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PREFACE 

This book covers several important topics on the subject of optimization of 

structural and mechanical systems. Computational optimization methods have 

matured over the last few years due to the extensive research by applied 

mathematicians and the engineering community. These methods are being 

applied to a variety of practical applications. Several general-purpose 

optimization programs as well as programs for specific engineering applications 

have become available recently. These are being used to solve practical and 

interesting optimization problems.  

The book covers state-of-the-art in computational algorithms as well as 

applications of optimization to structural and mechanical systems. Formulations 

of the problems are covered and numerical solutions are presented and discussed. 

Topics requiring further research are identified. Leading researchers in the field 

of optimization and its applications have written the material and provided 

significant insights and experiences with the applications. The topics covered 

include:  

 

� Optimization concepts and methods  

� Optimization of large scale systems 

� Optimization using evolutionary computations 

� Multiobjective optimization 

� Shape optimization 

� Topology optimization 

� Design sensitivity analysis of nonlinear structural systems 

� Optimal control of structures 

� Nonlinear optimal control 

� Optimization of systems for acoustics 

� Design optimization under uncertainty 

� Optimization-based inverse kinematics of articulated mechanisms 

� Multidisciplinary design optimization 

� mesh free methods for optimization 

� Kriging metamodel based optimization, 
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� Sensitivity-free formulations for structural and mechanical system 

optimization 

� Robust design based on optimization 

� Parallel computations for design optimization 

� Semidefinite programming for structural optimization. 

 

The book is suitable for advanced courses on optimization of structural and 

mechanical systems. It is also an invaluable resource for researchers, graduate 

students, and practitioners of optimization. 

I would like to thank all the authors for their diligence and meticulous work in 

writing their chapters. Without their hard work this book would not be possible. I 

would also like to thank the staff at World Scientific Publishing Company for 

their patience and help in finalizing the material for the book.  

Finally, I would like to thank all my family members for their unending 

support, patience and love. 

Jasbir S. Arora 

Iowa City, Iowa, USA 

4 December 2006 
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CHAPTER 1 

INTRODUCTION TO OPTIMIZATION 

Jasbir S. Arora 

Department of Civil and Environmental Engineering 

Department of Mechanical and Industrial Engineering 

Center for Computer Aided Design 

 The University of Iowa  

Iowa City, Iowa, U.S.A. 

E-mail: Jasbir-Arora@uiowa.edu 

Basic concepts of optimization are described in this chapter. Optimization 

models for engineering and other applications are described and discussed. 

These include continuous variable and discrete variable problems. Optimality 

conditions for the continuous unconstrained and constrained problems are 

presented. Basic concepts of algorithms for continuous and discrete variable 

problems are described. An introduction to the topics of multiobjective and 

global optimization is also presented. 

1.  Introduction 

Optimization is a mature field due to the extensive research that has been 

conducted over the last about 60 years. Many types of problems have been 

addressed and many different types of algorithms have been investigated. The 

methodology has been used in different practical applications and the range of 

applications is continuously growing. Some of the applications are described in 

various chapters of this book. The purpose of this chapter is to give an overview 

of the basic concepts and methods for optimization of structural and mechanical 

systems. Various optimization models are defined and discussed. Optimality 

conditions for continuous variable optimization problems are presented and 

discussed. Basic concepts of algorithms for continuous variable and discrete 

variable optimization problems are described. Topics of multiobjective and 

global optimization are also introduced. The material of the chapter is available 

in many textbooks on optimization.
1-7

 It is derived from several recent 

publications of the author and his co-workers.
7-34
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2.  Optimization Models 

Transcription of an optimization problem into a mathematical formulation is a 

critical step in the process of solving the problem. If the formulation of the 

problem as an optimization problem is improper, the solution for the problem is 

most likely going to be unacceptable. For example, if a critical constraint is not 

included in the formulation, then most likely, that constraint is going to be 

violated at the optimum point. Therefore special attention needs to be given to 

the formulation of the optimization problem. 

 Any optimization problem has three basic ingredients: 

• Optimization variables, also called design variables denoted as vector x. 

• Cost function, also called the objective function, denoted as f (x). 

• Constraints expressed as equalities or inequalities denoted as ( )xig . 

The variables for the problem can be continuous or discrete. Depending on 

the types of variables and functions, we obtain continuous variable, discrete 

variable, differentiable and nondifferentiable problems. These models are 

described next; for more details and practical applications of the models, various 

references can be consulted.
7,9-12,14,16,25-30

 

2.1.  Optimization Models: Continuous Variables 

Any continuous variables optimization problem can be transcribed into a 

standard nonlinear programming (NLP) model defined as minimization of a cost 

function subject to equality constraints and inequality constraints expressed in a 

"≤" form as Problem P.
7 

Problem P. Find the optimization variable vector 
T

nxxx ][ 21=x  to minimize a 

cost function f (x) subject to equality and inequality constraints: 

 ( ) pjg j to1,0 ==x  (1) 

 ( ) mpjg j to1,0 +=≤x  (2) 

where n is the number of variables, p is the number of equality constraints, and m 

is the total number of constraints. Note that the explicit lower and upper bounds 

on the variables are included in Eq. (2). However, for efficient numerical 

calculations the simple form of these constraints is exploited.  

 The feasible set for the problem is defined as a collection of all the points 

that satisfy the constraints of Eqs. (1) and (2). It is also called the constraint set, 

and is denoted as S: 
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 ( ) ( ){ }mpjgpjgS jj to1,0;to1,0 +=≤=== xxx  (3) 

Thus the Problem P can be written simply as 

 ( )x
x

f
S

minimize
∈

 (4) 

It is important to note that the feasible set for a problem may be empty if 

there are too many constraints on the problem or if there are conflicting 

constraints. In general, this is difficult to determine before the problem is solved. 

Only after a numerical algorithm fails to find a feasible point for the problem, we 

can conclude that the set S is empty.
21

 In that case the problem formulation needs 

to be examined to relax some of the constraints, or eliminate conflict in the 

constraints. In addition, it is difficult to know, in general, if there is a solution to 

the Problem P. However, the question of existence of a solution can be answered 

with certain assumptions about the problem functions. It turns out that if f (x) is 

continuous on a nonempty feasible set S, all constraint functions are continuous, 

and all inequalities contain their boundary points (i.e., expressed as “ ≤ ” and not 

simply as “<”), then there is a solution for Problem P. When these requirements 

are satisfied, a robust numerical algorithm is guaranteed to converge to a solution 

point. 

If there are no constraints on the variables, the set S is the entire design space 

and the problem is called an unconstrained optimization problem. If all the 

functions are linear in terms of the variables, the Problem P is called a linear 

programming (LP) problem. If the cost function is quadratic and the constraints 

are linear, the problem is called a quadratic programming (QP) problem.  

An inequality constraint gi(x) ≤ 0 is said to be active at a point x if it is 

satisfied as an equality at that point, i.e., gi(x) = 0. It is said to be inactive if it has 

negative value at that point, and violated if it has positive value. An equality 

constraint is always either active or violated at any point.  

In some applications, several objective functions need to be optimized 

simultaneously. These are called multiobjective optimization problems. They are 

usually transformed into Problem P by combining all the objective functions to 

form a composite scalar objective function. Several approaches to accomplish 

this objective are summarized in a later section.
7,32,35-37

 

When a gradient-based optimization method (discussed in a later section) is 

used to solve Problem P, the cost and constraint functions are assumed to be 

twice differentiable. 



J. S. Arora 

 

4 

2.2.  Optimization Models: Mixed Variables 

In many practical applications of optimization, discrete variables occur naturally 

in the problem formulation. For example, 

• plate thickness must be selected from the available dimensions,
7
 

• material properties must correspond to the available materials,
7,25

 

• structural members must be selected from a catalog,
14,26,29

 

• number of reinforcing bars in a concrete member must be an integer,
28

 

• diameter of rods must be selected from the available sizes,
7,28

 

• number of bolts must be an integer,
27

 

• number of strands in a prestressed member must be an integer.
28

 

Discrete variables must be treated properly in numerical optimization procedures. 

A mixed continuous-discrete variable optimization problem is defined next as 

Problem MP. 

 

Problem MP. A general mixed discrete-continuous variable nonlinear 

optimization problem is defined by modifying Problem P to minimize the cost 

function f ( x) subject to the constraints of Eqs. (1) and (2) with the additional 

requirement that each discrete variable be selected from a specified set: 

 ( ) diiqiiiii nid,....,d,dD,Dx to1  ;  21 ==∈  (5) 

where nd is the number of discrete design variables, Di is the set of discrete 

values for the ith variable, qi is the number of available discrete values for the ith 

variable, and dik is the kth discrete value for the ith variable. Note that the 

foregoing problem definition includes integer variable as well as 0-1 variable 

(on-off variables, binary variables) problems. If the problem has only continuous 

variables, and the functions f and gj are twice continuously differentiable, we 

obtain the Problem P. Many discrete variable optimization problems have 

nondifferentiable functions; therefore gradient-based methods cannot be used to 

solve such problems. However, methods that do not require gradients of 

functions are available to solve such problems. 

 It is also important to note that the discrete variable optimization problems 

usually require considerably more computational effort compared to the 

continuous variable problems. This is true even though the number of feasible 

points with discrete variables is finite and they are infinite with continuous 

variables. 
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3.  Optimality Conditions for Problem P 

3.1.  Definitions and General Concepts  

The optimality conditions are the mathematical conditions that characterize a 

minimum point for the problem. Let us first define what is meant by a minimum 

point for the cost function f (x) before discussing the optimality conditions. 

Local Minimum. The cost function f (x) has a local minimum (relative minimum) 

at a point x* in the feasible set S if the function value is the smallest at the point 

x* compared to all other points x in a small feasible neighborhood of x*, i.e., 

 f (x*) ≤ f (x) (6) 

If strict inequality (i.e., f (x*) < f (x)) holds, then x* is called the strict or isolated 

local minimum. 

Global Minimum. The cost function f (x) has a global minimum (also called an 

absolute minimum) at a point x* if Inequality (6) holds for all x in the feasible set 

S. If strict inequality holds, then x* is called the strict or unique global minimum. 

 

These definitions show that for the local minimum, we test the inequality in 

Eq. (6) only for a small feasible domain around the point x*, and test it over the 

entire feasible set S for the global minimum point. Note that the cost function 

f (x) can have many global minimum points as long as the function values are the 

same at all the points. Similarly, there can be multiple local minima in the small 

feasible domain. 

 The foregoing definitions of local and global minima cannot be used directly 

to find the minimum points for the Problem P. However, they can be used to 

derive the optimality conditions that characterize a local minimum point. Note 

that they cannot be used to derive optimality conditions for a global minimum 

point for the function f (x). The reason is that the global optimality conditions 

require knowledge about the global behavior of f (x). For a discrete variable 

problem, the definitions are useful because there are only a finite number of 

points to be checked for optimality of a given point. In fact most stochastic 

methods for optimization of discrete variable problems, described in a later 

section, use the definitions to check optimality of a point in its neighborhood. 

 The optimality conditions can be divided into two categories: necessary and 

sufficient. The necessary conditions must be satisfied for a point to be a candidate 

minimum point. The points that satisfy the necessary conditions are called 

stationary points. Note however that a point satisfying the necessary conditions 
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need not be a minimum point, i.e., points that are not minima may also satisfy the 

necessary conditions. The sufficient condition if satisfied determines the 

stationary point to be a local minimum point. If the sufficient condition is not 

satisfied, no conclusion about the optimality of the stationary point can be drawn. 

We shall describe both the necessary and sufficient conditions. Sample problems 

showing the use of these conditions can be found in many textbooks.
2-7,38 

 The optimality conditions are used in two ways: (i) they are used to develop 

numerical methods for finding minimum points, and (ii) they are used to check 

optimality of a given point; i.e., using them, a stopping criterion for the iterative 

numerical algorithm can be defined. We shall first present the optimality 

conditions for the unconstrained problem and then for the general constrained 

Problem P. 

3.2.  Optimality Conditions for the Unconstrained Problem  

When there are no constraints, the problem is to minimize just the cost function 

f ( x). The conditions for x* to be a minimum point for the function f (x) are 

derived by analyzing the local behavior of the function at the point x*; i.e., 

Taylor’s expansion for the function. 

 

First Order Necessary Condition. If x* is a local minimum for the cost function 

f ( x), then the gradient (first derivatives) of f (x) at x* must vanish, that is,  

∂f/∂xi = 0, i = 1 to n. 

 

Second Order Necessary Condition. If x* is a local minimum for the function 

f ( x), then its Hessian H = [∂2f /∂xi∂xj] at x* must be at least positive 

semidefinite; i.e., all its eigenvalues must be nonnegative. 

 

Second Order Sufficient Condition. If the matrix H(x*) is positive definite at 

the stationary point x*, then x* is an isolated local minimum point. (A matrix is 

called positive definite if all its eigenvalues are positive). 

 

 Any point x* satisfying the necessary conditions of optimality is called a 

stationary point. If a stationary point is neither a minimum nor a maximum, then 

it is called an inflection point. It should be noted that the optimality conditions 

are based on derivatives of f (x) and not the function value. Therefore, the 

minimum point is not changed if a constant is added to the function, or the 

function is scaled by a positive constant. The optimum value of the cost function 

does, however, change in the process.  



Introduction to Optimization 

 

7 

3.3.  Optimality Conditions for the Constrained Problem  

We now present the optimality conditions for a constrained problem which 

involve constraints in addition to the cost function. Although a constrained 

problem can have minimum points where no constraints are active, this usually 

does not happen in practical applications. The case where no constraints are 

active, the optimum point is inside the feasible set S and the foregoing optimality 

conditions for the unconstrained problem apply; i.e., the optimality conditions for 

the unconstrained problem are a special case of those for the constrained 

problem. The conditions for the constrained problem can be expressed in several 

alternate but equivalent ways. We shall present the conditions that are most 

commonly used in the modern literature. These are known as Karush-Kuhn-

Tucker or KKT conditions. 

 

Regular Point. An assumption in the derivation of the KKT necessary conditions 

is that the minimum point be a regular point of the feasible set S. A point x is 

called a regular point of the feasible set S if the cost function is continuous and 

the gradients of all the active constraints are linearly independent at the point. 

The number of linearly independent vectors cannot be more than n, the number 

of variables, i.e., dimension of each vector. Thus the total number of active 

constraints cannot be more than the number of variables at the regular point; i.e., 

at a minimum point. 

 

Karush-Kuhn-Tucker Necessary Conditions. Let the Lagrangian for the 

Problem P be defined as 

 ( ) ( ) ( )xguxux •+= f,L   (7) 

where u is a vector of Lagrange multipliers for the constraints g that needs to be 

determined and a “ • ” implies scalar product of vectors. Let x* ∈ S be a local 

minimum for f (x). Also, let the gradients of the active constraints at x* be 

linearly independent (i.e., point x* is a regular point of the feasible set). Then 

there exist unique Lagrange multipliers ∗
iu such that 

 ( ) 0x =∇ *L ,   or   ( ) ( ) 0uxgx =∇+∇ ***f  (8) 

 ( ) ( ) mpi,*gu i
*
i to10 +==x  (9) 

 ( ) mpi,u*
i to10 +=≥  (10) 

where ( )*xg∇  is an n µ m matrix. Equations (8) show that the Lagrangian L is 

stationary with respect to x since the gradient of the Lagrangian is zero, Eq. (9) 

shows that either the Lagrange multiplier for the ith inequality is zero or the 
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constraint is active at the minimum point (if ui = 0, gi must be ≤ 0 for feasibility 

of x*), and Eq. (10) shows that the Lagrange multipliers for the inequality 

constraints must be nonnegative. In addition, x* must be a feasible point. 

Equation (9) is called the switching condition or complementary slackness 

condition because it identifies active and inactive inequality constraints. Note 

that there are n variables and m Lagrange multipliers, and thus (n+m) unknowns. 

There are (n+m) equations (n equations in conditions (8), p equalities, and m-p 

equations in condition (9)). Therefore, the necessary conditions give a 

determinate system of equations, though it is usually nonlinear.  

 The gradient condition of Eq. (8) can be re-arranged as: 

 ( ) ( ) ***f uxgx ∇=∇−  (11) 

This form of the equation brings out the physical meaning of the gradient 

condition. It shows that at the minimum point, the steepest descent direction 

(negative of the cost function gradient) is in the range of gradients of the active 

constraints; i.e., a linear combination of them with Lagrange multipliers as the 

scalars of the linear combination. 

 The regularity check for x* is an important part of KKT conditions. If this 

check is not satisfied, all other KKT conditions may or may not be satisfied at x*. 

For example, the Lagrange multipliers may not be unique at x*. However, the 

irregular points can also be local minimum points where KKT conditions may be 

actually violated. 

 Second order optimality conditions can be used to distinguish the minimum 

points from others. These conditions also involve Hessians of the functions, as 

for the unconstrained problems; e.g., Hessians of the active constraints at x*. We 

briefly discuss these conditions next.
1-7 

 

 

Second-order Necessary Condition. Let x* satisfy the first order KKT 

necessary conditions for Problem P. Let the Hessian of the Lagrange function L 

at x* be defined as  

 ∑ ∇+∇=∇
=

∗
m

i
ii gufL

1

222  (12)  

Let there be nonzero feasible directions, 0d ≠ , as solutions of the following 

linear system at x*:  

 ( ) 0=•∇ dig , i = 1 to p and for those i > p with gi(x*) = 0 (13)  

That is, the vectors d are in the null space of the gradients of the active 

constraints. Then if x* is a local minimum point for the optimum design problem, 

it must be true that  
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 ( )( )dxd *where0 2
LQQ ∇•=≥  (14) 

Note that any point that does not satisfy the second-order necessary condition 

cannot be a local minimum point.  

 

Second-order Sufficient Condition. Let x* satisfy the first-order KKT 

necessary conditions for Problem P. Let the Hessian of the Lagrange function L 

be defined at x* as in Eq. (12). Let there be nonzero feasible directions, 0d ≠ , 

as solutions of the following linear system at x*: 

 ( ) 0=•∇ dig , i = 1 to p and for those i > p with gi(x*) = 0 and 0>∗
iu  (15) 

That is, the vectors d are in the null space of the gradients of the active 

constraints with 0>∗
iu  for i > p. Also let ( ) 0≤•∇ dig  for those active 

inequalities with 0=∗
iu . If  

 ( )( )dxd *where0 2
LQQ ∇•=≥  (16) 

then x* is an isolated local minimum point (isolated means that there are no other 

local minima in the neighborhood of x*).  

Equations (13) and (15) define vectors that are in the null space of the 

gradients of the active constraints. There is slight difference in the two 

null spaces defined by these equations. In Eq. (13), all the active 

inequalities are included. However in Eq. (15), only the active inequalities 

with positive multipliers are included. Note that if the Hessian L
2∇  is 

positive definite at x* then both the second order necessary and sufficient 

conditions for a local minimum are satisfied. Conversely, if it is negative 

definite or negative semidefinite, then the second order necessary 

condition is violated, and the point x* cannot be a minimum point.  

3.4.  Global Optimality and Convexity 

Often a question is asked - is the optimum solution a global minimum? Usually 

the answer to this question is that the solution is only a local minimum. The 

global solution for the problem can be found by either an exhaustive search of the 

feasible set S, or by showing the problem to be convex. Both procedures require 

extensive computations. If the problem is convex, then any local minimum is also 

a global minimum and the KKT first order conditions are necessary as well as 

sufficient. The question of convexity of a problem is briefly addressed here. 

Methods for finding a global solution are described in a later section. 

 Problem P is called a convex programming problem, if the cost function f (x) 

is convex over the convex feasible set S. Therefore, we need to discuss convexity 
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of the feasible set S and the function f ( x). A set of points S (vectors x) is called a 

convex set if and only if for any two points A and B in the set S, the entire line 

segment AB is also in the set. Graphically this means that a convex set has no re-

entrant corners or holes. By this definition, we see that linear equalities and 

inequalities always define a convex feasible set. Also, a nonlinear equality 

always defines a nonconvex feasible set. However, in general, the graphical 

definition is difficult to use to check convexity of a set because an infinite pair of 

points will have to be considered. Therefore, a better computational procedure is 

needed to check convexity of a function.  

 The feasible set for the Problem P is defined by the functions gi(x), i = 1 to 

m. It turns out that if all the functions are convex, then the feasible set S is 

convex. Thus we need to know how to check convexity of a function. 

 A function of n variables is convex if and only if its Hessian is at least 

positive semidefinite everywhere over its domain of definition. If a function gi(x) 

is convex, then the set defined by the inequality gi(x) ≤ ei is convex, where ei is 

any constant. Note that this is not an "if and only if" condition; that is if gi(x) 

fails the convexity set, the feasible set defined by it may still be convex. In other 

words this is only a sufficient condition but it is not a necessary condition. Note 

that convexity checks for a problem are quite extensive. The Hessian of each 

nonlinear problem function needs to be evaluated and its form needs to be 

checked over the entire feasible domain.  

 The following points should be noted for convex programming problems: 

(i) A convex programming problem can have several global minimum points 

where the cost function has the same numerical value. 

(ii) The convexity check for a constraint function can sometimes fail if the form 

of the constraint is altered; however, the feasible set defined by the constraint 

may still be convex. Ref. 7 contains an example that illustrates this point. 

(iii) If the convexity checks fail, the problem can still have a global minimum 

point in the feasible set. However, it is difficult to conclude that a global 

solution has been reached. 

3.5.  Lagrange Multipliers  

It turns out that the optimum values of the Lagrange multipliers for the 

constraints represent relative importance of the constraints with respect to the 

cost function. We discuss this importance here. Also, many times it is useful in 

practical applications to scale the cost function and constraints to avoid 

numerical instabilities. We discuss the affect of this scaling on the Lagrange 

multipliers for the constraints. 



Introduction to Optimization 

 

11 

3.5.1.  Changes in Constraint Limit 

Let us first study how the optimum value of the cost function is affected if a 

constraint limit is changed; i.e., a constraint is relaxed or tightened. Assume that 

Problem P has been solved with the current limit values for the constraints as 

zero. Let ei be a small variation in the right hand side of the ith constraint. It is 

clear that the optimum point for the perturbed problem is a function of the vector 

e, i.e., x* = x*(e). Also f = f(e). However, these are implicit functions of e, and 

the following result gives a way of calculating the implicit derivatives ∂f/∂ei 
6,7 

 

Sensitivity to Constraint Variations. Let x* be a regular point that, together 

with the multipliers *
iu , satisfies both the KKT necessary conditions and the 

sufficient conditions for an isolated local minimum point for the Problem P. If for 

each gi(x) = 0 for i > p, it is true that *
iu > 0, then the solution x*(e) of the 

modified problem is a continuously differentiable function of e in some 

neighborhood of e = 0. Furthermore, 

 
( )( )

*
i

i

u
e

*f
−=

∂

∂ 0x
;     i = 1 to m (17) 

It is useful to note that if the conditions stated in this result are not satisfied, 

existence of the implicit derivative of Eq. (17) cannot be ruled out. That is,  

the derivatives may still exist but their existence cannot be guaranteed. Using  

Eq. (17), we can estimate a change in the cost function due to a change in the 

right hand side of the ith constraint. First order Taylor expansion for the cost 

function about the point ei = 0 is given as 

 ( ) ( )
( )

i
i

i e
e

f
fef

∂

∂
+=

0
0  (18) 

where f (0) is the optimum cost function value obtained with ei = 0. Substituting 

from Eq. (17), we obtain change in the cost function ∆f due to the change ei as 

 ( ) ( ) iii eufeff
*0 −=−=∆  (19) 

 Using the result of Eq. (19), we can show that the Lagrange multiplier 

corresponding to a "≤ type" constraint must be nonnegative. To see this, let us 

assume that we want to relax an active inequality constraint gi ≤ 0 by selecting ei 
> 0. This way, the feasible set for the problem gets expanded. Thus the minimum 

value for the cost function should reduce or stay unchanged with the expanded 

feasible set. However, Eq. (19) shows that if *
iu < 0, relaxation of the constraint 

(ei > 0) results in an increase in cost (i.e., ∆f > 0). This is not possible, and 

therefore, the Lagrange multiplier for a "≤ type" constraint cannot be negative. 
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3.5.2.  Scaling of Cost Function.  

Some times in practical applications, the cost function for the problem is 

normalized by multiplying it with a positive constant. Although this scaling does 

not affect the optimum point, it does change the Lagrange multipliers for all the 

constraints. Using the KKT conditions of Eq. (8), it can be shown that all the 

Lagrange multipliers also get multiplied by the same scale factor.
7
 Let *

iu  be  

the Lagrange multiplier for the ith constraint with the original cost function. Let 

the cost function be scaled as f 
new

 = αf, where α > 0 is a given constant, and 
new
iu  be the new value of the Lagrange multiplier for the ith constraint at 

optimum. Then the new and old Lagrange multipliers are related as 

 new
iu = α *

iu ;     i = 1 to m (20) 

3.5.3.  Scaling of Constraints 

In numerical calculations, it is useful to normalize all the constraints 

(normalization of constraints is discussed in the next section). This scaling of a 

constraint does not change its boundary, so it has no effect on the optimum point 

or the cost function. However, the Lagrange multiplier for the constraint is 

affected. Using the KKT conditions of Eq. (8), it can be shown that the Lagrange 

multiplier for the scaled constraint gets divided by the same scale factor.
7
 Let the 

ith constraints gi be divided by βi > 0 as new
ig = gi/βi and *

iu  and new
iu  be the 

corresponding Lagrange multipliers for the original and the scaled constraints, 

respectively. The new and original Lagrange multipliers are related as 

 new
iu  = βi

*
iu  (21)

 

4.  Basic Concepts Related to Computational Algorithms  

Optimization methods for structural and mechanical systems have matured to the 

point where they are being used routinely in many practical applications. Many 

journals dedicated to the field of optimization and many textbooks on the subject 

can be consulted for the range of applications. Various chapters of this book 

contain a good sample of practical applications.  

 Real-world problems are usually quite complex. Each application has its own 

requirements, simulation methods and constraints to meet. In addition, the desire 

to solve more complex and larger problems also grows as computer-based 

computational tools improve. Furthermore, since the methods have matured 

substantially during the last decade, more nonexperts of optimization techniques 
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are beginning to use this new methodology in their routine work. These 

considerations dictate the use of a theoretically sound and numerically reliable 

algorithm. Use of such an algorithm can remove uncertainty about the algorithm 

behavior, allowing the users to concentrate on their application. Such 

theoretically sound algorithms, although computationally more expensive, are 

more cost-effective in the long run.  

 In the remaining sections, some basic concepts related to numerical 

algorithms for optimization of structural and mechanical systems are presented 

and discussed. Algorithms for continuous variable problems as well as discrete 

variable problems are outlined. The ideas of a descent function, constraint 

normalization, and potential constraint strategy are introduced. Convergence of 

an algorithm is discussed and attributes of a good algorithm are presented. It is 

important to note that the gradient-based algorithms converge only to a local 

minimum point for the Problem P. Algorithms for finding a global solution 

require extensive numerical calculations and are outlined in a later section. 

Multiobjective optimization algorithms are also discussed. 

4.1.  A Basic Gradient-based Algorithm 

Gradient-based optimization algorithms use the following iterative prescription: 

 ( ) ( ) ( ) ,....2,1,0;1 =+=+
k

k
k

kk
dxx α  (22) 

where the superscript k represents the iteration number, ( )kx  is the current 

estimate of the optimum design, ( )k
kdα  is a change in design, kα  > 0 is a step 

size, ( )kd  is a search direction, and ( )0x  is the starting point. 

Gradient-based algorithms are broadly classified as primal methods and 

transformation methods. In the primal methods the direction vector ( )kd  is 

calculated using the problem functions and their gradients at the point ( )kx . Then 

the step size is calculated along ( )kd  that needs only the function values. 

Different algorithms can be generated depending on how the direction d and step 

size α are calculated. In many algorithms, d is calculated by solving a linear or 

quadratic programming subproblem. Several philosophies have been used to 

develop various algorithms. For example, if an intermediate point or the starting 

point is infeasible, many methods iterate through the infeasible region to reach 

the final solution; many others correct the constraints to reach the feasible set 

first and then move along the boundary to reach the solution point. Still others 

make special calculations not to violate constraints during the iterative process. 

Some algorithms generate and use second order information for the problem as 

the iterations progress. 
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In the transformation methods the solution process for Problem P is 

transformed to a sequence of unconstrained minimization problems. Solutions of 

the unconstrained problems converge to solution of the original problem. They 

include barrier and penalty function methods as well as the augmented 

Lagrangian or multiplier methods.
7,15,19,20

 In the transformation methods, a 

transformed function is constructed by adding a penalty term for the constraint 

violations to the cost function, as Φ(x,r) = f ( x) + P(g(x),r), where r is a scalar or 

vector of penalty parameters and P is a real valued function whose action of 

imposing the penalty is controlled by r. 

 Many methods have been developed and evaluated based on the strategies 

described in the foregoing. Robust and general algorithms are based on the 

following four basic steps: 

(i) Linearization of cost and constraint functions about the current point.  

(ii) Definition of a search direction determination subproblem. 

(iii) Solution of the subproblem for the search direction. 

(iv) Calculation of a step size along the search direction. 

4.2.  Constraint Normalization 

It is useful to normalize all the constraint functions in numerical calculations 

because it is not easy to determine which constraint is more severely violated if 

they are not normalized. Also, in numerical calculations, one value for the 

parameter to check feasibility of all the constraints cannot be used. As examples, 

consider a stress constraint as aσσ ≤  and a displacement constraint as aδδ ≤ , 

where σ  is the calculated stress, aσ  > 0 is an allowable stress, δ  is the 

calculated deflection, and aδ  > 0 is an allowable deflection. Since the units  

for the two constraints are different their values are of widely differing orders  

of magnitude. If they are violated during the iterative solution process, it is 

difficult to judge the severity of their violation. However, if they are normalized 

as R - 1.0 ≤ 0, where a/R σσ=  for the stress constraint, and a/R δδ=  for the 

deflection constraint, then it is easy to compare their values. 

4.3.  Potential Constraint Strategy 

The optimization methods solve a subproblem to determine the search direction 

at each iteration. The subproblem is defined using gradients of the constraints. A 

subproblem that uses gradients of only a subset of the constraints is said to use a 

potential constraint strategy. The potential constraint set is comprised of the 

indices of active, nearly active and violated constraints, such as the index set kI  
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at the kth point ( )kx : 

 ( ){ }0withalland1 ≥+>== εik gpiptoiiI  (23) 

where ε > 0 is a small number used to determine nearly active inequalities. Note 

that the equality constraints are always included in the index set kI . 

4.4.  Descent Function 

It is important to monitor progress of the iterative optimization process towards 

the minimum point. This can be done if a function can be defined that decreases 

at every iteration. Such a function is called the descent function or the merit 

function. The cost function is a descent function for the unconstrained 

optimization problems because it is required to reduce at each iteration. For 

constrained problems, many descent functions have been used. These functions 

must include the effect of constraint violations. The descent function is used in 

the process of step size determination. The basic idea is to compute a step size 

along the search direction ( )kd  such that the descent function is decreased. The 

descent function also has the property that its minimum value is the same as the 

cost function. 

4.5.  Convergence of an Algorithm 

An algorithm that has been proven to converge starting from an arbitrary point is 

called a globally convergent method, and satisfies two requirements: (i) there is a 

descent function for the algorithm, and (ii) the search direction ( )kd  is a 

continuous function of the variables. This requirement implies that the active 

constraints are not coming in-and-out of the active set. This is called 

"zigzagging" of constraints. 

4.6.  Attributes of a Good Algorithm 

A good algorithm for practical applications should have the following attributes: 

(i) Robustness: The algorithm must be convergent to a local minimum point 

starting from any initial estimate. 

(ii) Generality: The algorithm must be able to treat equality as well as 

inequality constraints.  

(iii) Accuracy: The algorithm must be able to converge to an optimum point as 

accurately as desired. 

(iv) Ease of Use: Implementation of the algorithm must be such that it requires 
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minimum of input for use of the algorithm by the experienced as well as 

inexperienced users.  

(v) Efficiency: The algorithm must have a faster rate of convergence, i.e., at 

least superlinear. The algorithm should be able to treat linear constraints 

efficiently. It should be able to exploit sparsity structure of the problem 

functions, especially for large-scale problems. 

5.  Overview of Computational Algorithms  

Many numerical methods have been developed and evaluated for constrained and 

unconstrained optimization problems.
1-7,20,33

 In addition, algorithms for discrete 

variable and nondifferentiable problems have been discussed.
16

 Many practical 

applications require optimization of several objective functions, and therefore, 

procedures to treat multiple objectives in an optimization problem have been 

developed. In this section, we describe the basic concepts of these algorithms. 

5.1.  Gradient-based Algorithms 

The gradient-based methods are suitable for problems with continuous variables 

and differentiable functions because they utilize gradients of the problem 

functions. The methods have been thoroughly researched and a considerable 

body of literature is available on the subject. They include sequential quadratic 

programming and augmented Lagrangian methods. We discuss the basic 

concepts related to these methods. The interior point methods, developed initially 

for linear problems, have also been extended for nonlinear problems. 

5.1.1.  Linearization and Sequential Linear Programming 

All search methods start with an initial estimate for the optimum point and 

iteratively improve it. The improvement is computed by solving an approximate 

subproblem which is obtained by writing linear Taylor's expansions for the cost 

and constraint functions. Let ( )kx  be the estimate for the optimum point at the kth 

iteration and ( )kx∆  be the desired change. Instead of using ( )kx∆  as a change in 

the current point, usually it is taken as the search direction ( )kd  and a step size is 

calculated along it to determine the new point. We write Taylor's expansion of 

the cost and constraint functions about the point ( )kx  to obtain a linearized 

subproblem as 

 minimize ( )dc •  (24) 
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subject to the linearized equality constraints 

 ( ) pjeg jj to1; ==•∇ d  (25) 

and the linearized inequality constraints 

 ( ) jj eg ≤•∇ d ;  j > p and j �  I
k
 (26) 

where ( )( )k
jj ge x−= , and ( )( )k

f xc ∇= . Note that a potential constraint strategy 

for inequality constraints is used in Eq. (26). If it is not to be used, ε can be set to 

a very large number in defining the index set Ik in Eq. (23). 

 Since all the functions in Eqs. (24) to (26) are linear in the variables di, linear 

programming can be used to solve for di. Such procedures are called Sequential 

Linear Programming methods or in short SLP. Note, however, that the problem 

defined in Eqs. (24) to (26) may not have a bounded solution. Therefore, limits 

must be imposed on changes in the variables. These constraints are called move 

limits in the optimization literature and can be expressed as 

 - ∆i ≤ di ≤ ∆i;   i = 1 to n (27) 

where ∆i is the maximum allowed decrease or increase in the ith variable, 

respectively at the kth iteration. The problem is still linear in terms of di, so LP 

methods can still be used to solve it. Selection of the move limits at every 

iteration is important because success of the SLP algorithm depends on them. 

However, selection of proper move limits is quite difficult in ptactice. 

5.1.2.  Sequential Quadratic Programming - SQP 

To overcome drawbacks of SLP, sequential quadratic programming methods 

(SQP) have been developed where a quadratic programming (QP) subproblem is 

solved to find a search direction and a descent function is used to calculate a step 

size in that direction.  

 

Subproblem QP.  

 Minimize ( ) ( )Hdddc •+•
2
1   (28) 

subject to the linearized constraints in Eqs. (25) and (26) where H is an n µ n 

matrix that is an approximation to the Hessian of the Lagrangian function. 

 

 Different definitions of the QP subproblem generate different search 

directions. Once a direction has been determined, a step size is calculated by 

minimizing a descent function along it. The descent function for the constrained 

problems is constructed by adding a penalty for constraint violations to the cost 

function. One of the properties of the descent function is that its value at the 
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optimum point be the same as that for the cost function. Also, it must reduce 

along the search direction at each iteration. In other words, the search direction 

must be a descent direction for the function. Several descent functions have been 

developed and used with different algorithms. We shall introduce Pshenichny's 

descent function Φ due to its simplicity and success in solving a large number of 

problems.
4,18,24,33,34

 It is the exact penalty function defined as 

 Φ(x) = f (x) + RV(x) (29) 

where R > 0 is a penalty parameter and V(x) ≥ 0 is the maximum constraint 

violation among all the constraints. Note that R is required to be finite but larger 

than the sum of the magnitude of all the Lagrange multipliers. 

 It is important to note that calculation of an exact minimum point for the 

descent function along the search direction is quite costly. Therefore in most 

practical implementations of any optimization algorithm, only an approximate 

step size is determined. This is done using the so-called inaccurate or inexact line 

search. In the inaccurate line search procedure, one starts with the trial step size 

as one. If the descent condition is not satisfied, the trial step is taken as half of the 

previous trial. If the descent condition is still not satisfied, the trial step size is 

bisected again. The procedure is continued, until the descent condition is 

satisfied; i.e., a sufficient reduction in the descent function has been achieved. 

Performance of several SQP algorithms has been evaluated in Ref. 33. 

5.1.3.  Augmented Lagrangian Method 

There is a class of computational methods that transform the constrained problem 

to an unconstrained problem and solve it by using unconstrained optimization 

methods. These are called sequential unconstrained minimization techniques.
1
 

The basic idea of these methods is to define an augmented functional by adding a 

penalty term to the cost function. The penalty term consists of the constraint 

functions multiplied by the penalty parameters. The penalty parameters are 

selected and the unconstrained function is minimized. Then the penalty 

parameters are increased and the unconstrained function is minimized again. The 

procedure is repeated until there is very little change in the solution. An 

advantage of the methods is that the unconstrained optimization algorithms and 

the associated software can be used to solve constrained problems. One drawback 

of the methods is that the penalty parameters are required to go to infinity to 

obtain an optimum solution. This can cause instability in numerical calculations. 

 To overcome difficulty of the foregoing methods, a different class of 

methods has been developed that do not require the penalty parameters to 

become infinite. The penalty parameters are required to be sufficiently large but 
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finite. These are called the augmented Lagrangian methods or the multiplier 

methods. The augmented functional is defined as 

 ( ) ( ) ( )[ ]
2

1
2
1

1

2

2
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+=
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=
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pi
iii

p

i
iii grgrf θθx  (30) 

where ri > 0 are the penalty parameters, iθ  for i = 1 to p are the multipliers for 

the equality constraints, 0≥iθ  for i > p are the multipliers for the inequality 

constraints, and (x)+ = x if x > 0, and (x)+ = 0 if 0≤x . The idea of multiplier 

methods is to start with some values for the parameters ri and iθ  and minimize 

the augmented function of Eq. (30). These parameters are then adjusted using 

some procedure and the process is repeated until optimality conditions are 

satisfied. For more detailed discussion and applications of the methods, Refs. 10, 

15, 19 and many works cited therein should be consulted. 

It is important to note that the augmented functional, such as the one in Eq. 

(30), have been used as descent functions for many SQP methods to determine an 

appropriate step size along the search direction.
34 

5. 2.  Algorithms for Discrete Variable Problems 

The continuous variable optimization problem has infinite feasible points when 

the feasible set is nonempty. In contrast, the discrete variable problem has only a 

finite number of feasible points from which the optimum solution needs to be 

determined. However, it is more difficult and time consuming to find an optimum 

solution for the discrete variable problem compared to the continuous variable 

problem. The reason is that there are no optimality conditions to guide the 

numerical search process. We usually need to enumerate on the discrete points 

and use the definition of the minimum point in Eq. (6) to find the best solution. 

Many methods try to reduce this computational burden by using stochastic ideas 

or heuristic rules. 

 The solution algorithm for a mixed-discrete variable optimization problem 

depends on the type of problem. Five types of mixed variable problems are 

defined in Refs. 7, 11, 12 and 16 based on the characteristics of variables and 

problem functions. Also methods to solve the problems are identified. For 

example, if the problem functions are continuous and the discrete variables can 

have non-discrete values during the solution process, then gradient-based 

algorithms can be used to guide the search for a discrete optimum solution. If the 

problem functions are nondifferentiable and discrete variables must have only 

discrete values, then implicit or explicit enumeration methods or stochastic 

methods can be used to solve the problem.  
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 There are basically two classes of methods for solving discrete variable 

problems: (i) enumeration methods, either implicit or explicit, such as the branch 

and bound algorithm, and (ii) stochastic or evolutionary methods, such as genetic 

algorithms and simulated annealing. Detailed review of the methods and their 

applications are presented in Refs. 7, 11, 12, 14, 16, 25-30. Here we summarize 

basic concepts and ideas of the methods from these references. 

 

Branch and Bound Method. This is one of the most commonly used methods to 

solve discrete variable problems.
7,12,16

 It is also called an implicit enumeration 

method because one systematically tries to reduce the entire enumeration. It was 

initially developed for LP problems for which a global solution is obtained. The 

method has also been applied to nonlinear problems for which there is no 

guarantee of optimum or even a feasible solution. The method uses the concepts 

of branching, bounding and fathoming to perform the search for the optimum 

solution. The solution space for the problem is represented as branches of an 

inverted tree. Each node of the tree represents a possible discrete solution. If the 

solution is infeasible, then either the branch is truncated if the cost function is 

higher than a previously established upper bound, or other branches are searched 

for a better solution from that node. A node is said to be fathomed if no better 

solution is possible with further branching from that node. When the solution at a 

node is feasible, it either represents a new upper bound for the optimum if the 

cost function is smaller than a previously established bound, or the node can be 

fathomed if no better solution is possible with further branching. The method can 

be implemented in two different ways. In the first one, non-discrete values for the 

discrete variables are not allowed during the solution process. Therefore 

enumeration on the discrete variables needs to be done as explained above. In the 

second implementation, non-discrete values for the variables are allowed. 

Forcing a variable to have a discrete value generates each node of the tree. This is 

done by defining a subproblem with appropriate constraints on the variable to 

force out a discrete value for the variable. The subproblem is solved using either 

LP or NLP methods. 

 

Simulated Annealing. Simulated annealing (SA) is a stochastic method that can 

be used to find the global minimum for a mixed variable nonlinear problem.
7
 The 

method does not require continuity or differentiability of the problem functions. 

The basic idea is to generate random points in a neighborhood of the current best 

point and evaluate the problem functions there. If the cost function (penalty 

function for constrained problems) value at any of those points is smaller than the 

current best value, then the point is accepted, and the best cost function value is 
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updated. If it is not, then the point is sometimes accepted and sometimes rejected. 

The acceptance is based on the value of the probability density function of 

Bolzman-Gibbs distribution. If this probability density function has a value 

greater than a random number, then the trial point is accepted as the best solution. 

The probability density function uses a parameter called the temperature. For the 

optimization problem, this temperature can be the target value for the cost 

function. Initially, a larger target value is selected. As the trials progress, the 

target value is reduced (this is called the cooling schedule), and the process is 

terminated after a large number of trials. The acceptance probability steadily 

decreases to zero as the temperature is reduced. Thus in the initial stages, the 

method is likely to accept worse points while in the final stages, the worse points 

are usually rejected. This strategy avoids getting trapped at local minimizers. The 

main deficiencies of the method are the unknown rate at which the target level is 

to be reduced and uncertainty in the total number of trials. 

 

Genetic Algorithms. As simulated annealing, these methods are also in the 

category of stochastic search methods.
35,37,40-44

 In the methods, a set of alternative 

points (called the population) at an iteration (called generation) is used to 

generate a new set of points. In this process, combinations of the most desirable 

characteristics of the current members of the population are used that results in 

points that are better than the current ones. Thus, the average fitness of 

successive sets of points improves giving better values for the fitness function. 

Here fitness is defined using the cost function or the penalty function for 

constrained problems. The fitness value is calculated for each member of the 

population. An advantage of this approach is that derivatives of the functions are 

not needed. One starts with a set of randomly generated points. A finite length 

string, such as a binary string of 0’s and 1’s, is usually used to represent each 

point. Three operators are needed to implement the algorithm: (i) reproduction; 

(ii) crossover; and (iii) mutation. Reproduction is an operator where an old string 

(point) is copied into the new population according to its fitness. More highly fit 

strings (those points with smaller fitness values) receive higher numbers of 

offspring (new points). The crossover operator corresponds to allowing selected 

members (points) of the population to exchange characteristics of the points 

among themselves. Crossover entails selection of starting and ending positions 

on a pair of mating strings (points) at random and simply exchanging the string 

of 0's and 1's between these positions. Mutation corresponds to selection of a few 

members (points) of the population, determining a location on the strings at 

random, and switching the 0 to 1 or vice versa. The foregoing three steps are 

repeated for successive generations of the population until no further 
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improvement in the fitness is attainable, or the number of generations reaches a 

specified limit. The member in this generation with the highest level of fitness is 

taken as the optimum point. 

 

Integer Programming. The problem is called an integer programming (IP) 

problem when the variables are required to take on integer values. If all the 

functions are linear, an integer linear programming (ILP) problem is obtained, 

otherwise it is nonlinear. The ILP problem can be converted to 0-1 programming 

problem. Linear problems with discrete variables can also be converted to 0-1 

programming problems. Many algorithms are available to solve such problems,
45

 

such as the branch and bound method discussed earlier.  

 

Sequential Linearization Methods. Nonlinear discrete optimization problems 

can also be solved by sequential linearization procedures. The functions of the 

problem must be differentiable to use such a procedure. The nonlinear problem is 

first linearized at the current point. Then an ILP method is used to solve the 

linearized subproblem. A modification of this approach is to obtain a continuous 

optimum point first, and then linearize and use IP methods. This process can 

reduce the number of ILP problems to be solved. Restricting the number of 

discrete values to a neighborhood of the continuous solution can also reduce the 

size of the ILP problem.  

 

Rounding-off Techniques. Rounding-off is a simple approach where an 

optimum solution is first obtained by assuming all the variables to be continuous. 

Then using heuristics, the variables are rounded-off to the nearest available 

discrete values to obtain a discrete solution. The procedure is applicable to a 

restricted class of problems where discrete variables can have non-discrete values 

during the solution process. The process may not result in a feasible point for the 

discrete variable problem. Note that it is not necessary to round-up all variables 

to their nearest discrete neighbors. Some of them could be rounded-down while 

others could be increased. The difficulty with this approach is in the selection of 

variables to be increased and the variables to be decreased. The strategy may not 

converge, especially in case of high nonlinearity and widely separated allowable 

discrete values. In that case, the discrete minimizer need not be in a 

neighborhood of the continuous solution. As an alternative, a dynamic rounding-

off strategy has been used where only one variable is rounded-off to its discrete 

neighbor at a time. The selected variable is then fixed at the discrete value and 

the problem is optimized again. This process is repeated until all variables are 

selected and fixed to discrete values.  
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Neighborhood Search Method. Some times it is reasonable to enumerate on the 

discrete variables, especially when the number of variables is small. With all the 

discrete variables fixed at their chosen values, the problem is then optimized for 

the continuous variables. This approach has some advantages over BBM: it can 

be implemented easily with an existing NLP solver, the problem to be solved is 

smaller and the gradient information with respect to the discrete variables is not 

needed. However, in general, the approach is less efficient than an implicit 

enumeration method, such as the BBM, as the number of discrete variables and 

size of the discrete set of values become large. To reduce the number of 

enumerated cases, a neighborhood search method has been used which first 

obtains a continuous solution with all the discrete variables considered as 

continuous. Then only a few discrete values near the continuous solution are 

selected for explicit enumeration. 

5.3.  Multiobjective Optimization 

There are many practical applications where we need to optimize two or more 

objective functions simultaneously. These are called multiobjective, multi-

criteria, or vector optimization problems. Here, we give a brief introduction to 

the subject by describing some basic concepts, terminology and solution 

methods. Material for this section is derived from Refs. 7 and 32; for more 

details, references cited in there and many other sources can be consulted, such 

as Refs. 35-37, 44. 

5.3.1.  Terminology and Basic Concepts 

The Problem P defined earlier is modified to multiobjective optimization 

problems as follows: find x �  S to minimize 

 ( ) ( ) ( ) ( )( )xxxxf kfff ,,, 21 …=   (31) 

where k is the number of objective functions in the vector ( )xf . A collection of 

all the objective function vectors is called the criterion space. The feasible 

criterion space Z is defined as the set of objective function values corresponding 

to the feasible points in the variable space; i.e.,  

 Z = ( ){ }S  ∈xxf  (32) 

Algorithms for solution of a single-objective optimization problem give local 

minima for the cost function in the feasible set. If all local minima are found,  
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then a global minimum point can be identified. In contrast, the process of solving 

a multiobjective optimization problem is less definite. Usually this problem does 

not have a unique solution; i.e., there is no point x that minimizes all the 

objectives simultaneously. Therefore, it is not clear what is meant by the 

minimum of multiple objective functions. Usually, the objectives have opposing 

characteristics, since a point that decreases the value of one function may 

increase the value of another. However, there can be infinite solution points for 

the problem in the sense of Pareto optimality. This is the predominant concept in 

defining solutions for multiobjective optimization problems that is discussed 

next.  

 

Pareto Optimal Points. A point *x  ∈ S is Pareto optimal if and only if there 

does not exist another point x ∈ S such that ( ) ( )*xfxf ≤  with at least 

one ( ) ( )*ff ii xx < . In other words, a point *x  ∈ S is called Pareto optimal if 

there is no other point x ∈ S that reduces at least one objective function without 

increasing another one. Pareto optimal points are also called efficient points of 

the feasible set S. 

 

Non-dominated Points. Another common concept is that of non-dominated and 

dominated points of the feasible criterion space Z. A vector of objective functions 

( )** xff = ∈Z is non-dominated if and only if there does not exist another vector 

f ∈Z such that ∗≤ ff  with at least one 
∗

< ii ff . Otherwise, 
∗

f  is dominated. 

 

Utopia Point. A vector of objective function values 
�

f  in the criterion space is 

called the utopia point if ( ){ }Sff ii    allfor min ∈= xx
�

, i = 1 to k. It is also 

called the ideal point. Utopia point is a unique point in the criterion space that is 

obtained by minimizing each objective function without regard for other 

objective functions. Each minimization yields a point in the variable space and 

the corresponding value for the objective function. It is rare that each 

minimization will end up at the same point. That is, one point cannot 

simultaneously minimize all the objective functions. Thus, the utopia point exists 

only in the criterion space and, in general, is not attainable in the variable space. 

 

Compromise Solution. Since the utopia point is not attainable, the next best 

thing is a solution that is as close as possible to the utopia point. Such a solution 

is called a compromise solution. The methods that seek different compromise 

solutions are collectively called compromise programming. 
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5.3.2.  Solution Methods 

Since the multiobjective optimization problem has infinite solutions (the Pareto 

optimal set), the user needs to select a solution that suits the requirements of the 

application. Therefore we may need to generate the entire Pareto set or at least a 

good representation of it so that the user can select the desired solution. Most 

solution methods for multiobjective optimization problems combine various 

objective functions to define a composite scalar function for the problem. This 

way, a single-objective optimization method can be used to solve the problem. 

By varying parameters of the composite function, different optimum solutions for 

the problem can be generated. Some methods always yield Pareto optimal 

solutions but may skip certain points in the Pareto optimal set; i.e., they may not 

be able to capture all of the Pareto optimal points. Alternatively, other methods 

are able to capture all of the points in the Pareto optimal set but may also provide 

non-Pareto optimal points as well. The former quality is beneficial when one is 

interested in using a method to obtain just one solution point. The latter quality is 

useful when the complete Pareto optimal set needs to be generated. 

 

Weighted Sum Method. The weighted sum method is the most common 

approach to multiobjective optimization. Each objective function is scaled by a 

weighting factor ( )xiii fww as0> . Then all the objective functions are added 

together to form a composite objective function to be optimized: 

 ( )∑=
=

k

i
ii fwU

1

x  (33) 

The objective functions are usually normalized before the weights are assigned to 

them. The relative value of the weights generally reflects the relative importance 

of the objectives. This is another common characteristic of the weighted sum 

methods. If all of the weights are omitted or are set to one, then all objectives are 

treated equally. The weights can be used in two ways. The user may either set iw  

to reflect preferences before the problem is solved, or systematically alter them to 

yield different Pareto optimal points (generate the Pareto optimal set). The 

method is quite easy to use; selection of proper weights is the most difficult part 

that requires thorough knowledge of the objective functions and their relative 

importance. 

 

Weighted Global Criterion. A broader class of weighted sum methods is based 

on weighted global criterion which is defined as: 
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 ( )( )[ ]
p

k

i

p

iii ffwU

/1

1 






∑ −=
=

�

x  (34) 

The root 1 p  may be omitted because the formulations with and without the root 

theoretically provide the same solution. The solution with this formulation 

depends on the values of both iw  and p. Generally, p is proportional to the 

amount of emphasis placed on minimizing the function with the largest 

difference between ( )xif  and 
�

if . Larger p puts more emphasis on minimizing 

the largest difference. p and iw  typically are not varied or determined in unison. 

Rather, a fixed value for p is selected, and then, either iw  is selected to reflect 

preferences before the problem is solved, or it is systematically altered to yield 

different Pareto optimal points. For computational efficiency or in cases where 

the utopia point 
�

if  may be difficult to determine, one may replace 
�

if  with an 

approximate value for it in Eq. (34). The approximation for 
�

if  is called an 

aspiration point, reference point, goal, or target point. When this is done, U is 

called an achievement function. 

The global criterion reduces to other common methods with different values 

of p. For instance, when p = 1, Eq. (34) is similar to a weighted sum with the 

objective functions adjusted with the utopia point. When p = 2 and weights equal 

to 1, Eq. (34) represents the distance of the current point ( )xif  from the utopia 

point, and the solution usually is called compromise solution as mentioned 

earlier. When ∞=p , Eq. (34) reduces to the well known min-max method.  

 

Other Methods. There are other useful methods that reduce the multiobjective 

optimization problem to a single-objective optimization problem: 

• Lexicographic method where the objective functions are arranged 

in the order of their importance and a sequence of optimization 

problems is solved: minimize ( )xif  subject to ( ) ( )∗
≤ jjj xff x ; 

( ) 1 1to1 >−= i;ij ; i = 1 to k. The process is stopped when two 

consecutive problems have same solution. 

• The ε-constraint method minimizes a single, most important objective 

function ( )xsf  with other objective functions treated as constraints: 

( ) si;ki;f ii ≠=≤  to1 εx , where iε  is the upper limit for the objective 

function ( )xif . A systematic variation of iε  yields a set of Pareto 

optimal solutions.  

• Goal programming approaches set goals jb  for each objective function 

( )xjf . Then, the total deviation from the goals is minimized. In the 

absence of any other information, goals may be set to the utopia point, 

i.e., 
�

jj fb = . In that case, the method becomes a special case of the 

global criterion method.  
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Besides the scalarization methods discussed in the foregoing paragraphs, 

there are methods that treat all the objective functions at the same time and 

generate the Pareto optimal set for the problem. A prominent method in this class 

is the genetic algorithm for multiobjective optimization problems.
35-37,44

 This 

method is an extension of the genetic algorithms described earlier for single 

objective problems. Additional genetic operators are used to generate the new 

population for the next generation. For each generation, a possible set of Pareto 

optimal points for the problem is identified. These play a major role in generating 

new points for the next generation. The iterative process is repeated for a long 

period of time. At the end, an approximation to the Pareto optimal set is obtained. 

Since genetic algorithms do not require gradient information, they can be 

effective regardless of the nature of the problem functions. 

5.4.  Algorithms for Global Solution 

Thus far, we have addressed mainly the problem of finding a local minimum for 

the cost function. However, in some practical applications, it is important to find 

globally optimum solutions as opposed to the local ones. The question of when a 

local solution is also a global optimum is quite difficult to answer because there 

are no mathematical conditions that characterize a global solution, except for 

convex programming problems, as discussed earlier. Therefore even when a 

global solution has been found, it is not possible to recognize it. Due to this 

reason, it is impossible to define a precise stopping criterion for a computational 

algorithm for global optimization. Usually, the best solution obtained by an 

algorithm after it is allowed to run for a long time is accepted as the global 

solution for the problem. In general, the quality of the solution depends on how 

long the algorithm is allowed to run. It is important to note that the computational 

effort to solve a global optimization problem increases enormously as the number 

of design variables increase. Thus, it remains a challenge to solve the global 

optimization problem efficiently.  

 In this section, we present some basic concepts of procedures that can be 

used to calculate a global solution. We consider the problem with continuous 

variables and functions. For discrete and nondifferentiable problems, the 

simulated annealing and genetic algorithms, described earlier, can be used for 

global optimization. In general, global optimization methods can be divided into 

two major categories: deterministic and stochastic. This classification is based on 

whether or not they incorporate any stochastic procedures to solve the global 

optimization problem. In the following subsections, we describe basic concepts  

of some of the methods in both of these categories. The material is derived from 
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the work of the author and his co-workers.
7,17,22,

 Numerous other references cited 

in these articles can be consulted for more details; e.g., Refs. 46-52.  

5.4.1.  Deterministic Methods 

An exhaustive search of the feasible set S is performed in these methods to find 

the global minimum. The success of the method can be guaranteed for only the 

functions that satisfy certain conditions. We shall describe basic ideas of four 

deterministic methods: covering, zooming, generalized descent and tunneling 

methods. 

 

Covering Methods. The basic idea of these methods is to cover the entire 

feasible set S by evaluating the cost function at all the points in order to search 

for a global minimum.
46

 This is an enormous calculation and therefore all the 

covering methods try to implicitly cover the entire set by evaluating the functions 

at some selected points. Some methods exploit certain properties of the cost 

function to accomplish this objective. Covering methods have been used mainly 

to solve two variable problems because for 3 and more variables, the number of 

computations becomes very large. 

 

Zooming Method. This method uses a target value for the global minimum of 

the cost function which is imposed as a constraint in the solution process.
7,22

 

Once the target is achieved, it is reduced further to zoom-in on the global 

minimum. The method combines a local minimization method with successive 

truncation of the feasible set S. The basic idea is that once a local minimum point 

has been found, the problem is redefined in such a way that the current solution is 

eliminated from any further search by adding the constraint f (x) ≤ rf ( x*), where 

f (x*) is the cost function value at the current minimum point and 0 < r < 1 if 

f (x*) > 0, and r > 1 if f (x*) < 0. The redefined problem is solved again and the 

process is continued until no more minimum points can be found. The method 

has a drawback in that as the target level for the global minimum is lowered, the 

feasible set for the problem shrinks and may even become disjointed. Therefore 

as the global minimum is approached, finding even a feasible point for the re-

defined problem becomes time consuming.
21

  

 

Methods of Generalized Descent. These methods are generalization of the 

descent methods where finite descent steps are taken along the search directions 

(i.e., straight lines). In those methods, it is sometimes difficult to find a suitable 

step size along the search direction. Therefore, it may be more effective if we 
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deliberately follow a curvilinear path (trajectory) in the design space. The 

curvilinear paths are generated by integrating certain first or second order 

differential equations. The differential equations use the function values and its 

gradient along the trajectories. The search for the global minimum is based on 

solution properties of these differential equations. An important property is that 

their trajectories pass through majority of the stationary points for the cost 

function. There are conditions that can determine whether or not the trajectory 

will pass through all the local minimum points. In that case, the global minimum 

is guaranteed to be found. The methods have been used for problems with only a 

few variables. 

 

Tunneling Method. The basic idea of the tunneling method is to execute the 

following two phases iteratively until some stopping criterion is satisfied: the 

local minimization phase and the tunneling phase. The method was initially 

developed for unconstrained problems and then extended for constrained 

problems.
48

 A local minimum x* for the problem is calculated in phase one. The 

tunneling phase determines a new starting point for phase one that is different 

from x* but has cost function value smaller than or equal to the known minimum 

value. The tunneling phase is accomplished by finding a root of the nonlinear 

tunneling function, T(x). This function is defined in such a way that it avoids 

previously determined local minima and the starting points. The two phases are 

repeated until no suitable roots of the tunneling function can be found. This is 

realized numerically when T(x) ≥ 0 for all x. This problem is difficult to solve 

efficiently because finding a suitable point in the tunneling phase is in itself a 

global optimization problem.  

5.4.2.  Stochastic Methods 

Most stochastic methods depend on random processes to search for the global 

minimum point. Some methods are useful for only continuous variable problems 

while others can be used for all types of problems. These methods are some 

variation of the pure random search. They try to reduce its computational burden. 

Pure random search evaluates f ( x) at N sample points drawn from a random 

uniform distribution over the feasible set. The smallest function value found is 

the candidate global minimum for ( )xf . The sample size N must be quite large 

in order to get a good estimate of the global solution. Therefore the method is 

quite inefficient due to the large number of function evaluations. Single start 

method is a simple extension of the method in which a single local search is 

performed starting from the best point found in the random search.  
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The stochastic ideas are used in two ways in these methods: (i) to decide 

stopping criteria for the methods, and (ii) to develop techniques to approximate 

the region of attraction for a local minimum point. The goal of many stochastic 

methods is to develop good approximations for the regions of attraction for local 

minima so that the search for that local minimum is performed only once. 

Some stochastic methods try to determine all local minima for the function. 

Then, the best local minimum is claimed as the global minimum point. One 

difficulty is that the number of local minima for the problem is not known a 

priori. Therefore it is difficult to determine when to end the search for local 

minima. Usually a statistical estimate for the number of local minima is used in 

practice. The methods usually have two phases: a global phase and a local phase. 

In the global phase, the function is evaluated at a number of randomly sampled 

points. In the local phase, local searches are performed from the sample points to 

yield candidate global minima. The global phase is necessary because just a local 

strategy cannot give a global minimum. There are many stochastic methods for 

global optimization, such as multistart, clustering, controlled random search, 

simulated annealing, acceptance-rejection, stochastic integration, and genetic 

algorithms. We shall describe only the basic ideas of some of the methods. More 

details can be found in Refs. 7 and 17 and works cited therein. It is important to 

note that since some stochastic methods use random processes, an algorithm run 

at different times can generate different iteration histories and local minima. 

Therefore, a particular problem needs to be run several times before the solution 

is accepted as the global optimum. 

 

Multistart Method. The basic idea of multistart methods is to perform search for 

a local minimum from each sample point. The best local minimum point found is 

taken as the global minimum. The stopping criterion for the method is based on a 

statistical estimate of the number of local minima for the problem. The method is 

reliable but it is not efficient since many sample points lead to the same local 

minimum. Therefore, strategies to eliminate this inefficiency in the algorithm 

have been developed.  

 

Clustering Methods. The basic idea of clustering methods is to remove 

inefficiency of the multistart method by trying to use the local search procedure 

only once for each local minimum point.
51

 The random sample points are linked 

into groups to form clusters. Each cluster is considered to represent one region of 

attraction such that a search initiated from any point in the region converges to 

the same local minimum point. Four clustering methods have been used for  
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development of the regions of attraction: density clustering, single linkage, mode 

analysis, and vector quantization multistart.  

 

Controlled Random Search. The controlled random search has both global and 

local phases in its algorithm. It uses the idea of a simplex which is a geometric 

figure formed by a set of n+1 points in the n-dimensional space (n is the number 

of variables). In two dimensions, the simplex is just a triangle and in three 

dimensions, it is a tetrahedron. The method does not use gradients of the cost 

function and so continuity of the functions is not required. In the global phase, 

one starts with n+1 sample points. The worst point (having the largest value for 

the cost function) is replaced by a trial point evaluated using the centroid for the 

n sample points including the worst point. If the trial point is feasible and has 

better cost function value, then it replaces the worst point of the selected set. 

Otherwise, the process is repeated until a better point is found. In the local phase, 

the worst point among the current n+1 sample points is reflected about the 

centroid of the simplex. The point is then expanded or contracted to obtain a 

better point. The worst point is replaced by this point. The two phases are 

repeated until a stopping criterion is satisfied.  

 

Acceptance-Rejection Methods. The acceptance-rejection methods use ideas 

from statistical mechanics to improve efficiency of the multistart algorithm.
49

 

The strategy is to start the local minimization procedure only when the randomly 

generated point has smaller cost function value than that of the local minimum 

previously obtained. This forces the algorithm to tunnel below the local minima 

in search for a global minimum. This modification, however, has been shown to 

be inefficient, and therefore the tunneling process has been pursued only by 

means of deterministic algorithms, as explained earlier. The acceptance-rejection 

based methods modify this tunneling procedure which is sometimes called 

random tunneling. The idea of acceptance phase is to some times start local 

minimization from a randomly generated point even if it has a higher cost 

function value than that at a previously obtained local minimum. This involves 

calculation of certain probabilities. If the local minimization procedure started 

from an accepted point produces a local minimum that has higher cost function 

value than a previously obtained minimum, then the new minimum point is 

rejected. This is called the rejection phase. 

 

Stochastic Integration. In these methods, a stochastic perturbation of the system 

of differential equations for the trajectory methods is introduced in order to force 

the trajectory to a global minimum point. This is achieved by monitoring the cost 
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function value along the trajectories. By changing some coefficients in the 

differential equations we get different solution processes starting from the same 

initial point. This idea is similar to simulated annealing but here a parameter in 

the differential equation is decreased continuously.  

6.  Concluding Remarks  

Basic concepts and terminology used for optimization of structural and 

mechanical systems are described. Various types of optimization models are 

presented and discussed. Optimality conditions for continuous variable 

optimization problems are presented. Concept related to algorithms for 

continuous variable optimization problems are presented and discussed. Basic 

concepts of methods for discrete variable, multiobjective and global optimization 

problems are described. The material is introductory in nature, and so, several 

references are cited for readers interested in more in-depth study of various 

topics. 
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Numerical algorithms for real life engineering optimization must be strong and
capable of solving very large problems with a small number of simulations and
sensitivity analysis. In this chapter we describe some numerical techniques to solve
engineering problems with the Feasible Arc Interior Point Algorithm (FAIPA) for
nonlinear constrained optimization. These techniques include quasi- Newton for-
mulations that avoid the storage of the approximation matrix. They include also
numerical algorithms to solve in an efficient manner the internal linear systems
of FAIPA. Numerical results with large size test problems and with a structural
optimization example shows that FAIPA is strong an efficient for large size opti-
mization.

1. Introduction

The engineering optimization task consists in finding the design variables
x1, x2, ..., xn that

minimize f(x)
subject to g(x) ≤ 0

and h(x) = 0,

(1)

where x ≡ [x1, x2, ..., xn]t, the scalar function f(x) is the objective function and
g(x) ≡ [g1(x), g2(x), ..., gm(x)]t and h(x) ≡ [h1(x), h2(x), ..., hp(x)]t represent in-
equality and equality constraints. We assume that f(x), g(x) and h(x) are continu-
ous in �n as well as their first derivatives. In engineering applications most of these
functions are nonlinear. Then, (1) is a smooth nonlinear constrained mathematical
programming problem.

Real life engineering systems involve a very large number of design variables
and constraints. Evaluation of functions and of derivatives coming from engineering
models is very expensive in terms of computer time. In practical applications, cal-
culation and storage of second derivatives are impossible to be carried out. Then,
numerical techniques for engineering optimization must be capable of solving very

35
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large problems with a reasonable number of function evaluations and without need-
ing second derivatives. Robustness is also a crucial point for industrial applications.

Quasi-Newton method creates an approximation matrix of second deriva-
tives.13,25,43,48,50 With this method large problems can be solved in a reasonable
number of iterations. Employing rank two updating rules, like BFGS or DFP, it is
possible to obtain positive definite approximation matrices. This is a requirement of
optimization algorithms that include a line search procedure24,25,26,43,48,50 to ensure
global convergence. However, the classic quasi-Newton method cannot be applied for
large problems since it requires the calculus and storage of approximation matrices,
which are always full.

Limited memory quasi-Newton method avoids the storage of the approximation
matrix.11,42,47,48 Positive definite matrices can also be obtained with this technique.
It was first developed for unconstrained optimization and then extended to prob-
lems with side constraints. Employing the Feasible Arc Interior Point Algorithm
(FAIPA), the limited memory method can also be applied for constrained optimiza-
tion problems.19,31,32,44

Another approach to solve large problems with a quasi-Newton technique con-
sists in obtaining sparse approximation matrices. This idea was first exploited by
Toint in the 70th56,57,58 and by Fletcher et al. in the 90th.17,18 In both cases sparse
matrices were obtained in a very efficient way. However, those methods cannot be
applied for optimization algorithms with a line search, since it is not guaranteed
that the approximation matrices are positive definite. In booth cases, the authors
worked with a trust region algorithm, but the numerical results were poor.

The numerical techniques described in this chapter are based on the Feasible Arc
Interior Point Algorithm (FAIPA)34 for nonlinear constrained optimization. FAIPA,
that is an extension of the Feasible Directions Interior Point Algorithm,22,23,24,26,49

integrates ideas coming from the modern Interior Point Algorithms for Linear Pro-
gramming with Feasible Direction Methods. At each point, FAIPA defines a “Fea-
sible Descent Arc”. Then, it finds a new interior point on the arc, with a lower
objective. Newton, quasi - Newton and first order versions of FAIPA can be ob-
tained.

FAIPA is supported by strong theoretical results. Global convergence to a lo-
cal minimum of the problem is proved with relatively weak assumptions. The
search along an arc ensures superlinear convergence for the quasi - Newton version,
even when there are highly nonlinear constraints, avoiding the so called “Maratos’
effect”45. FAIPA, that is simple to code, does not require the solution of quadratic
programs and it is not a penalty or a barrier method. It merely requires the solution
of three linear systems with the same matrix per iteration. This one includes the
second derivative of the Lagrangian, or a quasi - Newton approximation. Several
practical applications of the present and previous versions of FAIPA, as well as
several numerical results, show that FAIPA constitutes a very strong and efficient
technique for engineering design optimization,1,2,4,5,6,7,8,27,28,29,30,38,39,40,41,54 and
also for structural analysis problems with variational inequalities.3,60,62
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The main difficulty to solve large problems with FAIPA comes from the size and
sparsity of the internal linear systems of equations. Since the quasi-Newton matrix
is included in the systems, limited memory and sparse quasi - Newton techniques
can produce important reductions of computer calculus and memory requirements.

In this chapter we present a new sparse quasi - Newton method that works with
diagonal positive definite matrices and employ this technique for constrained opti-
mization with FAIPA. This approach can be employed also in the well known sequen-
tial quadratic programming algorithm (SQP)25,51,52 or in the interior point methods
for nonlinear programming, as primal-dual or path following algorithms.20,48,61 We
also describe numerical techniques, to solve large problems with FAIPA, employ-
ing exact or iterative linear solvers and sparse or limited memory quasi-Newton
formulations.

Quasi - Newton method is described in the next section, including limited mem-
ory formulation and our proposal for sparse quasi - Newton matrices. FAIPA is
described in Sec. 3 and the structure of the internal systems and some numerical
techniques to solve them are discussed in Sec. 4. Numerical experiments with a set
of test problems are reported in Sec. 5, followed with some results in structural
optimization. Finally, we present our conclusions in the last section.

2. Quasi-Newton Method for Nonlinear Optimization

We consider now the unconstrained optimization problem

minimize f(x); x ∈ �n (2)

Modern iterative algorithms define, at each point, a descent direction of f(x)
and make a line search looking for a better solution. The quasi - Newton method
works with a matrix that approximates the Hessian of the objective function or
its inverse. The basic idea is to build the quasi - Newton matrix with information
gathered while the iterations progress.

Let the symmetric matrix Bk ∈ �n×n be the current approximation of∇2f(xk).
An improved approximation Bk+1 is obtained from

Bk+1 = Bk + ∆Bk. (3)

Since

∇f(xk+1)−∇f(xk) ≈ [∇2f(xk)](xk+1 − xk),

the basic idea of quasi - Newton method consist in taking ∆Bk in such way that

∇f(xk+1)−∇f(xk) = [Bk+1](xk+1 − xk), (4)

called “secant condition”, is true.
Let

δ = xk+1 − xk and γ = ∇f(xk+1)−∇f(xk).
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Then, (4) is equivalent to

γ = Bk+1δ. (5)

The substitution of (3) into (5) gives us n conditions to be satisfied by ∆Bk.
Since ∆Bk ∈ �n×n, the secant condition is not enough to determine Bk+1. Several
updating rules for Bk+1 were proposed.13,43,52 The most successful is the BFGS
(Broyden, Fletcher, Shanno, Goldfarb) formula

Bk+1 = Bk +
γγt

δtγ
− BkδδtBk

δtBkδ
. (6)

If Bk is positive definite, it can be proved that

δtγ > 0 (7)

is a sufficient condition to have Bk+1 positive definite. Under certain assumptions
about f(x), (7) is satisfied if an appropriate line search procedure is employed.25

A quasi-Newton algorithm can then be stated as follows:

ALGORITHM 1.

Data. Initial x0 ∈ �n and B0 ∈ �n×n symmetric and positive definite. Set k = 0.

Step 1. Computation of the search direction dk ∈ �n, by solving the linear system

Bkdk = −∇f(xk) (8)

Step 2. Line search

Find a step length tk that reduces f(x), according to a given line search criterium.

Step 3. Updates

Take

xk+1 := xk + tkdk

Bk+1 := Bk + ∆Bk

k := k + 1

Step 4. Go back to Step 1. �

Working with an approximation of the inverse, Hk ≈ [∇2f(x)]−1, is advanta-
geous since it allows the search direction dk to be calculated with a simple matrix-
vector multiplication.
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We have that the secant condition (5) is equivalent to δ = Hk+1γ. Thus, an
updating rule for H can be easily obtained by interchanging B and H as well as δ

and γ in (6). We have

Hk+1 = Hk +
δδt

δtγ
− HkγγtHk

γtHkγ
, (9)

called DFP (Davidon, Fletcher, Powell) updating rule. In general, the approximation
matrix Hk+1 that is obtained with this rule is not the inverse of Bk+1 given by
BFGS rule. An expression for Hk+1 corresponding to the BFGS rule can be obtained
from (6) by computing the inverse of Bk+1 employing the Sherman - Morrison -
Woodbury formula,13

Hk+1 = Hk +

(
1 +

γtHkγ

γtδ

)
δδt

δtγ
− δγtHk + Hkγδt

γtδ
. (10)

2.1. Limited Memory Quasi-Newton Method

With the limited memory formulation, the product of the quasi-Newton Matrix
Hk+1 times a vector v ∈ �n, or a matrix, can be efficiently computed without
the explicit assembly and storage of Hk+1. It is only required the storage of the q

last pairs of vectors δ and γ. In particular, this technique can be employed for the
computation of the search direction in a quasi - Newton algorithm for unconstrained
optimization.

The updating rule (10) for H can be expressed as follows:

Hk+1 = Hk−q + [∆ Hk−qΓ]E[∆ Hk−q (11)

where

∆ = [δk−q , δk−q+1, δk−q+2, ..., δk−1]; ∆ ∈ �n×q

Γ = [γk−q, γk−q+1, γk−q+2, ..., γk−1]; Γ ∈ �n×q

E =
[

R−t(D + ΓtHk−qΓ)R−1 −R−t

−R−1 0

]
; E ∈ �2q×2q

R = upper(∆tΓ); R ∈ �q×q

D = diag(R)

We write A = upper(B) when Aij = Bij for j ≥ i and Aij = 0 for j < i.
The limited memory method takes Hk−q = I. Then, the following expression

for Hk+1v is obtained:

Hk+1v = v + [∆ Γ]E[∆ Γ]tv. (12)

This formulation is very strong and efficient for unconstrained optimization.
Even in very large problems, taking q ≈ 10, the number of iterations employing the
Limited Memory method is quite similar to the original quasi - Newton Algorithm.
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2.2. Sparse Quasi-Newton Matrices

The technique proposed by Toint, works with quasi-Newton matrices having the
same sparsity as the real second derivative of the function. The new matrix Bk+1 is
the symmetric matrix, closest to Bk and with the prescribed sparsity, that satisfies
the secant condition (4). Thus, Bk+1 is the solution of the following constrained
optimization problem

minimize ‖Bk+1 −Bk‖2F
subject to Bk+1δ = γ,

Bk+1 = [Bk+1]t

and Bk+1
ij = 0 for (i, j) ∈ Is,

(13)

‖M‖F =

√√√√ n∑
i=1

n∑
j=1

M2
ij is the Frobenius norm of M ∈ �n×n and the set Is defines

the required structure of the quasi-Newton matrix.
Toint obtained Bk+1 by solving a linear system with the same structure Is.

However, Bk+1 is not guaranteed to be positive definite.
The method proposed by Fletcher et al. relaxes the secant condition and works

with the set of the q previous pairs of vectors {δi, γi}; for i = k, k−1, k−2, ..., k−q+1,
as well as in the limited memory method.

Let be

∆k = [δk, δk−1, δk−2, ..., δk−q+1]

and

Γk = [γk, γk−1, γk−2, ..., γk−q+1],

where ∆k, Γk ∈ �n×q. The following optimization problem defines Bk+1

minimize ‖Bk+1∆k − Γk‖2F
subject to Bk+1 = [Bk+1]t

and Bk+1
ij = 0 for (i, j) ∈ Is,

(14)

Since the secant condition is relaxed, this problem has a solution whatever it
is the structure of Bk+1. Then, any sparse structure can be chosen, even in the
case when the second derivative matrix is full. This approach does not require the
storage of Bk. However Bk+1 is not ensured to be positive definite, as in Toint’s
method.

2.3. Diagonal Quasi-Newton Matrices

We present a new approach21 based on the previous formulation, but employing
a structure for the quasi- Newton matrix such that checking if this one is positive
definite becomes easy. This check is then included as a constraint of the optimization
problem. The most simple case is that one in which the approximation matrices are
diagonal.
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We define the following problem

minimize ‖Bk+1∆k − Γk‖2F
subject to Bk+1

ii ≥ ε for i = 1, 2, ..., n

and Bk+1
ij = 0 for i 	= j,

(15)

where ε > 0 is given.
Let us call βi ≡ Bk+1

ii . It can be shown 21 that (15) is equivalent to the quadratic
programming problem in β

minimize 1
2βtQβ − βtb + c

subject to βi ≥ ε for i = 1, 2, ..., n,
(16)

where Q = 2 ×
k∑

i=k−q

[Diag(δi)]2, b = 2 ×
k∑

i=k−q

Diag(δi)γi and c =
k∑

i=k−q

(γi)tγi.

Diag(v), for v ∈ �n, is a diagonal matrix such that Diag(v)ii = vi.
In Ref. 21 it is proved that β, solution of problem (16), can be easily computed

as follows:

ALGORITHM 2.

For i = 1, 2, ..., n,

- If bi

Qii
> ε, then set βi = bi

Qii
.

- Else, set βi = ε. �

The above formulation is very simple. The required computational effort is neg-
ligible, in terms of calculus and memory. However, limited memory technique has a
stronger theoretical support and seems to be more appropriate for unconstrained op-
timization. We shall employ sparse updating for constrained optimization, in those
situations that the limited memory update is not appropriate.

3. The Feasible Arc Interior Point Algorithm

In this section we describe a quasi-Newton version of FAIPA and present some pro-
cedures to solve large optimization problems employing the sparse and the limited
memory quasi - Newton methods. The best procedure in each case depends on the
structure of the problem. In particular, of the sparsity of the matrix of constraints
derivatives and of number of variables and constraints.

FAIPA requires an initial point at the interior of the inequality constraints and
generates a sequence of interior points. When the problem has only inequality con-
straints, the objective function is reduced at each iteration. An auxiliary potential
function is employed when there are also equality constraints.
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ALGORITHM 3. FAIPA - Feasible Arc Interior Point Algorithm

Parameters. α, ν ∈ (0, 1) and ϕ > 0.
Data. Initial values for x ∈ �n, such that g(x) < 0, and for λ ∈ �m, λ > 0,
B ∈ �nxn symmetric and positive definite and c ∈ �p, c ≥ 0.

Step 1. Computation of a feasible descent direction

(i) Solve the linear systems:⎡
⎣ B ∇g(x) ∇h(x)

Λ∇gt(x) G(x) 0
∇ht(x) 0 0

⎤
⎦
⎡
⎣d0

λ0

µ0

⎤
⎦ = −

⎡
⎣∇f(x)

0
h(x)

⎤
⎦ (17)

and ⎡
⎣ B ∇g(x) ∇h(x)
Λ∇gt(x) G(x) 0
∇ht(x) 0 0

⎤
⎦
⎡
⎣d1

λ1

µ1

⎤
⎦ = −

⎡
⎣0λ
0

⎤
⎦ , (18)

where G(x) = Diag[g(x)], Λ = Diag(λ) and ∇g(x) ∈ �n×m and ∇h(x) ∈ �n×p are
respectively the matrices of derivatives of the inequality and the equality constraints.

Let

φc(x) = f(x) +
p∑

i=1

ci|hi(x)| (19)

be the auxiliary potential function.

(ii) If ci < −1.2µ0(i), then set ci = −2µ0(i); i = 1, ..., p.

(iii) If d1
t∇φc(x) > 0, set

ρ = inf

[
ϕ ‖ d0 ‖22 ; (α− 1)

d0
t∇φc(x)

d1
t∇φc(x)

]
. (20)

Otherwise, set

ρ = ϕ ‖ d0 ‖22 . (21)

(iv) Compute the feasible descent direction d = d0 + ρd1

Step 2. Computation of the “restoring direction” d̃

Compute:

ω̃I
i = gi(x + d)− gi(x)−∇gt

i(x)d; i = 1, ..., m

ω̃E
i = hi(x + d)− hi(x)−∇ht

i(x)d; i = 1, ..., p
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Solve: ⎡
⎣ B ∇g(x) ∇h(x)
Λ∇gt(x) G(x) 0
∇ht(x) 0 0

⎤
⎦
⎡
⎣d̃

λ̃

µ̃

⎤
⎦ = −

⎡
⎣ 0
Λω̃I

ω̃E

⎤
⎦ (22)

Step 3. Line search along the feasible descent arc x(t) = x + td + t2d̃

Find t = inf {1, ν, ν2, ν3, ...}, such that:

φ(x + td + t2d̃) < φ(x) + tη∇φt(x)d
g(x + td + t2d̃) < 0

(23)

Step 4. Updates.

(i) Set the new point

x := x + td + t2d̃

(ii) Define new values for λ > 0 and B symmetric and positive definite.
(iii) Go back to Step 1. �

The present algorithm converges to a Karush - Kuhn - Tucker point of the prob-
lem for any initial interior point. This is true no matter how λ > 0 and B, positive
definite, are updated. We employ the following updating rule for λ:

Updating Rule for λ

Set, for i = 1, ..., m,

λi := max [λ0; ε ‖ d0 ‖22 ]. (24)

If gi(x) ≥ −ḡ and λi < λI , set λi = λI .
�

The parameters ε, ḡ and λI are taken positive. In this rule, λi is a second order
perturbation of λ0, given by Newton iteration. If ḡ and λI are taken small enough,
then after a finite number of iterations, λi becomes equal to λ0 for the active
constraints.

The linear system (17) in (d0, λ0, µ0) is derived from a Newton’s iteration to
solve Karush - Kuhn - Tucker optimality conditions. Solving (17), we obtain d1,
that improves feasibility. In the calculus of d̃ it is involved an estimate of the second
derivatives of the constraints. The feasible descent direction d = d0 + ρd1 and the
feasible descent arc x(t) = x+ td+ t2d̃ are represented in Fig. 1, for the case when
an inequality constraint is active.

The line search described in Step 3 is an extension of Armijo’s scheme for un-
constrained optimization. More efficient inexact line search algorithms, based on
Wolfe’s or Goldfarb’s criteria, can also be employed.33,39
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Fig. 1. The feasible arc

3.1. BFGS updating rule for constrained optimization

Let l(x, λ, µ) = f(x) + λtg(x) + µth(x) be the Lagrangian of Problem (1). Quasi -
Newton method for constrained optimization works with an approximation of the
Hessian of the Lagrangian:

B ≈ L(x, λ, µ) = ∇2f(x) +
m∑

i=1

λi∇2gi(x) +
p∑

i=1

µi∇2hi(x).

The same updating rules used for unconstrained optimization can be employed, but
taking

γ = ∇xl(xk+1, λk
0 , µk

0)−∇xl(xk, λk
0 , µk

0).

However, since L(x, λ, µ) is not necessarily positive definite at a local minimum, it is
not always possible to get positive definite quasi-Newton matrices. When employing
BFGS updating rule, γ can be modified in such way to have δtγ > 0, forcing Bk+1

to be positive definite. The following rule was proposed by Powell,51,52

If

δtγ < 0.2δtBkδ,

then compute

φ =
0.8δtBkδ

δtBkδ − δtγ

and take

γ := φγ + (1− φ)Bkδ.

�
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In Ref. 26 it was proved that the convergence of the quasi-Newton version of
FAIPA is two-step superlinear. The search along an arc ensures that the step length
can be taken equal to one after a finite number of iterations. This is a requirement
to prove superlinear convergence.

4. The Internal Linear Systems in FAIPA

The linear systems (17), (18) and (22) are called “Primal-Dual” systems since the
unknowns are related to the primal and the dual variables of the problem. These
systems can be reformulated in some equivalent ways that we shall describe here.
The most favorable formulation can be chosen in each case, depending on the struc-
ture of the optimization problem and the numerical technique employed to solve
the systems.

The primal-dual systems have a unique solution49 if the optimization problem
satisfies the following assumption:

Regularity Condition - For all x such that g(x) ≤ 0 and h(x) = 0, the vectors
∇gi(x), for i = 1, 2, ..., m such that gi(x) = 0 and ∇hi(x) for i = 1, 2, ..., p are
linearly independent.

However, the primal-dual matrix is not symmetric neither positive definite.
Equivalent symmetric primal-dual systems can be obtained with the following co-
efficient matrix: ⎡

⎣ B ∇g(x) ∇h(x)
∇gt(x) Λ−1G(x) 0
∇ht(x) 0 0

⎤
⎦ (25)

When there are inactive constraints at the solution, the corresponding Lagrange
multipliers go to zero. In consequence, the symmetric primal-dual matrix becomes
ill-conditioned. However, it is not difficulty to obtain preconditioners to overcome
this kind of ill-conditioning.

It follows from (17) that

d0 = −B−1[∇f(x) +∇g(x)λ0 +∇h(x)µ0]. (26)

and that [
[Λ∇gt(x)B−1∇g(x)−G(x)] ∇gt(x)B−1∇h(x)

∇ht(x)B−1∇g(x) ∇ht(x)B−1∇h(x)

] [
λ0

µ0

]
=

−
[

Λ∇gt(x)B−1∇f(x)
∇ht(x)B−1∇f(x)− h(x)

]
(27)
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Then, (26) and (27) is an alternative formulation to compute λ0, µ0 and d0.
Similar expressions to get (d1, λ1, µ1) and (d̃, λ̃, µ̃) can be deduced. The system
(27) is called “Dual System”. Equivalent expressions can be obtained, involving
“Symmetric Dual Systems”, with the following coefficient matrix:[

[∇gt(x)B−1∇g(x)− Λ−1G(x)] ∇gt(x)B−1∇h(x)
∇ht(x)B−1∇g(x) ∇ht(x)B−1∇h(x)

]
. (28)

The comments concerning the conditioning of the symmetric primal-dual matrix
(25) are also valid for (28).

From (17), we have

λ0 = −G(x)−1Λ∇gt(x)d0 (29)

and [
[B −∇g(x)G−1(x)Λ∇gt(x)] ∇h(x)

∇ht(x) 0

] [
d0

µ0

]
= −

[∇f(x)
h(x)

]
. (30)

The coefficient matrix of the system (30) is symmetric and positive definite, as
well as the Primal Matrix[

B −∇g(x)G−1(x)Λ∇gt(x)
]
. (31)

This one is ill-conditioned when the inequality constraints are small.
The dual formulation is generally most favorable when the number of design

variables is much smaller than the number of constraints while, in the opposite sit-
uation, the primal formulation is preferable. The primal-dual formulation involves
a larger system of equations but it is more advantageous when sparse matrix tech-
niques are employed.

Three linear system with the same matrix are solved at each iteration of FAIPA.
In general, the coefficient matrices and right sides of the systems have small changes
from one iteration to the following one. Then, it should be possible to take advantage
of this fact when solving them.

4.1. Solving the primal-dual systems

The primal-dual system is particulary advantageous when the constraints deriva-
tive matrix is sparse and a sparse quasi-Newton matrix is employed. We solve the
linear systems employing the Harwell Subroutine Library35, code MA27. This is a
set of FORTRAN subroutines for solving sparse symmetric linear systems by Gaus-
sian elimination that includes some procedures to take advantage of the matrix
structure15,16. The solution process is divided into three stages:

i) An analysis phase that examines the structure of the matrix in order to produce
a suitable ordering and data structures for an efficient factorization.

ii) A factorization phase that performs the actual numerical factorization.
iii) A solution phase which performs the forward and backward substitutions.
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We can assume that the zero elements are the same for all iterations. Thus,
the analysis phase must be only carried out for the first system in the first itera-
tion. Sice at each iteration the linear systems have the same coefficient matrix, the
factorization is done once per iteration only.

4.2. Solving the dual systems

The dual and the symmetric dual matrices can be computed employing the limited
memory formulation to determine the products B−1∇g(x) and B−1∇h(x) without
needing the computation nor storage of B.

Iterative methods for linear systems compute at each iteration the product of the
coefficient matrix by a vector. When employing limited memory formulation, this
product can be done without storing the coefficient matrix. This can be extremely
efficient when the constraints derivative matrix is not sparse.

A new technique based on a preconditioned conjugate gradient algorithm to
solve the symmetric dual system is now described, see Ref. 14. Let us consider:

Ax = b, (32)

where A ∈ �N×N and x, b ∈ �N . The present algorithm is based on the equivalent
systems

H̃L
−1

AL−ty = H̃L
−1

b, (33)

L−ty = x. (34)

The lower triangular matrix L ∈ �N×N is an incomplete Choleski factorization
preconditioner and H̃ ∈ �N×N is a preconditioner based on quasi-Newton limited
memory method to minimize the quadratic function

Q(y) ≡ 1
2
ytL−1AL−ty − ytL−1b.

That is, H̃ is a quasi - Newton approximation of (L−1AL−t)−1.
Limited memory preconditioners were proposed by Morales et al.46. Dubeux14

proposed a criterium to select the “best” set of pairs (δ, γ) to construct H̃. The
set of pairs (δ, γ), that were obtained in the solution of one of this systems, can be
employed as initial set of pairs for the solution of next one since three systems with
the same matrix are solved at each iteration of FAIPA.

The following preconditioned conjugate gradient algorithm is based on Algo-
rithm 9.1 in Ref. 55.

ALGORITHM 4. Preconditioned Conjugate Gradient

Data. Initial values: x0, r0 = L−1(b−Ax0), z0 = H̃r
0

and p0 = L−tz0.
Set k = 0.
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Step 1. Compute

αk =
(rt)kzk

(Apk)tpk

xk+1 = xk + αkpk

rk+1 = rk − αkL−1Apk

zk+1 = H̃r
k+1

βk =
(rt)k+1zk+1

(rt)kzk

pk+1 = L−tzk+1 + βkpk

Step 2. Set k = k + 1. Return to Step 1. �

The product H̃r is computed employing (12). The products Ax and Ap can
be computed without storing A.

5. Numerical Experiments

We present in this section some numerical results obtained with:

i) The classical full-matrix quasi-Newton version of FAIPA, FAIPA qN.
ii) The limited memory quasi-Newton version, FAIPA LqN. The internal systems

are solved iteratively.
iii) Faipa with a diagonal quasi-Newton matrix, FAIPA DqN.

Wolfe’s line search, described in Ref. 33, is employed in all the cases . The tables
with the results employ the same notation as in the paper. The number of box
constraints is called nb.

All the problems were solved with the same set of parameters: α = 0.7, φ = 1,
η1 = 0.1, η2 = 0.7, γ = 0.5 and ε = 0.1. The initial values were λi = 1; for
i = 1, 2, ..., m, S = I and c = 0.

If the inequality constraints are not verified by the initial points, a feasible initial
point was found with the help of the auxiliary mathematical program⎧⎨

⎩
min
(x,z)

z

s. t. g(x) ≤ z,
(35)

where z is a scalar auxiliary variable. Making iteration with FAIPA to solve (35), a
feasible point is obtained once z becomes negative.
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5.1. Results with a collection of test problems

We report first our results with some test problems largely employed in Mathemat-
ical Programming literature. Our experience with 107 problems, compiled by Hock
and Schittkowski,37 are presented in Table 1, where “nprob” is the number of the
problem.

For all the problems, the optimal function value according to Ref. 37 was ob-
tained. The number of iterations required to have the optimal value of the function
with a relative error less than 10−5 is reported. All the iterates satisfy the inequality
constraints. A tolerance of 10−6 was established in the stopping criterium for the
equalities. The number of iteration in the line search is very small, since Wolfe’s cri-
terion is quite wide. In general, the line search requires only one or two evaluations
of the objective function and the constraints.

Table 1 also presents the numerical results obtained with the Sequential
Quadratic Programming algorithm included in MATLAB Library10, with the same
stopping criteria. Since the inequality constraints are not always satisfied, a toler-
ance of 10−6 was also imposed.

The numerical results for a set of large problems is reported in Table 2. The are
described in Ref. 12. We propose here the parametric problem HS43 nf, based on
Problem 43 in Ref. 37, stated as follows:

f(x) =
∑nf

t=1 x2
4t−3 + x2

4t−2 + 2x2
4t−1 + x2

4t − 5x4t−2 − 21x4t−1 + 7x4t

g3j−2(x) = −(8− x2
4j−3 − x2

4j−2 − x2
4j−1 − x2

4j − x4j−3 + x4j−2 − x4j−1 + x4j)
g3j−1(x) = −(10− x2

4j−3 − 2x2
4j−2 − x2

4j−1 − 2x2
4j + x4j−3 + x4j)

g3j(x) = −(5− 2x2
4j−3 − x2

4j−2 − x2
4j−1 − 2x4j−3 + x4j−2 + x4j),

for j = 1, 2, ..., nf .
Our results are compared in terms of the required number of iterations with the

code Knitro described in Ref. 9

5.2. Experiments with a structural optimization problem

We study the numerical behavior of the limited memory quasi-Newton version of
FAIPA when applied to two examples whose objective is the volume minimization
under Von-Misses stress constraints of rectangular plates submitted to in-plane
distributed loadings. The supports, loads and the design domains are shown in the
Figs. 2 and 5 respectively. In Problem 1 the domain is dicretized in 300, 1200 and
4800 elements and, 3200 elements for Problem 2. Quadrilateral bilinear plane stress
elements are employed. Young modulus is assumed to be E = 210 GPa and Poisson’s
ratio ν = 0.3 for all elements.

The thickness is constrained to be larger than 0.1 cm and smaller than 1.0 cm.
Von-Misses stresses, computed at the center of each element, must be lower than
250 MPa. The optimal structures are shown in Figs. 3 and 6, when the elements
with thickness equal to the lower bound were removed. The iterations histories are
represented in Figs. 4 and 7.
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Table 1. Numerical Results, Test problems in Ref. 37

FAIPA FAIPA

prob n m p box SQP qN LqN DqN prob n m p box SQP qN LqN DqN

1 2 1 0 1 33 36 37 55 6 14 6 8 2† 5 5 12
2 2 1 0 1 17 16 15 56 7 4 4 0 9 9 9 10
3 2 1 0 1 5 15 14 208 57 2 3 0 2 16 28 23 5
4 2 2 0 2 1 4 4 4 59 2 7 0 4 20 21 20 13
5 2 4 0 4 14 4 4 6 60 3 7 1 6 8 9 9 14
6 2 1 1 0 10 9 10 12 61 3 2 2 0 1† 10 10 9
7 2 1 1 0 8 11 11 28 62 3 7 1 6 7 4 4 4
8 2 2 2 0 4 9 9 9 63 3 5 2 3 7 9 9 10
9 2 1 1 0 5 5 5 6 64 3 4 0 3 23 23 22 15
10 2 1 0 0 11 7 7 12 65 3 7 0 6 7 13 13 19

11 2 1 0 0 7 6 6 6 66 3 8 0 6 5 10 10 9
12 2 1 0 0 16 4 4 12 68 4 10 2 6 13 19 29 21
13 2 3 0 2 31 25 40 9 69 4 10 2 8 15 11 11 19
14 2 2 1 0 5 14 14 6 70 4 9 0 8 36 64 31 53
15 2 3 0 1 2 6 6 6 71 4 10 1 8 8 15 15 16
16 2 5 0 3 6 18 18 36 72∗ 4 10 0 8 14 17 34 15
17 2 5 0 3 8 20 19 14 73∗ 4 7 1 4 4 16 16 19
18 2 6 0 4 8 12 12 12 74 4 13 3 8 8 27 71 67
19 2 6 0 4 5 74 66 46 75 4 13 3 8 6 50 39 44
20 2 5 0 2 5 9 10 9 76 4 7 0 4 4 8 8 9

21 2 5 0 4 2 4 4 4 77 5 2 2 0 20 18 18 21
22 2 2 0 0 4 10 10 9 78 5 3 3 0 8 7 7 9
23 2 9 0 4 6 9 9 9 79 5 3 3 0 10 10 10 14
24 2 5 0 2 4 4 4 4 80 5 13 3 10 6 8 8 10
25 3 6 0 6 1† 65 11 38 81 5 13 3 10 9 10 10 12
26 3 1 1 0 37 24 32 25 83 5 16 0 10 3 12 12 12
27 3 1 1 0 116 19 22 22 84 5 16 0 10 13 4 4 4
28 3 1 1 0 31 4 4 28 86 5 15 0 5 8 12 12 29
29 3 1 0 0 11 11 11 15 93 6 8 0 6 20 7 7 11
30 3 7 0 6 9 6 6 6 95 6 16 0 12 1 4 4 4

31 3 7 0 6 8 9 9 9 96 6 16 0 12 1 7 7 9
32 3 5 1 3 3 11 11 14 97 6 16 0 12 8 8 8 7
33 3 6 0 3 6† 14 14 9 98 6 16 0 12 8 42 31 6
34 3 8 0 4 7 18 18 9 99 7 16 2 14 27 12 21 6
35 3 4 0 6 5 6 6 11 100 7 4 0 0 13 11 17 9
36 3 7 0 3 1 12 13 10 101 7 20 0 14 26 22 39 28
37 3 8 0 6 6 14 16 11 102 7 20 0 14 26 28 27 17
38 4 8 0 6 28 16 15 17 103 7 20 0 14 25 18 22 28
39 4 2 2 8 199‡ 13 13 12 104 8 22 0 16 14 18 17 13
40 4 3 3 0 6 6 6 7 105 8 17 0 16 33 54 63 50

41 4 9 1 0 9 12 12 14 106∗ 8 22 0 16 81 125 54 123
42 4 2 2 8 8 8 8 6 107 9 14 6 8 6 15 15 15
43 4 3 0 0 11 52 40 9 108 9 14 0 1 14 17 23 9
44 4 10 0 0 5 20 20 15 109 9 26 6 16 15 8 8 8
45 5 10 0 4 5 22 22 10 110 10 20 0 20 63‡ 4 4 5
46 5 2 2 10 36 10 10 19 111 10 23 3 20 124‡ 35 34 17
47 5 3 3 0 14 12 12 20 112 10 13 3 10 39 11 11 8
48 5 2 2 0 9 3 3 9 113 10 8 0 0 49 23 28 32
49 5 2 2 0 31 10 10 42 114∗ 10 31 3 20 31 116 93 93
50 5 3 3 0 13 11 13 13 116 13 41 0 26 199‡ 51 55 18
51 5 3 3 0 5 4 4 4 117 15 20 0 15 23 40 46 29
52 5 3 3 0 4 5 5 7 118 15 59 0 30 13 45 51 29
53 5 13 3 0 5 5 5 7 119 16 40 8 32 9 77 100 89
54 6 13 1 12 1† 54 48 8

Note: † The algorithm converges to a local minimum.
‡ Convergence is not achieved.
∗ The initial point is infeasible. Previous iterations were required in searching for a feasible
initial point.
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Table 2. Numerical Results, Test problems in Ref. 12

Problem n m p box qN LqN DqN Knitro

DTOC5 50 98 0 49 0 16 18 14 22
DTOC5 100 198 0 99 0 18 19 22 23
DTOC5 500 998 0 499 0 24 33 75 29
DTOC5 1000 1998 0 999 0 31 59 210 20
DTOC1L 5998 5994 0 3996 0 14 14 43 21
OPTCTRL6 40 119 0 80 0 67 42 19 116
OPTCTRL6 100 299 0 200 0 51 149 24 ∗
OPTCTRL6 400 1199 0 800 0 128 377 31 ∗
ORTHRDM2 100 203 0 100 0 12 13 8 12
ORTHRDM2 2000 4003 0 2000 0 10 16 9 15
ORTHRDM2 4000 8003 0 4000 0 12 ∗ 19 12
ORTHRDS2 50 103 0 50 0 38 144 44 60
ORTHRDS2 100 203 0 100 0 36 96 107 50
ORTHRDS2 250 502 0 250 0 41 49 123 50
ORTHRDS2 500 1003 0 500 0 35 18 36 50
ORTHRDS2 2500 5003 0 2500 0 45 54 396 40
ORTHREGC 50 105 0 50 0 25 33 52 172
ORTHREGC 500 1005 0 500 0 29 31 214 48
ORTHREGC 2500 5000 0 2500 0 43 79 246 43
ORTHREGD 50 103 0 50 0 11 15 16 16
ORTHREGD 250 503 0 250 0 14 16 18 14
ORTHREGD 500 1003 0 500 0 14 17 17 16
ORTHREGD 2500 5003 0 2500 0 15 19 14 19
ORTHREGD 5000 10003 0 5000 0 ∗ ∗ 12 ∗
ORTHRGDS 250 503 0 250 0 48 26 174 23
ORTHRGDS 500 1003 0 500 0 46 33 252 16
GILBERT 5000 5000 0 1 1 58 77 112 45
GILBERT 1000 1000 0 1 1 55 77 67 48
GILBERT 10 10 0 1 1 17 19 18 20
SVANBERG 5000 5000 5000 0 10000 ∗ ∗ 75 420
SVANBERG 1000 1000 1000 0 2000 137 89 63 247
SVANBERG 100 100 100 0 200 48 56 64 76
POLYGON 25 48 324 0 96 43 33 28 ∗
POLYGON 50 98 1274 0 196 13 18 38 ∗
POLYGON 75 148 2849 0 296 18 19 37 ∗
POLYGON 100 198 5049 0 396 19 13 34 ∗
HS43NF 500 2000 1500 0 0 17 17 24 ∗
HS43NF 1000 4000 3000 0 0 19 16 29 ∗
HS43NF 1500 6000 4500 0 0 17 17 25 ∗
HS43NF 2000 8000 6000 0 0 19 17 29 ∗
HS43NF 2250 9000 6750 0 0 ∗ 16 27 ∗
HS43NF 3500 14000 10500 0 0 ∗ 18 26 ∗

Note: ∗ Not tested.

0.6 m 

1 m 

1.2 m 1.2 m 

  8000 N/cm2 

Fig. 2. Problem 1 - Description
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Fig. 3. Optimal design for 300, 1200 and 4800 elements
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Fig. 5. Problem 2 — Description
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Fig. 6. Problem 2 — Optimal design
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Fig. 7. Problem 2 — Iterations history

6. Conclusions

All the test problems were solved very efficiently with the same set of parame-
ters. The number of iterations remains comparable when the size of the problem is
increased.

The numerical results shown here suggest that very large problems can be solved
with FAIPA, depending only on the capacity of solving the linear internal systems
and storing the required data. The diagonal quasi-Newton Matrix is more efficient
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for sparse problems. Otherwise, the limited memory approach together with the
iterative solution of the internal systems should be employed.

In consequence of some particular features, FAIPA is very advantageous for
large scale engineering applications. Engineering optimization usually requires only
inequality constraints, and all the iterates given by FAIPA are strictly verified. In
consequence the iterations can be stopped at any time. Since FAIPA solves linear
systems at each iteration, instead of Quadratic or Linear Programs,43 a large number
of existing techniques for linear systems can be employed. Also algebraical trans-
formations can lead to improve the efficiency when solving particular applications,
as in the Simultaneous Analysis and Optimization Algorithm, FAIPA SAND, or
the Multidisciplinary Design Optimization one, FAIPA MDO, described in Ref. 33.
The fact that global convergence is proved for any way of updating B and λ makes
FAIPA very strong. In particular, when we substitute the BFGS quasi-Newton ma-
trix by a diagonal approximation.
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In the past three decades, evolutionary computation has been shown to be a very 

powerful tool for structural engineers.  Application of evolutionary computation 

methodologies have been spread far and wide throughout the field of structural 

engineering ranging from selection of shapes for relatively simple structural 

systems to designing active control systems to mitigate seismic response to 

determining the location and extent of damage within structural systems.  The 

present chapter provides an overview of evolutionary computation including a 

brief history of its development and the types of algorithms that are considered 

to be forms of evolutionary computation.  A basic discussion of the genetic 

algorithm and evolutionary strategy is provided within the context of application 

to a very simple structural engineering design problem.  The chapter provides a 

bird’s eye view and discussion of many applications of evolutionary 

computation in the field of structural engineering.  A brief synthesis of recent 

applications of evolutionary computation in the field of structural engineering is 

provided and recommendations for future work are given. 

1.  Introduction 

It is very easy for the cognitive human being to appreciate the seemingly perfect 

designs that have been generated through natural processes.  The great white 

shark is but one example of a naturally evolved “machine” that has been 

optimized within an evolutionary timescale for living in the open ocean.  Another 

interesting example of natural design optimization comes from the field of 

ethology.  Although the ant is essentially without vision, ant colonies survive and 

thrive as a result of their methods used to locate food.  The trial and error 

methodology used by ants to locate food sources is really nothing more than an 

optimization (search) algorithm used by these seemingly simplistic animals. 
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Classical or traditional algorithms for structural optimization are most often 

driven with deterministic mathematical re-sizing procedures and essentially one 

design is changed through iteration until a convergence criterion is reached.  

These methods have been implemented in a wide range of structural optimization 

applications and several excellent textbooks describing their fundamentals are 

available
1,2

.  These direct and gradient-based solution algorithms are founded 

upon a uniquely human field describing physical and natural phenomena – 

mathematics. 

While direct and gradient-based algorithms can be considered as very 

powerful search and optimization tools, they are not without difficulties in 

application for many practical engineering design optimization problems
3
.  Direct 

mathematical methods are point-to-point search algorithms that use objective 

function and constraint values to guide the search through feasible decision 

space.  Gradient-based methods use derivatives of objective functions and/or 

constraint equations to guide the search.  As a result, convergence of these 

algorithms depends upon selection of an initial solution for subsequent 

modification through iteration and design variable changes.  Poor initial design 

selections can set the algorithms off in unprofitable directions and oftentimes, the 

algorithms can get stuck in sub-optimal regions of the decision space. 

Mathematical algorithms are often problem-specific and the efficiency and 

capability of the algorithm in finding optimal solutions for general classes of 

problems varies.  Practical engineering problems often utilize discrete decision 

variables (e.g. structural steel cross-section sizes in building design).  This is 

usually circumvented when mathematical optimization algorithms are employed 

by re-casting the discrete decision variables into continuous functions that 

facilitate differentiation.  While this is an acceptable work-around, it implies that 

the algorithm is allowed to consider infeasible locations in decision space and 

computational time can be wasted determining objective function values for 

infeasible solutions.  In addition, all possible combinations of two values for each 

decision variable (nearest upper- and lower-neighbor) need to be evaluated for 

final solution feasibility.  This is a significant amount of extra effort and there is 

no guarantee that these combinations of nearest-neighbor decision variables will 

lead to the optimal solution.  Finally, gradient-based algorithms do not lend 

themselves to easy implementation in parallel computing environments.  Low 

cost multiple-processor computers and networks of computers have resulted in 

parallel computing environments becoming widely available and awaiting 

exploitation. 

Taking advantage of the perfect vision of hindsight, one might surmise that it 

was only a matter of time for scientists and engineers to begin to look towards 
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natural systems for design methodology inspirations.  Much of the robustness 

found in natural systems comes from the ability to adapt to ever-changing 

environments.  The ability of natural systems to change and adapt to their 

environments has undeniable parallels within the engineering design field.  The 

concept of developing engineering designs by generating populations of potential 

solutions (rather than single solutions) and mimicking the evolutionary process 

found in nature to guide the search towards an optimal solution is the highest-

level definition of evolutionary computation (EC).  These characteristics are what 

distinguish EC from mathematical computation when applied to structural 

optimization problems.  Evolutionary computation includes stochastic 

components not present in classical mathematically-based optimization 

algorithms. 

It is commonly believed that the field of evolutionary computation has 

evolved (pun intended) from the activities of three research communities working 

in widely dispersed geographic locations
3-5

.  Taxonomically speaking, three 

distinct flavors of evolutionary computation emerged in the 1960’s.  The first is 

called the evolution strategy
6-8

.  A second approach, principally related to the 

evolution strategy, is called evolutionary programming
9-11

.  A third algorithmic 

approach that was developed through the desire to simulate the adaptive behavior 

seen in natural systems has been called the genetic algorithm
12-16

. 

A historical perspective regarding the development of evolutionary 

computation has recently been provided
4,5

.  Essentially four decades (1960’s 

through 1990’s) are contained in this perspective.  Although conceptualizing 

evolution as an optimization problem and subsequent development of computer 

algorithms for optimization using evolution as a metaphor occurred in the 1930’s 

and late 1950’s
4
; it wasn’t until widespread availability of computers in the 

1960’s that the tremendous possibility for automating the optimization process 

using evolutionary-based algorithms was realized. Thorough study of 

evolutionary algorithms then proceeded as the desire to improve algorithm 

performance increased.  This was termed the “explorative 1970’s”
4
.  As the 

theory and behavior of the evolutionary algorithm became better defined and 

understood, researchers began seeking more widely varied applications of 

evolutionary computation in a variety of engineering design fields.  This period 

has been called the “exploitative 1980’s”
4
.  The 1990’s has seen the evolutionary 

computation community begin putting together a unifying view of evolution 

strategies, evolutionary programming and genetic algorithms and as a result, this 

decade has been called the “unifying 1990’s”
4
. 

The engineering field has had significant involvement in the development of 

theoretical foundations to help explain the workings of evolutionary algorithms.  
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At present, the field of structural engineering appears to be in an exploitative 

period of its own.  In the decades following the 1980’s, the field of structural 

engineering has seen a large number of applications of evolutionary computation 

in design.  These applications have ranged from simple linear elastic analysis-

based design, to design of structural control systems, to inelastic analysis-based 

design, to inelastic time history analysis-based design of structural systems for 

optimized performance.  With these decades of exploiting applications of 

evolutionary computation in structural design came exploration of evolutionary 

algorithm parameters, applications of parallel computing, and novel methods to 

represent systems within the evolutionary algorithm.  A bird’s eye view of this 

progress has yet to be developed. 

There a several goals of the present chapter.  First of all, it is hoped that it can 

become a very useful starting point for researchers and students in the field of 

structural engineering in their journey to understand and apply evolutionary 

computation to the increasingly complex design problems that are being tackled 

by the modern structural engineer.  Secondly, the chapter seeks to provide the 

reader with a concise, yet complete, summary of recent research efforts in the 

field of optimal design that utilize evolutionary computation.  The chapter will, 

unfortunately, focus on civil engineering design applications (mainly in the field 

of structural engineering) as these are most familiar to the author.  The 

application review in the chapter focuses on contributions to the body of 

knowledge made during the years 2000 through 2006.  Excellent resources for 

structural optimization research prior to 1999 are available
17

.  Furthermore, state-

of-the-art reviews of evolutionary computation applications in structural design 

have recently been published
18

. It is the goal of this chapter to provide the reader 

with an additional review to complement these former efforts.  Finally, the author 

hopes to provide the reader with sources of further information that relate to both 

the theory and application of evolutionary computation as time marches on. 

2.  Optimization Problems and Complexity 

It is prudent to begin the discussion of evolutionary computation by refreshing 

one’s memory with regard to optimization problem statements that are typically 

found in engineering design.  Structural optimization algorithms are generally 

formulated to tackle optimization problems whose statements take the following 

general form; 

 Maximize: ( )mf x , 
( )
1

nf x
 1,2, ,m M= …  and 1,2,n N= …  
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 Subject To: ( ) 0jg ≤x  1,2, ,j J= …  

    ( ) 0kh =x  1,2, ,k K= …  

    L U

i i ix x x≤ ≤  1,2, ,i I= …  

The algorithm employed to solve the multiple objective optimization problem 

illustrated above will seek to define a vector of design variables, x , within upper- 

and lower-boundaries that satisfies all inequality, ( )g x , and equality, ( )h x , 

constraints  while maximizing the objectives.  It should be noted that the present 

problem illustration assumes that maximizing the inverse of an objective is, in 

essence, minimization. 

The vector of design variables can be used to define multi-dimensional 

decision space, and when the design variable vector is completely defined, there 

is a mapping of decision space to objective space that is unique to the problem 

being solved
3
. 

The complexity of the design problem can vary dramatically depending upon 

the number of objectives, the number of constraints, and the size of the decision 

space.  Furthermore, the mapping of decision space to objective space can result 

in increased problem complexity.   A relatively simple example is characterized 

by: a single objective being minimized (e.g. weight); a small design variable 

space (e.g. 10 discrete cross-sectional areas); relatively few constraints; and 

instances where constraints and objectives are evaluated using linear elastic 

structural analysis (e.g. elastic analysis of a truss).   A relatively complex design 

problem characteristic of modern structural engineering can be described as 

having: multiple objectives (e.g. minimizing fabrication complexity, minimizing 

weight, maximizing confidence in meeting a desired performance level during 

earthquake); very large decision variable space (e.g. 250+ discrete steel wide-

flange shapes found in buildings); many constraints (e.g. buckling, plastic hinge 

rotation, collapse load limit); and instances where constraints and objectives 

require advanced analysis methods (e.g. inelastic static analysis; inelastic time-

history analysis).  Optimization algorithms based upon evolutionary computation 

have been shown to be applicable to wide ranges of problem complexity. 

When multiple objectives are considered in the optimal design problem, one 

must be sure to evaluate the objectives chosen to ensure that they do indeed 

conflict with one another.  In other words, the objectives should have no 

interdependence.  If non-conflicting objectives are chosen when defining the 

optimization problem, there will be one unique solution.  When optimal design 

problems involve multiple competing objectives are formulated, Pareto optimal 

fronts in objective space can be defined and a single optimal design is defined by 
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the preference expressed by the designer.  When one seeks optimal solutions to 

these multi-objective problems, diversity in the solutions generated is highly 

useful.  Evolutionary computation has been demonstrated to be very useful for 

providing diverse solutions along Pareto optimal fronts for multiple-objective 

optimization
3
. 

To date, evolutionary computation has been shown to be applicable in the 

widest range of problem complexities of any algorithm capable of selecting the 

decision (design) variables in an optimal manner.  It is for this reason that 

evolutionary computation should be included in the arsenal of algorithms used by 

the modern structural engineer.  The next section of the chapter proceeds to 

discuss the fundamental components of algorithms based upon evolutionary 

computation principles and elucidates differences between evolution strategies, 

evolutionary programming, and genetic algorithms when applied to structural 

optimization problems. 

3.  Fundamentals of Optimal Design Using Evolutionary Computation 

The traditional engineering design problem needs to be cast into a form that is 

suitable for application of evolutionary computation.  The basis of this 

transformation can be an analogy to Darwinian evolution.  The characteristics of 

a Darwinian evolutionary system are
4
: 

• single or multiple populations of individuals competing for resources that are 

limited; 

• birth and death of individuals over time resulting in dynamically changing 

populations; 

• the definition of fitness that characterizes the quality of an individual in the 

given environment thereby reflecting its ability to survive and reproduce; 

• the notion of inheritance where parental offspring have characteristics of 

both parents, but are not identical to the parents. 

Given the desire to look at solutions to optimal design problems within the 

context of a Darwinian evolutionary system, it is useful to select a relatively 

simple optimal design problem statement and use this problem statement in 

subsequent discussions.  Therefore, let us consider a simple optimization problem 

based upon design of a simple cantilever beam with defined length and tip 

loading similar to that shown in Figure 1 adapted from the outstanding example 

given by Deb
3
. 
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Figure 1. Simple Cantilever for Design Optimization Problem. 

 

An optimal design problem for this simple cantilever can be posed as a single-

objective, or multiple-objective problem.  The most general case with multiple 

objectives is stated below: 

 Minimize: ( ) 2

1
4

f Wt A L D L
π

ρ ρ= = ⋅ ⋅ = ⋅ ⋅x   

    ( )
3

2 4

64

3
tip

P L
f

E D
δ

π
= = ⋅x  

 Subject To: max 3

32
allow

P L

D
σ σ

π
= ⋅ ≤   

    tip allowδ δ≤  

    10 40mm D mm≤ ≤  (2 mm increments) 

    200 830mm L mm≤ ≤  (10 mm increments) 

Several parameters used in the problem are defined as follows: ρ  is the 

density of the material; E  is the elastic modulus of the material; allowσ  is the 

allowable maximum stress in the cross-section; and allowδ is the allowable 

deflection at the tip of the cantilever.  The vector of design variables is 
T

D L=   x .  Combinations of diameter and length of the cantilever will be 

sought to minimize one or both objectives depending upon the problem 

considered.  

Evolutionary computation facilitates relatively easy conceptualization of an 

algorithm to search for values of the design variables that define the optimal 

design.  Initially, we can begin to talk about a simple evolutionary algorithm 

form that does not contain many nuances that research efforts have sought to 

P

L

tipδ

D
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define and refine throughout the preceding two decades.  A basic evolutionary 

algorithm to solve the problem above is outlined in pseudo-code in Figure 2. 

Figure 2. Pseudo-Code for Simply Evolutionary Algorithm (adapted from De Jong4). 

 

Prior to proceeding forward to look at formulations for GA, ES, and EP 

approaches to solving the simple cantilever optimization problem, it is prudent to 

discuss how populations of individuals may be created.  When applying 

evolutionary computation, and individual is nothing more than a combination of 

design variables.  These design variable vectors can be given an evolutionary 

reference by generating a slightly different characterization for the individual (i.e. 

a solution to the optimization problem) as shown below; 

 diameter length=x  

With reference to genetics, individual design variable vectors can be thought of 

as the genotype or phenotype for the individual.  The genotype for an individual 

within the current optimization problem is a chromosome with two genes.  When 

these genes are given values, they result in a unique individual with its own 

physical traits: diameter and length.  The phenotype for the individual in the 

design problem is the observable physical traits of the solution: diameter and 

length. 

The unique features of an individual (e.g. diameter and length) can take on a 

range of values for the problem being considered.  Again, with a genetics 

analogy, these values can be referred to as alleles.  In the current optimization 

problem, the alleles making up an individual come from the ranges of the design 

variables contained in the problem statement.  The alleles describing the 

phenotypic trait of diameter can take on values in a range from 10 mm to 40 mm 

Generate a population of individuals

for 1 to Number_Of_Generations

Select an individual that will create offspring

Use selected individual to create offspring

Select member of the population to die off

Evaluate stopping criterion

Report "best" individual found through evolution
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with 2 mm increments; and the alleles describing cantilever span can take on 

values in the range of 200 mm to 830 mm in 10 mm increments. 

In general, two forms for the alleles have been considered in optimization 

problems solved using evolutionary computation.  These forms loosely 

correspond to the flavor of evolutionary computation being implemented.  Binary 

alphabets have been used to define alleles within the chromosomal 

representations of individuals used in genetic algorithms.  Real-valued alleles 

have been used in both genetic algorithms and evolution strategies.  Object-

oriented representations of individuals have also recently emerged in structural 

optimization. 

One very important aspect to the evolutionary algorithm shown in Figure 2 is 

the need to make decisions regarding individuals chosen to reproduce and 

individuals chosen to die off during the evolution.  Within the field of biology, 

the quality of an individual is judged using its ability to survive and produce 

viable offspring.  As a result, quality can only be observed after a large portion of 

the evolutionary process has already taken place.  Therefore, quality is judged 

using fitness based upon hindsight from a vantage point that is somewhere along 

the evolutionary timescale (we often assume we are looking back from the end  

of the evolutionary scale).  Applications of evolutionary computation as implied 

in the algorithm shown in Figure 2 demand that the quality of the individual be 

judged regularly during the evolutionary process.  Therefore, applications of 

evolutionary computation generally define the quality of an individual using 

objective fitness, which is an objective measure of its ability to satisfy the 

constraints and objectives in the optimization problem posed during the 

evolutionary process.  This is often shortened in the optimization literature to 

fitness  and technically this use of the term is in conflict with its biological 

origination
4
.  In this chapter, we will use objective fitness to describe the quality 

of an individual during the evolutionary process. 

The fundamental differences in the three forms of evolutionary computation: 

genetic algorithms (GA), evolution strategies (ES), and evolutionary 

programming (EP): can be easily seen if they are formulated within the context 

of the simple evolutionary algorithm pseudo-code shown in Figure 2 to tackle the 

optimization problem described in Figure 1.  We can now turn our attention to 

specific forms of evolutionary algorithms and skeletal applications of how  

these algorithms would be used to tackle the optimization problem postulated in 

Figure 1.  There are many good resources available describing the details of 

applying GA’s, ES and EP
3-5, 19-24

 to solve engineering problems and these details 

will not be reproduced here.  Instead, an overview of how these evolutionary 
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algorithms are used to solve the multiple-objective optimization problem posed 

in Figure 1 is provided in the following sections. 

3.1.  Objective Fitness 

Judging the quality of individuals generated throughout the evolutionary process 

is essential for selecting individuals for reproduction.  The objective fitness of an 

individual is a function of how well that individual meets the desired objectives 

and satisfies the constraints put forth in the problem.  Assigning this fitness 

begins with evaluation of the individuals.  This evaluation can be quite complex 

and is dependent upon the complexities of the analysis methods needed to 

conduct the evaluation.  It should be noted that the notion of objective fitness is 

common to all forms of evolutionary algorithm, and as such, it is treated first as a 

stand alone concept prior to discussion of specific forms of evolutionary 

computation. 

For the current cantilever problem given in Figure 1, the most basic form of 

objective fitness comes from simply considering the objective values 

corresponding to the individual as implied below; 

 ( ) 2

1
4

i i if D L
π

ρ= ⋅ ⋅x     (2) 

 ( )
3

2 4

64

3

i
i

i

LP
f

E Dπ
= ⋅x     (3) 

Single-objective fitness can be defined by simply applying weighting factors to 

each objective whose magnitude is dependent upon user preference as indicated 

below; 

 ( ) ( ) ( )1 1 2 2i i iF w f w f= ⋅ + ⋅x x x   (4) 

It should be noted that equations (2) and (3) involve weight and deflection, 

respectively.  As a result, the weighting factors might also include normalization 

so that each component in the fitness definition has appropriate scale when 

defining a single objective fitness for the individual. 

Engineering optimization problems always include one or more constraints to 

which potential solutions must adhere.  The genetic algorithm handles constraint 

satisfaction through imposition of penalties and therefore, the constrained 

optimization problem statements must be recast in an unconstrained format. 

The most direct way to do this is through imposition of linear or nonlinear 

penalty functions that depend upon the degree to which a penalty is violated.  A 

penalized objective fitness for the cantilever problem with two constraints is 

easily formulated using equation (4) as follows; 
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 ( ) ( ) ( ) ( )1 1 2 2

1

1
consN

i i i i k

k

F w f w f
=

 = ⋅ + ⋅ ⋅ + Φ  ∏x x x  (5) 

The individual penalty functions corresponding to the deflection and stress 

constraints in the optimization problem, shown in Figure 1, can take a linearized 

form and a nonlinear form.  The linearized form can have slope variation to 

enhance the severity of the penalty as the violation increases.  The linear penalty 

form can be taken as
25

; 
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A nonlinear form can be written as
25

; 
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 (9) 

The scaling multipliers, kδ  and kσ , are defined by the algorithm user and can 

be used to enhance the penalty in a manner that is proportional to the violation.  

The exponents, nδ  and nσ , can be used to scale the penalty in a manner that is  

non-proportional to violation. 

Identifying the appropriate scaling multipliers and exponents to apply in a 

particular problem requires some measure of user intuition.  Poor selection of 

these parameters can cause premature convergence to sub-optimal solutions and 

also epistatic behavior in the algorithm.  Automatically adjusting penalties within 

the evolutionary process has been proposed as a solution to this dilemma
26, 27

. 

Generating algorithms that can handle multiple objective fitness quantities is 

an active area of research in the communities of evolutionary algorithm theory 

and engineering.  Genetic algorithm researchers often refer to genetic algorithms 

designed to handle multiple-objective problems as Multiple-Objective Genetic 

Algorithms (MOGA’s). 
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The optimization problem currently considered can also be maintained as a 

multiple objective problem without pre-assigning preference through weighting 

factors.  If one were to maintain the constraint handling process described 

previously, but preserve the multiple objective nature of the design problem, the 

objective fitness should now consider two distinct components, 

 ( ) ( ) ( )1 1

1

1
consN

i i i k

k

F F
=

= ⋅ + Φ∏x x   (10) 

 ( ) ( ) ( )2 2

1

1
consN

i i i k

k

F F
=

= ⋅ + Φ∏x x   (11) 

It should be noted that the form of equations (10) and (11) are not the only ways 

to handle constraints in the definition of objective fitness.  Improvements in 

constraint handling in MOGA’s have been proposed
28

. 

When multiple objective optimization problems are considered, the use of 

weighting factors to impose preference as done in equation (5) is omitted.  This 

leaves sets of potential solutions in objective fitness space that the engineer can 

use to aid in decision making.  The Pareto optimal set of solutions is defined as 

the set of solutions lying along a Pareto optimal front
3
.  When a candidate 

solution is said to be better than another candidate solution in meeting the 

objectives, it is said to dominate the other solution.  The set of non-dominated 

solutions form the Pareto optimal set of solutions.  The landmark resource for 

multiple objective optimization using evolutionary computation is the text by 

Deb
3
 and a very nice summary of the state-of-the-art in multiobjective 

evolutionary algorithm developments has been generated
29

. 

Generating a genetic algorithm or evolution strategy to handle multiple 

objective optimization problems is not trivial.  When iterations in the 

evolutionary process are completed, a non-dominated surface will form in 

objective fitness space.  Identifying non-dominated Pareto front must consider 

potential objective fitness surfaces that are both convex and non-convex.  

Furthermore, if large populations are utilized, maintaining these large 

populations with complex and time consuming fitness evaluations can result in 

significant solution time.  Procedures for identifying Pareto sets of solutions have 

been proposed
30-35

. 

Research has found that non-dominated surfaces of solutions generated for 

multi-objective optimization problems can include clustering of solutions within 

objective fitness space.  Ensuring that an evolutionary algorithm can generate 

solutions spread out along the Pareto optimal surface has also been addressed in 

research activity
30, 32, 36, 37

. 
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Selecting individuals for reproduction
‡
 can make for rather interesting 

difficulties when implementing evolutionary algorithms.  The non-dominated set 

of solutions should be given some measure of preference in the selection process, 

but if too much emphasis is placed on these solutions, genetic diversity may be 

lost.  To combat this, local selection algorithms
38

 and improved sampling 

methods have been proposed
39

. 

It may be useful to maintain individuals with high objective fitness 

throughout the evolutionary process.  When the objective fitness is defined as a 

single individual, this individual is the elite individual.  When a Pareto set of 

solutions is considered elite, which solution or solutions are to be maintained?  

Researchers have addressed this issue and made recommendations on how to 

incorporate elitism
§
 within the evolution strategy

40
. 

The flurry of developments in multiple objective evolutionary algorithms 

prior to 2000 demanded that an assessment be made to objectively evaluate the 

performance of these algorithms on test problems.  Detailed comparisons of 

multiple objective evolutionary algorithm performance are available
3, 41

. 

When multiple objectives are incorporated into an optimal design problem, 

the engineer will be required to eventually decide on the solution from the Pareto 

set or front that is most appropriate.  This suggests that input from the engineer 

during the evolutionary process may be of benefit to the algorithm. Such an 

environment has been proposed for multiple objective problems
42

 and the 

interaction of user with algorithm can result in dynamic redefinition of objective 

fitness space during execution of the algorithm. 

3.2.  Genetic Algorithm 

The genetic algorithm (GA) maintains the closest link to genetics of any of the 

three main types of evolutionary algorithms.  The phenotypes and/or genotypes 

of the individual are most-often described using the genetic concept of a 

chromosome.  Furthermore, the genetic algorithm also includes more formalized 

“laws of motion”
4
 to simulate the evolutionary system.  A simple flowchart 

illustrating implementation of a genetic algorithm is given in Figure 3.  One 

iteration through the genetic algorithm is often called a generation.  The 

termination criterion is often a user-defined maximum number of generations or 

lack of significant improvement in solutions. 

                                                 
‡ Reproduction will be the term used later in the chapter to describe recombination and mutation. 
§ Elitism will be discussed in greater detail later in the chapter. 
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The genetic algorithm contains many more steps than those implied in the 

simple evolutionary algorithm pseudo-code given in Figure 3.  First of all, each 

individual in the population needs to be evaluated.  This evaluation includes 

computing the objective function value(s) for the individuals as well as 

determining if the constraints are satisfied and these computations are often 

based upon the results of structural analysis in structural engineering systems.  

 
Figure 3. Flowchart of Typical Genetic Algorithm. 

 

The quality of the individual in a GA is often based upon the objective fitness 

of the individual, which is evaluated using the value of the objective function(s) 

as well as satisfaction of the constraints.  Constraint handling is also a very rich 

area of research in the GA community, but most often the objective fitness of the 

individual is scaled using penalties that are a function of the degree to which the 

constraints are violated. 

The selection of individuals to participate in reproduction can vary with GA 

implementation.  The reproduction phase of the algorithm (i.e. recombination and 

mutation phases) depends upon the phenotypic/genotypic representation for the 

individuals that is used in the GA.   
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The following sections of the chapter will outline typically employed methods 

for representing individuals, evaluating objective fitness, conducting selection of 

individuals for reproduction, methods of recombination, and mutation 

techniques. 

3.2.1.  Individual Representation 

The phenotypic or genotypic representation of the individuals within a genetic 

algorithm is most often a chromosome of binary digits.  In keeping with the 

biologic analogy, each binary digit can be thought of as a gene.  There have been 

theorems (e.g. the schema theorem) proposed that suggest binary alphabet 

representation facilitate very efficient searching
21

. 

If we consider the two allele individual of the cantilever beam problem, a 

binary string chromosome and its decoded design variable vector are, 

 0110 110101 22 730
T T

D L⇒ = =      x  

The decoding of the alleles in each segment of the chromosome can be done very 

simply using the following expression
3, 21

; 

 ( )
max

min
min

2 1bsL

x x
x x DV bs

 −
= + ⋅ 

− 
  (1) 

where:  bsL  is the length of the binary string used to encode the design variable; 

minx  is the lower-bound for the design variable; max
x  is the upper-bound for the 

design variable; and ( )DV bs is the decoded value of the binary string. 

Individuals need not be represented in the form of binary string 

chromosomes.  In fact, binary string chromosomes can make search difficult 

because neighboring solutions can have very significant differences in their 

binary string representations resulting in Hamming cliffs
3
.  Obtaining high-

precision solutions can also result in very long binary strings.  Long binary 

strings also imply larger population sizes. Real-value GA’s have been proposed 

to address these issues
43

.   Sometimes referred to as decimal-coding, these 

representations of candidate solutions have been shown to be effective in 

structural optimization problems
44

.  Additional treatment of real parameter GA’s 

can be found elsewhere
21

. 

Recently, hierarchical representations of individuals similar to representations 

used in genetic programming have also been proposed
45

.  Representing 

individuals within rational hierarchies alleviates the need for long chromosomal 

representations for problems with large numbers of design variables.  This 

concept has been extended to object-oriented representations for individuals in 
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complex design problems involving significant numbers of design variables
45, 46

.  

The use of network random keys in conjunction with tree representations of 

individuals has been shown to facilitate very efficient solution algorithms
47

. 

3.2.2.  Selection 

The selection mechanism chosen for implementation in the evolutionary 

algorithm is very important.  The primary goal of selection is to find those 

candidate designs that are good and those that are not so good within the 

population.  It is hoped that the algorithm employed will then create additional 

copies (not exact copies though) of good solutions and allow the not so good 

solutions to simply die off. 

Difficulty often arises in applying selection operators as part of evolutionary 

algorithms.  Some candidate designs that are not rated highly in objective fitness 

may have redeeming qualities that other solutions may benefit from.  To only 

select the premier solutions for subsequent reproduction is analogous to 

“throwing the baby out with the bathwater”.  Within the context of search, this 

implies that the algorithm is honing in on specific regions of the search space 

without adequate exploration.  On the other hand, if the algorithm allows too 

much disparity in solution quality of individuals selected for reproduction, the 

algorithm can simply search too large a space thus making convergence of the 

algorithm difficult.  The exploration of the search space within the context of the 

genetic algorithm is sometimes evaluated using the concept of selection pressure.  

High selection pressure implies that only the elite solutions will be selected for 

reproduction and low selection pressure is more egalitarian and allows many 

more individuals to participate in reproduction. 

The challenge in developing selection mechanisms or selection operators for 

evolutionary algorithms is to facilitate exploration, while maintaining 

exploitation of good solutions.  Various selection mechanisms have been 

developed to meet this challenge. 

The tournament selection mechanism is a procedure whereby contests or 

tournaments are held between two members of the population at a stage in the 

evolution.  The winners of these tournaments (those with better objective fitness) 

are then placed in a mating pool until it is filled. 

The fitness proportionate selection mechanism assumes that copies of 

individuals are generated for the mating pool.  The number of copies is 

proportional to that individual’s objective fitness relative to the average objective 

fitness of the population.  Therefore, better individuals will have greater number 

of copies.  When the proportionate selection mechanism is executed, it is often 
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easiest to implement by simulating a roulette wheel.  In other words, the slice of 

the wheel for an individual with better objective fitness will be larger than a 

lower quality individual.  Therefore, the probability of the better individual being 

chosen for the mating pool is higher.  There are a number of modifications to 

roulette-wheel selection that have been proposed
3
. 

When proportionate selection is used, scaling issues can arise when there is 

large disparity among the objective fitness magnitudes for individuals in the 

population.  If individuals within the population begin to have objective fitness 

magnitudes that greatly overshadow others, their slice of the roulette wheel can 

become exceedingly large to the point where certain individuals take over the 

subsequent population.  Measuring this tendency is done using the concept of 

take over time
21

.  Scaling objective fitness is one way to inhibit or slow take over 

by dominant individuals. 

A selection method that avoids scaling issues is rank-based selection.  

Implementing this mechanism simply involves ranking individuals from worst 

objective fitness to best.  The rank-based fitness is then the individual’s rank in 

the population.  Selection pressure and take over time have been studied within 

populations with ranked fitness and selection mechanisms capable of 

dynamically controlling selection pressure and take over time through user-

defined parameters have been proposed
48

. 

3.2.3.  Recombination 

Recombination is a process by which two candidate solutions to the optimization 

problem are combined to create one or more new potential solutions.  These new 

solutions contain aspects of both parent solutions and assuming the parents have 

“high quality” genetic material, the offspring will as well. 

Creation of new genetic material in the population, or new candidate designs, 

is most often accomplished within the realm of genetic algorithms using the 

crossover operator.  When individuals are represented using binary 

chromosomes, three crossover operations are most often conducted: single-point 

crossover; multi-point crossover; and uniform crossover.  The selection 

mechanism carries out the task of identifying solutions to become members of 

the mating pool.  Two candidate designs are then selected for mating 

(recombination) and the crossover mechanism is applied to create offspring that 

have “genetic” material from both parents.  The most common crossover 

mechanisms are illustrated in Figure 4. 

Single point crossover begins with identification of the parent strings.  A 

point along the string is chosen and the segment of the parent chromosome to the 
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right or left of the crossover point is exchanged to create new candidate designs.  

For the present cantilever design problem, the two parent designs at the left of the 

figure result in offspring that maintain their diameter gene, but have altered genes 

defining the span.  It should be emphasized that new genes will only be 

introduced into the offspring when the crossover point lies within the gene.  

When the crossing site corresponds to the end of one gene and the beginning of 

the next gene, crossover will simply result in a gene exchange with no new 

genetic material being introduced.  Thus, one can think of single point crossover 

as minimally disruptive to the genetic material and exploration of the design 

variable space remains relatively close to the original solutions. 
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1 1 0 0 1 0 0 1 0 1

0 1 1 0 1 1 1 0 1 1
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Figure 4. Crossover Operations Commonly used in Binary String Genetic Algorithms. 

 

The second crossover mechanism in Figure 4 is multi-point crossover.  In this 

recombination, two crossing sites are chosen at random and the central segment 

of the parent chromosomes are exchanged.  As indicated in Figure 4, this 

crossover operator has a higher probability of creating offspring that have do not 

have common genes with the parent strings.  It should be noted that this may only 

be true for chromosomes with few genes.  As the design variable numbers 

increase, more than two crossing sites may be required to carry out 

recombination that adequately searches the design space. 
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Uniform crossover is the final mechanism commonly used.  This crossover 

operator is applied by simply moving bit-by-bit along the chromosomes and 

flipping a fair (two-sided) coin.  If the toss results in heads, the bits (alleles) are 

exchanged.  The results in Figure 4 were obtained using a random number 

generator with bit exchange occurring when the random number exceeded 0.50. 

The “optimal” crossover scenario for all problems remains to be defined.  In 

fact, recombination needs to be approached in significantly different ways when 

binary chromosomes are not used to represent individuals.  When the hierarchical 

representation of individuals is used
46

, recombination as envisioned using 

crossover cannot create new genetic material.  As a result, different crossover 

mechanisms that have similarities with genetic programming have been 

developed.  These recombination mechanisms, termed homologous and non-

homologous crossover
45, 46, 49

, help to facilitate recombination similar to that seen 

in more traditional crossover operations on binary strings.  These hierarchical 

representations have a significant correlation to genetic programming 

representations of candidate solutions.   

Representing candidate solutions in tree structures has great similarity to 

genetic programming representations for solutions.  The schema theorem for 

binary string genetic algorithms
21

 has been shown to be the driving force behind 

the success of these search algorithms.  A schema theorem for sub-tree swapping 

crossover recombination has recently been proposed
50, 51

.  This theorem is very 

useful for understanding how building blocks in hierarchical solutions can be 

generated and exploited in evolutionary algorithms. 

When genetic algorithms are applied to real-parameter optimization problems, 

recombination is a tricky issue.  Recombination operators using probability 

distributions around parents have been proposed.  A parent-centric operator
43

 

along with other algorithmic advancements have been demonstrated to show very 

good performance on test problems and also demonstrate scalability. 

It should be noted that there is no guarantee that the crossover mechanism 

employed will result in a better candidate solution.  The evolutionary 

computation literature is populated with reporting of many research efforts 

seeking to determine the best recombination operators.  It is left to the reader to 

review the evolutionary computation literature using the sources referenced in the 

chapter. 

3.2.4.  Mutation 

The next component in reproduction for genetic algorithms is mutation.  

Mutation is a process by which an individual in the offspring population is 
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selected at random and is mutated through exchanging alleles in the individual 

chromosome.  Mutation seeks to generate diversity in the population and 

therefore, explore the design space.  The location of the “bit-flipping” is usually 

randomly chosen and the severity of mutation will be dependent upon the 

position of the mutated bit.  Mutation can create better solutions or worse 

solutions – there is no guarantee to improve the candidate with mutation. 

As stated earlier, the objective of mutation is to create diversity in the 

population.  This diversity can help the genetic algorithm avoid being trapped in 

local minimums in objective space.  As a result, mutation is sometimes thought 

of as a global search mechanism, while crossover is sometimes thought to be a 

local search mechanism. 

More complicated mutation operations have been proposed.  Intelligent 

mutation operators designed to simulate local and global search characteristics of 

crossover and mutation in problems that involve representations of individuals 

that do not involve bit-string chromosomes have been thoroughly evaluated
45, 46

. 

3.2.5.  Elitism 

Because crossover and mutation can result in candidate solutions that are worse 

than the best solution resident in the mating pool, genetic algorithms often 

maintain the best solution from a previous population through a mechanism 

termed elitism.  In simplest terms, elitism is simply taking the best solution (or 

solutions) from one generation and simply carrying them over to the next 

generation. 

3.3.  Evolution Strategy 

The evolution strategy (ES) was developed to solve problems that involved 

significant effort in evaluating objective fitness and focused on problems with 

real parameter design variable representation.  The evolution strategy was 

formulated to involve small population sizes and utilize reproductive operations 

that are mutation-based.  The strength of the mutation can be varied.  The simple, 

two-member (1 1)ES+  is flowcharted in Figure 5. 

As implied in the flowchart, the (1 1)ES+  involves one individual in the 

parent population that develops one offspring through mutation.  There is no 

recombination in the two-member ES.  The mutation operator in the ES is often 

based upon a zero-mean normal probability density function.  This is 

symbolically denoted ( )0,normPDF σ  in the flowchart.  The mutation strength, 



Structural Optimization Using Evolutionary Computation 

 

79 

σ , is user defined and it is nothing more than the standard deviation for this 

distribution.  If the mutation strength is increased, the new design variable vector 

for the next iteration will vary significantly from the parent.  If the mutation 

strength is reduced, this variation will be smaller as exhibited by the smaller 

magnitude for the standard deviation chosen. 
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Figure 5. Flowchart for Two-Member (1 1)ES+ . 

 

One can certainly surmise that when the mutation strength is large, the 

algorithm will have significant global search capability.  However, if the 

mutation strength is small, the algorithm will search locally around the current 

parent solution.  This also implies that the ES is naturally well suited to 

dynamically changing the mutation strength with advancing generation with the 

goal being to balance exploration of the search space and then exploitation of 

good solutions when profitable regions of the search space is found. 

A typical ES implements only mutation in the generation of new solutions.  

Therefore, the typical ES is often called non-recombinative.  Researchers soon 

realized that the genetic algorithm operator of crossover is useful within the 
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context of the evolutionary strategy and recombinative ES’s have been 

developed. 

The use of a single solution to start the two-member ES should give 

significant concern with regard to the ability of an algorithm started off in this 

manner to find optimal solutions.  The two-member ES is highly dependent upon 

mutation generating better solutions.  If mutation is unproductive, then the 

algorithm may stagnate or most certainly move very slowly toward the optimal 

solution.  Controlling mutation so that productive results can maintained 

throughout the ES has been the goal of several recent research efforts
52

. 

The parallel search capability of the genetic algorithm that results from 

recombination and sheer number of individuals in parent and offspring 

populations made these characteristics highly desirable in the ES.  Multi-member 

and recombinative ES’s have been developed to improve the searching capability 

of the two-member ES. 

3.3.1.  Multi-Member Non-Recombinative Evolution Strategy 

The multi-member ES differs from the two-member ES in one very fundamental 

way – population size before mutation and population size and constituents after 

mutation.  The basic algorithmic structure for multi-member ES remains the 

same as that shown in Figure 5. 

The multi-member evolution strategy, ( )ESµ λ+ , involves populations of µ  

solutions resulting in λ  mutated offspring in any generation (iteration).  A 

temporary population of ( )µ λ+  individuals is then subjected to a selection 

operator to generate µ  candidates for the next generation.  Therefore, the 

selection mechanism can operate on a pool of candidates that is significantly 

larger than the initial population.  Furthermore, if mutation does not yield 

significant improvements in the solutions, this version of the ES will tend to 

stagnate because the same solutions will be used over and over again.  The 

( )ESµ λ+  is also an elitist algorithm.  The reason is that since the candidate 

pool prior to selection involves µ  parent solutions, the selection operator may 

result in these same solutions propagating to the next generation. 

The second form of multi-member evolution strategy is the ( , )ESµ λ .  In this 

“flavor”, µ  parent solutions are used to generate λ  new candidate designs with 

λ µ≥ .  The pool of candidate designs then advanced to the next generation 

through the selection operator does not include the original µ  candidates.  In this 

manner, the ( , )ESµ λ  is non-elitist. 
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3.3.2.  Recombinative Evolution Strategy 

A parallel with genetic algorithms can be maintained through further classifying 

evolution strategies as being recombinative or non-recombinative
3
.  A non-

recombinative ES does not include crossover-type operators (only mutation is 

used), while a recombinative ES incorporates crossover-type mechanisms.  The 

original development of the ES involved real-parameter design variables 

although this really isn’t a restriction on application. 

The recombinative ES is implemented with parent designs being recombined 

prior to mutation.  If binary string chromosomes are convenient for this 

recombination, then they most certainly can be used.  If hierarchical (object-

based) representations are best, then these can be used as well.  The number of 

parents chosen for recombination is often denoted as ρ 3
.  Therefore, the typical 

notation for a multi-member recombinative evolution strategy is ( )ESµ ρ λ+ , 

or ( , )ESµ ρ λ . 

3.3.3.  Self-Adaptive Evolution Strategy 

The use of the mutation operator alone and mutation strength and its 

representation as a normal probability density function with strength defined 

using the standard deviation in this distribution, provides the engineer with a 

parameter than can be optimized by the algorithm itself and even attached to 

specific design variables. 

Self-adaptation within the context of  the ES applied in a solution to a design 

problem has been classified into three types: isotropic, non-isotropic, and 

correlated
3
.  In all three, the design variable vector for the problem is augmented 

to include the mutation strength as a design variable.  There are multi-level or 

meta-ES methods of adaptation as well
3
. 

Isotropic self-adaptation assumes that the mutation strength is a single value 

applied to all design variables during the evolution.  This strength is included as a 

single design variable in the candidate solution vector.  Non-isotropic self-

adaptation assumes that a different mutation strategy parameter is applied to each 

design variable and the design variable vector is augmented to include a number 

of mutation strength parameters equal to the number of design variables in the 

problem.  This self-adaptation is designed to all the ES to learn and adapt to 

scenarios where the design variables contribute unequally to the objective fitness.  

Correlated self-adaptation includes covariance in the decision variable vector and 

is intended to tackle problems where design variables may be correlated to one 

another. 
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4.  Applications in Structural Engineering 

The field of civil-structural engineering can be thought of as being in the throws 

of an “exploitation” period with regard to application of evolutionary 

computation in optimized design.  There have been many examples in the 

literature of successful application of evolutionary computation in structural 

engineering around the world.  As of the date of publication of this chapter, 

application of evolutionary computation remains strong and the types of optimal 

design problems being tackled using evolutionary algorithms are increasing in 

complexity. 

Generating a review is always subject to the possibility of omission.  The 

present review will focus contributions during the period 2000 – 2006.  The 

interested reader can consult several other resources for literature reviews 

covering the time period prior to the year 2000
18, 53

.   

It should be understood that the list of fields where evolutionary computation 

has been successfully applied grows each year and the contents of this section 

should not be used to construe limitations in the application of evolutionary 

computation.  The reality is that application of evolutionary computation is only 

limited by the imagination. 

4.1.  Bridge Maintenance and Management 

Bridge management systems have been developed to aid structural engineers 

with the arduous task of deciding when and what type of maintenance 

interventions to interject into transportation infrastructure (e.g. bridges) to extend 

service live and minimize cost.  Using these systems to actively manage bridge 

maintenance cycles and minimize facility life-cycle costs has been shown to be 

possible using evolutionary computation. 

Genetic algorithms have been applied to develop maintenance plans for 

existing bridges
54

.  The proposed bridge management system employed a fairly 

traditional genetic algorithm to solve a multiple objective optimization problem 

that sought to minimize the cost of maintenance measures (e.g. repair, 

strengthening) and maximize typical rating measures of load carrying capability 

and durability during an “analysis period”
54

.  The multiple objective optimization 

problem considered was recast as essentially a single-objective optimization 

problem using a prioritization scheme.  A binary string chromosomal 

representation for maintenance plans was used to facilitate 10 scenarios ranging 

from epoxy-injection repair, to FRP strengthening, to no repair and no 

strengthening. 
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Diagnoses of damage within bridge systems include a fair amount of 

subjectivity.  True experts with the ability to make accurate diagnoses of damage 

within the bridge structural system are not widely available and transportation 

agencies are often required to make decisions regarding damage using trained 

individuals making visual inspections of the bridge super- and substructure.  

Decision algorithms have been derived using a combination of genetic algorithms 

and data mining to reduce the computation time required to evaluate all possible 

combinations of condition attributes seen at a bridge structure to generate 

minimal decision algorithms describing damage
55

.  Conditional attributes of 

damage in the bridge structures considered ranged from longitudinal cracking, to 

grid-like cracks, to reinforcement corrosion.  Causes considered ranged from 

excessive wheel loads, to insufficient distribution of flexural reinforcement, to 

inappropriate curing.  A hybrid rough-set data mining and genetic algorithm was 

employed to generate minimal decision tables that related a minimal number of 

conditional attributes of damage to its underlying cause
55

.  It was shown that the 

methodology used could lead the way to developing minimal decision 

tables/algorithms for individuals with training in bridge inspection to arrive at 

damage condition assessments consistent with expert diagnoses. 

It is recognized that life-cycle cost minimization through rational and targeted 

maintenance interventions is the most economical way to allow fixed funding 

sources to be rationally distributed throughout the life of a bridge structure.  A 

modified genetic algorithm, coined a virus-evolutionary (VE) genetic algorithm
56

 

was proposed to generate optimal maintenance scenarios to minimize repair 

costs, strengthening costs and scaffolding costs.  A comparison of the 

maintenance scenarios found using a traditional genetic algorithm and the VE-

GA was provided.  Examining the trade-offs between life-cycle maintenance 

costs, lifetime condition, and lifetime safety of bridges and bridge networks is a 

perfect application for the genetic algorithm.  The GA’s ability to generate suites 

of maintenance scenarios can facilitate the MOGA becoming a decision making 

tool for the bridge manager.  Genetic algorithms have been applied to study these 

tradeoffs for individual bridges
57

 and networks of bridges
58

. 

There is uncertainty associated with the deterioration process in bridge 

structures and their components.  Including this uncertainty in the development 

of optimal maintenance scenarios for bridges and groups of bridges within a 

given transportation network is a logical step forward in improving the 

effectiveness of bridge management systems.  Multiple objective optimization 

problems solved using genetic algorithms and Monte Carlo simulation and Latin-

Hypercube sampling have been able to provide optimal bridge maintenance 
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scenarios to minimize cumulative life-cycle maintenance cost, maximum the 

bridge condition and safety indices
59-61

. 

4.2.  Structural System and Component Optimization 

Evolutionary computation approaches to optimal design tend to be favored when 

discrete design variables are considered in the optimization problem tackled.  

These optimization problems are ubiquitous in civil-structural engineering and 

therefore, evolutionary computation procedures have seen wide-ranging 

application.  The fact that evolutionary computation approaches do not utilize 

gradients of objective functions or constraints makes them ideal to handle 

optimal design problems where evaluation of objective and constraint satisfaction 

involves complex analysis procedures. 

The goal of this section is to synthesize past research efforts related to 

discrete variable optimization applications of evolutionary computation for civil 

engineering structural design.  There has been a large variety of problems 

attacked using evolutionary computation.  However, these efforts can be 

classified in one of three categories: (a) deterministic structural optimization – 

DSO; (b) performance-based structural optimization - PBSO; and (c) reliability-

based structural optimization – RBSO.  

For purposes of this review, DSO can be classified as a Level 1 reliability 

format and is characterized by optimal selection of member/component sizes 

using partial representation of the uncertainty in loads applied to the structural 

system and the uncertainty in the resistance of the structural system as a whole 

and its components.  This is the design format used if optimization is conducted 

using current load and resistance factor design codes
62, 63

.  For the purpose of this 

synthesis, DSO procedures will include formulations where constraints are 

formulated using allowable stresses even though these types of constraints do not 

make an attempt at considering uncertainty.  RBSO can be considered to follow a 

Level 2 reliability format and it includes full characterization of uncertainty in 

load and resistance through use of random variable representations.  PBSO lies in 

between and it considers uncertainty in loading and response, but material 

properties of the components within the system are defined at the median (or 

other) values in lieu of a random variable cumulative distribution function. 

The three characterizations above facilitate taxonomy of the approaches to 

structure and component optimization in the field of structural engineering and 

they will be used as an integral component of the synthesis to follow.  The extent 

to which DSO, PBSO, and RBSO problems have been considered and the types 

of structural systems and response behavior that have been assumed within the 
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optimization formulations can be inferred from the synthesis.  Therefore, the 

reader will gain an appreciation for gaps in application so that the exploitative 

phase of evolutionary phase can continue.  Furthermore, the reader will gain an 

appreciation for the increased complexity in the problems being tackled using 

evolutionary computation. 

4.2.1.  Deterministic Structural Optimization (DSO) 

DSO procedures using evolutionary computation have been thoroughly spread 

out within the field of structural engineering ranging from optimization of 

reinforced concrete to steel structural systems.  The analysis methodologies used 

to define individual fitness in these applications have ranged from linear static to 

nonlinear time-history analysis.  This section of the chapter will generate a 

synthesis of DSO applications that have used evolutionary computation. 

If one were to tally the number of research efforts that sought to tackle DSO 

problems using evolutionary computation, the structural steel system, would by 

far, be the most popular; however, reinforced concrete systems have also 

received some attention.  Both of these systems are naturally populated with 

discrete design variables ranging from members (e.g. beams or columns) to 

connection strength and stiffness to reinforcing bar designations, etc.   

Single-objective DSO applications within the realm of structural steel using 

evolutionary computation include frames and trusses involving both linear and 

nonlinear analysis.  When single-objective problems are considered, it most often 

involves weight minimization of the structural system, but more advanced forms 

of single-objective optimization have been addressed. 

DSO for minimum weight design of steel planar and space frame systems 

using linear elastic analysis has been considered
64,65

.  Design variable 

optimization for spatial and planar steel frame systems using a multi-level 

genetic algorithm has been proposed
64

.  In this effort, it is pointed out that as  

the number of design variables increases the search space required to seek the 

optimal solution increases exponentially.  Therefore, in order to improve the 

search for the optimal solution using the GA, the researchers proposed a two-

level procedure whereby the design variable set is divided in a systematic manner 

into subsets as the evolution progresses.  This process provides a controlled 

constriction of the search space.  A large variety of structure topologies were 

considered from space trusses to tapered cantilever beams.  DSO for minimum 

weight was applied to spatial structural steel frames using displacement 

constraints and member strength constraints derived from U.S. design 

specifications
65

.  Wind loading was considered in this effort and member  
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strength constraints were formulated using two U.S. design specification 

methodologies: allowable stress design; and load and resistance factor design.  

Comparisons of designs generated using these two constraint formulations 

suggested that load and resistance factor design methods generated more 

economical structural systems (based upon the least weight formulation 

considered)
65

.  Pre-engineered buildings are a perfect vehicle for design 

optimization as the topologies and loading scenarios are often replicated many 

times over.  The topology of these systems often involves rafter members and 

column members with additional haunches at the rafter-to-column connection.  

DSO of these systems using a genetic algorithm using the following design 

variables: rafter cross-sections; column cross-sections; supplemental T-section 

haunch length into the span; and supplemental T-section haunch depth at the 

column; has recently been demonstrated
66

.   Member strength constraints were 

formulated using British design specifications and discrete design variables were 

designed using U.K. member cross-sections.  A typical genetic algorithm was 

used and constraint handling was implemented through penalty multipliers and 

the design analysis assumed linear elastic behavior. 

Application of evolutionary computation to DSO of large- and small-scale 

steel truss systems for minimum weight design has also received significant 

attention.  Large-scale truss systems are frequent application targets.  Preliminary 

designs of long-span king-post trusses often used for indoor stadium roofing 

systems has been generated with genetic algorithms
67

.  A simplified (preliminary) 

design analysis of the king-post truss system was formulated such that 6 critical 

sizing parameters could be considered in lieu of detailed matrix structural 

analysis.  The king-post system was resolved into a first-degree statically 

indeterminate system thereby allowing the conventional force method to be 

employed.  Canadian steel design specifications were used to establish member 

strength constraints and the simplified preliminary design-oriented formulation 

could allow architectural, fabrication and shipping constraints to be included in 

the preliminary design.  As a result, the preliminary design formulation included 

practical topology constraints for the completed system.  Constraint handling was 

accomplished without penalty functions through a simple filtering of feasible 

(non-constraint violation) and infeasible (constraint violation) designs.  A 

thorough study of constraint activity during the evolution is provided as well as 

the results of multiple GA runs.  Several long-span truss systems are designed 

and comparisons of the designs are provided. 

Single-objective non-DSO of lattice dome-type trusses, latticed towers used 

in electrical transmission and supply, and other three-dimensional structural steel 

truss systems have been fertile grounds for application of evolutionary 



Structural Optimization Using Evolutionary Computation 

 

87 

computation procedures.  Moderate-scale transmission tower structures (e.g. 25-

m or 83-foot) tall have been considered
68

.  This study included a minimum 

weight objective, 3D elastic time-history analysis, and design constraints 

formulated using a U.S. design code for transmission structures, which were 

based upon allowable stresses.  Three design variable resizing algorithms were 

considered.  A genetic algorithm was employed along with a discrete-continuous 

and a continuous design variable resizing algorithm.  Algorithm performance 

comparisons were made.  It was found that the genetic algorithm could find 

designs with material volumes that were lower than the other algorithms 

compared, but CPU time to generate the GA design was significantly greater.  It 

should be noted that study assumed elastic time-history analysis and more 

complex design analysis (e.g. inelastic time history analysis) was not considered.  

As a result, the ability of the non-GA solution algorithms discussed to consider 

more complex analyses as the design basis was not evident. 

Two additional non-DSO applications to design of space trusses and lattice 

towers involve object-oriented (OO) representations
69,70

 and a third involves an 

adaptive penalty scheme
71

.  The object-oriented approaches to lattice and space 

trusses have a very similar theme to an object-oriented evolutionary algorithm 

applied to inelastic analysis-based design of steel frames
49,72,73

.  With regard to 

space truss optimization
69

, the OO methodology was applied to the genetic 

algorithm components (e.g. chromosome class) and operators (e.g. crossover, 

mutation).  A very simple minimum-weight optimization problem with allowable 

stress constraints was considered.  The OO representations used in this effort 

appear to be exclusive to programming implementation of the genetic algorithm 

applied.  Several moderately practical structures of relatively large number of 

members were considered and algorithm performance is discussed.  The lattice 

structure effort
70

 has even closer resemblance to a prior effort related to frame 

structures
46,49,72,73

 in that the phenotypic representation of individuals is 

formulated in an object-oriented manner.    However, classification of this effort 

as object-oriented is a bit misleading because the authors appear to be simply 

grouping portions of the lattice structure into “objects” rather than implementing 

object-oriented programming methodology (e.g. utilizing inheritance or classes).  

The constraints implemented in the effort were allowable stresses and the 

analysis used was linear static. 

An adaptive penalty scheme, adaptive crossover and adaptive mutation have 

also been proposed as integral components of a GA applied in the design of 3D 

lattice trusses for allowable stresses established using U.S. design 

specifications
71

.  These adaptive schemes were proposed to alleviate the user of 

the often difficult a-priori decisions that need to be made with regard to constant 
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multipliers and exponent magnitudes associated with penalizing infeasible 

solutions and defining mutation and crossover rates.  A two-phase member 

grouping to reduce the design variable space was proposed.  Rather than having 

members grouped a-priori by the user of the GA, the members are grouped based 

upon the result of an initial analysis of the structural system (with member sizes 

defined as the same cross-section).  Discussion of displacement constraint 

activity, stress constraint activity, and algorithm performance using the adaptive 

strategies and two-phase grouping procedure are given.  It was shown that a GA 

utilizing these strategies was successfully able generate very competitive 

solutions to allowable stress optimization problems.  It should be noted that 

intelligent GA operators (e.g. mutation, crossover) similar to the adaptive 

strategies used in this work have been introduced many years prior
45, 46, 49, 72, 73

. 

Genetic algorithm solutions to DSO problems involving braced framing 

systems using British design specifications and drift constraints have also been 

proposed
74

.  Typical member grouping scenarios were utilized in this work and 

example applications of the proposed GA formulation included multistory 

moment resisting frames (MRFs), concentrically braced frames (CBFs), CBFs 

with hat or outrigger truss, chevron or inverted V-bracing, and a structural 

bracing topology that involved two-story K-bracing.  A very traditional GA was 

applied to generate optimized designs and comparisons of the normalized 

material weights among the different frame topologies with grouped design 

variables were drawn.  The results of the GA-driven designs confirmed long-

standing knowledge regarding the economy of the topologies considered when 

one considers weight of material as the only design objective. 

Reinforced concrete structural systems have also been considered as targets 

for DSO using genetic algorithms and their variants.  A hybrid genetic algorithm 

was recently proposed to drive resizing of design variables for large-scale high-

rise reinforced concrete wall systems
75

.  The optimality criteria optimization 

algorithm was combined with the a traditional genetic algorithm to enhance the 

local searching capability of the GA and facilitate more efficient solution to real 

structural systems involving a large number of design variables through 

minimizing the number of re-analyses required.  Linear elastic analysis was 

assumed and wall sizing constraints and displacement constraints were used and 

a single objective of minimum weight of materials was included.  Reinforced 

concrete moment resisting frames designed using U.S. load and resistance factor 

design codes have also been considered
76,77

.  The moment resisting frames 

considered in these efforts are significantly different, but both attest to the 

capabilities of the typical GA in solving DSO problems for RC MRF systems.   

Objective functions in these efforts considered cost of steel reinforcement, 
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concrete material, and formwork.  Other research efforts have considered DSO of 

concrete beams using Indian design standards
78

 and Eurocode design 

specifications
79

.  These efforts consider very detailed design problem 

formulations that involve bar arrangement templates, shear reinforcement, 

tension steel cut off, etc.  Objectives included minimization of materials costs, 

formwork costs, and steel reinforcement volume.  Both of these efforts related to 

continuous beam DSO contain very useful information that may result in these 

detailed design considerations to be moved forward toward large-scale R.C. 

systems involving walls, beam-columns, etc.  DSO of flat-slab reinforced 

concrete building systems using British standards has also recently been 

considered
80,81

.  These efforts considered a whole-building approach to the 

optimization ranging from floor slab thickness and reinforcement to column 

footings.  A review of the DSO efforts related to reinforced concrete systems 

indicate that there is significant opportunity to bring these widely varying 

approaches together into a (more or less) unified approach for concrete structural 

systems. 

Multiple-objective DSO of framing has also recently begun to receive 

significant attention in the research community.  Researchers have defined a min-

max optimum to implement a genetic algorithm in the solution two spatial truss 

design optimization problems with multiple objectives
82

.  The objectives 

considered were: (a) minimization of weight; (b) minimization of displacement at 

a user-defined node; and (c) minimization of the stress that each member must 

support.  Objectives (b) and (c) considered in this study are considered as 

penalized constraints in many GA applications.  Authors provide detailed 

comparisons of many optimization algorithm implementations and illustrate that 

linear combination of objectives can lead to undesirable results.  Structural steel 

framing systems have also been considered.  It has long been recognized that 

minimum weight is not the only objective that should be considered in DSO of 

structural steel systems.  To this end, researchers have begun including 

constructibility constraints in the GA-based optimization problem formulations
83

 

and it has been shown that consideration of a design complexity measure (e.g. the 

number of different member shapes used in the solution) can significantly affect 

the minimum weight design.  As a result, it is clearly indicated that design 

complexity (from a fabrication standpoint) and minimum weight are competing 

objectives in the design of steel systems and that trade-offs among these 

objective is necessary.  It is also clearly shown that the typical GA is a very 

powerful tool for providing Pareto optimal sets of solutions to these problems.  

An attempt has also been made to elucidate performance comparisons and the 

associated construction costs among composite steel-concrete, steel, and 
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reinforced moment resisting framing systems in terms of potential energy
84

.  An 

irregular (set back) framing system was considered and design followed U.S. 

based seismic codes.  The multiple-objective optimization decision making tools 

developed using a GA and Pareto fronts developed in this study illustrate the 

power of the genetic algorithm. 

One of the powerful attributes of evolutionary computation is that gradients of 

objective functions and/or constraints need not be evaluated during the 

application of the algorithm.  As a result, evolutionary algorithms are, relatively 

speaking, immune to difficulties associated with sensitivity analysis of nonlinear 

systems.  Of course, the increased computational time required to execute an EA 

is present, but the application of evolutionary computation is not limited to a 

certain class of problems.  Researchers have recognized this and have begun to 

apply evolutionary computation to facilitate DSO of systems involving nonlinear 

response. 

There are two types of nonlinear behavior commonly encountered in either 

static or dynamic analysis.  The first is geometric nonlinearity and involves 

equations of equilibrium formulated for elements and structural systems on the 

deformed rather than undeformed structure or element.  DSO is often 

accomplished in these systems through application of design specifications or 

codes.  Nonlinear geometric behavior in codes and specifications is often 

included through amplification of first order forces and deformations.  However, 

most modern design codes and design specifications do allow the direct use of 

geometrically nonlinear (second-order) analysis.  Optimized design of two 

dimensional fully-restrained (FR) steel framed structural systems has been 

accomplished using a genetic algorithm and linear and nonlinear structural 

analysis
85

.  U.S. design specifications for steel structures were utilized and a 

single objective of member weight minimization was considered.  It was shown 

that drift constraints tend to limit geometrically nonlinear behavior in the typical 

steel moment-resisting frames and group selection mechanisms and adaptive 

crossover operators are effective.  The impact of partially restrained (PR) 

connections on steel frame response has been well-known for decades.  DSO 

using genetic algorithms for design of PR and FR steel frames has also been 

demonstrated
86,87

.  Elastic geometrically nonlinear analysis using well-known 

stability functions was utilized in this effort and design variables considered were 

limited to wide-flange shapes.  Member strength constraints were based upon 

British design standards.  Traditional interstory drift and deflection constraints 

were implemented in the algorithm.  Frame designs were generated with FR 

connections and a variety of PR connection configurations.  Comparisons of 

structural system weights generated through application of the GA with various 
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connection configurations are provided.  It was shown that when gravity loading 

dominates the loading combinations considered, PR frame designs can be lighter 

than a corresponding FR frame.  The use of nonlinear geometric analysis in the 

evolution of frame designs sometimes resulted in more material for the columns 

and beams and sometimes resulted in reduced material volume. 

Application of a genetic algorithm in the minimum weight design of planar 

steel frames subjected to interstory drift and limit loading capacity constraints 

has using plastic mechanism analysis has also been demonstrated
88

.  Plastic 

mechanism analysis is utilized to evaluate the frame limit load capacity in this 

effort.  Two planar steel frames with fully-restrained connections are designed 

using the proposed genetic algorithm.  The study outlines the need to carefully 

select the population size as it can affect the computing time significantly and the 

ability to reach the optimum solution.  Recommendations on mutation and cross-

over rates are made.  It was found that when gravity loading alone is present on 

the frame, both load factor constraints and deflection (vertical) constraints can be 

active.  However, when lateral and gravity loading combinations were applied to 

the framework, drift constraints become the dominant consideration in the 

algorithm.  It is also found that when nonlinear analysis is utilized instead of 

linear elastic analysis as the design basis, greater economy can be achieved. 

As computational tools progressed over the last two decades, researchers 

began to explore design methodologies that could exploit software capabilities.  

The concept of advanced analysis grew from these efforts.  In a nutshell, 

advanced analysis is a design method, where the structural analysis employed to 

evaluate a structural system candidate design is able to include all pertinent 

phenomenological behavior upon which design specification equations are based.  

Thus, if advanced analysis is employed, there is no need to include evaluation of 

design specification equations in the design process.  Combination of advanced 

analysis methods with genetic algorithms has recently been proposed
46,49,72,73,89

.  

Single-objective DSO was considered in these effort.  Design variables in these 

efforts included beam and column sizes selected from wide-flange shapes were 

considered.  The design variable sets have also been expanded to include a 

variety of partially restrained connections
46,49,72,73

.  Extensive constraint listings 

consistent with the needs imposed by inelastic analysis-based design methods 

were included in these efforts.  Distributed (fiber-based, plastic zone)
46,49,72,73

  

and concentrated plastic hinge with gradual formation
89

 models for nonlinear 

material behavior were also included in the studies.  Stability functions
89

 and 

geometric stiffness matrices
46,49,72,73

 were used to simulate geometric 

nonlinearity.  These two research efforts can be considered as a final 
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demonstration of the power of EC in handling very complicated DSO problems 

using static analysis.  

4.2.2.  Performance-Based Structural Optimization (PBSO) 

The development of performance-based design specifications and model codes 

for steel and concrete building structural systems
90-92

 has ushered in new 

applications of evolutionary computation in the optimized structural design
93,94

.  

PBSO formulations usually involve multiple objective optimization problem 

statements.  The constraints often involve target probabilities and/or confidence 

levels in meeting performance objectives.  Efforts that involve minimum life-

cycle cost design also falls into this category of structural optimization efforts. 

Life-cycle cost optimization for steel framing systems has been a very fertile 

area of research that can be classified as PBSO.  When the structural system life-

cycle is included in the optimization, various ground motion levels need to be 

considered.  U.S. design specifications and nonlinear pushover analysis was used 

in conjunction with a genetic algorithm to solve a performance-based structural 

optimization problem that involved objectives related to initial construction 

expense (material weight), the number of different steel sections used in the 

design (diversity), and future seismic risk associated with interstory drift 

resulting from both frequent and infrequent ground motions
95

.  Life-time seismic 

damage and initial material cost have also been considered as objectives in a GA-

based optimization algorithm using nonlinear pushover analysis as the analytical 

basis for determining performance
96

.  Nonlinear pushover analysis used as the 

fitness-evaluation engine for genetic algorithms
97, 98

 and evolution strategies
99

 has 

been used to solve PBSO problems involving objectives of minimum structure 

weight and confidence levels in meeting performance objectives during frequent 

and infrequent ground motion events. 

While static pushover analysis is a useful method for defining performance 

expectations during ground motion events, it is well known that this analytical 

method tends to give inaccurate results for irregular structural systems.  Inelastic 

time history analysis (THA) is a better predictor of performance during  

ground motion events.  Inelastic THA has been implemented as the  

foundation of multiple-objective PBSO for 2D frame structures using genetic 

algorithms
32,93,100-102

.  In order to consider multiple objectives in the GA, a novel 

radial fitness was defined
32,93

.  Objectives in these efforts for the PBSO statement 

were confidence in meeting performance objectives during frequent and 

infrequent ground motion events. 
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The work related to PBSO of building systems is laying the foundation for 

application of genetic algorithms in RBSO of buildings systems.  Approaches to 

accomplish RBSO with evolutionary computation are described in the following 

sections. 

4.2.3.  Reliability-Based Structural Optimization (RBSO) 

Rather than assuming resistance and loads are established at single values, RBSO 

assumes that these critical components to structural performance remain 

cumulative distribution functions thereby maintaining non-deterministic 

measures of uncertainty.  There have been relatively few efforts that have 

successfully formulated RBSO problems for frame and truss structures.  

Applications of RBSO to maintenance planning were described earlier in this 

chapter.   

In many instances, objectives of RBSO problems include minimization of 

material cost (i.e. weight) and minimization of the cost of failure of the system.  

Although uncertainty can be pervasive in both cost and failure, most studies limit 

consideration of uncertainty to failure likelihood.  As found in the review of 

previous structural optimization efforts and evolutionary algorithms, establishing 

the parameters for the genetic algorithm (e.g. crossover probability, population 

size, mutation probability, crossover type, penalty multiplier magnitude, and 

penalty exponent magnitude) can be difficult.  When the structural design 

demands uncertainty is considered, there is a pressing need to choose these 

parameters wisely as the analysis effort needed to evaluate individuals in the 

populations becomes very time consuming.  Multiple-population GA’s have been 

applied in the RBSO of planar truss structures
103,104

 to alleviate the user from 

defining these parameters.  The sub-populations within a meta-GA in this study 

included various parameters and the meta-GA assigned resources to the most-fit 

sub-populations.  The meta-GA implemented was shown to generate optimized 

solutions in a manner that is more efficient than a standard single population GA.  

Robustness of the algorithm with respect to finding the optimal solution to the 

RBSO problem was also improved. 

Single objective RBSO problems for minimum weight and cost of members 

and connections have been formulated for 2D and 3D truss structures with 

constraints on acceptable probabilities of failure
105

.  This research effort 

considered selection of member cross-sections and member cross-section with 

truss topology using genetic and modified branch-and-bound algorithms.  It is 

recommended that the inherent parallelism of the GA be exploited for future 

work in RBSO. 
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When large-scale structural systems are considered in RBSO, the effort 

required to evaluate the fitness of individuals within the population becomes 

significant.  As a result, researchers have proposed methodologies for RBSO that 

involve evolution strategies and Monte-Carlo simulation
106

. 

The uncertainty present in RBSO problems can make the design cumbersome 

and as implied, there is uncertainty in the solution.  A recent application of non-

dominated sorting genetic algorithm (NSGA) modified to become a non-

dominated sorting evolution strategy (NSES) to structural optimization involves 

Robust Structural Optimization (RSO)
107

.  For purposes of this synthesis, this can 

be classified as a subset of RBSO.  In RSO, the objective of the optimal design 

problem is to attain a solution that is insensitive to variation in uncontrollable 

parameters.  A RSO problem for a 3D steel structure subjected to a series of 

ground motions was considered and nonlinear pushover analysis was used as the 

basis for fitness definition
107

.  A unique aspect to this study is that evolutionary 

computation is utilized to validate coefficients used in the Greek seismic design 

code for steel building systems. 

4.2.4.  Miscellaneous Applications 

Applications of evolutionary computation in the structural engineering field have 

been numerous and extend to a range much wider than that implied in the 

previous three sub-sections of this synthesis.  Aerospace structural engineering 

applications often require that structural components maintain stability 

throughout rather wide variation in temperature.  To this end, the researchers 

utilized the evolutionary strategy to determine ply orientations and stacking 

sequence in a composite laminate such that the buckling load of an edge-

supported (simple supports) and edge-loaded plate is maximized
108

.  Two 

constraint handling procedures are used.  The first is a traditional penalty applied 

to the objective function and the second is simply to reject infeasible designs 

during the evolution.  Three  ( )µ η+  evolution strategies are implemented: 4+4, 

10+10, and 20+20.  It is recommended that for the problem considered, a 4+4 

evolution strategy was able to find good solutions with reasonable computation 

cost. 

Operations research has always been a fertile area for the development of 

optimization algorithms.  In a similar vein, researchers have utilized a genetic 

algorithm to optimize precast member production scheduling using a flow-shop 

operations research model
109

.  The research indicated that the traditional GA 

implemented can not only produce single optimized solutions, but it could also 

easily provide a family of good solutions that can be used as a decision-making 
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tool for the production facility.  Optimization of mass concrete construction 

procedures has also been done using a genetic algorithm
110

.  A fairly traditional 

genetic algorithm was implemented in this effort and the design variables 

included: type of concrete; placing temperature, height of concrete lifts, and 

placing frequency.  Constraints related to structure cracking were formulated and 

the objective was one of cost minimization.  A finite element analysis of the mass 

concrete structure (dam in the study considered) was conducted and was used as 

the basis for constraint evaluation and definition of fitness. 

Evolutionary computation has not been limited to selection of framing 

components (e.g. beams or columns).  Genetic algorithms have been used to 

develop optimal seismic zoning scenarios
111

 and guide selection and scaling of 

ground motion records
112,113

.  As RBSO becomes an integral component of the 

structural engineering design world, selecting ground motion records that satisfy 

targeted recurrence intervals and intensities will become more important.  

Furthermore, being able to rationally establish seismic zoning to minimize losses 

(e.g. deaths, dollars, and downtime) removes the appearance of arbitrarily 

assigned boundaries for seismic zones. 

Applications of evolutionary computation have also been used in the selection 

of light-gauge steel deck, wide-flange purlin shape, and purlin spacing for typical 

wide-flange structural steel roofing systems when subjected to unevenly 

distributed loading caused by snow
114

.  Genetic algorithms have also been used 

develop design charts to aid structural engineers in selecting steel floor framing 

systems composed of wide-flange shapes and light-gauge deck to minimize cost 

and satisfy all pertinent strength, deflection and vibration constraints
115

.  Both of 

these studies illustrate that the genetic algorithms implemented could generate 

either single optimal solutions or families of candidate solutions of common cost, 

which indicates that the GA is suitable for use as a decision-making tool for the 

structural engineer. 

Design of cold-formed members can be a fairly tedious process due to the 

significant number of instabilities that can arise within the member being 

designed.  It is well-known that the population size required for successful 

implementation of a GA can vary with the problem considered.  In order to use 

small population sizes and still tackle a structural engineering optimization 

problem involving cold-formed steel member design with design variables of 

cross-section depth, width, thickness and bend radius; researchers proposed a 

micro-GA application
116

. 

It is obviously important to consider performance of the structural system 

when conducting a seismic design of an industrial facility.  However, one must 

not overlook the importance of ensuring that the process components housed 
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within that facility perform as intended during ground motion events.  One 

example of these process components is the networks of piping systems within 

nuclear or other facilities.  The dynamic structural behavior of these relatively 

complex systems makes selecting the number and location of piping supports 

very difficult.  To this end, researchers have proposed a GA-based decision 

support system for optimizing the response of piping systems when subjected to 

seismic accelerations
117

.  The implementation of the GA as part of a “…joint-

cognitive system…”
117

 seeks to take advantage of the strengths present in the 

experienced engineer as well as the novel-solution generating ability of the 

genetic algorithm. 

The design of steel plate girders for a bridge superstructure using modern 

U.S. design specifications for highway structures can be a daunting task.  

Researchers have sought to take advantage of the genetic algorithm to aid in the 

design of superstructure components
118

.   Design variables used in this effort 

include: presence of a longitudinal stiffener, spacing of girders, depth of the steel 

girder web plate, thickness of the web plate, width of top and bottom flange, and 

the thickness of the top and bottom flange.  Constraints are formulated using U.S. 

allowable stress design specifications.  A parameter study using the GA 

developed allowed the researchers to demonstrate optimized bridge 

superstructure parameters for a wide range of girder spans for the two-span 

configuration considered.  As a result, the GA is again shown to be a very useful 

decision making tool for the structural engineer. 

4.3.  Topology Optimization of Truss-Type Structures 

Topology optimization of structural systems involves selection of topology, 

geometry and sizes of the components within the system.  A related area of 

topology optimization is that of Evolutionary Structural Optimization (ESO).  In 

this approach, system topology is “evolved” through removal of material or 

components from a based (ground) topology that are very lightly utilized in terms 

of stress or force.  ESO is not covered in this review as the method does not fit 

the prototypical evolutionary computation method in which a population of 

individuals is manipulated through mutation and/or recombination.  However, 

ESO is similar to a (1 1)ES+  without random mutation.  The interested reader 

can find a plethora of information related to ESO through simply searches with 

this keyword in the literature listings at the end of this chapter. 

System topology optimization is most often associated with conceptual design 

of structural systems found in the early stages of the design process. It is at these 

stages when design creativity can be at its peak and it is natural to explore the 
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implementation of stochastic design procedures to generate alternative 

possibilities.  When genetic algorithms are used to solve optimization problems 

that involve selection of the system topology or geometry in unstructured and 

structured domains (e.g. the perimeter boundary of a frame is undefined or 

defined, respectively), representation of individuals using binary string 

chromosomes can generate difficulties because as design variables are added or 

removed from the system, the string length for the individuals no longer remain 

consistent.  Furthermore, if a very dense base structure topology (or ground 

structure) is assumed, chromosome lengths can be very long initially and search 

efficiency via GA can degrade.  These difficulties with standard GA formulations 

as applied to topology and geometry optimization of truss-type structures has led 

to the development of Implicit Redundant Representation (IRR) GA’s
119,120

 and 

other formulations capable of handling variable string lengths
121

.  Topology 

optimization algorithms utilizing GA’s that do not use binary string chromosomal 

representations for individuals have also been proposed
122

.  The concern for 

control of overlapping members, unstable configurations, and zero-force 

members in truss topologies developing during evolution using a GA has also led 

to alternate definitions of topology for the system.  Rather than define topology 

and geometry using nodes and members, researchers have examined defining 

topology using series of inherently stable triangular substructures and have 

implemented GA formulations to generate optimized solutions
123

. 

The search for optimum topologies for truss structures considered competing 

deflection and weight objectives has been done through multiple objective 

genetic algorithms (MOGA’s)
124

.  Several unique GA operators were introduced 

in this effort: active unit-based crossover; and unit-based mutation.  A 

hierarchical chromosomal representation was also proposed and discussion of 

“total Pareto optimal sets”
124

 used to define optimum topologies within the 

context of objective space is given.  Truss structures were considered in this 

research effort and optimal designs were generated considering topology 

(bar/member presence in the system); geometry (node or connection locations in 

2D space); and sizing (cross-sectional areas).  Topology and geometry have also 

been considered in optimization of a cantilevered truss structure considering 

objectives of mass minimization, deflection minimization, and/or stress 

minimization
125

. 

Comparatively speaking, evolution strategies have not seen as wide spread 

use in topology optimization of truss structures.  Various evolution strategy 

implementations applied to truss topology optimization for a fixed loading 

scenario and fixed initial node layout have been compared to simulated annealing 

and a newly proposed random cost methodology
126

.  Various initial (ground) 
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structure topologies and geometries were considered.   (1 )ESλ+  with 1λ =  and 

1024λ =  were shown to be relatively ill-behaved and (1, )ESλ  with 64λ =  was 

shown to be able to come very close to finding optimal solutions when compared 

to simulated annealing.  The number of fitness (function) evaluations was 

considered in the comparisons. 

4.4.  Structural Control and Supplemental Damping 

Minimizing the impact of seismic excitation on building and truss structures 

through use of passive supplemental damping mechanisms and active control 

devices has been a fertile area of research in structural engineering in the past 

two decades.  Examples of supplemental damping mechanisms often considered 

are: friction dampers; tuned mass dampers (TMD’s); added damping and 

stiffness (ADAS) devices; triangular-plate added damping and stiffness 

(TADAS) devices; and passive constrained layer damping (PCLD) patches.  

Examples of active control devices are diagonal brace actuators; piezoelectric 

patches; magnetorheological dampers; and TMD with active mass drivers 

(AMD’s). 

Genetic algorithms have been shown to be very effective tools for 

determining the positioning and characteristics of passive damping devices 

within structural engineering systems (e.g. buildings and trusses).  The torsional 

response of buildings subject to earthquake and wind excitations can be 

effectively controlled through positioning TMD’s.  Genetic algorithms have been 

used to guide the design of TMD parameters and their locations for multiple 

story buildings for the following performance criteria: drift; acceleration; drift-

based second norm; and acceleration-based second norm
127

. Design variables 

considered for the tuned mass dampers were: mass ratio; frequency tuning ratio; 

damping ratio; and damper position.  Performance functions appear to have been 

combined to define single-objective fitness for individuals and the GA 

implementation was shown to be very effective in providing TMD parameters 

and location to reduce response.  The suitability of genetic algorithms in 

addressing multiple objective optimization problems involving characteristics 

and placement of TMD’s within a building structure has also been 

demonstrated
128

.  The objectives to be simultaneously minimized using Pareto-

optimal fronts in this effort were: maximum nondimensional peak displacement; 

maximum nondimensional peak acceleration; and maximum nondimensional 

peak rotation when the system was subjected to a suite of ground motion records.  

Design variables for the TMD’s included: mass, stiffness, damping; mass 
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moment of inertia; rotational stiffness of the coupled dampers; rotational 

damping characteristics of coupled dampers; and eccentricity of the TMD’s from 

the center of mass in orthogonal directions. 

Optimal number and placement of classical viscous fluid dampers, solid 

viscoelastic dampers, and fluid viscoelastic dampers within a torsionally excited 

structural system has been accomplished using a genetic algorithm
129

.  The 

objective fitness in this study was defined using drift-based performance and 

acceleration performance.  The design variables considered in the GA 

implementation was the total number of dampers at locations to be placed in the 

structure.  The GA design tool was used to compare optimal distributions of 

viscous devices and viscoelastic devices throughout the building for base shear or 

floor acceleration performance measures in a single-objective optimization 

format.  Optimal placement of passive fluid dampers within a 20-story building 

was defined using a genetic algorithm
130

.  Four single-objective optimization 

problems using 2-norm and ∞ -norm measures of RMS response and frequency-

shaped transfer functions were formulated and solved using the GA 

implementation.  The GA generated solutions for damper distribution were 

shown to include a configuration that significantly reduced inelastic response 

measured through ductility demand. 

Yielding and friction damper devices are also very useful in structural 

systems that utilized diagonal bracing to resist seismic loading (e.g. chevron 

braces).   Optimal parameters of TADAS and ADAS devices placed at the stories 

within a 10-story planar building system have been determined using a genetic 

algorithm to meet the following objectives: equal-weight combination of 

interstory drift and floor acceleration; and an objective of reducing floor 

accelerations
131

.  Optimal parameters for metallic-yielding and friction dampers 

within the 10-story building considered were defined using a fairly traditional 

genetic algorithm. 

Consideration of optimal placement and optimal type of passive damping 

device within multi-story buildings is also very important because as building 

systems become taller, the best type of passive damping device to be used to 

minimize damage resulting from acceleration or drift may not be uniform over 

the building height.  A genetic algorithm with mortality constraint has recently 

been proposed to efficiently generate optimal designs for multistory structural 

systems that include triangular plate energy absorbers (TPEA), linear viscous 

dampers (LVD), and viscoelastic dampers (VED) distributed throughout the 

stories
132

.  This study illustrates that the best solutions obtained using the genetic 

algorithm formulation proposed did not include uniform distribution of dampers 

throughout the height of the structural system and that the GA could generate 
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interesting combinations of TPEA, LVD, and VED devices within a building 

system.  Furthermore, it is suggested that the GA formulation can be used to 

“…clarify advantages and disadvantages of the various device types as design 

circumstances change”
132

, which is a perfect example of the power of 

evolutionary computation as an automated and optimized design generation tool. 

Passive viscous damper placement within truss systems typically found in 

aircraft structures has also been guided using a genetic algorithm
133

.  The designs 

generated using the GA formulated were found to match intuition and therefore, 

it is another example illustrating that the GA can be used as a design tool to 

generate alternatives.  Definition of optimal parameters for passive constrained 

layer damping (PCLD) treatments for controlling displacement response of 

simply supported beams has also been accomplished using genetic algorithms
134

.  

The GA-generated solutions to a design problem involving minimization of beam 

displacement at mid-span when subjected to wide-frequency-range force 

excitation illustrated that the shear modulus of the viscoelastic layer and the 

location and length of the layer are the most important parameters to consider in 

design.   

Design of active and hybrid control systems for building structures has also 

been a fertile area of research application of genetic algorithms.  One very 

interesting side problem often encountered in control system optimization is that 

feedback from the system being controlled is often based upon limited 

information (e.g. accelerometer data at limited story locations within the 

structure).  As a result, design of the feedback-control systems for large-scale 

civil engineering structures is a very fertile area of active research as well. 

Use of a genetic algorithm to guide placement of actuators within regular 

multi-story buildings is the most basic form of optimal control problem
135

.  The 

placement of predetermined actuator types and their corresponding control 

algorithms using a genetic algorithm was determined using binary string 

representations for the actuator position.  The objective considered was drift at 

the upper floor of a 16-story regularly framed building.   GA operators used were 

very straightforward.  Optimal placement of magnetorheological dampers within 

building systems using a GA has also been demonstrated
136

.  The GA design 

variables for position were formulated with emphasis on practical installation.  

Pre-defined controller strategies were considered and the objectives for the GA 

optimization were norms of RMS of absolute acceleration and interstory drift 

(considered independently). 

The design of a control algorithm/system is not trivial when one considers the 

environment likely to be present.  For example, electronic measurements are 

being taken at limited locations.  This generates two important issues/concerns: 
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(a) the electronic signals will contain noise; and (b) one must be able to predict 

and control response throughout the structure using the limited measurements as 

feedback.  As a result, designing the control algorithms for fixed position and 

type of devices is a challenging problem.  Design of controller gains to control 

response of building systems using binary string GA’s has been demonstrated
137,138

.  

A wind-excited 76-story shear building structure with fixed-positioned  

ATMD devices at the roof level with fixed sensor locations was used as the basis 

for an optimization problem that involved generation of optimal controller gains 

in the presence of sensor noise
138

.  A single-objective fitness function involving 

peak accelerations, peak displacements, RMS accelerations, and RMS 

displacements at selected floors and actuators was utilized.  Robustness criteria 

for the controller design were also applied in the GA formulation.  Hybrid system 

control gains for 2D buildings have also been optimized using binary string 

genetic algorithms
137

.  Comparison of response with active (including controller 

optimization), passive, and hybrid control systems were also provided.   Real-

coded GA’s have also been used design optimized controller gains for ATMD 

devices with limited sensor arrangements
139

.  Comparisons of optimal designs of 

passive and active control devices generated using genetic algorithms for 3D 

structural systems have also been made
140

.   

The robustness of a controller can be assessed through consideration of its 

ability to remain stable and control of system performance in a realistic 

environment
138

.  Sensor output noise and the inability to measure exact structural 

parameters (e.g. mass, stiffness) are two examples of uncertainty in real 

structures that a robust controller system must address.  Optimal controller design 

in the presence of these uncertainties has been enhanced through use of fuzzy-

logic principles.  As a result, fuzzy-logic controller (FLC) design algorithms have 

emerged.  Design of an FLC for first-floor actuators in regular buildings using 

genetic algorithms with an single objective of minimizing roof-level 

displacement response of a 3-story building has been demontrated
141

.  Design of 

FLC using genetic algorithms within the context of multiple objective 

optimization using Pareto optimal sets has also been demonstrated.  GA-based 

designs for two-dimensional systems have been generated by simultaneously 

considering peak interstory drift and peak floor accelerations
142

.  Three-

dimensional systems have also been considered
143

.  Optimal controller design 

using genetic algorithms and fuzzy logic concepts for smart base isolation 

systems has also been illustrated.  Single objective
144

 and multiple objective 

optimization problems
145

 have been considered. 

Optimal structural design problems that consider the number, placement, 

controller gain and type of control system can be considered the most 
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challenging.  Selection of the optimal number of actuators, the position of said 

actuators, and the control algorithm type (linear quadratic regulator, or 

acceleration feedback control) using a multi-level genetic algorithm has been 

illustrated and discussed
146

.  Consideration of nonlinear structural response has 

also been included in generation of optimal design algorithms incorporating 

fuzzy logic methodologies to solve multiple-objective problems using a MOGA 

where the position, number, and control algorithm are considered as design 

variables
147

.  Optimal placement and controller design have been considered as 

design variables in a single objective optimization problem solved using genetic 

algorithms in problems that involve a regular 40-story shear building and a  

9-story irregular building
148

.  Placement, sizing, and feedback control gains of a 

novel piezoelectric sensor-actuator to minimize the vibration of shell structures 

has also been demonstrated
149

. 

Placement of sensors and actuators within the structural system as well as 

design of the control algorithm (i.e. gains) on a high-rise structural system has 

been demonstrated through application of a genetic algorithm for actuator/sensor 

placement and gradient-based optimization methods for sensor/actuator gains
150

.  

The objective function used in this study was a combination of minimizing 

building response and control effort. 

4.5.  Damage Detection 

There are instances where structural systems have been instrumented to measure 

response during loading events.  An example of this is accelerometers placed 

within building systems to measure response during seismic events.  These 

systems generally contain very few instruments placed in locations felt to give 

useful data for extrapolation post-event.  It has long been desired to use the data 

from relatively sparse instrumentation arrays to determine the existence, the 

extent, and the location of damage in structural systems.  This is not a trivial 

endeavor and genetic algorithms have been used to detect damage in structural 

systems using measured data. 

The location of damaged members within truss structures has been identified 

using simple genetic algorithms and the implicit redundant representation GA
151

.  

The proposed GA implementations were shown to be capable of identifying 

damage (defined as a reduction in axial stiffness of a member) to truss members 

in statically determinate and indeterminate truss structures when subjected to 

moving fixed-axle vehicles.  A small number of measured static displacements 

were used to successfully locate damaged members in these truss structures. 
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In lieu of static loading conditions, changes in the vibrational characteristics 

of structural systems (e.g. frequencies of mode shapes) have also been used to 

detect damage in structural systems.  An optimization problem is formulated in 

this instance to minimize the differences between measured vibration data and 

analytically generated data.  Binary string GA’s
152

 and real-coded GA’s
153

 have 

been shown to be successful tools in this endeavor.  Cantilever beam structures, 

planar truss structures and plane frame structures have all been considered for 

application of the damage detection algorithms proposed. 

When faults (e.g. damage, flaws) are sought within an existing structural 

system, the engineer must rely on a limited number of sensors distributed in some 

manner throughout the systems to be his eyes and ears.  Genetic algorithms have 

been used to generate the number and location of sensors to give information 

regarding the probable position of damage within a cantilever plate
154

.  Fitness of 

candidate solutions were defined using “observability” measures and resistance 

to clustering of sensors within the system. 

4.6.  Parameter, Model, or Structure Identification 

Engineers are well aware that the models for structural analysis that are 

developed to simulate behavior are just that – models.  Parameter identification 

in the area of structural engineering is the process of generating more realistic 

structural analysis models through examination of response of a real system to 

known input (loading).  This is sometime called solving an inverse problem in 

that one is generating an analytical model from measured output data.  Parameter, 

Model, or Structure Identification can be used in structure health monitoring and 

damage detection. 

Locating superimposed mass (either moving or static) on a structural system 

has been an area where genetic algorithms have been shown to be useful.  A 

computational procedure founded on a genetic algorithm for determining the size 

and location of a concentrated mass within the boundary of an isotropic plate has 

been proposed
155

.  The objective fitness for the GA is based upon minimization 

of an output error criterion defined using changes in natural frequencies.  

Identification of moving masses along continuous (multiple-span) beams typical 

of bridge superstructures has also been accomplished using a GA
156

.  

Minimization of the error between measured and reconstructed accelerations is 

used as the objective in the optimization problem. 

One of the few applications of evolutionary programming (EP) in civil 

engineering design has been in the area of solving inverse problems
157

.  

Identifying the elastic modulus of an isotropic plate loaded uniformly at its edges 
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and conducting pavement quality inspection were two example problems 

considered in this effort. 

When a large number of parameters needs to be identified in a large structural 

system, convergence of a numerical algorithm for parameter identification can be 

unreliable.  As a result, researchers have proposed methodologies using genetic 

algorithms to conduct parameter identification in these large systems.  A Modal 

GA has been proposed to reduce the search space required for parameter 

identification of large dynamically loaded systems
158

.  The single objective 

optimization problem proposed in this effort involves minimization of the 

difference in the norms of measured and predicted response in the modal domain.  

Substructuring and a staged application of a genetic algorithm for large system 

parameter identification has also been proposed
159

.  Using a genetic algorithm to 

identify prosperous locations in objective space along with a compatible local 

search methodology (one without the need for gradient information) has also 

been proposed to conducted parameter identification in large structural 

systems
160

. 

Pareto optimal theory and evolution strategies have also been used to identify 

structural engineering parameters in multiple-objective optimization 

formulations
161

.  The two objectives considered in this effort were norm of the 

difference in measured and predicted natural frequencies of a selected number of 

mode shapes and norm of the difference between measured and predicted mode 

shapes.  The Strength Pareto Evolutionary Algorithm (SPEA) proposed in this 

effort is also used to make predictions regarding reliability of the structural 

system using the Pareto fronts generated.  An extension of the SPEA procedure 

to nonlinear structural systems is also discussed. 

As outlined earlier, when GA’s are asked to search for a large number of 

design variables, the search space can become quite large and the effectiveness of 

the typical genetic algorithm can suffer.  A real-coded genetic algorithm has been 

proposed to minimize mode shape and mode frequency differences between 

measured and predicted results
162

.  The GA is employed first in the parameter 

identification, with subsequent implementation of a localized hill climbing 

algorithm based upon eigen-sensitivity.  A search space reduction method 

(SSRM) has also been proposed to enhance the accuracy and reliability of a 

genetic algorithm employed in structural parameter identification
163

.  Integral to 

the SSRM is a modified GA that adaptively reduces the search space using 

individual parameter convergence rates. 

Pedestrian bridge structures have been found to vibrate significantly while in 

service.  Some rather famous instances of severe vibration of pedestrian bridges 

have been reported (e.g. Millennium Bridge in London) and the dynamic loading 
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and response of these systems has been the subject of much research.  There are 

many components that partake in defining a pedestrian bridge’s dynamic 

characteristics (e.g. handrails) and defining the loading functions resulting from 

pedestrians is not trivial.  A genetic algorithm has been used to help define 

forcing functions that are capable of simulating human walking forces acting on 

slender pedestrian bridge type structures
164

.  The identification parameters 

considered were: heel contact duration; heel period; heel impact coefficient, tip 

of toe period, tip of toe impact coefficient, and impact of heel to tip of toe.  These 

parameters were defined using a Genetic Algorithm and with the single objective 

function being a simple normalized summation of the differences between 

measured and predicted natural frequencies for the first two modes of simply 

supported pedestrian bridges. 

4.7.  Conceptual Design of Building Systems 

Evolutionary computations has the capability to serve as an artificial intelligence 

mechanism whereby literally thousands of candidate designs can be generated 

and evaluated automatically using user-defined criteria.  As a result, structural 

engineers have sought to exploit EC to aid in generating conceptual designs of 

mid- and high-rise structural systems to understand the impact of multiple 

competing objectives in defining the best compromise solution for building 

systems. 

At early stages of design of a building system, many factors need to be 

considered.  Economy of design demands that initial construction cost, 

maintenance costs, operating costs, and anticipated income or loss over time be 

considered.  When one considers the myriad of factors that define these costs, 

he/she may find it impossible to rationally determine relationships among the 

relative importance in each of these factors (either individually or collectively) in 

defining the most economical solution with which to proceed to detailed design.  

A genetic algorithm has been applied to the conceptual design of building 

systems to simultaneously minimize capital cost, minimize operating cost, and 

maximize income revenue
165-167

.  Various structural systems were considered as 

well as HVAC costs, land, lease rates, mortgage rates, inflation rates, and many 

other practical parameters.  A novel coloring algorithm is proposed to understand 

the impact of structure type, number of stories, bay area, window ratio, and 

design profitability within 3D objective space. 

Conceptual design of the structural system has also been the target of 

application of EC.  A structured genetic algorithm (SGA) has been proposed to 

allow alternative structural systems (e.g. precast concrete construction, composite 
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construction) to be represented in a hierarchical binary chromosome structure
168

.  

The SGA implemented in this study was intended to be a decision making tool 

for the structural engineer.  A parameter study was also undertaken after which 

recommendations regarding the structural system were made through 

consideration of the variation in land cost. 

In the wake of September 11, 2001, the use of high-rise structural systems 

was placed under increased scrutiny.  The genetic algorithm and multiple-

objective coloring/filtering algorithm previously discussed
165-167

, was applied to a 

multiple-objective optimization problem that examined the trade-off between 

life-cycle profitability and their robustness (their load path safety against 

progressive collapse)
169

.  Robustness was evaluated using a measure of force 

redundancy in the structural system. 

4.8.  Parallel Processing Applications 

The emergence of readily available clusters of networked computers and multiple 

processor personal desktop computers facilitated exploitation of the inherent 

parallelism of evolutionary computation procedures and opportunity to reduce 

computation times in the solution to structural engineering optimization 

problems. 

Large structural steel systems have been optimized for minimum weight with 

strength constraints defined by U.S. steel design specifications and conventional 

drift constraints using a multi-level GA and fuzzy GA with MPI and OpenMP 

parallel programming methods
170

. Comparisons of parallel algorithm 

performance for the bilevel GA with MPI and OpenMP implementations are 

provided. 

A very large design problem (1080 design variables) was used as a numerical 

experiment to evaluate the extent to which a typical GA would benefit from 

having multiple processors
171

.  Numerical experiments using as many as 128 

processors demonstrated “… radical elapsed time reductions…” approaching 

linear speed up with appropriate algorithm modification
171

. 

Determination of the type of support and the support location for piping 

systems subjected to seismic excitation has been done using a parallel genetic 

algorithm with the goal being to generate solutions that are near the optimal 

design in objective space, but as different as possible in decision space
172

.  A 

network of 10 Solaris Ultra-10 workstations was utilized in the parallel GA 

solution and a single objective optimization problem was considered.   

A network of workstations and MPI protocol have also been used to reduce 

computation time necessary for a simple genetic algorithm
173

.  It is shown that if 
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proper load balancing among processors is considered in the parallel algorithm 

formulation, near linear speed up can be attained on a “…homogeneous hardware 

cluster…”
173

. 

5.   Other Sources of Information 

As with any review, there will always be a need to frame the period for the 

review an in so doing, useful references will slip through.  It is therefore, prudent 

to guide the reader to additional sources of information in the form of journals 

and conferences whereby he/she can obtain additional literature related to 

evolutionary computation and its application in structural engineering. 

There are many journals where applications of evolutionary algorithms can be 

found and where their efficiency in generating solutions to structural engineering 

optimization problems is evaluated.  A listing of some of the more popular 

journals available in the archival literature is: 

 Evolutionary Computation 

 Journal of Computing in Civil Engineering  

 Journal of Structural Engineering 

 Journal of Structural and Multidisciplinary Optimization 

 Computers & Structures 

 Engineering Structures 

 Journal of Constructional Steel Research 

 Journal of Bridge Engineering 

 Journal of Computer-Aided Civil and Infrastructure Engineering 

Conferences that contain written proceedings are also sources for reviewing 

the evolving state-of-the-art in evolutionary computation.  Some of the most 

pertinent and popular conferences related to EC are: 

 Genetic and Evolutionary Computation Conference (GECCO) 

 Foundations of Genetic Algorithms (FOGA) 

 International Conference on Genetic Algorithms (ICGA) 

 Congress on Evolutionary Computation (CEC) 

 SCE-SEI Structures Congress 

6.  Concluding Remarks 

The review contained in this chapter demonstrates the truly staggering range of 

applicability for evolutionary computation.  EC is a very powerful tool for 

automated and optimized design and its application in structural engineering 
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appears limitless.  It also appears that EC methodologies can form the basis of 

unified automated and optimized design algorithms for structural engineering.  It 

is prudent at this point to provide some concluding remarks that can serve as a 

brief synthesis for the information reviewed in this chapter.  It is hoped that this 

short summary of observations made at the end of the chapter can stimulate new 

research directions dealing with application of EC in the field of structural 

engineering. 

The vast majority of applications of evolutionary strategies has been in 

Europe.  Although incredibly useful, they have not seen as wide spread 

application as genetic algorithms in the field of structural engineering.   

Evolutionary (genetic) programming concepts have seen limited application as 

well.  Further exploitation and comparison of all EC methodologies in structural 

engineering (as applicable of course) needs to occur. 

There is opportunity for researchers to begin to tackle far more complex 

structural engineering design problems using EC and future research efforts may 

need to examine and further exploit alternate methods for expressing 

phenotypes
45,46,49,72,73

 as problems become more an more complex. 

Design of supplemental damping and control mechanisms, performance-

based engineering design, and reliability-based engineering design appear to be 

fertile areas for continued exploitation of multiple objective optimization using 

evolutionary computation. 

As design specifications and codes become more and more complicated and 

computer software becomes more necessity than tool, EC has the opportunity to 

become an integral part of artificially intelligent design algorithms in the future. 

Researchers need to continue exploitation of parallel processing environments 

(e.g. parallel computer clusters) on difficult structural engineering problems 

beyond those of numerical experiments.  Real problems need to be tackled in this 

newly evolving computational environment. 
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Decision-making is critical to the success of any product or system design. Multi-
objective optimization can provide effective and efficient tools for decision-making
under conflicting design criteria. The concept of tradeoff is integral to multiob-
jective optimization; and several approaches have been developed to resolve this
tradeoff – yielding the so-called Pareto optimal solutions. These approaches can
be broadly classified as those that require the specification of the designer prefer-
ences, and those that generate a set of Pareto optimal solutions from which the
designer can choose. These methods and their relative merits and shortcomings
are the focus of this chapter. A discussion regarding implementing these methods
for practical problems is presented, followed by a discussion on industrial and
academic applications.

1. Introduction to Multiobjective Optimization

Ever-increasing demands of system performance and economic competitiveness have

necessitated the development and use of formal design methods for each phase of

the engineering design process. Engineering design is a decision making process,

requiring critical decisions at every stage during the design of a product or a sys-

tem – from the initial conceptual design stage to the final detailed design stage.

Decision making is generally challenging because of the existence of conflicting de-

sign requirements. In the presence of only a single design objective, it is a nearly

trivial task to identify the optimal design configuration. However, as soon as one

introduces a second conflicting design objective, the design process becomes more

interesting and challenging. Multiobjective optimization techniques offer a formal

methodology for effective design and decision making under multiple conflicting

121
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design requirements and objectives. As such, multiobjective optimization can be a

critical component of the modern design process.

For example, in a simple beam design problem, the design requirements could

include the simultaneous minimization of beam mass and stress. Indeed, these two

objectives are in mutual conflict: reducing the beam cross-section size would re-

duce its mass, but increase the stress at critical failure points in the beam; while

increasing the cross-section size would reduce the stress, but would increase the

mass. Another practical example would be the tradeoff between fuel efficiency and

cargo capacity of cars. Large-sized vehicles can carry more load, but at the cost of

low fuel efficiency; while small-sized cars yield higher fuel efficiency, at the cost of

lower cargo capacity. One can find many such multiobjective examples in different

engineering and non-engineering fields. Many believe that all design problems can

(and should) be formulated as multiobjective problems.

In the above beam design example, if the mass objective were more important

to a designer than stress, he/she would prefer design configurations that yield lower

values of mass. A natural question arises: how does one generate optimal design

alternatives that reflect a designer’s preferences regarding conflicting design require-

ments? On the other hand, is it possible to provide a set of optimal solutions to the

designer from which he/she can choose the most desirable one? In this chapter, we

address these and many other pertinent questions relating to multiobjective design

and optimization.

1.1. Why Multiobjective Optimization?

A question often asked in the design community is: Why not simply minimize one

of the design objectives, and include the others as part of the constraints? While,

in theory, this approach can lead to the desired solution, it is unfortunately fraught

with significant pitfalls. For example, when one moves an objective from being

part of the objective function to being a constraint, one simultaneously changes the

nature of the preference pertinent to that objective – from a soft realistic preference,

to a hard constraint. The latter is in general not truly reflective of the designer’s

intent; and s/he may unknowingly settle for an inadequate solution. Furthermore,

the final solution typically depends heavily on the chosen value for the constraint,

which is largely uncertain. As one includes more and more constraints, the choice of

these constraint boundaries becomes a formidable task of it own. Fortunately, the

application of effective multiobjective methods can obviate these difficulties.

1.2. Scope of the Chapter

In this chapter, we present an overview of some of the basic concepts and solution

techniques in multiobjective optimization. Section 2 explains the concept of Pareto

optimality and provides relevant definitions. Section 3 discusses popular multiob-

jective methods, categorized as (i) methods that require articulation of preferences,
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and (ii) Pareto set generation methods. In Sec. 4, we discuss some of the practical

issues in multiobjective optimization, while recent applications and recent advances

in the field of multiobjective optimization are discussed in Sec. 5. Summary and

concluding remarks are given in Sec. 6.

2. Concept of Pareto Optimality

In this section, we introduce the critical concept of Pareto optimality, and present

the relevant terminology and definitions.

2.1. Multiobjective Optimization Problem Statement

Multiobjective optimization involves the simultaneous optimization of two or more

design objectives that are conflicting in nature. A typical optimization problem

statement involving multiple (nf ) objectives can be written as

min
x

[
f1(x) f2(x) ... fnf

(x)
]T

(1)

subject to

g(x) ≤ 0 (2)

h(x) = 0 (3)

xl ≤ x ≤ xu (4)

where xl and xu are the lower and upper bounds on the design variables x, re-

spectively; g is the vector of inequality constraints, and h is the vector of equality

constraints.

2.2. Pareto Optimal Solutions

One may ask two very pertinent questions regarding Eq. 1: (i) How does one define a

“solution” to this problem? (ii) How does one solve a vector optimization problem

involving conflicting design criteria? To answer the first question, we must look

beyond the field of engineering. The concept of optimality – when trying to optimize

two or more objective functions simultaneously – was formalized in the 1900’s in

the field of economics1. This concept has come to be known as Pareto optimality

after its developer. The second of the above two questions is answered in Sec. 3.

Definition 1: A Pareto optimal solution is one for which any improvement in one

objective will result in the worsening of at least one other objective2. That is, a

tradeoff will take place.

Mathematically, a point f∗ (which is a vector of length nf ) is called Pareto

optimal if there does not exist a point fp in the feasible design objective space,

such that f∗

j ≥ fp
j for all j = 1, .., nf , and f∗

j > fp
j , for at least one j. This
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mathematical definition assumes that smaller values of the design objectives are

more desirable (minimization in Eq. 1).

The concept of tradeoff is central to multiobjective optimization. It signifies that

an optimal solution to the multiobjective problem is one that results in an optimal

tradeoff between the conflicting design objectives.

O
bj

ec
ti

ve
 2

Objective 1

Pareto frontier

Feasible space 
g<=0, h = 0

dominated 
region

Infeasible

Fig. 1. Design objective space for a bi-objective problem

In general, there exists an infinite number of Pareto optimal solutions to Eq. 1.

Each of these solutions satisfies the definition of Pareto optimality (Def. 1). Most of

the current methodologies for multiobjective problems revolve around identifying

a representative set of Pareto optimal solutions or a single Pareto optimal design.

Figure 1 graphically represents the design objective space of a bi-objective prob-

lem. The shaded portion is the feasible space (that is, where all points satisfy the

constraints, Eqs. 2 and 3). The points on the edge of this feasible space (thick line)

comprise the Pareto optimal set, and satisfy Def. 1. The remainder of the feasible

region (shaded) is termed the “dominated region.”

Definition 2: A dominated point is a point in the design objective space, for

which there exists a point in the feasible space that is better (lower, in the case of

minimization) in all objectives.

2.3. Local and Global Pareto Optimality

For design points that are globally Pareto optimal, the definition of Pareto opti-

mality (Def. 1) holds true with respect to all points in the feasible objective space.

Certain points, however, may be Pareto optimal only in a small region of the fea-

sible design objective space. Such points are called locally Pareto optimal. Multi-

objective optimization techniques aim for obtaining globally Pareto optimal points.

Gradient-based optimizers typically tend to produce locally Pareto optimal points

if the objective functions are multimodal (that is, possessing many local optima).
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2.4. The Pareto Frontier

Each Pareto solution of a multiobjective problem can be identified using either the

design objective values (as in Fig. 1) or the design variable values (x). The former

results in a critical concept of multiobjective optimization – the Pareto frontier.

Definition 3: The Pareto frontier is the set of all Pareto optimal solutions repre-

sented in the design objective (f) space.

The Pareto frontier is a highly useful tool for multiobjective decision making

in the design process. For two-objective problems, the Pareto frontier provides a

graphical environment (Fig. 1) for making effective tradeoff decisions. In Fig. 1, all

design alternatives that lie on the thick line constitute the Pareto frontier. Mathe-

matically, no one Pareto solution is objectively better than any other solution, but

to a designer, each Pareto solution represents a different level of desirability.

2.4.1. Usefulness of the Pareto Frontier

The Pareto frontier provides the designer a clear picture of the tradeoff character-

istics of the different design objectives involved.

Mass (kg)

St
re

ss
 (

M
P

a)
 Design 1 

(High Stress, Low Mass)

Design 2 
(Low Stress, High Mass)

60

50

50 200

Fig. 2. Tradeoff characteristics using a Pareto frontier

Figure 2 depicts a typical Pareto frontier for a two-objective optimization prob-

lem, which involves simultaneously minimizing the mass of a component and the

stress. The design labeled “Design 1” is one that provides the least possible weight

(50 kg), subject to design constraints. This design configuration can be obtained

by simply ignoring the stress objective, and minimizing only the mass. As a con-

sequence, the stress is adversely affected, and is high (60 MPa) for “Design 1.” At

the other end of the frontier is “Design 2”, which provides the lowest possible stress

(50 MPa) – at the cost of worsening the mass objective.

All other points on the Pareto frontier represent varying levels of minimization

with respect to each design objective. The selection of the most desirable alternative

is dependent on which design objective a designer prefers over the others, and by

how much. For example, if he/she prefers the stress objective, then his/her region
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of interest would be the region of the Pareto frontier that offers low values of stress

(in the vicinity of “Design 2”). Thus, the Pareto frontier offers visual guidance to a

designer in making a decision regarding the most preferred design in a multiobjective

sense.

2.5. Pareto Frontier in Multiple Dimensions

So far in the chapter, we have depicted Pareto frontiers only for two-objective

problems. For more than two design objectives, visualization of the Pareto frontier

can be a challenging task. For example, Fig. 3 shows the Pareto frontier for a three

objective problem. Notice that the frontier is no longer a line (as in the case of two

dimensions), but is a surface. Beyond three dimensions, we cannot possibly show

all the objectives on the same plot. Even in three dimensions, understanding the

tradeoffs between the different objectives can be challenging and often impractical.

Pareto frontier visualization and tradeoff characterization in multiple dimensions is

an open research topic3.

Fig. 3. Pareto frontier for three objectives

3. Multiobjective Optimization Solution Techniques

In the previous section, we introduced the basic multiobjective optimization termi-

nology and concepts. In this section, we describe some of the popular solution tech-

niques for multiobjective optimization. Multiobjective optimization solution tech-

niques can be broadly classified into two types: (i) Methods requiring designer pref-

erences, and (ii) Methods that yield discrete representations of the Pareto frontier,

or Pareto set generating methods.
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3.1. Methods Requiring Designer Preferences

These methods require and incorporate designer preferences into the multiobjective

problem formulation.

Definition 4: Preferences are the wishes or requirements of the designer regarding

the different design objectives of a multiobjective problem.

The primary aim of these methods is to provide the designer with a single

Pareto optimal design (instead of several solutions – which requires subsequent

selection). Consequently, these methods are also called Integrated Generating and

Choosing (IGC) methods2, because they integrate the two aspects of multiobjective

optimization and decision making – those of generating a candidate set of Pareto

optimal solutions, and subsequently selecting the most desirable solution, based on

the designer’s preferences.

One of the most challenging tasks for this category of methods is to effectively

and unambiguously model the designer’s preferences, so as to ensure that the result-

ing optimal solution is the most desirable one, at least from a practical perspective.

To model the designer’s preferences, most of the methods belonging to this category

adopt a utility function approach. A utility function is a combination (scalariza-

tion) of mathematical expressions for each design objective under consideration4.

Also termed aggregate objective function (AOF) or preference function, this com-

bined performance measure is treated as the objective function that is minimized or

maximized. Next, we describe some of the popular approaches that belong to this

category.

3.1.1. Weighted Sum

The weighted sum (WS) approach to multiobjective optimization is arguably the

most popular approach in industry. The weighted sum method uses a linear combi-

nation of the objective functions with the help of weights that signify the relative

importance between the objectives. Mathematically, the AOF (which is minimized)

is defined as

J =

nf∑
i=1

wifi (5)

The designer can prescribe scalar values for the individual weights wi, depending

on his/her preference with respect to each design objective. Often, the weights

are chosen so that wi ≥ 0 and
nf∑
i

wi = 1. One would prescribe a higher weight

corresponding to the more preferred design objective. For instance, if stress and

deflection are the two objectives involved, and a designer prefers minimizing stress

more than deflection, then he/she could intuitively choose an adequately high weight

for stress, compared to that for deflection.



April 20, 2007 16:48 WSPC/Trim Size: 9.75in x 6.5in for Review Volume Chapter4

128 A. Messac and A. A. Mullur

Figure 4 shows that the constant value contours of J in Eq. 5 are straight lines

in the objective space. The weights wi define the slope of the contour of J . The

solution to the multiobjective problem is the point where the minimum value AOF

contour becomes tangent to the Pareto frontier – for a specified set of weights.

Although quick and easy to implement, the weighted sum approach suffers from

some well-known drawbacks, which restrict its use in practical design.

1) It is not always easy to choose a physically meaningful set of weights for the

design objectives. This is especially true if the units of the different design objectives

involved are disparate. For example, typical stress values are measured in MPa, and

those of deflection, in inches. Although it is possible to scale the design objectives

using a normalization technique, the scalar weights fail to quantify the relative

importance between the objectives. Furthermore, a weight of, say, 0.3, provides little

information regarding its influence on the stress objective. That is, if a designer

needs an improvement of 10 MPa in stress, should the corresponding weight be

changed to 0.35, 0.5. or 0.8?

2) The linear AOF (Eq. 5) can miss potentially desirable regions of the Pareto

frontier – non-convex regions are unreachable using a linear combination of design

objectives. For example, in Fig. 4, point C, although Pareto, cannot be captured

using the WS approach. This shortcoming could misrepresent certain regions of the

Pareto frontier as non-Pareto (non-optimal), and could lead to undesirable results5.

The second drawback discussed above can be overcome by a judicious modifica-

tion of the AOF of the WS approach.

3.1.2. Compromise Programming

The compromise programming AOF is a modification of the weighted sum AOF.

In this case, the AOF (which is minimized) is a weighted exponential sum of the

objectives, defined as

J =

nf∑
i=1

wif
r
i (6)

where the exponent r ≥ 2. Typically the exponent is chosen to be an even number.

This approach is also known as the weighted exponential sum approach.

The constant value contours of J are curves in the case of compromise pro-

gramming, which grow increasingly sharper as r increases. Figure 4 shows that this

mathematical construct works well for non-convex Pareto frontiers, because the

sharp contours of the AOF curves can “reach into” the non-convex regions5.

However, a critical aspect of the compromise programming approach is the need

to specify weights as preferences for the design objectives. Thus, one of the limita-

tions of the weighted sum method is retained in compromise programming as well.

In addition, now the designer also must specify the value of r, which is not always

an obvious choice.
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Fig. 4. Non-convex Pareto frontier

A popular variation of the compromise programming AOF includes designer-

specified targets as

J =

nf∑
i=1

wi (fi − t∗i )
r (7)

where t∗i is the most desirable value (or target) for the i-th design objective. The

weights wi can be manipulated to specify which objective is more (or less) important

than the other objectives.

3.1.3. Weighted Min-Max Method

The weighted min-max method is another weighted criterion approach. The AOF

under this formulation (which is minimized) is given as

J = max
i

{
wi

(
fi(x) − f i∗

i

)}
(8)

where f i∗
i represents the i-th objective function value obtained by minimizing only

the i-th design objective, subject to constraints4. By varying the weights, a designer

can control the extent to which each objective can potentially meet its target.

However, the selection of weights may yet be an inefficient task. Furthermore, the

objective function in Eq. 8 is non-differentiable, and may lead to potential difficulties

with gradient-based optimizers. This problem can be overcome by re-formulating

the optimization problem with the help of a dummy design variable4.

3.1.4. Goal Programming

Goal programming4 is one of the early methods that attempted to model the de-

signer preferences in a more physically meaningful manner than weight-based ap-

proaches. Goal programming, as the name suggests, requires a designer to specify

goals, or targets, for each design objective – values that the designer prefers the



April 20, 2007 16:48 WSPC/Trim Size: 9.75in x 6.5in for Review Volume Chapter4

130 A. Messac and A. A. Mullur

most. Goal programming (GP) attempts to yield a design that results in objectives

values as close to each target value as possible. To achieve this, GP linearly maps

each objective function value to a preference function value, such that the prefer-

ence function value corresponding to each objective’s target is zero, while all other

values are mapped to real positive numbers (Fig. 5).

objective (fi)
target

d+d-

w+w-

pr
ef

er
en

ce
 

fu
nc

ti
on

Fig. 5. Goal programming preference function

For each design objective, the designer specifies, in addition to the target value,

ti, two weights, w+
i and w−

i , which represent the slopes of the preference function on

either side of the target value. Any deviation to the left or to the right of the target

value results in a non-zero preference function value. During the multiobjective

optimization, the sum of all preference functions is minimized, which potentially

results in a design that minimizes the deviation of each design objective from the

specified target.

Mathematically, the goal programming problem formulation can be represented

as a linear program (optimization problem) as

min
x,d

+

i
,d
−

i

J =

nf∑
i=1

{
w+

i d+
i + w−

i d−i
}

(9)

subject to

fi(x) − d+
i ≤ ti (10)

fi(x) + d−i ≥ ti (11)

d+
i , d−i > 0 (12)

where d+
i and d−i are the deviational variables on the positive and negative sides of

ti, respectively (Fig. 5).

Goal programming is an improvement over the typical weighted criteria methods,

because the specification of target values is more physically meaningful than the

specification of weights. However, goal programming leaves a critical aspect of the

AOF formulation to the designer – selection of the slopes of the preference functions.

Arbitrary selection of w+ and w− in Eq. 9 could lead to numerical scaling issues

related to disparate scaling between the objectives.
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Also, a possible source of difficulties is the fact that goal programming penal-

izes all values of the design objective on one side of ti — equally. This approach

is thus incapable of modeling preferences where certain objective values may be

significantly more desirable than others. For example a value of 200 kg for mass

may be the most desirable, yet a value of 250 kg may be acceptable, and a value

between 250 and 300 kg may be undesirable. In such situations (which are common

in design problems), identically penalizing all mass values greater than 200 kg is

not practical.

3.1.5. Physical Programming

Physical programming (PP), developed by Messac6 (see also Messac et al.7), is an

approach for multiobjective optimization that is capable of effectively modeling a

wide range of complex designer preferences. Furthermore, the designer does not

need to specify any scalar weights to reflect his/her preferences – a major drawback

of most of the AOF formulation techniques described above.

The PP approach categorizes design objectives as belonging to one of the fol-

lowing sub-classes:

(1) Soft Classes:

(a) Class 1S: Smaller-is-better (minimization)

(b) Class 2S: Larger-is-better (maximization)

(c) Class 3S: Value-is-better

(d) Class 4S: Range-is-better

(2) Hard Classes:

(a) Class 1H: Must be smaller

(b) Class 2H: Must be larger

(c) Class 3H: Must be equal

(d) Class 4H: Must be in range

The hard classes become part of the constraints of the optimization problem,

while the soft classes are part of the AOF. For each soft class, the designer specifies

target values (five each for classes 1S and 2S, nine for class 3S, and ten for class

4S). Figure 6 shows a representative piecewise linear preference function for class 4S.

The ten target values on the horizontal (objective function) axis divide the objective

space into several regions of desirability, such as ideal, desirable, tolerable, undesir-

able, highly undesirable, and unacceptable. The target values are specified by the

designer, and they can accommodate a wider array of preferences than with the goal

programming approach. Compare and contrast this situation with Fig. 5. Observe

that as we travel from the central region (the most desirable) to the undesirable

regions in Fig. 6, the slope of the preference function increases in magnitude.

A novel aspect of PP is that the vertical axis, which represents the preference

function value for each objective, has the same range for all of the design objectives.
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This feature avoids potential numerical issues due of disparate scaling between de-

sign objectives. Also, PP automatically calculates the slopes of the preference func-

tions using a simple algorithm that also ensures convexity. More details regarding

the algorithm can be found in Messac6 and Messac et al.7.
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Fig. 6. Physical programming preference function

The nonlinear version of the PP (Messac6), which defines smooth and piecewise

nonlinear preference functions. Nonlinear PP uses splines to define the piecewise

nonlinear components. Its use is recommended for nonlinear optimization problems.

The linear version of PP (Messac et al.7) can be easily formulated as a linear

programming problem (if the objectives are linear functions of the design variables)

by defining deviational variables on the positive and negative sides of each of the

target values for a particular class. The AOF (which is minimized) is the sum of

the preference function values of all objectives.

3.2. Pareto Set Generation Methods

In the discussion so far, we have focussed on multiobjective methods that attempt

to model the designer’s preferences and yield a single Pareto optimal solution. There

is another distinct, yet important, class of multiobjective approaches that focuses

on obtaining a discrete representation of the Pareto frontier. The designer then se-

lects the most desirable design alternative from these representative Pareto optimal

points. Such methods are also referred to as Generate First Choose Later (GFCL)

methods2. The scope of this chapter is limited to methods that yield a discrete rep-

resentation of the Pareto frontier. In most design problems, a discrete representation

is often sufficient for effective decision making.

Desirable features

Before describing some of the popular approaches, we discuss some of the desir-

able qualities of any Pareto set generation method:
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(1) Exploring the entire Pareto frontier: The Pareto frontier generation method

should be capable of exploring all regions of the Pareto frontier. Some popular

methods (such as weighted sum) fail to explore certain regions because of geo-

metrical limitations. In such cases, the decision of the designer could be biased

against the regions that are not represented.

(2) Even distribution of Pareto points: It is critical that all regions of the Pareto

frontier are represented evenly – no one region should be over- or under-

represented. Even representation will ensure that the designer’s decision is not

biased towards or against any particular region of the Pareto frontier.

(3) Global vs. local Pareto points: It is essential that only global Pareto optimal

points are generated. Some of the methods tend to generate locally Pareto or

even non-Pareto points. Non-Pareto and locally Pareto points can be removed

by using appropriate numeric Pareto filters2. In some cases, local Pareto opti-

mum points can be avoided by using global optimizers, such as genetic algo-

rithms.

(4) Computational efficiency: The number of function evaluations required to gen-

erate Pareto optimal points is an important issue for any Pareto frontier gen-

eration technique, especially in simulation-based design, where each function

evaluation could entail a significant computational expense. The recent thrust

in the field of multiobjective optimization has been towards developing more

computationally efficient methods.

3.2.1. Weighted Criteria Methods

As in the case of methods requiring preferences, weighted criteria methods are ar-

guably the most popular Pareto frontier generation techniques. The basic concept is

similar to that discussed in Sec. 3.1.1. We first form an aggregate objective function,

for example,

J =

nf∑
i=1

wif
r
i (13)

where r = 1 represents the weighted sum AOF, and r ≥ 2 represents the compromise

programming AOF. In the approach requiring designer preferences, the designer

specifies a particular set of weights to obtain a single Pareto optimal solution.

However, to generate the Pareto frontier using the weighted criteria approach, we

vary the weights in a specified range. Each unique combination of weights defines a

single objective optimization problem, which when solved yields a Pareto solution.

By sequentially varying the weights, we can explore different regions of the Pareto

frontier.

A critical issue regarding the inability of the weighted sum approach to explore
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non-convex Pareto frontier regions was discussed in Sec. 3.1.1. In the case of Pareto

frontier generation, we need to address yet another critical issue – that of evenness

of the obtained Pareto points. In general, a uniform change in the weights in Eq. 13

does not guarantee an even distribution of points on the Pareto frontier (Fig. 7).

0 8

0

5

f1

f2

(a) Weighted sum

0 8

0

5

f1

f2

(b) Compromise programming

Fig. 7. Uneven distribution of Pareto points - Example 1

Example 1

min
x

{w1f
r
1 + w2f

r
2} (14)

subject to

f1 = x1; f2 = x2 (15)(
f1 − 10

10

)8

+

(
f2 − 5

5

)8

− 1 ≤ 0 (16)

−10 ≤ x ≤ 10 (17)

The above two-objective example is solved using the weighted sum (r = 1) and

compromise programming (r = 2) approaches by uniformly varying the weights

between 0 and 1 (wi ≥ 0,
∑

wi = 1). Figure 7 shows that the weighted criteria

methods do not result in an even distribution for this example. In general, steep

and shallow sections of the Pareto frontier are often under-represented. Furthermore,

increasing r tends to concentrate solutions in the central region (also termed the

“knee”) of the Pareto frontier.

3.2.2. ǫ-Constraint Method

The ǫ-constraint method is a precursor to several recently developed Pareto point

generation methods. Instead of forming an AOF of all of the objectives, the ǫ-

constraint method minimizes only a single objective, while constraining the re-
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maining objectives. By changing the parameters of these additional constraints, we

can obtain distinct Pareto points.

For example, for a two-objective problem, the ǫ-constraint method is formulated

as

min
x

f1(x) (18)

subject to

f2(x) ≤ δ (19)

g(x) ≤ 0 (20)

h(x) = 0 (21)

xl ≤ x ≤ xu (22)

The constraint f2(x) ≤ δ reduces the effective feasible objective space, while

Eq. 18 minimizes the other objective, that is f1. The Pareto frontier can be explored

by sequentially changing δ from the minimum to the maximum possible value of f2.

Remarks:

1) The ǫ-constraint approach is easy to understand and implement for two-objective

problems, because we would only need one additional constraint (Eq. 19). However,

for multiple objectives, handling too many additional constraints and their param-

eters (δ) can be cumbersome.

2) The ǫ-constraint approach may prove ineffective if the Pareto frontier is steep or

shallow. In such cases, specifying a reasonable increment (or decrement) for δ can

be a challenging task. As a result, this method could miss steep or shallow sections

of the Pareto frontier. Also, an even distribution of points is not possible in most

practical cases.

3.2.3. Normal Boundary Intersection Method

The normal boundary intersection (NBI)8 method is an improvement over the ǫ-

constraint method in that it is effective for multiobjective problems also. Similarly

to the ǫ-constraint method, NBI involves solving a series of single objective opti-

mization problems, subject to a shifting constraint. The NBI method is one of the

earlier methods to emphasize the importance of obtaining an even distribution of

Pareto points.

Mathematically, the NBI method is formulated as
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min
x,λ

λ (23)

subject to

Φw + λu = f(x) − fu (24)

g(x) ≤ 0 (25)

h(x) = 0 (26)

xl ≤ x ≤ xu (27)

where λ is a dummy design variable, fu is the utopia point, defined as fu =[
f1∗
1 f2∗

2 · · · f
nf∗

nf

]T
– the coordinates representing the minimum values of

each objective. Φ is an nf × nf matrix where the i-th column contains the vec-

tor f(x∗

i )− fu, where f(x∗

i ) is the objective function vector evaluated at the design

that minimizes the i-th objective (also termed “anchor point”). w is a vector of

positive weights that sum to one, and u = −Φe, e being a vector of ones.

Geometrically, NBI constrains (through Eq. 24) the solution of Eq. 23 to lie on

the normal to the line (hyperplane in multiple dimensions) joining the anchor points.

As w is systematically varied, we can obtain a uniform distribution of points on the

Pareto frontier. It is possible, however, for the NBI method to generate locally

Pareto optimal solutions, or even non-Pareto optimal solutions, regardless of the

type of optimizer used (gradient or non-gradient based).

3.2.4. Normal Constraint Method

The normal constraint (NC) method was developed by Messac et al.9,5 to overcome

some of the limitations of the NBI method. The NC method (i) generally reduces

the number of non-Pareto optimal points generated, (ii) can be easily extended

to guarantee the generation of the entire Pareto frontier9, and (iii) uses inequality

constraints instead of equality, which results in favorable numerical conditioning

properties.

The NC method is conceptually similar to the NBI method. The NC method

uses anchor points for each objective to define a utopia hyperplane, or a utopia line

in two dimensions (as shown in Fig. 8). It then forms a grid of points Xpk on this

utopia hyperplane (number of points is specified by designer). For each Xpk, a single

objective optimization problem is defined, which imposes an additional constraint

that reduces the feasible region, as shown.

The geometrical details of the NC method are shown in Fig. 8 for a generic

utopia hyperplane point Xpk. The anchor points for the two objectives are shown

as f1∗ and f2∗. The k-th optimization problem statement using the NC method is

given as
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Fig. 8. Normal constraint method

min
x

f2(x) (28)

subject to(
f2∗ − f1∗

)T
(f(x) − Xpk) ≤ 0 (29)

g(x) ≤ 0 (30)

h(x) = 0 (31)

xl ≤ x ≤ xu (32)

where f(x) = [f1(x) f2(x)]
T
. Solving the above single objective optimization prob-

lem projects the point Xpk normally onto the Pareto surface, and yields the Pareto

optimum, as shown in Fig. 8. By allowing the normal line to intersect at different

locations on the utopia line, we can obtain a uniformly distributed set of Pareto

optimal points.

The NC method offers important advantages over NBI (as discussed above).

However, disparate scales of the objective functions can still pose a problem, which

can be avoided using a simple linear normalization scheme (discussed later in

Sec. 4.2).

3.2.5. Multiobjective Genetic Algorithms

Genetic algorithms (GA) belong to an entirely different class of optimization tech-

niques. Genetic algorithms attempt to mimic the natural evolution process – in order

to solve optimization problems. While a detailed discussion regarding their working

is beyond the scope of this chapter, we mention some of the notable developments

in this field, especially in multiobjective optimization.

Recently, GAs have been effectively used to generate Pareto solutions for multi-

objective optimization problems. Genetic algorithms simultaneously process a pop-
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ulation of candidate points (traditional optimization techniques consider a single

point), which “evolves” towards the Pareto frontier. Genetic algorithms are well

suited for multiobjective optimization problems, because they can yield a discrete

representation of the Pareto frontier in a single pass of the algorithm. Also, mul-

tiobjective GAs are considered to be effective, because they do not attempt to

aggregate the individual objective functions. Throughout the optimization, they re-

tain the vector form of the objective function (Eq. 1). Furthermore, because GAs

are non-gradient optimizers, they are capable of yielding globally Pareto optimal

points. Also, they are capable of handling discrete design variables.

Genetic algorithm approaches, however, are hampered by issues such as poor

distribution of Pareto points (resulting in clusters) and excessive number of func-

tion evaluations. The evolution process needs to be repeated over several hundred

“generations,” or cycles, which may make multiobjective GAs computationally in-

efficient. Another criticism often directed towards GAs is the excessive parameter

tweaking often needed to obtain useful results.

One of the earliest uses of multiobjective GAs was by Schaffer10, when he pro-

posed the Vector Evaluated Genetic Algorithm (VEGA) approach. Deb et al.11

developed the Non-dominated Sorting Genetic Algorithm (NSGA) for obtaining

Pareto optimal points. Some of its features include a systematic approach for

avoiding under- or over-representation of certain Pareto regions and a fast sort-

ing capability. The Strength Pareto Evolutionary Approach (SPEA) by Zitzler and

Thiele12 is another notable development. Multiobjective GAs have been studied

extensively and tested on numerous multiobjective optimization problems in the

above-mentioned publications.

Example 2

min
x

{f1(x) f2(x)} (33)

subject to

f1 = x1; f2 = x2 (34)

5e−x1 + 2e−0.5(x1−3)2 ≤ x2 (35)

0 ≤ x1,x2 ≤ 5 (36)

We solve the above bi-objective problem using three representative Pareto set

generation approaches, which will highlight some of their advantages and limita-

tions: (i) Weighted Sum, (ii) Normal Constraint, and (iii) Non-dominated Sorting

Genetic Algorithm. The MATLAB function ‘fmincon’ is used to solve each single-

objective optimization in the case of the WS and NC approaches. Note that the

Pareto frontier for this problem is disconnected (Fig. 9(a)).

Figures 9(b-d) depict the Pareto solutions obtained by the three approaches, in

comparison to the actual Pareto frontier. As expected, the weighted sum approach
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Fig. 9. Comparison between different Pareto frontier generators

(Fig. 9(b)) does not result in an even distribution of Pareto points, and also misses

certain sections of frontier. The NC approach (Fig. 9(c)) results in the best distribu-

tion of the three approaches, after easily filtering the non-Pareto solutions. Finally,

NSGA (population size 100, evolved over 150 generations) results in an accurate

representation of the global Pareto frontier (Fig. 9(d)) – at the cost of too many

function evaluations.

3.3. Choosing an Appropriate Solution Approach

An important aspect of multiobjective optimization is the choice of an appropriate

solution technique for a given design problem. As in most areas of science and

engineering, there is no single multiobjective optimization method that works best

under all circumstances. However, below we provide some guidelines to help select

an appropriate technique.

Preference-based approaches vs. Pareto set generation approaches

The decision regarding whether to choose an approach that requires articulation

of designer preferences or one that generates the entire Pareto frontier is generally

guided by three factors: (a) available computational resources (and time), (b) avail-
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ability of preference information, and (c) visualization capabilities.

(a) Available computational resources: Typically, generating the entire Pareto fron-

tier can be computationally more expensive than obtaining a single Pareto optimal

solution. Especially for problems involving expensive simulations, such as finite ele-

ment analysis or computational fluid dynamics, computational requirements could

be a major concern. In such situations, attempting to obtain the entire Pareto

frontier may be impractical.

(b) Availability of preference information: The second important factor is the avail-

ability of preference information, as required by methods such as goal programming

and PP. Typically, in the early phases of design, a designer might not have deep

knowledge of what he/she wishes. In such cases, obtaining a set of all Pareto points

may present a more favorable alternative.

(c) Visualization capabilities: Another factor is the visualization aspect of multiob-

jective optimization. For problems involving more than three objectives, it may be

challenging to graphically (or otherwise) convey the optimal results to a designer

for decision making . On the other hand, methods that combine objective functions

beforehand need only convey the progress of the optimization process. Current re-

search activities are often directed towards better visualization capabilities of the

Pareto frontier. However, Pareto set generation methods are more manageable when

restricted to problems involving few design objectives.

4. Multiobjective Optimization in Practice

There are several issues in multiobjective optimization that are important from a

practical perspective. Specifically, in this section, we describe some important deci-

sion making tools that are beneficial in the context of Pareto set generating methods.

We also discuss objective function normalization as an approach to overcome scaling

issues. Finally, we discuss the use of Pareto set metrics.

4.1. Decision Making Tools

The effectiveness of Pareto frontier based methods can be greatly enhanced by

several decision making tools. These are numerical tools that help obtain a more

meaningful representation of the Pareto frontier. It is important to note that these

tools do not improve the quality of the existing Pareto set; they simply ease the

process of selecting desirable Pareto solutions.

4.1.1. Pareto Filtering Techniques

In the previous section, we described several Pareto set generation methods. We

observed that some methods, such as NBI and NC, can generate locally Pareto

or non-Pareto optimal points. However, the generation of such points may not be

a serious limitation of the method, because such unwanted points can be identi-

fied and removed after the optimization process is complete. Numeric filters have
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been developed by Mattson et al.2, which overcome the limitation of the methods

that generate non-optimal points. Specifically, a “global Pareto filter” systemati-

cally searches through all obtained solutions, and removes the non-globally Pareto

optimal designs – leaving a reduced set of points that are globally Pareto. This re-

duced Pareto set containing only the globally optimal designs can then be presented

to the designer for decision making. For mathematical details of the global Pareto

filter, refer to Mattson et al.2.

4.1.2. Smart Pareto Representation

One of the desirable qualities of Pareto set generation methods is the ability to yield

an even representation in the design objective space. However, recently, there has

been increased interest in developing more meaningful Pareto frontier representa-

tions. The basic premise is that in practical design problems, certain regions of the

Pareto frontier may be of more interest to a designer than other regions.

Particularly, regions that entail practically insignificant tradeoff may not be

highly important to a designer. To understand insignificant tradeoff, we refer to

Fig. 2, where the Pareto frontier is particularly shallow in the regions of high mass.

As a result, if we are willing to give up a small amount in the stress objective, we

will be able to significantly improve on the mass objective. Such regions may not

need to have the same density of Pareto points as another region with significant

stress-mass tradeoff.

Moreover, such a non-uniform distribution could result in a reduction in the total

number of Pareto points, and is termed “smart representation” of the Pareto frontier

in Mattson et al.2. From a decision making perspective, a smaller representative set

of Pareto points is more manageable, and could ease the task of decision making

for the designer.

4.2. Objective Function Normalization

A major source of difficulties in multiobjective optimization can be traced to uneven

scaling between the objective functions. Most of the Pareto set generation methods

described in this chapter may fail to yield useful results if the objective functions

have widely varying scales. However, scaling issues can be overcome by performing

a simple linear transformation of the design objectives.

Under this transformation (normalization) scheme, each objective function is

first minimized separately to obtain the anchor points f i∗ =
[
f i∗
1 f i∗

2 · · · f i∗
nf

]T

; i =

1, .., nf . Using the coordinates of these anchor points, the objective function space

(that includes the Pareto frontier) is linearly transformed to lie within a unit hy-

percube (Fig. 10). Mathematically, the transformed domain (f̄) is given by
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Fig. 10. Objective function normalization

f̄i(x) =

fi(x) − min
j

f j∗
i

max
j

f j∗
i − min

j
f j∗

i

(37)

Pareto set generation can be performed in the normalized space, and the solu-

tions can be mapped back to the original domain using the above transformation

in reverse. Although effective, this normalization scheme may be computationally

expensive – if obtaining the coordinates of all of the anchor points is expensive.

However, a similar normalization may be performed – without obtaining the anchor

points – if one has approximate knowledge of the range of each objective function.

For a more detailed discussion on normalization in multiobjective optimization,

refer to Marler and Arora13.

4.3. Pareto Set Accuracy Metrics

When we have more than three objectives, visualization of the Pareto frontier is no

longer a simple matter. Visualization in n-dimension continues to be a subject of

considerable interest. Below, we describe a metric that can be used to quantify the

quality of Pareto sets obtained using a Pareto set generator.

The Pareto set accuracy metric can be used for testing the effectiveness of a

particular Pareto set generation method. It is useful for estimating how an obtained

Pareto set compares to the true Pareto set of the test problem. The error metric is

defined as follows,14

P f
eval =

nobt∑
i=1

{
min

j
‖f (obt)i − f (act)j‖

}
nobt

(38)

where f (obt) is the set of nobt Pareto points obtained by a given Pareto set generator,

and f (act) is the set of true Pareto optimal points. Thus, P f
eval is the average of the
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minimum euclidian distances of each obtained Pareto point from the actual Pareto

frontier. A smaller value of P f
eval represents a more accurate set of Pareto points.

Specifically, P f
eval = 0 indicates that the two Pareto sets coincide.

The above accuracy (quality) metric can also be calculated in the design variable

(x) space by simply replacing f with x in Eq. 38. However, the above metric should

be used with caution: it may be highly sensitive to objective function or design

variable scaling. One way to avoid scaling problems is to normalize the concerned

values using the technique described in Eq. 37.

Other Pareto set evaluation metrics exist that do not require information about

the true Pareto frontier. For example, the hypervolume metric15,12 is a measure of

the “size of the Pareto space.” It is equal to the sum of the hypervolumes defined

using each Pareto point and each of the objective axis. However, this measure works

well only for convex Pareto frontiers, and could be misleading for non-convex ones.

The interested reader may refer to Zitzler and Thiele12, Wu and Azarm15, and

Velduizen14 for more information regarding Pareto set metrics. On a similar note,

Messac and Mattson9 propose a measure for evenness of a Pareto set, based on

euclidian distances in the objective space.

5. Applications and Recent Advances in Multiobjective

Optimization

Multiobjective optimization techniques have been widely used both in industry and

in academic research. We briefly mention some of the engineering applications.

Physical programming has been applied to a wide variety of engineering prob-

lems. Messac and Hattis16 have used PP for the design of high speed civil transport.

Messac and Wilson17 apply PP for the multiobjective optimal design of a controller,

while Messac et al.18 use PP for a nine-objective structural optimization problem

involving the design of rigidified thin-wall membranes for housing . The NC method

has been demonstrated on several test problems involving truss optimization9,5.

Industrial applications of multiobjective optimization include multiobjective

crashworthiness optimization19,20 and the multiobjective design of a bimorph

actuator21. Multidisciplinary applications of multiobjective optimization are also

common. Tappeta and Renaud22 present a multiobjective collaborative optimiza-

tion framework, while McAllister et al.23 apply multiobjective optimization to a

race-car design problem.

5.1. Recent Advances

Much recent progress in multiobjective optimization has been towards effectively

incorporating the developed techniques into a multidisciplinary simulation-based de-

sign environment. Multidisciplinary design optimization (MDO) is characterized by

the presence of numerically intensive analysis modules. Thus, each design objective

and constraint function of the multiobjective problem could be a computationally
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expensive simulation. In such situations, it may be difficult to generate even a sin-

gle Pareto optimal point. Consequently, there have been recent developments in

using approximate models of the simulations in the multiobjective problem state-

ment. Effectively constructing these approximations (metamodels) by performing

the expensive simulations at judiciously selected design points is an active area of

research24. Approximation-based design provides a computationally efficient envi-

ronment for multiobjective decision making.

Another critical area of research in multiobjective optimization is that of visu-

alization. Visualization does not mean simply presenting data in the form of tables

and charts. New visualization capabilities, both in terms of optimization progress

visualization and Pareto frontier visualization, which are physically meaningful to

the designer, are being developed. Physical programming based visualization was

developed by Messac and Chen25, which allows a designer to visualize the relative

tradeoffs between design objectives in a physically meaningful manner during the

optimization. Mattson and Messac3 discuss a Pareto frontier visualization approach

in multiple dimensions.

6. Summary and Concluding Remarks

Multiobjective optimization can play a critical role in most modern design method-

ologies. Engineering design is a decision making process, and multiobjective tech-

niques facilitate this decision making by providing the designer a Pareto optimal

set of designs, or a single Pareto point that reflects the designer’s preferences. Two

categories of multiobjective optimization techniques were described in this chapter:

methods requiring designer preferences, and methods that generate a representa-

tive set of Pareto points. Particularly, we noted some of the deficiencies of the

weight-based multiobjective methods, such as the weighted sum and compromise

programming approaches – in the context of Pareto frontier representation. Finally,

we discussed some practical issues in implementing these multiobjective approaches.

Importantly, note that the discussion in this chapter is limited in scope, and the

reader is encouraged to consult the references for more details in this ever growing

and exciting field.

7. Problems

Problem 1: For a hypothetical bi-objective optimization problem with f1 and f2 as

two generic design objectives, formulate an appropriate AOF (J) for the following

designer preferences.

(a) minimize f1 and minimize f2, and both objectives are equally important. (b)

minimize f1 and maximize f2, and f1 is twice as important as f2. (c) Get f1 as

close to 5 as possible, and f2 as close to 10 as possible. (d) maximize f2 and get f2

as close to 10 as possible.

Explain any potential problems with each of your above AOF formulations.
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Problem 2: Consider the design of a pinned-pinned beam of length L = 10 m, width

b = 0.05 m, and height h, with a load P = 400 N applied at mid-span. The material

density is denoted by ρ = 104 kg/m3, and the Young’s modulus is E = 1011 Pa.

The quantities of interest to a designer are the mid-span displacement and beam

mass. The designer would like both of these quantities to be as low as possible, by

controlling the height h.

(a) Express the displacement and mass as a function of the design parameters. (b)

Identify the design objective(s) and design variable(s) in this problem. (c) Formulate

a multiobjective problem, and state it in the format of Eq. 1.

Problem 3: In Problem 2 above, obtain an optimal design configuration in each

of the following cases of designer preferences. Use any multiobjective technique

discussed in this chapter. The designer:

(a) is more inclined towards a design that provides a low mass value. (b) would

much rather prefer the displacement objective over the mass objective. (c) prefers

both the displacement and mass objectives equally. (d) would like a design that

provides as low a displacement as possible, and mass as close to 295 kg as possible.

After obtaining the optimal designs, plot each of them (on the same figure) in the

design objective space. Using this plot, comment on the performance of the chosen

optimization technique. Comment also on the non-uniqueness of your answer, and

its practical implication.

Problem 4: Using the weighted sum approach, obtain a discrete representation

(30-40 points) of the Pareto frontier for Problem 2 above. Consider two cases: (i)

non-normalized design objectives with mass in kg, and displacement in m, and (ii)

normalized objectives using the normalization scheme in Eq. 37. How did normal-

ization help (or did not help) in this case, and why?

Problem 5: Consider the following bi-objective optimization problem.

min
x

[f1(x) f2(x)]
T

f1 = x2; f2 = (x − 1)2

−4 ≤ x ≤ 4

(a) Obtain several optimal points on the Pareto frontier using the compromise

programming method (r = 2). Use Matlab’s fmincon function for optimization.

Plot the Pareto points in the objective space.

(b) Obtain and plot Pareto frontiers for r = 1, 2, 4, 6, 8. Comment on the general

trend of Pareto point distribution as r increases.

Problem 6: Plot the Pareto frontier (25-30 points) for the following bi-objective

problem using: (a) Weighted sum, (b) Compromise programming using an appro-

priate exponent, and (c) Normal constraint. Explain the advantages and limitations

of each method by examining the plots.
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min
x

[f1(x) f2(x)]
T

f1 = x1; f2 = x2

x2
1 + x2

2/9 ≥ 1;x4
1 + x4

2 ≥ 16

x3
1/27 + x3

2 ≥ 1

0 ≤ x ≤ 2.9
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Recently, shape optimization has been implemented into several commercial 

finite element programs to meet industrial need to lower cost and to improve 

performance. This chapter provides a comparatively easy method of shape 

optimization to implement into a commercial finite element code by using 

geometric boundary method. The geometric boundary method defines design 

variables as CAD based curves. Surfaces and solids are consecutively created 

and meshes are generated within finite element analysis. Then shape 

optimization is performed outside of finite element program. 

1.  Introduction 

Shape optimization can lead to minimization of mass by changing or determining 

boundary shape while satisfying all design requirements. Shape optimization has 

received increasing interest for about 3,000 years to achieve best results within 

limited sources, beginning with the isoperimetric problem. The history of 

isoperimetric problem, the determination of the shape of a closed curve of given 

length and enclosing the maximum area on a plane, begins with the legendary 

origins in the “Problem of Queen Dido” about 900BC.  

Virgil told a story of Queen Dido in his famous epic ‘The Aeneid.’
(1)

 Dido, 

also called Elissa, was princess of Tyre in Phoenicia. Escaping tyranny in her 

country, Dido came to the coast of Libya and sought to purchase a land from the 

natives. However, they asserted that they would sell only as much territory as 

could be enclosed with a bull’s hide. Therefore, she had his people cut a bull’s 

hide into thin strips and sew them together to make a single and very long string. 
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Then Dido took the seashore as one edge for the piece of land and laid the skin 

into a half-circle. By her institution, she inferred that the maximum area bounded 

by a line could be enclosed by a semicircle as shown in Fig. 1. In this way, she 

could purchase the largest site called “Bull’s Hide.” In that site, Dido and her 

friends founded Carthage, a city in today’s Tunisia. 

 

 

Fig. 1 Geometric description of isoperimetric problem which originated by Queen Dido in about 

900BC 

 

In the engineering field, the first shape optimization problem was defined by 

Galileo in 1638 at his famous book titled ‘Dialogues Concerning Two New 

Sciences,’ where he presented a logical definition and solution for the shape of a 

cantilever beam for uniform strength as given in Fig. 2.
(2)

  

 

 

Fig. 2 Shape optimization problem defined by Galileo in 1638 

Different curves of equal 

length connecting arbitrary two 

points on a line 
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The subject of shape optimization has been a topic of in-depth research for 

over three decades since Zienkiewicz and Campbell
(3)

 presented a basic 

formulation for the problem. Structural optimization methodologies are now 

noticeably matured and these methods have been implemented into commercial 

finite element programs. Morphing technology has been developed to treat large 

shape changes without mesh distortion during shape design process. However, 

shape optimization within finite element program needs considerable manual 

efforts to define design variable and added constraints, and to integrate with 

CAD system and optimizer. In this chapter, we summarize definition of standard 

shape optimization problem and its solution schemes. Then some limits of 

methods are described and an emerging technique, the so-called geometric 

boundary technique, is introduced. The geometric boundary method defines 

design variables as CAD based curves. Then surfaces and solids are 

consecutively created and meshes are generated within finite element analysis. 

An engineering application of geometric boundary technique is presented to give 

insights for practical design applications. 

2.  Definition of Shape Optimization Problem 

Structural problem can be governed by means of the principle of virtual work for 

a deformable continuum body in static equilibrium under the action of specified 

body force if  and surface traction 0
it  as follows: 
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for kinematically admissible virtual displacement iuδ . V denotes the known 

domain in analysis phase, uΓ  and tΓ  represent displacement and traction 

specified boundaries, respectively, as given in Fig. 3. Note that the summation 

convention is applied for repeated index.  

A shape optimization problem can be defined in general as follows: 
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where ),( ij uVg and ),( ik uVh  denote inequality and equality constraints 

respectively. Each constraint describes a design requirement. 

 

 

Fig. 3 Definition of a deformable body and applied forces 

 

Definition of design variables characterizes the types of optimization such as 

sizing, shape and topology as illustrated in Fig. 4. In sizing optimization, a 

typical size of structure such as thickness of a beam and shell elements and 

material properties such as density, elastic modulus, thermal conductivity etc are 

optimized without changing meshes. In shape optimization, the shape of a 

structure, i.e., boundary of design domain such as length of a beam and boundary 

of shell is optimized so that meshes are varied as design changes. In topology 

optimization, topology of a structure is optimized so that shape and connectivity 

of design domain are altered.  

 

 

Fig. 4 Definition of types of design variables 

(a) Sizing        (b) Shape        (c) Topology 

tΓ  

uΓ  

if  

0
it  

V 
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Suppose that a torque arm given in Fig. 4 is modeled by using shell elements 

for finite element analysis. Then, thickness of each shell element and material 

properties as shown in Fig 4 (a) can be candidates of sizing design variables. 

Geometric boundary such as size of holes and outer shape of torque arm as 

illustrated in Fig. 4 (b) can be candidates of shape design variables. In addition to 

shape design variables, change of connectivity within design domain such as new 

hole as shown in Fig. 4 (c) can be candidate of topology design variables. 

It is important to note that shape optimization problem may have multiple 

solutions so unique solution is not guaranteed because it is an ill-posed problem 

like most design problems. The reason is that the domain in which to look for the 

final design domain, )(ΓV , is not determined yet. Moreover, influence of )(ΓV  

on the governing equation Eq. (1) or on the design constraints ),( ij uVg  and 

),( ik uVh  is not explicit. However, our goal is not to obtain absolute optimum 

design, but to get a better design or at least best design within the neighborhood 

of small design changes. Therefore, we don’t prove that our solution is global 

optimum design. 

3.  Shape Optimization Methods 

Shape optimization based on finite element analysis has received increasing 

interest in the practical design because the finite element analysis can replace 

physical experiments in many engineering fields. However, it is difficult to 

provide continuous shape changes during shape optimization without the mesh 

distortion of finite element analysis. In addition to the formulation for shape 

optimization given in Eq. (2), mathematical representation of the geometric 

boundary, mesh generation and manipulation play an important role in shape 

optimization when finite element program is employed to predict performances.  

The design boundary can be properly parameterized by using a parametric 

language that is often available in preprocessor of finite element programs. 

Moreover, finite element program is widely integrated with a commercial CAD 

system under design frameworks for industrial design. Thus, shape optimization 

with high-fidelity finite element program can be performed with minimum 

manual efforts. 

In this section, techniques for representation of geometric boundary are 

reviewed and geometric boundary method that defines boundary by using CAD 

based curves is suggested. Then funnel shape of cathode ray tube for display 

device is optimized to reduce the depth. 
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3.1.  Element Nodal Coordinate Method 

Element nodal coordinate method is an early method for shape optimization 

using finite element nodal coordinates as design variables.
(4)

 However, relocation 

of boundary nodal points often deteriorates the mesh quality or an unacceptable 

design as shown in Fig. 5. To avoid the possibility of mesh distortion or 

unacceptable designs, new constraints must be added to control the movement of 

each nodal coordinate by trial and error. Therefore, it is natural to integrate with a 

CAD system to define suitable design boundary and with a good mesh generator 

to update the finite element model while changing design variables.  

The boundary shape can also be obtained as a linear combination of several 

basis shapes represented by boundary element nodal coordinates such as a 

mapped mesh generator,
(5)

 prescribed displacements, or fictitious loads.
(6)

 In 

order to characterize the continuous shape changes with a finite number of design 

variables, the reduced-basis method where a few of design vectors are usually 

used to sufficiently describe the shape changes in finite element analysis has been 

implemented.
(7)

  

 

 

3.2.  Geometric Boundary Method 

Geometric boundary for shape optimization can be defined by CAD-based curves, 

which are referred to as geometric boundary method. For shell type structure, 

 

(a) Initial design                        (b) Unacceptable optimum shape 

Fig. 5 Shape optimization of square plate with square hall 
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appropriate curves are predefined, surface is generated from the predefined 

curves, and automatic mesh generator generates meshes on the surface. Once the 

design is changed, CAD-based curves are changed. Then surface modification 

and new mesh generations are sequentially followed during shape optimization 

procedure. However, note that geometric boundary method is not recommended 

to 3-dimensional finite elements such as hexahedral element because of 

limitation in automatic mesh generation. 

In this chapter, we performs shape optimization for cathode ray tube of flat 

panel display device to minimize its depth for space saving.
(8)

 To reduce the 

depth of cathode ray tubes, the most important component is a funnel that should 

mechanically withstand the vacuum pressure between the inner and the outer 

pressures. An ideal arch-like shape of funnel geometry is initially modeled to 

distribute vacuum stress from the shape of the original product. However, in 

order to reduce the depth of cathode ray tubes without failure, the arch-like shape 

of the funnel is optimized to achieve the goal systematically. 

3.2.1.  Definition of Shape Design Variable 

In order to generate 3-dimensional funnel geometry of the cathode ray tubes, 

three axes of funnel geometry are defined as short, long and diagonal axes as 

illustrated in Fig. 6. Because funnel geometry is symmetric, the axes on the first 

quarter are generated and expanded to full domain. Curve along each axis can be 

precisely described by a rational Bezier function of degree 5 with 6 control points 

that represents accurately the full 3-dimensional funnel geometry as given in  

Figs. 6 and 7. Rational Bezier curve of degree n is given by a weighted 

summation of Bernstein polynomials, )(, tB ni , as follows: 
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where the points iP  are control points and iw  the nonnegative weights, 

respectively.  

To meet the design goal for cathode ray tube, the shortest depth of funnel 

must be achieved. However, the depth is specified as a target value in this 
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research. Note that we select a control point as design variable along each axis as 

marked in Fig. 7. And we have examined that 3 design variables can provide 

smooth shape of funnel.  

3 curves are generated from 6 control points of each axis and translated into 

the smooth surface passing through 3 curves for finite element mesh.
(8)

 Then 

finite element meshes on the surface are automatically generated by auto-mesh 

command. If mapped meshes are used, we can control the quality of finite 

element meshes. Generating curves, surface and meshes are executed in the 

preprocessor of finite element program. In this study, APDL (ANSYS Parametric 

Design Language) is used to generate Bezier curves, surface by ASKIN and 

meshes by AMESH during shape optimization. 

 

 

Fig. 6 Definition of shape variables for funnel geometry using 3 curves along each axis 

 

 

 

Fig. 7 Rational Bezier curve of degree 5 and its control point on an axis 

Control point used by D.V. 
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3.2.2.  Shape Optimization 

Since glass is brittle, maximum principal stress becomes the failure criterion. The 

first principal stress of the original model is obtained as 3.64 kgf/mm
2
 that is 

beyond the yield strength. Therefore, the maximum principal stress should be 

minimized below the specified yield strength without adding mass of the funnel.  

For simplicity, we optimize the shape of funnel while maintaining its depth 

that is given as a target value by designer. In this study, one design variable from 

each axis is selected, but you can add more design variables to obtain better 

shape. Now we define shape optimization problem with three design variables as 

follows: 
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Table 1 shows optimum result of funnel shape in cathode ray tube. Fig. 8 

shows the stress distribution for the optimum shape of the cathode ray tube. The 

maximum stress is reduced by 12.4 % without increasing mass of the funnel.  
 

 Initial Optimum 

1w  1 0.997 

2w  1 0.956 

3w  1 1.092 

Maximum stress (MPa) 35.67 31.65 

Mass (kg) 24.77 24.77 

 

For highly time-consuming simulation, approximation models can be replaced 

high-fidelity simulation models to predict performances efficiently during shape 

optimization.
(9)

 To generate efficient approximation models of performance over 

design domain, good metamodels, appropriated sampling strategy and validation 

method of metamodel accuracy are considered.  

4.  Concluding Remarks 

Shape optimization can be employed for daily computer aided design tool 

because the manual efforts for seamless integration of CAD system, finite 

Table 1 Optimum result of cathode ray tube 
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element program and optimizer at high fidelity levels are considerably reduced. 

This chapter addresses representation of design variables for shape optimization 

problem and its implementation methods.  

A comparatively easy method for shape optimization to implement into a 

commercial finite element code is illustrated by using geometric boundary 

method. Curve generation, surface generation, and mesh generation are 

performed in the finite element program by using the so-called parametric 

language. Shape optimization of the funnel for a cathode ray tube is performed 

by using a commercial finite element program and a reasonable shape of funnel 

is obtained.  

For highly time-consuming simulation, approximation models need to be 

employed to predict performances efficiently. Moreover, shape optimization 

program must be integrated with topology optimization program in order to 

convert optimum topology into an initial shape for shape optimization 

automatically. 

 

 

Fig. 8 Distribution of maximum stress on optimum shape of funnel 
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CHAPTER 6
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Taking as a starting point a design case for a compliant mechanism (a force inverter), the
fundamental elements of topology optimization are described. The basis for the develop-
ments is a FEM format for this design problem and emphasis is given to the parameteri-
zation of design as a raster image and the techniques associated with solving this class of
problems by computational means.

1. Introduction

Topology optimization is a phrase used to characterize design optimization formulations
that allow for the prediction of the lay-out of a structural and mechanical system. That is,
the topology or “landscape” of the structure should be an outcome of the procedure. In
principle the result of a topology optimization procedure is also optimal with respect to
size and shape, but it is here essential to note that fundamental differences in the design pa-
rameterization means that direct comparisons are difficult in practise. Moreover, topology
optimization is often restricted to design situations with a moderate number of constraints.
One should always consider topology optimization as a companion discipline that provides
the user with new types of designs that may be processed directly or which may be further
refined using size and shape optimization.

The classical concept of lay-out design was created in the early 1900s by Michell1 and
was concerned with design of “thin” frame structures in a setting of plastic limit design.
This work was based on analytical methods. Much later, the methods of mathematical pro-
gramming, more specifically linear programming techniques and the simplex method, were

161
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employed for stress constrained minimum weight design of truss structures.2,3 By allow-
ing for variable cross-sectional areas with a lower bound equal to zero, the single load,
minimum compliance optimal topology of a truss can be determined by solving a linear
programming problem. The topology here signifies which nodes that are connected, start-
ing from a so-called ground-structure consisting of a given, fixed set of nodal points and
an associated set of potential bars.

The idea of working from a given reference domain – the ground-structure – was later
carried over to the case of continuum structures. Some of the fundamental ideas were first
clarified in theoretical studies related to existence of solutions and the application of ho-
mogenization techniques for obtaining well-posed problem formulations. In turn, this work
constituted the foundation for the computational methods that now typically are called ma-
terial distribution techniques and which work with a design parameterization that allows
for the prediction of the optimal material distribution in a given reference domain. While
the first computational work4 relied on optimality criteria methods for the optimization,
today such methods are typically based on mathematical programming together with FEM
for analysis. This means that many of the fundamental solution techniques of the material
distribution methods are very similar to methods developed for sizing optimization, but
with a range of intricacies that relate to the special form of the design parameterization for
topology design. Also, the large-scale setting required for topology optimization requires
special attention, calling for careful attention when formulating the design problems to be
solved.

A recent development in the field is the application of level-set methods for the de-
scription of design. This involves an implicit description of design through the level-set
curves obtained from a level-set function. This means that such methods rely on sensitivity
analysis results from shape design, but in contrast to standard shape design techniques the
level-set idea allows for changes in topology.

In the following we concentrate the developments on the material distribution method
for structural problems and show examples of the use of the methodology in an industrial
setting. Also, current research issues related to multi-physics design problems and to vari-
ous developments in level-set methods and in new mathematical programming approaches
are outlined.

For a thorough historical overview of the field we refer to the detailed review article
by Eschenauer and Olhoff5 and the reader is also referred to the various monographs in
the area for further references and overview of the area. This includes works on topology
design methods in-the-large, on the so-called homogenization method in particular and
on aspects of variational methods.6,7,8 We note that the references in the following thus
emphasize recent works as we try to avoid a lengthy bibliography with a huge overlap with
the overview given in these works.

2. Problem Setting

In order to set the scene for the developments of this chapter, we will here consider the
problem of topology design of a compliant mechanism, initially in a setting of small
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Fig. 1. A basic compliant mechanism analysis problem: the displacement inverter, with spring and load model
for the input actuator (left) and workpiece (right).

displacement linear elasticity and using an approach initiated in Ref. 9. An important
application of compliant mechanisms lies in MicroElectroMechanical Systems (MEMS)
where the small scale makes it difficult to use rigid body mechanisms that attain their
mobility from hinges, bearings and sliders.

The problem is formulated as the maximization of displacement at an output port, for
a given force at an input port. In order to cater for problem settings where either geometric
advantage or mechanical advantage is premium, the workpiece at the output port is mod-
elled by a linear spring with spring constant kout . Choosing a high stiffness results in a small
output displacement and a relatively large force, while a small spring stiffness results in a
large output displacement and a smaller output force. Also, to simulate the physics of input
actuators we here model a linear strain based actuator through a spring with stiffness kin

and an input force fin. For example, for a piezoelectric actuator we have a blocking force
fin and a free (un-loaded) displacement fin/kin. Alternatively, a non-linear spring model
can be applied.

If we consider the analysis problem only for a block of linearly elastic material (filling
the domain Ω) undergoing small displacements, see Figure 1, the FEM format for deter-
mining the output displacement uout can be written as:

uout = lT u; where K(ρρρ) u = f (1)

Here K is the stiffness matrix, f is the load vector and u the displacement vector. Moreover,
l is a vector for which the inner product with u produces the relevant output displacement
uout (l is interpreted as a (unit) load vector).

In the equilibrium equation of (1) we have already anticipated that the stiffness matrix in
a design optimization formulation will depend on a vector of design variables, here denoted
by ρρρ.
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2.1. The 0–1 Design Problem

The fundamental idea of the material distribution technique for topology design is to asso-
ciate to each pixel (or voxel) of a raster representation an independent design variable that
defines the amount of material utilized in that subset of the domain (the raster represen-
tation is a discretization of a material distribution in a continuum formulation). Typically,
one would for simplicity use the FEM mesh used for analysis as the basis for the raster
representation.

For the fundamental topology design problem of determining which elements of the
analysis domain should be part of the final structure, the design variables ρe (one real
variable per element in the FEM mesh) are discrete valued and we have ρe ∈ {0,1}. We
can thus formulate an optimization problem on our reference domain Ω in the following
form:

min
u,ρρρ

{
uout = lT u

}
s.t. : K(ρρρ) u = f

N

∑
e=1

veρe ≤V

ρe ∈ {0,1}, e = 1, . . . ,N

(2)

This is thus a FEM format of the maximum output compliant mechanism problem for a
given input load and a prescribed volume V (ve denotes the volume of element e). Note that
when the analysis mesh and the raster mesh coincide, we can write the stiffness matrix in
the form:

Klin(ρρρ) =
N

∑
e=1

ρeKe (3)

where Ke is the (global level) element stiffness matrix for an element filled with the basis
material used for the structure to be designed (this can be isotropic or not). We have here
used an lower index lin for the stiffness matrix to signify that it depends linearly on the
design variables.

If we wish to view the problem setting in the standard nested format for design opti-
mization problems where the equilibrium conditions are considered as function calls we
have to remove the possibility for the stiffness matrix to become singular. This can be done
by assigning a low, but non-zero stiffness (given by a value ρmin > 0) to the elements where
ρ = 0, giving a stiffness matrix in the form

Kaff(ρρρ) =
N

∑
e=1

[ρmin +(1−ρmin)ρe]Ke (4)
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We can now write the problem as a problem in the design variables only as:

min
ρρρ

{
uout(ρρρ) = lT K−1

aff (ρρρ)f
}

s.t. :
N

∑
e=1

veρe ≤V

ρe ∈ {0,1}, e = 1, . . . ,N

(5)

We have now formulated a topology design problem defined on a given and fixed ref-
erence domain and one could attack this directly by computational means. However, the
problem (5) is a non-convex mathematical programming problem with integer variables
and with “expensive” function calls that involve FEM analyses. Moreover, in any relevant
format the problem is of very large scale as we in this type of topology optimization define
the design in terms of a raster representation. Thus, for a suitable resolution one should
use a high number of elements – and when addressing 3D design problems the situation is
aggravated. This not only means that a high number of design variables have to be dealt
with, but it also influences the computational cost of the FEM analyses involved. For high
resolution design this makes it computationally very costly to use methods like simulated
annealing10,11 or genetic algorithms12,13 and experience with deterministic methods is also
limited to fairly small scale (bench-mark) examples (see Section 5) or to special design
problems such as minimum compliance problems.14

The advantage of the topology design formulation above is that the analysis problems
to be solved are defined on a fixed domain; this means that if we relax the integer constraint
the problem is a standard sizing problem.

In a continuum setting of (2) the problem represents the basic idea of finding the topol-
ogy of a structure by searching for an optimal indicator function defining the subset of Ω
that should be filled with material.15,16 It is now well understood that this problem is not, in
general, well-posed and lacks existence of solutions (see Refs. 7, 8, and references therein).
A well-posed problem can be obtained either by restricting the class of subsets considered
(see later) or one can extend the set of designs. For compliance it is now known that ho-
mogenized multi-scale layered microstructures (composites) constitute an extended design
space that provides for existence of solutions and it is interesting to note that this also
means that the integer constraint on ρρρ is relaxed. In essence grey-scale designs are allowed,
thus opening up the possibility to apply gradient based optimization techniques. It was the
initial mathematical studies of such relaxation schemes that constituted the foundation for
the approach4 which today is referred to as the “homogenization method” for topology de-
sign. In this presentation this aspect is not emphasized and we rather see relaxation as a
method for obtaining computationally tractable formulations. However, the reader should
be aware of this close relation to the theory of composites and to the theory of relaxation
of variational problems – much of the litterature refers to these aspects and the use of and
the reference to the various concepts are often intertwined.
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2.2. Working with a Grey-scale: Interpolation Models

The most straightforward way to obtain a problem formulation that relaxes the integer
constraint on the design variables is to consider the problem

min
u,ρρρ

uout

s.t. :
N

∑
e=1

[ρmin +(1−ρmin)ρe]Ke u = f

N

∑
e=1

veρe ≤V

0≤ ρe ≤ 1, e = 1, . . . ,N

(6)

where intermediate values of the design variables ρe are now allowed.
Unfortunately, this formulation will typically result in large regions (many pixels) with

values of ρe between zero and one, so one needs to include some additional conditions in
order to avoid such “grey” areas. The requirement is that the optimization should result in
designs consisting almost entirely of regions of material (ρe = 1) or no (i.e., weak) material
(ρe = 0) and intermediate values of ρe should be penalized in a manner analogous to other
continuous optimization approximations of 0-1 problems. One could choose to add directly
a penalty function to the objective function in the form

Φ(ρρρ) =
N

∑
e=1

veρe (1−ρe) (7)

but typically an alternative path is taken.
One very efficient possibility for avoiding grey-scale designs is the so-called penal-

ized, proportional stiffness model with the acronym SIMP for Solid Isotropic Material
with Penalization.17,18,19 This extremely popular method represents the stiffness matrix as

Ksimp(ρρρ) =
N

∑
e=1

[ ρmin +(1−ρmin) ρe
p ]Ke (8)

where the power p satisfies p > 1. This means that the design problem statement becomes

min
u,ρρρ

uout

s.t. : Ksimp(ρρρ) u = f
N

∑
e=1

veρe ≤V

0≤ ρe ≤ 1, e = 1, . . . ,N

(9)

In SIMP one chooses p > 1 so that intermediate densities are unfavourable. That is,
the rigidity/stiffness obtained for intermediate densities is small compared to the volume
of the material. For problems where the volume constraint is active the optimization then
typically results in black-and-white (0-1) designs, if one chooses p sufficiently big (as a
rule of thumb, p ≥ 3).
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Fig. 2. Topology optimization: A displacement inverter working as a compliant mechanism. Modelled through
linear analysis using the formulation of problem (9).

Note that the design optimization problem (9) is now in the format of a standard sizing
problem with continuous variables and defined on a fixed domain. This means that tech-
niques described in earlier chapters can now be applied to the problem. An example solu-
tion is shown in Fig. 2. Note that there here has been used some additional computational
techniques to avoid unstable numerical behaviour and very fine variations of the design,
see below for details. We also remark here that since mechanisms intrinsically should pro-
vide large deflections one must for all practical purposes actually apply large displacement
theory when studying design of such devices; this will also be discussed in a later section.

Several alternatives to the scheme above have been proposed. They are all based on the
same principle of being able to interpolate between 0 and 1 – or rather in terms of material
properties between weak material (ρ = ρmin representing holes) and strong material (ρ =
1).20,21,22,23 One such model is the RAMP model22 where one models the stiffness matrix
as

Kramp(ρρρ) =
N

∑
e=1

[
ρmin +(1−ρmin)

ρe

1 + q(1−ρe)

]
Ke (10)

where q has to be chosen reasonably large. This approach was developed in order to have
a formulation where the minimum compliance design problem becomes concave in the
design variables (this requires that q ≥ (1−ρmin)/ρmin) and thus generates solution that
are guaranteed to be integer valued. For an overview of the various possibilities we refer to
Ref. 6.

2.3. Interpreting Grey-scale: Material Models

If we in problem (9) set p = 1 we return to the setting of problem (6). This problem can
in 2D be interpreted as a mechanism design problem for a thin disk where the thickness of
each element is determined by ρe. For the SIMP approach in general one can also ask if
this model can be interpreted in physical terms for example such that areas of “grey” can be
understood as regions consisting of a composite material constructed by a fine-scale varia-
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minρ       =10 -5a) Base design: p=3, minρ       =10 -5

c) p=3,

b) p=1,

minρ       =2∗10 -2f) p=3,minρ       =10 -2e) p=3,

minρ       =10 -3d) p=3,minρ       =10 -8

Fig. 3. A displacement inverter designed with various values of the power p in the SIMP model, and with various
values of ρmin. The improvements of the objective functions compared to the base design (a) are respectively: b)
2.6%, c) 0.4%, d) -14.4%, e) -64.7% and f) -98.1%.

tion of the geometric lay-out of the given material. Such a comparison is mainly beneficial
in order to – perhaps – understand the behaviour of the computational schemes. However,
if a numerical method results in 0-1 designs one can for all practical purposes disregard
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such considerations. However, the physical realization is important when understanding
grey-scale results of a premature termination of the optimization.

If one seeks to construct a material model that mimics the SIMP model one should
at least satisfy the well-known Hashin-Shtrikman bounds for the properties of two-phase
materials.24 These express the limits of isotropic material properties of materials with mi-
crostructure built from two given, linearly elastic, isotropic materials. In order to satisfy
these bounds (in the limit of ρmin = 0) the power in the SIMP model p should satisfy some
fairly simple condition that depends on the spatial dimension and the Poisson ratio.25 As an
example, in both dimension 2 and 3, the condition is that p should be greater than or equal
to 3, when the Poisson’s ratio ν is equal to 1/3. In this case one can also design physical
materials that realize the SIMP model.

3. Solution Methods

We will now address a possible computational procedure for solving the topology design
problem (9). This not only involves the application of techniques covered in more details in
other chapters of this book but also necessitates a course of action specific to the topology
design format.

3.1. Computational Framework

The approach to solve problem (9) that we propose here is based on using finite elements
for the analysis part (as the format of the statement (9) already presupposes) combined with
the use of a mathematical programming algorithm as an iterative procedure for treating (9)
in its nested format

min
ρρρ

{
uout = lT K−1

simp(ρρρ)f
}

s.t. :
N

∑
e=1

veρe ≤V

0≤ ρe ≤ 1, e = 1, . . . ,N

(11)

This means that we treat analysis as a function call and have to perform sensitivity analysis
in order to use a derivative based optimization algorithm.

3.1.1. FEM

The very nature of the raster representation of the design means that the finite element anal-
ysis models involved in the material distribution method become large scale, especially in
3D. However, note that (as mentioned earlier) we are working on a fixed grid and no re-
meshing of the design domain is necessarya. Moreover, the special format of the stiffness
matrix means that all element matrices can be pre-computed; a change of the design vari-
ables only affects the relative contribution to the global stiffness matrix. The FEM analysis

aIf adaptive methods26 are applied a re-meshing will take place, but this is not inherent in the approach.
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can be further optimized if rectangular (box-like) domains are used and are discretized with
the same element throughout. Then only one element matrix needs to be computed. For
large scale computations iterative solvers may be required for storage reasons and parallel
implementations27 are also useful. Typically, solving the equilibrium equations becomes
the most time consuming part of topology design problems.

3.1.2. Sensitivity Analysis

For topology design problems we work with a huge number of design variables. Also,
we typically try to limit the number of constraints in the problem statements. Thus the
application of an adjoint method for the computation of derivatives is imperative.

For the functional uout = lT u we use that u satisfies the equilibrium equation, i.e., we
have that Ku− f = 0. For any vector λλλ we can thus write

uout = lT u−λλλT (Ku− f) (12)

Differentiating this results in an equation

∂uout

∂ρe
= lT

∂u
∂ρe
− ∂λλλT

∂ρe
(Ku− f)−λλλT

(
∂K
∂ρe

u+ K
∂u
∂ρe

)
(13)

that can be rearranged to the format

∂uout

∂ρe
=
(

lT −λλλT K
) ∂u

∂ρe
−λλλT ∂K

∂ρe
u (14)

If the adjoint variable λλλ now satisfies the adjoint equation

lT −λλλT K = 0 (15)

we obtain the following simple expression for the derivative of the output displacement:

∂uout

∂ρe
=−p ρp−1

e λλλT Keu (16)

where we have used the expression (8) for the matrix K in terms of the design variables.

3.1.3. Optimization Algorithm

A major challenge for the computational implementation of topology design along the lines
described above is to cope with the high number of design variables. Optimality criteria
methods were first applied4 but the use of mathematical programming algorithms typi-
cally implies greater flexibility and this is crucial for the problems that will be discussed
in this chapter. As mentioned earlier, the high number of design variables of topology
design is normally combined with a moderate number of constraints, and an algorithm
that has proven itself to be versatile and well suited for large scale topology optimization
problems is the MMA algorithm, with “MMA” being the acronym for Method of Moving
Asymptotes.28,29,30
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d) Quarter element size

a) Base design b) No filtering

c) Half element size

Fig. 4. Topology optimization: A displacement inverter working as a compliant mechanism. Checkerboard pat-
terns and mesh-dependent results. The improvements of the objective functions compared to the base design (a)
are respectively: b) 4.3%, c) 14.4%, d) 29.9%

The Method of Moving Asymptotes and the related method called CONLINb, like Se-
quential Linear Programming (SLP) and Sequential Quadratic Programming (SQP) meth-
ods, work with a sequence of approximate subproblems of given type. The subproblems
are constructed from sensitivity information at the current iteration point as well as some
iteration history. In the case of MMA and CONLIN these subproblems are separable and
convex and the subproblems are solved by for example a dual method or by an interior
point primal-dual algorithm.

3.2. Finer Points

After implementing a computational scheme for topology design along the lines for stan-
dard sizing design problems, as described above, one immediately discovers that additional
issues have to be addressed. First, if low order elements are used for the analysis elements

bSee, eg., Refs. 31, 32 for recent papers using this approach.
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one will see that the results contain a lot of checkerboard patterns of black and white ele-
ments. Moreover, refining the mesh can have a dramatic effect and will change the design
so as to include finer and finer detail in the design.

3.2.1. Geometry Control

The use of the SIMP interpolation scheme (or other similar ideas) addresses the integer for-
mat of the original setting of the topology design problem as defined in (5). Another serious
problem associated with the 0-1 problem statement, and a problem that the interpolation
scheme does not resolve, is that there normally does not exist solutions to the continuum
design problem for which (5) is a discretized version. This is not only a serious theoretical
drawback but it also has the effect of making the computational results sensitive to the fine-
ness of the finite element mesh. The physical explanation for the mesh dependent results is
that by introducing finer and finer scales, the design space is expanded and in the limit the
optimal design is not a classical solution with finite size features, but rather a composite
with material at multiple scales. A way to obtain mesh-independent results would thus be
to limit the geometric variations possible in the designs.

Quite apart from this theoretical reason for mesh-dependency, it is relevant in its own
right to try to avoid fine scale variations in a design, simply for production reasons. Also, a
sensible design tool should preferably give mesh-independent results.

Several methods have been proposed to restrict the geometric variations of the designs
resulting from the material distribution method. As the method uses a raster representation
it is not surprising that these all have various interpretations in terms of image processing.

A range of techniques have been proposed that limits geometric variability of the design
field by imposing additional constraints on the problem that restrict the size of the gradient
of the density distribution ρ. This can be in terms of a constraint on the perimeter or on
some Lq-norm of the gradient; in both cases experimentation is needed to find a suitable
constraint value.33,34,35 An alternative is to impose a point-wise limitation on the gradient
of the density field. The constraint value here has immediate geometric meaning in terms
of the thinnest possible features of a design.36 Implementation can be problematic, but can
be handled by interior point ideas in MMA37 or via a move limit strategy.38

Limiting the geometric variations of the raster representation of the design can also be
achieved by alternative means. A popular method is to apply filters as known from image
processing. One can thus work with filtered densities in the stiffness matrix so that the
equilibrium constraint of problem (9) is modified to the format:

Ksimp(H(ρρρ)) u = f (17)

where H denotes a filtering of ρρρ. This can for example be a linear filter with filter radius
rmin that gives the modified density H(ρρρ)e in element e as

H(ρρρ)e =
N

∑
k=1

He
k ρk (18)
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Here the normalized weight factors He
k are defined by

He
k =

1

∑N
k=1 Ae

k

Ae
k (19)

where

Ae
k = rmin−dist(e,k), {k ∈ N | dist(e,k)≤ rmin} , e = 1, . . . ,N (20)

In this latter expression, dist(k, i) denotes the distance between the center of the element
e and the center of an element k. The convolution weight He

k is zero outside the filter area
and the weights for the elements k decay linearly with the distance from the element e.

The filtering means that the stiffness in an element e depends on the density ρ in all ele-
ments in a neighborhood of e, resulting in a smoothing of the density. The filter radius rmin

is fixed in the formulation and implies the enforcement of a fixed length-scale in the designs
and convergence with mesh refinement. Generally filtering also results in density fields ρ
that are bi-valued, but the stiffness distribution is more “blurred” with grey boundaries.

For implementation, the standard procedure described so far still apply, but the sensi-
tivity information should be modified to cater for the redefined stiffness matrix (this means
that the sensitivity of the output displacement with respect to ρe will involve information
from neighboring elements). Note that the application of a filter does not require any ad-
ditional constraints to be added to the problem, in contrast to the approaches that work by
limiting the gradient or the perimeter.

An alternative to the direct filtering of the densities is a filtering of the sensitivity infor-
mation of the optimization problem, and computational experience is that this is a highly
efficient way to ensure mesh-independency. In scope this is similar to ideas used to en-
sure mesh-independence for simulations of bone-remodelling and for analysis with plastic-
softening materials. The scheme works by modifying the element sensitivities of Eq. (16)
as follows

̂∂uout

∂ρe
=

1
ρe

N

∑
k=1

He
k ρk

∂uout

∂ρk
(21)

This heuristic filtering is similar to (18) but it is not the same as applying the filter H to
the sensitivities as the densities here also enters as weights. Using these sensitivities in the
optimization algorithm produces results very similar to for example those obtained by a
local gradient constraint. It requires little extra CPU-time and is simple to implement. The
sensitivity (21) converges to the original sensitivity when the filter radius rmin approaches
zero and all sensitivities will be equal when rmin approaches infinity. An interesting side-
effect of this filtering technique is that it somehow improves the computational behaviour
of the topology design procedures and allows for greater design changes before settling on
a “good” design; this is due to the inclusion of ρk in the filtering expression.

3.2.2. Checkerboards

A description of the material distribution problem is not complete without a mention of the
so-called checkerboard problem. In certain cases an implementation of the material distri-
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bution method for topology design can generate checkerboard patches where the density
of material assigned to contiguous finite elements varies in a periodic fashion similar to a
checkerboard consisting of alternating solid and void elements, cf. Fig. 4b. It is now well
understood that this is unphysical and arises due to a bad FEM modelling being exploited
by the optimization procedure. For example, a checkerboard of material in a uniform grid
of square Q4 elements has a stiffness that is greater than any other possible material distri-
bution. Detailed analyses of the problem can be found in Refs. 39, 40.

The occurrence of checkerboards can easily be prevented, and any of the methods for
achieving mesh-independency described above will also remove checkerboards (when the
mesh becomes fine enough). It is normally recommended always to apply such measures
for geometry control and this could then be the end of the story. However, a fixed scale
geometric restriction on the designs is counter-productive when using numerical methods
to obtain an understanding of the behaviour of optimal topologies at a fairly fine scale,
when designing low volume fraction structures, or when composites are used as a basis
for the optimization. The most fundamental approach is to use a FEM discretization where
checkerboards are not present (their appearance is a FEM phenomenon). This typically in-
volves the use of higher order elements for displacements, with corresponding higher com-
putational cost, so many alternatives have been devised (see, e.g., Ref. 6 for an overview)
Here we just mention that the filtering techniques described above can also be used to con-
trol only checkerboard formation, without imposing a mesh independent length scale. This
just requires that one adjusts the filtering to be mesh-dependent (ie., rmin varies with the
mesh size).

3.2.3. Hinges

When inspecting topology optimization results for compliant mechanism it is noticeable
that the resulting mechanisms are often not truly compliant. Instead almost moment-free
one-node connected hinges are present, especially for examples with large output displace-
ments (i.e., small transfer of forces). As the structure would break at such hinges, tech-
niques to avoid them are required.

The one-node connected hinges are caused by bad computational modelling that the
optimization procedure exploits – just as for the checkerboard problem. In a Q4 model, the
hinge is artificially stiff and the stress variations are very badly modelled. However, using
higher order elements is only part of the answer and local stress constraint should preferably
be added to the formulation; this is computationally problematic and other methods have
been devised. Only some of the checkerboard and mesh-independency schemes described
above prevent the one-node connected hinges. For example, the filtering of gradients does
not prevent hinges if the gain (sensitivity) in building a hinge is big enough, and a local gra-
dient control only partly eliminates the problem and often results in hinges of intermediate
density.

We will here elaborate on a special geometry constraint that has been developed with
the hinge problem in mind.41 Being a MOnotonicity based minimum LEngth scale (MOLE)
method, it adds one extra constraint to the optimization problem that should have the value
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Fig. 5. The effect of restricting the formation of artificial hinges by the MOLE constraint (from Poulsen41).

zero for the minimum length scale restriction to be satisfied. Also, it provides a similar
exact control of geometry as when using local gradients, but with just one constraint.

The idea of MOLE is to pass a circular “filter” window over the design and measure if
the density ρ along four equally spaced diagonals (horizontal, vertical and at±π/4 from the
horizontal) is monotonic or not within this window. The diameter of the window defines the
desired minimum length-scale of the design. The monotonicity can be measured by noting
that a sequence of real numbers x,y,z is monotonic (increasing, decreasing or constant) if
and only if the expression

m(x,y,z) = |y− z|+ |z− y|− |z− x|

is zero and m is strictly positive otherwise. Adding such calculations over all elements and
any of the test directions results in a number that should be zero in order for the structure to
satisfy the desired length scale control. The computational effort in evaluating the constraint
is linear in the number of elements and derivatives can be computed analytically (for a
suitably smoothed version of the constraint).

4. Extensions

The challenge of extending the topology optimization method to new areas is to develop
sensible combinations of the design description and of objective functions and constraints.
Experimentation is the key to working out physically meaningful formulations which can
be managed by the optimization algorithms. Here we shall first consider some generaliza-
tion of the mechanism design problem, both in terms of non-linear analysis modelling and
in terms of adding design of the supports to the optimization formulation.
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4.1. Geometrical Nonlinearity

The analysis of the mechanism design problem has so far been treated in the framework
of linear finite element theory. This is somewhat contradictory as one tries to maximize
displacements, and for all practical situations the mechanisms should be modelled using
geometrically non-linear finite element analysis; in the following, we assume that strains
are small and that material non-linearity can be ignored. References on the application of
geometrically non-linear analysis for mechanism design include Refs. 42, 43, 44, 45, 46,
47.

Without going into technical details of the non-linear finite element analysis, we here
use that the condition of equilibrium can be written as

R(u) = 0 (22)

Here R is the residual in obtaining equilibrium, expressed in terms of Green-Lagrange
strains and Piola-Kirchhoff stresses which we assume are related via the standard SIMP
relation (as a linear Hooke’s law). The finite element equilibrium (the solution of (22))
may be found incrementally or in one load step using a Newton-Raphson method, and both
methods require the determination of the tangent stiffness matrix

KT =
∂R
∂u

. (23)

With this type of non-linear modelling, a large displacement formulation of our mech-
anism design problem can be written as

min
u,ρρρ

uout

s.t. : Rsimp(ρρρ,u) = 0
N

∑
e=1

veρe ≤V

0≤ ρe ≤ 1, e = 1, . . . ,N

(24)

The sensitivity of the output displacement can be found along the lines described in
Chapt. 8 of this monograph, and using the adjoint technique we obtain that Eq. (16) is now
modified to

∂uout

∂ρe
=− λλλT ∂R

∂ρe
(25)

where λλλT is the solution to the adjoint load problem

λλλT KT = lT (26)

that uses the tangent stiffness matrix at the current design and corresponding displacement.
With these developments one can now apply the standard optimization procedure, as out-
lined for the linear case.
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Fig. 6. Taking non-linearity into account. a) Optimized topology using linear modelling, b) optimized topology
using non-linear modelling, c) and d) deflection of a) using linear and non-linear modelling, respectively and e)
and f) deflection of b) using linear and non-linear modelling, respectively (from Pedersen et al.42).

4.1.1. The Importance of Non-linear Modelling

We remark here that the use of geometrically non-linear finite element modelling is abso-
lutely essential for mechanism synthesis. If a mechanism is designed using linear analysis
one notices that it typically behaves differently when large displacement analysis is ap-
plied. In rare situations one merely has inaccurate results but one also risks that the results
are useless as large displacement mechanisms, see Fig. 6.
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4.1.2. Computational Issues

One can save computational effort in the non-linear finite element analysis by reusing the
displacement solution from a previous topology iteration in each new Newton-Raphson
equilibrium iteration. This gives significant savings, especially near convergence of the
optimization process.

Numerical experiments show that the tangent stiffness matrix can become indefinite or
even negative definite during the topology optimization process, destroying convergence.
The problem is related to severe distortions of low-density elements with minimum or
close to minimum stiffness. As such elements represent void, their behaviour should not
influence the structural response and a scheme should be applied in order to circumvent the
problem. One method is simply to ignore the convergence of the iterative solver in nodes
surrounded by void elements.48 Alternatively, one may choose to remove elements with
minimum density from the design domain. However, element removal can be detrimental
for the optimization process and the possibility of re-appearance of material should be
included. This can, for example, be based on a filtering technique.49

4.2. Design of Supports

For the compliant mechanism design problem the positions and amounts of supports have
been modelled as fixed, but one can obtain further improvements from an introduction of
the supports as part of the optimization.

In such a formulation one can apply the topology design concept and set up a problem
that allows for the assignment of rigid or no supports to each element in a support design
domain (this may be a subset of the normal (material) design domain).50 We now also
convert this integer type problem into a continuous problem by introducing an element
support design variable ξe and a diagonal element support stiffness matrix Ks with large
values in the diagonal, such that we arrive at a combined global stiffness matrix (for linear
analysis):

K = Ksimp(ρρρ)+ Ksupp(ξξξ)

where we with a small lower bound ξmin on the support design variables ξξξ define

Ksupp(ξξξ) =
N

∑
e=1

[ ξmin +(1− ξmin) ξe
q ] Ks,e .

Here q is a penalization factor corresponding to the power p for the stiffness variables in
the SIMP approach.

For the topology design problem a bound on the total support area S is also introduced
(for mechanism design this bound is not very important) and we can write a combined
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Fig. 7. Design for supports. a) Design domain, b) Optimized topology without support design (uout = 10.8µm)
and c) Optimized topology including support design (uout = 19.1µm). The gain in output displacement is 77%
(from Buhl50).

material distribution and support distribution problem as

min
u,ρρρ,ξξξ

uout

s.t. :
[
Ksimp(ρρρ)+ Ksupp(ξξξ)

]
u = f

N

∑
e=1

veρe ≤V, 0≤ ρe ≤ 1, e = 1, . . . ,N

N

∑
e=1

veξe ≤ S, 0≤ ξe ≤ 1, e = 1, . . . ,N

(27)

Here, the sensitivity of the output displacement with respect to the two sets of variables
split into (16) and a similar expression with respect to the support variables (using Ks,e).

It turns out that the possible gains in using variable supports for compliant mechanism
design is quite dramatic. Thus this slight generalization of the fundamental topology design
concept is quite effective even though the extra computational cost is moderate (the analysis
problem does not change in complexity).

5. Variations of the Theme

5.1. Mathematical Programming Issues

The approach to the material distribution problem for topology design presented so far uses
continuous variables to convert the problem to a standard sizing problem. This problem is
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then treated in the standard nested format most typically used in structural optimization.
In the following we shall briefly outline possible alternative mathematical programming
modelling methods for the optimization problems at hand.

5.1.1. SAND Formulation

In what is called Simultaneous ANalysis and Design, the problem statement (9) is dealt
with directly and the mathematical programming code is used both to find the optimal ρρρ
and the associated displacement u. That is, the equilibrium constraints are handled directly
by the optimization code. This increases the size of the optimization problem significantly
and one would typically discard such an idea off hand. However, the use of modern interior
point methods, for example together with techniques such as multigrid methods or mul-
tilevel techniques show some promise.51,52,53 Much of the developments with the SAND
approach is in the literature today labelled as PDE-constrained optimization (see, for ex-
ample, Ref. 54 and references therein) or as mathematical programming problems with
equilibrium constraints (MPECs) (see, e.g., Ref. 55, 56). We remark here that a nice fea-
ture of the SAND approach is that one can set ρmin = 0 and avoid working with a “weak"
material rather than void; in SAND the stiffness matrix is not required to be non-singular.

5.1.2. Mixed-integer Format

From a modelling point of view the SAND formulation also has some interesting impli-
cations for the original 0-1 format of problem (2). One notes here that the only non-linear
function that appears in this problem statement is the equilibrium constraint which is bi-
linear (in ρρρ and u, cf., Eq. (3)). If we rewrite this problem with an extra set of variables s
that represent element stresses it takes the form

min
u,s,ρρρ

lT u

s.t. : B s = f

se = ρe Ee Be u, e = 1, . . . ,N

umin ≤ ue ≤ umax, e = 1, . . . ,N
N

∑
e=1

veρe ≤V

ρe ∈ {0,1}, e = 1, . . . ,N

(28)

where B, Ee, and Be are suitably defined matrices and where we have included some dis-
placement constraints (these can be chosen to be redundant). In (28) only the second set
of constraints are bilinear, and they are of a form where these, using the combination of
the integer constraint on ρe and the displacement constraints, can be split into some linear
constraints. There exists thus numbers cmax

e and cmin
e so that problem (28) is equivalent with
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the problem57,58

min
u,s,ρρρ

lT u

s.t. : B s = f

ρe cmin
e ≤ se ≤ ρecmax

e , e = 1, . . . ,N

Ee Be u− se ≥ (1−ρe)cmin
e , e = 1, . . . ,N

Ee Be u− se ≤ (1−ρe)cmax
e , e = 1, . . . ,N

umin ≤ ue ≤ umax, e = 1, . . . ,N
N

∑
e=1

veρe ≤V

ρe ∈ {0,1}, e = 1, . . . ,N

(29)

which has quite a number of additional constraints. However, one notes that this problem
is actually now a linear programming problem, albeit with mixed integer and continuous
variables. This means that one can apply techniques to obtain globally optimal designs.
Typically, only rather small sized problems can be solved by attacking problem (29) di-
rectly with a code like CPLEX, but these can then serve as bench-mark examples for other
techniques. Further work on developing variants of (29) with more benign behaviour for
computations may alleviate this complication.

5.1.3. Stress Constraints

Adding stress constraints to topology optimization problems in the framework of SIMP
presents several difficult issues. First, the modelling of the stress constraints is not direct,
but comparison with microstructural modelling implies that a reasonable constraint is of
the form59,60

σVM ≤ ρp σ̄, if ρ > 0 (30)

expressed in terms of the von Mises equivalent stress σVM and a stress limit σ̄. One here
immediately notices one of the problems with stress constraints: they constitute a set of
constraints that depend on the value of the design variable. This effect can be removed by
writing

ρσVM ≤ ρp+1 σ̄ (31)

Unfortunately, it turns out that this is now a type of constraint that generates serious prob-
lems for gradient based algorithms if these are applied directly to the nested formulation
that is so popular in design optimization. This phenomenon is normally referred to as the
stress “singularity” problem and requires special attention as the optimum can be located
in degenerated parts of the design space. A constraint relaxation scheme is often used, but
also this can be troublesome; note that most of the studies on this mathematical program-
ming issues has mostly been concerned with truss structures (this is not a limitation from
a mathematical point of view). We refer the reader to for example Refs. 61, 62, 63, 64, 65
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Fig. 8. A globally optimal solution, with 0-1 variables and stress constraints. By courtesy of M. Stolpe58.

and references therein for further information on this challenging issue, and to Refs. 66,
67, 68 for further modelling work on and computational experience for stress constrained
topology optimization of continuum structures. We finally note that if one applies the origi-
nal 0-1 formulation, the modelling of the stress constraint is straightforward; moreover, the
mixed integer LP format of (29) can be extended to cover stress constraints as well.57,58

5.1.4. Other Algorithmic Approaches

The approach for topology design described so far works with a raster-based design de-
scription and a gradient based mathematical programming technique for the optimization
iterations. A whole range of methods have been proposed that maintain the basic raster
concept but apply alternative optimization methods, both for the 0-1 format and for the
interpolated grey-scale models. These methods typically combine aspects of fully stressed
design, OC methods, element removal or structural growth, sometimes applying sensitivity
analysis as a basis for the updating schemes. The methods often apply the word “evolu-
tionary”, which here should not be confused with genetic algorithms (that have also been
used12,13). We here mention example papers describing some of the more popular methods
that are named SKO69 and ESO70, see Ref. 5 for an overview of the various approaches.
We here also mention the very interesting examples of the paper Refs. 71 that show the
limitations of applying heuristic methods.

5.2. Design of Articulated Mechanisms

The design problem treated so far has dealt with compliant mechanisms that attain their
mobility from flexibility of their constituents, and we have here applied the material dis-
tribution technique to find optimized topologies for the given design settings. An alterna-
tive is to use a truss representation, as in the ground-structure approach mentioned in the
Introduction.9,72 In a sense this representation of all possible designs represents an interme-
diate class of mechanisms as there is here both flexibility in the truss members and hinges
in the truss nodes (joints).

Kinematic diagrams are widely used for conventional mechanism designs and it is both
natural and advantageous to represent kinematic diagrams by truss elements and pin joints.
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Fig. 9. An articulated mechanism (a force inverter), designed using a truss representation; the design setting is illustrated to
the left and shows the truss ground structure of potential bars, input force etc. Both topology alone (grey design to the left) and
topology as well as node locations (solid black design) are optimized, using a mixed-integer formulation that is solved to global
optimality by a branch-and-bound algorithm. In case of nodal positions being optimized, these are limited to move in the boxes
shown in the left-hand side illustration. By courtesy of M. Stolpe and A. Kawamoto75.

Also, in a truss ground structure representation it is possible to accommodate large dis-
placement without element distortion problems.

In order to obtain true articulated mechanisms that obtain all of their mobility from their
joints the concept of degrees of freedom (DOF) becomes critical for obtaining a proper
design. This concept is an insignificant feature for compliant mechanism design as such
mechanisms do not have real joints. This means that the design formulation (along the
lines of (2)) has to include additional constraints that intrinsically are related to integer-type
information. The degrees of freedom constraint to be included can be based on Maxwell’s
rule.73 However, this requires that every sub-structure contains no redundant elements and
for a ground-structure one then has to count the number of bars in a suitable way, for
example by introducing additional constraints or to make proper counting procedures.

For solution of the design problem one can work with various techniques for relaxing
the various integer constraints74 or one can apply branch-and-bound techniques directly
on the integer format of the problem.75 The latter allows for the determination of globally
optimal solutions and in this case it turns out that additional constraints on for example the
stability of the truss needs to be included in the problem setting as well.

5.3. Level-set Methods

A new approach to topology design that has attracted considerable interest in recent years
is the application of ideas and methods from level-set methods that have traditionally been
used for modelling free and moving surface problems.76,77 In a level-set method one works
with an implicit definition of the boundaries of the design and this allows for a change in
topology as the level-set function develops during the iterative optimization procedure. In
most implementations (see, e.g., Ref. 78, 79, 80, 81 and references therein) the level-set
is not parameterized as such and the updates of the boundaries are based on the so-called
Hamilton-Jacobi equation. In turn, the driving term of this equation uses shape sensitiv-
ity information, derived as presented in Chapter 6. This makes the optimization scheme
similar to steepest descent methods. If a direct parameterization82 of the level-set is em-
ployed general mathematical programming techniques are available, at the cost of a more
involved geometry modelling. In the phraseology of image processing, the material distri-
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Fig. 10. A minimum compliance result using level-set method and FEMLAB. Left: Initial design with 6 holes
and right: optimized design with two resulting holes.

bution method and the level-set approach are both concerned with segmentation and one
can see many analogies between the basic concepts of image segmentation and the field of
topology design (this is for example clearly illustrated in Refs. 83, 84).

Another possibility to consider changes in the topology of a design is to apply the bub-
ble method.85,86 This approach has in recent years been supplemented by the flourishing
field of topological derivatives.87,88,89 The technique is to calculate the sensitivity to in-
finitesimal topological changes of functionals that depend on the solution to partial differ-
ential equations, where a topological change means the appearance or closing of cavities.
The approach is closely related to shape sensitivity analysis; for a detailed overview see
Ref. 90. This sensitivity analysis cannot be applied in a standard mathematical program-
ming framework as there is no underlying parameter space for the design; instead material
removal ideas can be applied91 or the information can be used in connection with level-set
methods.92

6. From Theory to Product

6.1. Industrial Use of Topology Design

The computer-based topology optimization method was first introduced in 1988 for the
minimum weight design of structural components. Since then, the topology optimization
method has gained widespread popularity in academia and industry and is now being used
to reduce weight and optimize performance of automobiles, aircrafts, space vehicles and
many other structures. Today, several commercial software systems provide topology opti-
mization for industry and a main user of topology design in the daily design efforts is the
automobile industry, where most major manufacturers and their sub-suppliers now use the
methodology.

A recent example of the use of topology design in aeronautics is for the design of inte-
grally stiffened machined ribs for the inboard inner fixed leading edge of the new airliner,
the Airbus 380. Two types of software were applied, one which is similar to the method de-
scribed here, and one that also includes information on the type of (eventually composite)
material that is useful for the design. Based on these results and quite a bit of engineering
interpretation a new type of structure was devised for the ribs which gave a weight benefit
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Design domain

Actual structure

Optimized topology

Manufactured wing structure

Fig. 11. Mimicking of industrial design process. Top: Design domain and resulting topology for rib structure in
frontpart of airplane wing and bottom: actual design and manufactured front part of wing at EADS (courtesy of
EADS Military Aircraft).

against traditional (up to 40%) and competitive honeycomb/composite designs.
The process of generating this new type of rib for an aircraft is typical for applications of

topology design in many mechanical engineering settings. The technique is not necessarily
used for creating the final design, but rather to give inspiration to the experienced engineer
that can see new possibilities on the basis of the computational results. In other fields,
however, one also sees that the results of the topology design are transferred directly to
production, for example when designing and producing new types of photonic crystals, see
below.

6.2. Nano-photonics

6.2.1. Wave Propagation Problems

The governing equation for a number of different wave-propagation problems is the scalar
Helmholtz equation

∇ · (A∇u)+ ω2Bu = 0, (32)

where, depending on the physics problem considered, the field u (in 2D or 3D) as well as the
material constants will have different physical meanings. For the case of planar transverse
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electromagnetic polarized waves (the TE-mode), u is the electric field, A is the inverse of the
dielectric constant and B is the product of the vacuum permitivity and vacuum permeability,
whereas for the other polarization (transverse magnetic waves - the TM-mode), u denotes
the magnetic field value, A = 1 and B equals the product of the dielectric material value,
the vacuum permitivity and the vacuum permeability.

For the topology optimization of, e.g., photonic crystals it turns out that a SIMP model
with p = 1 suffices to handle the design parameterization, since maximum contrast in many
applications gives the best wave-confinement. However, in some cases "grey solutions"
with intermediate densities may appear. In those cases 0− 1 designs can be obtained by
introducing some artificial damping in one of the material phases or we introduce a penal-
ization damping term (called a "pamping" term) which introduces artificial high damping
in intermediate density elements.93 For the objective function of the optimization we can
apply the so-called Poynting vector in order to maximize the wave energy transport to spec-
ified output domains; the Poynting vector94 averaged over a time-period is for the scalar
case outlined here calculated as

I =
ω
2

∫
Γout

Aℜ(i u ∇u) dΓ, (33)

where Γout is a line through which the energy flow is measured and ℜ denotes the real part
of a complex number.

6.2.2. A Z-bend in Photonics

The planar photonic crystal is an optical nano-material with periodic modulation of the
refractive index. The modulation is designed to forbid propagation of light in certain wave-
length ranges, so-called photonic bandgaps. Breaking the crystal symmetry by introducing
line defects and other discontinuities allows control of the light on a sub-wavelength scale
in the photonic crystals. Therefore, photonic devices based on the bandgap effect may be
several length-scales smaller than traditional integrated optical devices.

The idea behind these devises are as follows. Light propagates as waves and if trans-
mitted through a transparent medium like glass, it will propagate essentially without losses.
However, if one perforates the glass structures with a periodic arrangement of air holes with
hole distances a little less than the wave length of the light (this means that we are talking
about length scales smaller than micrometers, i.e. nano-scale), waves at certain frequencies
will no more propagate through the glass structure. This effect can be used to produce mir-
rors in nano-scale or it can be used to guide light in optical chips. The latter can be obtained
by filling some of the air holes in channel-like patterns as seen for a Z-bend in Figure 12.
Since the light cannot travel through the perforated structure, it will stay within the channel
and can be led around sharp corners and may be manipulated in other ways. Such photonic
crystal structures will in the future provide the basic building blocks for optical devices and
computers.

The idea of loss-less transmission of optical waves through photonic crystals outlined
above is a truth with modifications. In reality, the transmission is less than 100% because of
leaking waves and reflections at channel corners. It is quite obvious that the efficiency may
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be optimized by changing the shape, number and position of the holes along the channels.
Therefore, the design of photonic crystals is an obviously interesting application for the
topology optimization method.

Figure 12 shows the result of the design process for a Z-bend. If we had just removed
air holes to obtain a Z-shaped bend, the light transmitted through the bend would have
been less than 50% due to losses and reflections. For topology optimization it was chosen
to utilize only the outer parts of the two bend regions as design areas. Although one could
choose much larger design areas, the numerical experiments showed that relatively small
design areas were enough to yield the wanted improvement in efficiency. Had the efficiency
been unsatisfactory, the design areas could have been enlarged in order to introduce more
freedom in the design. In order to reduce the bend loss, the transmitted energy flow mea-
sured by the Poynting vector through the Z-bend waveguide is maximized in the topology
optimization procedure (see Fig. 12). The optimization can be performed for any number
of frequencies simultaneously, e.g., in a min-max formulation. In the case of the Z-bend it
was found that the use of a single frequency in the optimization is sufficient to produce a
large bandwidth with low loss.

The result of the topology optimization process resulted in a close to 100% transmis-
sion in a wide frequency range. Figure 12 shows the optimized design and the resulting
wave propagation through the optimized waveguide. The optimized Z-bend was manufac-
tured by e-beam lithography techniques at the Center for Optical Communication (COM)
at DTU (see Figure 12). The manufactured device performs very well with record breaking
bandwidth and transmission properties.

Many more examples of topology optimization in wave-propagation problems can be
found in the literature.95,96,97,98,99,93

7. Challenges in the Field

Topology optimization has become a very popular methodology, both in industrial use and
as a research area. It generates very efficient designs for many areas of applications and
has had a bigger impact than was envisaged just a decade ago. But there are still many
challenges in the area, and we try here to outline a few of central importance.

7.1. Multiphysics

The topology optimization method has over the last years been applied to several other
design problems. Examples are the design of tailored ‘exotic’ materials with counter-
intuitive properties such as negative Poisson’s ratios (materials which expand transversely
when pulled) and negative thermal expansion coefficients (material which shrink when
heated). Other applications include the design of transducers for underwater sound detec-
tion and MicroElectroMechanical Systems for use in hearing aids, air-bag sensors, and
micro-robots. Also design of channels flows is now possible.100,101,102

These new challenges can be treated within the same basic format of the design
parametrization, problem statement and computational procedure, as was also outlined
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Fig. 12. Top, left: Standard Z-bend waveguide. Top, right: The optimized design. Bottom, left: TE polarized light
propagating through the topology optimized Z-bend. Bottom, right: The manufactured device, produced directly
from pixel-representation of the design (from Borel et al.95).

above for the photonic crystal design. Thus the design of a acoustic device is closely related
to the design of a compliant manipulator and we can again use the topology optimization
for the design process. However, several issues need to be addressed. First, and a common
feature with most optimal design techniques, is the question of how one formulates ob-
jective functions and constraints that result in useful engineering designs. Another central
issue – and one particular to topology design – is how to relate gray-scale (density) to phys-
ical properties that allow these objective functions and constraints to be evaluated. Finally,
a scheme should be imposed to obtain black-and-white designs.

7.2. Algorithms

Structural optimization problems in general constitute a difficult class of optimization prob-
lems – notwithstanding the great successes of the field much improvement is probably still
possible when it comes to effective mathematical programming methods for large scale
problems. Considering topology optimization problems adds to the complications. These
are typically large scale in whatever format they are cast. Basically, the integer format is to
be preferred, but only small problems can be treated. Thus most work treats the relaxed for-
mats of the problem, using intermediate densities as continuous variables. Never-the-less,
the resulting problems can be more tricky than sizing problems, for example through the
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Flow in

A

B

Fig. 13. A non-linear flow example. Design of a fluid transistor. For low Reynolds numbers the in-coming fluid
should exit at boundary A and for higher Reynolds numbers the fluid should exit at boundary B (from Gersborg-
Hansen et al.101).

possibility of design dependent sets of constraints, as is seen for stress constraints and also
for buckling constraints. There is thus plenty of work to do for researchers in mathematical
programming.

7.3. Defining the Design

In the material distribution method one applies a raster representation of the design. This
means that the geometry modelling does not have a representation of boundaries where for
example a normal vector can be uniquely defined. Also, the interpolation schemes depend
on the possibility to define the physical field in every part of the reference domain (in fluids
this can be done via a Brinkman model for porous flow). For more general physics situation
there may not be any method to do this and one may believe that shape design is the only
obvious approach to design optimization in such cases. Level-set methods may provide an
answer, but here we need more work on algorithms for general optimization formulations.
Thus, there is also still plenty of scope for work in geometry modelling and its relation to
modelling of multiple and interacting physics.

Acknowledgments

This work was supported by the Danish Technical Research Council and through a Euro-
pean Young Investigator Award from ESF/Eurohorcs (OS).

References

1. A. G. M. Michell. The limit of economy of material in frame structures. Philosophical Maga-
zine, 8(6):589–597, 1904.



April 20, 2007 18:17 WSPC/Trim Size: 9.75in x 6.5in for Review Volume Chapter6

190 M. P. Bendsøe and O. Sigmund

2. P. Fleron. The minimum weight of trusses. Bygningsstatiske Meddelelser, 35:81–96, 1964.
3. W. Dorn, R. Gomory, and M. Greenberg. Automatic design of optimal structures. J. de

Mecanique, 3:25–52, 1964.
4. M. P. Bendsøe and N. Kikuchi. Generating optimal topologies in structural design using a ho-

mogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2):197–
224, 1988.

5. H. A. Eschenauer and N. Olhoff. Topology optimization of continuum structures: A review.
Appl Mech Rev, 54(4):331–390, 2001.

6. M. P. Bendsøe and O. Sigmund. Topology Optimization - Theory, Methods and Applications.
Springer Verlag, Berlin Heidelberg, 2003.

7. G. Allaire. Shape Optimization by the Homogenization Method. Springer, New York Berlin
Heidelberg, 2002.

8. A. V. Cherkaev. Variational Methods for Structural Optimization. Springer, New York Berlin
Heidelberg, 2000.

9. O. Sigmund. On the design of compliant mechanisms using topology optimization. Mechanics
of Structures and Machines, 25(4):493–524, 1997.

10. G. Anagnostou, E. M. Rønquist, and A. T. Patera. A computational procedure for part design.
Comp. Meth. Appl. Mech. Engng., 97:33–48, 1992.

11. P. Y. Shim and S. Manoochehri. Generating optimal configurations in structural design
using simulated annealing. International Journal for Numerical Methods in Engineering,
40(6):1053–1069, 1997.

12. C. Kane and M. Schoenauer. Genetic operators for two-dimensional shape optimization. Lec-
ture Notes in Computer Science, 1063:355–369, 1996.

13. E. Kita and H. Tanie. Topology and shape optimization of continuum structures using GA and
BEM. Structural Optimization, 17(2-3):130–139, 1999.

14. M. Beckers. Dual methods for discrete structual optimization problems. Int. J. Numer. Meth.
Engng, 48:1761–1784, 2000.

15. J. Cea, A. Gioan, and J. Michel. Quelques resultat sur l’identification de domaines. Calcolo III
/ IV, 1973.

16. L. Tartar. Estimation de coefficients homogénéisés. In Computing methods in applied sci-
ences and engineering (Proc. Third Internat. Sympos., Versailles, 1977), I,, volume 704 of
Lecture Notes in Mathematics, pages 364–373. Springer-Verlag, Berlin; Heidelberg; London;
etc., 1979.

17. M. P. Bendsøe. Optimal shape design as a material distribution problem. Structural Optimiza-
tion, 1:193–202, 1989.

18. G. I. N. Rozvany, M. Zhou, and O. Sigmund. Topology optimization in structural design. In
H. Adeli, editor, Advances in Design Optimization, chapter 10, pages 340–399. Chapman and
Hall, London, 1994.

19. R. J. Yang and C.-H. Chuang. Optimal topology design using linear programming. Computers
and Structures, 52(2):265–276, 1994.

20. H. P. Mlejnek. Some aspects of the genesis of structures. Structural Optimization, 5:64–69,
1992.

21. C. C. Swan and J. S. Arora. Topology design of material layout in structured composites of
high stiffness and strength. Structural Optimization, 13(1):45–59, 1997.

22. M. Stolpe and K. Svanberg. An alternative interpolation scheme for minimum compliance op-
timization. Structural and Multidisciplinary Optimization, 22:116–124, 2001.

23. N. L. Pedersen. Topology optimization of laminated plates with prestress. Computers & Struc-
tures, 80(7-8):559–70, 2002.

24. Z. Hashin and S. Shtrikman. A variational approach to the theory of the elastic behaviour of
multiphase materials. Journal of the Mechanics and Physics of Solids, 11:127–140, March–
April 1963.



April 20, 2007 18:17 WSPC/Trim Size: 9.75in x 6.5in for Review Volume Chapter6

Topology Optimization 191

25. M. P. Bendsøe and O. Sigmund. Material interpolation schemes in topology optimization.
Archives of Applied Mechanics, 69(9-10):635–654, 1999.

26. K. Maute and E. Ramm. Adaptive topology optimization. Structural Optimization, 10(2):100–
112, 1998.

27. T. Borrvall and J. Petersson. Large-scale topology optimization in 3D using parallel computing.
Computer Methods in Applied Mechanics and Engineering, 190(46-47):6201–6229, 2001.

28. K. Svanberg. The method of moving asymptotes - A new method for structural optimization.
International Journal for Numerical Methods in Engineering, 24:359–373, 1987.

29. K. Svanberg. A class of globally convergent optimization methods based on conservative con-
vex separable approximations. SIAM Journal on Optimization, 12(2):555–573, 2002.

30. C. Zillober. SCPIP - an efficient software tool for the solution of structural optimization prob-
lems. Structural and Multidisciplinary Optimization, 24(5):362–371, 2002.

31. C. S. Jog. Reducing radiated sound power by minimizing the dynamic compliance. In Proc.
IUTAM Conference on Design for Quietness, Dordrecht, 2002. Kluwer Academic Publishers.

32. W.H. Zhang and P. Duysinx. Dual approach using a variant perimeter constraint and efficient
sub-iteration scheme for topology optimization. Computers and Structures, 81(22-23):2173–
2181, 2003.

33. R. B. Haber, C. S. Jog, and M. P. Bendsøe. A new approach to variable-topology shape design
using a constraint on the perimeter. Structural Optimization, 11(1):1–11, 1996.

34. J. Petersson. Some convergence results in perimeter-controlled topology optimization. Com-
puter Methods in Applied Mechanics and Engineering, 171(1-2):123–140, 1999.

35. T. Borrvall. Topology optimization of elastic continua using restriction. Archives of Computa-
tional Methods in Engineering, 8(4):351–385, 2001.

36. J. Petersson and O. Sigmund. Slope constrained topology optimization. International Journal
for Numerical Methods in Engineering, 41(8):1417–1434, 1998.

37. C. Zillober, K. Schittkowski, and K. Moritzen. Very large scale optimization by sequential
convex programming. Optimization Methods and Software, 19(1):103–120, 2004.

38. M. Zhou, Y. K. Shyy, and H. L. Thomas. Checkerboard and minimum member size control in
topology optimization. Structural and Multidisciplinary Optimization, 21:152–158, 2001.

39. A. R. Díaz and O. Sigmund. Checkerboard patterns in layout optimization. Structural Opti-
mization, 10(1):40–45, 1995.

40. C. S. Jog and R. B. Haber. Stability of finite element models for distributed-parameter op-
timization and topology design. Computer Methods in Applied Mechanics and Engineering,
130(3-4):203–226, 1996.

41. T. A. Poulsen. A new scheme for imposing a minimum length scale in topology optimization.
International Journal of Numerical Methods on Engineering, 57:741–760, 2003.

42. C. B. W. Pedersen, T. Buhl, and O. Sigmund. Topology synthesis of large-displacement compli-
ant mechanisms. International Journal for Numerical Methods in Engineering, 50(12):2683–
2705, 2001.

43. T. E. Bruns and D. A. Tortorelli. An element removal and reintroduction strategy for the topol-
ogy optimization of structures and compliant mechanisms. International Journal for Numerical
Methods in Engineering, 57(10):1413–1430, 2003.

44. O. Sigmund. Design of multiphysics actuators using topology optimization - Part I: One-
material structures. Computer Methods in Applied Mechanics and Engineering, 190(49-
50):6577–6604, 2001.

45. O. Sigmund. Design of multiphysics actuators using topology optimization - Part II: Two-
material structures. Computer Methods in Applied Mechanics and Engineering, 190(49-
50):6605–6627, 2001.

46. T. Sekimoto and H. Noguchi. Homologous topology optimization in large displacement and
buckling problems. JSME International Journal, 44(4):616–622, 2001. Series A.



April 20, 2007 18:17 WSPC/Trim Size: 9.75in x 6.5in for Review Volume Chapter6

192 M. P. Bendsøe and O. Sigmund

47. A. Saxena and G. K. Ananthasuresh. Topology synthesis of compliant mechanisms for nonlin-
ear force-deflection and curved path specifications. Transactions of the ASME - R - Journal of
Mechanical Design, 123(1):33–42, 2001.

48. T. Buhl, C. B. W. Pedersen, and O. Sigmund. Stiffness design of geometrically non-linear struc-
tures using topology optimization. Structural and Multidisciplinary Optimization, 19(2):93–
104, 2000.

49. T. E. Bruns and D. A. Tortorelli. Topology optimization of non-linear elastic structures and
compliant mechanisms. Computer Methods in Applied Mechanics and Engineering, 190(26-
27):3443–3459, 2001.

50. T. Buhl. Simultaneous topology optimization of structure and supports. Structural and Multi-
disciplinary Optimization, 23(5):336–346, 2002.

51. B. Maar and V. H. Schulz. Interior point multigrid methods for topology optimization. Struc-
tural and Multidisciplinary Optimization, 19(3):214–224, 2000.

52. R.H.W. Hoppe, S.I. Petrova, and V. Schulz. Primal-dual newton-type interior-point method
for topology optimization. Journal of Optimization Theory and Applications, 114(3):545–571,
2002.

53. R. Stainko. An adaptive multilevel approach to minimal compliance topology optimization.
Communications in Numerical Methods in Engineering, 22:109–118, 2006.

54. L. T. Biegler, O. Ghattas, M. Heinkenschloss, and B. van Bloemen Waanders, editors. Large
Scale PDE-Constrained Optimization, volume 30 of Lecture Notes in Computational Science
and Engineering. Springer, Berlin Heidelberg, 2003.

55. M. Kocvara and J. V. Outrata. Optimization problems with equilibrium constraints and their
numerical solution. Mathematical Programming, 101(1):119–149, 2004.

56. X. Liu and J. Sun. Generalized stationary points and an interior-point method for mathematical
programs with equilibrium constraints. Mathematical Programming, 101(1):231–261, 2004.

57. M. Stolpe and K. Svanberg. Modelling topology optimization problems as linear mixed 0-1
programs. International Journal for Numerical Methods in Engineering, 57(5):723–739, 2003.

58. M. Stolpe. On the reformulation of topology optimization problems as linear or convex
quadratic mixed 0-1 programs. Optimization and Engineering, to appear, 2006.

59. P. Duysinx and M. P. Bendsøe. Topology optimization of continuum structures with local stress
coinstraints. International Journal for Numerical Methods in Engineering, 43(8):1453–1478,
1998.

60. R.P. Lipton. Assessment of the local stress state through macroscopic variables. Philosophical
Transactions of the Royal Society London, Series A (Mathematical, Physical and Engineering
Sciences), 361(1806):921–46, 2003.

61. X. Guo, G. D. Cheng, and K. Yamazaki. A new approach for the solution of singular optima in
truss topology optimization with stress and local buckling constraints. Structural and Multidis-
ciplinary Optimization, 22(5):364–373, 2001.

62. X. Guo and G. D. Cheng. Extrapolation approach for the solution of singular optima. Structural
and Multidisciplinary Optimization, 19, 2000.

63. J. Petersson. On continuity of the design-to-state mappings for trusses with variable topology.
International Journal of Engineering Science, 39(10):1119–1141, 2001.

64. M. Stolpe and K. Svanberg. On the trajectories of the epsilon-relaxation approach for
stress-constrained truss topology optimization. Structural and Multidisciplinary Optimization,
21:140–151, 2001.

65. A. Evgrafov. On globally stable singular truss topologies. Structural and Multidisciplinary Op-
timization, 29(3):170–177, 2005.

66. R. Lipton. Design of functionally graded composite structures in the presence of stress con-
straints. International Journal of Solids and Structures, 39(9):2575–2586, 2002.



April 20, 2007 18:17 WSPC/Trim Size: 9.75in x 6.5in for Review Volume Chapter6

Topology Optimization 193

67. G. Allaire, F. Jouve, and H. Maillot. Topology optimization for minimum stress design with the
homogenization method. Structural and Multidisciplinary Optimization, 28(2-3):87–98, 2004.

68. J. T. Pereira, E. A. Fancello, and C. S. Barcellos. Topology optimization of continuum
structures with material failure constraints. Structural and Multidisciplinary Optimization,
26(1):50–66, 2004.

69. A. Baumgartner, L. Harzheim, and C. Mattheck. SKO (Soft Kill Option): The biological way
to find an optimum structure topology. International Journal of Fatigue, 14:387–393, 1992.

70. C. Zhao, G. P. Steven, and Y. M. Xie. Evolutionary optimization of maximizing the difference
between two natural frequencies of a vibrating structure. Structural Optimization, 13(2-3):148–
154, 1997.

71. M. Zhou and G. I. N. Rozvany. On the validity of ESO type methods in topology optimization.
Structural and Multidisciplinary Optimization, 21:80–83, 2001.

72. M. I. Frecker, G. K. Ananthasuresh, S. Nishiwaki, and S. Kota. Topological synthesis of compli-
ant mechanisms using multi-criteria optimization. Transactions of the ASME, 119(2):238–245,
June 1997.

73. C. R. Calladine. Buckminster Fuller’s ’tensegrity’ structures and Clerk Maxwell’s rules for the
construction of stiff frames. Int. J. Solid Structures, 14:161–172, 1978.

74. A. Kawamoto, M. P. Bendsøe, and O. Sigmund. Articulated mechanism design with a degree of
freedom constraint. International Journal for Numerical Methods in Engineering, 61(9):1520–
1545, 2004.

75. M. Stolpe and A. Kawamoto. Design of planar articulated mechanisms using branch and bound.
Mathematical Programming B, 103(2):357–397, 2005.

76. J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press,
Cambridge, UK, 1999.

77. S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces. Springer, New
York,NY, 2003.

78. X. Wang, M. Y. Wang, and D. Guo. Structural shape and topology optimization in a level-
set-based framework of region representation. Structural and Multidisciplinary Optimization,
27(1-2):1–19, 2004.

79. G. Allaire, F. Jouve, and A.-M. Toader. Structural optimization using sensitivity analysis and a
level-set method. Journal of Computational Physics, 194(1):363–393, 2004.

80. M. Y. Wang and X. Wang. "Color" level sets: a multi-phase method for structural topology op-
timization with multiple materials. Computer Methods in Applied Mechanics and Engineering,
193(6-8):469–496, 2004.

81. Z. Liu, J. G. Korvink, and R. Huang. Structure topology optimization: Fully coupled level set
method via FEMLAB. Structural and Multidisciplinary Optimization, 29(6):407–417, 2005.

82. J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsøe. A geometry projection method for shape
optimization. International Journal for Numerical Methods in Engineering, 60(14):2289–2312,
2004.

83. B. Bourdin and A. Chambolle. Design-dependent loads in topology optimization. ESAIM: Con-
trol, Optimisation and Calculus of Variations, 9:19–48, 2003.

84. M. Burger and R. Stainko. Phase-field relaxation of topology optimization with local stress
constraints. SIAM Journal on Control and Optimization, to appear, 2006.

85. H. A. Eschenauer, V. V. Kobelev, and A. Schumacher. Bubble method for topology and shape
optimization of structures. Structural Optimization, 8:42–51, 1994.

86. H. A. Eschenauer and A. Schumacher. Topology and shape optimization procedures using
hole positioning criteria – theory and applications. In G. I. N. Rozvany, editor, Topology Op-
timization in Structural Mechanics, CISM Courses and Lectures, volume 374, pages 135–196.
Springer, Vienna, 1997.



April 20, 2007 18:17 WSPC/Trim Size: 9.75in x 6.5in for Review Volume Chapter6

194 M. P. Bendsøe and O. Sigmund

87. J. Sokolowski and A. Zochowski. Energy change due to the appearance of cavities in elastic
solids. International Journal of Solids and Structures, 40:1765–1803, 2003.

88. A. A. Novotny, R. A. Feijoo, E. Taroco, and C. Padra. Topological sensitivity analysis. Com-
puter Methods in Applied Mechanics and Engineering, 192:803–829, 2003.

89. J. Sokolowski and A. Zochowski. Optimality conditions for simultaneous topology and shape
optimization. SIAM Journal on Control and Optimization, 42:1198–1221, 2003.

90. J. Sokolowski and A. Zochowski. On topological derivatives in shape optimization. In
T. Lewinski, O. Sigmund, J. Sokolowski, and A. Zochowski, editors, Optimal Shape Design
and Modeling, pages 55–144, Warsaw, 2004. Akademicka Oficyna Wydawnicza EXIT.

91. J. Cea, S. Garreau, P. Guillaume, and M. Masmoudi. The shape and topological optimizations
connection. Comput. Methods Appl. Mech. Engrg., 188:713–726, 2000.

92. M. Burger, B. Hackl, and W. Ring. Incorporating topological derivatives into level set methods.
Journal of Computational Physics, 194(1):344 – 362, 2004.

93. J. S. Jensen and O. Sigmund. Topology optimization of photonic crystal structures: A high
bandwidth low loss T-junction waveguide. Journal of the Optical Society of America B,
22(6):1191–1198, 2005.

94. L. D. Landau and E. M. Lifshitz. The Classical Theory of Fields, 4th ed. Pergamon Press,
Oxford, 1975.

95. P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, J. S. Jensen P. Shi, and O. Sig-
mund. Topology optimization and fabrication of photonic crystal structures. Optics Express,
12(9):1996–2001, 2004.

96. J. S. Jensen. Phononic band gaps and vibrations in one- and two-dimensional mass-spring struc-
tures. Journal of Sound and Vibration, 266(5):1053–1078, 2003.

97. O. Sigmund and J. S. Jensen. Systematic design of phononic band gap materials and structures
by topology optimization. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 361:1001–1019, 2003.

98. J. S. Jensen and O. Sigmund. Systematic design of acoustic devices by topology optimization.
In J. L. Coelho and D. Alarcão, editors, ICSV12 Proceedings, Twelfth International Congress
on Sound and Vibration. Lisbon, Portugal, page 8, 2005. CD-ROM.

99. J. S. Jensen and O. Sigmund. Systematic design of photonic crystal structures using topology
optimization: Low-loss waveguide bends. Applied Physics Letters, 84(12):2022–2024, 2004.

100. T. Borrvall and J. Petersson. Topology optimization of fluids in Stokes flow. International Jour-
nal for Numerical Methods in Fluids, 41:77–107, 2003.

101. A. Gersborg-Hansen, O. Sigmund, and R. B. Haber. Topology optimization of channel flow
problems. Structural and Multidisciplinary Optimization, 30(3):181–192, 2005.

102. L. H. Olesen, F. Okkels, and H. Bruus. A high-level programming-language implementation
of topology optimization applied to steady-state Navier-Stokes flow. International Journal for
Numerical Methods in Engineering, 65(7):975–1001, 2006.



195 

CHAPTER 7 

SHAPE DESIGN SENSITIVITY ANALYSIS  

OF NONLINEAR STRUCTURAL SYSTEMS 

Nam Ho Kim 

Department of Mechanical and Aerospace Engineering 

University of Florida, P.O. Box 116250 

Gainesville, Florida 32611, USA 

E-mail: nkim@ufl.edu 

Recent developments in design sensitivity analysis of nonlinear structural 

systems are presented. Various aspects, such as geometric, material, and 

boundary nonlinearities are considered. The idea of variation in continuum 

mechanics is utilized in differentiating the nonlinear equations with respect to 

design variables. Due to the similarity between variation in design sensitivity 

analysis and linearization in nonlinear analysis, the same tangent stiffness is 

used for both sensitivity and structural analyses. It has been shown that the 

computational cost of sensitivity calculation is a small fraction of the structural 

analysis cost. Such efficiency is due to the fact that sensitivity analysis does not 

require convergence iteration and it uses the same tangent stiffness matrix with 

structural analysis. Two examples are presented to demonstrate the accuracy and 

efficiency of the proposed sensitivity calculation method in nonlinear problems. 

1.  Introduction 

Engineering design often takes into account the nonlinear behavior of the system, 

such as the design of a metal forming process and the crashworthiness of a 

vehicle.  Nonlinearities in structural problems include material, geometric, and 

boundary nonlinearities.
1
  Geometric nonlinearity occurs when the structure 

experiences large deformation and is described using the material or spatial 

formulation.  Material nonlinearity is caused by the nonlinear relationship 

between stress and strain and includes nonlinear elasticity, hyperelasticity, 

elastoplasticity, etc.  A contact/impact problem is often called a boundary 

nonlinearity, categorized by flexible-rigid and multibody contact/impact 

conditions.  These nonlinearities are often combined together in many structural 

applications.  In the sheet metal forming process,
2
 for example, the blank material 
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will experience contact with the punch and die (boundary nonlinearity), through 

which the blank material will be deformed to a desired shape (geometric 

nonlinearity).  At the same time, the blank material will experience permanent, 

plastic deformation (material nonlinearity). 

Design sensitivity analysis
3,4

 of nonlinear structures concerns the relationship 

between design variables available to the design engineers and performance 

measure determined through the nonlinear structural analysis.  We use the term 

“design sensitivity” in order to distinguish it from parameter sensitivity.  The 

performance measures include: the weight, stiffness, and compliance of the 

structure; the fatigue life of a mechanical component; the noise in the passenger 

compartment of the automobile; the vibration of a beam or plate; the safety of a 

vehicle in a crash, etc.  Any system parameters that the design engineers can 

change can serve as design variables, including the cross-sectional geometry of 

beams, the thickness of plates, the shape of parts, and the material properties.   

Design sensitivity analysis can be thought of as a variation of the performance 

measure with respect to the design variable.
5
  Most literature in design sensitivity 

analysis focuses on the first–order variation, which is similar to the linearization 

process.  In that regard, sensitivity analysis is inherently linear.  The recent 

development of second–order sensitivity analysis also uses a series of linear 

design sensitivity analyses in order to calculate the second–order variation.
6,7

 

Different methods of sensitivity calculation have been developed in the 

literature, including global finite differences,
8,9

 continuum derivatives,
10-12

 

discrete derivatives,
13-15

 and automatic differentiation.
16-18

  The global finite 

difference method is the easiest way to calculate sensitivity information, and 

repeatedly evaluates the performance measures at different values of the design 

variables.  Engineering problems are often approximated using various numerical 

techniques, such as the finite element method.  The continuum equation is 

approximated by a discrete system of equations.  The discrete derivatives can be 

obtained by differentiating the discrete system of equations.  The continuum 

derivatives use the idea of variation in continuum mechanics to evaluate the first–

order variation of the performance function.  After the continuum form of  

the design sensitivity equation is obtained, a numerical approximation, such as 

the finite element method, can be used to solve the sensitivity equation.  The 

difference between discrete and continuum derivatives is the order between 

differentiation and discretization.  Finally, automatic differentiation refers to a 

differentiation of the computer code itself by defining the derivatives of 

elementary functions, which propagate through complex functions using the 

chain rule of differentiation.  The accuracy, efficiency, and implementation 

efforts of these methods are discussed by van Keulen et al.
19
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In this text, only the continuum derivatives are considered, assuming that the 

same idea can be implemented to the discrete derivatives.  In the finite difference 

and computational differentiation, there is no need to distinguish linear and 

nonlinear problems, as these two approaches are identical for both problems. 

In spite of the rigorous development of the existence and uniqueness of 

design sensitivity in linear systems,
20

 no literature is available regarding 

existence and uniqueness of design sensitivity in nonlinear problems.  In this text, 

the relation between design variables and the performance measures is assumed 

to be continuous and differentiable.  However, by no means should this important 

issue in differentiability be underestimated. 

The organization of the text is as follows.  In Section 2, the design sensitivity 

formulation of nonlinear elastic problems is presented.  The unique property of 

the problems in this category is that the sensitivity equation needs to be solved 

once at the end of the converged configuration.  Thus, the sensitivity calculation 

is extremely inexpensive; basically, it is the same as that of linear problems. 

In Section 3, the design sensitivity formulation of elastoplastic problems is 

presented.  Because the constitutive relation is given as a rate form and the 

problem at hand is history–dependent, the sensitivity equation needs to be solved 

at each load step.  However, the sensitivity calculation is still inexpensive 

compared with the nonlinear structural analysis, because the convergence 

iteration is not required in the sensitivity calculation.  After the convergence 

iteration is finished, the linear sensitivity equation is solved using the 

decomposed coefficient matrix from the structural analysis. 

In Section 4, the design sensitivity formulation of contact problems is 

presented.  The penalty–regularized variational equation is differentiated with 

respect to design variables. 

This chapter is by no means comprehensive in terms of deriving sensitivity 

formulations.  The reader interested in detailed derivations is referred to the 

literature.
21-29

 

2.  Design Sensitivity Analysis of Nonlinear Elastic Problems 

When the deformation of a structure is significant, the initial (undeformed) 

domain ( XΩ ) is distinguished from the deformed domain ( xΩ ).  A material point 

X∈ ΩX  is deformed to a point x∈ Ωx , such that ( ) ( )= +x X X z X , with ( )z X  

being the displacement (see Fig. 1). 

The weak form of a static problem, whether it is elastic or elastoplastic, can 

be stated that to find the solution ∈z V , such that 
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 ( , ) ( ),aΩ Ω=z z zℓ  (1) 

for all ∈z ℤ .  In Eq. (1), V  is the solution space and ℤ  is the space of 

kinematically admissible displacements.  ( , )aΩ z z  and ( )Ω zℓ  are the energy and 

load forms, respectively, whose expressions depend on the formulations.  In 

many cases, the load form is simple and often it is independent of the 

deformation.  Thus, emphasis will be given to the energy form. 

In nonlinear structural analysis, two approaches have been introduced: the 

total and the updated Lagrangian formulations.
1
  The former refers to XΩ  as a 

reference, whereas the latter uses xΩ  as a reference.  In both formulations, 

equilibrium equations are obtained using the principle of virtual work.  These 

equations are then linearized to yield the incremental form.  As noted by Bathe
1
, 

these two formulations are analytically equivalent. 

2.1.   Total Lagrangian Formulation 

2.1.1.  Incremental Solution Procedure 

When XΩ  is the reference, the energy form in Eq. (1) can be written as 

 ( , ) ( ) : ( ; ) ,
X

X

Xa dΩ
Ω

= Ω∫∫z z S z E z z  (2) 

where ( )S z  is the second Piola–Kirchhoff stress tensor, ‘:’ is the double 

contraction operator, and ( ; )E z z  is the variation of the Green–Lagrange strain 

tensor, whose expression is given as 

Figure 1. Illustration of shape design perturbation in a nonlinear structural problem.  The initial 

domain is deformed to the current domain.  For a given shape design variable, the design velocity 

field V(X) is defined in the initial domain.  Design sensitivity analysis is then to estimate the 

deformation of the perturbed domain without actually performing additional nonlinear analysis. 

 

Initial domain 
Current domain 

Perturbed domain 

Sensitivity 

XΩ xΩ
z

τz

( )τV X

X

τX

x
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 ( )0( ; ) ,Tsym= ∇ ⋅E z z z F  (3) 

where 1
2( ) ( )Tsym = +A A A  represents the symmetric part of a tensor, 0= ∇F x  

is the deformation gradient, and 0 /∇ = ∂ ∂X  is the gradient operator in the 

initial domain.  Note that ( ; )E z i  is linear with respect to its argument, while ( )S z  

is generally nonlinear. 

The load form is independent of the deformation, and is defined as 

 ( ) ,
X S

X X

T B T Sd dΩ
Ω Γ

= ⋅ Ω + ⋅ Γ∫∫ ∫z z f z fℓ  (4) 

where Bf  is the body force and Sf  the surface traction on the boundary S
XΓ .  

The deformation–dependent load form can be found in Schweizerhof.
30

 

Since the energy form is nonlinear, an incremental solution procedure, such as 

the Newton–Raphson method, is often employed through linearization.  Let [ ]L i  

denote the linearization operator with respect to incremental displacement ∆z .  

Then the energy form in Eq. (2) can be linearized, as 

 
[ ]

*

[ ( , )] ( ; ) : : ( ; ) ( ) : ( , )

( ; , ),

X
X

X

Xa d

a

Ω
Ω

Ω

= ∆ + ∆ Ω

≡ ∆

∫∫z z E z z C E z z S z H z z

z z z

L

 (5) 

where C  is the material tangent moduli, obtained from [ ( )] : ( ; )= ∆S z C E z zL , 

and the increment of ( ; )E z z  is given as 

 ( )0 0( , ) .Tsym∆ = ∇ ⋅ ∇ ∆H z z z z  (6) 

The notation of * ( ; , )
X

aΩ ∆z z z  is selected such that it implicitly depends on the 

total displacement z , and has two parameters ∆z  and z .  Note that * ( ; , )
X

aΩ z i i  is 

bilinear and symmetric with respect to its two arguments. 

In the solution procedure of a nonlinear problem, the applied load is divided 

by N  load steps and a convergence iteration is carried out at each load step.  Let 

the left superscript n  denote the current load step and the right superscript k  the 

iteration counter.  Then, the incremental equation can be written as 

 * ( ; , ) ( ) ( , ),
X X X

n k k n n ka aΩ Ω Ω∆ = −z z z z z zℓ  (7) 

for all ∈z ℤ .  ( )
X

n
Ω zℓ  is the load form at the current load step.  After solving the 

incremental displacement k∆z , the total displacement is updated using 
1n k n k k+ = + ∆z z z .  The iteration in Eq. (7) is repeated until the right–hand side 

(residual term) vanishes.  After the solution is converged, the load step is 

increased.  This procedure is repeated until the last load step N . 

Note that Eq. (7) is still in the continuum form, and the discretization is not 

introduced yet.  If the finite element method is used to approximate Eq. (7), the 

discrete counter part will be 
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 [ ]{ } { },n k k n k∆ =K U R  (8) 

where [ ]n kK  is the tangent stiffness matrix, { }k∆U  the vector of incremental 

nodal displacements, and [ ]n kR  the vector of residual forces. 

2.1.2.  Shape Sensitivity Formulation 

A shape design variable is defined in order to change the geometry of the 

structure.  The concept of design velocity is often used for this purpose, which 

represents the direction of design change for a given shape design variable.  By 

introducing a scalar parameter τ  that can control the magnitude of the design 

change, the perturbed design, as shown in Fig. 1, in the direction of the design 

velocity can be obtained as 

 ( ).τ τ= +X X V X  (9) 

The perturbation process in Eq. (9) is similar to the dynamic process by 

considering τ  as time.  Because of this analogy, the direction ( )V X  of the design 

change is called the design velocity. 

For a given design velocity, the sensitivity of a function is defined as a 

material derivative with respect to the parameter τ .  For example, the material 

derivative of displacement can be written as 

 
00

( ) ( )
[ ( )] lim .

d

d
τ τ

τ τ
τττ τ→=

−
≡ =

z X z X
z z Xɺ  (10) 

As in continuum mechanics, the above material derivative can be decomposed 

by the partial derivative and the convective term, as 

 0( ) ( ) ( ).′= + ∇ ⋅z X z X z V Xɺ  (11) 

Even if the partial derivative is interchangeable with the spatial gradient, the 

material derivative is not.
3
  The following relation should be used for the material 

derivative of the spatial gradient: 

 ( )0 0 0 0
0

.
d

d ττ =
∇ = ∇ − ∇ ⋅ ∇z z z Vɺ  (12) 

Since stress and strain include the gradient of the displacement, their material 

derivative will include the unknown term 0∇ zɺ  (implicit dependence) and the 

known term 0 0∇ ⋅ ∇z V  (explicit dependence).  The design sensitivity analysis 

solves for the first using the second.  For example, the material derivative of the 

strain variation in Eq. (3) can be written as 

 
0

( ; ) ( , ) ( ; ),V

d

d ττ =
= +E z z H z z H z zɺ  (13) 
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with the explicitly dependent term being 

 ( ) ( )[ ]0 0 0 0 0( ; ) .T T
V sym sym = − ∇ ⋅ ∇ ⋅ − ∇ ⋅ ∇ ⋅ ∇ H z z z V F z z V  (14) 

Let the incremental equation (7) be converged at the last load step, which 

means that the nonlinear variational equation (1) is satisfied.  Then, Eq. (1) is 

differentiated with respect to the parameters τ  to obtain the following design 

sensitivity equation: 

 * ( ; , ) ( ) ( , ),
X V Va aΩ ′ ′= −z z z z z zɺ ℓ  (15) 

for all ∈z ℤ .  The first term on the right–hand side is the explicit term from the 

load form and the second from the energy form.  These explicit terms can be 

obtained after differentiating with respect to parameter τ , as 

 
0

0

( ) ( )

( ) ( )

X

S
X

T B B
V

T S B

div d

dκ

Ω

Γ

 ′ = ⋅ ∇ ⋅ + Ω 

 + ⋅ ∇ ⋅ + ⋅ Γ 

∫∫

∫

z z f V f V

z f V f V N

ℓ

 (16) 

and 

 ( , ) [ ( ; ) : : ( ) : ( ; ) : ( ; ) ] ,
X

V V Va div d
Ω

′ = + + Ω∫∫z z E z z C E z S H z z S E z z V  (17) 

where divV  is the divergence of the design velocity, and 

 ( )[ ]0 0( )V sym= − ∇ ⋅ ∇ ⋅E z z V F  (18) 

is the explicitly dependent term from the Green–Lagrange strain.  In Eq. (16), κ  

is the curvature of the boundary, and N  the unit normal vector to the boundary. 

The design sensitivity equation (15) in continuum form can be discretized 

using the same method with the nonlinear structural analysis.  We assume that 

the nonlinear problem has been solved up to the final load step N  and the final 

iteration K .  If the finite element method is used to approximate Eq. (15), the 

discrete form of the sensitivity equation will be 

 [ ]{ } { },N K fic=K U Rɺ  (19) 

where [ ]N KK  is the tangent stiffness matrix at the last analysis, which is already 

factorized from the structural analysis; { }Uɺ  the vector of nodal displacement 

sensitivity; and [ ]ficR  the fictitious load representing the right–hand side of  

Eq. (15). 

If Eq. (7) is compared with Eq. (15), the left–hand sides are identical except 

that the former solves for ∆z , while the latter for zɺ .  The computational 

advantage of sensitivity analysis comes from the fact that the linear equation (15) 

is solved once at the last converged load step.  In addition, the LU–decomposed 
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tangent stiffness matrix can be used in solving for zɺ  with a different right–hand 

side, often called the fictitious load
3
 or the pseudo load.

11
 

If * ( ; , )
X

aΩ ∆z z z  is a true linearization of ( , )
X

aΩ z z , this method provides a 

quadratic convergence when the initial estimate is close to the solution.  Even if 

the tangent operator is inexact, the structural analysis may still converge after a 

greater number of iterations are performed.  However, in sensitivity analysis the 

inexact tangent operator produces an error in the sensitivity result because no 

iteration is involved.  Without accurate tangent stiffness, sensitivity iteration is 

required,
31

 which significantly reduces the efficiency of sensitivity calculation. 

In shape sensitivity analysis, the total Lagrangian formulation has been more 

popular than the updated Lagrangian formulation.
32-35

  This is partly because the 

reference configuration XΩ  is the same as the design reference.  However, it will 

be shown in the next section that the sensitivity expressions of the two 

formulations are identical after appropriate transformation. 

2.2.  Updated Lagrangian Formulation 

2.2.1.  Incremental Solution Procedure 

The updated Lagrangian formulation uses xΩ  as a reference.  The energy form in 

the updated Lagrangian formulation can be written as 

 ( , ) ( ) : ( ) ,
x

x

a dΩ
Ω

= Ω∫∫z z z zσ ε  (20) 

where ( )zσ  is the Cauchy stress tensor, ( )zε  the variation of the engineering 

strain tensor, whose expression is given as 

 ( )( ) ,xsym= ∇z zε  (21) 

and /x∇ = ∂ ∂x  is the spatial gradient operator.  The same load form in the total 

Lagrangian formulation is used.
36

 

Even if Eqs. (2) and (20) seem different, it is possible to show that they are 

identical using the following relations: 

 1( ) ( ; )T− −= ⋅ ⋅z F E z z Fε , (22) 

 
1

( ) .T
J

= ⋅ ⋅z F S Fσ  (23) 

The same transformation as in Eq. (22) can be applied for ( ; )∆E z z .  In Eq. (23), 

J  is the Jacobian of the deformation, such that x Xd JdΩ = Ω . 

The linearization of Eq. (20) is complicated because not only the stress and 

strain, but also the domain xΩ  depends on the deformation.  Thus, instead of 
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directly linearizing Eq. (20), it is first transferred to the undeformed 

configuration (pull-back).  After linearization, the incremental form (the same as 

Eq. (5)) is transferred to the deformed configuration (push-forward) to obtain 

 [ ]* ( ; , ) ( ) : : ( ) ( ) : ( , ) ,
x

x

a dΩ
Ω

∆ ≡ ∆ + ∆ Ω∫∫z z z z c z z z zε ε σ η  (24) 

where ijkl iI jJ kK lL IJKLc F F F F C=  is the spatial tangent moduli
37

 and  

 ( )( , ) T
x xsym∆ = ∇ ⋅ ∇ ∆z z z zη  (25) 

is the transformation of ( , )∆H z z  in Eq. (6). 

The same incremental equation as in Eq. (7) can be used for the Newton–

Raphson iterative solution procedure with different definitions of ( , )
x

aΩ z z  and 
* ( ; , )
x

aΩ ∆z z z .  There is one difficulty in the expression of Eq. (20): the reference 

xΩ  is unknown.  For computational convenience, the domain at the previous 

iteration is often chosen as a reference domain, assuming that as the solution 

converges, the difference between the two domains can be ignored. 

2.2.2.  Shape Sensitivity Formulation 

From the viewpoint of the shape design, the sensitivity formulation of the 

updated Lagrangian can be done in two ways: either differentiating the energy 

form in Eq. (20) directly, or differentiating the total Lagrangian form first and 

then transforming it to the current configuration.  The first is relatively complex 

because the reference xΩ  depends on both the design and the deformation.  Cho 

and Choi
38

 differentiate the energy form in xΩ .  Since the design velocity ( )V X  

is always defined in XΩ , they update the design velocity at each load step, which 

requires additional steps in the sensitivity calculation.  In addition, this approach 

cannot take advantage of the computational efficiency, because the sensitivity 

equation must be solved at each load step. 

From the idea that the total and updated Lagrangian formulations are 

equivalent, the second approach is taken; i.e., transforming the sensitivity  

Eq. (15) to the deformed configuration to obtain 

 * ( ; , ) ( ) ( , ),
x V Va aΩ ′ ′= −z z z z z zɺ ℓ  (26) 

for all ∈z ℤ .  In Eq. (26), the same ( )V′ zℓ  in Eq. (16) is used, since the 

difference between two formulations is in the energy form, not in the load form.  

The explicitly dependent term from the energy form can be obtained, after 

transformation, as 

 ( , ) [ ( ) : : ( ) : ( , ) : ( ) ] ,
x

V V Va div d
Ω

′ = + + Ω∫∫z z z c z z z z Vε ε σ η σ ε  (27) 

where  
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 0( ) ( )V xsym= − ∇ ⋅ ∇z z Vε , (28) 

 [ ] [ ]0 0( , ) ( ) .T
V n x xsym sym= − ∇ ⋅ ∇ ⋅ ∇ − ∇ ⋅ ∇z z z z V z Vη  (29) 

Note that the sensitivity Eq. (26) solves for the sensitivity of the total 

displacement, not its increment.  Thus, the same efficiency as with the total 

Lagrangian approach can be expected. 

3.  Design Sensitivity Analysis of Elastoplastic Problems 

In addition to the nonlinear elastic material in the previous section, the 

elastoplastic material is important in engineering applications.  The major 

difference is that the former has a potential function so that the stress can be 

determined as a function of state, whereas the latter depends on the load history.  

In that regard, the elastoplastic problem is often called history–dependent.  One 

of the main disadvantages of this type of problem is that the sensitivity analysis 

must follow the nonlinear analysis procedure closely.
39-43

  Two formulations are 

discussed in this section: the rate form and the total form. 

3.1.  Small Deformation Elastoplasticity 

3.1.1.  Incremental Solution Procedure 

When deformation is small (i.e., infinitesimal), the constitutive relation of 

elastoplasticity can be given in the rate form, and stress can be additively 

decomposed into elastic and plastic parts.  The elastic part is described using the 

traditional linear elasticity, while the plastic part (permanent deformation) is 

described by the evolution of internal plastic variables.  

Due to the assumption of small deformation, it is unnecessary to distinguish 

the deformed configuration from the undeformed one.  Since the problem 

depends on the path of the load, it is discretized by N  load steps: 0 1[ , , , ]Nt t t…  

with the current load step being nt .  In order to simplify the presentation, only 

isotropic hardening is considered in the following derivations, in which the 

plastic variable is identical to the effective plastic strain, pe .   

Let the incremental solution procedure converge at load step 1nt −  and the 

history–dependent variable 1 1 1{ , }n n n
pe

− − −=ξ σ  be available.  Then, the energy 

form at nt  can be written as 

 1( ; , ) ( ) : .n n na d−
Ω

Ω
= Ω∫∫z z zξ ε σ  (30) 
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In Eq. (30), the left superscripts n  and 1n −  represent the load steps nt  and 

1nt − , respectively.  However, they will often be omitted whenever there is no 

confusion.  The notation of the energy form is selected such that it implicitly 

depends on the history–dependent variable at the pervious load step.   

The energy form is nonlinear with respect to its arguments.  In order to 

linearize the energy form, it is necessary to consider the update procedure of the 

stress and the plastic variable.  In the displacement–driven procedure, it is 

assumed that the displacement increment ∆z  is given from the previous iteration.  

Mathematically, elastoplasticity can be viewed as a projection of stress onto the 

elastic domain, which can be accomplished using a trial elastic predictor 

followed by a plastic corrector.  Then, the stress and the plastic variable can be 

updated according to 

 1 : 2n n µγ−= + ∆ −C Nσ σ ε , (31) 

 1 2
3

n n
p pe e γ−= + , (32) 

where 2
3( ) 2 devλ µ µ= + ⊗ +C 1 1 I  is the fourth–order isotropic constitutive 

tensor; λ  and µ  are Lame’s constants; ( )∆ = ∆zε ε  is the incremental strain; N  

is a unit deviatoric tensor, normal to the yield function; and γ  is the plastic 

consistency parameter.  In Eq. (31), the first two terms on the right–hand side 

correspond to the trial stress; i.e., 1 :tr n−= + ∆Cσ σ ε .   

The plastic consistency parameter can be obtained from the relation that the 

stress stays on the boundary of the yield function during the continuous yielding: 

 2
3( , ) ( ) 0,n n n n

p pf e eκ= − =s s  (33) 

where :n n
dev=s I σ  is the deviatoric stress tensor, devI  is the fourth–order unit 

deviatoric tensor, ( )n
peκ  is the radius of the elastic domain in the isotropic 

hardening plastic model.  In general, the above equation is nonlinear, so that the 

local Newton–Raphson method can be used for the plastic consistency parameter.  

When there is no plastic deformation, γ  is equal to zero. 

Using the update procedure described in Eqs. (31)–(33), the energy form can 

be linearized to obtain 

 * 1 alg( ; , ) ( ) : : ( ) ,na d−
Ω

Ω
∆ = ∆ Ω∫∫z z z C zξ ε ε  (34) 

where the algorithmic tangent operator
44

 is defined by 

 
2 2

alg 4 4
[ ],devtrA

µ µ γ
= − ⊗ − − ⊗C C N N I N N

s
 (35) 

where 2
32 / pA eµ κ= + ∂ ∂ ; ⊗  is the tensor product; and tr s  is the deviatoric 

stress at the trial state, which can be obtained by assuming that all incremental 
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displacements are elastic.  To guarantee the quadratic convergence of the 

nonlinear analysis, the algorithmic tangent operator must be consistent with the 

stress update algorithm.
44

 

Once the energy form and the linearized energy form are available, the same 

linear equation as Eq. (7) can be used to solve for the incremental displacement.  

After the residual term vanishes, the stress and the plastic variable are updated 

according to Eqs. (31) and (32), the analysis moves to the next load step, and 

proceeds until the last load step. 

3.1.2.  Shape Sensitivity Formulation 

In the shape design sensitivity formulation for the elastoplastic material, it is 

assumed that the structural problem has been solved up to the load step nt  and 

the sensitivity analysis has been finished up to the load step 1nt − .  The goal is to 

solve the sensitivity equation at the load step nt .  This is necessary because the 

problem at hand is history–dependent.  At each load step, the sensitivity of the 

incremental displacement is solved, and the sensitivity of the stress and the 

plastic variable is updated for the sensitivity calculation at the next load step. 

By differentiating the variational equation (1) with the energy form in Eq. 

(30), the sensitivity equation can be obtained as 

 * 1 1( ; , ) ( ) ( , ) ( , , ),n n n n
V V pa a a− −

Ω ′ ′ ′∆ = − −z z z z z z zξ ξɺ ℓ  (36) 

for all ∈z ℤ .  The linearized energy form * 1( ; , )na −
Ω ξ i i  is identical with that of 

Eq. (34).  Two differences can be observed in the above sensitivity equation 

compared to the elastic problem: (1) it solves for the sensitivity of incremental 

displacement ∆zɺ , and (2) it depends on the sensitivity results at the previous load 

step.  In Eq. (36), the explicit term from the load form is similar to Eq. (16), and  

the explicit term from the energy form is defined as 

 alg( , ) [ ( ) : ( ) : : ( ) ( ) : ] ,V V Va div d
Ω

′ = + + Ω∫∫z z z z C z z Vε σ ε ε ε σ  (37) 

where 

 ( ) ( )V sym= − ∇ ⋅ ∇z z Vε  (38) 

is the explicit term from the material derivative of the strain tensor.  The last term 

in Eq. (36), the history–dependent term, is given as 

 ( , ) [ ( ) : ] ,fic
pa d

Ω
′ = Ω∫∫z z zε σ  (39) 

where 
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 1 1 1 12
3

2 2
: ( ) :fic n n n n

p tr
p

e
A e

µ κ µγ− − − − ∂ = − − − − ⊗
 ∂ 
N s N I N N s

s
σ σɺ ɺ ɺ ɺ  (40) 

is the plastic variable from the sensitivity calculation at the previous load step. 

After the sensitivity equation is solved, the sensitivity of the total 

displacement can be updated by 

 1 .n n−= + ∆z z zɺ ɺ ɺ  (41) 

In addition, the sensitivity of the stress and the plastic variable must be updated 

for the calculation in the next load step, using the following formulas: 

 [ ]1 : ( ) ( )n n
V

−= + ∆ + ∆C z zσ σ ε εɺ ɺ ɺ , (42) 

 1 11 2 2
: .

3 3
n n n n
p p p

p

e e e
A e

κ− − ∂ = + −
 ∂ 
N sɺ ɺ ɺ ɺ  (43) 

The fact that the sensitivity equation needs to be solved at each load step may 

decrease the computational advantage.  However, the sensitivity calculation is 

still inexpensive compared to the structural analysis.  First, the convergence 

iteration in the nonlinear problem is avoided and the linear sensitivity equation is 

solved at the end of each load step.  Second, the LU–decomposed stiffness matrix 

from structural analysis can be used for sensitivity calculation.  Considering the 

fact that most computational cost in the matrix equation is involved in the 

decomposition, the proposed sensitivity calculation method provides a significant 

advantage.  The major cost in sensitivity calculation is involved in the 

construction of the fictitious load and updating the history–dependent variables. 

3.2.  Finite Deformation Elastoplasticity 

When a structure undergoes a large deformation, the elastoplasticity theory with 

the infinitesimal deformation needs to be modified.  A new method for 

expressing the kinematics of finite deformation elastoplasticity using the 

hyperelastic constitutive relation is becoming a desirable approach for isotropic 

material.  This method defines a stress–free intermediate configuration composed 

of plastic deformation, and obtains the stress from the elastic strain energy 

density function defined in the intermediate configuration (see Fig. 2). 

In this model, the deformation gradient is decomposed by the elastic and 

plastic parts,
45

 as 

 ( ) ( ) ( ),e p= ⋅F X F X F X  (44) 

where ( )pF X  is the deformation through the intermediate domain, which is 

related to the plastic deformation, and 1
e
−F  is the stress–free, unloaded process. 
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3.2.1.  Incremental Solution Procedure 

Similar to the previous section, the load is discretized by N  load steps and the 

current load step is nt .  In order to simplify the presentation, only isotropic 

hardening is considered in the following derivations.  In the incremental solution 

process, it is assumed that the nonlinear analysis has been converged and plastic 

variables 1 1 1{ , }n n n
p pe

− − −= Fξ  are available from load step 1nt − . 

The variational equation is similar to that of the updated Lagrangian 

formulation, and the energy form is defined as 

 1( ; , ) ( ) :
X

X

n n na d−
Ω

Ω
= Ω∫∫z z zξ ε τ . (45) 

Note that the energy form is defined using the integral over domain XΩ , and the 

Kirchhoff stress tensor J=τ σ  is used so that the effect of Jacobian is included 

in the constitutive relation.
46

 

In order to solve the nonlinear equation (45), the procedure of stress update is 

presented first.  At load step nt , with given displacement increment, the 

deformation gradient is calculated by 

 1 1 ,n n tr n
e p

− −= ⋅ = ⋅F f F F F  (46) 

where x= + ∇ ∆f 1 z  is the relative deformation gradient, and 1tr n
e e

−= ⋅F f F  is 

Figure 2. Analysis and design configurations for large deformation elastoplasticity.  Plastic deformation 

is applied to the intermediate domain.  The constitutive relation is hyperelasticity between the 

intermediate and deformed domains.  The design velocity is always defined in the undeformed domain. 

Undeformed domain 

(Design reference) 

      Intermediate domain 

      (Analysis reference) 

Deformed domain 

pF
ɺ

zɺ

pF
eF

F

( )V X
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the trial elastic deformation gradient, which is obtained by assuming that the 

relative deformation gradient is purely elastic. 

Since the trial state assumes that all incremental deformation is elastic, it goes 

out of the elastic domain when a part of it is plastic deformation.  Thus, the trial 

state needs to return to the elastic domain, which is called the return–mapping.  

In this model, the return–mapping is achieved in the principal stress space with a 

fixed principal direction.  By using the constitutive relation between the principal 

stress and logarithmic strain, better accuracy is obtained for a large elastic strain 

problem than with the classical elastoplasticity. 

Let 1 2 3 1 2 3{ , , } {log( ), log( ), log( )}T Te e e λ λ λ= =e  be the logarithmic principal 

stretch of the elastic left Cauchy–Green deformation tensor, defined by 

 
3

2

1

.tr e tr tr T i i
e e i

i

λ
=

= ⋅ = ⊗∑b F F n n  (47) 

Then, the Kirchhoff stress tensor, after plastic deformation, can be calculated by 

 
3

1

,p i i
i

i

τ
=

= ⊗∑ n nτ  (48) 

where 1 2 3{ , , }p p pp τ τ τ=τ  is the principal Kirchhoff stress.  Note that for the 

isotropic material, τ  and tr eb  share the same principal directions.  Equation (48) 

means that the principal direction is fixed during the plastic deformation, and the 

principal Kirchhoff stress is updated, including plastic deformation, as 

 2 ,n p e µγ= ⋅ −c e Nτ  (49) 

where 2
3( ) 2e

devλ µ µ= + ⊗ +c 1 1 1ɶ ɶ  is the 3×3 elastic constitutive tensor for the 

isotropic material; {1, 1, 1}T=1ɶ  is the first–order tensor; 1
3 ( )dev = − ⊗1 1 1 1ɶ ɶ  is 

the second–order deviatoric tensor; N  is a unit vector, normal to the yield 

function; and γ  is the plastic consistency parameter.  If Eq. (49) is compared 

with Eq. (31), two formulations yield a very similar return–mapping procedure.  

The differences are that Eq. (49) is in the principal stress space, and the 

logarithmic principal stretch is used instead of the engineering strain tensor. 

The plastic consistency parameter can be obtained from the relation that the 

stress stays on the yield function during the continuous yielding: 

 2
3( , ) ( ) 0,n n n n

p pf e eκ= − =s s  (50) 

where :n n p
dev=s 1 τ  is the deviatoric part of n pτ , and ( )n

peκ  is the radius of 

the yield surface after plastic deformation. 

The linearization of the energy form is similar to that of the updated 

Lagrangian formulation, except that the integration domain is changed to the 

undeformed one: 
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 [ ]1( , ; , ) ( ) : : ( ) : ( , )
X

X

na d−
Ω

Ω
∆ = ∆ + ∆ Ω∫∫z z z z c z z zξ ε ε τ η . (51) 

The tangent stiffness moduli c  in the above equation must be consistent with the 

stress update procedure that is explained between Eqs. (46) and (50).  The 

explicit form of c  is available in Simo.
46

 

Using the energy form in Eq. (45) and its linearization in Eq. (51), the 

Newton-Raphson method, similar to Eq. (7), can be employed to solve for the 

incremental displacement.  Once the residual term is converged through iteration, 

the plastic variables are updated and analysis moves to the next load step. 

Different from the classical elastoplasticity, it is not necessary to store stress 

because, as is clear from Eq. (49), stress can be calculated from hyperelasticity.  

Instead, the intermediate configuration, which is represented by pF  or counter 

part eF , is stored for the calculation in the next load step.  For that purpose, first 

the relative plastic deformation gradient is calculated by 

 
3

1

exp( ) ,i i
p i

i

Nγ
=

= − ⊗∑f n n  (52) 

from which the elastic part of the deformation gradient is updated by 

,n tr
e p e= ⋅F f F  and the plastic part can be obtained from 1n n n

p e
−= ⋅F F F .  In 

addition, the effective plastic strain that determines the radius of the yield surface 

can be updated by 

 1 2
3

n n
p pe e γ−= + . (53) 

After the plastic variables are updated, the sensitivity analysis is performed at 

each converged load step. 

3.2.2.  Shape Sensitivity Formulation 

As mentioned before, the reference for the design is always the undeformed 

configuration.  When the references for the design and analysis are different, 

transformation is involved in sensitivity differentiation.  In the case of finite 

deformation elastoplasticity, functions in the intermediate configuration are 

transformed to the undeformed configuration (pull–back).  After differentiation, 

they are transformed to the deformed configuration (push–forward) in order to 

recover the updated Lagrangian formulation.  

By differentiating the nonlinear variational equation (45) with shape design, 

the following sensitivity equation can be obtained: 

 * 1 1( , ; , ) ( ) ( , ) ( ; , ),
X

n n
V V pa a a− −

Ω ′ ′ ′= − −z z z z z z z zξ ξɺ ℓ  (54) 



Shape Design Sensitivity Analysis of  Nonlinear Structures 

 

211 

where the explicit term from the load form is given in Eq. (16), and the explicit 

term from the energy form is given by 

 [ ]( , ) ( ) : : ( ) : ( , ) : ( )
X

V V Va div d
Ω

′ = + + Ω∫∫z z z c z z z z Vε ε τ η τ ε . (55) 

The expressions of ( )V zε  and ( , )V z zη  are identical to those in the updated 

Lagrangian formulation in Sec. 2.2.  The last term on the right–hand side of Eq. 

(54) is the history–dependent term, which is contributed by the plastic 

deformation, given as 

 1( , , ) ( ) : : ( ) : ( , ) : ( )
X

n fic
p p pa d−

Ω
 ′ = + + Ω ∫∫z z z c z z z zξ ε ε τ η τ ε . (56) 

The first two integrands are related to the material derivative of the intermediate 

configuration, and are defined as 

 1( ) ( )p e psym −= − ⋅ ⋅z F F Fε ɺ , (57) 

 1( , ) ( )T
p x e psym −= − ∇ ⋅ ⋅ ⋅z z z F F Fη ɺ . (58) 

In addition, the last term in Eq. (56) is related to the history–dependent plastic 

variable,  

 
3

1

1

p
fic i n i i

p
pi

e
e

τ −

=

 ∂ = ⊗
 ∂ 

∑ n nτ ɺ . (59) 

Note that the sensitivity equation (54) solves for the sensitivity of the total 

displacement, which is different from the classical elastoplasticity.   

After the sensitivity equation is solved for zɺ , the sensitivities of history–

dependent terms are updated.  For that purpose, the sensitivity of the plastic 

consistency parameter is first obtained as  

 11
2 ,n

p
p

e
A e

κ
γ µ − ∂ = ⋅ −   ∂ 

N eɺ ɺ ɺ  (60) 

where ( ) : [ ( ) ( ) ( )].i i
i V pe = ⊗ + +n n z z zε ε εɺ ɺ  Then, the sensitivity of the effective 

plastic strain is updated by 

 1 2
3

n n
p pe e γ−= +ɺ ɺ ɺ . (61) 

The sensitivity of the intermediate domain is also history–dependent, and can be 

updated by 

 1 1 1,n n n n n n
p e e e e

− − −= ⋅ − ⋅ ⋅F F F F F Fɺ ɺ ɺ  (62) 

where 0 0 0
n = ∇ − ∇ ⋅ ∇F z z Vɺ ɺ  and n tr tr

e p e p e= ⋅ + ⋅F f F f Fɺ ɺ ɺ .  In the above 

equation, the sensitivity of pf
ɺ  can be obtained by differentiating Eq. (52).  After 

updating the plastic variables, the nonlinear analysis moves to the next load step. 



N. H. Kim 

 

212 

4.  Design Sensitivity Analysis of Contact Problems 

Contact problems are common and important aspects of mechanical systems.  

Metal forming, vehicle crashes, projectile penetration, various seal designs, and 

bushing and gear systems are only a few examples of contact problems.  In this 

section, the contact condition of a 2D flexible body–rigid wall is considered.  

This problem can easily be extended to 3D flexible–flexible body contact 

problems, as shown by Kim et al.
28

  

4.1.  Contact Problems with the Rigid Surface 

Contact between two bodies can be described using the impenetrability 

condition, which prevents one body from penetrating into another.
47,48

  Figure 3 

illustrates a contact condition with a rigid surface in 2R .  A natural coordinate ξ  

is used to represent the location on a rigid surface.  For example, the contact 

point cx  corresponds to the natural coordinate cξ , so that ( )c c cξ=x x . 

The impenetrability condition can be imposed on the structure by measuring 

the gap ( )ng x  between c∈ Γx  and the rigid surface, as shown in Fig. 3: 

 ( ( )) ( ) 0, ,n c c n c cg ξ ξ≡ − ⋅ ≥ ∈ Γx x e x  (63) 

where ( )n cξe  is the unit outward normal vector of the rigid surface.  The contact 

point cx  that corresponds to body point c∈ Γx  is determined by solving the 

following nonlinear equation: 

 ( ( )) ( ) 0,c c t cξ ξ− ⋅ =x x e  (64) 

where ( )t cξe  is the unit tangential vector. The contact point ( )c cξx  is the closest 

projection point of c∈ Γx  onto the rigid surface that satisfies Eq. (64). 

Figure 3. Contact condition between flexible and rigid bodies.  The penalty function is established 

for the region cΓ  where the gap function is less than zero.  Shape design change will move the 

contact point. 

Rigid Surface 

Ω τΩ

x τx

cx
cτx

τV

ξ

ne teng

cΓ
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The structural problem with the contact condition can be formulated using a 

variational inequality, which is equivalent to the constrained optimization 

problem.
49

  In practice, this optimization problem is solved using the penalty 

method.  If there is a region cΓ  that violates Eq. (63), then it is penalized using a 

penalty function.  After applying to the structural problem, the variational 

equation with the contact condition can be written as 

 ( , ) ( , ) ( ), ,a bΩ Γ Ω+ = ∀ ∈z z z z z zℓ ℤ  (65) 

where the energy and load forms are identical to the previous sections, depending 

on the constitutive model.  The contact form can be defined from the variation of 

the penalty function, as 

 ( ) ,
c

n nb g dωΓ
Γ

= ⋅ Γ∫z, z z e  (66) 

where ω  is the penalty parameter. In Eq. (66), ngω  corresponds to the contact 

force.  The nonlinear contact form in Eq. (66) can be linearized to obtain 

 *( ; , ) ( ) ( ) ,
c c

n
n n t t

g
b d d

c

α
ω ωΓ

Γ Γ
∆ = ⋅ ⊗ ⋅ ∆ Γ − ⋅ ⊗ ⋅ ∆ Γ∫ ∫z z z z e e z z e e z  (67) 

where 

 2
, , .n c nc gξξα α= ⋅ = −e x t  (68) 

Note that there is a component in the tangential direction because of curvature 

effects.  If the rigid surface is approximated by a piecewise linear function, then 

0α =  and 2c = t .  

Suppose the current load step is nt  and the current iteration count is k .  Then, 

the linearized incremental equation of (65) is obtained as 

* *( ; , ) ( ; , ) ( ) ( , ) ( , ), .n k k n k k n n k n ka b a bΩ Γ Ω Ω Γ∆ + ∆ = − − ∀ ∈z z z z z z z z z z z zℓ ℤ  (69) 

The linearized system of (69) is solved iteratively with respect to incremental 

displacement until the residual forces on the right–hand side vanish at each load 

step. 

4.2.  Design Sensitivity Analysis for Contact Problems 

The shape design sensitivity formulation of the contact problem has been 

extensively developed using linear variational inequality.
50,51

  The linear operator 

theory is not applicable to a nonlinear analysis, and the non-convex property of 

the constraint set makes it difficult to prove the existence of the derivative.  

Despite such a lack of mathematical theory, the shape design sensitivity 

formulation for the contact problem is derived in a general continuum setting.  As 
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a result of the regularizing property of the penalty method, it is assumed that the 

solution continuously depends on shape design.  As has been well established in 

the literature, differentiability fails in the region where contact status changes.
50

 

One good feature of the penalty method is that the contact region is established 

using a violated region, thus avoiding a non-differentiable region. 

It is shown by Kim et al.
21

 that the design sensitivity analysis of a frictionless 

contact problem is path–independent, whereas that of a frictional contact problem 

is path–dependent and requires information from the previous time step to 

compute sensitivity at the current time.  

In order to derive the derivative of the contact form, the gap function in  

Eq. (63) is first differentiated with respect to the shape design variable, to obtain 

 ( )n ng = + ⋅V z eɺ ɺ . (70) 

In the above derivation, the tangential component has been canceled due to the 

fact that the perturbed contact point also satisfies the consistency condition.  

Equation (70) implies that, for an arbitrary perturbation of the structure, only the 

normal component will contribute to the sensitivity of the gap function.  

The contact form in Eq. (66) can then be differentiated with respect to the 

shape design, as 

 *

0

[ ( , )] ( ; , ) ( , )V

d
b b b

d τ τ
ττ

Γ Γ
=

′= +z z z z z z zɺ . (71) 

The first term on the right–hand side represents implicitly dependent terms 

through zɺ , and the second term explicitly depends on V .  The implicit term 
*( ; , )bΓ z z zɺ  is available in Eq. (67) by substituting zɺ  into ∆z .  The explicit  

term ( , )Vb ′ z z  is defined as the contact fictitious load and can be obtained by 

collecting all terms that have explicit dependency on the design velocity, as 

 *( , ) ( ; , )
c

V n n nb b g V dω κΓ
Γ

′ = + ⋅ Γ∫z z z V z z e . (72) 

The design sensitivity equation can then be obtained by differentiating the 

penalty–regularized variational Eq. (65) with respect to the design variable, as 

 * *( ; , ) ( ; , ) ( ) ( , ) ( , ),V V Va b a bΩ Γ ′ ′ ′+ = − − ∀ ∈z z z z z z z z z z z zɺ ɺ ℓ ℤ . (73) 

For the frictionless contact problem, the fictitious load of the contact form in 

Eq. (72) depends on z  and V .  The material derivative formula in Eq. (73) is 

history–independent.  Thus, it is very efficient to compute the design sensitivity 

of a frictionless contact problem. The design sensitivity equation is solved only 

once at the last load step with the same tangent stiffness matrix from the 

structural analysis.  As compared with nonlinear response analysis, this property 

provides great efficiency in the sensitivity computation process. 
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5.  Numerical Examples 

5.1.  Shape Design Sensitivity Analysis of the Windshield Wiper Problem
24

 

The continuum forms of the structural equation and the sensitivity equation are 

approximated using the reproducing kernel particle method (RKPM) , where the 

structural domain is represented by a set of particles.
52,53

  RKPM is an ideal 

choice since, unlike the traditional finite element method, the solution is much 

less sensitive to the mesh distortion that causes many difficulties in large 

deformation analysis as well as in shape optimization. 

Figure 4(a) shows the geometry of the windshield blade.  The windshield is 

assumed to be a rigid body.  For the convenience of the analysis, a vertical line is 

added to the windshield for smooth deformation.  The upper part of the blade  

is supported by a steel slab.  Hyperelastic material (rubber) is used for the blade, 

and 710ω =  is used for the contact penalty. 

As the glass moves to the left, the tip of the blade is in contact with the glass, 

which is modeled as flexible-rigid body contact.  The function of the thin neck is 

to generate flexibility such that the direction of the blade can be easily turned 

over when the blade changes its moving direction.  The role of the wing is to 

supply enough contact force at the tip point.  Figure 4(b) shows a von Mises 

stress contour plot with the deformed geometry at the final configuration.  The 

stress concentration is found at the neck and the tip because of the bending effect. 

The geometry of the structure is parameterized using nine shape design 

variables as shown in Fig. 4(a).  The design velocity at the boundary is obtained 

u5 

u6 

Figure 4. (a) Windshield blade geometry and shape design variables, (b) Contour plot of equivalent 

stress. 

u8 
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u7 
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Neck 
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u9 

(a) (b) 
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first by perturbing the boundary curve corresponding to the design variable, and 

the domain design velocity field is computed using an isoparametric mapping 

method.  Four performance measures are chosen: the total area of the structure, 

two von Mises stresses of the neck region, and the contact force at the tip. 

Sensitivity analysis is carried out at each converged load step to compute the 

material derivative of the displacement.  The sensitivities of the performance 

measures are computed at the final converged load step using zɺ .  The cost of the 

sensitivity computation is about 4% of that of the response analysis per design 

variable, which is quite efficient compared to the finite difference method.  The 

accuracy of the sensitivity is compared with the forward finite difference results 

for the perturbation size of 610τ −= .  Table 1 shows the accuracy of the 

sensitivity results.  In the third column of Table 1,  ψ∆  denotes the finite 

difference results and the fourth column represents the change of the function 

from the proposed method.  Excellent sensitivity results are obtained. 

 

5.2.  Design Sensitivity Analysis of the Deepdrawing Problem
54

 

Figure 5(a) shows the simulation setting and the design variables of the problem.  

Only half of the model is solved using symmetric conditions.  A total of 303 

RKPM particles are used to model the blank with elastoplastic material.  The 

punch, draw die, and blank holder are assumed to be rigid bodies, modeled as 

piecewise linear segments.  The draw die is fixed during the punch motion stage, 

while the blank holder supports force to prevent vertical motion of the blank.  

After the punch moves to the maximum down–stroke (30 mm), the blank is 

released to calculate springback. Six design variables are defined, including the 

horizontal and vertical position of the punch, corner radii of the punch and draw 

die, the thickness of the blank, and the gap between the blank holder and the die. 

          Table 1. Sensitivity results and comparison with finite difference method 

Design ψ  ψ∆  ψɺ  ( / )%ψ ψ∆ ɺ  

Area .28406E−5 .28406E−5 100.00 

(53)VMσ  .19984E−3 .19984E−3 100.00 

(54)VMσ  .28588E−3 .28588E−3 100.00 
1 

CF  .55399E−5 .55399E−5 100.00 

Area .68663E−5 .68663E−5 100.00 

(53)VMσ  .19410E−3 .19410E−3 100.00 

(54)VMσ  .68832E−4 .68832E−4 100.00 
3 

CF  .43976E−4 .43976E−4 100.00 
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Figure 5(b) provides a contour plot of effective plastic strain after springback.  

A significant amount of sliding is observed between the workpiece and the draw 

die.  High plastic strain distribution is observed in the vertical section.  In the 

optimization, the maximum allowable amount of plastic strain is limited to 

prevent material failure due to excessive plastic deformation. 

Two different types of results are evaluated: the amount of springback and 

effective plastic strain pe .  The amount of springback is defined as a difference 

between deformations at the maximum down–stroke and after releasing the 

blank.  Since the sensitivity of effective plastic strain is updated at each load step, 

no additional computation is required for pe .  The sensitivity of the springback is 

calculated using the displacement sensitivity. 

The accuracy of sensitivity result is compared with the finite difference result 

by slightly perturbing the design and re-solving the same problem.  Table 2 

compares the accuracy of the proposed sensitivity ψɺ  with the finite difference 

result ψ∆ .  A very good agreement between two methods is observed.  A 

perturbation of 610τ −=  is used for the finite difference results.  In this example, 

it is hard to find an appropriate perturbation size because the sensitivity 

Figure 5. (a) Geometry of the deepdrawing problem and design variables. (b) Effective strain 

plot after springback.  The solid line is the deformed geometry at the maximum down–stroke. 

Blank 

Blank holder 

Die 

Punch 

E = 206.9 GPa 

ν = 0.29 

σy = 167 MPa 

H = 129 MPa 

25mm 

26mm 

u4 

u5 

u6 

u3 
u1 

u2 Desired shape 

          Table 2. Sensitivity results and comparison with finite difference method 

Design ψ  ψ∆  ψɺ  ( / )%ψ ψ∆ ɺ  

springback −4.31897E−5 −4.37835E−5 98.64 

(41)pe  1.48092E−8 1.48111E−8 99.99 

(55)pe  2.92573E−8 2.92558E−8 100.01 
1 

(157)pe  −2.08880E−8 −2.08875E−8 100.00 

springback 1.50596E−5 1.55745E−5 96.69 

(41)pe  −1.81265E−9 −1.81292E−9 99.99 

(55)pe  −1.60858E−8 −1.60891E−8 99.98 
3 

(157)pe  1.14224E−8 1.14229E−8 99.99 

 

(a) (b) 
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magnitudes of the two functions are very different. 

The computational cost of the sensitivity analysis is 3.8% of the analysis cost 

per design variable.  Such efficiency is to be expected, since sensitivity analysis 

uses the decomposed tangent stiffness matrix, and no iteration is required. 

6.  Conclusions and Outlook 

The design sensitivity formulations for various nonlinear problems are presented, 

including nonlinear elasticity, small and large deformation elastoplasticity, and 

frictionless contact problems.  Even if the structural analysis contains combined 

nonlinearities, the consistent derivative yields very accurate sensitivity results.  

One of the most important advantages of the proposed approach is the 

computational efficiency of calculating sensitivity information, which is critical 

in the gradient–based optimization.  Due to the facts that the proposed approach 

does not require iteration and uses the decomposed stiffness matrix from the 

structural analysis, it is shown through numerical examples that the computa-

tional cost of the sensitivity calculation is less than 5% of the analysis cost. 
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Optimal controllers are presented in this chapter for control of structures with em-
phasis on disturbance modeling. Both time domain and frequency domain meth-
ods are presented. Advantages and disadvantages of both the methods are dis-
cussed. Techniques for incorporating the excitation characteristics and frequency
response information using augmentation techniques are presented. Numerical ex-
amples illustrating the control techniques and augmentation procedures for single
and multiple degrees of freedom system are presented. The robustness principles
in the context of linear optimal control are also discussed briefly.

1 Introduction

Optimal structural control using time domain and frequency domain methods have
been proposed and used extensively during the last two decades for mitigating the
effects of wind and earthquakes1,2,3,4,5. The field of linear optimal control has been
the subject of active research for the past few decades. Time domain methods such
as LQR (Linear Quadratic Regulator) and its counterpart, LQG (Linear Quadratic
Gaussian) have been adopted in various structural control applications for mitigat-
ing the effects of wind and earthquakes1. The main idea behind the LQR method
is the minimization of a performance index under the constraints imposed by the
dynamic equations of motion. This minimization is aimed at reducing the struc-
tural responses of the system. Typically, two types of weighting matrices are used
in the LQR procedure. They correspond to weighting structural responses and con-
trol forces. By choosing the appropriate matrices, the desired performance of the
system can be achieved. The major limitations in the LQR method are (i) assuming
the excitation as a zero-mean white noise to reduce the time varying riccatti matrix

221
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equation to an algebraic one, and (ii) ability to measure all the states of the system
for full state feedback.

Some of the limitations in the LQR method are addressed in the LQG method.
In this method the LQR method is combined with a state estimator (Kalman Bucy
Filter); the estimated states (along with the partially measured states) are used
in place of unobserved states for full state feedback in LQR using the separation
principle6. Such a procedure is very useful in structural control where only partial
state measurements are available for output feedback.

Though the LQG procedure addresses some of the limitations of the LQR
method, there is no assurance of robustness, which can only be ensured by the H2

and H∞ frequency domain methods. H2 and H∞ derive their name from the norm
that is minimized, 2-norm or∞ norm. The LQG procedure is essentially equivalent
to H2 control as minimizing the LQG cost function is equivalent to minimizing the
closed-loop system 2-norm. The control designs in frequency domain provide more
physical insights into the problem, especially because the disturbances can be de-
scribed satisfactorily using their power spectral densities (PSD); and the structural
system can be adequately modeled by transfer function. The disturbances (e.g.,
earthquake) can be modeled by augmenting the state equations (with an appropri-
ate filter excited by white noise). More descriptions of the augmentation procedures
are presented in the following sections. H2 and H∞ frequency domain methods also
incorporate the system uncertainty directly in the problem formulation to provide
a robust design. Both the methods, H2 and H∞-minimize a prescribed norm of the
transfer function from the excitation to the output.

The basics of dynamic systems, time domain methods and frequency domain
methods are introduced next.

2 State Space Representation and Transfer Functions

The equations of motion are formulated in state space for the application of con-
trol to structural systems subjected to excitations such as earthquakes. State-space
representation provides a consistent framework to analyze systems of any degree of
complexity. A dynamical system can have multiple realizations, or equivalent forms
of system representation. One such realization is the state space representation
where a nth order differential equation is converted into n simultaneous first order
differential equations cast in matrix form. These equations are in the time domain
and are simple to solve using standard methods. In the state space representation,
a general linear, time varying structural system excited by an earthquake can be
represented as

ẋ (t) = A (t)x (t) + B (t)u (t) + E (t) üg (t)
y (t) = C (t)x (t) + D (t)u (t) + v (t)

(1)

where, x are the states of the system, A, B, C, D and E are time-varying system
matrices, üg is the earthquake excitation, u is the vector of control forces, y is the



April 23, 2007 11:55 WSPC/Trim Size: 9.75in x 6.5in for Review Volume Chapter8

Optimal Control of Structures 223

measurement vector, and v is the measurement noise. For a linear time-invariant
system (LTI), where the systems matrices do not change with time, the above
equations can be re-written as,

ẋ (t) = Ax (t) + Bu (t) + Eüg (t)
y (t) = Cx (t) + Du (t) + v (t)

(2)

Two important properties of a system are controllability and observability. A
system is said to be controllable if a state can be driven to any specified value from
its initial state. A system is said to be observable if a state vector can be determined
or estimated from the measured output. The controllability matrix can be formed
using the A and B matrices as

CO =
(
B AB A2B ... An−1B

)
(3)

and the observability matrix with C and A matrices as

OB =
(
C CA CA2 ... CAn−1

)T
(4)

If the dimension of the state vector is n, then the system is said to be controllable
if rank(CO)=n and the system is said to be observable if rank(OB)=n.

Let us consider the simplified form of the state space equations in Eq. 2 without
the external excitation and the measurement noise.

ẋ (t) = Ax (t) + Bu (t)
y (t) = Cx (t) + Du (t)

(5)

Taking the laplace transform on both sides of Eq. 5 (for zero initial conditions),
we get

sX (s) = AX (s) + BU (s)⇒ X(s) = (sI−A)−1 BU (s) (6)

Y (s) = CX (s) + DU (s) =
[
C (sI−A)−1 B + D

]
U (s)⇒ H (s)U (s) (7)

where, H(s) is the transfer function from the control input, u, to the measurement
vector, y. Each term in H(s) is a proper ratio of polynomials, and for the case
D = 0, the ratio of each term in the transfer function matrix is strictly proper. The
transfer function is the frequency response function, if the variable s is replaced by
the complex variable jω. As shown in Fig 1, the output is equal to the harmonic
excitation input, ejωt, multiplied by the frequency response function.

H(jω)ejωt H(jω)ejωt

Fig. 1. Frequency response function for a linear system
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3 Time Domain Methods: LQR and LQG

3.1 LQR Method

The problem of finding the optimal control involves the minimization of a specified
cost function subject to either static or dynamic constraints. There are special cases
when the constraint is dynamic, linear and the cost function is quadratic. Such con-
ditions arise, for example, when the objective is the minimization of strain energy
in a structure and whose deformations are predominantly in the linear elastic range.
The Linear Quadratic Regulator (LQR) method6, also known as the quadratic op-
timal regulator method, provides a systematic way of computing the state feedback
control gain matrix under the aforementioned conditions. The LQR method involves
computing the feedback gain matrix K of the optimal control vector, u = −Kx(t),
given the state equation,

ẋ = Ax + Bu (8)

so as to minimize the quadratic performance index,

J =

∞∫
0

(
xTQx + uTRu

)
dt (9)

where, Q is a positive-definite (or positive-semidefinite) Hermitian or real symmet-
ric matrix, and R is a positive-definite Hermitian or real symmetric matrix. These
weighting matrices determine the relative importance of the responses and the ex-
penditure of control energy. The block diagram representation is shown in Fig. 2.
The control gain matrix is obtained by solving the optimization problem and is

ẋ = Ax + Buu x

−K

Fig. 2. Block diagram for LQR method

given as6,

K = R−1BTP (10)
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and the matrix P is the steady state solution (assuming an excitation of zero mean
white noise) of the following simplified algebraic Riccatti matrix equation,

ATP + PA−PBR−1BTP + Q = 0 (11)

The basic design steps for the LQR method involves the solution of the algebraic
Riccatti matrix equation, Eq. 11 for P. If a positive definite matrix P exists, the sys-
tem is stable, or the matrix A−BK is stable. The matrix P obtained is substituted
in Eq. 10 to obtain the optimal feedback gain matrix. Eqs. 10 and 11 correspond to
the continuous case; the discrete counterparts for these equations could be found in
other references6.

• Example 1: An idealized two-story building is shown in Fig. 3. The ob-
jective is to design a controller based on LQR method. The mass of the
two floors are m1 = m2 = 10, 000 kgs and the stiffnesses of the two floors
are k1 = k2 = 10, 000 kN/m. Let us assume that the damping coefficients
are c1 = c2 = 31.6 kN-s/m, and the damping matrix is stiffness propor-
tional. Assuming the structural motion is sufficiently small that the nonlin-

m1

m2

k1, c1 

k2, c2Actuators

Fig. 3. Idealized two-story building model

ear effects can be neglected, and denoting the displacements relative to the
ground by x̄ = [x1 x2]T , the equations of motion for the structural system
can be expressed as

M¨̄x + C˙̄x + Kx̄ = Γu (12)

where u is a column vector which consists of the forces f1 and f2 exerted
by the actuators located in the two storys; Γ = I2x2 is an identity matrix.
The mass, damping and stiffness matrices are,

M =
[

m1 0
0 m2

]
,C =

[
c1 + c2 −c2

−c2 c2

]
,K =

[
k1 + k2 −k2

−k2 k2

]
(13)

Defining states, x = [x̄ ˙̄x]T , Eq. 12 can be cast in state space form as,

ẋ(t) = Ax(t) + Bu(t) (14)
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where,

A =
[

0 I
−M−1K −M−1C

]
,B =

[
0

M−1Γ

]
(15)

If the performance function is chosen to be of the form in Eq. 9, with the
following weighting matrices Q and R,

Q =

⎡
⎢⎢⎣

1010 0 0 0
0 1010 0 0
0 0 102 0
0 0 0 102

⎤
⎥⎥⎦ ,R =

[
10−3 0

0 10−3

]

The steady-state control that minimizes the cost is obtained as,

u(t) = −Kx(t) = −
[
4.5255 4.2434 0.5332 0.5317
4.2434 8.7689 0.5317 1.0649

]
x 105x x(t) (16)

The closed loop system is simulated using the above computed steady-state
gain with an initial velocity of 1 m/s at both floors. Sample results of the
simulation are shown in Fig. 4 in the form of displacement and force time
histories.

As can be readily seen from Example 1, all the states need to be known at each time
step in order to calculate the optimal gain matrix. For structural control applications
all the states are seldom known and the measurements are often noisy. Lack of
excitation information in computing the feedback gain matrix is another limitation
for the structural control purposes. The above limitations are addressed, to an
extent, in the Linear Quadratic Gaussian (LQG) method.

3.2 Optimal Estimation

Optimal estimation is needed for output feedback wherein unobserved states, or
noisy state measurements, are estimated. Estimation of unknown states based on
available measurements is accomplished with the aid of the Kalman Bucy filter.
Optimal (in the sense of minimum-variance) estimates of the states are obtained
for the case when the system is linear, cost function is quadratic, and the inputs
and errors are gaussian. The linear optimal estimator minimizes the mean-square
estimation error with respect to the choice of a filter gain matrix. The estimate of
states is through a linear ordinary differential equation based on a system model
with the actual residual measurement errors driving the state propagation through
the optimal gain matrix. The covariance estimate is derived from linear ordinary
differential equation driven by the statistics of the assumed measurement errors
and disturbance inputs6. The dynamic system considered in Eq. 2 is repeated here
where the excitation is a white, zero-mean gaussian random process, and the matrix,
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Fig. 4. Simulation results for LQR control - (a) Floor displacements with and without LQR
control; (b) LQR force time history for the two floors

D = 0.

ẋ (t) = Ax (t) + Bu (t) + Ew (t)
y (t) = Cx (t) + v (t)

(17)

The known expected values (denoted by E(·)) of the initial state and covariance
assuming uncorrelated disturbance input and measurement are as follows:

E(x(0)) = x̂0

E([x(0) − x̂0][x(0)− x̂0]T ) = P0
(18)

The disturbance input and measurement error are white, zero-mean gaussian pro-
cesses with spectral density matrices Qc and Rc defined as follows:

E(w(t)) = E(v(t)) = 0
E(w(t)wT (t)) = Qc(t)δ(t − τ)
E(v(t)vT (t)) = Rc(t)δ(t − τ)

(19)

The linear estimator is optimal in the sense that the variance of the state estimate
error is minimized on the average (expected value). Based on the optimization6,
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the covariance estimate is found by solving the following estimator Riccatti matrix
equation6 for Pe:

Ṗe = APe + PeAT + EQcET −PeCTR−1
c CPe

Pe(0) = P0

(20)

The optimal filter gain equation is6,

Kc = PeCTR
−1

c (21)

The state estimate is found by solving the following equation6:
˙̂x = Ax̂ + Bu + Kc[x−Cx̂]
x̂(0) = x̂0

(22)

For stable filter estimates, R−1
c should be positive definite. If (A,C) is detectable

(system’s unstable subspace is contained in the observable subspace) and (A,Qc) is
stabilizable (system’s unstable subspace is contained in the controllable subspace),
then the filter known as Kalman Bucy Filter (KBF) is stable and Kc approaches a
steady state value, which is an unique positive semi-definite solution of the algebraic
Riccatti equation6

APe + PeAT + EQcET −PeCTR
−1

c CPe = 0 (23)

If (A,Qc) is controllable, then the solution is positive definite.

3.3 LQG Method

From the LQR method, it is seen that the optimal control for a linear system with
a quadratic performance index is a linear feedback of the state variables. From the
KBF, the estimates of the state variables can be obtained from noisy measurements
of linear combinations of the state variables, using a filter that is a model of the
system and a feedback signal proportional to the difference between the actual and
estimated measurements. The LQG method involves the combination of the KBF
optimal estimation filter and the optimal deterministic controller. This optimal
feedback controller is combined in the ensemble average sense, for linear-quadratic
problems with additive gaussian white noise. Consider the following state equations:

ẋ (t) = Ax (t) + Bu (t) + Ew (t)
y (t) = Cx (t) + v (t)

(24)

For this system, using the separation principle6, the controller is designed using
the LQR method with the states estimated using the KBF. The estimated states
are used for the controller design as though they are the exact states of the sys-
tem. In other words, the LQG method involves the minimization of the quadratic
performance index,

J = E[

∞∫
0

(
xTQx + uTRu

)
dt] (25)
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under the constraint imposed by the equations of motion. The solution to this
problem is6:

u = −Kx̂(t)
˙̂x = Ax̂ + Bu + Kc[x−Cx̂]

(26)

If (A,B) is stabilizable, (A,Q) is detectable, (A,C) is detectable, and (A,Qc) is
stabilizable, then the closed loop system using the LQG control is stable. The order
of the resulting controller is the same as the order of the plant. The control and esti-
mation parts are derived separately and then combined in the LQG implementation
as they possess the certainty-equivalence property6.

• Example 2: The structural system considered in this example is the same
as in Example 1. The objective in this example is to show the performance
of the LQG controller using the measurements of all states with additive
Gaussian white noise and with an external excitation being uniformly dis-
tributed white noise. In order to design the controller, the estimator gains
are computed first as shown in Eqs. 21 and 23. The estimator gains are
computed assuming that the input excitation and the measurement error
are zero mean Gaussian random processes with variances 1 and 0.01 respec-
tively. The gains of the estimator are given by,

Kc =

⎡
⎢⎢⎣

0.0094 0.0147 0.003 0.0172
0.0147 0.0237 −0.0167 0.0005
0.0003 −0.0167 4.1573 5.5093
0.0172 0.0005 5.5093 8.9965

⎤
⎥⎥⎦ (27)

The actual and estimated states computed using the estimator gains in
Eq. 27 are shown in Fig. 5. The controller gains, K computed in Eq. (16)
are used together with the estimator gains in Eq. 27 to design the LQG
controller as shown in Eq. 26. The results of the simulation with and without
the LQG controller for the structure under uniform white noise external
disturbance and a Gaussian distributed additive noise of variance 0.01 are
shown in Fig. 6.

From Fig. 6, it is clear that the LQG control performs well under the broad-band
excitations considered in this example. However, the performance of the LQG con-
troller for structural control applications under narrow-band earthquake excitations
is only marginal. The performance of the LQG controller can be improved by aug-
menting the state equations using the frequency information of the earthquakes as
shown in the following section.

4 Control in the Frequency Domain

The time-domain control techniques introduced in section 3 involve the minimiza-
tion of states and control input in the form of a quadratic cost function subject
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Fig. 5. Actual states (solid lines) and their respective estimates (dotted lines)

to dynamic constraints. Earlier, we had introduced the concept of a transfer func-
tion in Eq. 7 that is obtained by taking a Laplace transform of the time-domain
equations. If the variable s in the transfer function is replaced by jω, where, ω

is the circular frequency, the transfer function can be regarded as the frequency
response function. Transfer functions and frequency response functions determine
the input-output relationships in the frequency domain and the mapping from the
time domain to the frequency domain can be achieved through the transformation
techniques described earlier. These transformations are applicable to linear systems
only and are not valid for nonlinear systems. From the structural control perspec-
tive, this restriction is not severe, as most of the structures are designed to operate
in the linear range and the localized nonlinearities for many structural systems can
be linearized through a variety of techniques available in the literature. Frequency
domain control techniques are particulary advantageous for structural control, as
the frequency information from the disturbances such as earthquakes and wind can
be incorporated in the control design formulation. The main objective of the fre-
quency domain control is a minimization of a norm of a transfer function between
the input and output as described in the following sections.
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4.1 H2 and H∞ Norms

For a stationary random process, the power spectral density7 Sz, of the output z,
from a frequency response function H, subjected to an input d, of power spectral
density, Sd(ω), is given by

Sz(ω) = H(jω)Sd(ω)H∗(jω) (28)

where, the ∗ indicates the conjugate transpose of H. The root mean square (RMS)
value of the output, z is,

‖z‖rms =

⎛
⎝ 1

2π

∞∫
−∞

trace[H (jω)Sd (ω)H∗ (jω) dω

⎞
⎠

1/2

(29)

For the case when the input d is a unit intensity white noise signal, the H2 norm
of the transfer function is defined as,

‖z‖rms =

⎛
⎝ 1

2π

∞∫
−∞

trace[H (jω)H∗ (jω) dω

⎞
⎠

1/2

(30)
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Thus, the 2 norm of the transfer function is the RMS value of the output, when the
input is a unit intensity white noise.

The singular values of any matrix, A, denoted σi[A], are the non-negative
square-roots of the eigen values of A∗A, where, A∗ is the transpose of the complex
conjugate of A, given by

σi [A] =
√

λi (A∗A) (31)

The smallest and the largest singular values are denoted by σ [A] and σ [A] respec-
tively. In terms of the singular values, the 2 norm can be written as

‖H‖2 =

⎛
⎝ 1

2π

∞∫
−∞

n∑
i

σi[H (jω)]2dω

⎞
⎠

1/2

(32)

where, n is the smallest dimension of the matrix H.
The ∞ norm of a transfer function matrix, H is defined in terms of its singular

values as,

‖H‖∞ =
sup
ω

(σ [H (jω)]) (33)

This means the ∞ norm is the supremum of the maximum singular value over all
frequencies. The 2 and ∞ norms of H, is denoted by H2 and H∞ respectively.

4.2 Frequency Domain Representation

The basic block diagram used for representing the architecture in the frequency
domain control is shown in Fig. 7. The generalized plant is represented by G and

G

K

w z

yu

Fig. 7. Basic block diagram for frequency domain representation

the controller by K. The measurement outputs are represented by y, the outputs
to be regulated by z (may or may not be measured), external disturbance by w,
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which includes the earthquake excitation and sensor noise, and the control input
is represented by u. Frequency domain representation enables the frequency infor-
mation of the excitation and the regulated variables to be included in the system
representation. In order to accomplish this within the framework of the standard
block diagram representation, the frequency weighting functions are augmented in
the generalized plant. A more detailed description of the procedure is introduced in
the following sections. For all the discussions to follow, unless otherwise noted, the
system G is assumed to be Linear Time Invariant (LTI).

In order to explain the main idea of frequency domain control methods, the
partitioned form of the transfer function of the plant shown in Fig. 7 is,(

Gzw Gzu

Gyw Gyu

)
(34)

The subscripts in the transfer function components of the partitioned matrix
denote the input-output pairs. For example, Gzu denotes the transfer function be-
tween the control input u and the regulated output z. By a simple rearrangement
of the input-output equations, we obtain the transfer function for the disturbance
input, w to the regulated outputs, z as:

Hzw = Gzw + GzuK(I−GyuK)−1Gyw (35)

The central idea behind the frequency domain control methods is to minimize the
norm of Hzw. Depending upon whether the 2-norm or the ∞ norm that is mini-
mized, the method is named accordingly as H2 or H∞.

For the purposes of structural control, frequency dependent weighting functions
are introduced in order to design a controller that is effective for the range of
frequencies in the excitation, and the frequency of responses of interest. In order
to accomplish this within the frame work of the standard block diagram shown in
Fig. 7, the weighting functions are appended to the plant system. The resulting
plant is typically of a higher order than its original. However, the larger order is
usually not a serious limitation as structural systems may be reduced using model
reduction techniques. A schematic representation of the augmentation is shown
in Fig. 8. The weighting functions are represented by W1 and W2. W1 is a filter
whose output represents the excitation of interest. This filter is designed to simulate
the frequency characteristics of the excitation (for example, earthquake) and W2
weights the structural responses at the frequencies of interest to be regulated. The
resulting augmented system is represented by Ga(s) and contains both the weighting
functions and the plant, and replaces the plant system, G(s) in Fig. 7. The weighting
procedures are described in detail in Example 3.

4.3 Equivalence of LQG and H2 Optimal Control

The steady-state LQG control is equivalent to an H2 optimization problem as it in-
volves finding a feedback controller that internally stabilizes the closed-loop system
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G(s)

K(s)

w z

yu

  W1   W2

Ga(s)

Fig. 8. Augmented System

and minimizes the 2-norm as shown in Eq. 30. Now, let us consider the quadratic
performance function for LQG control given by8,

J = E
[
xT (∞)Qx (∞) + u(∞)T Ru (∞)

]
(36)

which can be written as,

J = E

{[
Q1/2x (∞)T R1/2u (∞)T

] [Q1/2x (∞)
R1/2u (∞)

]}
(37)

In the above equation, x and u denote the states and control inputs respectively,
and ∞ represents the steady-state condition. Minimizing Eq. 37 is equivalent to a
2-norm minimization and hence, LQG and H2 optimization can be regarded as
equivalent under the aforementioned conditions.

5 H∞ Optimal Control

The discussion so far regarding the H2 and H∞ controllers have been primarily
in the frequency domain, where transfer function matrices have been presented
to describe the system and the controller. However, in order to compute the H∞
controller, the dynamical system in Eq. 2 is cast in the state space form. The state
space equations written in the standard form9 as follows:

ẋ = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w + D22u

(38)

In Eq. 38, D11, D12, D21, D22, C1 and C2 are mapping matrices of appropriate
dimensions. The basic block diagram9 is shown in Fig. 7. The generalized plant is
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represented by G and the controller by K. The measurement outputs are represented
by y, the outputs to be regulated by z, external disturbance by w, which includes the
excitation and sensor noise and the control input is represented by u. The purpose
of the H∞ control method is to minimize the∞ -norm of the transfer function from
input w to regulated output z, Gzw and is written as

‖Gzw (s)‖∞ = sup
ω

[σ̄ (Gzw (s))] ≤ γ (39)

σ̄ is the largest singular value of the transfer function, sup denotes the supremum
and γ is a positive bound for the norm. The solution for the controller for the
generalized regulator problem10,11,12 is given by

u = −F∞x̂ (40)

and the state estimator is given by
˙̂x = Ax̂ + B2u + B1ŵ + J∞L∞(y − ŷ) (41)

where,

ŵ = γ−2BT
1 K∞x̂

and

ŷ = γ−2D21B1
TK∞x̂ + C2x̂

The term, ŵ and ŷ are the estimates of the worst case disturbance and output
of the estimator. There exists a stabilizing controller if and only if there exists
positive semi-definite solutions to the two Riccatti equations for K∞ and N∞ and
the condition

ρ(K∞N∞) < γ2 (42)

where ρ(A) is the spectral radius of A which is defined as the largest singular value
of A. The controller written in the packed matrix notation is

Ksub (s) =
[

Â∞ J∞L∞
−F∞ 0

]
(43)

where,

F∞ = (D12
TD12)−1(BT

2 K∞ + D12
TC1)

L∞ = (N∞CT
2 + B1DT

21)(D21D12
T)−1

and

J∞ = (I− γ−2N∞K∞)−1

The terms, K∞ and N∞ are the solutions to the controller and estimator Riccatti
equations given by

K∞ = Ric

⎛
⎝A−B2D̃12DT

12C1 γ−2B1BT
1 −B2D̃12BT

2

−C̃T
1 C̃1 −

(
A−B2D̃12DT

12C1

)T

⎞
⎠ (44)
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N∞ = Ric

(
(A−B1D21D̃21C2)T γ−2CT

1 B1 −CT
2 D̃21C2

−B̃1B̃T
1 −

(
A−B1D̃T

21D̃21C2

)) (45)

where

C̃1 =
(
I−D12D̃12DT

12

)
C1

B̃1 = B1

(
I−DT

21D̃21D21

)

D̃12 = (DT
12D12)

−1
; D̃21 = (D21DT

21)
−1

The computations involving the controller and estimator gains are performed using
MATLAB13 in Example 3.

• Example 3: The objective of this example to illustrate the frequency do-
main augmentation techniques and design of frequency domain controllers
for a simple single degree of freedom (SDOF) system subject to earthquake
excitation. This SDOF system can be thought of as an idealized base iso-
lated structure3. Frequency dependent weighting matrices are chosen for the
control design incorporating the outputs and input characterizations. Four
types of control designs using both H2 and H∞ methods are considered (i)
No weighting filters, (ii) Output weighting filter only, (iii) Input excitation
filter only, and (iv) both output and input excitation filters. Comparison of
the responses for all cases in the frequency domain and some general obser-
vations regarding the choice of weighting functions are made. The method
of augmenting the system equations with the weighting functions is also
presented for each case. The SDOF system chosen for this example has the
following system properties:

A =
[

0 1
−6.317 −0.0503

]
B =

[
0 1
]T

= −E

(46)

The control objective is to minimize the displacements, which is one of
the states of the system and the control energy input. The measurement
consists of the noisy measurement of the velocity at all times. The plant
with the weighting filters W1 and W2 is shown in Fig. 9. The vector w
consists of the earthquake excitation vector and the measurement noise,

w =
[
w v

]T
and the regulated quantities are

z =
[
z1 z2

]T
which are the base displacement and the control input respectively.
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Fig. 9. General augmented system used in the Example 3

Augmentation with W1

In order to better inform the controller about the frequency content of the
ground motion, a input shaping filter is incorporated into the system. Fig.
10 shows the magnitude of the filter as well as the frequency content of
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Fig. 10. Frequency content of input excitation filter (solid line) and fault-normal components of
Northridge earthquake (Sylmar-dashed line and Rinaldi-dotted line)
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Northridge earthquake (fault-normal components of Sylmar and Rinaldi
records). The transfer function of the form,

W1 (s) =
2ςgωgs + ω2

g

s2 + 2ςgωgs + ω2
g

is chosen to represent the filter that characterizes the input excitation. In
state space, the equations for the shaping filter, whose input is white and
output are the ground accelerations can be written as:

ẋf = Afxf + Bfw

üg = Cfxf
(47)

where,

Af =
[

0 1
−ω2

g −2ςgωg

]
Bf =

[
0 1
]T

Cf =
[−ω2

g −2ςgωg

] (48)

Here, ωg=2π rad/s and ςg=0.6. Augmenting the state space equations with
the filter, we get{

ẋ
ẋf

}
=
[
A ECf

0 Af

]{
x
xf

}
+
[
B
0

]
u +

[
0

Bf

]
w

ẋa = Aaxa + Bau + Eaw

(49)

The matrices in the state and output equations can be written as

A = Aa;
B1 =

[
Ea 0

]
;B2 = Ba;D11 = 0;D12 = B;

C1 =
[

1 0
0 0

]
;C2 =

[
0 1 0

]
;D21 =

[
0 1
]
;D22 = 0.

(50)

Augmentation with W2

The SDOF system is sensitive to disturbance in the vicinity of its natural
frequency. At higher frequencies where the structure is often not sensitive to
disturbance, we want to lower the control. Hence, the control effort should
roll-off at frequencies slightly greater than the system’s first natural fre-
quency. In order to accomplish this, a first order weighting function shown
in Fig. 11 of the form,

W2 =
a

s + a

is chosen. Here, the parameter a=3.0 rad/sec determines the roll-off fre-
quency. In state space, the output filter equation can be written as,

ẋo = Aoxo + Box (51)
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Fig. 11. Weighting function W2

yo = Coxo (52)

Where, xo are the states of the filter, yo are the outputs, and,

Ao =
[−3 0

0 −3

]
, Bo =

[
2 0
0 2

]
, and Co =

[
1.5 0

]
(53)

As with the input excitation filter, the plant is augmented with the filter
as follows:

{
ẋ
ẋo

}
=
[

A 0
Bo Ao

]{
x
xo

}
+
[
B
0

]
u +

[
E
0

]
w

˙̃xa = Ãax̃a + B̃au + Ẽaw

(54)

The matrices in the state and output equations can be written as

A = Ãa;
B1 =

[
Ẽa 0

]
;B2 = B̃a;D11 = 0;D12 = B;

C1 =
[
0 1.5 0
0 0 0

]
;C2 =

[
0 1 0

]
;D21 =

[
0 1
]
;D22 = 0.

(55)
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Augmentation with both W1 and W2

The augmented state equations when both the weighting filters, W1 and
W2 are introduced, can be written as follows:{

ẋa

ẋo

}
=
[
Aa 0
Bo Ao

]{
xa

xo

}
+
[
Ba

0

]
u +

[
Ea

0

]
w

ẋaa = Aaaxaa + Baau + Eaaw

(56)

The matrices in the state and output equations can be written as

A = Aaa;
B1 =

[
Eaa 0

]
;B2 = Baa;D11 = 0;D12 = B;

C1 =
[
0 1.5 0
0 0 0

]
;C2 =

[
0 1 0

]
;D21 =

[
0 1
]
;D22 = 0.

(57)

Frequency Domain Response of the SDOF System

In this example, we assume that one of the states, namely, the velocity is measured.
The displacement of the system is to be controlled. The singular value plots of
the transfer functions between the input excitation, w and the regulated output,
namely, the displacement, z1 is shown in Fig. 12 and Fig. 13 for both H2 and H∞
controls. The closed loop transfer function for both cases, namely, H2 and H∞ have
been generated using MATLAB13.

Fig. 12 shows the singular value plots for the transfer functions for the case of H2

control in all the four cases; namely, without weighting filters, with output weighting
filter, W2 only, with input excitation filter, W1 only, and both W1 and W2. From
Fig. 12, we can see that the case with both input and output filters minimizes the
response at higher frequencies. However, the responses corresponding to the peak
are not minimized. In comparison, from Fig. 13 we can see that the H∞ control
minimizes the peaks for all cases. As with the H2 case, the presence of both W1 and
W2 leads to better response reductions; however, in the case of H∞, the response
reductions occur at all frequencies. It is clear from these figures that the H∞ control
is more effective in suppressing the response peaks of the systems compared to the
H2 control. In other words, H2 control minimizes the responses in an average sense
and H∞ control minimizes the worst case responses. This behavior is very important
for the case of structures whose responses are dominated by their fundamental mode,
as filters can be designed specifically taking this effect into consideration.

6 A Brief note on Robustness of H2 and H∞ Methods

No discussion on the H2 and H∞ methods is complete without reference on the
robustness of these methods to model uncertainties. A controller that functions
adequately for all admissible perturbations is termed robust. Robustness can be
defined in terms of stability or performance. A control system is said to be robustly
stable if it is stable for all admissible perturbations. A control system is said to
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Fig. 12. Magnitude of the transfer function, Hz1w for the case of H2 control

perform robustly if it satisfies the performance specifications for all admissible per-
turbations. The stability of feedback systems is determined in terms of gain and
phase margins for gain and phase perturbations. In the field of optimal control, two
types of uncertainties are considered in the control design: (i) Structured uncertainty
where there is information available about the uncertainty, which will restrict the
uncertainty to a section of a model process; (ii) unstructured uncertainty where no
information about the uncertainty is known except the upper bound of its magni-
tude. There has been significant research conducted in the areas of structured and
unstructured uncertainties8. Unstructured uncertainty is modeled by connecting an
unknown but bounded perturbation to the plant. The unstructured uncertainty
is analyzed by placing them within a common framework discussed in the ear-
lier sections. The system so formed now will have three inputs and three outputs.
Combining the nominal plant, G(s) with the feedback, K(s), results in a system
consisting of a nominal closed loop system, N(s), with the perturbation, ∆(s), in a
feedback loop as shown in Fig. 14.

The above feedback system, for the bounded unstructured uncertainty, ‖∆‖ ≤ 1,
is internally stable for all possible perturbations provided the nominal closed loop
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Fig. 13. Magnitude of the transfer function, Hz1w for the case of H∞ control

system is stable and

‖Nzdwd
‖∞ = sup

ω {σ̄ [Nzdwd
(jω)]} < 1 (58)

This is called the small-gain theorem and it used to test for robust stability with
respect to bounded perturbations. Eq. 58 is a necessary and sufficient condition for
internal stability with respect to unstructured uncertainty.

Structured uncertainty arises when a plant is subjected to multiple uncertainties
such as a number of uncertain parameters or multiple unstructured uncertainties.
For this case, the structured uncertainty can be written in the block diagonal trans-
fer function form:

∆ (s) =

⎡
⎢⎢⎣

∆1 (s) 0 0 0
0 ∆2 (s) . .

0 . ∆3 (s) .

0 . . ∆n (s)

⎤
⎥⎥⎦ (59)

where, n is the number of uncertainties and ∆(s) represents the individual uncer-
tainties applied to the plant. In the standard block diagram notation, the structured
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N(s)w z

∆(s)

wd zd

Fig. 14. Unstructured uncertainty model for robustness

uncertainty, ∆(s) is represented in the same way as in Fig. 14. The uncertainty is
scaled so that their infinity norms

‖∆1‖∞ ≤ 1; ‖∆2‖∞ ≤ 1; .......; ‖∆n‖∞ ≤ 1⇒ ‖∆‖∞ ≤ 1. (60)

The general feedback system given in Fig. 14 is stable for all possible perturbations

∆(jω) ∈ ∆̄

and

‖∆(jω)‖∞ ≤ 1,

if and only if the nominal closed loop system is internally stable and

sup
ω {µ∆̄ [Nzdwd

(jω)]} < 1 (61)

where, µ∆̄ is called the structured singular value and given by

µ∆̄ (N) =
1

min
∆∈∆̄

[σ̄ (∆) | det (I + N∆) = 0]
(62)

µ∆̄ (N) = 0 if det(I + N∆) �= 0 ∀ ∆ ∈ ∆̄

The determination of robust stability is dependent on the computation of the struc-
tured singular value and can be impractical for a large number of cases. Hence,
bounds on the structured singular values are generated and they provide good es-
timates of the structured singular value. In the case of performance robustness, the
robust performance problem can be converted into an equivalent robust stability
problem by appending an uncertainty block to the system in Fig. 14. The system
meets the performance robustness objectives if and only if the new augmented sys-
tem is robustly stable. Detailed description of robustness is beyond the scope of this
chapter, and the readers are referred to books on robust optimal control8,10,11 for
a comprehensive discussion.
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7 Concluding Remarks

The main idea of this chapter is to introduce the concepts of optimal structural
control in the time and frequency domains. Augmentation techniques for structural
control design where the frequency characteristics of excitations are introduced.
Numerical examples are presented to illustrate the salient features of the control
design. This chapter, by no means, is intended to provide an exhaustive review
of the field of optimal structural control. Instead, it is aimed at providing a brief
introduction to optimal structural control whose roots are strongly embedded in
optimization and modern control theory.

8 Acknowledgments

The authors would like to acknowledge partial funding for this work by National
Science Foundation, NSF CAREER GRANT-CMS 9996290.

References

1. B. F. Spencer and S. Nagarajaiah, “State of the art of structural control.” J. of Struc.
Eng., ASCE, 129(7), 845-856 (2003).

2. F. Jabbari, W. E Schmitendorf and J. N. Yang, “H∞ control for seismic excited
buildings with acceleration feedback” J. Eng. Mech., ASCE, 121(9), 994-1002 (1995).

3. S. Narasimhan, Control of smart base isolated buildings with new semiactive devices
and novel H2/LQG, H∞ and time-frequency controllers. PhD thesis, Rice University
(2004).

4. B. F. Spencer, J. Suhardjo and M. K. Sain, “Frequency domain optimal control
strategies for aseismic protection”. ASCE Journal of Engineering Mechanics, Vol.
120(1), 135-158 (1994).

5. T. T. Soong, Active structural control: Theory and practice. Longman Scientific and
Technical, Essex, England(1990).

6. R. Stengel, Optimal control and estimation. Dover Publications, New York (1986).
7. J. S. Bendat and A. G. Piersol Random Data: Analysis & Measurement Procedures.

Wiley-Interscience, 3rd edition (2000).
8. B. J. Burl, Linear optimal control. Addison Wesley Longman, Inc. (1999).
9. J.C. Doyle, K. Glover, P. P. Khargonekar and B. A. Francis, “State-space solutions to

standard H2 and H∞ control problems” IEEE Transactions on Automatic Control,
34(8), 831-847 (1989).

10. B. A. Francis, A course in H∞ theory. Springer-Verlag (1987).
11. M. Green and D. J. N Limebeer, Linear robust control. Prentice hall (1995).
12. M. G. Safanov and D. J. N Limebeer, “Simplifying the H∞ theory via loop shifting”.

In Proc., of the 27th IEEE Conference on Decision and Control, Austin, Texas, 1399-
1404 (1988).

13. MATLAB, The Math Works, Inc., Natick, Massachusetts (2000).



245 

CHAPTER 9 

OPTIMIZATION OF SYSTEMS FOR ACOUSTICS 

Ashok D. Belegundu and Michael D. Grissom 

The Pennsylvania State University, University Park, PA 16802 

E-mail: abelegundu@psu.edu 

An experimentally verified approach for the optimization of systems for 

acoustics with passive structural modifications is given.  The method is general 

enough to handle a variety of structural modifications and structural 

impedances.  Following some introductory acoustics and vibrations concepts, 

the optimization approach is formulated.  Governing equations and solution 

methods are given, and finally several example applications are shown.   

1.  Introduction 

This chapter discusses passive optimization techniques for minimizing or tuning 

acoustic response. The focus is on relating direct experience of our group, in the 

last ten years, on vibrating structures that are harmonically excited and which 

radiate sound into the open air. Work carried out here has been experimentally 

verified.  A survey of all work done in this area is not attempted. The aim here is 

to share our important experiences in designing quiet structures. This chapter 

does not address noise in a cavity such as an automobile interior, nor flow 

induced noise such as jet noise, fan noise. Active noise cancellation techniques 

are also not addressed. Figure 1 shows some applications for noise reduction that 

involve vibrating panels. Other examples are radiated noise from engine valve 

covers, oil pans, timing chain cover plates, and cylindrical pressure vessels. 

Passive approaches involve attaching point masses, stiffeners, and vibration 

absorbers (point mass/stiffness/damper) to the structure (Fig. 2). 

Recently, attaching thin acoustic cavities has shown potential (see Section 6). 

In high impedance structures made with thick metal plates for instance, we 

surround the noise source with a cover and attach absorbers to the cover (see gear 

box in Fig. 3). The cover is an air-tight enclosure made of thin sheet metal or  
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composite material. There are also passive devices to reduce noise in acoustic 

enclosures. Helmholtz resonators (Fig. 2) and wave guides are popular among 

these. Helmholtz resonators have been used in spacecraft fairings as also in 

motorcycle intake systems. 

Computations are based on the use of finite element analysis for vibration 

analysis and a wave superposition-boundary element method for acoustic 

analysis. These codes are integrated with non-gradient optimizers (simulated 

annealing, differential evolution, and random search).  Adopted objective 

functions include kinetic energy, sound power, and a multiattribute value 

function.. This work is targeted up to medium frequency bands. At very high 

frequency bands with high modal density, it may be argued that techniques such 

as SEA (statistical energy analysis) are better suited than finite or boundary 

analysis. 

  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Fig. 1.  Examples of Noise Sources involving Vibrating Panels: (a) washing machine, (b) boat’s 

motor housing or cowling, (c) Trim Panel in aircraft – current 120 dB interior noise levels must be 

reduced to about 70 dB with constraints on thickness and weight. 
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Fig. 2.  Passive devices that may be attached to a vibrating structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Complex noise source application to be enclosed and then attaching absorbers to the cover. 

2.  Definitions and Introductory Concepts 

The simplest vibrating structure is a single degree of freedom (1-DOF) sprung 

mass.  A free-body diagram of a 1-DOF sprung mass with base excitation is 

shown in Fig. 4.   
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Fig. 4.  Free-body diagram of 1-DOF sprung mass with base excitation. 

 

The base impedance, transmitted force (fin) divided by velocity at the base, of this 

system is given by Eq. 1 in terms of the mass (M0), stiffness (k), and damping (η) 

of the system. 
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The impedance can also be expressed as in Eq. 2 in terms of the mass, absorber 

natural frequency (ωn), and damping. 
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At ω << ωn the tuned absorber acts as a discrete mass on the base structure. At  

ω >> ωn the tuned absorber acts as a discrete spring on the base structure. In the 

vicinity of ωn the absorber has a spike in impedance that indicates that large 

forces can result even with a relatively low base velocity. At this resonance, the 

magnitude and width of the peak is determined by the mass and damping of the 

absorber. Greater mass increases the impedance linearly. Greater damping 

reduces the impedance but increases the bandwidth of the peak. It is these passive 
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effects of mass, stiffness, and sprung masses that will be exploited to optimize 

systems for acoustics. 

The simplest sound sources are the monopole and the dipole.  While they are 

theoretical in nature, they form the basic patterns for more complex sound 

radiators. A monopole can be conceptualized as a small sphere, with its entire 

surface expanding and contracting in-phase.  Acoustic waves radiate equally in 

all directions from a monopole.  A dipole is two closely spaced monopoles, 

pulsating out of phase with one another.  In contrast to the monopole, the sound 

radiated from a dipole is very directive and, at low frequencies, is not a very 

efficient acoustic radiator.   The acoustic radiation of structures with complex 

geometries is evaluated by replacing the vibrating surfaces with monopoles and 

dipoles and solving their equivalent source strengths for the magnitude of the 

vibration.  This concept is used to evaluate acoustic response which makes 

optimization of systems for acoustics possible for vibrating structures with 

complex geometries. 

Acoustic optimization objectives vary widely from application to application.  

Practically, they are constrained more by the ability to measure them than the 

ability to calculate them.  Several of the more common are mentioned here, but 

nearly all are based on sound pressure measurements.  Sound pressure level 

(SPL) is measured at a point with a single microphone ( p), and is generally 

reported in decibels relative to 2x10
-5

 Pascals in air (Eq. 3).   

 SPL (dB) = 20log10( p/2x10
-5

) (3) 

A single SPL measurement or calculation is usually not enough to 

characterize the acoustic effect of a sound producing system.  The SPL 

measurement is also affected by surrounding structures, and it is often difficult to 

isolate a system from its surroundings to obtain a good measurement.  Two 

objectives that are used to evaluate the overall effect due to acoustic energy flow 

are sound intensity (I) and power (П).  Intensity is defined as the rate of acoustic 

energy flow through a unit area, the pressure p times the particle velocity (v)  

(Eq. 4).   

 I =  p v (4) 

In practice, the real portion of the particle velocity is estimated by measuring  

the pressure at two closely spaced microphones, and the intensity is time 

averaged.  The real part of the average intensity is reported in decibels relative to 

1x10
-12

 W/m
2
. 

 Iavg(dB) = 10log10(Ireal/1x10
-12

) (5) 
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Sound power is defined as the rate of energy flow through a surface that 

completely surrounds the system of interest, or the real part of the intensity 

integrated over that surface (Eq. 6). 

 dSI
S

real∫∫=Π  (6) 

The sound power is reported in decibels relative to 1x10
-12

 W. 

 П(dB) =10log10(П/1x10
-12

) (7) 

There are many other sound metrics, but they are nearly all based on the 

previous three.   In some situations, as in the aircraft trim panel in Fig. 1(c), the 

objective is to maximize transmission loss through the panel. This is defined as 

the ratio equal to the acoustic intensity incident on one side of the panel divided 

by the acoustic intensity transmitted on the other side.   

Other metrics consist of weighting the sound power, pressure, or intensity in 

the frequency domain. The typical human ear responds more to some frequencies 

than others, and responds to some combinations of frequencies differently than 

others.  The first model of a frequency dependence effect is to apply the A-

weighting curve to the sound pressure measurements.  Other attempts to measure 

sound quality include loudness, harshness, and annoyance metrics. 

3.  Optimization Problem Formulation 

Optimization problems may be stated as minimizing an objective function f (x) 

subject to constraints: g (x) ≤ 0, h (x) = 0.  As noted above, masses, vibration 

absorbers etc. can be attached to the structure (or a cover around the structure). 

Thus, design variables for optimization relate to mass (m), stiffness (k), or 

damping (c) of each attachment to the base structure. Often, variables are chosen 

which are related to these. Details will be given below in Section 6.  

3.1.  Objective Function Formulation 

Regarding objective functions, kinetic energy (KE) is minimized first, to obtain a 

good starting point for sound power minimization. The KE is that of the original 

structure excluding the vibration absorbers. The physics of sound in this context 

is as follows.  A structure can be vibrating significantly in a certain mode but still 

radiate very little sound power. This happens when the mode is a weak radiator 

where displaced volume velocity cancellation occurs as with the dipole source. In 

Fig. 5 below, mode (a) is a strong and (b) is a weak radiator, respectively. When 
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the objective function is defined over a broad frequency band, the optimized 

designs resonate more as weak radiators.  

 

 

 

 

 

 

 

 
Fig. 5.  Vibration Mode (a) is a strong and (b) is a weak -- radiator. 

 

When KE is minimized by the optimizer, the energy is either transferred to the 

added absorbers, masses, and stiffeners or the structural impedance is increased 

at the forcing locations.  Generally, total mass of attachments is constrained to be 

less than 10% of the original weight of structure.  

Since all the metrics considered (KE, П, ...) are frequency dependent (Fig. 6) 

each must be formed into a scalar objective function for optimization. Owing to 

light damping that is found in structures, we may add the response at resonant 

frequencies only.  

 

  
Fig. 6  Objective function for broadband frequency with resonant frequencies. 

 

Thus, KE1 ≡ KE11 + KE21 + KE31 + ... will represent total energy at ω1.  Summing 

KE1 + KE2 + ... over the band of interest will serve as a good measure for total, 

integrated, energy in an harmonically excited system. We may represent this as  

 ( )∑=
ω

ωiWW  (8) 

KE11 

KE22 

KE21 

ω1 ω2 

(a) (b) 
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From Parseval’s theorem, this measure equals the average kinetic energy in a 

time period. Sound power calculations follow similar lines as KE as far as 

summing peaks.  

Recently, a multiattribute objective function based on ‘conjoint analysis’ that 

is commonly used in the business community has been shown to be effective. 

The objective is based on multiple attributes: sound power over a frequency 

band, weight, cost, and amount of damping. A special case is the additive value 

model when certain assumptions are met: 

 V = ∑ vi( f i) (9) 

where V is the objective, vi is a consistently scaled function value associated with 

the level  fi of attribute i.  

3.2.  Procedure for Optimal Design of Quiet Structures 

Most important in optimization is the need to perform reanalysis, i.e. analyze the 

structure with changing parameters in the optimization loop, without re-

computing modes of the original structure (which is a large finite element 

model).  Figure 7 below shows the design flow in computer-aided design of quiet 

structures including the multiple attribute objective function.  Note the 

importance given to keeping a minimum amount of computations within the 

iterative optimization loop. 

 

 
Fig. 7.  Flowchart for computer-aided design of quiet structures. 

 Define Geometry/Materials 

Conjoint Analysis 

Modal Analysis of Base Structure 

Initial Acoustic Analysis 

Modify Attachment Parameters  

Including Rotatory Inertia Effects 

Finished 

  ? 

Forcing Function 

Calculate Frequency Response 

Calculate Objective 



Optimization of Systems for Acoustics 

 

253 

Before getting into details of governing equations, measurements and 

examples, the general design approach, of which Fig. 7 above is only a part, is 

outlined below for a noise reduction problem. Note: “Structure” here is defined 

as the original structure or, in cases when the original structure has high 

impedance (e.g. made of very thick plates), of a cover structure around the 

original structure. Structure does not include the attachments (i.e. the absorbers). 

 

Task 1.  The power spectrum of the sound power radiating from the noise 

source is experimentally determined to identify the frequency band within which 

the sound power levels are high at the operating condition. Within this band, the 

kinetic energy KE and sound power П may be discretized as  W = ∑W i( )ω
ω

. П 

is obtained by summing the power at each frequency over the frequency interval.  

Task 2.   Conduct modal analysis experiments of the structure. 

Task 3.  Develop a finite element model and validate the model by comparison 

with the modal analysis experiments. 

Task 4.  Develop a forcing function. White noise is a good choice when there is 

uncertainty. In this case, every node is excited normal to the surface with a load 

of c Newtons with random phase, where c may be determined to match sound 

power prediction with measured values. In the case when loading is due to 

acoustic excitation, nodal velocity measurements have to be taken and used to 

define an equivalent forcing function, through, say least-squares technique. 

Task 5.  To validate the acoustical model, compute the sound power radiated 

from the structure (or cover) based on results from the numerical model and the 

physical model to insure their agreement.  

Task 6. Optimize the structure using tuned absorbers or other attachments.  

Task 7.  Experimentally validate the optimized design. 

4.  Governing Equations and Solution Methods 

As discussed in the previous section, at the core of any method of optimization of 

systems for acoustics is the reanalysis method.  In this case, the reanalysis 

method involves the recalculation of the acoustic radiation of a forced vibrating 

structure with modifications.  The most general modification is a sprung mass 

(tuned absorber, Fig. 4) as they add additional degrees of freedom, so the 

reanalysis is presented in terms of adding tuned absorbers.  This section begins 

with a description of the vibration analysis of a structure, then describes two 

possible vibration reanalysis methods, and finally gives the acoustic analysis 

method. 
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4.1.  Vibration Analysis of Base Structure (Without Modifications) 

The first step is to determine the eigenvalues and eigenvectors of the unmodified 

structure. We denote Ф0 = matrix whose columns are eigenvectors and λo = 

diagonal matrix whose elements are eigenvalues. A natural frequency in rad/s is 

obtained from the eigenvalue as λω = . Dimension of the matrix Ф0 is 

(number of degrees of freedom, number of modes in the basis). Modal 

information can be found from a finite element model or from experiment. Here 

we use finite elements to determine modal response. The basic equations for this 

are given below. 

Equations of motion of the forced vibration for a finite element representation 

of a hysteritically damped base structure are 

 [ ] 0000 fxkkxm =++ ηiɺɺ  (10) 

where 000 ,,, fkm η , and x are the mass and stiffness matrices, the material loss 

factor, and the forcing and response vectors, respectively. Assuming harmonic 

excitation and response, we have 

 [ ] 0000

2
FXkkXm =++− ηω i  (11) 

where F0 and X are the complex amplitudes of the force and response vectors.  If 

the forcing vector and damping are set to zero, the normal modes can be found by 

solving the eigenvalue problem   

 00000 ΦmΦk λ=  (12) 

The eigenvectors satisfy   

 0000 λ=ΦkΦ
T

            IΦmΦ =000

T
 (13) 

Using mode superposition, the forced response of the structure can be given as 

 qΦX 0

1

=Φ=∑
=

m

j

j

ojq  (14) 

where q is a vector of modal ‘participation factors’ or modal ‘coordinates’ given 

by 

 

( )[ ]j

j

o
j

i

q

0

2

T

1 ληω ++−

Φ
=

F
        j = 1,..., m (15) 
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At the kth resonance, whence ω = ωk , and λk
 =  ωk

2
 , we have 

j

j

o

j
i

q
0

T

ηλ

FΦ
= . 

Other quantities such as kinetic energy and radiated sound power can now be 

computed. 

4.2.  Analysis of Modified Structure by the Impedance Method 

As discussed in the introduction, a few different methods exist for dynamic 

analysis of the structure with vibration absorbers attached to it. Of these, the 

impedance method and the reduced eigenvalue method are most attractive, since 

in each of these Eq. 12 is solved only once. We first discuss the impedance 

method. The reanalysis problem is formulated in terms of added impedances as   

 [ ] xzffxkkxm ɺɺɺ −==++ ini 0000 η   (16) 

where fin is the forcing vector, and z is the impedance matrix of the modification.  

The impedance matrix is diagonal if each modification is independent and 

discrete as is the case with simple spring-mass absorbers. For example, 

impedance for a simple mass m takes the expression z = iωm, and for a spring-

mass system with parameters k, m takes the form 

  
2ω

ω

mk

mki
z

−
= . (17) 

Replacing xzff ɺ−ino by , we have 

 ( )[ ] ( )zXFΦΦX ωληω ii in

T −++−=
−

0

1

0

2

0 1  (18) 

Defining a diagonal matrix ( )[ ] 1

0

2
1

−
++−= ηλω iA , we can write the solution 

 [ ]
in

T

zz

T

zzz i FΦAΦzAΦΦIX 0

1−
+= ω  (19) 

where zz is the matrix of impedances and zΦ  is the matrix of eigenvectors 

corresponding only to (non-zero) impedance locations. Solution to Eq. 19 gives 

the response only at the impedance locations, Xz . In Eq. 19, only a small pxp 

matrix, were p is the number of impedance (or absorber) locations, is inverted for 

each desired frequency.  Response of the modified structure at a general degree 

of freedom (as opposed to where an absorber is attached) is obtained by   

 ( )m

T

z i XzFAqX ω−== 0000 ΦΦΦΦΦΦΦΦΦΦΦΦ  (20) 
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where Xm is the vector of Xz found through Eq. 18 augmented with zero values at 

the zero impedance locations, and qz is the vector of modal coordinates of the 

modified structure.  

The computational procedure may be summarized as follows. Given a set of 

absorbers with known locations and parameters, z is first defined. Then, for the 

specified frequency ω, Eqs. 18 and 19 are solved to obtain the displacement 

amplitude of the base structure X(ω). Velocities are obtained from XX ωi=ɺ . 

Other quantities such as kinetic energy of the base structure are readily 

determined from the velocities. 

4.3.  A Disadvantage with the Impedance Method For Estimating Broadband 

 Response 

Two main difficulties exist with the impedance method. One is the derivation of 

expressions for impedance, zz , that incorporate rotatory inertia of the absorbers 

(as a result of base rotation). The other difficulty is as follows. The impedance 

method yields response at a specified frequency ω. Peak values of kinetic energy 

or other performance metric which occur at resonance frequencies not known 

apriori are not easily determined.  The kinetic energy must be calculated at 

enough discrete frequencies that the peaks (or sum of peaks or an integral 

measure) over the broadband are accurately captured. The following figure 

illustrates the difficulty just mentioned. The kinetic energy of the base structure 

(Fig. 8) is computed and plotted at various frequencies for the given resolution. 

Only a single peak is included in the frequency band for illustration.  

 Fig. 8.  A constant resolution sweep missing a peak in the kinetic energy. 
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Evaluation of kinetic energy at equal increments in frequency misses this peak 

value. For low structural damping, as is generally the case, extremely small steps 

must be used, and even this will not be accurate. Noting that small increments 

mean more computation, the problem of determining broadband response now 

becomes evident. This problem has not received much attention in the past as 

absorbers were used to target only a fixed frequency. Use of distributed tuned 

absorbers for broadband energy/sound reduction has exacerbated the problem of 

determining multiple response peaks. 

4.4.  Reduced Eigenvalue Reanalysis Method 

As before, let M0 and K0 refer to the mass and stiffness matrices of the base 

structure without absorbers. An absorber is described by its own mass and 

stiffness matrices Mabs and Kabs. Some degrees of freedom of these matrices 

coincide (shared) with those of base structure where they are attached, while 

other degrees of freedom are independent. Thus, the modification mass and 

stiffnesses of the absorbers may be partitioned as  

 






∆
=

z

T
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a
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mm

mm
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=

z

T

a

a

abs
kk

kk
K  (21) 

where ∆m is the added mass matrix at the shared degrees of freedom, mz is the 

added mass matrix at the new degrees of freedom, ma is the coupling mass 

matrix, and similar descriptions for the stiffness submatrices. The modification 

element matrices are assembled into the base structure’s mass and stiffness 

matrices as 
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 (22) 

Harmonic excitation, response, and modal superposition as defined for the 

unmodified structure is assumed. As stated earlier, attachment of small vibration 

absorbers allow us to assume that response of the base structure with additions 

can be represented in the original modes. Thus, modal superposition parallels  

Eq. 14 for the unmodified structure, but with added terms from the modifications:  
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IX
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0

00ΦΦΦΦ
 (23) 
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Equations 21 and 22 are combined to give Eq. 23 

( )
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ao i ΦΦΦΦ∆∆∆∆∆∆∆∆ η
ω  (24) 

Both sides of Eq. 23 are pre-multiplied by the modal matrix in Eq. 22, and the 

result is simplified by taking advantage of the orthogonality conditions (Eq. 25):  

( )









=


























 ++
+






 +
−

0

1
00

0

000

0

0002 F

X

q

kk

kk

mm

mmI
T

zz

T

a

a

TT

o

z

T

a

a

TT
i ΦΦΦΦ

ΦΦΦΦ

ΦΦΦΦΦΦΦΦ∆∆∆∆ΦΦΦΦ

ΦΦΦΦ

ΦΦΦΦΦΦΦΦ∆∆∆∆ΦΦΦΦ λη
ω

(25) 

Equation 25 can be denoted as 

 [ ] FXKM ˆˆˆˆ2 =+− ω  (26) 

where  

 







=

zX

q
X̂  (27) 

Equation 25 involves inverting a smaller matrix. Dimension of  X̂  equals m 

number of modes used in Eq. 14 plus the number of independent degrees of 

freedom associated with the absorbers.  The solution of X̂  from the above 

equation can again be obtained using modal superposition. We set F̂ = 0 and 

solve for the modes from  

 
j

j

j
φMφK ˆˆˆˆ λ=       j = 1,..., m̂  (28) 

We then have 

 ∑
=

=
m

j

j

j

ˆ

1

ˆˆ φX ψ  (29) 

where  

 







=

z

q

Φ

Φ
φ̂  (30) 

As in Section 2, we may use orthogonality properties to write the modal response 

as  
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 (31) 
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where λm = (complex) eigenvalues of the modified structure with absorbers.  

From Eq. 22, we have qΦX 0=m , which together with Eqs. 27, 29-31 yields 

the response of the base structure degrees of freedom (i.e., excluding absorber 

degrees of freedom) as 

 ∑= j

mjm ΦX ψ  (32) 

where the modes of the modified system are given by 

 qm ΦΦΦ 0=  (33) 

Eq. 22 can be written as  

 [ ] 0

T12
FX mmmm ΦΦΦΦΦΦΦΦ

−
+−= λω  (34) 

which represents the forced response of the modified base structure. 

While the impedance approach discussed earlier only provides X(ω), and a 

search technique is needed to determine the peak responses, in the reduced 

eigenvalue approach each peak response is immediately obtained by setting the 

real part of λm = ωm
2
 in Eq.34. Further, we have derived an efficient technique for 

generating absorber matrices, Mabs and Kabs. 

4.5.  Sound Power Calculations 

A full development of the boundary element / wave superposition method used 

here is given by Fahnline and Koopmann.  The method replaces each of the 

(triangular) elements on a surface with point acoustic monopole and dipole 

sources.  The strength of each of the sources is found through a volume velocity 

boundary condition: 

 u Us=  (35) 

where s is the vector of source strengths (one for each element on the structure), 

U is a matrix relating the source strengths to volume velocities and u is the vector 

of volume velocities.  The volume velocity produced by a single element is 

defined as 

 ( )u An n n n n n= + + ⋅
1

3
1 2 3
ɺ ɺ ɺx x x n  (36) 

where An is the surface area of element n, nn is the unit normal to the element, 

and ɺxin (i = 1, 2, 3) are the nodal velocities at the corners of the triangular 

element.  The nodal velocities are calculated as discussed in the previous section. 

The acoustic source strengths are found by inverting Eq. 35. We may write Eq. 36 

in matrix form, solving for the entire volume velocity vector u Vx= ɺ , where V is 
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a matrix containing element surface areas, unit normals and connectivity 

information.  Writing this in terms of modal participation factors we have 

qVu ΦΦΦΦωi=  from which  

 qVUs ΦΦΦΦ1−= ωi  (37) 

 The acoustic power is calculated by pre- and post-multiplying the source 

strength vector by a coupling matrix S: 

 { }Sss
HRe

2

1
=avΠΠΠΠ  (38) 

where the H superscript indicates complex conjugation and transposition.  The 

matrix S is not given here for brevity. 

Direct use of Eq. 38 above is not as efficient as the following procedure. 

Substituting Eq. 37 into Eq. 38 we have 

 { }qVSUUVq ΦΦΦΦΦΦΦΦΠΠΠΠ
1HTTH2 Re

2

1 −−= ωav
 (39) 

or { }Pqq
H2

Re
2

1
ω=Π av  (40) 

where 

 ΦΦΦΦΦΦΦΦ VSUUVP
1HTT −−=  (41)  

Varying the parameters or locations of tuned absorbers on the structure will 

affect only the modal participation vector q, while leaving the P matrix 

unchanged.  The P matrix may be calculated and stored before optimization 

begins; calculation of sound power involves only the determination of the change 

in the modal participation vector through Eq. 20, and pre- and post-multiplication 

of this vector with the P matrix at each frequency.  This new reanalysis 

procedure makes feasible the use of the sound power of a structure as an 

objective function in optimization with tuned absorbers. 

4.6.  Determination of Initial Modal Participation Factors 

All of the analysis presented above are dependent on having knowledge of the 

modal participation factors (MPF’s) of the unmodified structure, q0. Once the 

eigenvalues and eigenvectors of the structure are known, the modal participation 

factors for the structure can be had either experimentally or through a known 

forcing function.  If the forcing function structure is known a priori, we may 

simply use Fq
T

0 ΛΦΛΦΛΦΛΦ=  to determine the MPF’s.  In many cases, however, the 
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forcing function is unknown or is very complicated. For example, if the forcing 

function is an acoustic excitation induced by the noise source on the enclosure.  

In this situation, we may determine the MPF’s experimentally as follows. 

Examining 0

T
qfx ΦΦΦΦΦΛΦΦΛΦΦΛΦΦΛΦ ωω ii ==ɺ , we see that the MPF’s are related to 

the nodal velocities through the matrix of eigenvectors.  In theory, we could 

measure the nodal velocities at all points on the structure and invert the equation 

to solve for the MPF’s.  In practice, it is not necessary to measure all points to 

obtain good estimates of MPF’s; only certain critical points (e.g. points located at 

antinodes of the mode shapes of the structure) need to be measured. 

Let us denote the subset of measured velocities with an overbar, in which case 

we have 

 0yx ΦΦΦΦωi=ɺ  (42) 

where ΦΦΦΦ  is the submatrix of eigenvectors associated with the measured nodes.  

Note that this matrix is generally not square, but will have dimension m × r 

where m is the number of measured points and r is the number of known 

eigenvectors.  Premultiplying Eq.42 by the transpose of the eigenvector matrix, 

we have 

 0

TT
qx ΦΦΦΦΦΦΦΦΦΦΦΦ ωi=ɺ  (43) 

The matrix preceding the q vector is now square, and we can invert this equation 

to solve for the modal participation factors without tuned absorbers. 

 ( ) xq ɺ
T1T

0 ΦΦΦΦΦΦΦΦΦΦΦΦ
−

−=
ω

i
 (44) 

For this method to be successful, the number of measured points must be equal to 

or greater than the number of modes used in the solution.  Obviously, the method 

increases in accuracy as the number of measured points increases, and the 

measured points should include the locations of the largest displacements on the 

structure (modal antinodes). 

5.  Non-gradient Optimizers Used 

Acoustic optimization does not usually lend itself to gradient optimizers.  

Objective functions generally involve many, closely spaced, sharp, resonance 

responses.  Several non-gradient optimizers have been used in this effort. 

Simulated Annealing, random search, and Differential Evolution have been used.  



A. D. Belegundu and M. D. Grissom 

 

262 

6.  Selected Example Problems 

The preceding design method has been applied to a selection of three acoustic 

optimization applications.  The three applications typify three design situations 

and the modifications that have proven to be effective for those applications.  For 

similar applications to the ones given see the references.  First, mass is added to a 

thin (low-impedance) structure to reduce acoustic radiation.  Second, tuned 

absorbers are added to medium impedance structures.  Third, a high impedance 

structure is surrounded by a close fitting cover. 

6.1.  Optimization of a Half-Cylindrical Shell 

The optimization problem under consideration is an aluminum half-cylinder, 

rigidly mounted on a fixed, rigid plate.  Figure 9 shows the finite element  

mesh of the half-cylinder.  It is 12 inches (304.8 mm) long, with a 6.25 inch 

(158.75 mm) inside diameter.  The cylinder was manufactured by reducing the 

thickness of a 6.25 inch ID aluminum pipe to 2 mm.  The objective of the 

optimization problem is to minimize the sound power radiated by the half-

cylindrical shell from its first five modes.  To quiet the shell, two masses will be 

affixed to its surface.  The locations of the masses will be determined by the 

optimization algorithm.  Mathematically, the optimization problem can be 

written as: 

 { }Minimize W W W W W1 2 3 4 5+ + + +  

where Wi is the sound power at the ith resonant frequency.  The design variables 

are the locations of two masses, {x1,x2}.  The two masses are small tungsten 

cylinders, each weighing 35.8 grams.  The shell is driven at its top center point 

(41) with a harmonic shaker. 

To model the half-cylindrical shell, a finite element mesh was created with  

81 nodes and 128 elements. At the top center node a 19.0 g point mass was 

added, to simulate the inertia of the shaker assembly. The point masses were 

constrained to lie at nodal locations on the finite element mesh.  A curvilinear 

coordinate system was mapped onto the finite element nodes so that each nodal 

location could be described by two coordinates: the distance along the long axis 

of the cylinder and circumferential location.  Thus, each mass has two 

independent design variables, for a total of four (n = 4). It should be noted that it 

is possible to specify the location of each mass using only one coordinate: the 

node number.  However, the use of this type of design variable leads to a highly 

discontinuous design space, which causes problems during optimization. 
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Fig. 9. Finite element mesh for half-cylinder. 

 

It is noteworthy that the optimal mass placement (Fig. 10) is asymmetric with 

respect to the transverse axis of the cylinder.  To understand the reason for the 

optimization results, some physical insight into the mode shapes of the shell is 

necessary.  The mode shapes before optimization are shown in Fig. 11.  The first 

mode shape is a ‘swaying’ mode and produces very little sound power, since the 

driving force is in the vertical direction.  The second mode (a ‘piston’ type mode) 

produces the largest amount of sound power.  The third mode (a ‘rocking’ or 

‘see-saw’ type mode) creates only a small amount of noise, due to the effect of 

volume velocity cancellation.  That is to say, one side of the shell moves up and 

compresses the air while the other side moves downward and decompresses the 

same amount of air like a dipole.  The overall effect is that very little net  

volume velocity is created.  The fourth and fifth modes (called ‘rocking-2’ and 

‘piston-2’) produce little noise, again due to volume velocity cancellation. 

Figure 12 shows the mode shapes of the half-cylinder with the optimal mass 

configuration.  As can be seen, the piston and see-saw modes have both been 

converted into asymmetric ‘rocking’ type modes, both of which produce only a 

small amount of sound power.  Thus, the shell has been converted into a weak 

radiator, through the addition of only 71.6 g of mass.  The final result of this 

conversion is a 9.5 dB reduction in overall sound power at the first five modes. 
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                Mode 2: Piston Mode                                      Mode 3: Rocking Mode  

Fig. 10. Mode Shapes for shell before optimization. 

 

      
                         Mode 2             Mode 3 

Fig. 11.  Second and third shell mode shapes after optimization (Asymmetric rocking modes). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.  Finite element depiction of curved pressure vessel and its sound pressure level in response 

to forcing. 
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6.2.  Multicriteria Optimization of a Pressure Vessel 

The concept of customer preference, or product value, prevalent in economics 

and management science, is just beginning to be used in engineering design.
 
This 

concept and the associated measurement approaches offer us a theoretically 

appealing way to aggregating customer preferences for multiple product 

attributes into a single objective function, representing total product value, which 

may then be maximized. Among these methods, conjoint analysis has emerged as 

the most popular approach in marketing to estimate the value that customers 

attach to different features of a product that can be at different levels. We 

incorporate a designer’s preferences for reducing noise in a curved pressure 

vessel excited with broadband noise (Fig. 12).  

The shell is part of a large industrial machine. The ‘product’ here refers to a 

broadband vibration absorber(s) attached to the structure. Through direct 

interaction with the design engineer, we elicit his/her preferences for various 

alternative design configurations, and specify an aggregate value function.  We 

then apply optimization techniques, interfaced to simulation codes, to maximize 

the value function.  We show that this method provides more economical designs 

compared to certain conventional formulations. 

The objective function represents total value of the product which is 

maximized using a non-gradient optimizer. Attributes considered are acoustic 

radiation (SPL), number of absorber beams (nb), and damping material (ηi).  The 

aggregate value of the attributes (ν) to the designer is maximized, and the 

optimization problem is formulated in the following manner:  

 

Minimize:      -(v(SPL(mi, Li, ηi)) + v(nb) + v(ηi)) 

Subject to:                     0 g ≤ mi ≤ 500 g 

                                   1 mm ≤ Li ≤ 200 mm 

                                   0.002 ≤ ηi ≤ 0.030 

                                     (i = 1,2, … nb) 

 

where mi is the mass, Li is the length, and ηi is the damping for the ith absorber.  

This formulation reduces the number of absorber beams by 40% with a negligible 

increase in the radiated sound over the commonly used single objective with 

constraint approach (Fig. 13).   

Current trends in engineering design provide Pareto sets. While this is good 

as a tool for design space exploration, there remains the significant problem of 

choosing the best design. On the other hand, multiattribute design produces a 

single design, and modern multiattribute decision theory can provide the 
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tradeoffs necessary to choose the optimal design. Here, lesser sound levels and 

easier to manufacture absorbers result when the tradeoffs are included in the 

optimization.  

 

Attributes 
Number 

of Beams 

dB 

Reduction: 

Low Freq.  

dB 

Reduction: 

Mid Freq.  

dB 

Reduction: 

High Freq.  

Kinetic Energy 

Objective 
17 15 10 2 

Sound Pressure 

Objective 
10 14 6 7 

Multiattribute 

Objective 
6 13 6 7 

 

 

 

Fig. 13. Benefit of mulitattribute optimization compared to conventional formulation for acoustic 

pressure vessel. 

 

Uncertainty in loading has been incorporated in arriving at the product design. 

However, the effect of variations in product manufacture (example, the beam 

lengths have some manufacturing tolerances) and certain other parameters have 

not been addressed. Details of this work will appear soon. There is need to 

generalize this work to design for robustness. It is assumed that the additive form 

of the value function is “reasonable”. Many exciting developments are taking 

place in marketing science, in choice models and their applications, which are 

naturally relevant in engineering design.  

nb = 17 

nb = 10  

nb = 6  
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6.3.  Thin Air Cavity Attached to a Structure 

A second plate attached with springs to an original vibrating plate requires 

modeling fluid-structure interaction for vibration analysis when the gap is small. 

This design concept has found to provide sound reduction even in the first, 

lowest vibration mode, where absorbers have had difficulty. An example problem 

demonstrates this. The plate is a 240 x 290 mm2, simply supported, 0.95 mm 

thick top cover plate attached with a 10 mm air gap (Fig. 14). The bottom plate is 

8 mm thick which is a high impedance structure.  When the spring sizes are 

optimized the cover plate reduces the sound power by 16 dB (Fig. 14). 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.  Spring mounted cover plate sound power reduction plot with 25 springs.  With optimized 

springs, 57 dB, no springs with only cavity, 73 dB, single plate (no air cavity), 80 dB. 
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7.  Summary 

The applications given in Section 6 show that passive structural modifications 

can be used to acoustically tailor a vibrating structure when applied with an 

effective optimization methodology.  The applications cover a wide range of 

structural impedances, a variety of structural modifications, and multiple 

attributes.  Finally, and most importantly, the optimized systems are significantly 

improved acoustically over the unmodified systems.  
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CHAPTER 10 

DESIGN OPTIMIZATION UNDER UNCERTAINTY 
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Department of Civil and Environmental Engineering, Vanderbilt University 
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Nashville, Tennessee, USA 

E-mail: sankaran.mahadevan@vanderbilt.edu 

Design optimization studies for mechanical systems have increasingly become 

concerned with mathematical treatment of uncertainties in system demands and 

capacity, boundary conditions, component interactions, and available resources. 

The problem of optimum design under uncertainty has been formulated as 

reliability-based design optimization (RBDO). Recent efforts in this context 

seek to integrate advances in two directions: computational reliability analysis 

methods and deterministic design optimization. Much current work is focused 

on developing computationally efficient strategies for such integration, using de-

coupled or single loop formulations instead of earlier nested formulations.  The 

extension of reliability-based optimization to include robustness requirements 

leads to multi-objective optimization under uncertainty.  Another important 

application concerns multidisciplinary problems, where the various reliability 

constraints are evaluated in different disciplinary analysis codes and there is 

feedback coupling between the codes.  Applications of recently developed 

methods to automotive and aerospace design problems are discussed, and new 

directions for further study are outlined. 

1.  Introduction 

The design of any engineering system requires the assurance of its reliability and 

quality. Uncertainties in the system characteristics and demand prevent such 

assurances from being given with absolute certainty. Traditional deterministic 

design methods have accounted for uncertainties through empirical safety factors. 

However such safety factors do not provide a quantitative measure of the safety 

margin in design, and are not quantitatively linked to the influence of different 

design variables and their uncertainties on the overall system performance. 

Therefore, in recent decades, a rational approach that quantifies the reliability of 
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performance or risk of failure in probabilistic terms, and includes these estimates 

directly in the design optimization, is gaining increased attention. For large 

systems in the aerospace and automotive  

industries, reliability estimation based on expensive full-scale tests is not 

possible, and a model-based computational approach becomes valuable.  

Deterministic optimization enhanced by reliability criteria and formulated 

within a probabilistic framework is referred to as reliability-based design 

optimization (RBDO). The aim of RBDO is to achieve adequate reliability with 

minimum cost. The reliability requirements for individual components as well as 

the entire system need to be included in the optimization formulation. In the 

optimization process, two types of variables are considered: deterministic and 

random variables. And the random variables may be further divided into random 

design variables and random system parameters. The design variables that appear 

in the objective function(s) of the RBDO problem may include the deterministic 

variables as well as the distribution parameters of the random design variables. 

For different RBDO formulations, the probability of failure or sometimes 

equivalently, the reliability index, may appear in either the objective function or 

the constraints or even both. 

In RBDO, different objective functions have been used, such as minimization 

of weight, minimization of cost, and minimization of the probability of failure. 

The objective function can also be the life-cycle cost, in which the overall cost 

includes both the initial cost and the maintenance cost. Since any complex 

system has to satisfy many design criteria, resulting in multiple objectives and 

constraints, multi-objective optimization formulations have also been used
1,2

. 

Two types of reliability can be used in the optimization, namely, component 

reliability and system reliability
3,4

. The formulation of RBDO problems with both 

element-level and system-level reliability constraints may be expressed as: 

Minimize )( Xd,C    

Subject to:  
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 (1) 

where )( Xd,C  is the objective function; d and X are deterministic and random 

design vectors, respectively; p is the vector of random parameters; fiP  and fsiP  

are the failure probability of the ith component and the system, respectively; fiaP   
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and fsiaP  are the allowable failure probabilities for the thi  component and the 

system, respectively; the deterministic and random design variables are subject to 

their lower and upper bounds, respectively. Other deterministic constraints may 

also be included in the above formulation. 

This chapter examines available reliability analysis and design optimization 

methods, with particular focus on computational efficiency and applicability to 

practical problems. The issue of computational efficiency is addressed by 

techniques that decouple reliability analysis and optimization iterations. Practical 

applications pose challenges with respect to robust design, multiple objectives, 

multi-disciplinary coupled systems, model uncertainty etc. Recent developments 

in meeting these challenges are presented, and new directions for further research 

are outlined. 

2.  Reliability Analysis 

For the reliability analysis of a single limit state, the first-order reliability method 

(FORM) is widely used due to its simplicity and speed. In FORM, the most 

probable point (MPP) is found by optimization methods such as Rackwitz and 

Fiessler’s Newton-type method
5
 sequential quadratic programming

6
 (SQP), etc.  

The MPP is defined as the point on the limit state with the minimum distance to 

the origin in an uncorrelated reduced normal space. Well-established methods are 

available for transforming correlated, non-normal variables to an equivalent 

uncorrelated reduced normal space
7
. The probability of failure is then calculated 

using a first-order approximation to the limit state, as: 

 )( β−Φ=fP  (2) 

Where the reliability index β is the distance from the origin to the MPP, and Φ is 

the cumulative standard normal distribution. Various second-order reliability 

methods
8,9 

(SORM) have also been developed to improve the reliability 

estimation of FORM.  

In the case of the system-level reliability constraint, the joint probability of 

multiple failure events often needs to be computed. For series systems, the 

system failure probability is computed through the union of the individual 

component failures. Analytical first-order and second-order bounds have been 

used to estimate the system probability of failure.  

For problems where even second-order bounds are too wide, Monte Carlo 

simulation (MCS) could be used. MCS is simple to implement and can be applied 

to almost all problems at any desired accuracy; however, it is prohibitively 

expensive. The importance sampling method has been used to overcome this 
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difficulty by concentrating most of the sampling in the failure region. Efficient 

adaptive importance sampling (AIS) techniques have been developed
10,11,12

, 

which gradually refine the sampling density function to reflect the increasing 

knowledge of the failure domain. Multi-modal AIS
13,14

 has been found 

particularly satisfactory for several applications
15,16

.  

In most RBDO studies, FORM has been commonly used for component-level 

reliability calculations in the objective and/or constraint functions
17,18

. For 

system-level reliability analysis in RBDO, various methods have been used, such 

as second-order bounds
19

, multiple checking point method
20

, PNET (probabilistic 

network evaluation technique)
21

 and Monte Carlo simulation with response 

surface
22

. Formulations that include both component and system reliability 

requirements have been proposed by Mahadevan
23

 and Pu et al.
24

 The system 

reliability calculation has mostly been applied as a feasibility check, with the 

optimization iterations being based on component reliability, so that the 

computational effort is tremendously reduced.  

One particular use of FORM is the computation of reliability sensitivity 

factors, given by the direction cosines of the MPP vector. In fact, the analyst may 

have more confidence in the sensitivity factors and finds them more useful in 

design decision-making than the failure probability estimates themselves, which 

are affected by numerous uncertainties. For reliability analysis using Monte 

Carlo simulation, approximate sensitivity factors have been derived in the case of 

Gaussian random variables
25

. 

3.  Reliability-Based Optimization 

The conventional RBDO approach is to employ nested optimization and 

reliability analysis loops, in which the reliability of the component(s) or the 

system is estimated inside the optimization loop, this makes the computational 

cost of RBDO prohibitive. Therefore, efforts to improve the efficiency of RBDO 

have been pursued in two directions: (1) improve the efficiency of the reliability 

analysis methods, and (2) develop equivalent formulations that use decoupling or 

single loop techniques.   

Although RBDO is different from deterministic optimization, it is possible for 

the former to take advantage of the latter. It was found that it is more efficient to 

implement a two-level approach in which the RBDO process starts from a 

stationary point of the conventional deterministic optimization procedure, where 

the deterministic constraints are satisfied
26, 27

. 

Recent research has focused on developing decoupling techniques, such as by 

Royset et al. (2001)
28

, in which the reliability terms in traditional RBDO are 
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replaced by deterministic functions, and the SORA (sequential optimization and 

reliability analysis) approach of Du and Chen (2000)
29

.  

The reliability analysis used in SORA is based on the performance measure 

approach (PMA) suggested by Tu et al.
30

  PMA is the inverse of the Reliability 

Index Approach (RIA), the traditional approach for implementing the First-order 

Reliability Method (FORM).  SORA takes advantage of the PMA method in 

order to decouple the optimization and reliability analyses by separating each 

random design variable into a deterministic design component used for the 

optimization and a stochastic component used for the reliability analysis. The 

optimization is done independent of probabilistic analysis by controlling only  

the deterministic component of the random design variable (i.e.
xµ ).  During the 

optimization phase, the stochastic component η is kept constant, and during  

the reliability analysis phase,   
k

xµ is kept constant and the value of η satisfying 

the reliability constraint is found. The algorithm terminates when successive 

cycles converge to consistent values of   
k

xµ and ηk
. The SORA concept for 

multiple constraints is outlined graphically in Fig. 1.  

The SORA approach is based on inverse first-order reliability analysis 

(PMA). As a result, it may be inaccurate for nonlinear limit states. Due to the 

PMA strategy, there is no easy way to integrate more accurate higher order 

reliability approximations such as SORM, or more robust methods such as Monte 

Carlo simulation, within the SORA approach. SORA also presents a significant 

hurdle in including system reliability constraints in the optimization. A 

 
Fig. 1: SORA for multiple constraints 
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decoupling strategy that makes use of the direct reliability analysis formulation 

would be more useful in including different reliability analysis methods and 

system reliability requirements. Such a direct strategy has been developed by Zou 

(2004)
31

, based on re-writing the reliability constraints using a first-order Taylor 

series approximation.  

The reliability analysis provides the failure probability estimates and the 

derivatives for the approximated reliability constraints and makes them 

deterministic. Thus this is also a sequential approach, but it is based on direct 

reliability analysis as opposed to inverse reliability analysis. It is also possible to 

include a higher-order Taylor series approximation in this formulation. The 

important benefit is that this formulation works with direct reliability analysis 

and because of its modularity, it is able to include different reliability methods 

for different reliability requirements as dictated by the needs of accuracy, 

computational efficiency, and feasibility.  

If FORM is used for reliability analysis, then Zou’s direct SORA approach
31 

may be referred to as RIA-based. When both the direct and inverse SORA 

methods use FORM, inverse SORA is likely to be computationally more efficient 

since it is based on PMA, and PMA has been observed to be usually more 

efficient than RIA. However, Zou’s direct SORA method allows us to solve 

problems inaccessible to inverse SORA. Also, the reliance on FORM in both 

Royset's method and inverse SORA is found to result in infeasible solutions 

when more accurate reliability methods are employed to check the solution. 

Royset uses a correction factor based on Monte Carlo simulation to improve the 

solution; Sopory (2003)
32

 also used a similar correction factor to improve the 

inverse SORA solution. However, Zou’s decoupling method is much more direct 

in ensuring accuracy.  

Zou (2004)
31

 has demonstrated the application of the direct decoupling 

strategy to the optimization problem involving vehicle side impact, shown in  

Fig. 2. The study also compares various decoupling approaches in terms of both 

accuracy and efficiency. The last two constraints are similar to system reliability 

constraints, in that they use maximum of values from three different locations. 

Earlier studies
29,33

 have used values from each location to give a constraint and 

avoided considering the maximum. However, guidelines from the Insurance 

Institute of Highway Safety require using the maximum, and the direct 

decoupling approach enables this. 

Another recent development is a single loop strategy developed by 

Mourelatos (2003)
34

, by exploiting the Kuhn-Tucker conditions at the optimum. 

This helps to adopt a well-known strategy for effectiveness in optimization, i.e., 

satisfying the constraints only at the optimum and allowing the solution to be 
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infeasible before convergence. Initial results with several mathematical examples 

have shown this strategy to be computationally more efficient than the 

decoupling methods. 

4.  Multi-objective Optimization  

Two types of important problems lead to multi-objective optimization. The first 

type is straightforward, where multiple objectives need to be met; some of these 

objectives may be in conflict with each other. Another type is in reliability-based 

robust design (RBRD). Several alternative formulations are possible; one 

example is where we seek not only to minimize or maximize the mean of the 

objective but also to minimize the variance of the objective. Thus RBRD 

problems can also be solved through multi-objective optimization techniques. 

The traditional approach in multi-objective optimization is to transform the 

problem into a single objective one by a generalized weighted sum as a scalar 

substitute. This approach includes subjective information and can be misleading 

concerning the nature of the optimum design
35

. Other approaches include ε-

constraint method
36

 which optimizes the most important objective subject to 

some pre-determined constraint values of other objectives, and goal 

programming
37 

(GP) which tries to achieve the targets of all pre-determined 

objectives simultaneously. The Pareto frontier, an efficient frontier of solutions in 

the objective space, has the property that for any point in it, there is no other 

point in the set of possible outcomes with a better performance on all objectives 

simultaneously. Therefore, it can provide valuable information for decision-

 

 

Minimize  Weight (W) 

 

Subject to P(VB-Pillar ≤ 9.9 (m/s)) ≤ 0.1 

  P(Vfront door ≤ 15.69 (m/s)) ≤ 0.1  

  P(Abdomen Load ≤ 1.0 (KN)) ≤ 0.1 

  P(Pubic Force≤ 4.0 (KN)) ≤ 0.1 

  P(Max(V*C) ≤ 0.32 (m/s)) ≤ 0.1 

  P(Max(Drib)≤ 32 (mm)) ≤ 0.1 

 

where  V: Velocity, D: Deflection,  

V*C: Viscous Criterion    
 

 
Fig. 2: RBDO with vehicle side impact constraints 
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making. The Pareto frontier can be generated using the weighted-sum method
38

, 

or other methods including genetic algorithms (GA)
39

. Tappeta and Renaud
40

 

used compromise programming followed by a local approximation to present the 

Pareto surface iteratively. Li and Fadel
41

 proposed a hyper-ellipse method to 

approximate the bi-objective Pareto frontier. 

When considering uncertainties in multi-objective optimization, the 

computational effort becomes even larger and as a result, very few studies have 

been completed. Frangopol and Fu
42

 proposed a multi-objective optimization 

approach to deal with structural reliability-based design under multiple limit 

states. The weight of the structure and probabilities of failure with respect to 

collapse, first plastic yielding, and excessive elastic deformation, were selected 

as objectives. The probability of failure for the structural system was calculated 

by Ditlevsen’s second-order upper bound
43

.  

For engineering problems with multiple objectives to be balanced under 

uncertainties, it is desirable that under different scenarios, different appropriate 

multi-objective optimization methods be used, and that for each sub-problem, a 

suitable reliability method be applied to ensure both accuracy and efficiency in 

RBDO. As seen earlier, the large computational effort of RBDO is a significant 

hurdle in applying multi-objective optimization under uncertainty to large 

engineering systems. In particular, MCS-based methods, although generally more 

accurate, are rarely used in RBDO for reliability estimation due to their 

inefficiency. These difficulties need to be overcome before a multi-objective 

RBDO problem can be solved successfully. 

In the context of reliability-based robust design, Du and Chen (2003)
44

 replace 

the bi-objective formulation, i.e., minimize/maximize the mean of the objective, 

and minimize its variance, with an equivalent single objective formulation, using 

the percentile approach. Minimizing the difference in objective function values 

corresponding to two percentiles (say 5% and 95%) also minimizes the variance. 

A more efficient procedure is to deal with only one of the percentile objectives. It 

minimizes the upper percentile objective if minimization of both mean and 

variance of the objective is required, and maximizes the lower percentile 

objective if maximization of the mean and minimization of variance of  

the objective is required. Sopory and Mahadevan (2003)
45

 compared two single 

objective formulations -- weighted sum and percentile -- for several problems 

and found that the solutions and computational efforts of both formulations are 

similar.   In the weighted sum formulation, one has to decide the weights for the 

two objectives w.r.t. mean and variance. However, the percentile formulation 

also indirectly assigns different weights to the two objectives by the choice of the 

percentile value. 
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Zou (2004)
31

 illustrated the application of multi-objective RBDO to door 

quality optimization, considering closing effort and wind noise (Fig. 3). 

 

DOOR CLOSING EFFORT − The design objective with respect to door 

closing effort is to keep the energy required to close the car door to be less than a 

predetermined amount. The energy required for the door to just reach the latch 

position is referred to as the door closing energy, and it is assumed to consist of 

three components. The first component, the energy loss to the air, is caused by 

the pressure rise in the vehicle when the door pushes the air ahead of itself. The 

second component, due to the seal compression, is the work that the door 

performs to compress the seal. The third component is due to door deformation, 

which takes into account the energy absorbed as the door deforms by the load 

and inertia from the hinge and the seal. The door closing effort is assumed to be 

unsatisfactory if total door closing effort is greater than 3.0 Joules. (Energy losses 

not included in this analysis are hinge and latch energy losses due to dynamic 

seal loads, and losses due to seals other than the primary door seal). The FORM 

method is found to be adequate for this single limit state problem. 

 

WIND NOISE − The design objective with respect to wind noise is to have a 

positive seal compression gs uu −=δ  at every location along the seal, where 

su  represents its unreformed thickness, and  gu  the operating gap between the 

body and door seal lines. If the seal compression δ, as defined by the above 

equation, is positive, there is a non-zero seal force F applied on both the body 

 

Latch: LATCC
LATUD

Seal:

NOMGAP 1-8
STHICK
FLBAR
DELBAR

Hinges:

UHCC
UHFA
UHUD

LHCC
 

 
 

Fig. 3: Car body- door sub-system 
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and the door. Otherwise, there is no seal force on the body and door since the seal 

is not compressed, thus leading to a wind noise problem. 

Since wind noise occurs if there is a gap at any location along the seal line, a 

separate limit state must be used for the gap at each location. The continuous seal 

is divided into 16 segments, and negative seal compression δ in any one of the 16 

segments is deemed unacceptable quality and therefore a failure. Thus, the 

overall wind noise quality failure is expressed by the union of 16 failure events, 

and is a system reliability problem. A multi-modal adaptive importance sampling 

method was found to be accurate and efficient
46

 for evaluating the wind noise 

reliability constraint. 

 

MULTI-OBJECTIVE OPTIMIZATION − Since the only concerns are the 

two quality issues and there is no cost associated with this simplified example, 

the objectives are set to minimize the probability of failure for both quality 

issues. The general multi-objective RBDO formulation is: 
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where CE_fP  is the probability of failure for the door closing effort problem 

calculated from FORM, WN_fsP  is the system-level probability of failure for 

wind noise problem calculated from multi-modal AIS, and sd i '  (i = 1,..,4) 

represent the mean values of the design variables.  
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Zou’s study
31

 used the traditional nested approach to solve this problem, since 

the inverse FORM-based decoupling methods then available could not be applied 

due to the use of Monte Carlo simulation to evaluate the wind noise probability. 

However, the recently developed direct decoupling method can overcome this 

hurdle. Since all objectives and/or constraints are in terms of failure probabilities, 

RBDO could not take advantage of the deterministic optimization either. 

Three multi-objective optimization methods, the weighted sum method, the ε-

constraint method and goal programming, were used to investigate the tradeoff 

between the two objectives, as shown in Fig. 4. An approximate Pareto frontier is 

constructed using a simple weighted sum approach, and then used for further 

optimization actions. Two other groups of candidate solutions are found by the ε-

constraint method and goal programming. These optimal points are close to the 

approximate Pareto frontier, which validates their usage as alternative multi-

objective RBDO methods. 

Design of an aerospace vehicle is a complex process requiring analysis and 

optimization across multiple disciplines.  In many cases, relatively mature (high 

and low fidelity) disciplinary analysis tools are available.  These disciplinary 

analyses cannot be taken in isolation since they are coupled to one another 

through shared input and output. Furthermore, system design objectives and 

constraints may span several disciplines. Integrating disciplinary analyses into a 

multidisciplinary framework and finding practical ways to solve system 

optimization problems under uncertainty is a serious challenge. 

 

RELIABILITY ANALYSIS − Multidisciplinary reliability analysis is 

particularly difficult when there is feedback coupling between the different 

disciplinary analyses. Consider the two-discipline system shown in Fig. 5. 

Variables u1, 2 and u2, 1 are the state variables (defined such that ui,j is an output of 

analysis i and an input to analysis j). It is seen that, regardless of which analysis 

is performed first; an unknown input state variable (either u1, 2 or u2, 1) is needed, 

indicating a feedback condition. Systems with feedback coupling are typically 

solved with fixed-point iteration.  In other words, assumed values for the 

unknown state variables are initially used; then they are updated by performing 

the analyses from which they are derived; the analyses are performed again with 

the updated values; this process continues until convergence is reached. 

Using fixed-point iteration within probabilistic analysis algorithms is not 

usually an ideal approach.  For one, the number of probabilistic analysis loops 

multiplies the number of fixed-point iterations, which in turn multiplies the 

computational effort of a single set of the disciplinary analyses.  
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Another difficulty is in obtaining gradient information, usually required for 

the more efficient analytical approximation algorithms.  If a finite difference 

method were used, the fixed-point iteration process for convergence would need 

to be repeated for each variable.  Furthermore, one might select a less stringent 

convergence criterion to reduce the number of fixed-point iterations, but this 

introduces ‘noise’ that can corrupt the gradient information and prevent the 

convergence of FORM-type reliability analysis algorithms. These problems 

become worse when probabilistic analysis and optimization are simultaneously 

attempted for multidisciplinary systems. 

Smith (2002)
47

 has developed two alternative strategies for multidisciplinary 

reliability analysis: (1) Markov Chain Monte Carlo simulation, and  

(2) performing first order second moment analysis first to obtain approximate 

statistics of the state variables, followed by either FORM or Monte Carlo 

simulation of individual disciplines.  

 

MDO UNDER UNCERTAINTY − In the next step, optimization under 

uncertainty for a coupled multidisciplinary system can be achieved by combining 

the decoupled RBDO approach with deterministic multidisciplinary optimization 

(MDO) methods. Note that the decoupled RBDO methods (whether based on 

direct or inverse reliability analysis) replace the probabilistic constraints in the 

optimization problem with a deterministic approximate equivalent, and perform 

reliability analysis separately, not within the optimization loop. This makes it 

easy to apply existing deterministic MDO methods to the outer optimization. 

Chiralaksanakul et al. (2003)
48

 have demonstrated this idea by combining the 

decoupled RBDO with three different deterministic MDO methods, namely, the  

 

 
 

Fig. 5: Feedback coupling of a two-discipline system 
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multidisciplinary feasible (MDF), individual disciplinary feasible (IDF), and all-

at-once (AAO) methods, thus successfully developing a probabilistic MDO 

methodology. 

The probabilistic MDO methodology is taken another step forward by Smith 

and Mahadevan (2003)
49

 for the design of an aerospace vehicle at two levels: a 

global geometry design and a component structural sizing application.  The 

global geometry application is inter-disciplinary in that it considers a coupled 

analysis of geometry, weights, and aerodynamic disciplines.  It is also a system-

level design in terms of physical architecture, in that the geometry design 

variables define the global characteristics (length, radius, wing areas, etc.) of a 

vehicle comprised of many component parts (wings, fuel tanks, engines, etc.). 

The component sizing application involves a single disciplinary analysis, at the 

component level (in terms of physical architecture), analyzed in terms of multiple 

limit states.  The two design processes are intrinsically linked, and an efficient 

iterative coupling process from the global to local design and vice versa given 

uncertainties in system parameters is necessary. 

 

GLOBAL VEHICLE GEOMETRY DESIGN − The vehicle geometry, for 

illustration purposes, is shown in Fig. 6. 

A vehicle geometry that minimizes mean dry weight is expected to minimize 

overall cost, so this is chosen as the objective function.  For stability, the pitching 

moment (Cm) for the vehicle should be zero or extremely close to zero. In 

addition, Cm should decrease as the angle of attack increases. This is achieved by 

adjusting the control surfaces trim the vehicle as the angle of attack is increased.  

Thus the aerodynamic analysis for pitching moment constrains the vehicle 

geometry optimization. 

 

 
Fig. 6: Illustrative vehicle geometry concept 

 



284    S. Mahadevan 

The pitching moment constraint must hold during all flight conditions; nine 

flight scenarios (constructed with three velocity levels and three angles of attack) 

are used as a representative sample (Unal et al. (1998)
50

). The deterministic 

optimization problem is written as: Minimize vehicle dry weight (W) such that the 

pitching moment coefficient (Cm) for each of 9 scenarios is within acceptable 

bounds [-0.01, +0.01]. The problem is reformulated in probabilistic terms as: 

Minimize mean weight such that the pitching moment coefficient for all 9 

scenarios has a low probability (less than 0.1) of failing to be within the 

acceptable bounds [-0.01, +0.01]. This is a multidisciplinary problem requiring 

the synthesis of information from three analysis codes: a geometry-scaling 

algorithm, a weights and sizing code and an aerodynamics code. 

 

LOCAL TANK DESIGN − The design goal for the liquid hydrogen tank is to 

minimize the weight of the tank while meeting the requirements for fuel capacity 

and structural integrity.  The fuel capacity requirement is maintained by choosing 

the appropriate tank geometry.  With tank geometry dictated by the global 

design, an optimization problem may be formulated as: 
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where R and S generically denote capacity and demand for different failure 

modes.  This optimization formulation recognizes that the objective (tank weight) 

and constraints (failure limit states) are random variables. 

 

GLOBAL LOCAL INTEGRATION − An iterative process is needed to 

converge on optimal solutions for both the system and component designs.  

 
 

Fig.7: Iteration between system-level and component-level optimization 
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Perhaps the most obvious iteration strategy is to use a brute force fixed-point 

iteration method; in other words to simply repeat the system–component–system 

design cycle and hope for ultimate convergence.  This idea is depicted in Fig. 7. 

This bi-level optimization is a common strategy for design; it does not require 

inter-level data flow during optimization and preserves a degree of autonomy for 

component-level designers. However, this strategy may not always work, and 

may not be able to find a converged solution to the bi-level system with a 

reasonable amount of computational effort.  As more components are added, 

finding a feasible solution becomes more difficult. 

An alternate approach is to integrate the two optimizations into a single 

problem, and solve the resulting probabilistic MDO problem by combining a 

decoupled RBDO approach with a deterministic MDO method. However, note 

that the local reliability constraint is expressed as a union of several failure 

modes.  This presents a problem for inverse SORA, which is designed to handle 

only individual limit states; hence all three limit states were considered as three 

different constraints in the optimization
49

. On the other hand, Zou’s new direct 

decoupling method
31

 is easily able to handle system reliability constraints. 

5.  Concluding Remarks 

The current state of the art in mechanical system design optimization under 

uncertainty is mainly focused on individual reliability requirements. System-level 

reliability requirements have not been widely considered, except with frame and 

truss structures. A newly developed direct decoupling strategy allows this 

consideration, and also facilitates a modular approach for including different 

methods for evaluating different reliability constraints. One particular issue is the 

availability of sensitivity information, particularly when Monte Carlo methods 

are used. The applications of various decoupling approaches to realistic problems 

and comparisons of their relative performances are yet to be done.   

The extension of RBDO to robust design is quite recent, with several 

formulations being evaluated. The robustness requirement has been expressed 

either as single- or bi-objective optimization, and several approaches are being 

investigated. The inclusion of model uncertainty within RBDO is yet to be 

investigated. 

The extension of RBDO methods to multi-disciplinary systems has recently 

been accomplished through the decoupling strategies. This has also been shown 

to be feasible for systems where the different disciplinary codes are connected 

through feedback coupling. The direct decoupling approach allows the use of 
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different reliability analysis methods (such as extended FORM, Markov Chain 

Monte Carlo simulation etc.) for such coupled systems.  

The application of RBDO to time-dependent problems has been indirect, with 

durability requirements expressed through time-independent measures
51

. Direct 

inclusion of time-dependent reliability in RBDO, with random process treatment 

of loads and system properties, is yet to be done, and could be computationally 

prohibitive. Time-dependent problems are particularly relevant to fluid dynamics 

in aerospace vehicle design. Previous studies with progressive failure were 

limited to trusses, frames, and composite laminates, where computational effort 

was not prohibitive. However, this is a challenge in the case of problems where 

functional evaluations are very time-consuming. A conservative first failure 

criterion has been used as a surrogate for ultimate system failure in the case of a 

composite aircraft wing (Liu and Mahadevan, 1998)
52

, but requires further 

investigation. 

An important issue in practical application of RBDO is model uncertainty, 

especially considering the frequent use of response surface models in many 

RBDO studies. Ongoing research at Vanderbilt University is developing 

Bayesian methodologies for model validation
53,54

, model uncertainty 

quantification, and inclusion of model uncertainty in design optimization.  

While RBDO methodology development marches ahead, with simple 

numerical examples as proofs of concept, practical implementation of RBDO still 

appears to be a distant goal, due to the lack of actual data on the random 

variables. Statistical data collection, which is expensive and time consuming, 

appears to be the single most difficult hurdle in the practical implementation of 

the RBDO methodology, and yet very important in developing confidence in the 

proposed methods. 
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This chapter reviews design optimization approaches which account for 

uncertainty, life-cycle performance, and cost. State-of-the-art probabilistic 

methods for analyzing the stochastic response of components and structural 

systems are outlined and their integration into design optimization methods 

discussed. Formulations for including probabilistic design criteria into 

reliability-based optimization problems are presented. The importance of life-

cycle optimization under uncertainty with multiple objectives is emphasized and 

optimization methods for such problems are presented. This chapter shows that 

accounting for uncertainty via probabilistic approaches is an important and 

powerful design tool in various fields of application. 

1.  Introduction 

Our knowledge to design and optimize structural systems under uncertainty is 

continuously growing. The intended service lives of these systems are typically 

several decades and sometime centuries. During this time, structures are 
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deteriorating and are usually exposed to abnormal loads of different types 

ranging from natural to man-made disasters. An integrated approach is necessary 

to optimize these systems taken into consideration uncertainty, life-cycle 

performance, and cost, among other factors. This chapter focuses on such an 

approach. It is assumed that all uncertainties are captured by probabilistic 

concepts and methods, that random processes are discretized by random 

variables, and that reliability analysis is the method to quantify the safety state of 

uncertain engineering systems under stochastic environments. 

As indicated in Frangopol and Maute
1
, the methodologies used in reliability-

based structural optimization for taking into consideration uncertainties 

associated with engineering systems can be classified into two groups: robust 

design optimization (RDO) and reliability-based design optimization (RBDO). 

The purpose of the RDO approach is to simultaneously optimize the 

deterministic performance and to minimize the sensitivity of the performance 

with respect to random variations
2
. The RBDO approach allows the design for a 

specific target reliability level, accounting for the various sources of uncertainty 

in a quantitative manner. This approach operates on two sets of variables 

including both design and random variables. 

Formally, RBDO and stochastic programming (SP) address design problems 

under uncertainty and the generic problem formulations are closely related. 

However, the research on SP has focused on decision-making processes in which 

the uncertainty can be gradually reduced as more information becomes available. 

The goal of SP is to find values of the initial decision variables as well as 

functions for updating these variables as additional information about the 

problem evolves. The solution of these kinds of problems requires the simulation 

and optimization of multi-stage processes in which decisions alternate with 

observations. The complexity of multi-stage problems has essentially limited the 

type of problems which can be solved today by SP methods. The main body of 

work on SP focuses on linear SP 2-stage problems. The reader is referred to 

Birge and Louveaux
3
 for an introduction and overview over stochastic 

programming.  

This chapter focuses on the RBDO approach. It presents a brief overview of 

formulation of reliability-based design optimization problems under uncertainty 

(Section 2), an in-depth description of reliability analysis (Section 3) and 

reliability-based design optimization (Section 4) methods, a discussion on life-

cycle optimization under uncertainty with multiple objectives (Section 5), 

references to recent applications (Section 6), and conclusions (Section 7). 

Additional background, including the historical background of the RBDO 
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approach can be found in Frangopol and Moses
4
, Frangopol

5,6
, and Frangopol 

and Maute
1,2

. 

2.  Formulation of RBDO Problems 

In the presence of uncertainties a design optimization problem typically includes 

deterministic and probabilistic design criteria. Probabilistic criteria are often 

embedded as constraints restricting the failure probability but can also be used to 

formulate objectives. Frangopol and Moses
4
 identified several types of RBDO 

problems which are also summarized in Frangopol and Maute
1
. The objective 

function can be the total expected cost, the total expected utility, the system 

failure probability, and the probability of occurrence of a specified event, among 

others.  

A generic reliability-based optimization problem can be formulated as follows 

with s  being the set of SN  design variables and y  the set of YN  random 

variables:  

 i i P

D

j D

min ( ( , ) )

subject to P  - P(g ( , ) < 0)  0 i=1 N

g ( )  0 j=1 N
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≥

≥

∈

s

s y

s y

s

s S

…

…
 (1)  

The objective is to minimize the probability of the cost function ( , )c s y  being 

larger than a target value c . One set of constraints limits the failure probabilities 

associated with the limit state functions i ( , )g s y , defining failure as i ( , ) < 0g s y . 

The maximum acceptable failure probability is denoted by iP  and the number of 

probabilistic constraints by PN . A second set of inequalities, 
D
jg ( ) 0≥s , contains 

all deterministic constraints. The number of deterministic constraints is denoted 

by DN . The optimization problem (1) can be also formulated using different 

measures of probability, such as the reliability index. These formulations are 

discussed in Section 4 of this chapter. Recently, there has been considerable 

progress in formulating and solving RBDO with multiple objectives and in a 

time-dependent context. An overview of this progress is given in Frangopol and 

Liu
7
, and a discussion is presented in Section 5. 

The feasible set of design variables is denoted by S . A design variable can be 

either continuous or discrete. Typically the design variables and random 

variables define sizing variables (e.g., cross-sectional dimensions), the geometry 

and the shape of the overall structure, the structural topology (e.g., number of 

girders in a bridge, number of columns supporting a roof ), the material 
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distribution and material properties, the operating conditions (such as abnormal 

loadings and environments) and various inspection/maintenance parameters 

(such as the type and quality of inspection/maintenance methods). These 

structural properties, operating and inspection/maintenance conditions can be 

either deterministic or subject to stochastic variations. In the latter case, the 

design variables can be associated, for example, with mean, mode or median 

values. 

The state equations governing the stochastic response of the system also 

depend on the design variables s  and the random variables y : 

 ˆ( , , ( , )) =R s y v s y 0  (2) 

where R  is the vector of residuals associated with a discretized system and v̂  is 

the vector of VN  state degrees of freedom. The state equations (2) can be either 

added to the set of constraints of the optimization problem (1) or explicitly 

satisfied when evaluating the objective and constraints. In the following 

presentation, the stochastic state equations (2) are treated separately, as their 

mathematical properties and meaning differ from other design constraints. The 

stochastic response and the reliability-based design criteria need to be evaluated 

at each iteration of the design optimization process. Although this approach 

allows calling the reliability analysis method in a black-box fashion, great care 

and insight is needed to select the appropriate reliability analysis method, 

depending on the formulation of the optimization problem and the type of 

probability criteria used. 

3.  Reliability Analysis Methods 

The evaluation of the probabilistic design criteria is of pivotal importance for the 

overall design optimization procedure. These criteria characterize the stochastic 

response of the system being optimized. The choice of the stochastic analysis 

method depends on the expected failure probability, the nonlinearity of the 

failure criteria with respect to the random variables, and the number of random 

variables, among others. Reliability analysis methods are a subset of stochastic 

analyses approaches tailored to evaluate the probability of failure. 

In the following, first the basic concepts of stochastic analysis are introduced 

and the reliability methods most often used within RBDO are presented. As 

stochastic analysis methods and RBDO have their roots in structural analysis and 

design, the presentation focuses on problems related to structural mechanics. A 

detailed presentation of structural reliability concepts can be found for example 

in the books by Ang and Tang
8
, Madsen et al.

9
, Thoft-Christensen and Murotsu

10
, 
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and Melchers
11

, as well as in the review articles by Shinozuka
12

, Rackwitz
13

, and 

Schuëller
14,15

. The same concepts, however, can be applied to other disciplines 

and multi-disciplinary problems. An overview of applications of RBDO to 

multidisciplinary design problems is given, for example, in Agarwal and 

Renaud
16

 and Allen and Maute
17

. 

3.1.  Probabilistic Measures 

The stochastic response of a system can be characterized by stochastic moments 

and probabilities of particular events occurring. Typically the first and second 

moments, that are the mean and the standard deviation, are used for formulating 

engineering design problems. Of particular interest in RBDO is the probability of 

failure fP  which is defined by the occurrence of the event ( ) 0g <y , where 

( )g y is the limit state function. The probability of failure fP  can be computed by 

evaluating the following yN -dimensional convolution integral over the failure 

domain: 

 

0

( )f

g

P f d

<

= ∫ y y  (3) 

where ( )f y  is the joint probability density function. Only in special cases this 

convolution integral has a closed-form solution, for example if the random 

variables y  are normal (Gaussian) and the limit state function ( )g y is linear in 

the random variables y . In this case the probability of failure fP  is: 

 ( )fP β= Φ −  (4) 

where Φ  is the standard normal distribution function and β  the reliability index. 

The above concept can be generalized and the reliability level of a system can be 

characterized by the performance function pP : 

 ( )

m

p

g p

P f d

<

= ∫ y y  (5) 

where mp  is the performance measure. If 0mp =  the performance function pP  is 

identical with the failure probability fP . Evaluating the performance function 

requires the solution of a yN -dimensional convolution integral over the failure 

domain. The performance function is particularly useful in the context of design 

optimization and will be discussed in Section 4. 

The fundamental reliability analysis problem introduced above involves a 

single failure mode of a single component. The reliability of a system, however, 

can only be correctly assessed by considering the full structural system as a 
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single entity and can be accurately computed only if all its failure models are 

taken into account. Moses
18

 and Frangopol and Moses
4
 have shown for structural 

systems that the reliability of a system can be vastly different from the reliability 

of its components depending on the system topology and geometry, material 

behavior, statistical correlation, and variability in loads and strengths. The 

simplest models for system reliability are series and parallel failure modes. Ang 

and Tang
8
 indicate practical expressions for system reliability based on lower and 

upper bounds for both series and parallel systems. Some of these bounds consider 

correlation between pairs of potential failure modes. More complex system 

models involving series systems of parallel systems have been used, for example, 

by Enevoldsen and Sørensen
19

 and Estes and Frangopol
20

. 

In most reliability-based engineering studies the system, external loads and 

operating conditions are idealized as time invariant. However, loads and 

operating conditions often fluctuate in time and, under environmental stressors, 

system properties, such as the strength of materials, are time-variant. Therefore, 

reliability problems are typically time-variant. The study of time-variant 

structural system reliability is still under development. One option to characterize 

the stochastic nature of time-variant system is to evaluate the probability of 

failure at specific points in time, the so-called point-in-time failure probability. 

However more relevant for design problems but computationally more costly is 

to find the probability of system failure over a period of time t , that is the time-

to-failure probability ( )fP t  given as: 

 ( ) { ( ) 0 (0, ]}fP t P g t in t= <  (6) 

where the limit state function ( )g t  is a function of time t . This approach 

requires complex and costly integrations. For example, Mori and Ellingwood
21,22

 

Enright and Frangopol
23,24

 and Kuschel and Rackwitz
25

 applied this approach to 

both highly idealized and realistic systems. 

3.2. Basic Analysis Methods 

Determining the probability of occurrence of a single failure mode of a single 

component or the probability of a failure of an entire system, whether it is time-

invariant or time-variant, requires the evaluation of the convolution integrals (1) 

or (3) at some level. As the failure domain is typically a nonlinear implicit 

function of the random variables, analytical solutions do not exist but numerical 

integration schemes are needed. Basic reliability analysis methods can be divided 

into sampling approaches, approximate reliability analysis methods, and 

stochastic perturbation and projection schemes for differential equations. These 
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basic methods can be either directly applied to the model predicting the limit 

state ( )g y for a specific realization of the random variables y  or to a meta-

model approximating the limit state. Meta-models are frequently used in 

combination with sampling methods and large numerical simulation models for 

which direct sampling would lead to unacceptable large computations costs. 

In general, a compromise between accuracy and numerical efficiency needs to 

be found. In addition, if the design optimization procedure is driven by a 

gradient-based optimization algorithm, reliability analysis methods need to be 

chosen which allow efficiently evaluating the design sensitivities of probabilistic 

design criteria. In the following, basic reliability analysis methods and meta-

modeling approaches used within design optimization procedures will be 

presented. 

3.2.1.  Sampling Methods 

The stochastic response of a system can be evaluated by sampling methods which 

allow evaluating not only the probability of failure but the entire stochastic 

response. By sampling repeatedly the joint probability density function ( )f y and 

evaluating the limit state function ( )g y  for each sample, the probability of 

failure, the expected value and all statistical moments of ( )g y  can be 

determined. The most well-known sampling method is Monte Carlo Simulation 

(MCS). While MCS is widely used due to its generality, simplicity, and accuracy 

on problems that are highly nonlinear with respect to the uncertainty parameters, 

it requires a large number of samples leading to often unacceptable numerical 

costs, in particular for reliability analysis of practical engineering problems with 

typically high levels of reliability. For example, if a constraint required a failure 

probability to be less than 410− , then to achieve an error of less than 20%  based 

on a 95%  confidence interval, MCS requires more than 610  system evaluations. 

Therefore, Monte Carlo simulation is typically impractical for implicit systems 

solved, for example, by high-fidelity numerical simulation. 

The efficiency of MCS can be improved by selective, constrained sampling. 

McKay et al.
26

 proposed a Latin Hypercube sampling (LHS) approach which 

samples the entire space of the random variables but selects uniformly samples 

from intervals with equal probabilities. LHS requires significantly less samples 

than MCS but the sampling procedure is more involved. Importance sampling 

(IS) methods select samples from an area of interest, or important area, using an 

estimator of the following form: 
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( )

( ) ( ) ( ) ( )

( )

0 ( ) 01
( ) ( ) / ( ) ; ( )

1 ( ) 0

I
iN

i i i i

f i
iI

for g
P I g f f I g

N for g

 >   = =    
≤

∑
y

y y y y

y

ɶ  (7) 

where ( )i
y  are samples according the distribution ( )( )i

f yɶ  which is concentrated 

in the important area. The number of samples is denoted by IN . For example, for 

determining the failure probability the area of interest is around the most 

probable point of failure along the limit state ( ) 0g =y . IS methods were first 

introduced by Kahn and Marshall
27

 and later adapted and refined for reliability 

analysis of engineering systems, for example, by Shinozuka
28

, Schuëller and 

Stix
29

, Wu et al.
30

, Melchers
31

, and Macke and Bucher
32

. Kim and Ra
33

 report that 

the number of samples can be reduced by up to 20  times for typical engineering 

applications in comparison with Monte Carlo simulation. However, the authors 

note that the efficiency of IS techniques may strongly depend on the problem. 

3.2.2.  Approximate Reliability Analysis Methods 

While sampling methods can characterize the overall stochastic response of a 

system, reliability analysis methods are tailored towards approximating the 

probability of failure. In order to roughly characterize the influence of random 

variables on the performance of the design, often first-order approaches such as 

First-order-second-moment (FOSM) methods are integrated into the design 

process. These methods may be sufficient to characterize the influence of small 

random perturbations about the mean design and are used within Robust Design 

Optimization (RDO) strategies. However, in order to consider the failure 

probability of engineering systems more sophisticated approximation methods 

need to be employed. 

One of the most popular and well explored RBDO approaches is based on the 

concept of characterizing the probability of failure or survival by the reliability 

index and performing computations based on first-order reliability methods 

(FORM). The reliability index β  is defined as the distance from the origin to the 

most probable point (MPP) of failure, also called design point, on the failure 

surface in the space of the standard normal variables u : 

 *β = u  (8) 

where u  is the vector of UN  independent random variables and *
u  denotes the 

MPP. 

The limit state function ( )g u  is assumed continuous and differentiable. 

Following Equation (3) the probability of failure ( 0)P g <  is then found by 

integrating the first order approximation of the limit state function ( ) 0g =u  at 
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the MPP. The feasibility of the mean-value point needs to be checked, to identify 

on which side of the limit state surface the mean design point lies, that is whether 

( 0)P g <  is the probability of failure or safety.  

To evaluate the reliability index by FORM, the random variables y  are 

mapped into standard normal space u : 

 ( )u=u T y  (9) 

where : UY NN

u →T ℝ ℝ  is generally a non-linear mapping that depends on the 

type of random distribution of y . For example, if the random variables y  are 

correlated non-normal, the Rosenblatt transformation is typically used to map 

→y u
34,35

. While these transformations are in general not exact, the mapping 

errors are insignificant for the most common distributions. For uncorrelated 

variables y  the transformation 1
u

−
T  of the most common distributions are listed 

in Table 1. In the case of correlated variables y , the random variables need to be 

transformed first into uncorrelated variables before the mappings listed in Table 

1 can be applied. 

In the standard normal space the Most Probable Point (MPP), or the closest 

point to the failure surface, is to be located by solving a nonlinear optimization 

problem subject to one equality constraint in the space of the standard normal 

variables UN∈u ℝ : 

 

2
min

. . ( ) 0

u

s t g =

u

u

 (10) 

For convexification purposes, the above optimization problem can be augmented 

by a penalty term as follows: 

Table 1: Transformations of standard normal variables into 

variables of common probability distribution functions. 

Distribution Type Transformation 1( )
u

y u−= T  

Normal ( , )µ σ  y uµ σ= +  

Lognormal ( , )µ σ  
u

y e
µ σ+=  

Uniform ( , )a b  
( )

(1 ( / 2 )
2

b a
y a erf u

−
= + +  

Gamma ( , )a b  

3

1
1

99

u
y ab

aa

 
= + − 
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22
min ( )

. . ( ) 0

p
u

r g

s t g

+

=

u u

u

 (11) 

where pr  is a penalty factor. Liu and Der Kiureghian
36

 advocate formulation (11) 

if a dual solution method is employed requiring a convex optimization problem. 

In general, the optimization problems (10) and (11) can be either solved by 

nonlinear programming methods or by algorithms tailored to the specific 

structure of the problem, such as HL-RF iteration scheme by Hasofer and Lind
37

 

and Rackwitz and Fiessler
38

. Liu and Der Kiureghian
36

 comparing generic 

optimization algorithms with the HL-RF scheme showed by numerical examples 

that both approaches are equally robust for FORM reliability analysis and 

recommend in particular a Sequential Quadratic Programming and the HL-RF 

methods due to their efficiency for problems with large nonlinear numerical 

simulation models. As the problems (10) and (11) are subject to only one 

constraint, the gradients of the limit state function with respect to the random 

variables u  are preferably evaluated by the adjoint method, for efficiency 

purposes. 

One of the shortcomings of FORM is the lack of an estimator of the 

approximation error. FORM has inherent errors in approximating the limit state 

function ( ) 0g =u  as linear. Depending on the curvature of the limit state 

function, the probability will be underestimated or overestimated (see Figure 1). 

As long as the limit state surface ( ) 0g =u  is approximately linear in the vicinity 

of the MPP, FORM leads to acceptable results. If the curvature is too large the 

accuracy of the probability can be improved by a second-order approximation 

which is discussed below. However, a FORM analysis does not provide any 

means of estimating the approximation error. In addition, FORM is prone to 

Fig. 1: Approximation error of FORM: probability of failure is overestimated (left), probability 

of failure is underestimated (right). 
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robustness issues. The FORM prediction strongly depends on how well the MPP 

is determined. In particular, for problems with a large number of random 

variables finding the MPP with high accuracy is costly and often not practical. In 

case of multiple local minima with comparable distances to the origin of the 

standard normal space, all local minima need to be determined. Der Kiureghian 

and Dakessian
39

 propose the use of multiple linearization strategies by combining 

the individual reliability indices associated with each local minima. Systematic 

multiple starting point procedures, such as the hyperspace division strategy of 

Katsuki and Frangopol
40

, can be used for finding the local minima. 

In the context of design optimization, the basic FORM formulation may also 

suffer from the fact that for a particular design the problems (10) and (11) have 

no solution, that is there is no realization of the design for which the equality 

constraint is satisfied. This problem can be overcome by characterizing the 

stochastic response by the worst performance measure for a target reliability 

index β . This approach leads to the following optimization problem: 

 
2 2

min ( )

. . 0

u
g

s t β− =

u

u

 (12) 

In contrast to the formulations (10) and (11) it is guaranteed that there exists a 

realization which satisfies the equality constraint. However, the meaning of the 

value of ( )g u  at the solution of the formulation (12) provides only a qualitative 

rather than quantitative insight into the stochastic response. The usefulness of 

formulation (12) in the context of design optimization will be discussed in 

Section 4. 

The accuracy of FORM can be improved by a second-order approximation of 

the failure surface, ( ) 0g =u , at the MPP. In a transformed standard normal space 

( , )′ ′′u u  the approximation of the failure surface can written as follows
41

: 

 
1

1

1
( , )

2

uN

i i

i

g β κ
−

=

′ ′′ ′ ′′= − + ∑u u u u  (13) 

where iκ  is the principal curvature and i
′′u  the principal directions of the 

paraboliod approximating the failure surface at the MPP. Tvedt
42

 derived an 

exact solution of the second order approximation (13) for the special case where 

1iβκ > − . For large β -values, Breitung
43

 and Hohenbichler and Rackwitz
44

 

suggest the following asymptotic approximations: 

 
1 1

1 1

1 1
( ) ( )

1 1 ( ( ) / ( ))

u uN N

f

i ii i

P β β
βκ ϕ β β κ

− −

= =

≈ Φ − ≈ Φ −
+ + Φ

∏ ∏  (14) 
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where ϕ  is the standard normal density function. 

The main disadvantage of the second-order reliability method (SORM) is the 

computational complexity. In addition to finding the MPP, SORM requires the 

evaluation of the second-order derivatives of the limit sate function: 

 
2

ij

i j
MPP

g
H

u u

∂
=

∂ ∂
 (15) 

where ijH  is the Hessian of the limit state function. Often it is not practical to 

determine the second-order derivatives, either because analytical expressions are 

not available or because finite difference schemes lead to inaccurate results. 

Furthermore, the evaluation of ijH  is often prohibitively costly if the number of 

random variables is large. Alternatively, Der Kiureghian et al.
45

 and Der 

Kiureghian and DeStefano
46

 propose point-fitting and curve-fitting SORM 

algorithms, respectively, approximating the principal curvature without the need 

of computing second-order derivatives. However, the point-fitting approach 

requires finding ( )2 1uN −  points on the failure surface and the curve-fitting 

algorithm up to uN  MPP solutions. 

While FORM may lead to inaccurate predictions of the probability of failure, 

numerous RBDO approaches are based on FORM. In addition to relative low 

computational costs in comparison to sampling methods, FORM allows the 

efficient evaluations of design sensitivities. In contrast, SORM is hardly ever 

used for RBDO problems due to the significantly increased computational costs 

over FORM. 

3.2.3.  Stochastic Response Surface Methods 

For complex engineering systems with non-Gaussian random variables, sampling 

methods are often computationally too costly and approximate reliability 

methods lead to unacceptable errors. In these cases, Faravelli
47

 and Rajashekhar 

and Ellingwood
48

, among others, advocate stochastic analysis procedures based 

on response surfaces, also called surrogate models, providing a more efficient 

and accurate alternative. Stochastic response surface methods (SRSMs) 

approximate the limit state function ( )g y  by typically simple explicit or implicit 

expressions, similar to response surface methods approximating the objective and 

constraints for design optimization purposes. Accurate sampling methods, for 

example, can be then applied to the explicitly approximated limit state function 

( )g yɶ  at low computational costs. In the following a brief overview of SRSMs 

for reliability analysis is provided and their suitability for RBDO discussed. For 
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details about stochastic SRSMs the reader is referred to Myers
49

, Wang
50

 and 

Bucher and Macke
51

.  

SRSMs for reliability analysis consist of the following three steps:  

(a) selection of the type of response surface, (b) fitting the response surface to 

exact limit state function, and (c) evaluating the probability of failure based on 

approximated limit state function. The type of response surface ranges from 

polynomials, exponential relationships, and radial basis functions up to Kriging 

models and neural networks. The response surface can be either formulated 

directly in the space of the random variables or in the standard normal space, in 

order to account for the stochastic distribution of random variables. For example, 

Isukapalli et al.
52

 suggest a SRSM based on a polynomial chaos expansion 

(PCE), approximating the limit state function in the standard normal space by 

Hermite polynomials: 

0 1 2 3

1 1 1 1 1 1

( ( )) ( ) ( , ) ( , , )
u u uN N N ji i

p p p p

i i ij i j ijk i j k

i i j i j k

g a a u a u u a u u u
= = = = = =

≈ + Γ + Γ + Γ +∑ ∑∑ ∑∑∑y u …  (16) 

where ( )y u  is the inverse mapping of (9), p  is the order of the polynomial, nΓ  

are the multidimensional Hermite polynomials of degree 1 un N= … , and 

{ }, , ,p p p

i ij ijka a a …  are unknown coefficients to be determined. The accuracy of the 

approximation increases with the order of the polynomial and, for normal random 

variables y , the approximation converges in a mean-square sense. However, as 

p  increases the number of unknown coefficients pcN  and the computational 

costs for constructing the stochastic response surface increase exponentially. The 

number of coefficients of a p -th order approximation with uN  random variables 

can be computed as follows
53

: 

 
0

( 1)!

!( 1)!

p
u

pc

i u

N i
N

i N=

+ −
=

−
∑  (17) 

The response surface is fitted to a particular limit state function by sampling the 

exact response at selected support points ˆ
iy  and performing a least-square fit. 

The selection scheme, also called designs-of-experiments, has a significant 

influence on the quality of the response surface and include saturated, full 

factorial, composite, Monte Carlo and Latin Hypercube sampling. In the context 

of reliability analysis, the samples are often constructed in a transformed space 

concentrated along the failure surface at the MPP. As the MPP is not known in 

advance, iterative adaptive schemes can be used to fine-tune the selection 

scheme. In order to reduce the numerical costs, random variables with low 

coefficient of variation and small influence on the failure surface can be 

eliminated, either a-priori or in an adaptive fashion
54

. As approximation error of 
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the response surface may lead significant errors, the true response needs to be 

accurately represented in particular along the limit state surface ( ) 0g =y  in the 

vicinity of the MPP. Therefore, the quality of the response surface needs to be 

checked, for example, by the analysis of variance (ANOVA) comparing the 

variation of the exact and approximated limit state functions. 

SRSM can provide a powerful tool for characterizing the stochastic response 

of a system and for evaluating the probability of failure. The success of SRSMs 

strongly depends on the appropriate type of response surface and the design-of-

experiment scheme. The main computational costs are associated with the 

evaluation of the exact limit state at the support points. In order to limit the 

number of support points, low order approximations are typically preferred.  

The systematic integration of SRSMs into RBDO is still in its infancy. While 

SRMS are tailored for approximating the stochastic response with respect to the 

random variables, they need to be rebuilt for each design in the design 

optimization loop, leading to significant computational costs. Choi et al.
55

 and 

Kim et al.
56

 have integrated SRSMs based polynomial chaos expansions into 

design optimization problems with reliability constraints. In order to avoid 

rebuilding the response surface for approximating the reliability criteria, Eldred 

et al.
57

 and Giunta et al.
58

 have studied response surfaces approaches 

approximating either in a hierarchical or simultaneous fashion the response of the 

system in the space of random and design variables. 

3.2.4.  Stochastic Projection Schemes 

In many engineering problems the system response is governed by partial 

differential equations (PDEs), such as in solid and fluid mechanics. Accounting 

for uncertainties in geometric and material parameters, as well as boundary and 

initial conditions, leads to stochastic PDEs. In order to determine the stochastic 

response of such problems, direct MCS is often too costly and even SRSMs can 

lead to unacceptable computational costs for problems with a large number of 

random variables. In cases where FORM and SORM are not sufficiently accurate 

or the entire stochastic response needs to be characterized, methods tailored to 

stochastic PDEs offer computationally efficient alternatives. Perturbation 

methods based on low-order approximations have been successfully applied to 

approximate the first two statistical moments of the response but become 

inaccurate for large variations of the input variables and are in general not 

appropriate for predicting the probability of failure
14

. In the past decade, 

computational methods for solving stochastic PDEs based on stochastic 

projection schemes have attracted substantial interest, in particular in the context 
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of stochastic finite element methods. In the following a brief overview of the 

basic projection schemes is given and their potential for RBDO discussed. The 

reader is referred to Ghanem and Spanos
59

, Schuëller
14

, and Nair
53

 for an 

introduction and overview of stochastic projection schemes.  

 

The response of a static stochastic PDE ( ),v x y depends on the spatial coordinate 

x  and the random variables y . First, the continuous spatial problem can be 

discretized by any standard technique, such as the finite element method, leading 

to the following semi-discrete form: 

 
1

ˆ ˆ( , ) ( ) ( ) ( ) ( )
vN

i i

i

v vφ
=

= =∑x y x y φ x v y  (18) 

where φ  is a vector of local or global shape functions and v̂  is a vector of vN  

discretized field variables which depends only on the random variables. For 

example, the discretization of a 1-D linear stochastic PDE governing the 

displacement of a linear elastic bar can be written as follows: 

 ˆ( ) ( ) ( ) ( ) 0= − =R y K y v y P y  (19) 

where ( )R y is the vector of residuals. The stiffness matrix ( )K y  and the load 

vector ( )P y  are known functions of the random variables. Following a 

discretization scheme v̂  can be approximated in the space of the random 

variables as follows
59

: 

  
1

ˆ ( ) ( ) ( )
aN

i i

i

a
=

= =∑v y ψ y Ψ y a  (20) 

where Ψ  is a v aN N×  matrix of stochastic basis functions and a  is a vector of 

deterministic coefficients. Introducing the approximation (20) in the semi-

discrete formulation (19) the resulting error can be projected into the space of the 

stochastic basis functions. Depending on the definition of the inner product used 

to orthogonalize the residual, one obtains a deterministic or random algebraic 

equation. Ghanem and Spanos
59

 introduced the following projection: 

  ( ) ( ) ( ) ( ) ( )T T− =Ψ y K y Ψ y a Ψ y P y 0  (21) 

where i  denotes the average operator which defines the inner product in the 

Hilbert space of the random variables. The reader may note that the unknown 

coefficients a  are the solution of a deterministic system. Alternatively, the 

residual can be projected using an algebraic vector product leading to a system 

which needs to be solved for a particular realization of the random variables. 
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In the past decade, the above approach has gained substantial popularity 

applying a polynomial chaos expansion (PCE) approach to the solution vector v̂ . 

Ghanem and Spanos
59

 introduced a PCE scheme based on Hermite polynomials 

which form an orthogonal basis for normal random variables u . The random 

variables y  are transformed into the standard normal space, →y u , for example 

by the same approaches as used for FORM. The coefficients of the solution 

vector îv  are approximated by a p-th order Hermite polynomial (16), leading to 

the number a v pcN N N= ×  of unknown coefficients. Solving the resulting 

algebraic system for the coefficients ia  the solution of the stochastic PDE can be 

reconstructed with (18) and (20). The PCE approach features a stable and 

guaranteed convergence of mean response for an increasing order of the 

approximation. Xiu and Karniadakis
60

 extended this approach to non-normal 

variables. The statistics of the stochastic field can be evaluated, either 

analytically or numerically. Sudret and Der Kiureghian
61

 advocate evaluating the 

probability of failure by FORM applied to the PCE approximation. The PCE 

approach leads to very large problems requiring iterative solution techniques for 

realistic engineering problems and, therefore, has not been integrated into RBDO 

methods. 

Instead of a polynomial chaos expansion of each coefficient of the solution 

vector iv , Nair and Keane
62

 introduced a reduced stochastic basis where ( )Ψ y  is 

formed by vectors spanning a Krylov subspace of the stochastic operator ( )K y . 

  1 1
0 0 0 1( ) ( ) ; ( ) ( ) ( ) ; 1...i i ai N

− −
−= = =ψ y K P y ψ y K K y ψ y  (22) 

where 0K  is the mean operator. The essential difference to the PCE approach 

discussed previously is that the stochastic basis vectors in (22) expand the entire 

solution vector, not only a single component. Nair and Keane
62

 showed that the 

statistics of linear elastic beam and bar structures can be approximated by only 3 

reduced stochastic basis vectors, that is 3aN = , reducing significantly the 

computational costs of PCE schemes.  

The advantages of stochastic projection schemes based on reduced stochastic 

basis vectors have been recently exploited in RBDO of stochastic linear dynamic 

structures by Allen et al.
63

 and extended to stochastic nonlinear dynamic 

problems by Maute et al.
64

. For illustration purposes, the following semi-discrete 

form of the linear equations of motion of a structural system is considered: 

  ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( , )t+ + =M y v y C y v y K y v y P yɺɺ ɺ  (23) 

where M , C , and K  are the v vN N× mass, damping, and stiffness matrices and 

( , )tP y  is the load vector. All matrices and the load vector depend on the random 

variables. Light damping is assumed. Following the ideas of Kirsch
65

 developed 
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for fast reanalysis techniques, the reduced stochastic basis vectors are formed by 

the eigenmodes and their derivatives with respect to the random variables.  

  0

1

( ) ( ) ( ) ( ) ; 1
yN

j i
i i i i i i m

y
j j

y

a a i N
y=

∂
= + = =

∂
∑

θ
ψ y y θ y Θ a y …  (24) 

where the matrix iΘ  is composed of the i-th eigenvector iθ  of the structure and 

the derivatives /i jy∂ ∂θ  with respect to the random variable at a reference 

configuration y . For structures undergoing forced harmonic vibrations, for 

example, only few eigenmodes iψ  are needed to capture the system response. 

Therefore, the stochastic reduced basis is formed by the first mN  modes. 

The coefficients ( ), 0 ,
j

i ya j N=y …  forming the vector ( )
i

a y  are computed 

by the combined approximation (CA) technique of Kirsch
66

 as follows: 

  ( )
1

( ) ( )C C
i i i

−  =
  

M y K y a 0  (25) 

where the reduced matrices ( )C

iK y and ( )C

iM y  are the stiffness and mass 

matrices projected onto the subspace iΘ : 

  ( ) ; ( )C T C T

i i i i i i= =K Θ K y Θ M Θ M y Θ  (26) 

The authors note that ( )K y  and ( )M y are, respectively, the stiffness and mass 

matrices of the full-order finite element model evaluated at a particular 

realization of the random variables. Instead of the average operator in 

formulation (21), Allen et al.
63

 follow a re-analysis concept leading to the 

following reduced system: 

  ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( , )R R R R R R R
t+ + =M y v y C y v y K y v y P yɺɺ ɺ  (27) 

where ,
R R

M C and R
K are m mN N×  matrices and R

P is a vector of size mN . The 

reduced stochastic response is denoted by ˆ R
v . The reduced terms in (27) are 

computed by projecting the full-order terms onto the subspace ( )Ψ y as follows: 

  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( , ) ( ) ( , )

R T T

R T T

R T T

R T
t t

=

=

=

=

M y Ψ y M y Ψ y

C y Ψ y C y Ψ y

K y Ψ y K y Ψ y

P y Ψ y P y

 (28) 

As m vN N≪  the reduced problem can be analyzed, either in the time or 

frequency domain, at significantly lower costs than the full-order system (22). 

The eigenmodes in (24) are computed once at the reference configuration y  by a 

modal analysis of the full-order system. The derivatives of the eigenmodes 

/i jy∂ ∂θ  can be efficiently evaluated by analytical sensitivity analysis techniques. 
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Haug et al.
67

 and Kleiber et al.
68

 provide a detailed introduction into parameter 

sensitivity analysis of mechanical systems; for coupled multi-physics problems 

the reader is referred to Maute et al.
69

 and references therein. The 1yN +  

dimensional eigenvalue problem (25) needs to be solved for each realization of 

the random variables and each reduced stochastic basis. The reduction of the 

problem size significantly decreases the computational effort needed for 

computing the statistics of the transient structural response and the probability of 

failure of the system. Allen
70

 showed that direct MCS, SRSM, and FORM can be 

applied to the reduced system approximating well the stochastic response.  

The main differences between the scheme proposed by Nair and Keane
62

 and 

the one of Allen et al.
63

 are the definition of the inner product and the reduced 

basis vectors. While the averaging operator in (21) requires only the sampling of 

the projected operator and right hand side, the reduced response needs to be 

sampled following the approach of Allen et al.
63

. Assuming that the 

computational effort for solving the reduced order system is small in comparison 

to constructing the projection matrices, both schemes lead to similar 

computational costs. Constructing the reduced basis by preconditioned Krylov 

vectors features generality and provides mathematical insight gathered from 

research of iterative Krylov solvers for the reduced basis. For problems in linear 

structural dynamics an approximation scheme based on eigenmodes is a natural 

choice. Maute et al.
71

 have extended this approach to nonlinear systems using 

empirical modes obtained, for example, by Proper Orthogonal Decomposition 

(POD) techniques.  

In addition, the scheme of Allen et al.
63

 offers an interesting extension 

regarding its integration into RBDO methods. As it is solely based on algebraic 

operations and not particularly tailored to stochastic problems, it is applicable to 

approximating the system response not only with respect to the random but also 

the design variables. Allen et al.
63

 and Maute et al.
71

 have successfully applied 

their approach to RBDO problems approximating simultaneously the system 

response with respect to both random variables and design variables. The 

derivatives of the reduced stochastic response ˆ R
v  with respect to the design 

variables can be computed analytically without significant additional costs. 

3.2.5.  Reliability Methods for RBDO 

The choice of reliability analysis methods for the successful integration into a 

computational RBDO framework depends on various factors: (a) the type of 

probabilistic design criteria of interest, that is for example the mean or the 

variation of the system response and the probability of failure, (b) the 
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nonlinearity of the stochastic response with respect to the random variables,  

(c) the computational complexity of the system model, and (d) the characteristics 

of the design optimization problem and the appropriate optimization strategy. For 

sure, any of the above reliability methods can be integrated into a design 

optimization framework in a black-box fashion. Each function analysis within the 

iterative design optimization process simply calls for the evaluation of the 

stochastic response. For example, one can always solve the design optimization 

by a genetic algorithm (GA) and evaluate the probability of failure by direct 

MCS. While there are engineering design problems characterized by strong 

nonlinearities with respect to the random and design variables, for which such a 

brute-force strategy is the only choice, it leads in most cases to unacceptable 

computational costs.  

Focusing on optimization problems with constraints on the probability of 

failure, the costs of the reliability analysis can often be reduced by improved 

sampling procedures and approximate reliability methods applied either directly 

to the system model or to an approximation of the stochastic response. However, 

for most realistic engineering problems, the computational costs of even 

advanced reliability analysis methods are too large when used within global 

design optimization search strategies, such as GAs and evolutionary strategies. 

Assuming that the objective and constraints are sufficiently smooth functions of 

the optimization variables, gradient-based optimization algorithm can 

significantly reduce the number of function evaluations but typically require the 

first-order gradients of the design criteria with respect to the optimization 

variables. For the sake of efficiency and robustness, the design sensitivities 

should be evaluated analytically rather than by finite difference schemes. 

Only a small subset of reliability analysis methods is appropriate for 

efficiently evaluating low failure probabilities typically required for most 

engineering systems and allows for the efficient computation of the design 

sensitivities. The predominate representatives of this subset are reliability 

analysis methods based on approximate reliability analysis and a large body of 

work has been dedicated to the integration of FOSM and FORM into RBDO, 

which will be summarized in Section 4. Only few studies can be found in the 

literature reporting on the extension of stochastic response surface methods and 

stochastic projection schemes towards gradient-based optimization schemes. 

4.  RBDO Methods 

The key issue that separates RBDO methods from optimization problems with 

only deterministic design criteria is the integration of the reliability analysis 
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method. As discussed previously, design optimization algorithm and reliability 

analysis method need to be selected carefully in order to obtain an efficient and 

robust optimization strategy while accurately characterizing the stochastic 

response of the system. In general, design optimization algorithm and reliability 

analysis method share common features: both are iterative procedures calling for 

the repeated evaluation of the configuration of the system away from the initial 

(nominal) configuration and exploring the system response in a parameter space.  

There are essentially three approaches for integrating reliability analysis into 

the design optimization process: nested-loop, sequential, and unilevel 

approaches. In a nested-loop approach the probabilistic design criteria are 

evaluated by an appropriate reliability analysis method whenever the 

optimization algorithm calls for the evaluation of the design criteria. The 

advantage of this concept is that optimization and reliability analysis methods 

can be treated in a black-box fashion simply linking the inputs and outputs of the 

algorithms. Gradient-based optimization algorithms can be only used if the 

reliability analysis method allows for the computation of the design sensitivities 

of the probabilistic design criteria, assuming they exist. This restriction is 

overcome by gradient-free optimization methods, such as evolutionary strategies 

or genetic algorithms (GAs), typically at cost of a larger number of iterations in 

the design optimization loop. In this section nested-loop approaches are 

discussed for combining gradient-based design optimization methods with 

approximate reliability methods based on FORM. The integration of MCS into a 

design optimization methods based on GAs is discussed in Section 5. 

The fundamental disadvantage of the nested-loop approach is that the 

reliability analysis needs to be converged with high accuracy even far away from 

the optimal design point, leading to a large computational burden. This 

bottleneck can be overcome either by sequential or unilevel approaches. 

Sequential approaches construct a sequence of approximated design and/or 

reliability analysis problems which are solved in an alternate fashion
72,73

. While 

sequential approaches can significantly reduce computational costs, it can 

typically not be guaranteed that the sequence of subproblems eventually 

converges to the exact solution. Alternatively, the design optimization and 

reliability analysis problems can be merged and the design and random variables 

are simultaneously advanced. In the literature, methods following this concept 

are referred to as unilevel, hybrid, or one-shot methods. A short overview of 

unilevel methods is given at the end of this section. 
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4.1.  Reliability Index Approach (RIA) 

Approximate reliability methods and in particular FORM are an attractive tool 

for RBDO as they require only few evaluations of the deterministic system 

response and, in the case of FORM, the gradients of the failure probability with 

respect to the design variables can be conveniently determined. Using FORM, an 

RBDO problem formulation (see Section 2) can be rewritten in terms of 

reliability indices as follows: 

  

( )

( )

{ }

*

*

max ( , )

. . ( , ) 0 0 1

|

c c
s

j j j j P

l u

i i i i i

c c

s t g j N

s s s s s

β

β β

≥

< − ≥ =

= ∈ℜ ≤ ≤

y s

y s …  (29) 

where cβ  is the reliability index associated with the event that the costs c  

exceed the target cost c . The constraints bounding the probability of failure 

( )0jP g <  can be expressed by imposing a lower bound jβ  on the associated 

reliability index jβ . The solutions of the MPP searches for each reliability index 

are denoted by *
cy  and 

*
jy . In formulation (29) it is assumed that the 

optimization variables are continuous and the feasible set is constraint by lower 

and upper bounds l

is  and u

is , respectively. 

The above formulation is called Reliability Index Approach (RIA). 

Formulation (29) can be written in terms of the failure probability ( )0f jP g < , 

leading to the generic RBDO problem statement (1), by substituting the 

reliability index by the failure probability via the transformation (4). However, as 

the failure probability may vary over several orders of magnitude during the 

optimization process while the variations of the reliability index are usually 

small, from a numerical point of view, it is advantageous to use a formulation 

based on the reliability index. 

Following a nested-loop approach, RIA calls for the evaluation of 

( 1)PN + reliability indices at each iteration of the outer design optimization loop. 

If the optimization process is driven by a gradient-based optimization algorithm, 

the derivatives of the reliability indices with respect to the design variables need 

to be provided.  

One of the main advantages of FORM and RIA is the ease of analytically 

computing design sensitivities of cβ  and jβ . In the following the basic steps for 

deriving and computing the derivative of the reliability index β  with respect to a 

design variable is  are summarized. The reader is referred to Hohenbichler and 

Rackwitz
74

 and Karamchandani and Cornell
75

 for detailed derivations. 
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Differentiating the definition of β  (8) with respect to the design variable 
i

s  

yields the following expression: 

  
*

*1 T

i i

d d

ds ds

β

β
 =  

u
u  (30) 

Evaluating the Karush-Kuhn-Tucker (KKT) optimality conditions of the FORM 

minimization problem (10), the most probable point *
u  can be written as 

follows: 

  *

*
/

dg

dg d d

β 
= −  

 u

u
u u

 (31) 

Substituting this result into the total derivative (30) yields: 

  
*

*
1

/

T

i i

d dg d

ds dg d d ds

β  
= −  

 u

u

u u
 (32) 

Equation (32) can be simplified by exploiting the fact that the total variation of 

the equality constraint of the FORM minimization problem, ( , ( )) 0g =s u s , 

vanishes. In the case that the design variable is  is associated with a deterministic 

quantity, one arrives at the following expression: 

  
* *

1

/i i

d dg

ds dg d ds

β
=

u u
u

 (33) 

where the second term on the right-hand side is the gradient of the limit state 

function with respect to the design variable is  and can be computed by 

conventional sensitivity analysis. 

A design variable can also be a probabilistic characteristic of a random 

variable. For example, the mean or the standard deviation of a random variable 

can be treated as a design variable. In this case, the gradient of the reliability 

index can be derived from (30) via the transformation (9), yielding the following 

expression: 

  
*

*1 T
u

i i

d dT

ds ds

β

β
 =  

u

u  (34) 

While the RIA approach allows for the efficient evaluation of the design criteria, 

FORM sometimes suffers from convergence issues and, as discussed previously, 

it can not be guaranteed that the RIA optimization problem has a solution for any 

given design during the design optimization process. If the mean design is far 

away from the failure surface, there may be no solution *
u  such that the equality 
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constraint 0g =  can be satisfied and the FORM MPP search is ill-posed. This 

situation may occur in the course of the design optimization process leading to 

serious robustness problems. 

4.2.  Performance Measure Approach (PMA) 

The ill-posedness and ill-robustness issues of the FORM-based RIA approach 

can be overcome by reformulating the design optimization problem following the 

Performance Measure Approach (PMA) of Tu et al.
76

, or also known as known as 

Fixed Norm Formulation introduced by Lee and Kwak
77

, or Target Performance 

Approach discussed by Lee et al.
78

. These approaches characterize the safety of a 

system via the worst possible performance, that is the minimum value of the limit 

state function for a required reliability index jβ , and call for the solution of the 

performance measure problem (12). 

Since the reliability requirement is already included in the reliability analysis, 

the PMA based design optimization problem takes on the following form: 

  

{ }

*

*

max ( , )

. . ( , ) 0 1

|

c c
s

j j fc

l u

i i i i i

g

s t g j N

s s s s s

≥ =

= ∈ℜ ≤ ≤

y s

y s …  (35) 

where the performance cg  of the objective is measured with respect to a target 

reliability cβ  and jg  are the performances associated with the probabilistic 

failure constraints . The random variables *
cy  and 

*
jy  are the solutions of each 

PMA problem (12). 

Similar to the RIA approach, the design sensitivities of the performance 

measures cg  and jg can be evaluated with minor additional effort. The total 

derivative of the performance measure jg , for example, can be written as 

follows: 

  

0

T

j j j j

i i i i

dg g g gd

ds s ds s

=

∂ ∂ ∂
= + =

∂ ∂ ∂

u

u
��	�


 (36) 

The partial derivative of jg  with respect to the design variables can be evaluated 

by differentiating either analytically or numerically the expressions in the 

analysis model. The second term in Equation (36) vanishes. The KKT conditions 

for the PMA optimization problem (12) are: 
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  0
jg

d

β
η

∂ ∂
+ =

∂u u
 (37) 

where η  is the Lagrange multiplier associated with the equality constraint 

0j jβ β− = . Since the reliability index is constant and does not depend on the 

random variables u , the second term in (37) and, therefore, the derivative of the 

performance measure with respect to u  in (36) vanish. 

4.3.  Univlevel RIA and PMA 

Essentially there are two approaches for merging the design optimization and the 

reliability analysis problems associated with the RIA and PMA formulations. 

Kuschel and Rackwitz
79

 proposed to introduce the KKT conditions of the MPP 

search (10) into the RIA formulation (29) and to solve the augmented problem 

simultaneously for the design variables and standard normal variables. However, 

as the MPP problem may have no solution, this approach can lead to an ill-posed 

problem. Therefore, Agarwal et al.
80

 applied the same idea to the PMA 

formulation and introduced the KKT conditions of problem (12) as additional 

equality constraints. While numerical studies for analytical and simple structural 

problems have shown that the above approaches can significantly reduce the total 

number of iterations, their applicability suffers from the need to compute second-

order derivatives for solving the unilevel problem by gradient-based optimization 

methods. 

Instead of introducing the optimality conditions of the reliability analysis 

problem as additional constraints, Kharmanda et al.
81

 propose to reformulate the 

objective of the RIA problem and add zero-order constraints. While this approach 

does not require the evaluation of second-order derivatives, it can not be 

guaranteed that the solution of the augmented unilevel problem is also a solution 

of the original reliability problem. 

5.  Life-cycle Optimization with Multiple Objectives including Cost 

Automation of civil engineering optimization problems, e.g. structural design and 

maintenance planning, rely heavily on numerical algorithms that lead the search 

process towards improved solutions in terms of better merit objective values. 

Many traditional optimization algorithms are problem-dependent and single-

objective oriented. They usually make use of gradient information to guide the 

search process and continuous design variables are often assumed. In contrast, 

population-based natural evolution-inspired genetic algorithms (GAs) are 
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general-purpose numerical tools, with which gradients are no longer needed and 

discrete-valued design variables can be handled without any difficulty. More 

importantly, multiple conflicting objective functions can be directly and 

simultaneously treated by GA through the concept of non-dominance. This 

section discusses features of different optimization algorithms with a particular 

focus on techniques of solving multiobjective optimization problems via GAs. 

5.1.  Traditional Optimization Algorithms 

Traditional optimization techniques usually apply available mathematical 

programming algorithms to solve civil engineering optimization problems
82,83

. 

Optimality criteria are obtained through application of KKT conditions combined 

with Lagrange multipliers accounting for relevant constraints. With the linear 

programming approach, both the objective(s) and constraints must be linear 

functions of design variables. In contrast, nonlinear programming approaches 

deal with problems whose objective(s) and/or constraints are nonlinear 

differentiable functions of design variables. Note that traditional methods are 

usually problem-dependent in nature, that is, one method that is very efficient for 

a kind of problems may not be viable for another kind. It is therefore necessary 

for one to have knowledge of applicability of one particular optimization 

algorithm in order to use it properly. 

Continuous design variables are often assumed in traditional optimization 

algorithms. To handle optimal design problems with discrete or mixed 

continuous-discrete design variables that are often encountered in real-world 

design practice, other numerical techniques are needed, including branch and 

bound method, integer programming, sequential linearization, rounding-off 

method, etc.
84

. With traditional methods, the optimization process usually starts 

with a single initial solution elected in the feasible solution space and the 

subsequent improved solutions evolve based on searching/updating rules that 

typically require sensitivity calculation. This point-by-point process may be 

trapped at local minima. 

5.2.  Application to Multiobjective Optimization 

Most of traditional methods by themselves can only handle single-objective 

based optimization problems, for which a single final optimal solution will be 

obtained. In order to solve optimization problems with multiple (conflicting) 

objective functions, one has to convert, with nontrivial inconvenience, the 

original multiobjective problem into a series of equivalent single-objective 
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optimization problems, which in total produce a set of solutions that exhibits 

optimal tradeoff among all competing objectives. The reader is referred to 

Stadler
85

 and Eschenauer et al.
86

 for an in-depth treatment of multicriteria design 

optimization in engineering and sciences. Pioneering research efforts in 

formulating multicriteria optimization in RBDO context were made by Fu and 

Frangopol
87,88

. 

5.3.  Genetic Algorithms 

A very brief introduction is provided in this section to the working mechanism of 

genetic algorithms (GAs). GA is global stochastic search and optimization 

heuristics that mimic natural evolution and are based on Darwin’s survival-of-

the-fittest principles
89

. GA belongs to the category of nature-inspired 

evolutionary algorithms that include as well ant-colony optimization, simulated 

evolution, DNA computing, and cultural algorithms
90

. Since their inception in the 

1960’s, GAs have been successfully used in a wide array of applications
91

. The 

growing popularity stems from GA’s ease of implementation and robust 

performance for difficult engineering and science problems of vastly different 

natures. 

GA usually operates on solutions that are encoded as genotypic 

representations (e.g., binary strings), called chromosomes, from their original 

phenotypic representations (i.e., actual data values), although there also exist 

real-coded GAs that work directly on original data with no coding operation
92

.  

Compared to most traditional optimization methods, GA has the following 

distinct advantages
91

: (a) GA works with a population of solutions instead of one 

solution at each iteration. By starting with a random set of solutions, the current 

population evolves to an offspring population at each iteration. Working with a 

number of solutions provides GAs with the ability of capturing multiple 

optimized tradeoff solutions in a single algorithm run. (b) Gradients are not 

required in guiding the genetic search, which makes GA insusceptible to pitfalls 

of traditional gradient-based hill-climbing searching procedures. This feature is 

especially useful for practical engineering problems where either objectives or 

constraints or both are non-differentiable with respect to discrete-valued design 

variables. (c) GA is a problem-independent universal search tool, which makes it 

more flexible as well as robust for application to problems of different natures; 

the requirement on users’ capability is greatly reduced. 

The most significant concern about GA is its extensive computational 

expenses. Usually a large population of solutions needs to be maintained in order 

to override the impact of errors due to stochastic transition operators. This entails 
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a tremendous amount of computational time for evaluating objective functions as 

well as for performing genetic operations. Consequently, it is helpful to decide, 

before a GA based procedure is formally launched, if the benefits gained from 

GAs are worth the extra computational efforts spent. With the availability of 

high-speed computer facilities, however, computational demands might not be a 

very big obstacle for problems of small to moderate sizes. 

5.4.  Multiobjective Optimization via Genetic Algorithms 

Multiobjective GAs have been comprehensively studied and fruitfully developed 

in the last decade
92

. Unlike problems with single objective functions for which 

one optimized solution is sought after, there is no unique optimized solution with 

respect to all conflicting objective functions for multiobjective optimization 

problems (unless all these objectives are strictly equivalent to one another). 

Instead, a set of optimized tradeoff solutions is expected among conflicting 

objectives. GA seeks for these multiple optimized tradeoff solutions based on the 

concept of dominance. A solution is said to dominate another solution, if two 

conditions are both met
90

: (a) is no worse than in all objectives; (b) is strictly 

better than in at least one objective. Among a set of solutions, the nondominated 

set contains those that are not dominated by any individual of the set. When the 

set is the entire search space, the resulting nondominated set is called the (global) 

Pareto optimal set (or front).  

5.5.  Genetic Algorithm Based Multiobjective Structural Design 

GAs have been powerfully applied to a broad range of research areas in structural 

engineering due to their salient convenience over traditional optimization/search 

methods such as problem-independency that requires no gradient information to 

guide the search process, the global perspective, and easy treatment of discrete 

design variables. Goldberg and Samtani
93

 first studied structural optimization 

with a ten-bar truss. Afterwards, researchers around the world applied GAs to 

many different structural systems. For example, Rajeev and Krishnamoorthy
94

 

investigated GA based optimal design of a 160-bar transmission tower system; 

Adeli and Cheng
95

 used GAs to optimize large high-rise framing systems. GAs 

were also developed to optimize trusses by simultaneously considering size, 

shape, and topology
96,97

. In parallel to application, comparison studies were 

performed that recommended more efficient GA operators especially suited for 

structural optimization applications; for example, Leite and Topping
98

 provided 

an extensive discussion on a wide range of GA applications as well as 
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performance comparisons with other optimization methods. Ghaboussi
99

 

reviewed structural mechanics and engineering applications of biologically 

inspired soft computing methods (GAs and artificial neural network). 

Applications of GA to steel moment frame designs have also received 

research attention. Member sizes of a practical steel frame can usually be 

selected from a catalog of commercially available sections only, which leads to 

optimization problems that are discrete and thus highly non-continuous, making 

gradient information very difficult to compute. GAs have no difficulty in solving 

these discrete optimization problems. Camp et al.
100

 developed an automated 

algorithm that integrates GA, a finite element analysis program, and a complete 

database of AISC sections for the design of steel frames according to AISC-ASD 

provisions. Pezeshk et al.
101

 incorporated into GAs a group selection scheme, an 

adaptive crossover scheme, and a finite element analysis to design frames 

according to AISC-LRFD as well as AISC-ASD. Foley and Schinler
102

 used an 

advanced analysis and object-oriented evolutionary computation for optimizing 

both fully and partially restrained steel frame designs. 

Applications of GA to structural design problems considering multiple merit 

objective functions have appeared only recently in literature. Cheng and Li
103

 

developed a GA based multiobjective procedure with an elitist strategy through 

niching and a “Pareto-set filter” technique that alleviate the effects of “genetic 

drift” or loss of diversity among final solutions; dominance characteristics and 

constraint violations were handled by a fuzzy-logic penalty function; three truss 

design examples were provided. Coello and Christiansen
104

 proposed their GA-

based multiobjective optimization technique and applied it to two truss design 

problems. Greiner et al.
105

 used a nondominated sorting GA with an elitist 

strategy for a multiobjective problem that minimized both the number of 

different cross-section types (the largest number being 4) and the mass for design 

of frame structures. Cheng
106

 summarized his previous research on multiobjective 

structural optimization emphasizing GAs as well as game theory; objective 

functions used in the numerical examples included structural weight, control 

performance index, seismic input energy, potential energy, and construction cost. 

Liu et al.
107,108

 presented a GA-based seismic design optimization for steel 

moment frame structures with simultaneous consideration of multiple objectives 

including initial construction expenses and seismic structural performance.  

5.6.  Life-cycle Cost-based Multiobjective Seismic Design 

Structural engineers tend to optimize the system they are designing based on 

different considerations such as cost-effectiveness, aesthetics, social/political 
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issues, etc. In steel frame building designs, for example, widely used 

optimization objective functions include minimum structural weight, minimum 

compliance, a fully stressed state, desired component/system reliability levels, 

etc., many of which are related, either explicitly or implicitly, to present or future 

monetary expenses to some extent. 

The consideration of both initial construction cost and lifetime cost (e.g., 

costs due to maintenance, operation, repair, damage, and/or failure 

consequences) leads to a so-called “life-cycle cost” analysis under which the 

optimal design is the one that balances these two general cost items appropriately 

according to pre-selected criteria. It is, however, very difficult at the early design 

stage to quantitatively express various sources of initial cost with comparable 

accuracies. For example, estimation of material usage related expenses may be 

relatively easier. In contrast, it is a demanding task to quantify the precise 

relationship between the complexity of a proposed design and its associated 

labor/erection cost. Furthermore, future costs due to maintenance, inspection, as 

well as direct/indirect economic losses due to environmental attacks (wind, 

earthquake, etc.) are uncertain in nature and can only be evaluated in a 

probabilistic sense. As previous research examples, Wen and Shinozuka
109

 

investigated cost-effective active structural control scenarios; Koh et al. (2000) 

evaluated cost-effectiveness for seismic-isolated bridges. 

The future cost usually considered in earthquake-related studies comes from 

monetary-equivalent losses due to seismic events during a structure’s lifetime; 

other future expenses (as well as possible benefits) are not taken into account due 

to their usually independency to seismic structural resistance. The primary 

criterion of traditional code provisions is to ensure life safety and prevent 

structural collapse. Recent earthquakes, however, revealed that economic losses 

induced by less drastic structural damages as well as functional disruptions can 

also be enormous comparable to the structure’s initial cost. Therefore, the 

concept of damage control needs to be considered appropriately in the design 

stage in order to reduce future economic losses. 

In the last decade, concepts of performance-based seismic design have been 

emerged and continuously developed as the new generation design 

methodologies. The most distinctive feature from conventional design practice is 

the explicit evaluation of actual structural performance under future seismic 

loading conditions expressed in probabilistic terms (e.g., ATC-40
111

; FEMA-

273
112

; FEMA-350
113

). Permissible structural performances as well as damage 

states associated with each hazard level are both illustrated qualitatively based on 

previous earthquake-driven site inspections and are expressed quantitatively in 

terms of representative structural response indices (e.g., interstory drift ratio, 
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axial column force). Structural designs conforming to these design guidelines 

with multiple limit states are expected not only to ensure life safety/collapse 

prevention under severe earthquakes but also to incur less damage-related 

direct/indirect consequences when subject to small to moderate seismic events. 

By use of appropriate cost functions associated with varied damage states, 

designers have an opportunity to consider earthquake-related economic losses in 

a direct and explicit manner; seismic structural design based on life-cycle cost 

analysis then becomes a tractable alternative. In particular, the expected lifetime 

seismic damage cost could be derived by adding the product of each damage 

state cost and its associated expected failure probability during a lifetime. 

Minimization of the expected life-cycle cost, which is a direct sum of initial cost 

and the expected lifetime seismic damage cost, has primarily been the sole design 

criterion (i.e., objective function) that received fruitful research efforts. For 

example, Kang and Wen
114

 developed a design methodology based on the 

minimum expected life-cycle cost and investigated its application in steel 

moment frame building design; using FEMA-released software HAZUS, Kohno 

and Collins
115

 investigated minimum life-cycle cost design of reinforced concrete 

structures; Ang and Lee
116

 analyzed reinforced concrete buildings built in Mexico 

based on cost functions in terms of the Park-Ang damage index. It should be 

pointed out that these pioneering research efforts were based on a series of 

conventional trial designs with varied base shear levels around the codified 

values; no formal optimization algorithms were actually involved. Their 

conclusions were that the codified base shear level should be increased 

appropriately in order to minimize the expected total life-cycle cost. 

Liu et al.
117

 presented a GA-based automated procedure for seismic design 

optimization of steel moment frame structures in accordance with 2000 NEHRP 

seismic provisions and AISC seismic steel design specifications. The life-cycle 

cost is considered through two separate objective functions: initial cost and 

lifetime seismic damage cost. The degree of design complexity is roughly 

accounted for by the number of different steel section types as the third objective 

function, which provides an additional dimension to the resulting tradeoff 

optimized design solutions. The damage cost is computed in this study with 

designer-specified confidence level related percentile limit state probabilities so 

that effects of randomness and uncertainty in seismic demand and capacity 

estimates as well as in seismic hazards are appropriately considered, following 

the SAC/FEMA guidelines
118

.  
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5.7.  Life-cycle Bridge Maintenance Planning 

Satisfactory performance of civil infrastructure is of critical importance to 

sustained economic growth and social development of a modern society. In 

particular, the highway transportation system is considered to be one of the 

society’s critical foundations. Among the many elements of this complex system, 

bridges are especially important. They are the most vulnerable elements in this 

system because of their distinct function of joining highways as the crucial 

nodes. The bridge infrastructure has been constantly exposed to aggressive 

environments and facing ever increasing traffic volumes and heavier truck-loads. 

These actions progressively degrade the long-term performance of highway 

bridges. Bridge managers urgently need to cost-effectively allocate limited 

budgets for maintaining and managing the large inventory of bridges with the 

goal of optimally balancing lifetime structure performance and whole-life 

maintenance cost.  

Most existing methodologies for managing highway bridges are based on the 

least life-cycle cost criterion while enforcing relevant performance 

constraints
119,120

. There exist practical difficulties when applying such 

methodologies. For instance, if the available budgets are larger than the 

computed minimum life-cycle cost, the bridge performance can be maintained at 

a higher level than what is previously prescribed in deriving the minimum life-

cycle cost solution. On the other hand, if the scarce financial resources are not 

enough to meet the computed minimum life-cycle cost, bridge managers have to 

look for another solution that can improve bridge performance to the highest 

possible level with the available budget. Indeed a satisfactory maintenance 

management solution should be determined by optimally balancing competing 

objectives of improving lifetime bridge performance and reducing the long-term 

costs of various origins. 

In addition to the traditional life-cycle cost as a merit measure in making 

maintenance management decisions, bridge performance indicators include, for 

example, visual inspection-based condition and computation-based 

safety/reliability (e.g., Frangopol and Das
121

). Optimizations of all these merit 

aspects are treated simultaneously in a multiobjective optimization based bridge 

management framework. This leads to a group of non-dominated solutions, each 

of which representing a unique optimized tradeoff between life-cycle cost 

reduction and bridge performance enhancement. These alternative solutions will 

significantly facilitate bridge managers’ decision-making by actively selecting a 

solution that has the most desirable compromise between the conflicting life-

cycle cost and lifetime bridge performance objectives. 



D. M. Frangopol, K. Maute and M. Liu 

 

322 

Most existing research on bridge maintenance management can be 

categorized as project-level type because only individual bridges or a group of 

similar bridges are considered. In order to conduct realistic life-cycle bridge 

management, uncertainties associated with description of time-dependent bridge 

deterioration with and without maintenance interventions should be appropriately 

considered. In general there are two sources of uncertainty: the aleatory 

uncertainty due to inherent randomness and epistemic uncertainty stemming from 

lack of knowledge or imperfect modeling. The former can by no means be 

reduced while the latter can be lessened through, for example, Bayesian updating 

when additional information is gathered. The time-dependent performance of 

deteriorating bridges with and without maintenance interventions can be 

predicted by a continuous computational model. This model describes the 

performance profiles under no maintenance by a curve characterized by an initial 

performance level, time to damage initiation, and a deterioration curve governed 

by appropriate functions and in the simplest form, a linear function with a 

constant deterioration rate. Effects of a generic maintenance action, based on the 

computational model of Frangopol
122

, discussed in Frangopol et al.
122

 and van 

Noortwijk and Frangopol
123

, include immediate performance enhancement, 

suppression of the deterioration process for a specified time interval, reduction in 

the deterioration rate, and another specified duration of maintenance effect 

beyond which the deterioration rate resumes to the original one. Uncertainties 

associated with the deterioration process are considered in terms of probabilistic 

distribution of the controlling parameters of this computational model. Monte 

Carlo simulation is used to account for these uncertainties by obtaining the 

statistical performance profiles of deteriorating structures.  

Liu and Frangopol
124,125

 applied multiobjective optimization techniques in 

life-cycle maintenance management of deteriorating bridge at project-level and 

network-level. Multiple and competing criteria in terms of condition, safety, and 

life-cycle cost are considered simultaneously. Uncertainties associated with the 

deterioration process with and without maintenance interventions are treated 

appropriately. GA is presented to solve the posed combinatorial optimization 

problems. As application examples, GA-based automated management 

procedures are applied to prioritize maintenance resources for deteriorating 

bridges over the specified time horizons. At project-level, the long-term 

performance of a large population of similar highway reinforced concrete 

crossheads is maintained. At network-level, a group of bridges that form the 

nodes of an existing highway network is considered. 
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5.7.1.  Project-level 

In Liu and Frangopol
124

, maintenance needs are prioritized for deteriorating 

reinforced concrete highway crossheads through simultaneous optimization of 

both structure performance in terms of condition and safety states and life-cycle 

maintenance cost with a prescribed discount rate of money of 6% in 50 years. 

The deterioration processes with and without maintenance are simulated by the 

model as described above. Five maintenance strategies are considered: 

replacement of expansion joints, silane, cathodic protection, minor concrete 

repair, and rebuild. Three objective functions are considered: the condition index, 

the safety index, and the life-cycle maintenance cost. For reinforced concrete 

elements under corrosion attack, visual inspection-based condition is classified 

into four discrete levels, denoted as 0, 1, 2, and 3, that represent no chloride 

contamination, onset of corrosion, onset of cracking, and loose 

concrete/significant delamination, respectively. According to bridge 

specifications in the United Kingdom, the safety index is defined as the ratio of 

available to required live load capacity.  

The GA-based maintenance prioritization procedure is carried out for 

deteriorating reinforced concrete crossheads. A total of 129 different optimized 

maintenance planning solutions are generated at the 30th generation. All these 

solutions are feasible in that the minimum performance levels are strictly 

satisfied, which are enforced as constraints. These solutions lead to, in a Pareto 

optimal sense, different levels of performance enhancement and maintenance 

needs. Based on this large set of solutions, civil infrastructure managers can 

actively select a solution that balances condition, safety, and life-cycle 

maintenance cost objectives in a preferred way.  

5.7.2.  Network-level 

Maintenance management for deteriorating bridge infrastructure from a network 

perspective provides more rational solutions because the ultimate goal of bridge 

management is to improve the overall performance of a transportation network 

other than that of individual bridges in the network. In this section, the 

maintenance management of a group of bridges that form nodes of an existing 

highway network is discussed. Performance evaluation of deteriorating highway 

networks in the transportation engineering community has been focused on road 

performance in terms of travel time and capacity reliabilities
126

. Recently, 

Shinozuka et al.
127

 evaluate the performance of highway bridge networks under  
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earthquakes and demonstrate the importance of seismic retrofit in improving 

network performance in terms of drivers’ travel delay reduction. Maintenance 

planning optimization for deteriorating bridge networks, which is important for 

daily operation other than under disastrous events such as earthquakes and 

floods, has not received adequate attention. Augusti et al.
128

 investigate 

retrofitting efforts allocation for seismic protection of highway bridge networks. 

Adey et al.
129

 develop a network bridge management system using a supply-and-

demand system approach. 

Liu and Frangopol
125

 proposed network-level bridge maintenance 

management procedure. The overall performance of a bridge network was 

assessed in terms of the origin–destination connectivity reliability, which was 

evaluated by an event tree analysis, utilizing structural reliability index profiles 

of all deteriorating bridges in the network. Each maintenance solution was treated 

as a sequence of maintenance activities that are scheduled at discrete years and 

are applied to selected bridges. The conflicting objectives of maximizing the 

network connectivity reliability and minimizing the present value of total 

maintenance cost were considered in the posed combinatorial bi-objective 

optimization problem that was solved by GA. It is found that the proposed GA-

based procedure is able to locate a set of different maintenance solutions that 

represent the optimized tradeoff between the two conflicting objectives. In 

particular, under given budgets, one can find the maintenance solution that best 

improves the network performance in terms of connectivity; alternatively, if a 

threshold is specified for the network performance, a maintenance solution that 

requires the least total maintenance cost can be found. In addition, the GA-based 

procedure can automatically prioritize maintenance needs among networked 

bridges and over the time horizon. It can effectively identify bridges that are 

more important to the functionality of the network and then prioritize limited 

resources to these bridges at selected years. 

6.  Applications 

In recent publications, Frangopol and Maute
1,2

 provided both the status of RBDO 

and reliability-based life-cycle cost optimization (RBLCCO) applications in the 

civil and aerospace engineering fields. For this reason, in this section only the 

most recent (i.e. 2004, 2005 and 2006) applications reported by the authors and 

their co-workers are mentioned. These applications, including also probability-

based life-cycle design optimization (PBLCDO), are found in Kong and 

Frangopol
130,131

, Stewart et al.
132

, Estes and Frangopol
133

, Liu et al.
107,108

, Liu and 

Frangopol
124,125

, Yang et al.
 134,135

, Allen et al.
63

 and Maute et al.
64

. 
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7.  Conclusions 

Concepts and methods of structural design optimization with uncertainty, life-

cycle performance and cost considerations have greatly advanced over the past 

decade. Most of these advances were summarized in this chapter. However, there 

are still areas where improvement can be made. More widespread use of these 

concepts and methods in structural engineering design, maintenance and 

management practice will led to a better understanding of the limitations of 

existing RBDO approach. 

The tools required performing RBDO including both aleatory and epistemic 

uncertainties
136

, life-cycle performance and cost are rapidly becoming available. 

As indicated in Ellingwood
137

, additional research is required to provide 

supporting models and data in several areas including deterioration of materials 

and structures, time-dependent reliability assessment, and infrastructure damage 

and loss estimation. 

Recently developed techniques in the field of reliability-based multi-objective 

optimization of deteriorating structural systems and networks are useful for 

managing preferences in decision-making under uncertainty with conflicting 

criteria such as cost and probability of unsatisfactory performance.  
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CHAPTER 12 

OPTIMIZATION-BASED INVERSE KINEMATICS OF ARTICULATED 

LINKAGES 
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Articulated linkages appear in many fields, among them, robotics, human 

modeling, and mechanism design.  The inverse kinematics (IK) of articulated 

linkages forms the basic problem to solve in various scenarios.  This chapter 

presents an optimization-based approach for IK of a specific articulated linkage, 

the human model. The problem is formulated as a single-objective optimization 

(SOO) problem with a single performance measure or as a multi-objective-

optimization (MOO) problem with multiple combined performance measures.  

A human performance measure is a physics-based metric, such as delta potential 

energy, joint displacement, joint torque, or discomfort, and serves as an 

objective function (cost function) in an optimization formulation.  The 

implementation of the presented approach is shown for three models: a 4- 

degree-of-freedom (DOF) finger model, 21-DOF torso-right hand model, and 

31-DOF torso-both hands model.  Preliminary validation using a motion capture 

system demonstrates the accuracy of the proposed method.  

1.  Introduction 

This chapter presents an optimization-based method for the coordination of 

voluntary human motion (articulated human model), a special type of articulated 

linkages.  Posture prediction means the estimation of joint variables that will 

allow the human body to assume a posture to achieve an objective.  Note that the 

word prediction is often used instead of calculation since predicting realistic 

human motion is not an exact science, but rather a prediction of human behavior.  

For example, the prediction or calculation of upper extremity variables to achieve 

the grasping of an object is a posture prediction problem.  Grasping, in this case, 

means the positioning of the hand that is also called the end-effector of a serial 

kinematic chain in the field of robotics.  Similarly, predicting, i.e., calculating the 
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joint variables of a lower extremity to allow the foot to be positioned on an 

object, a pedal, for example, is also a posture prediction problem.  The challenge 

in predicting postures is evident in that there are a large (infinite) number of 

solutions. 

In this chapter, the treatment of an open kinematic chain, as opposed to 

closed-loop systems, is addressed.  For the human body, we consider a variety of 

articulated linkages, typically all beginning in the waist and extending to the 

hand, the foot, or the head.  Indeed, a kinematic chain starts from the foot 

extending to the hand.   

Many theories and methodologies have been reported for how the brain issues 

motor control commands to the central nervous system to achieve a task.   This 

chapter will focus on the optimization-based method, which we believe is a 

natural process for completing a task.   

One method for characterizing intelligent function in a digital human (avatar) 

is the ability to process a task using previous cost functions.  The optimization 

methodology, introduced by the author and colleagues several years ago, first 

breaks a task into sub-tasks, then, breaks each sub-task into procedures.  This 

process is called task planning and is well understood in the field of robotics. In 

order to accomplish a procedure, the procedure planner then selects one or more 

cost functions from a list of available human performance measures to be used  

in an optimization algorithm (one example is provided in Figure 1).  Note that 

task planning and procedure planning are forms of intelligent engines.  Selecting 

the appropriate type of cost functions and understanding their relative importance 

is itself a challenging problem that is not well understood.  Nevertheless, 

optimizing for a combination of cost functions yields a behavior that is different 

than optimizing for a different set of cost functions.  This aspect of selecting cost 

functions will likely continue to be a research area with great interest in that it 

produces behaviors that vary for the same procedure but different cost functions.  

The main new idea here is the belief that humans execute procedures while 

minimizing or maximizing cost functions.  This chapter presents an optimization-

based inverse kinematics of the articulated linkages and is organized as follows: 

Section 2 introduces the Denavit-Hartenberg (DH) method;
1
 Section 3 presents 

the formulation of inverse kinematics; Section 4 provides several examples; and 

the conclusions summarize the methodology and formulations. 

2.  Denavit-Hartenberg Method 

The mathematical foundation for the human skeletal model used to control 

motion essentially relates a set of joint angles to the Cartesian coordinates of a 
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point on the avatar.  A human skeleton can be modeled as a kinematic system – a 

series of links with each pair of links connected by single degree-of-freedom 

(DOF) joints as shown in Figure 2. Therefore, a complete human body can be 

modeled as several open-loop chains, one of which is shown in Figure 2, where 

i
q  is a generalized coordinate and represents the rotation of a single basic 

revolute joint. 

 

 
Figure 1. The overall planning and execution of a task using the theory of optimization 

 

 

zzzi-1

i
q

zzzi-1zi-1

i
q

i
q

 
 

Target Point 

End-effector 

Global Coordinate 

System 

Local Coordinate 

System 

   1q  

   2q  

   n
q  

... 

 ( )x q  

X 

Z 

Y 

 

Figure 2. Definition of a kinematic pair 
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Each joint in the skeletal model is represented by one, two, or three revolute 

joints. [ ]1, ,
T n

nq q R= ∈q …  is an n-dimensional vector of generalized 

coordinates, where n is the number of DOF.  The end-effector is a point on the 

virtual human, typically the tip of the index finger. ( )x q  represents the position 

of the end-effector in Cartesian space and is a function of the joint angles.  Using 

the Denavit-Hartenberg (DH) method, the four parameters ( , , ,
i i i i

d aθ α ), shown 

in Figure 3, are defined as 

(1) the angle θi between the (i-1)
th 

 and ith x-axis about the
 
(i-1)

th 
 z-axis

  

(2) the distance di from the (i-1)
th  

to the ith x-axis along the
 
(i-1)

th  
z-axis

 

(3) the angle αi between the (i-1)
th  

and ith z-axis about the
 
i
th
 x-axis

 

(4) the distance ai from the (i-1)
th 

to the ith x-axis along the
 
i
th 

x-axis 

The transformation matrix between the (i-1)
th
 and i

th
 axis is defined as 

 1

cos cos sin sin sin cos

sin cos cos sin cos sin

0 sin cos

0 0 0 1

i i i i i i i

i i i i i i ii

i

i i i

a

a

d

θ α θ α θ θ

θ α θ α θ θ

α α
−

− 
 

− =
 
 
  

T  (1) 

where 
i i

q θ=  for revolute joints and  
i i

q d=  for prismatic joints. 
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Figure 3. DH-Parameters 
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The global position-vector ( )x q  for the end-effector of the human model is 

given as: 

 
( ) 0

11

n

n

   
=   

  

xx q
T  (2) 

 0 1

1 1

n
i

n i

i

−

=

  
= =   
   
∏

R P
T T

0
 (3)  

where nx  is the position of the end-effector with respect to the n
th
 frame with 

[ ]
T

n n n nx y z=x .  Note that the 0
th
 frame is the global reference frame (global 

coordinate system). R  is the orientation matrix for the n
th
 frame with respect to 

the 0
th
 frame. P  is the position vector of the n

th
 frame. 

3.  Inverse Kinematics 

Because of the apparent mathematical complexity of the problem of posture 

prediction and because the human body has many more than six DOF, methods 

for predicting postures are very involved.  Posture prediction, at least on the 

surface, is equivalent to what is called Inverse Kinematics in the field of 

mechanisms and robotics (known as IK in the gaming and animation industries).  

This section addresses the benefits and shortcomings of IK: 

Analytical and geometric IK methods.  These are methods typically associated 

with arms of robotic manipulators that are no more than 6-DOF systems, where 

closed-form or numerical solutions are possible.  Higher than 6-DOF systems 

become very redundant and require very complex numerical algorithms.  

Analytical or geometric IK methods for human posture prediction are almost 

impossible. One reason for this is the high number of DOF associated with the 

human model lead to severe difficulties in calculating solutions.  Solutions are 

almost impossible for geometric methods and very difficult using numerical 

methods, as identifying and finding all solutions is an outstanding mathematical 

problem. A second reason is the need to calculate realistic postures. While some 

of the analytical methods may yield solutions, a choice of the “best” solution that 

looks most natural is difficult to achieve using analytic IK methods. The main 

benefit of analytic and geometric methods is that, if determined, they are 

determined very quickly.  Typically, analytic methods, even though numerical in 

nature, are computationally efficient.  

Empirically based posture prediction. This method is based on gathering 

much data of actual subjects while performing various postures.  Anthropometry 

and posture data are captured and recorded.  Statistical models, typically  
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nonlinear regression, are then developed and used in posture prediction 

algorithms.  A benefit of this method is its ability to predict postures that already 

have been recorded for the exact anthropometric model.  Extrapolating postures 

and variations thereof are extremely difficult and become highly inaccurate, and 

this method completely fails to predict motion, the ultimate goal of posture 

prediction.  If it is to be expanded to predict motion, the variability and many 

parameters associated with motion, including dynamic effects and inertia, are not 

only difficult to measure but impossible to correlate.  The method requires an 

exhaustive and often very costly experimental setup involving thousands of 

subjects to generate a modest model for a small population.  

This chapter introduces a framework with an associated algorithm for 

predicting postures that is based on an individual task.  In order to better 

understand the motivation behind cost functions, consider first the case of a 

driver in a vehicle who is about to reach to a radio control button on the 

dashboard.  It is believed that the driver will reach directly to the button while 

exerting minimum effort and perhaps expending minimum energy.  Next, 

consider the same driver negotiating a curve.  Here, he will have to place his/her 

hand on the steering wheel in such a way as to be able to exert the necessary 

force needed to turn the wheel.  As a result, the driver will, involuntarily, select a 

posture that maximizes force at the hand, minimizes the torque at each joint, 

minimizes energy, and minimizes effort needed to accomplish this task (as 

illustrated in Figure 4).
2-9

 

Therefore, our underlying plot is that each procedure is driven by the 

optimization of one or more cost functions, leading the person to position his/her 

body in the most natural manner.  Note that simple logic has been implemented 

in the Processor module to correlate between the Task and the Cost Functions. 
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Figure 4. The task-based approach to selecting cost functions 
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The formulation contains three main components: 

(1) A cost function: to be minimized or maximized.  In our case, many cost 

functions thus form a multi-objective optimization problem. 

(2) Design variables: the variables are individual degree-of-freedom joint 

displacements that will be calculated from the algorithm.  In our case the joint 

variables that define the position and orientation of each segmental link are 

design variables. 

(3) Constraints: are mathematical expressions that bound the problem.  A 

constraint is imposed making sure the distance between the end-effector and the 

target point is within a specified tolerance.  Furthermore, joint ranges of motion 

are necessary constraints but additional constraints are added as appropriate. 

3.1.  Formulation of the Optimization Problem 

The optimum posture (set of q-values) is determined by solving the following 

optimization problem: 

                            Find: DOF
R∈q  (4) 

                            Minimize: Discomfort, Effort, etc. 

                            Subject to: ( )
2

end-effector target point ε − ≤
 
x q x  

                                               and ;  1,2, ,L U

i i i
q q q i DOF≤ ≤ = …  

The feasible space for a problem such as the one in (4) is defined as the set of all 

points q  for which all of the constraints are satisfied. 

3.3.1.  Design Variables 

As suggested earlier, the design variables are the generalized coordinates 
i

q , or 

in vector form as [ ]1 ...
T

DOFq q=q .  Since all joints are rotations, 
i

q  have 

units of radians.  Many optimization algorithms require an initial guess, which 

entails determining initial values for the design variables.  The initial guess can 

be somewhat arbitrary, although it is helpful to use a feasible point.  In this study, 

an initial guess is used that satisfies the joint limits constraint but does not 

necessarily satisfy the distance constraint, which is discussed below. 

3.3.2.  Constraints 

The first constraint in (4) is the distance constraint and requires that the end-

effector contact a predetermined target point (user specified) in Cartesian space, 

where ε  is a small positive number that approximates zero.  This constraint 
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represents distance-squared.  The DH-method is used to determine the position of 

the end-effector after a series of given displacements.  In addition, each 

generalized coordinate is constrained to lie between lower and upper limits, 

represented by L

i
q  and U

i
q , respectively.  These limits ensure that the digital 

human does not assume an unrealistic position in an effort to contact the target 

point. 

3.3.3.  Cost Function 

While many cost functions exist and others are being developed by many 

researchers and in several fields, we will attempt to demonstrate a number of 

such functions for posture prediction such as joint displacement, delta-potential 

energy, discomfort, effort, and joint torque.  In this section we review all of the 

five cost functions and will demonstrate the use of some of these cost functions 

in the next section: 

(1)  Joint Displacement 

Joint displacement is proportional to the deviation from the neutral position.  The 

neutral potion is selected as a relatively comfortable posture, typically a standing 

position with arms at one’s sides, where N

i
q  is the neutral position of a joint, and 

N
q  represents the overall posture.  Technically, the displacement from the 

neutral position is given by N

i i
q q− ; however, for computational simplicity 

( )
2

N

i i
q q−  is used.  Because motion in some joints contributes more significantly 

to the joint displacement, a weight wi  is introduced to stress the importance of a 

particular joint. Then, the cumulative joint displacement (of all joints) is 

characterized by the following objective function: 

 ( ) ( )int

1

2n

Jo Displacement i

i

N

i if w q q
−

=

= −∑q  (5) 

(2)  Delta-Potential-Energy 

This section discusses a potential-energy function that is indirectly based on the 

weighted sum method for MOO.  However, in this case, the weights are based on 

the mass of different segments of the body.  With the previous (joint 

displacement) function, the weights are set based on intuition and 

experimentation, and although the postures obtained by minimizing joint 

displacement are realistic, there are other ways to assign relative importance to 
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the components of the human performance measure.  The idea of potential 

energy provides one such alternative. 

We represent the primary segments of the upper body with nine lumped 

masses: one each for the lower, middle, and upper torso, respectively; one each 

for the right upper arm; right forearm; and right hand; and one each for the 

corresponding lumped masses of the left arm.  We then determine the potential 

energy for each mass.  The heights of these masses, rather than the joint 

displacements for the generalized coordinates, provide the components of the 

human performance measure.  Mathematically, the weight (force of gravity) of a 

segment of the upper body provides a multiplier for movement of that segment in 

the vertical direction.  The height of each segment is a function of generalized 

coordinates, so, in a sense, the weights of the lumped masses replace the scalar 

multipliers, iw , which are used in the joint displacement function. 

If the potential energy function were used directly, there would always be a 

tendency to bend over, thus reducing potential energy.  Consequently, we 

actually minimize the change in potential energy.  Each link in a segmented 

serial chain, as depicted in Figure 5 (e.g., the forearm), has a specified center  

of mass. 
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Figure 5. Illustration of the potential energy of the upper body 

 

The vector from the origin of a link’s local coordinate system to its center of 

mass is given by i

i
r , where the subscript indicates the relevant local coordinate 

system.  In order to determine the position and orientation of any part of the 

body, we use the transformation matrices ( 1)i

iA
− , which are 4 4×  matrices that 

relate local coordinate system- i  to local coordinate system- 1i − .  Consequently, 
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i
r  is actually an augmented 4 1×  vector with respect to local coordinate system 

i , rather than a 3 1×  vector typically used with Cartesian space.  

[ ]0 0
T

g= −g  is the augmented gravity vector.  When the human upper body 

moves from one configuration to another, there are two potential energies, '
iP  

which is associated with the initial configuration and iP  which is associated with 

the current configuration.  Therefore, for the first body part in the chain (the 

lower torso), the potential energies are 
1

' 0 '

1 1 1

T
P m= g A r  and 

1

0

1 1

T
P m= g A r .  The 

potential energies for the second body part are 
2 2

' 0 ' 1 '

2 1 2

T
P m= g A A r  and 

2 2 1 2 2

0 1T
P m= g A A r .  The potential energies for the i

th
 body part are 

' 0 ' 1 '

1i i

T i

i iP m
−

= g A A r⋯  and 
1

0 1

i i i i

T i
P m

−
= g A A r⋯ .  In Figure 5, 

i
h△  is the y-

component of the vector 0 ' 1 ' 0 1

1 1i i

i i

i i

− −−A A r A A r⋯ ⋯ .  The final objective 

function, which is minimized, is defined as follows: 

  ( ) ( )
9

2
'

1

Delta Potential Energy i i

i

f P P− −

=

= −∑q  (6) 

Note that (6) can be written in the form of a weighted sum as follows: 

 ( ) ( ) ( )
9

2 2

1

Delta Potential Energy i i

i

f m g h− −

=

= ∆∑q  (7) 

where ( )
2

im g  represent the weights and ( )
2

ih∆  act as the individual objective 

functions.  In this case, the initial position is the neutral position describe in 

relation to joint displacement.  With this performance measure, the avatar again 

gravitates towards the neutral position.  However, horizontal motion of the 

lumped masses has no affect on the objective function. 

(3)  Discomfort 

The discomfort human performance-measure is based on the lexicographic 

method for MOO.
5
  A priori articulation of preferences is used with this method, 

as it was with the weighted sum, but preferences are articulated in a slightly 

different format.  Rather than assigning weights that indicate relative importance, 

one simply prioritizes the objectives.  Then, one objective at a time is minimized 

in a sequence of separate optimization problems.  After an objective has been 

minimized, it is incorporated as a constraint in the subsequent problems.  The 

solution to this method is Pareto optimal, if it is unique. 

The concept behind this new discomfort human performance measure is that 

groups of joints are utilized sequentially.  That is, in an effort to reach a 

particular target point, one first uses one’s arm.  Then, if necessary, one bends the 

torso.  Finally, if the target remains out of reach, one may extend the clavicle 

joint.  The lexicographic method for MOO is designed to incorporate this type of 
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preference structure.  However, solving a sequence of optimization problems can 

be time consuming and impractical for real-time applications such as human 

simulation.  The weighted sum method can be used to approximate results of the 

lexicographic method if the weights have infinitely different orders of 

magnitude.
10,11

  This results in the weights shown in Table 1. 

Although weights are used here, they do not need to be determined as 

indicators of the relative significance of their respective joints; they are simply 

fixed mathematical parameters.  In addition, the exact values of the weights are 

irrelevant; they only need to have significantly different orders of magnitude.  

Some of the weights in Table 1 are discontinuous because movement in various 

directions can result in different degrees of acceptability.  These discontinuities 

can lead to computational difficulties; however, with this discomfort objective, 

such discontinuities are avoided. 

 
Table 1. Joint weights for discomfort 

 

Joint Variable Joint Weight Comments 

1 12
, ,q q…  41 10×  Used with both positive and negative values of 

N

i i
q q−  

13 14
,q q  81 10×  Used with both positive and negative values of 

N

i i
q q−  

15 21
, ,q q…  1 Used with both positive and negative values of 

N

i i
q q−  

 

The weights in Table 2 are used in a function that is similar to Eq. (5).  

However, prior to applying the weights, each term in Eq. (5) is normalized as 

follows: 

 
N

norm i i

U L
i i

q q
q

q q

−
∆ =

−
 (8) 

With this normalization scheme, each term ( )
2

norm

iq∆  acts as an individual 

objective function and has values between zero and one. 

Although this approach generally works well it often results in postures with 

joints extended to their limits, and such postures can be uncomfortable.  To 

rectify this problem, extra terms are added to the discomfort function such that 

the discomfort increases significantly as joint values approach their limits.  The 

final discomfort function is given as follows: 
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  ( )
2

1

1
( )

n
norm

Discomfort i i

i

f q q G QU G QL
G

γ
=

 = ∆ + × + ×
  ∑  (9) 

 
( )

100

5.0
0.5 1.571 1

U

i i

U L

i i

q q
QU Sin

q q

  −
  = + +
  −

  

 

 
( )

100

5.0
0.5 1.571 1

L

i i

U L

i i

q q
QL Sin

q q

  −
  = + +
  −

  

 

where G QU×  is a penalty term associated with joint values that approach  

their upper limits, and G QL×  is a penalty term associated with joint values  

that approach their lower limits.  Each term varies between zero and G,  

as ( ) ( )U U L

i i i iq q q q− −  and ( ) ( )L U L

i i i iq q q q− −  vary between zero and one.  In 

this case, 61 10G = × .  Figure 6 illustrates the curve for the following function, 

which represents the basic structure of the penalty terms: 

 ( )( )
100

0.5 5.0 1.571 1Q Sin r= + +  (10) 

  
0.2   0.4   0.6   0.8   1.0   

200000   

400000   

600000   

800000   

1000000   

Q   

r   

 
Figure 6. Graph of discomfort joint-limit penalty term 

 

r represents either ( ) ( )U U L

i i i iq q q q− −  or ( ) ( )L U L

i i i iq q q q− − .  Thus, as 

Figure 6 illustrates, the penalty term has a value of zero until the joint value 

reaches the upper or lower 10% of its range, where either 

( ) ( ) 0.1U U L

i i i iq q q q− − ≤  or ( ) ( ) 0.1L U L

i i i iq q q q− − ≤ .  The curve for the 

penalty term is differentiable, and reaches its maximum of 61 10G = ×  when 

0r = .  The final function in (9) is multiplied by 1 G  to avoid extremely high 

function-values. 
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(4)  Effort 

Effort is measured as the displacement of a joint from its original position.  Effort 

will greatly depend on the initial configuration of the limb, i.e., prior to the joint 

moving to another position.  For an initial set of joint variables initial

iq  and for a 

final set of joint variables qi , a simple measure of the effort is expressed by 

 ( )
2

1

( )
n

initial

effort i i i

i

f q qα
=

= −∑q  (11) 

where 
i

α  is a weight function assigned to each joint. Note that effortf  depends on 

the initial configuration of each joint. 

(5)  Torque 

Stress induced at a joint is a function of torque imposed at that joint due to the 

biomechanical interaction.  A person will generate the torque at a given joint to 

overcome a load by exerting muscle forces, but torque is also a function of the 

position and orientation of the joint during loading.  In order to account for all of 

the elements that enter into calculating the torque at a given joint, we must 

employ a systematic formulation.  To develop a mathematical expression for the 

torque, we first introduce a few preliminary concepts.   

The velocity of a point on the hand is obtained by differentiating the position 

vector as 

 =
x

x J qɺɺ   (12) 

where the position Jacobian [ ]( ) = ∂ ∂
x

J q x q  is a (3 )n×  matrix and qɺ  is the 

vector of joint velocities.  Note that the reach envelope can be determined from 

analytically stratifying the Jacobian.
2
  Similarly, the angular velocity can be 

obtained as 

 =ω J qɺ
w

 (13) 

where the orientation Jacobian ωJ  is a (3 )n×  matrix.  Combining Eqs. (12) and 

(13) into one vector yields 

 ( )
 

= = 
 

x
v J q q

ω

ɺ
ɺ  (14) 

where ( )J q  is the Jacobian of the limb or kinematic structure defined by  

 ( )
x

ω

 
=  
 

J
J q

J
 (15) 

The goal is to determine the relationship between the generalized forces 

applied to the end-effortor (hand), for example, carrying a load, and generalized 

forces applied to the joints.  Let τ  denote the ( 1)n ×  vector of joint torques and 
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F the ( 1)m×  vector of hand forces applied at p, where m is the dimension of the 

operational space of interest (typically six). 

Using the principle of virtual work, we can determine a relationship of joint 

torques and forces at the end-effector.  Since the upper and lower body form a 

kinematic system with time-invariant, holonomic constraints, its configuration 

only depends on the joint variables q (not explicitly on time).  Consider the 

virtual work performed by the two force systems.  As for the joint torques, the 

associated virtual work is  

 T
dW d=

τ
τ q   (16) 

For the hand forces 
T

TT =   
F f m , comprised of a force vector f  and 

moment vector m , the virtual work performed is 

 T T
dW d dt= +

F
f x m ω  (17) 

where dx  is the linear displacement and dtω  is the angular displacement.   

Substituting Eqs. (14) and (15) into Eq. (17) yields 

  T T
dW d dω= +

F x
f J q m J q  

 T
dW d=

F
F J q   (18) 

Since virtual and elementary displacements coincide, virtual works associated 

with the two systems are 

 T
Wδ δ=
τ
τ q  (19) 

 T
Wδ δ=

F
F J q  (20) 

where δ  denotes a virtual quantity.  The system is under static equilibrium if and 

only if 

                                                dW dW=
F τ

       δ∀ q  (21) 

which means that the difference between the virtual work of the joint torques and 

the virtual work of the hand forces shall be null for all joint displacements. 

Substituting Eqs. (16) and (18) into Eq. (21) yields 

 ( )T Tδ δ= ∀τ q F J q q q  (22) 

Therefore, the relationship between the joint torques and forces on the hand is 

given by 

 T=τ J F  (23) 

where the torque vector is [ ]1 2, ,...,
T

nτ τ τ=τ .  The torque cost function is 

comprised of the weighted summation of all joint torques 

 
1

n

torque i i

i

f λ τ
=

=∑  (24) 
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where 
i

λ  is a weight function used to distribute the importance of the cost 

function among all joints. 

4.  Examples 

This section provides several examples to illustrate the optimization-based 

method for inverse kinematics of accumulated linkages. The first example is a 

simple 4-DOF index finger model, where, given the finger-tip position, we use 

the optimization-based method to find the joint angles. The second example 

demonstrates a 21-DOF upper body model, and orientation is also considered for 

inverse kinematics. The third example is a 30-DOF model for upper body with 

dual arms. 

4.1.  A 4-DOF Finger Example 

An index finger may be modeled as a 4 DOF system shown in Figure 7.
12

 The 

joint ranges of motion are 
1

13 42o o
q≤ ≤ , 

2
0 80o o

q≤ ≤ , 
3

0 100o o
q≤ ≤ , 

4
10 90o o

q− ≤ ≤ , and the neural configuration is 
1

0o
q = , 

2
30o

q = , 
3

30o
q = , 

4
10o

q = . In Eq. (5) the weights are 
1

100w = , 
2

10w = , 
3

5w = , 
4

5w = . The 

inverse kinematic problem is defined as: given finger-tip position 

[ ]
T

x y z=x  to find the joint angles.  

 

 

Figure 7. Index finger DH model 
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The optimization problem will be defined as follows: 

Find: [ ]1 2 3 4

T
q q q q=q  

to minimize:  ( ) ( )
4

int

1

2

Jo Displacement i

i

N

i if w q q
−

=

= −∑q  

subject to: end effector p ε− − ≤x x  

When the target point is at [ ]1.0 6.68 6.95
T

− −  joint angles are 

[ ]8.4292 30.5679 28.511 9.0965
T

=q  in degrees, and joint displacement is 

0.0233, where 0.0001ε = . If the target point is [ ]1.0 5.25 4.45
T

− − , then joint 

angles are [ ]10.6792 0.7002 69.2643 48.8281
T

=q , and joint displacement 

is 0.0659. 

4.2.  A 21-DOF Model 

A 21-DOF model is developed to represent realistically the movement of a 

skinned 3-dimensional model of a human, where the term skinned implies that a 

visually realistic outer surface is illustrated and attached to the kinemtic model 

(skeleton).  Skinning is a term typically used by animators to describe the 

operation needed to lay the skin over the skeletal structure of a digital character.   

4.2.1.  DH Model 

The DH method is applied to the 21-DOF model of the upper torso and right arm 

as illustrated in Figure 8. 

 
 

Figure 8. Detailed 21-DOF model (21st frame coincides with 20th frame) 
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Although the neutral posture remains a standing position with arms at the 

sides, the values are such that the position appears more relaxed.  This posture is 

chosen based on observation of the skinned model rather than the skeletal model.  

The resulting vector q
N
 is defined as   

0;  1,...,12,19,20N

iq i� � , 

13 14 15 16 17 18 2115.0,  20.0,  100.0,  10.0,  80.0,  35.0,  15.0N N N N N N N
q q q q q q q� � � � � � � � � � �

 Notice that the global coordinate system, selected to match this model’s zero
th
 

coordinate frame, has also changed.  The end-effector for this model is given by 

the position (d, 0, 0), where d is a distance along the x-axis of the last coordinate 

frame.  

4.2.2.  Results 

Figure 9 shows the results with the 21-DOF model and the target point 

( )57.0,31.5,41.2− .  Discomfort = 1.6317, and the distance from the end-effector 

to the target point is 0.003 cm.  The resulting q-vector is  

 
[

]

2.27, .35,.39, 2.33, .37,.34, 2.39, .39,.30, 2.47, .41,

       .24, 15.82,11.16,36.24,1.39, 79.38, 45.86,1.07, 4.11, .95
T

= − − − − − − − −

− − − − −

q
 

In this case, all of the generalized coordinates have units of degrees.   

 

 

Figure 9. 21-DOF posture prediction for a target point of (−57.0, 31.5, 41.2) 

Target Point 
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The results with a target point of  (-5.0, -20.0, 55.0)  are shown in Figure 10.  

Discomfort = 1.7751.  The distance from the end-effector to the target point is 

0.003 cm.  The resulting q-vector is  

[

]

1.41,5.37, 2.54,1.51,4.30,2.53,1.54,3.20,2.53,1.50,1.94,

      2.53, 15.0,25.0,68.23,36.05, 79.81, 24.13, .57, 2.17,2.97
T

=

− − − −

q
 

 

 
 

Figure 10. 21-DOF posture prediction for a target point of (-5.0, -20.0, 55.0) 

 

As shown in Figure 10, there is a slight extension in the shoulder that was not 

possible with the previous model.  Although the figure does not indicate it 

clearly, there is also a slight natural bend in the torso. 

4.2.3.  Specifying the Orientation 

The rotation matrix R controls the orientation of frame-i.  Therefore, by 

constraining portions of R, we can constrain the orientation of frame-i.  

Specifically, we can dictate in what direction (in terms of the global coordinate 

system) each axis of a local coordinate system points.  This is done by specifying 

values for each column of R.  The first column represents the direction in which 

the x-axis points, the second column represents the y-axis, and the third column 

Target Point 
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represents the z-axis.  Considering that the axes are orthogonal, only two axes 

can be constrained at a time. 

For the 21-DOF model, there are 21 independent transformation matrices 
1i

i

−
T , and each one includes an independent rotation matrix 

1i

i

−
R .  The 

cumulative transformation matrix 
0

nT  determines the position of the end-effector 

in terms of the global coordinate system.  
0

nR  is the rotation matrix incorporated 

in this cumulative matrix, and it determines the orientation of the n
th
 reference 

frame with respect to the global reference frame.  The n
th
 reference frame is 

attached to the hand.  Thus, to constrain the orientation of the hand, we constrain 

the components of 
0

nR . 

To write an independent constraint for each component of 
0

nR  can be 

cumbersome when it comes to developing a general user-interface and can 

unnecessarily complicate the optimization problem.  Instead, the components are 

combined into a single inequality constraint as follows: 

 

( ) ( ) ( ){ }
( ) ( ) ( ){ }

2 2 2
0 0 0

11 21 31

2 2 2
0 0 0

12 22 32

1,1 2,1 3,1

1,2 2,2 3,2

n n n

n n n

R l R l R l

R l R l R l γ

     − + − + − +     

     − + − + − ≤     

 (25) 

where γ  is a small positive number approximating zero.  For this study 
81 10γ −= × .  This constraint is incorporated in the formulation in (4).  ijl  

indicates the constrained value for ( )0 ,nR i j .  For example, with the following 

values for ijl , the local x-axis for the hand points in the global Z-direction, and 

the local y-axis for the hand points in the global negative Y-direction: 

  
11 21 31

12 22 32

0, 0, 1

0, 1, 0

l l l

l l l

= = =

= = − =
 (26) 

The first three terms in (25) relate to the x-axis, while the second three terms 

relate to the y-axis.  The z-axis is orthogonal to the x-axis and the y-axis.  It is 

possible to simplify (25) and only constrain the orientation of one axis.  In 

addition, the local axes do not necessarily have to be constrained such that they 

are parallel with a global axis; they may be given any direction. 

4.2.4.  Example of an Orientation Constraint 

Figure 11 shows a standard posture with a target point of ( )57,31.5,41.2−  and 

no orientation constraint. 
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Figure 11. Standard posture without orientation constraint 

 

 
 

Figure 12. Orientation constraint on one axis 
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Figure 12 illustrates a posture with the same target point as shown in  

Figure 11 but with the local x-axis of the hand constrained to be aligned with the 

global Z-axis.  Such a posture may be required, for instance, when one reaches to 

push a button. 

In this case, 11 0l = , 21 0l = , and 31 1l = .  ( )0 51,1 9.7 10nR
−= − × , 

( )0 52,1 2.5 10nR
−= − × , and ( )0 3,1 1.0nR = .  The results are acceptable 

numerically and visually. 

In Figure 13, the local x-axis of the hand is again aligned with the global  

Z-axis, and the local y-axis of the hand is constrained so that it is aligned with the 

global Y-axis but in the negative direction.  Technically, the local y-axis is 

perpendicular to the hand, so in this case, the palm of the hand is parallel with the 

ground. 

 
 

Figure 13. Orientation constraint on two axes 

 

With this second example, 11 0l = , 21 0l = , 31 1l = , 11 0l = , 21 0l = , and 

31 1l = . ( )0 41,1 3.7 10nR
−= − × , ( )0 62,1 5.4 10nR

−= × , ( )0 3,1 1.0nR = , 

( )0 41,2 1.0 10nR
−= × , ( )0 2,2 1.0nR = − , and ( )0 63,2 5.4 10nR

−= × .  There is a 

slight decrease in accuracy with some of the components of the rotation matrix 

along with a slight increase in the accuracy of others.  Nonetheless, the results  

are reasonable.  With both examples, the final distance from the target point is 

0.003 cm. 



K. Abdel-Malek and J. Yang 

 

352 

4.3.  A 30-DOF Model 

The 21-DOF model proved to be a realistic representation of human movement; 

however, it is limited to single-arm tasks.  This model has been reflected to the 

left arm for an additional 9 DOF.  The result is the 30-DOF model shown in 

Figure 14.  

4.3.1.  DH Model 

  

 12
13T  

  

  12
22T  

 
Figure 14. Detailed 30-DOF model 

 

Although the development of the left arm is conceptually the same as that of the 

right, it is important to note that this addition leads to a double dependence on the 

spine.  This means that there must be two transformation matrices from the DOF 

corresponding to z11: one which represents the transformation from the 12
th
 DOF 

to the 13
th
, called 

12
T13, and one that represents the transformation from the 12

th
 

DOF to the 22
nd

, called 
12

T22.  The 21-DOF model also requires two end-

effectors, one on each hand.  The positions of these end-effectors, xR and xL, are 

given by the following equations:  

                                     ( )( )
21

12 1

13

13
n

i

R body i R

i

−

=

 
=  

 
∏x T T T x  (27) 

                                     ( )( )
31

12 1

22

23
n

i

L body i L

i

−

=

 
=  

 
∏x T T T x  (28) 

                                     
12

1

1

i

body i

i

−

=

= ∏T T  (29) 

xRn and xLn are the position vectors of the end-effectors with respect to their 

respective local coordinate frames.  Because there are two transformations from 
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the 12
th
 DOF, there are 31 transformation matrices, which correspond to 30 DOF.  

The transformation matrices are given in (1), where 1, ,21,23, ,31i = … …  and        

             12

22

cos cos sin sin sin cos

sin cos cos sin cos sin

0 sin cos

0 0 0 1

a

a

d

θ α θ α θ θ

θ α θ α θ θ

α α

− 
 

− =
 
 
 

T  (30) 

where the parameters θ, d, α, and a are measured from 12th DOF to the 22nd. 

The optimum posture is determined using a formulation similar to (4).  

However, with two arms, there are two distance-constraints given as follows: 

                ( )
2

right end-effector right target point

R R ε − ≤
 
x q x  (31) 

                                  ( )
2

left end-effector left target point

L L ε − ≤
 
x q x  (32) 

SNOPT
13

 is used to solve this problem directly but without analytical gradients.  

The limits for the additional degrees of freedom are chosen so that the left joints 

are constrained by the same limits as the right joints.  Furthermore, weights in the 

joint displacement function are added to reflect the new degrees of freedom.  The 

updated weights are shown in Table 2. 

 
Table 2. Joint weights used for 30 DOF 

 

Joint Variable Joint Weight Comments 

1 12
, ,q q…  100 Used with both positive and negative values of 

N

i i
q q−  

2
q  

100 

1000 

When 0N

i i
q q− >  

When 0N

i i
q q− <  

13
q , 

22
q  75 Used with both positive and negative values of 

N

i i
q q−  

17
q ,

26
q  50 When 0N

i i
q q− >  

4.3.2.  Results 

The repercussions of incorporating multiple limbs that share common DOF can 

be demonstrated by comparing dual-arm results with single-arm results from 

posture prediction. Figure 15 (a) shows a single-arm posture, whereas Figure 15 
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(b) shows a dual-arm posture using the same target point for the right end-

effector.  Note how the shared DOF in the spine shift to facilitate reaching both 

targets. 

 

      
 

(a) 21-DOF, single-arm model   (b) 30-DOF, dual-arm model 

Figure 15. Posture prediction results for the same right-arm target point 

 

This dual-arm coordination makes it possible to analyze workspace design 

and prototype evaluation over a wider variety of human postures.  For example, 

the 30-DOF model can be used to consider the workspace of a vehicle for dual-

arm reaches (Figure 16).   

One benefit of the optimization-based approach to posture prediction is 

computational efficiency.  Posture prediction feedback can thus be obtained in 

real-time or near real-time speeds.  This might be especially useful to quickly 

evaluate workspace or compare a variety of postures over different 

anthropometries. In fact, the new approach, incorporating multiple limbs and 

shared DOF, maintains computational speed.  The dual-arm posture prediction on 

the 30-DOF model took only approximately 0.15 sec for feasible targets on a 

2.6GHz Pentium4 CPU with 512MB RAM.  Single-arm posture prediction on the 

21-DOF model takes approximately 0.10 sec on the same machine. 
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Figure 16. Evaluation of a vehicle workspace for dual-arm reaches 

4.3.3.  Validation 

In order to validate the optimization-based approach for inverse kinematcis of 

articulated linkages, the Virtual Solder Research (VSR) lab at The University of 

Iowa provided use of their motion capture system, which consists of eight 

infrared miniature cameras from Vicon Motion Systems.  For comparable 

interpretation of the captured motion, a skeletal model corresponding to the 30-

DOF model was created within the motion capture software (Figure 17).  

Subjects wore several markers and were then tracked by the motion capture 

system over a number of reaching tasks (Figure 18).  The motion capture system 

mapped the motions of the subjects to the skeletal model and recorded the results 

to a file.  Finally, the results were subject to post-processing, which involves 

characterizing parameters such as subject anthropometry and local joint rotations 

with respect to the skeletal model. 

 

 
 

Figure 17. Skeletal model developed for motion capture corresponds to 30-DOF model 
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Figure 18. Subject prepared for motion capture using several markers 

 

The predicted postures for three sets of target points are compared to motion 

capture results from a male subject.  Target positions are given with respect to a 

global coordinate frame located in the torso, coincident with the zero
th
 frame in 

the 30-DOF model, and are measured in centimeters.  For target set #1, the right 

end-effector target, xR
target

, is (-41.7, -4.3, 38.7); the left end-effector target, 

xL
target

, is (39.1, -4.4, 40.1).  The motion capture result for this target set is shown 

in Figure 19 (a), while the predicted posture is visualized in Figure 19 (b).  Both 

postures are similar; however, the motion capture shows a slight bending at the 

elbow that is not predicted by this model.  Slightly different anthropometries 

between the model and the motion capture subject are a possible contributing 

factor.  However, minimizing joint displacement conceptually means that the 

model will tend toward the neutral posture.  Since the neutral posture is defined 

with a straight arm, the result of the optimization will tend toward a straight arm.  

Hence, more realistic results should be possible with a more inclusive human 

performance measure(s). 

For target set #2, xR
target

 is (-65.3, 44.7, -41.0) and xL
target

 is (39.4, -5.2, 40.6).  

Figure 20 (a) and Figure 20 (b) depict the motion capture and predicted results, 

respectively.  Again, the predicted result shows less bending in the elbow, and 

also less twisting in the arm.  For target set #3, xR
target

 is (-41.3, 44.5, 60.9) and 

xL
target

 is (-36.4, 44.4, 63.8).  The motion capture result is shown in Figure 21 (a), 

and the predicted result is shown on the model in Figure 21 (b).  The predicted 

result more closely resembles the motion capture result in this case.   

Right Target Point 

 

Left Target Point 
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Although these results provide an indication that the postures are accurate, 

there exists a need for additional results.  Most notably, the subject in this study 

and the model had different anthropometries, and this necessarily affects the 

resulting posture.  The validation study described below uses a 30-DOF model 

whose anthropometry is varied to match that of the subject.  

 

    
 

(a) Motion capture result on 30-DOF model  (b) Predicted posture on 30-DOF model 

Figure 19. Validation results for target set #1 

 

    

(a) Motion capture result on 30-DOF model  (b) Predicted posture on 30-DOF model 

Figure 20. Validation results for target set #2 
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(a) Motion capture result on 30-DOF model  (b) Predicted posture on 30-DOF model 

Figure 21. Validation results for target set #3 

5.  Conclusions  

A general mathematical formulation for inverse kinematics of articulated 

linkages has been proposed and demonstrated.  Predicting human motion is an 

important aspect of digital prototyping.  This chapter has introduced a new 

approach to quantifying human performance measures such as joint 

displacement, discomfort, delta-potential energy, etc., using rigorous analytical 

expressions, towards the development of a computational algorithm for 

predicting realistic postures.  It was shown that the modeling method was not 

restricted to any number of degrees of freedom, and joint ranges of motion are 

included.  Perhaps the most important aspect of this method is that it does not 

employ the Jacobian in the numerical evaluation of a posture, typically associated 

with the inverse kinematic problem.  This methodological aspect has enabled us 

to surpass the traditional limitation of the 6 DOF.  Indeed, the biomechanical 

model used in this work is a 30 DOF human model from the torso to the hand 

(seated reach).  Another benefits of this method is its ability to represent tasks in 

terms of one or more cost functions.  As demonstrated, more realistic posture 

prediction of human models is possible, one that depends on the initial 

configuration, the range of motion, and the exact dimensions.  Validation of the 
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method with motion capture results was presented.  It is evident that the proposed 

method yields postures that minimize the specified cost function and render a 

realistic posture.  Our method can predict realistic postures and can be applied to 

general.  However, many more cost functions are needed, and more elaborate 

mathematical descriptions of human performance measures are required for 

various tasks.  Nevertheless, this method provides a robust approach to realistic 

posture prediction that can handle a biomechanically accurate model. 
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CHAPTER 13 

MULTIDISCIPLINARY DESIGN OPTIMIZATION 

Gyung-Jin Park 

Department of Mechanical Engineering, Hanyang University 

1271 Sa Dong, Ansan City, Gyeonggi Do, Korea 426-791 

E-mail: gjpark@hanyang.ac.kr 

The concept of multidisciplinary design optimization (MDO) has been 

addressed to solve optimization problems with multiple disciplines.  

Conventional optimization generally solves the problems with a single discipline.  

Disciplines are coupled in MDO problems.  Many MDO methods have been 

proposed.  The methods are classified and some representative methods are 

introduced.  The advantages and drawbacks of each method are described and 

discussed. 

1.  Introduction 

Engineering systems are fairly large and complicated these days.  Design 

requirements are rigorous and stringent for such systems.  Accordingly, design 

engineers are seeking new methods and one of them is multidisciplinary  

design optimization (MDO).  MDO is a design optimization method.  Generally, 

optimization has been applied by considering only one discipline.  However, it is 

quite difficult to solve modern engineering problems with a single discipline.  

Therefore, we need design methodologies which can cover multiple disciplines.  

Diverse MDO methods have been proposed to overcome the difficulties.
1
 

MDO usually has many design variables, objective functions and constraints.  

Analysis can be independently performed for a discipline.  And the disciplines 

can be linked through analyses.  That is, output from a discipline can be input to 

other disciplines.  This phenomenon is called the coupled process.  In MDO, it is 

important to efficiently manage the coupled process and to optimize large scale 

problems. 

The need for MDO has emerged in the design of airplane wings.  Pressures 

are imposed on the airplane wings by the flow of the surrounding air.  The 

pressures act on the wings as the lift force and the drag force.  The pressures are 
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external forces on the wing structure and the shape of the wing is changed due to 

the external forces.  Then the air flow is changed and the pressures are changed 

accordingly.  Equilibrium is obtained when the coupled process converges.  This 

phenomenon is investigated in aeroelasticity and computer simulation is adopted 

to solve this problem.  The pressure distribution is solved by computational fluid 

dynamics and the deformation of the wing is analyzed by the finite element 

method.  The analysis method considering the coupled process is called 

multidisciplinary analysis (MDA). 

When we design airplane wings, the above two disciplines should be 

simultaneously considered.  A design problem is separately defined for each 

discipline.  For example, the design to minimize the drag force is performed by 

the output from computational fluid dynamics and the weight of the wing 

structure is minimized by using the output of the finite element method.  When 

the optimization technology is employed in this case, it is called MDO.  The two 

disciplines have common design variables, objective functions and constraints.  

They can also be independently defined in each discipline.   

Coupling is predominant in the analysis and design of airplane wings.  The 

problem is not yet thoroughly solved from an MDO viewpoint so designers 

examine various methods.  Sometimes, a discipline of the control theory is 

involved in the design of airplane wings and there are many references for the 

design of wings.  Therefore, the aspects for the airplane wings are not explained 

in this chapter.  Instead, general methods for MDO are discussed and the 

application of them is investigated.
1
 

Overall, there are seven methods of MDO.  The formulation of the 

Multidisciplinary Feasible (MDF) method is basic.  It is easy to use even though 

complicated system analysis should be carried out for each step.  The coupled 

relationship is solved in the system analysis.  The formulation of the Individual 

Feasible (IDF) method has been developed to eliminate the system analysis, and 

each discipline is independently solved.  In the All-at-Once (AAO) method, even 

the analysis process is eliminated in the disciplines.  Each discipline does not 

determine the design in the above methods.  Analysis is only carried out in the 

disciplines.
2
 

Various methods have been developed to allocate the design process to the 

disciplines.  They are Concurrent Subspace Optimization (CSSO)
3
, Collaborative 

Optimization (CO)
4
, Bi-Level Integrated System Synthesis (BLISS)

5
 and 

Multidisciplinary Optimization Based on Independent Subspaces (MDOIS).
6
 

The characteristics of MDO are investigated and the above seven methods 

are compared.  The methods are constantly evolving and being improved upon.  

In this chapter, they are explained based on the initial proposition of the methods.  
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They can still solve small scale problems or problems with weak couplings.  

Approximation methods are frequently utilized for large scale problems or 

problems with strong couplings.
7-8

  Currently, it seems that no method can solve 

all the MDO problems.  For large scale problems, an improved solution is sought 

with specific approximation methods.  Therefore, none of the introduced methods 

is said to be the ultimate one. 

2. Multidisciplinary Design Optimization 

Design is the process to make the responses of a target object as a designer wants 

while analysis is the process to evaluate the responses.  Currently, the analysis 

process is mostly carried out by computers.  In an MDO process, analysis of a 

discipline is the base of a design.  Various analyses are required in MDO.  The 

analyses of the disciplines are related and this phenomenon is called coupling. 

Coupling is the relationship between disciplines.  It can be a direct one or an 

indirect one.  A change in a discipline may return to the discipline again or it may 

not.  Between independent disciplines, a change in a discipline does not affect the 

other one.  More attention is given to the solving process of the coupling in 

analysis while coupling in the design process is also considered. 

The couplings in analysis or in design can be explained as follows: 

Coupling in analysis: When results (responses) of an analysis are input for the 

analysis of other disciplines, coupling in analysis exists.  Generally, coupling in 

MDO means the coupling in analysis. 

Coupling in design: When design variables are shared by multiple disciplines, a 

coupled relationship exists. 

Relationship between analysis and design: The process which uses the analysis 

results in design is called Nested Analysis and Design (NAND).  Meanwhile, 

analysis may not be performed and an evaluator is used instead.  This process is 

called Simultaneous Analysis and Design (SAND).
9
 

In this chapter, methods are explained based on the assumption that there are 

two disciplines.  When there are more than two disciplines, the derivation is valid 

as well.  

2.1.  Coupling in Analysis 

In MDO, there are multiple disciplines which can have independent analysis and 

design procedures.  The coupling for analysis can be expressed as
10

 

 ),,( 2111
c

c zxxhz =  (1) 
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 ),,( 1222
c

c zxxhz =  (2) 

where 1h and 2h  are the analyzers for disciplines 1 and 2, respectively.  Each 

analyzer can have its own design variables and coupling variables. 1
1

nd
R∈x  and 

2
2

nd
R∈x  are local design variable vectors for disciplines 1 and 2, respectively. 

ndc
c R∈x  is the common design variable vector shared by the two disciplines.  

The state variable vectors 1
1

ns
R∈z  and 2

2
ns

R∈z  are the results (responses) 

from the two disciplines, respectively. 

When we have couplings between disciplines, some or all of the state 

variables of a discipline are used as input to the other discipline.  Such state 

variables are called coupling variable vectors 1
1

ncc
R∈z  and 2

2
ncc

R∈z .  The  

state variables which are not coupling variables are non-coupling variables 
1

1
nncnc

R∈z  and 2
2

nncnc
R∈z .  The state variable vectors are expressed by 

TTcTnc ][ 111 zzz =  and TTcTnc ][ 222 zzz = . 

Eqs. (1)-(2) can be expressed as 

 ),,( 21111
c

c
nc

zxxhz =  (3) 

 ),,( 21121
c

c
c

zxxhz =  (4) 

 ),,( 12212
c

c
nc

zxxhz =  (5) 

 ),,( 12222
c

c
c

zxxhz =  (6) 

If we have couplings in analysis, the coupling variables should be evaluated.  

A representative method is the fixed point iteration method.  It is difficult to 

obtain coupling variables in practice.  Approximation methods are frequently 

adopted for calculation of the coupling variables.  The state where all the coupled 

relationships are satisfied is called Multidisciplinary Feasibility (MF).  That is, 

the equilibrium between disciplines is satisfied.  The state where the equilibrium 

of a discipline is satisfied is called Individual Feasibility (IF).  In IF, the coupled 

relationship may not be satisfied.  Achieving MF or IF is a fairly important 

problem in MDO.  

 
Fig. 1.  Coupled relationship in analysis 

cxxx ,, 21  

),,( 2111
c

c zxxhz =  ),,( 1222
c

c zxxhz =  

21,zz  

c
1z  

c
2z  
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The coupled relationship of analysis involved is presented in Fig. 1.  In Fig. 1, 

the design variable vectors 21 , xx  and cx  are fixed and the state variable vectors 

1z  and 2z  are obtained from 1h  and 2h .  Output of a discipline is used as input 

of the other discipline.  The calculation process of Fig. 1 is called the system 

analysis.  The system analysis process terminates when c

1
z  and c

z 2  are not 

changed.  MF is the state when the system analysis terminates. 

2.2.  Formulation of MDO 

MDO formulation is defined based on the coupled aspects of the design variables, 

the objective function and constraints.  An MDO problem is formulated as 

follows: 

 cxxx ,,Find 21  (7) 

 ),,,,(minimize to 2121 zzxxxf c  (8) 

 0zzxxxg ≤),,,,(subject to 2121 c  (9) 

 ),,( 2111
c

c zxxhz =  (10) 

 ),,( 1222
c

c zxxhz =  (11) 

where 1x , 2x  and cx  are local design variable vectors of disciplines 1 and 2, and 

the common design variable vector shared by the two disciplines, respectively.  

[ ]cfff 21=f  is the local objective functions for disciplines 1 and 2, and the 

common objective function.  m
R∈g  is the constraint vector. 

2.3.  Classification of the MDO Methods 

The relationships between disciplines are represented in Fig. 2(a).  MDO 

methods solve the problem which has the structure of Fig. 2(a).
1
  The methods 

are classified into single level methods and multi-level methods.  The single level 

methods generally have a single optimizer.  On the other hand, multi-level 

methods modify the structure in Fig. 2(a) into a hierarchical structure as 

illustrated in Fig. 2(b).  Each level has an optimizer.  Generally the multi-level 

has two levels. 

The disciplines may or may not be decomposed in the single level method.  

When they are decomposed, each discipline is handled separately.  They are 

always decomposed in the multi-level methods. 
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3.  Linear Decomposition and Global Sensitivity Equation 

The optimization problem in Eqs. (7)-(11) may be difficult to solve for large 

scale problems.  A large scale problem can be decomposed with respect to each 

discipline.
11

  The decomposition is usually carried out based on the type of 

analysis.  Using linear addition for objective functions in Eq. (8) 

)( 21 cffff ++= , Eqs. (7)-(9) can be modified as 

 cxxx ,,Find 21  (12) 

 ),,,,(minimize to 2121 zzxxx cf  (13) 

 0zzxxxg ≤),,,,(subject to 2121 c  (14) 

In Eqs. (12)-(14), the objective function and constraints are coupled with 

respect to the common design variables.  The objective function and constraints 

can be linearly expanded as follows:  

 c

cd

df

d

df

d

df
ff x

x
x

x
x

x
∆⋅+∆⋅+∆⋅+≅ 2

2
1

1
0  (15) 

 ),...,2,1(2
2

1
1

0 mi
d

dg

d

dg

d

dg
gg c

c

iii
ii =∆⋅+∆⋅+∆⋅+≅ x

x
x

x
x

x
 (16) 

Discipline 2 

Discipline 1 Discipline 3 

Discipline 4 

(b) Hierarchical structure 

Fig. 2.  Structures of the MDO processes 

(a) Non-hierarchical structure 
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where 

T

rllll dx

d

dx

d

dx

d

d

d












= ⋯

21x
, T

rllll xxx ][ 21 ∆∆∆=∆ ⋯x  },2,1{ cl ∈  

and ∈r {nd1, nd2, ndc}.  Subscript 0 means the current design and ∆  is 

perturbation from the current design.  

Using Eqs. (15)-(16), an optimization problem of each discipline can be 

formulated by its own design variables.  Suppose 1x  and cx  are allocated to 

discipline 1 and 2x  is allocated to discipline 2.  Then the optimization problem 

for each discipline is defined as 

(1) Discipline 1 

 cxx ,Find 1  (17) 

 c

cd

df

d

df
f x

x
x

x
∆⋅+∆⋅+ 1

1
0minimize to  (18) 

 ),...,2,1(0subject to 1
1

0 mi
d

dg

d

dg
g c

c

ii
i =≤∆⋅+∆⋅+ x

x
x

x
 (19) 

(2) Discipline 2 

 2Find x  (20) 

 2
2

0minimize to x
x

∆⋅+
d

df
f  (21) 

 ),...,2,1(0subject to 2
2

0 mi
d

dg
g i

i =≤∆⋅+ x
x

 (22) 

In Eqs. (17)-(22), the optimization problem in Eqs. (7)-(11) is linearized and 

decomposed.  This process is called linear decomposition.  Derivatives 

(sensitivity information) of the objective function and constraints are required for 

the decomposition.   

The derivative terms in Eqs. (15)-(16) are derived by the chain rule and 

implicit differentiation.
11

  The results are 
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The terms related to the coupling variables in Eq. (23) are expressed as  
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Eqs. (23)-(24) are called global sensitivity equations (GSE).
12-14

  The solution of 

them is the derivative of coupling variables with respect to design variables.  It is 

used in various MDO methods. 

4.  Multidisciplinary Design Optimization Methods 

The aforementioned seven MDO methods are explained.
2
 

4.1.  Multidisciplinary Feasible (MDF) 

The MDF method is a single level method which has the system analysis.  It is 

also called the All-in-One (AiO) method.  In the MDF method, the system 

analysis is treated as the analyzer of the single optimization. 

Fig. 3 presents the general structure of the MDF method.  The lower part of 

the figure is the system analysis.  The system analysis usually uses the fixed 

point iteration method.  Meanwhile, sensitivity information is needed in the 

optimization process.  The sensitivity information is obtained from the 

aforementioned global sensitivity equations or the finite difference method on  

the system analysis.  When the process converges, the MDF method can find a 

mathematical optimum.  Therefore, the solution from the MDF method is 

considered as the standard solution when MDO methods are compared. 

Fig. 3.  Structure of the MDF method 

Find  cxxx ,, 21  

to minimize ),,,,( 2121 zzxxx cf  

subject to  0zxxg ≤),,( 111 c  

0zxxg ≤),,( 222 c  
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),,( 2111
c

c zxxhz =  ),,( 1222
c

c zxxhz =  

c
2z  

c
1z  

21 , zz  cxxx ,, 21  
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The MDF method directly solves the problem in Eqs. (7)-(11).  Multiple 

objective functions are modified into a single objective function.  Eqs. (10)-(11) 

are handled in the system analysis.  The MDF method does not decompose the 

disciplines.  The number of optimizers is one and the number of design variables 

is the sum of the number of local variables (nd1+nd2) and the number of 

common variables (ndc). 

4.2.  Individual Discipline Feasible (IDF) 

The IDF method is a single level method which decomposes the disciplines.  It 

does not have the system analysis.  Complimentary vectors ( c
1s  and c

2s ) are 

adopted for the coupling variable vectors ( c
1z  and c

2z ).  Instead of MF, 

compatibility conditions are utilized and they are included as equality constraints 

in the optimization process.  The formulation of the IDF method is  

 cc
c 2121 ,,,,Find ssxxx  (25) 

 ),,,,(minimize to 2121 zzxxx cf  (26) 

 0zxxg ≤),,(subject to 111 c  (27) 

 0zxxg ≤),,( 222 c  (28) 

 0zzxxxg ≤),,,,( 2121 cc  (29) 

 0zsc =−= cc
111  (30) 

 0zsc =−= cc
222  (31) 

 ),,( 2111
c

c sxxhz =  (32) 

 ),,( 1222
c

c sxxhz =  (33) 

An analyzer of a discipline does not wait for the output from the other analyzers.  

Instead, it performs the analysis (IF) by using the complimentary vectors ( c
1s  and 

c
2s ).  Eventually, the coupling variables ( c

1z  and c
2z ) should be the same (MF) as 

the complimentary vectors ( c
1s  and c

2s ).  Thus, compatibility conditions ( 1c  and 

2c ) are defined as Eqs. (30)-(31).  The overall flow of the IDF method is 

presented in Fig. 4. 

When the IDF method is used, the number of design variables is increased by 

the number of complimentary variables.  The number of design variables is 

nd1+nd2+ndc plus )()( 21
cc

NN ss + .  )( 1
c

N s  means the number of the elements in  
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vector c
1s .  The number of equality constraints is the number of the coupling 

variables.  IF is always satisfied during the optimization process and MF is 

satisfied when the optimum design is obtained. 

 

4.3.  All-at-Once (AAO) 

The AAO method is a single level method that performs neither the system 

analysis nor individual analysis for each discipline.  Analysis is generally carried 

out many times for a design and is quite expensive.  The analysis results during 

the design process are meaningless when the final solution is obtained.  The 

AAO method has been developed to abolish the expensive analysis process.  

Evaluators are utilized instead of analyzers in the AAO method.  

State variables are calculated with respect to design variables in analysis.  

The analysis process can be viewed as illustrated in Fig. 5.  

 
Figure 5 represents the analysis process of discipline 1.  State variable vector 1z  

is obtained from design variable vectors 1x  and cx  and coupling variable vector 
c
2z .   

The analysis process can also be viewed from a different perspective.  Fig. 6 

presents an evaluator.  The design and state variable vectors are inputs.  When 

IF 
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subject to  0zxxg ≤),,( 111 c  

  0zxxg ≤),,( 222 c  

  0zzxxxg ≤),,,,( 2121 cc  

 MF 0zsc =−= cc
111  

  0zsc =−= cc
111  

),,( 2111
c

c sxxhz =  ),,( 1222
c

c sxxhz =  
IF 

c
c 21 ,, sxx  c

c 12 ,, sxx  
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Fig. 4.  Structure of the IDF method 

Fig. 5.  Analysis process 
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the results of the evaluator are the zero vector, it is regarded that the analysis is 

finished.   

 
The concept in Fig. 6 is expanded to MDO by using the SAND concept.  

Complimentary variable vectors ( c
1s  and c

2s ) are adopted for state variable 

vectors ( c
1z  and c

2z ).  The process of the evaluator is considered as equality 

constraints.  It is similar to the IDF method.  In the IDF method, the 

complimentary variables for coupling variables are used as design variables in 

the optimization process.  On the other hand, the complimentary variables for 

coupling and non-coupling variables are included in the design variable set.  That 

is, all the state variables are regarded as design variables. 

The optimization formulation of the AAO method is 

 ccncnc
c 212121 ,,,,,,Find ssssxxx  (34) 

 ),,,,,,(minimize to 221121
cnccnc

cf ssssxxx  (35) 

 0ssxxg ≤),,,(subject to 1111
cnc

c  (36) 

 0ssxxg ≤),,,( 2222
cnc

c  (37) 

 0ssssxxxg ≤),,,,,,( 221121
cnccnc

cc  (38) 

 0e =1  (39) 

 0e =2  (40) 

 12111 ),,( ssxxhe −′= c
c  (41) 

 21222 ),,( ssxxhe −′= c
c  (42) 

Eqs. (41)-(42) represent the evaluator. 

The overall flow of the AAO method is illustrated in Fig. 7.  Each discipline 

evaluates the validity of the given input.  When the optimization process ends, IF 

and MF are simultaneously satisfied.  The number of equality constraints is the 

same as the number of state variables.  The number of design variables is 

nd1+nd2+ndc plus )()()()( 2121
ccncnc

NNNN ssss +++ . 

Fig. 6.  The role of the evaluator 
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The above three methods have the following characteristics: 

1. They are single level methods. 

2. An analyzer or an evaluator is used in each discipline.   

3. The formulations are simple and easy to understand. 

4. Common objective function and constraints are handled in the same 

manner as the independent ones. 

Some MDO methods give the design process to each discipline.  They are 

introduced in the subsequent sections. 

4.4.  Concurrent Subspace Optimization (CSSO) 

CSSO is a multi-level method, which has the system analysis and decomposes 

disciplines.  The design process is given to the disciplines.  CSSO divides an 

MDO problem into upper and lower levels.  In the upper level, some parameters 

are determined by an optimization process for the design process of the lower 

level.  The parameters enable a discipline to consider the objective function and 

constraints of other disciplines.  The optimization problem of the upper level is 

called the Coordinate Optimization Problem (COP).  In the lower level (it is also 

called a subspace) for each discipline, optimization is carried out with the 

parameters from the upper level.  The functions in a discipline are defined by 

using the linear decomposition.  The lower level provides the optimization results 

and the optimum sensitivity.  Optimum sensitivity is the sensitivity of the 

objective function with respect to a parameter which is considered as a constant 

in the optimization process.
15-16

  The optimization results are used in the system 

Fig. 7.  Structure of the AAO method  
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analysis and the optimum sensitivity is used in the optimization of the upper level.  

The process proceeds in an iterative fashion. 

CSSO first performs the system analysis in Eqs. (10)-(11).  A method such as 

the fixed point iteration method is employed for the system analysis until the 

coupling variable vectors c
1z  and c

2z  are not changed.  Details are in Eqs. (3)-(6). 

Sensitivity information is needed to decompose the entire problem into 

optimization problems for the disciplines.  Global sensitivity information in  

Eqs. (23)-(24) is needed for the coupling variables and used for linear 

approximation of the coupling variables.  When the number of constraints in a 

discipline is large, all the constraints can be transformed to a constraint which is 

a cumulative constraint using the Kreisselmeier-Steinhouser (KS) function.  It is  

 ( )





∑=
=

m

i
igC

1

expln
1

ρ
ρ

 (43) 

where ρ  is the adjustment coefficient, m is the number of constraints and ig  is  

the ith constraint.  If any one of the constraints is violated, the value of Eq. (43) is 

positive.  When all the constraints are satisfied, it is zero or negative.  Thus, if the 

value of (43) is zero or negative, all the constraints are satisfied. 

 
The flow of CSSO is illustrated in Fig. 8.  At the first cycle, the system 

analysis is performed and the global sensitivity are calculated with respect to 

21, xx  and cx .  With the results of the upper level, optimization is carried out for 

each discipline in the lower level and optimum sensitivity is evaluated.  In the 

System analysis 

Sensitivity from global sensitivity equations 

Subspace optimization 

Coordination optimization problem 

Optimum sensitivity analysis 

Definition of design variables 

Converge? Stop 
Yes 

No 

Update 

design 

variables 

Fig. 8.  Flow of CSSO 
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upper level, the COP problem is defined by the optimum sensitivity information.  

Then the coefficients for the next cycle are defined for the lower level.  The 

convergence criteria are checked from the second cycle.  

The problem in the lower level is investigated.  In CSSO, the common 

variable cx  should be considered in one discipline.  The optimization problems 

of the two disciplines are defined as follows:  

(1) Discipline 1 

 212
1

1
1

2
1

1
1 ,,,,,Given ssttrr  (44) 

 cxx ,find 1  (45) 

 c

cd

df

d

df
ff x

x
x

x
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(2) Discipline 2 
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 2
2

1
101

~
x

x

z
zz ∆+=

d

d
c

cc  (59) 

 )~,,( 12212
c

c
nc

zxxhz =  (60) 

 )~,,( 12222
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c
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zxxhz =  (61) 

p
s , p

k
r  and p

k
t  are constants in the lower level and are determined in the 

COP of the upper level.  k and p represent the discipline number, and p
s , p

k
r  and 

p

k
t  are given by the user at the first cycle.  When the objective function of a 

discipline is a function of the local variables of the corresponding discipline, the 

above approximation is not needed.  Otherwise, the objective function is linearly 

approximated.  A cumulative constraint is employed to include all the constraints.  

The cumulative constraint of a discipline is considered through approximation by 

another discipline.  This process enables to consider the constraints of the other 

discipline because a change of design in a discipline may affect the other 

discipline through coupling.  It is shown in Eqs. (48) and (56).  iddC x/ (i=1, 2, c) 

is the information obtained from the global sensitivity equation.  The constraints 

of the other discipline are considered by p
s , p

k
r  and p

k
t . 
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Fig. 9.  Responsibility and trade-off coefficients 
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The coefficients are illustrated in Fig. 9.  Fig. 9(a) explains p

k
r .  Suppose that 

the constraint of discipline 1, 1C  is violated.  It is corrected by 1
1r  in discipline 1 

and by 1
2r  in discipline 2.  Thus, 1

2r  is the amount of responsibility by discipline 2 

for the constraint violation in discipline 1.  It is called the responsibility 

coefficient and has the following relationship: 

 )...,,2,1(1
1

NSSpr
NSS

k

p

k
=∑ =

=

 (62) 

where NSS  is the number of disciplines.  The meaning of Eq. (62) is that “if the 

constraint violation of the pth discipline, pC  is 1, p

k
r  is the amount of 

responsibility for the kth discipline.”  

Trade-off coefficient t is schematically drawn in Fig. 9.  Suppose that 

constraint 1C  in discipline 1 is satisfied.  1
1t  is negative, thus, discipline 1 tries to 

satisfy 1C  in surplus by 1
1t .  1

2t  is positive and discipline 2 tries to further reduce 

the objective function although 1

~
C  is violated by 1

2t .  p
kt  is the trade-off 

coefficient of constraint pC  in the kth discipline.  The trade-off coefficients have 

the following relationship: 

 )...,,2,1(0
1

NSSpt
NSS

k

p

k
=∑ =

=

 (63) 

The meaning of Eq. (63) is that “if constraint pC  of the pth discipline is satisfied, 

the constraint is over-satisfied or violated by p

k
t  in the kth discipline.” 

p
s  is a switch coefficient for the responsibility and trade-off coefficients.  

When pC  is violated, 1=p
s  and the trade-off coefficient is not activated.  When 

pC  is satisfied, 0=p
s  and the responsibility coefficient is not activated.  The 

switch coefficient is automatically determined according to the status of the 

constraint violation.  On the other hand, the responsibility and trade-off 

coefficients can be defined by the user.  There is a method to initialize the 

responsibility and trade-off coefficients.
3
  From the second cycle, they are 

determined from the COP. 

The COP is formulated as 
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Eq. (65) needs the optimum sensitivity of the objective function with respect to 

the responsibility and trade-off coefficients.  Since the coefficients are treated as 

constants in each discipline, the optimum sensitivity is obtained from each 

discipline. 

CSSO is a two-level optimization method.  Each discipline of the lower level 

(subspace) needs an optimizer and the upper level also needs an optimizer.  IF 

and MF are satisfied by the system analysis.  Constraints are indirectly shared by 

all the disciplines and common design variables are specifically handled by one 

discipline.   

4.5.  Bi-Level Integrated System Synthesis (BLISS) 

BLISS is a multi-level method, which has the system analysis and decomposes 

disciplines.
5
  It divides an MDO problem into an upper level and a lower level.  

Each discipline in the lower level has local design variables while the common 

variables are considered as constants.  On the other hand, the upper level has 

common variables as design variables while the local variables of the disciplines 

are regarded as constants.   

BLISS can handle an MDO problem without common constraints.  Using the 

linear decomposition, the problem is formulated as follows: 

(1) Discipline 1 

 c
c 21 ,,Given zxx  (68) 

 1find x∆  (69) 

 1
1

minimize to x
x

∆⋅
d

df
 (70) 

 0zxxg ≤),,(subject to 111 c  (71) 

 ),,( 21111
c

c
nc

zxxhz =  (72) 

 ),,( 21121
c

c
c

zxxhz =  (73) 

(2) Discipline 2 

 c
c 12 ,,Given zxx  (74) 

 2find x∆  (75) 

 2
2

minimize to x
x

∆⋅
d

df
 (76) 
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 0zxxg ≤),,( 222 c  (77) 

 ),,( 12212
c

c
nc

zxxhz =  (78) 

 ),,( 12222
c

c
c

zxxhz =  (79) 

(3) Upper level 

 cxGiven  (80) 

 cx∆find  (81) 

 c

cd

df
x

x
∆⋅minimize to  (82) 

The objective functions in the lower level are linearized with respect to the 

local variables as shown in Eqs. (70) and (76).  The global sensitivity is utilized 

for the linearization.
12-14

  For the upper level, the optimum sensitivity of the 

objective function with respect to common variables is required as shown in  

Eq. (82).  The optimum sensitivity is obtained from the lower level.  Since there 

are two disciplines in the lower level, different optimum sensitivities can  

be obtained from different disciplines.  Therefore, it is calculated based  

on satisfaction of the system analysis.  BLISS uses GSE/OS (GSE/Optimized 

Subsystems) for this.  GSE/OS is a union of the global sensitivity equation and 

the optimum sensitivity equations in Eqs. (68)-(79).
5
  It is as follows: 
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 (83) 

where c
21 / zx ∂∂  and cxx ∂∂ /1  are the optimum sensitivities of discipline 1, and 

c
12 / zx ∂∂  and cxx ∂∂ /2  are those of discipline 2.  The solution of Eq. (83) is used 

for the linearization in Eq. (82). 

Steps of BLISS are as follows: 

Step 1.  Design variable vectors 21 , xx  and cx  are initialized. 
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Step 2.  The system analysis is performed to calculate 1z  and 2z . 

Step 3.  Convergence is checked from the second cycle. 

Step 4.  Global sensitivities are evaluated. 

Step 5.  Problems in Eqs. (68)-(79) are solved in the lower level.  

Step 6.  Eq. (83) for GSE/OS is established and solved. 

Step 7.  In the upper level, the problem in Eqs. (80)-(82) is solved. 

Step 8.  Update the design variables and go to Step 2. 

In BLISS, IF and MF are satisfied during optimization because the system 

analysis is performed first.  

4.6.  Collaborative Optimization (CO) 

Collaborative Optimization (CO) is a multi-level method, which does not 

perform the system analysis and decomposes disciplines.
4, 17

  It has two levels 

such as the upper level which manages the overall process and the lower level 

which manipulates the design for each discipline.  System analysis is replaced by 

adopting complimentary variables and compatibility conditions.  The upper level 

minimizes the objective function with the results from the lower level and 

determines target values for disciplines in the lower level.  The lower level tries 

to find a design to satisfy the constraints and the target values from the upper 

level. 

The first step of CO is defining the complimentary variables.  It can be 

different according to the user.  Here, they are defined for local variables ( 1x  and 

2x ), common design variables ( cx ) and coupling variables as follows: 

 11 sx = , 22 sx = , cc sx = , cc
11 sz = , cc

22 sz =  (84) 

The left terms of Eq. (84) are design variable vectors of the lower level or the 

coupling variable vectors.  The right terms are vectors determined in the upper 

level and used as target values in the lower level. 

The problem in Eqs. (7)-(11) is modified for each discipline as follows: 

(1) Discipline 1 

 cc
c 211 ,,,Given ssss  (85) 

 c
c 21 ,,find zxx  (86) 

 2
22

2
11

22
111 ||||||||||||||||minimize to cccc

ccc szszsxsx −+−+−+−=  (87) 

 0zxxg ≤),,(subject to 111 c  (88) 

 ),,( 21111
c

c
nc

zxxhz =  (89) 
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 ),,( 21121
c

c
c

zxxhz =  (90) 

(2) Discipline 2 

 cc
c 212 ,,,Given ssss  (91) 

 c
c 12 ,,find zxx  (92) 

 2
22

2
11

22
222 ||||||||||||||||minimize to cccc

ccc szszsxsx −+−+−+−=  (93) 

 0zxxg ≤),,(subject to 222 c  (94) 

 ),,( 12212
c

c
nc

zxxhz =  (95) 

 ),,( 12222
c

c
c

zxxhz =  (96) 

where |||| ⋅  means the 2L  norm which generally represents the magnitude of a 

vector. 

Each discipline receives target values from the upper level.  At the first cycle, 

the targets are arbitrarily defined and the optimization for each discipline of the 

lower level is initiated.  The objective function of a discipline is the difference 

between the target values and the local design variables (state variables and 

design variables).  CO can only consider local constraints.  It is noted that the 

common and coupling variables are considered as design variables in all the 

disciplines.   

The following formulation is utilized in the upper level:  

 cc
c 2121 ,,,,Find sssss  (97) 

 ),,,,,,(minimize to 221121
cnccnc

cf zzzzsss  (98) 

 0subject to 1
101 =∆⋅+= s

sd
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c
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 ),,( 12212
c

c
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 ),,( 12222
c

c
c

ssshz =  (104) 

The sensitivity of the objective function in the upper level can be obtained 

analytically or by the finite difference method as following: 
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∆
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The equality constraints in Eqs. (99)-(100) are objective functions of the 

disciplines.  The derivative in Eqs. (99)-(100) is the optimum sensitivity.  The 

optimum sensitivity is
4
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Eq. (106) is investigated.  The local constraints are implicit functions with 

respect to the target values, therefore, the second term of the right hand side is 

zero.  Since the first term is a partial derivative with respect to the target values, 

Eq. (106) yields 

 }),,,{},,,,{()(2 21121111
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As shown in Eqs. (107)-(108), the optimum sensitivity is easily obtained.  
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Fig. 10.  Flow of CO 
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The overall flow of CO is illustrated in Fig. 10. 

CO is basically an expansion of the IDF method and is a two-level 

optimization method.  It does not have the system analysis.  The objective 

functions of the disciplines are closely related to the constraints of the upper level 

in order to satisfy MF.  Common constraints cannot be handled.  It can be easily 

applied to problems where disciplines are obviously distinguishable.  Analysis 

and design are independently performed in a discipline. 

4.7.  Multidisciplinary Design Optimization Based on Independent Subspaces 

(MDOIS) 

MDOIS is a single level method, which has the system analysis and decomposes 

disciplines.  In many MDO problems, the disciplines are physically separated and 

a separate analyzer is used for a discipline.  Disciplines are coupled only in the 

analysis process.  An independent design problem is defined for each discipline 

(subspace) of such problems.  They are relatively simpler problems than a 

general MDO problem.  MDOIS has been developed to solve such problems 

efficiently.  

The fact that the disciplines are separated means that the following two 

conditions are met: 

(1) Only local design variables exist for the disciplines. 

(2) Each discipline has its own objective function and constraints. 

Generally, many mathematical problems and the airplane wing design problem 

do not satisfy the above conditions.  However, many other design problems 

satisfy the conditions.  To satisfy the conditions, a problem should not have 

common design variables, common objective functions and common constraints.  

The problem is formulated as  

 21,Find xx  (109) 

 ),(),(minimize to 222111 zxzx ff +  (110) 

 0zxg ≤),( tosubjec 111  (111) 

 0zxg ≤),( 222  (112) 

 ),( 2111
c

zxhz =  (113) 

 ),( 1222
c

zxhz =  (114) 
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The system analysis should be performed to solve Eqs. (113)-(114).  The global 

sensitivity information may or may not be needed.  The design problem for each 

discipline is formulated as follows:  

(1) Discipline 1 

 c
2Given z  (115) 

 1find x  (116) 

 ),(minimize to 111 zxf  (117) 

 0zxg ≤),(subject to 111  (118) 

 ),( 2111
c

zxhz =  (119) 

(2) Discipline 2 

 c
1Given z  (120) 

 2find x  (121) 

 ),(minimize to 222 zxf  (122) 

 0zxg ≤),(subject to 222  (123) 

 ),( 1222
c

zxhz =  (124) 

Eqs. (115) and (120) represent the coupling variables obtained from the system 

analysis.  If the global sensitivity is available, the coupling variables in  

Eqs. (119) and (124) can be replaced to consider the changes of the coupling 

variables with respect to the changes of the design variables by the following 

equations:  

 2
2

1
101 x

x

z
zz ∆+=

d

d
c

cc  (125) 

 1
1

2
202 x

x

z
zz ∆+=

d

d
c

cc  (126) 

where c
10z  and c

20z  are the outputs of the system analysis for c
1z  and c

2z .   

Eqs. (125)-(126) may not be used.  That is, the coupling variables can be 

considered as constants in the optimization process of a discipline.   

The flow of MDOIS is illustrated in Fig. 11.  Fig. 11 represents the case 

where the global sensitivities are utilized.  MDOIS is a practical method in 

design practice.  The design proceeds when IF and MF are satisfied.  Design is 

carried out for each discipline. 
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4.8.  Comparison of MDO Methods 

In the previous sections, various MDO methods are introduced.  MDO methods 

basically solve a non-hierarchical system in Fig. 2(a) directly or by transforming 

it to a hierarchical system in Fig. 2(b).  Problem formulation and the solving 

process can be newly defined according to the characteristics of the problem.  

Therefore, the introduced methods are several selected methods out of many 

methods.  There are many other MDO methods.  

MDO methods are classified into single level methods and multi-level 

methods.  MDF, IDF, AAO and MDOIS belong to the single level methods while 

CSSO, BLISS and CO belong to the multi-level methods.  The single level 

methods are simple.  However, the characteristics of multi-disciplines are not 

well exploited in the single level methods such as the MDF, IDF and AAO 

methods.  The multi-level methods are complicated to use. 

MDO methods are also classified based on the existence of the system 

analysis.  The system analysis finds the coupling variables between analyses.  

MDF, CSSO, BLISS and MDOIS have the system analysis.  They have an 

advantage in that MF (multidisciplinary feasibility) is always satisfied during the 

design process.  However, many system analyses are required in MDF.  In some 

multi-level methods, the results of the system analysis and the global sensitivity 

in the upper level are transmitted to disciplines in the lower level.  The global 

sensitivity is generally fairly expensive to calculate.  

IDF and CO have an advantage in that they do not need the system analysis.  

IF (individual feasibility) is satisfied, but MF is not satisfied during the design 

process.  AAO uses evaluators instead of analyzers.  It is the simplest one to use.  

Fig. 11.  Flow of MDOIS 

Initial design variables 

System analysis 

Sensitivity from the global sensitivity equation 

Design variables 

Subspace optimization 2 Subspace optimization 1 
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In the application of AAO, if we have only analyzers, we have the disadvantage 

in that an analyzer must be transformed to the evaluator.  Neither MF nor IF is 

satisfied during the design process. 

MDO methods handle the common constraints and the common design 

variables in different ways.  Single level methods such as MDF, IDF and AAO 

can handle them in unified ways.  MDOIS cannot have common variables or 

functions.  CSSO cannot have common constraints and common design variables.  

Constraints of other disciplines are considered by the global sensitivity.  BLISS 

can have common design variables, but cannot handle the common constraints.  

Common design variables are considered in the upper level.  The effects of the 

common design variables in the lower level are transmitted to the upper level via 

optimum sensitivity.  Calculation of the optimum sensitivity is quite expensive 

except for that in CO.  The characteristics of the methods are compared in  

Table 1.  O means ‘yes’ and ×  means ‘no.’  In this chapter, all the methods are 

explained to obtain an exact solution.  In design practice, it may not be easy to 

obtain an exact optimum solution.  In many cases, approximation is appropriately 

adopted in the processes of the MDO methods.
7-8 

5.  Discussion 

Multidisciplinary design optimization (MDO) has been created to manage design 

problems which are defined throughout multiple disciplines.  The formulation of 

MDO can be relatively easily defined.  However, it is quite difficult to find a 

universal method to solve MDO problems.  Efforts are still needed to solve such 

problems.  

The first difficulty in MDO is the coupling aspect between analyses.  For 

example, fluid mechanics and solid mechanics are coupled in aeroelasticity 

analysis for airplane wings.  It may not be impossible, but difficult.  Moreover, it 

is extremely difficult to include it in optimization since it requires a large number 

of analyses.  Some MDO methods need a complicated mathematical process such 

as global sensitivity or optimum sensitivity.  Therefore, an MDO method is rarely 

applied to aeroelasticity problems. 

There are engineering problems which have weak couplings between 

disciplines.  It is relatively easy to apply an MDO method to such problems.  

Some problems need large scale analysis.  Even single disciplinary optimization 

is not easy to use in such problems.  As the analysis tools are developed 

significantly, many problems are enormous in size.  Therefore, the exact process 

of the introduced MDO methods may not be easy to use in practical design. 
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Satisfaction 
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Global 
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×

 

×
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O 
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×

 

O 

Common 
design 

variables 

O 

O 

O 

×

 

O 

O 

×

 

Common 
constraints 

O 

O 

O 

×

 

×

 

×

 

×

 

Level 

single 

single 

single 

multi 

multi 

multi 

single 

Table  1 Comparison of MDO methods 

Method 

MDF 

IDF 

AAO 

CSSO 

BLISS 

CO 

MDOIS 
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Although there are no coupled aspects between analyses, multiple analyzers 

can be utilized in some problems.  Recently, such problems are considered as 

MDO problems.  Also a problem which has common design variables or 

common constraints can be regarded as an MDO problem.  

Due to the above difficulties, a different MDO method can be utilized for a 

different application.  Sometimes, a combination of the methods is used or a new 

method is defined using the ideas of the existing methods.  Approximation is 

frequently adopted to solve complicated problems.  Especially, when analysis is 

complicated the response surface method is frequently employed.  

MDO is used to solve large scale design problems.  There is still not a 

universal method.  Therefore, more researches are anticipated in this area. 
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Recent developments in meshfree method and its application to shape 

optimization are presented. The approximation theory of the Reproducing 

Kernel Particle Method is first introduced. The computational issues in domain 

integration and imposition of boundary conditions are discussed. A stabilization 

of nodal integration in meshfree discretization of boundary value problems is 

presented. Shape optimization based on meshfree method is presented, and the 

treatment of essential boundary conditions as well as the dependence of the 

shape function on the design variation is discussed. The proposed meshfree 

based shape design optimization yields a significantly reduced number of design 

iterations due to the meshfree approximation of sensitivity information without 

the need of remeshing. It is shown through numerical examples that the mesh 

distortion difficulty exists in the finite element–based design approach for 

design problems with large shape changes is effectively resolved. 

1.  Introduction 

Meshfree methods developed in recent years introduced new approximation 

methods that are less restrictive in meeting the regularity requirement in the 

approximation and discretization of partial differential equations.
1-10

 These 

methods are more flexible in embedding special enrichment functions in the 

approximation for solving problems with known characteristics, such as fracture 

problems,
11

 more straightforward in constructing h– or p– adaptive refinement,
12-14
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and less sensitive to large geometry changes such as those in large deformation 

problems
5,15

 and shape optimization problems.
16,17

  

Primary computational challenges involved in shape optimization using finite 

element methods (FEM) arise from the excessive mesh distortion that occurs 

during large shape changes and mesh–dependent solution accuracy. Numerous 

difficulties were encountered in finite element analysis, such as those involving 

mesh distortion, mesh adaptation, and those with the need for a large number of 

re-meshing during shape optimization.
18,19

 Meshfree method is ideal for shape 

optimization because it allows field variables to be interpolated at the global 

level, therefore avoiding the use of a mesh. The main purpose of this chapter is to 

introduce special features of the meshfree method from a design sensitivity 

analysis (DSA) and optimization viewpoint, as well as the associated numerical 

aspects. Mesh distortion and re-meshing problems encountered in FEM-based 

shape optimization can be avoided and the design costs can be significantly 

reduced as a result of the accurate and efficient computation of design sensitivity. 

An important aspect to be considered in the shape optimization using meshfree 

method is the design derivation of meshfree shape functions. Unlike the finite 

element shape functions which are independent to the design variation due to the 

local construction of shape functions using natural coordinates, the meshfree 

shape functions depend on a global coordinate of material points that are related 

to the design parameters in shape DSA. Thus, the design derivative of the 

meshfree shape functions needs to be considered in DSA. 

This Chapter is organized as follows. In Section 2, the reproducing kernel 

approximation for solving boundary value problems under the framework of 

reproducing kernel particle method (RKPM) is first introduced. Methods to 

impose boundary conditions and issues associated with the domain integration of 

Galerkin approximation are discussed, and an example demonstrating the 

accuracy and convergence property of RKPM is presented. In Section 3, shape 

design parameterization and design velocity are first defined. The shape 

sensitivity derivation is then introduced, and design derivation of meshfree  

shape functions and RKPM discretization of sensitivity equation are discussed. 

Two shape design optimization problems solved using the proposed methods are 

presented in Section 4. Concluding remarks are given in Section 5. 

2.  Reproducing Kernel Particle Method 

In meshfree methods, the approximation of unknowns in the partial differential 

equations are constructed entirely based on a set of discrete points without using 

a structured mesh topology. Approximation methods such as moving least-
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squares,
20

 reproducing kernel approximation,
4
 partition of unity,

7
 radial basis 

functions,
21

 among others, have been introduced in formulating meshfree discrete 

equations. For demonstration purposes, the reproducing kernel approximation is 

presented herein. Other methods can also be employed under this framework. 

2.1.  Reproducing Kernel Approximation 

The reproducing kernel approximation of a function ( )u x , denoted by ( )hu x , is 

expressed as 

 
1

( ) ( )
NP

h
I I

I

u d
=

= Ψ∑x x , (1) 

where NP  is the number of points used in the discretization of the problem 

domain Ω , Id  is the coefficient of the approximation at point I , and ( )
IΨ x  is 

called the reproducing kernel shape function. The reproducing kernel shape 

function is formed by a multiplication of two functions 

 ( ) ( ) ( );I I a ICΨ = − Φ −x x x x x x , (2) 

where ( )a IΦ −x x  is a kernel function that defines the continuity (smoothness) 

and the locality of the approximation with compact support (cover) IΩ  measured 

by the parameter a . The order of continuity in this approximation can be 

introduced without complexity. For example, the box function gives 1C−  

continuity, the hat function leads to 0C  continuity, the quadratic spline function 

results in 1C  continuity, and the cubic B-spline function yields 2C  continuity, 

etc. A commonly used kernel function is the cubic B-spline function given as 

 ( )

2 32 1
3 2

2 34 4 1
3 3 2

4 4

4 4 1

0 1

a I

z z for z

x x z z z for z

for z

 − + ≤Φ − = − + − < ≤ >

, (3) 

where /Iz x x a= − . In multi-dimension, the kernel function can be 

constructed by using the distance function to yield an isotropic kernel function,  

 ( ) ( ), /a I a Iz z aΦ − = Φ = −x x x x , (4) 

or by the tensor product of the one-dimensional kernel functions to yield a 

anisotropic kernel 

 ( ) ( ) ( )
1 21 1 2 2a I a I a Ix x x xΦ − = Φ − Φ −x x . (5) 

The union of all the kernel supports (covers) should cover the entire problem 

domain, i.e., I
I
∪Ω ⊃ Ω  as shown in Figure 1. The term ( ), IC −x x x  in Eq. (2) is  
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the correction function or enrichment function. This function determines the  

completeness of the approximation and the order of consistency in solving 

PDE’s. 

I

∂Ω

I
Subdomain Ω

  

I

∂Ω

ISubdomain Ω
 

     (a) Isotropic kernel supports (covers)             (b) Anisotropic kernel supports (covers) 

Figure 1. Domain discretization and kernel supports 

 

In general, ( ), IC −x x x is constructed by the monomial bases: 

 
( ) ( ) ( ) ( )

( ) ( )

1 1 2 2
0

;

, , 0

n
i j

I I I ij

i j

T
I

C x x x x b

i j

+ =
− = − −

= − ≥

∑x x x x

H x x b x

 (6) 

 ( ) ( )1 1 2 2 2 21 nT
I I I Ix x x x x x − = − − −  H x x ⋯  (7) 

 ( ) 00 10 01 0nb b b b =   b x ⋯ , (8) 

where n  is the order of the complete monomial bases, and this number defines 

the completeness of the approximation. The unknown coefficients ( )b x  can be 

determined by imposing the n-th order reproducing conditions 

 ( ) 1 1 22
1

0, ,
NP

j ji i
I I I

I

x x x x i j n
=

Ψ = + =∑ x ⋯ , (9) 

or equivalently in the following form: 

 ( ) ( )1 1 2 2 0 0
1

( ) 0, ,
NP

i j
I I I i j

I

x x x x i j nδ δ
=

Ψ − − = + =∑ x ⋯ . (10) 

Substituting Eqs. (6) and (2) into Eq. (10) results in 

 ( ) ( ) ( )=M x b x H 0 , (11) 



Meshfree Method and Application to Shape Optimization 

 

393

where ( )M x  is the moment matrix of the kernel function ( )a IΦ −x x  

 ( ) ( ) ( ) ( )
1

NP
T

I I a I

I=
= − − Φ −∑M x H x x H x x x x . (12) 

               

  (a)  (b)  

Figure 2. (a) 2-dimensional meshfree shape function IΨ      (b) Shape function derivative ,I xΨ  

 

Therefore, the coefficient function ( )b x  is solved by 

 ( )1( ) ( )−=b x M x H 0 . (13) 

Notice that for the moment matrix ( )M x  to be non-singular, any spatial position 

x  should be covered at least by n linearly independent kernel functions such that 

the n reproducing equations are solvable. Subsequently, the correction function 

and the discrete reproducing kernel shape function can be obtained as 

 ( ) ( ) ( ) ( )1; T
I IC −− = −x x x H 0 M x H x x  (14) 

 ( ) ( ) ( ) ( ) ( )1T
I I a I

−Ψ = − Φ −x H 0 M x H x x x x . (15) 

The plots of the shape function and its derivatives are given in Figure 2, where 

linear basis and cubic B-spline kernel functions are employed. The meshfree 

shape function ( )IΨ x  does not possess the Kronecker delta property; therefore, 

additional treatments are required to enforce the essential boundary conditions. 

2.2.  Galerkin Approximation and Discretization 

For demonstration purposes, consider the following elastostatic problem: 

 ,( ) 0ij j ib inσ + = Ω  (16) 

 g
i iu g on= ∂Ω  (17) 

 h
ij j in h onσ = ∂Ω  (18) 

where 1
, ,2, ( ) ( ) inS

ij ijkl kl ij i j j i ijC u uσ ε ε= = + ≡ ∇ Ωu , Ω  is the problem domain 

with essential boundary g∂Ω  and natural boundary h∂Ω , iu  is displacement, ijσ  
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is stress, ijε  is strain, ijklC  is the elasticity tensor, ih  is the surface traction, and 

ib  is the body force. The weak form of the above problem is 

( ) ( ) ( ) 0
gh

S S
ij ijkl kl i i i i i i iC d u b d u h d u g dδ δ δ δ λ

Ω Ω ∂Ω∂Ω

∇ ∇ Ω − Ω − Γ − − Γ =∫ ∫ ∫ ∫u u  (19) 

where iλ  is the Lagrange multiplier to impose the essential boundary conditions. 

By employing the displacement approximation in Eq. (1), and introducing 

approximation function { } 1( ) Ng
I I=φ x  for the approximation of iλ  on g∂Ω , where 

Ng  is number of points on g∂Ω , the following discrete equation is obtained 

 

T          =            

dK fG

qG 0 λλλλ
 (20) 

T
IJ I Jd

Ω

= Ω∫K B CB , 
g

IJ I Jd

∂Ω

= Ψ Γ∫ φG I , 
h

I I Id d

Ω ∂Ω

= Ψ Ω + Ψ Γ∫ ∫f b h , 

I I d

∂Ω

= Γ∫
γ

φq g , 

0

0

I

I I

I I

 Ψ 
 = Ψ 
 
 Ψ Ψ 

,1

,2

,2 ,1

B   (21) 

Compared with the standard finite element Galerkin approximation, two 

major disadvantages in computational efficiency are observed. First, additional 

degrees of freedom for Lagrange multiplier for imposition of essential boundary 

conditions are needed. Second, domain integration requires a background grid if 

Gauss integration is to be employed. It has been observed by Belytschko et al.
22

 

that very high order quadrature rule and very fine integration grids are required to 

reduce the integration error, and thus yields poor efficiency. 

2.3.  Two Alternative Methods for Imposition of Essential  

 Boundary Conditions 

2.3.1.  Transformation Method 

Recall reproducing kernel approximation of displacement 

 
1

( ) ( )
NP

h
i I iI

I

u d
=

= Ψ∑x x . (22) 

The nodal value of h
iu  at node J, îJd , is obtained by 

 
1

ˆ ( ) ( )
NP

h
iJ i J I J iI

I

d u d
=

= = Ψ∑x x , or ˆ =d dΛΛΛΛ , (23) 

where  
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1 1

22

ˆ ( ) 0
ˆ , , ( )

ˆ 0 ( )

I I J I

I I IJ J I
I J II

d d

dd

   Ψ      = = = = Ψ     Ψ         

x

d d x I
x

ΛΛΛΛ  (24) 

and ΛΛΛΛ  is the transformation matrix between generalized displacement vector d  

and nodal displacement vector d̂ . 

For computational efficiency, only the degrees of freedom associated with the 

essential boundaries are expressed in the nodal coordinate. Following Chen and 

Wang
23

, the discrete points are first partitioned into two groups: a boundary 

group BG  containing all points on g∂Ω , and an interior group IG  containing the 

rest of the points. Further partitioning the displacement vectors into boundary 

and interior components, B =   
T TT I

d d d , ˆ ˆ ˆB =   
T TT I

d d d , we rewrite Eq. 

(23) as: 

 

ˆ
ˆ ˆ

ˆ

B BB BI B

IB II II

     
     = = ≡     
         

d d

d d

dd

Λ ΛΛ ΛΛ ΛΛ Λ
ΛΛΛΛ

Λ ΛΛ ΛΛ ΛΛ Λ
. (25) 

Next, define a mixed displacement vector *d  

 * *
ˆ BB BB BI

II

        = = =            

dd

d d
0 I dd

Λ ΛΛ ΛΛ ΛΛ Λ
ΛΛΛΛ  (26) 

or 

 
1

1 1

* * * 1,

BB BB BI
−

− −
−

 
 =  
  

d = dΛΛΛΛ
0 I

Λ −Λ ΛΛ −Λ ΛΛ −Λ ΛΛ −Λ Λ
ΛΛΛΛ . (27) 

The displacement approximation can now be approximated as 

 *1*( ) ( ) ( )h −
= =u x x d x dΨ Ψ ΛΨ Ψ ΛΨ Ψ ΛΨ Ψ Λ , (28) 

where 

 
( )

( ) ( ) ( ) ( ) , ( )
( )

I

NP I
I

 
  = =       

⋯1 2

Ψ 0

0 Ψ

x

x x x x x
x

Ψ Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ ΨΨ Ψ Ψ Ψ Ψ . (29) 

With Eq. (28), kinematically admissible approximation of 1h
i gu H∈  and 

1
0

h
iu Hδ ∈  can be constructed, and the Galerkin approximation of weak form can 

be stated as: Find 1h
i gu H∈ , 1

0
h
iu Hδ∀ ∈ , such that the following equation is 

satisfied: 

 ( ) ( ) 0
h

S S h h
ij ijkl kl i i i iC d u b d u h dδ δ δ

Ω Ω ∂Ω

∇ ∇ Ω − Ω− Γ =∫ ∫ ∫h hu u . (30) 

Consider taking *1*( ) ( )hδ δ
−

=u x x dΨ ΛΨ ΛΨ ΛΨ Λ  and ( ) ( )h =u x x dΨΨΨΨ  in Eq. (30) to yield 

 * * * *T T T T

δ δ
− −

=d Kd d fΛ ΛΛ ΛΛ ΛΛ Λ    or   ( )* * * 0
T

δ =d K d - f , (31) 
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where  

 

** *

* * * *

* * *
,

BBB

T T

I

− −
  
   = =   
        

BI

IB II

fK K

K K = f f

K K f

= Λ Λ= Λ Λ= Λ Λ= Λ Λ . (32) 

Let Nb be the total number of degrees of freedom associated with essential 

boundary conditions on g∂Ω . By considering the essential boundary conditions, 

we have ˆB =d g , ˆBδ =d 0 , and *T T TIδ  =   d 0 d . By examining the discrete 

weak form, ( )* * * 0
T

δ =d K d - f , it is apparent that the first Nb equations of 
* * =K d - f 0  become redundant and can be replaced by the Nb equations of 

essential boundary conditions BB BI 
   d = gΛ ΛΛ ΛΛ ΛΛ Λ  (Eq. (26)) to yield 

 
** *
IIB II

BB BI B

I

          =             

gd

fdK K

Λ ΛΛ ΛΛ ΛΛ Λ
. (33) 

2.3.2.  Modified Reproducing Kernel with Nodal Interpolation Properties 

In this section we introduce an alternative method to construct a reproducing 

kernel approximation with Kronecker delta properties so that the essential 

boundary conditions can be imposed directly. Chen et al.
24

 proposed a general 

formulation for developing reproducing kernel approximation with nodal 

interpolation properties.  

Consider a modified reproducing kernel approximation of ( )u x  as follows: 

 ( )( ) ( ) ( ) + ( )Ψ Ψ Ψx x x xˆh
i I iI I I iI

I I

u d d= =∑ ∑ . (34) 

In Eq. (34), ( )ˆ
IΨ x  is a primitive function used to introduce discrete Kronecker 

delta properties, and ( )IΨ x  is an enrichment function for imposing n-th order 

reproducing conditions. Consider the following construction of ( )ˆ
IΨ x : 

 
( - )

( )
( )

ˆ

ˆ

ˆ
ˆ

ˆ
I

I

a
I

a

= IΦ
Ψ

Φ

x x
x

0
,       ˆ min{ , }I I Ja J I< − ∀ ≠x x . (35) 

The support size Îa  of ˆ
ˆ ( )

Ia I−x xΦ  is so chosen that it does not cover any 

neighbor points, and thus Kronecker delta conditions are satisfied in ( )ˆ
IΨ x . The 

enrichment function is taken as the standard reproducing kernel form as 

 ( ) = ( - ) ( ) ( - )
I

T
I aI IΨ Φx H x x a x x x . (36) 

The coefficients ( )a x  in ( )IΨ x  are obtained by the following reproducing 

conditions: 

( - )
[ ( - ) ( ) ( - )]

( )

ˆ

ˆ

ˆ
, 0

ˆ
I

I

I

a T i i
a

I a

x x x x i j n+ = ≤ + ≤∑ I j j
I I 1I 12I 2

Φ
Φ

Φ

x x
H x x a x x x

0
. (37) 



Meshfree Method and Application to Shape Optimization 

 

397

Equation (37) can be rewritten as: 

( - )
[ ( - ) ( ) ( - )( - ) ( - ) ]

( )

ˆ
0 0

ˆ

ˆ
,

ˆ

0

I

I

I

a T
a i j

I a

i j n

δ δ+ =

≤ + ≤

∑ I i j
I I 1 1I 2 2Ix x x x

Φ
Φ

Φ

x x
H x x a x x x

0  (38) 

or 

 
( - )

[ ( - ) ( ) ( - ) ( - )] ( )
( )

ˆ

ˆ

ˆ

ˆ
I

I

I

a T
a

I a

+ =∑ I
I I I

Φ
Φ

Φ

x x
H x x a x x x H x x H 0

0
. (39) 

The coefficient vector ( )a x  is obtained from Eq. (39) by 

 ( ) ( )[ ( ) - ( )]1 ˆ−=a x Q x H 0 F x  (40) 

 
( - )

( ) ( - )
( )

ˆ

ˆ

ˆ
ˆ

ˆ
I

I

a

I a

= ∑ I
I

Φ

Φ

x x
F x H x x

0
 (41) 

Finally, the reproducing kernel interpolation function is obtained: 

 
( - )

( ) ( - ) ( )[ ( ) - ( )] ( - )
( )

ˆ 1

ˆ

ˆ
ˆ

ˆ
I

I

I

a T
I a

a

−= +I
I I

Φ
Ψ Φ

Φ

x x
x H x x Q x H 0 F x x x

0
 (42) 

The Kronecker delta properties can be easily shown: 

 

( - )
( ) ( - ) ( )[ ( ) - ( )] ( - )

( )

( - ) ( )[ ( ) - ( )] ( - )

ˆ 1

ˆ

1

ˆ
ˆ

ˆ

ˆ

I

I

I

I

a T
I a

a

T
IJ a IJδ δ

−

−

= +

= + =

J I
J J I J J J I

J I J J J I

x x
x H x x Q x H 0 F x x x

0

H x x Q x H 0 F x x x

Φ
Ψ Φ

Φ

Φ

 (43) 

Note that in Eq. (43) the property { }ˆ min ,I I Ja J I< − ∀ ≠x x  has been 

used. The RK interpolation function in Eq. (42) bares the following properties: 

(i) ( ( )) ˆmax( , )I I ISupp a a=Ψ x  

(ii) If 
I

m
a C∈Φ , ˆ

ˆ
ˆ

I

m
a C∈Φ , then k

I C∈Ψ , ˆmin( , )k m m=  

(iii) The singularity of ( )Q x  is only dependent on Ia  and the order of basis 

function in ( - )IG x x , and is independent to Îa . 

(iv) For better accuracy in solving PDE’s, the primitive functions are included 

only in the shape functions associated with the nodes on the essential 

boundary. Following Chen et al.
24

, it can be shown that the coefficients of 

shape functions with primitive functions included are nodal values and 

essential boundary conditions can be imposed directly. 
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2.4.  Stabilized Conformation Nodal Integration (SCNI) 

2.4.1.  Integration Constraints 

The traditional approach to perform domain integration is Gauss integration. 

However, if Gauss quadrature is employed for integrating the weak form, an 

additional background grid is required, and higher order quadrature rule is 

required to reduce the integration error. Another drawback of Gauss integration 

for the meshfree weak form is that it does not satisfy the integration constraints,
25

 

therefore the first order accuracy is not guaranteed even if the approximation of 

test and trial functions is linearly complete. Integration constraints are necessary 

conditions for linear exactness in the Galerkin approximation as identified by 

Chen et al.
25

 There are two requirements for linear exactness in the 2
nd

 order 

differential equations. The first condition, related to the approximation, requires 

the shape function to satisfy the linear consistency conditions given by 

 

( )

( )

1

1

1
NP

I

I

NP

I I

I

=

=

 Ψ = Ψ =

∑

∑

x

x x x

. (44) 

Note that x  and Ix  are vectors. These conditions are automatically satisfied in 

the reproducing kernel shape functions if complete linear basis functions are 

used. The second condition requires the integration of the gradient of the shape 

function to vanish if the shape function does not intersect with the boundary,
25

 

i.e.,  

 ( ) ( )if
1

supp
NIT

I L L

L

w
=

∇Ψ = Ψ ∂Ω = ∅∑ x 0 ∩I , (45) 

where NIT  is the number of integration points. If Gauss integration is employed, 

Lx  are the spatial coordinates of the Gauss points and Lw  are the weights of 

integration. If nodal integration is applied, Lx  are the coordinates of the discrete 

integration points and Lw  are the associated weights at the discrete points. 

For shape function that intersects with the natural boundary, the integration of 

the gradient of the shape function should satisfy the divergence equation 

 ( ) ( ) ( )if
1 1

supp
NIT NITB

h
I L L I K K I

L K

w s
= =

Ψ = Ψ Ψ Ω ≠ ∅∑ ∑x n x ∩∇∇∇∇ , (46) 

where NITB  is the number of integration points on the natural boundary that are 

covered by the support of node I , n  is the outward normal of the natural 

boundary, and Ks  are the weights of boundary integration. 



Meshfree Method and Application to Shape Optimization 

 

399

2.4.2.  Strain Smoothing 

To satisfy the integration constraints as stated in Eqs. (45) and (46), a strain 

smoothing
25

 is introduced 

L

L
Ω

L
Γ

 

 Figure 3. Nodal representative domain for SCNI 

 

 

( ) ( ) ( )

( ) ( )

, ,
1 1

2 2

1
[ ]

2

L L

h h h h h
ij L i j j i i j j i

L L

iI L jI jI L iI

u u d u n u n d
A A

b d b d

ε
Ω Γ

= + Ω = + Γ

= +

∫ ∫x

x x

 (47) 

 ( ) ( )
1

L

iI L I i
L

b n d
A Γ

= Ψ Γ∫x x . (48) 

Here LΩ  is the nodal representative domain for node L  as shown in Fig. 3, LΓ  is 

the boundary of the representative domain, and LA  is the volume (for 3D) or area 

(for 2D) of the representative domain. A Voronoi diagram at particle L  as shown 

in Fig. 3 can be employed to generate the nodal representative domain.  

The smoothed strain approximation can be expressed as 

 ( ) ( )
1

NP
h

L I L I

I=
= ∑x B x dεεεε  (49) 

 ( )

( )

( )

( ) ( )

1

2

2 1

0

0

I L

I L I L

I L I L

b

b

b b

 
 
 
 =
 
 
  

x

B x x

x x

, (50) 

where NP  is the number of nodes whose support covers node Lx . It has been 

shown that the smoothed gradient matrix B  satisfies the integration constraints.
25

 

To introduce the smoothed strain into strain approximation, consider the 

following assumed strain variational equation: 

 0
x h

ij ijkl kl i i i iC d u b d u h dδε ε δ δ
Ω

Ω ∂Ω

Ω − Ω− Γ =∫ ∫ ∫ . (51) 
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By employing the smoothed strain approximation in Eq. (49) and the 

displacement approximation in Eq. (1), we have the discrete equation: 

 =Kd f  (52) 

( ) ( )
1

NP
T

IJ I M J M M

M

A
=

= ∑K B x CB x , ( ) ( )
1 1

NP Nh

I I M M I L L

M L

A s
= =

= Ψ + Ψ∑ ∑f x b x h  (53) 

2.5.  Numerical Examples 

2.5.1. Beam Subjected to a Shear Load 

The problem statement and boundary conditions of the beam problem are given 

in Fig. 4(a). The numerical solution obtained from SCNI is compared with the 

solutions obtained by Gauss integration with 5x5 quadrature rule and the direct 

F=20kN, L=10.0 m, D=2.0 m 

E=21.1 MPa, ν ==== 0 3.  

F 

L

D x

y

Half beam non-uniform discretization 

(a) (b) 

(c) (d) 

Figure 4. (a) Problem statement and discretization, (5) displacement L2 error norm, (c) shear stress 

distribution along x=0.5 L obtained by a direct nodal integration, (d) shear stress distribution along 

x=0.5 L obtained by the SCNI and 5x5 Gauss integration 
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nodal integration. Linear basis functions and a normalized support size of 2.01 

are used in all three uniform discretizations. The comparison of displacement L2 

error norm is shown in Fig. 4(b). The solution of the direct nodal integration 

presents lower accuracy than that obtained from Gauss integration. SCNI not 

only enhances accuracy of the direct nodal integration, the method performs 

better than the Gauss integration method. Shear stress distributions along regular 

nodes at 0.5x L=  in Figs. 4(c) and 4(d) clearly demonstrate the superior 

performance of SCNI. A very non uniform 124-node model as shown in Fig. 4(a) 

is created to test the performance of three methods under highly non uniform 

discretization. The tip displacement solution of the direct nodal integration 

method deteriorates significantly in this case as shown in Table 1. On the 

contrary, SCNI still maintains a 99.25 % accuracy in the tip displacement; much 

better than direct nodal and Gauss integration methods.  

3.  Structural Shape Optimization 

Structural design problems can be categorized based on the type of design 

variables. While the sizing design is related to parameters of the structure, the 

shape design is related to the structure’s geometry. In the shape design problem, 

the structural domain or its boundary is defined as design variables. Since the 

domain itself is part of a design, the structural geometry appears implicitly as the 

design parameter. This fact makes the shape design problem more difficult than 

the conventional sizing design problem. 

3.1.  Shape Design Parameterization and Design Velocity 

Shape design parameterization, which describes the boundary shape of a 

structure as a function of the design variables, is an essential step in the shape 

design process. Inappropriate parameterization can lead to unacceptable shapes. 

To parameterize the structural boundaries and to achieve optimum shape design, 

boundary shape can be described in three ways: (1) by using boundary nodal 

coordinates, (2) by using polynomials,
26-28

 and (3) by using spline blending 

functions.
19,29-32

 All these methods describe how the design variable changes the 

shape of the boundary. 

In the meshfree method, the structural domain is discretized by a set of 

particles. When the boundary of the structure is changed according to the shape  

Table 1 Tip displacement accuracy (%) using highly irregular discretization 

Discrete Model 5x5 Gauss Int. Direct Nodal Int. SC Nodal Int. 

124 nodes 94.99 192.82 99.25 
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design variable, the location of meshfree particles is changed accordingly. The 

direction that each particle moves with respect to the shape design variable is 

called the design velocity. Let x  be the location of a particle in the domain and 

the location at the perturbed design be given as 

 ( )τ τ= +x x V x , (54) 

where ( )V x  is the design velocity and the parameter τ  controls the magnitude of 

design change. The process is similar to the dynamic process by considering τ  

as time. Because of this analogy, the direction ( )V x  is called the design velocity. 

In order to illustrate the shape design change, we consider a simple geometric 

representation as an example. In many geometric modelers, the location of 

particles is often represented using a parametric technique. For example, the 

location x  in two–dimensional space can be represented using two parameters as 

 ( , ) ( ) ( )T Tξ η ξ η=x U MGM W , (55) 

where 3 2( ) [ 1]Tξ ξ ξ ξ=U  and 3 2( ) [ 1]Tη η η η=W  are vectors in the 

parametric coordinates, and M  is a constant matrix defined as 

 

2 2 1 1

3 3 2 1

0 0 1 0

1 0 0 0

− 
 
 − − − =  
 
 
 
 

M  (56) 

and G  is the geometric matrix defined as 

Figure 5. Parametric representation of a surface geometry. Corner points and their tangent vectors 

can be served as shape design variables. The parametric coordinates remain constant 
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00 01 00 01

10 11 10 11

00 0001 01

10 11 10 11 4 4 3

η η

η η

ξη ξηξ ξ

ξη ξηξ ξ

× ×

 
 
 
 
 =  
 
 
 
 

p p p p

p p p p

G
p p p p

p p p p

 (57) 

where ijp  are coordinates of the corner points on the surface, andij ij
ηξp p  are the 

tangent vectors in ξ  and η  directions, respectively, and ij
ξη
p  is the twist vectors. 

All components or combination of them can be served as shape design variables. 

Figure 5 shows the geometry and its transformation into the parametric 

coordinate. 

 The computation of ( ) ( , )ξ η=V x V  is directly related to the parametric 

representation of the neutral surface, as given in Eq. (55).  For the purpose of 

explanation, let us consider one design variable b . Equation (55) is rewritten 

with design dependence as 

 ( ; , ) ( ) ( ) ( )T Tb bξ η ξ η=x U MG M W . (58) 

Since geometric matrix ( )bG  is a function of the design, the design velocity 

( , )ξ ηV  can be obtained by perturbing b  to b bτδ+ , and then differentiating with 

respect to τ  as 

 
0

( ; , )
( , ) ( ) ( ) ( )T Td b b

b
d bτ

τδ ξ η
ξ η ξ δ η

τ =

+ ∂
= =

∂
x G

V U M M W . (59) 

For example, when the x–component of 00p  is chosen as the design variable, 

matrix / b∂ ∂G  has all zero components except for the component at (1,1) that 

has a value of [1, 0, 0]. The design velocity field must be obtained per each shape 

design variable. 

An advantage of the design velocity computation in Eq. (59) is that it is 

unnecessary to store design velocity for all particles.  It is sufficient to simply 

store matrix / b∂ ∂G  for each design variable. Note that ( , )ξ ηV  remains constant 

during the optimization process. 

3.2.  Shape Sensitivity Analysis 

Design sensitivity analysis computes the rate of performance measure change 

with respect to design variable changes.
33

 With the structural analysis, the design 

sensitivity analysis generates a critical information, gradient, for optimization. In 

this text, performance measures are presumed to be differentiable with respect to 

design, at least in the neighborhood of the current design point. For complex 

engineering applications, however, it is not simple to prove the differentiability.
34
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In general, a structural performance measure depends on the design 

parameters.  For example, a change in the cross-sectional area of a beam would 

affect the structural weight. This type of dependence is simple if the expression 

of weight in terms of the design variables is known. This type of function is 

explicitly dependent on the design. Consequently, only algebraic calculation is 

involved to obtain the design sensitivity of an explicitly dependent performance 

measure. 

However, in many cases, performance measures implicitly depend on the 

design. For example, there is no explicit way to express the stress of a structure 

explicitly in terms of the design variable b . Consider the general performance 

measure ( )( ),b bψ ψ= u  that depends on the design explicitly and implicitly. The 

sensitivity of ψ  can be expressed as 

 
const const

( ( ), ) T

b

d b b d

db b db

ψ ψ ψ

= =

∂ ∂
= +

∂ ∂u

u u

u
. (60) 

From the expression of ( )( ),b bψ u , the explicitly dependent term, /d dbψ , and 

the derivative, /d dψ u , can easily be obtained. The only unknown term in  

Eq. (60) is /d dbu , which is the sensitivity of the state variable with respect to the 

design variable. The key procedure of design sensitivity analysis is to calculate 

the sensitivity of the state variable by differentiating the structural equation. For a 

given shape design velocity field ( )V x , the shape sensitivity formulation 

expresses the sensitivity of state variable in terms of the design velocity. In this 

text, only linear problem is considered. The nonlinear sensitivity analysis is 

presented in Chapter 8. 

Four approaches are used to obtain design sensitivity: the finite difference, 

discrete, continuum, and computational derivatives. In the finite difference 

approach, design sensitivity is obtained by either the forward or central finite 

difference method. In the discrete method, design sensitivity is obtained by taking 

design derivatives of the discrete governing equation. In the continuum approach, 

the design derivative of the variational equation is taken before discretization. 

Finally, computational or automatic differentiation refers to a differentiation of 

the computer code itself. The continuum approach is employed in this text 

because this formulation is independent of discretization methods. The particular 

discretization using the meshfree method will be discussed in the next section. 

First, the sensitivity of the state variable is defined using the material 

derivative concept in continuum mechanics, as 
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0

0 0

( ( )) ( )
( ) lim

( ) ( ) ( ( )) ( )
lim lim

( ) ( ),

τ

τ

τ τ τ

τ τ

τ

τ

τ

τ τ

→

→ →

 + − 
=  

  
 −   + − 

= +   
      

′= + ∇ ⋅

u x V x u x
u x

u x u x u x V x u x

u x u V x

ɺ

, (61) 

where ′u  is the partial derivative. The above material derivative can be applied 

to general functions. The order of differentiation can be changed between the 

partial derivative and the spatial derivative, such that ( ) ( )′ ′∇ = ∇u u . However, it 

is not true for the material derivative in Eq. (61). In such a case,  

 ( )∇ = ∇ − ∇ ⋅ ∇u u u Vi ɺ . (62) 

Since the structural equation is expressed in terms of functionals, the 

following two formulas are useful for deriving the sensitivity equation: 

 1 ( ) [ ( ) ( ) ]f d f f div dψ

Ω Ω

′ 
 ′ = Ω = + Ω   
∫ ∫x x x Vɺ  (63) 

 2 ( ) [ ( ) ( ) ]ng d g g V dψ κ

∂Ω ∂Ω

′ 
 ′ = Γ = + Γ   
∫ ∫x x xɺ . (64) 

In Eq. (64), κ  is the curvature of the boundary and nV  is the normal component 

of the design velocity on the boundary. 

The variational equation in Eq. (30) is used for deriving the sensitivity 

equation. For the illustration, Eq. (30) is rewritten in the following form: 

 

( , ) : ( ) ( )

: ( )
h

h h S S
ij ijkl kl

h h h
i i i i

a C d

u b d u h d

δ δ

δ δ δ

Ω
Ω

Ω
Ω ∂Ω

= ∇ ∇ Ω

= Ω + Γ =

∫

∫ ∫

u u

uℓ

h hu u

. (65) 

The notation is selected such that ( , )a δΩ u u  is bilinear with respect to its two 

arguments, while ( )δΩ uℓ  is linear. The above variational equation must satisfy 

for all kinematically admissible fields  1h
i gu H∈  and 1

0
h
iu Hδ ∈ .  

Using the formulas in Eqs. (63) and (64), the above variational equation is 

differentiated to obtain the sensitivity equation: 

 ( , ) ( ) ( , )h h h h ha aδ δ δΩ ′ ′= −V Vu u u u uɺ ℓ , (66) 

for all 1
0

h
iu Hδ ∈ . In Eq. (66), the left-hand side is identical with that of Eq. (65) 

if hu  is substituted with its sensitivity huɺ , and two terms on the right-hand side 

are defined as 
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( ) [ ( ) ]

[ ( ) ]
h

h h h
i ij j i i

h h
i ij j i i n

u b V u b div d

u h V u hV d

δ δ δ

δ κδ

Ω

∂Ω

′ = ∇ + Ω

+ ∇ + Γ

∫

∫

V u Vℓ

 (67) 

and 

 

( , ) [ ( ) ( ) ( ) ( )

( ) ( ) ]

h h h S S h
ij ijkl kl ij ijkl kl

S S
ij ijkl kl

a C C

C div d

δ ε δ δ ε

δ

Ω

′ = ∇ + ∇

+ ∇ ∇ Ω

∫ V V
V u u u u

V

h h

h h

u u

u u

, (68) 

where /i idiv V x= ∂ ∂V , and 

 
1

( )
2

hh
ji k kh

ij
k j k i

uu V V

x x x x
ε

 ∂∂ ∂ ∂  = − +   ∂ ∂ ∂ ∂ 
V u . (69) 

The detailed derivations can be found in Choi and Seong.
35

 

It is well known that the adjoint variable method is more efficient than 

solving the design sensitivity equation (66) when the number of design variables 

is greater than the number of performance functions. However, since this paper 

aims to address the dependence between shape design variables and the meshfree 

approximation function, the discussion will be limited to the direct differentiation 

method as in Eq. (66). 

The shape sensitivity equation (66) is independent of discretization method. 

Either finite element
36

 or meshfree method
37

 can be used for numerically 

calculating the sensitivity of the state variable. In the following section, the 

implementation using the meshfree method is discussed. 

3.3.  Meshfree Discretization of Sensitivity Equation 

3.3.1.  Material Derivative of Meshfree Shape Function 

Since the main unknown variable of the meshfree method is generalized 

displacement iId , the design sensitivity equation (66) in the continuum form, 

which is written in terms of h
iuɺ , has to be discretized using iIdɺ . Since h

iu  is 

approximated using the meshfree shape function in Eq. (22), h
iuɺ  can be 

approximated by differentiating Eq. (22), as 

 
1

( ) ( ( ) ( ) )
NP

h
i I iI I iI

I

u d d
=

= Ψ + Ψ∑x x xɺ ɺɺ . (70) 

This decomposition is quite different from the finite element method in which the 

shape function is independent of the design. The first term constitutes the main 
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unknown iIdɺ  of the sensitivity equation, while the second represents the 

dependence of the shape function on design, which is explicit in ( )V x . 

From the observation that h
iu  and h

iuɺ  belong to the same space,
†
 h

iuɺ  can be 

approximated directly using the meshfree shape function
38

 as 

 
1

( ) ( )
NP

h
i I iI

I

u d
=

= Ψ∑x x ɶɺ . (71) 

By comparing Eq. (70) with Eq. (71), the latter seems to provide simpler 

approximation than the former. However, the former will yield numerical results 

that are more consistent than the latter. In addition, since iIdɶ  is not the material 

derivative of iId , the penalty function must be used for imposing the essential 

boundary conditions. In this text, the approximation in Eq. (70) will be used. 

A numerical method to compute ( )IΨ xɺ  will now be introduced. From the 

relation ( )τ τ= +x x V x , the derivative of the material point x  is nothing but the 

design velocity ( )V x . Consider the material derivative of the kernel function in 

Eq. (3) for a one–dimensional problem, 

 

2 1
2

2 1
2

2 3 ,
4( )

( ) (1 ) , 1

0, otherwise

I
aa I

z z z

V V
x x z z

a

 − ≤− Φ − = − < ≤

ɺ  (72) 

where IV  is the design velocity at Ix , and V  is the design velocity at x . For a 

multi–dimensional problem, the product rule in Eq. (5) can be used. 

To compute ( )IΨ xɺ , the material derivative of the reproducing condition in 

Eq. (11) has to be taken, to obtain 

 1( ) ( ) ( ) ( )−= −b x M x M x b xɺ ɺ , (73) 

where, 

 
1

( ) [ ]
NP

T T T
a a a

I=
= Φ + Φ + Φ∑M x HH HH HHɺ ɺ ɺ ɺ  (74) 

 1
1 1 2 2 2 2 2 2( ) 0 ( ) ( )

T
n

I I I I IV V V V n x x V V− − = − − − −  H x xɺ ⋯ . (75) 

Thus, from the definition of the meshfree shape function in Eq. (15), we have 

 ( ) T T T
I a a aΨ = Φ + Φ + Φx b H b H b Hɺ ɺ ɺ ɺ . (76) 

For given design velocity ( )V x , Eq. (76) can be explicitly calculated even before 

any sensitivity analysis. The material derivative of /Id dΨ x  can also be 

calculated using a similar procedure. 

                                                      
† This can be observed by comparing Eq. (65) with Eq. (66). 
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3.3.2.  Discrete Form of Sensitivity Equation 

In developing sensitivity formulation, it is necessary to take the material 

derivative of strain or, equivalently, the gradient of displacement, 

, /h h
i j i ju u x= ∂ ∂ . Choi and Kim

33
 uses the concept of a partial derivative that is 

commutable to a spatial gradient. By using Eqs. (62) and (70), a meshfree 

approximation of the material derivative of ,
h
i ju  can be expressed as 

 ( ), , , , ,
1

( )
NP

h
i j I j iI I j iI I k iI k j

I

u d d d V
=

= Ψ + Ψ − Ψ∑i ɺ ɺ . (77) 

Note that the last two terms are explicitly dependent on the design velocity. The 

only unknown term is iIdɺ  which will be computed from the sensitivity equation. 

To simplify the approximation of Eq. (77), the following relation can be used: 

 ( ), , , ,I j I j I k k jVΨ = Ψ − Ψi ɺ . (78) 

Thus, the last two terms of Eq. (77) can be combined to represent an explicitly 

dependent term on ( )V x  through ,( )I iΨ i . Using Eq. (78), Eq. (77) is simplified to 

 ( ) ( ), , ,
1 1

NP NP
h
i j I j iI I j iI

I I

u d d
= =

= Ψ + Ψ∑ ∑i iɺ . (79) 

Note that the two summations of Eq. (79) have a similar format. The first term on 

the right–hand side has to be solved using a design sensitivity equation, and the 

second term can be computed explicitly using the design velocity. 

In sensitivity analysis, it is often assumed that the space 1
0H  of kinematically 

admissible displacements is independent of shape design, i.e., 0h
iuδ =ɺ . Even if 

the assumption of 0h
iuδ =ɺ  is not used, since 1

0
h
iu Hδ ∈ɺ , the following relation is 

satisfied 

 ( , ) ( )h h ha δ δΩ Ω=u u uɺ ɺℓ . (80) 

Because of Eq. (80), the contribution of h
iuδ ɺ  will be ignored in the derivation of 

sensitivity equation. In addition, from the relation in Eq. (77), 

 ( ), , , , ,
1

NP
h h
i j i k k j I k iI k j

I

u u V d Vδ δ δ
=

= − = − Ψ∑i
. (81) 

The approximation of the sensitivity equation (66) follows the same method 

as meshfree analysis. For a given meshfree shape function, using its material 

derivatives from Eq. (76), as well as using the relation in Eq. (79), the following 

approximation can be obtained: 

 
1

( )
NP

h
I I

I=
= ∑V u B dε ɺ , (82) 



Meshfree Method and Application to Shape Optimization 

 

409

where IB
ɺ  is the material derivative of IB , defined by 

 
( ) ( )

( ) ( )

,1 ,2

,1 ,2

0

0

T

I I

I

I I

 Ψ Ψ =  
Ψ Ψ  

B

i i

i i
ɺ  (83) 

In contrast, the approximation of ( )V hδuε  has a different expression because 

of Eq. (81), 

 
1

( )
NP

h
I I

I

δ δ
=

= ∑V Vu B dε  (84) 

 
, ,1 , ,2

, ,1 , ,2

0

0

T
I k k I k k

I
I k k I k k

V V

V V

Ψ Ψ 
 = −  Ψ Ψ  

VB . (85) 

Now, the right-hand sides of sensitivity equation, Eqs. (67) and (68), can be 

approximated by 

 
1

1

( ) [( ) )]

[( ) )]
h

NP
h

V iI I ij j i

I

NP
T

iI I ij j i n

I

d b V b div d

d h V hV d

δ δ

δ κ δ

=Ω

=∂Ω

′ ≈ Ψ ∇ + Ω

+ Ψ ∇ + Ω ≡

∑∫

∑∫

u V

d Fℓ

ℓ

 (86) 

 
1

( , ) [ ( ) ]
T

NP
h h T V T h T T a

V I I I I

I

a div dδ δ δ
=Ω

′ ≈ + + Ω ≡∑∫ Vu u d B B C u B V d Fσ ε σ . (87) 

Thus, the discrete form of the sensitivity equation becomes 

 ( )T T aδ δ= −d Kd d F Fℓɺ , (88) 

for all δd  whose counterparts δu  belong to the space 1
0H  of kinematically 

admissible displacements. 

3.3.3 Imposing Essential Boundary Conditions 

The discrete sensitivity equation (88) cannot be solved directly because it is not 

trivial to construct the kinematically admissible δd  from Eq. (88). As discussed 

in Section 2, the Lagrange multiplier method in Eq. (20) can be used for the 

purpose of sensitivity analysis. In such a case, the sensitivity of the Lagrange 

multiplier also needs to be calculated. In addition, the coefficient matrix becomes 

positive semi-definite, which requires a special treatment in solving the matrix 

equation. When the modified reproducing kernel approximation is used, Eq. (88) 

can directly be used because the modified meshfree shape functions for the 
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boundary particles satisfy the interpolation property. Thus, the transformation 

method will be discussed in the following. 

By following the same response analysis procedure to construct kinematically 

admissible displacements, the following linear matrix equation is solved: 

 * * ( )T a−= −K d F FΛ
ℓɺ , (89) 

where *K  represents the same stiffness matrix with meshfree analysis as in  

Eq. (32), which is already factorized. Thus, it is very efficient to solve (89) with 

different right-hand sides. 

Consideration of the essential boundary conditions is somewhat different 

from that of the analysis undertaken in Eq. (33), since the transformation matrix 
*
Λ , which is composed of a meshfree shape function, depends on the shape 

design. Let the prescribed displacement g  at g∈ ∂Ωx  be independent of design, 

which is true in most cases. Then, from ˆB =d g  and Eq. (26), we have 

 B B= −d dΛ Λɺɺ , (90) 

where [ ]B BB BI=Λ Λ Λ  and ( )B
IJ I J= Ψ xΛɺ ɺ  is obtained from Eq. (70) with 

g
J ∈ ∂Ωx . Equation (90) is substituted into Eq. (89) for those rows that 

correspond to the particles on the essential boundary, and by the use of Eq. (33), 

we have 

  
( )* * * ( )

IB II

BBB BI B

II T a−

     −     =           −     

d

F F

Λ

Λ
ℓ

ɺɺ

ɺ

Λ ΛΛ ΛΛ ΛΛ Λ d

dK K

. (91) 

Equation (91) is solved for each design parameter with the same coefficient 

matrix with the meshfree analysis. After solving dɺ , the material derivative of 

physical displacement can be calculated from the relation in Eq. (70). 

4.  Numerical Examples 

4.1.  Torque-Arm Model 

The shape of the torque-arm model in Fig. 6 is optimized according to the eight 

shape design variables that control the boundary curves. In each design variable, 

the design velocity is calculated using Eq. (59). The torque-arm is modeled using 

239 meshfree particles. Figure 6(a) shows meshfree particles and analysis results. 

The sensitivity computation requires only 10% of meshfree analysis computation 

per design variable due to the use of the same tangent operator as shown in  

Eqs. (33) and (91).  
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The design optimization problem is formulated to minimize the structural 

mass, with the effective stress constraint, as 

 
minimize mass

subject to 800 MPaMAXσ ≤
. (92) 

The sequential quadratic programming method is used in a commercially 

available optimization program.
39

 Figure 6(b) shows the meshfree analysis results 

at optimum design where the stress constraints along the upper side of torque arm 

is active. No re-modeling is used during the design optimization procedure. 

Through optimization, the structural mass is reduced by 48%. A total of 41 

meshfree analyses and 20 sensitivity analyses are carried out during 20 

optimization iterations. When finite element analysis is used with a re-meshing 

process,
40

 the optimization process converged at 45 iterations with eight re-

meshing processes. Thus, this approach reduces the cost of design optimization 

more than 50%, leaves along the cost related to the re-meshing process. 

Since the initial particle distribution is used throughout the optimization 

process, a very non uniform particle distribution is resulted in the optimum 

design. The analysis result from evenly distributed particles at the optimum 

design confirms that the solution accuracy is insensitive to the particle 

distribution. 

 

 

(a)           (b) 

Figure 6. Design parameterization and meshfree analysis results of a torque-arm: (a) Initial design 

and (b) optimum design 
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4.2.  Road-Arm Model 

The advantage of meshfree analysis for structural optimization is more 

significant in the case of three-dimensional problem. Figure 7 shows a road arm 

model that is discretized with 1,455 meshfree particles. Eight shape design 

variables are defined to optimize the shape of the boundary. Since the geometries 

in the corner are so complicated, it is challenging to construct a regular-shaped 

finite element mesh. In addition to the complicated initial geometry, the 

structural shape further changes during design optimization process, which will 

cause a mesh distortion problem if a finite element method is used. 

As is illustrated in Figure 7, the stress concentration appears in the left corner 

of the road arm. If the highest stress level in the left corner is considered as a 

reference value, then the dimension of the right corner cross-section can be 

reduced, because this region has a large amount of safety margin. 

The design optimization is carried out to minimize the structural weight of the 

road arm, while maintaining the maximum stress level. Design optimization 

problem converges after eight iterations. Figure 7 also compares the meshfree 

analysis result at the initial and optimum designs. The structural weight at the 

optimum design is reduced by 23% compared to the initial weight. Since the 

stress concentration appears at the left corner in the initial design, the 

optimization algorithm intends to reduce the cross-sectional area of the right 

corner so that both parts may have the same level of stress values. Because of the 

significant geometry changes at the right corner, the mesh distortion problem 

may occur if the finite element-based analysis method is employed. 

 

 

Figure 7. Meshfree discretization and analysis results of a road arm 

Initial design 

Optimum design 
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5.  Summary and Conclusions 

Design sensitivity analysis (DSA) and optimization based on meshfree method 

have been proposed. Unlike finite element and boundary element methods, in 

meshfree approach the shape function of the meshfree approximation depends on 

shape design parameterization, and this effect has been discussed in detail. DSA 

based on stabilized conforming nodal integration completely removes 

background mesh, and the integration of the shape DSA and optimization 

capability has been effectively carried out. It has also been shown that shape 

design optimization of structures undergoing large shape changes can be 

effectively carried out using meshfree methods without re-meshing. Fast 

convergence of the design optimization algorithm has been accomplished using 

the accurate sensitivity information. 
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Sensitivity-free formulations do not require design sensitivity analysis of 

problem functions during optimization iterations. These formulations include 

some of the state variables of the problem as optimization variables in addition 

to the real design variables. This gives explicit dependence of the problem 

functions on the optimization variables. Therefore gradients of the functions 

with respect to the optimization variables can be calculated easily. Sensitivity-

free formulations include the simultaneous analysis and design (SAND) 

approaches, mathematical programs with equilibrium constraints (MPEC), and 

partial differential equations (PDE)-constrained optimization problems. In 

addition to the sensitivity-free formulations, the conventional formulations for 

optimization of structural and mechanical systems are described. Advantages 

and disadvantages of the formulations are discussed. Some recent evaluations of 

the formulations are also described. 

1. Introduction 

Formulations for optimization of structural and mechanical systems can be 

divided into three broad categories. The first one, called the conventional 

formulation or the nested analysis and design (NAND) approach, treats only the 

real design variables as the optimization variables. The problem functions in 

these formulations are implicit functions of the design variables. Gradient 

evaluation of the functions can be tedious and difficult to implement. The second 

category is known as the simultaneous analysis and design (SAND) 

formulations. In these formulations, some of the state variables, such as the nodal 
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displacements, are also treated as optimization variables in addition to the real 

design variables. With these additional variables, the problem functions become 

explicit in terms of the optimization variables, making it easier to evaluate and 

implement the gradients of the functions. We shall refer to these as the 

sensitivity-free formulations. The third category of formulations is known as the 

displacement-based two-phase approach where the displacements are treated as 

optimization variables in the outer loop and the real design variables as the 

optimization variables in the inner loop. This chapter describes the SAND-type 

formulations along with their advantages and disadvantages. Some recent 

evaluations of these formulations are also discussed. The material for the chapter 

is taken from several recent papers by the authors.
1-5

 

1.1.  Overview of Alternative Formulations 

Several alternative formulations for the structural optimization problem have 

been discussed based on different independent variables, analysis methods and 

forms of the resulting constraints.
6
 These include design variable space 

(conventional), SAND, optimality criteria (OC), and some simplified SAND 

formulations. A more recent review by Arora and Wang
1
 covers various SAND 

formulations for sizing, shape and topology optimization as well as 

displacement-based formulations, mathematical programming with equilibrium 

constraints, partial-differential-equations-constrained (PDE-constrained) 

optimization problems, optimal control, and multidisciplinary design 

optimization. 

The SAND formulation is a major class of alternative formulations that has 

been discussed in the structural optimization literature. Some of the earliest 

attempts to include state variables in the structural optimization problem were by 

Schmit and Fox,
7,8

 and Fuchs.
9,10

 A SAND formulation based on an element-by-

element preconditioned conjugate gradient technique was developed by Haftka,
11

 

and Haftka and Kamat.
12

 Shin et al.
13

 considered the SAND approach to solve the 

problem with eigenvalue constraints. Ringertz
14-16

 presented SAND methods for 

the optimal design of nonlinear structures. The SAND formulation usually has 

large numbers of optimization variables and constraints. However, the matrix 

sparsity in the constraint Jacobian can be exploited for numerical efficiency.
4,16,17

 

Orozco and Ghattas
18

 developed a reduced SQP method using SAND ideas to 

optimize geometrically nonlinear truss structures. 

The SAND formulations have also been successfully applied to the 

configuration and topology design of structures.
19

 It is well-known that a crucial 

step for success of the SAND formulations is the solution of very large scale 
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optimization problems. Therefore considerable focus has been put on the 

development of new algorithms to solve large-scale optimization problems.
16,18-24

 

The SAND-type optimization formulations have also been discussed in other 

fields. A class of formulations known as mathematical programs with 

equilibrium constraints (MPEC), has been developed and studied. The word 

“equilibrium” in MPEC refers to the variational equalities or inequalities that 

model the equilibrium phenomenon in engineering and other applications. 

Another class of formulations that has been presented and analyzed recently is 

known as the partial differential equations (PDE)-constrained optimization. In 

these formulations, the equilibrium equations are expressed in a continuum form, 

the PDEs. SAND-type approaches have also been used to solve dynamic 

response optimization and optimal control problems. 

A displacement-based two-phase approach was introduced by McKeown for 

optimal design of multilaminar, fiber-reinforced continua.
25

 The procedure 

divided the problem into two subproblems, the inner and outer subproblems. In 

the inner subproblem, the cost was minimized subject to satisfaction of the 

equilibrium equations. The displacement field was specified and the design 

variables were the optimization variables. In the outer subproblem, the 

displacements were treated as optimization variables to minimize the cost 

function subject to the stress and displacement constraints. The two-phase 

algorithm was analyzed and applied to optimize trusses.
26

 The outer subproblem 

was solved using either sequential linear programming (SLP) or another 

nonlinear programming (NLP) algorithm. McKeown expanded the two-phase 

optimization procedure to geometry and layout design of trusses.
27

 Instead of 

using a complex ground structure, the author considered growing least-volume 

trusses, starting from the simplest possible layout. Wang et al. also presented a 

two-stage linear programming (LP) procedure for the minimum weight design of 

trusses.
28

 An optimality criterion method (the maximum total strain energy 

criterion, as an LP) was used in the first stage to determine the joint 

displacements. Striz and Sobieszczanski-Sobieski proposed a displacement-based 

multilevel approach for structural optimization.
29

 Both the subsystems level 

optimizations and the system level FE analysis and optimization could be 

performed in parallel.
30,31

 In a paper by Missoum and Gürdal, the two-phase 

optimization procedure was applied to optimum design of static and dynamic 

trusses.
32

 LP and SLP algorithms were used to solve the inner and outer 

subproblems, respectively. Since the weight was an implicit function of the 

displacements, a procedure was presented to calculate derivatives of the weight 

function with respect to the displacements. The approach was extended to the 

design of trusses with nonlinear material behavior,
33

 and both geometric and 
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material nonlinearities.
34

 Path-independent material models were used. Slack 

variables were added to the equilibrium equation to define a relaxed problem that 

guarantees feasible solutions for the inner problem. It was shown that the 

displacement-based approach was quite efficient compared to the conventional 

NAND approach. Missoum et al. also extended their work to the optimization of 

geometrically nonlinear frames.
35

 However, the displacement-based approach 

encountered some convergence difficulties for that problem. This approach is not 

discussed further in this chapter; for more details, papers by Arora and Wang
1
 

and others can be consulted. 

1.2.  Overview of the Chapter 

The main purpose of this chapter is to describe various sensitivity-free 

formulations for optimization of structural and mechanical systems. The 

conventional NAND formulation is also described in order to compare and 

contrast it with the sensitivity-free formulations. Section 2 describes the 

conventional NAND formulation and Section 3 covers SAND formulations. 

Literature on linear and nonlinear problems is covered, and optimization 

algorithms that have been used for SAND formulations are discussed. Section 4 

presents a comparative evaluation of the conventional and SAND formulations. 

Section 5 covers the literature on configuration and topology optimization of 

structures. Section 6 describes the PDE-constrained optimization formulation 

where the equilibrium equations are kept in the continuum form. Section 7 covers 

the formulation of MPEC. Section 8 covers the literature on optimal control 

problems, and Section 9 covers the literature on multidisciplinary design 

optimization. Section 10 presents some recent evaluations of the alternative 

formulations for truss and transient dynamic response optimization problems. 

Finally, some concluding remarks are given in Section 11. 

2.  Conventional Formulation 

We start with a brief description of the conventional formulation for optimization 

of structural and mechanical systems. This is the most commonly used approach 

that has been developed for various types of problems, such as linear, nonlinear, 

transient dynamics, optimal control, etc. In the formulations, only the real design 

variables for the problem are treated as optimization variables. All other response 

quantities, such as displacements, stresses, strains and internal forces are treated 

as implicit functions of the design variables. Since most of the constraint 

functions depend implicitly on the design variables, their gradient evaluation 
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requires the so-called design sensitivity analysis. This is described later in this 

section. Therefore these are not classified as sensitivity-free formulations. To 

keep presentation of the ideas clear and straightforward, only linear analysis 

problem (small displacements and linearly elastic material model) are considered 

in the discretized form. The approach can also be described for nonlinear 

analysis, using a continuum form of the analysis equations that is more general 

because it is not tied to any particular discretization for numerical 

calculations.
36,37

 

2.1.  Formulation 

To describe the conventional formulation, let us define the following notation: 

x = a k-dimensional vector of design variables that describes design of the 

system. 

z  = an n-dimensional vector of generalized displacements for a discretized 

model of the system. 

For linear small displacement analysis, the governing equilibrium equation 

for the system is discretized using the finite element procedure as follows: 

 ( ) ( )xFzxK =  (1) 

where  

( )xK  = is a nonsingular n × n stiffness matrix that depends on the design of 

the system 

( )xF  = an n dimensional vector of equivalent external loads applied at the 

nodes of the discretized model for the system. 

For a given design x and boundary conditions, Eq. (1) is assembled using 

contributions from each finite element, and solved for the state variable vector 

z . Using the vector z , strains and stresses at all points of the structure can be 

evaluated. Equation (1) has been implemented into many computer programs to 

analyze various structural systems. These programs are now widely used in 

practice. It is important to note that when the system is nonlinear (large 

displacements, elastoplastic material), Eq. (1) becomes nonlinear because ( )xK  

and ( )xF  depend on the state variables z  for the system. This complicates the 

solution process for Eq. (1) because it requires incremental and iterative 

procedures, such as the Newton-Raphson approach. 

The optimal design problem is defined as follows: 

Find the design variable vector x to minimize a cost function, 

 ( )zx,ff =  (2) 
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subject to the inequality constraints  

 ( ) 0zxg ≤,  (3) 

Equality constraints, if present in the formulation, can be treated quite routinely. 

Note that in the above formulation, variables x and z  are not independent, they 

are related by the equilibrium condition in Eq. (1). Only the design variables x 

are treated as the independent optimization variables, while the state variables z  

as the dependent variables. This is the central idea of the conventional 

formulation; i.e., to treat x as the only optimization variable and treat z  as an 

implicit function of x, ( )xzz = . Therefore, it is natural to set up a nested analysis 

and optimization process where (i) given x, z  is calculated using an analysis 

code, and then (ii) given z , x is updated using an optimization algorithm. In the 

MPEC literature, this procedure is called the implicit programming approach. 

Since the displacement based finite element analysis programs are readily 

available, the conventional formulation has been the usual approach to solve 

optimization problems. Another reason for the popularity of the conventional 

formulation is that the widely-used approximate resizing rules can be obtained 

based on the optimality criteria.
11

 Such rules can be quite efficient in terms of 

calculations as well as easy to implement though they are usually not robust. 

Other analysis methods are also available for the conventional formulation, such 

as the force method,
38

 the boundary element method or the meshfree method.
39

 

Equation (1) therefore needs to be consistent with the corresponding analysis 

method. Structural analysis techniques based on conjugate gradient minimization 

of the energy functional have also been used for design optimization.
40

 

2.2.  Gradient Evaluation 

Numerical values for z  can be obtained from the state equation (1) once x is 

specified. However, an explicit functional form for z  in terms of x cannot be 

obtained. In other words, z  cannot be eliminated from the optimization problem 

by substitution. In the gradient-based optimization process, derivatives of the cost 

function ( )zx,f  and the constraint functions ( )zxg ,  with respect to x are needed. 

The explicit expressions for these derivatives in terms of x cannot be obtained, 

since z  is an implicit function of x. Therefore, usually the finite difference 

methods have been used to calculate the gradients since they are easy to 

implement and explicit expressions for the cost and constraint functions are not 

needed. However, the finite difference methods have accuracy problems.
41

 

Another drawback is that they are slow because many solutions of the state 

equation (1) are required. 
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To derive analytical expressions for gradients of the functions, implicit 

differentiation procedures need to be used, which is called design sensitivity 

analysis. The formulations that do not require this sensitivity analysis are called 

sensitivity-free formulations. To explain the design sensitivity analysis, 

calculation of the derivatives of one of the functions, say ( )zx,f , is briefly 

described. Other functions can be treated similarly. Taking total derivative of 

( )zx,f  with respect to x, we get 

 
( )( ) ( ) ( ) ( )
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Calculation of the partial derivatives of ( )zx,f  with respect to x and z  presents 

no particular difficulty because explicit dependence of the function on x and z  is 

known. However, calculation of xz dd /  in Eq. (4) needs further analysis and 

explanation. To calculate this k × n matrix, we take a total derivative of the state 

equation (1) with respect to the design variables x and rearrange the resulting 

equation to obtain: 

 SKZ =  (5) 

where  

 
( )

( ) ( )( )T

kn

T

kn d

d
zxKxF

x
S

x

xz
Z −

∂

∂
==

××
    ;  (6) 

Equation (5) looks deceptively simple and similar to the state equation (1). 

However, its solution variable Z  is not a vector but a matrix of dimension n × k. 

The right side S  is also a matrix of the same dimension. Once the right side has 

been calculated, Eq. (5) can be solved using the same process that was used for 

solving Eq. (1). The decomposed matrix K  needs to be saved for re-use with  

Eq. (5), requiring certain amount of data manipulation and storage. If iterative 

methods are used to solve state equation (1), then the decomposed K  is not 

available to solve Eq. (5). Therefore the sensitivity equation (5) must also be 

solved using the iterative procedure which is more time consuming than the 

foregoing procedure where the decomposed K  is available. 

Calculation of the matrix S  in Eq. (6) requires partial differentiation of the 

equilibrium equation for each finite element with respect to the design variables x 

and then the assembly process to form matrix S . This process requires additional 

programming to extend an existing analysis code to implement the design 

sensitivity analysis capability. In addition, if new finite elements are added or the 

current ones are updated, the code for the design sensitivity analysis needs to be 

updated accordingly. Further, implementation of design sensitivity analysis for 

nonlinear and multi-physics problems becomes more complex and 
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computationally more expensive because K  and F  depend on the state of the 

system as well. This is one of the stumbling blocks for engineering applications 

of optimization. 

The above procedure for design sensitivity analysis is called the direct 

differentiation method. There is an alternate approach of design sensitivity 

analysis called the adjoint variable method. To derive that method, Eq. (5) is 

substituted into Eq. (4) as SKZ
1−= , and an adjoint problem is defined with 

adjoint load as z∂∂ /f . The adjoint displacement vector is substituted into Eq. (4) 

to obtain an expression for the design gradient. Under certain circumstances, this 

method is more efficient than the direct differentiation method. However, the 

method is even more difficult to implement into existing analysis codes, 

especially for nonlinear and transient dynamic problems. Substantial literature is 

available that describes theoretical as well as implementation aspects of the 

design sensitivity analysis approaches.
36,37

 

Conventional optimization formulations and solution methods for structural 

and mechanical systems can be difficult to use for design of practical structural 

and mechanical systems due to the following two main reasons: (i) Many 

practical applications are complex requiring interaction between several 

disciplines; i.e., require the use of different analysis software that are discipline-

specific. Since they are independent programs, it is difficult to integrate them into 

the conventional design optimization formulations and algorithms. (ii) The 

conventional formulation requires design sensitivity analysis which is difficult to 

implement and maintain with existing analysis software. 

To alleviate some of the difficulties noted above, several different research 

avenues have been explored in the literature. First, efficient structural reanalysis 

methods for analyzing a modified structure have been developed.
42-45

 These 

methods can be useful for efficient analysis of updated designs and for 

calculation of the design derivatives during the optimization process. Second, 

various methods to develop approximate models, the so-called meta-models, such 

as the response surface approximations, have been proposed and evaluated for 

optimization of complex structural and mechanical systems.
46,47

 Third, some 

alternative formulations have also been proposed and evaluated for optimization 

of structural and mechanical systems since 1960s. These formulations are 

discussed next. 

3.  Sensitivity-Free (SF) Formulations 

The sensitivity-free (SF) formulations do not require design sensitivity analysis 

procedures described in the previous section to evaluate gradients of the problem 
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functions with respect to the optimization variables. In other words, such 

formulations do not have any functions that depend implicitly on the 

optimization variables. There are optimization methods that do not use gradients 

of functions to solve the optimization problem. These are also sensitivity-free 

methods that are discussed elsewhere in this book. Here, we discuss sensitivity-

free formulations that are suitable for gradient-based optimization methods. In 

the literature, the sensitivity-free formulations have been called simultaneous 

analysis and design approaches, of in short SAND approaches. Such approaches 

basically formulate the optimization problem in a space of mixed design and state 

variables. The structural analysis equations get embedded as equality constraints 

in one single optimization problem. Therefore explicit structural analysis and 

design sensitivity analysis are not needed. Note that there are many interesting 

formulations that can be derived using the SAND concept. Many of these 

formulations are described later in this chapter. In this section, the most common 

approach is described to discuss the basic concepts of sensitivity-free 

formulations. 

3.1.  Formulation 

In this approach, the formulation of the problem is modified by treating the state 

and design variables z  and x as independent optimization variables. To describe 

the approach, let us define a composite vector of optimization variables as 

 







=

z

x
X  (7) 

Note that if the structure is subjected to multiple loading conditions, the vector X 

will include multiple z  vectors, one for each loading condition. In terms of the 

vector X, the optimization problem is now defined as follows: 

Find X to minimize a cost function  

 ( )Xff =  (8) 

subject to the constraints 

 ( ) ( ) ( ) 0bFzbKXh =−=  (9) 

 ( ) 0Xg ≤  (10) 

Equation (9) is the equilibrium condition for the structure that is treated as an 

equality constraint.  
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3.2.  Gradient Evaluation 

For the alternate formulation in Eqs. (8) to (10) all the problem functions are 

explicit in terms of the variable X. In the optimization process, partial derivatives 

of the functions with respect to X  are needed; i.e., with respect to x and z . 

Partial derivatives of f  and g  with respect to x and z  can be easily calculated 

as noted before. Partial derivative of h  with respect to z  gives the stiffness 

matrix K  and the partial derivative of h  with respect to x gives the matrix S  

defined in Eq. (6). However, xz dd /  is not needed and no system of equations 

needs to be solved in the numerical solution process. 

It is interesting to note that the sensitivity-free formulation does not require 

( ) 0Xh =  be satisfied exactly at each iteration of the optimization process, i.e., 

the equilibrium equation need not be satisfied at every iteration, which can be 

advantageous for nonlinear problems. It needs to be satisfied only at the final 

solution point. This actually implies that the equation ( ) 0Xh =  never needs to be 

solved for z  because z  is treated as an independent optimization variable. The 

element level equilibrium equations can be used in the solution process. Thus the 

SF formulation is ideally suited for implementation on a parallel computer where 

each finite element can be assigned to one processor. All processors can be used 

to generate the element level quantities and thus speed-up the optimization 

process considerably.
11,12

 

It is noted that the equilibrium equation (9) may not be the displacement 

based FEM equation, even though it is the most commonly used approach. Most 

work in the literature has used displacements as optimization variables. However, 

the force method or the mixed method of analysis can also be combined with the 

SF formulations.
6,48,49

 The basic idea is to treat the redundant forces as 

optimization variables in addition to the design variables, and the compatibility 

conditions are treated as equality constraints. The SF formulation can also be 

combined with the optimality criteria methods.
6
 A more recent analysis model - 

cellular automata (CA) has also been imbedded into SF formulations as equality 

constraints.
50

 Besides displacements, other state quantities, such as forces and 

stresses can also be used as optimization variables.
2,6,9,51-60

 

3.3.  Literature for Linear Problems 

Saka
61,62

 presented SF formulations for the optimum shape design of trusses, and 

minimum weight design of rigid frames. Fuchs
9,10

 presented an explicit optimum 

design method for linear elastic trusses. Three techniques were presented, 

according to the three classical analysis methods – force, displacement and 
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hybrid (or mixed) methods. Haftka
11

 presented an element-by-element 

formulation and showed that substantial computational savings of the SF 

formulations compared to the conventional nested approach. Ringertz
63

 presented 

a branch and bound algorithm for topology design of truss structures, based on a 

ground structure approach. Ben-Tal and Bendsøe
64

 proposed two alternative 

approaches for topology design of trusses for maximum stiffness with a 

prescribed volume. The optimization problem could be solved by an SF 

approach. Alternatively, this large, nonconvex formulation was transformed to an 

equivalent, unconstrained and convex problem in terms of nodal displacements 

only. This new formulation was mathematically equivalent to the original 

problem, and solved by a nonsmooth, steepest descent algorithm. Topology 

optimization of trusses for direct minimum weight design using the SF 

formulation was presented by Sankaranarayanan et al.
65

 The SF formulation was 

compared with the minimum compliance formulation. It was also concluded that 

the minimum compliance method might not get the true optimal design. 

3.4.  Literature for Nonlinear Problems 

In the conventional formulation, nonlinear analysis equations must be solved for 

any design update. However, the SF approach does not require repeated solution 

of the nonlinear analysis equations, since they need to be satisfied only at the 

optimal solution. The equilibrium equations in Eq. (9) become nonlinear that are 

treated as equality constraints. This is an additional advantage of the SF 

formulation for nonlinear problems. For such problems, Eq. (9) is written as 

 ( ) ( ) ( ) 0xFzxPXh =−= ,  (11) 

where P(x,z) is the internal force vector. The evaluation of h  in Eq. (11) is quite 

straightforward, as no matrix decomposition is needed. Assuming F  is not a 

function of z , the derivatives of Eq. (11) with respect to x and z are given as 

 
( ) ( ) ( )

x

xF

x

zxP

x

Xh

∂

∂
−

∂

∂
=

∂

∂ ,
 (12) 

 
( ) ( )

( )zxK
z

zxP

z

Xh
,

,
T=

∂

∂
=

∂

∂
 (13) 

where ( )zxK ,T  is the tangent stiffness matrix, and ( ) xzxP ∂∂ /,  in Eq. (12) can 

be calculated in an element-by-element manner. If the equilibrium equation (11) 

is derived from the minimum potential energy, the tangent stiffness matrix in  

Eq. (13) can also be obtained as Hessian of the strain energy U as ( )XU
T ∇∇ .

15,16
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Schmit and Fox
7,8

 included state variables in the sizing and shape 

optimization problem of materially nonlinear trusses that was called “an 

integrated approach to structural synthesis”. Smaoui and Schmit
66

 presented an 

integrated approach to the minimum weight design of geometrically nonlinear 

static truss structures with geometric imperfections. The SF and nested 

approaches were compared for three geometrically nonlinear truss optimization 

problems by Haftka and Kamat.
12

 It was concluded that the SF approach was 

competitive with the conventional nested approach, and that it was more efficient 

for large-scale problems. Ringertz
14

 formulated the minimum weight design of 

truss structures with geometrically nonlinear behavior. In later papers, 

Ringertz
15,16

 presented optimal design of geometrically nonlinear shell structures. 

The SF formulation was large but sparse. To make it tractable, sparse matrix 

approaches must be used.
16,17

 A reduced SQP method was presented to solve 

geometrically nonlinear trusses by Orozco and Ghattas.
18

 It was desired to utilize 

the structure of the problem functions so that the existing finite element analysis 

programs might be utilized. It was concluded that the reduced SF formulation 

required fewer structural analyses but the same amount of storage as NAND. 

Tin-Loi
58

 discussed optimum shakedown design of discretized elastoplastic 

structures subjected to variable repeated loads and residual displacement 

constraints, which was formulated according to the classical lower bound 

theorem of shakedown. 

3.5.  Optimization Techniques for SF Formulations 

The SF formulations have been solved successfully by various methods in the 

literature. New solution techniques have been developed in recent years. SUMT 

based on the penalty function techniques were used by Schmit and Fox,
7
 Fuchs,

10
 

Haftka,
11

 Haftka and Kamat,
12

 and Ringertz.
15

 Augmented Lagrangian methods 

were used by Sankaranarayanan et al.,
65

 and Larsson and Rönnqvist.
67

 Saka
61,62

 

and Achtziger
54,55

 used the sequential linear programming (SLP) approach. A 

generalized reduced gradient (GRG) algorithm was used to solve the integrated 

problem by Smaoui and Schmit,
66

 and Tin-Loi.
57,58,68

 Haftka and Kamat,
12

 and 

Orozco and Ghattas
17

 used the projected Lagrangian algorithm. Various SQP 

methods were used by Ringertz,
14,16,63

 Orozco and Ghattas,
18

 Schulz and Bock,
69

 

Dreyer et al.,
70

 Stolpe and Svanberg,
59

 Schulz,
71

 and Wang and Arora.
2
 Ben-Tal 

and Roth,
19

 Jarre et al.,
21

 Maar and Schulz,
22

 Herskovits et al.,
23

 Hoppe et al.,
24

 

Herskovits,
72

 and Hoppe and Petrova
73

 used newly-developed interior point (IP) 

algorithms to solve SF formulations. Multigrid methods combined with SQP or 

interior point method have been successfully applied to SF formulations.
22,70

 An 
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SF approach based on cellular automata (CA) and genetic algorithm (GA) for 

sizing and shape design of discrete structural systems was presented by Canyurt 

and Hajela.
50

 Parallelization potential for the GA based SF approach was noted as 

a major advantage of the approach.
50

 

4.  Comparison of Conventional and SF Formulations 

Table 1 lists the sizes of all the conventional and SF formulations. The following 

symbols are used: k = dimension of design variables vector x; n = dimension of 

state variables (e.g., displacement) vector z ; m = number of inequality 

constraints in 0g ≤  (e.g., stress constraints, excluding bounds on variables). 

Assume that there are 2k bound constraints on the design variable vector x, and 

2n bound constraints on the state variable vector z . Table 2 lists comparison of 

the two formulations - the conventional and SF. Advantages and disadvantages of 

the formulation are discussed. 

In SF formulations, displacements are chosen as optimization variables, and 

the analysis equations are treated as equality constraints. The inclusion of 

displacements as variables simplifies the constraint expressions and computer 

implementations. The reason is that they lead to a simpler form for the 

constraints which the optimization algorithm can treat more efficiently. Also the 

SF formulations avoid repeated analysis of the structure; therefore, they can be 

more efficient. This will also be the case for nonlinear structures where the 

conventional formulations need to solve the equilibrium equations at each 

iteration, which is expensive. 

In the SF formulations, the optimization problem is very large because there 

are more variables in a single optimization process. It can easily exceed the 

capacity of current optimization codes and computers. In addition, variable and 

constraint scaling is needed in the SF formulations to reduce numerical ill-

conditioning, since they include variables and constraints of different orders of 

magnitude. However, SF formulations simplify the forms of constraints and their 

Table 1. Number of variables and constraints for the formulations 

 
Conventional 

Formulation 

SF 

Formulation 

No. of Variables k k+n 

No. of Equality Constraints 0 n 

No. of Inequality Constraints m+2n m 

No. of Simple Bounds 2k 2k+2n 
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Jacobians, which are advantageous for numerical algorithms and 

implementations. 

5.  Configuration and Topology Design  

Many formulations for configuration and topology design optimization have been 

presented in the literature. These include the ground structure approach for 

discrete element structures and a more general continuum topology optimization 

formulation. The literature on the subject of topology optimization is vast and 

many good references are available that describe various formulations and 

solution algorithms.
74-78

 Here we focus on describing only some recent work 

related to the SF formulations and the corresponding computational algorithms 

for topology optimization. It turns out that the SF formulation is an important 

foundation for these design problems. A typical approach for topology 

optimization is to minimize the external work (compliance), where design 

variables together with the nodal displacements are the optimization variables.
79

 

Table 2. Advantages and disadvantages of the two formulations 

Formulation Advantages Disadvantages 

Conventional 

1.   Least number of optimization 

variables. 

2.   Equilibrium equation is satisfied at 

each iteration. 

3.   Intermediate solutions may be usable. 

 

1.   Equilibrium equation must be 

solved at each iteration, which can 

be expensive. 

2.   Constraints are implicit functions 

of the variables; their evaluation 

requires analysis. 

3.   Design sensitivity analysis must be 

performed.  

4.   Implementation is tedious. 

5.   Dense Jacobian and Hessian 

matrices; difficult to treat large-

scale problems 

SF 

1. Formulations are explicit in terms of 

variables. 

2. Equilibrium equation is not solved at 

each iteration. 

3. Many constraints become linear in 

variables. 

4. Jacobians and Hessian are sparse. 

5. Design sensitivity analysis is not 

needed. 

6. Implementation is relatively 

straightforward. 

7. Multi-physics problems are easier to 

optimize. 

8. Lagrange multipliers for more 

constraints become available which 

may give further insights for practical 

applications. 

1. Numbers of variables and 

constraints are large. 

2. Intermediate solutions may not be 

usable. 

3. Optimization algorithms for large-

scale problems must be used, 

utilizing sparsity of the Jacobians 

and Hessians. 

4. Optimization variables need to be 

normalized. 
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These problems are not convex when the equilibrium equations are included in 

the formulation. However, they may be reformulated as convex problems in 

different ways. Bendsøe et al.
80

 and Bendsøe and Sigmund
78

 reviewed different 

formulations for minimizing the compliance for the truss geometry and topology 

design. They noted that the compliance could be expressed in a number of 

equivalent potential or complementary energy formulations using the member 

forces, displacements and bar areas. Using the duality principles and nonsmooth 

analysis it was shown how displacement-only and stress-only formulations could 

be obtained. The equilibrium equations were part of these formulations even 

though they might be in the dual problem or other simplified forms. Based on 

duality principles, Muralidhar and Rao
52

 also presented several new equivalent 

formulations for optimal truss topology design for limit states based on a unified 

elastic/plastic analysis. The strictly plastic and elastic limit design models were 

reduced to LP problems, and were shown to be equivalent to the widely studied 

model for minimum compliance topology design of elastic trusses. Topology 

optimization has also been re-formulated into some alternative formulations, such 

as semidefinate programming (SDP)
81-83

 (also refer to Chapter 20) and linear 

programming (LP) problems.
52,84

 Some detailed SF formulations and references 

to the convex re-formulations mentioned above can be found in the literature.
74,78

 

The most common way to formulate a structural topology optimization is the 

minimization of compliance, defined as: 

 zF
T

2

1  (14) 

subjected to the state equations (1), and the constraints on the total volume and 

each element volume: 

 totalV=∑v  (15) 

 
UL

vvv ≤≤  (16) 

where F  and z  are the same as defined in Eq. (1). v  is the vector of element 

volumes and 
L

v  and 
U

v are the corresponding lower and upper bounds. totalV   is 

the total given volume of the structure. Although the problem of minimization of 

compliance can be solved by the SF approach,
64

 direct minimization of the 

weight for truss topology design is also possible.
53-55,59,60,63,65

 Oberndorfer et al.
85 

discussed the advantages and disadvantages of these two formulations. They 

showed that for the condition where the allowable stresses for tension and 

compression members of trusses were identical, the two formulations became 

equivalent. 
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The beauty of the SF formulations for topology design is that both cross-

sectional areas and displacements are treated as independent variables; therefore 

it is possible for member cross-sectional areas to reach zero value without 

causing singularity or non-differentiability. If the ground structure method is 

used in topology design, there are a very large number of cross-sectional areas 

and a relatively small number of displacement variables; therefore, the SF 

formulation has an advantage, since the size of the problem is not increased 

substantially. The use of various SF formulations for configuration and topology 

design can be found in References 19-22, 24, 51, 52, 54-56, 59-61, 63-65, 74, 78, 

80, 82-84, and 86-88. Displacement-based two-phase approaches for 

configuration and topology design have also been used by McKeown,
26,27

 Wang 

et al.,
28

 Missoum and Gürdal,
32

 and Gu et al.
33

 

In recent years, there have been extensive developments of efficient 

numerical algorithms to solve large-scale structural or PDE-based topology 

optimization problems. These works include various interior point (IP) methods 

developed by Ben-Tal and Roth,
19

 Jarre et al.,
21

 Kočvara et al.,
82

 Ben-Tal et al.,
83 

Maar and Schulz,
22

 Hoppe et al.,
24

 and Hoppe and Petrova.
73

 Dreyer et al.
70

 and 

Schulz
71

 studied efficient simultaneous solution based on SQP and reduced SQP. 

Multigrid solution techniques for topology optimization combined with IP and 

SQP were studied by Maar and Schulz,
22

 and Dreyer et al.,
70

 respectively. Some 

PDE-based models for topology optimization were studied.
24,71

 The SF 

formulation is also a key component when formulating structural design 

problems with integer design variables. Some related works can be found in the 

literature.
60,86,89

 

6.  PDE-Constrained Optimization  

Recently, a general class of formulations known as PDE-constrained 

optimization has been presented and discussed. In this formulation, the 

equilibrium equations are kept in the continuum form instead of the discretized 

form given in Eq. (1). Use of the continuum form offers flexibility in terms of the 

range of applications of optimization to many different fields including 

multidisciplinary applications. Also, many PDE solution algorithms and solvers, 

including the finite element method, can be used to perform optimization of 

complex systems.
24,71

 The design or the control variables may also be described 

in the distributed parameter form and discretized for numerical calculations. In 

the PDE-constrained optimization literature, the term “decision variables” is used 

to represent design or control variables, or both of them. Problems of optimal 

design, optimal control, and parameter estimation of systems from many diverse 

application areas can be formulated in this way. 
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It is clear that the PDE-constrained optimization formulation is a 

generalization of the discretized optimization formulations discussed in the 

previous sections. Therefore it is important to note that the conventional NAND 

and the SF approaches discussed previously are applicable directly to the PDE-

constrained optimization formulations. Thus all the advantages and 

disadvantages discussed previously for NAND and SF approaches apply to this 

formulation as well. 

The First Sandia Workshop on Large-Scale PDE-Constrained Optimization 

was held in 2003 to focus on the issues related to this topic. The basic idea was to 

bring researchers in the fields of PDE and optimization together to foster greater 

synergy and collaboration between these communities. The proceeding of this 

workshop is an excellent source of references that describe the state-of-the-art on 

this subject.
90

 The major topics discussed at the workshop included: large-scale 

computational fluid dynamics (CFD) applications, multifidelity models and 

inexactness of simulations, sensitivities for PDE-based optimization, NLP 

algorithms and inequality constraints, time-dependent problems, and software 

frameworks for PDE-constrained optimization. Several papers on these topics are 

included in the proceedings. Seven challenging issues needing further research 

and collaboration between the PDE and optimization communities were 

identified:  

• Problem size in PDE-constrained optimization 

• Integration of NLP and PDE-solvers 

• Physics-based globalizations and inexact solution 

• Approximate Jacobians 

• Implicitly-defined and nonsmooth PDE residuals 

• Treatment of inequalities 

• Time-dependent problems 

More details of these aspects can be found in Biegler et al.,
90

 and Arora and 

Wang.
1
 

7.  Mathematical Programs with Equilibrium Constraints (MPEC)  

Mathematical programming with equilibrium constraints (MPEC) is a general 

class of optimization problems in which some of the constraints are defined by a 

parametric variational inequality or the so-called complementarity system.
91

 The 

variational equality or inequality constraints model the equilibrium requirements. 

The MPEC formulation is an extension of the so-called bilevel programs, also 

known as the mathematical programs with optimization constraints. The 

complementarity system of equations mentioned above is a result of the 
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optimality conditions for the optimization constraints. It turns out that the SF 

formulations discussed earlier can be viewed as a special case of the MPEC. 

The general MPEC is a nonconvex and nondifferentiable optimization 

problem which is computationally difficult to solve.
91

 Various formulations of 

MPEC have been studied by Lou et al.,
91

 Outrata et al.,
92

 and others. Existence of 

optimal solutions has been discussed. Exact penalty functions for the 

complementarity system have been employed to obtain the first order optimality 

conditions for the MPEC. Examples of MPEC problems discussed in the 

literature can be found in Refs. 1, 91, and 93. 

In engineering applications, the MPEC problems can be formulated in a 

continuum form where a variational principle governs the equilibrium state of the 

system, such as the principle of minimum potential energy or Hamilton’s 

principle. An advantage of the continuum formulation is that the solution 

procedure is not tied to any particular numerical discretization approach. Thus it 

offers more flexibility for numerical solution of the problem. However, to keep 

the presentation of the basic ideas clearer, we stay with the discretized models of 

the system. To present and discuss an MPEC problem, consider an elastic body 

that comes into contact with a rigid smooth object. The problem is to design the 

body such that an objective function is minimized subject to equilibrium and 

other requirements, such as non-penetration of bodies, stress and displacement 

constraints. Using the notations defined earlier, the problem is defined as 

follows:  

 ( )zx
x

,minimize f  (17) 

subject to 

 ( )zx
z

,minimize V  (18) 

 ( ) 0zxg ≤,  (19) 

 ( ) 0xc ≤  (20) 

In the outer problem, ( )zx,f  is the overall objective function to be minimized 

over the design variables x. In the inner subproblem, the total potential energy 

function ( )zx,V  is minimized over the state variable z. Some of the constraints in 

Eq. (19) may be imposed in the inner optimization subproblem while others may 

be imposed in the outer problem. For example, contact and non-penetration 

constraints may be imposed while solving the inner subproblem while the stress 

and displacement constraints may be imposed in the outer problem. Also some of 

these constraints may be equalities. The constraints in Eq. (20) that depend only  
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on the design variables are imposed in the outer problem. The foregoing 

formulation is an instance of the bilevel optimization problems. 

With the assumption of linearly elastic behavior under small displacements, 

the total potential energy function is given as 

 ( ) ( ) ( )xFzzxKzzx
TT

V −=
2
1,  (21) 

where K(x) is the structural stiffness matrix, and F(x) is the equivalent external 

force vector. Many times the constraints in Eq. (19) can be written as linear 

function of z as  

 ( ) ( ) 0zzxAzxg ≤−= 0,  (22) 

where A(x) is a matrix of appropriate dimension and z0 is a specified vector. 

Now, writing the KKT optimality conditions for the inner subproblem, Eq. (18) 

and Eq. (19) in the formulation can be replaced by the following conditions:  

 ( ) ( ) ( ) 0pxAxFzxK =+−
T

 (23) 

 0p ≥ ;   ( ) ( ) 0zzxAzxg ≤−= 0, ;   ( ) 0, =zxgp
T  (24) 

where p is the Lagrange multiplier vector for the constraints in Eq. (22). p is 

interpreted as the forces required to impose the constraints; e.g., if the constraints 

in Eq. (22) represent the non-penetration contact conditions then p represents the 

vector of contact forces. For the frictionless contact case, it represents the normal 

contact forces between the deformable body and the rigid object. The conditions 

in Eq. (24) represent the complementarity problem. 

Hilding et al.
87

 presented a detailed review of optimization of structures in 

unilateral mechanical contact. Emphasis was put on linear elastic structures in 

frictionless contact. They explained that, in general, structural optimization 

problems involving contact could not be treated by classical smooth optimization 

theory; instead, modern fields such as nonsmooth optimization and MPECs 

needed to be used. Various formulations and algorithms for contact analysis 

problems have also been studied by Mijar and Arora.
94,95

 Variational equality and 

inequality formulations were studied for frictionless and frictional contact 

problems. Although the contact analysis problems can be formulated and solved 

using standard optimization algorithms, they can also be formulated as MPECs. 

Such formulations are nondifferentiable and generalized Newton method must  

be used to solve them.
95

 Recently, Mijar and Arora
96,97

 have also presented an 

augmented Lagrangian algorithm for frictional contact problems where the 

solution does not depend on the user-specified penalty parameter or the load  

step size. 
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MPEC formulations are suitable for inverse problems, such as system 

identifications. Ferris and Tin-Loi
98

 and Pang and Tin-Loi
99

 studied identification 

of the yield limits and hardening moduli from the knowledge of the displacement 

response of the structure. Tin-Loi and Que
100

 presented MPEC approaches for 

indirect parameter identification of cohesive crack properties from a wedge 

splitting test. Tin-Loi
57

 proposed an MPEC formulation with member areas, 

stresses, nodal displacements, and plastic multipliers as optimization variables 

for the minimum weight design of path-independent plastic trusses. Tin-Loi
68

 

also presented the numerical solution of a class of unilateral contact structural 

optimization problems. The limit analysis of frictional block assemblies was 

formulated as an MPEC by Ferris and Tin-Loi.
101

 The computation of collapse 

loads of discrete rigid block systems, characterized by frictional and tensionless 

contact interfaces was formulated. Evgrafov and Patriksson
102

 studied stochastic 

structural topology optimization based on discretization and penalty function 

approach. The resulting nonsmooth stochastic optimization problem was an 

instance of stochastic MPEC that was solved using some approximations. 

Although many researchers have aimed to simply transform an MPEC into a 

standard NLP problem and solve it by various parametric, smoothing, relaxation 

or penalty methods, substantial attention has also been devoted to further 

understanding and development of theories and efficient algorithms to solve 

MPECs. A penalty interior point algorithm (PIPA), an implicit programming 

algorithm and a piecewise SQP were presented by Lou et al.
91

 Patriksson and 

Wynter
103

 studied stochastic MPECs. Some basic parallel iterative algorithms for 

discretely distributed stochastic MPEC were discussed. Scholtes and Stöhr
104

 

studied theoretical and computational aspects of an exact penalization approach 

to MPECs. A globally convergent trust region method was developed. 

Complementarity constraint qualifications and simplified B-stationarity 

conditions (Bouligand first-order optimality conditions) for MPECs were studied 

by Pang and Fukushima.
105

 Andreani and Martinez
106

 proved that stationary 

points of the sum of squares of the constraints were feasible points for the MPEC 

under reasonable sufficiency conditions. Wan
107

 presented some further 

investigation on feasibility conditions of MPECs. It was demonstrated that these 

feasibility conditions were also sufficient for quadratic programming 

subproblems arising from the penalty interior point algorithm (PIPA) and the 

smooth SQP algorithm for solving MPECs. Birbil et al.
108

 presented an entropic 

regularization approach for the MPECs. A three-dimensional null-space approach 

for the MPECs with steps related to nonlinear inequality constraints, the 

complementarity conditions and the objective function was proposed by Nie.
109
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8.  Optimal Control  

The SF-type approaches have also been used to solve open-loop optimal control 

problems for trajectory design in aerospace engineering,
110,111

 robotics or human 

motion planning,
112,113

 and chemical process engineering.
114,115

 These problems 

involve the solution of differential algebraic equations (DAEs), or just 

differential equations (DEs). The standard optimal control problem is to find the 

control history ( )tu  that minimizes the performance functional in the time 

interval ],[ 0 ftt , as:
116

 

 ( ) ( )dttLtf ft

tff ∫+=
0

 , , , uyyφ  (25) 

subject to the system dynamics equations  

 ( )uyy  , , tℓɺ =  (26) 

and the prescribed initial conditions  

 
ss

tt 0000     ; yy ==  (27) 

and the prescribed final conditions  

 ( ) 0y =fft  ,ϕ  (28) 

The basic idea of an SF-type approach is to discretize the system of first 

order differential equations (26), and define a finite dimensional approximations 

or parametric representation for the state and control variables. The discretized 

state equations are treated as equality constraints in the optimization process, 

converting the optimal control problem into an NLP problem. Several viable 

approaches are available. If the design variables together with the state variables 

and control variables are all treated as optimization variables, the approach is 

called the direct collocation/transcription method. If the control variables are 

eliminated from the system (i.e., only the design variables and the state variables 

are treated as optimization variables), it is called the differential inclusion 

method.
116

 Another possibility is the so-called multiple shooting technique.
117,118

 

Different discretization techniques for the state equations have been studied 

in the literature. In general there are two classes of methods to transfer the DAEs 

or DEs to an algebraic system of equations. One is to use some polynomial 

interpolation between the time grid points, and the other is to use a series 

expansion in terms of orthogonal polynomials, such as Legendre or Chebyshev 

polynomials.
119

 For the former case, the most common ways are the trapezoidal 

or Simpson’s quadrature schemes based on piecewise quadratic or cubic 

polynomials.
110,120

 Explicit or implicit Runge-Kutta methods were used to 

discretize the state equations by Biehn et al.,
121

 and Betts et al.
122

 Higher degree 
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polynomials for direct collocation were studied by Herman and Conway,
123

 and 

Hu et al.
124

 If very smooth trajectory is required, B-spline curves can also be used 

to parameterize the dynamic equations.
125

 Seywald,
126

 and Kumar and Seywald
127

 

discussed a technique to eliminate the controls while solving optimal control 

problems via direct methods. Conway and Larson
128

 presented a comparison of 

collocation and differential inclusion methods in direct trajectory optimization. 

Different optimization algorithms have been used for direct collocation or 

multiple shooting, among which the SQP and interior point algorithms are the 

popular choices. Hargraves and Paris,
120

 Schulz and Bock,
69

 Betts,
111

 and Itle  

et al.
129

 used SQP. The interior point algorithm was employed by Cervantes et 

al.
130

 Since the resulting NLP is large and sparse, sparse NLP were extensively 

discussed.
131,132

 Parallel computation was considered by Betts and Huffman.
117

 A 

detailed survey of the numerical methods for simultaneous optimization and 

control can also be found in Betts.
133

 

9.  Multidisciplinary Design Optimization (MDO)  

The SF formulation is also called the infeasible path (IP) approach for 

aerodynamic design that was pioneered by Rizk.
134

 Later, more research was 

done for this problem.
135-138

 Other applications of SAND formulation can be 

found in heat transfer; e.g., Hrymak et al.
139

 presented optimization of extended 

heat transfer surfaces. 

The SF formulation has also been demonstrated in many multidisciplinary design 

optimization (MDO) papers and has been called the all-at-once (AAO) 

formulation.
72,136,140-143

 Haftka et al. discussed the interdisciplinary optimization 

of engineering systems from the standpoint of the computational alternatives 

available to the designers.
140

 Optimization of the system could be formulated in 

several ways, i.e., NAND or SF formulations. Cramer et al.
141

 presented three 

MDO formulations, namely multidisciplinary feasible (MDF), AAO, and 

individual discipline feasible (IDF) formulations. In AAO formulation, the 

optimization problems were very large and residuals were evaluated in all 

disciplines. No existing analysis codes were necessary. Though AAO was 

computationally least expensive, it required a higher degree of software 

integration. Balling and Wilkinson
143

 studied available multidisciplinary design 

optimization approaches on common test problems. It turned out that the AAO 

formulation showed the most efficiency among all the approaches for the test 

problems. Detailed reviews of various MDO formulations can be found in the 

literature.
142
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10.  Recent Evaluations of Sensitivity-Free Formulations  

10.1.  Truss Optimization 

Wang and Arora
2,4

 have implemented three sensitivity-free formulations with 

existing analysis software and evaluated them using several truss optimization 

problems. The cross-sectional areas were the optimization variables in all the 

formulations. In addition, the first formulation had nodal displacements as 

additional variables, the second formulation had member forces as variables as 

well, and the third formulation had member stresses as variables instead of the 

member forces. The three sensitivity-free formulations and the conventional 

formulation were analyzed and their advantages and disadvantages were 

discussed. Existing analysis software was integrated with an optimizer based on a 

sparse SQP method to solve several numerical examples with known solutions. 

With the sensitivity-free formulations, only the pre- and post-processing 

capabilities of the analysis software were used to evaluate the problem functions; 

however, the conventional formulation also needed the equation solving 

capabilities for analysis as well as design sensitivity analysis. Numerical 

performance of all the formulations was evaluated with extensive numerical 

experiments. The sensitivity-free formulations were compared with the 

conventional formulation. The three sensitivity-free formulations were also 

compared to each other. For some example problems, better solutions compared 

to the known solutions were obtained. Based on those studies, the following 

points are observed: 

• The sensitivity-free formulations are more efficient than the conventional 

formulations in most cases. More efficient methods to solve large-sparse 

optimization problems need to be developed. 

• In sensitivity-free formulations two and three, the global equilibrium 

equations in terms of displacements are not needed. Therefore, the global 

stiffness matrix for the structure need not be assembled. 

• Since the variables in the sensitivity-free formulations have different orders 

of magnitude, scaling of the variables is needed. Appropriate automatic 

scaling procedures need to be developed. 

• Sparsity of the problem functions must be utilized for efficiency and 

effectiveness of the sensitivity-free formulations. 

• Implementation of the sensitivity-free formulations is simpler with the 

existing analysis software compared to the conventional formulation. 
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• Use of parallel computations with the sensitivity-free formulations needs to 

be developed. 

10.2.  Framed Structures 

Similar to the evaluations for trusses of the previous section, Wang and Arora
5
 

have implemented two sensitivity-free formulations with existing analysis 

software and evaluated them using several frame optimization problems. A 

restricted form of the frame optimization problem was used where only the cross-

sectional areas were treated as the design variables. The moment of inertia of the 

member was expressed in terms of the cross-sectional area. Also a very simple 

form of the combined stress constraint was imposed. For practical applications, 

these limitations need to be relaxed where the design manual constraints can be 

included in the solution process. 

The first sensitivity-free formulation had nodal displacements as additional 

variables, and the second formulation had member forces as variables as well. 

The two sensitivity-free formulations and the conventional formulation were 

analyzed and their advantages and disadvantages were discussed. As for the truss 

problems, existing analysis software was integrated with an optimizer based on a 

sparse SQP method to solve several numerical examples with known solutions. 

For some examples, better solutions were obtained compared to the known 

solutions. The conclusions drawn from this study were quite similar to the ones 

for the trusses presented in the previous section. 

10.3.  Transient Dynamic Response Optimization  

Three sensitivity-free formulations for transient dynamic response optimization 

of mechanical systems have been presented, analyzed and evaluated by Wang 

and Arora.
3
 The basic idea of these formulations was to treat various state 

variables as independent variables in the optimization process (in addition to  

the real design variables); i.e., generalized displacements, velocities and 

accelerations. Since all functions of the optimization problem became explicit in 

terms of the variables in these formulations, their gradients could be calculated 

easily as compared to the conventional approach. Also, the equations of motion 

in the second order form were not integrated explicitly; they were directly 

imposed as equality constraints. The state variables were discretized using 

standard finite difference methods, making the numerical implementation quite 

easy and straightforward. For the sensitivity-free formulations, the optimization 

problem was quite large in terms of the numbers of variables and constraints. 
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However, the problem functions were quite sparse, which was exploited in the 

optimization process. Advantages and disadvantages of the formulations were 

discussed. Several cases of two example problems were solved to study the 

performance of the formulations. Based on the extensive numerical experiments, 

it was concluded that the proposed formulations worked well for the example 

problems, and have potential for further development for practical applications. 

Further investigation was suggested by studying and evaluating (i) different 

forms for approximation of velocities and acceleration in terms of the 

displacements, (ii) use of existing simulation software, and (iii) other 

optimization algorithms for large-scale optimization problems. 

11.  Concluding Remarks 

Sensitivity-free formulations for optimization of structural and mechanical 

systems, including configuration and topology design, are described. The 

formulations are described in the context of continuous variables that use 

gradient-based optimization algorithms for their solution. Features of various 

formulations are discussed and their advantages and disadvantages are 

delineated. These include mathematical programs with equilibrium constraints 

(MPEC), and partial differential equations-constrained (PDE-constrained) 

formulations. If design variables and some state variables are combined together 

in a single and large optimization problem, then the sensitivity-free formulation 

is obtained. 

MPEC is a more general formulation where the equilibrium constraints are 

defined by variational equalities or inequalities, such as the one for the contact 

analysis problem.
94,95

 In addition, the formulation has complementarity system of 

equations that makes the problem nondifferentiable. MPEC can also be 

considered as a special case of the so-called bilevel optimization problems where 

some of the constraints involve optimization. It is noted that the equilibrium 

equation (1) is obtained as a necessary condition for minimization of the total 

potential energy of the structure. Thus the structural optimization problem can 

also be considered as a special case of the MPEC. This formulation has been 

studied recently and mathematical foundations for its solution have been 

presented. First and second order optimality conditions for the formulation have 

been developed and computational algorithms for its numerical solution have 

been presented and demonstrated. Some MPEC problems can be reformulated 

and solved by the standard NLP algorithms. 

Another recent formulation is the PDE-constrained optimization of systems. 

This formulation is similar to the SAND approach except that the equilibrium 
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equations are written as PDEs; i.e., in the distributed parameter form. The 

formulation offers more flexibility for numerical calculations because any 

discretization scheme can be used to solve the PDEs. In addition to the foregoing 

literature, sensitivity-free formulations for the optimal control problem and 

multidisciplinary optimization problems are briefly reviewed. 

Major topics needing further investigation relative to the sensitivity-free 

formulations are as follows: 

• Most of the formulations have focused on use of the displacement-based 

FEM. Other analysis methods need to be considered, such as the force 

methods, mixed methods, meshless methods, boundary element methods, 

and others. 

• Implementation aspects with the existing analysis programs have not been 

adequately discussed; this important aspect needs to be addressed. 

• Parallel processing of various steps of the solution process must be 

considered to solve very large-scale and multidisciplinary problems. 

• Since various optimization variables can be of different orders of 

magnitude, methods for automatic transformation of the variables needs to 

be developed to improve rate of convergence of optimization algorithms. 
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CHAPTER 16 

KRIGING METAMODEL BASED OPTIMIZATION 

Tae Hee Lee and Jae Jun Jung 

School of Mechanical Engineering 

Hanyang University, Seoul 133-791, Korea 

E-mail: thlee@hanyang.ac.kr 

Kriging metamodel that is suitable for approximation of highly nonlinear 

functions is derived systematically and sampling techniques for kriging are 

summarized and compared. Then optimization of an engineering problem based 

on kriging metamodel is performed. 

1.  Introduction 

Many design optimization problems can consist of objective functions and 

constraint equations that require complicated and time-consuming numerical 

analyses. In this case, conventional optimization technique based on direct 

integration with computationally expensive high-fidelity simulations may be 

impractical because of enormous computational cost of many iterative function 

calls.  

One of solutions to overcome the problem is to use approximate responses of 

the objectives and constraints. The goal of approximation is to provide a 

continuous function that is inexpensive to evaluate within acceptable fidelity. This 

approximation model is often referred to metamodel, i.e., ‘models of the model’.
1
 

A wide variety of metamodels have been developed: response surface model,
2
 

kriging,
3-5

 radial basis function
6,7 

and multivariate adaptive regression splines.
8
 

According to how a fitting curve to sampled data is generated, metamodels are 

classified into regression model and interpolation model. Response surface model 

is a typical regression model in which the unknown coefficients are estimated by 

means of least square method, while the others are interpolation models that 

fitting curve passes exactly through the sampled points. Among these metamodels, 

kriging model has gained much attention in engineering literatures because it can 

be useful in predicting uncertainty as well as remarkable in predicting 
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performance for especially highly nonlinear functions. In this chapter, we derive 

kriging predictor based on notion of statistics.  

One of the issues related to development of a kriging model is how to select 

sample points. In computer experiment, replication is usually meaningless since 

the response of computer simulation is deterministic–response of a simulation 

code with the same input always gives identical output. Therefore, sample points 

should be evenly distributed over entire design space in order to predict the 

response well at untried points. Sampling techniques based on this concept is 

referred to as ‘space-filling sampling.’
9,10

 In addition, ‘infill sampling criteria’ that 

are available in approximating various extrema of true function are introduced. 

They locate sample points in the neighborhood of local optimum and the location 

at maximum uncertainty.
11-15

 

To illustrate the application of kriging model, laterally vibrating circular plate 

is employed as an engineering optimization problem. We formulate the 

optimization problem to minimize the mass of vibrating plate satisfying stress and 

frequency constraints. Responses such as stress and volume, and frequency of 

vibrating plate are approximated based on various sampling techniques. Accuracy 

of kriging models is validated and results of kriging-based optimization are 

compared with those of conventional optimization. 

2.  Kriging Metamodel  

2.1.  Origin of Kriging 

Kriging originally comes from the field of geostatistics as a method to predict 

geological data, such as the thickness of ore layers. The name of ‘Kriging’ refers 

to a South African geologist, D. G. Krige who first used the statistics in analyzing 

mining data.
16

 His work was furthered in the early 1970s by Matheron and formed 

the fundamental foundation in the field of geostatistics.
17

 

At the end of 1980, kriging was taken in a new direction when a group of 

statisticians applied kriging technique for design of engineering problems.
3,4

 Their 

processes of obtaining experimental design and exploiting kriging as prediction 

tool for the design were called design and analysis of computer experiments 

(DACE). Nowadays, kriging model has been widely employed in research area 

such as multidisciplinary design optimization (MDO) due to powerful 

applicability.
18
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2.2.  Kriging Theory 

For design variables dn
R∈x , kriging is based on assumption that response 

function )(xY  is composed of a regression model βxf
T)(  and stochastic process 

)(xZ :  

 )()()( xβxfx ZY
T +=  (1) 

where polynomial terms consist of )1( ×p  vector of regression functions as  

 
T

pfff )](,,)(,)([)( 21 xxxxf ⋯=  (2) 

and the corresponding )1( ×p  vector of the unknown coefficients as follows: 

 
T

p ],,,[ 21 βββ ⋯=β  (3) 

Here, polynomials of order 0, 1 and 2, i.e., constant, linear and quadratic, are 

usually used and 1=p , 1+= dnp , 2/)2)(1( ++= dd nnp , respectively. 

Note that regression model represents global model, i.e., mean model, 

βxfx
T

YE )()]([ =  while the localized model )(xZ  is assumed to be a Gaussian 

process with zero mean 0)]([ =xZE  and covariance )](),(cov[ ji ZZ xx , where 

][⋅E  denotes expectation. 

It is pointed that there is the dependency between deviation terms )(xZ  

because )(xZ  are relatively determined according to estimation of regression 

model as shown in Fig. 1. This dependency can be expressed in form of 

covariance.  

x

)(xY

1s 2s 3s

Quadratic regression model

)( 1sZ

)( 2sZ

)( 3sZ

Kriging model

)( 4sZ

4s  

Fig. 1 Visualization for deviation terms of response function 
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For random responses )( iY s  at n  sampled points, the vector form of Eq. (1) 

is written as  

 ZFβY +=  (4) 
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where F  is defined as )( pn × expanded design matrix. Because responses )( iY s  

are random variable and correlated to each other, )( nn ×  covariance matrix for n  

random responses exists as follows: 
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Similarly, )1( ×n  covariance vector between responses at sampled point is  and 

an untried point x  is represented as 
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Notice that )(xZ  and Z  are scalar and column vector, respectively. It is 

interesting that the covariance between responses )( iY s  is identical to the 

covariance between )( iZ s :  

 

][

)0)]([](])[])([[(

)](),(cov[ )1()1(

T

T

njniji

E

ZEEEE

ZZ

ZZ

xxZZZZ

ss

=

∀=−−=

≤≤×≤≤

∵  (8) 

Covariance between )(xZ  at an untried point and )( iZ s at sampled points is 

given as follows: 

 

])([

])][)])(([)([(

)](),(cov[ 1)1(
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ZZ nii
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−−=

×≤≤

 (9) 

Covariance between departures )( iZ s  and )( jZ s  at sampled points, 

however, is generally unknown. In kriging, the covariance is assumed to be 

expressed as the product of process variance 2
zσ  and )( nn ×  correlation matrix 

R : 

 Rss
2

)1()1()](),(cov[ znjniji ZZ σ≡≤≤×≤≤  (10) 

where 2
zσ  is process variance that is determined by stochastic process. 

Correlation matrix can be defined by spatial correlation function ),,( jiR ssθ : 
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where θ  is a vector of unknown correlation parameters.  

The form of spatial correlation function is restricted to only correlation that 

can be expressed as product of one-dimensional correlations 
19

:  

 ∏
=

=
dn

k

k
ijkji dRR

1

),(),,( θssθ  (12) 

where kθ  and 
k

ijd  are k -th component of each vector θ  and ijd , respectively. 

ijd  represents distance between is  and js . 
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Covariance between the )(xZ  and )( iZ s  is expressed as product of process 

variance and correlation vector:   

 

T
nz
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nii
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 (13) 

Physical meaning of one-dimensional correlation is that the correlation in each 

dimension is function of only distance in the dimension. Fig. 2 shows geometric 

expression of the spatial correlation between sampled points 1s  and 2s  in 2-

dimensional space. Among types of one-dimensional correlation functions, the 

commonly used spatial correlation functions are shown in Table 1. 

 

 

Correlation matrix is positive-definite and the diagonal term is all ones 

according to definition of correlation function. Thus, the value of spatial 

correlation function ),,( jiR ssθ is specified between 0 and 1. The value 

approaches zero as the distance 
k

ijd  increases indefinitely, i.e., weak correlation, 

while the correlation of identical points becomes 1, i.e., strong correlation. 

The choice of spatial correlation function plays a critical role in the prediction. 

For a smooth response function, Gaussian spatial correlation function would be 

preferred. For non-differentiable response, exponential spatial correlation function 

is recommended. We need to pay attention to the meaning of correlation 

parameter in the prediction. Correlation parameter kθ  determines how quickly 

the correlation decreases as the distance increases (See Fig. 3).  
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Fig. 2 Calculation of correlation in two-dimensional space 
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Thus, the correlation parameter can reflect the nonlinearity or smoothness of 

response with respect to design variables. That is, large value of correlation 

Table 1 Types of spatial correlation functions 

Name ),( k
ijk dR θ  

Exponential 
k
ijk d

e
θ−

 

Exponential-Gauss 20 ≤<
−

he

h
k
ijk dθ

 

Gauss 
2k

ijk d
e

θ−
 

Linear { }k
ijk dθ−1,0max  

Spherical { }k
ijk

k
ij

k
ij

k
ij dθξξξ ,1min,5.05.11

3
=+−  

Cubic { }k
ijk

k
ij

k
ij

k
ij dθξξξ ,1min,231

32
=+−  

 

 

 
Fig. 3 Various correlation functions for 20 ≤≤ kd ; dashed, full and dash-dotted line for 

5,1,2.0=kθ , respectively 
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parameter kθ  indicates the low correlation of the response along the axis of k -

th design variable. The lower correlation means that response is more nonlinear 

along the axis because correlation is dominantly influenced by closely located 

sample point. For example, Fig. 4 shows a function that is highly nonlinear in 1x  

dimension but linear in 2x  dimension. When kriging model is reasonably 

constructed from appropriate sampled points, 1θ  will become even larger than 

2θ . It means that the nonlinearity of response is stronger along 1x -axis than 

along 2x -axis. This is invaluable to infer the curvature information between 

response and design variables. 

 

We should note that kriging model is what is called the Best Linear Unbiased 

Predictor (BLUP). Throughout describing the properties of BLUP, we derive the 

kriging predictor.  

Kriging model is linear predictor that can be expressed as a linear combination 

of observations, i.e., 

 Yxcx
T

Y )()(ˆ =  (14) 

where )(xc  is 1×n  vector consisting of functions of x . Among all possible 

linear predictors, we naturally would prefer one closer to true function. Useful 

measure to quantify the closeness of a predictor is mean squared error:   
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 (15) 

 

Fig. 4 Example of nonlinear function along only one direction 
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Eq. (15) shows how mean squared error is related to variance, variance of 

predictor, bias of predictor, and covariance between true function and predictor.  

In BLUP, ‘best’ means that we find a predictor with the smallest mean 

squared error. To do so, we need to look for predictor within the class of unbiased 

predictors. Unbiasedness condition implies that the expectation of predictor 

model equals to the expectation of true response: 

 

)()(

)0][)(()()(

)]([)](ˆ[

xfxcF

ZxcββxfFβxc

xx

=⇔

=∀=⇔

=

T

TTT
E

YEYE

∵  (16) 

If we substitute the unbiased condition into Eq. (15), we can eliminate the 

third term of RHS of Eq. (15) and obtain as 

 )](),(ˆcov[2)](ˆvar[)](var[)](ˆ[ xxxxx YYYYYMSE −+=  (17) 

In Eqs. (15) and (17), we can find that mean squared error of unbiased predictor is 

always less than that of biased predictor because the square of bias of predictor is 

nonnegative. For this reason, we consider only the unbiased predictor.  

Fig. 5 shows a graphical representation of biased predictor and unbiased 

predictor. Mean of unbiased predictor )(ˆ
2 xY  is identical that of true response. On 

the other hand, mean of biased predictor )(ˆ
1 xY  stands away from that of true 

response.  

 

)(xY

x

Regression model

Response function

Bias of predictor

)](ˆ[ 1 xYE

)](ˆ[ 2 xYE

)(ˆ
1 xY

)(xY

)]([ xYE

 

Fig. 5 Illustration of unbiased predictor and biased predictor in one-dimensional function 
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Let us rewrite Eq. (17) in terms of the notations defined in Eqs. (6), (7), (10) 

and (13) as follows: 
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 (20) 

Thus, mean squared error of kriging predictor becomes 

 ( ))()(2)()(1)](ˆ[ 2
xrxcxRcxcx

TT
zYMSE −+= σ  (21) 

We now derive the minimum condition of mean squared error satisfying the 

unbiasedness condition, i.e., necessary condition for constrained minimization. 

Lagrangian function for minimization of )](ˆ[ xYMSE  with respect to )(xc  

subject to unbiasedness constraint )()( xfxcF =T  is of the form 

 ))()(()]()(2)()(1[)),(( 2
xfxcFλxrxcxRcxcλxc −+−+= TTTT

zA σ  (22) 

where λ  is 1×p  vector of Lagrange multipliers for constraints. Karusch-Kuhn-

Tucker necessary conditions are given as 
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 (23) 

Rewriting Eq. (23) in matrix form yields 
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For simplicity of derivation, we replace 22/
~

zσλλ = . Then, we have 
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Solution to Eq. (25) can be found by using inverse theorem of the block matrix 

(see Appendix) as follows: 
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1111111
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 (26) 

Finally, )(xc  can be calculated as 

 ))]()(()()([)( xfxrRFFRFFxrRxc
1111 −−= −−−− TT  (27) 

Substituting Eq. (27) into Eq. (14) and simplifying matrix multiplication using 

symmetry of R , BLUP leads: 

 YRFFRFxfFRxrxrx
1111 −−−− −−= ])}()()({)([)(ˆ TTTTT

Y  (28) 

If we introduce generalized least square estimator as 

 YRFFRFβ
111 −−−= TT )(ˆ  (29) 

Then, the kriging predictor of Eq. (28) becomes  

 )ˆ()(ˆ)()(ˆ βFYRxrβxfx
1 −+= −TT

Y  (30) 

In Eq. (30), first component βxf
T)(  is the estimator of global model and 

denotes a mean model over the entire domain x . And second one is localized 

model )(xZ  and represents the systematic departure from the estimated mean 

model. From a view of the response surface model, systematic departure )(xZ  

seems to be the residual. Note that since departures are correlated, generalized 

least square method using weighting factor is applied. 

In kriging model, uncertainty of predictor, i.e., mean squared error, is useful 

statistics. In Eqs. (25) and (26), λ
~

 is given follows as 

 ))()(()(
~ 111

xfxrRFFRFλ −= −−− TT  (31) 

Substituting )(xc  and λ
~

 into Eq. (21) leads to matrix representation of mean 

squared error as follows: 
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Mean square error, i.e. uncertainty of prediction, is zero at sample points 

because kriging model is interpolation model–prediction of kriging always 

coincides with its true response at sampled point. However, uncertainty of 

prediction at untried point increase highly as prediction point exits somewhat 

away from sample points. 

Now, we need to estimate correlation parameter θ  because predictor includes 

parameters that are yet determined in Eqs. (11) and (13). In kriging, maximum 

likelihood estimation (MLE) is used to estimate correlation parameters θ , 

regression coefficient β , and variance 2
zσ . MLE is based on the assumption that 

we know the probability distribution of sampled responses. We estimate 

correlation parameters by maximizing the probability that sampled responses can 

have. To quantify the probability, likelihood function is defined as product of 

probability density function of each sampled response.  

Because we assume that responses follow Gaussian distribution, likelihood 

function to find correlation parameters is given as 
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Recalling the property of determinant, covariance matrix term can be given as  

 ( ) RR
n

zz
22 ˆˆ σσ =  (34) 

For simplicity, we define logarithm of likelihood function, Eq. (33), as follows: 
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According to the notion of MLE, the estimator of β  is now obtained by taking 

the partial derivative of log likelihood function with respect to β  and setting it to 

zero: 

 βFβYRF
β

∀=−−=
∂

∂ − ,0)(
ln 1TL

 (36) 
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Note that solution to Eq. (36) coincides with generalized least square estimator β̂ . 

Similarly, estimator of process variance 2
zσ  is given by differentiating Lln  

with respect to 2
zσ  and setting it to zero: 

 
n

T

z

)ˆ)ˆ(
ˆ 2 βF(YRβFY

1 −−
=

−

σ  (37) 

For correlation parameters θ , however, the likelihood equation does not lead to a 

closed form solution. Therefore, a numerical optimization procedure is required. 

For optimization, Eq. (33) needs be converted into simple equation eliminating 

the constants. Substituting parameter with estimators into Eq. (35) yields 
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Finally, MLE to construct the predictor is written as 

 












 +
−

2

lnˆln
maximize

2
R

θ

zn σ
 (39) 

Non-logarithm form of likelihood function is often used equally as follows: 

 
n

z

/12ˆzeminimi R
θ

σ  (40) 

2.3.  Example of Kriging Modeling 

To clearly understand kriging, we illustrate the process of kriging modeling for 2-

dimensional problem as follows: 

 ]8,1[,,sin 2121 ∈= xxxxy   (41) 

As shown in Fig. 6, test function is slightly nonlinear in only one dimension. 

 

  

Fig. 6 Sample points and original function of test function 
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Location of the nine sample points and the corresponding responses is given in 

Table 2. Sample points and responses are normalized by each means and standard 

deviations before using the data. This is helpful to alleviate the dimension effect 

of each design variable and prevent an erratic prediction of the kriging model. 

Note: N(·)=normalized(·) 

 

In order to fit a kriging model, we first consider maximum likelihood 

estimation. Two terms, 2ˆ
zσ  and R , that consist of maximum likelihood function, 

must be constructed. First, correlation matrix with Gaussian correlation function 

is computed as follows: 
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 (42) 

Note that the distance is calculated by the normalized data. If we select a 

constant underlying global model, F  becomes simply a column vector of ones:  

 [ ]T1,1,1,1,1,1,1,1,1=F  (43) 

The estimation of global model is now constructed as follows: 

 YRFFRFβ
111 −−−= TT )(ˆ  (44) 

Note that Y  is also normalized response. Estimation of process variance is given 

as 

Table 2 Sample data and normalized data 

No 1x  2x  N( 1x )* N ( 2x )* Y  N( Y )* 

1 1 1 -1.1547 -1.1547 0.8415 -0.0855 

2 1 4.5 -1.1547 0 -0.9775 -0.4401 

3 1 8 -1.11547 1.1547 0.9894 -0.0566 

4 4.5 1 0 -1.11547 3.7866 0.4886 

5 4.5 4.5 0 0 -4.3989 -1.1070 

6 4.5 8 0 1.1547 4.4521 0.6184 

7 8 1 1.1547 -1.1547 6.7318 1.0628 

8 8 4.5 1.1547 0 -7.8202 -1.7740 

9 8 8 1.1547 1.1547 7.9149 1.2934 
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Maximum likelihood estimation for 1θ  and 2θ  is found by the following 

expression: 
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Note that the maximum likelihood function is only a function of 1θ  and 2θ . 

When optimization range of correlation parameters is given in ]5,1.0[, 21 ∈θθ , 

the “best” kriging model to fit these sample points is obtained as 1.01 =∗θ  and 

52 =∗θ . These values are the lower-limit and upper-limit, respectively. A plot of 

maximum likelihood function is given in Fig. 7. As shown in Fig. 7, you can find 

that the optimum solution exists on the lower left of the plot. 

Now, we can predict the response at an untried point within design range. We 

can substitute the optimum solution into correlation matrix as follows: 
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Fig. 7 A plot of likelihood function 
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We need to know the form of the correlation vector as follows:  
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sxsxsxsxsx

sxsxsxsxxr ⋯=
 (48) 

It is important to note that the prediction point should be normalized. Correlation 

vector is also only function of x . 

Finally, we can obtain the predictor of kriging as follows: 

 )ˆ()(ˆ)(ˆ 1
βFYRxβx −+= −T

normalized rY  (49) 

Because the predictor is normalized, we need to transform the predicted value into 

real value as follows: 

 YYY normalizedY += )(ˆ)(ˆ xx σ  (50) 

where Yσ  and Y  are standard deviation and mean used to normalize responses. 

Fig. 8 shows that kriging predict the behavior of the true function accurately. 

In addition, predictor reveals that response along the axis of 2x  is more nonlinear 

than along the axis of 1x  because the estimation of correlation parameter 

1.05 *
12 =>=∗ θθ . 

 

3.  Sampling Techniques 

Prediction performance of metamodel is directly influenced by the nonlinearity of 

an original function, sampling strategies and types of metamodels. Among these 

 

 

Fig. 8 Contour plots of true function and kriging predictor 
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three factors, nonlinearity of functions depends largely on the provided data. 

Therefore, the other two factors are main concerns in metamodeling. In this 

section, we consider sampling strategies in order to obtain reasonable metamodels 

with minimum sampling points.  

In computer experiment to construct metamodel, a good sampling strategy is 

defined as one that provides good performance of the metamodel with minimum 

number of analyses. In this chapter, however, we only compare the features of 

various sampling techniques because the subject is beyond the scope of the 

present chapter.  

For systematic taxonomy of a variety of sampling techniques, we classify 

sampling strategies into ‘domain-based sampling’ and ‘response-based sampling’ 

in according to information type that they use during sampling process. For 

example, mean squared error (MSE) approach
20

 selects sequentially a sample 

point with maximum uncertainty of kriging model. Therefore MSE belongs to 

response-based sampling. On the other hand, maximin distance sampling is a 

domain-based sampling because it uses only information of design domain, the 

minimum distance between any two sample points. Similarly, sampling 

techniques using optimal criteria, for example, maximum entropy criterion
21

 and 

maximin eigenvalue criterion 
22

, are domain-based sampling.  

Feature of response-based sampling is to select a sample point or several 

points by only sequential scheme: Initial sample points are determined and then 

additional sample point is sequentially selected by specific criteria. This is often 

referred to as sequential sampling technique. Sequential sampling is originally 

developed to enhance the efficiency of sampling process by using the information 

of the existing metamodel.  

One of advantages of sequential sampling is that designer can decide 

systematically the number of sampling points during sampling process. We can 

monitor accuracy of metamodel during sample process because we add 

sequentially sample point. Thus, we can decide when the sampling process is 

terminated as accurate metamodel is obtained. In this case, validation strategy 

becomes an important research topic.  

In addition, sequential sampling technique requires cheap computational cost 

compared to one-stage optimal sampling. For example, let us consider sampling 

problem to decide n  sample points in dn  dimension. When we use optimality 

criteria such as entropy, distance and eigenvalue, one-stage sampling problem is 

to decide coordinates of all sample points, i.e., )( dnn ×  dimensional problem, at 

once. Moreover, computational cost of the sampling problem is extremely 

prohibitive as number of sample points and dimension of design variables 

increase. On the other hand, sequential sampling problem keeps less 
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computational cost because it divides this large-scale optimization problem into 

small-scale problem to find one or several sample points. Thus, in sequential 

sampling, computational costs increase linearly with respect to number of sample 

points and dimensionality. 

In category of response-based sampling often used in geo-statistics, infill 

sampling criteria are noticeable. A variety of infill sampling techniques 

sequentially locate a sample point to balance the improvement of current best 

point and global accuracy. To embody the concept, infill sampling criterion 

adopts the probability of improving upon best sample point. Note that best 

sampling point is usually local minimum. In this chapter, infill sampling such as 

Kushner’s criterion, expected improvement, WB1 and WB2 are explained.
11-15

  

Domain-based sampling is based on the space-filling concept that it evenly 

fills design domain with sample points. When optimality criterion is used, benefit 

of the domain-based sampling is to select sample points by both sequential and 

one-stage scheme. However, it is inefficient to determine all sample points at 

once, i.e., one-stage sampling because it cannot reflect the nonlinearity of original 

function, relative importance of design variables, and expected improvement of 

local optimum. Moreover, it is not easy for designer to decide the number of 

sample points that is enough to approximate nonlinear response. Thus, domain-

based sampling by using all-at-once scheme is suggested as an initial sampling 

before starting sequential sampling. 

To simply distinguish between domain-based sampling and response-based 

sampling, we need to check whether the result of sampling technique can apply to 

multi-response. Domain-based sampling evenly spreads out sample points over 

design domain. This feature can provide average prediction performance of 

metamodels for all response. However, because response-based sampling uses the 

metamodel of information of a response to approximate may not guarantee good 

accuracy of metamodels for other responses.  

3.1.  Domain-based Sampling 

3.1.1.  Maximum Entropy Sampling  

Let { }ns xxxX ,...,, 21=  be sampled set with density function )( sp X . Entropy of 

sampled set is defined as follows
21

: 

 [ ])(ln)( ss pEEnt XX −=  (51) 

where )(⋅Ent  denotes entropy. 
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Assuming that a random vector si Xx ∈  has multivariate density function, 

entropy criterion is derived as follows: 

 ( )VX
n

s eEnt )2(ln
2

1
)( π=  (52) 

where n  and V  represent the number of samples and covariance matrix of 

samples, respectively. Note that covariance matrix can be defined as the product 

of process variance and spatial correlation matrix. In sampling problem, the 

number of sample points is usually pre-determined. It means that n  is fixed 

during optimization. Therefore, by eliminating the constant terms of entropy 

equation, maximization of the entropy becomes  

 RMaximize  (53) 

where R  is the correlation matrix used in predictor of kriging. In maximum 

entropy sampling, correlation parameter is user-defined parameter. Design 

variables of sampling problem are all coordinates of sample points. 

Entropy was originally used by Shannon to quantify the “amount of 

information.” Note that maximization of the determinant of correlation matrix can 

be interpreted as selection of experiment to acquire the maximum amount of 

information. Intuitively, if the sample points are located in particular design 

domain, the information obtained from the sampling result will be poor. However, 

if sample points spread uniformly over design domain, much information can be 

obtained from the sampling result. 

Figs. 9 and 10 show illustration of maximum entropy sampling by Gaussian 

correlation function. For same number of sample points, sampling results depends 

severely on the choice of correlation parameter. In entropy sampling, therefore, 

proper correlation parameter is a prerequisite for arranging sample points 

uniformly throughout the design domain. It is interesting that the distribution of 

sample points is point-symmetric with respect to the center of design domain or 

symmetric with respect to a particular dotted line. 

Examples of maximum entropy sampling of 25 points by sequential scheme 

are given in Figs. 11 and 12. When initial samplings are different each other, 

sequential sampling may have different distribution of final sample points as 

shown in Figs. 11 and 12. 
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Fig. 9 Maximum entropy designs of 12 points: correlation parameters are assigned as 1, 10 and 50, 

respectively 

Fig. 10 Maximum entropy sampling design of 16 points: correlation parameters are assigned as 1, 

10 and 50, respectively 

 

Fig. 11 Influence of 9 initial sample points by maximum entropy sequential sampling 

Fig. 12 Influence of 16 initial sampling points by maximum entropy sequential sampling 
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3.1.2.  Maximin Eigenvalue Sampling 

Maximin eigenvalue sampling
22

 is to select sampling points by maximizing 

minimum eigenvalue of the eigen-problem for correlation matrix, i.e., 

0uR =− )( λ : 

 minλmaximize  (54) 

Here, minimum eigenvalue is theoretically larger than zero because correlation 

matrix R  is positive-definite.  

It is important to note that maximin eigenvalue sampling is a variant of the 

maximum entropy sampling. Recall that the determinant of correlation matrix is 

equivalent to the product of all eigenvalues as follows:   

 )0( 2121 nn λλλλλλ ≤≤≤<= ⋯⋯R  (55) 

 

 

Maximin eigenvalue sampling adopts only the first eigenvalue as sampling 

criterion. Therefore maximization of first eigenvalue, i.e., minimum eigenvalue, 

leads to effect to maximize entropy. Gaussian function is taken as spatial 

correlation function and its common correlation parameter is pre-determined as 

8=θ . As shown in Fig. 13, however, the sampling results show considerable 

 

(a) Maximin eigenvalue sampling design 

 

(b) Maximum entropy sampling design 
Fig. 13 Comparison of maximum eigenvalue and maximum entropy criteria for 8, 12, and 16 

sampling points 
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dissimilarity in comparison with those of maximum entropy sampling. 

Distribution of sample points obtained by maximin eigenvalue sampling is 

geometrically point-symmetric with respect to center point or line-symmetric with 

respect to a dotted line. 

Note that the geometric symmetry can be an evidence of optimal sampling 

design because the sampling result will be asymmetric when sampling points 

gather together in particular region or do not converge enough toward optimal 

solution. It is pointed that the symmetric characteristics doesn’t always mean 

global optimum but the solution is one of various optimum solutions. 

Fig. 14 shows the sequential maximin eigenvalue sampling for correlation 

parameters 3=θ  and 10=θ , respectively. For 3=θ , sampling results reveal 

slightly irregular distribution compared with those at 10=θ . However, as 

correlation parameter increases, sample distribution of maximin eigenvalue 

sampling tends to be identical to that of maximum entropy sampling 

 

3.1.3.  Maximin Distance Sampling 

Maximin distance sampling
23

 is to select sampling points by maximizing the 

minimum distance between any two sample points as follows: 

 

(a) 3=θ  

 

(b) 10=θ  

Fig. 14 Sequential maximin eigenvalue sampling design for 3=θ  and 10=θ  from 9 initial 

sampling points 
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 ),(min jidMaximize xx  (56) 

where ),( jid xx  denotes the distance between two sample points ix  and jx . To 

balance the magnitudes of the distance in each dimension, design variables are 

usually transformed into the normalized space dn
]1,0[ .  

Contrast to both maximum entropy sampling and maximin eigenvalue 

sampling, maximin distance sampling is not required to assign any parameter.  

 

 

In some cases, results of sequential maximin distance sampling are identical to 

those of other sampling techniques such as maximum entropy sampling and 

maximin eigenvalue sampling as you can see in Fig. 16. 

Sequential maximin distance sampling has many multiple optimum solutions 

during sequential optimization process. Because there are nine optimum solutions 

as shown in Fig. 17, additional nine sample points can be randomly selected. 

However, both maximum entropy sampling and maximin eigenvalue sampling 

tend to always locate sample point sequentially with specific regularity (See Fig. 

18): First sample points is filled around boundary and then last point is arranged 

at the middle of design domain. 

 

Fig. 15 Maximin distance sampling for 8, 9, and 12 sample points 

 

           (a)                              (b)                         (c) 

Fig. 16 Sequential maximin distance sampling from 9 initial sample points: initial sampling (a), 13 

sampling points (b), and 25 sampling points (c) 
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3.1.4.  Optimal Latin Hypercube Sampling 

Latin hypercube sampling is typical domain-based sampling that does not use the 

optimality criterion. Latin hypercube sampling
24

 was developed to estimate more 

efficiently the expected value of response of computer experiment than simple 

random sampling. Feature of this method is to cover the design domain without 

replicated coordinate values. The number of divisions in each dimension is 

equivalent to the number of sample points. Fig. 19 shows illustration of nine 

points by Latin hypercube. As shown in Fig. 19, the projection of sample points 

to axis of each design variable has the good uniformity.  

Moreover, it is computationally cheap to construct. As shown in Fig. 19, 

however, distribution of Latin hypercube may sometimes be poor because the 

level of sample points is randomly permuted. As a result, Latin hypercube 

sampling often produces poor space-filling in spite of good projection properties. 

 

 

 

Fig. 17 Example of sequential maximin distance sampling of 9 additional points, which has        

9-multiple optima 

1x

2x

1x

2x

 

                             (a)                                       (b) 

Fig. 18 Examples of Latin hypercube sampling: good Latin hypercube design (a) and bad Latin 

hypercube design (b) 
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Thus, optimal Latin hypercube sampling is suggested to select an optimal 

design among all possible Latin hypercube samplings. Optimal Latin hypercube 

sampling is a compromise between optimality criterion and Latin hypercube with 

the good projection properties.
25

 Optimal Latin hypercube sampling has some 

advantages. From the view of computational cost, optimal Latin hypercube 

sampling is usually more efficient than other optimal samplings since it evaluates 

optimal criterion for only candidates of Latin hypercube sampling. In addition, 

when entropy is adopted as optimal criterion, optimal Latin hypercube sampling 

does not produce erratic optimum solution that arises from improper choice of 

correlation parameter. For this reason, we suppose that Latin hypercube sampling 

scatters sample points enough throughout design domain. Fig. 20 shows the 

illustrations of 9 and 16 points optimal Latin hypercube sampling. The results 

represent both good projection and uniformity of sampling points within design 

domain.  

 

 

 

 
Fig. 19 Example of sequential maximum entropy sampling 
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3.2.  Response-based Sampling 

To explain the features of response-base sampling techniques, Branin function 

with two design variables as shown in Fig. 21 is chosen as test function. Maximin 

distance sampling with nine points is selected as an initial sampling. 

 

 

Branin function has three distinct global minimums with same function value 

as follows: 
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 ( ) 397887.0)475.2,42478.9()275.2,(275.12, ===− fff ππ  

3.2.1.  Mean Squared Error Approach 

Mean squared error approach is to select a new sample point with the largest 

uncertainty of prediction.
20

 This approach is applicable only when metamodel 

provides uncertainty of prediction. Criterion of MSE approach is given as 

 MSEMaximize  (58) 

  
Fig. 20 Examples of optimal Latin hypercube sampling: 9 and 16 sampling points 

 

Fig. 21 Branin function 
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where MSE  is mean squared error of kriging model from the existing sampled 

points. As shown in Fig. 22, MSE fills design domain with sample points by 

adding the point with largest uncertainty. Circle marker denotes initial sampling 

and x-maker a point sequentially selected by MSE criterion. Because MSE 

approach employs only stochastic prediction error, the tendency to sample around 

global optima is not found.  

 

3.2.2.  Infill Sampling Criterion 

Infill sampling criterion originally came from the branch of geo-statistics. A 

variety of infill sampling criteria searches for the minimum of the approximate 

model, the location of maximum uncertainty, or some compromise between these.  

To understand the concept of infill sampling, we quantify the probability of 

improving the current minimum value. Current minimum value is the response 

that has smallest value among sampled points. Fig. 23 describes the probability 

that response at the specific points will improve current minimum value. Here, we 

assume that the random variable is assumed to be normally distribution. We can 

clarify the improvement probability of current minimum value as follows: 

 

Fig. 22 Sampling results of mean square error approach 

 

        (a) 1st iteration              (b) 2nd iteration             (c) 3rd iteration 

 

       (d) 7-th iteration             (e) 10-th iteration            (f) 18-th iteration 
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 −
Φ=Φ

MSE

Yf
I

)(ˆ
min x

 (59) 

where )(⋅Φ  is normal cumulative distribution function. Stochastic variable I  is 

assumed to ‘be like’ the realization of random variable )(xY  with mean )(ˆ xY  

and standard deviation MSE . 

 

 

Kushner’ criterion 

Kushner first proposed the concept of improvement probability for one-

dimensional problem.
11

 Kushner’s criterion is to maximize the probability of 

improving upon the current minimum point, minf  by some amount of ε . This is 

quantified as 

 








 −−
Φ

MSE

Yf
Maximize

)(ˆ)( min xε
 (60) 

The value ε  is a parameter that may be chosen by the user. Usually, parameter 

ε  is preferred as from 0.1 to 1% of minf . Due to this reason, we can presume 

that the probability of improvement becomes so large around current minimum 

point because the uncertainty of prediction in the region approaches very small 

value. Fig. 24 shows the illustration of Kushner’ criterion with 1% margin. As 

shown from iterations 1 to 3, Kushner’s criterion tends to locate a sample point 

around current minimum point rather than local minimum of metamodel. 

 

minf

)(xY

x1x 2x 3x

Probability of

improvement

Kriging

Predictor

 

Fig. 23 Concept for improvement probability described by shades 
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Expected improvement 

The expected value of the improvement
14,15

 is defined as 

 






=

>+Φ−
=

00

0)()()ˆ( min

MSEif

MSEifIMSEIYf
EIMaximize

φ
 (61) 

where )(⋅φ  denotes the probability density function. Note that mean squared 

error becomes zero at sampled points. 

A glance at the expected improvement reveals two important trends. The first 

term is the difference between the current minimum and the predicted value 

multiplied by the probability that )(xY  is smaller than minf . For this reason, it is 

large where )(ˆ xY  is likely smaller than minf . The second term tends to be large 

where high uncertainty occurs. Thus, the expected improvement is large for both 

regions of likely improvement and regions of high uncertainty. It is helpful to 

enhance local accuracy of current minimum value and global prediction 

performance of metamodel over whole design domain. 

Let us figure out the principle of expected improvement for exploring both 

regions. First, assume that the minimum sampled point is closely around the true 

local minimum, but true local minimum is still unexplored. In this case, several 

 

        (a) 1st iteration              (b) 2nd iteration              (c) 3rd iteration 

 

   (d) 7-th iteration            (e) 10-th iteration            (f) 18-th iteration 

Fig. 24 Sampling results by Kushner’ criterion: ‘o’ and ‘x’ denote initial and sequential sampling 

points, respectively 
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iterations lead to sample points denser around optimum because only the first 

term is dominant: Second term of EI criterion vanishes since mean squared error 

MSE  around this region becomes nearly zero. However, once true optimum 

now is found, the two terms have reversed roles. In the neighborhood of the 

optimum, first term becomes vanishing at this time because improvement 

probability is close to zero: Numerator of improvement probability is small 

negative value, but denominator is nearly zero due to extremely low uncertainty. 

As a result, improvement probability decreases suddenly at this region. EI 

criterion samples at position with maximum uncertainty rather than around local 

minimum. These two metrics is helpful to explore not only local minimum but 

also the emptiest location in design domain.  

Results of iterations 1~3 are distinctively different from those of Kushner’ 

criterion. 

WB1: Locating the threshold-bounded extreme 

This criterion was proposed by Watson and Barnes.
12

 The objective is to locate 

points that maximize the probability that at least one of the infill samples exceeds 

some specified threshold.  

 











 −
Φ=

MSE

Yf
WBMaximize

)(ˆ
min

1

x
 (62) 

Note that the criterion is a special case of Kushner’s criterion for 0=ε . The 

behavior of this criterion is illustrated in Fig. 26. The results of WB1 criterion are 

very similar to those of Kushner’s criterion. 

WB2: Locating the regional extreme 

This criterion is to minimize the expected value of the smallest observation once 

the infill samples have been added: 

 






=

>+Φ−+
=

00

0)()()ˆ(ˆ
min

2
MSEif

MSEifIMSEIYfY
WBMinimize

φ
 (63) 

The criterion is the form that adds predicted value to EI criterion. Thus, it 

provides slightly more weight to local search than does the EI criterion. As shown 

in Fig. 27, this criterion tends to sample excessively many points in the 

neighborhood of current minimum value. As a result, after 18 iterations, the 

metamodel does not approximate other two minima exactly. 
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        (a) 1st iteration          (b) 2nd iteration             (c) 3rd iteration 

 

        (d) 7-th iteration            (e) 10-th iteration           (f) 18-th iteration 

Fig. 25 Sampling results by using expected improvement sampling: ‘o’ and ‘x’ denote initial and 

sequential sampling points, respectively 

 

 

        (a) 1st iteration           (b) 2nd iteration             (c) 3rd iteration 

 

        (d) 7-th iteration            (e) 10-th iteration             (f) 18-th iteration  

Fig. 26 Sampling results by WB1: ‘o’ and ‘x’ denote initial and sequential sampling points, 

respectively 
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4.  Engineering Application 

In this section, we consider metamodeling process of a practical engineering 

problem to maximize the frequencies of a vibrating circular plate. 

4.1.  Definition of Optimization Problem 

Let us consider a laterally vibrating circular plate that consists of plate springs and 

electromagnetic actuator as shown in Fig. 28. The plate spring exhibits lateral 

resonance phenomenon when the excitation frequency is close to first natural 

frequency. To maximize the power of resonance, first natural frequency is 

required to be larger than 250 )(Hz . 

The spring is subjected to both compressive and tensile load alternately by 

electromagnetic actuator. Since this loading condition produces the alternating 

stress, we must consider the fatigue life of laterally vibrating circular plate model. 

For fatigue analysis, S-N curve data that expresses relationship between 

amplitude of stress and fatigue life is necessary. 

 

        (a) 1st iteration           (b) 2nd iteration             (c) 3rd iteration 

 

       (d) 7-th iteration             (e) 10-th iteration            (f) 18-th iteration 

Fig. 27 Sampling results by WB2: ‘o’ and ‘x’ denote initial and sequential sampling points, 

respectively 
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To facilitate design optimization, however, we simply use static stress as 

design constraint. This is because many researches demonstrate that fatigue limit 

is approximately 50% of ultimate strength. As shown in Table 4, the material 

properties reveal this to be a reasonable assumption. In addition, we adopt safety 

factor of 1.6. Therefore, allowable stress constraint is specified as 300 MPa. For 

weight minimization of vibrating circular plate, we will approximate the three 

responses, i.e. mass, first natural frequency and maximum stress. As boundary 

condition, all degree of freedom on the edge of spring are fixed. For static 

analysis, concentrated load of )(1 N  is applied at the center of BNV model. 

Material properties of plate spring and magnetic are given in Table 3 and Table 4, 

respectively.  

 

For mass minimization, angle )( 1x  and width )( 2x vibrating of circular plate are 

selected as design variables as shown in Fig. 29. 

  
Fig. 28 Finite element model of laterally vibrating circular plate 

Table 3 Material properties of vibrating circular plate spring 

Material Beryllium Copper 

Modulus of elasticity, E 128 )(Gpa  

Poisson’ ratio, ν  0.29 

Yield strength, Yσ  758 )(Mpa  

Mass density, ρ  8250 )/( 3
mkg  

Ultimate strength, ultσ  966 )(Mpa  

Endurance limit, eσ  430 )(Mpa  

 

Table 4 Material properties of the magnetic 

Material Steel, carbon 

Modulus of elasticity, E 210 )(Gpa  

Poisson’ ratio, ν  0.28 

Mass density, ρ  7800 )/( 3
mkg  

 



T. H. Lee and J. J. Jung 478 

Finally, we formulate the optimization problem of vibrating circular plate as 

follows: 
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4.2.  Metamodels of Laterally Vibrating Circular Plate 

For metamodel-based design optimization, maximum entropy sampling, maximin 

distance sampling and maximin eigenvalue sampling are used to approximate the 

three responses. As response-based sampling, mean squared error and expected 

improvement sampling are adopted to compare with results of domain-based 

sampling. All sampling techniques sequentially add sample points. Full factorial 

design of 3 levels is employed as initial sampling and the number of total sample 

points is 25.   

Fig. 30 shows approximation of three responses by sequential mean square 

error approach. Because mean squared error approach is response-based sampling, 

sampling results for three responses are different from each other. Mean square 

error approach tends to locate many sample points on the boundary of design 

domain. This is because mean square error generally has large value around the 

edge of the region. Approximation of mass is linear while those of maximum 

stress and frequency are slightly nonlinear. In approximation of stress, however, 

scarce sample points in the middle of design domain bring about erratic 

approximation. 

 

1x

2x

 
Fig. 29 Description of design variables for optimum design of vibrating circular plate 



Kriging Metamodel Based Optimization 479 

 

Maximin distance sampling and maximum entropy sampling show same 

sampling results, where distribution of sample points is equivalent to that of grid 

sampling. Two approaches evenly fill design domain with sample points for 

approximation of three responses. Two approaches approximate stress and 

frequency smoothly than the mean square error method. 

Expected improvement sampling shows many replications around minimum 

sample points. However, the approximation does not show inaccurate 

performance because the behavior of original function itself is nearly linear. If the 

original function shows high nonlinearity, choice of initial sampling is very 

important to approximate the response well by the expected improvement. 

To verify accuracy of kriging models, R-square is employed:  
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where iŶ  is the corresponding predicted value for the observed value iY  at 

validation point. Y  is the mean of the actual value at validation points and pn  is 

the number of validation points.  

 

 

                 (a)                        (b)                           (c) 

Fig. 30 Approximation results of mean square error approach: (a) mass, (b) stress, and (c) first 

frequency 
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             (a)                          (b)                           (c) 

Fig. 31 Approximation results of maximin distance sampling and maximum entropy sampling:   

(a) mass, (b) stress and (c) frequency 

Fig. 32 Expected improvement sampling: (a) mass, (b) stress, and (c) first frequency 

 

 

            (a)                           (b)                            (c) 
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Validation data are obtained by grid sampling of 2020 × . As R-square 

approaches 1, kriging model become accurate. Table 5 denotes the R-square of 

various approximations. The results show that approximations for three static 

responses are quite accurate. However, approximation of stress is relatively 

inaccurate than mass and frequency. 

4.3.  Optimum Results Based on Metamodels 

Fig. 33 shows contour plots of objective function (solid line) and the boundary of 

active constraint (dotted line). Feasible region is the upper left portion of design 

space and optimum point is denoted by square dot.  

Table 6 represents optimum solution obtained by conventional optimization 

based on high-fidelity simulation model. As shown in Fig. 33, all sampling 

techniques can find optimum solution well for this example. 

Table 5 Validation results by R-square 

 Mass Stress First Frequency 

Mean square error 1 0.889 0.967 

Maximin distance sampling 0.998 0.879 0.980 

Maximum entropy sampling 0.998 0.879 0.980 

Expected improvement 0.999 0.8813 0.974 

 

 

            (a)                            (b)                         (c) 

Fig. 33 Optimum results by various sampling techniques: mean squared error (a), maximin distance 

and maximum entropy (b), and expected improvement (c) 

Table 6 Optimum solution of conventional optimization 

(deg)1x  )mm(2x  )volume(mm
3  )stress(MPa  Hz)frequency(  

60 0.6251 113.223 299.98 276.132 
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5.  Concluding Remarks 

To replace complicated simulation models that are time consuming to analyze, we 

have presented a metamodel, the so-called kriging metamodel, to achieve an 

optimum solution within reasonable budget. Features of kriging metamodel are 

systematically described and mathematical derivation is performed to enhance the 

understanding of kriging metamodel. To pre-determine sampling points that are 

necessary for metamodel, domain-based sampling and response-based sampling 

strategies and their methods are considered.  

To illustrate an engineering application of the kriging model, optimum design 

of a laterally vibrating circular plate is employed. After accuracy of the kriging 

model for the problem is verified, kriging-based optimization is performed. Then 

we learn that the optimum results are quite reasonable compared to those obtained 

by conventional optimization. 
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Appendix 

Let M  be )()( npnp +×+  block matrix that is defined using smaller matrices 
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M  exists and is expressed in terms of pnnppp ××× CBA ,,  and 
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Since IMM
1 =− , we get the following equation  
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Multiplication of corresponding matrices in blocks yields 

 ICF =T  (A.4) 

 0DF =T  (A.5) 

 0RCFA =+  (A.6) 

 IRDFB =+  (A.7) 

Because square matrix R  is symmetric and positive-definite, the matrix is 

invertible. 
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If we substitute C  and D  matrices into Eq. (A.4) and Eq. (A.5), we obtain  
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Inserting above equation into Eq. (A.8) is  
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Therefore, the inverse of block matrix M  becomes 
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CHAPTER 17 

ROBUST DESIGN BASED ON OPTIMIZATION 

Byung Man Kwak 

Department of Mechanical Engineering, Korea Advanced Institute of Science and 

Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, South Korea 

E-mail: bmkwak@khp.kaist.ac.kr 

The goal of robust design is to make system performance least sensitive to 

uncertainties. There is, however, no dominant formulation. One approach is to 

minimize the standard deviation of the performance and the other a reliability-

based approach where the reliability in terms of a limit function is maximized or 

it is imposed as a probabilistic constraint. As methods that do not require 

probability information, a sensitivity-based formulation using gradient index is 

introduced with a MEMS example comparing yield rates. A robust design in 

terms of relative safety index that is defined by a new concept of allowable set 

in the random variable space finds interesting applications to multi-body 

mechanism design and human motion trajectory. As a reliability-based 

approach, a recently developed moment method based on full factorial design of 

experiments is greatly improved in efficiency by using adaptive response surface 

constructions. An application of tolerance synthesis has illustrated the method 

and its practicality for industrial problems. 

1.  Introduction 

In the design of a mechanical or structural system, once a design is obtained, it is 

manufactured and then used by various users. The design, however, can not be 

made as specified due to uncertainties in materials and manufacturing processes. 

Also environmental conditions for operation of the product are constantly 

changing. Not only loading conditions but many noise factors such as 

temperature, corrosion, wear and aging effect are involved during the life of a 

product. All these uncertainties bring in uncontrollable changes in performance 

and system characteristics. Robust design conceptually refers to a process of 

obtaining a product performance that is least sensitive to changes of 

environmental conditions or noise.
1
 How can one quantify robustness? How can 

one formulate the problem?  



B. M. Kwak 

 

486 

2.  Defining Robustness and Classifying Methods 

Insensitiveness of performance to noise may be paraphrased as minimum scatter 

of performance, that is, standard deviation. So in this sense robust design may be 

translated as minimizing the standard deviation of a performance. In Fig. 1(a), 

design B is considered more robust than design A, because the standard deviation, 

Bσ , of design B is smaller than that of design A. Note that in this case to obtain 

σ , probability information of noise variables is required. A 100% robustness, 

although impossible, means that performance does not change ( 0=σ ) whatever 

changes happen in noise factors. Another view of robust design is to maximize 

the reliability that a performance is within a prescribed acceptance range or a 

specification. In Fig 1(b), the performance needs to be enclosed within the 

specified region as much as possible under noisy conditions. This actually 

implies minimizing the standard deviation, but the approach is different from 

purely minimizing standard deviation. This second problem belongs to reliability 

based design optimization (RBDO). Here, an acceptable level of reliability is first 

prescribed and then the system is designed in such a way that the reliability is 

larger than this level or simply maximized.  

 

Both of the formulations need probability information. It is usually the case, 

however, that probability information is not available or hard to get. Therefore 

formulations without using detail probability information of random variables are 

a preferred choice for practical reasons and robust design often refers to this 

situation. The criteria for the “robust,” however, are somewhat obscure in the 

literature. If one goes to consider constraints, further variations of formulations 

are possible. For example, a hybrid robust design formulation can be possible 

where a probability constraint with target reliability is imposed. 

For the purpose of classification, robust design in the context of optimal 

design is arbitrarily categorized depending on whether any data of probability 

Target

Design B

Design A

Target

Design B

Design A

 Spec.L U

Pr ≥ Pgiven

Spec.L U

Pr ≥ Pgiven

 
 

Fig. 1. Definition of robustness: (a) Robust design. (b) Reliability based design. 
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distribution is necessary or not, as summarized in Fig. 2. Since there is no 

dominant forms yet, the user has to select what he feels best describes his 

decision goal. 

In this chapter, first non-probabilistic approaches are introduced with a 

description of some recent ones, and then reliability based approaches. For the 

non-probabilistic methods, the basic idea is using some approximate quantity that 

indicates the standard deviation explained above. The most well-known and 

successful concept in robust design is the Taguchi method. Quality Engineering 

as Dr. Taguchi called it started in 1950’s and it is an established procedure 

utilized by major companies and a topic of many text books authored from both 

industrial and academic sectors.
 2
 Quality of a product is viewed in terms of total 

loss to the society; occurred due to functional variation and harmful side effect. 

The Taguchi method is data driven and orthogonal array based design of 

experiment (DOE) method with the concept of signal-to-noise ratio. The original 

Taguchi method has been modified to be fit for structural optimization,
3
 

especially to deal with constraints, which have not been considered in the usual 

Taguchi method. In this case, an iterative use of the Taguchi method is necessary 

to translate and shrink the solution range, while constraints are treated as a 

penalty term in the objective function. The method is not meant for exact 

optimum, but turns out to be very robust for obtaining near optimum solutions. It 

is also found that existence and non-existence of a feature in a structure can be 

taken as levels of a design parameter and this can be utilized for best topology 

selection under limited topology options.
4 
Another development is combining the 

Taguchi method with response surface method. Although the Taguchi method is 

Probabilistic approaches

- Deviation minimization

- Reliability based optimization

Robust design methods

- Taguchi method*

- Sensitivity based method
- Allowable set based method

- Others

Non-probabilistic approaches

Probabilistic approaches

- Deviation minimization

- Reliability based optimization

Robust design methods

- Taguchi method*

- Sensitivity based method
- Allowable set based method

- Others

Non-probabilistic approaches

 
Fig. 2. Classification of robust design methods. Taguchi method* is not an optimization based 

method. It may be considered as a probabilistic approach where standard deviation is obtained by 

DOE using orthogonal arrays. 
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a very important tool for design, it will not be covered here because it is not 

optimization-based per se.  

A good approximate measure of standard deviation is using derivatives, often 

called sensitivity. This subcategory will be called sensitivity based robust design. 

Here, most of the formulations involve performance functions and their 

derivatives with respect to noise variables. One form is to optimize a weighted 

sum of the function value and the magnitude of its sensitivity.
5
 The philosophy is 

that reduction of sensitivity implies increase of robustness.
6
 Like robustness of an 

objective function, that of constraints is also important.
7,8

 Even though there is 

some change in the noise conditions, the constraints in hand still need to be 

satisfied. Several definitions of sensitivity index are possible in terms of the 

mean and scatter.
9,10

 A multi-objective formulation is also proposed with the 

function value and its derivative.
11

 A similar method was applied to robust 

optimization of electromechanical device.
12

 As a slightly modified approach, the 

signal-to-noise (S/N) ratio in the Taguchi method is replaced by an objective 

function with the mean and standard deviations of the quality characteristics.
13

 In 

addition to the usual methods of using design sensitivities for optimization, 

obtaining a global solution is often necessary, and genetic algorithm is a good 

choice for example.
14

 

Another subcategory of formulations, which is called allowable set based 

robust design, is not directly related to standard deviation but utilizes a norm 

called “relative safety index” that is indicative of robustness. This is based on a 

newly defined concept of allowable set.
15

 Initially an allowable load set is 

considered, where load parameters are considered as uncertainty. Once this 

concept is given, a relative safety index is defined as the distance from the design 

load to the boundary of the allowable set. A robust design with this concept is 

then to maximize the relative safety index. In addition to multi-body mechanism 

examples, an interesting problem of finding the trajectory of a lifting motion of a 

human is studied. 

The reliability-based approach of robust design is most comprehensive and 

can be made to be consistent with robust design, by a quantitative measure for 

robustness using probability. Naturally the resulting formulation falls in the 

category of general probabilistic optimization, to be treated in other chapters in 

this book. In the present chapter, however, a general efficient procedure recently 

established by the author based on moments calculated by design of experiments 

is presented with an application to geometric tolerance synthesis.
16

 This includes 

an efficient probability analysis and optimization using the previously calculated 

design of experiment results. 
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Compared to the Taguchi method, studies on optimization based robust 

design has a short history, but as market competition becomes keen and 

robustness or yield rate of new products such as MEMS is a key issue, this topic 

becomes popular in these years.  

There are several others such as robust design using information-gap based 

method by Ben-Haim,
17

 model-based robust design,
18

 and stochastic optimization 

as discussed in a recent survery.
19

 It is noted that the classification and methods 

introduced here are not meant to be exhaustive and thus made at the discretion of 

the author, mainly covering the topics of his interest. 

3.  Sensitivity-based Robust Design Formulation 

A logical procedure of a robust optimal design is to start with a deterministic 

optimization, and then to perform robust design. Sensitivity-based methods are 

very efficient and simple because they do not require probability information. For 

this purpose, a gradient index (GI), which is a function of gradients of 

performance functions with respect to uncertain variables, is minimized.
 
The 

level of constraint feasibility is also enhanced by adding a term determined by a 

constraint value and its gradient index. A practical formulation is illustrated 

below with an example of MEMS device where robustness is crucial for high 

yield rate but information on uncertainties is particularly hard to obtain. 

3.1.  Formulations: Sensitivity and Feasibility Robustness 

A general optimization problem to minimize an objective function subject to 

constraints is expressed as 

 

( )
( )

UL

j mjgtosubject

fMinimize

xxx

zx

zx

≤≤

=≤ ,,2,10,

,

…  (1) 

where x is an n-dimensional vector of design variables and z is an l-dimensional 

system parameter vector. xL and xU denote the lower and upper bounds of the 

design variables, respectively. The deterministic optimum, which does not take 

into account the effect of uncertainties in design variables and system parameters, 

might be very sensitive to these variations.  

A gradient based robust design formulation by Han and Kwak
20,21 

 is taken as 

a typical sensitivity based robust design optimization. A gradient index (GI) is 
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defined as the gradients of performance functions with respect to stochastic 

variables as follows: 

 Nidud i
i

,,2,1maxGI …=Φ=  (2) 

where Φ, ui, and N denote a performance function, uncertain variables, and the 

number of uncertain variables, respectively. A robust design formulation 

corresponding to the deterministic one shown above is to use the gradient index 

and a target value of the objective function as follows:  
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A penalty term, Ψj(gj), as suggested below, is added in the formulation to 

enhance the feasibility robustness for each important constraint: 
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Figure 3 illustrates a typical shape of Ψj(gj). This is a linear function of gj 

with two constants, κj and GIgj, for a critical region defined by a band (CT ≤ gj ≤ 

x
1

Feasible region
g<0

x
2

Infeasible region
g>0

g=CT

g=0

g=CTMIN

   
g

j
0CT CTMIN

Ψ
j
(g

j
)

κ
j
GI

gj

 
(a) Constraint tolerance.    (b) Definition of Ψj(gj). 

Fig. 3. Robustness of constraint feasibility.20 
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CTMIN). A value of κj in the range of 0.5-2.0 was used in the following 

examples. 

3.2.  Examples: MEMS Applications
20,21

 

A resonant-type micro probe
22

 to measure surface profile of a specimen, 

particularly inner region of a high aspect-ratio micro-hole is studied. This device 

is operated based on a stress-induced frequency shift of resonators which is 

caused by deflection of the cantilever probe when it scans surfaces of a specimen 

(Fig. 4(a)). Therefore, the measurement sensitivity of the micro probe is derived 

as follows: 

 ( ) ( ) 100% 112 ×′−′=∆ fffff  (5) 

where f1, f'1, and f'2 are the first resonance frequency of the stress-free probe and 

the first and second resonance frequency of the deformed state, respectively. 

 

The overall procedure of a robust design starts with a deterministic 

optimization problem to maximize the sensitivity with a target value, M, subject 

to some constraints as formulated below: 
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Silicon substrate
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  (a) Operation principle.              (b) Design variables for optimization. 

 

Fig. 4. The resonant-type micro probe example.20 
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where f1, f3, and σmax denote the first and third natural frequencies and the 

maximum of von Mises stress, respectively. The fourth constraint implies that the 

first resonance mode of f1 must correspond to the in-plane transverse vibration, 

fΓ1i, of the resonator. The nine design variables used are described in Fig. 4(b). A 

target value, M = 6%, is used in the optimization. The achieved measurement 

sensitivity is 5.99% while all the constraints are satisfied. The optimized design 

is twice bigger in width than the initial one. 

The gradient information summarized in Fig. 5 shows that the performance, 

∆f/f, becomes more sensitive to the design perturbations than that of the initial 

case, especially for variable x6. This implies that this deterministic optimum can 

be worse when a small fabrication error is involved. This is usually the case with 

deterministic optimum. Therefore, robust design optimization is the next task, 

which aims to simultaneously achieve the target performance and robustness of 

performance characteristics with respect to fabrication errors, and defined as 

follows, from (3) and (6): 
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Two cases are considered; robust optimum 1 does not take into account the 

feasibility robustness, but robust optimum 2 does include a penalty term with a 

factor of κ1=κ2=κ3=2.0 for the robustness of constraints. The gradient index of 

the measurement sensitivity decreases from 3.25 at the deterministic optimum to 
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Fig. 5. Gradient of ∆f/f to uncertain variables.20 



Robust Design Based on Optimization 

 

493 

about 1.8% µm
-1

 at robust optimums. Due to space limitation, the detail results
20

 

are suppressed. To investigate the robustness of the deterministic and robust 

optimums further, yield rate and violation probability of constraints are estimated 

from Monte Carlo simulations, assuming normal distributions of all variables. A 

simulation yield is defined as follows to determine the number of designs 

accepted as satisfactory micro probes. 

 (%)100
N

)NN(N
100

N

N
(%)SY

t

S4gt

t

ac ×
+−

=×=  (9) 

where Nt, Ng4, and NS denote the number of total simulations, violations in 

constraint g4 in (6) and designs that satisfy g4 but ∆f/f is out of the acceptable 

range, respectively. The number of samples taken is 10000. 

Variations of the design variables taken are ∆x1=∆x2=∆x3=∆x4=±2.0, 

∆x5=∆x6=∆x7=∆x8=±1.0 and ∆x9=±0.5µm, where ∆ means 3 standard deviations. 

Acceptance range of the target performance taken is between 5 and 7% as shown 

in Fig. 6. 

Regardless of the magnitude of the assumed design variations including those 

not presented here, the three optimums have practically the same mean ∆f/f, and 

the deterministic optimum shows the largest standard deviation. Robust 

optimums 1 and 2 have almost the same mean and standard deviation of ∆f/f, but 

the violation probability of constraint g2 has decreased from 49.5% to 11.9% 

when the term Ψj(gj), is added for the feasibility robustness in robust 

optimization 2. Most importantly, the simulation yield improves from 63.6% at 

the deterministic optimum, to 89.5% and 88.9% at the robust optimums 1 and 2, 

respectively. These results illustrate that the sensitivity based robust optimal 
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Fig. 6. Comparison of robustness by a Monte Carlo simulation for design variations.20 
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design method is very simple to use but produces practical solutions as validated 

in terms of the simulation yield rate. For more information on the design details 

and other applications refer to Han and Kwak.
20,21

 

4.  Robust Design by Allowable Set Concept 

4.1.  “Allowable Load Set (ALS)” Defined 

Unlike the methods described up to now, Kwak and Kim
15

 invented a new 

concept called “Allowable Set,” to deal with the design problems with 

uncertainties. In this chapter, the “allowable load set” limited to load uncertainty 

is introduced. 

Given a structure and knowing the kind of loads at prescribed locations, one 

can define the set of allowable loads as: 

 }0))(,(:{}0))(,(:{ ≤=≤= XzXXXzXGX i
i

GALS ∩  (10) 

This set is defined on the load space. Here, z(X) denotes state variables which 

are functions of load, X. If the variable load can be described by two independent 

parameters, then the load space is two-dimensional. A simple example of ALS 

for a lower control arm of a vehicle is demonstrated in Fig. 7(a), where the load 

is applied at the center of a smaller hole connecting to chassis. This is a two-

dimensional case with the direction and magnitude of the load. It is noted that an 

ALS is a truncated cone, containing zero. This property can be utilized in 

geometrically constructing an ALS. 

In the ALS analysis problem, we are interested in constructing or visualizing 

an ALS for a given structure. For linear elastic materials, the construction of ALS 

for multi-body mechanisms, such as an excavator operating mechanism, is very 

efficiently done by using element concept and assembling procedure like in finite 

element method. Since in usual mechanical systems, the load applied has only a 
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Fig. 7. (a) ALS of the lower control arm. (b) Definition of RSI. 
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few parameters, the ALS can be very easily calculated and visualized for any 

configuration of the system. 

4.2.  Relative Safety Index as a Measure of Robustness 

In the ALS design problem, we want to design the ALS by changing structural 

design variables. We want to specifically define “relative safety index (RSI),” as 

a criterion for robustness, because it is our intuition that the larger this value is, 

the more margin of safety there is. Therefore the robust design problem under 

this criterion is to maximize RSI. The RSI is the distance from a prescribed mean 

or design load to the boundary of an ALS. In Fig. 8(b), the RSI is the minimum 

of the distances, iγ , to boundary segments. In the case of general uncertainties, 

one can use an “allowable set” of random variables instead of the ALS. The 

relative safety index remains the same, the distance to the boundary from the 

most probable point, that is, the mean point. The RSI for a mechanism may be 

defined as the minimum distance over all possible operating configurations of the 

system and this opens a new area of interesting applications as illustrated below. 

A very important version of the RSI method is obtained by using a 

normalized safety index which is a transformed distance in terms of the 

functional value at the mean load. If there are more than one limit functions, 

however, there is difficulty in weighting or balancing the constraints. This topic 

requires more research and is not covered here. 

4.3.  Application to Multi-body Mechanism Design 

Robust design of multi-body systems in the context of ALS is a case where the 

smallest RSI over all possible configurations along all possible trajectories need 

be calculated. So a global optimization is needed to evaluate the overall RSI. In 

the mechanism design, the constraints are divided into geometric constraints and 

constraints related to state variables. For a constraint involving state variables, 

))(,( XzXiG , RSI iγ  can be calculated by choosing the minimum value among 

several local solutions of global optimization. 

The objective of the robust optimization is then to maximize the overall RSI 

of the multi-body system: 
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where n is the number of design variables, N1 is the number of constraints 

involving state variables, N2 is the number of  geometric constraints, 1+nb  is an 

artificial design variable which effectively denotes the overall RSI, jNg +1
 are 

geometric constraints, and iγ  denotes the relative safety index of the i-th 

constraint. Depending on the problems, the following transformed problem may 

be used: 
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where 

 
}:{

,,1),,,(maxmax

1

1

+

∈

≤−=

==

n

ki
D

i

bD

NigG
k

XXX

bqX
Xq

⋯

 (13) 

where X is the mean value of loads. The configuration, kq , which maximizes gj 

is called critical. For purpose of numerical implementation, the set of critical and 

near critical configurations are kept as active constraints, whose number varies 

from iteration to iteration. The algorithm first finds all critical configurations and 

then, imposing those constraints at critical configurations, solves (12) for the next 

improved design. This algorithm, however, does not guarantee convergence to a 

global solution of (13).  

4.4.  Example: Excavator Boom Design
23 

There are many uncertainties when an excavator is at work. At the tip of the 

bucket, loading conditions drastically vary as the working configuration changes. 

The above design methodology is applied to the design of a three-dimensional 

boom of an excavator. 

 
Fig. 8. (a) CAD model of the boom. Twenty potential critical points selected to check stress 

constraints. (b) The set of design variables selected from CAD parameters representing the shape of 

the boom.23 
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Assume that all bodies are rigid except the boom. Stress constraints are 

imposed at twenty points, as marked in Fig. 8(a). A geometric constraint imposed 

is that the total mass of the boom must not exceed the value of an existing initial 

design. Design variables are selected to represent the shape of the boom as shown 

in Fig. 8(b). The number of active constraints varies during optimization. The 

relative safety index has been improved enormously by 52.5%. 

4.5.  Example: Lifting Motion Trajectory of a Human Model 

The concept of the ALS suggests a new hypothesis or principle that can help 

determine human motions, which look natural. This is an example of “robust path 

design” of a multi-body mechanism. It is illustrated by an example of finding 

robust working postures when a biomechanical model lifts an object. The result 

is compared with that obtained by a deterministic optimization method. This 

example is cited from the article,
 24

 and for reasons of space, only the results are 

introduced. 

A simplified biomechanical model is used and composed of body-segments 

namely; lower leg (LL), upper leg (UL), trunk (T), upper arm (UA) and lower 

arm (LA). All bodies are connected to each other by revolute joints. The spine is 

of special interest here, to consider low back pain. Most of disc disorders occur at 

either L5/S1 or L4/L5. The spine is modeled as a two bar linkage (Fig. 9(b)) to 

consider the disc. The linkages are replaced by beam elements using cylinder 

elements. The load at L5/S1, for example, can be calculated with the abdominal 

force, the erector spine muscle force and the resultant force at the shoulder joint. 
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Fig. 9. A biomechanical model. (a) The model has five body segments. (b) Spine model using beam 

elements.22,23 
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The model has six independent variables: the angles of bodies and the length 

of trunk. These are thus six design variables. To make a lifting motion, an 

equality constraint for the lifting height is given. To evaluate the constraint 

functions, moments and inter-segmental forces are calculated at the ankle, knee, 

hip, shoulder and elbow. 

Assuming that the man lifts a 20kg object from the ground to 1.2m high, two 

different optimizations as shown in Table 1 are performed. Formulation 1 is the 

new approach that maximizes the relative safety index to reduce the effect of 

loading uncertainties. Formulation 2, which is conventional, maximizes the 

minimum value of constraints. 

The optimum paths are calculated by raising the hands from the ground to a 

height of 1.2m with an increment of 0.4m. The set of design variables, that is, 

joint angles, corresponding to the worst postures having the minimum RSI is 

found by the global optimization method. Among several local solutions, the one 

that seems most natural kinematically is taken as the optimal path. The two paths 

in Fig. 10(a) obtained by the two formulations show some differences as 

expected. 

To investigate the results in detail, the ALS are drawn with a scale factor 

when the height is 0.0m and 0.4m (Fig. 10(b)). The head of the load arrow 

denotes the location of the mean load. Figure 10(b) reveals that in the posture 

obtained by Formulation 2 the load is near the borders of constraints 5 and 9, 

which are related to shoulder and spine. That is, the man with these postures is 

more liable to hurt than those by Formulation 1. Researchers in ergonomics 

recommend workers to take the postures like those by RSI. Considering 

instability and narrow safety margin that might occur when lifting a heavy load, 

the postures that adopt Formulation 1 seem more natural and safer than those by 

Formulation 2. It is thus our conclusion that maximizing the RSI is one of the 

guiding hypotheses suitable for predicting a human motion, comparing with  

 

Formulation 1(RSI) Formulation 2 (Conventional) 

1max +nb  
1min +nb  

inb γ≤+1
 

in gb ≥+1
 

0)( ≤bjG  0)( ≤bjG  

Table 1. Human motion formulations. 
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those previously used in the literature. This hypothesis essentially says that a 

human in natural conditions will move in a way that he is as far off as possible 

from potential dangers. 

To consider the optimum path of a man who has backache, assume that he can 

endure only 2400N compressive force at L5/S1 instead of 3400N in the normal 

condition. It is shown that the posture of this man tends to be straightened up  

(Fig. 11) such that the object becomes closer to the body as should be. 

5.  Reliability-based Robust Design Formulation 

Reliability refers to the probability of a system or a component to perform its 

originally specified function during a prescribed period of time. In structural 

design, the criterion is given by a function, often called a failure function or a 
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Fig. 10. (a) Lifting postures by RSI on the left vs. conventional on the right. (b) ALS at two 

postures by RSI on the left vs. conventional on the right. 

 

 

normal disordernormal disorder  
Fig. 11. Comparing lifting postures of a normal and a man with low back pain. 
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limit state function, denoted by ( )G ⋅ . The probability of failure, fP , is defined as 

[ ]Pr ( ) 0fP G= ≤x . Then the reliability is 1 fP− . A standard form of a problem in 

structural design is as follows:
 26
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where W , 
i

H  and jG  denote the objective function, equality constraint and 

inequality constraint respectively and b , z  and x  are the design variable, state 

variable and random variable. The first probability constraint refers to a system 

failure mode, while the second to a component failure mode. 

The first task is how to obtain the probability related to an arbitrary 

function ( )G x , and the second is how to solve the nonlinear programming 

problem. The Monte Carlo simulation turns out to be extremely time consuming 

when a nontrivial problem is considered. Also the accuracy is not good even with 

a very large sample. Notwithstanding these shortcomings, the Monte Carlo 

simulation is often used for comparison purpose especially for small size 

problems, since there is usually no other simple direct method. Next, methods 

based on design of experiments and first and second order reliability method 

using a Taylor expansion are popular. In the first order reliability method 

(FORM), the limit function is linearized, referenced at the most probable failure 

point (MPP), which is nearest to the origin in the reduced variable space. This 

space is obtained by transforming the physical random variable space into a 

standard normal variable space with a mean of zero and a standard deviation of 1. 

The distance is reliability index, β . One can then obtain the probability from the 

cumulative distribution function, i.e., ( )fP β= Φ − . In terms of the reliability 

index, a probability constraint in Eq. (14) can be replaced with the following: 
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T
u u
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                 (RIA)                    (15) 

where u  denotes the normalized random variable vector and p  is a prescribed 

level of probability. This can be further transformed into a better type of sub-

problem, first developed by Lee and Kwak
26

 in 1987. It is noted that this same 
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formulation was later rediscovered by Tu and Choi
27

 and called as Performance 

Measure Approach (PMA). This transformed problem is maximizing the failure 

function or performance function with a fixed norm constraint, whose value is 

dependent only on the prescribed failure probability, p: 
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            (PMA)          (16) 

This second formulation is sturdy and works better than the RIA, especially for 

very low probability. The RIA has been most popular in structural design area, 

but the PMA is getting more attention among researchers. Recently, however, an 

efficient method of reliability analysis and optimization based on full factorial 

design-of-experiments has been developed as treated below.
16

 

5.1.  Moment and Probability Calculation by Multi-point Information 

In the moment method for reliability analysis, one can obtain structural reliability 

by fitting the information of a few statistical moments of a system response 

function in an empirical distribution system, such as the Pearson system, Johnson 

system, and so on. To obtain the statistical moments, usually the system response 

function should be evaluated for a set of well-designed calculation points, often 

called designed experimental points. The methods are based on the numerical 

integration using Gaussian type quadrature formula. Since the product quadrature 

rule for a multiple random variable case is very expensive, however, alternative 

methods have been developed. The location of the evaluation points and the 

corresponding probability weights can be found as follows. 

The k -th order statistical moment of a system response function ( )g x  is 

defined as  

 { } [ ]( ) ( )
kk

E g g f d
∞

−∞
= ∫ x

x x x  (17) 

where ( )f
x

x  is the joint probability density function of the vector of random 

variables, x . For a one random variable case, the moment can be calculated as, 

 { } [ ]
1

( )
m

kk

i i

i

E g w g µ α σ
=

≅ +∑  (18) 

where 
i

w  and 
i

µ α σ+  denotes the probability weight and location of evaluation 

point, respectively, and m  the number of integration points. Taguchi
28

 proposed 
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a method using 3 point information for normally distributed random variables 

and later D’Errico and Zaino
29

 obtained improved results as 

{ }1 2 3 1 2 3, , , , ,w w w α α α = { }1 6,4 6,1 6, 3,0, 3− . To obtain an accurate 

approximation up to the 4th moment, at least 3 nodes are necessary. The optimal 

quadrature points and probability weights, applicable for general distributions, 

are found by solving the following,
16
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where 
k

M  is the k -th order central moment of variable, x . These equations can 

be arranged by replacing 
i

µ α σ+  with level 
i

l  as follows: 
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where µ , σ , 
1

β , and
2

β  denote the mean, standard deviation, skewness and 

kurtosis, respectively. By solving this system of equations, we can get the levels 

and weights providing integration order up to 5, but it is hard to find the solution 

in a simple, closed form. Seo and Kwak
16

 replaced the condition on the fifth 

moment, Eq. (25) with the condition that the mid-level 
2

l  be located at the mean 

of the variable and found an explicit form of solutions:  
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The levels and weights thus found are very simple and easy to use, and also 

applicable for non-normal variables. However, it is found that the simplifying 

assumption putting the mid-level to the mean can cause problems in some cases. 

First, since the requirement on the fifth moment has been ignored, the integration 

order provided by the levels and weights is lowered when dissymmetric 

distributions are considered.  Second, for some dissymmetric distributions such 

as exponential, the first level can be located outside the domain where the 

random variable is defined. With this reason, an effort to solve the system of 

equations without the simplifying assumption has been made with numerical 

methods. Furthermore, the integration order of the method can be increased by 

adopting more integration points, say, using 5 or 7 levels. These methods, 

however, require much more function evaluations, which seem a burden for 

practical consideration. 

When there are n  random variables, the moments of the response function 

can be calculated using three point information and the product quadrature rule as 

follows: 
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5.2.  Reliability Calculation and Optimization by Moment Method 

Once the four statistical moments are obtained, the probability density function 

( )f x  of the system response function can be obtained using a suitable empirical 

distribution system such as the Pearson system
30

, as the solution of the 

differential equation as follows: 

 
2

0 1 2

1 ( )

( )

df x x a

f x dx c c x c x

+
= −

+ +
 (32) 

where 
0

c , 
1

c , 
2

c  and a  are the coefficients determined from the first four 

statistical moments of x . The shape of ( )f x  is classified into seven groups 

according to the type of the roots of the denominator. 

The PDF available now provides very useful information to design engineers, 

and reliability can be easily calculated. However, one critical disadvantage is that 

moment-based methods become numerically inefficient as the number of random 

variables increases. To overcome this problem, a very efficient method, termed 

RSMM (Response Surface Augmented Moment Method), has been developed.
31

 

This uses a series of adaptive additions of a new function evaluation to a set of 

results at core points selected along the axes, and subsequently construct a 

convergent response surface. This complements all the necessary information 

necessary for the full factorial analysis described above. The number of function 

evaluations is almost one order of magnitude smaller than that of the full factorial 

method, while achieving the accuracy because an adaptive addition is used. By 

the enormous improvement of efficiency, the RSMM is expected to be a very 

powerful tool enabling structural optimization manageable. 

The DOE-based moment method just described has another good feature. It 

provides the design sensitivity of the probabilistic performance measure using the 

data obtained during the reliability analysis process without additional function 

evaluation. Since the probability of failure fP  is a function of the first four 

statistical moment of response function ( )G x , the design sensitivity of the 

probabilistic constraint can be rewritten as follows: 

 
1 2

21

P P P P Pf f f f fGG G G

G G GG

d dd d d

d d d d d

βµ σ β

µ σ ββ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂∂x x x x x
 (33) 

The terms f GP µ∂ ∂ , f GP σ∂ ∂ , 1f GP β∂ ∂ , 2f GP β∂ ∂  can be calculated by 

finite difference method and the Pearson system program and the other terms can 

be calculated via chain rule of differentiation and the data obtained during the 

reliability calculation. Thus, the design sensitivity of the probabilistic constraint 

can be evaluated very efficiently without further evaluations of ( )G x . The design 
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variable x  can be nominal or mean value in case of RBDO or tolerance of a 

dimension in case of a tolerance synthesis problem. 

5.3.  Tolerance Design Procedure and An Application Case 

As already noted in the introduction, reliability based design requires probability 

information. Tolerance allocation problem, however, is one important area of 

application, where probability information is not necessary, because in usual 

practice, a tolerance of t±  to a length dimension for example denotes that the 

manufactured length has a normal distribution with a standard deviation, 3tσ = . 

Tolerance is necessary to assure assemblability and quality of a product under 

randomness of manufacturing errors. For assemblability, a characteristic 

function, ( )G x , of the geometric clearances is a function of tolerances. Tolerance 

analysis is to analyze the probability of successful assemblage, given by an 

inequality condition such that ( ) 0G ≥x . A formulation of tolerance synthesis 

problem may be posed as to minimize the manufacturing cost under 

assemblability conditions. It is rather hard to get cost information for a specific 

manufacturing process; Cost as a function of tolerance is usually discrete or at 

least discontinuous. To simplify this, we often use some kind of continuous 

inverse function of tolerance. Now it is seen that the tolerance allocation problem 

proposed above is exactly the same as the reliability problem described earlier, 

and the same approach can be applied for its solution.  

The whole procedure of tolerance synthesis is demonstrated with a block 

assembly example
32

 shown in Fig. 12. The requirements for proper assembly are 

given by Eqs. (34-39): 

 

 ( ) ( ) ( )1 6 5 8 7
g x x x x= − − −x  (34) 

 ( ) ( ) ( )2 3 4 11 10
g x x x x= − − −x  (35) 

 

( ) ( )( ) ( )( )

( ) ( )( ){ ( )( )}
3 8 7 2 3 6 5 10 9

10 9 2 3 8 7 6 5
tan 180

g x x x x x x x x

x x x x x x x xπ

= − − − − −

+ − − + − −

x

 (36) 

 

( ) ( )( ) ( )( )

( ) ( )( ){ ( )( )}
4 6 5 10 9 8 7 2 3

10 9 2 3 8 7 6 5
tan 180

g x x x x x x x x

x x x x x x x xπ

= − − − − −

+ − − + − −

x

 (37) 

 ( )5 1 12
0.01g x x= − + +x  (38) 

 ( )6 1 12
0.01g x x= − +x  (39) 
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The dimensions are normally distributed and the distribution parameters are 

listed in Table 2. 

The tolerance synthesis problem is to minimize the manufacturing cost under 

assemblability condition as follows: 
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where 
1

0.2a = , 
2

1.0a = , 
3 4

0.015a a= = , 
5

0.008a = , 
6

0.009a = , 
7

0.008a = , 

8
0.006a = , 

9
1.0a = , 

10
0.01a = , 

11
0.015a = , 

12
0.2a = , and 

1 12
2.0b b= = =… . 

The design variable 
i

t  is set as 3
i

σ . This problem is solved with FORM, MCS 

with 100,000 samples and the full factorial moment method (FFMM) and the 

results are summarized in Table 3. For this problem, the dimensions are 

 
Fig. 12. Illustration of block assembly for nonlinear stack-up tolerance analysis and synthesis.30 

 

 

i  mean 
iµ  tolerance 

it  i  mean 
iµ  tolerance 

it  

1 50 0.0187 7 10.0 0.0019 

2 40.00125 1.2331 8 30.0 0.0015 

3 20.05 0.0579 9 10.05 0.1285 

4 9.9985 0.0705 10 30.0 0.0714 

5 9.9985 0.0019 11 40.0 0.0579 

6 30.0 0.0022 12 50.0 0.0168 

Table 2. Distribution parameters of dimensions in block assembly 

example. In this example, the tolerance 
it  is set as 3 iσ . 
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distributed normally, the response functions are close to linear, and the results of 

FFMM and FORM are almost equal. 

 

6.  Summary and Conclusions 

Robust design in the area of quality engineering has been practiced for long time; 

it is rather recent that it has become popular in the optimization sector. In this 

chapter, after a brief introduction of the Taguchi method, several recently 

developed formulations are presented. Although the concept of robust design is 

well-known, no standard formulation is yet available. So the approaches are 

arbitrarily classified based on whether probability information is required or not. 

Both are covered with typical and new formulations. For a sensitivity-based 

approach, a gradient index method is taken showing its simplicity and practicality. 

Constraint feasibility is also treated using the gradient index. Next introduced is 

the so-called relative safety index, which is indicative of robustness. This is 

defined as the distance from the mean point to the boundary of an allowable load 

set, a new concept developed recently by the author. This new formulation opens 

a new category of applications in the areas of multi-body mechanism design and 

provides a new hypothesis in solving human motion trajectories. Lastly presented 

is an efficient and accurate moment method of probability analysis and design. 

The first four moments of a performance function are calculated by a numerical 

Table 3. Results of optimal tolerance synthesis 

of block assembly. 

Optimal tolerance 
Variable 

Initial 

tolerance FFMM FORM MCS 

1
t  0.0050 0.0158 0.0158 0.0147 

2
t  0.5000 0.6600 0.6595 0.6988 

3
t  0.0100 0.0418 0.0418 0.0212 

4
t  0.0100 0.0418 0.0418 0.0217 

5
t  0.0005 0.0026 0.0026 0.0027 

6
t  0.0005 0.0027 0.0027 0.0029 

7
t  0.0005 0.0026 0.0026 0.0029 

8
t  0.0005 0.0025 0.0025 0.0022 

9
t  0.5000 0.6600 0.6600 0.2235 

10
t  0.0100 0.0378 0.0377 0.0131 

11
t  0.0100 0.0418 0.0418 0.0187 

12
t  0.0050 0.0158 0.0158 0.0144 

total
C  140.558 6.1341 6.1341 6.4473 

Prsafe

∗ 1 0.9501 0.9502 0.9492 
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integration using full factorial design of experiments. A very efficient method is 

developed by using adaptive application of response surface instead of the full 

factorial evaluations. All the three methods are shown to be simple and efficient 

through nontrivial examples. The choice of approaches is dependent on whether 

probability data are available or not and what the user’s decision goal is. 
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CHAPTER 18 

PARALLEL COMPUTATIONS FOR DESIGN OPTIMIZATION 

S. D. Rajan and A. Damle
*
 

Department of Civil Engineering                                                                                        

Arizona State University, Tempe, AZ 85287 

There is increasing evidence that computing clusters created with commodity 

chips are capable of out-performing traditional supercomputers. The trend of 

using these commodity computing systems for engineering analysis and design 

is rapidly gaining momentum. In this chapter we discuss the different parallel 

processing scenarios and the implementation in the HYI-3D design optimization 

software system. We examine the hardware and software issues with 32-bit and 

64-bit design optimization computations. A scenario for configuring a design 

engineer’s workbench is presented where desktop computations are combined 

with execution on a computing cluster so as to reduce the design cycle time. 

Using multi-level parallelism, not only can the function evaluation be carried 

out in parallel but also other steps in the design optimization algorithm can be 

computed in parallel – gradients, line search and direction-finding problem. 

Numerical examples involving sizing, shape and topology optimization show 

the gains obtained from coarse and fine grain parallelism for both gradient and 

non-gradient optimization techniques. 

Nomenclature 

d   Total number of search directions 

std
d   Standard search direction 

t
d   Tangent search direction  

     f  Number of subdomains the finite element model is split into (also the # 

of processors involved in parallel finite element analysis) 

DF  Direction finding 

FE  Function evaluation 

GE  Gradient evaluation 

l   Number of processors available for parallel LS 

 

 

                                                 
* Design Software Engineer, Hawthorne & York, Intl., Phoenix, AZ. 



S. D. Rajan and A. Damle 512 

K   System stiffness matrix 

LS  Line search 

NDV   Number of design variables 

NFVGE   Number of function evaluations in GE 

NFVLS   Number of function evaluations in LS 

NFVTotal  Total number of function evaluations (GE + LS + external) 

PE   Total # of processors 

i
P   Processor ,1i i PE≤ ≤  

x   Design variable vector 

 

1.  Introduction 

Finite element based design optimization (DO) is now a relatively well-

established methodology for engineering design. The use of this methodology 

involves several areas and techniques such as geometric modeling, finite element 

model generation, finite element analysis (FEA), and numerical optimization 

techniques to name a few. Advances in each of these areas have made the overall 

design process more versatile. A tightly integrated software system would enable 

an end-to-end solution with minimal designer intervention starting with the 

conceptual phase of the design and ending with manufacturing of the product or 

construction of the project. Yet there remain more challenges to meet and hurdles 

to overcome. As FE models have become more sophisticated and detailed, the 

execution time has also increased in spite of advances in hardware technology. 

While FE models with more than 100 million degrees of freedom (DOF) have 

been analyzed, today it is more common to have engineering models with not 

more than a few hundred thousand DOF. Similarly, the size of typical design 

optimization problems has also increased in the last two decades. It is common 

today to solve design optimization problems with a few hundreds design 

variables. Compressing the design cycle time so as to reduce the time required 

for design and redesign process, requires more advances in hardware, software 

and algorithms. Fueling this growth has been the development of computer 

hardware at an affordable price level. In small as well as large engineering design 

firms, a typical design engineer works with a 32-bit or a 64-bit desktop system. 

This system is used primarily for (a) pre and post-processing, (b) design 

problems that can be executed on these systems in a reasonable amount of time, 

and (c) as a gateway to faster computing platforms. When the design engineer 

needs to solve bigger problems, different type of parallel computing architectures 

can be used.  
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In the early 70s, the Intel CPU clock speed was below 1 MHz (Fig. 1). By the 

early 90s, the clock speed had increased to slightly less than 100 MHz. The early 

90s saw a phenomenal increase in clock speed. The 1 GHz mark was reached in 

early 2000 with the 2 GHz CPU in late 2001. However, this growth has slowed 

down tremendously. With the recent announcements from Intel it is clear that for 

the time being the clock speed race will stop at 3.8 GHz and the focus has instead 

shifted to building multi-core CPUs. This trend is an industry-wide phenomenon 

with similar multi-core initiatives (at the expense of faster clock speeds) from 

AMD and IBM, the other two dominant CPU manufacturers. So how does this 

trend affect software development in general and design optimization in 

particular? We will examine this question and its answers in greater detail in the 

rest of this chapter.  

 

2.  Building a Case for Parallel Computations in Design Optimization  

A typical single objective design optimization problem can be stated as follows.  

           

          Find                 x   (1a) 

          to minimize    ( )f x   (1b) 

 
 

Fig. 1. Intel CPU Clock Speeds 



S. D. Rajan and A. Damle 514 

                                 ( ) 0,   1,...,g i n
i

≤ =x  

                                 ( ) 0, 1,...,
j

j mh = =x  (1d) 

                                 
L U≤ ≤x x x   (1e) 

 

where ( )f x  is the objective function, n  and m  are the numbers of inequality 

and equality constraints respectively, ( )
i

g x  and ( )
j

h x  are the constraint 

functions, x is the design variable vector, and x
L
 and x

U
 are the lower and upper 

bounds respectively. The design variables can be continuous, discrete or even 0-

1. The objective and constraint functions are usually nonlinear and the problems 

non-convex. 

2.1.  Topology Optimization 

Topology optimization is typically employed at the initial design stage where the 

form of the structure in terms of material distribution, is to be determined. The 

dominant methodology is SIMP (Simple Isotropic Model with Penalization) or 

power-law approach
3,4,5

. The topology optimization problem based on power law 

approach can be stated as follows. 

          Find              
kR∈x   (2a) 

          to minimize  ( )
T

f =x D F   (2b) 

          subject to      

0

0
M

M
h F

M
= − =  (2c) 

                               KD = F   (2d) 

                               0 1
L U

< < < <x x x  (2e) 

where ( )f x , the objective function, is the compliance of the model, h  is the 

mass fraction constraint function ( M  is the actual mass used in optimization, 

0M  is the initial mass, and 
M

F  is the desired mass fraction), KD = F  are the 

equilibrium equations, x, the design variable vector, is the material density in 

each finite element, and x
L
 and x

U
 are the design variable lower and upper 

bounds respectively. 

The standard optimality criteria method
6
 is used to solve the topology 

optimization problem. Once the design variable values are known, the 

checkerboarding problem and mesh dependency issues are handled using a 



Parallel Computations for Design Optimization 

 

515 

filtering technique
7
. Each iteration of the optimality criteria algorithm involves a 

complete FEA during which the model’s compliance and strain energy are 

computed using the updated design variables. In other words, evaluation of  

Eq. (2d) is the most computationally expensive step. 

2.2.  Shape and Sizing Optimization 

Shape optimization involves the modification of the parameters that control the 

shape of the model. There are two widely used approaches – the Natural Design 

Variable Approach
8,9

 (also known as Basis Shape Vectors Approach) and the 

Geometric Approach
10

. In the former approach, the nodal coordinates are updated 

as 

 
new old= +c c Qx  (3a) 

 
aux aux=K Q F  (3b) 

where c  is the vector of nodal coordinates and Q  is the velocity field matrix 

(displacements) that is obtained by solving the equilibrium of the auxiliary 

structure as shown in Eq. (3b). The velocity field matrix can be computed just 

once and reused every iteration or can be updated (recomputed) as often as 

needed. In the Geometric Approach, nodal coordinates are updated either by 

regenerating the geometric model and then remeshing, or by just updating the 

mesh without changing the mesh characteristics (number of elements, nodes 

etc.). Solving Eq. (3b) can be computationally expensive if the mesh updates take 

place frequently.  

Sizing optimization involves the modification of the cross section (of truss 

and beam elements) or thickness of finite elements (plane elasticity, plate/shell 

elements) while preserving the shape and topology of the model. It is also 

possible to combine shape and sizing optimal designs so that the shape of the 

model and the element properties are modified simultaneously. 

To contrast the differences between a typical sequential DO algorithm and the 

parallel algorithm, we first look at a typical sequential algorithm associated with 

gradient-based optimizers. The algorithm has eight steps.  

(i) Carry out a function evaluation with the initial guess. 

(ii) Start design iterations. 

(iii) Carry out gradient evaluation at current design point. 

(iv) Solve direction-finding problem. 

(v) Find optimal step length from line search problem. 

(vi) Compute the next design point. 
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(vii) Converged solution? If no, go to step (iii). 

(viii) If yes, carry out the final function evaluation with the optimal values.  
 

The computationally expensive parts of the algorithm are steps involving 

function evaluations – steps 1, 3, 5 and 8. 

Whether we are dealing with topology, shape or sizing optimization, the 

challenge is not only to carry out the function evaluation (specifically, finite 

element analysis) efficiently but also to reduce the number of function 

evaluations. This would imply that apart from parallelizing FE analysis, one 

would also have to parallelize the design optimization steps (steps 3-6). 

3.  Hardware for Parallel Processing  

Computer systems with multiple processors have been around a long time 

especially in the form of mainframes and supercomputers. However, in the last 

decade there has been concerted effort to use commonly available CPUs in a 

variety of parallel processing architectures starting with Beowulf clusters. Today, 

the three most popular architectures are clusters, constellations and massively 

parallel processing (MPP) systems
11

. Clusters are systems made up of several 

computing nodes. Each node can potentially work in a standalone mode. It has its 

own CPU and memory. However, the nodes are clustered together in a network 

to yield faster computing platforms. We have a Beowulf cluster when commodity 

machines are used as nodes and are networked using commodity networking 

hardware
12

. One can look at parallelism taking place at two levels. First, 

increased parallelism is possible by increasing the number of nodes in a cluster. 

Second, by increasing the number of processors at a node, one can potentially 

increase the available parallelism. There are specialized hardware manufacturers 

that provide computing nodes with multiple processors. In the first configuration 

called uniform memory access SMP (symmetric multiprocessor), they share the 

same memory (Fig. 2a). The bottleneck is the shared memory bus connecting the 

CPU to the shared memory. The second configuration is the non-uniform 

memory access (NUMA) SMP configuration (Fig. 2b). While every processor 

has its own memory, each process has access to the entire memory. The access is 

non-uniform since a process cannot access every memory location with the same 

speed. With these possible architectures, constellations can be thought of as 

providing “clustering” at two levels – several multi-CPU nodes connected to 

each other via high-speed switches. Finally, it is more difficult to exactly define 

MPP systems. They could be a massive distributed memory system, or a large 

shared memory system employing cache coherence, or a large vector system, and 
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so on. What is perhaps clear is that these MPP systems are much more expensive 

to buy, build and maintain than commodity machines. The distribution of these 

three systems in the top 500 computing platforms in the world in shown in Fig. 

2(c). 

 

4. Software for Parallel Processing  

In comparison to the development of faster hardware, little effort has been 

invested in the development and ready availability of software tools for 

parallelization. Two widely used approaches in parallelizing computations 

involve the use of threads (usually on shared memory systems) and some form of 

message-passing (usually on distributed memory systems). There have been 

successful efforts at using both threads in the form of OpenMP
13

 directives and 

                                                 
i http://www.top500.org 

CPU

Cac he

Memory

CPU

Cac he

Memory

CPU

Cac he

CPU

Cac he

Memory

(a)

CPU

Cac he

Memory

(b)  

 
         (c) 

Fig. 2. (a) Uniform memory access (b) Non-uniform memory access (c) Cluster architectures in the 

top 500 listi 
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message-passing in the form of MPI
14

 calls to create high-performance software 

systems. OpenMP is used primarily with shared memory systems while MPI is 

the choice for distributed memory systems. MPI implementations use TCP/IP 

protocol or with custom switching hardware, proprietary protocol such as 

Myrinet, Infiband etc. for increased bandwidth. There are two primary software-

related issues. 

Development and maintenance cost: The development and maintenance cost 

of any software system is a function of a number of parameters. In any case, 

there are two parameters that software developers need to pay particular attention 

to. First is the choice of programming language. Second, is the use of libraries (or 

function calls) for inter-process communication. Given portability considerations 

at the top of the list, the language of choice is either FORTRAN or C/C++.  

Load Balancing and Scalability  

Any parallel algorithm needs to address the issues of load balancing and 

scalability. It is a challenge to develop an algorithm where a task can be split into 

n  equally compute intensive parallel subtasks. One can have a fine granularity, 

where many processes work on the task that needs to be done (perhaps making 

load balancing easier), or coarse granularity that allows a larger ratio of 

computation to communication. The optimal granularity depends on hardware 

architecture, the number of processors, the problem size and the specifics of the 

problem being solved. On the other hand, scalability is the ability to use 

increasing number of processors as efficiently as possible. For most algorithms, a 

saturation point is reached with increasing number of processors beyond which 

the speedup drops. In other words, there is a nonlinear relationship between 

speedup and the number of processors. Finding the optimal number of processors 

for a given task is a demanding job. 

The software development challenge is to design a system that will scale with 

available hardware. To make the most of the system, one should know the 

topology of the system and the desired topology for the application’s threads 

and/or processes. Software development under this scenario offers challenges 

that are unique to parallel computations.  

5.  Methodologies for Parallel Design Optimization 

In this section we look at what steps in the DO algorithm can be parallelized and 

how.  
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5.1.  Parallel Finite Element Analysis 

Function evaluation (FE) usually implies the use of a numerical simulation 

scheme such as finite element analysis that is both compute and resource 

intensive. For example, for a function evaluation using static finite element 

analysis for one load case, the system equations are of the form 

 1 1n n n n× × ×K D = F  (4) 

where K is the system stiffness matrix, D  is the vector of nodal displacements 

and F  is the vector of nodal forces.  

One of the approaches to parallelize the FE computations is to use the well-

known domain decomposition (DD) idea
15

. We develop the relevant system 

equations for a typical domain or substructure, k , using the notation (I) for 

interior and (B) for boundary, e.g. the degrees-of-freedom are identified as 
k

I
D  

and 
k

B
D . Partitioning the system equations into interior and boundary degrees-of-

freedom, we have 

 

k k k k

II IB I II

k k k k

BI BB B BB

=
     

    
     

K K D F

K K D F
 (5) 

The equations can be expanded and rewritten as follows.  

 
k k k k k

II I IB B II
+ =Κ D Κ D F  (6) 

 
k k k k k

BI I BB B BB
+ =Κ D Κ D F  (7) 

Using the above equations and with algebraic manipulations, we can derive two 

important relationships as follows. 

 
1

k k k k k

I II II IB B

−

= −      D Κ F Κ D  (8) 

and 

 ( ) ( )
1 1

k k k k k k k k k

BB BI II IB B BB BI II II

− −

− = − 
 
Κ Κ K K D F Κ K F  (9) 

Or, simplifying the notation, we can write the effective equations as 

 
k k k

B B B
=Κ D F  (10) 

where 

 ( )
1

k k k k k

B BB BI II IB

−

= −K Κ Κ K K  (11a) 

 ( )
1

k k k k k

B BB BI II II

−

= −F F Κ K F  (11b) 
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are the effective boundary stiffness and the effective load vector. Once these 

effective equations are constructed for each substructure (using a direct solver), 

the system equations can be assembled as 

 
k k k

B B B

k

= ⇒∑Κ D F
B B B

=Κ D F  (12) 

and can be solved for 
B

D  using an iterative solver. The boundary conditions are 

typically imposed at the substructure level. After solving Eqs. (12), one can then 

go back to Eq. (8) to recover 
k

I
D  for each substructure (using a direct solver) and 

compute the secondary quantities.  

The performance of this methodology is a function of (a) how well the 

original problem is split into subdomains, (b) the underlying data structure  

to support the computations, (c) the efficiency of the sparse matrix algorithms, 

(d) the efficiency of the iterative solver, and (e) the efficiency of the algorithm to 

minimize the communications between the processes as the number of 

subdomains increases. 

5.2.  Parallelization in Gradient-based Optimization Techniques 

There has been considerable attention paid to coarse-grain, single level 

parallelization of optimization algorithms
16,17,18,19,20

. We will examine steps 

where parallel computations can take place. 

5.2.1.  Parallel Gradient Evaluation (GE) 

If gradients are evaluated using the forward difference method, the derivative of 

a function ( )f x  with respect to the i
th
 design variable is given by 

 

 
( ) ( ) ( )1 2 1 2 1 2

, , ... , , ... , ... , , ...
n i i n n

i i

f x x x f x x x x x f x x x

x x

∂ + ∆ −
=

∂ ∆
 (13) 

 

The number of FEAs required during gradient evaluation is equal to the number 

of design variables. When multiple processors are available, gradient evaluation 

can be parallelized such that the number of FEAs is divided equally among the 

available processes. With the right combination of processors, this is an 

embarrassingly parallel problem. 
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5.2.2.  Parallel Line Search (LS) 

Parallel line search is implemented using a combination of the multi-section 

scheme
21

 and parallel Avriel search
22

. The overall algorithm can be split into 

three steps.  

Step 1: Bracketing the minimum 

In this step, the idea is to bracket the interval whose end points have maximum 

constraint values of opposite sign. 

Step 2: Zero-finding 

Once the minimum has been bracketed, the next step is to find a feasible point 

that is as close to the constraint surface within the constraint thickness tolerance. 

Step 3: Function minimization using parallel Avriel search 

Finally, using information from Step 2, we can compute the lowest function 

value ( )i

j
f α  in parallel until the size of the final uncertainty interval falls below 

a predefined tolerance value. 

Both an analysis of the algorithm and numerical experimentation show that a 

decent speedup is possible with only a few number of processors (between 4 and 

16)
18

. 

5.2.3.  Parallel Direction Finding (DF) 

One of the most popular nonlinear programming techniques is the Method of 

Feasible Directions (MFD). It should be noted that line search involves searching 

along a direction vector that lies within the usable feasible cone (Fig. 3). It is 

possible to compute more than one search direction and conduct a line search 

along each of those directions so as to find the best possible solution. Numerical 

results using MFD show that these parallel DF and LS approaches are extremely 

promising
23

. The search directions can be found in three steps (Fig. 4). 

Step 1: Compute the standard search direction, 
std

d . 

Step 2: Compute the tangent search direction, 
t

d . 

Step 3: Compute the intermediate search directions that lie in the cone defined by 

A and B. These search directions are called the γ  search directions. Upon 

obtaining 
std

d and 
t

d , the search directions ,  1,...,
i

i n
γ γ

= =d d  are obtained from 

the relaxed LP subproblem as follows. 
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T T

T

T 0

minimize             

subject to            ( )      0 < 1

                                            

                                        

                      

t

j NL

j j B

f f

g j J

g g j J

β

γ γ

β

∇ ≤ ∇ <

∇ ≤ ∈

∇ ≤ − ∈

d d

d

d

     1 1               1,...,
i

d i NDV− ≤ ≤ =

 (14) 

where 
NL

J and 
B

J  are the sets of active nonlinear and bound constraints, 

respectively. 

 

 

 

As we see from these discussions, almost every step in the design 

optimization algorithm can be parallelized. An efficient implementation can lead 

to a decent speedup with a few or a large number of processors depending on the 

problem size. As we will show later, a strict master-slave implementation is 

really not necessary. Instead, three types of master processors are defined whose 

A

B

g=0 (tangent)
−∇f

−∇g

d
t

dstd

−∇  f d=0
T

 
Fig. 3. The usable-feasible cone formed by A and B 

d
t

dstd

−∇  f d=0
T

dγ
1

dγ
2

dγ
3

 
Fig. 4. γ -directions in the usable-feasible cone 



Parallel Computations for Design Optimization 

 

523 

job is to coordinate the activities during GE, DF and LS computations and 

consolidate the final answer. The GE Manager is the master processor during the 

parallel gradient computations and constructs the final gradient vectors of the 

objective function and the active constraints. Similarly, there are DF and LS 

managers. Figure 5 shows a three-level implementation involving 8 processors,  

4 search directions with 2 processors used for parallel FEA. 

 

 

5.3.  Non-gradient Based Techniques 

Research into parallelizing non-gradient based optimizers has taken place over 

the years
24,25,26,27

. In this section we present a specific implementation of a simple 

Genetic Algorithm (GA). 

5.3.1.  Parallel GA
28

 

The overall algorithm used in a GA-based design optimization problem is quite 

simple (Fig. 6). There are different ways one could devise the algorithm for 

evaluating the fitness function in parallel. We present two approaches. 

Load-Balanced Approach: Initially, the master process instructs each slave 

process to evaluate the fitness associated with one member of the population by 

sending the values of the design variables for that member. Then it waits to 

receive the values of the objective function and the maximum violation from any 

Scenario: PE=8, d=4, f=2
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Fig. 5. Example scenario depicting 3-level parallelism 
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of the slave processes (until the fitness evaluations of all the members of the 

population are completed). If there are more evaluations to be done, it passes the 

values of the design variables to that process. If all the evaluations are completed, 

it sends a message to that process that no more fitness evaluations are necessary. 

 

Master Process 

(i) Set number of evaluations completed, 0
eval

n = . 

(ii) Loop through 1,...,min( , )pop pj n n= . 

Initial Randomly
Generated Population

Fitness
Evaluation

Fitness
Evaluation

Stop?

Competition
(Fitter individuals survive)

Mating Pool
(Reproduction phase)

Crossover and Mutation
(Exchange of information)

Offsprings
(New generation)

No

 
Fig. 6. Flow in a Simple Genetic Algorithm (SGA) 



Parallel Computations for Design Optimization 

 

525 

(iii) Generate the vector of design variables, x . Pass this vector to process j . 

Increment 
eval

n . 

(iv) End loop. 

(v) Loop through all members of the population, 1,2,..., popi n= . 

(vi) Receive the objective function value and the maximum constraint violation 

from process j . 

(vii) If eval popn n< , generate the vector of design variables, x  for member i . 

Pass this vector to process j . Increment 
eval

n . 

 Else send “no-more-evaluation” message to process j . 

(viii) End loop. 

Slave Process (Valid only for process popj n< ) 

(i) Loop until “no-more-evaluation” message is received. 

(ii) Receive the vector of design variables, compute and send the objective 

function value and the maximum constraint violation to the master process. 

(iii) End loop. 

It should be noted that in the abovementioned approach, only the master 

process executes the GA. Assuming that one integer word is 4 bytes, one double 

precision word is 8 bytes and the objective function and maximum constraint 

violation are designated as double precision, we can compute the total number of 

send and receive bytes as follows for every generation (
b

n , 
d

n  and 
s

n are the 

number of binary, discrete and continuous design variables) as follows. 

 ( ) ( )4 2 8 2
send receive pop b d s pop

n n n n n n n= = + + +  (15) 

Do-All Load-Balanced Approach: In the previous approach, the GA is 

implemented and executed in the master process with only the fitness evaluations 

taking place in the slave processes. This approach requires that the values of the 

design variables be sent from the master process to the slaves. It should be noted 

that as a fraction of the total program time, the time taken to execute the GA 

steps is a very tiny fraction. In this DLB approach, all the processes execute 

exactly the same program statements except for the part where the entire 

population is evaluated. As a byproduct, program maintenance is much easier 

since there is a single block of the program where process-related logic needs to 

be used. 

Master Process 

(i) Set number of evaluations completed, 0
eval

n = . 

(ii) Loop through 1,...,min( , )pop pj n n= . 

(iii) Increment 
eval

n . Ask process j  to evaluate member 
eval

n  of the population.  

(iv) End loop. 

(v) Loop through all members of the population, 1,2,..., popi n= . 
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(vi) Receive the objective function value and the maximum constraint violation 

from process j . 

(vii) If eval popn n< , increment 
eval

n , ask process j  to evaluate member 
eval

n  of 

the population. Else send “no-more-evaluation” message to process j . 

(viii) End loop. 

(ix) Broadcast the objective function and maximum constraint violation values 

for all the members of the population. 

Slave Process (Valid only for process popj n< ) 

(i) Loop until “no-more-evaluation” message is received. 

(ii) Receive index of the member of the population whose objective function and 

constraints must be evaluated. Compute and send the objective function 

value and the maximum constraint violation to the master process. 

(iii) End loop. 

(iv) Receive the objective function and maximum constraint violation values for 

all the members of the population. 

With this approach, the number of point-to-point send and receive bytes per 

generation is as follows  

 20send receive popn n n= =  (16a) 

and the number of broadcast bytes is 

 16broadcast popn n=  (16b) 

With this approach, the communication traffic is independent of the number 

and type of design variables.  

In the next section, we look at numerical examples that are solved using the 

methodologies discussed in this chapter. 

6.  Numerical Examples 

The numerical examples in this section are solved using HYI-3D
29,30

 software 

system that is developed using object-oriented concepts in C++ and uses MPI for 

message passing. The software suite is a collection of independent modules that 

can be plugged together to create the required set of finite element analysis and 

design optimization capabilities and can be executed either sequentially or in 

parallel. Solutions to three example problems that are solved on the following 

cluster configurations are discussed in this section. 

Beowulf Cluster Information: (a) Number of machines in the cluster = 2  

(b) Computer 1 (C1): Intel Dual P3-866 MHz, 768 MB RDRAM, Ultra 7200 rpm 

IDE Drive, 3COM 3C920 NIC. Computer 2 (C2): AMD 1.2 GHz Athlon,  
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512 MB SDRAM, Ultra 7200 rpm IDE Drive, 3COM 3C920 NIC, (c) Windows 

2000, MPI-Softtech 1.6.4, Linksys BEFSR41 10/100 Router. 

ASU FEM Cluster Information: (a) Number of machines in the cluster = 8  

(b) Typical machine: Intel P4 1.7 GHz Dual Xeon, 1 GB RDRAM, Ultra 7200 rpm 

IDE Drive, Intel PRO/1000 T NIC, (c) Windows 2000, MPI-Softtech 1.6.4, 

Cisco Catalyst 3550-12T switch. 

ASU CML Cluster Information: (a) Number of machines in the cluster = 24  

(b) Typical machine:  Intel P4-3.06 GHz Xeon with 2 GB RAM, SCSI hard disk, 

Intel PRO/1000 T NIC, (c) Red Hat Linux and MPI (mpich), Dell PowerConnect 

2624 Unmanaged Switch.  

Maui High-Performance Computing Cluster (MPCC) Information:  

(a) Number of machines in the cluster = 260 (b) Typical machine: Intel Pentium 

3-933 MHz Dual Xeon,  1 GB RAM and SCSI hard disk, (c) Red Hat Linux and 

mpich, Myrinet switch capable of 200 MB/second sustained bandwidth. 

TCP/IP communication protocol is used in all the clusters. All timings are 

wall clock timings. The term 1PN denotes execution when one process is 

launched per node in a cluster. Similarly, the term 2PN denotes execution when 

two processes are launched per node in a cluster. For a homogenous system, we 

compute the speedup as follows. 

 
Time for one process

Speedup obtained for  processes=
Time for n processes

n  (17) 

For a heterogeneous system, we compute the speedup as follows. Let the relative 

speed of the pn  processes with respect to the slowest process be denoted as 

1 2, ,...,1,...,
pn

s s s  (with 1 corresponding to the slowest process), the time taken 

for each single process run be denoted as 1 2, ,..., ,...,
pi n

t t t t , and t  be the total 

time taken when n processes are used. Then 

 
1 2max( , ,..., )

pn

j

j

t t t
s

t
=  (18)  

 

1

1
Speedup obtained for  processes =

1 p

p

n

i in

i

j

j
n

t

s t

s
=

=

 
  
 
∑

∑
 (19) 

The following nomenclature is used when gradient-based optimization results 

are discussed. 
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-ge     Parallel GE is carried out using all available processors 

-df:d   Parallel DF is carried out using d directions 

-ls:l   Parallel LS is carried out using l processors 

-fea:f  Parallel FEA is carried out using f processors 

Example 1: Parallel FEA 

Figure 7 shows the FE model of a thick-support, steel platform fixed at both ends 

and loaded uniformly at the center. The FE model has 955,430 4-noded 

tetrahedral elements, 169,143 nodes for a total of 507,429 degrees-of-freedom. 

The FE analysis is carried out to compute the nodal displacements, and element 

strains and stresses. 

 

The accuracy of the results from the outer loop in the FE analysis (Eq. (12)) 

can be controlled by using an appropriate value for the convergence tolerance in 

the iterative solver. Considerable savings in computational time are possible by 

using a larger tolerance value without losing accuracy. Two convergence criteria 

are used as follows. 

 
1

δ≤KD - F  and 
2

δ≤
KD - F

F
 (20) 

where 
1

δ  and 
2

δ are user-defined convergence tolerances. The iterations are 

terminated when at least one of the above criteria is satisfied. The timing results 

of the FE analysis are shown in Table 1. 

 
Fig. 7. FE Model of Support Platform 
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The speedup obtained in this example is typical of the performance gains 

obtained from the domain decomposition sparse direct plus iterative solver 

strategy. However, the biggest challenge that still remains after all these years, is 

obtaining a good pre-conditioner for the iterative solver. 

Example 2: Parallel GA 

The structural system that is designed is shown in Fig. 8. The planar truss is 

described in terms of two parameters – the number of bays and the number of 

stories. The truss members are grouped into three groups per storey – horizontal 

members, vertical members and diagonal members. Hence, the number of design 

variables (cross-sectional areas) is equal to three times the number of stories. The 

optimization problem is to find the optimal values of the cross-sectional areas of 

the members so as to minimize the mass of the truss subject to axial stress 

constraint. The specific values used in the following examples are as follows. 

 

     Mass density, 
30.00881448 lbm inρ =  

     Allowable stress, 10000
a

psiσ =  

     
20.1L

jx in=  and 
220U

jx in=  and precision is taken as 
20.1in . 

     Bay width = 240 in 

     Story height = 120 in 

     Applied load, P=10000 lb 

 

The problem-specific data are as follows. 

 

Number of bays                              30  

Number of storeys                          50 

Nodes                                          1581 

Elements                                     4550 

Number of design variables         150 

Chromosome Length                  1200 

Table 1. Timing Results (MHPCC Cluster) 

# of processors Wall Clock time 

(sec) 

Wall Clock time 

(sec) 

% savings 

Convergence 

Tolerance 

9
10

−
 

6
10

−
 

 

8 2,878 2,675 7.1 

16 1,348 1,000 25.8 

32 828 589 28.8 

64 629 579 7.9 
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# of Generations                             50 

# of function evals/generation    2400 

 

The initial population is randomly generated and the GA is terminated after 

50 generations. The results are shown in Tables 2(a) and 2(b). The initial 

objective function value is 149,290 lbm and the final objective function value 

after 50 generations is 65,116 lbm. 

 

 

NBAYS

NSTOREYS

PP

P

P

P

P

P

P

PP

P

P

 
 

Fig. 8. Layout of the Planar Truss 

Table 2(a). Results of Truss Problem (FEM Cluster) 

 LB Version DLB Version 

PE (Machines) Time (s) Speedup Time (s) Speedup 

1 (1) 6762 1.0 6762 1.0 

3 (2) 3366 2.0 3370 2.0 

4 (3) 2269 2.98 2260 2.99 

5 (4) 1709 3.96 1701 3.98 

6 (5) 1382 4.89 1376 4.91 

7 (6) 1155 5.85 1148 5.89 

11 (5) 716 9.44 690 9.8 

15 (7) 524 12.9 510 13.25 
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With the LB approach, a total of 5,836,800 bytes are sent and received every 

generation. With the DLB approach, 48,000 point-to-point bytes are sent and 

received every generation, and 38,400 broadcast bytes are sent and received 

every generation. The amount of physical memory appears to be adequate for the 

problem being solved. When the system performance is monitored, the hard page 

faults are shown to be minimal. The Beowulf cluster shows an almost linear 

speedup. The DLB approach is more efficient showing an ideal speedup because 

the communication traffic is much less compared to the LB approach. On the 

other hand with the FEM cluster, the DLB approach becomes more effective with 

increasing number of processes. The design history is shown in Fig. 9.  

 

Table 2(b). Results of Truss Problem (Beowulf Cluster) 

 LB Version DLB Version 

# of Processes 

(Machines) 

Time (s) 

(C1/C2) 

Speedup Time (s) (C1/C2) Speedup 

1 (1) 18491/11930 1.0 18491/11930 1.0 

3 (2) 7473 1.94 7301 1.99 

 

Objective Function vs Generation
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Fig. 9. Design History Showing Objective Function Versus Generation 
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Example 3: Parallel Gradient-based Design Optimization 

An L-bracket is initially modeled as shown in Fig. 10. The thickness of the 

bracket is 10 mm. The top face of the bracket (AB) is completely constrained. A 

load of 1000 N is applied along the negative y-direction at the bottom right 

corner and is distributed over the edge along the thickness. The optimal design 

takes place in two steps. In the first step we carry out topology optimization. In 

the next step, the shape optimal design procedure is applied to obtain the final 

shape and form. 

 

Step 1: Topology Optimization 

The purpose of this exercise is to find out the optimal bracket topology or 

distribution of the material within the domain connecting the loaded support and 

the fixed supports. Fig. 10 shows the material distribution at the start of topology 

optimization. The region shown in blue is the region in which material is 

redistributed to obtain the maximum stiffness or minimum compliance. The 

region in red is the region where material is specified to exist and do not 

participate in topology optimization. The FE model consists of 47790 8-noded 

hexahedral elements and 54740 nodes. The topology optimization is carried out 

with the material density, ρ  restricted to 0.005 0.995ρ≤ ≤  with the initial 

guess as 0.3. The mass fraction constraint is taken as 0.3. The convergence 

criteria are taken as (a) 0.001 for the absolute change in the objective function 

50

100

80

50

A B

C

E

D

F                 
 

Fig. 10. Design Domain of L-Bracket (Dimensions in mm) and Initial Material Distribution  
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value for 3 consecutive iterations and (b) 0.01 as the change in the Lagrange 

multiplier value for 3 consecutive iterations.  

The final material density plot is shown in Fig. 11. The final results are 

obtained in 20 iterations involving 21 finite element analyses. The compliance 

reduces from 0.0058 N-mm to 0.001 N-mm. The results seem to indicate the 

presence of one rectangular hole and two triangular holes. The optimization 

timing results are shown in Table 3. 

 

Clearly the speedup is superlinear. This is because of two reasons. First, the 

problem size is memory bound when using a smaller number of processors, and 

memory becomes less of an issue with increasing number of processors (and 

subdomains). While the communication traffic increases with increasing number 

of subdomains, this is offset by the speedup obtained from the iterative solver. 

Second, the single processor runs are made with the sparse direct solver that is 

less efficient than the iterative solver for this problem. 

 

                
 

Fig. 11. Final Material Distribution and Subsequent Geometric Model 

Table 3. Performance of Parallel Topology Optimization (FEM Cluster) 

PE Topology 

Optimization 

Time (seconds) 

Speedup 

(Optimization) 

Parallel 

FEA Time 

(seconds) 

Speedup 

(FEA) 

1 68040 1.0 1300 1.0 

4 (1PN) 3330 20.4 134 9.7 

8 (1PN) 1605 42.4 64 20.3 
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Step 2: Shape Optimization 

With the optimal material distribution obtained from topology optimization, a 

Unigraphics model of the L-bracket was created as shown in Fig. 10. The model 

used for shape optimization has 2 triangular cutouts and 1 rectangular cutout with 

filleted corners to prevent stress concentrations. There are 11 shape-related 

parameters or design variables. 

(i) The side length of each triangular hole (2 Design Variables) 

(ii) The fillet radii of the triangular holes (2 Design Variables) 

(iii) The length and width of the rectangular hole (2 Design Variables) 

(iv) The centroidal coordinates of the triangular holes (4 Design Variables) 

(v) The plate thickness (1 Design Variable) 

In addition, the allowable von Mises stress value is taken as 90 MPa and 

manufacturing constraints requiring minimum wall thickness of 5 mm are 

imposed. The shape optimization problem is solved in two stages. Since the 

nature of the solution is not known, a coarse mesh is used in the first stage with 

the intent that the next stage solution will involve a much finer mesh and more 

accurate FE solution. 

 

Stage 1. Shape Optimization using a Coarse Mesh  

The finite element model corresponding to the initial geometry of the bracket 

consists of 4932 nodes and 3060 8-noded hexahedral elements. The volume at 

the beginning of shape optimization is 40839 mm
3
 and is reduced to 10714 mm

3
. 

The dimensions of the cutouts increase. A 74% savings in volume from shape 

optimization and a total saving of 84% in volume as compared to the pre-

topology optimization volume of the bracket are obtained. The stress distribution 

of the final shape is shown in Fig. 12(a). The stress constraint is active at the 

optimum – the maximum stress is 84 MPa close to the allowable value. The final 

geometric model is shown in Fig. 12(b). This model is then used to create a much 

finer mesh that is used in Stage 2. 

 

Stage 2. Shape Optimization using a Fine Mesh 

There are 48870 nodes and 39416 8-noded hexahedral elements. The 

optimization is run for 2 iterations after which the maximum stress increases to 

87 MPa but still less than the allowable value of 90 MPa. The volume reduces 

from 11390 mm
3
 to 10933 mm

3
. The stress distribution of the final shape is 

shown in Fig. 13(a). The final geometric model is shown in Fig. 13(b). The 

computational results for Stage 2 are shown in Table 4. 
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                             (a)                                                    (b) 

Fig. 12. (a) Final Stress Distribution (b) Final Geometric Model 

                
 

Fig. 13. (a) Final Stress Distribution (b) Final Geometric Model 
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Parallel FE Analysis 

The results from Table 4 show that the FEM cluster performance is more 

predictable. A speedup of 1.7 and 2.1 are obtained going from 1 to 2 to 3 

processors. However, the CML cluster does not show the same behavior. This  

performance can be explained as follows. The software seems to be network 

bound – the processor speed is fast enough to finish all the computations and the 

system has to wait for the communication traffic to finish before proceeding with 

the next set of computations. Perhaps, using a faster switch would show the same 

performance characteristics as the FEM cluster. 

 

Parallel Gradient Evaluation (GE) 

Consider the scenario with 16 processors on the CML cluster (Table 3). Since 

there are 11 design variables and 16/2 = 8 GE managers, the max number of 

design variables handled by a GE manager = 11/8+1+1 = 3. Thus the expected 

                                                 
ii NT: Normalized Timing 
iii F*: Final Objective 

Table 4(a). Performance of Parallel Shape Optimization (FEM and CML Cluster) 

Total Time (seconds) PE Parallel 

Computations GE DF LS Total 

NTii NGE 

/PE 

NLS 

/PE 

F*iii 

(mm3) 

FEM Cluster 

1 NA 6924 4 26255 35253 3.24 22 76 10933 

8 -ge –df:4 –ls:2 2386 1 5441 10890 1.00 6 9 10937 

16 -ge –df:4 -ls:2 

–fea:4 
11051 1 14080 32500 2.98 6 8 10937 

CML Cluster 

1 NA 2236 0 7728 10879 4.51 22 76 10933 

8 -ge –df:4 –ls:2 623 0 1034 2578 1.07 6 10 10937 

16 -ge –df:4 –ls:2 

–fea:2 796 0 1191 2993 
1.24 6 9 

10937 

24 -ge –df:4 –ls:2 

–fea:3 629 0 849 2410 
1.00 6 8 

10913 

 

Table 4(b). Performance of Parallel Finite Element Analysis 

Analysis Time (seconds) PE 

FEM 

 

CML 

1 318 (1PN) 102 

2 189 (1PN) 130 

3 152 (1PN) 105 
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speedup for GE is (11/3)(102/130) = 2.88. The obtained speedup is (2236/796) = 

2.81 which agrees very well with the expected speedup. 

Again, the speedup for combined parallel GE and FE depends on the 

reduction in number of design variables or FEs to be performed by the GE 

manager as well as the speedup due to parallel FE analysis. However for  

this problem, there is no significant gain using more processors for FEA  

(Table 4). Thus the maximum speedup obtained for GE is with 8 processors = 

(2236/623) = 3.59.  

 

Combined Parallel Direction Finding (DF), Line Search (LS) and Function 

Evaluation (FE) 

Here we discuss the performance of the scenario described in Fig. 5. When 

parallel DF is combined with parallel LS and parallel FEA, in addition to the 

number of directions to be computed in each iteration, it is necessary to specify 

the number of processors to be used for each parallel FE and the number of LS 

managers per direction. Consider the scenario with 24 processors on the CML 

cluster (Table 3). In this case, LS is performed along 4 directions simultaneously. 

2 LS processes are specified per direction indicating that 2 steps will be taken 

simultaneously along each direction. The benefit of parallel LS is the reduction in 

the number of interval reductions needed to find the step size along a particular 

direction vector. Thus, parallel DF and parallel LS results in the reduction  

of NFVLS/PE from 76 to 8. Parallel DF contribution would be approximately 

(76/4) = 19. This assertion in problem specific – NFVLS is almost the same along 

each direction. Hence the speedup in terms of reduction in FEs due to parallel  

LS is 19/8 = 2.38. Hence total expected speedup due to parallel DF and LS is 

(76/8) = 9.5. Additionally, 3 processors are specified for parallel FE. This is 

expected to further reduce computation time by reducing FE time. However for 

this problem, there is no reduction in FE time using 3 processors for parallel 

FEA. Thus the expected speedup is (76/8)(102/105) = 9.23 while the obtained 

speedup is (7728/849) = 9.1. 

The direction-finding time is extremely small since the number of active 

constraints is small. The FEM cluster’s performance for this problem deteriorates 

when both the processors per node are used – total time increases from 2386 

seconds (8 processors) to 11051 seconds (16 processors). The problem is 

memory bound and the amount of hard page faults increases appreciably when 

both processors per node are used. 
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7.  Conclusions 

Two major changes bode well for the development and use of parallel processing 

software for design optimization. First, the requirements for design optimization 

are increasing for a number of reasons. The finite element analyses now require 

more computational effort. The design models have larger number of design 

variables and constraints. Second, the growth in computational speed of CPUs 

has slowed down and the new focus is on multicore CPUs. Both these changes 

require the use of parallel processing techniques to obtain the computational 

gains required to obtain solution to bigger problems. 

As the discussions show in this chapter, developments in parallel 

computations have just begun to yield the expected computational gains. 

Depending on the type of problem being solved and the solution technique, once 

can use a small 2-computer heterogeneous cluster to as large as a 260-node 

homogenous cluster. Much more effort is needed in a multitude of areas – 

hardware development, compiler technology, parallel sparse direct and iterative 

solvers, design optimization algorithm development and fault-tolerant, optimized 

message passing libraries. 
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CHAPTER 19
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Basic formulations of SemiDefinite Programming (SDP) are presented, and the
properties including optimality conditions and duality are summarized. It is
shown that structural optimization problems considering compliance, eigenvalue
of vibration, etc. can be formulated by SDP problems. Interior point methods for
solving SDP are briefly introduced. Finally, it is shown that the analysis prob-
lem of a cable network can be formulated as a Second-Order Cone Programming
(SOCP) problem that is a particular case of SDP.

1. Introduction

SemiDefinite Programming (SDP) problem is a minimization problem of a linear
function under linear constraints and requirement such that variable matrices are
positive semidefinite. Since the positive semidefinite constraints include linear and
convex quadratic constraints, the SDP is an extension of Linear Programming
(LP), and unifies several nonlinear convex optimization problems such as convex
Quadratic Programming (convex QP), Second-Order Cone Programming (SOCP),
etc. Also SDP is a special case of more general problems of minimizing a linear
function over convex cones.49

SDP has been extensively studied in the past ten years, because it has wide areas
of application in mathematical and engineering fields.68,40,41 For a combinatorial
optimization problem, a better bound can be obtained by SDP relaxation than by
LP relaxation. A graph partitioning problem such as maximum cut problem can
also be relaxed to an SDP problem.19 In the field of control theory, semidefinite
constraints have been often used in the form of Linear Matrix Inequality (LMI).10

541
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Recently, some applications have been found in the field of structural optimiza-
tion. Ben-Tal and Nemirovski7 presented an SDP formulation for robust truss topol-
ogy design under compliance constraints. Ohsaki et al.54 demonstrated that optimal
trusses with multiple eigenvalues of vibration can be obtained without any difficulty
by SDP, and extended the method to linear buckling constraints.30

Another reason for extensive research on SDP is that a polynomial-time algo-
rithm called primal-dual interior-point method has been developed, and large practi-
cal problems can be solved within reasonable computational time. The convergence
and quality of the obtained solution defined by the duality gap are guaranteed by
the strong duality theory.

In this chapter, outline of SDP and its application to structural optimization
are summarized. The details of mathematical background and algorithms for SDP
may be consulted to the review papers22,63,61 and the handbook.65

2. Mathematical Preliminaries

Fundamental properties of positive semidefinite matrices are listed as follows for
references to derivations of equations in the subsequent sections. Throughout this
chapter, In denotes an identity matrix in Rn×n.

Let Sn ⊂ Rn×n denote the set of all n × n real symmetric matrices. We write
A � O if A ∈ Sn is positive semidefinite; i.e., if all the eigenvalues of A are
nonnegative. A •B is the inner product of A = (Aij) ∈ Sn and B = (Bij) ∈ Sn

defined by

A •B =
n∑

i=1

n∑
j=1

AijBij .

Fundamental properties:

(P1) For A ∈ Sn, the following three properties are equivalent:

(a) A is positive semidefinite.
(b) u�Au ≥ 0 for all u ∈ Rn.
(c) All eigenvalues of A are nonnegative.

(P2) Suppose A ∈ Sm is positive definite and B ∈ Sn. Then the matrix D ∈
Sm+n defined by

D =
(

A C

C� B

)

is positive definite (semidefinite) if and only if E = B−C�A−1C is positive
definite (semidefinite). Here, the matrix E ∈ Sn is called Schur complement
of A in D.

(P3) A ∈ Sn and B ∈ Sn satisfy A •B = trace(AB).
(P4) Let Sn � A � O.
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(a) There exists the unique matrix Sn � A1/2 � O satisfying A1/2A1/2 =
A. Here, A1/2 is often called square root of A.

(b) For Sn � B � O, we obtain A • B = trace(A1/2A1/2B) =
trace(A1/2BA1/2) ≥ 0, because the matrix A1/2BA1/2 is positive
semidefinite.

(P5) Let λ1 denote the minimum eigenvalue of Sn � A � O. λ1 ≥ λ holds if and
only if A− λIn � O, i.e., the matrix (A− λIn) is positive semidefinite.

(P6) A ∈ Sn and u ∈ Rn satisfy u�Au = A • (uu�).
(P7) For Sn � A � O and Sn � B � O, the condition A •B = 0 is equivalent

to AB = O.
(P8) For q ∈ Rn, γ ∈ R, Sn � Q � O, and L ∈ Rn×n satisfying Q = LL�, we

have

x�Qx + q�x + γ ≤ 0 ⇐⇒
(

In L�x

x�L −q�x− γ

)
� O.

3. Problem Formulation

Let Ai ∈ Sn (i = 1, . . . , m), C ∈ Sn, and b = (bi) ∈ Rm denote constant (data)
matrices and vector. X ∈ Sn and Z ∈ Sn are the variable matrices and y = (yi) ∈
Rm is a variable vector. In the following, all the vectors are column vectors, and
the components are given by the subscripts.

The standard form of the SDP problem is formulated as

P : min
X

C •X

s.t. Ai •X = bi, (i = 1, . . . , m)
X � O.

⎫⎪⎬
⎪⎭ (1)

The dual of P , which is formulated by using the same data matrices and vector as
P , refers to the optimization problem having the form of

D : max
y,Z

b�y

s.t.
m∑

i=1

Aiyi + Z = C

Z � O.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2)

Here, D is also an SDP problem, since it can be embedded into the form of P .22

Moreover, the dual problem of D coincides with P again. Note that most of the
engineering problems are formulated in the form of D. However, we define ‘primal’
and ‘dual’ as shown above along with the mathematical tradition.

Example 1: Consider a problem of minimizing y1 + y2 under constraints of y1 ≥ 0
and y1y2 ≥ 1. This problem can be formulated in the dual form of SDP as

max −y1 − y2

s.t. Z =
(

y1 1
1 y2

)
� O.

⎫⎬
⎭ (3)
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Here, we see

b = (−1,−1)�, y = (y1, y2), A1 =
(−1 0

0 0

)
, A2 =

(
0 0
0 −1

)
, C =

(
0 1
1 0

)

and m = n = 2 in D. Hence the primal form P is written by X ∈ S2 as

min
(

0 1
1 0

)
•X

s.t.
(−1 0

0 0

)
•X = −1,

(
0 0
0 −1

)
•X = −1,

X � O

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4)

which is reduced to

min 2X21

s.t. X11 = 1, X22 = 1
X � O

⎫⎬
⎭ (5)

where X12 = X21 has been used. �

Example 2: The problem with several positive semidefinite variable matrices
can be converted into the standard form of SDP problem. Let Aij ∈ Sn (i =
1, . . . , m; j = 1, . . . , k). The problem

max
y,Z1,...,Zk

b�y

s.t.
m∑

i=1

Aijyi + Zj = Cj , Zj � O, (j = 1, . . . , k)

where Zj ∈ Snj (j = 1, . . . , k), can be formulated equivalently as D in (2), because

Zj � O, (j = 1, . . . , k) ⇐⇒

⎛
⎜⎜⎜⎝

Z1 O · · · O

O Z2 · · · O
...

...
. . .

...
O O · · · Zk

⎞
⎟⎟⎟⎠ � O.

In a particular case of nj = 1 (j = 1, . . . , k), we see that a linear inequality Rk �
z ≥ 0 is equivalent to diag(z) � O, which shows that LP is included in SDP. �

Example 3: Any convex quadratic programming problem is formulated as an SDP
problem. Indeed, a convex quadratic inequality can be expressed as a linear matrix
inequality. See property (P8). �

Example 4: Let λ1(F ) denote the minimum eigenvalue of F ∈ Sn. Suppose that
F depends linearly on p ∈ Rk as

F = F 0 +
k∑

i=1

F ipi
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where F i ∈ Sn (i = 0, 1, . . . , k) are constant matrices. Consider the problem of
maximizing the minimum eigenvalue of F (p), namely, maxp λ1(F (p)). From prop-
erty (P5), this problem is equivalent to the following problem in variables p and
t:

max
p,t

t

s.t. F 0 +
k∑

i=1

F ipi − tIn � O

which can be embedded into the form of D with

y = (p�, t)�, (m = k + 1),

Ai = −F i, (i = 1, . . . , k), Ak+1 = In, b = (0�, 1)�, C = F 0.

See Alizadeh1 for more examples of eigenvalue optimization. �

Example 5: Recall that the dual SDP problem D has linear equality constraints.
However, there exist many problems with nonlinear equality constraints that can be
represented as SDP problems. Letting Q1, . . . , Qm ∈ Sn denote constant positive
semidefinite matrices, consider the following problem:

max
y,Z

b�y

s.t. −
m∑

i=1

Qiy
2
i +

m∑
i=1

Aiyi + Z = C

Z � O.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6)

For each i = 1, . . . , m, there exists an Li satisfying Qi = LiL
�
i , e.g., we can choose

Li as the Cholesky factor of Qi. By using such Li and property (P2), we see that
the problem (6) is equivalent to

max
y,Ẑ

b�y

s.t.
m∑

i=1

(
O −Li

−L�
i Ai

)
yi + Ẑ =

(
In O

O C

)
Ẑ � O

which is in the form of D. �

The readers may find a comprehensive list of constraints that can be converted
to SDP constraints in Ben-Tal and Nemirovski8 (Section 4.2).

4. Duality

The duality gap refers to the gap between the value C •X of the primal objective
and b�y of the dual objective. The following relation of weak duality holds between
P and D:
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Proposition 6: (weak duality). If X and (y, Z) are feasible in P and D, re-
spectively, then the duality gap is nonnegative, i.e., the inequality

C •X − b�y = X •Z ≥ 0

holds.

The weak duality implies that D provides a lower bound of P , and D provides
an upper bound of P . It follows immediately from the weak duality that feasible
X and (y, Z) satisfy X • Z = 0 only if they are optimal solutions. The converse
is guaranteed by the following strong duality, which requires a certain constraint
qualification:

Proposition 7: (strong duality). Assume that P and D have feasible solutions
such that X and Z are positive definite. Then P and D have optimal solutions X̃

and (ỹ, Z̃), respectively, and the duality gap becomes zero, i.e.,

C • X̃ − b�ỹ = X̃ • Z̃ = 0.

Assume that the assumption of Proposition 7 holds. If X̃ and (ỹ, Z̃) are optimal
solutions, then X̃Z̃ = O is obtained from the strong duality and property (P7).
Conversely, suppose that feasible X̃ and (ỹ, Z̃) satisfy X̃Z̃ = O. By using prop-
erty (P7), we obtain X̃ • Z̃ = 0, from which and the weak duality it follows that
X̃ and (ỹ, Z̃) are optimal solutions. As a consequence, under the same assumption
as Proposition 7, the necessary and sufficient conditions for optimality of P and D
are obtained as

Ai •X = bi, (i = 1, . . . , m), X � O (7a)
m∑

i=1

Aiyi + Z = C, Z � O (7b)

XZ = O (7c)

Here, (7a) and (7b) correspond to the primal and dual feasibility conditions, re-
spectively. Eq. (7c) is called a complementarity condition. Note that (7a)–(7c) are
called Karush–Kuhn–Tucker (KKT) conditions which are extended from those of
LP. The condition (7) plays a crucial role in developing the primal-dual interior-
point method that solves P and D simultaneously. See Section 6.

Example 8: Consider the pair of primal and dual problems in Example 1. X11 = 1
and X22 = 1 hold from the constraints in the primal problem (5), and by using
X12 = X21, the complementarity condition (7c) is written as

XZ =
(

X21 + y1 X21y2 + 1
X21y1 + 1 X21 + y2

)
= O,

which leads to the optimal solutions (y1, y2) = (1, 1) and X21 = −1. �
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5. Structural Optimization by SDP

Some structural optimization problems are shown in this section in the forms of
SDPs, where the dual form D in (2) that has linear objective function is usually
used. The restriction of linear objective function is not very serious, because any
objective function can be linearized by introducing an auxiliary variable and addi-
tional inequality constraints. However, the constraints should be converted in the
form of D, i.e., only positive semidefinite constraints of matrices are allowed in D,
and the matrices should linearly depend on the variables.

For structures such as trusses, plates with in-plane deformation, frames and
plates with sandwich cross-sections, etc., both the stiffness and mass matrices are
linear functions of the design variables, and the optimization problems under con-
straints on compliance or eigenvalues of vibration can be formulated by SDP. Even
if the dependence of the matrices on the variables is not linear, there are many
cases where nonlinear convex constraints can be converted into a form of positive
semidefinite constraints as demonstrated in Ref.5. For a more general case where the
matrices nonlinearly depend on the variable, local optimal solution can be found by
successively solving linearized SDPs as illustrated in the example of linear buckling
constraints in Section 5.3.

In this section, we consider a finite dimensional linear elastic structure subjected
to nodal loads p ∈ Rn, where n is the total number of degrees of freedom. Small
displacements as well as small strains are assumed. Let x = (xi) ∈ Rm denote
the vector of design variables such as the cross-sectional areas of a truss and the
thickness of a plate discretized into finite elements. The stiffness matrix is denoted
by K(x) ∈ Sn. The displacement vector u ∈ Rn is found from the stiffness (equi-
librium) equation

K(x)u = p

where p is assumed, for brevity, to be independent of x, and the argument x is
omitted in the following.

5.1. Compliance optimization

The compliance W is defined as the external work that is equivalent to twice of the
strain energy; i.e.

W = p�u = u�Ku = 2
(

p�u− 1
2
u�Ku

)
= p�K−1p.

Note that W is a measure of flexibility, and the stiffness of a structure is to be in-
creased by reducing W . Since the compliance is a simple global performance measure
of a structure, it is often used for formulating structural optimization problems.

The structural volume for unit value of xi is denoted by si; e.g., si is a mem-
ber length of a truss, area of a plate element, etc. The minimization problem of
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compliance under the constraint of structural volume can be formulated as

min
x

W (x)

s.t. x ≥ x, s�x ≤ V

}
(8)

where V is the specified total volume, and the nonnegative lower bound x is given
for x. Observe that τ − p�K−1p is the Schur complement of K in the matrix(

τ p�

p K

)
.

Hence, by using property (P2), we see

τ ≥ p�K−1p ⇐⇒
(

τ p�

p K

)
� O

from which it follows that (8) is equivalent to

DCOMP : max
τ,x

−τ

s.t.

⎛
⎜⎜⎝

τ p�

p K(x)
diag(x− x) (

V − s�x
)

⎞
⎟⎟⎠ � O

where τ is an auxiliary variable. Note that maximizing −τ is equivalent to mini-
mizing τ that coincides with p�K−1p at an optimal solution of DCOMP . If K is a
linear function of x, then DCOMP has a linear objective function and a semidefinite
constraint of a matrix that is a linear function of the variables x; i.e. DCOMP can
be embedded in a dual form D of SDP with y = (τ, x�)�.

If we consider multiple load cases, a robust design can be obtained by minimizing
the maximum compliance among the load cases.37 Let l denote the number of load
cases, and the values corresponding to the ith load case is denoted by the superscript
i. The robust design problem is formulated as

min
x

sup
i∈{1,...,l}

(
pi�ui − 1

2
ui�K(x)ui

)

which can be converted to an SDP as

max
τ,x

−τ

s.t.
(

τ (pi)�

pi K(x)

)
� O, (i = 1, . . . , l)

x− x ≥ 0, V − s�x ≥ 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where τ is an auxiliary variable, and the constraints can be easily converted to the
positive semidefinite form as in DCOMP .

Let a convex setM of the load vectors be defined asM = {Qe| e ∈ Rl, ‖e‖ ≤
1}, where Q = (p1, . . . , pl) ∈ Rn×l, e is a coefficient vector, and ‖·‖ is the standard
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Euclidean norm. The problem of minimizing the worst-case value of the compliance
against the possible load vectors p ∈M can be formulated as

min
x

sup
p∈M

p�K(x)−1p

which can be converted to an SDP as7,37

max
τ,x

−τ

s.t.
(

τI l Q�

Q K(x)

)
� O

x− x ≥ 0, V − s�x ≥ 0

5.2. Eigenvalue of free vibration

It is shown in this section that optimization problem under constraints on eigenval-
ues of free vibration can be formulated as an SDP problem.54

The structural and nonstructural mass matrices are denoted by MS(x) ∈ Sn

and M 0 ∈ Sn, respectively. Note that MS(x) and the stiffness matrix K(x) are
linear functions of design variables x, whereas M 0 is a constant matrix. Let Ωr and
Φr ∈ Rn denote the rth eigenvalue and eigenvector, respectively. The eigenvalue
problem of vibration is formulated as

[K − Ωr(MS + M 0)]Φr = 0, (r = 1, . . . , n) (9)

where Φr is normalized as Φ�
r (MS + M 0)Φr = 1.

Consider a problem of minimizing the total structural volume s�x under the
lower-bound constraints on the eigenvalues. In a usual nonlinear programming for-
mulation, the optimization problem is formulated as

PEIG : min
x

s�x

s.t. Ωr(x) ≥ Ω, (r = 1, 2, . . . , n)
xi ≥ xi, (i = 1, 2, . . . , m)

where Ω > 0 is the specified lower bound for the eigenvalues, and the nonnegative
lower bound xi is given for xi.

It is well known that an optimal solution of PEIG often has multiple eigenval-
ues for which the sensitivity coefficients are discontinuous functions of the design
variables.21 Therefore, it is very difficult to obtain the optimal solution of PEIG

by using a gradient-based nonlinear programming algorithm for a large structure
especially for topology optimization problem with x = 0.

In the following, we convert PEIG to an SDP problem. From the eigenvalue
constraint and Rayleigh’s principle, the following inequality should be satisfied by
any vector Ψ ∈ Rn:

Ψ�[K − Ω(MS + M 0)]Ψ ≥ 0
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which is equivalent to

K − Ω(MS + M0) � O. (10)

Note that the condition (10) can be obtained also by transforming the generalized
eigenvalue problem (9) to a standard form.

Suppose the case where K and MS are defined as follows as linear functions of
x without constant terms:

K =
m∑

i=1

xiKi, MS =
m∑

i=1

xiM i

where Ki ∈ Sn and M i ∈ Sn are constant matrices. Hence, (10) is written as
m∑

i=1

(Ki − ΩM i)xi − ΩM0 � O.

Finally, the optimization problem is formulated as the dual SDP form D intro-
duced in (2) as

DEIG : min
x

s�x

s.t.
m∑

i=1

(Ki − ΩM i)xi − ΩM 0 � O, x− x ≥ 0.

The dual problem of DEIG is formulated in the form of P in (1) as

PEIG : max
Y ,η

ΩM0 • Y

s.t. (Ki − ΩM i) • Y + ηi = si, ηi ≥ 0, (i = 1, . . . , m)
Y � O

where ηi is a slack variable.
Let x∗ denote a feasible solution of PEIG, i.e., of DEIG. Assume that, at x∗, the

lowest eigenvalue Ω1 in (9) is equal to Ω. Let t denote the multiplicity of the lowest
eigenvalues. The eigenvectors corresponding to Ωr = Ω are denoted by Φ1, . . . ,Φt,
which are chosen so as to be linearly independent. It was shown by Kanno and
Ohsaki27 that x∗ is an optimal solution of PEIG if and only if there exists an
H = (Hpq) ∈ St satisfying

t∑
p=1

t∑
q=1

HpqΦ�
p (Ki − ΩM i)Φq ≤ si, if x∗

i = xi, (11a)

t∑
p=1

t∑
q=1

HpqΦ�
p (Ki − ΩM i)Φq = si, if x∗

i > xi, (11b)

H � O. (11c)

Here, H plays a role similar to the Lagrange multiplier.
By using the SDP formulation, optimal solutions with many multiplicity of the

lowest eigenvalues can be found without any difficulty. The possible number of
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x1

q q

x2

1 2

Fig. 1. A spring-mass model.

Table 1. Symmetry of the fundamental eigenmodes of the optimal double-layer grid.

xz-plane yz-plane
Mode 1 S S
Mode 2 S A
Mode 3 A S
Mode 4 S A
Mode 5 A S

multiplicity can be investigated from the number of rank deficiencies of the matrices
at the optimal solutions.3

Example 9: As an illustrative example, consider a spring-mass model as shown
in Fig. 1. The extensional stiffness of the bars 1 and 2 are denoted by x1 and x2,
respectively, which are the design variables. Each node has the lumped mass q, and
the structural mass is neglected; i.e. the mass matrix is independent of stiffness. Let
q = 1, Ω = 1, and x = 0, for brevity, and the length si of member i is equal to 1.
The dual and primal problems are written as

DEX : min
x

x1 + x2

s.t. X =
(

1 0
0 0

)
x1 +

(
1 −1
−1 1

)
x2 −

(
1 0
0 1

)
� O

x1 ≥ 0, x2 ≥ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(12)

PEX : max
Y ,η

Y11 + Y22

s.t. Y11 + η1 = 1, Y11 + Y22 − 2Y12 + η2 = 1, η1 ≥ 0, η2 ≥ 0(
Y11 Y12

Y12 Y22

)
� O

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(13)

�

Example 10: Consider a double-layer grid truss illustrated in Fig. 2, where m =
288 and n = 243. A nonstructural mass of 1.0 × 104 kg is located at each node
on the upper layer. The elastic modulus and the mass density of each member are
200 GPa and 7.86 × 103 kg/m3, respectively. The lengths of the members in x-
and y-directions are 2.0 m and 1.6 m, respectively, and the distance between the
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x y

z

Fig. 2. A double-layer grid.

Fig. 3. Optimal design of the double-layer grid.

upper and lower layers is 1.3 m. The truss is symmetric with respect to xz- and
yz-planes. We set the lower bounds of eigenvalues and member cross-sectional areas,
respectively, as Ω = 1000.0 rad2/s2 and x = 0.

We solve the primal-dual pair of SDP problems PEIG and DEIG by using Se-
DuMi Ver. 1.0559, which implements the primal-dual interior-point method, under
the environment of MATLAB.43 The obtained optimal design is shown in Fig. 3,
where the width of each member is proportional to its cross-sectional area. At the
optimal solution, the total volume of members is 1.1394 m3. The five lowest eigen-
values are all equal to Ω, i.e, the multiplicity of fundamental eigenvalues is five.
Symmetry properties of the five fundamental eigenmodes are as listed in Table 1,
where ‘S’ and ‘A’ stand for symmetric and antisymmetric, respectively.

The primal-dual interior-point method has no difficulty in finding an optimal
solution with many multiplicity of eigenvalues. An extra benefit of using this method
is that a strictly symmetric optimal solution can be automatically found even if we
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incorporate neither any additional constraint on symmetry nor a variable linking
technique. See, for more details, Kanno et al.32 �

5.3. Linear buckling

The linear buckling load factor is a basic performance measure of stability of struc-
tures mainly for thin-walled or slender structures. It is well known that optimum
designs often have multiple buckling load factors.55 In this case, similarly to the
case of eigenvalue of vibration57, the buckling load factor is not continuously differ-
entiable.

However, contrary to the vibration problem, the geometrical stiffness matrix
for formulating linear buckling problem depends on the internal forces that are
usually nonlinear functions of the design variables. Therefore, in this section, an
optimization method is presented based on successive solution of linearized SDPs.

5.3.1. Formulation with positive semidefinite constraints

Consider a finite dimensional structure with fixed locations of nodes and members
(elements). The optimal design variables such as cross-sectional areas and thickness
are found so as to minimize the total volume of the structure with a specified
linear buckling load factor. The quasi-static proportional loads are defined by the
load factor Λ and the specified vector p0 ∈ Rn of load pattern as p = Λp0. Let
KG ∈ Sn denote the geometrical stiffness matrix. See, e.g., Gallagher18 for details
of the matrix. The rth linear buckling load factor Λr and the corresponding buckling
mode Φr ∈ Rn are defined by

(K + ΛrK
G)Φr = 0, (r = 1, . . . , n). (14)

For frames and curved structures such as arches and shells, KG is not nega-
tive definite and generally there exist positive and negative buckling load factors.
However, we are concerned with the lowest positive value of Λr, because the direc-
tions of the loads are fixed. Therefore, the reciprocal values of load factors 1/Λr are
numbered in nonascending order; i.e., Λ1 is the lowest positive buckling load factor.

The positive lower-bound Λ is specified for positive Λr, but no constraint is given
for the negative values of Λr; i.e., Λr should satisfy

Λr ≥ Λ or Λr < 0, (r = 1, . . . , n). (15)

Observe that (15) is alternatively written as

1
Λr
≤ 1

Λ
, (r = 1, . . . , n). (16)
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Hence, the optimization problem for minimizing the total structural volume under
linear buckling constraints is formulated as

PLB : min
x

s�x

s.t.
1

Λr(x)
≤ 1

Λ
, (r = 1, . . . , n)

x ≥ x

⎫⎪⎪⎬
⎪⎪⎭ (17)

where x is the specified nonnegative lower bound for x.
By using Rayleigh’s principle, the condition (16) is reduced to

−Ψ�KGΨ
Ψ�KΨ

≤ 1
Λ

, for any Ψ ∈ Rn. (18)

Eq. (18) is then rewritten as the following positive semidefinite condition of a matrix:(
1
Λ

K + KG

)
� O.

The displacement vector u0 for p0 is found from

Ku0 = p0

Let f i ∈ Rν denote the vector of generalized stress of the ith element or member.
For a truss and a frame, ν = 1 and fi is the axial force. For a plate subjected to in-
plane deformation, ν is three times the number of integration points if a numerical
integration is used. For simplicity, f ∈ Rνm is defined by

f = (f�
1 , . . . , f�

m)�

and fj denotes the jth component of f , which is a linear function of u0.
KG is written as a linear function of f as

KG =
νm∑
j=1

fjK
G
j

where KG
j ∈ Sn is a symmetric constant matrix. Consequently, the problem PLB

in (17) can be equivalently reformulated as

P′
LB : min

x,u0
s�x (19a)

s.t.
1
Λ

m∑
i=1

xiKi +
νm∑
j=1

fj(u0)KG
j � O, (19b)

∑
i=1

xiKiu0 = p0, (19c)

x− x ≥ 0. (19d)

P′
LB cannot be formulated as an SDP problem, because the equality constraints

(19c), i.e., the equilibrium equations, are nonconvex with respect to x and u0 for
a general statically indeterminate structure. Ben-Tal et al.5 proposed a successive
SDP algorithm solving P′

LB based on the semidefinite relaxation of (19c). In the
next section, the authors’ approach of successive linearization is briefly presented.
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5.3.2. Sequential SDP algorithm

An optimal solution of nonlinear problem P′
LB with positive semidefinite constraints

can be found by sequentially solving SDP problems. Let the superscript (k) denote
the iteration counter for the sequential SDP. We approximate fj(x) (j = 1, . . . , νm)
by f̃

(k)
j (x) defined by the values at x = x(k) as

Method (a) : f̃
(k)
j (x) = fj(x(k)) +∇fj(x(k))�(x− x(k));

Method (b) : f̃
(k)
j (x) = fi(x(k)).

In Method (a), we approximate fj as a linear function of the design variables x by
using the sensitivity coefficients of f . Method (b) simply assumes that fj does not
change from the value at the current solution x(k).

By using either Method (a) or (b), the problem P′
LB is approximated as the

following dual SDP form:

D(k)
LB : min

x
s�x

s.t. Z =
m∑

i=1

F ixi + F 0

Z � O, x− x ≥ 0

where F i ∈ Sn (i = 0, 1, . . . , m) are the constant matrices defined as

Method (a) : F i =
1
Λ

Ki +
νm∑
j=1

∂fj(x(k))
∂xi

KG
j , (i = 1, . . . , m)

F 0 =
νm∑
j=1

[
fj(x(k))−∇fj(x(k))�x(k)

]
KG

j ; (20)

Method (b) : F i =
1
Λ

Ki, (i = 1, . . . , m)

F 0 =
νm∑
j=1

fj(x(k))KG
j . (21)

The original problem P′
LB can be solved by the following algorithm:

Algorithm 11:

Step 0: Choose x(0) ≥ x, c(0) > 0, and the tolerance ε > 0. Set k := 0.
Step 1: Find an optimal solution (x∗, t∗) of the SDP problem

min
x,t

s�x + c(k)t

s.t.
m∑

i=1

F ixi − F 0 � O

t ≥ ∥∥x− x(k)
∥∥

x− x ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(22)

If t∗ ≤ ε and Λ1(x∗) ≥ Λ, then STOP.
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z

y

x

Fig. 4. A tower-type truss.

(a) outer members

(b) inner members

Fig. 5. Optimal design of the tower-type truss.

Step 2: Set x(k+1) := x∗.
Step 3: Choose c(k+1) > 0. Set k ← k + 1, and go to Step 1.

In the problem (22), the penalty term c(k)t with the second constraint for the
norm of x − x(k) plays a role similar to the conventional move limit on x, and
t∗ = ‖x∗ − x(k)‖ is satisfied at an optimal solution of (22).

Note that the sensitivity coefficients of buckling load factors are not used in
Algorithm 11. Therefore, the optimal design with a large number of multiplicity of
buckling load factors can be found without any difficulty.

It should be emphasized that a solution obtained by Method (a) satisfies the
first-order optimality conditions of P′

LB. Therefore, the solution is guaranteed to
be a stationary point of P′

LB. On the contrary, the optimality conditions are not
generally satisfied by the solution obtained by Method (b).

Some software packages based on the primal-dual interior-point method incor-
porate efficient methods for computation when the coefficient matrices F i of D(k)

LB

are sparse; i.e., when these matrices have large numbers of zero elements. See, e.g.,
Fujisawa et al.15 Note that Ki and KG

j are very sparse matrices. Consequently, if

we use Method (b), then F i in D(k)
LB, and hence in (22), have larger sparsity than

those by Method (a). It follows that the computational cost for solving each D(k)
LB

with Method (b) is smaller than that with Method (a) if an SDP software exploiting
sparsity is used.

Example 12: Consider a tower-type truss illustrated in Fig. 4, where m = 132 and
n = 72. The lengths of members in x-, y- and z-directions are 50.0 cm, 100.0 cm and
300.0 cm, respectively. The external loads of 1000.0 kN are applied at the four nodes
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(a) Mode 1

(b) Mode 2

(c) Mode 3

(d) Mode 4

(e) Mode 5

Fig. 6. Buckling modes of the optimal tower-type truss.

Table 2. Iteration history of the tower-type truss by Method (a)

k Volume Λ1 Λ2 Λ3 Λ4 Λ5 CPU ‖x − xk‖
(105 cm3) (sec.)

0 329.142 17.1360 73.7784 146.785 369.231 622.829
1 7.91929 0.19873 0.41141 0.54588 0.81982 0.85576 19.4 1.1
2 7.92204 0.99938 0.99984 1.00000 1.02025 1.04674 15.1 5.3×10−5

3 7.92300 0.99917 0.99980 0.99980 1.00000 1.00000 18.2 1.1×10−5

4 7.92301 1.00000 1.00000 1.00000 1.00000 1.00000 14.4 1.8×10−7

Table 3. Iteration history of the tower-type truss by Method (b)

k Volume Λ1 Λ2 Λ3 Λ4 Λ5 CPU ‖x− xk‖
(105 cm3) (sec.)

0 329.142 17.1360 73.7784 146.785 369.231 622.829
1 7.91919 0.17782 0.39808 0.53972 0.81368 0.84645 3.4 1.1
2 7.92335 1.00002 1.00025 1.00085 1.00800 1.01612 2.9 2.4×10−5

3 7.92315 0.99982 0.99992 0.99998 1.00000 1.00398 3.1 2.7×10−6

4 7.92315 0.99976 0.99999 1.00000 1.00000 1.00020 3.0 4.6×10−7

16 7.92315 1.00000 1.00000 1.00000 1.00000 1.00000 3.1 1.6×10−12

on the top layer (right layer in Fig. 4) in the negative direction of the z-axis. We
set the lower bounds of positive linear buckling factors and member cross-sectional
areas, respectively, as Λ = 1.0 and x = 0. Hence, the model is symmetric with
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respect to the xz- and yz-planes. In Algorithm 11, the SDP problem (22) is solved
by using SeDuMi Ver. 1.05.59 Computation has been carried out on Pentium M
(1.5GHz with 1GB RAM) with MATLAB Ver. 6.5.1.43

The optimal design obtained by Algorithm 11 with Method (a) is shown in
Fig. 5, where the extremely slender members with xi < 0.01 cm2 are removed.
In Algorithm 11, we set ε = 10−6, c(0) = 4.0, c(k) = max{0.6c(k−1), 0.8}, and
x

(0)
i = 1000.0 cm2 (i = 1, . . . , m). The iteration history by Method (a) is listed in

Table 2, where four steps are required by Algorithm 11. The CPU time required by
the interior-point method solving the SDP problem (22) is also listed in Table 2.
At the optimal solution, the total volume of members is 7.9230× 105 cm3. The five
linear buckling load factors are all equal to Λ, i.e., the multiplicity of the buckling
load factors is five. The corresponding buckling modes are illustrated in Fig. 6.

Almost the same solution is found by Method (b) after 16 steps, where the
iteration history is listed in Table 3. The total volume of members of the obtained
solution is slightly larger than that by Method (a). Five buckling load factors are
equal to Λ at this solution. It is observed from Tables 2 and 3 that the computational
time for solving problem (22) at each iteration of Method (b) is smaller than that
of Method (a). On the other hand, the number of steps required by Method (b) is
larger than that by Method (a), because Method (b) does not use the first-order
information of axial forces. �

6. Interior-Point Algorithm

Interior-point method originally referred the penalty approach with interior penalty
function such as SUMT.14 The new generation interior-point method is first devel-
oped for LP66 by Karmarkar34, which has been extended to SDP in 1990s. It is
theoretically guaranteed39 that the primal-dual interior-point method converges to
the global optimal solution of the pair P and D within polynomial time of m and n,
which demonstrates excellent performance even in large scale applications if sparsity
of the matrices is utilized.

Recall that the SDP problem P has the nonlinear constraint Sn � X � O.
For this constraint, we first introduce the barrier term −µ ln(detX) called the
logarithmic barrier function, where µ > 0 is a parameter. By adding this barrier
function to the objective function of P , we obtain the following family of problems
parameterized by µ > 0:

P(µ) : min
X

C •X − µ ln(detX)

s.t. Ai •X = bi, (i = 1, . . . , m), X � O

where X � O means that X is positive definite. X is an optimal solution of P(µ)
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if and only if there exist y ∈ Rm and Z ∈ Sn satisfying

CP(µ) :

Ai •X = bi, (i = 1, . . . , m), X � O
m∑

i=1

Aiyi + Z = C, Z � O

XY = µIn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(23)

where y1, . . . , ym and Z can be regarded as the Lagrange multipliers and slack
variables. It is known that the system (23) has the unique solution (X , y, Z) for any
µ > 0. Moreover, (y, Z) satisfying (23) is also an optimal solution of the following
barrier problem of the dual form SDP:

D(µ) : max
y,Z

b�y + µ ln(det Z)

s.t.
m∑

i=1

Aiyi + Z = C, Z � O.

Notice here that the optimality conditions (7) of the SDP problems P and D can
be obtained from (23) by taking a limit µ → 0 and replacing X � O and Z � O

with X � O and Z � O, respectively. This implies that a sequence of solutions to
(23), so-called central path61, converges to a pair of optimal solutions of P and D
with µ → 0. It is known that the central path is a unique and smooth curve. The
primal-dual path-following interior-point method finds a pair of optimal solutions
of P and D by numerically tracing the central path CP(µ) by decreasing µ→ 0.

Let (Xk, yk, Zk) denote a current solution obtained in iteration procedure. The
fundamental idea of primal-dual interior-point methods is summarized as follows:
first, the search direction (∆X, ∆y, ∆Z) is determined by solving the following
Newton equations of the system of central path (23) with an appropriately chosen
µ > 0:

Ai •∆X = bi −Ai •Xk, (i = 1, . . . , m), (24a)
m∑

i=1

Ai∆yi + ∆Z = C −
m∑

i=1

Aiy
k
i −Zk, (24b)

Xk(∆Y ) + (∆X)Y k = µIn −XkZk. (24c)

Next, the step size is determined so that X and Z remain positive definite, and
we move to the new solution (Xk+1, yk+1, Zk+1). Then we decrease µ with an
appropriate criterion, and solve (24a)–(24c) at (Xk+1, yk+1, Zk+1) again to find a
new search direction.

Unfortunately, ∆X obtained by solving (24a)–(24c) is not necessarily symmet-
ric. However, an optimal solution X of P should be symmetric, which implies
that some additional scheme is required to symmetrize ∆X . Various symmetriz-
ing methods were proposed that lead to different search directions61, e.g., AHO4,
HRVW24/KSH39/M46, and NT51. However, we should not go into details here. The
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following is a prototype of typical primal-dual path-following interior-point method
solving P and D:

Algorithm 13: (prototype of interior-point method)

Step 0: Choose (X0, y0, Z0) satisfying X0 � O, Z0 � O and some additional
conditions. Set k := 0.

Step 1: If (Xk, yk, Zk) is feasible and µk := Xk •Zk/n is small enough, then
STOP.

Step 2: Choose µ ∈ (0, µk), and compute (∆X, ∆y, ∆Z) by solving the system
of (24a), (24b) and a variant of (24c).

Step 3: Choose αp, αd ∈ (0, 1] so that Xk +αp∆X � O and Zk +αd∆Z � O.
Step 4: Set (Xk+1, yk+1, Zk+1) := (Xk + αp∆X , yk + αd∆y, Zk + αd∆Z).
Step 5: Set k ← k + 1, and go to Step 1.

Here, we shall not discuss how to update µ, αp and αd. By taking an appropriate up-
dating scheme of these parameters, it is shown that an optimal pair of P and D can
be found with the number of arithmetic operations bounded by a polynomial of m

and n. The interested readers may consult Refs.39,46,51 The other types of interior-
point methods than path-following methods, e.g., potential-reduction methods61,
self-dual embedding methods67, have been also developed. Several software pack-
ages have been developed based on the interior-point methods45, e.g., SDPA16,
SeDuMi59, and SDPT3.62

7. Second-Order Cone Programming

Second-Order Cone Programming (SOCP) is a convex programming that minimizes
a linear function under constraints that the variable vectors should be contained in
the second-order (Lorenz) cones.2 SOCP includes LP, convex QP, etc., and, con-
versely, is included in SDP as a particular case. Hence, SOCP can be solved by
using an interior-point method for SDP. However, special polynomial-time interior
point methods have been developed for SOCP47 that should be used if an SDP is
converted into SOCP. In this section, the outline of SOCP and its application to
analysis of cable networks are briefly presented. The details of mathematical back-
ground and algorithms for SOCP may be found in Alizadeh and Goldfarb2 and
Ben-Tal and Nemirovski8 (Chap. 3).

Let xi ∈ Rni (i = 1, . . . , r) denote a set of column vectors. For each i = 1, . . . , r,
the components of the vector xi are divided into the first and remaining components
as

xi = (xi0, x
�
i1)

�, xi0 ∈ R, xi1 ∈ Rni−1

The second-order cone K(ni) refers to a convex cone in Rni defined as

K(ni) = {xi ∈ Rni |xi0 ≥ ‖xi1‖} (25)
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For simple presentation, the following notation is used for a vector xi:

xi � 0 ⇐⇒ xi ∈ K(ni)

Also, we write xi � 0 if xi0 > ‖xi1‖, i.e., if xi is in the interior of K(ni). The dual
cone K∗(ni) of K(ni) is defined by

K∗(ni) = {si ∈ Rni |x�
i si ≥ 0, ∀xi ∈ K(ni)}.

The second-order cone is known to be self-dual , i.e., K(p) = K∗(p).
Let b ∈ Rm, ci ∈ Rni and Ai ∈ Rm×ni (i = 1, . . . , r) denote constant vectors

and matrices. The primal SOCP problem is formulated in variables xi ∈ Rni (i =
1, . . . , r) as

PSOCP : min
x1,...,xr

r∑
i=1

c�i xi

s.t.
r∑

i=1

Aixi = b, xi � 0, (i = 1, . . . , r)

The dual of PSOCP is formulated with y ∈ Rm and zi ∈ Rni (i = 1, . . . , r) as

DSOCP : max
y,z1,...,zr

b�y

s.t. A�
i y + zi = ci, zi � 0, (i = 1, . . . , r)

In a manner similar to the case of SDP duality, DSOCP is also an SOCP problem,
and the dual problem of DSOCP coincides with PSOCP . Moreover, the following
strong duality holds:

Proposition 14: (strong duality of SOCP). Assume that PSOCP and DSOCP

have feasible solutions satisfying xi � 0 and zi � 0 (i = 1, . . . , r). Then PSOCP and
DSOCP have optimal solutions (x̃1, . . . , x̃r) and (ỹ, z̃1, . . . , z̃r), respectively, and the
duality gap becomes zero, i.e.,

r∑
i=1

c�i x̃i − b�ỹ =
r∑

i=1

x̃�
i z̃i = 0.

It should be noted that Proposition 14 is very analogous to the strong duality
theorem of SDP (Proposition 7). This similarity enables us to develop theory and
algorithms, especially the primal-dual interior-point methods, of SOCP2 in a way
similar to SDP. For example, the necessary and sufficient conditions for optimality
of PSOCP and DSOCP are given as

r∑
i=1

Aixi = b, xi � 0, (i = 1, . . . , r)

A�
i y + zi = ci, zi � 0, (i = 1, . . . , r)

x�
i zi = 0, (i = 1, . . . , r)

which should be compared with (7) of SDP.
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Example 15: For a vector x ∈ Rn and the scalars u and v, the quadratic constraint

x�x ≤ uv, u ≥ 0, v ≥ 0

can be written as the following second-order cone constraint:

u + v ≥
∥∥∥∥
(

2x

u− v

)∥∥∥∥ .

�

In engineering field, there are several studies on application of SOCP. Jarre et
al.26 formulated the problem of minimizing the compliance of trusses by SOCP.
Sasakawa and Tsuchiya58 solved the optimal magnetic shielding design problem,
which arises in the development of a superconducting magnetically levitated vehicle.
Other applications of SOCP can be found in Lobo et al.42

In the following, we summarize the authors’ SOCP formulation for large-
deformation analysis of cable networks.29 Consider an elastic pin-jointed cable net-
work in three-dimensional space discretized into m members, that cannot transmit
compression forces. Let x ∈ Rn denote the nodal location vector after deformation.
The unstressed length of the ith member is denoted by l0i . The extension ci of the
ith member is defined by

ci = ‖Bix− di‖ − l0i , (i = 1, . . . , m).

Here, for each i = 1, . . . , m, Bi ∈ R3×n defines the connectivity of the member,
di ∈ R3 is a constant vector related to support conditions.

The strain energy wi of the ith member is defined by

wi(ci) =
{

1
2kic

2
i (ci ≥ 0)

0 (ci < 0)

where ki is the extensional stiffness. Thus, the definition of wi, and consequently
the definition of analysis problem, depends on the sign of ci.

Kanno et al.29 showed that the minimization problem of the total potential
energy of a cable network can be formulated as

PCN : min
t1,...,tm,x

m∑
i=1

1
2
kit

2
i − p�x

s.t. ti ≥ ‖Bix− di‖ − l0i , (i = 1, . . . , m)

where p ∈ Rn is the vector of external loads, and ki is the extensional stiffness of
the ith member. Note that Problem PCN can easily be converted to a primal form
of SOCP by using the following relation:

τi ≥ 1
2
kit

2
i ⇐⇒ τi

2ki
+ 1 ≥

∥∥∥∥∥
( τi

2ki
− 1

ti

)∥∥∥∥∥
where τi is an auxiliary variable.
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Kanno and Ohsaki28 showed that the minimization problem of complementary
energy of a cable net can be formulated as the dual form DCN of PCN as follows
that includes the force variables only, which is referred to as truly complementary
form:

DCN : max
f1,...,fm,π1,...,πm

m∑
i=1

(
f2

i

2ki
+ l0i fi + d�

i πi

)

s.t.
m∑

i=1

B�
i πi = p,

fi ≥ ‖πi‖, (i = 1, . . . , m)

where (f1, . . . , fm, π1, . . . , πm) with πi ∈ R3 are the force variables. At an optimal
solution of DCN , fi and πi coincide with the axial force and member force vector
of the ith member, respectively.

8. Related Topics and Outlook

Various interior-point methods, especially the primal-dual path-following interior-
point algorithms, have been extensively studied for SDP and SOCP. Several software
packages16,59,62 have been already well developed based on them, which have been
proven to be efficient and robust for medium-sized SDP and SOCP problems.45

Most of these packages take full advantage of sparsity of data matrices A1, . . . , Am

and C in (1) and (2), which leads to significant reduction in computational time
and required memory. Some other computational methods have also been proposed
and intensively studied for solving large scale SDP problems: the spectral bundle
method23, nonlinear programming reformulation of SDP64,11, the Lagrangian dual
interior-point method17, etc.

Recall that the primal and dual SDP problems (1) and (2) have linear con-
straints other than the positive semidefinite constraints on variable matrices, i.e.,
only X � O and Z � O are nonlinear constraints. We may extend SDP naturally
by introducing some additional nonlinear and possibly nonconvex constraints on X

and/or (y, Z). The resulting problem is sometimes called nonlinear SDP.33 Note
that, in some literature, problems (1) and (2) are called linear SDP problems in
spite of the fact that they are nonlinear optimization problems. Some algorithms,
including a sequential SDP method, have been proposed for various nonlinear SDP
problems.33,25,5

For various classes of convex optimization problems including SDP, a unified
methodology of robust optimization, or robust counterpart scheme, was developed
by Ben-Tal and Nemirovski9, where the data in optimization problems are assumed
to be unknown but bounded.

Suppose that a symmetric matrix W is given as a linear function of y. It can
be easily seen that the minimization problem of maximum eigenvalue of W (y) is
formulated as an SDP problem.63 See also Example 5. Burke et al.12 assumed that
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W (y) is nonsymmetric, and attempted to minimize the maximum real parts of its
eigenvalues.

Another interest of extension of SDP is increasing in the field of complemen-
tarity problems. Linear complementarity problem can be obtained as a natural
extension of the linear programming problem. Analogously, SDP has been extended
to semidefinite complementarity problem (SDCP)48, which has application in the
control theory.13
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This chapter considers the rich field of nonlinear optimal control. After providing
a brief history of feedback control theory, we provide some preliminaries and some
general feedback control practices for both linear and nonlinear systems. We use
these to set up a review of both linear and nonlinear optimal control.

1. Introduction

The field of feedback control has been part of the engineering lexicon dating as
far back in history as to the ancient Egyptians. In its more modern incarnation its
applications can be found in the 19th century governors. In the early 20th century
engineers discovered one of its major attraction: A well designed feedback system
renders a system insensitive to modeling imperfections. This discovery is often at-
tributed to Black, an engineer working for Bell Labs. Each day Black would have to
spend hours retuning his amplifiers, because of changing ambient conditions from
one day to the next. Legend has it that frustrated by this daily occurrence, on his
way to work on the ferry, Black literally perfomed a set of back of the envelope
calculations and concluded that amplifiers designed using feedback would not have
such annoying sensitivity. This feature of feedback is often under appreciated. Thus
many believe that to design a good controller one must have access to a highly
accurate and complicated model. Quite to the contrary, the beauty of a good con-
troller is that it can be designed on the basis of simple models that capture only the
dominant features of the system that work against achieving control performance.

The basic feedback control setting in its broadest generality is depicted in Fig. 1.
Here P is the system, often known as plant to be controlled, and the Ci are the
controllers: C1 is often called the feed forward controller, C3 the feedback controller,
and C2 the compensator. Further r(t), y(t) and u(t) are respectively known as the
reference input, output, and the control or plant input respectively. In Single Input
Single Output (SISO) each of these signals is a scalar function of time. In Multiple
Input Multiple Output (MIMO) systems they are vector functions.

569
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Fig. 1. A general feedback control setting.

Nyquist,1 Bode,2 and Black3 were early pioneers who in the period spanning the
1930’s and the 1950’s developed a preliminary mathematical framework of control
theory. Their work focused on meeting relatively simple objectives such as forcing
y(t) to track a prespecified trajectory, while maintaining system stability with cer-
tain margins. The plants and controllers they considered were linear time invariant
(LTI) plants described by ordinary differential equations, which they treated in a
transfer function framework using the Laplace Transform. The looming ubiquity of
digital computers prompted researchers such as Tsypkin,4 and Jury,5 to consider
sampled data control, where the controllers process discrete time samples of the
plant output and generate a discrete time control input that is converted to a con-
tinuous time signal via digital to analog convertors. The underlying mathematical
framework involves the plant being modeled by an equivalent difference equation
that governs the behavior of the system relating the discrete time control input to
the output samples. The controllers are also modeled by difference equations. A
transfer function approach in the LTI case uses the z-Transform.

Soon there was growing interest in not just meeting simple performance objec-
tives but to do so optimally, e.g. by keeping the control input as small as possible.
This was facilitated by the pioneering work of Kalman, who among other things
started using a state variable representation (SVR) of the underlying plants. These
developments married such strands from the optimization literature as calculus of
variations,6 Pontryagin’s Maximum Principle7 and the Hamilton-Jacobi-Bellman
(HJB) equations8 in continuous time and Dynamic Programming8 in discrete time.
Other approaches used game theory9 and Risk Sensitive Control.10

Early work focussed on Linear Optimal Control and led to the famous Linear
Quadratic Regulator (LQR)11 and in the stochastic framework to the solution of the
Linear Quadratic Gaussian (LQG)12 problem. In the 1980’s primarily motivated by
robustness issues, these approaches were augmented by linear H∞ and H2 optimal
control.14

The foregoing describes briefly the history of linear control in general and linear
optimal control in particular. Over the years many of these approaches have been
extended in bites to nonlinear control and nonlinear optimal control. A more con-
certed effort in these directions commenced in the 80’s, though these fields are by
no means totally mature.
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In Section 2 presents preliminaries. Section 3 reviews certain basic non-optimal
control techniques. Section 4 focuses on optimal control.

2. Preliminaries

In this section we provide preliminary concepts, focusing primarily though not
exclusively on LTI systems.

2.1. Models

We describe below various models used in control design.

2.1.1. State Variable Representations (SVR)

Most dynamical systems can be described by an SVR. In continuous time these
comprise a pair of ordinary differential equations:

ẋ(t) = f(t, x, u) (1)

y(t) = h(t, x, u). (2)

In discrete time with k the sample index one has:

x(k + 1) = f(k, x, u) (3)

y(k) = h(k, x, u). (4)

In both cases for a q-input, p-output system, referred to henceforth as a p×q system,
u(·) and y(·) are q and p-dimensional column vectors respectively. The n-vector x(.)
is called the state vector; n is the degree or dimension of the system. The state
vector contains the history of the system: e.g. in continuous time for any t0, to
deterimine y(t) for all t ≥ t0, it suffices to know x(t0) and u(t) for all t ≥ t0. Note
(1) and (3) are known as the state equations and (2) and (4) are known as the output
equations.

These are general nonlinear time varying (NLTV) systems. For time invariant
systems f and h do not have explicit dependence on time. In the case of general
Linear Time Varying (LTV) systems these reduce to

ẋ(t) = A(t)x(t) + B(t)u(t) (5)

y(t) = C(t)x(t) + D(t)u(t), (6)

where A, B, C and D are n × n, n × q, p × n and p × q dimensional matrices
respectively. In discrete time with k the sample index one has:

x(k + 1) = A(k)x(k) + B(k)u(k) (7)

y(k) = C(k)x(k) + D(k)u(k) (8)
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Henceforth we will focus mostly on the time invariant cases:

ẋ(t) = f(x, u) (9)

y(t) = h(x, u). (10)

In discrete time with k the sample index one has:

x(k + 1) = f(x, u) (11)

y(k) = h(x, u). (12)

In the LTI case the quadruple {A, B, C, D} are constant matrices, i.e. we have in
continuous time

ẋ(t) = Ax(t) + Bu(t) (13)

y(t) = Cx(t) + Du(t), (14)

and in discrete time

x(k + 1) = Ax(k) + Bu(k) (15)

y(k) = Cx(k) + Du(k). (16)

We now provide some key definitions pertaining to SVR’s. The first is the notion of
reachability that is fundamental to the ability to control the state by appropriately
choosing the input.

Definition 1. The system (1, 2) (3, 4) is completely reachable (cr) if for every x0,
xf and t0 (k0) there exists a finite time tf (kf ) and an input u(t) (u(k)), defined
on t0 ≤ t ≤ tf (k0 ≤ k ≤ kf ) such that with x(t0) = x0 (x(k0) = x0 ) one achieves
x(tf ) = xf (x(kf ) = xf ). It is uniformly completely reachable (ucr) if tf (kf ) is
independent of t0 (k0).

Thus a cr system can be driven from any intial state to any final state in a finite
time. For time invariant systems ucr is equivalent to cr. Unsurprisingly for an LTV
system the cr/ucr property is determined entirely by the pair [A(t), B(t)]. Thus we
often say this pair is cr/ucr. The second property is that of observability.

Definition 2. The system (1, 2) (3, 4) is completely observable (co) if for every x0

and t0 (k0) there exists a finite time tf (kf ) such that the knowledge of the input
u(t) (u(k)), and output y(t) (y(k)), on t0 ≤ t ≤ tf (k0 ≤ k ≤ kf ) suffices to estimate
x(t0) = x0 (x(k0) = x0) uniquely. It is uniformly completely observable (uco) if tf
(kf ) is independent of t0 (k0).
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Again uco is equivalent to co for time invariant systems, and for LTV systems it
is entirely associated with the pair [A(t), C(t)] which is thus called an observable
pair. Further [A(t), C(t)] is co/uco iff [AT (t), CT (t)] is cr/ucr. This property enables
one to uniquely estimate the state of the system from its input and output signals.
If a system is either not cr and or not co then its state cannot be completely
controlled using a feedback scheme as depicted in Fig. 1. Further, the violation of
either property imples that the representation (1, 2) (3, 4) are nonminimal, i.e. the
input/output behavior is captured by lower dimensional SVR’s.

2.1.2. Input/Output Models

A second class of models assume that the x(−∞) = 0, i.e. the system is at initial
rest, and focuses on the input to output mapping. Typically, one uses the notation:

y = Gu, (17)

G being the underlying operator. A key difference between linear and nonlinear
operators is that while for linear operators for a constant scalar α, G{αu} = αGu,
and G{u1 + u2} = Gu1 + Gu2, one or other of these will be violated for nonlinear
operators. For discrete and continuous time linear time invariant systems, one uses
the notion of transfer function to characterize operators. In continuous time this
is the ratio of the Laplace Transform15 of the output and input and in discrete
time the ratio of the z-Transform15 of the output and input. Specifically for the
continuous and discrete time systems (13) and (15) it is respectively given by the
first and second equality below:

G(s) = D + C(sI −A)−1B and G(z) = D + C(zI −A)−1B. (18)

Observe that for a p× q system, G(s) and G(z) are p× q rational matrices in s, and
z, i.e. each element of these matrices are ratios of two polynomials. The values of
s, z where these matrices become infinity are called the poles of the system. Values
at which they become singular are called zeros. Lack of either co or cr leads to a
transfer function where a zero coincides with a pole.

2.2. Stability

Stability is often described as the sine qua non of control. There are many definitions
if stability. In broad terms one involves zero input stability and the second zero state
stability. The latter requires that bounded inputs generate bounded outputs with
zero intial state values. The former examines state behavior under zero inputs.
Below we briefly reprise certain definitions and criteria of checking stability.

We first define certain common notions of zero input stability. We will define
this for continuous time systems. The definition extends to discrete time systems
with t replacing k. Further in the sequel we will assume that x = 0 is an equilibrium
point of all systems, e.g. in (1)

f(t, 0, 0) = 0 for all t. (19)
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Further the vector p-norm of a vector x = [x1, · · · , xn]T is defined by

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

.

If we drop the subscript p we would mean that the concept applies to all p-norms.

Definition 3.13 The system (1) is:

• stable if for all ε > 0 and t0 there is a δ(ε, t0), such that whenever ‖x(t0)‖ ≤
δ(ε, t0), one has,

‖x(t)‖ ≤ ε

for all t ≥ t0.
• asymptotically stable (a.s.) if it is stable and there is a δ(ε, t0), such that

whenever ‖x(t0)‖ ≤ δ(ε, t0),

lim
t→∞x(t) = 0.

• uniformly stable (u.s.) if it is stable and δ(ε, t0) is independent of t0.
• uniformly asymptotically stable (uas) if it is a.s. and δ(ε, t0) is independent

of t0.
• globally uniformly asymptotically stable (guas) if δ in the definition of uas

is infinity.
• exponentially asymptotically zero (eas) in continuous time if there exists a

c1 and λ1 > 0 such that for all t0 and t ≥ t0

‖x(t)‖ ≤ c1‖x(t0)‖e−λ(t−t0). (20)

In discrete time it is exponentially asymptotically zero (eas) if there exists
a c1 and |λ1| < 1 such that for all k0 and k ≥ k0

‖x(k)‖ ≤ c1‖x(k0)‖λk−k0
1 . (21)

We make some observations. Uniformity in all definitions is automatic for all time
invariant systems. A uas linear system is both guas and eas. An LTI continuous time
system is eas iff all the eigenvalues of A have negative real parts or for that matter
all poles of the system have negative real parts, i.e. they lie in the open left half
plane (OLHP). An LTI discrete time system is eas iff all the eigenvalues of A have
magnitude less than one or for that matter all poles have magnitude less than one,
i.e. they lie in the open unit circle.

A key device for checking stability is Lyapunov theory. In the simplest form
suppose one has a scalar function V (x, t) such that:

• For some ci > 0, all t and x

c1‖x(t)‖2 ≤ V (x, t) ≤ c2‖x(t)‖2. (22)
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• For all t

V (0, t) = 0. (23)

• When u(t) = 0, along the trajectories of (1), for some c3 > 0,

V̇ (x, t) ≤ −c3‖x(t)‖2. (24)

Then observe and that with zero input

lim
t→∞V (x, t) = 0,

i.e. because of (23)

lim
t→∞x(t) = 0.

Thus the system is a.s. In fact under these conditions it is eas. The function V (x, t)
is known as a Lyapunov function. As stated Lyapunov theory provides sufiicient
conditions for stability of various kinds, and most methods for selection such a
function, except in the linear case, are ad hoc. Nonetheless there are converse
Lyapunov theorems that demonstrate that stability of various types imply the
existence of various forms of Lyapunov functions.13 In discrete time (24) is
replaced by

V (x(k + 1))− V (x(k)) ≤ −c3‖x(k)‖2.
It is useful to consider specialization to the linear case. In continuous time it is

known that (5) is eas iff there is a symmetric matrix 0 ≤ c1I ≤ P (t) = PT (t) ≤ c2I

and a matrix Q(t), such that (a) the pair [A(t), Q(t)]16 is uco and there holds for
all t:

Ṗ (t) + AT (t)P (t) + P (t)A(t) = −Q(t)QT (t). (25)

In fact under these conditions V (t) = xT (t)P (t)x(t) serves as a Lyapunov function.
In discrete time (25) is replaced by

P (k + 1)− P (k) + AT (k)P (k)A(k) = −Q(k)QT (k). (26)

The equations (25) and (26) are respectively known as the Lyapunov Differential
and Lyapunov Difference Equations. In the LTI case P and Q are constants and
one has the two Lyapunov equations

AT P + PA = −QQT (27)

and,

−P + AT PA = −QQT . (28)

In both cases P is called a Lyapunov Matrix for A.
The second kind of stability is zero-state stability. Without going into too many

nuances, it essentially requires that with zero intial state, all bounded inputs gener-
ate bounded outputs. Such stability is known as Bounded Input Bounded Output
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(BIBO) stability. For uco and ucr linear systems eas is equivalent to BIBO stability.
For continuous time LTI systems BIBO stability is equivalent to a transfer function
having all poles in the OLHP after pole-zero cancellations if any. In discrete time
they must be inside the unit circle again after pole-zero cancellations if any.

3. Nonoptimal Control Strategies

In this section we provide insights into some standard nonoptimal control tech-
niques. Section 3.1 describes some standard control tasks. Section 3.2 and 3.3
respectively review some linear and nonlinear control techniques.

3.1. Control Objectives

Controllers are designed to meet performance objectives in a robust way. Robustness
refers to acceptable behavior in the face of modeling imperfections. At all times a
minimum requirement in the setting of Fig. 1 is that the closed loop systems relating
r(t) to y(t) and u(t) is BIBO stable.

By and large all concern inducing the right trajectory of the system output. Thus
for example one may require y(t) to follow a constant value, a ramp, a sinusoid, or
something more complicated. Some times one may simply want the output to be
forced to zero, or as a stricter measure, force the state to be zero. This latter task
is known as regulation, and will be treated in some detail in the sequel.

Additionally one often wishes to minimize the impact on the output of distur-
bances appearing at various places in the closed loop of Fig. 1.

3.2. Linear Control Techniques

One approach to linear control systems is to use the transfer function approach.17

They largely rely on a frequency domain approach that recognizes that in continuous
time if a BIBO stable LTI system is excited by a sinusoid then the output at steady
state, i.e. after the decay of initial condition effects, is also a sinusoid. For example
for a SISO continuous time system with transfer function G(s), the input cos(ωt)
generates the output

|G(jω)|cos(ωt + ∠G(jω)).

This leads to the use of a slew of techniques using devices such as Root Locus,
Nyquist and Bode plots and Nichols chart to SISO controller design. In particular
if in Fig. 1, the transfer functions of the controllers and plant are Ci(s) and P (s)
respectively, then the transfer function relating r(t) to y(t) is:

(I + P (s)C2(s)C3(s))−1P (s)C2(s)C1(s). (29)

The poles of the system are thus the zeros of

I + P (s)C2(s)C3(s).
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These expressions form the basis for various design rules for stabilization etc. The
Internal Model Principle18 is used to effect robust tracking and disturbance rejec-
tion.

The second approach involves SVR techniques. Since SVR methods are directly
used in optimal control, we spend some time explaining certain salient features of
SVR techniques. Consider for example state regulation by pole placement. Work
with (13) and (14) and assume full access to the system state x(t). Consider the
control law

u(t) = r(t)−Kx(t), (30)

where K is a q × n feedback gain matrix. Under (30), (13, 14) become:

ẋ(t) = (A−BK)x(t) + Br(t),

and

y(t) = (C −BK)x(t) + Br(t).

Thus the closed loop transfer function from r(t) to y(t) is

(C −BK) (sI − (A−BK))−1 B + D. (31)

Observe now that effectively x(t) remains the state vector of the closed loop system
and that the poles are the eigenvalues of A−BK. The pole placement problem be-
comes selecting the gain matrix K so that the eigenvalues of A−BK have prescribed
values. The feedback law (30) (with t replaced by k), also leads to an identical de-
sign issue. If in continuous time the eigenvalues are in OLHP, then with zero r(t),
x(t) goes to zero. In discrete time the eigenvalues must be inside the unit circle.

It turns out,18 that as long as [A, B] is cr, K can be found to arbitrarily place
the eigenvalues of A−BK. The celebrated Ackermann’s formula provides K.

In many settings however, due to e.g. limited sensing infrastructure the full state
x(t) cannot be directly measured, and one needs to work with an output feedback
law. To do this one must seek to estimate the system state, a task performed by an
observer described below:

˙̂x(t) = Ax̂(t) + Bu(t) + L (y(t)− Cx̂(t)−Du(t)) , (32)

where x̂(t) is the state estimate and L is an n× p observer gain matrix.
Without the term L (y(t)− Cx̂(t)−Du(t)), (32) simply mimics (30). The term

L (y(t)− Cx̂(t)−Du(t)), acts as a correction to counteract the disparity between
x(t) and x̂(t). Notice in particular that y(t)−Cx̂(t)−Du(t) is a gauge of how well
the estimate x̂(t) matches x(t). It is readily seen that with

x̃(t) = x(t) − x̂(t),

˙̃x(t) = (A− LC)x̃(t). (33)

Thus if A − LC has all eigenvalues inside the OLHP, x̃(t) will converge to zero.
The eigenvalues of A − LC are called the observer poles. One can choose them
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arbitrarily by fixing L iff [A, C] is co. Again a modest variation of Ackermann’s
formula provides L.

If the state is not directly available, the question arises as to what happens if
(30) is replaced by

u(t) = r(t)−Kx̂(t), (34)

i.e. one uses the state estimate in the stead of x(t). The closed loop system relating
r(t) to y(t) now has the higher dimensional SVR:[

ẋ(t)
˙̃x(t)

]
=
[

A−BK BK

0 A− LC

] [
x(t)
x̃(t)

]
+
[

B

0

]
r(t) (35)

and

y(t) =
[
C −DK DK

] [x(t)
x̃(t)

]
+ Dr(t) (36)

First observe that the closed loop poles are the eigenvalues of:[
A−BK BK

0 A− LC

]

or equivalently the eigenvalues of A−BK and A−LC. Thus one can design K and
L independently as above. This is the celebrated separation principle or certainty
equivalence control. A second apect of the separation principle is that after cancelling
common factors, the closed loop transfer function is identical to (31). Thus with
this design procedure one can use a state estimate to effect the control law in the
control law of (30). The placement of the observer and other poles affects the closed
loop dynamics. Optimum control and the celebrated Kalman Filter19 provide one
set of optimum solutions for the selection of K and L.

3.3. Nonlinear Control Techniques

We now briefly reprise some related techniques for controlling nonlinear systems.
Perhaps the most rudimentary yet still the most widely employed is that of lineariza-
tion around a state trajectory. In particular, suppose x(t) and u(t) in (9) remain
“close” to nominal values of x∗ and u∗. Suppose also without loss of generality
(through a simple redefintion of x(t) and u(t) involving a translation) that

f(x∗, u∗) = 0.

Then to a first order approximation, one has that with

∆x(t) = x(t) − x∗

and

∆u(t) = u(t)− u∗,
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f(x, u) ≈ ∂f(x, u)
∂x

∣∣∣∣
x=x∗,u=u∗

∆x(t) +
∂f(x, u)

∂u

∣∣∣∣
x=x∗,u=u∗

∆u(t). (37)

Consequently (9) can be approximated as

∆ẋ(t) ≈ A∆x(t) + B∆u(t), (38)

with

A =
∂f(x, u)

∂x

∣∣∣∣
x=x∗,u=u∗

and

B =
∂f(x, u)

∂u

∣∣∣∣
x=x∗,u=u∗

.

Consequently as long as x(t) and u(t) in (9) remain “close” to nominal values of x∗

and u∗, one can employ linear control techniques.
A more sophisticated version of this approach is gain scheduling. Simply put, it

uses a host of set points like (x∗, u∗), and whenever the trajectories approach any
of these set points, uses a model linearized around the corresponding set point.

Much more can be done in the special case of input affine systems. These are
represented by the SVR

ẋ = f(x) + g(x)u. (39)

In this case under the right conditions (whose characterization involves differential
geometric concepts) one can in fact perform exact feedback linearization.13 Specif-
ically under these conditions there exists a n× 1 vector function h(x), and a state
transformation with z = h(x) which achieves the following: There exist functions
γ(x) (q×q) and α(x) (q×1) with γ(x) nonsingular every where so that (39) becomes

ż = Acz + Bcγ(x)[u − α(x)].

Then the feedback law

u = [γ(x)]−1
r(t) + α(x)

results in the linear state equation

ż = Acz + Bcr.

These techniques involve full state linearization as above, or when only the r to y

map is linear. After either type of linearization has been achieved, one can then
again employ linear control techniques. A related technique is that of backstep-
ping.13 Other control strategies for (39) are sliding mode control, introduction of
nonlinear damping and Lyapunov redesign.13 The latter in particular, permits one
to design a control law using a judiciously chosen Lyapunov function, so that closed
stability is determined using this Lyapunov function. One should also note for gen-
eral nonlinear systems there exist frequency domain methods using the so called
describing functions.20
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4. Optimal Control

This section reviews basic concepts and techniques from the optimal control litera-
ture. In Section 4.1 we present the nonlinear optimal control problem in its broadest
generality, and provide two distinct solution approaches. Section 4.2 sets the stage
for more specialized approaches by looking at the linear case. Section 4.3 uses this
as a spring board to consider nonlinear approaches.

4.1. The Bolza Problem

A very general optimal control, known as the Bolza problem21,22 is to find a u(t)
that minimizes

J(u, x, t) = φ[x(T )] +
∫ T

t

l(x, u, τ)dτ (40)

subject to (1). We will assume here that the loss function l(x, u, t) ≥ 0 as is the
terminal function φ[·] although the problem in its broadest generality does not
mandate this. We will also assume that l(0, 0, t) = m(0) = 0.

There are two basic approaches to solving this problem. The first uses the
Hamilton-Jacobi-Bellman (HJB) equation, that provides a necessary condition for
optimality. Specifically, with J∗(x, t) the optimal value of J(u, x, t), HJB equation
requires that

−∂J∗(x, t)
∂t

= min
u(t)

{
l(x, u, t) +

[
∂J∗(x, t)

∂t

]T

f(t, x, u)

}

and

J∗(x, T ) = φ(x) for all x.

In general this provides a state feedback control law that must be then checked
to see if it corresponds to the optimum. A key difficulty is that the HJB equation
requires that a differential equation be solved backwards in time making an online
solution in general impossible. A second approach that uses Calculus of variations
and Pontryagin’s Minimum Principle, also involves a similar difficulty. Nonetheless
one can circumvent this in many situations, some that are presented in the sequel.

4.2. Linear Quadratic Control

See Refs. 21 and 22 for details of results presented here. A considerable body of
work exists on a special case of the Bolza problem known as the Linear Quadratic
Regulator (LQR). In this case the problem becomes: Find u(t) to minimize

J(u) = xT (T )Mx(T ) +
∫ T

0

[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

]
dt, (41)

subject to the LTV system equation (5). In this case M = MT ≥ 0, Q(t) = QT (t) ≥
0, and for some α > 0, R(t) = RT (t) ≥ αI. Consequently, J(u) penalizes large state
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and input values. When T is finite this is called the finite horizon problem. Otherwise
it is called the infinite horizon problem. In the latter case M = 0. It turns out that
in this case the optimal control law is

u(t) = −R−1(t)BT (t)P (t)x(t), (42)

where P (t) is the solution of the celebrated Riccati Differential Equation (RDE),

Ṗ (t) = P (t)B(t)R−1(t)BT (t)P (t)−AT (t)P (t)−P (t)A(t)−Q(t); P (T ) = M. (43)

Several features of this solution are noteworthy. First the solution is (42) is a
linear state feedback law. Second, while the RDE must be solved backwards in time,
if the time profiles of A(t), B(t), Q(t) and R(t) are available a priori, the RDE can
be solved off line, and the control law (42) can be implemented on line.

In the special case where M = 0, and A, B, Q, R are all constant, and [A, B] cr,
then P itself is a constant and the unique positive definite solution to the Algebraic
Riccati Equation (ARE)

PBR−1BT P −AT P − PA = Q (44)

Observe, in this case (42) becomes a state feedback law of the type described earlier.
As long as [A, B] is cr and [A, Q1/2] is co, the closed loop is always stable and further
more the optimum cost is simply xT (0)Px(0).

It is particularly interesting to note that as long as the [A, B] is cr and [A, Q1/2]
is co, a unique positive definite P solving the ARE exists. Even more interestingly
the closed loop looks like:

ẋ(t) = (A−BR−1BT P )x(t).

It turns out that this same P acts as a Lyapunov matrix for this closed loop, in
particular

(A−BR−1BT P )T P + P (A−BR−1BT P ) = −Q. (45)

Thus V (x) = xT Px acts as a Lyapunov function for proving the stability of the
closed loop. Recall also that V (x(0)) is the optimal value of the LQR cost function.
This has implications to nonlinear optimal control to be explained later.

There are disctrete time versions of both the finite and infinite horizon LQR.
Specifically, with T integer they seek u(k) to minimize

J(u) = xT (T )Mx(T ) +
T∑

k=0

[
xT (k)Q(k)x(k) + uT (k)R(k)u(k)

]
(46)

subject to the LTV system equation (7). As before M = MT ≥ 0, Q(k) = QT (k) ≥
0, and for some α > 0, R(k) = RT (k) ≥ αI, and in the infinite horizon (T = ∞)
case M = 0. The sloution in this case is obtained using Dynamic Programming, and
has a similar structure to the continuous time solution. In particular the optimal
control law is again linear state feedback:

u(k) = − (R(k) + BT (k)P (k + 1)B(k)
)−1

Mx(k)
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where P (k) is the solution of the Riccati Difference Equation,

P (k) = Q(k) + AT (k)P (k + 1)A(k)− (M + BT (k)P (k + 1)B(k))T

(R(k) + BT (k)P (k + 1)A(k))−1(M + BT (k)P (k + 1)B(k)); P (T ) = M.

In the infinite horizon case with all matrices constant, [A, B] is cr P itself is a
constant and the unique positive definite solution to the Discrete Time Algebraic
Riccati Equation

P = Q + AT PA− (M + BT PB)T (R + BT PA)−1(M + BT PB).

Observe the LQR solution requires the availability of the full state. In many
instances this is not available. This gives rise to the Linear Quadratic Gaussian
(LQG) problem that applies optimal state estimation to LQR. We will consider
here only the case where the system is LTI and the cost function has constant
matrices. The SVR in this case is

ẋ(t) = Ax(t) + Bu(t) + w(t) (47)

and

y(t) = Cx(t) + v(t), (48)

where w(t) and v(t) are uncorrelated, zero mean, Gaussian white noise vectors with
covariance matrices W = WT > 0 and V = V T > 0, respectively. They respectively
reprent noise at the control input and the measured output. The objective now is
to find u(t), that minimizes for fixed Q = QT ≥ 0 and R + RT > 0,

J = lim
t→∞E

(
xT Qx + uT Ru

)
,

subject to (47), (48) and on the assumption that u(t) must be chosen simply on the
basis of observations of y(t) and u(t), and without access to x(t).

To this end recall that in the output feedback pole placement problem a certainty
equivalence principle held, in that one could take the state estimate provided by
the state observer and apply it to the feedback law that one would have used in the
case where full state feedback is used. Now consider the optimal state estimate for
(47), (48) in the Maximum Liklihood sense. It is provided by the celebrated Kalman
Filter19 as x̂(t) below:

˙̂x(t) = Ax̂(t) + Bu(t) + Lf (y(t)− Cx̂(t)−Du(t)) , (49)

where Lf

Lf = SCT V −1

where assuming that [A, C] is co, S is the unique symmetric positive definite solution
of the alternative ARE,

0 = AS + SAT + W − SCT V −1CS. (50)
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Observe under the observability assumption A−LfC has all eigenvalues in OLHP,
that (49) is exactly of the same form as (32) and that Lf is an optimal observer gain,
known as the Kalman Gain. Surprisingly the optimal u(t) for the LQG problem, is
simply

u(t) = −R−1BT P x̂(t), (51)

where as with LQR, P is the unique symmetric positive definite matrix, (as long as
[A, B] is cr) that solves the ARE (44). Observe that (51) is precisely (41) with the
actual state replaced by the optimal state extimate provided by the Kalman filter.
This is another instance of certainty equivalence control and an elegant example of
a separation principle. Further two ARE’s (44, 50) are key to the solution. Further
the closed loop is BIBO stable as long as [A, B] is cr and [A, C] is co.

We observe that LQG control had a profound impact on the development of the
US space program. Yet elegant as the LQG solution is, and influential as it was
to a generation of space technology, it has surprisingly bad robustness margins, in
that the slightest deviation from the idealizing assumptions may cause closed loop
instability.23 A proposed amelioration is the so called method of Loop Transfer
Recovery (LTR)24 that improves robustness for systems all whose zeros are in the
OLHP. Related robustness enhancements come from the literature of gauaranteed
costs.25 Another influential stream is in H∞-control. These are alternative classes
of optimal control problems, that admit optimizing solutions involving two Riccati
equations,14 and assist in achieving certain margins of robustness.

4.3. Nonlinear Optimal Control

The foregoing strives to explain the key difficulty with nonlinear optimal control:
That the solution to the HJB equation is not in general amenable to online control,
the linear quadratic case being a notable exception. Consequently much of the
nonlinear control literature is devoted to conjuring suboptimal but near optimal
control. To illustrate these approaches we reconsider (39) with the objective of
choosing u(t) to minimize ∫ ∞

0

(q(x) + uT u)dt. (52)

Then the HJB equation leads to Refs. 29 and 26 the optimal control law

u∗ = −1
2
gT ∂V T

∂x

where V (x) is positive definite solution of the equation

∂V

∂x
f − 1

4
∂V

∂x
ggT ∂V T

∂x
+ q = 0 (53)

and V (x(0)) is the minimum value of (52). Further, V (x) serves as a Lyapunov
function for proving closed loop stability. Observe that this mirrors precisely the
LQR case with (53) specializing to (44) and V (x) = xT Px.
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The solution of (53) is in general difficult. Several approaches for approximate
solutions exist. The first Refs. 27, 30 and 31 is to solve a linearized version of (53).
Another approach is to obtain iterative, numerical solutions.32

Another approach uses the so called Frozen Riccati Equation approach.26 Specif-
ically this notes that one can represent (39) by the SVR

ẋ = A(x)x + B(x)u

and (52) by

J(u) =
∫ ∞

0

{
xT Q(x)x + uT R(x)u

}
dt (54)

where Q(x) = QT (x) ≥ 0 and R(x) = RT (x) > 0 for all x. Then one suboptimal
solution is to use the feedback controller

u(x) = −R−1(x)BT (x)P (x)x

where P (x) solves the equation:

P (x)B(x)R−1(x)BT (x)P (x) −AT (x)P (x) − P (x)A(x) = Q(x).

Note the similarity to the LQR solution. This is of course a suboptimal solution
that can nonetheless be implemented on line. On the other hand observe that the
A(x) and B(x) matrices are in general nonuinque. This is exploited in Ref. 26 to
show that under mild assumptions there always exist A(x) and B(x) such that the
frozen solutions provide the optimum. Finding the right representation remains a
challenge.

Other approches could be to work with linearized models, approximate or exact.
Another approach advocated by Ref. 27 is to linearize the exact solution to the
HJB equations, which leads to a nonlinear control law that is optained by solving
a classical ARE.

Yet another approach involves the use of Control Lyapunov Functions (CLF),29

that exploits the fact that V (x) acts as a Lyapunov function for the optimal closed
loop, and searches over spaces of such Lyapunov functions to obtain approximate
optima. It has been noted in Ref. 29 that each such law is a solution of a particular
HJB equation. Of course the HJB equation that it is optimal for may not correspond
to the actual requirements of the application.

A promising and yet practical approach used in Process Control and recently
in alleviating internet traffic congestion is that of Receding Horizon Control also
known as Model Predictive Control (MPC).28 We illustrate this approach using a
discrete time paradigm. Consider the optimization of

J(u) =
k+T∑

i=k+1

l(x(i), u(i)) (55)

under (11), and potentially additional constraints, such as those prohibiting ex-
cusrsions of x(t) beyond certain domains. Then at each k MPC, obtains a u(k),
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by performing an open loop optimization of (55) in terms of x(k). This leads to a
state feedback law that can be implemented online. When the state is not accessi-
ble, an additional state estimation procedure is incorporated along with a certainty
equivalence approach. The CLF appraoch is useful for MPC.

5. Conclusion

We have provided but a glimpse of the rich field of nonlinear optimal control in
this all too brief review. The reader who wishes to delve deeper into this rapidly
developing field should study the references we have provided.
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