 3X(γ − 1)(sinhX − sinX)

]
, (14.34)

X = a(2ω0ρ0Sp/C0)1/2 , (14.35)

and μ′ is the real part of the sediment shear modulus. The larger bubbles
seen in the images of Sect. 3.3 are nonspherical, but [Lyons et al. 1996] define
an equivalent spherical radius (the radius of the sphere having the same vol-
ume as the bubble) for such bubbles and use (14.31)–(14.35). The parameters
characterizing the gas are: Sp, the specific heat at constant pressure; γ, the
specific heat at constant pressure divided by the specific heat at constant tem-
perature; ρ0, the mass density; and C0, the thermal conductivity. Although
propagation in the scattering model is treated in the fluid approximation, it
is essential to include the effect of shear on the bubble resonance, even for
soft sediments [Wilkens and Richardson 1998]. Losses are described by the
dimensionless parameter, δ (not to be confused with the loss parameters δp
and δt), which is made up of three terms:

δ = δr + δh + δs . (14.36)

Radiation by the bubble is responsible for the part of damping given by

δr = aRe {kp} , (14.37)

damping due to loss of heat to the surrounding water is described by

δh = B(ω0/ω)2 , (14.38)

and shear losses contribute the term

δs =
4μ′′

ρω2a2
, (14.39)

where μ′′ is the negative of the imaginary part of the sediment shear
modulus. The bubble resonance and loss equations above are the versions
given by [Lyons et al. 1996] who corrected some of the equations given by
[Anderson and Hampton 1980a]. The parameter a is the static equilibrium
bubble radius, so-called because the radius oscillates when the bubble is ex-
cited acoustically. The acoustic radian frequency is denoted ω, and P0 is the
ambient, hydrostatic pressure

P0 = Dρwg . (14.40)

Here, D is the water depth, ρw is the density of of the overlying seawater,
and g is the acceleration of gravity. Pressure is evaluated at the sediment–
water interface on the assumption that the bubbles of interest are near this
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interface. As before, ρ is the sediment mass density, and kp is the compres-
sional wavenumber in the sediment. The gas density is proportional to total
pressure (atmospheric + hydrostatic), so

ρ0 = (1 +
P0

PA
)ρ0|D=0 , (14.41)

where atmospheric pressure, PA, is approximately 101.3 kPa.
The expression for resonant frequency (14.32) is a transcendental equa-

tion, as the factor A depends on resonant frequency through the variable
X. A simple iterative method of solution starts with A = 1, computes ω0,
substitutes this in (14.35) to find an improved value for A, substitutes this
in (14.32), and repeats this process until convergence is achieved.
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Fig. 14.6. Single-bubble resonant frequency as a function of bubble radius, a.
The solid curve is computed using the solution of (14.32)–(14.35), and the shear-
free case is shown as the dashed line. The hydrostatic pressure is 2.5 atmospheres
(corresponding to a depth of about 25 m), and the gas and sediment parameters
are given in Table 14.2.

To illustrate the predictions of the bubble resonance model, the parame-
ters of Table 14.2 will be used. The sediment in this case is very soft, having
low bulk density and low shear phase speed (28.4 m s−1). Figure 14.6 shows
the dependence of resonant frequency on bubble radius. It is interesting that
shear increases the resonant frequency appreciably, when shear has little in-
fluence on roughness scattering in sands and muds (Sect. 13.2.2).
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Table 14.2. Parameters (SI units) used in computations for Figs. 14.6–14.8. The
gas parameters are appropriate to methane.

Parameter Symbol Value
Gas specific heat (const. press.) Sp 2256 J (kg ◦C)−1

Gas specific heat ratio γ 1.31
Gas thermal conductivity C0 0.034 J (s m ◦C)−1

Gas mass density (1 atm) ρ0|D=0 0.717 kg m−3

Sediment mass density ρ 1250 kg m−3

Real part, sed. shear modulus μ′ 106 Pa
−Imag. part, sed. shear modulus μ′′ 105 Pa

Water sound speed cw 1500 m s−1

Sed. sound speed ratio νp 0.991

As shown in Fig. 14.7, all three loss mechanisms contribute significantly
to the loss factor, δ. The loss factor increases with frequency, but is much
smaller than unity for frequencies less than 1 MHz .
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Figure 14.8 shows the frequency dependence of the scattering cross section
(expressed in dB as target strength) for a single methane bubble in sediment.
The resonance is rather narrow, and the peak target strength is much larger
than that for geometric backscattering, 20 log10(a/2) = −66.0 dB m−2.
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Fig. 14.8. Single-bubble target strength, 10 log10 σ(a), for a bubble of 1-mm
radius as a function of frequency, computed using (14.32)–(14.39). Parameters are
as in Fig. 14.6.

A convenient approximation to the integral (14.30) was employed by
[Boyle and Chotiros 1995a] following [Medwin 1977], who treats the expres-
sion for σ(a) (14.31) as proportional to a delta function in a. This is justified
if the resonance has a high quality factor (the quality factor is denoted Q,
where Q = 1/(2δ)), that is, if it is narrow in the frequency domain. The
percentage width in a will be approximately equal to the percentage width
in ω. This approximation reduces (14.30) to the form

σv =
πa3N(a)
2δ

, (14.42)

where the bubble radius is to be evaluated at the resonance value

a =
1
ω0

√
3γP0

Aρ
+
4μ′

ρ
. (14.43)

An example of bubble size distribution data is shown in Fig. 14.9 [Anderson
et al. 1998]. These data were obtained at Eckernförde Bay in Germany by
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Fig. 14.9. Bubble size distribution data from Eckernförde Bay in Germany
[Anderson et al. 1998].

means of CT scanning. The core volume was approximately 0.01 m3, so the
approximate size distribution, N(a) (in mm−1 m−3), can be obtained by
dividing the data from the right-hand panel of Fig. 14.9 by this volume.

The bubble scattering model defined above has the same angular depen-
dence as the empirical model (Fig. 14.2). The frequency dependence is gov-
erned by the bubble size distribution and is discussed by [Boyle and Chotiros
1995a]. They conclude that concentrations of gas of order 10−5 by volume
could cause backscattering at observed levels. Unfortunately, for frequencies
above 10 kHz, resonant bubble sizes are not resolved by present methods.
For sandy sediments, [Boyle and Chotiros 1995b] have argued that the size
distribution can be constrained by knowledge of the grain size distribution.
Because sands are not as rich in organic material as finer sediments, methane
is unlikely to form in concentrations sufficient to produce bubbles. Oxygen
produced by photosynthesis in shallow water has been suggested as a pos-
sible source of surficial bubbles in sand [Greenlaw et al. 2004]. In a labo-
ratory experiment covering the frequency range from 150 kHz to 1 MHz,
[Holliday et al. 2004] showed that such bubbles did form and were impor-
tant scatterers of sound, with the strongest scattering occurring at the lower
frequencies.

Layering of sedimentary bubble populations is commonly observed and
will affect both the frequency and angular dependence of scattering [Tang
et al. 1994, Boyle and Chotiros 1995a]. Bubbles in sediments are usu-
ally nonspherical, particularly when sizes exceed about 1 mm (Sect. 3.3).
Bubble scattering models that account, at least approximately, for non-
sphericity can be found in [Lyons et al. 1996, Tang 1996b, Chu et al. 1997,
Anderson et al. 1998]. These models also allow for depth dependence of the
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bubble size distribution, and have been tested against acoustic data from
Eckernförde Bay in Germany. Bubble sizes were determined using X-ray com-
puted tomography to a resolution of 1 mm (Sect. 3.3). Reasonable agreement
between models and data was obtained, but strong conclusions cannot be
drawn owing to assumptions needed to fill gaps in the characterization of
the bubble population. The resonance model outlined above was used by
[Lyons et al. 1996, Anderson et al. 1998], who treat multiple scattering. At a
frequency above resonance (40 kHz), a geometric optics approximation has
been used by [Tang 1996b, Chu et al. 1997]. These authors assume single
scattering, but [Chu et al. 1997] note that multiple scattering effects must be
significant.

Scattering by Buried Shell

While shell fragments are irregular in shape and have nonzero shear modulus,
they are treated as fluid spheres in the work to be outlined here. The scat-
tering cross section of a fluid sphere is discussed in [Morse and Ingard 1968,
Ch. 8] and [Medwin and Clay 1998, Ch. 7]. For low frequencies such that
the wavelength is much smaller than the sphere circumference, the scattering
cross section increases as the fourth power of frequency. In this “Rayleigh”
scattering regime, the backscattering cross section is [Morse and Ingard 1968,
Ch. 8]

σr = (k′p)
4a6
[
e− 1
3e

+
(h− 1)
2h+ 1

]2
. (14.44)

In this expression, a is the sphere radius, k′p is the real part of the compres-
sional wavenumber in the sediment,

e =
Kd

K ′
b

(14.45)

is the specific modulus of the fluid sphere, and

h =
ρg
ρ

(14.46)

is the specific density. In (14.45), Kd is the bulk modulus of the sphere, and
K ′

b is the real part of the bulk modulus of the sediment. Since shell pieces have
substantial rigidity, there is ambiguity in the choice of Kd. In the following,
Kd will be taken to be the modulus λ + 2μ (Ch. 9) that determines the
compressional wave speed.

At higher frequencies, the scattering cross section approaches a frequency-
independent value, the “geometric” cross section. For an impenetrable sphere,
the geometric backscattering cross section is equal to a2/4. This result follows
from the knowledge that a large sphere scatters the acoustic power passing
through its cross sectional area, πa2, omnidirectionally over the full solid
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angle, 4π. The backscattering cross section for a fluid sphere has been ap-
proximated over the full frequency range by [Ivakin 2004] in terms of the
expression

σd =
σr

1 + σr/(V 2
d a

2/4)
. (14.47)

Here,

Vd =

√
eh− 1√
eh+ 1

(14.48)

is the reflection coefficient for a flat interface between the sediment and
the fluid material of the sphere (Sect. 8.5). At high frequencies, the in-
dividual backscattering cross section (14.47) approaches |Vd|2a2/4, which
is the geometric cross section reduced by the squared magnitude of the
normal-incidence reflection coefficient. Expression (14.47) is illustrated in
Fig. 14.10. This smooth fit to the backscattering cross section of a fluid
sphere is a reasonable approximation considering the uncertainties inher-
ent in taking the particles to be fluid and spherical. The exact cross sec-
tion for the fluid sphere [Medwin and Clay 1998, Ch. 7] exhibits oscilla-
tions as a function of k′pa for k′pa > 1, but follows the Rayleigh curve at
lower frequencies. There has been research on the issue of random scat-
terer shape [Thorne et al. 1995, Palmer 1996] and on the effects of elasticity
[Stanton et al. 2000, Stanton 2000].
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Fig. 14.10. Approximate backscattering cross section (14.47) for a fluid sphere,
having specific modulus e = 15.7 and specific density h = 1.4. The cross section is
normalized by division by a2/4, the scattering cross section for a large, impenetrable
sphere. The abscissa is the product of wavenumber and radius, and should be
thought of as a dimensionless frequency variable.
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Fig. 14.11. Size distributions for shell fragments at various depths at the SAX99
site as provided by Briggs and converted to a dimensionless distribution in terms
of an equivalent spherical radius, a, in [Ivakin 2005].
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Fig. 14.12. Comparison of backscattering strength prediction of the discrete scat-
tering model of [Ivakin 2005] with data from [Williams et al. 2002b] for a grazing
angle of 35◦.
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The single scattering approximation of (14.6) and (14.30) has been applied
to scattering by buried shell fragments at the SAX99 site in [Ivakin 2004,
Ivakin 2005]. The shell size distribution at various depths is shown in Fig.
14.11. The distribution in this figure is dimensionless and can be converted to
N(a) by multiplication by 3/(4πa4). The radius, a, is the equivalent spherical
radius correponding to the particle volume. The predicted seafloor scattering
strength for a grazing angle of 35◦ is compared with backscattering data in
Fig. 14.12. The model curve lies below the data at the lower frequencies, a
desirable result, since roughness scattering (Sect. 13.2.4) has been shown to
account for this portion of the data. When the roughness scattering model
and the present discrete volume scattering model are combined, agreement
with data is reasonable over the entire frequency range [Ivakin 2005].

The single scattering, fluid-sphere approximation was applied to a site
near Panama City, Florida by [Lyons 2005]. The sediment contained numer-
ous buried shell pieces, and the size distribution was determined using CT.
The size distribution is shown in Fig. 7.8 where the radius is chosen so as
to yield sphere volumes approximately equal to the individual particle vol-
umes. The smooth curve is a fit to the size distribution used in computing
backscattering strength. The units of this distribution are mixed: it is the
number of particles per unit radius (mm) per unit volume (m3). Using this
distribution in (14.30) with the individual cross section given by the Rayleigh
expression (14.44), Lyons found that volume scattering would not compete
with roughness scattering at the Panama City site at 20 kHz. At 100 kHz,
however, and for grazing angles above the critical angle, volume scattering
is predicted to be comparable to roughness scattering. In these calculations,
the specific modulus and density of Fig. 14.10 were used. The accuracy of
the single scattering approximation in this case was verified by [Lyons 2005]
through use of a multiple scattering approximation. He concluded that multi-
ple scattering effects would become important for shell concentrations larger
than 1% by volume; this is greater than the concentration at the Panama
City site.

14.2 Elastic Sediment Volume Scattering

Acoustic scattering due to volume heterogeneity in rocky seafloors has re-
ceived little attention, yet is potentially significant. The small-perturbation
method has been applied to scattering by continuous heterogeneity in elastic
seafloors, with rather surprising but untested results (Sect. 14.2.3).

14.2.1 Small Perturbation Elastic Approximation

The small-perturbation method for volume scattering in elastic seafloors has
been developed by [Ivakin 1990]. The presentation here follows that given
in [D. Jackson and Ivakin 1998, Ivakin and Jackson 1998] who give examples
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for sand and rock seafloors. When an elastic model is used for the seafloor,
one must consider heterogeneity in shear wave speed as well as in the density
and compressional wave speed. Scattering can convert compressional wave
energy into shear wave energy and vice versa. As illustrated by Fig. 14.13,
there are several such scattering mechanisms. For example, one mechanism is
scattering of compressional waves by density fluctuations, with conversion to
shear waves. These shear waves can be converted to waterborne compressional
waves on encountering the interface. If the shear waves are polarized such that
the particle motion is in a vertical plane, conversion is possible even for the
flat interface. As a result, this scattering mechanism is evident in a first-order
perturbation treatment. Scattering to the other possible polarization (with
particle motion in a horizontal plane) will only be evident at higher order, as
such waves suffer total internal reflection at a horizontal, flat interface.

Compressional-Compressional

Compressional-Shear Shear-Compressional

Shear-Shear

Fig. 14.13. Volume scattering mechanisms contributing in first order for an in-
homogeneous, elastic seabed. In addition to the four conversion processes indi-
cated, there are three types of heterogeneity to consider: density, compressional
wave speed, and shear wave speed fluctuations.

The equivalent interface scattering cross section due to volume hetero-
geneity is derived in Sect. M.2 and is of the form

σ = −πk4wa
2
ρ

2
Im

⎛
⎝ ∑

η,α,η′,β

dηαd
∗
η′β

Wαβ

(
(Δkη +Δk∗η′)/2

)
(Δkηz −Δk∗η′z)

⎞
⎠ , (14.49)

where Wαβ is a matrix of cross-spectra for volume heterogeneities analo-
gous to (14.25). The elastic case is discussed briefly in Sect. 14.2.2. The
α and β sums run over the three types of heterogeneity: density, compres-
sional wave speed, and shear wave speed (α, β = ρ, p, t). Thus, following
[D. Jackson and Ivakin 1998], spectra for wave speed heterogeneity are em-
ployed as opposed to the choice of spectra for modulus heterogeneity in the



14.2 Elastic Sediment Volume Scattering 403

fluid development above. As noted earlier, the choice is arbitrary and is made
primarily for convenience. The fluctuations in density and wave speeds may
be correlated, thus the α �= β cross-terms may be important. Note that
the arguments of the cross-spectra are complex; the Fourier transform rela-
tion between the spectra and the corresponding (real) covariances defines the
continuation of the spectra into the complex domain. The sum in (14.49) is
purely imaginary, so the operator, Im, for the imaginary part is only needed
for numerical reasons. The η and η′ sums run over the four types of wave
conversion caused by volume scattering: (1) compressional to compressional
(η = pp), (2) shear to compressional (η = pt), (3) compressional to shear
(η = tp), and (4) shear to shear (η = tt). Symbolically,

η = qq′,

where q and q′ run over the two types of waves (q, q′ = p, t). As noted
earlier, volume heterogeneities cause conversion to both shear polarizations,
but upgoing shear waves with horizontal particle motion suffer total reflection
at the interface and do not contribute to the scattering cross section in first
order. The following wave vector differences appear in (14.49):

Δkη = k+q (Ks)− k−q′(Ki) . (14.50)

The upgoing and downgoing wave vectors, k+q (K) and k−q (K) , are defined
in (9.17). Expression (14.50) gives the changes in wave vector for the corre-
sponding conversions, and these wave vector differences appear as arguments
in the cross-spectra in (14.49). The coefficients dηα are

dηα = wηDηα , (14.51)

where
wqq′ = Vwq(Ks)Vwq′(Ki)a−1

q a−1
q′ , q, q

′ = p, t . (14.52)

The transmission coefficients, Vwq, are defined in Ch. 9, where angular ar-
guments are used. The use of transverse wave vector arguments instead is
straightforward. The coefficients Dηα are elements of the 3-column matrix

D = (Dρ|Dp|Dt) , (14.53)

where Dρ = D′
ρ +Dt/2 and

D′
ρ =

⎛
⎜⎜⎝
1− bpp
bpv
−bvp
bvv

⎞
⎟⎟⎠ , (14.54)

Dp =

⎛
⎜⎜⎝
2
0
0
0

⎞
⎟⎟⎠ , (14.55)
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Dt = 2

⎛
⎜⎜⎝

2g2b2pp − 2g2
−2gbptbpv
2gbtpbvp

−bvtbtv − bvvbtt

⎞
⎟⎟⎠ , (14.56)

with g = at/ap = ct/cp and

bqq′ = e+q (Ks) · e−q′(Ki), (14.57)

where q, q′ = p, t, v and the unit vectors e±q (K) are defined in Ch. 9. The
subscripts p and t denote unit vectors in the direction of propagation of
compressional and shear waves, while the subscript v denotes the polarization
vector of the vertically polarized shear wave.

14.2.2 Statistical Description of Elastic Heterogeneity

The statistics of volume heterogeneities in the elastic case appear in (14.49) as
a matrix of spatial (3-dimensional) cross-spectra, Wαβ(k). These are Fourier
transforms of cross-correlation functions for the normalized fluctuations

γρ = δρ/ < ρ >, γp = δcp/ < cp >, γt = δct/ < ct >. These spectra provide a
sufficient description of heterogeneity in the small-perturbation approxima-
tion. The form defined for the fluid case (7.14) is useful here, with the indices
expanded to include shear (α, β = ρ, p, t). As this form is analytic over the
domain of interest, it automatically gives the analytic continuation required
to define the spectra for complex arguments.

14.2.3 Numerical Examples

Several numerical examples are provided in [Ivakin and Jackson 1998], where
it is noted that shear has a negligible effect on volume scattering in sand but
is important in rock. Figure 14.14 compares backscattering due to volume
heterogeneity and interface roughness for parameters appropriate to rock
(see Sect. 5.6 and [Hamilton 1978, Hamilton 1979b]). For lack of informa-
tion regarding heterogeneity, the cross-spectra have been set to zero and the
spectra for the three fluctuation types have been given equal strength. It is
noteworthy that appreciable volume scattering is predicted in spite of the
relatively low value assigned the spectral strengths, w3αβ . Also, one might
have supposed that a seafloor composed of rock would not be acoustically
penetrable, but this is not the case, as noted in Ch. 9. Penetration is large
near the shear critical angle (39.7◦ in this case), where volume scattering
increases, roughness scattering decreases, and reflection loss increases, owing
to proximity to the Rayleigh angle (Sect. 13.2.2).

A comparison of bistatic scattering due to heterogeneity and roughness
is given in Fig. 14.15, for the same conditions as in Fig. 14.14. Surprisingly,
volume scattering is predicted to dominate roughness scattering near the
specular direction.
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Fig. 14.14. Upper: Backscattering due to volume fluctuations compared to inter-
face roughness scattering. Lower: Flat-interface reflection loss. The model param-
eters are appropriate to rock and are: aρ = 2.5, νp = 2.5, δp = 0.02, νt = 1.3,
δt = 0.1, w2 = 0.000141 m0.75, γ2 = 3.25, w3ρρ = w3pp = w3tt = 6×10−6, γ3 = 3.0.
All cross-spectra are set to zero. The frequency is 30 kHz.
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Fig. 14.15. Upper: Bistatic scattering due to volume fluctuations for rock com-
pared to interface roughness scattering. The incident grazing angle is 20◦ and the
bistatic angle is fixed at 180◦ so that the x-axis, the scattered grazing angle, covers
all directions in the plane of incidence, including the backward (20◦) and specular
(160◦) directions. Lower: Bistatic scattering as a function of bistatic angle, with in-
cident and scattered grazing angles set to 20◦. The specular direction corresponds
to a bistatic angle of 0◦ and the backscatter direction to 180◦. All other parameters
are as in Fig. 14.14.



406 14 Sediment Volume Scattering

In summary, perturbation theory predicts strong and interesting effects
in volume scattering in rock seafloors. Laboratory experiments may be the
best means of testing the predictions of theory, as characterization of the
heterogeneity of rock in situ is a difficult undertaking.

14.3 Research Issues

While considerable effort has been devoted to the development and testing
of volume scattering models based on perturbation theory, the experimental
tests of these models have not been particularly convincing owing to uncer-
tainties in the characterization of heterogeneity. These models assume that
heterogeneity is continuous spatially and do not incorporate discrete scatter-
ers such as shell fragments. While models for discrete scatterers may not be
difficult to formulate, experimental tests will be challenging, again because
of difficulties in characterization. Further work is also needed in the “gray
area” where scattering cannot be clearly divided into interface and volume
components. Examples include worm tubes, shell deposits on the interface,
and thin layers having rough boundaries.



15 Acoustic Penetration of the Seafloor

While scattering of sound by the seafloor into the water column is a cen-
tral problem in high-frequency ocean acoustics, acoustic penetration into
the sediment is a subject of increasing importance. Acoustic penetration
makes possible sonar detection and identification of buried mines, pipelines,
cables, and archeological objects. One might expect the penetrating field
strength to be very low for “fast” sediments, whose compressional wave
speed exceeds the water sound speed. For these sediments, compressional
waves tend to be refracted upward and out of the sediment, with small
penetration depths compared to “slow” sediments such as silt and clay.
Both theoretically [Jensen and Schmidt 1987], and in controlled measure-
ments [Williams et al. 1989, Altenberg et al. 1991], the penetrating field has
been found to agree reasonably well with expectations based on fluid sedi-
ment theory. That is, penetration is substantial if the incident grazing angle is
larger than the critical angle and is slight otherwise, being due to the evanes-
cent wave (Sect. 8.6). Earlier literature (e.g., [Muir et al. 1979]) had noted
apparent strong subcritical penetration that was later explained as due to
use of a parametric source having narrow beamwidth [Wingham et al. 1986,
Jensen and Schmidt 1987].

From these early results, there developed an expectation that it would
be difficult for a high-frequency sonar to detect objects buried in sand, for
which the critical grazing angle is usually about 30◦. This assumes the sonar
is attempting detection at ranges much greater than the water depth. In
such cases, the grazing angle is smaller than the critical angle, and subcrit-
ical penetration would be required for detection of buried targets. It was
assumed that the only practical means of detecting targets buried in sand
would involve the evanescent wave (Sects. 8.2 and 8.6), whose penetration
depth is on the order of the acoustic wavelength. This would require oper-
ation at frequencies below 10 kHz. Contrary to these expectations, it was
found that targets buried in sand (e.g., [Chotiros and Boyle 1992]) were of-
ten detected when they supposedly should have been invisible. A recent ex-
ample of subcritical detection was reported by [Piper et al. 2002] and illus-
trated in Fig. 15.1. In addition to unexpected target detections, anomalous
subcritical penetration was seen in measurements on sandy seafloors (e.g.,
[Boyle and Chotiros 1992, Lopes 1996]).
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Fig. 15.1. Images of cylindrical targets buried in a sandy sediment. These
images were obtained using a synthetic-aperture sonar operating at 20 kHz
[Piper et al. 2002]. In the left image the top of the target is 50 cm below the inter-
face, and the grazing angle is 3.3◦–4.3◦. In the right image the top of the target is
15 cm below the interface, and the grazing angle is 8◦–10◦. A ripple field having
mean wavelength of about 70 cm was present at the site. (see second color insert)

As indicated in Fig. 15.2, various mechanisms have been proposed to
explain anomalous penetration. The two that have received the most at-
tention are refraction of a Biot slow wave (which has no critical angle
and always refracts downward), and scattering by interface roughness. The
Biot slow wave mechanism [Chotiros 1995a] can provide significant pene-
trating energy if the Biot parameters of the medium depart considerably
from those employed by most investigators, yielding a slow wave speed in
the neighborhood of 1000 m s−1, considerably faster than the expectations
of most investigators. This possibility has been the subject of some debate
[Stoll 1998, Chotiros 1998] and of experimental investigation, discussed be-
low. Rough-interface models have been used to show that subcritical data
can be explained by interface scattering [Moe 1996, Thorsos et al. 2000a,
Pouliquen et al. 2000a, Maguer et al. 2000a, D. Jackson et al. 2002]. In par-
ticular, [Thorsos et al. 2000a] show that downward scattering by interface
roughness can give rise to incoherent energy fronts that could be misinter-
preted as waves traveling at speeds in the neighborhood of 1000 m s−1.

An experiment (SAX99) was designed to differentiate between the can-
didate subcritical penetration mechanisms [Thorsos et al. 2001a, Thorsos
et al. 2001b]. This and other experiments in the field [Maguer et al. 2000a,
Simpson et al. 2003] and in the laboratory [Mellema99,Simpson and Houston
2000, Lim et al. 2001] have given strong evidence that subcritical penetra-
tion at high frequencies is due to interface scattering. Also, these experiments
failed to show the presence of a “fast” Biot slow wave, that is, one having
speed near 1000 m s−1.
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Refraction of Slow Wave Scattering by Roughness Scattering by Volume
      Heterogeneity

  Scattering by Roughness
and Volume Heterogeneity

Fig. 15.2. Possible mechanisms for anomalous subcritical penetration.

The various aspects of acoustic penetration are illustrated by the data
of [Maguer et al. 2000b] shown in Fig. 15.3. These data were obtained using
the apparatus of Fig. 1.2, which allowed coverage of both a wide range of
grazing angles and acoustic frequencies. In the figure, the largest grazing
angle (31.5◦) is slightly greater than the critical angle, and the penetrating
field is large at all frequencies. For the lower grazing angle (16◦, well below
the critical angle), the penetrating field at the lowest frequencies is due to
evanescent penetration, for which the penetrating field strength drops rapidly
as frequency increases. Eventually, however, this rapid decline ceases, and
pressure levels in the sediment are much greater than flat-interface, fluid
theory would predict. This anomalous penetration was ascribed to scattering
by seafloor roughness, which was substantial at this site (Fig. 15.4).
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Fig. 15.3. Measured penetrating field strength at a depth of 25 cm, figure adapted
from [Maguer et al. 2000b]. The “Penetration Ratio” is the ratio of the pressure
magnitude at 25-cm depth and the incident pressure magnitude at the interface.
The straight, dashed line labeled “evanescent slope” gives the rate of falloff with
increasing frequency for evanescent penetration. The vertical position of this line is
arbitrary.
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Fig. 15.4. Interface relief as measured by digital stereophotograpy in the experi-
ment of [Maguer et al. 2000b].

Models for acoustic penetration due to seafloor roughness can be divided
into two basic types: those that provide individual realizations of the acoustic
field in the seafloor (given a realization of the rough seafloor) and those that
provide formal averages (Sect. 2.3.2) of the mean-square acoustic field. The
models providing individual realizations are suited to Monte Carlo simula-
tions and have been implemented in both the small-roughness perturbation
[Maguer et al. 2000a, Thorsos et al. 2000a] and Kirchhoff [Pouliquen et al.
2000a, Maguer et al. 2000a] approximations. This monograph will primarily
treat the formally averaged approach, as it is most similar to the bulk of the
scattering models already presented. As noted in Sect. L.1, the formally aver-
aged Kirchhoff approximation employs an additional assumption not needed
in the single-realization approach. In the strict Kirchhoff approximation, the
reflection coefficient (or transmission coefficient if penetration is of interest)
varies with position owing to the varying local slope of the interface. In the
formally averaged approach, it is necessary to use a constant value, chosen
somewhat arbitrarily. This is not a serious problem if the incident grazing
angle is greater than the critical angle, but this domain is of little interest in
the penetration problem. As a consequence, the following discussion is limited
to the perturbation model.
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15.1 Roughness Perturbation Model

Moe [Moe 1996, Moe and Jackson 1998] developed a first-order, formally av-
eraged, perturbative model for the acoustic penetration problem. This model
yields predictions for the mean-square pressure in the sediment and has been
compared to experimental data by [Thorsos et al. 2000a], who also examine
a first-order single-realization model.

The starting point for the perturbation model is the T-matrix giving the
spectrum of plane waves scattered into the seafloor due to interface roughness.
Appendix K defines the perturbation series for arbitrary orders, but here,
only the first two terms are needed. In perturbation theory, the order of
a term determines its dependence on the roughness amplitude. Thus, the
zeroth-order term is independent of roughness, the first-order term increases
linearly with roughness amplitude, and so on. It will be assumed that a unit-
amplitude, single-frequency, plane wave is incident on the seafloor.

The zeroth-order term is the solution to the flat-interface problem, and
can be written without reference to the T-matrix. From Sect. 8.5, noting
that the pressure transmission coefficient is equal to one plus the reflection
coefficient,

P0(R, z) = [1 + Vww(Ki)]eiKi·R−ikpβp(Ki)z , (15.1)

where Vww is the flat-interface reflection coefficient, Ki is the 2D vector com-
posed of the horizontal components of the incident wave vector, and βp(Ki)
is the complex sine of the angle in the sediment, as given by Snell’s law. The
pressure field expressed by (15.1) will be evanescent for subcritical grazing an-
gles but will be large for grazing angles greater than the critical angle. Thus,
this term describes both evanescent and refractive acoustic penetration.

The first-order term for the scattered pressure in the sediment at r =
[R, z], z < 0, is

Ps(R, z) =
∫

T (1)
wp (Ks, Ki)ei Ks·R−ikpβp(Ks)zd2Ks , (15.2)

where T
(1)
wp (Ks, Ki) is the first-order T-matrix given by (K.45). It can be

put in the form

T (1)
wp (Ks, Ki) =

ikw
βw(Ks)

Awp(Ks, Ki)F (Ks −Ki) , (15.3)

with
Awp(Ks, Ki) =

1
2
[1 + Vww(Ki)][1 + Vww(Ks)] ×{

(1− 1/aρ)
[
Ks ·Ki

k2w
+

βp(Ki)βw(Ks)
ap

]
− 1 + 1

a2paρ

}
. (15.4)

In the expressions above, kw is the wavenumber in water, aρ is the sed-
iment/water density ratio, and ap is the complex sound-speed ratio. The
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development to this point has not introduced formal averaging. Before do-
ing so, a deterministic problem for which averaging is unnecessary will be
considered: sinusoidal ripple.

15.1.1 Sinusoidal Ripple

It is instructive to begin with the simplest relevant scenario, diffraction of
a unit-amplitude incident plane wave by a sinusoidal interface. In first-order
perturbation theory (Sect. 13.2), scattering by sinusoidal ripple having trans-
verse (horizontal) wave vector K0 results in a change in the transverse part
of the three-dimensional acoustic wave vector from the incident value Ki

to either of two values Ks = Ki ±K0. The three-dimensional wave vector
in the sediment has a vertical component −kpβp(Ks). If this vertical com-
ponent has a real part much larger in magnitude than its imaginary part,
the scattered wave will not be evanescent and will propagate in the sedi-
ment. This is an example of subcritical penetration. The grazing angle of
the downward-propagating acoustic wave can be most simply obtained in the
case for which loss is neglected, and the incident acoustic energy propagates
in a direction normal to the strike of the ripple. In this case, the problem
becomes two-dimensional as illustrated by Fig. 15.5. The grazing angle, θps,
of the downward-propagating acoustic wave has a cosine equal to the ratio,
Ks/kp|δ=0, giving

cos θps = νp(cos θwi − λw
λ0
) . (15.5)

In (15.5), θwi, νp, λw, and λ0 are, respectively, the incident grazing angle,
sediment/water sound-speed ratio, acoustic wavelength in water, and ripple
wavelength. Note that (15.5) yields a real angle only if the condition

λw > λ0(cos θwi − 1/νp) (15.6)

is satisfied. This is a high-frequency cutoff condition: penetration will be slight
for frequencies greater than the value for which the acoustic wavelength in
water is equal to λ0(cos θwi − 1/νp).

The ripple relief function will be taken to be of the form

f(R) =
√
2h0 cos(K0 ·R+ θ0) , (15.7)

where R = xex + yey and

K0 =
2π
λ0
(cosφ0ex + sinφ0ey ). (15.8)

In (15.7), h0 is the RMS ripple amplitude, φ0 is the ripple “propagation”
angle relative to the x-direction, and θ0 is the phase of the ripple relative to
ripple having a peak at the origin. The Fourier transform of the ripple relief



15.1 Roughness Perturbation Model 413

θ
ps

λ 0wiθwiθ cθ<

Fig. 15.5. Illustration of downward diffraction by sinusoidal ripple when the prop-
agation direction of the incident acoustic field is normal to the strike (line parallel
to crests) of the ripple.

function (15.7) consists of two delta functions with the result that (15.2)–
(15.4) yield

P−(R, z) =
kwh0√
2βw(Ks)

Awp(Ks, Ki)e−iθ0+iKs·R−ik2βp(Ks)z|Ks=Ki−K0 .

(15.9)
This is one of two diffracted waves, this one having transverse wave vector

equal toKs = Ki−K0. There will also be a diffracted contribution, P+(R, z),
having transverse wave vector given by Ks = Ki+K0. This contribution can
be found by substituting Ks = Ki +K0 in the equations given above, but
will generally be small except near the interface, as this wave is evanescent
under the conditions of interest here. The total penetrating field up to first
order in perturbation theory is

P (R, z) = P0(R, z) + P−(R, z) + P+(R, z) , (15.10)

where P0(R, z) is given by (15.1).
Although both the zeroth-order and first-order fields have magnitudes

that are constant with respect to the horizontal coordinates, interference
between these fields gives rise to the position dependence of penetrating field
magnitude seen in Fig. 15.6. In this figure, field magnitude is expressed as
“loss,” defined as −20 log10 |P (R, z)|, with a unit-amplitude incident plane
wave.



414 15 Acoustic Penetration of the Seafloor

10 20 30 40 50

0

10

20

30

40

50

Incident Grazing Angle (deg)

Lo
ss

 (
dB

)
10

20

30 40 kHz

10 20 30 40 50

0

10

20

30

40

50

Incident Grazing Angle (deg)

Lo
ss

 (
dB

)

10

20

30 40 kHz

10 20 30 40 50

0

10

20

30

40

50

Incident Grazing Angle (deg)

Lo
ss

 (
dB

)

10

20

30 40 kHz

10 20 30 40 50

0

10

20

30

40

50

Incident Grazing Angle (deg)

Lo
ss

 (
dB

)

10

20

30 40 kHz

Under Crest 

Under Trough 

Downslope

Upslope

(a) (b) 

(c) (d)

Fig. 15.6. Signal loss due to penetration computed using simple diffraction theory
with ripple parameters h0 = 0.01 m, λ0 = 0.48 m. The one-way loss is computed at
a depth of 17 cm with the incident wave propagating normal to the ripple crests.
Loss is position dependent due to interference between the zeroth- and first-order
terms. The receiver positions assumed are, moving in increments of one-quarter
ripple wavelength (12 cm) away from source: (a) under a ripple crest, (b) under the
maximum downslope, (c) under a trough, (d) under the maximum upslope. From
[D. Jackson et al. 2002].

15.1.2 Formally Averaged Perturbation Model

Acoustic penetration due to random interface roughness has been treated us-
ing formal averaging (Sect. 2.3.2) by Moe [Moe 1996, Moe and Jackson 1998].
A bistatic scattering cross section for scattering into the seafloor is defined
in analogy with (K.9):

σwp(Ks,Ki) =
k4w
ν2p
|Awp(Ks,Ki)|2W (Ks −Ki) . (15.11)

With reference to Fig. 15.7, the incident and scattered horizontal wave vectors
are evaluated in terms of the source–receiver geometry as follows:

Ki = kw(R−Ri)/|r− ri| (15.12)

and
Ks = kw(Rs −R)/|rs − r| , (15.13)

with ri = (Ri, zi) and rs = (Rs, zs).
In direct analogy with the situation for bistatic scattering into the water

column, (J.15), the mean-square scattered penetrating pressure is computed
as follows:
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Fig. 15.7. Geometry for integration over mean scattering interface to obtain the
mean-square scattered pressure in the sediment. The vector r = [R, 0] lies on the
mean plane (z = 0) and not on the rough interface. The same is true of the area
element, d2R.

< |Ps(rs)|2 >=
∫
z=0

σwp(Ks,Ki)|Pi(r)|2|rs − r|−2e−2k′′
p |rs−r|d2R . (15.14)

This integration assumes that the far-field criteria defined in Sect. J.2 are
satisfied by the penetrating field. These criteria require the interface to be in
the far field of the source, the mean-square scattered field to have a rather
broad angular dependence, and the receiver to be at least a few wavelengths
from the interface.

While (15.14) applies to single frequency (continuous wave) transmissions,
it can be adapted to pulsed-wave situations [Moe and Jackson 1998]. Assum-
ing the source is omnidirectional, (15.14) is replaced by

< |Ps(rs, t)|2 >= s20

∫
z=0

σwp(Ks,Ki)|u(t− td)|2e−2k′′
p |rs−r|

|r− ri|2||rs − r|2 d2R . (15.15)

In this expression, u(t) is the complex envelope of the source waveform, having
peak magnitude unity. The source level corresponding to this peak is given
in terms of the parameter s0 by (F.7). The squared transmit envelope is
evaluated with time delay, td, which depends on the integration coordinates,
R:

td =
1
cw
(|r− ri|+ |rs − r|/νp) . (15.16)

The sediment attenuation factor is evaluated using the imaginary part of the
compressional wavenumber, k′′p , at the center frequency. The numerical imple-
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mentation of (15.15) is straightforward. The integration domain is gridded,
and the time delay, td, is evaluated for each grid point. For each grid point,
the squared transmit envelope is weighted, delayed, and added to the time
series for the mean-square pressure. An example of the application of (15.15)
is given in Fig. 15.8 for several depths in the sediment. In this example, the
incident grazing angle is about 11◦, significantly smaller than the critical
angle (about 30◦). For this geometry, the zeroth-order penetrating field is
evanescent and entirely negligible. The penetrating field is due to scattering
by interface roughness, assumed here to be isotropic. If the pulse is sufficiently
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Fig. 15.8. An example of subcritical penetration due to interface scattering. Time
series for mean-square pressure have been computed using (15.15) at points in the
sediment having depths indicated by the curve labels. These points are on a vertical
line, and the source is at a horizontal distance of 20 m and 4 m above the seafloor.
The sediment geoacoustic and roughness parameters are taken from Table 13.1 for
the sandy SAX99 site. The roughness spectrum was of the form (D.7) with K0 =
10 m−1. The water speed is 1530 m s−1, and the transmitted pulse has a Gaussian
envelope, u(t) = exp(−t2/t2s), with ts = 100 μs and source level 190 dB re 1 μPa
@ 1 m.

broadband that frequency-dependent attenuation may cause pulse distortion,
the strategy given by [Moe and Jackson 1998, D. Jackson et al. 2002] can be
used.

15.1.3 Experimental Tests of the Penetration Model

The formally averaged perturbation model compared favorably [Thorsos
et al. 2000a] to the experimental data of [Chotiros 1995a]. This test was
qualitative in nature, and did not consider absolute pressure levels. Most
of the quantitative model-data comparisons for acoustic penetration have
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Fig. 15.9. Apparatus used to measure acoustic penetration into the seafloor during
the SAX99 experiment.

used the individual-realization approach rather than the formal averaging
approach developed here. Nonetheless, tests of the perturbation approx-
imation based on single realizations are certainly relevant to the valid-
ity of the averaging approach. The perturbation prediction was found to
be consistent with measured penetrating field levels for a rippled sandy
seafloor by [Maguer et al. 2000a], subject to the uncertainties stemming
from the unavoidable difference of the actual seafloor relief and that gen-
erated for input to the model. The SAX99 experiment (Fig. 15.9) in-
cluded measurements of penetration for another rippled, sandy seafloor
[D. Jackson et al. 2002, Chotiros et al. 2002a]. The predictions of the simple
sinusoidal ripple model for the diffraction angle (15.5) compared well with
data from SAX99, as seen in Fig. 15.10.

The measured levels of the penetrating field were also found to be in
substantial agreement with the perturbation model, as shown in Fig. 15.11.
In this comparison, the acoustic frequency was 30 kHz and the individual-
realization model was used Monte Carlo fashion to generate ten realizations
for comparison with the data.

Further tests of the first-order penetration model have been undertaken
by [Lopes et al. 2002, Lopes et al. 2003, Nesbitt and Lopes 2004, Lopes et
al. 2005]. Carefully controlled backscattering measurements were made us-
ing buried targets in a test pool, motivated in part by the apparent failure
of the perturbation model to explain the strong return seen in Fig. 15.1 for
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Fig. 15.10. Comparison of measured and modeled diffraction angles in sediment
for incident grazing angles noted in each panel. The predictions of Eq. (15.5) are
indicated by the solid lines, and the symbols “x” show the predictions of a more
detailed model. From [D. Jackson et al. 2002], where geometric and geoacoustic
parameters are given.
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Fig. 15.11. Comparison of measured and modeled field levels, expressed as loss
relative to the incident pressure level at the seafloor. The nominal grazing angle
was 20◦, to be compared with the critical angle of about 30◦. The horizontal axis
gives the azimuthal coordinate of the movable source with numbers indicating each
location. The data are represented by open circles and are averages over three
hydrophones with mean depths as indicated in each panel. The solid line indicates
the perturbation prediction for an arbitrarily chosen realization, and the error bars
show the extremes over ten realizations. From [D. Jackson et al. 2002]
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the target 50 cm below the interface. In the test pool experiments, ripples
were formed by scraping the sandy bottom with a machined rake, and the
resulting ripple field was measured using IMP2 [Tang 2004]. Both cylindri-
cal and spherical targets were employed, the latter filled with silicone oil to
increase target strength. Modeling employed single-realization perturbation
theory, rather than the formally averaged approach. To test the possibility
that failure of the first-order perturbation approximation might explain the
difficulty with the data of Fig. 15.1, the perturbation approximation was
carried to higher order (Sect. K) [Lim and Sammelmann 2004]. In the tests
of [Lopes et al. 2005], the first-order perturbation approximation performed
satisfactorily for frequencies between 15 kHz and 40 kHz with ripple hav-
ing wavelength 75 cm and RMS amplitude 1.7 cm. When the ripple RMS
amplitude was increased to 2.5 cm at the same wavelength, the second-order
approximation was found to improve model-data agreement noticeably. While
these tests gave convincing validation of the first-order roughness penetration
model, they did not explain the modeling difficulties with the field data of
Fig. 15.1, which may have to do with uncertainties in the environment, target
burial, or target physics.

15.2 Mathematical Accuracy

Exact two-dimensional calculations [Thorsos et al. 2000a] have shown that
the perturbation approximation applied to subcritical penetration has a wider
range of validity than might be expected. Figure 15.12 shows the results of an
exact calculation using the two-dimensional roughness spectrum (13.93) and
parameters appropriate to a sand seafloor. The scattering strength plotted
in the figure correspond to the 2D decibel equivalents of σ (cross section
for scattering into the water) and σwp (cross section for scattering into the
sediment). As discussed in Sect. 13.7, the perturbation model is accurate to
within 1 dB over all scattered grazing angles for scattering into the water.
It is interesting that accuracy is still better for scattering into the sediment.
As explained in [Thorsos et al. 2000a], this is due to the fact that the sound
speed contrast between the water and sediment is not large (νp = 1.13).

15.3 Research Issues

The roughness penetration model has been validated in several controlled
experiments combining acoustic and physical measurements. Nevertheless,
there remain unexplained detections of deeply buried targets in synthetic-
aperture sonar exercises. While these detections may be due to experimen-
tal uncertainty, further research is needed to clarify the situation. Higher-
order perturbation theory has been developed to accommodate larger rip-
ple amplitudes, and the small-slope approximation should be useful here as
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Fig. 15.12. Comparison of perturbation predictions with exact two-dimensional
Monte Carlo calculations employing 50 rough-interface realizations. The roughness
spectrum has parameters w1 = 0.0002 m, Lc = 0.227 m, the water sound speed
is 1500 m s−1, and the acoustic frequency is 20 kHz, corresponding to kwh = 1.0,
where h is the RMS relief. The sediment parameters are νp = 1.13, aρ = 2.0,
and δp = 0.0155. The incident grazing angle is 20◦, and the “scattering angle” is
defined such that 20◦ is the backscatter direction and 160◦ is the specular direction.
Adapted from [Thorsos et al. 2000a].

well. Penetration experiments can help discriminate between sediment acous-
tic propagation theories by determining the frequency dependence of wave
speed and attenuation and by measuring particle motion (wave polarization)
[Osler and Lyons 2004]. Thus, there is ample practical and fundamental mo-
tivation for future penetration experiments.



16 Backscatter Statistics

The scattering cross section is proportional to the second moment of re-
ceived pressure and determines the average bottom reverberation level for
a given seafloor. In sonar target detection, it is useful to understand the
fluctuations about this average, as strong fluctuations may be interpreted as
targets. These fluctuations are usually described in terms of the “probability
of false alarm,” which is the probability that the received pressure envelope
will exceed some preset threshold. It is often assumed that complex scat-
tered pressure is a Gaussian random process, and, in this case, the envelope
obeys Rayleigh statistics. While Rayleigh statistics provide a good approxi-
mation in many cases, departures from Rayleigh statistics for large envelope
values are of interest in setting detection thresholds. Figure 16.1 illustrates
the threshold problem using simulated reverberation time series. The upper
panel of the figure is a time series for an envelope obeying Rayleigh statistics
and the lower panel is an envelope times series obeying Weibull statistics
(Sect. 16.3.2). Both series are normalized to have unit mean squares. In these
examples, a detection threshold set at the value

√
10 (10 dB above the RMS

envelope) produces zero threshold crossings in the displayed time interval for
the Rayleigh series while the same threshold produces numerous crossings for
the Weibull series. If the sonar designer wishes to set the threshold to achieve
a specified rate of false alarms, it is useful to know the statistics obeyed by
the reverberation envelope.

This chapter gives a brief account of some of the models developed for
the statistics of the backscattered envelope. These models are different in
spirit than fluctuation models for electromagnetic and acoustic propagation
[Uscinski 1978, Flatté et al. 1979, Ishimaru 1997], which usually begin with
the assumption of spatial stationarity of statistics of the medium and then
employ approximate forward-scattering theory to obtain statistical measures
of the field. In the propagation problem, strong fluctuations are usually caused
by focusing due to fluctuations in the acoustic index of refraction (these fluc-
tuations are largely due to fluctuations in water temperature and salinity).
Even a medium with Gaussian fluctuations may cause non-Gaussian fluctu-
ations in the field, owing to the nonlinear relation between properties of the
medium and the resulting scattered field. It is possible that application of a
properly chosen scattering approximation [Jakeman 1982] may lead to useful
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Fig. 16.1. Simulated reverberation envelopes obeying Rayleigh statistics (upper
panel) and Weibull statistics (lower panel). The Weibull parameter is β = 1.3 (Sect.
16.3.2). The RMS envelope in both cases is unity, and the horizontal dashed line
represents a detection threshold set 10 dB above the RMS envelope.

results regarding fluctuation statistics for relatively featureless seafloors, but
investigators have for the most part assumed that envelope fluctuations result
from seafloor patchiness. An example of patchiness is shown in Fig. 16.2, in
which patches of mud are found on a rippled sand seafloor.

As automated target detection involves many decisions per ping, very
low probabilities of false alarm are of interest. In the Weibull example of
Fig. 16.1, there are 4000 samples in the time domain, and 18 of these ex-
ceed the detection threshold. In this case the “probability of false alarm”
(PFA) is about 18/4000 = 0.0045. The PFA for the Rayleigh process il-
lustrated in the figure is evidently so low that no threshold crossings are
seen. To estimate the PFA in this case, considerably more data would be
needed. Although this is an artificial example, it shows that measurements
of envelope statistics can be difficult, as it is necessary to build envelope his-
tograms from many thousands of data points, necessitating repeated ping-
ing over a statistically uniform area of seafloor. If a towed system is used,
depth changes and platform instability may introduce spurious fluctuations.
While fixed platforms offer stability, the available scattering area is lim-
ited. If the sonar scans this area by rotating, anisotropy may introduce
additional variability not associated with patchiness. In some experiments,
a fixed sonar position and orientation have been used, and investigators
have depended on ping-to-ping fluctuations to obtain a large statistical sam-
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Fig. 16.2. Side-scan sonar (300 kHz) image of the SAX04 experimental site after
the passage of Hurricane Ivan. Ripples, with wavelengths of ∼75 cm, are evident.
Mud deposits are seen as dark patches of 10–50 m extent [Richardson et al. 2005].
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ple [Stanic and Kennedy 1992, Stanic and Kennedy 1993, Trevorrow 2004].
These envelope fluctuations are induced by fluctuations in the water column
and may not correspond to those obtained with a sonar moving across the
seafloor.

Departures from Rayleigh statistics have been observed in high-frequency
field measurements by several investigators [Crowther 1980, Wilson and Pow-
ell 1983, Chotiros et al. 1985, Gensane 1989, Lyons et al. 1997, Lyons and
Abraham 1999, Lyons et al. 2002a], in laboratory measurements [Becker 2004],
and in low-frequency field measurements [Dorfman and Dyer 1999]. Various
models have been developed for envelope statistics, some purely empirical
and some with at least a partial basis in physics. This chapter will discuss
several of these models and will define and discuss the associated envelope
probability density functions.

16.1 General Statistical Properties of Backscattered
Field

The statistics of the complex backscattered pressure field time series, P (t)
(see Appendix E), are of primary interest in this chapter. Here, P with no
time argument displayed will denote a complex sample at some instant of
time of the echo times series. Most, but not all, of the statistical questions
of interest have to do with an ensemble of values of P , obtained at the same
round-trip travel time, t, from separate pings on different parts of the seafloor.
The measurement geometry and the statistical nature of the seafloor itself
will be assumed to be the same for all pings in the ensemble. Breaking P into
its real and imaginary parts,

P = U + iV , (16.1)

one may expect that both U and V are sums of terms arising from numer-
ous scatterers. Since the phase of the pressure from each scatterer depends
strongly on range, the phase of each scatterer should be completely random
and independent of the phases of the other scatterers. Because the phase is
random, the contributions of a given scatterer to U and V should be inde-
pendent in the statistical sense. The mean of each will be zero, as the sums
have both positive and negative terms. Both U and V should have the same
variance, σ2. Thus, one expects

< U >=< V >= 0 , (16.2)

< U2 >=< V 2 >= σ2 , (16.3)

< UV >= 0 . (16.4)

From these conditions it follows that
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< P >= 0 , (16.5)

< PP ∗ >= 2σ2 , (16.6)

< P 2 >= 0 . (16.7)

The object of primary interest is the probability density function (PDF) for
the envelope, px(x), where the envelope is

x = |P | =
√
U2 + V 2 . (16.8)

The conditions given above require the phase of P to be uniformly distributed
over the interval [−π, π]. This is expected for backscatter, but is not a phys-
ical law, merely a plausible assumption inherent in many of the models to be
discussed. Note that for forward scattering near the specular direction, the
phase may not be entirely random if the coherent reflection coefficient (see
Sect. 2.3.2) is not zero.

In terms of the envelope PDF, the probability of false alarm introduced
earlier is

Pfa(x) =
∫ ∞

x

px(x′)dx′ . (16.9)

Examples of measured and modeled false-alarm probabilities are shown in
Fig. 16.3.

The probability of false alarm can be used to examine the behavior of
the PDF for large excursions of the envelope from the mean, the situation
of interest in sonar performance prediction. Another measure of fluctuation
is the “scintillation index,” which is the normalized variance of the squared
envelope, equivalently, the normalized variance of the intensity:

σ2I =
< x4 > − < x2 >2

< x2 >2 . (16.10)

Random processes with σ2I << 1 can be said to have low levels of fluctuation,
and the opposite is true if σ2I >> 1. It will be seen that a process with
Gaussian statistics has a scintillation index of unity.

16.2 Gaussian Statistics

If the backscattered pressure results from a large number of scatterers, the
real and imaginary parts of the received pressure will each be given by a sum
with many terms, each term having random amplitude, with both positive
and negative values. In this case, if the scatterers have comparable ampli-
tude and are not “bunched” together into a few small clusters, the Central
Limit Theorem states that both U and V should obey Gaussian statistics, at
least approximately. This argument can be made in many cases of interest and
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Fig. 16.3. Probability of false alarm versus normalized envelope (mean-square
envelope, < x2 > = 1) at 80 kHz for three different sites. The data displayed in the
left column are from a shell-covered site, those in the center column are from a sand
site, and those in the right column are from a mud site. The data are indicated by the
stepped lines and various fits are shown: (dashed-dotted lines, Rayleigh), (dotted
lines, Weibull), (dashed lines, K-distribution), (solid lines, Rayleigh-mixture). The
grazing angle range is shown in each panel, and the increasing departure from
Rayleigh statistics as angle increases is due to the reduction in area of the ensonified
region. From [Lyons and Abraham 1999].

accounts for the fact that the statistics of backscattered pressure are often ap-
proximately Gaussian. More generally, the complex pressure time series, P (t),
is often assumed to be a Gaussian random process [Bendat and Piersol 2000,
Sect. 5.3]. This is a stronger statement than the assertion that the statistics
of the pressure at any one round-trip time are Gaussian and has profound
implications for a number of statistical issues.

It can be shown that if the complex pressure is Gaussian, with indepen-
dent, identically distributed real and imaginary parts, the squared envelope,
y = x2, will have an exponential PDF,
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py(y) =
1

< x2 >
e−y/<x2> , y ≥ 0 , (16.11)

= 0 , y < 0 ,

and the envelope will have a Rayleigh PDF,

px(x) =
2x

< x2 >
e−x2/<x2> , x ≥ 0 , (16.12)

= 0 , x < 0 ,

where
< x2 >=< y >= 2σ2 . (16.13)

The probability of false alarm is

Pfa(x) = e−x2/<x2> . (16.14)

Rayleigh envelope statistics can be considered the “typical” behavior of
reverberation, at least until one considers large excursions of the envelope,
x >

√
< x2 >. The level of fluctuation for the Rayleigh case is conveniently

stated in terms of the natural logarithm of the squared envelope,

b = ln(y) . (16.15)

Using (16.11), it can be shown that [Dyer 1970]

< b >= ln(< x2 >) − γ , (16.16)

σb =
√
< b2 > − < b >2 =

π√
6
, (16.17)

where γ = 0.5772157 is Euler’s constant. The standard deviation of the nat-
ural logarithm of the squared envelope, σb, can be converted to decibels
through multiplication by 10 log10(e), which gives a standard deviation of
5.57 dB. Thus, reverberation pressures are expected to fluctuate a good deal,
even in the absence of seafloor patchiness. To obtain the scintillation index
(16.10), one needs the fourth moment of the envelope. Equation (16.11) can
be used to find < x4 >=< y2 >= 2 < x2 >2. From this, the scintillation
index for reverberation obeying Rayleigh envelope statistics is unity.

Low-order moments of the backscattered pressure field time series, P (t),
are also of interest, and the Gaussian case provides a tractable example that
serves as a baseline with which to compare more complicated behavior. The
covariance of the field,

< P (t)P ∗(t+ τ) >= BPP (t, τ) , (16.18)

will be assumed to be independent of the variable t, that is, P (t) will be taken
as stationary. This can only be an approximation, as sonar echoes invariably
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show temporal variations in average intensity, but the approximation can be
improved by applying time-varying gain to the backscattered signal. In this
case, the covariance is a real, even function of the lag, τ . Expression (16.18)
can be considered a generalization of (16.6), and (16.7) generalizes to

< P (t)P (t+ τ) >= 0 . (16.19)

By differentiating (16.18) with respect to τ and setting τ = 0, one can obtain
the result

< P (t)
P ∗(t)
dt

>= 0 , (16.20)

as any finite-bandwidth random process has ∂BPP /∂t = 0 for τ = 0.
One important general property of Gaussian random processes is that

the first moment (assumed zero here) and covariance suffice to determine all
statistical measures. This is so because the covariance completely determine
the multivariate Gaussian PDF for samples taken at different times within a
ping. Equivalently, if the process is stationary, the power spectrum contains
all necessary statistical information. The reverberation power spectrum can
be found as the Fourier transform of the covariance,

WPP (ω) =
1
2π

∫ ∞

−∞
BPP (τ)e−iωτdτ . (16.21)

If the scattering cross section has only a weak dependence on frequency, say,
varying by less than 1 dB over the bandwidth of the transmitted signal,
then the spectrum of reverberation should be approximately proportional to
the spectrum of the transmitted signal. This, in turn, is proportional to the
Fourier transform of the autocorrelation of the transmitted signal. An inverse
transform then gives [Plemons et al. 1972]

BPP (τ) =< |P |2 > ρs(τ) (16.22)

where

ρs(τ) =

∫∞
−∞ s(t)s∗(t+ τ)dt∫∞

−∞ |s(t)|2dt
(16.23)

is the normalized autocorrelation of the transmitted signal, represented in
baseband as s(t) (Appendix E). It should be noted that Gaussian statis-
tics were not used in obtaining (16.22), so this expression should be ap-
proximately true for any scattering process that does not unduly “color” the
backscattered spectrum. As a counterexample, extreme frequency dependence
could result from layering of the seafloor. The rapid dependence of scattering
strength on grazing angle seen in models for layered seafloors [Ivakin 1986,
Ivakin 1989, Mourad and Jackson 1993, Essen 1994, Moe and Jackson 1994]
implies a rapid dependence on frequency as well. In such cases, the reverber-
ation spectrum may exhibit deep nulls at certain frequencies, and this can
void the assumptions leading to (16.22). It is easy to see why this should
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be so, as the reverberation will “repeat” itself due to reflections, causing the
covariance to peak at lags corresponding to the times between reflections.
Such a situation is unlikely to exist at high frequencies owing to the extreme
regularity that would be demanded of the layering.

For a pure-tone (constant frequency), unshaded (rectangular envelope)
signal, the autocorrelation is a triangular function of lag having width twice
the transmitted pulse length. In this case, the reverberation autocorrelation
vanishes for lags greater than the pulse length. While this result is based on
the idealization that the echo signal is a stationary random process, it pro-
vides a basis for approximate statements regarding temporal correlation of
reverberation in general. Suppose, for example, that one wishes to know the
minimum temporal sampling interval that will provide statistically indepen-
dent samples of the envelope. For a Gaussian random process, independence
and lack of correlation are synonymous, as the covariance determines all
statistics. Equation (16.22) shows that the samples should be spaced by at
least the pulse time resolution in order to be independent. The pulse time
resolution is given by the width of the autocorrelation (16.23), and is compa-
rable to the inverse of the bandwidth of the transmitted signal. This resolu-
tion is about equal to the pulse length for pure-tone signals and can be much
shorter for frequency-modulated or coded signals intended for matched-filter
processing [Medwin and Clay 1998, Sect. 6.5].

It must be remembered that the temporal covariance is defined in terms
of a hypothetical average over an infinite ensemble. An estimate of the co-
variance based on a finite number of echoes will not vanish for lags greater
than the pulse length, but these nonzero values may be statistical noise that
reduces as the number of echoes in the sample increases.

As a useful example of the analytical convenience attending stationary
Gaussian random processes, consider the temporal covariance of intensity
(more precisely, the temporal covariance of the squared envelope),

< y(t)y(t+τ) > − < y(t) >2=< P (t)P ∗(t)P (t+τ)P ∗(t+τ) > − < |P |2 >2 .
(16.24)

This is a fourth moment of the complex pressure , but a useful result is
readily obtained, as higher moments of Gaussian random processes can be
found in terms of the first and second moments. If a, b, c, and d are real,
jointly-Gaussian random variables with zero mean [Bendat and Piersol 2000,
Ch. 3],

< abcd >=< ab >< cd > + < ac >< bd > + < ad >< bc > . (16.25)

For a complex stationary Gaussian random process, this, together with
(16.18), (16.19), (16.22), and (16.24), gives [McDaniel 1990]

< y(t)y(t+ τ) > − < y(t) >2=< |P |2 >2 ρ2s(τ) . (16.26)
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16.3 Non-Gaussian Statistics

Most models for non-Gaussian reverberation assume that the seafloor is
patchy, with localized regions of high scattering strength as in Fig. 16.4.
The ensonified region pictured in the figure is discussed in Sect. G.2.1, and
has range extent determined by the pulse time resolution and angular ex-
tent determined by the sonar azimuthal directivity. If the ensonified area
encompasses many patches of comparable strength, the Central Limit The-
orem comes into play, and the complex pressure is Gaussian with Rayleigh
envelope statistics. Non-Gaussian behavior emerges as the number of patches
in the ensonified region becomes smaller.

L

d

c

L

Fig. 16.4. Cartoon showing the elements of models for non-Rayleigh envelope
statistics. Patches having elevated scattering cross section give rise to non-Rayleigh
behavior if the number of such patches within the ensonified area (dimensions Lc×
Ld) is not large.

In considering alternatives to the Rayleigh PDF, there is a trade-off be-
tween flexibility of the model and its complexity (number of adjustable pa-
rameters). The Rayleigh PDF has only one parameter, the mean-square en-
velope. If the mean-square envelope is set equal to the measured value, the
Rayleigh PDF has no freely adjustable parameters. In fitting non-Rayleigh
envelope statistics, the PDFs to be tested should have two or more param-
eters. The probabilities of false alarm for several such PDFs are compared
with the Rayleigh case in Fig. 16.5.

The idealizations used in the development of the models of Chs. 13 and
14 remove much of the complexity needed to understand non-Rayleigh be-
havior, so the envelope statistics models tend to be either purely empirical
or heuristic rather than physical. Most models incorporate the main feature
seen in data and illustrated in Fig. 16.4: as the ensonified area is reduced,
departures from Rayleigh statistics become more pronounced.
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Fig. 16.5. Probability of false alarm versus normalized envelope for several different
probability density functions. The mean-square envelope for all curves is unity, and
the other parameters used are explained in the main text.

16.3.1 Lognormal PDF

The lognormal PDF is equivalent to a Gaussian PDF for the logarithm of
the envelope, d = lnx:

pd(d) =
1√
2πσ2d

e
− (d−d̄)2

2σ2
d , −∞ < b <∞ . (16.27)

As one normally takes logarithms of dimensionless quantities, the envelope,
x, can be assumed to have been normalized by division by a reference pa-
rameter having the same units. Changing variables from the log-envelope to
the envelope,

px(x) =
1

x
√
2πσ2d

e
− (ln x−d̄)2

2σ2
d , 0 < x <∞ . (16.28)

This is the lognormal PDF [Skolnik 2001, Ch. 7], having two adjustable pa-
rameters, d̄, the mean of the log-envelope, and σ2d, its variance. The mean-
square envelope is
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< x2 >= e2(d̄+σ2d) . (16.29)

If the mean-square envelope is set to unity, one free parameter remains. This
freedom was exercised in [Chotiros et al. 1985] by setting the standard de-
viation of the log-envelope (expressed in dB) to the value 5.57 dB, as for
Rayleigh statistics. This same constraint is used in the lognormal curve of
Fig. 16.5. In [Chotiros et al. 1985], envelope statistics data are compared with
the Rayleigh and lognormal PDFs. The data were obtained with a fixed sonar
position and direction for two different 3-dB full beamwidths, 2.8◦ and 21◦.
For the wider beamwidth, Rayleigh statistics provided a good fit to the proba-
bility of false alarm, but, for the narrower beamwidth, the low-probability tail
(Pfa < 0.03) was better fit by lognormal statistics, while Rayleigh statistics
provided a better fit to the higher-probability portion. The acoustic frequency
was 30 kHz, the pulse length was 0.25 ms, and the data were taken at ranges
from 80 to 101 m with the source-receiver at a height of 4.5 m above the
seafloor. The sediment was a fine sand with mean grain size Mz = 3.5φ,
density ratio aρ = 1.9, compressional speed ratio νp = 1.10, and attenuation
αp = 14.1 dB/m. The departure from Rayleigh statistics for the narrower
beamwidth supports the expectation that smaller ensonified areas may yield
non-Gaussian statistics.

Envelope statistics data from several seafloor types were compared to the
Rayleigh, lognormal, Weibull, chi-squared, and Rice PDFs by [Gensane 1989].
The lognormal PDF was found to provide the best overall fit, but the au-
thor cautions that the fit is suspect as the data failed statistical tests for
stationarity.

16.3.2 Weibull PDF

The Weibull PDF is a simple extension of the Rayleigh PDF that adds one
more parameter. Where the squared envelope has an exponential PDF in
the Rayleigh case (16.11), Weibull statistics give an exponential PDF for the
envelope raised to the power β. From this the PDF for the envelope follows
as [Skolnik 2001, Ch. 7]

px(x) = αβxβ−1e−αxβ

, x ≥ 0 . (16.30)

The mean-square envelope is

< x2 >= α−2/βΓ(2/β + 1), (16.31)

where Γ is the gamma function, and the probability of false alarm is

Pfa(x) = e−αxβ

. (16.32)

Note that for β = 2, Weibull statistics become Rayleigh. Figure 16.5 shows
a plot of the Weibull probability of false alarm for < x2 >= 1 and β = 1.5.
Examples of fits of the Weibull PDF to envelope statistics can be found in
[Lyons and Abraham 1999] (also see Fig. 16.3 of this monograph).
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16.3.3 K Distribution

The K distribution (more properly, the K PDF) for the envelope is [Lyons
and Abraham 1999]

px(x) =
4√

αΓ(ν)

(
x√
α

)ν

Kν−1(2x/
√
α) , (16.33)

where Γ is the gamma function, and Kν is the modified Bessel function of the
second kind (also known as the modified Bessel function of the third kind, or
the Basset function). The mean-square envelope is

< x2 >= αν, (16.34)

and the probability of false alarm is

Pfa(x) =
2

Γ(ν)

(
x√
α

)ν

Kν(2x/
√
α) . (16.35)

Figure 16.5 shows a plot of the probability of false alarm for the K distribution
with< x2 >= 1 and ν = 10. Examples of fits of the K distribution to envelope
statistics can be found in [Lyons and Abraham 1999] (also see Fig. 16.3 of
this monograph).

The K distribution approaches the Rayleigh distribution as the param-
eter ν becomes large compared to unity. An interpretation of this param-
eter is given by [Abraham and Lyons 2002b], who associate ν with the
number of patches in the ensonified region (ν need not be an integer).
These authors give illustrative derivations of the K distribution, and one,
in particular, is physically suggestive. It is shown that K-distributed re-
verberation will result if the ensonified region contains a number, 2ν, of
Gaussian scattering patches, each having random area, exponentially dis-
tributed. In this picture, the scattering patches are surrounded by a non-
scattering background. The particulars of this picture may not be relevant,
though the association of ν with the number of patches seems significant. In
[Abraham and Lyons 2002a, Abraham and Lyons 2004] low-frequency (450–
700 Hz) reverberation data are fitted by the K distribution. The expected in-
crease in ν was observed as pulse resolution increased (bandwidth increased)
up to a point, but actually decreased as resolution approached its highest
values. The authors develop a model accounting for the large aspect ratio
(Lc/Ld) of the ensonified region at high resolution and find that this model
can be fitted to the bandwidth dependence of the envelope statistics data.

16.3.4 Rayleigh Mixture PDF

Non-Rayleigh statistics can be modeled in terms of two or more Rayleigh
processes having different second moments, with each assigned a probability
of occurrence [Stewart et al. 1994, Lyons and Abraham 1999]. Then
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px(x) =
M∑

m=1

Pm
2x
σ2m

e−x2/σ2m , x ≥ 0 , (16.36)

with
M∑

m=1

Pm = 1 . (16.37)

The Rayleigh mixture model assumes that the seafloor consists ofM different
types of patch, with the mth patch type having a scattering cross section
proportional to σ2m and occurring with probability Pm. These probabilities
give the fraction of seafloor occupied by each type of patch. The patches are
larger than the ensonified region so that there is never more than one patch
type ensonified for any given ping. It is important to realize that (16.36) is
not the PDF for the sum of Rayleigh random variables, as the PDF for a sum
of independent random variables is obtained by convolution of the individual
PDFs. Nor can (16.36) be regarded as the PDF for the envelope of the sum
of Gaussian-distributed pressures. Such a sum would be Gaussian and its
envelope would have a Rayleigh PDF.

The mean-square envelope is

< x2 >=
M∑

m=1

Pmσ2m , (16.38)

and the probability of false alarm is

Pfa(x) =
M∑

m=1

Pme−x2/σ2m . (16.39)

Although this PDF provides an unlimited number of fitting parameters,
[Lyons and Abraham 1999] obtain good fits with only two terms (see Fig.
16.3). Figure 16.5 shows a plot of the probability of false alarm for a two-
component Rayleigh mixture PDF with P1 = 0.75, P2 = 0.25, σ22/σ

2
1 = 2.

16.3.5 Crowther’s Model

An early seafloor fluctuation model was presented by [Crowther 1980] who
assumed that scattering strength was spatially dependent with two kinds of
patches, one with higher scattering cross section than the other. The observed
scattering cross section is then a spatial average over the ensonified region.
As a result, the scattering cross section is a random variable with statistics
dependent on the dimensions of the ensonified region. The joint PDF for the
squared envelope and cross section is

pys(y, s) =
1
s
e−

y
s ps(s) , (16.40)
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where s is proportional to the random scattering cross section. The propor-
tionality is chosen for convenience such that < s >= 1, giving mean-square
envelope unity. The probability of false alarm is

Pfa(x) =
∫ ∞

0
e−

x2
s ps(s)ds . (16.41)

Crowther obtains an expression for Pfa(s) using a Markov process argu-
ment in one dimension. There are inconsistencies in the expressions of
[Crowther 1980] which have been corrected here.

The ensonified region is represented by a straight line of length X, and
this region is divided into two types of patches, one having a relatively low
backscattering cross section and the other having cross section larger by a
factor g. The fraction of the ensonified line that is occupied by patches of the
stronger scattering type is denoted by the random variable β. The probability
that any arbitrarily chosen point on the line is in a high-scattering region is
denoted p. Thus, 1 − p is the probability that an arbitrarily chosen point is
in a low-scattering region. It follows that

< β >= p . (16.42)

The relation between the scattering cross section and β is

s =
1− β + gβ

q
, (16.43)

where q is a normalizing constant chosen so that < s >= 1:

q = 1 + (g − 1)p . (16.44)

It is convenient to first derive the PDF, pβ(β), from which the PDF for s
follows as

ps(s) =
q

g − 1pβ(β) . (16.45)

The random variables are limited in range, with 0 < β < 1, 1/q < s < g/q.
The Markov argument uses probabilities for transition from one type of

scattering region to another as one moves along the ensonified line. For ex-
ample, the probability that a transition from low scattering (arbitrarily des-
ignated state 0) to high scattering (state 1) will occur in a short interval δx
is

pδx/L ,

and the probability of a transition from state 1 to state 0 is

(1− p)δx/L .

The parameter L is a characteristic length determining the size of the patches.
The PDF for β can be found by considering the various possibilities for the
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division of the ensonified line into patches: (1) only one subpatch, either state
1 or state 0, (2) two patches, state 1 followed by state 0 and vice versa, etc.
For example, the probability that the entire patch is in state 0 is

P0 = (1− p)[1− p
δx

L
]X/δx ,

where the interval 0 < x < X has been subdivided into small subintervals
of equal length, δx. For each subinterval, 1 − pδx/L is the probability that
a transition to state 1 is not made. Taking the natural logarithm of P0,
ln(1 + a) → a as a → 0 can be used to simplify the expression. Finally,
exponentiating the result gives

P0 = (1− p)e−νp , (16.46)

where
ν = X/L . (16.47)

Similarly, the probability that the entire patch is in state 1 is

P1 = pe−ν(1−p) . (16.48)

The probability that the interval (0, X) is comprised of two patches, the
first in state 1 having length βX followed by a patch in state 0 having length
(1− β)X, is

pe−(1−p)νβν(1− p)e−νp(1−β)δβ .

The transition occurs in a small length interval Xδβ with probability ν(1−
p)δβ. This case contributes a term

p10(β) = νp(1− p)e−ν(1−p)β−νp(1−β) (16.49)

to the PDF for β. Terms involving more than one transition require integra-
tion over all possible lengths of those patches whose length is not dictated by
the requirement that the sum of the lengths of all patches in state 1 must be
equal to βX. As an example, five (simple) integrations are required to obtain

p1010101(β) =
1
2! 3!

(pβ)3[(1− p)(1− β)]2ν5p10(β) . (16.50)

The PDF for β can represented as a power series in the variable

μ = 2ν
√
p(1− p)β(1− β) . (16.51)

The terms in this series can be segregated into series for two Bessel functions,
resulting in

pβ(β) = P0δ(β)+P1δ(1−β)+2{I0(μ)+ν[pβ+(1−p)(1−β)]I1(μ)/μ}p10(β) ,
(16.52)
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where I0 and I1 are modified Bessel functions of the first kind. Although
derived for the 1D case, this expression can be applied to the 2D case with
the parameter ν being a measure of the number of strong scattering patches
in the ensonified area.

Using (16.41), (16.45), and (16.52), the probability of false alarm with
unit mean-square envelope is

Pfa(x) = (1− p)e−qx2−νp + pe−qx2/g−ν(1−p) +
2νp(1− p)q

g − 1
∫ g/q

1/q

×e−x2/s{I0(μ)+ν[pβ+(1−p)(1−β)]I1(μ)/μ}e−ν(1−p)β−νp(1−β)ds . (16.53)

This expression has three free parameters, g, the ratio of backscattering
cross sections (strong/weak) for the two seafloor types, p, the fraction of the
seafloor occupied by strong scattering patches, and ν, a measure of the num-
ber of strong scattering patches in the ensonified region. Expression (16.53)
approaches the Rayleigh false-alarm probability as g → 1, p → 0, p → 1,
or ν → ∞. Figure 16.6 compares the Crowther and Rayleigh false-alarm
probabilities for a single choice of these parameters.

In [Crowther 1980], this model was fitted to data obtained at several sites
at frequencies of 1.8, 4.1, and 8.1 kHz with satisfactory results. This model has
sufficient free parameters that a good fit is not surprising, but the variation
of model parameters with site, range, frequency, and beamwidth was deemed
plausible and encouraging. Expressions are also given in [Crowther 1980] for
the temporal covariance of the squared envelope, a non-Gaussian generaliza-
tion of (16.26). Comparison of this covariance with data was used to infer
the characteristic patch size, L.

16.3.6 McDaniel’s Models

Two models have been developed [McDaniel 1990, McDaniel 1996] for fluc-
tuations in backscattering due to seafloor roughness. Both models are based
on first-order perturbation theory, but the later model has a stronger phys-
ical basis. Even though the physics of the earlier model is questionable, this
model might be useful for empirical fits to envelope statistics.

The freely adjustable parameters of the model [McDaniel 1990] are the
“number of degrees of freedom,” nc and nd, in the cross-range and down-range
directions. The envelope PDF in this model is

px(x) =
2x
α

∫ ∞

0
pnd

(
x2

αv
)pnc

(v)
dv

v
, (16.54)

where

pn(u) =
u

n
2−1e−u

Γ(n/s)
(16.55)
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Fig. 16.6. Probability of false alarm versus normalized envelope for the model of
[Crowther 1980] compared to that for Rayleigh statistics. The mean-square envelope
for both curves is unity, ν = 8, g = 10, and p = 0.1.

is the chi-square PDF for n degrees of freedom, and α has the same signifi-
cance as in the K distribution. The mean-square envelope is

< x2 >=
αncnd
4

, (16.56)

and the probability of false alarm is

Pfa(x) =
1

Γ(nd/2)Γ(nc/2)

∫ ∞

0
v

nc
2 −1e−v[Γ(nd/2)− γ(nd/2,

x2

αv
)]dv ,

(16.57)
where

γ(n, u) =
∫ u

0
vn−1e−vdv (16.58)

is the incomplete gamma function. In spite of appearances, (16.54) and
(16.57) are symmetric with respect to the parameters nc and nd. If either
parameter is set to the value 2, the integral in (16.57) can be written in terms
of the modified Bessel function of the second kind, yielding the K distribution
result (16.35) with ν = nc/2 or nd/2, using whichever parameter is not fixed
at the value 2. False-alarm probabilities computed in this model are sensitive
to slight departures of either nc or nd from the value 2 when the other pa-
rameter takes on large values. While this model provides a generalization of
the K distribution, the author notes in a later publication [McDaniel 1996]
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that it does not result from a rigorous application of rough-surface scattering
theory. Thus, this model is best treated as a potentially useful PDF with the
significance of parameters nc and nd to be determined.

A physically based model has been developed by [McDaniel 1996]. Small-
roughness perturbation theory is used to obtain expressions for the scintilla-
tion index and the temporal covariance of intensity. Gaussian statistics are
assumed for the interface relief function, f(R), and it is shown that station-
arity yields a scintillation index of unity except at very short ranges. This, in
turn, suggests that the statistics of the complex pressure are Gaussian. To ob-
tain non-Gaussian behavior, nonstationarity, or patchiness, is introduced by
allowing the RMS roughness to vary with position, giving a roughness spec-
trum that also varies with position. In perturbation theory, this imparts the
same position dependence to the backscattering cross section at fixed grazing
angle, σ(R). The following discussion departs slightly from [McDaniel 1996]
in using the cross section rather than the spectrum as the spatially dependent
variable. This is done in the expectation that the results so obtained may be
applicable when small-roughness perturbation is not, e.g., for large roughness
or for sediment volume scattering. The sonar will “see” a spatial average, s,
of the position-dependent scattering cross section:

s =
∫

Ω(R)σ(R)d2R . (16.59)

In (16.59), single-frequency operation is assumed, so that pulse length effects
do not alter the ensonified region. The directivity of the source and receiver
are represented by the function Ω(R), and the grazing angle dependence of
the scattering cross section is assumed to be negligible over the ensonified
region defined by Ω(R). Without loss of generality it will be assumed that∫

Ω(R)d2R = 1 . (16.60)

Non-Gaussian behavior will be caused by fluctuations in s, but an ensemble of
echos taken from different regions having the same value of s will be assumed
to have Gaussian statistics and an exponential PDF for the squared envelope,
y. In this case, the joint PDF for s and y is given by (16.40), presuming y is
scaled appropriately. It follows that < y >=< s > and < y2 >= 2 < s2 >.
This gives a scintillation index

σ2I =
2 < s2 >

< s >2 − 1 . (16.61)

The first and second moments of s can be evaluated using (16.59) and are

< s >=< σ > (16.62)

and
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< s2 >=
∫ ∫

Ω(R1)Ω(R2) < σ(R1)σ(R2) > d2R1d
2R2 . (16.63)

The spatial correlation of the backscattering cross section will be assumed to
be of the form

< σ(R1)σ(R2) >=< σ >2 [1 + γCσ(R1 −R2)] . (16.64)

In this expression, γ is the normalized variance of fluctuations in the backscat-
tering cross section (variance divided by the squared mean), and Cσ(R1−R2)
is the normalized spatial covariance of these fluctuations (Cσ(0) = 1). Note
that the fluctuations that represent nonstationarity are themselves being rep-
resented by a stationary random process. This potentially confusing point will
be revisited later in this section.

Using (16.61)–(16.64), the scintillation index is

σ2I = 1 + 2γ
∫ ∫

Ω(R1)Ω(R2)Cσ(R1 −R2)d2R1d
2R2 . (16.65)

In order to obtain numerical results, it is necessary to assume specific
forms for the ensonification function, Ω(R), and the normalized covariance.
The following Gaussian forms allow analytical evaluation of (16.65):

Ω(R) =
1

πLcLd
e
−( x2

L2
d

+ y2

L2c
)
, (16.66)

Cσ(R) = e−
R2

L2 . (16.67)

The result is
σ2I = 1 +

2γ√
(1 + L2

c/L
2)(1 + L2

d/L
2)

. (16.68)

This equation has three freely adjustable parameters: Lc/L, Ld/L, and γ.
McDaniel also considers pulsed operation for which the ensonified region has
a down-range dimension, Ld, that is determined by the pulse length. For
a transmitted pulse having the Gaussian baseband (App. E) representation
exp(−t2/t2s), (16.68) still holds, with the replacement

Ld =
cwts
2 cos θ

, (16.69)

and with Lc determined by the range and the azimuthal widths of the source
and receiver directivity patterns. In (16.69), cw is the water sound speed, and
θ is the grazing angle.

This model has the expected dependence of statistics on the size of the
ensonified region, that is, the scintillation index rises above the value unity as
the region becomes smaller. Figure 16.7 shows this dependence for a range of
the two parameters determining the size of the ensonified region. A fit to the
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Fig. 16.7. Scintillation index as a function of the Gaussian pulse length parameter,
ts, for the model of [McDaniel 1996]. The curves are labeled by values of cross-range
dimension, Lc. Other parameters are: water sound speed cw = 1500 m s−1, corre-
lation length L = 1 m, normalized variance of scattering cross section fluctuations
γ = 1.5, and grazing angle θ = 30◦.

data of [Gensane 1989] in [McDaniel 1996]) produced plausible values for the
correlation length (L = 1 m) and for the normalized variance of scattering
cross section (γ = 1.5). The time-domain intensity covariance is also obtained
in [McDaniel 1996], providing a non-Gaussian counterpart to (16.26).

This model has several properties worthy of note. As mentioned earlier,
[McDaniel 1996] finds that, in perturbation theory, seafloor roughness obey-
ing stationary, Gaussian statistics can give rise to non-Gaussian scattered
pressure statistics. Although this behavior only occurs at impractically short
ranges, it is of formal interest. One might suppose that, as the scattered
pressure in perturbation theory is a linear functional of the relief function,
f(R), the pressure must also be Gaussian. This is because any sum of Gaus-
sian random variables is also Gaussian. However, the relief function is a real
Gaussian random process and the pressure, P , is complex. The linear rela-
tionship between f(R) and P given by Eq. (3) of [McDaniel 1996] does not
enforce the condition (16.7). As a result, P need not be a complex Gaussian
random variable of the type that yields Rayleigh envelope statistics.

There is another circumstance under which stationary, Gaussian rough-
ness statistics might give rise to non-Gaussian scattering. If the RMS rough-
ness of the seafloor is such as to violate the conditions for validity of first-order
perturbation theory (Sect. 13.7), there is a possibility of significant departure
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from Gaussian statistics, even for relatively featureless, non patchy seafloors.
For example, for sand ripples having RMS height comparable to the acoustic
wavelength, first-order perturbation theory would fail completely and this
leaves open the possibility of non-Gausssian behavior.

The primary source of non-Gaussian behavior in the model of [McDaniel
1996] is nonstationarity of seafloor roughness. There is a potential for confu-
sion in this terminology, as the seafloor statistics in this model are actually
stationary. This must be so because the statistical description of patchiness
embodied in (16.64) is not tied to any particular location (x, y). Thus, this
model, and most conceivable models for patchiness will actually use station-
ary statistics! This seems contrary to the notion of patchiness, but this is only
a question of semantics. In [McDaniel 1996], two types of averages are taken,
the first over the nonstationary Gaussian randomness of roughness with the
roughness covariance having a dependence on position. At this stage, rough-
ness statistics are nonstationary. This model employs a second stage of aver-
aging, however, in which this spatial dependence is assumed to be random,
and all dependence of average quantities on the coordinates x and y is lost.
Thus, the statistics of the model are stationary, as asserted at the beginning
of this paragraph, even though the model incorporates patchiness.

16.4 Research Issues

Although backscatter statistics have been an object of study for a number
of years, several problems have slowed progress. A key problem is the lack of
appropriate environmental measurements. Another problem is that most cur-
rent models either are purely empirical or are obtained from heuristic phys-
ical arguments. In addition, the acoustic measurements are difficult because
large ensembles of echo data must be gathered without significant variations
due to unwanted causes such as platform instability and slow environmental
changes. If progress is to be made, investigators must find methods of isolat-
ing mechanisms causing non-Gaussian behavior, perhaps in part by means
of laboratory measurements. Theory can be a guide here, and it should not
be assumed that non-Rayleigh envelope statistics only result from compli-
cated environmental scenarios. For example, stationary, Gaussian roughness
can produce non-Gaussian scattering due to elevated scattering from steep
slopes.

Future field measurements should begin with relatively uncomplicated
seafloor types, and methods of quantifying patchiness should be developed
and applied. Such efforts, coupled with the development of physical models,
should lead to a better understanding of reverberation statistics.



A List of Symbols

The following list of mathematical symbols includes most, but not all of those
used in the main text and appendices. The arguments of functions are not
shown in this list, as different arguments are used in different contexts. In
many cases, the same symbol is used for more than one parameter, but only if
the parameter appears in well-separated portions of the monograph. In other
cases, the same parameter is represented by two different symbols, adhering
to differences in acoustic and geoacoustic notation. Definitions are not given
here for some of the symbols that appear only once, in which case the reader
should be able to find the definition in nearby text.

A A diagonal matrix with elements taken from A±
α

A Area
Å Angstroms (10−10 m)
Aall Generalization of Aww to the poroelastic case
Awp Analogous to Aww, but for scattering into sediment
Aww Function appearing in perturbation and small-slope approximations
A±

α A transform used in perturbation theory
a Pore size, radius, coefficient in modified Archie’s law, parameter in

bulk density profile function
ap Complex ratio of compressional wave speed to water sound speed
aq Complex ratio of wave speed to water sound speed for wave type q
at Complex ratio of shear wave speed to water sound speed
aα Amplitude of zeroth-order compressional wave
aρ Ratio of sediment and water mass densities
Bs Interface slope covariance matrix
B Interface relief covariance, matrix in poroelastic roughness scattering
BPP Covariance of random, complex, pressure time series
Bα A wave vector function used in perturbation theory
Bαβ Volume fluctuation covariance
B̃αβ Estimated volume fluctuation covariance
b Azimuthally averaged directivity
bi Source complex directivity function in wave vector space
br Receiver complex directivity function
bx Source complex directivity function



C Modulus in Biot theory, a factor in the T-matrix second moment
Ch Structure constant for interface relief
C0 Gas thermal conductivity
cp Speed (complex) for compressional wave
cq Speed (complex) for wave type q
cqphase Phase speed (real) for wave type q
ct Speed (complex) for shear wave
cw Sound speed in water
c0 Wood’s value for compressional wave speed, reference wave speed
D Two-dimensional difference coordinate, a matrix appearing in

perturbation theory
D Matrix appearing in model for volume scattering in elastic media,

magnitude of D, water depth
Db Bioturbation mixing coefficient (diffusivity)
Dmn Elements of matrix, D
Dr Receiver directivity function in dB, relative density of sediment
Dx Source directivity function in dB
D1 A function appearing in volume perturbation theory
D2 A function appearing in volume perturbation theory
d Transducer aperture size, cross-range, sediment grain diameter,

dimension of ensonified region, inner diameter of core liner,
depth below water–sediment interface

di Range from source to scattering patch
dn Thickness of nth seafloor layer
ds Range from scattering patch to receiver
d0 Wave orbital diameter at the seafloor
E A diagonal matrix appearing in perturbation theory
E(n) Rectangular matrices appearing in poroelastic scattering theory
e±
h Horizontal polarization vector for shear wave
e±
q Unit vector in direction of propagation for wave type q
e±
v Vertical polarization vector for shear wave
ex Unit vector in x-direction (similarly for y and z)
e Sediment void ratio (not to be confused with base of natural logarithms),

specific modulus
F Fourier transform of f
Ft Proportional to Fourier transform of ∇× f
F Flow correction factor in Biot theory, Fourier transform of interface

relief function (f), formation factor, spatial frequency
Fn Fourier transform of fn

Fp Proportional to Fourier transform of ∇ · f
f Force per unit volume, first-order vector source term
f Frequency, seafloor interface relief function
fc Biot’s characteristic frequency
fi Components of f
Gpw Green’s function, fluid sediment to water
Gwp Green’s function, water to fluid sediment
Gww Green’s function, water to water
Gα Green’s functions for unbounded, homogeneous elastic medium
G0 Green’s function for unbounded, homogeneous fluid



g Acceleration of gravity, dipole Green’s function, parameter in
Crowther’s false-alarm model

H Modulus in Biot theory, transfer function, height, hydraulic tortuosity
Hp Fourier transform of material impulse response function
Ht Fourier transform of material impulse response function
H ′ Real part of transfer function
H ′′ Imaginary part of transfer function
h RMS interface roughness, impulse response, specific density
hp Material impulse response function
ht Material impulse response function
h0 Ripple RMS relief, ripple peak-to-trough amplitude
h′ Inverse Fourier transform of H ′

h′′ Inverse Fourier transform of iH ′′

I Intensity
I Magnitude of I, electric current
IK Kirchhoff integral
IOI Index of impedance
J Electrical current density
K Two-dimensional horizontal wave vector
Ki Two-dimensional horizontal incident wave vector
Ks Two-dimensional horizontal scattered wave vector
K0 Two-dimensional horizontal wave vector for ripple
K Magnitude of K, hydraulic conductivity
KG Graphic kurtosis
Kb Bulk modulus
K′

b Real part of bulk modulus
K′′

b Negative of imaginary part of bulk modulus
Keff Effective modulus
Kf Bulk modulus of (drained) sediment frame
Kg Bulk modulus of sediment grain material
Ki Magnitude of Ki

Ks Magnitude of Ks

Kw Bulk modulus of water
Kx x-component of K (similarly for Ky)
K0 Magnitude of K0, coefficient of earth pressure,

spectral cutoff wave number
k Three-dimensional wave vector
ki Incident three-dimensional wave vector
kp Three-dimensional compressional wave vector
kpi Incident, down-going compressional wave vector
k(α)pi Incident, up- and down-going compressional wave vectors
kps Scattered, down-going compressional wave vector
k(α)ps Scattered, up- and down-going compressional wave vectors
k±

q Up-going and down-going wave vectors for wave type q
kr Reflected three-dimensional wave vector
ks Scattered three-dimensional wave vector
kt Three-dimensional shear wave vector
k Wavenumber, attenuation factor (dB m−1 kHz−1)
kb Thermal conductivity



kp Compressional wavenumber
k′
p Real part of compressional wavenumber
k′′
p Imaginary part of compressional wavenumber
kq Wavenumber for wave type q
ks Shear wave attenuation factor, sediment thermal conductivity
kt Shear wavenumber
kw Acoustic wavenumber in water
L Bottom loss in dB, correlation length of interface roughness,

length parameter in Crowther’s false-alarm model, length
Lb Depth of mixing by benthic fauna
Lc Low-frequency cutoff length in spectrum, correlation length,

cross-range dimension of ensonified region
Ld Down-range dimension of ensonified region
Lf Correlation length of surface field
M A matrix appearing in perturbation theory
M Modulus in Biot theory, mass of sediment sample
Md Graphic median grain size
Mz Graphic mean grain size
m Exponent in Archie’s law, strain-hardening index
N Normal to rough interface (not a unit vector)
N Bubble size distribution
Nj Components of N
n Unit normal to rough interface
n Refractive index, strain-hardening index
n′ Real part of n
n′′ Imaginary part of n
P Acoustic pressure field (complex amplitude), absolute water pressure

(including atmospheric pressure), normalized vertical wave vector
component

PA Atmospheric pressure
Peff Effective pressure
Pf Pore fluid pressure
Pfa Probability of false alarm
Pi Incident pressure (complex amplitude)
Pm Probability associated with mth component in Rayleigh-mixture PDF
Pr Reflected pressure (complex amplitude)
Ps Scattered pressure (complex amplitude)
Psurf Effective surface field
P0 Hydrostatic pressure, zeroth-order acoustic pressure field, amplitude of

plane pressure wave, vertical component of overburden pressure
P1 First-order acoustic pressure field
P+ Upward-diffracted acoustic pressure field
P− Downward-diffracted acoustic pressure field
P (n) Square matrices appearing in poroelastic scattering theory
PL Propagation loss
p Time-domain pressure field, a function appearing in the volume

perturbation approximation, probability, probability parameter in
Crowther’s false-alarm model

pd Probability density for natural logarithm of (real) envelope



pref Reference pressure (usually 1 μPa)
ps Probability density for scattering cross section
px Probability density for (real) envelope
py Probability density for squared envelope
pys Joint probability density for squared envelope and scattering cross section
pβ Probability density appearing in Crowther’s false-alarm model
Q Heat flux, a matrix appearing in small-roughness perturbation theory
Q(n) Column matrices appearing in poroelastic scattering theory
Qp Quality factor for compressional wave
Qq Quality factor for wave type q
R Two-dimensional horizontal position vector
R′ Two-dimensional horizontal position vector
Ri Horizontal coordinates of source
Rs Horizontal coordinates of receiver
R Magnitude of R
R′ Magnitude of R′

RS Receiver sensitivity
r Three-dimensional position vector
r′ Three-dimensional position vector
ri Position vector for source
rs Position vector for receiver
r Magnitude of r, range
rref Reference length (usually 1 m)
rs Range from scattering patch (at origin) to receiver
rt Range corresponding to travel time, t
r1 Range from source to reflection point
r2 Range from reflection point to receiver
r2 Coefficient of determination
S Structure function for interface relief, first-order scalar source term,

salinity, degree of sediment saturation
Sb Bottom scattering strength
SkI Inclusive graphic skewness
Sp Specific heat at constant pressure, pore water salinity
SL Source level
s Interface slope (vector or column matrix), a column matrix
s Scattering cross section, complex envelope of transmitted signal
sr Receiving sensitivity as a voltage/pressure ratio
s0 RMS source pressure times range
T A column matrix representing the components of the T-matrix
T(m) mth-order term in expansion of T
T Temperature
Twh T-matrix for scattering from water into horizontally polarized shear wave
Twp T-matrix for scattering from water into sediment compressional wave
Twv T-matrix for scattering from water into vertically polarized shear wave
Tww T-matrix for scattering from water back into water
Twws Scattered (incoherent) part of Tww

T
(n)
wp nth-order contribution to Twp

T
(n)
ww nth-order contribution to Tww



t Time
td Propagation delay time
tp Characteristic time of material impulse response function
tt Characteristic time of material impulse response function
t0 Acoustic travel time from source to receiver via scattering patch
U Displacement
U Wind speed, real part of complex pressure, horizontal velocity
Uc Coherently reflected power
Ui Incident power, components of U
Us Mean scattered power
u Displacement field
ueff Effective displacement
u0 Zeroth-order displacement field
u1 First-order displacement field
u Complex envelope of source waveform
ui Components of u
V Hydraulic flow rate
V Volume, sediment volume, voltage, imaginary part of complex pressure
Vp Phase speed (real) of compressional wave
Vpw Transmission coefficient, fluid sediment to water
Vr RMS receiver output voltage
Vs Phase speed (real) of shear wave, volume of sediment solid particles
Vsed Sediment volume
Vw Water volume
Vwq Transmission coefficient, water to wave type q
Vww Reflection coefficient for flat interface
Vwwc Coherent reflection coefficient (complex)
Vwwi Incoherent reflection coefficient
V

(2)
ww Reflection coefficient to second order for rough interface
VpR Sediment–water sound-speed ratio
v Velocity
v Function giving depth dependence of zeroth-order compressional wave
W Two-dimensional roughness spectrum, weight of a sediment sample
WPP Power spectral density of random, complex, pressure time series
Ws Weight of solid material in a sediment sample
Ww Water weight of a sediment sample
Wzαβ One-dimensional volume fluctuation cross spectrum
Wαβ Three-dimensional volume fluctuation cross spectrum
W1 One-dimensional roughness spectrum
w Relative displacement
w Horizontal range extent of ensonified region in backscattering,

water content of sediment
wi Components of w
wη A factor incorporating elastic transmission coefficients
w1 Interface roughness one-dimensional spectral strength
w2 Interface roughness two-dimensional spectral strength
w3αβ Volume fluctuation cross-spectral strength
x x-coordinate, envelope of signal
Y1 A diagonal matrix used in the poroelastic roughness scattering model
Y2 A diagonal matrix used in the poroelastic roughness scattering model



y y-coordinate, volume-averaging function, squared envelope (x2)
z z-coordinate, depth below water–sediment interface
zc Mean of z1 and z2
ze Normalized impedance for elastic boundary
zi z-coordinate of source
zn z-coordinate of upper interface of (n+ 1)th seafloor layer
zp Boundary impedance for compressional wave
zs z-coordinate of receiver
zw Boundary impedance for acoustic wave in water
zwp Normalized boundary impedance for compressional wave
z1 Integration z-coordinate
z2 Integration z-coordinate



α Tortuosity, structure function exponent,
any spatially fluctuating sediment physical parameter,
constant in Pierson-Moskowitz spectrum, parameter in the Weibull and
K PDFs, attenuation in seawater, exponent of structure function

ᾱ Mean value of fluctuating parameter α
αp Attenuation, dB/ unit length for compressional wave
αq Attenuation, dB/ unit length for wave type q
αqλ Attenuation, dB/wavelength for wave type q
αs Attenuation, dB/ unit length for shear wave
αt Attenuation, dB/ unit length for shear wave
α2 Sediment thermal diffusivity
β Fractional porosity, constant in Pierson-Moskowitz spectrum,

parameter in the Weibull PDF, random variable in Crowther’s false-alarm
model

βq Complex sine of propagation grazing angle for wave type q
γ Specific heat ratio for a gas
γp Compressional relaxation coefficient in Buckingham’s theory,

normalized compressional wave speed fluctuation
γq Displacement ratio for wave type q
γt Shear relaxation coefficient in Buckingham’s theory, normalized shear

wave speed fluctuation
γ1 Relief (or volume) one-dimensional spectral exponent
γ2 Relief two-dimensional spectral exponent
γ3 Volume fluctuation three-dimensional spectral exponent
γα Normalized fluctuation of parameter α
γ̃α Measured value of γα

γκ Normalized compressibility fluctuation
γρ Normalized density fluctuation
ΔK Two-dimensional horizontal wave vector difference
ΔK Magnitude of ΔK
ΔKx x component of ΔK
ΔKy y component of ΔK
Δz Length of core section
Δk Three-dimensional wave vector difference
Δkp Three-dimensional, real compressional wave vector difference
Δkη General three-dimensional wave vector difference
Δk Magnitude of Δk
Δkz Difference in vertical wave vector components
Δp Logarithmic decrement for compressional wave
Δq Logarithmic decrement for wave type q
Δs Logarithmic decrement for shear wave
Δθ Angular spread
δ Bubble damping parameter
δh Bubble damping due to heat loss
δp Loss parameter for compressional wave
δq Loss parameter for wave type q
δr Bubble damping due to radiation
δs Bubble damping due to shear losses
δt Loss parameter for shear wave
δκ Compressibility fluctuation



δρ Density fluctuation
δ1 Frequency-independent loss parameter
η Dynamic viscosity, compressional speed/density fluctuation factor,

index denoting two types of waves in elastic medium, porosity in percent,
anorbital ripple height

η̄ Effective viscosity in Biot theory
ηt Stress relaxation coefficient
θ Grazing angle
θcrit Critical grazing angle
θi Incident grazing angle
θint Intromission angle
θis Local grazing angle for specular reflection
θp Grazing angle of compressional wave
θps Scattered grazing angle of compressional wave
θs Scattered grazing angle
θt Grazing angle of shear wave
θw Grazing angle in water
θwi Incident grazing angle in water
θ0 Ripple phase angle, transducer depression angle
κ Intrinsic coefficient of permeability, compressibility
κ0 Unperturbed sediment compressibility
Λ Horizontal/vertical fluctuation aspect ratio, wavelength
λ Wavelength, Lamé parameter
λp Stress relaxation coefficient
λw Wavelength in water
λ0 Ripple wavelength, unperturbed Lamé parameter
μ Lambert parameter, Lamé parameter (shear modulus),

compressibility/density fluctuation factor, dynamic (or absolute) viscosity
μ′ Real part of shear modulus
μ′′ Negative of imaginary part of shear modulus
μ0 Unperturbed Lamé parameter
ν Shape parameter in the K distribution, parameter in Crowther false-alarm

probability, kinematic viscosity
νp Ratio of wave phase speed (real) to water sound speed for compressional

wave
νq Ratio of wave phase speed (real) to water sound speed, wave type q
νt Ratio of wave phase speed (real) to water sound speed for shear wave
να Negative of z-component of compressional wave vector
ρ Bulk density of sediment, effective density, seawater density
ρ̄ Mean bulk density of sediment
ρ′ Real part of complex effective density
ρ′′ Imaginary part of complex effective mass density
ρe Electrical resistivity
ρeff Effective density
ρes Sediment electrical resistivity
ρew Water electrical resistivity
ρf Mass density of pore fluid
ρg Mass density of sediment particle
ρs Normalized autocorrelation of transmitted signal, parameter in bulk

density profile function, mass density of sediment particle



ρsw Mass density of sediment pore water
ρw Mass density of water
ρ0 Mass density of gas, unperturbed sediment mass density,

parameter in bulk density profile function
ρρp Density–compressional speed correlation coefficient
ρρκ Density–compressibility correlation coefficient
σ Interface scattering cross section (per unit area per unit solid angle),

standard deviation
σI Inclusive graphic standard deviation (sorting)
σ2I Scintillation index
σd Standard deviation of natural logarithm of envelope,

scattering cross section of discrete object
σij Components of stress tensor
σm Set of parameters in the Rayleigh-mixture PDF
σr Rayleigh scattering cross section of fluid sphere
σs RMS interface slope
σv Volume scattering cross-section
σwp Cross section for scattering into the sediment
σ2 Volume scattering parameter
σ′
0 Mean effective stress
σ(2) Roughness scattering cross section to second order
σ(4) Roughness scattering cross section to fourth order
σ̂α Normalized standard deviation of parameter α
τ Pulse length, time lag, horizontal shear stress in water
Φ Spectrum of reflected and scattered plane waves,

two-dimensional spatial frequency roughness spectrum
Φi Spectrum of incident plane waves
Φ0 A function appearing in the small-slope approximation
Φ1 One-dimensional spatial frequency roughness spectrum
φ Scalar potential, azimuthal angle, time-dependent phase angle,

sediment grain size in base-2 logarithmic units, autoregressive
coefficient

φN Value of the grain diameter (in φ units) at cumulative frequency
N (%)

φf Scalar potential for relative displacement
φi Incident azimuthal angle
φs Scattered azimuthal angle, scalar potential for frame displacement
φw Scalar potential for displacement in water
φ0 Ripple azimuthal direction, amplitude of plane compressional wave
φ1 One-dimensional spectral intercept, first-order displacement scalar potential
χ Angle of incidence (measured from vertical)
Ψ Angular width of ensonified region
ψ Vector potential
ψf Vector potential for relative displacement
ψs Vector potential for frame displacement
ψ0 Amplitude of plane shear wave
ψ1 First-order displacement vector potential
Ω Term used in expressions in Biot theory, function defining ensonification

of seafloor



ω Angular frequency
ωc Center frequency
ω0 Bubble resonant frequency
ω1 Reference frequency



B Calculation of Properties of Seawater

Determinations of the values of the physical properties of seawater (density,
sound speed, attenuation, and viscosity) are often required as part of ocean
acoustic experiments. Sound speed and density of the water overlying the
seafloor is required in models for reflection (Chs. 8–11), scattering (Chs. 13
and 14), and penetration (Ch. 15). Sound speed and attenuation of seawater
are required in interpretation of most acoustic measurement data. Sound not
only travels through the water column prior to and after interacting with
the seafloor, but values of pore water sound speed, density and viscosity are
required for many seafloor propagation and scattering models. Pore water
density is required in determinations of sediment bulk density (Sect. 4.3) and
is a parameter in all propagation theories (Ch. 8–10). Pore water resistivity
is an important variable in measurements of porosity using resistivity tech-
niques (Sect. 4.3) and viscosity is required in Biot theory (Ch. 10). In nearly
every case, it is assumed that pore water properties can be calculated using
the formulas developed for seawater.

Seawater physical properties are rarely measured directly but instead cal-
culated using empirical relationships involving temperature, conductivity or
salinity, and pressure or depth. These relationships are obtained from regres-
sions based on numerous, mostly laboratory, measurements over the range
of temperature, salinity, and pressure expected in the world’s oceans. The
measurements are usually made under conditions where particulate matter
(organic and inorganic) is absent (i.e., pure filtered seawater diluted with dis-
tilled water). Many of the relationships for seawater properties require several
steps such as calculation of values of properties for freshwater at atmospheric
pressure and then making corrections for salinity or depth. Some empirical
relationships have evolved through time (especially those for sound speed)
with corrections added to earlier empirical regressions as new data became
available. Recommendations by the Joint Panel on Oceanographic Tables and
Standards (JPOTS) culminated in 1981 in a new definition of practical salin-
ity (PSS 78) and an equation of state for seawater (EOS 80), establishing
precise and reproducible standards for salinity, conductivity, density, specific
volume and density volume anomalies, pressure–depth conversions, freezing
point, specific heat, adiabatic lapse rate, potential temperature, and sound
speed [Fofonoff and Millard 1983, Fofonoff 1985]. The most recent versions of
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the equation of state for seawater are based on the Gibbs thermodynamic po-
tential function [Feistel 2003]. All are based on best-fit polynomial regressions
derived from carefully collected data. Unless otherwise indicated, tempera-
ture, T , is in ◦C, and salinity, S, is dimensionless. A variety of units are
employed in the literature for pressure, P , which may be expressed in bars,
kg cm−2, or water depth. In many cases the algorithms used to calculate
seawater properties far exceed the accuracy requirements of high-frequency
acoustic modeling, but the required computations are not difficult.

B.1 Seawater Density

Seawater density has been a fundamental property required by dynamical
oceanographers for over a century. Knudsen’s Hydrographic Tables were de-
veloped to calculate in situ seawater density (actually specific gravity) from
temperature, salinity, and depth (pressure) [Knudsen 1901, Eckman 1908,
Hesselberg and Sverdrup 1914, Matthews 1932, Cox et al. 1970]. These ta-
bles are based on the relationship between density and salinity, the heat
expansion of seawater at atmospheric pressure, and the compressibility of
seawater all of which were determined through careful laboratory measure-
ments [Knudsen et al. 1902, Forch et al. 1902, Eckman 1908]. More direct
techniques including the use of sound speed measurements to determine sea-
water compressibility and vibrating flow densimeters to measure density were
used to develop the current international standard for density [Millero et al
1080, Millero and Poisson 1981, Fofonoff and Millard 1983]. Seawater density
(ρ, kg m−3) is a function of the density of seawater at atmospheric pres-
sure (ρ(S, T, 0)), pressure (P , bars above 1 atmosphere), and the secant bulk
modulus of water, K,

ρ(S, T, P ) =
ρ(S, T, 0)

1− P/K(S, T, P )
, (B.1)

where ρ(S, T, 0) is given by

ρ(S, T, 0) = ρ(0, T, 0) + S(0.824493− 4.0899× 10−3T + 7.6438× 10−5T 2

−8.2467× 10−7T 3 + 5.3875× 10−9T 4) + S1.5(−5.72466× 10−3

+1.0227× 10−4T − 1.6546× 10−6T 2) + 4.8314× 10−4S2 , (B.2)

T is the temperature (◦C), and S is in PSU (practical salinity units, Sect.
B.6) determined from electrical conductivity of seawater. The density of pure
water ρ(0, T, 0) is given by

ρ(0, T, 0) = 999.842594 + 6.793952× 10−2T − 9.095290× 10−3T 2

+1.001685× 10−4T 3 − 1.120083× 10−6T 4 + 6.536332× 10−9T 5 , (B.3)
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and the secant bulk modulus (K(S, T, P )) is given by

K(S, T, P ) =

19652.21+148.4206T −2.327105T 2+1.360477×10−2T 3−5.155288×10−5T 4

+S(54.6746− 0.603459T + 1.09987× 10−2T 2 − 6.167× 10−5T 3)

+S1.5(7.944× 10−2 + 1.6483× 10−2T − 5.3009× 10−4T 2)

+P [3.239908 + 1.43713× 10−3T + 1.16092× 10−4T 2 − 5.77905× 10−7T 3

+S(2.2838× 10−3 − 1.0981× 10−5T − 1.6078× 10−6T 2)

+S1.5(1.91075× 10−4)] + P 2[8.50935× 10−5 − 6.12293× 10−6T

+5.2787×10−8T 2+S(−9.9348×10−7+2.0816×10−8T+9.1697×10−10T 2)] .
(B.4)

This polynomial regression was adopted by the UNESCO Joint Panel on
Oceanographic Tables and Standards in 1980 and is referred to as the inter-
national equation of state for seawater (for brevity, EOS 80). The algorithm
is valid for a temperature range of −2 to 40◦C, salinity between 0 and 42 ppt
(parts per thousand), and pressure from 0 to 1000 bars, with an accuracy of
0.05 kg m−3 for all the world’s oceans [Fofonoff 1985]. The accuracy primarily
arises from the smallness of variations in the composition of dissolved salts
in the world’s oceans [Millero 2000] and the use of conductivity techniques
to measure practical salinity. The range of density over full ocean depths is
about 7% (1072 to 1000 kg m−3) but in coastal waters (> 100 m) the range
is 3% (1032 to 1000 kg m−3) which is primarily a function of salinity.

Several more computationally efficient equations of state have been de-
veloped for dynamical oceanographic applications where repeated density
calculations are required [Bryan and Cox 1972, Friedrich and Levitus 1972,
Mellor 1991, Levitus and Isayev 1992, Jackett and McDougall 1995, Wright
1997, Brydon et al. 1999]. All of these algorithms are adequate for the
high-frequency applications considered in this monograph. More recent equa-
tions of state are derived from the generalized Gibbs thermodynamic poten-
tial function (or specific free enthalpy) of seawater [Feistel and Hagen 1995,
McDougall et al. 2003, Feistel 2003]. This allows calculation of all thermo-
dynamic equilibrium properties in a self-consistent manner (heat capacity,
thermal expansion, density, compressibility or sound speed, free enthalpy)
from practical salinity, absolute temperature (ITS-90 standard), and applied
pressure. Feistel’s free-enthalpy Gibbs function requires 101 coefficients to
calculate all thermodynamic equilibrium properties over the full range of
oceanic and estuarine conditions (−2 to 40◦C, 0–42 PSU, 0–1000 bars). The
difference between the density calculated for continental shelf conditions (<
100 m) using the Feistel thermodynamic approach and the EOS 80 algo-
rithms is less than 0.01 kg m−3 which is insignificant for acoustic modeling
applications.
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B.2 Sound Speed in Seawater

The first strong motivation to develop an accurate relationship between
sound speed and temperature, salinity, and pressure (depth) in seawater
was based on the requirements of echo sounding during the 1920s. Sound
speed profiles were required to determine accurate seafloor depths based
on two-way acoustic travel time. The first comprehensive sound speed ta-
bles [Matthews 1927, Matthews 1939, Kuwahara 1939] were based on anal-
ysis of specific volumes rather than actual sound speed measurements. The
development of new underwater naval weapons systems required more ac-
curate predictions of sound speed gradients in oceanic waters. The first
tables based on measured sound speeds at atmospheric pressure for the
range of temperature and salinity found in oceanic water were produced by
[Del Grosso 1952, Greenspan and Tschiegg 1959]. The first accurate labora-
tory measurements of sound speed in seawater covering the range of tem-
perature, salinity, and depth found in the world’s oceans were made by
[Wilson 1960a] who first determined sound speed over the range of tem-
perature (−4 to 30◦C), salinity (33–37 ppt), and pressure (1.033–1000 kg
cm−2) based on a total of 581 measurements. Later measurements in-
cluded salinities of 10, 20, and 30 ppt [Wilson 1960b]. All measurements
were made on filtered seawater using a 5-MHz velocimeter similar to that
developed by [Greenspan and Tschiegg 1959]. Different salinities were ob-
tained by diluting oceanic seawater with distilled water. Measurements (96)
were also made on distilled water samples covering a range of tempera-
ture (0–90◦C) and pressure (1–965 kg cm−2) exceeding that of oceanic
conditions [Wilson 1959]. The standard deviations of the polynomial equa-
tions developed by Wilson were 0.22 m s−1 for the first data set (over
the range of temperature −4 to 30◦C, salinity 33 to 37 ppt, and abso-
lute pressure 1.033 to 1000 kg cm−2) and 0.30 m s−1 for the combined
data set which included the measurements made on distilled water. De-
viations up to 2–4 m s−1 were noted from the sound speeds tabulated
by [Matthews 1939] and [Kuwahara 1939]. Wilson’s results [Wilson 1959,
Wilson 1960a, Wilson 1960b] have been reanalyzed by numerous authors
[Leroy 1969, Frye and Pugh 1971, Anderson 1971, Chen and Millero 1976]
by correcting errors, limiting the data to the oceanic regime, and constructing
simpler predictive regressions.

A new set of laboratory measurements based on an ultrasonic interfer-
ometer were made by [Del Grosso and Mader 1972a] covering the salinity
(30–41 ppt), temperature (0–40◦C), and depth (0–1000 kg cm−2) ranges
typical of open ocean waters. Del Grosso [Del Grosso 1974] combined these
data with 148 sound speed measurements made in distilled water at at-
mospheric pressure [Del Grosso and Mader 1972b] to develop a new equa-
tion describing sound speed in most naturally occurring waters. Judging
from a comparison of deviations in predicted sound speeds between the Del
Grosso [Del Grosso 1974] and previous predictive relationships, these regres-
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sions should not be extended outside the range of data used to generate them.
Differences were generally less than 0.5 m s−1 for oceanic waters but greater
for lower salinity waters common in coastal regions and at pressures greater
than 500 kg cm−2 (> 5000 m).

Chen and Millero [Chen and Millero 1977] determine values of sound
speed measured over a wide range of temperature (0–40◦C), salinity (5–40
ppt.) and applied pressure (0–1000 bars). Dilution or evaporation of filtered
Copenhagen water was used to construct waters of different salinities. Dif-
ferences in time delays between the sample water (306 samples) and distilled
water at the same pressure and temperature were measured, and system cal-
ibration was based on sound speed in distilled water, calculated from the 19-
term equation given by [Chen and Millero 1976]. Their regression was based
on sound speed at 1-atmosphere measured by [Del Grosso and Mader 1972b]
and the pressure effects determined by [Wilson 1959]. Millero and Kubin-
ski [Millero and Kubinski 1975] had previously determined a relationship be-
tween sound speed at atmospheric pressure and temperature and salinity
using similar techniques. These two equations [Millero and Kubinski 1975,
Chen and Millero 1976] were combined with the measured sound speed dif-
ferences and a new sound speed equation was proposed by [Chen and Millero
1977]. This polynomial regression was adopted by the UNESCO Joint Panel
on Oceanographic Tables and Standard in 1980 [Fofonoff and Millard 1983]
and is referred to as the international equation of state for seawater (EOS
80).

Recent long-range, low-frequency acoustic pulse propagation measure-
ments suggest that the sound speeds predicted by the international stan-
dard algorithm derived by [Chen and Millero 1977] are too high, especially
at depths below 1000 meters and for temperatures between 0–14◦C [Spies-
berger and Metzger 1991a, Spiesberger and Metzger 1991b, Spiesberger
1993, Dushaw et al. 1993, Meinen and Watts 1997], and that the algo-
rithm presented by [Del Grosso 1974] produces more accurate results for
these cold, deep-ocean depths. Corrections to the Chen and Millero algo-
rithm by [Millero and Li 1994] improve the estimates of sound speed in the
deep sea but are still less accurate than the Del Grosso predictions. It has
been demonstrated [Dushaw et al. 1993] that the Del Grosso algorithm dete-
riorates for pure water under pressure and outside of the salinity range (33–38
ppt) of his original measurements [Del Grosso and Mader 1972a]. Differences
between the Del Grosso and Chen and Millero algorithms are less than 0.3
m s−1 for most realistic conditions in bays, estuaries, and on the continen-
tal shelf. If the corrections to the Chen and Millero algorithm suggested by
Millero and Li are implemented, the differences are less than 0.12 m s−1

for water-column properties encountered during high-frequency experiments.
The Del Grosso algorithm has only 19 coefficients compared to the 41 coef-
ficients of the Chen and Millero algorithm and is presented below:

cw = 1402.392 + 5.01109398873T − 5.50946843172× 10−2T 2
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+2.2153596924× 10−4T 3 + 1.32952290781S + 1.28955756844× 10−4S2

+0.156059257041P + 2.44998688441× 10−5P 2 − 8.83392332513× 10−9P 3

−1.27562783426× 10−2TS + 6.35191613389× 10−3TP

+2.65484716608× 10−8T 2P 2 − 1.59349479045× 10−6TP 2

+5.22116437235× 10−10TP 3 − 4.38031096213× 10−7T 3P

−1.61674495909× 10−9S2P 2 + 9.6840315641× 10−5T 2S

+4.85639620015× 10−6TS2P − 3.40597039004× 10−4TSP , (B.5)

where S is salinity (ppt), T is temperature (◦C), and P is absolute pressure
(i.e., includes atmospheric pressure) (kg m−2).

More recent equations of state derived from the generalized Gibbs thermo-
dynamic potential function (or specific free enthalpy) of seawater have been
used to predict sound speed in seawater [Feistel and Hagen 1995, McDougall
et al. 1903, Feistel 2003]. Sound speed differences between the Del Grosso
algorithm (B.5) and the thermodynamic approach tend to be less than 0.1
m s−1 for typical shallow-water conditions (< 100 m) and do not justify the
use of 101 coefficients needed for sound speed calculation.

B.3 Seawater Absorption and Attenuation

Attenuation (α, dB m−1) in filtered seawater arises from a combination of two
different processes: viscous dissipation of energy, and chemical relaxation of
magnesium sulfate and boric acid. Magnesium sulfate (MgSO4) and boric acid
(H3BO3) molality (concentrations) in standard seawater (35 ppt) are 0.00561
and 0.00037 mole per kilogram of water, respectively. This is only 0.84% and
0.055% of the total molality of seawater but relaxation processes from these
two constituents dominate compressional wave attenuation in seawater below
200 kHz.

Francois and Garrison [Francois and Garrison 1982a, Francois and Gar-
rison 1982b] reviewed previous laboratory and at-sea attenuation measure-
ments and provided an empirical algorithm (B.6)–(B.12) to calculate com-
pressional wave attenuation (α, dB m−1) from salinity (S, ppt), temperature
(T , ◦C), depth (z, meters), and seawater pH, where f is the acoustic frequency
(kHz), c is the calculated sound speed, and f1 and f2 are, respectively, the
relaxation frequencies (kHz) for magnesium sulfate and boric acid. The first
two terms in (B.6) represent chemical relaxation processes (attenuation) due
to boric acid and magnesium sulfate and the last term represents the vis-
cous dissipation in pure water. In this empirical formulation, also used by
[Medwin and Clay 1998] and [Richards 1998] as well as many others, the dy-
namic coefficients of shear and bulk viscosity for freshwater are incorporated
into the terms A3 and P3. Attenuation (α, dB m−1) is
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α = 10−3
(
A1P1f1f

2

f2 + f21
+

A2P2f2f
2

f2 + f22
+A3P3f

2
)

, (B.6)

where
A1 =

8.86
c
10(0.78pH−5) , A2 = 21.44

S

c
(1 + 0.025T ) , (B.7)

P1 = 1 , P2 = 1− 1.37× 10−4z + 6.2× 10−9z2 ,

P3 = 1− 3.83× 10−5z + 4.9× 10−10z2 , (B.8)

f1 = 2.8
(
S

35

)0.5

× 10[4−1245/(273+T )] , f2 =
8.17× 10[8−1990/(273+T )]

1 + 0.0018(S − 35) ,

(B.9)
c = 1412 + 3.21T + 1.19S + 0.0167z , (B.10)

and, for T ≤ 20◦C,

A3 = 4.937×10−4−2.59×10−5T +9.11×10−7T 2−1.50×10−8T 3 , (B.11)

and, for T ≥ 20◦C,

A3 = 3.964×10−4−1.146×10−5T +1.45×10−7T 2−6.5×10−10T 3 . (B.12)

The terms P1, P2, and P3 include the pressure effects on absorption by
boric acid and magnesium sulfate and viscosity, respectively. The terms
A1, A2, and A3 include the effects of temperature and viscosity on ab-
sorption. Several other empirical algorithms have been proposed to calcu-
late sound absorption in seawater. The [Francois and Garrison 1982b] and
[Fischer and Simmons 1977] algorithms are the most comprehensive and
most often cited. A simplified version of the Francois–Garrision algorithm
was proposed by [Ainslie and McColm 1998].

Based on the Francois–Garrision sound attenuation algorithm, attenua-
tion below 1 kHz is primarily a result of boric acid relaxation; between 1
and 5 kHz the importance of boric acid relaxation decreases; and between 5
and 100 kHz magnesium sulfate absorption dominates (Fig. B.1). Between
100 and 500 kHz the importance of magnesium sulfate absorption decreases,
and above 500 kHz absorption is primarily due to water viscosity alone. At-
tenuation is 1–3 orders of magnitude higher for salinities 5–40 ppt. than for
freshwater alone (Fig. B.2). Over the frequency range where magnesium sul-
fate relaxation dominates seawater attenuation, attenuation increases with
temperature by an order of magnitude from 0 to 40◦C but decreases with
increasing temperature where absorption by viscosity dominates (B.3). The
pH of seawater in open ocean conditions generally ranges between 7.8 and
8.3, and increasing acidity increases the boric acid relaxation contribution to
attenuation but has no apparent effect on absorption by magnesium sulfate
or water which dominates attenuation of the frequency band of interest to
high-frequency acoustics.
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Fig. B.1. Attenuation versus frequency for seawater based on the algorithm of
[Francois and Garrison 1982b] calculated for 25◦C, 35 ppt, pH 8.0, and atmospheric
pressure. Attenuation due to boric acid relaxation is represented by the dashed line,
magnesium sulfate relaxation by the dash-dot line, freshwater attenuation by the
dotted line, and total attenuation by the solid line.

The Francois–Garrision sound absorption algorithm is based on field
and laboratory measurements made for open ocean conditions (S = 30–40
ppt) and may not be appropriate for lower-salinity, shallow-water estuar-
ine conditions depicted by the lower-attenuation curves in Fig. B.2. These
empirical relationships were determined for filtered or pure seawater. Many
high-frequency acoustic applications occur in estuarine and coastal regions
where considerable suspended organic and inorganic matter is present in the
water column. The presence of solid particles in suspension gives rise to
two additional attenuation mechanisms: viscous absorption and scattering.
These attenuation mechanisms are of the same order of magnitude as mag-
nesium sulfate absorption at acoustic frequencies of 1 to 100 kHz even at
relatively low concentrations of suspended particulate matter (0.1 kg m−2)
[Richards et al. 1996] and may dominate at higher concentrations (1.0 kg
m−2) [Richards 1998].

B.4 Seawater Viscosity

The viscosity of seawater appears as a parameter in Biot theory and is also
needed in determinations of sediment permeability. Viscosity is the measure
of a fluid’s internal, or molecular, resistance to shear stress. The thicker or
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Fig. B.2. Attenuation versus frequency over the salinity range of 0–40 ppt, for
25◦C, pH 8, and atmospheric pressure. Freshwater absorption is indicated by the
linear curve, and successive increases in salinity in 5-ppt increments give successively
higher attenuation primarily over the frequencies below 200 kHz.
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Fig. B.3. Attenuation versus frequency over the temperature range of 0–40◦ C
(5◦C increments). All values of attenuation are calculated for 35 ppt, pH 8, and
atmospheric pressure. Attenuation increases with temperature at frequencies be-
low 200 kHz and decreases with temperature at frequencies above 500 kHz where
absorption is dominated by viscosity.
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more consistent the fluid, the more viscous is the fluid. Water is fortunately
a Newtonian fluid (i.e., at a given temperature and pressure, viscosity is
independent of shearing stress or the duration of the shearing). Kinematic
viscosity, ν, is a molecular property of water that is defined for laminar flow
by

τ = ρν
dU

dz
, (B.13)

where τ is the horizontal shear stress, ρ is the water density, U is the horizon-
tal velocity, and z is the vertical coordinate. Absolute, or dynamic, viscosity,
μ, is related to kinematic viscosity as follows:

μ = ρν . (B.14)

Absolute viscosity is denoted η in older texts and in Ch. 10, where the symbol
μ is used for the shear modulus. Viscosity can be measured using Poiseuille
flow (laminar, steady-state flow) through a tube,

q =
πpr4

8Lμ
, (B.15)

where L is the length of the tube, r is the radius, p is the difference in pressure
at the ends, and q is the volume of flow per second.

Absolute viscosity is typically reported in poise (g cm−1s−1) or centipoise
(cP) whereas kinematic viscosity is given in stokes (cm2 s−1) with fluid den-
sity, ρ, in g cm−3. Seawater viscosity decreases with temperature, increases
with salinity, and only slightly increases with pressure. Kinematic viscosity
is used for most fluid flow applications in oceanography and seafloor dynam-
ics. Both kinematic and absolute viscosities are used in acoustic propagation
theory and care must be exercised with units and whether values of kine-
matic or absolute viscosity are required. For example, [Stoll 1989] uses an
absolute viscosity of (0.01 dyne s cm−2 or poise) as input to the Biot model
whereas [Urick and Ament 1949] use kinematic viscosity as part of a theory
for propagation in composite media. Stoll’s value of viscosity is appropriate
for laboratory conditions for seawater at 23◦C and freshwater at 20◦C.

A variety of techniques have been used to measure fluid viscosity. These
include measurement of the fluid flow through a tube, discharge of a known
volume of fluid through an orifice or capillary, the torque of rotating viscome-
ters immersed in a fluid, fall rates of calibrated spheres through a fluid, rise
time of bubbles through a fluid, or damping of fluid vibration [Miller 1996].
In most cases the measurement techniques are calibrated with fluids of known
viscosity. For most acoustic applications, viscosity can be predicted from sea-
water temperature, salinity and pressure.

Values of kinematic viscosity of distilled water and seawater at atmo-
spheric pressure have been tabulated by [Myers et al. 1969] and are presented
in Fig. B.4. Interpolation between these curves can be used to estimate sea-
water viscosity between 0 and 35 ppt and −2 to 35◦C.
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Fig. B.4. Kinematic viscosity (cm2 s−1)) for freshwater (lower curve) and seawater
(35 ppt) at atmospheric pressure.

An empirical relationship for absolute viscosity (μ, Pa s) is presented by
[Richards 1998]. Viscosity in this relationship is dependent on temperature
(T , ◦C), salinity (S, ppt), and pressure (P , dbar) and based on laboratory
measurements summarized by [Matthäus 1972],

μ = 0.1(1.79× 10−2 − 6.1299× 10−4T + 1.4467× 10−5T 2

−1.6826× 10−7T 3) + P (−1.8266× 10−7 + 1.3817× 10−8T

−2.6363× 10−10T 2) + P 2(9.8972× 10−12 − 6.3255× 10−13T

+1.2116× 10−14T 2) + S(2.4727× 10−5 + 4.8429× 10−7T

−4.7172× 10−8T 2 + 7.5986× 10−10T 3) . (B.16)

The viscosity of distilled water decreases with temperature from 1.80 cP
at 0◦C to 0.72 cP at 35◦C. The viscosity of seawater (35 ppt) over the same
temperature range is about 2–7% higher than the viscosity of distilled water.
The increase in viscosity with pressure over full ocean depths is less than 0.5%
and can be neglected for acoustic applications in continental shelf depths (<
100 m).

B.5 Electrical Conductivity of Seawater

The electrical conductivity of seawater can either be measured in the labora-
tory from water bottle samples or in situ using a variety of CTD (Conductiv-
ity Temperature Depth) profilers and is generally used to calculate practical
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salinity, S (Sect. B.6). Laboratory bench galvanic or inductive salinometers
are calibrated with Standard Seawater (SSW) and, if carefully maintained,
have reported accuracy of 0.002 derived salinity (conductivity, 0.0002 S m−1)
[Müller 1999]. The Practical Salinity Scale, PSS78, has no units but is often
considered to be equivalent to salinity measured as parts per thousand (ppt).
Salinity profiles determined from well-calibrated CTDs in combination with
water samples may have accuracy near that of laboratory salinometers but a
more common accuracy, especially for self-recoding CTDs, is near 0.02 PSU
(conductivity, 0.002 S m−1). In situ electrical conductivity is derived from
the conductivity of reference salinity samples, in situ temperature, and in
situ pressure by numerical back iteration of the international equations of
state given by [Fofonoff and Millard 1983]. Seawater temperature, pressure,
and conductivity provide the three thermodynamic parameters needed to
determine the state of seawater.

Table B.1. Seawater conductivity (S m−1) at atmospheric pressure calculated from
the algorithms given by [Fofonoff 1985].

S (PSU)
T (◦C) 0 5 10 15 20 25 30 35 40

5 0.4806 0.5566 0.6364 0.7201 0.8064 0.8960 0.9875 1.0814 1.1767
10 0.9171 1.0613 1.2123 1.3702 1.5337 1.7020 1.8753 2.0526 2.2324
15 1.3363 1.5436 1.7620 1.9899 2.2259 2.4693 2.7190 2.9744 3.2340
20 1.7415 2.0110 2.2938 2.5886 2.8941 3.2087 3.5318 3.8618 4.1978
25 2.1371 2.4663 2.8109 3.1705 3.5426 3.9262 4.3202 4.7223 5.1317
30 2.5242 2.9104 3.3160 3.7374 4.1742 4.6257 5.0875 5.5595 6.0393
35 2.9036 3.3456 3.8090 4.2914 4.7913 5.3067 5.8350 6.3749 6.9242
40 3.2756 3.7717 4.2918 4.8338 5.3947 5.9728 6.5658 7.1714 7.7880

The inverse of conductivity, resistivity, ρew, of sediment pore water is used
to convert measured sediment resistivity, ρes, to a dimensionless formation
factor, F = ρes/ρew (Sect. 4.4.2), which is dependent on sediment porosity,
pore shape and connectivity, and particle size and shape. In most cases, the
resistivity of the overlying seawater and sediment are measured under the
same conditions (S, T , P ), often at the same time, and then used to calcu-
late a formation factor without calibrations (see Sect. 4.4.2). Several authors,
however, have derived laboratory values of formation factor by comparing
measured sediment resistivity to calculated pore water resistivity. This is es-
pecially important when pore water is not available in sufficient quantities
from core collected sediments or when reference measurements of seawater
or salt solutions are used to calibrate resistivity probes. In either case pore
water resistivity must be calculated from temperature and salinity and if
measured in situ from pressure. The definitions of salinity and temperature
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have changed as instrument precision increased complicating the conductivity
to salinity–chlorinity relationships. However, given the accuracy of sediment
resistivity measurements interpolation of tabular values of seawater resistiv-
ity is probably of sufficient accuracy to calculate sediment formation factors
which are rarely reported to more than two decimal places and are probably
accurate to ±1%. The tabular values of seawater conductivity were calcu-
lated using the methods proposed by [Fofonoff 1985] and adopted as part of
the Unesco algorithms for computation of fundamental properties of seawa-
ter [Fofonoff and Millard 1983]. The conductivity of seawater at 15◦C and 35
PSU salinity (4.29140 S m−1) is used to convert the calculated conductivity
ratio to absolute electrical conductivity in Table B.1 [Fofonoff 1985]. Figure
B.5 demonstrates the almost linear relationships between seawater conduc-
tivity and both temperature and salinity justifying linear interpolation of
seawater conductivity from Table B.1. The effects of pressure account for
less than 0.1% increase with depth over the 100-m continental shelf and can
be ignored for determination of sediment formation factor. For more precise
applications the algorithms of [Fofonoff and Millard 1983] can be used.
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Fig. B.5. Relationship between seawater conductivity (S m−1), salinity (PSU), and
temperature (◦C) at atmospheric pressure. The apparent linear relationship justifies
linear interpolation to obtain estimates of seawater conductivity from temperature
and salinity.
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B.6 Practical Salinity

Prior to the advent of conductivity bridges, salinity, S, was determined from
chlorinity (Cl) by titration with silver nitrate or as total halide concentra-
tion. The assumption was that the ratios of the major inorganic compounds
in seawater were nearly constant in all ocean waters and measurement of
one conservative constituent allowed the calculation of salinity (S = 0.030
+ 1.8050Cl). Salinity was defined as the mass of dissolved salts in a given
mass of water in parts per thousand (ppt). This approach, the Knudsen Ta-
bles, was used by oceanographers for over 60 years. The excessive variability
between chlorinity (and thus calculated salinity) and density lead the redefini-
tion of salinity in terms of electrical conductivity [Cox et al. 1967]. Based on
worldwide measurements of conductivity and salinity, [Cox et al. 1970] found
salinity (S, ppt) could be calculated from a conductivity ratio R15 which is
the ratio of measured conductivity at 15◦C to that of standard seawater of
35 ppt measured at 15◦C with both measured at atmospheric pressure,

S = −0.08996 + 28.29720R15 + 12.80832R2
15 − 10.67869R3

15+

5.98624R4
15 − 1.32311R5

15 . (B.17)

The relationship between salinity and chlorinity was redefined as (S =
1.80655Cl), eliminating the slight offset caused by the lack of consistency in
the ionic composition of seawater. Minor differences in the relative concentra-
tions of inorganic constituents in samples of standard seawater led to use of
KCl solutions as the conductivity standard for seawater [Millero et al. 1977].
In 1978 the Practical Salinity Scale (PSS 78) was proposed as part of the
new equation of state for seawater [Fofonoff and Millard 1983]. Salinity (S
with no units, but often referred to as PSU) is expressed in terms of an
electrical conductivity ratio (RT) of a given sample C(S, T, 0) to the conduc-
tivity of a KCl solution with a salinity of 35 ppt and at a temperature of
15◦C. The conductivity of the reference KCl solution was calibrated with a
single batch of standard seawater (SSW P79). Practical salinity can be deter-
mined from conductivity, temperature, and pressure [Fofonoff 1985]. Detailed
descriptions and algorithms to calculate the Practical Salinity ratio from con-
ductivity, temperature, and pressure and the inverse to calculate the resis-
tivity from temperature, salinity, and pressure are given in [Fofonoff 1985].
The inverse calculation seems a bit circular as the salinity was probably de-
termined from conductivity but does allow conductivity to be predicted at
different conditions of temperature and pressure. In addition to conductivity,
which was discussed in the previous section, salinity can also be determined
by laboratory measurements of density (±0.002), refractive index (±0.05),
or sound speed (±0.03) [Millero 1996, p. 47]. The best precision laboratory
measurement of salinity is conductivity (±0.001).

The practical salinity scale assumes a constant relative composition of ma-
jor ions in seawater. This has been shown not to be true for different water
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masses, for the deep sea, and especially for estuarine waters where mixing of
seawater and river water may not yield the same conductivity as mixing sea-
water with pure water [Millero 2000]. The differences in true salinity (based
on a complete chemical analysis of seawater) and salinity measured by con-
ductivity (PSS) may be as high as 0.04 increasing with dilution of seawater
with river water. If the density of estuarine water is estimated from salin-
ity derived from conductivity measurements, these differences could result in
±50 × 10−3 kg m−3 errors. Differences between the ratio of the major inor-
ganic constituents between pore water and the overlying seawater are largely
unknown, but calcium (Ca2+) and magnesium (Mg2+) are both dissolved
and precipitated in pore waters in carbonate sediments, sulfate (SO2−

4 ) pro-
duced in anoxic pore waters and potassium (K+) and Mg2+ concentrations
altered during diagenetic alteration of clay minerals. These effects are briefly
discussed in Ch. 3.



C Coefficient of Variation of Sediment
Parameters

Table C.1. Coefficients of variation for sediment parameters: sound speed (Vp),
compressional wave attenuation (αp), mean grain size (Mz), porosity (β), bulk den-
sity (ρ), and particle (or grain) density (ρg). Data are listed in order of increasing
grain size, with siliciclastic sediments first and carbonate sediments second. Coef-
ficients of variation are not given for sound speed ratio, porosity in percent (η),
and the attenuation parameter (k), as these are the same as for the quantity from
which they are derived.

Siliciclastic
Site Mz CV CV CV CV CV CV

Vp αp Mz β ρ ρg

SG98-6 0.08 1.41 14.99 366.91 4.06 1.62 -
SG98-1 0.84 1.94 30.32 9.49 2.88 0.94 0.18
MVCO/crse 0.85 1.05 30.92 22.90 2.07 0.52 0.19
PCII 0.85 1.69 33.18 16.71 8.49 2.87 0.39
KB/lyn 0.90 2.01 27.53 75.76 6.03 2.06 0.59
Misby/crse 0.95 1.76 44.53 11.67 - - -
PC93 0.98 1.26 28.00 39.44 4.55 1.53 1.33
PE00 1.21 0.90 23.56 5.53 3.46 1.17 0.91
SAX99 1.27 0.72 31.44 13.82 2.04 0.79 0.96
PE99 1.28 0.61 32.26 18.86 2.56 1.17 1.09
KB/bar 1.33 1.05 39.36 17.42 4.14 1.27 0.24
Hood Canal 1.34 1.07 41.80 17.95 4.43 1.35 0.49
Charl/crse 1.44 1.05 26.45 19.33 3.90 1.25 -
SAX04 1.48 0.54 30.00 10.70 1.84 0.59 1.51
TBay/crse 1.49 2.72 23.97 79.66 18.60 6.90 1.09
SG98-10 1.65 2.41 79.21 77.44 22.33 7.54 1.51
IRB 1.77 1.85 83.22 37.83 4.00 2.06 2.62
NS 1.87 1.91 47.72 22.39 8.51 3.26 1.36
Charl/fine 1.97 0.97 44.05 11.12 4.75 1.54 -
JDF2 2.0 1.49 34.03 6.91 6.29 2.03 0.23
MonPt 2.04 1.06 16.62 3.62 3.24 0.96 -



Table C.1. Continued

Siliciclastic
Site Mz CV CV CV CV CV CV

Vp αp Mz β ρ ρg

NoSea/C1 2.09 0.43 29.04 3.81 4.03 1.13 0.09
SG98-8 2.14 2.43 61.20 23.81 4.51 1.39 1.19
ATB/B14 2.15 0.29 48.35 3.52 2.07 0.67 -
PCB99 2.24 0.56 40.37 4.34 2.46 0.89 2.89
JDF5 2.31 2.28 24.83 7.34 9.50 3.73 -
PCB I, II 2.34 1.62 41.49 4.65 6.45 1.98 0.31
ATB/G40 2.52 1.15 32.71 3.38 4.54 1.63 0.39
Duck 2.53 0.34 31.37 2.87 1.92 1.07 1.48
PC84 2.61 0.91 17.53 4.67 3.25 1.02 -
LTB 2.62 1.76 46.03 8.11 7.91 3.03 0.66
MVCO/fine 2.62 0.64 40.48 6.80 3.84 1.27 0.70
TBay/fine 2.89 0.69 24.19 3.12 3.52 1.18 0.51
JDF6 2.94 3.81 29.18 41.12 15.66 6.57 0.52
Quinault 2.94 1.23 42.91 3.53 5.19 1.78 -
Tirrenia 3.72 0.30 7.20 5.96 2.05 0.81 0.22
Misby/fine 3.77 1.37 20.77 12.92 - - -
VAzzura 4.03 1.22 21.28 7.36 5.83 2.19 -
JDF1 4.37 0.92 14.10 9.70 4.98 2.78 -
ER/inshore 4.39 1.82 25.04 16.26 6.04 2.33 0.76
Monasteroli 5.12 2.65 15.58 27.62 6.76 1.90 -
Arafura 5.24 0.38 34.67 14.87 5.80 4.60 -
Tellaro 6.08 4.32 40.28 36.19 9.60 4.36 -
RussRiver 6.35 0.55 14.94 7.05 6.17 4.33 0.97
EelRiver/C70 6.46 1.44 12.05 5.72 8.86 4.10 0.40
ATB/scour 6.65 3.50 75.57 49.11 20.76 18.11 4.46
JDF4 6.93 0.29 20.31 3.34 3.72 3.52 1.16
EelRiver/S60 7.24 1.97 32.01 9.99 8.97 4.80 0.62
EelRiver/U70 7.39 1.53 24.02 8.85 9.81 5.72 0.99
LISound 7.64 0.80 - 11.43 6.36 5.65 -
EelRiver/S70/S80 7.86 0.90 26.51 5.52 6.72 4.07 0.56
Orcas 8.08 0.36 15.07 6.94 5.62 4.58 0.52
CLBight 8.10 0.13 41.48 3.01 1.82 2.44 1.80
EelRiver/O70 8.22 1.29 34.80 9.56 6.27 3.81 0.95
JDF7 8.50 0.21 21.88 2.70 3.46 3.86 0.78
EelRiver/I70 8.53 1.27 22.82 5.48 6.62 3.59 0.62
STeresa 8.78 1.53 83.53 10.22 12.99 9.49 -
Viareggio 8.98 0.59 51.22 2.23 7.45 4.75 -
EelRiver/L70 8.98 1.36 33.59 7.68 7.13 4.20 0.90
Portovenere 9.45 0.38 35.42 1.73 6.25 4.56 -
Eck93 9.88 0.25 22.27 3.52 1.47 1.61 3.84
Diga 10.05 0.24 88.90 0.80 2.45 1.90 -
SABay 10.94 0.13 24.86 3.81 2.33 2.42 3.92



Table C.1. Continued

Carbonate
Site Mz CV CV CV CV CV CV

Vp αp Mz β ρ ρg

LFK/crse 0.54 1.33 35.65 31.90 3.84 1.44 0.27
Hawaii/crse 0.74 0.92 28.75 13.94 5.44 2.00 0.26
Dtortugas/crse 1.12 0.54 23.39 10.93 1.61 0.46 0.51
RebShoal 1.26 1.59 37.61 11.51 5.64 2.12 0.59
SG98-3/ooid sand 1.55 0.96 29.82 3.44 1.78 0.53 0.27
SG98-2 1.57 1.52 28.35 6.12 4.30 1.96 0.42
SG98-3/skel. sand 1.78 1.69 28.10 3.93 4.36 1.74 0.20
Hawaii-2 2.33 0.46 32.58 14.06 5.08 1.95 0.73
Hawaii-4 3.88 0.30 5.99 3.24 3.29 1.89 0.45
LFK/fine 5.40 1.18 14.01 17.71 7.34 4.20 0.76
SG98-5 5.85 0.53 13.86 2.79 6.52 4.12 -
MarqKeys 6.15 0.73 37.15 15.66 8.90 5.57 0.83
Dtortugas/fine 6.58 0.64 14.10 5.84 7.51 4.72 1.79
Hawaii/mud 8.67 0.37 10.04 5.50 3.14 3.42 1.48



D Roughness and Volume Statistics

Most of the scattering models discussed in this monograph require power
spectra for roughness or heterogeneity as inputs. Often, these are not available
in the form required by the model in question, and some sort of conversion
is required. A commonly encountered example is conversion of 1D roughness
spectra to the 2D form needed for roughness scattering models. Technical
issues such as these are the subject of this appendix.

D.1 Interface Roughness

This section expands the statistical description of seafloor roughness given
in Sect. 6.1. The roughness scattering models considered in Chs. 13 and 15
assume the seafloor relief function, f(R), (8.32) is a zero-mean, stationary
random process with spatial covariance that depends only on the difference
of the coordinates of the two points in question:

B(R) =< f(R0 +R)f(R0) > . (D.1)

In the Kirchhoff and small-slope approximations (Sects. 13.3, 13.4, and Ap-
pendix L), the additional assumption is made that f(R) is a Gaussian random
process. In this case, the covariance suffices to completely define the statistics
of interface roughness.

If the covariance depends only on the magnitude, R, of the lag vector,
the roughness is said to be isotropic. This will not be the case if the seafloor
relief includes directional ripples. The mean-square roughness, h2, is equal to
the covariance at zero lag:

h2 = B(0) . (D.2)

The Fourier transform of the covariance is the roughness spectrum (the
Wiener–Khintchine theorem), used in the perturbation approximation:

W (K) =
1

(2π)2

∫
B(R)e−iK·Rd2R . (D.3)

From this it follows that the mean-square roughness is the integral of the
spectrum over all K:
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h2 =
∫

W (K)d2K . (D.4)

The small-slope and Kirchhoff approximations require the structure func-
tion, S(R),

S(R) =< [f(R0 +R)− f(R0)]2 > . (D.5)

This gives the mean-square height difference of two points on the seafloor
separated horizontally by the vector R. Carrying out the square operation
in (D.5) and using (D.1), the structure can be related to the covariance as
follows:

S(R) = 2[B(0)−B(R)] . (D.6)

D.1.1 Specific Roughness Spectral Forms

The “von Karman” spectral form is sometimes used in scattering models:

W (K) =
w2

(K2 +K2
0 )γ2/2

. (D.7)

The mean-square roughness in this case is

h2 =
2πw2

(γ2 − 2)K(γ2−2)
0

. (D.8)

The von Karman spectrum approaches a constant value as wavenumber ap-
proaches zero, and for large wavenumbers (K >> K0) approaches zero as
an inverse power of wavenumber. The parameter K0 is sometimes referred to
as the “cutoff” wavenumber, and its inverse defines the “outer scale,” deter-
mining the largest horizontal scale of importance. In most of the examples
presented in this monograph, the roughness spectrum will be assumed to
obey a simple power law,

W (K) =
w2

Kγ2
. (D.9)

This is the von Karman spectrum with the outer scale set to infinity. The
parameter w2 will be called the “spectral strength,” and the parameter γ2
will be called the “spectral exponent.” This spectrum depends only on the
magnitude, K, of the wave vector, that is, the seafloor roughness is assumed
to be isotropic. This idealized spectrum is infinite at K = 0 , and this non-
physical behavior must be remembered when interpreting model results. One
resulting difficulty is that the covariance cannot be defined, as the RMS
roughness is infinite. In such cases the following transform [Ishimaru 1997,
Appendix B] can be used to obtain the structure function from the spectrum
without the covariance as an intermediary:

S(R) = 2
∫
(1− cosK ·R)W (K)d2K . (D.10)
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For the power-law spectrum (D.9), this transform yields a structure function
that is also power-behaved [D. Jackson et al. 1986a]:

S(R) = C2
hR

2α , (D.11)

where the square of the “structure constant” is related to the parameters of
the power-law spectrum through

C2
h =

2πw2Γ(2− α)2−2α

α(1− α)Γ(1 + α)
, (D.12)

where Γ is the gamma function, and the exponent is related to the spectral
exponent, γ2, as follows:

α =
γ2
2
− 1 . (D.13)

In addition to its utility in the Kirchhoff and small-slope approximations,
the structure function reveals an important property of roughness that has
(approximately) a power-law spectrum. It shows that the RMS roughness
must increase as the size of the patch of seafloor over which it is measured
increases. For example, if the spectral exponent is γ2 = 3, then the structure
function is S(R) = C2

hR. Thus, the RMS height difference of two points on
the seafloor increases as the square root of their separation. In general, for
the normal range of spectral exponent (2 < γ2 < 4), the relief of a patch
of seafloor increases with the size of the patch. This behavior persists until
the patch size approaches the outer scale at which the spectrum “rolls over,”
departing from the pure power law.

D.1.2 Conversion of Roughness Spectra

Conversion of 1D measured spectra to the 2D form needed for scattering
models is based on the 1D Fourier transform relation between the covariance
measured along a 1D track and the 1D spectrum:

W1(Kx) =
1
2π

∫
B(x, 0)e−iKxxdx . (D.14)

Setting y = 0 (R = (x, 0)) in the inverse Fourier transform gives the covari-
ance in terms of the spectrum,

B(x, 0) =
∫ ∫

W (Kx, Ky)eiKxxdKxdKy . (D.15)

Finally, the 1D spectrum can be obtained from the 2D spectrum as follows:

W1(Kx) =
∫

W (Kx, Ky)dKy . (D.16)
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The 1D spectrum is the “marginal spectrum” obtained by integrating the 2D
spectrum over the wave vector component orthogonal to the 1D measurement
track. Applied to the von Karman spectrum, (D.16) yields

W1(K) =
w1

(K2 +K2
0 )γ1/2

, (D.17)

with
γ2 = γ1 + 1 (D.18)

and

w2 = w1
Γ(γ22 )√
πΓ(γ2−2

2 )
. (D.19)

In general, the inverse procedure cannot be carried out, as there is no
unique 2D spectrum corresponding to a given 1D spectrum. If isotropy is
assumed, however, the relation

W (K) =
1
π

∫ ∞

0

[
W1(K)−W1(

√
K2 − q2)

]
q−2dq (D.20)

can be used [Henyey 1991, Williams et al. 2002b].
In addition to conversion of the dimensionality of the spectrum, it is

sometimes necessary to convert between differing spectral definitions. For
example, [Briggs 1989] presents 1D spectra in terms of spatial frequency, F ,
where

K = 2πF . (D.21)

The 1D spectrum in terms of spatial frequency will be denoted Φ1(F ), and
is related to the wavenumber spectrum as follows:

Φ1(F ) = 2πW1(2πF ) . (D.22)

With this definition, the integral of Φ(F ) over all F is equal to the mean-
square roughness, h2. Briggs’ results are summarized by fits to the pure
power-law spectrum

Φ1(F ) =
φ1

F γ1−1 , (D.23)

where
φ1 =

w1

(2π)γ1−1 . (D.24)

This expression allows conversion of Briggs’ spectra to 1D wavenumber spec-
tra, and (D.18) and (D.19) provide the final link to the 2D spectrum required
by the models presented in this monograph.
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D.1.3 Units of Roughness Spectra

The units or dimensions of roughness spectra deserve some comment. Usually,
the term “units” is applied to specific measures, meters, kilograms, etc., while
the term “dimensions” is generic: length, mass, etc. The term “dimension”
will be used in the generic sense with the warning that it must not be confused
with the use of “dimension” in the previous section, where one thinks of 1D
and 2D spectra. Considering (6.4), it can be seen that the dimensions of co-
variance are (length)2. Then, from (6.5), the dimensions of the 2D spectrum,
W (K), are (length)4. The dimensions of the spectral strength, w2, follow from
(D.9) as (length)4−γ2 . This rather awkward dimension can be simplified by in-
troducing a dimensional constant, h0, in (D.9) so that W (K) = w2/(h0K)γ2 ,
e.g., [Mourad and Jackson 1993, Williams et al. 2001a]. In this approach, w2
has dimensions (length)4, independent of the value of γ2. This approach in-
vites error when changing units (as from cm to m) by suggesting that w2 in
cm4 should be divided by 108 to obtain w2 in m4. The more awkward dimen-
sioning of w2 has the virtue of leading one directly to the proper scaling (w2
in cm units should be divided by 1004−γ2 to obtain w2 in m units). Equations
(D.19) and (D.24) show that w1 and φ1 have the same units as w2.

D.2 Volume Heterogeneity

This section expands on the material of Sect. 7.2 and supports the use of
heterogeneity spectra in volume scattering models (Sects. 14.1.4 and 14.2.2).
Several technical issues arise in the use of spectra for volume heterogeneity
in acoustic scattering models. Often, the available fluctuation data do not
include all the geoacoustic parameters required by the model. For example,
density fluctuation data may be available, but both density and compressibil-
ity spectra may be needed. As for the roughness case, it may be necessary
to convert 1D measured spectra to higher dimensionality (3D). Finally, the
finite resolution of many heterogeneity measurements can cause bias in spec-
tral estimates. These issues are the subject of this section.

It will be assumed that, over the region of interest, the normalized fluc-
tuations of the geoacoustic parameters, α and β (Sect. 7.2), are spatially
stationary so that the general covariance depends only on lag, r = (x, y, z):

< γα(r1)γβ(r1 + r) >= Bαβ(r) . (D.25)

The following symmetry property follows from (D.25):

Bαβ(r) = Bβα(−r) , (D.26)

hence the ordinary covariance is an even function of the lag:

Bαα(r) = Bαα(−r) . (D.27)
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A 3D Fourier transform can be performed to obtain the cross-power spec-
trum

Wαβ(k) =
1

(2π)3

∫
Bαβ(r)e−ik·rd3r . (D.28)

Here, k = (kx, ky, kz) is the wave vector expressing spatial radian frequency.
If the fluctuations are stationary only over a layer of finite thickness, then
the covariance is not defined over the infinite range of lags appearing in the
integration of (D.28). In such cases one may hope that the covariance can be
fitted by some model that allows the necessary extrapolation. Setting α = β
in (D.28), one has the ordinary spectrum. It is important to note that the
spectral definition used here has a normalization such that the integral over
all of wave vector space yields the second moment (covariance at zero lag) of
the corresponding fluctuations. That is,∫

Wαβ(k)d3k =< γα(r)γβ(r) > . (D.29)

Because of the assumed stationarity, the value of the coordinate vector, r,
on the right-hand side of (D.29) is immaterial. For the ordinary spectrum
(α = β), the integral over all k gives the variance of γα,

σ̂2α =
∫

Wαα(k)d3k . (D.30)

If the covariance is real, the Fourier transform relation (D.28) requires

Wαβ(k) =W ∗
αβ(−k) . (D.31)

The symmetry condition (D.26) can be used to obtain the following relation:

Wαβ(k) =W ∗
βα(k) . (D.32)

Setting α = β, these conditions require that the ordinary spectrum, Wαα, be
both real and even, but the cross-spectra need not be real or even.

Other symmetries of the covariance and spectrum are also of interest.
It is often assumed that fluctuation statistics are isotropic. In particular,
this means that the covariance depends only on the magnitude, r, of the lag
vector, r, not its direction. It follows that the spectrum would then depend
only on the wavenumber, k, which is the magnitude of the wave vector, k.
Isotropy is at best an approximate symmetry owing to the general depen-
dence of sediment properties on depth. A weaker and more likely symmetry
is transverse isotropy, in which the covariance is independent of the direction
of the horizontal lag vector, R, that is, dependent on R =

√
x2 + y2 but

not on φ = tan−1(y/x). Note that transverse isotropy may hold even when
the fluctuation statistics are not stationary in the vertical. In this case, a 3D
spectrum cannot be defined.
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D.2.1 Converting Dimensionality of Heterogeneity Spectra

The conversion from 3D spectra to 1D can be obtained by following the same
logic used in Sect. D.1.2 for the rough interface spectra, the 1D spectrum is

Wzαβ(kz) =
1
2π

∫
Bαα(0, 0, z)e−ikzrdz . (D.33)

Using the inverse of (D.28) and setting x = y = 0, one obtains

Wzαβ(kz) =
∫ ∫

Wαα(kx, ky, kz)dkxdky . (D.34)

This 1D spectrum in kz is the marginal spectrum obtained by integrating the
3D spectrum over the orthogonal variables, kx and ky. For the case of the
model spectrum (7.14), this yields

Wzαα(kz) =
2πw3αα

(γ2 − 2)Λ2(k2z + L−2
c )(γ3−2)/2

. (D.35)

If the measured 1D spectrum can be approximated by this form, the pa-
rameters γ3 and w3ααΛ

2 can be determined. If isotropy can be assumed
(Λ = 1), w3αα is then fully determined. More generally [Yefimov et al. 1988,
Ishimaru 1997], if the 3D spectrum is isotropic (dependent only on the mag-
nitude, k, of the wave vector, k),

Wαα(k) =
−1
2πk

dWzαα(k)
dk

. (D.36)

It can readily be verified that (D.36) applied to (D.35) in the isotropic case
yields (7.14).

D.2.2 Relations between Parameter Fluctuations

Section 7.3 gives “exact” relations between fluctuating parameters. The quo-
tation marks are used because these relations are only exact in the limit as
fluctuation amplitude vanishes. Even so they are undoubtedly more accurate
than the conjectured relations to be presented in this section.

Because few simultaneous determinations of density and compressibility
(or sound speed) fluctuations exist, various authors have made simplifying
assumptions regarding the relevant spectra. Most of these assumptions are
special cases of the following hypothesized relations:

Wκκ(k) = μ2Wρρ(k) , (D.37)

Wρκ(k) = ρρκμWρρ(k) . (D.38)
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The parameter ρρκ is the density–compressibility correlation coefficient and
is restricted to the range [−1 1]. Without loss of generality, it is assumed that
the compressibility–density normalized fluctuation ratio, μ, is positive.

As sound speed fluctuation is sometimes measured, it is useful to express
the correlation ρρκ in terms of density–compressional wave speed spectra
[D. Jackson et al. 1996a]. If these spectra can be fit by forms

Wpp = η2Wρρ (D.39)

and
Wρp(k) = ρρpηWρρ(k) , (D.40)

with η > 0, then the two spectra involving compressibility can be determined
using

μ =
√
1 + 4ρρpη + 4η2 (D.41)

and
ρρκ = −2ρρpη + 1

μ
, (D.42)

with the positive square root used in (D.41). It is sometimes assumed that
compressibility and density fluctuations are perfectly anticorrelated, that is,
ρρκ = −1. In this case, (D.41) and (D.42) require ρρp = ±1. Looking at the
density–compressional wave speed regression (Fig. 5.2), one expects ρρp to
be negative for very fine sediments having density less than 1.4 g cm−3, very
small for sediments having density near this value, and positive in all other
cases.

The values for the compressibility–density fluctuation ratio, μ, in Ta-
ble 14.1 were determined by two different strategies. For the Arafura, San
Francisco, and Orcas sites [D. Jackson et al. 1996a], the compressional wave
speed–density fluctuation ratio, η, was found as the ratio of coefficients of
variation for the two measured fluctuations, and μ was determined using
(D.41) with ρρp = 1. No compressional wave speed fluctuation measurements
were available for the other two sites, and [Pouliquen and Lyons 2002] as-
sumed η = 1/3 based on data presented in [Yamamoto 1995, Yamamoto 1996]
and further assumed ρρp = 1. None of these examples provides an actual mea-
surement of correlation, but efforts in this direction are underway (Briggs and
Tang, personal communication).

D.2.3 Bias Due to Finite Resolution

The effects of finite resolution on estimated covariances and spectra will be
derived from (7.31) for the averaging functions appropriate to core sections
(7.33) and spherical resisitivity probes (7.34).

Filtering of data as defined by (7.31) results in filtering of the covariance.
Using (D.25) and (7.31), the covariance obtained from the filtered (measured)
data is
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B̃αα(r) =
∫

Bαα(r′)v(r′ − r)d3r′ , (D.43)

where Bαα is the true covariance, and v(r) is the autocorrelation of y(r):

v(r) =
∫

y(r′)y(r′ − r)d3r′ . (D.44)

Equation (D.43) expresses the bias in measurements of covariance due to
finite resolution. By using Fourier transforms, the equivalent expression for
the biased spectrum is found to be

W̃αα(k) =Wαα(k)V (k) , (D.45)

where
V (k) =

∫
v(r)eik·rd3r , (D.46)

which can be reexpressed as

V (k) =
[∫

y(r)eik·rd3r
]2

. (D.47)

For the hockey-puck averaging function appropriate to core sections,

V (k) = b2T (K)b
2
z(kz) , (D.48)

with

bT (K) =
2

(Ka)2

∫ Ka

0
J0(u)udu (D.49)

and

bz(kz) =
sin(kzΔz/2)
kzΔz/2

, (D.50)

where
K =

√
k2x + k2y (D.51)

and
kz =

√
k2 −K2 . (D.52)

Note that the filtering function in the wave vector domain, V (k), is not
isotropic in this case. Rather, it is transversely isotropic owing to the cylin-
drical symmetry of the core section. As porosity and density data from core
sections are usually employed to obtain 1D spectra, (D.34) can be used to
obtain an expression for the biased 1D spectrum. If the true spectrum is
either isotropic or transversely isotropic,

W̃zαα(kz) = 2πb2z(kz)
∫ ∞

0
Wαα(K, kz)

[
2J1(Ka)

Ka

]2
KdK . (D.53)
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Considering the bias due to finite resolution in resistivity measurement of
porosity, (7.34) can be inserted in (D.47). Then the biased 3D spectrum is
obtained by multiplying the true spectrum by

V (k) =
[
ka

∫ ∞

ka

sinx
x3

dx

]2
. (D.54)



E Complex Representation of Signals

Acoustic measurements are often made using sources that emit pressure wave-
forms that are confined to a rather narrow band of frequencies. In this case,
it is convenient to use complex representation [Ziomek 1995, Ch. 8] for the
time dependence of quantities such as pressures and voltages. Let p(t) be the
(real) time-dependent pressure at some arbitrary point in space. The equiv-
alent complex signal will be denoted P (t) where the connection between the
two is

p(t) = Re{P (t)e−iωct} , (E.1)

where Re(z) is the real part of the complex number, z. The parameter ωc is
the “center frequency” of the pressure signal (in radians/s). To understand
the motivation for this widely used representation, consider the magnitude
and phase of the complex P (t):

P (t) = |P (t)|eiφ(t) . (E.2)

Then
p(t) = |P (t)| cos[ωct+ iφ(t)] . (E.3)

The real pressure signal has time-varying peak amplitude equal to the mag-
nitude of the complex signal and time-varying phase equal to the phase of
the complex signal. This time-varying amplitude is usually called the “en-
velope” because, as shown in Fig. E.1, it bounds the positive and negative
excursions of the real signal. Thus, the complex representation encapsulates
the essential properties of the real signal, its amplitude and phase. If p(t) is a
“narrowband” signal, with a frequency spectrum occupying a narrow range
of frequencies near ωc, the complex signal will be slowly varying in time. Note
that, in the limiting case in which p(t) is a pure sinusoid having frequency
ωc, P (t) is independent of time. The slowly varying nature of the complex
signal provides one of the strongest motivations for its use: when dealing
with sampled data, a lower sampling rate will suffice for the complex signal
as compared to the real signal.

Although the above discussion uses time-dependent pressure as an exam-
ple, the complex representation is used for a variety of waveforms, voltages,
displacements, electric fields, etc. The complex signal is also referred to by the
terms “baseband signal” or “complex envelope,” and its real and imaginary
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Fig. E.1. Illustration of complex representation of signals, using a frequency-
modulated signal having cosine-shaped envelope as an example. (a) The real time-
dependent signal (solid line) and its envelope (dashed line), (b) the phase, and (c)
real and imaginary parts of the complex representation.

part are sometimes referred to as “quadrature components” or “in-phase and
quadrature signals.” While (E.1) shows how to obtain the real signal from the
complex signal, the experimentalist is faced with the inverse process of ob-
taining P (t) from p(t) (“demodulation”). An algorithm for this purpose and
additional information on complex envelopes can be found in [Ziomek 1995,
Ch. 8].

In some applications, the “root-mean-square” (RMS) amplitude of a sinu-
soidally varying voltage, pressure, etc. is desired. This need arises particularly
when considering power, either transmitted or dissipated. The RMS ampli-
tude of a sinusoid having peak amplitude, |A|, is |A|/√2. The usual practice
in acoustics is to measure pressure as RMS amplitude, so the

√
2 factor will

be used at several points in this monograph.
Care is needed when time delays are introduced in complex time series.

This is necessary in simulations of propagation and scattering, where the
distance r, traveled by an acoustic wave at speed, c, translates into a time
delay, td = r/c. Adapting (E.1),

p(t− td) = Re{P (t− td)eiωctde−iωct} . (E.4)

Thus, the baseband representation for the delayed pressure is P (t− td)eiωctd ,
not simply P (t− td).



F Acoustic Transducers

A variety of acoustic sources and receivers are used in high-frequency mea-
surements, although most employ the piezoelectric effect to convert electrical
to sound energy and vice versa. Many source and receiver transducers are
“arrays” comprised of numerous transducer “elements.” A detailed discus-
sion of the physics of sound transduction is beyond the scope of this book;
only definitions essential to the interpretation of experimental data will be
given here. Figure F.1 shows the magnitude of the sound pressure field emit-
ted by a simple acoustic source, a so-called circular piston, which imparts
a uniform velocity to the fluid medium over the surface of the piston. This
gives rise to a complicated sound field in the vicinity of the source, the “near
field.” At a greater distance, the field pattern becomes regular; this is the
“far field” region in which the acoustic intensity (radiated power/unit area)
obeys the inverse square law when absorption and refraction by the water
are neglected. High-frequency seafloor acoustic measurements ordinarily are
conducted with the source at a sufficient distance that the seafloor is in the
far field region.
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Fig. F.1. Computed pressure field for a circular piston transducer of radius 5 cm
operating at 100 kHz. The gray scale is in dB relative to the maximum field value.
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Fig. F.2. Rough estimate of far field region for a circular piston transducer of
radius 5 cm operating at 100 kHz. The far field region lies at ranges greater than
the range at which the diverging and nondiverging rays intersect (about 65 cm,
compare Fig. F.1).

In the far field region, the radiated acoustic field can be at any point
approximated as a plane wave having a well-defined direction of propagation
(the direction from the transducer to the point in question). An approximate
formula for the required minimum range, r, is

r >
d2

λ
, (F.1)

where d is the aperture size of the source and λ is the acoustic wavelength
in water. Various forms of this criterion can be found, e.g., [Ziomek 1995,
p. 413], [Medwin and Clay 1998, p. 143], but all yield similar values for the
far-field range. As pictured in Fig. F.2, this condition can be derived quite
simply from the fact that diffraction by an aperture of size d gives an angular
spread Δθ (measured in radians):

Δθ ≈ λ

d
. (F.2)

The outgoing acoustic energy takes on well-defined directions of propagation
at ranges, r, such that this angular spreading exceeds the size of the aperture

rΔθ > d . (F.3)
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This, combined with (F.2), gives the far-field condition, (F.1). It might seem
that the inequality symbol, >, in (F.3) is likely to underestimate the far-field
range and should, perhaps, be replaced by >>. Numerical calculations in the
literature [Lockwood and Willette 1973] and Fig. F.1 show that the criterion
(F.1) is a reasonable and practical approximation. In some cases, the angular
spread is caused not by diffraction, but by curvature of the transducer or by
electronic beamforming. In these cases, the aperture size, d, is irrelevant, and
it is best to estimate the far-field range by eliminating d to obtain

r >
λ

(Δθ)2
. (F.4)

This formula is also applicable to endfire arrays [Ziomek 1995, Ch. 6] and
parametric arrays [Westervelt 1963] where the assumed relation between
physical aperture and angular spread does not apply.

The magnitude of the complex source pressure, Pi, in the far field is

|Pi| =
√
2s0|bx(θ, φ)|

r
, (F.5)

where the function bx(θ, φ) is the source directivity, r, θ, and φ are spherical
coordinates centered on the source, with θ measured from the horizontal
rather than the vertical (see Fig. G.3). The subscript “x” on the directivity
function is taken from an engineering abbreviation, “xmit” for “transmit.”
The parameter s0 is related to the “source level” through (F.7).

While it would be logical to align the coordinate system with the trans-
ducer with, say, the z-axis chosen normal to the face of the transducer, it
is more convenient in the applications of this monograph to use a system
aligned with the seafloor. Thus, the directivity function defined here changes
as the transducer depression (tilt) angle changes. In (F.5), refraction and ab-
sorption are neglected for simplicity. The subscript “i” is used because this
pressure field will be the incident field for a seafloor reflection or scattering
measurement. The factor of

√
2 in (F.5) is the ratio of the peak amplitude of

a sinusoid to its RMS value. As explained in Appendix E, the magnitude of
the complex signal is equal to the peak value of the corresponding real sinu-
soidal signal. The directivity function, bx(θ, φ), is complex in general, with
a maximum magnitude of unity in the direction of the “maximum response
axis” (MRA). It is convenient to express source directivity in decibels:

Dx(θ, φ) = 20 log10[|bx(θ, φ)|] . (F.6)

This gives the decibel level of radiated power in the far field relative to the
maximum response axis, which may not be the direction specified by θ = 0,
φ = 0. The units of Dx are simply “dB” because bx(θ, φ) is a dimensionless
pressure ratio with the numerator equal to the pressure magnitude in the
direction specified by the angular arguments and with the denominator equal
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Fig. F.3. Computed directivity in dB for a circular piston transducer of radius 5
cm operating at 100 kHz. The angular variable (in degrees) is measured from the
normal to the face of the piston.

to the pressure magnitude on the MRA. Figure F.3 shows the theoretical
pattern in dB for the circular piston of Fig. F.1.

The parameter s0 in (F.5), when divided by range, gives the far-field RMS
pressure. The “source level” is defined as

SL = 20 log10

[
s0

prefrref

]
, (F.7)

where, conventionally, pref = 1 μPa and rref = 1 m. Dimensional analysis
of (F.7) shows that s0 has dimensions of pressure times length, hence source
level would logically be given in units dB μPa m, but, instead, the usual
convention in underwater acoustics will be employed in which source level is
given in the rather cumbersome but descriptive terms “dB re 1 μPa @ 1 m.”

Receiver transducers are also characterized by a complex directivity pat-
tern, br(θ, φ), which gives the angular dependence of the complex voltage
at the transducer output terminals for an incident plane pressure wave inci-
dent at the direction specified by the angles θ and φ. The receiver directivity
expressed in dB is

Dr(θ, φ) = 20 log10[|br(θ, φ)|] . (F.8)

For a plane wave incident along the axis of maximum response, the “receiver
sensitivity,” RS, is defined as
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RS = 20 log10

[ |V |
|P |
]
, (F.9)

where |V | is the magnitude of the voltage at the output terminals of the
transducers for incident pressure having sinusoidal time dependence with
magnitude |P |. As a ratio is involved, there is no issue as to whether RMS
or peak amplitude is used, as long as both voltage and pressure are treated
in the same way. The units of receiver sensitivity are dBV/μPa.

Reciprocity demands that, if a transducer is capable of both transmission
and reception, its source and receiver directivities must be identical. This
is the case for most transducers employing piezoelectric, electrodynamic, or
magnetostrictive effects.



G Acoustic Measurements

Although the reflection coefficient and scattering cross section are defined in
terms of incident plane waves, field experiments employ source fields that can
be approximated as spherical waves. In the case of reflection, this presents
no serious difficulty if the source and receiver are at least several wavelengths
distant from the seafloor. For scattering, this condition must also be satisfied,
but interpretation of the data is more involved, as will be seen.

G.1 Reflection Measurements

The reflection coefficient can be defined if the technical criteria discussed
in Sect. 11.1 are met. In this section, it will be assumed that these criteria
are satisfied, and the emphasis will be on inversion of the sonar equation
to obtain the reflection coefficient. As indicated in Fig. G.1, the reflected
wave will appear to originate from an image source and will have pressure
magnitude

|P | =
√
2s0|Vww(θ)||bx(θ, 0)|e

−k′′
w(r1+r2)

r1 + r2
, (G.1)

where the effective range is the sum of the two distances r1 and r2, that
is, it is the range from the image source to the field point. As defined in
Appendix F, the parameter s0 determines the source level through relation
(F.7), and bx(θi, 0) determines the source directivity. The relation between
the conventional attenuation coefficient in water and the imaginary part of
the wavenumber in water, k′′w, is analogous to (8.20). In the present example,
both the field point (the point at which reflected pressure is measured) and
the source are assumed to lie in the x–z plane, where the azimuthal angle, φ,
appearing in the directivity pattern vanishes. Taking the base-10 logarithm
of (G.1), and using the relation between pressure and RMS voltage, Vr, at
the terminals of the receiving transducer, one obtains a “sonar” equation in
the form

20 log10 |Vr| = SL+RS − PL− L+Dx(θ, 0) +Dr(θ, 0) , (G.2)

where SL, RS, Dx, and Dr are defined in Appendix F and are, respectively,
the source level, receiver sensitivity, source directivity, and receiver directiv-
ity. The bottom loss (2.11) is denoted L. The propagation loss is
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PL = 20 log10

(
r1 + r2
rref

)
+ αw(r1 + r2) . (G.3)

Equation (G.2) forms the basis for most measurements of reflection coeffi-
cient. It should be noted that a continuous-wave source as assumed here is
seldom used, because interfering reflection by the sea surface is best elimi-
nated by time-gating the response to a pulsed source.

Source
Receiver

Image Source

r1
2r

θ
θ

Fig. G.1. Geometry for reflection measurement. The pressure at the receiver lo-
cation is the same as the pressure that would be produced by an image source,
propagating through water, but reduced in amplitude by the reflection coefficient.
The source, image source, and receiver locations lie in a vertical plane.

Measurements of pressure magnitude (envelope) yield only the magnitude
of the reflection coefficient, not its phase angle. Phase angle measurements
are difficult at high frequencies, because the distances from the source to the
seafloor and from the seafloor to the receiving pressure transducer are likely
to be hundreds or thousands of wavelengths, giving rise to large and vari-
able phase shifts due to fluctuations in source and receiver locations and in
the sound speed of the water. Small relative errors in determining propaga-
tion phase shift would result in large absolute errors in measured reflection
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coefficient phase. As noted in Sect. 11.3, however, laboratory measurements
capable of measuring reflection phase would pay important dividends.

Technical issues that must be faced in reflection measurements are dis-
cussed in Sect. 11.1. One of the most important is the effect of scattering
due to interface roughness, to be counteracted by averaging squared reflected
pressure magnitude over a large number of measurements obtained at differ-
ing, but statistically similar, portions of the seafloor. An algorithm to invert
such averaged data, compensating for roughness and sediment volume scat-
tering, is given in Sect. G.2.2. For measurements conducted at ranges greater
than a few tens of meters, refraction due to spatial dependence of sound speed
in the water may alter the grazing angle, and it may be necessary to replace
the spherical-spreading propagation loss (G.3) by one computed using ray
tracing.

G.2 Scattering Measurements

The definition of scattering strength given in (2.15) and (2.17) is not im-
mediately applicable to experimental data, as it pertains to an idealized ex-
periment rather than a realistic measurement scenario. Consider the more
realistic measurement situation depicted in Fig. G.2 in which a directional
source transmits a pulse which is subsequently scattered by the seafloor and
measured by a directional receiver. The generalization of (2.15) is simply an
integration that sums the contributions of infinitesimal patches of area to
obtain the mean-square voltage at the terminals of the receiver:

< |Vr(t)|2 >= s2r

∫
|Pi|2σ e

−2k′′
w|rs−r|

|rs − r|2 |br(θr, φr)|2d2R . (G.4)

In (G.4), RS = 20 log10 sr is the receiver sensitivity giving the voltage per
unit pressure, and br(θr, φr) is the receiver directivity pattern (see Appendix
F).

The incoherent sum implied by (G.4) is justified in most cases of interest,
as shown in Sect. J.2. As shown in Fig. G.2, the integration is over the
plane defining the mean seafloor, z = 0, rather than over the rough water–
seafloor interface. All the factors inside the integrand of (G.4) depend upon
the integration coordinates, R = (x, y), with d2R = dxdy. For example, the
spreading and absorption losses due to propagation from the infinitesimal
scattering patch to the receiver depend on the range |rs−r|, where r = (R, 0).
Likewise, incident source field magnitude, |Pi|, depends on (x, y) through
spreading and absorption loss factors as well as the source directivity pattern,
bx(θx, φx). The angular variables in the directivities are denoted θx, φx,
θr, φr to indicate that these angular coordinates are not simply related to
the spherical coordinates aligned with the Cartesian system, (x, y, z). In
fact, determining the angular coordinates to be used in evaluating the source
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and receiver directivities as functions of the integration variables (x, y) can
be rather involved in the general bistatic case [Williams and Jackson 1998].
Finally, the scattering strength has angular dependence that translates into
dependence on the integration coordinates, with the relationships given in
Sect. J.1.

The integration limits in (G.4) depend on the length of the transmitted
signal, and on the time, t, at which the receiver voltage is evaluated. The
range–time relation is

|r− ri|+ |rs − r| = cwt0(R) , (G.5)

where t0(R) is the time required for acoustic energy to travel the total dis-
tance from the source to the scattering patch and then to the receiver. This
time varies with the position, R, of the scattering patch.
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r i

- r

rs

Fig. G.2. Geometry for computing the mean-square received voltage in a bistatic
scattering scenario. Note that r = (R, 0).

In the simplest case, if the transmitted pulse has a rectangular envelope
of length τ , the limits of the integration are set by constraining (x, y) such
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that
t− τ

2
< t0(R) < t− τ

2
, (G.6)

where t is the time at which one wishes to estimate the scattered mean-
square pressure. The corresponding limits on the integration can be shown
to be two ellipses. These, in turn, are the intersections with the mean seafloor
of the two ellipsoids of revolution defined by (G.5) and (G.6). These ellipsoids
have the source and receiver locations as foci. If the transmitted pulse is not
rectangular, (G.4) can be evaluated for an infinitesimally short pulse and
the result can be convolved with the squared transmitted pulse envelope,
as in [Williams and Jackson 1998]. A simple, but not necessarily efficient,
numerical means of evaluating (G.4) is to divide the integration area into
a grid sufficiently fine to accommodate the variability of all the factors in
the integrand. The travel time from the source to the receiver is evaluated
for each grid point and the integral is approximated as a sum over all grid
points of the squared transmitted pulse envelope, appropriately delayed and
weighted by the factors in the integrand and the area represented by one grid
point.

Evaluation of (G.4) is simple for the commonly encountered case of
backscattering, in which ri = rs. Combining (G.5) and (G.6),

rt − cwτ

4
< |r− ri| < rt − cwτ

4
, (G.7)

where
rt = cwt/2 (G.8)

is the range associated with the time of interest, t. Inequality (G.7) defines the
range limits of the ensonified region, the portion of the seafloor contributing
to the backscattered pressure at time t.

G.2.1 Moderate-to-Small Grazing Angles

If the pulse length is short compared to the distances involved (cwτ/2 << rt),
then, as shown in Fig. G.3, the ensonified region is a thin annular strip on
the seafloor having width w = (cwτ)/(2 cos θ). For convenience, the source–
receiver location has been placed on the z-axis, in which case the time-
dependent grazing angle is

θ = sin−1(zi/rt) . (G.9)

Because the strip defined by the pulse duration is narrow compared to the
range, the integration can be reduced to a one-dimensional integral over a
single azimuthal variable. That is, d2R = wrt cos θdφ, where rt cos θ is the
horizontal range, and φ is the azimuthal coordinate. Note that the cosine
factors appearing in the strip width, w, and horizontal range cancel. Using
cylindrical coordinates, (R, φ), the integral over R simply leaves a multiplier
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(cwτ/2)rt, because range, r1 ≈ rt, and grazing angle, θ, are assumed to
be constant over the region of integration. Combining these results, (G.4)
reduces to

< |Vr(t)|2 >= s2rσ
e−2k′′

wrt

r2t

∫
|Pi|2|br(θ, φ)|2dφ . (G.10)

The incident pressure can be expressed in terms of the source level, propa-
gation loss, and source directivity (Appendix F), giving

< |Vr(t)|2 > /2 = (srs0)2σ
e−4k′′

wrt

r3t

cwτ

2
|br(θ, 0)bx(θ, 0)|2Ψ , (G.11)

where

Ψ =
∫ |br(θ, φ)bx(θ, φ)|2dφ
|br(θ, 0)bx(θ, 0)|2 (G.12)

is a measure of the angular width of the ensonified region. Division by a factor
of 2 on the left-hand side of (G.11) follows from definitions of Appendix F and
expresses the fact that |Vr(t)|2/2 is the mean square of real voltage, while
|Vr(t)|2 is the mean square of the envelope (see Appendix H). If (G.11) is
expressed in dB by taking 10 log10 of both sides, a form of the sonar equation
results:

10 log10[< |Vr(t)|2 > /2] = SL+RS + Sb +Dx(θ, 0) +Dr(θ, 0)

−2αprt − 30 log10(rt/rref ) + 10 log10[cwτΨ/(2rref )] . (G.13)

In (G.13), Sb is the bottom scattering strength (2.17), specialized to the
monostatic (backscattering) case.

Recalling the relation between range and time, rt = cwt/2, one can ex-
amine the time dependence of the mean-square receiver voltage for a pulsed
transmission. Figure G.4 is a sketch of the type of time dependence that
might be expected for the conditions depicted in Fig. G.3. At the earliest
time, a narrow impulsive feature is seen. This is due to reflection from the
seafloor and is often referred to as the “fathometer return.” The fathometer
return arrives via a vertical path and may be weak if the combined source–
receiver directivity function is small in the vertical direction. Following the
fathometer return, a somewhat broader feature is seen. This feature is ex-
pected if a prominent sidelobe is pointed toward the seafloor, as in Fig. G.3.
The sidelobe feature is followed by a broad feature due to the main lobe. The
main lobe return is useful for measuring backscattering strength by solving
(G.13) for the bottom scattering strength. The sidelobe return is usually of
no value owing to uncertainty in the directivity functions.

The integral (G.12) used to obtain the angular width of the ensonified
region can be performed numerically, but often sufficient accuracy can be ob-
tained using an analytic approximation. One such approximation [D. Jackson,
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Fig. G.3. Geometry for computing the mean-square received voltage envelope in
a backscattering, or monostatic, scenario.

t

2
<|V(t)| >

Fig. G.4. Sketch of time dependence of mean-square receiver output voltage for
the monostatic configuration of Fig. G.3, showing the following features, in order
of increasing time: fathometer return, sidelobe return, and main lobe return.

unpublished] assumes that the product of the squared source and receiver di-
rectivity functions can be factored into separate functions of a depression
angle and an azimuthal angle. It is assumed that the source and receiver
transducers are colocated, thus only the monostatic case is considered. As il-
lustrated in Fig. G.5, a Cartesian coordinate system (x′, y′, z′) is used with
its origin on the transducer, with the x′-axis taken in the direction of the max-
imum response axis (MRA), the z′-axis pointing vertically downward when
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x
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zθ0
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Fig. G.5. The two Cartesian coordinate systems used in deriving an analytic ex-
pression for the beam-pattern integral (G.12). The primed system is tied to the
transducer (indicated by the tilted rectangle) and the unprimed system has its z-
axis pointed vertically downward. The depression angle of the transducer is denoted
θ0.

the MRA is horizontal, and the y′-axis chosen to complete the right-handed
coordinate system. In terms of these coordinates, the angles mentioned above
are

θ′ = tan−1 z′

x′
(G.14)

and

φ′ = tan−1 y′

x′
. (G.15)

These angles are chosen because the directivity functions for rectangular
transducers can be factorized into a product of separate functions of θ′ and
φ′. This factorization is only approximate in the general case, and improves as
the angles become small compared to unity. Note that these are not spherical
coordinates. The assumed factorization is

|br(θ, φ)bx(θ, φ)|2 = Bθ(θ′)Bφ(φ′) . (G.16)

The convention Bφ(0) = 1 will be adopted, so that the directivity factor
needed in (G.11) can be expressed in the form

|br(θ, 0)bx(θ, 0|2 = Bθ(θ′)] , (G.17)

where it has been assumed without loss of generality that the vertical planes
defined by φ′ = 0 and φ = 0 are coincident. That is, the earth coordinate
system is aligned in azimuth with the transducer coordinate system. Specifi-
cally, the earth coordinates (x, y, z) are related to the transducer coordinates
(x′, y′, z′) as follows:
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x = x′ cos θ0 − z′ sin θ0 , (G.18)

y = y′ , (G.19)

z = x′ sin θ0 + z′ cos θ0 . (G.20)

The angle θ0 is the transducer depression angle, measured positive downward.
The angles θ and φ appearing in (G.12) are related to the earth Cartesian
system as follows:

x = r cos θ cosφ , (G.21)

y = r cos θ sinφ , (G.22)

z = r sin θ , (G.23)

where r =
√
x2 + y2 + z2 .

If the azimuthal directivity function, Bφ(φ′), is narrow (the horizontal
beamwidth is of order 20◦ or less), the following approximate relations can
be derived from the preceding expressions:

θ′ ≈ θ − θ0 , (G.24)

φ′ ≈ cos θ
cos(θ − θ0)

φ . (G.25)

Relation (G.24) can be inserted into (G.26) to obtain one of the factors
appearing in (G.11):

|br(θ, 0)bx(θ, 0|2 = Bθ(θ − θ0)] . (G.26)

The function Bθ(θ) is a vertical beam pattern, specifically, it is the product
of the squared magnitudes of the source and receiving directivity functions.
These are measured in a vertical plane through the MRA.

Finally, the effective angular width of the ensonified region can be ap-
proximated as

Ψ =
cos(θ − θ0)
cos θ

∫ π

−π

Bφ(φ)dφ . (G.27)

The prime symbol on the dummy integration variable has been dropped as
superfluous. An additional approximation can be made to allow analytic eval-
uation of (G.27). The function Bφ(φ) is approximated by a Gaussian shape,
which is the same as fitting a parabola in φ to the horizontal directivity in
dB. After extending the integration limits to ±∞, the result is

Ψ =
cos(θ − θ0)
2 cos θ

√
π

ln 2
Ψ3 , (G.28)

where Ψ3 is the 3-dB full horizontal width (in the transducer coordinate
system) of the product of the source and receiver beam patterns. The angular
factor, cos(θ − θ0)/ cos θ, is nearly unity for small grazing and depression



502 G Acoustic Measurements

angles, but becomes important as the grazing angle becomes large. Some
investigators have used Ψ ≈ Ψ3. Apart from the angular factor, this ignores
the factor

√
π/ ln 2/2, an error of 0.3 dB. Another convenient approximation

provides Ψ3 in terms of the source and receiver horizontal 3-dB full widths,
Ψx and Ψr.

Ψ3 =
1√

1/Ψ2
x + 1/Ψ2

r

(G.29)

This result is based on Gaussian fits to the source and receiver horizontal
directivities. As long as the narrower of these two directivities can be ap-
proximated by a Gaussian out to its 3-dB points, (G.29) provides a useful
approximation.

It is implicit in the above discussion that the source and receiver trans-
ducers have the same maximum-response directions. If this is not the case,
one need merely find the MRA of the product of the two directivity functions
and proceed from there. In this case, however, (G.29) is not valid, and Ψ3
should be determined from the 3-dB full width of the source–receiver direc-
tivity function product.

G.2.2 Near-Vertical Backscattering

Vertical-incidence backscattering measurements offer the possibility of sepa-
rating the roughness and volume parts of the scattering cross section, as the
volume return will be slightly delayed compared to the interface return. As
will be seen, such measurements also offer the possibility of measuring the
seafloor reflection coefficient (at normal incidence). Inversion of such data
cannot be based on the simple sonar equation in the form (G.13) which
lumps volume and roughness scattering together in a single interface scatter-
ing strength. By treating the volume component as one would treat volume
scattering in the water column, a more detailed sonar equation approach can
model the relevant time-domain effects. Further, the conventional sonar equa-
tion fails near vertical incidence as the scattering cross section and directivity
vary too rapidly to be taken outside the integral (G.4), and the assumption
that the ensonified area is a thin, annular strip is incorrect. More accurate
time-domain models for backscattering near vertical incidence have been de-
veloped by [D. Jackson and Nesbitt 1988, Pouliquen 1992, Sternlicht and de
Moustier 1997, Heald 2002, Sternlicht and de Moustier 2003a, Sternlicht and
de Moustier 2003b]. Here the simplest such model [D. Jackson and Nesbitt
1988] will be defined as an aid to inversion of vertical incidence data. The
mean-square received voltage envelope is taken as a sum of components due
to roughness and volume scattering,

< |Vr(t)|2 >=< |Vrr(t)|2 > + < |Vrv(t)|2 > , (G.30)

where the subscripts rr denote “received, roughness,” and the subscripts rv
denote “received, volume.”
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Fig. G.6. Geometry relevant to roughness backscattering near vertical incidence.
This is a side view of the 3D geometry in which the ensonified area is seen edge-on.
Here, the time, t, since the beginning of transmission is sufficient that the ensonified
region is an annulus. The angle χ is exaggerated; the analysis is only valid if χ << 1.

Figure G.6 illustrates the geometry of the interface scattering component
of the model. It is assumed that the transmitted signal has a rectangular
envelope of length τ . Placing the source–receiver at the origin for convenience,
the backscattered signal received at time t (measured from the beginning of
the transmitted pulse rather than the center as previously) is due to scatterers
lying within the slant range interval

rt − cwτ

2
< r < rt , (G.31)

where rt is defined in (G.8). Equation (G.4) can be written as

< |Vrr(t)|2 > /2 =
(s0sr)2e−4k′′

wH

H4

∫
σ|br(θ, φ)bx(θ, φ)|2d2R , (G.32)

where H is the height of the source–receiver above the seafloor, and where it
is assumed that scattering is confined to a rather narrow region immediately
below the source–receiver. The source level (20 log10 s0) is measured in the
vertical direction, which results in

|br(π2 , 0)bx(
π

2
, 0)| = 1 . (G.33)

It will be assumed that scattering is isotropic, so that σ does not depend on
the azimuthal angle, φ. The integral over φ only involves the directivity, so
the azimuthally averaged directivity is needed:
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b(θ) =
1
2π

∫ π

−π

|br(θ, φ)bx(θ, φ)|2dφ . (G.34)

This will be approximated by a Gaussian function

b(θ) = e
− (π/2−θ)2

2σ2
b . (G.35)

A similar approximation will be used for the scattering cross section. The
high-frequency Kirchhoff approximation (13.70) near vertical incidence can
be written as

σ =
|Vww(90◦)|2

8πσ2s
e
− (π/2−θ)2

2σ2s . (G.36)

This should be regarded as a parameterization of the scattering cross section
near vertical incidence, not as a use of the high-frequency Kirchhoff approx-
imation. That is, the parameter σs should be considered to be a measure of
the angular width of the backscattering cross section peak at vertical inci-
dence, not as the RMS slope of the interface. As noted in Sect. 13.3.1, this
form for the cross section has the physically reasonable property of yielding a
scattered intensity equal to that of a flat interface with reflection coefficient
Vww(90◦), provided the scattered energy has a small angular spread. As such,
it offers the possibility of obtaining the flat-interface reflection coefficient from
backscatter data, even when the interface is moderately rough. Note that this
formulation does not allow separation of the coherent and incoherent portions
of the echo: they are lumped together in the scattering cross section. This is
not a serious problem because, at high frequencies, the coherent component
(13.14) is likely to be negligible. With these approximations, (G.32) can be
written in the form

< |Vrr(t)|2 > /2 =
(s0sr)2e−4k′′

wH |Vww(90◦)|2
4H4σ2s

∫ R2

R1

e
− (π/2−θ)2

2σ2
sb RdR , (G.37)

where
1
σ2sb

=
1
σ2s
+
1
σ2b

, (G.38)

and R is the cylindrical radial coordinate defined in Fig. G.6 with limits
determined by (G.31). Equation (G.37) is especially convenient, as it allows
analytic integration [Heald 2002]. Defining the angle of incidence measured
from the vertical

χ = π/2− θ , (G.39)

one can find the corresponding angular limits, which depend on elapsed time
and pulse length. The elapsed time between the beginning of transmission
and the leading edge of the seafloor echo is

t0 =
2H
cw

. (G.40)
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Before sufficient time has elapsed to allow a return from the seafloor, t ≤ t0,
< |Vr(t)|2 >= 0. Next, for the time period within one pulse length of the first
arrival, t0 < t ≤ t0 + τ , the ensonified area is a circle

χ21 = 0 ,

χ22 = 2(t/t0 − 1) . (G.41)

Finally, for longer times, t > t0+ τ , the ensonified area is an annulus defined
by

χ21 = 2[(t− τ)/t0 − 1] ,
χ22 = 2(t/t0 − 1) . (G.42)

If the integration variable in (G.37) is changed to χ2, the integrand be-
comes a simple exponential, from which one obtains

< |Vrr(t)|2 >= V 2
1 |Vww(90◦)|2 g(t− t0, Tsb, τ)

1 + σ2s/σ
2
b

, (G.43)

where
g(t, T, τ) = 0 , t ≤ 0 ,

= 1− e−t/T , 0 < t ≤ τ ,

= e−(t−τ)/T − e−t/T , t > τ , (G.44)

Tsb = σ2sbt0 , (G.45)

and

V 2
1 =

(s0sr)2e−4k′′
wH

2H2 (G.46)

is the mean-square voltage envelope that would be measured if the inter-
face were perfectly flat with reflection coefficient having magnitude unity.
Figure G.7 shows an example computed using (G.43). The “normalized in-
tensity” in the plot is the mean-square envelope (G.43) with the factor V 2

1
replaced by unity. The normalized intensity at first approaches an asymptote
exponentially and then, after a time of one pulse length has elapsed, decays
exponentially toward zero. The asymptote is less than that for pure reflection
because the finite beamwidth excludes some of the scattered energy. This is
expressed by the factor 1 + σ2s/σ

2
b in the denominator of (G.43). The rise

time of the intensity provides a measure of the angular width, σs, of the
backscattering cross section. Narrow widths give a rapid rise and vice versa.

For volume scattering, one must integrate over the ensonified volume, as
pictured in Fig. G.8. To simplify the problem, the water–sediment interface is
assumed to be flat, and ray bending is ignored. This is a reasonable approx-
imation near vertical incidence. After integrating over the azimuthal angle,
the integral for the mean-square envelope due to volume scattering becomes
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Fig. G.7. Simulated vertical incidence time series, showing the total intensity
(normalized) and its roughness and volume components. The acoustic frequency is
20 kHz, the pulse length is 3 ms, the source–receiver height is H = 10 m, and the
beamwidth parameter is σb = 0.445. The other parameters used in the simulation
are cw = 1540 m s−1, aρ = 2.0, ap = 0.99, δp = 0.01, σ2 = 0.002, and σs = 0.13.

< |Vrv(t)|2 >= 8πσvV 2
1 |Vwp(90◦)|4
a2ρ

∫ r2

r1

∫ χ2

0
b(θ)e−4k′′

p (r−H/ cosχ) sinχdχdr ,

(G.47)
where

Vwp(90◦) = 1 + Vww(90◦) , (G.48)

σv is the volume scattering strength, and the factor |Vwp|4/a2ρ accounts for
round-trip transmission through the interface (see Sect. 14.1.1). It has been
assumed that penetration of the seafloor is shallow compared to the source–
receiver height, H. The exponential factor accounts for attenuation in the
sediment, with k′′p being the imaginary part of the wavenumber in the sedi-
ment, (8.16) and (8.18). The angular limit is

χ2 = cos−1(H/r) , (G.49)

and the limits on the radial integration variable depend on time. For t ≤ t0,
the integral vanishes. For t0 < t ≤ t0+ τ , the ensonified volume is a spherical
section

r1 = H , (G.50)

r2 = rt . (G.51)
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For t > t0 + τ , the ensonified volume is a section of a spherical shell, as in
Fig. G.8:

r1 = rt − cwτ/2 , (G.52)

r2 = rt . (G.53)

r

χ

Source-
Receiver

r  - c τ /2t w

rt

Ensonified Volume

H

Fig. G.8. Geometry relevant to sediment volume backscattering near vertical in-
cidence. This is a side view of the 3D geometry in which the ensonified volume is
seen edge-on. Here, the time, t, since the beginning of transmission is sufficient that
the ensonified volume is a truncated spherical shell. The angle χ is exaggerated;
the analysis is only valid if χ << 1.

Making a small-angle approximation (χ << 1), the integrand can be
written in terms of simple exponentials in χ2 and r with the result

< |Vrv(t)|2 >= 8πσvV 2
1 |Vwp(90◦)|4H

a2ρ(σ
−2
p − σ−2

b )

[
σ2bg(t− t0, Tb, τ)− σ2pg(t− t0, Tp, τ)

]
,

(G.54)
with

Tb = σ2b t0 (G.55)

and
Tp = σ2pt0 , (G.56)

σ2p =
1

4k′′pH
. (G.57)

Figure G.7 shows a time series computed using (G.54) with the factor V 2
1

set to unity as for the roughness example. The volume scattering contribution
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shows a more gradual rise and persists longer than the roughness contribu-
tion. This behavior offers the hope of separately determining the roughness
and volume scattering strengths. In practice, the model is fitted to measured
time series. The time series should be an average of the squared envelope over
many pings (Sect. G.2.3), and this requires alignment of the leading edges of
each return. It is best if the sonar is calibrated so that the parameters σb, s0,
and sr are known. The height, H, can be determined from the average time
of first arrival relative to the start of transmission, leaving four parameters to
be determined by fitting data. A convenient choice of dimensionless param-
eters is |Vww(90◦)|, the reflection coefficient magnitude at vertical incidence,
σs, the width parameter for roughness scattering, δp, the loss parameter, and
σ2, the normalized volume scattering strength (Sect. 14.1.1).

G.2.3 Statistical Error

The ensemble of measurements of the scattered field is necessarily finite,
leading to statistical error in the estimated scattering cross section. A use-
ful approximation to this error can be found by assuming the scattered field
obeys Gaussian statistics (Sect. 16.2). In this case, the scattered intensity
(power/unit area) for each measurement is exponentially distributed, with
standard deviation equal to the mean. If there are N independent measure-
ments, the standard deviation of the estimated average intensity will be equal
to the theoretical mean divided by

√
N . It follows that the same is true of

the estimated cross section, so one may approximate its standard deviation
by the measured mean divided by

√
N . For example, if N = 16, the standard

deviation is one-fourth of the mean, or roughly 1 dB.



H Measurement Units and Decibels

Acoustic variables such as pressure, scattering strength, reflection loss, and
transducer directivity are usually given in decibels, abbreviated dB. While
the term originated in connection with acoustics and was coined to honor
Alexander Graham Bell, its application in acoustics has been inconsistent
and unnecessarily obscure in comparison to application by electrical engi-
neers. The underwater acoustics conventions will be used, but the electrical
engineering equivalent will be noted as an option in some cases.

First, converting a quantity such as pressure to dB involves taking a base-
10 logarithm, with the result dependent on the system of units employed.
Hence it is crucial to understand the dimensions of the quantities concerned
and the particular measurement units involved. In this book, SI units will
be employed exclusively. Commentaries on the units relevant to underwater
acoustics have been given by [Carey 1995] and [Hall 1995], and these authors
also note some commonly encountered problems.

Decibels were originally used to quantify acoustic intensity, or power den-
sity, and the connection with power is the touchstone needed to avoid confu-
sion. A student may ask: why is pressure converted to dB by multiplying the
logarithm by 20 while scattering strength is converted using a multiplicative
factor of 10? The answer is that acoustic power is proportional to the square
of pressure while it is proportional to the first power of scattering strength.
The question of units is the main pitfall in converting to dB. To a physicist,
the argument of a function such as a logarithm, trigonometric function, or ex-
ponential must always be dimensionless. When forming dB, the argument of
the logarithm is made dimensionless by dividing (figuratively) by a reference
value of the quantity concerned. In underwater acoustics, the nearly universal
reference value for pressure is the μPa (one millionth of a Nm−2). Then the
pressure envelope, |P (t)|, discussed in Appendix B has the dB equivalent

20 log10[
|P (t)|√
2pref

] . (H.1)

The parameter pref is the reference pressure, and must be expressed in the
same units as P (t). If |P (t)| has units of μPa, and pref = 1 μPa, then the
units assigned to the dB quantity defined by (H.1) are to be given as “dB
re 1 μPa.” Engineering practice omits the “re 1,” leaving “dB μPa.” The
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factor
√
2 appears because one is concerned with time-averaged power, not

peak power, and the average of the square of a sinusoid is one-half the square
of its peak value (Appendix E). The factor is sometimes absorbed in the
definition of the complex signal.



I Causality Constraints on Speed–Attenuation
Relations

As noted in the main text, theories for propagation of sound in sediment
should not violate the principle of causality which constrains the frequency
dependence of wave speed and attenuation. These constraints are sometimes
called “dispersion relations,” because frequency dependence of wave speed
causes wave packets to change shape, or disperse, as they travel through
the medium in question. These fundamental constraints can be used to test
candidate theories for sound propagation and attenuation in sediments as well
as experimental data. Before considering the acoustic application of causality,
it is helpful to consider the linear system point of view. Causality in this case
is the simple requirement that the output must be zero for times earlier
than the beginning of the input waveform. If the input is a unit-weight delta
function at t = 0, the output is the “impulse response,” h(t). This function
could represent, for example, the output voltage of a linear, time-invariant
network in response to a driving impulse at the input. Or, it could represent
a mechanical system, e.g., the displacement of a mass–spring combination in
response to an impulsive force. Since an effect cannot precede its cause,

h(t) = 0 , t < 0 . (I.1)

A number of interesting mathematical relationships follow from this seem-
ingly trivial statement. Although there is a large literature on this topic
spanning several decades, the results needed are scattered among several ref-
erences. These results will be collected here along with brief, informal deriva-
tions.

Consider the Fourier transform, H(ω), of the impulse response, the so-
called transfer function:

H(ω) =
1
2π

∫ ∞

−∞
h(t)eiωtdt . (I.2)

If the impulse response is a real function of time,

H(−ω) = H∗(ω) . (I.3)

Or, if the real and imaginary parts of the transfer function are defined

H(ω) = H ′(ω) + iH ′′(ω) , (I.4)
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then
H ′(−ω) = H ′(ω) , (I.5)

H ′′(−ω) = −H ′′(ω) . (I.6)

Causality provides a relationship between the real and imaginary parts of the
transfer function. These relationships follow from consideration of the inverse
transform

h(t) =
∫ ∞

−∞
H(ω)e−iωtdω . (I.7)

The integration path can be extended to form a closed path in the complex
ω-plane, as shown in Fig. I.1. This path must follow the lower semicircle at

Re {ω}

Im {ω}

t < 0

t > 0

Analytic

Fig. I.1. Integration contours for the inverse Fourier transform of a causal transfer
function. The semicircular contours have infinite radius; the lower one is used for
t > 0 and the upper one is used for t < 0.

infinity if t > 0 in order that the integrand vanish on this portion of the path.
The upper semicircle must be followed if t < 0. The integral will vanish for
all t < 0 only if the transfer function is analytic in the upper half plane. Then∫

C1

H(ω′)dω′

ω′ − ω
= 0 , (I.8)

where the integration is over the closed contour, C1, shown in Fig. I.2. Taking
the real and imaginary parts of (I.8),



I Causality Constraints on Speed–Attenuation Relations 513

Re {ω′}

Im {ω′}

ω

Analytic

C
1

Fig. I.2. Integration contour for derivation of relationships between the real and
imaginary parts of a causal transfer function. The smaller semicircle has vanishingly
small radius, while the larger semicircle has infinite radius.

H ′(ω) =
1
π
P

∫ ∞

−∞

H ′′(ω′)dω′

ω′ − ω
, (I.9)

H ′′(ω) = − 1
π
P

∫ ∞

−∞

H ′(ω′)dω′

ω′ − ω
. (I.10)

In obtaining this result, the contribution from the part of the contour at
infinity has been neglected. A sufficient condition for this is |H(ω)| → 0 as
|ω| → ∞. The symbol P in front of the integrals stands for “Cauchy principal
value,” the limit as the integration is carried arbitrarily close to the pole at
ω′ = ω while remaining on the real axis. That is, the integration excludes the
portion of the real axis defined by the outer edges of the small semicircle pic-
tured in Fig. I.2. Equations (I.9) and (I.10) are Hilbert transforms. Together,
they constitute a Hilbert transform pair.

A common method for performing Hilbert transforms numerically involves
Fourier transforms. It can be easily shown that the inverse transform ofH ′(ω)
is an even, real function of t:

h′(t) =
∫ ∞

−∞
H ′(ω)e−iωtdω =

1
2
h(|t|) , (I.11)

while the inverse transform of iH ′′(ω) is real and odd:
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h′′(t) = i

∫ ∞

−∞
H ′′(ω)e−iωtdω =

1
2
sgn(t)h(|t|) . (I.12)

Here, sgn(t) is the sign function, equal to −1 for t < 0, +1 for t > 0, and zero
for t = 0. The sum of the two time functions (I.11) and (I.12) is the impulse
response, h(t), as illustrated in Fig. I.3. Inserting h(t) = h′(t) + h′′(t) into

t

h(t) = h′(t) + h′′(t)

t

h′(t)

t

h′′(t)

Fig. I.3. Decomposition of an impulse response into even and odd parts, relevant
to numerical evaluation of Hilbert transforms.

(I.2),

H ′(ω) + iH ′′(ω) =
1
π

∫ ∞

−∞
u(t)h′(t)eiωtdt , (I.13)

where u(t) is the unit step, or Heaviside, function. Equation (I.13) provides
a “recipe” for obtaining the Hilbert transform of the real (or imaginary) part
of the transfer function. First, the inverse Fourier transform of H ′(ω), (I.11),
is evaluated to obtain h′(t). The negative time part of h′(t) is set to zero,
corresponding to multiplication by u(t), and the imaginary part of (I.13) is
the desired H ′′(ω). In practice, of course, fast Fourier transforms are used in
place of the continuous Fourier transforms employed here.

In treating causality constraints on wave speed and attenuation, the
Green’s function can be considered to be a transfer function. That is,

H(ω) =
eik(ω)r

r
. (I.14)
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The analyticity properties of the transfer function must be shared by the
complex wavenumber, k(ω), that is, it must be analytic in the upper half of
the complex frequency plane. Relationships are sought between the real and
imaginary parts of the wavenumber, where

k(ω) = k′(ω) + ik′′(ω) . (I.15)

The wavenumber may correspond to any sort of wave propagation, compres-
sional, shear, etc. In discussing dispersion relations, most authors [Futterman
1962, Horton 1974, Horton 1981, Wingham 1985] employ a complex refractive
index,

n(ω) =
c0k(ω)

ω
, (I.16)

where c0 is a reference speed chosen on the basis of convenience. Correspond-
ing to (I.3)–(I.6), one has

n(−ω) = n∗(ω) , (I.17)

n(ω) = n′(ω) + in′′(ω) , (I.18)

n′(−ω) = n′(ω) , (I.19)

n′′(−ω) = −n′′(ω) . (I.20)

The requirement that the wave amplitude must decay with distance gives the
additional constraint

n′′(ω) ≥ 0 , ω > 0 . (I.21)

If the transfer function, (I.14), is analytic in the upper half of the complex ω-
plane, the refractive index must also be analytic there. Thus, one expects its
real and imaginary parts to be related by a Hilbert transform pair identical
to (I.9) and (I.10). The symmetry conditions (I.19) and (I.20) are often used
to restrict the integral to positive frequencies:

n′(ω) =
2
π
P

∫ ∞

0

n′′(ω′)ω′dω′

ω′2 − ω2 , (I.22)

n′′(ω) = − 2
π
P

∫ ∞

0

n′(ω′)ω′dω′

ω′2 − ω2 . (I.23)

Equations (I.22) and (I.23) are known as the Kramers–Kronig relations,
after the investigators who independently developed them. It must be re-
membered that these relationships were derived under the assumption that
the magnitude of the transfer function (or refractive index in the present
case) falls to zero as frequency increases without limit. The main inter-
est, however, is in cases for which the refractive index has only a slight
frequency dependence. For example, if attenuation increases linearly with
frequency, the imaginary part of the index of refraction will be indepen-
dent of frequency. The strategy in this case [Futterman 1962, Horton 1974,
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Horton 1981, Wingham 1985] is to deal with the function n(ω)/(ω − ω1),
which is artificially forced to approach zero by division by the factor (ω−ω1).
The frequency ω1 is a free parameter that will be chosen later on the basis of
convenience. Following the analyticity arguments made previously, one now
begins with the statement∫

C2

n(ω′)dω′

(ω′ − ω1)(ω′ − ω)
= 0 , (I.24)

where the closed contour, C2, is shown in Fig. I.4. Taking the real part of

Re {ω′}

Im {ω′}

ω
1 ω

Analytic

C
2

Fig. I.4. Integration contour for derivation of subtracted dispersion relations, appli-
cable to complex refractive indices that do not approach zero as frequency increases.

(I.24) and invoking symmetry with respect to frequency, the end result is

n′(ω)− n′(ω1) =
2(ω2 − ω2

1)
π

P

∫ ∞

0

n′′(ω′)ω′dω′

(ω′2 − ω2
1)(ω′2 − ω2)

. (I.25)

This is an example of a dispersion relation with one subtraction [Weinberg
1995], while (I.22) and (I.23) are dispersion relations with no subtraction.
Equation (I.25) has been used to show that if attenuation increases lin-
early with frequency wave speed must increase logarithmically with frequency
[Horton 1981].Specifically, choose the reference frequency, ω1, such that the
reference speed in (I.16) is c0 = ω1/k

′(ω1). Then

n(ω) =
k(ω)ω1
k′(ω1)ω

. (I.26)
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With this choice of reference frequency, the real part of the index of refraction
is unity at ω = ω1. Take the imaginary part of the index of refraction to be
independent of frequency, specifically,

n′′(ω) = δ1 , ω > 0 . (I.27)

It should be remembered that n′′(ω) is an odd function of frequency, thus
equal to −δ1 for negative frequencies. The frequency-independent parameter,
δ1, is defined to be analogous to the dimensionless loss parameters introduced
in the main text. With this choice, (I.25) can be evaluated to obtain

n′(ω) = 1− 2δ1
π
ln
∣∣∣∣ ωω1
∣∣∣∣ . (I.28)

Wingham [Wingham 1985] has shown that the slight dispersion resulting
from (I.28) agrees with laboratory data for sands for frequencies in the range
50–350 kHz. Similarly, Williams et al. [Williams et al. 2002a] find weak dis-
persion consistent with (I.28) for frequencies of several kHz and higher, but
note greater dispersion occurs at lower frequencies (Ch. 10). This is consistent
with results obtained earlier by [Turgut and Yamamoto 1990]. Note that the
common assumption that wave speed is complex but frequency independent
violates causality. This is because the assumption of constant complex sound
speed results in attenuation that increases linearly with frequency, and this is
inconsistent with the velocity dispersion demanded by causality. This viola-
tion leads to negligible error in most cases of interest [Thorsos et al. 2000a].

The dispersion relations discussed above involve infinite integrals, in prin-
ciple requiring knowledge of either the real or imaginary part of a transfer
function or index of refraction over all frequencies. In practice, data will be
available over a finite frequency range. The obvious approach in this sit-
uation is to truncate the integration domain and hope that the resulting
error is small. A more rigorous approach is provided by [Milton et al. 1997]
who give bounds on dispersion for finite frequency-range data. Alternatively,
[O’Donnell et al. 1981] provide “local” approximations that do not require
integration.

It is sometimes possible to verify that the index of refraction obeys the
causality constraint without resorting to dispersion relations. If one can show
that the index is analytic in the upper half of the complex ω-plane, causality
is assured. For example, [Williams et al. 2002a] add a term s0/(1 − iωτ) to
the index specified by (I.27) and (I.28). If τ > 0, this term is analytic in the
upper half of the complex ω-plane. Generally, if the index is obtained from a
theory with a basis in physics, causality is satisfied. Thus, Biot theory yields a
causal index as far as attenuation due to fluid flow is concerned, but causality
can be violated if the complex moduli do not satisfy the causality constraint.
This is the case when these are taken to be frequency-independent, but the
resulting causality violation is insignificant for the parameters appropriate
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to sand. Considering the compressional wave in Buckingham’s theory, (9.51)
can be used to obtain

n2 =
1

1− iω[λpHp(ω) + 4
3ηtHt(ω)]/Kb

. (I.29)

Causality will be satisfied if the denominator of (I.29) is analytic in the upper
half of the complex ω-plane and has no zeros there. For this, it is sufficient
that −iωHp(ω) and −iωHt(ω) and their reciprocals be analytic in the up-
per half of the complex ω-plane. Such transfer functions are referred to as
being “minimum-phase” [Papoulis 1962, pp. 204-206], and the most com-
mon examples are impedances and admittances. These, along with all other
minimum-phase transfer functions, have real parts that are positive in the
upper half of the complex ω-plane. In the approximation of (9.58) and (9.58),
the minimum-phase requirement is clearly satisfied. Unpublished numerical
calculations by one of the authors (DRJ) indicate that the minimum-phase
requirement is met in general by (9.49) and (9.50). This, together with posi-
tivity of Kb, λp, and ηt, guarantees that the denominator of (I.29) can have
no zeros in the upper half of the complex ω-plane, satisfying the causality
constraint.



J The Scattering Cross Section and Plane
Waves

This appendix develops expressions that are of both practical and theoretical
use. An additional purpose is to derive criteria stating when it is acceptable
to use the scattering cross section in sonar-equation calculations. Some of the
scattering literature raises suspicions that the scattering cross section may
be inapplicable in many common situations, particularly when the sonar is in
the “near field” of the seafloor. In this view, the seafloor is regarded as being
a sort of very large acoustic array. Much of the concern seen in the literature
arises from misinterpretation of definitions, and this motivates a discussion
of the finer points implied by the definitions given in Ch. 2.

The definition of scattering strength used in this monograph is inherently
statistical, but this definition is not universal. Scattering strength is some-
times defined without averaging, in which case it becomes a random variable
itself. There is nothing wrong with such a definition, as long as properties
of the statistical average quantity are not imputed to the random one. The
statistically- defined scattering cross section is invariant with respect to the
parameters of the measurement system, and this invariance can be used to
check experimental data. For example, if the scattering cross section is not
independent of pulse length, this may indicate a flaw in the experiment or in
data processing, as pulse length independence follows from very fundamen-
tal arguments [Henyey and Thorsos 1995]. Scattering strength should also be
independent of geometrical parameters such as the height of the sonar trans-
ducer above the seafloor. If it is not, this may indicate that the echo signal
does not originate from a nearly flat interface. It may, for example, originate
from structures within the seafloor [D. Jackson et al. 1996a].

The first section of this appendix summarizes key definitions and results
that simplify derivations of interface and volume scattering models and spec-
ify the manner in which the plane-wave scattering cross section can be used in
the most general setting. The second section of this appendix is a derivation
of the criteria that must be satisfied if the cross section is to be used.

J.1 General Expressions

The expressions to be given here are based on plane-wave expansions of the
incident and scattered fields. As will be seen, the use of such Fourier expan-
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sions does not mean that the incident or scattered fields must be plane waves.
The essential element in these expansions is the “plane-wave T-matrix,”
Tww(Ks, Ki). This function is a decomposition of the scattered field into
plane waves given that a plane wave of unit amplitude is incident. Specifi-
cally, express the incident pressure as a superposition of plane waves:

Pi(R, z) =
∫

Φi(Ki)eiKi·R−ikwβw(Ki)zd2Ki . (J.1)

As usual, the subscript i is intended to denote “incident.” The plane waves
in the above integral have wave vectors given by (14.11). Recall βw(K) =√
1−K2/k2w.
The outgoing field in the water resulting from the field incident on the

seafloor can also be expressed as a superposition of plane waves:

P (r) =
∫

Φ(Ks)eiKs·R+ikwβw(Ks)zd2Ks . (J.2)

The incident and outgoing plane-wave amplitudes are related by the T-
matrix:

Φ(Ks) =
∫

Tww(Ks,Ki)Φi(Ki)d2Ki . (J.3)

This is the definition of the T-matrix. The subscripts ww are employed fol-
lowing the convention used in the main text for reflection and transmission
coefficients. In the present case, the T-matrix describes scattering of an in-
cident acoustic wave in the water into another acoustic wave in the water.
The subscripts wp and wt are used in this monograph for scattering from the
water into sediment compressional and shear waves.

The T-matrix can be viewed as a generalized reflection coefficient for in-
terfaces that are not uniform in the horizontal coordinates, that is, interfaces
that may scatter sound away from the specular direction. For horizontally
uniform seafloors, the Green’s function can be found in terms of the reflec-
tion coefficient by means of (8.63). This can be generalized for the nonuniform
seafloor to

Gww(rs, ri) = G0(rs, ri) +

i

2πkw

∫ ∫
Tww(Ks, Ki)ei(Ks·Rs−Ki·Ri)+ikw[βw(Ks)zs+βw(Ki)zi] d2Ki

βw(Ki)
d2Ks .

(J.4)
This expression can be found by using (8.61) to obtain the point-source plane-
wave spectrum, Φi(Ki), inserting this in (J.3), and then inserting the resulting
expression for Φ(Ks) in (J.2).

Reciprocity requires that Gww(rs, ri) be unchanged by an interchange of
its two coordinate vector arguments. Using (J.4), this can readily be shown
to require

βw(Ks)Tww(Ks,Ki) = βw(Ki)Tww(−Ki,−Ks) . (J.5)
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The treatment of the Kirchhoff approximations given in Appendix L is
facilitated by the following exact expression for the T-matrix in terms of the
surface field induced by a unit-amplitude incident plane wave:

Tww(Ks, Ki) =
−i

8π2kwβw(Ks)

×
∫
[∇P (r, Ki) + iksP (r, Ki)] · ne−iks·r|z=f(R)dS . (J.6)

This is a generalization to an arbitrary boundary condition of an expression
for the T-matrix for a pressure-release (Dirichlet) interface [Winebrenner and
Ishimaru 1985, Thorsos and Broschat 1995]. An equally general expression
has been derived by [Berman and Dacol 1990]. Their expression has the ad-
vantage of obviously obeying reciprocity, but is somewhat more complicated
than (J.6). The surface integral employs the upward-directed unit normal
vector, n, which is related to the previously introduced normal (8.35) by the
following expressions:

n =
N
N

, (J.7)

ndS = Nd2R , (J.8)

where d2R = dxdy. In (J.6), P (r, Ki) is the total pressure field (incident
plus scattered) at a point r in the water due to a unit-amplitude plane wave.
The gradient in (J.6) acts only on P (r, Ki). The incident plane wave has
three-dimensional wave vector

ki = Ki − ezkwβw(Ki) , (J.9)

and the scattered wave vector is

ks = Ks + ezkwβw(Ks) . (J.10)

In treating the statistics of scattering, the outgoing field is usually de-
composed into coherent and incoherent parts. Correspondingly, the T-matrix
will be expressed as follows:

Tww(Ks,Ki) =< Tww(Ks,Ki) > +Twws(Ks,Ki) . (J.11)

The mean, or first moment, of the T-matrix, < Tww(Ks,Ki) >, describes the
coherent reflection process. Useful constraints can be placed on the moments
of the T-matrix if the statistics of the rough, heterogeneous seafloor are sta-
tionary in the two horizontal coordinates. That is, if all the probability density
functions giving the spatial statistics of density, compressibility, roughness,
etc., do not depend on the particular location being considered. This requires,
for example, that the covariance functions for roughness, B(R1, R2), and
heterogeneity, Bαβ(r1, r2), can be expressed as functions of R1 −R2. Prac-
tically speaking, this condition requires the random seafloor to be essentially
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the same over the region where measurements are made. If the stationarity
condition is satisfied,

< Tww(Ks,Ki) >= Vwwc(Ki)δ(Ks −Ki) , (J.12)

where Vwwc(Ki) is the coherent reflection coefficient discussed in Chs. 2 and
13.

The incoherent, or scattered, T-matrix, Twws(Ks,Ki), is of primary in-
terest. If the seafloor statistics are stationary in the sense defined above,
the second moment of the scattered T-matrix has the following general form
[Zipfel and DeSanto 1972]:

< Twws(Ks,Ki)T ∗
wws(K

′
s,K

′
i) >= C(Ks,Ki,K′

i)δ(Ks −Ki −K′
s +K′

i ) .
(J.13)

The following relationship between the second moment and the bistatic scat-
tering cross section is provided by [Voronovich 1985, Thorsos and Jackson
1989]:

σ(Ks ,Ki) = k2wβ
2
w(Ks )C(Ks, Ki, Ki ) . (J.14)

The connection between the wave vector arguments used here and more con-
ventional angles is given in (14.15) and (14.16).

The utility of the expressions given above is mainly theoretical. While
many derivations of scattering models given in the literature strive to mimic
typical measurement conditions, with directive, non-plane-wave sources, etc.,
the mathematical apparatus defined above allows one to assume simple plane-
wave ensonification. For this case, the spectrum of outgoing plane waves is
the T-matrix, from which the scattering cross section can be immediately
determined. The legitimacy of this procedure is established in the following
section. A practical by-product of that discussion is the following expression
for the mean-square scattered field:

< |Ps(rs)|2 >=
∫
z=0

σ(Ks,Ki)|Pi(r)|2|rs − r|−2d2R , (J.15)

where r = [R, 0],
Ki = kw(R−Ri)/|r− ri| , (J.16)

and
Ks = kw(Rs −R)/|rs − r| . (J.17)

The mean-square scattered pressure is obtained as an integral over the mean
seafloor (z′ = 0), with the angular arguments of the scattering cross sec-
tion dependent on the integration coordinates. The geometry for this in-
tegration is shown in Fig. J.1. Expression (J.15) extends the applicabil-
ity of the plane-wave scattering cross section to most situations of inter-
est and obviates the need for more complicated methods, such as the Fres-
nel approximation [Horton and Melton 1970, McDonald and Spindel 1971,
Thorne and Pace 1984, Pace et al. 1985]. Equation (J.15) is equivalent to
(G.4), although the latter has integration limits restricted by the duration of
the transmitted pulse and includes the effect of receiver directivity.
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Fig. J.1. Geometry for integration over mean scattering interface to obtain the
mean-square scattered pressure. The vector r = [R, 0] lies on the mean plane
(z = 0) and not on the rough interface. The same is true of the area element, d2R.

J.2 Far-Field Issues

The definition of scattering strength assumes that the incident and scattered
energy have well-defined directions, and this condition is sometimes misin-
terpreted. With regard to the incident field, this might be interpreted to
mean that the incident direction must not vary significantly over the scatter-
ing (ensonified) region. With respect to the scattered energy, it is sometimes
asserted that the receiver must be in the far field of the scattering region
(also called the ensonified region) [Horton and Melton 1970]. Considering the
“cross range” dimension, d, of this region (the dimension in the direction or-
thogonal to the line of sight between the sonar and the scattering region), it
will grow linearly with range, r, d = Ψr, where Ψ is the horizontal beamwidth
(G.12). Then the far-field condition becomes r < λ/Ψ2 which can never be
satisfied at ranges of interest.

The purpose of this section is to derive rigorous criteria for the application
of the scattering cross section to replace these heuristic conditions. One of
the basic results is that given in [Winebrenner and Ishimaru 1986]: the length
scale appearing in the far-field criterion is the correlation length of the random
field at the interface (the “surface” field) rather than the dimension of the
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scattering region. As this correlation length is usually quite small, the far-
field criterion can be satisfied in most cases of interest. A review and re-
analysis of this problem has been given by [D. Jackson et al. 1997]. Their
presentation employs, for the most part, expressions in wave vector space.
The discussion in this appendix will employ coordinate-space expressions to
a large degree, allowing more direct contact with the concepts of aperture
size and correlation lengths.

The approach to be taken is to formulate the scattering problem in realis-
tic but very general terms, with a directional source, and with no assumptions
regarding the scattering mechanism other than horizontal stationarity. This
will lead to the desired criteria and also (J.15) for computing the mean-square
scattered field.

The first, and simplest, criterion for application of (J.15) is that the scat-
tering region must be in the far field of the source. If this is not the case, there
will not be a well-defined direction of incidence at each point on the scat-
tering surface, that is, there will not be a definite Ki, one of the arguments
of the scattering cross section. In the T-matrix approach, all relevant source
properties are contained in the plane-wave spectrum, Φi(Ki). To relate this
function to a far-field criterion, it will be written in the form

Φi(Ki) = bi(Ki) e−iKi·Ri+ikwβw(Ki)zi . (J.18)

The source is situated at the point ri = [Ri, zi], and by explicitly factoring
out the phase for propagation from this point to the origin, one is left with a
factor, bi(Ki), that is a slowly varying function ofKi. Inserting this definition
into (J.1), and setting z = 0 to obtain the incident field on the mean interface,

Pi(R, 0) =
∫

bi(Ki)eiKi·(R−Ri)+ikwβw(Ki)zid2Ki . (J.19)

The incident field can be approximated in the far-field region by evaluating
(J.19) in the stationary phase approximation. Expanding the exponent to
second order in Ki about the stationary phase point and performing the
integral analytically, the result is

Pi(R, 0) = −2πikwβw(Ki)bi(Ki)
eikw|r−ri|

|r− ri| , (J.20)

where r = [R, 0], and Ki is to be evaluated at the stationary phase point

Ki = kw
R−Ri

|r− ri| . (J.21)

Inspection of (J.20) shows that bi(Ki) is a source directivity function, similar
to bx(θ, φ) appearing in (F.5).

Anticipating that the correlation length of the field on the interface will
be important in determining the far-field criterion, an effective surface field
will be defined by setting z = 0 in (J.2):
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Psurf (R) =
∫

Φ (Ks) eiKs·Rd2Ks . (J.22)

Although the surface field is usually taken to be the field on the rough in-
terface, defining an equivalent surface field on the mean plane (z = 0) allows
complete generality regarding details of the interface and the scattering mech-
anisms. Thus the present discussion applies to sediment volume scattering as
well as to roughness scattering. Taking the inverse Fourier transform of (J.22)
to obtain the plane-wave spectrum, Φ (Ks), in terms of the effective surface
field, and inserting the result in (J.2) yields

Ps(r) =
1
2π

∫
Psurf (R′)g(r, R′)d2R′, (J.23)

where
g(r, R′) =

1
2π

∫
eiKs·(R−R′)+kwβw(Ks)zd2Ks . (J.24)

Comparison with (8.60) leads to

g(r, R′) = − ∂

∂z
G0(r, r′) , (J.25)

with z′ = 0. This is the field produced by a vertically oriented dipole situated
on the mean interface at [R′, 0]. For distances greater than a few wavelengths
from the interface,

g(r, R′) =
−ikwzeikw|r−r′|

|r− r′|2 , (J.26)

where
|r− r′| =

√
r2 +R′2 − 2R ·R′ . (J.27)

If (J.26) is inserted in (J.23), the resulting expression is valid at all ranges
(near- and far-field) provided the shortest ranges exceed a few wavelengths.
The integral is similar to that for the field radiated by a planar array, so it
is logical to seek a far-field criterion. This criterion is obtained by expanding
(J.27) in a power series,

|r− r′| = r − R ·R′

r
+O(R′2/r) . (J.28)

The far-field, or Fraunhofer, approximation ignores terms that are second-
order and higher in R′. This requires that the corresponding contribution to
phase (the exponent) be small

kwd
2

r
<< 1 . (J.29)

This is equivalent to (F.1) where the “array size,” d, is the range of the
variable R′ over which the surface field is appreciable, that is, d is the size
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of the scattering region. This is the conventional view of the far field and is
relevant if one seeks to compute the scattered field in great detail. If, however,
one merely seeks to compute the mean-square scattered field, this criterion
is far too conservative, as will be seen.

The second moment of the scattered field is

< |Ps(r)|2 >=

k2wz
2

(2π)2

∫ ∫
< Psurf (R1)P ∗

surf (R2) >
eikw(|r−r1|−|r−r2|)

|r− r1|2|r− r2|2 d
2R1d

2R2 . (J.30)

In this case, the expansion of the exponent involves

|r− r1| − |r− r2| = − (R−R′) ·D
|r− r′| +O(D2/|r− r′|) , (J.31)

where
R′ =

1
2
(R1 +R2) (J.32)

and
D = R1 −R2 . (J.33)

Now the Fraunhofer approximation can be used if

kwL
2
f

|r− r′| << 1 . (J.34)

Here, Lf is the correlation length of the surface field, that is, the range of
D for which the correlation of the surface field is appreciable. If this scale
is small compared to the size of the entire scattering region, the far-field
criterion (J.34) will be satisfied at much shorter ranges than the conventional
criterion (J.29).

To proceed, an expression for the covariance of the effective surface field
is needed. Using (J.2), (J.3), (J.11), and (J.13),

< Psurf (R1)P ∗
surf (R2) >=∫ ∫ ∫

C(K, K1, K2)φi(K1)φ∗i (K2)ei(K1−K2)·R2d2K1d
2K2e

iK·(R1−R2)d2K.

(J.35)
The integrals over K1 and K2 can be evaluated by stationary phase if the
scattering surface is in the far field of the source and the T-matrix second
moment, C(K, K1, K2), is slowly varying in K1 and K2. Using (J.14) and
(J.20), one obtains the result

< Psurf (R1)P ∗
surf (R2) >=
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|Pi(R′, 0)|2k−2
w

∫
σ(Ks, Ki)eiKs·Dβ−2

w (Ki)d2Ks. (J.36)

Equation (J.36) relates the spatial correlation of the effective surface field to
the bistatic cross section through a Fourier transform. In obtaining (J.36),
it has been assumed that the correlation length of the surface field is small
compared to the width of the scattering region. As a consequence of the
uncertainty relation for Fourier transforms, (J.36) implies that the correlation
length of the surface field, Lf , is approximately equal to the inverse of the
width of the cross section with respect to the variable Ks. This allows two
important conclusions. First, the condition set earlier on the slowness of the
K-dependence of the second moment of the T-matrix is equivalent to the
statement that the source is in the far field with respect to the correlation
length of the effective surface field. Second, this correlation length is simply
related to the angular width, Δθ, of the narrowest feature of the scattering
cross section: Lf ≈ λ/Δθ, analogous to (F.2) for arrays.

All the elements needed to derive the sonar equation relationship between
the bistatic scattering cross section and the mean-square scattered field are
now available. Changing integration variables in (J.30) toR′ and D, one uses
(J.36) and the first-power expansion (J.31). The integration over D gives a
delta function which enforces (J.17) and yields the desired sonar equation
(J.15). Note that (J.16) is a result of the stationary phase approximation
leading to (J.36). Equation (J.15) can be interpreted as application of the
sonar equation to small scattering subpatches, with an incoherent summation
of the resulting scattered mean-square fields.

To summarize, use of (J.15) is valid if the following conditions are met:
(1) the scattering boundary is in the far field of the source, (2) the source and
field points are both in the far field with respect to the correlation length,
Lf , (3) the size of the ensonified region is much greater than Lf , and (4) the
field point is at least a few wavelengths away from the boundary. This result
is general, applying to both seafloor and sea-surface scattering as long as the
statistical stationarity condition is satisfied.

This theoretical result can be explained using widely understood beam-
forming and diffraction concepts. As illustrated in [D. Jackson et al. 1997],
the statistical averaging essential to the definition of the scattering cross sec-
tion smooths out the angular “wiggles” that would appear in a single-ping
measurement. That is, for a single transmission, the angular pattern of the
scattered energy is very complex, and this angular dependence will not be in-
dependent of range until range exceeds the usual far-field value, d2/λ, where
d is the dimension of the ensonified region. This is the pessimistic criterion
discussed earlier in this appendix. But the angular dependence of the mean-
square field is usually broad and smooth, though not necessarily independent
of range. Equation (J.15) will yield range dependence if the ranges are com-
parable to the size of the scattering region, as in [Pace et al. 1985].

While theory may provide estimates of the correlation length of the surface
field, this is of little help to the experimentalist. Fortunately, this correlation
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scale is related to an experimentally accessible quantity, the angular width
of the scattering strength function [Lysanov 1973]. This can be seen by con-
sidering the inverse of (J.36). Then (F.4) can be applied with Δθ taken to
be angular width of the scattering cross section. The angular width is not
unique, even in a given problem. The backscatter lobe may be very broad,
indicating that a short correlation scale is relevant, while the forward lobe
may be narrow, indicating a larger correlation scale. It follows that it may
be necessary for the measurement transducers to be placed at a greater dis-
tance from the boundary in measurements of the forward part of the bistatic
scattering cross section as compared to measurements in other directions.

It may be difficult to satisfy the far-field criteria in nonspecular di-
rections, if the scattering cross section exhibits rapid variations with re-
spect to incident and scattered angles. Such variations are expected if
strong reflections occur due to seafloor stratification on scales much greater
than the wavelength [Ivakin 1986, Ivakin 1989, Mourad and Jackson 1993,
Essen 1994, Moe and Jackson 1994]. The depth of these reflections then ap-
pears as the field correlation length, requiring greater-than-usual ranges for
satisfaction of the far-field criteria.



K Rough-Interface Perturbation Theory

The purpose of this appendix is to derive expressions given in Ch. 13 for
the fluid, elastic, and poroelastic cases. While there are several excellent
references on perturbation theory as applied to these cases, the notation and
approach used is diverse. Here, a single approach applicable to all cases will
be developed, making use of some of the general expressions given in Sect.
J.1.

Perturbation theory employs a type of power series expansion which can
be either an expansion of the scattered field or, more conveniently, the T-
matrix:

Tww(Ks, Ki) =
∞∑
n=0

1
n!
T (n)
ww (Ks, Ki) . (K.1)

The subscripts ww indicate that this T-matrix is the plane-wave expansion
of the field scattered back into the water when a plane wave is incident from
the water. In solving the scattering problem, it is necessary to include what-
ever fields exist in the sediment, e.g., for the fluid–fluid boundary, one must
consider a similar expansion of Twp, the T-matrix describing the compres-
sional wave field in the sediment. The notation used in (K.1) is somewhat
streamlined and requires explanation. The factor 1/n! is included in order to
simplify later expressions. The first term in the expansion, T (0)

ww, is indepen-
dent of the interface relief function, f(R). In fact, it is simply the solution of
the flat-interface problem

T (0)
ww(Ks,Ki) = Vww(Ki)δ(Ks −Ki) , (K.2)

where Vww(Ki) is the flat-interface reflection coefficient discussed in the main
text. The next term is the “first-order” approximation, proportional to the
first power of interface roughness, even though this dependence is not shown
explicitly. The first-order approximation is the most commonly employed
form of perturbation theory, the so-called “Born approximation.” In all cases
(fluid, elastic, and poroelastic), first-order perturbation theory gives the fol-
lowing form for the incoherent, or scattered, part of the T-matrix:

T (1)
ww(Ks,Ki) =

ikw
βw(Ks)

Aww(Ks,Ki)F (Ks −Ki) , (K.3)

where F (K) is the Fourier transform of the interface relief function
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F (K) =
1

(2π)2

∫
e−iK·Rf(R)d2R , (K.4)

and Aww(Ks,Ki) is the factor appearing in the general expression for the
small-roughness scattering cross section (13.9) and the small-slope scattering
cross section (13.11). Equation (K.3) shows the sense in which T

(1)
ww(Ks,Ki)

is proportional to the first power of interface relief: it is proportional to
the Fourier transform of the relief function. Similarly, the n = 2 term in
(K.1) involves two powers of F (K) in an integral expression that resembles
a convolution.

As noted in Ch. 13 and Appendix L, there is a general relation between
the zeroth- and first-order perturbation solutions,

Aww(Ki,Ki) = −2β2w(Ki)Vww(Ki) . (K.5)

Voronovich [Voronovich 1985] gives a proof of this relationship by considering
the case of a flat interface displaced from z = 0. This result is true for all three
theories considered in this monograph, provided the seafloor in homogeneous,
without gradients or layering. This relationship is important in the small-
slope approximation and also provides a useful test of numerical algorithms.

Returning to the first-order term, its first moment vanishes:

< T (1)
ww(Ks,Ki) >= 0 , (K.6)

because the interface relief function is assumed to have zero mean (<
f(R) >= 0). Considering the second moment, the connection between
Aww(Ks,Ki) and the first approximation to the scattering cross section can
be established by using (J.13) and (J.14):

< T (1)
ww(Ks,Ki)T (1)∗

ww (K′
s,K

′
i) >=

k2w
βw(Ks)βw(K ′

s)
Aww(Ks,Ki)A∗

ww(K
′
s,K

′
i) < F (Ks −Ki)F ∗(K′

s −K′
i) > .

(K.7)
Using (6.4) and (6.5),

< F (K1)F ∗(K2) >=W (K1)δ(K1 −K2) . (K.8)

Combining (J.13), (J.14), (K.7), and (K.8), the key result is obtained:

σ(2)(Ks,Ki) = k4w|Aww(Ks,Ki)|2W (ΔK) , (K.9)

which is the same as (13.9), except the superscript (2) is used to indicate that
this approximation involves the second power of the first-order approximation
to the T-matrix. Hence, this approximation to the scattering cross section is
actually second order in the interface roughness. Expression (K.9) applies
for all boundary conditions (fluid–fluid, fluid–elastic, and fluid–poroelastic),
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even in the presence of gradients and layering, so long as the latter satisfy
certain regularity conditions, to be discussed in Appendix M. In the present
appendix, however, it will be assumed throughout that the sediment is ho-
mogeneous, with no gradients in density or complex sound speed.

In order to indicate how the higher-order terms can be used, it will be
noted that the second-order approximation to the coherent field employs the
expression

< T (2)
ww(Ks,Ki) >= V (2)

ww (Ki)δ(Ks −Ki) , (K.10)

which can be taken as a definition of V (2)
ww (Ki). Thus, the coherent reflection

coefficient approximated to second order is Vww(Ki) + V
(2)
ww (Ki). If one is

concerned with the reflected coherent power, the squared magnitude of the
coherent reflection coefficient is of interest:

|Vwwc|2 ≈ |Vww|2 + |V (2)
ww |2 + 2Re

{
VwwV

(2)∗
ww

}
. (K.11)

One might be tempted to say that this expression is valid to fourth order in
interface roughness, but this is not true owing to the omission of < T

(4)
ww >.

It does, however, contain all second-order terms, so the squared coherent
reflection coefficient is, to second order,

|Vwwc|2 ≈ |Vww|2 + 2Re
{
VwwV

(2)∗
ww

}
. (K.12)

In considering the division of power between the coherent and incoherent
(scattered) fields, one can now consistently use (K.9) and (K.12) as they
are both second order in interface roughness. If all fields, including those
scattered into the sediment, are treated consistently to a given order of inter-
face roughness, incident, coherently reflected, and scattered energy (power,
actually) will balance perfectly. This may seem odd, as each term is an ap-
proximation, but one should think of the exact power balance equation and
realize that the terms in a power series expansion of this equation must also
balance.

The consistent application of higher orders to the scattering cross section
requires some care. Using notation similar to that of [Thorsos and Jackson
1989], the cross section to fourth order is

σ(4)ww = σ(2)ww + σ(22)ww + σ(13)ww . (K.13)

The superscript (22) indicates that this term comes from the second moment
of T (2)

ww, while the term having superscript (13) comes from the following
moment: < T

(1)
wwT

(3)∗
ww >.

K.1 Fluid–Fluid Boundary

Even though the focus of this appendix is first-order perturbation theory, the
development will be arranged so that the nth-order case is clearly defined.
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The derivation given here will be rather detailed in order to set a pattern to
be used for the elastic and poroelastic cases.

Following the procedure outlined in the previous section, the incident field
will be taken to be a plane wave, and the total pressure field in the water
will be written in the form

P (r) = eiKi·R−ikwβw(Ki)z+
∫

Tww(Ks, Ki)eiKs·R+ikwβw(Ks)zd2Ks . (K.14)

Similarly, the pressure field in the sediment is

P (r) =
∫

Twp(Ks, Ki)eiKs·R−ikpβp(Ks)zd2Ks . (K.15)

The T-matrices can be determined by imposing continuity of pressure and
normal displacement on the boundary, z = f(R) (see Ch. 8):

P |z=f(R)+ = P |z=f(R)− , (K.16)

aρN · ∇P |z=f(R)+ = N · ∇P |z=f(R)− , (K.17)

where
N = ez −∇f(R) . (K.18)

In terms of the T-matrices, these conditions are

eiKi·R−ikwβw(Ki)f(R) +
∫

Tww(Ks, Ki)eiKs·R+ikwβw(Ks)f(R)d2Ks =

∫
Twp(Ks, Ki)eiKs·R−ikpβp(Ks)f(R)d2Ks (K.19)

and
aρ[−ikwβw(Ki)− iKi · ∇f(R)]eiKi·R−ikwβw(Ki)f(R) +

aρ

∫
[ikwβw(Ks)− iKs · ∇f(R)]Tww(Ks, Ki)eiKs·R+ikwβw(Ks)f(R)d2Ks =∫
[−ikpβp(Ks)− iKs · ∇f(R)]Twp(Ks, Ki)eiKs·R−ikpβp(Ks)f(R)d2Ks .

(K.20)
It is convenient to express these relations entirely in terms of wave vectors,
removing the R-dependence by means of a Fourier transform. That is, operate
on both (K.19) and (K.20) with∫

e−iK′
s·Rd2R .

The terms involving the gradient can be simplified by means of the following
identity:
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∇f(R)e−iK1·R±ikαβα(K2)f(R)d2R =

± 1
ikαβα(K2)

∫
[∇+ iK1]e−iK1·R±ikαβα(K2)f(R)d2R . (K.21)

The gradient term on the right-hand side of (K.21) integrates trivially to give
the exponential evaluated at the boundary at infinity. Letting f(R) vanish at
infinity, this term can be discarded. The end result is replacement of ∇f(R)
by ±K1/[kαβα(K2)]. The continuity conditions can now be written in the
forms

A−
w(K

′
s, Ki) +

∫
A+
w(K

′
s, Ks)Tww(Ks, Ki)d2Ks =∫

A−
p (K

′
s, Ks)Twp(Ks, Ki)d2Ks , (K.22)

aρBw(K′
s, Ki)A−

w(K
′
s, Ki)

−aρ
∫

Bw(K′
s, Ks)A+

w(K
′
s, Ks)Tww(Ks, Ki)d2Ks =∫

Bp(K′
s, Ks)A−

p (K
′
s, Ks)Twp(Ks, Ki)d2Ks , (K.23)

where

Bα(K1, K2) =
1−K1 ·K2/k

2
α

aαβα(K2)
, (K.24)

and, using the definition given in [DeSanto 1979, D. Jackson et al. 1988],

A±
α (K1, K2) =

1
(2π)2

∫
e−i(K1−K2)·R±ikαβα(K2)f(R)d2R . (K.25)

Expressions (K.22) and (K.23) can be viewed as exact, though there is con-
troversy associated with this position. The scattered field in the water as
represented in (K.14) is comprised entirely of upgoing waves. One can read-
ily imagine that, if the interface has deep valleys, waves will be scattered
downward as well as upward. The assumption that only upgoing scattered
waves need be considered is known as the “Rayleigh hypothesis.” There is a
large and contentious literature surrounding this topic, but [Voronovich 1994]
presents a proof that he gave earlier in the Russian literature that, at least for
the pressure release surface, the Rayleigh hypothesis is not germain to pertur-
bation theory. A less general discussion is given in [D. Jackson et al. 1988].
These results were obtained by developing the perturbation series using a
method that does not require the Rayleigh hypothesis and then showing that
this series is identical to that obtained using the hypothesis. This identity
seems self-evident when one considers a fixed interface relief function, f(R),
scaled by a real, positive factor, α. The perturbation series now becomes a
simple power series in α. As α becomes sufficiently small, it is plausible that
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the series converges. If it does, it must be unique. As this argument makes
no mention of the boundary conditions, it should apply generally. Thus, one
may use the simpler Rayleigh approach in obtaining the perturbation series,
with confidence that the result will be identical to one obtained with more
difficulty by avoiding the Rayleigh hypothesis. Failure of the series to con-
verge at large values of roughness signals a failure of perturbation theory that
is unrelated to the Rayleigh hypothesis. It must be noted, however, that the
Rayleigh hypothesis is sometimes relevant to nonperturbative methods.

The continuity conditions will be written in matrix notation to provide
a general formalism for more complicated cases to be encountered later. Ex-
pressions (K.22) and (K.23) can be summarized in the form∫

D(Ks, K)A(Ks, K)T(K, Ki)d2K = A−
w(Ks, Ki)S(Ks, Ki) , (K.26)

where

D(Ks, K) =
[ −1 1
aρBw(Ks, K) aρBp(Ks, K)

]
, (K.27)

A(Ks, K) =
[
A+
w(Ks, K) 0

0 A−
p (Ks, K)

]
, (K.28)

T(K, Ki) =
[
Tww(K, Ki)
Twp(K, Ki)

]
, (K.29)

S(Ks, Ki) =
[

1
aρBw(Ks, Ki)

]
. (K.30)

The next step in developing the perturbation series is to write the T-
matrix as a series as in (K.1) with an analogous expansion for Twp. It is
necessary to expand A±

α in powers of the interface relief function:

A±
α (K1, K2) =

∞∑
n=0

1
n!
[±ikαβα(K2)]nFn(K1 −K2) , (K.31)

where
Fn(K) =

1
(2π)2

∫
e−iK·Rfn(R)d2R . (K.32)

Note F0(K) = δ(K), and F1(K) = F (K).
If these expansions are inserted into (K.26), a matrix equation relating

the nth-power terms can be obtained:

[−ikwβw(Ki)]nS(Ks, Ki)Fn(Ks −Ki) =

n∑
m=0

(ikw)n−m

(
n

m

)∫
D(Ks, K)En−m(K)T(m)(K, Ki)Fn−m(Ks−K)d2K ,

(K.33)
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where (
n

m

)
=

n!
m!(n−m)!

(K.34)

are the binomial coefficients. The unknown mth-order T-matrices are repre-
sented by the column vector

T(m)(Ks, Ki) =

[
T
(m)
ww (Ks, Ki)

T
(m)
wp (Ks, Ki)

]
, (K.35)

and E(K) is the following diagonal matrix, to be raised to the power n−m:

E(K) =
[
βw(K) 0
0 −βp(K)/ap

]
. (K.36)

The m = n term on the right-hand side of (K.33) can be simplified by noting
that F0(K) = δ(K). Isolating this term, one obtains

T(n)(Ks, Ki) = Q(Ks, Ki)[−ikwβw(Ki)]nFn(Ks −Ki) −
n−1∑
m=0

(
n

m

)∫
M(Ks, K)En−m(K)T(m)(K, Ki)(ikw)n−mFn−m(Ks−K)d2K .

(K.37)
In this equation

Q(Ks, Ki) = D−1(Ks, Ks)S(Ks, Ki) (K.38)

and
M(Ks, K) = D−1(Ks, Ks)D(Ks, K) . (K.39)

Equation (K.37) is a recursion relation from which the nth-order T-matrix
can be found in terms of all lower orders. Setting n = 0,

T(0)(Ks, Ki) = Q(Ki, Ki)δ(Ks −Ki) . (K.40)

With some algebra, the separated components of this two-element column
matrix can be shown to be

T (0)
ww(Ks, Ki) = Vww(Ki)δ(Ks −Ki) , (K.41)

T (0)
wp (Ks, Ki) = Vwp(Ki)δ(Ks −Ki) . (K.42)

As expected, the zeroth-order T-matrices contain the flat-interface reflection
and transmission coefficients, independently derived in Ch. 8, multiplied by
a delta function. Setting n = 1 in (K.37)

T(1)(Ks, Ki) =
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−ikw[βw(Ki)Q(Ks, Ki)−M(Ks, Ki)E(Ki)Q(Ki, Ki)]F (Ks −Ki) .
(K.43)

Separating this expression into its two components and performing some
algebraic manipulation,

T (1)
ww(Ks, Ki) =

ikw
2βw(Ks)

[1 + Vww(Ki)][1 + Vww(Ks)] ×
{
(1− 1/aρ)

[
Ks ·Ki

k2w
− βp(Ki)βp(Ks)

a2paρ

]
− 1 + 1

a2paρ

}
F (Ks−Ki) , (K.44)

T (1)
wp (Ks, Ki) =

ikw
2βw(Ks)

[1 + Vww(Ki)][1 + Vww(Ks)] ×
{
(1− 1/aρ)

[
Ks ·Ki

k2w
+

βp(Ki)βw(Ks)
ap

]
− 1 + 1

a2paρ

}
F (Ks−Ki) . (K.45)

Comparing (K.44) with (K.3), the factor Aww can be recognized and is iden-
tical to (13.21)–(13.25) apart from the use of wave vector, rather than angu-
lar, arguments. A different derivation of these results is given in Sect. M.1.2.
A more general approach is used in [Moe and Jackson 1994], in which the
sediment is allowed to be vertically stratified, that is, its mean properties
may have gradients, with the gradient vector pointing vertically. The re-
sult is given in Sect. 13.2.1. Expression (K.45) is useful in modeling acoustic
penetration of the seafloor (Ch. 15), and an equivalent form is derived in
[Moe and Jackson 1998].

K.2 Fluid–Elastic Boundary

A systematic development of rough-interface perturbation theory for fluid–
elastic boundaries has been given by [Dacol and Berman 1988], and accounts
are also found in [Essen 1994, D. Jackson and Ivakin 1998]. Since the goal of
this appendix is to provide a common perturbation approach for all three
wave theories of interest, a somewhat different analysis will be undertaken,
even though the results are mathematically equivalent to those of the cited
references. Chapter 9 summarizes the equations of motion and boundary
conditions for fluid–elastic models. While these equations and boundary con-
ditions are more complicated than those of the fluid–fluid case, the matrix
formalism developed in the preceding section can be adopted to minimize the
amount of additional analytical effort.

Following the approach in Ch. 9, the displacement field (9.5) will be de-
composed into compressional and shear components described by scalar, φ(r),
and vector, ψ(r), displacement potentials, respectively. The field in the water
will be expanded in terms of the T-matrix as in (K.14), but with T-matrix
relating scalar potential rather than pressure:
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φw(r) = eik
−
w(Ki)·r +

∫
Tww(Ks, Ki)eik

+
w(Ks)·rd2Ks . (K.46)

The scalar potential in the sediment is

φ(r) =
∫

Twp(Ks, Ki)eik
−
p (Ks)·rd2Ks . (K.47)

A word of warning is necessary: By using scalar displacement potentials
rather than pressure, Twp as used here will not approach Twp of the fluid
case in the limit as shear effects become negligible. Thus, the notation used
here is not optimum, but further subscripting of the T-matrix components
would be unwieldy. The vector potential is

ψ(r) =∫
[−e−h (Ks)Twv(Ks, Ki) + e−v (Ks)Twh(Ks, Ki)]eik

−
t (Ks)·rd2Ks . (K.48)

Two T-matrix shear-wave components are needed, one, Twv, describing ver-
tically polarized shear waves and one, Twh, describing horizontally polarized
shear waves. The vertical and horizontal polarization unit vectors, e−v (Ks)
and e−h (Ks), are defined in Ch. 9. Although the horizontal polarization vector
multiplies the vertical T-matrix component and vice versa, the curl operation
needed to obtain displacement gives the expected ordering. Using (9.5), the
displacement field in the water is

uw(r) = ikwe−w(Ki)eik
−
w(Ki)·r +

ikw

∫
Tww(Ks, Ki)e+w(Ks)eik

+
w(Ks)·rd2Ks . (K.49)

The displacement field in the sediment due to compressional waves is

up(r) =

ikp

∫
Twp(Ks, Ki)e−p (Ks)eik

−
p (Ks)·rd2Ks , (K.50)

and the displacement field due to shear waves is

ut(r) =

ikt

∫
[e−v (Ks)Twv(Ks, Ki) + e−h (Ks)Twh(Ks, Ki)]eik

−
t (Ks)·rd2Ks . (K.51)

Next, the continuity conditions for normal displacement (9.26) and tractions
(9.27) can be imposed. Following the same steps as in the fluid case, a Fourier
transform can be used to eliminate terms involving the gradient of the inter-
face relief function so that the continuity conditions can be put in the form
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of (K.26). In this case, (K.26) is a set of four linear equations in the four
unknown elements of the column vector,

T(K, Ki) =

⎡
⎢⎢⎣
Tww(K, Ki)
Twp(K, Ki)
Twv(K, Ki)
Twh(K, Ki)

⎤
⎥⎥⎦ . (K.52)

The order in which these equations is taken in forming the rows of the 4 ×
4 matrix D(Ks, K) and the column vector S(Ks, Ki) is arbitrary, but
the following order will be used: x-traction, y-traction, z-traction, normal
displacement. Thus, the row index ofDmn takes on the valuesm = x, y, z, d.
The column index takes on the values n = w, p, v, h corresponding to the
four unknown T-matrix components. After a considerable amount of algebra,
one finds

Djw =
Ksj −Kj

kwβw(K)
, j = x, y , (K.53)

Dzw = −1 , (K.54)

Djp = aρ[(1−2a
2
t

a2p
)
Ksj −Kj

kwβw(K)
−2a2tBp(Ks, K)Ksj/kw] , j = x, y , (K.55)

Dzp = aρ[1− 2Ks ·K
k2t

] , (K.56)

Djv = −aρ[1− 2Ks ·K
k2t

]Kj/K , j = x, y , (K.57)

Dzv = −aρ[a2tBt(Ks, K)K/kw +
βt(K)Ks ·K

ktK
] , (K.58)

Djh = aρ[a2t
Ks · e−h (K)Kj

k2wβt(K)
− atBt(Ks, K)e−hj(K)] , j = x, y (K.59)

Dzh = −aρatKs · e−h (K)
kw

, (K.60)

Ddw = −Bw(Ks, K) , (K.61)

Ddp = −Bp(Ks, K) , (K.62)

Ddv =
Ks ·K
Kkw

, (K.63)

Ddh =
Ks · e−h (K)
βt(K)kw

. (K.64)

The functions Bα(Ks, K) are defined in (K.24), and the diagonal matrix
A(Ks, K) is
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A(Ks, K) =

⎡
⎢⎢⎣
A+
w(Ks, K) 0 0 0

0 A−
p (Ks, K) 0 0

0 0 A−
t (Ks, K) 0

0 0 0 A−
t (Ks, K)

⎤
⎥⎥⎦ .

(K.65)
The column vector in the inhomogeneous term of (K.26) represents the con-
tribution of the incident wave toward satisfaction of the continuity conditions
and is given by

S(Ks, Ki) =

⎡
⎢⎢⎣
(Ksx −Kix)/[kwβw(Ki)]
(Ksy −Kiy)/kwβw(Ki)]

1
Bw(Ks, Ki)

⎤
⎥⎥⎦ . (K.66)

The nth-order T-matrix can now be found through a procedure formally
identical to that used in the fluid case. Equation (K.37) applies, but with

T(m)(K, Ki) =

⎡
⎢⎢⎢⎣
T
(m)
ww (K, Ki)

T
(m)
wp (K, Ki)

T
(m)
wv (K, Ki)

T
(m)
wh (K, Ki)

⎤
⎥⎥⎥⎦ , (K.67)

with D and S as defined above for the elastic case, and with

E(K) =

⎡
⎢⎢⎣
βw(K) 0 0 0
0 −βp(K)/ap 0 0
0 0 −βt(K)/at 0
0 0 0 −βt(K)/at

⎤
⎥⎥⎦ . (K.68)

The approach used above is similar to that of [D. Jackson and Ivakin 1998],
except that the matrix equation representing field continuity at the interface
is arranged differently. The connection between the matrices used here and
those in [D. Jackson and Ivakin 1998] is as follows:

D(Ks, K) = k−1
w [P (1)(K)(Ksx−Kx)+P (2)(K)(Ksy−Ky)]E−1(K)−P (3)(K) ,

(K.69)
S(Ks, K) = [kwβw(K)]−1[Q(1)(K)(Ksx−Kx)+Q(2)(K)(Ksy−Ky)]+Q(3)(K) .

(K.70)
To obtain the zeroth-order reflection and transmission coefficients, (K.40)

can be used, with results identical to those given in Sect. 9.5. The first-
order T-matrix can be found using (K.43). To make the connection with the
scattering cross section, the first element of the first-order T-matrix, T (1)

ww, can
be compared with (K.3) to obtain the factor Aww. It is possible to expand
and rearrange the matrix expression for Aww to obtain (13.27), although the
required algebra is extensive.
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K.3 Fluid–Poroelastic Boundary

The first-order rough-interface perturbation problem is developed in [Williams
et al. 2001a]. The approach of this reference is used in Sect. 13.2.3 and also in
the small-slope model of [Yang et al. 2002]. Consequently, no detailed deriva-
tion will be given here, but the connection with the general approach used
in this appendix will be outlined. First, (K.69) and (K.70) can be used to
find the matrices D and S by inserting the expressions of Sect. 13.2.3 for the
matrices P (n) and Q(n). The nth-order equation (K.37) applies, with

E(K) =

⎡
⎢⎢⎢⎢⎣
βw(K) 0 0 0 0
0 −β1(K)/a1 0 0 0
0 0 −β2(K)/a2 0 0
0 0 0 −βt(K)/at 0
0 0 0 0 −βt(K)/at

⎤
⎥⎥⎥⎥⎦ .

(K.71)
The mth-order T-matrix is

T(m)(K, Ki) =

⎡
⎢⎢⎢⎢⎢⎣

T
(m)
ww (K, Ki)

T
(m)
w1 (K, Ki)

T
(m)
w2 (K, Ki)

T
(m)
wv (K, Ki)

T
(m)
wh (K, Ki)

⎤
⎥⎥⎥⎥⎥⎦ . (K.72)

As in Sect. 13.2.3, the fast Biot wave is denoted by a sub- or superscript “1”
and the slow wave by a “2.” The shear wave notation is identical to that of the
preceding section. The zeroth-order reflection and transmission coefficients
can be found using (K.40), and the first-order T-matrix can be found using
(K.43). As usual, the scattering cross section follows from comparison of
the first element of the first-order T-matrix, T (1)

ww, with (K.3) to obtain the
factor Aww. The approach outlined in this appendix is an alternative to the
equations presented in Sect. 13.2.3 and may be preferred if higher orders are
of interest.



L The Kirchhoff and Small-Slope
Approximations

This appendix sketches the derivations of Kirchhoff and small-slope approx-
imations. In addition, limiting cases are considered: near-specular scattering
and the high-frequency limit. The derivations are quite general, applicable
for fluid, elastic, and poroelastic (Biot) theories. However, the presentation is
abbreviated and intended mainly to establish notation and provide relations
essential for the scattering models discussed in the main text. The main text
also gives references that can be consulted for more detailed derivations.

L.1 Kirchhoff Approximation

The general T-matrix expression (J.6) provides a convenient starting point
for developing the Kirchhoff approximation. The Kirchhoff approximation is
often called the “tangent plane” approximation, as the surface field (J.1) and
its normal derivative are approximated by the field that would exist if the
rough interface were replaced at each point by a plane tangent to the true
interface. Thus, the field at the surface is taken to be

P (r, Ki) ≈ [1 + Vww(Ki, R)]eiki·r , (L.1)

and the dot product of the gradient with the interface normal is approximated
as

N · ∇P (r, Ki) ≈ iN · ki[1− Vww(Ki, R)]eiki·r . (L.2)

The reflection coefficient Vww(Ki, R) is allowed to be a function of the hor-
izontal coordinates, R, to account for the local tilting of the interface. With
these approximations, (J.6) becomes

Tww(Ks, Ki) =
Δk2

8π2kwβw(Ks)Δkz

∫
Vww(Ki, R)e−iΔk·r|z=f(R)d

2R .

(L.3)
Here, r = R + ezf(R), and Δk = ks − ki with magnitude Δk and z-
component Δkz = kw[βw(Ks) + βw(Ki)] as in Sect. 13.1.

The first and second moments of the T-matrix, needed for the coherent
reflection coefficient and the bistatic scattering cross section, can be readily
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obtained if the dependence of the reflection coefficient on horizontal posi-
tion is neglected. In this case, Vww is no longer a random variable, and the
expectation values of interest are of the form

< eix >= e−
1
2<x2> , (L.4)

where x is a zero-mean, Gaussian, random variable. Expression (L.4) is the
characteristic function of a Gaussian random variable. In applying this ex-
pression, it is assumed that the interface relief function, f(R), is a Gaussian
random process. The first moment of the T-matrix yields, through application
of (J.12),

Vwwc = Vwwe
− 1

2Δk2zh
2
, (L.5)

where h is the RMS interface relief and Δkz = 2kwβw(Ki). The second
moment of the T-matrix can be similarly evaluated and compared with (J.13)
and (J.14) to obtain expression (13.10) for the bistatic cross section.

These derivations of the coherent reflection coefficient and bistatic scatter-
ing cross section employ an additional approximation beyond the traditional
tangent plane approximation. The reflection coefficient has been assumed
to be nonrandom and independent of horizontal coordinates. While this is
true for the pressure-release surface (where the reflection coefficient is −1
for all angles), it is not true for the seafloor. Consequently, there remains the
problem of making a reasonable choice for the argument of the reflection coef-
ficient. As noted in Sect. 13.1, Thorsos (private communication) recommends
evaluation of the reflection coefficient at the angle (13.13) that corresponds
to specular reflection from the source to the receiver. This choice can be
motivated by the high-frequency limit of the Kirchhoff approximation (Sect.
13.3) in which such specular reflections are responsible for all scattering. In
the case of the coherent reflection coefficient, the angle provided by this recipe
is simply the incident grazing angle. For the bistatic cross section, this angle
is a function of both the incident and scattered directions.

L.2 Small-Slope Approximation

The lowest-order small-slope approximation assumes that the T-matrix can
be written in a form similar to the Kirchhoff approximation [Voronovich 1985,
Broschat and Thorsos 1997]:

Tww(Ks, Ki) =
Φ0(Ks, Ki)
8π2kwβw(Ks)

∫
e−iΔk·r|z=f(R)d

2R . (L.6)

The function Φ0(Ks, Ki) is determined by forcing consistency with the per-
turbation expansion carried out to first order. Realizing that the interface
relief function appears in (L.6) through the coordinate vector r in the ex-
ponent, expansion to first order in f(R) and comparison with the general
zeroth- and first-order perturbation expressions (K.2) and (K.3) yields
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Φ0(Ki, Ki) = 2kwβw(Ki)Vww(Ki) (L.7)

and

Φ0(Ks, Ki) = − 2k
2
w

Δkz
Aww(Ks,Ki) . (L.8)

Thus, the lowest-order small-slope approximation is completely determined
once the first-order perturbation approximation has been employed to obtain
Aww(Ks,Ki). This function depends on the wave theory employed and is
given for the fluid, elastic, and poroelastic cases in Ch. 13. Further discussion
is provided in Appendix K. Equations (L.7) and (L.8) taken together demand
[Voronovich 1985]

Aww(Ki,Ki) = −2β2w(Ki)Vww(Ki) . (L.9)

This is a fundamental relationship in perturbation theory. An important and
well-known consequence of this relationship is equality of the Kirchhoff and
small-slope T-matrices in the specular (Ks = Ki) direction, provided the re-
flection coefficient in (L.3) can be approximated by the position-independent
value discussed above. This leads directly to equality of the coherent reflection
coefficients and bistatic scattering cross sections (in the specular direction)
for the two approximations.

L.3 The Incoherent Reflection Coefficient

If the scattering due to interface roughness is concentrated near the specular
direction, it is possible to define a useful reflection coefficient for the inco-
herently scattered energy. First, consider the general equation (J.15) for the
mean-square scattered pressure envelope at rs, with an omnidirectional point
source situated at ri and having source level 20 log10 s0. Accounting for the√
2 ratio between envelope magnitude and RMS value,

< |Ps(rs)|2 >= 2s20
∫
z′=0

σ(Ks,Ki)
(dids)2

d2R′, (L.10)

where

Ki = kw
R′ −Ri

di
, (L.11)

Ks = kw
Rs −R′

ds
, (L.12)

di = |r′ − ri| , (L.13)

and
ds = |rs − r′| , (L.14)

with r′ = [R′, 0]. Attenuation due to absorption in the water is neglected,
but anisotropy in scattering is allowed. The cross section is a function of Ks
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and Ki, consequently a change of integration variable will be made, using
the Bragg wave vector

ΔK = Ks −Ki . (L.15)

This choice is motivated by the fact that, near the specular direction, the
cross section can be approximated as a function of ΔK. The elements of the
Jacobian determinant for this change of variable are

∂ΔKn

∂R′
m

=

kw[−( 1
di
+
1
ds
)δmn− 1

d2s

∂ds
∂R′

m

(Rsn−R′
n)+

1
d2i

∂di
∂R′

m

(R′
n−Rin) , m, n = x, y .

(L.16)
This will be approximated by assuming that the main contribution to the
integral (L.10) comes near ΔK = 0, the specular direction, where

zi
di
=

zs
ds

, (L.17)

R′ −Ri

di
=

Rs −R′

ds
, (L.18)

∇′(di + ds) = 0 . (L.19)

Equation (L.19) is an expression of Fermat’s principle.
These identities yield the following Jacobian:

d2R′ =
d2ΔK

[kw(di + ds) sin θi]2
. (L.20)

Here, sin θi = zi/di = sin θs = zs/ds. With these results, (L.10) can be
approximated as

< |Ps(rs)|2 >= 2s20|Vwwi(θi)|2
(di + ds)2

, (L.21)

where
|Vwwi(θi)|2 = 1

k2w

∫
σd2ΔK (L.22)

is the reflection coefficient for incoherently scattered energy. The key re-
sult is that the inverse-fourth-power spreading factor for each scattering sub-
patch has been converted to an inverse-square spreading factor for the entire
seafloor. If (L.21) is compared to the equation for the peak pressure reflected
from a flat surface (G.1), it can be seen that the two are of the same form,
although the present result assumes a nondirectional source and neglects
acoustic absorption in seawater. As the scattering cross section is often ex-
pressed in terms of angular variables, it may be preferable to express the
incoherent reflection coefficient as
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|Vwwi(θi)|2 = 1
sin θi

∫
σd2dΩs , (L.23)

using the solid-angle variable of Ch. 2.
Note that the energy conservation equation (2.20) can now be written as

|Vwwi|2 + |Vwwc|2 < 1 . (L.24)

Near the specular direction, the bistatic scattering cross section in both
the Kirchhoff (13.10) and small-slope (13.11) approximations can be written
as

σ =
[kw|Vww(θi)| sin θi]2

(2π)2

∫
e−iΔK·R[e−

1
2Δk2zS(R) − e−Δk2zh

2
]d2R . (L.25)

Inserting this into (L.22), the integral over ΔK gives rise to a delta function,
δ(R), with the result

|Vwwi(θi)|2 = |Vww(θi)|2(1− e−Δk2zh
2
) , (L.26)

or, recognizing the coherent reflection coefficient (L.5),

|Vwwi(θi)|2 = |Vww(θi)|2 − |Vwwc(θi)|2 . (L.27)

L.4 High-Frequency Limit of the Kirchhoff
Approximation

To obtain the high-frequency limit, the Kirchhoff integral (13.12) is special-
ized to the large-roughness case for which the coherent reflection coefficient
is negligible, making it possible to drop the second term in the integrand.

IK =
ΔK2

2π

∫
e−iΔK·R− 1

2Δk2zS(R)d2R . (L.28)

The high-frequency assumption enters through the statement that Δkz in
(L.28) is so large that the exponential e−

1
2Δk2zS(R) falls off withR = xex+yey

so rapidly that only small values ofR contribute. Thus, the structure function,
S(R), is expanded in a power series about R = 0. The structure function is
related to the roughness covariance, B(R), by (D.5), so that

S(R)  −∂2B

∂x2
x2 − 2 ∂2B

∂x∂y
xy − ∂2B

∂y2
y2 . (L.29)

By taking partial derivatives of the roughness covariance in the form B(R1−
R) and then setting R1 = R, it can be shown that the second derivatives are
simply connected to the mean-square slope of the rough interface as follows:
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< (
∂f

∂x
)2 >= −∂2B

∂x2
, (L.30)

<
∂f

∂x

∂f

∂y
>= − ∂2B

∂x∂y
, (L.31)

< (
∂f

∂y
)2 >= −∂2B

∂y2
, (L.32)

where the derivatives on the right-hand side of these equations are evaluated
at R = 0. It is convenient to define the slope covariance matrix

Bs = −
(

∂2B
∂x2

∂2B
∂x∂y

∂2B
∂x∂y

∂2B
∂y2

)
. (L.33)

With this expansion, (L.28) becomes the two-dimensional Fourier transform
of a Gaussian function, which is itself a Gaussian. Using (13.10), one obtains
for the bistatic scattering cross section

σ =
1
4
|Vww(θis)|2Δk2

Δk2z
ps(S) , (L.34)

where s is the gradient that the surface relief function would have if it were
oriented so as to give specular reflection from the source to the receiver,
and ps(s) is the probability density function for the slope, evaluated at this
gradient value:

ps(s) =
1

2π||Bs||e
− 1

2 s
TB−1

s s . (L.35)

The variable s appearing in (L.35) is the column matrix comprised of the two
slope components

s =
[
ΔKx/Δkz
ΔKy/Δkz

]
, (L.36)

and ||Bs||is the determinant of the slope covariance matrix.



M Volume Perturbation Theory

Chapter 14 employs perturbation theory results for volume scattering without
derivation. The purpose of this appendix is to provide the needed derivations
as well as more ambitious models found in the literature.

M.1 Fluid Sediment

This section will develop volume perturbation theory for the fluid sediment
based on Ivakin’s unified approach [Ivakin 1998a]. This allows treatment of
roughness and volume scattering on a common footing and provides avenues
for obtaining additional results that would be difficult using standard meth-
ods.

The equation of motion for pressure, (8.5) can be written in the form

∇ · (1
ρ
∇P ) + ω2κP = 0 . (M.1)

The compressibility and reciprocal density will be expanded to first order in
the fluctuation strength,

κ ≈ κ0(1 + γκ), (M.2)

1
ρ
≈ 1

ρ0
(1− γρ), (M.3)

where the normalized density fluctuations, γρ, and compressibility fluctua-
tions, γκ, are defined in (14.20) and (14.21). The pressure is also expanded
to first order:

P ≈ P0 + P1 . (M.4)

Here, P0 is the pressure (a function of three coordinates) obtained in the
“zeroth-order” solution, that is, the solution of (M.1) when the fluctuations
are set to zero. The zeroth-order equation is

ρ0∇ · (1
ρ 0
∇P0) + k2pP0 = 0 , (M.5)

where
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kp =
ω

cp
, (M.6)

with
cp =

1√
ρ0κ0

. (M.7)

If the sediment is stratified, the zeroth-order sediment parameters, ρ0 and
κ0, as well as the corresponding wave speed and wavenumber, cp and kp, will
depend on the z-coordinate in the sediment. In any event, these functions are
likely to have a step change at the sediment–water interface. The first-order
correction to pressure due to fluctuations is denoted P1 and is found as the
solution of the first-order part of (M.1), which can be written in the form

ρ0∇ · (1
ρ 0
∇P1) + k2pP1 = −S(r) , (M.8)

where the source term is

S(r) = −ρ0∇ · (1
ρ 0

γρ∇P0) + k2pγκP0 . (M.9)

Equations (M.8) and (M.9) express the usual perturbation result that the
first-order field obeys the same equation as the zeroth-order field, but with
a source term that is first order in the fluctuations. One means of solving
such an equation is to use the Green’s function, Gpw(r, r′), the zeroth-order
solution for the pressure in the water at r due to a unit point source in the
sediment at r′. Adapting (8.59) to the present situation,

ρ0∇ · [ 1
ρ 0
∇Gpw(r, r′)] + k2pGpw(r, r′) = −4πδ(r− r′) . (M.10)

Noting that the source, S(r), can be viewed as a superposition of point
sources, the first-order field in the water at r is

P1(r) =
1
4π

∫
Gpw(r, r′)S(r′)d3r′ . (M.11)

The required Green’s function can be obtained by generalizing (8.65) to strat-
ified sediments. It is easiest to begin with the Green’s function for the field
in the sediment due to a source in the water:

Gwp(r, r′) =
i

2πkw

∫
eiK·(R−R′)+ikwβw(K)z′

v(K, z)
βw(K)

d2K , z < 0, z′ > 0.

(M.12)
This generalization consists in replacing the field in the homogeneous sed-
iment due to a plane wave by a more general form. That is, Vwp(K)×
exp[−ikpβp(K)z] is replaced by v(K, z). This function gives the z-dependence
of the field in the sediment when a plane wave is incident from the water with



M.1 Fluid Sediment 549

horizontal wavenumber component, K. The plane wave in this case has am-
plitude unity (real, positive) at the origin. This function can be found using
various computer codes, e.g., the OASES [Schmidt 1999] subroutine OASR.
Continuity of pressure across the interface gives the condition

v(K, 0) = 1 + Vww(K) , (M.13)

where Vww(K) is the reflection coefficient for the stratified sediment. The
desired Green’s function can now be obtained using reciprocity (8.69) in the
form

Gpw(r, r′) =
1

aρ(z′)
Gwp(r′, r) , (M.14)

where the source at r′ is in the sediment (z′ < 0), and the density ratio
depends on depth in the sediment,

aρ(z) =
ρ0(z)
ρw

. (M.15)

If the incident field is assumed to be a unit-amplitude plane wave, the first-
order pressure can be expressed in terms of the first-order T-matrix as follows:

P1(r) =
∫

eiKs·R+ikwβw(Ks)zT (1)
ww(Ks, Ki)d2Ks , (M.16)

whereKi is the horizontal part of the wave vector for the incident plane wave.
For the sake of completeness, the zeroth-order pressure is, adapting (8.38),

P0(r) = eiKi·R−ikwβw(Ki)z + Vww(Ki)eiKi·R+ikwβw(Ki)z , (M.17)

from which the zeroth-order T-matrix can be deduced,

T (0)
ww(Ks, Ki) = Vww(Ki)δ(Ks −Ki) . (M.18)

Comparing (M.11) and (M.16), the first-order T-matrix can be found after
an interchange of orders of integration:

T (1)
ww(Ks, Ki) =

i

8π2kwβw(K)

∫
eiΔK·R[D1(Ks,Ki, z)γκ+D2(Ks,Ki, z)γρ)]

d3r

aρ(z)
, (M.19)

where
ΔK = Ks −Ki , (M.20)

D1(Ks,Ki, z) = k2p(z)v(Ks, z)v(Ki, z) , (M.21)

D2(Ks,Ki, z) = Ks ·Kiv(Ks, z)v(Ki, z) +
∂v(Ks, z)

∂z

∂v(Ki, z)
∂z

. (M.22)
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In (M.19), γκ and γρ are three-dimensional functions of the integration vari-
able, r, while ρ0, kp, and v depend only on the vertical component of r, z.
Expression (M.19) is the central result of this section. By making various
assumptions as to the nature of the unperturbed and perturbed sediment
parameters, all the roughness and volume scattering results of interest can
be obtained, and the relation between roughness and volume scattering can
be clarified [Ivakin 1998a].

M.1.1 Heterogeneous Fluid Sediment

The bistatic scattering cross section due to volume heterogeneity of a strati-
fied fluid-like seafloor can be found by taking the second moment of (M.19)
and using (J.13) and (J.14),

σ(Ks, Ki) =
1

(4π)2

∫ 0

−∞

∫ 0

−∞

∫
e−iΔK·Ra−1

ρ (z1)a∗−1
ρ (z2) ×

[D1(Ks,Ki, z1)D∗
1(Ks,Ki, z2)Bκκ(R, z1, z2) +

D2(Ks,Ki, z1)D∗
2(Ks,Ki, z2)Bρρ(R, z1, z2) +

D1(Ks,Ki, z1)D∗
2(Ks,Ki, z2)Bρκ(R, z2, z1) +

D2(Ks,Ki, z1)D∗
1(Ks,Ki, z2)Bρκ(R, z1, z2)]d2Rdz1dz2 . (M.23)

Because the seafloor is stratified, the statistics of the fluctuations in den-
sity and compressibility may not be stationary with respect to the vertical
direction. Consequently, (14.22), (14.23), and (14.24) have been generalized
as follows:

Bρρ(R, z1, z2) =< γρ(R+R0, z1)γρ(R0, z2) > , (M.24)

Bκκ(R, z1, z2) =< γκ(R+R0, z1)γκ(R0, z2) > , (M.25)

and
Bρκ(R, z1, z2) =< γρ(R+R0, z1)γκ(R0, z2) > . (M.26)

Transverse isotropy has been exploited in (M.23) in setting Bρκ(R, z2, z1) =
Bρκ(−R, z2, z1). Equation (M.23) is difficult numerically owing to the four-
fold integration. Various investigators have used additional assumptions and
approximations to obtain simpler models. Some of these models will be de-
scribed in the remainder of this section.
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Unstratified Sediment

If it is assumed that the unperturbed density and complex compressional
wave speed are independent of the vertical coordinate, the vertical depen-
dence of the unperturbed field is

v(K, z) = [1 + Vww(K)]e−ikpβp(K)z , z < 0 . (M.27)

Then

D1(Ks,Ki, z) = k2p[1+Vww(Ks)][1+Vww(Ki)]e−ikp[βp(Ks)+βp(Ki)]z , (M.28)

D2(Ks,Ki, z) = kps · kpi[1 + Vww(Ks)][1 + Vww(Ki)]e−ikp[βp(Ks)+βp(Ki)]z ,
(M.29)

with kpi and kps as defined in (14.13) and (14.14). The scattering cross section
takes the form

σ(Ks, Ki) =
|1 + Vww(Ks)|2|1 + Vww(Ki)|2

(4π)2|aρ|2
∫ 0

−∞

∫ 2zc

−2zc

∫
e−iΔkp·r ×

e2(αs+αi)zc [|kp|4Bκκ(r) + |kps · kpi|2Bρρ(r) +

2Re
{
kps · kpi k∗2p

}
Bρκ(r)]dR2dzdzc , (M.30)

where Δkp is the Bragg wave vector (14.19). Statistical stationarity in the
vertical has been assumed so that the general covariance functions are re-
placed by (14.22), (14.23), and (14.24). In addition, it has been assumed that
the covariances only depend upon the absolute value of the vertical lag. Other
parameters and variables appearing in (M.30) are

αi = Im{kpβp(Ki)} , (M.31)

αs = Im{kpβp(Ks)} , (M.32)

r = [R, z] , (M.33)

z = z1 − z2 , (M.34)

zc =
1
2
(z1 + z2) . (M.35)

Equation (M.30) still involves four integrations. The main problem is that the
z-integral is over finite limits. If these limits are extended to±∞ as an approx-
imation, the 3 integrations over r can be performed, replacing the covariances
by the corresponding spectra (14.25). The validity of this approximation is
discussed in [Jones and Jackson 2000, Jones and Jackson 2001], where it is
noted that the finite limits on the z-integration produce a windowing effect,
with the result that the true spectra should actually be replaced by modified,
effective spectra. The main effect of this windowing occurs for scattering near
the specular direction, as shown in Fig. 14.5. For example, windowing effects
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were shown to be unimportant in a particular bistatic model-data compar-
ison for scattered grazing angles substantially removed from the specular
angle [Briggs et al. 2002a]. Although the range of validity of the nonwindow-
ing approximation is not specified explicitly in the literature, it depends on
the correlation scale of the unmodified spectra, the attenuation coefficient,
and the acoustic wavelength. If windowing is ignored, (M.30) is found to
be identical to (14.8) with the volume scattering cross section, σv, given by
(14.10).

Stratified Sediment with Homogeneous Layers

The nonwindowing approximation can also be used to improve the numerical
tractability of the perturbation model for stratified seafloors. The problem is
simplified if it is assumed that the unperturbed seafloor consists of homoge-
neous layers having horizontal boundaries, such that, for the nth layer,

zn−1 < z ≤ zn . (M.36)

Taking z0 = 0, the first layer has its upper interface at z = 0, the second at
z = z1, etc. Remembering that z < 0 in the seafloor, the thickness of the nth
layer is of the form

dn = zn−1 − zn . (M.37)

The z-dependence of pressure field due to an incident unit-amplitude plane
wave is

v(K, z) =
2∑

α=1

aα(K)e−iνα(K)(z−zn−1) , zn−1 < z ≤ zn . (M.38)

In each layer, there are assumed to be two compressional waves, one with
wave vector tipped downward (α = 1) and one with wave vector tipped
upward (α = 2). That is,

ν1(K) = kpβp(K) , (M.39)

ν2(K) = −kpβp(K) . (M.40)

It is convenient to define three-dimensional wave vectors analogous to those
(14.13, 14.14) used in the unstratified case:

k(α)pi = Ki − ezνα(Ki) , (M.41)

k(α)ps = Ks + ezνα(Ks) . (M.42)

It should be realized that the parameters and functions v(K, z), kp, να(K),
k(α)pi , and k(α)ps are different for each layer and should bear a sub- or su-
perscript, n. Attention will be restricted to the nth layer to minimize the
possibility of confusion. With these definitions,
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D1(Ks,Ki, z) = k2p
∑
α,β

aα(Ks)aβ(Ki)e−i(k(α)psz−k
(β)
piz

)(z−zn−1) , (M.43)

D2(Ks,Ki, z) =
∑
α,β

k(α)ps · k(β)pi aα(Ks)aβ(Ki)e−i(k(α)psz−k
(β)
piz

)(z−zn−1) . (M.44)

If windowing due to the finite thickness of the layers is neglected, the con-
tribution of the nth layer to the bistatic interface scattering cross section
is

σn(Ks,Ki) =

π

2|αρn|2
∑

α,β,α′,β′

1− e−p(α,β,α′,β′)dn

p(α, β, α′, β′)
aα(Ks)aβ(Ki)a∗α′(Ks)a∗β′(Ki)×

{ |kp|4Wκκ(Δkp) + (kαps · kβpi)(kα
′

ps · kβ
′

pi)
∗Wρρ(Δkp)

+[(kαps · kβpi) k∗2p + (kα
′

ps · kβ
′

pi)
∗ k2p]Wρκ(Δkp) } . (M.45)

In (M.45),

p(α, β, α′, β′) = −i(k(α)psz − k
(β)
piz − k(α

′)∗
psz + k

(β′)∗
piz ) , (M.46)

Δkp = Ks −Ki +
1
2
ez(k(α)psz − k

(β)
piz + k(α

′)∗
psz − k

(β′)∗
piz ) . (M.47)

The bistatic cross section is the sum over all layers of the terms given by
(M.45). The deepest layer is semi-infinite and will have a2 = 0. Although each
term in the quadruple sum (over α, β, α′, and β′) is complex, the sum is real.
An interesting feature of the layered case is that the variable, Δkp, that takes
the place of the usual Bragg wave vector is complex. Thus, the spectrum is to
be evaluated at complex arguments. The same situation is encountered in the
unstratified, elastic case of Sects. 14.2.1 and M.2. Even though one normally
thinks of the heterogeneity spectra as real-valued functions of real variables,
the use of complex arguments is perfectly well defined through (14.25), simply
requiring use of a complex wave vector in the exponent before integrating
over r. In practice, it is simpler to insert complex arguments into the spectra
directly, e.g., in the widely used form (7.14).

M.1.2 Volume Treatment of Rough-Interface Scattering

Ivakin [Ivakin 1998a] has treated roughness scattering as a form of volume
scattering by noting that the changes in sediment physical properties due to
deformation of the interface can be written to first order in the seafloor relief
function, f(R), as

γρ = −ρ′0(z)
ρ0(z)

f(R) , (M.48)
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γκ = −κ′0(z)
κ0(z)

f(R) , (M.49)

where the symbol ′ denotes differentiation with respect to z. This formulation
assumes that the surface relief lifts and depresses the sediment strata such
that isosurfaces of constant density and compressibility are simply of the form
z = f(R) + const.

This formalism can be applied to cases in which the division between
roughness and volume scattering is not clear-cut. The method will be illus-
trated by a simple case in which the sediment is homogeneous. For this case,
v(K, z) is given by (M.27). Step changes in density and compressibility give
delta functions as follows

γρ = −2aρ − 1
aρ + 1

f(R)δ(z) , (M.50)

γκ = −2
aρa

2
p − 1

aρa2p + 1
f(R)δ(z) . (M.51)

When these expressions are inserted into (M.19), the delta functions allow
the integrals to be performed analytically, with care needed in dealing with
factors in the integrand that are discontinuous at z = 0. For these factors,
integration with the delta function yields an average of the values above and
below the interface. For example,∫

a−1
ρ (z)

∂v(Ki, z)
∂z

∂v(K, z)
∂z

δ(z)dz =

1
2
[1 + aρ(0−)]a−2

ρ (0−)
∂v(Ki, 0−)

∂z

∂v(K, 0−)
∂z

.

This result is obtained by noting that, while ∂v(K, z)/∂z is discontinuous at
z = 0, when divided by density, the resulting quotient is continuous. These
considerations allow the z-integral in (M.19) to be performed. TheR-integral
yields the Fourier transform of the seafloor relief function, F (ΔK). The first-
order T-matrix for roughness scattering is obtained in the form

T (1)
ww(Ks, Ki) =

ikw
βw(Ks)

Aww(Ks, Ki)F (Ks −Ki) . (M.52)

This is identical to (K.3), and the factor, Aww, is given by (13.21)–(13.25).
As Appendix K shows that this completely determines the bistatic scatter-
ing cross section in lowest nontrivial order, the discussion can be considered
complete.

M.2 Elastic Sediment

This section outlines the derivation of the results given in Sect. 14.2. The pre-
sentation follows, with some notational changes, [D. Jackson and Ivakin 1998,



M.2 Elastic Sediment 555

Ivakin and Jackson 1998], who expanded on the earlier work of [Ivakin 1990].
Because the elastic problem is more difficult than the fluid problem, only the
simplest case, the unstratified seafloor, will be considered.

Volume scattering is caused by fluctuation in the medium parameters,
with density represented by ρ0 + δρ, and the Lamé parameters by λ0 + δλ
and μ0+ δμ. The zeroth-order parameters, ρ0, λ0, and μ0, are assumed to be
independent of depth in the sediment. The displacement field, approximated
by the sum of zeroth- and first-order terms, will be represented by u0 + u1
with corresponding scalar and vector potentials, φ0 + φ1 and ψ0 +ψ1.

The zeroth-order potentials obey (9.7) and (9.8) with wave speeds given
in terms of the unperturbed medium parameters,

cp =

√
λ0 + 2μ0

ρ0
(M.53)

and

ct =
√

μ0
ρ0

. (M.54)

Using (9.31) and (9.32), the zeroth-order displacement field in the sediment
is

u0 = ik−p (Ki)Vwp(Ki)eik
−
p (Ki)·r − ik−t (Ki)× e−h Vwt(Ki)eik

−
t (Ki)·r . (M.55)

The first-order perturbation in the displacement field obeys the equation

ρ0ω
2u1 + ρ0c

2
p∇(∇ · u1)− ρ0c

2
t∇×∇× u1 = f , (M.56)

where f is a vector with components

fi = −δρω2u0i − ∂i [δλ(∇ · u0)]−∑
j

∂j [δμ(∂iu0j + ∂ju0i)] , i, j = x, y, z. (M.57)

This corresponds to the following pair of first-order equations for the per-
turbed potentials:

(∇2 + k2p)∇2φ1 =
1

ρ0c2p
∇ · f , (M.58)

(∇2 + k2t )∇2ψ1 = − 1
ρ0c2t

∇× f . (M.59)

Analogous to (M.11), Green’s functions can be used as follows:

∇2φ1(r) = − 1
4πρ0c2p

∫
Gp(r− r′)∇ · f(r′)d3r′, (M.60)
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∇2ψ1(r) =
1

4πρ0c2t

∫
Gt(r− r′)∇× f(r′)d3r′, (M.61)

where Gα(r) (α = p, t) are Green’s functions for the unbounded elastic
medium:

Gα(r) =
eikαr

r
, α = p, t . (M.62)

These have plane-wave expansions, where the wave vectors are tilted upward
toward the interface:

Gα(r) =
i

2π

∫
d2K

kαβα(K)
eik

+
α (K)·r . (M.63)

The fields represented by (M.60) and (M.61) do not obey the boundary con-
dition at the interface (z = 0). Rather, they are the fields scattered by the
heterogeneity. These fields propagate toward the interface, where they are
partially reflected back into the sediment and partially transmitted into the
water. These fields will be evaluated immediately below the interface, where
it will be assumed that f and its first derivatives vanish. Then the region
immediately below the interface is source-free, with the consequence that the
Laplacians, ∇2, in (M.60) and (M.61) can be replaced by −k2p and −k2t . Next,
(M.63) is substituted in (M.60) and (M.61). Windowing due to the seafloor–
water interface is neglected, that is, the upper limit on the z-integrations is
extended from 0 to +∞. The result is

φ1(r) =
∫

d2K

kpβp(K)
Fp(K,Ki)e

ik+p (K)·r , (M.64)

ψ1(r) =
∫

d2K

ktβt(K)
Ft(K,Ki)e

ik+t (K)·r . (M.65)

The functions Fp(K,Ki) and Ft(K,Ki) are proportional to the three-
dimensional Fourier transforms of ∇· f and ∇× f , respectively. These can be
obtained from the Fourier transform of f ,

F(k) =
1

(2π)3

∫
f(r)e−ik·rd3r . (M.66)

Thus,

Fp(K,Ki) =
−π
ρ0ω2k

+
p · F(k+p ) , (M.67)

Ft(K,Ki) =
π

ρ0ω2k
+
t × F(k+p ) . (M.68)

The T-matrix giving the spectrum of scattered plane waves in the water
can be obtained by considering the transmission through the interface of
the scattered compressional and shear waves. Only the vertically polarized
component of the shear wave is transmitted, so
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T (1)
ww(Ks,Ki) = Vpw(Ks)

Fp(Ks,Ki)
kpβp(Ks)

− Vtw(Ks)
e+h (Ks) · Ft(Ks,Ki)

ktβt(Ks)
,

(M.69)
where the Vαw are the transmission coefficients for conversion of the com-
pressional and shear plane-wave potentials into the compressional potential
in the water. These are related to the usual transmission coefficients (9.41)
and (9.42) as follows:

Vpw(K) =
aρβp(K)
apβw(K)

Vwp(K) , (M.70)

Vtw(K) = − aρβt(K)
atβw(K)

Vwt(K) . (M.71)

The Fourier transform, F(k), can be evaluated and is a linear combina-
tion of the Fourier transforms of the normalized fluctuations defined in Sect.
14.2.2. Using this in (M.69), the second moment of the T-matrix can be found
in terms of the fluctuation spectra, Wαβ . Finally, (J.13) and (J.14) can be
used to obtain the bistatic scattering cross section (14.49). The fluctuation
spectra are evaluated for complex arguments, as in the layered fluid case of
Sect. M.1.1.



References

[Abegg and Anderson 1997] F. Abegg and A. L. Anderson, “The acoustic turbid
layer in muddy sediments of Eckernförde Bay, Western Baltic Sea: methane
concentration, saturation and bubble characteristics,” Mar. Geol. 137, pp.
137-147.

[Abernethy 1965] S. H. Abernethy, “Improved equipment for a pulse method of
sound velocity measurement in water, rock, and sediment,” U.S. Navy Elec-
tronics Laboratory Technical Memorandum TM-824.

[Abraham and Lyons 2002a] D. A. Abraham and A. P. Lyons, “Reverberation en-
velope statistics and their dependence on sonar beamwidth and bandwidth,”
in Impact of Littoral Environmental Variability on Acoustic Predictions and
Sonar Performance, N.G. Pace and F.B. Jensen (Eds.), Kluwer Academic Pub-
lishers, Netherlands, pp. 539-546.

[Abraham and Lyons 2002b] D. A. Abraham and A. P. Lyons, “Novel physical in-
terpretations of K-distributed reverberation,” IEEE J. Ocean. Eng. 27, pp.
800-813.

[Abraham and Lyons 2004] D. A. Abraham and A. P. Lyons, “Reverberation enve-
lope statistics and their dependence on sonar bandwidth and scattering patch
size,” IEEE J. Ocean. Eng. 29, pp. 126-137.

[Agrawal and Pottsmith 2000] Y. C. Agrawal and H. C. Pottsmith, “Instruments
for particle size and settling velocity observations in sediment transport,” Mar.
Geol. 168, pp. 89-114.

[Ainslie and McColm 1998] M. A. Ainslie and J. G. McColm, “A simplified formula
for viscous and chemical absorption in sea water,” J. Acoust. Soc. Am. 103,
pp.1671-1672.

[Akal 1974] T. Akal, “Acoustical characteristics of the sea floor: Experimental tech-
niques and some examples from the Mediterranean sea,” in Physics of Sound in
Marine Sediments, L. Hampton (Ed.), Plenum Press, New York, pp. 447-480.

[Akal and Hovem 1978] T. Akal and J. Hovem, “Two-dimensional space series anal-
ysis for sea-floor roughness,” Mar. Geotechnol. 3, pp. 171-182.

[Aki and Richards 2002] K. Aki and P. G. Richards, Quantitative Seismology, Sec-
ond Edition, University Science Books, Sausalito, CA.

[Albert et al. 1998] D. B. Albert, C. S. Martens, and M. J. Alperin, “Biogeochem-
ical processes controlling methane in gassy coastal sediments II. Groundwater
flow control of acoustic turbidity in Eckernförde Bay sediments,” Cont. Shelf
Res. 18, pp. 1771-1793.

[Altenberg et al. 1991] R. A. Altenberg, N. P. Chotiros, and C. M. Faulkner,
“Plane-wave analysis of acoustic signals in a sandy sediment,” J. Acoust. Soc.
Am. 89, pp. 165-170.



560 References

[Anandarajah and Lavoie 2002] A. Anandarajah and D. Lavoie, “Numerical sim-
ulation of the microstructure and compression behavior of Eckernförde Bay
sediments,” Mar. Geol. 182, pp. 3-27.

[Anderson 1971] E. R. Anderson, “Sound speed in seawater as a function of realistic
temperature-salinity-pressure domains,” Ocean Sciences Department, Naval
Undersea Research and Development Center TP 243.

[Anderson and Hampton 1980a] A. L. Anderson and L. D. Hampton, “Acoustics of
gas-bearing sediments I. Background,” J. Acoust. Soc. Am. 67, pp.1865-1889.

[Anderson and Hampton 1980b] A. L. Anderson and L. D. Hampton, “Acoustics
of gas-bearing sediments II. Measurements and models,” J. Acoust. Soc. Am.
67, pp.1890-1903.

[Anderson et al. 1998] A. L. Anderson, F. Abegg, J. A. Hawkins, M. E. Duncan,
and A. P. Lyons, “Bubble populations and acoustic interaction with the gassy
floor of Eckernförde Bay,” Cont. Shelf Res. 18, pp. 1807-1838.

[APL-UW TR 9407] APL-UW High-Frequency Ocean Environmental Acoustic
Models Handbook, Ch. IV, Bottom, APL-UW TR 9407.

[APL-UW TM 2-00] D. R. Jackson High-Frequency Bistatic Scattering Model for
Elastic Seafloors, APL-UW TM 2-00.

[Archie 1942] G. E. Archie, “The electrical resistivity log as an aid in determining
some reservoir characteristics,” Petrol. Tech., No. 5, 1-8, Trans. AIME 146,
pp. 54-61.

[Ardhuin et. al. 2003] F. Ardhuin, W. C. O‘Reilly, T. H. C. Herbers, and P. F.
Jessen, “Swell transformation across the continental shelf. Part I: Attenuation
and directional broadening,” J. Phys. Oceanogr. 33, pp. 1921-1939.

[Bachman 1984] R. T. Bachman, “Intratest porosity in foraminifera,” J. Sediment.
Petrol. 54, pp. 257-262.

[Bachman 1985] R. T. Bachman, “Acoustic and physical property relationships in
marine sediment,” J. Acoust. Soc. Am. 78, pp. 616-621.

[Bachman 1989] R. T. Bachman, “Estimating velocity ratio in marine sediments,”
J. Acoust. Soc. Am. 86, pp. 2029-2032.

[Bachmann 1973] W. Bachmann, “A theoretical model for the backscattering
strength of a composite-roughness sea-surface,” J. Acoust. Soc. Am. 54, pp.
712-716.

[Badiey et al. 1998] M. Badiey, A. H-D. Cheng, and Y. Mu, “From geology to
geoacoustics – Evaluation of Biot-Stoll sound speed and attenuation for shallow
water acoustics,” J. Acoust. Soc. Am. 103, pp. 309-320.

[Bagnold 1956] R. A. Bagnold, “The flow of cohesionless grains in fluids,” Philos.
Trans. R. Soc. London Ser. A 249, pp. 235-286.

[Barbagelata et al. 1991] A. Barbagelata, M. Richardson, B. Miaschi, E. Muzi, P.
Guerrini, L. Troiano, and T. Akal, “ISSAMS: An in situ sediment acoustic
measurement system,” in Shear Waves in Marine Sediments, J. M. Hovem,
M. D. Richardson, and R. D. Stoll (Eds.), Kluwer, Dordrecht, pp. 305-312.

[Barrick 1968] D. E. Barrick, “Rough surface scattering based on the specular point
theory,” IEEE Trans. Antennas Propag. AP-16, pp. 449-454.

[Bass and Fuks 1979] F. G. Bass and I. M. Fuks,Wave Scattering from Statistically
Rough Surfaces, Pergamon, Oxford.

[Bathurst 1975] R. G. C. Bathurst, “Carbonate Sediments and Their Diagenesis,”
Developments in Sedimentology 12, Second Edition, Elsevier, Amsterdam.



References 561

[Bathurst 1993] R. G. C. Bathurst, “Microfabrics in carbonate diagenesis: a crit-
ical look at forty years of research,” in Carbonate Microfabric, Frontiers in
Sedimentary Geology, R. Rezak and D.L. Lavoie (Eds.), Springer-Verlag, New
York, pp. 3-14.

[Bautista and Stoll 1995] E. O. Bautista and R. D. Stoll, “Remote determination
of in situ sediment parameters using Love waves,” J. Acoust. Soc. Am. 98, pp.
1090-1096.

[Bayer and Niederdraenk 1993] G. Bayer and T. Niederdraenk, “Weak localization
of acoustic waves in strongly scattering media,” Phys. Rev. Lett. 70, pp. 3884-
3887.

[Becker 2004] K. M. Becker, “Effect of various surface-height distribution proper-
ties on acoustic backscattering statistics,” IEEE J. Ocean. Eng. 29, pp. 246-
259.

[Beckmann and Spizzichino 1963] P. Beckmann and A. Spizzichino, The Scattering
of Electromagnetic Waves from Rough Surfaces , Pergamon, Oxford, 1963,
Reprinted 1987, Artech House, Norwood, MA.

[Beckmann 1973] P. Beckmann, “Scattering by non-Gaussian surfaces,” IEEE
Trans. Antennas Propag. AP-21, pp. 169-175.

[Bedford and Stern 1983] A. Bedford and M. Stern, “A model for wave propagation
in gassy sediments,” J. Acoust. Soc. Am. 73, pp. 409-417.

[Bell 1979] D. W. Bell, “Shear Wave Propagation in Unconsolidated Fluid Satu-
rated Porous Media,” Technical report ARL-TR-79-31, Applied Research Lab-
oratory, University of Texas at Austin.

[Bell and Shirley 1980] D. W. Bell and D. J. Shirley, “Temperature variation of
the acoustic properties of laboratory sediments,” J. Acoust. Soc. Am. 68, pp.
227-231.

[Bendat and Piersol 2000] J. S. Bendat and A. G. Piersol, Random Data: Analysis
and Measurement Procedures, Third Edition, Wiley-Interscience, New York.

[Bennell 1979] J. D. Bennell, “Acoustic Properties of Marine Sediments,” PhD the-
sis, University College of North Wales, Menai Bridge, UK.

[Bennell and Taylor-Smith 1991] J. D. Bennell and D. Taylor-Smith, “A review of
laboratory shear wave techniques and attenuation measurements with partic-
ular reference to the resonant column,” in Shear Waves in Marine Sediments,
J. M. Hovem, M. D. Richardson, and R. D. Stoll (Eds.), Kluwer, Dordrecht,
pp. 83-93.

[Bennett and Lambert 1971] R. H. Bennett and D. N. Lambert, “Rapid and reli-
able technique for determining unit weight and porosity of deep-sea sediments,”
Mar. Geol. 13, pp. 251-266.

[Bennett and Hulbert 1986] R. H. Bennett and M. H. Hulbert, Clay Microstruc-
ture, International Human Resources Development Cooperation, Boston.

[Bennett et al. 1989] R. H. Bennett, K. M. Fischer, D. L. Lavoie, W. R. Bryant,
and R. Rezak, “Porometry and fabric of marine clay and carbonate sediments
— determinants of permeability,” Mar. Geol. 89, pp. 127-152.

[Bennett et al. 1990a] R. H. Bennett, H. O. Li, D. N. Lambert, K. M. Fischer,
D. J. Walter, C. E. Hickox, M. H. Hulbert, T. Yamamoto, and M. Badiey, “In
situ porosity and permeability of selected carbonate sediment Great-Bahama-
Bank. 1. Measurements,” Mar. Geotechnol. 9, pp. 1-28.

[Bennett et al. 1990b] R. H. Bennett, K. M. Fischer, H. Li, R. B. Baerwald, M. H.
Hulbert, T. Yamamoto, and M. Badiey, “In situ porosity and permeability



562 References

of selected carbonate sediment Great-Bahama-Bank. 2. Microfabric,” Mar.
Geotechnol. 9, pp. 29-47.

[Bennett et al. 1991a] R. H. Bennett, H. Li, M. D. Richardson, P. Fleischer, D. N.
Lambert, D. J. Walter, K. B. Briggs, C. R. Rein, W. B. Sawyer, F. S. Carnag-
gio, D. C. Young, and S. G. Tooma, “Geoacoustic and geological characteri-
zation of surficial marine sediments by in situ probe and remote sensing tech-
niques,” in CRC Handbook of Geophysical Exploration at Sea, Second Edition
Hydrocarbons, R. A. Geyer (Ed.), CRC Press, Boca Raton, FL, pp. 295-350.

[Bennett et al. 1991b] R. H. Bennett, W. R. Bryant and M. H. Hul-
bert,“Microstructure of fine-grained sediments: From mud to shale,” in Fron-
tiers in Sedimentary Geology, Springer-Verlag, New York.

[Bennett et al. 1996] R. H. Bennett, M. H. Hulbert, M. M. Meyer, D. M. Lavoie,
K. B. Briggs, D. L. Lavoie, R. J. Baerwald, and W. A. Chiou, “Fundamental re-
sponse of pore-water pressure to microfabric and permeability characteristics:
Eckernförde Bay,” Geo-Mar. Lett. 16, pp. 182-188.

[Bennett et al. 1999] R. H. Bennett, B. Ransom, M. Kastner, R. J. Baerwald, M. H.
Hulbert, W. B. Sawyer, H. Olsen and M. W. Lambert, “Early diagenesis:
impact of organic matter on mass physical properties and processes, California
continental margin,” Mar. Geol. 159, pp. 7-34.

[Bentley and Nittrouer 2003] S. J. Bentley and C. A. Nittrouer, “Emplacement,
modification, and preservation of event strata on a flood-dominated continental
shelf: Eel Shelf, northern California,” Cont. Shelf Res. 23, pp. 1465-1493.

[Berge and Berryman 1995] P. A. Berge and J. G. Berryman, “Realizability of neg-
ative pore compressibility in poroelastic composites, J. Appl. Mech. 62, pp.
1053-1062.

[Bergem et al. 1999] O. Bergem, E. Pouliquen, G. Canepa, and N. G. Pace, “Time-
evolution modeling of seafloor scatter. II. Numerical and experimental evalu-
ation,” J. Acoust. Soc. Am. 105, pp. 3142-3150.

[Bergmann and Spitzer 1946] P. G. Bergmann and L. Spitzer, Physics of Sound in
the Sea, Part II: Reverberation, NRDC Division 6 Summary Technical Report
8.

[Berkson and Matthews 1983] J. M. Berkson and J. E. Matthews, “Statistical
properties of seafloor roughness,” in Acoustics of the Sea Bed, N. G. Pace
(Ed.), Oxford University Press, Oxford, pp. 215-223.

[Berman and Dacol 1990] D. H. Berman and D. A. Dacol, “Manifestly reciprocal
scattering-amplitudes for rough interface scattering,” J. Acoust. Soc. Am. 87,
pp. 2024-2032.

[Berman 1991] D. H. Berman, “Simulations of rough interface scattering,” J.
Acoust. Soc. Am. 89, pp. 623-636.

[Berryman and Blair 1986] J. G. Berryman and S. C. Blair, “Use of digital image
analysis to estimate fluid permeability of porous materials: application of 2-
point correlation functions,” J. Appl. Phys. 60, pp. 1930-1938.

[Berryman 1999] J. G. Berryman, “Origin of Gassmann’s equations,” Geophysics
64, pp. 1627-1629.

[Best et al. 1998] A. I. Best, J. A. Roberts, and M. L. Somers, “A new instru-
ment for making in-situ acoustic and geotechnical measurements in seafloor
sediments,” Underwater Technol. 23, pp. 123-131.

[Best and Gunn 1999] A. I. Best and D. E. Gunn, “Calibration of marine sediment
core loggers for quantitative acoustic impedance studies,” Mar. Geol. 160, pp.
137-146.



References 563

[Best et al. 2001] A. I. Best, Q. J. Huggett, and A. J. K. Harris, “Comparison of in-
situ and laboratory acoustic measurements on Lough Hyne marine sediments,”
J. Acoust. Soc. Am. 110, pp. 695-709.

[Best et al. 2004] A. I. Best, M. D. J. Tuffin, and J. K. Dix, “Tidal height and
frequency dependence of acoustic velocity and attenuation in shallow gassy
marine sediments,” J. Geophys. Res. Solid Earth 109, BO8101.

[Bibee 1993] L. D. Bibee, “In situ measurements of seafloor shear-wave velocity
and attenuation using seismic interface waves,” in Acoustic Classification and
Mapping of the Seabed, N.G. Pace and D.N. Langhorne (Eds.), Institute of
Acoustics, University of Bath, UK, pp. 33-40.

[Biot 1956a] M. A. Biot, “Theory of propagation of elastic waves in a fluid-
saturated porous solid. I. Low frequency range,” J. Acoust. Soc. Am. 28, pp.
168-178.

[Biot 1956b] M. A. Biot, “Theory of propagation of elastic waves in a fluid-
saturated porous solid. II. Higher frequency range,” J. Acoust. Soc. Am. 28,
pp. 179-191.

[Biot 1962a] M. A. Biot, “Mechanics of deformation and acoustic propagation in
porous media,” J. Appl. Phys. 33, pp. 1482-1498.

[Biot 1962b] M. A. Biot, “Generalized theory of acoustic propagation in porous
dissipative media,” J. Acoust. Soc. Am. 34, pp. 1254-1264.

[Blair et al. 1996] S. C. Blair, P. A. Berge, and J. G. Berryman, “Using two-point
correlation functions to characterize microgeometry and estimate permeabili-
ties of sandstones and porous glass,” J. Geophys. Res. Solid Earth 101 (B9),
pp. 20359-20375.

[Blott and Pye 2001] S. J. Blott and K. Pye, “GRADISTAT: A grain size distri-
bution and statistics package for the analysis of unconsolidated sediments,”
Earth Surface Processes and Landforms 26, pp. 1237-1248.

[Boehme et al. 1985] H. Boehme, N. P. Chotiros, L. D. Rolleigh, S. P. Pitt, A. L.
Garcia, T. G. Goldsberry, and R. A. Lamb, “Acoustic backscattering at low
grazing angles from the ocean bottom. I. Bottom backscattering strength,” J.
Acoust. Soc. Am. 77, pp. 962-974.

[Boehme and Chotiros 1988] H. Boehme and N. P. Chotiros, “Acoustic backscat-
tering at low grazing angles from the ocean bottom,” J. Acoust. Soc. Am. 84,
pp. 1018-1029.

[Boudreau 1986] B. P. Boudreau, “Mathematics of tracer mixing in sediments. 2.
Nonlocal mixing and biological conveyor-belt phenomena,” Am. J. Sci. 286,
pp. 199-238.

[Boudreau and Imboden 1987] B. P. Boudreau and D. M. Imbodem, “Mathematics
of tracer mixing. 3. The theory of nonlocal mixing within sediment,” Am. J.
Sci. 287, pp. 693-719.

[Boudreau 1994] B. P. Boudreau, “Is burial velocity a master parameter for bio-
turbation?,” Geochim. Cosmochim. Acta 58, pp. 1243-1249.

[Boudreau 1998] B. P. Boudreau, “Mean mixed depth of sediment: The wherefore
and the why,” Limnol. Oceanogr. 43, pp. 524-526.

[Boudreau and Bennett 1999] B. P. Boudreau and R. H Bennett, “New rheological
and porosity equations for steady state compaction,” Am. J. Sci. 299, pp.
517-528.

[Boudreau et al. 2005] B.P. Boudreau, C. Algar, B. D. Johnson, I. Croudace, A.
Reed, Y. Furukawa, K. M. Dorgan, P. A. Jumars, A. S. Grader, and B. S.



564 References

Gardiner, “Bubble growth and rise in soft sediments,” Geology 33, pp. 517-
520.

[Bouma 1964] A. H. Bouma, “Notes on X-ray interpretation of marine sediments,”
Mar. Geol. 2, pp. 278-309.
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Acoustic penetration, see Subcritical
penetration

Archie’s law, 96–98, 105–106, 213, 214
Attenuation, 8–11, 13, 15–17, 32, 49,

103, 120, 123, 124, 202, 247,
250–253, 271, 278, 314, 493, 506

acoustic penetration, 415, 416
Biot theory, 289, 293, 300–306
bioturbation, 68–69, 103
Buckingham’s theory, 280–283
coefficient of variation, 234, 471
compressional wave, 15, 40, 41, 75,

124–151
dispersion, 123, 124, 165–167, 247,

251, 282, 303–305, 420, 511, 516
elastic theories, 271
fast wave, 304
gamma-ray, 96, 98, 99
gassy sediments, 51, 53, 56
gradients, 69, 136–139, 155, 161, 164,

170
heterogeneity, 217–220
logarithmic decrement, 153, 161, 163,

252
measurement, 125–130, 152–155, 217,

218, 303
optical, 81
organic material, 121
pore water viscosity, 120
porosity, 136, 137, 140, 143, 161, 163
quality factor, 252
range of values, 131–134, 137, 167,

206
regressions, 131, 134–136, 139–142,

146–151, 161
relative density, 94
roughness scattering, 340, 341
seawater, 121, 122, 460–462

shear wave, 16, 40, 41, 75, 124,
151–161, 164, 271, 281

slow wave, 124, 161, 304
volume scattering, 378, 382, 552
X-ray, 44, 81, 96, 99, 209

Baseband signal, 428, 440, 485, 486
Biot theory, see also Effective density

approximation, 14, 17, 110, 118,
123–124, 128, 147, 161–165, 251,
278, 282, 285–307, 319, 320, 349,
353–355, 408

acoustic penetration, 408
parameters, 10, 17, 118, 120, 286–289,

300, 303, 319, 320, 408
reflection, 296–298, 317–320
roughness scattering, 344–347,

353–355, 540
slow wave, 123, 161–165, 291–293
speed ratios, 291, 293
tests, 302–305, 319
theoretical alternatives, 305–306

Bioturbation, 29, 65–72, 94, 109,
202–205, 215, 222, 314

Bistatic scattering, see Scattering, cross
section

Boundary conditions, 7, 14, 319, 531
elastic, 271–273
fluid, 253, 254, 532, 533
poroelastic, 295, 296, 346

Bubbles, 11, 21, 33, 51–58, 94, 138, 209,
211, 212, 243, 377, 383, 392–398

acoustic scattering, 392–398
air, 33, 52–53, 94
damping, 393, 395
layering, 397
methane, 33, 51–57, 94, 138, 211,

212, 392, 395–397
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oxygen, 52, 95, 397
quality factor, 396
radius, resonant, 396
resonant frequency, 51, 53, 392, 394,

396
sand, 52, 95
scattering cross section, 392
volume scattering, 51, 383, 391–398

Buckingham’s theory, 14, 59, 92, 110,
128, 130, 166, 264, 278–283,
303–305, 319–320, 355

Bulk modulus, see also Modulus, bulk
Buckingham’s theory, 279
compressibility, 227, 384
elastic theory, 278
fluid theory, 247–250
Wood’s equation, 264, 279, 298, 301

Calcareous sediments, see Carbonate
sediments

Carbonate microstructure, 45–49, 90,
91, 102, 113

Carbonate sediments, 9, 32–33, 44–49,
90, 100, 114, 172, 214

definition, 9
electrical resistivity, 106, 216–217,

221
geoacoustic properties, 50, 131–143,

147, 149–151, 155–165, 168, 169
permeability, 102
properties, 49, 113–114, 117, 228,

234–236, 471
regressions, 141–143, 155–165, 168,

228
structure, 32–33, 44–49, 91, 103, 279
thermal conductivity, 108
X-ray attenuation, 100

Cauchy principal value, 513
Causality, 15, 16, 251, 278, 282, 287,

289, 511–517
Center frequency, 485
Chi-square PDF, 432, 438
Chlorite, 34–36, 112
Clay, see also mud, 9, 30–41, 112
bottom loss, 20
bulk modulus, 115–118
density, 112–114
distribution, 30, 60
fabric, see Clay, microstructure

formation factor, 106
grain size, 78
microstructure, 34–41, 80, 96,

102–104, 113, 117
minerals, see also Chlorite, Illite,

Kaolinite, Smectite, 9, 31, 34–36,
112

origin, 30–31, 34
porosity, 95–96
-sized particles, 8, 77–81
sound speed, 15
volume scattering, 18

Coefficient of earth pressure, 152–153
Coefficient of variation, 224, 225, 234,

235, 242, 243, 471
Complex pressure, 426, 429, 430, 439
Complex signal, 485, 486, 489, 510
Compressibility, see also bulk modulus,

7, 11, 248
bioturbation, 68
clay structure, 36–37, 40–41
effect of free gas, 11
fluctuations, 201, 207, 221–222,

227–229, 384–390, 481, 482, 547,
550, 554

sand grains, 115–116
seawater, 456, 457
spectrum, 384, 479, 482

Consolidation, 36, 39–41, 46, 65, 68, 89,
105, 127, 136, 150–152, 202–204,
221, 242, 386

bioturbation, 65, 68
dewatering, 39–40, 65, 68, 138, 150,

203, 209, 215
electrical resistivity, 105–106
experiments, 33, 97, 101, 106, 110,

386
fabric, 36, 40–41, 46
formation factor, 97
permeability, 101, 104, 110
processes, 34
sediment properties, 40

Constitutive relations, 247
Biot, 286
elastic, 268
fluid, 248
poroelastic, 287

Continuity
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conditions, matrix form, 534
of displacement, 254, 272, 295, 532,

537
of fluid flow, 295, 296
of pressure, 253, 295, 296, 532
of relative displacement, 295
of tractions, 272, 295, 296, 537

Correlation length, 221, 224, 225, 229,
231, 233, 238, 239, 369–372, 390,
441

Critical angle, 20, 258, 262, 276, 277,
302, 311, 317, 319, 331, 341, 349,
380, 382

acoustic penetration, 407–411, 416,
418

shear wave, 276, 343, 404

Darcy’s law, 99, 100, 288
Decibels, 19, 310, 427, 509–510
Demodulation, 486
Density, 14, 39, 42, 44, 95, 150, 155,

214, 554
bulk, 8–10, 15, 16, 30, 32, 40, 42, 44,

45, 49, 92–100, 125, 131, 134, 153,
157, 167–169, 207, 245, 320, 394,
455

coefficient of variation, 234, 242, 471
complex, 250, 258, 271, 320, 347, 378
covariance, 225, 236
effective, 165, 299–302, 317–320, 347,

377
fluctuations, 13, 18, 98, 201, 204,

209, 213–215, 221, 223, 227–229,
235, 237–238, 241, 383–385, 390,
402, 404, 479, 547, 550, 554, 555

gas, 393–395
gradients, 13, 98, 204, 207, 209, 216,

221, 310, 531, 549, 554
grain, 42, 92, 97, 110–115, 122, 129,

213, 227, 234
grain, coefficient of variation, 234,

471
heterogeneity, 207, 209, 402
mass density, 7
measurement, 92–96, 98–99, 126,

145, 207–222, 226
measurement accuracy, 95, 229–234,

236, 242, 243
particle, 89, 92, 110–114

pore water, 11, 92, 96, 100, 120, 264,
288, 455

profiles, 215, 235, 239–241, 311, 320
ratio, 15, 145, 257, 301, 314, 316,

340, 348, 380, 411
relative, 91, 94–95, 122
rock, 169
seawater, 23, 120, 213, 393, 456, 457,

468, 469
specific, 398–399
spectrum, 237–243, 384, 386, 390,

479
TR 9407, 313–314
vicinal water, 96
water, 464
Wood’s, 264, 279, 288

Density–compressibility
correlation, 222, 229, 384, 386–390,

481, 482
spectrum, 384, 386, 482

Density–speed correlation, 208, 386,
403, 482

Diagenesis, 34, 36, 39
Discrete scatterers, 21, 59, 70, 173, 201,

209–211, 213, 330, 368–369, 376,
383, 391–401, 406

Dispersion, see also Attenuation,
dispersion, 15, 147, 166, 170, 282,
292, 303, 387

effect on measurement, 128, 131, 140,
147

Dispersion relations, 511–517
Displacement, 246–248, 267, 268
Biot theory, 286, 287, 291, 297, 301
Buckingham’s theory, 279
compressional wave, 270
effective, 298
plane wave, 249
polarization, 270, 292
shear wave, 270
transmission coefficient, 257

Effective density approximation, see
also Density, effective, 298–305,
315–319, 347–348, 353, 355, 377

Effective stress, 40, 152–154, 204, 215,
223
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Elasticity theory, 14, 16, 267–277,
320, 341–343, 401–404, 536–539,
554–557

Electrical conductivity, see Electrical
resistivity

Electrical current density, 105
Electrical resistivity, see also Formation

factor
density heterogeneity, 213–217, 221
grain morphology, 89
grain size distribution, 81
measurement, 104–106, 110, 122
porosity measurement, 96–98
resolution, 230, 234, 484
roughness measurement, 177, 181,

197
Endfire arrays, 489
Energy conservation, 24–27
Ensonified region, 426, 430, 432–437,

439, 498, 523, 527
Envelope, 485
statistics, 421–442

Equation of motion
Buckingham, 279
elastic, 268, 269
fluid, 248
poroelastic, 288–290

Far-field, 415, 487–489, 527
scattering, 523–528

Fathometer return, 498
Fermat’s principle, 544
Fluid theory, 14–16, 245–264, 355
acoustic penetration, 407, 411–419

Formation factor, 91, 96–98, 105–107,
181, 182, 214

Fraunhofer approximation, 525, 526
Fresnel approximation, 522

Gassmann’s equations, 110, 118, 264,
277–278, 287

Gaussian
covariance, 370–372
grain-size distribution, 76
non-Gaussian statistics, 430–442
random process, 198, 356, 421, 475
random variable, 542
signal envelope, 416
slope distribution, 365

spectrum, 370–372
statistics, 425–429
statistics, heterogeneity, 237, 241
statistics, roughness, 175, 177, 475

Geoacoustic properties, see also
Sound speed, Shear wave speed,
Attenuation, 8–14, 40, 58, 75,
123–170, 204, 234, 246, 285, 310,
313–314, 317, 321, 349, 350, 352,
369, 377, 389, 390, 416, 471

Gradients, 13, 40, 80, 96, 126, 136–139,
154–155, 268, 340

consolidation, 40, 137, 204, 221
density, 98, 204, 236
electrical resistivity, 214–216
reflection, 309–311
roughness scattering, 340–341, 353,

361, 377, 531
shear waves, 154, 159–161, 164
sound speed, 69, 109, 136–139, 236
surface sediments, 138–139, 206–207
temperature, 106–109

Grain size, 8–9, 76–89, 129–133, 246
acoustic reflection, 309
acoustic scattering, 8, 90, 323–327,

348–350, 352, 432
attenuation, 125, 136, 140
biological processes, 65–69
bubble size distribution, 397
Buckingham’s theory, 59, 279
bulk density, 167–169
classification, 78–79, 86
coefficient of variation, 202, 234, 235,

471
continuum approximation, 246, 287
definition, 8
distribution, 75–81, 129, 212
Folk and Ward, 81–85
gradients, 138, 206
IOI, 146–151
mean, 9, 30, 75, 97, 101, 122, 131,

133, 138, 142, 145, 202, 239, 245,
319, 432

measurement, 77–81, 129, 145
permeability, 101–103
pore size parameter, 118–119
porosity, 32
reflection, 312–317
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regressions, 131, 135–137, 139–146,
148–151, 157–158, 162–163

ripple formation, 60–63, 185–186
roughness, 184, 185, 193–195, 197,

199–200
shear wave attenuation, 161–163
shear wave speed, 49, 155–161
sound speed, 49, 125, 134–136,

139–146
statistics, 77–89
TR 9407, 313–320
Udden-Wentworth scale, 77
volume scattering, 390, 397

Gravel, 3, 9, 81, 95, 113, 131, 147
distribution, 30–31
grain size, 78–79, 81
IOI, 146–150
permeability, 101–102, 104
scattering, 323–328
ternary diagram, 88

Green’s function, 259–264, 380, 514,
520, 548–549, 555

Heterogeneity, 7–8, 11–13, 21–22, 33,
80, 85, 201–243, 377, 388

attenuation, 306
bioturbation, 65–66, 71–72, 201–203
coefficient of variation, 234
correlation length, 390
covariance, 385, 390
discrete, 391–401
elastic, 401–406
examples, 12–13, 65–66, 201–207,

234–243
exponential covariance, 390
fluid, 385–387
formation, 202–207
measurement, 98, 207–222
measurement accuracy, 229–234
microstructure, 43
scattering, 11–13, 17–18, 332,

377–406, 409, 547–557
shear, 402
spectra, 385, 402, 404
statistical characterization, 222–229,

385–387, 404, 479–484
temporal change, 70–71

Hilbert transforms, 512–514

Hydraulic conductivity, see Permeabil-
ity

Illite, 31, 34–36, 96, 112, 114, 117
Impedance, see also Index of

impedance, 8, 10, 23, 51, 68–69,
123, 127, 145–151, 204, 253,
257–258, 261, 274, 309

Impulse response
linear systems, 511
material, 280

Index of impedance, 123, 127, 131–134,
146–151

regressions, 146–151
Intensity
acoustic, 252–253
covariance, 429, 439–441
gamma ray, 99
scattered, 64, 337–338, 381, 425,

428–429
Intromission angle, 20, 257–258, 341

Jacobian, 544

K distribution, 426, 433
Kaolinite, 31, 34–36, 96, 112, 114, 117,

153
Kirchhoff approximation, see Scatter-

ing, Kirchhoff
Kozeny–Carman, 102, 104, 119
Kramers–Kronig relations, see also

Causality, 251, 282, 289, 303, 515

Lambert’s law, 25–26, 323, 324, 369
Lamé parameters, 268, 278, 280, 287
fluctuation, 555

Layering, see also Heterogeneity, 13,
170, 259

bioturbation, 68–69, 201–205
bubbles, 397
hydrodynamic processes, 60, 71, 182,

201–205
reflection, 309–311
roughness scattering, 340–341, 361,

377, 531
volume scattering, 377

Leptokurtic, 82, 84, 86, 89
Logarithmic decrement, 252
shear waves, 153, 161, 163

Lognormal statistics, 431–432
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Loss, see also Attenuation
acoustic, 250–253
bottom, 19–20, 68, 275, 297–298,

301–302, 310–319, 493
elastic, 271
parameter, 15, 190, 281, 293–294,

351, 382, 393
propagation, 493, 498

Markov process, 435–437
Mesokurtic, 82, 86, 89
Methane, see also Bubbles, 33, 51–57,

94, 138, 212, 392, 395–397
Modulus, see also Bulk modulus,

Compressibility, Lamé parameters
bioturbation, 69
bulk, 9–11, 96, 110–118, 169, 245,

248, 264
bulk, frame, 130, 134, 278, 287, 298,

303
bulk, grain, 41, 110–118, 169, 264,

278, 287, 301–303, 306
bulk, pore fluid, 248, 278, 287, 303,

347
complex, 247, 250, 303, 393
effective, 298–302
elastic, 245
Gassmann, 278
isotropic case, 268
sediment fabric, bulk, 96
shear, 124, 152–153, 155, 161, 229,

278, 393, 395
shear, frame, 278, 287, 303
shells, 398

Montmorillonite, see Smectite
Mud, see also Clay, Silt, 8–9, 47, 60,

66, 80, 83, 84, 202, 307, 330
attenuation, 125, 127, 137
compaction, 95
consolidation, 104, 127, 150, 242, 386
definition, 80
dispersion, 147
distribution, 30, 204, 422
formation factor, 97, 107, 182, 215
gassy, 51, 54, 94, 392
geoacoustic gradients, 137
inclusions, 59, 66, 237
permeability, 101, 103
porosity, 95, 97

reflection, 257–258
roughness, 195–196
scattering, 323–327, 331, 341–342,

362, 426
shear wave attenuation, 161
shear wave speed, 118, 123, 155, 204
sound speed, 125, 134, 137, 150, 218
ternary diagrams, 86–88
thermal conductivity, 108
volume scattering, 388

Narrowband signal, 485
Navier–Stokes equation, 247, 280
Near-field, 487
scattering, 525

Non-Gaussian
statistics, 430–442

Normal vector, 254, 272, 295, 296, 521,
532, 541

Ooids, 49, 90
Overburden pressure, see Effective

stress

Packing, 41–42, 89, 91, 94, 105, 122,
127, 150–151, 204, 214, 238, 242

bioturbation, 69, 214
experiments, 33, 110, 386
formation factor, 97–98, 105–107
grain morphology, 89–91
measurements, 33, 106, 110
permeability, 102
relative density, 94–95

Parametric arrays, 322, 407, 489
Permeability, 8–11, 30, 75, 96, 99–104,

118, 202, 218, 288
Biot theory, 118–119, 278, 285, 288,

303
bioturbation, 65, 69, 103
carbonates, 45
clay, 36, 40–41, 117, 285
grain morphology, 89, 91
grain size, 76, 102
measurement, 41, 42, 44, 100–105,

110, 122
organic matter, 121
resistivity, 101
sediment structure, 32, 49, 101
viscosity, 121, 462
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Physical properties, 8–9, 75–122
Pipette methods, 77–81
Plane-wave assumption, 309, 311, 317,

380, 381, 522, 524
Platykurtic, 83, 86, 89
Point sources, 259–262, 276, 277
Pore size, 11, 14, 42, 59, 102, 103, 130,

202, 303, 306, 392
measurement, 42, 44
parameter, 44, 118–119, 285, 289

Pore water, 92–96, 117, 119–121, 127,
129

attenuation, 120–122
bioturbation, 71
bulk modulus, 115, 278, 287
carbonates, 46
clay, 113
density, 111, 115, 120, 264, 288
dissolved methane, 33, 56
dissolved oxygen, 52
IOI, 146–147
pressure, 152
properties, 115, 119–122, 285, 301,

455, 469
resistivity, 96, 105, 466
salt content, 92
sediment acoustic impedance,

146–147
sound speed, 120–122, 127–128
sound speed ratio, 127–128, 146
stress–strain behavior, 41
viscosity, 119–121
Wood’s equation, 264

Poroelasticity theory, see Biot theory
Porosity, 9, 75, 122, 131, 242
acoustic reflection, 315
attenuation, 125, 136–137, 140, 142,

161
biological processes, 68–70, 314
Biot theory, 285, 300–301, 319
Buckingham’s theory, 279
bulk density, 42, 169, 227–228
coefficient of variation, 234, 471
consolidation, 40, 150
effective density, 300, 301
electrical resistivity, 96–98, 104–107,

213–214, 242
fluctuations, 201, 213, 214, 227, 235

formation factor, 96–98, 105–107,
214, 466–467

Gassmann’s equations, 278
gradients, 138–139, 204, 206, 214
grain morphology, 91–92
grain size, 32, 68, 76, 85, 89
heterogeneity, 207
interparticulate, 32, 49, 157
intraparticulate, 32, 49, 102, 117,

157, 306
IOI, 132–133, 146–151
measurement, 41, 42, 44, 45, 92–99,

104–106, 122, 129, 145, 208, 213,
218, 226, 242, 455, 484

packing, 150
permeability, 102
pore size, 289
regressions, 131, 134–137, 140–146,

151, 228
rock, 169
sediment structure, 32, 49
shear wave attenuation, 161–164
shear wave speed, 49, 123, 155–157,

160
sound speed, 49, 115–116, 122, 125,

134–137, 140–142, 144
spectra, 386
structure, 38–45, 49–50
thermal conductivity, 108
Wood’s equation, 111–115, 264

Potential
perturbed, 555, 556
scalar, 268, 269, 273, 290, 296, 536,

555
transmission coefficient, 257
vector, 268, 269, 274, 290, 296, 537,

555
Power-law spectrum
heterogeneity, 221, 225, 226, 239, 386
roughness, 173, 175, 176, 191–193,

195, 335, 341, 356, 371, 476–478
Pressure
acoustic, 247
acoustic plane wave, 248
atmospheric, 124
attenuation, 127
Buckingham’s theory, 279
effective, 299
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fluctuations, 56, 94, 109
gradient, 100
hydrostatic, 117, 393
incident, 520
mean-square, 522
overburden, 152, 154
pore fluid, 287

Probability density functions, see
Chi-square PDF, Gaussian, K
distribution, Rayleigh PDF,
Weibull statistics

Probability of false alarm, 421–424

Quality factor, 252, 396

Range-time relation, 496, 497
Rayleigh
hypothesis, 533, 534
mixture PDF, 433, 434
PDF, 427

Rayleigh PDF, 426
Reciprocity, 24, 263, 343, 380, 491, 520,

521, 549
Reflection, 17–20
coefficient, 19, 254–257, 334, 340,

343, 345, 355, 493, 529, 541
coefficient, coherent, 22, 24, 335, 531,

542, 545
coefficient, fluid–elastic, 274, 539
coefficient, fluid–poroelastic,

296–298, 540
coefficient, incoherent, 337, 543–545
coefficient, phase, 259, 494
coefficient, stratified, 549
fluid–elastic, 273–276
fluid–fluid, 254–259
fluid–poroelastic, 296–298
measurement, 493–495
stratification, 528

Refractive index, 515
Ripple (sand), 12, 19, 22, 24, 58, 73,

104, 171–173, 175, 214, 335,
338–339, 358, 362, 367, 371, 408,
417, 423, 442, 475

acoustic penetration, 408, 412–413
bioturbation, 58, 65, 67, 70–72
buried, 104, 205
diffraction, 413
formation, 60–63

roughness, 175, 179–189
spectrum, 191–197
wavelength, 412

Rock, 3, 9, 30–31, 113
bulk modulus, 112, 114–116
CT scanning, 99, 209
density, 111–113
discrete scatterers, 201, 368
elastic theory, 267, 275–277
grain-size analysis, 80
heterogeneity, 13
methane, 51
properties, 169
scattering, 323–329, 342–343, 362,

374–375, 401, 404–406
Roughness, see also Ripple, Scattering,

roughness, 7–8, 11–12, 17–18,
58–59, 171–198, 271, 310, 315, 320

anisotropic, 335, 353, 356, 358
biological processes, 65–72, 184–189
characterization, 475–477
correlation length, 370
covariance, 174, 475, 545
covariance, Gaussian, 370, 371
electrical resistivity, 181, 182
examples, 182–184, 410
Gaussian, 356, 475
grain, 41, 59, 90–92, 130, 278
hydrodynamic processes, 60–72,

184–189
isotropic, 333, 338, 370, 475, 476
mean grain size, 193–195
mean-square, 375, 475
mean-square slope, 370, 375, 545
measurement, 176–182
multiscale, 371
non-Gaussian, 356
power-law assumption, 191–193
RMS, 174–176, 184, 187–190,

199–200, 336, 370, 372
RMS slope, 359, 371, 373
scattering models, 331–376
seafloor, 171–198
single-scale, 371
slope covariance, 360, 546
slope probability density, 357, 365,

546
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spectrum, 11–12, 173–176, 179–197,
199–200, 338, 475

spectrum, Pierson-Moskowitz, 373
spectrum, von Karman, 374
statistical characterization, 173–176
stereophotography, 18, 177–180,

185–188, 191, 199–200, 410
structure constant, 477
structure function, 336, 476, 477, 545
temporal variability, 184–190

Sand, see also Ripple, 3, 9, 20, 33,
171–172, 237–238, 241–243

attenuation, 125, 127, 137
bubbles, 52, 53, 94
bulk modulus, 115–117
carbonates, 45–49
coefficient of variation, 235
compressibility, 115–116
dispersion, 147
distribution, 30, 60–63
fabric, 41–45, 50
formation factor, 97–98, 106–107,

214, 216
gradients, 137, 139, 159, 164, 204,

214
grain morphology, 89–92
grain size, 78
measurement, 80–82, 95, 130, 145
origin, 30–32, 60–62
Ottawa, 91, 116, 319
packing, 33, 95, 110, 127, 150–151,

204
permeability, 101–102
pore water, 120
poroelastic effects, 17, 165
porosity, 125, 150
properties, 132–134
reflection, 257–258, 275, 312, 316–319
relative density, 94
roughness, 180–188, 194, 199–200
scattering, 323–328, 331, 336, 341,

343, 348, 351, 353, 375, 387, 390,
404

shear wave attenuation, 153, 161,
162, 164

shear wave speed, 155, 156
sieving, 80, 130, 145
slow wave, 165, 304

sound speed, 15, 125, 134
stress relaxation, 279
ternary diagrams, 86–88
thermal conductivity, 108–109

Scattering, 17, 21–27
backscattering, 24, 497–508
backscattering data, 323–327
backscattering enhancement, 26
bistatic, 24, 333, 373, 375, 384, 387,

495–497, 522
bistatic data, 329
bistatic, tests, 349
Bragg, 338, 339, 353
broken mirror model, 357
bubbles, 392–398
composite roughness, 336
composite-roughness, 362–368
cross section, 21–27, 331, 333, 335,

336, 338, 340, 342, 344, 357, 381,
402, 414, 519–528, 542, 546, 550,
557

cross section, fourth-order, 531
cross section, poroelastic, 540
elastic small-slope, 361
energy balance, 531, 545
facet model, 357
far-field, 523–528
fluid small-slope, 361
frequency dependence, 349–353, 356,

397
geometric optics, 357
Kirchhoff, 334, 336, 353–360, 521,

541, 542
Kirchhoff integral, 334, 335, 353, 356,

545
Kirchhoff, accuracy, 372, 373, 375
Kirchhoff, elastic, 353
Kirchhoff, high-frequency, 336, 357,

545, 546
Kirchhoff, tests, 360
measurement, 495–508
monostatic, 24
multiscale, accuracy, 373–376
perturbation, 530
poroelastic small-slope, 361
roughness, 331–376, 387
roughness, accuracy, 369–376
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roughness, elastic perturbation,
341–343, 536–539

roughness, fluid perturbation, 340,
341, 347, 531–536

roughness, perturbation, 334, 336,
338–353, 529–540

roughness, perturbation, accuracy,
371, 372, 375

roughness, perturbation, tests,
348–353

roughness, poroelastic perturbation,
344–347, 540

roughness, poroelastic, tests, 353
roughness–volume interaction, 383,

550, 553, 554
small-slope, 334, 336, 343, 361, 362,

530, 542, 543
small-slope versus Kirchhoff, 336,

362, 545
small-slope versus perturbation, 336,

362
small-slope, accuracy, 373, 375
statistical error, 508
stratified seafloor, 536, 554
strength, 3, 22–24, 495, 498
volume, 331, 348, 353, 376–390
volume cross section, 380, 381, 383,

391
volume, accuracy, 390
volume, elastic, 401–406
volume, elastic perturbation,

401–404, 554–557
volume, fluid, 378–385
volume, fluid perturbation, 383–385,

547–553
volume, perturbation, 547–557
volume, poroelastic, 377
volume, stratified, 548, 552–553
volume, tests, 387–389
volume, windowing, 390

Scintillation index, 425, 427, 439, 440
Seafloor acoustics, 1–557
Shear waves
Biot theory, 286, 290–293
bioturbation, 69
carbonates, 46, 49
clay structure, 40–41
density, 158, 162–163

elastic theories, 267–283
gradients, 159–161, 164
grain size, 158, 162–163
in geophysics, 16, 94, 154
liquefaction, 94
measurement, 151–155
porosity, 156–157, 162–163
regressions, 155–165
speed, 151–161
speed ratio, 271

Shell, see also Heterogeneity, discrete,
46–47, 59, 65, 80, 91, 97, 133, 136,
169, 171–173, 201, 205, 211, 213,
237–238, 241, 306, 331, 368, 377,
383, 389, 391, 398–401

Sieving, 76–89, 130, 145
Siliciclastic
definition, 9
fabric, 41–45
properties, 114, 115, 131–143,

155–165, 168, 169, 228, 234
regressions, 100, 134–137, 141–143,

147–148, 150, 155–165, 168, 228
sediments, 32, 100, 114
thermal conductivity, 108

Silt, 3, 8, 151, 203
attenuation, 136, 140
distribution, 30, 60
grain size, 77–84
origin, 30
permeability, 102
scattering, 387
ternary diagrams, 86–88, 145–146

Smectite, 31, 34–36, 38, 96, 112, 114,
117

Snell’s law, 20, 256, 258, 274, 343, 384,
387, 411

Sonar
applications, 1–3
equation, 327, 493, 498, 502, 527
platforms, 322

Sound speed, 125–151, 248
bioturbation, 68–69, 203
bottom loss, 20
Buckingham’s theory, 278–279, 282
carbonate sediments, 49–50
coefficient of variation, 234, 471
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complex, 251, 258, 300, 347, 378, 381,
411

covariance, 236
effective density, 299–302
“fast” and “slow” seafloors, 258, 341
fluctuations, 13, 109, 220–223, 229,

235, 471, 481, 482
fluid theory, 247–250
Gassmann, 118
gassy sediments, 51, 53
gradients, 136–139, 204, 206–207,

235, 311
grain density, 111
grain modulus, 115–116, 118
measurement, 125–130, 208, 217
particle density, 111
permeability, 101–103
pore water viscosity, 120
porosity, 89, 115
ratio, 15, 127, 128, 131–151, 190, 251,

262, 271, 314, 316, 340, 348, 382,
412

regressions, 131, 134–136, 144
relative density, 94
seasonal variations, 109
seawater, 121, 122, 458–460
spectrum, 386, 387
TR 9407, 145, 313–317
Wood’s equation, 264

Spatial frequency
2D spectrum, 176

Specific heat, 108, 109, 393, 395
Spectral exponent, 175, 176, 181, 194,

224, 238, 242, 351, 356, 374, 388,
476, 477

Spectral strength, 175, 181, 189, 194,
224, 235, 356, 476

Specular direction, 17, 18, 26, 310,
333–339, 349, 353, 355, 357, 358,
360, 373, 375, 387, 390, 425, 543

Stationarity, 173–175, 198, 222–223,
421, 432, 439–442

Stationary phase, 524
Strain, 246
tensor, 267

Stress
consolidation, 40, 110, 152
effective, 152

geophysical, 94
relaxation, 278–279
stress–strain (acoustics), 14–15, 152,

246–248, 268, 286–288
tensor, 267–268, 286

Subcritical penetration, 407–419, 536
fluid model, 411–419
fluid model accuracy, 419
fluid model tests, 416–419
Kirchhoff approximation, 410
scattering, 407–419

Surface field, 521, 524, 541
correlation length, 524, 526–528
covariance, 526

Synthetic-aperture sonar, 2, 408, 419

T-matrix, 6, 345, 411, 520–522, 532
coherent, 521
elastic, 556
elastic, first-order, 539
first-order, 529, 549
first-order, fluid, 536
Kirchhoff, 541
perturbation expansion, 529
perturbation recursion, 535
poroelastic, 540
reciprocity, 520
second moment, 522, 530, 542, 557
small-slope, 542
zeroth order, 529, 535, 549

Tangent plane approximation, see
Scattering, Kirchhoff

Ternary diagrams, 86–89, 145
Thermal conductivity, 106–109, 393,

395
Thermal diffusivity, 108–109
Tomography
acoustic, 126, 154, 217–221, 235, 387
X-ray, 13, 33, 56, 58, 96, 204, 208,

320, 398
Tortuosity, 59, 97, 130
Biot theory, 119, 285, 288, 303
bioturbation, 69
fabric, 42, 44
hydraulic, 102, 119
measurement, 42, 44
permeability, 102

Transducers, 322, 487–491
angular coordinates, 495, 499
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aperture, 488
directivity, 3-dB width, 502
far field, 487–490
near field, 487
piezoelectric, 487
piston, 487, 490
receiver directivity, 490, 493, 495,

498–502
receiver sensitivity, 491, 493, 495
reciprocity, 491
source directivity, 489, 493, 495,

498–502, 524
source level, 490, 493, 498

Transfer function, 511–515
Transmission coefficient, 257, 263, 345,

380, 403, 411, 539
fluid–poroelastic, 296–298
fluid-elastic, 275, 557

Viscosity
absolute, 101, 464
bulk, 280, 460
dynamic, 101, 288, 303
kinematic, 464
pore water, 119–121
seawater, 462–465
shear, 280, 460
vicinal water, 96

Void ratio, 9, 38, 40, 41, 102, 152–153,
159–160

carbonates, 102
measurement, 42, 45, 92–95
permeability, 102
shear modulus, 153
shear speed, 159–160

Water content, 9
bioturbation, 69
measurement, 92–95, 122

Wave vector, 333
2D spectrum, 174, 176, 476
3D spectrum, 224, 480
Bragg, 338, 357, 385, 544, 553

incident, 384
scattered, 384

Wavenumber
2D spectrum, 174, 176
3D spectra, 480
3D spectrum, 224
acoustic, fluid, 249
analyticity, 515
Bragg, 339, 353, 372
compressional, 269, 394
cutoff, 360, 362, 364, 476
fast, 291–293
integration, 259–262
shear, 270, 292, 293
slow, 291–293

Waves
compressional, 16, 123, 269–271, 537
elastic, plane, 269
evanescent, 262
fast, 17, 286, 291, 304, 346, 540
fluid, plane, 248–250
lateral, 262
longitudinal, 249
P, 16
plane, 520, 522
poroelastic, plane, 290–293
S, 16
Scholte, 123, 154, 276
shear, 16–17, 123, 269–271, 291, 537,

540
shear, polarization, 270, 271, 274,

292, 346, 537
slow, 17, 123, 161–165, 286, 291, 304,

346, 540
slow, penetration, 408
speed, compressional, 269
speed, shear, 269, 341, 343
spherical, 493
Stonely, see Scholte

Weibull statistics, 421–422, 426, 432
Wenner array, 105, 214, 217
Wood’s equation, 111, 115–116, 118,

134, 264–265, 279, 281, 298, 302




