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Preface to the Second Edition

After the first edition of this book was published at the end of 2003, I was very happy to
put the hard work of book writing behind me and concentrate myself with my small
team on the development of a multi-functional GPS/Galileo software (MFGsoft). The
experiences from the practice and the implementation of the theory and algorithms
into the high standard software gave me a strong feeling that I would very much like to
revise and to supplement the original book, to modify parts of the contents and to re-
port on the new progress and knowledge. Furthermore, with the EU Galileo system now
being realised and the Russian GLONASS system under development; the GPS theory
and algorithms should be re-described so that they are also valid for the Galileo and
GLONASS systems. Therefore, I am grateful to all of the readers of this book, whose inter-
est  made it possible so that the Springer asked me to complete this second edition.

I remember that I was in a hurry during the last check of the layout of the first
edition. The description of a numerical solution of the variation equation in Sect. 11.5.1
was added to the book at the last minute in a limited extension of exactly one page.
Traditionally, the variation equations in orbits determination (OD) and geopotential
mapping as well as OD Kalman filtering are solved by integration, which is complicated
and computing intensive. In the OD history, this is the first time that the variation equa-
tion will not be integrated, but solved by a linear algebra equation system. However,
this was mentioned neither in the preface nor at the beginning of the chapter. The high
precision of this algebra method is verified by a numerical test.

The problems discussed in Chap. 12 of the first edition are mostly solved and now
described by the so-called independent parameterisation theory, which points out that
in undifferenced and differencing algorithms the independent ambiguity vector is the
double differencing one. Using this parameterisation method, the GPS observation equa-
tions are regular ones and can be solved without using any a priori information. Many
conclusions may be derived from this new knowledge. For example, the synchronisa-
tion of the GPS clocks may not be realised by the carrier phase observables because of
the linear correlations between the clock error parameters and the ambiguities. The
equivalence principle is extended to show that the equivalences are not only valid be-
tween the undifferenced and differencing algorithms, but also valid between
uncombined and combining algorithms as well as their mixtures. That is the GPS data
processing algorithms are equivalent under the same parameterisation of the observa-
tion model. Different algorithms are beneficial for different data processing purposes.
One of the consequences of the equivalence theory is that a so-called secondary data
processing algorithm is developed. In other words, the complete GPS positioning prob-
lem may be separated into two steps (first to transform the data to the secondary
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observables and then to process the secondary data). Another consequence of the equiva-
lence is that any GPS observation equations can be separated into two sub-equations
and this is very advantageous in practice. Further more, it shows that the combinations
under the traditional parameterisation are inexact algorithms compared with the com-
binations under the independent parameterisation.

Supplemented contents include a more detailed introduction, not only concerning
the GPS but also the development of the EU Galileo system and Russian GLONASS
system as well as the combination of the GPS, GLONASS and Galileo systems. So this
book will cover the theory, algorithms and applications of the GPS, GLONASS and Galileo
systems. The equivalence of the GPS data processing algorithms and the independent
parameterisation of the GPS observation models are discussed in detail. Other new
contents include the concept of forming optimal networks, the application of the
diagonalisation algorithm, the adjustment models of the radiation pressure and at-
mospheric drag, as well as the discussions and comments of what are currently, in the
author’s opinion, the key research problems. The application of the theory and algorithms
to the development of the GPS/Galileo software is also outlined. The contents concerning
the ambiguity search are reduced while the contents of the ionosphere-free ambiguity
fixing are cancelled out, although it is reported by Lemmens (2004) as new. Some of the
contents of the sections have also been reordered. In this way I hope this edition may be
better served as a reference and handbook of GPS/Galileo research and applications.

The extended contents are partly the results of the development of  MFGsoft and
have been subjected to an individual review. Prof. Lelgemann of the TU Berlin, Prof.
Yuanxi Yang of the Institute of Surveying and Mapping in Xian, Prof. Ta-Kang Yeh of
the ChingYun University of Taiwan and Prof. Yunzhong Shen of TongJi University are
thanked for their valuable reviews. I am grateful to Prof. Jiancheng Li and Dr. Zhengtao
Wang of Wuhan University as well as Mr. Tinghao Xiao of Potsdam University for their
cooperation in the software development from 2003 to 2004 at the GFZ.

I wish to sincerely thank Prof. Dr. Markus Rothacher for his support and trust dur-
ing my research activities at the GFZ. Dr. Jinghui Liu of the educational department of
the Chinese Embassy in Berlin, Prof. Heping Sun and Jikun Ou of IGG in Wuhan and
Prof. Qin Zhang of ChangAn University are thanked for their friendly support during
my scientific activities in China. The Chinese Academy of Sciences is thanked for the
Outstanding Overseas Chinese Scholars Fund. During this work, several interesting
topics have been carefully studied by some of my students. My grateful thanks go to
Ms. Daniela Morujao of Lisbon University, Ms. Jamila Bouaicha of TU Berlin,
Dr. Jiangfeng Guo and Ms. Ying Hong of IGG in Wuhan, Mr. Guanwen Huang of ChangAn
University. I am also thankful for the valuable feedback from readers and from stu-
dents through my professorships at ChangAn University and the IGG CAS.

Guochang Xu
June 2007



Preface to the First Edition

The contents of this book cover static, kinematic and dynamic GPS theory, algorithms
and applications. Most of the contents come from the source code descriptions of the
Kinematic/Static GPS Software (KSGsoft), which was developed in GFZ before and
during the EU AGMASCO project. The principles described here have been mostly
applied in practice and are carefully revised in theoretical aspect. A part of the con-
tents is worked out as a theoretic basis and applied to the developing quasi real time
GPS orbit determination software in GFZ.

The original purpose of writing such a book is indeed to have it for myself as a GPS
handbook and as a reference for a few of my friends and students who worked with
me in Denmark. The desire to describe the theory in an exact manner comes from my
mathematical education. My extensive geodetic research experiences have lead to a
detailed treatment of most topics. The completeness of the contents reflects my habit
as a software designer.

Some of the results of the research efforts carried out in GFZ are published here
for the first time. One example is the unified GPS data processing method using se-
lectively eliminated equivalent observation equations. Methods such as the zero-,
single-, double-, triple-, and user defined differential GPS data processing are unified
in a unique algorithm. The method has both the advantages of un-differential and
differential methods; i.e., the un-correlation property of the original observations is
still kept, and the unknown number may be greatly reduced. Another example is the
general criterion and its equivalent criterion for integer ambiguity search. Using the
criterion the search can be carried out in ambiguity, coordinate or both domains. The
optimality and uniqueness properties of the criterion are proved. Further examples are
the diagonalisation algorithm of the ambiguity search problem, the ambiguity-iono-
spheric equations for ambiguity and ionosphere determination, as well as the use of
the differential Doppler equation as system equation in Kalman filter, etc.

The book includes twelve chapters. After a brief introduction, the coordinate and
time systems are described in the second chapter. Because the orbits determination is
also an important topic of this book, the third chapter is dedicated to the Keplerian
satellite orbits. The fourth chapter deals with the GPS observables, including code
range, carrier phase and Doppler measurements.

The fifth chapter covers all physical influences of the GPS observations, including
ionospheric effects, tropospheric effects, relativistic effects, Earth tide and ocean load-
ing tide effects, clock errors, antenna mass centre and phase centre corrections, multi-
path effects, anti-spoofing and historical selective availability, as well as instrumental
biases. Theories, models and algorithms are discussed in detail.
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The sixth chapter first covers the GPS observation equations, such as their forma-
tion, linearisation, related partial derivatives, as well as linear transformation and er-
rors propagation. Then useful data combinations are discussed, where, especially, a
concept of ambiguity-ionospheric equations and the related weight matrix are intro-
duced. The equations include only ambiguity and ionosphere as well as instrumental
error parameters and can also be solved independently in kinematic applications. Tra-
ditional differential GPS observation equations, including the differential Doppler
equations, are also discussed in detail. The method of selectively eliminated equiva-
lent observation equations is proposed to unify the un-differential and differential GPS
data processing methods.

The seventh chapter covers all adjustment and filtering methods, which are suit-
able and needed in GPS data processing. The main adjustment methods described are
classical, sequential and block-wise, as well as conditional least squares adjustments.
The key filtering methods discussed are classical and robust as well as adaptively ro-
bust Kalman filters. The a priori constraints method, a priori datum method and quasi-
stable datum method are also discussed for dealing with the rank deficient problems.
The theoretical basis of the equivalently eliminated equations is derived in detail.

The eighth chapter is dedicated to cycle slip detection and ambiguity resolution.
Several cycle slip detection methods are outlined. Emphasises are given in deriving a
general criterion for integer ambiguity search in ambiguity, coordinate or both do-
mains. The criterion is derived from conditional adjustment; however, the criterion
has nothing to do with any condition in the end. An equivalent criterion is also de-
rived, and it shows that the well-known least squares ambiguity search criterion is just
one of the terms of the equivalent criterion. A diagonalisation algorithm and its use
for ambiguity search are proposed. The search can be done within a second after the
normal equation is diagonalised. Ambiguity function method and the method of float
ambiguity fixing are outlined.

The ninth chapter describes the GPS data processing in static and kinematic appli-
cations. Data pre-processing is outlined. Emphasises are given to the solving of ambi-
guity-ionospheric equations and single point positioning, relative positioning as well
as velocity determination using code, phase and combined data. The equivalent un-
differential and differential data processing methods are discussed. A method of
Kalman filtering using velocity information is described. The accuracy of the obser-
vational geometry is outlined at the end of the chapter.

The tenth chapter comprises the concepts of the kinematic positioning and flight
state monitoring. The usage of the IGS station, multiple static references, height in-
formation of the airport, kinematic troposphere model, and the known distances of
the multiple antennas on the aircraft are discussed in detail. Numerical examples are
also given.

The eleventh chapter deals with the topic of perturbed orbit determination. Per-
turbed equations of satellite motion are derived. Perturbation forces of the satellite
motion are discussed in detail including the perturbations of the Earth’s gravitational
field, Earth tide and ocean tide, the Sun, the Moon and planets, solar radiation pres-
sure, atmospheric drag as well as coordinate perturbation. Orbit correction is outlined
based on the analysis solution of C20 perturbation. Precise orbit determination is dis-
cussed, including its principle and related derivatives as well as numerical integration
and interpolation algorithms.
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The final chapter is a brief discussion about the future of GPS and comments on
some remaining problems.

The book has been subjected to an individual review of chapters, sections or ac-
cording to its contents. I am grateful to reviewers Prof. Lelgemann of the Technical
University (TU) Berlin, Prof. Leick of the University of Maine, Prof. Rizos of the Uni-
versity of New South Wales (UNSW), Prof. Grejner-Brzezinska of Ohio State Univer-
sity, Prof. Yuanxi Yang of the Institute of Surveying and Mapping in Xian, Prof. Jikun
Ou of the Institute of Geodesy and Geophysics (IGG) in Wuhan, Prof. Wu Chen of Hong
Kong Polytechnic University, Prof. Jiancheng Li of Wuhan University, Dr. Chunfang Cui
of TU Berlin, Dr. Zhigui Kang of the University of Texas at Austin, Dr. Jinling Wang of
UNSW, Dr. Yanxiong Liu of GFZ, Mr. Shfaqat Khan of KMS of Denmark, Mr. Zhengtao
Wang of Wuhan Univerity, Dr. Wenyi Chen of the Max-Planck Institute of Mathemat-
ics in Sciences (Leipzig, Germany), et al. The book has been subjected to a general
review by Prof. Lelgemann of TU Berlin. A grammatical check of technical English
writing has been performed by Springer-Verlag Heidelberg.

I wish to sincerely thank Prof. Dr. Dr. Ch. Reigber for his support and trust through-
out my scientific research activities at GFZ. Dr. Niels Andersen, Dr. Per Knudsen, and
Dr. Rene Forsberg at KMS of Denmark are thanked for their support to start work on
this book. Prof. Lelgemann of TU Berlin is thanked for his encouragement and help.
During this work, many valuable discussions have been held with many specialists.
My grateful thanks go to Prof. Grafarend of the University Stuttgart, Prof. Tscherning
of Copenhagen University, Dr. Peter Schwintzer of GFZ, Dr. Luisa Bastos of the Astro-
nomical Observatory of University Porto, Dr. Oscar Colombo of Maryland University,
Dr. Detlef Angermann of German Geodetic Research Institute Munich, Dr. Shengyuan
Zhu of GFZ, Dr. Peiliang Xu of the University Kyoto, Prof. Guanyun Wang of IGG in
Wuhan, Dr. Ludger Timmen of the University Hannover, Ms. Daniela Morujao of
Coimbra University. Dr. Jürgen Neumeyer of GFZ and Dr. Heping Sun of IGG in Wuhan
are thanked for their support. Dipl.-Ing. Horst Scholz of TU Berlin is thanked for re-
drawing a part of the graphics. I am also grateful to Dr. Engel of Springer-Verlag Heidel-
berg for his advice.

My wife Liping, son Jia and daughters Yuxi and Pan are thanked for their lovely sup-
port and understanding, as well as for their help on part of the text processing and
graphing.

Guochang Xu
March 2003
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Chapter 1

Introduction

GPS is a Global Positioning System based on satellite technology. The fundamental tech-
nique of GPS is to measure the ranges between the receiver and a few simultaneously ob-
served satellites. The positions of the satellites are forecasted and broadcasted along with
the GPS signal to the user. Through several known positions (of the satellites) and the
measured distances between the receiver and the satellites, the position of the receiver can
be determined. The position change, which can be also determined, is then the velocity of
the receiver. The most important applications of the GPS are positioning and navigating.

Through the developments of a few decades, GPS is now even known by school
children. GPS has been very widely applied in several areas, such as air, sea and land
navigation, low earth orbit (LEO) satellite orbit determination, static and kinematic
positioning, flight-state monitoring, as well as surveying, etc. GPS has become a ne-
cessity for daily life, industry, research and education.

If some one is jogging with a GPS watch and wants to know where he is located, what
he needs to do is very simple; pressing a key will be enough. However, the principle of
such an application is a complex one. It includes knowledge of electronics, orbital me-
chanics, atmosphere science, geodesy, relativity theory, mathematics, adjustment and
filtering as well as software engineering. Many scientists and engineers have been de-
voted to making GPS theory easier to understand and its applications more precise.

Galileo is an EU Global Positioning System and GLONASS is a Russian one. The posi-
tioning and navigating principle is nearly the same compared with that of the US GPS
system. The GPS theory and algorithms can be directly used for the Galileo and GLONASS
systems with only a few exceptions. A global navigation satellite system of the future is a
combined GNSS system by using the GPS, GLONASS and Galileo systems together.

In order to describe the distance measurement using a mathematical model, coor-
dinate and time systems, orbital motion of the satellite and GPS observations have to
be discussed (Chap. 2–4). The physical influences on GPS measurement such as iono-
spheric and tropospheric effects, etc. also have to be dealt with (Chap. 5). Then the
linearised observation equations can be formed with various methods such as data com-
bination and differentiation as well as the equivalent technique (Chap. 6). The equa-
tion system may be a full rank or a rank deficient one and may need to be solved in a
post-processing or a quasi real time way, so the various adjustment and filtering meth-
ods shall be discussed (Chap. 7). For precise GPS applications, phase observations must
be used; therefore, the ambiguity problem has to be dealt with (Chap. 8). And then the
algorithms of parameterisation and the equivalence theorem as well as standard algo-
rithms of GPS data processing can be discussed (Chap. 9). Sequentially, applications of
the GPS theory and algorithms to GPS/Galileo software development are outlined, and
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a concept of precise kinematic positioning and flight-state monitoring from practical
experience is given (Chap. 10). The theory of dynamic GPS applications for perturbed
orbit determination has to be based on the above-discussed theory and can be described
(Chap. 11). Discussions and comments are given at the last chapter. The contents and
structure of this book are organised with such a logical sequence.

Contents of this book covered kinematic, static and dynamic GPS theory and algo-
rithms. Most of the contents are refined theory, which has been applied to the inde-
pendently developed scientific GPS software KSGsoft (Kinematic and Static GPS Soft-
ware) and MFGsoft (Multi-Functional GPS/Galileo Software) and which was obtained
from extensive research on individual problems. Because of the strong research and
application background, the theories are conformably described with complexity and
self-confidence. A brief summary of the contents is given in the preface.

Numerous GPS books are frequently quoted and carefully studied. Some of them
are warmly suggested for further reading, e.g., Bauer 1994; Hofmann-Wellenhof et al.
2001; King et al. 1987; Kleusberg and Teunissen (Eds.) 1996; Leick 1995; Liu et al. 1996;
Parkinson and Spilker (Eds.) 1996; Remondi 1984; Seeber 1993; Strang and Borre 1997;
Wang et al. 1988; Xu 1994; etc.

1.1
A Key Note of GPS

The Global Positioning System was designed and built, and is operated and maintained
by the U.S. Department of Defence (c.f., e.g., Parkinson and Spilker 1996). The first
GPS satellite was launched in 1978, and the system was fully operational in the mid-
1990s. The GPS constellation consists of 24 satellites in six orbital planes with four
satellites in each plane. The ascending nodes of the orbital planes are equally spaced
by 60 degrees. The orbital planes are inclined 55 degrees. Each GPS satellite is in a
nearly circular orbit with a semi-major axis of 26 578 km and a period of about twelve
hours. The satellites continuously orient themselves to ensure that their solar panels
stay pointed towards the Sun, and their antennas point toward the Earth. Each satel-
lite carries four atomic clocks, is the size of a car and weighs about 1 000 kg. The long-
term frequency stability of the clocks reaches better than a few parts of 10–13 over a
day (cf. Scherrer 1985). The atomic clocks aboard the satellite produce the fundamen-
tal L-band frequency, 10.23 MHz.

The GPS satellites are monitored by five base stations. The main base station is in
Colorado Springs, Colorado and the other four are located on Ascension Island (Atlan-
tic Ocean), Diego Garcia (Indian Ocean), Kwajalein and Hawaii (both Pacific Ocean).
All stations are equipped with precise cesium clocks and receivers to determine the
broadcast ephemerides and to model the satellite clocks. Transmitted to the satellites
are ephemerides and clock adjustments. The satellites in turn use these updates in the
signals that they send to GPS receivers.

Each GPS satellite transmits data on three frequencies: L1 (1575.42 MHz), L2
(1227.60 MHz) and L5 (1176.45 MHz). The L1, L2 and L5 carrier frequencies are gener-
ated by multiplying the fundamental frequency by 154, 120 and 115, respectively.
Pseudorandom noise (PRN) codes, along with satellite ephemerides, ionospheric model,
and satellite clock corrections are superimposed onto the carrier frequencies L1, L2
and L5. The measured transmitting times of the signals that travel from the satellites to
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the receivers are used to compute the pseudoranges. The Course-Acquisition (C/A)
code, sometimes called the Standard Positioning Service (SPS), is a pseudorandom
noise code that is modulated onto the L1 carrier. The precision (P) code, sometimes
called the Precise Positioning Service (PPS), is modulated onto the L1, L2 and L5 car-
riers allowing for the removal of the effects of the ionosphere.

The Global Positioning System (GPS) was conceived as a ranging system from
known positions of satellites in space to unknown positions on land and sea, as well
as in air and space. The orbits of the GPS satellites are available by broadcast or by the
International Geodetic Service (IGS). IGS orbits are precise ephemerides after post-
processing or quasi-real time processing. All GPS receivers have an almanac pro-
grammed into their computer, which tells them where each satellite is at any given
moment. The almanac is a data file that contains information of orbits and clock cor-
rections of all satellites. It is transmitted by a GPS satellite to a GPS receiver, where it
facilitates rapid satellite vehicle acquisition within GPS receivers. The GPS receivers
detect, decode and process the signals received from the satellites to create the data of
code, phase and Doppler observables. The data may be available in real time or saved
for downloading. The receiver internal software is usually used to process the real
time data with the single point positioning method and to output the information to
the user. Because of the limitation of the receiver software, precise positioning and
navigating are usually carried out by an external computer with more powerful soft-
ware. The basic contributions of the GPS are to tell the user where he is, how he moves,
and what the timing is.

Applications for GPS already have become almost limitless since the GPS technol-
ogy moved into the civilian sector. Understanding GPS has become a necessity.

1.2
A Brief Message About GLONASS

GLONASS is a Global Navigation Satellite System (GNSS) managed by the Russian
Space Forces and the system is operated by the Coordination Scientific Information
Center (KNITs) of the Ministry of Defense of the Russian Federation. The system is
comparable to the American Global Positioning System (GPS), and both systems share
the same principles of the data transmission and positioning methods. The first
GLONASS satellite was launched into orbit in 1982. The system consists of 21 satel-
lites in three orbital planes, with three on-orbit spares. The ascending nodes of three
orbital planes are separated 120 degrees, and the satellites within the same orbit plane
are equally spaced by 45 degrees. The arguments of the latitude of satellites in equiva-
lent slots in two different orbital planes differ by 15 degrees. Each satellite operates in
nearly circular orbits with a semi-major axis of 25 510 km. Each orbital plane has an
inclination angle of 64.8 degrees, and each satellite completes an orbit in approximately
11 hours 16 minutes.

Cesium clocks are used on board the GLONASS satellites. The stability of the
clocks reaches better than a few parts of 10–13 over a day. The satellites transmit coded
signals in two frequencies located on two frequency bands, 1 602–1 615.5 MHz and
1 246–1 256.5 MHz, with a frequency interval of 0.5625 MHz and 0.4375 MHz, respec-
tively. The antipodal satellites, which are separated by 180 degrees in the same orbit
plane in argument of latitude, transmit on the same frequency. The signals can be

1.2  ·  A Brief Message About GLONASS
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received by users anywhere on the Earth’s surface to identify their position and veloc-
ity in real time based on ranging measurements. Coordinate and time systems used in
the GLONASS are different from that of the American GPS. And GLONASS satellites
are distinguished by slightly different carrier frequencies instead of by different PRN
codes. The ground control stations of the GLONASS are maintained only in the terri-
tory of the former Soviet Union due to the historical reasons. This lack of global cover-
age is not optimal for the monitoring of a global navigation satellite system.

GLONASS and GPS are not entirely compatible with each other; however, they are
generally interoperable. Combining the GLONASS and GPS resources together, the GNSS
user community will benefit not only with an increased accuracy, but also with a higher
system integrity on a worldwide basis.

1.3
Basic Information of Galileo

Galileo is a Global Navigation Satellite System (GNSS) initiated by the European Union
(EU) and the European Space Agency (ESA) for providing a highly accurate, guaran-
teed global positioning service under civilian control (cf., e.g., ESA homepage). As an
independent navigation system, Galileo will meanwhile be interoperable with the two
other global satellite navigation systems, GPS and GLONASS. A user will be able to po-
sition with the same receiver from any of the satellites in any combination. Galileo will
guarantee availability of service with higher accuracy.

The first Galileo satellite, which has the size of 2.7 × 1.2 × 1.1 m and weight of 650 kg,
was launched in December 2005, and the system will be fully operational in 2010~2012.
The Galileo constellation consists of 30 Medium Earth Orbit (MEO) satellites in three
orbital planes with nine equally spaced operational satellites in each plane plus one
inactive spare satellite. The ascending nodes of the orbital planes are equally spaced
by 120 degrees. The orbital planes are inclined 56 degrees. Each Galileo satellite is in a
nearly circular orbit with semi-major axis of 29 600 km (cf. ESA homepage) and a
period of about 14 hours. The Galileo satellite rotates about its Earth-pointing axis so
that the flat surface of the solar arrays always faces the Sun to collect maximum
solar energy. The deployed solar arrays span 13 m. The antennas always point towards
the Earth.

The Galileo satellite has four clocks, two of each type (passive maser and rubid-
ium, stabilities: 0.45 ns and 1.8 ns over 12 hours, respectively). At any time, only one of
each type is operating. The operating maser clock produces the reference frequency
from which the navigation signal is generated. If the maser clock were to fail, the
operating rubidium clock would take over instantaneously and the two reserve clocks
would start up. The second maser clock would take the place of the rubidium clock
after a few days when it is fully operational. The rubidium clock would then go on
stand-by or reserve again. In this way, the Galileo satellite is guaranteed to generate a
navigation signal at all times.

Galileo will provide ten navigation signals in the Right Hand Circular Polarization
(RHCP) in the frequency ranges 1 164–1 215 MHz (E5a and E5b), 1 215–1 300 MHz (E6)
and 1 559–1 592 MHz (E2-L1-E1) (cf. Hein et al. 2004). The interoperability and com-
patibility of Galileo and GPS is realized by having two common centre frequencies in
E5a/L5 and L1 as well as adequate geodetic coordinate and time reference frames.
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1.4
A Combined Global Navigation Satellite System

The start of the Galileo system is a direct competition of the GPS and GLONASS sys-
tems. Without a doubt, it has a positive influence on the modernisation of the GPS sys-
tem and the further development of the GLONASS system. Multiple navigation systems
operating independently help increase the awareness and accuracy of the real time
positioning and navigation. Undoubtedly, a global navigation satellite system of the
future is a combined GNSS system which uses the GPS, GLONASS and Galileo systems
together. A constellation of about 75 satellites of the three systems greatly increases the
visibility of the satellites especially in critical areas such as urban canyons.

The times and coordinate systems used in the GPS, GLONAS and Galileo systems
are different due to the system independency. The three time systems are all based on
the UTC and the three coordinate systems are all Cartesian systems; therefore, their
relationships can be determined and any system can be transformed from one to an-
other. The origins of the GPS and GLONASS coordinates are meters apart from each
other. The origins of GPS and Galileo coordinates have differences of a few centime-
tres. Several carrier frequencies are used in each system for the removal of the effects
of the ionosphere. The frequency differences within the GLONASS system and be-
tween the GPS, GLONASS and Galileo systems are generally not a serious problem if
the carrier phase observables are considered in a distance survey by multiplying the
wavelength.

In the present edition of this book, the theory and algorithms of a global position-
ing system will be discussed in a more general aspect in order to take the differences of
the GPS, GLONASS and Galileo systems into account.



Chapter 2

Coordinate and Time Systems

GPS satellites are orbiting around the Earth with time. GPS surveys are made mostly
on the Earth. To describe the GPS observation (distance) as a function of the GPS orbit
(satellite position) and the measuring position (station location), suitable coordinate
and time systems have to be defined.

2.1
Geocentric Earth-Fixed Coordinate Systems

It is convenient to use the Earth-Centred Earth-Fixed (ECEF) coordinate system to
describe the location of a station on the Earth’s surface. The ECEF coordinate system
is a right-handed Cartesian system (x, y, z). Its origin and the Earth’s centre of mass
coincide, while its z-axis and the mean rotational axis of the Earth coincide; the x-axis
is pointing to the mean Greenwich meridian, while the y-axis is directed to complete
a right-handed system (cf., Fig. 2.1). In other words, the z-axis is pointing to a mean
pole of the Earth’s rotation. Such a mean pole, defined by international convention, is
called the Conventional International Origin (CIO). Then the xy-plane is called mean
equatorial plane, and the xz-plane is called mean zero-meridian.

Fig. 2.1.
Earth-Centred Earth-Fixed
coordinates
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The ECEF coordinate system is also known as the Conventional Terrestrial System (CTS).
The mean rotational axis and mean zero-meridian used here are necessary. The true rota-
tional axis of the Earth changes its direction with respect to the Earth’s body all the time.
If such a pole would be used to define a coordinate system, then the coordinates of the
station would also change all the time. Because the surveying is made in our true world, so
it is obvious that the polar motion has to be taken into account and will be discussed later.

The ECEF coordinate system can, of course, be represented by a spherical coordi-
nate system (r, φ, λ), where r is the radius of the point (x, y, z), φ and λ are the geocen-
tric latitude and longitude, respectively (cf., Fig. 2.2). λ is counted eastward from the
zero-meridian. The relationship between (x, y, z) and (r, φ, λ) is obvious:
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An ellipsoidal coordinate system (ϕ, λ, h) may be also defined based on the ECEF
coordinates; however, geometrically, two additional parameters are needed to define
the shape of the ellipsoid (cf., Fig. 2.3). ϕ, λ and h are geodetic latitude, longitude and
height, respectively. The ellipsoidal surface is a rotational ellipse. The ellipsoidal sys-
tem is also called the geodetic coordinate system. Geocentric longitude and geodetic
longitude are identical. The two geometric parameters could be the semi-major radius
(denote by a) and the semi-minor radius (denote by b) of the rotating ellipse, or the
semi-major radius and the flattening (denote by f) of the ellipsoid. They are equivalent
sets of parameters. The relationship between (x, y, z) and (ϕ, λ, h) is (cf., e.g., Torge 1991):
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Fig. 2.2.
Cartesian and spherical
coordinates
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N is the radius of curvature in the prime vertical, and e is the first eccentricities. The
geometric meaning of N is shown in Fig. 2.4. In Eq. 2.3, the ϕ and h have to be solved by
iteration; however, the iteration process converges quickly, since h << N. The flattening
and the first eccentricities are defined as:
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In cases where ϕ = ±90° or h is very large, the iteration formulas of Eq. 2.3 could be
instable. Alternatively, using (cf., Lelgemann 2002)
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2.1  ·  Geocentric Earth-Fixed Coordinate Systems



Chapter 2  ·  Coordinate and Time Systems10

may lead to a stably iterated result of ϕ. ∆z and e2N are the lengths of O–B– and A–B– (cf.,
Fig. 2.4) respectively. h can be obtained by using ∆z, i.e.,

Nzzyxh −∆+++=

222 )(  .

The two geometric parameters used in the World Geodetic System 1984 (WGS-84)
are (a = 6 378 137 m, f = 1 / 298.2572236). In International Terrestrial Reference Frame
1996 (ITRF-96), the two parameters are (a = 6 378 136.49 m, f = 1 / 298.25645). ITRF
uses the International Earth Rotation Service (IERS) Conventions (cf., McCarthy 1996).
In PZ-90 (Parameters of the Earth Year 1990) coordinate system of GLONASS, the two
parameters are (a = 6 378 136 m, f = 1 / 298.2578393).

The relation between the geocentric and geodetic latitude φ and ϕ may be given by
(cf., Eqs. 2.1 and 2.3):
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2.2
Coordinate System Transformations

Any Cartesian coordinate system can be transformed to another Cartesian coordinate
system through three succeeded rotations if their origins are the same and if they are both
right-handed or left-handed coordinate systems. These three rotational matrices are:
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where α is the rotating angle, which has a positive sign for a counter-clockwise rota-
tion as viewed from the positive axis to the origin. R1, R2, and R3 are called the rotat-
ing matrix around the x, y, and z-axis, respectively. For any rotational matrix R, there
are R–1(α) = RT(α) and R–1(α) = R(–α); that is, the rotational matrix is an orthogonal
one, where R–1 and RT are the inverse and transpose of the matrix R.

For two Cartesian coordinate systems with different origins and different length
units, the general transformation can be given in vector (matrix) form as

old0n RXXX µ+=  ,   or (2.8)
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where µ is the scale factor (or the ratio of the two length units), and R is a transforma-
tion matrix that can be formed by three suitably succeeded rotations. xn and xold de-
note the new and old coordinates, respectively; x0 denotes the translation vector and
is the coordinate vector of the origin of the old coordinate system in the new one.

If rotational angle α is very small, then one has sin α ≈ α and cos α ≈ 0. In such a
case, the rotational matrix can be simplified. If the three rotational angles α1, α2, α3 in
R of Eq. 2.8 are very small, then R can be written as (cf., e.g., Lelgemann and Xu 1991):
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where α1, α2, α3 are small rotating angles around the x, y and z-axis, respectively. Us-
ing the simplified R, the transformation 2.8 is called the Helmert transformation.

As an example, the transformation from WGS-84 to ITRF-90 is given by (McCarthy 1996):
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where µ = 0.999999989, the translation vector has the unit of meter.
The transformations between the coordinate systems of GPS, GLONASS and Galileo can

be generally represented by Eq. 2.8 with the scale factor µ = 1 (i.e., the length units used in
the three systems are the same). A formula of velocity transformations between different
coordinate systems can be obtained by differentiating the Eq. 2.8 with respect to the time.

2.3
Local Coordinate System

The local left-handed Cartesian coordinate system (x', y', z') can be defined by plac-
ing the origin to the local point P1(x1, y1, z1), whose z'-axis is pointed to the vertical,
x'-axis is directed to the north, and y' is pointed to the east (cf., Fig. 2.5). The x'y'-plane
is called the horizontal plane; the vertical is defined perpendicular to the ellipsoid.

2.3  ·  Local Coordinate System
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Such a coordinate system is also called a local horizontal coordinate system. For any
point P2, whose coordinates in the global and local coordinate system are (x2, y2, z2)
and (x', y', z'), respectively, one has relations of
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where A is the azimuth, Z is the zenith distance and d is the radius of the P2 in the
local system. A is measured from the north clockwise; Z is the angle between the ver-
tical and the radius d.

The local coordinate system (x', y', z') can indeed be obtained by two succeeded ro-
tations of the global coordinate system (x, y, z) by R2(90° – ϕ)R3(λ) and then by chang-
ing the x-axis to a right-handed system. In other words, the global system has to be
rotated around the z-axis with angle λ, then around the y-axis with angle 90° – ϕ, and
then change the sign of the x-axis. The total transformation matrix R is then
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and there are:

globallocal RXX =    and   localglobal XRX T
=  , (2.12)

where Xlocal and Xglobal are the same vector represented in local and global coordinate
systems. (ϕ, λ) are the geodetic latitude and longitude of the local point.

If the vertical direction is defined as the plump line of the gravitational field at the
local point, then such a local coordinate system is called an astronomic horizontal sys-
tem (its x'-axis is pointed to the north, left-handed system). The plump line of gravity g

Fig. 2.5.
Astronomical coordinate
system
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and the vertical line of the ellipsoid at the point p are generally not coinciding with each
other; however, the difference is very small. The difference is omitted in GPS practice.

Combining Eqs. 2.10 and 2.12, the zenith angle and azimuth of a point P2 (satellite) re-
lated to the station P1 can be directly computed by using the global coordinates of the two
points by

 , (2.13)

where

2.4
Earth-Centred Inertial Coordinate System

To describe the motion of the GPS satellites, an inertial coordinate system has to be de-
fined. The motion of the satellites follows the Newtonian mechanics, and the Newtonian
mechanics is valid and expressed in an inertial coordinate system. For reasons, the Con-
ventional Celestial Reference Frame (CRF) is suitable for our purpose. The xy-plane of the
CRF is the plane of the Earth’s equator; the coordinates are celestial longitude, measured
eastward along the equator from the vernal equinox, and celestial latitude. The vernal equi-
nox is a crossover point of the ecliptic and the equator. So the right-handed Earth-centred
inertial (ECI) system uses the Earth centre as the origin, CIO (Conventional International
Origin) as the z-axis, and its x-axis is directed to the equinox of J2000.0 (Julian Date of 12h

1st January 2000). Such a coordinate system is also called equatorial coordinates of date.
Because of the motion (acceleration) of the Earth’s centre, ECI is indeed a quasi-inertial
system, and the general relativistic effects have to be taken into account in this system. The
system moves around the Sun, however, without rotating with respect to the CIO. This sys-
tem is also called the Earth-centred space-fixed (ECSF) coordinate system.

An excellent figure has been given by Torge (1991) to illustrate the motion of the
Earth’s pole with respect to the ecliptic pole (cf., Fig. 2.6). The Earth’s flattening, com-
bined with the obliquity of the ecliptic, results in a slow turning of the equator on the
ecliptic due to the differential gravitational effect of the Moon and the Sun. The slow
circular motion with a period of about 26 000 years is called precession, and the other
quicker motion with periods from 14 days to 18.6 years is called nutation. Taking the
precession and nutation into account, the Earth’s mean pole (related to the mean equa-
tor) is transformed to the Earth’s true pole (related to the true equator). The x-axis of
the ECI is pointed to the vernal equinox of date.

The angle of the Earth’s rotation from the equinox of date to the Greenwich merid-
ian is called Greenwich Apparent Sidereal Time (GAST). Taking GAST into account
(called the Earth’s rotation), the ECI of date is transformed to the true equatorial co-

2.4  ·  Earth-Centred Inertial Coordinate System
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ordinate system. The difference between the true equatorial system and the ECEF sys-
tem is the polar motion. So we have transformed the ECI system with a geometric way
to the ECEF system. Such a transformation process can be written as

ECIPNSMECEF XRRRRX =  , (2.14)

where RP is the precession matrix, RN is the nutation matrix, RS is the Earth rotation
matrix, RM is the polar motion matrix, X is the coordinate vector, and indices ECEF
and ECI denote the related coordinate systems.

Precession

The precession matrix consists of three succeeded rotational matrices, i.e., (cf., e.g.,
Hofman-Wellenhof et al. 1997; Leick 1995; McCarthy 1996)
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, (2.15)

where z, θ, ζ are precession parameters and

z = 2306.''2181T + 1.''09468T2 + 0.''018203T3 ,

θ = 2004.''3109T − 0.''42665T2 − 0.''041833T3  and (2.16)

ζ = 2306.''2181T + 0.''30188T2 + 0.''017998T3 ,

where T is the measuring time in Julian centuries (36 525 days) counted from J2000.0
(cf., Sect. 2.6 time systems).

Fig. 2.6.
Precession and nutation
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Nutation

The nutation matrix consists of three succeeded rotational matrices, i.e., (cf., e.g.,
Hoffman-Wellenhof et al. 1997; Leick 1995; McCarthy 1996)
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where ε is the mean obliquity of the ecliptic angle of date, ∆ψ and ∆ε are nutation
angles in longitude and obliquity, εt = ε + ∆ε, and

ε = 84381.''448 – 46.''8150T – 0.''00059T2 + 0.''001813T3  . (2.18)

The approximation is made by letting cos ∆ψ = 1 and sin ∆ψ = ∆ψ for very small
∆ψ. For precise purposes, the exact rotation matrix shall be used. The nutation pa-
rameters ∆ψ and ∆ε can be computed by using the International Astronomical Union
(IAU) theory or IERS theory:

 

or

 

 

where argument

 

where l is the mean anomaly of the Moon, l' is the mean anomaly of the Sun, F = L − Ω,
D is the mean elongation of the Moon from the Sun, Ω is the mean longitude of the
ascending node of the Moon, and L is the mean longitude of the Moon. The formulas
of l, l', F, D, and Ω, are given in Sect. 11.2.8. The coefficient values of N1i, N2i, N3i, N4i,

2.4  ·  Earth-Centred Inertial Coordinate System
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N5i, Ai, Bi, Ai', Bi', Ai'', and Bi'' can be found in, e.g., McCarthy (1996). The updated for-
mulas and tables can be found in updated IERS conventions. For convenience, the
coefficients of the IAU 1980 nutation model are given in Appendix 1.

Earth Rotation

The Earth rotation matrix can be represented as

RS = R3(GAST) , (2.19)

where GAST is Greenwich Apparent Sidereal Time and

(2.20)

where GMST is Greenwich Mean Sidereal Time. Ω is the mean longitude of the as-
cending node of the Moon; the second term on the right-hand side is the nutation of
the equinox. Furthermore,

1UTGMSTGMST 0 α+=  , (2.21)

,102."6093104."0812866."1846408

54841."500."60410."60036GMST
3
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TTT −

×−++

+×+×=

 

2
0

15
0

11 109.5109006.5507950027379093.1 TT −−

×−×+=α  ,

where GMST0 is Greenwich Mean Sidereal Time at midnight on the day of interest.
α is the rate of change. UT1 is the polar motion corrected Universal Time (cf., Sect. 2.6).
T0 is the measuring time in Julian centuries (36 525 days) counted from J2000.0 to
0hUT1 of the measuring day. By computing GMST, UT1 is used (cf., Sect. 2.6).

Fig. 2.7.
Polar motion
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Polar Motion

As shown in Fig. 2.7, the polar motion is defined as the angles between the pole of
date and the CIO pole. The polar motion coordinate system is defined by xy-plane
coordinates, whose x-axis is pointed to the south and is coincided to the mean Green-
wich meridian, and whose y-axis is pointed to the west. xp and yp are the angles of the
pole of date, so the rotation matrix of polar motion can be represented as

(2.22)

The IERS determined xp and yp can be obtained from the home pages of IERS.

2.5
Geocentric Ecliptic Inertial Coordinate System

As discussed above, ECI used the CIO pole in the space as the z-axis (through consid-
eration of the polar motion, nutation and precession). If the ecliptic pole is used as
the z-axis, then an ecliptic coordinate system is defined, and it may be called the Earth
Centred Ecliptic Inertial (ECEI) coordinate system. ECEI places the origin at the mass
centre of the Earth, its z-axis is directed to ecliptic pole (or, xy-plane is the mean eclip-
tic), and its x-axis is pointed to the vernal equinox of date. The coordinate transfor-
mation between the ECI and ECEI systems can be represented as

ECI1ECEI )( XRX ε−=  ,

where ε is the ecliptic angle (mean obliquity) of the ecliptic plane related to the equa-
torial plane. The formula for ε is given in Sect. 2.4. Usually, coordinates of the Sun and
the Moon as well as planets are given in the ECEI system.

2.6
Time Systems

Three time systems are used in satellite surveying. They are sidereal time, dynamic
time and atomic time (cf., e.g., Hofman-Wellenhof et al. 1997; Leick 1995; McCarthy
1996; King et al. 1987).

Sidereal time is a measure of the Earth’s rotation and is defined as the hour angle
of the vernal equinox. If the measure is counted from the Greenwich meridian, the
sidereal time is called Greenwich Sidereal Time. Universal Time (UT) is the Green-
wich hour angle of the apparent Sun, which is orbiting uniformly in the equatorial

2.6  ·  Time Systems
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plane. Because the angular velocity of the Earth’s rotation is not a constant, sidereal
time is not a uniformly-scaled time. The oscillation of UT is also partly caused by the
polar motion of the Earth. The universal time corrected for the polar motion is de-
noted by UT1.

Dynamical time is a uniformly-scaled time used to describe the motion of bodies
in a gravitational field. Barycentric Dynamic Time (TDB) is applied in an inertial co-
ordinate system (its origin is located at the centre-of-mass (Barycentre)). Terrestrial
Dynamic Time (TDT) is used in a quasi-inertial coordinate system (such as ECI). Be-
cause of the motion of the Earth around the Sun (or say, in the Sun’s gravitational field),
TDT will have a variation with respect to TDB. However, both the satellite and the Earth
are subject to almost the same gravitational perturbations. TDT may be used for de-
scribing the satellite motion without taking into account the influence of the gravita-
tional field of the Sun. TDT is also called Terrestrial Time (TT).

Atomic Time is a time system kept by atomic clocks such as International Atomic
Time (TAI). It is a uniformly-scaled time used in the ECEF coordinate system. TDT is
realised by TAI in practice with a constant offset (32.184 sec). Because of the slowing
down of the Earth’s rotation with respect to the Sun, Coordinated Universal Time (UTC)
is introduced to keep the synchronisation of TAI to the solar day (by inserting the leap
seconds). GPS Time (GPST) is also an atomic time.

The relationships between different time systems are given as follows:

1dUTUTC1UT

secUTCTAI

sec184.32TDTTAI

sec0.19GPSTTAI

+=

+=

−=

+=

n
 , (2.23)

where dUT1 can be obtained by IERS, (dUT1 < 0.7 sec, cf., Zhu et al. 1996), (dUT1 is
also broadcasted with the navigation data), n is the number of leap seconds of date
and is inserted into UTC on the 1st of January and 1st of July of the years. The actual n
can be found in the IERS report.

Time argument T (Julian centuries) is used in the formulas given in Sect. 2.4. For
convenience, T is denoted by TJD, and TJD can be computed from the civil date (Year,
Month, Day, and Hour) as follows:

5.981720124/HourDay))1(6001.30(INT)25.365(INTJD +++++= MY  and

TJD = JD / 36 525 , (2.24)

where

Y = Year – 1, M = Month + 12, if Month ≤ 2  ,

Y = Year, M = Month, if Month > 2  ,

where JD is the Julian Date, Hour is the time of UT and INT denotes the integer part of
a real number. The Julian Date counted from JD2000.0 is then JD2000 = JD – JD2000.0,
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where JD2000.0 is the Julian Date of 2000 January 1st 12h and has the value of
2 451 545.0 days. One Julian century is 36 525 days.

Inversely, the civil date (Year, Month, Day and Hour) can be computed from the
Julian Date (JD) as follows:

b = INT(JD + 0.5) + 1537 ,

c = INT((b – 122.1) / 365.25) ,

d = INT(365.25c) ,

e = INT((b – d) / 30.6001) ,

Hour = JD + 0.5 – INT(JD + 0.5) ,

Day = b – d – INT(30.6001e) ,

Month = e – 1 – 12INT(e / 14)  and

Year = c – 4715 – INT((7 + Month) / 10)  , (2.25)

where b, c, d, and e are auxiliary numbers.
Because the GPS standard epoch is defined as JD = 2 444 244.5 (1980 January 6, 0h),

GPS week and the day of week (denoted by Week and N) can be computed by

N = modulo(INT(JD + 1.5), 7)  and

Week = INT((JD – 2444244.5) / 7) , (2.26)

where N is the day of week (N = 0 for Monday, N = 1 for Tuesday, and so on).
For saving digits and counting the date from midnight instead of noon, the Modi-

fied Julian Date (MJD) is defined as

MJD = (JD – 2 400 000.5) . (2.27)

GLONASS time (GLOT) is defined by Moscow time UTCSU, which equals UTC plus
three hours (corresponding to the offset of Moscow time to Greenwich time),
theoretically. GLOT is permanently monitored and adjusted by the GLONASS Central
Synchroniser (cf. Roßbach 2000). UTC and GLOT then has a simple relation

UTC=GLOT+τc–3h ,

where τc is the system time correction with respect to UTCSU, which is broadcasted by
the GLONASS ephemerides and is less than one microsecond. Therefore there is
approximately

GPST=GLOT+m–3h ,

2.6  ·  Time Systems
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where m is called a number of ”leap seconds" between GPS and GLONASS (UTC) time
and is given in the GLONASS ephemerides. m is indeed the leap seconds since GPS
standard epoch (1980 January 6, 0h).

Galileo system time (GST) will be maintained by a number of UTC laboratory clocks.
GST and GPST are time systems of various UTC laboratories. After the offset of GST
and GPST is made available to the user, the interoperability will be ensured.



Chapter 3

Satellite Orbits

The principle of the GPS system is to measure the signal transmitting paths from the
satellites to the receivers. Therefore, the satellite orbits are very important topics in
GPS theory. In this chapter, the basic orbits theory is briefly described. For the GPS
applications in orbits correction and orbits determination, the advanced orbits per-
turbation theory will be discussed in Chap. 11.

3.1
Keplerian Motion

The simplified satellite orbiting is called Keplerian motion, and the problem is
called the two-bodies problem. The satellite is supposed to move in a central force
field. The equation of satellite motion is described by Newton’s second law of motion
by

f
➞

= m · a = m · r
··➞ , (3.1)

where f
➞

 is the attracting force, m is the mass of the satellite, a, or alternatively, r
··➞ is the

acceleration of the motion (second order differentiation of vector r➞ with respect to
the time), and according to Newton’s law,

r
r

r

GMm
f

�

�

2
−=  , (3.2)

where G is the universal gravitational constant, M is the mass of the Earth, r is the dis-
tance between the mass centre of the Earth and the mass centre of the satellite. The
equation of satellite motion is then

r
r

r
r

�

���

2

µ

−=  , (3.3)

where µ (= GM) is called Earth’s gravitational constant.
Equation 3.3 of satellite motion is valid only in an inertial coordinate system, so

the ECSF coordinate system discussed in Chap. 2 will be used for describing the orbit
of the satellite. The vector form of the equation of motion can be rewritten through
three x, y and z components (r➞= (x, y, z)) as
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 . (3.4)

Multiplying y, z to the first equation of 3.4, and x, z to the second, x, y to the third, and
then forming differences of them, one gets

 , (3.5)

or in vector form:

r
➞ × r

··
➞ = 0 . (3.6)

Equations 3.5 and 3.6 are equivalent to

 , (3.7)

 . (3.8)

Integrating Eqs. 3.7 and 3.8 lead to

yz· – zy· = A

zx· – xz· = B   , (3.9)

xy· – yx· = C

  , (3.10)

where A, B, C are integration constants; they form the integration constant vector h
➞

.
That is:

 . (3.11)

The constant h is two times of the area that the radius vector sweeps during a unit time.
This is indeed Kepler’s second law. Then h / 2 is called the area velocity of the radius of
the satellite.
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Multiplying x, y and z to the three equations of 3.9 and adding them together, one has

Ax + By + Cz = 0  . (3.12)

That is, the satellite motion fulfils the equation of a plane, and the origin of the coor-
dinate system is in the plane. In other words, the satellite moves in a plane in the cen-
tral force field of the Earth. The plane is called the orbital plane of the satellite.

The angle between the orbital plane and the equatorial plane is called inclination
of the satellite (denoted by i, cf., Fig. 3.1). Alternatively, the inclination i is the angle
between the vector z➞ = (0, 0, 1) and h

➞

= (A, B, C), i.e.,

h
C

hz

hz
i =

⋅

⋅

= �

�

�

�

cos   . (3.13)

The orbital plane cuts the equator at two points. They are called ascending node N
and descending node. (See the next section for details). Vector s➞ denotes the vector
from the Earth centre pointed to the ascending point. The angle between the ascend-
ing node and the x-axis (vernal equinox) is called the right ascension of the ascend-
ing node (denoted by Ω). Thus,

s
➞ = z

➞ × h
➞

  ,

and

.sin

,cos
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(3.14)

Fig. 3.1.
Orbital plane

3.1  ·  Keplerian Motion
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Parameters i and Ω uniquely defined the place of orbital plane and therefore are
called orbital plane parameters. Ω, i and h are then selected as integration constants,
which have significant geometric meanings of the satellite orbits.

3.1.1
Satellite Motion in the Orbital Plane

In the orbital plane, a two-dimensional rectangular coordinate system is given in
Fig. 3.2. The coordinates can be represented in polar coordinate r and ϑ  as

p = r cosϑ
q = r sin ϑ   

. (3.15)

The equation of motion in pq-coordinates is similar to the Eq. 3.4 as

p
r

p
3

µ

−=
��

q
r

q
3

µ

−=
��

  
. (3.16)

From Eq. 3.15, one has
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 . (3.17)

Substituting Eqs. 3.17 and 3.15 into Eq. 3.16, one gets
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 . (3.18)

Fig. 3.2.
Polar coordinates in the orbital
plane
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The point from which the polar angle ϑ is measured is arbitrary. So setting ϑ as zero,
the equation of motion is then

 . (3.19)

Multiplying r to the second equation of 3.19, it turns out to be

 . (3.20)

Because rϑ·
 is the tangential velocity, r2ϑ·

 is the two times of the area velocity of the
radius of the satellite. Integrating Eq. 3.20 and comparing it with the discussion in
Sect. 3.1, one has

 . (3.21)

h / 2 is the area velocity of the radius of the satellite.
For solving the first differential equation of 3.19, the equation has to be transformed

into a differential equation of r with respect to variable f. Let

 , (3.22)

then from Eq. 3.21, one gets

 (3.23)

and

 . (3.24)

Substituting Eqs. 3.22 and 3.24 into the first of equation of 3.19, the equation of mo-
tion is then

 , (3.25)

and its solution is

 ,

3.1  ·  Keplerian Motion
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where d1 and d2 are constants of integration. The above equation may be simplified as

))cos(1(
2

ωϑ

µ

−+= e
h

u  , (3.26)

where

ω

µ

cos
21 e

h
d =  ,   ω

µ

sin
22 e

h
d =  .

Thus the moving equation of satellite in the orbital plane is

)cos(1
/2

ωϑ

µ

−+

=

e
h

r  . (3.27)

Comparing Eq. 3.27 with a standard polar equation of conic:

ϕcos1
)1( 2

e
ea

r
−

−

=  , (3.28)

orbit Eq. 3.27 is obviously a polar equation of conic section with the origin at
one of the foci. Where parameter e is the eccentricity, for e = 0, e < 1, e = 1, e > 1,
the conic is a circle, an ellipse, a parabola, and a hyperbola, respectively. For the sat-
ellite orbiting around the Earth, generally, e < 1. Thus the satellite orbit is an ellipse,
and this is indeed the Kepler’s first law. Parameter a is the semimajor axis of the
ellipse, and

)1(/ 22 eah −=µ  . (3.29)

It is obvious that parameter a has more significant geometric sense than that of h,
so a is preferred to be used. Parameters a and e define the size and shape of the el-
lipse and are called ellipse parameters. The ellipse cuts the equator at the ascending
and descending nodes. Polar angle ϕ is counted from the apogee of the ellipse. This
can be seen by let ϕ = 0, thus r = a(1 + e). ϕ has a 180 degree difference with the angle
ϑ – ω. Letting f = ϑ – ω, where f is called the true anomaly of the satellite counted from
the perigee, then the orbit Eq. 3.27 can be written as

fe
ea

r
cos1

)1( 2

+

−

=  . (3.30)

In the case of f = 0, i.e., the satellite is in the point of perigee, ω = ϑ, ϑ is the polar
angle of the perigee counted from the p-axis. Supposing the p-axis is an axis in the
equatorial plane and is pointed to the ascending node N, then ω is the angle of peri-
gee counted from the ascending node (cf., Fig. 3.3) and is called the argument of peri-
gee. The argument of perigee defines the axis direction of the ellipse related to the
equatorial plane.
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3.1.2
Keplerian Equation

Up to now, five integration constants have been derived. They are inclination angle i,
right ascension of ascending node Ω, semimajor axis a, eccentricity e of the ellipse, and
argument of perigee ω. Parameters i and Ω decide the place of the orbital plane, a and
e decide the size and shape of the ellipse and ω decides the direction of the ellipse
(cf., Fig. 3.4). To describe the satellite position in the ellipse, velocity of the motion
has to be discussed.

The period T of the satellite motion is the area of ellipse divided by area velocity:

2/12/3

2
2
1

2
)1(

2
−

=

−

== µπ

µ

ππ

a
ea

ab
h

ab
T  . (3.31)

The average angular velocity n is then

2/12/32
µ

π
−

== a
T

n  . (3.32)

Equation 3.32 is the Kepler’s third law. It is obvious that it is easier to describe the
angular motion of the satellite under the average angular velocity n in the geometric
centre of the ellipse (than in the geocentre). For simplifying the problem, an angle called

Fig. 3.3.
Ellipse of the satellite motion

Fig. 3.4.
Orbital geometry

3.1  ·  Keplerian Motion
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the eccentric anomaly is defined (denoted by E, cf., Fig. 3.5). S' is the vertical projection
of the satellite S on the circle with a radius of a (semimajor axis of the ellipse). The dis-
tance between the geometric centre O' of the ellipse and the geocentre O is ae. Thus,

aeEafrx −== coscos

EeaEbfry sin1sinsin 2
−===

 , (3.33)

where the second equation can be obtained by substituting the first into the standard
ellipse equation (x2 / a2 + y2 / b2 = 1) and omitting the small terms that contain e (for
the satellite, generally, e << 1), where b is the semiminor axis of the ellipse. The orbit
equation can then be represented by variable E as

r = a(1 – e cos E)  . (3.34)

The relation between true and eccentric anomalies can be derived by using Eqs. 3.33
and 3.34:
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=  . (3.35)

If the xyz-coordinates are rotated so that the xy-plane coincides with the orbital
plane, then the area velocity formulas of Eqs. 3.9 and 3.10 have only one component
along the z-axis, i.e.,

)1( 2eahxyyx −==− µ��  . (3.36)

Fig. 3.5.
Mean anomaly of satellite
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From Eq. 3.33, one has
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 . (3.37)

Substituting Eqs. 3.33 and 3.37 into Eq. 3.36 and taking Eq. 3.32 into account, a rela-
tion between E and t is obtained

tntaEEe ddd)cos1( 2/3
==−

−

µ  . (3.38)

Suppose at the time tp satellite is at the point perigee, i.e. E(tp) = 0, and at any time t,
E(t) = E, then integration of Eq. 3.38 from 0 to E, namely from tp to t is

MEeE =− sin  , (3.39)

where

)( pttnM −=  . (3.40)

Equation 3.39 is the Keplerian equation. E is given as a function of M, namely t.
Because of Eq. 3.34, the Keplerian equation indirectly assigns r as a function of t. M is
called the mean anomaly. M describes the satellite as orbiting the Earth with a mean
angular velocity n. tp is called the perigee passage and is the sixth integration constant
of the equation of satellite motion in a centre-force field.

Knowing M to compute E, the Keplerian Eq. 3.39 may be solved iteratively. Because
of the small e, the convergence can be achieved very quickly.

Three anomalies (true anomaly f, eccentric anomaly E and mean anomaly M) are
equivalent through the relations of Eqs. 3.35 and 3.39. They are functions of time t (in-
cluding the perigee passage tp), and they describe the position changes of the satellite
with the time in the ECSF coordinates.

3.1.3
State Vector of the Satellite

Consider the orbital right-handed coordinate system: if the xy-plane is the orbital
plane, the x-axis is pointing to the perigee, the z-axis is in the direction of vector h

➞

,
and the origin is in the geocentre, the position vector q➞ of the satellite is then (cf.,
Eq. 3.33)
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Differentiating Eq. 3.41 with respect to time t and taking Eq. 3.38 into account, the
velocity vector of the satellite is then
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The second part of above equation can be derived from the relation between E and f.
The state vector of the satellite in the orbital coordinate system can be rotated to the
ECSF coordinate system by three succeeded rotations. First, a clockwise rotation around
the 3rd-axis from the perigee to the node is given by (cf., Fig. 3.4)

R3(–ω)  .

Next, a clockwise rotation around the 1st-axis with the angle of inclination i is given
by

R1(–i)  .

Finally, a clockwise rotation around the 3rd-axis from the node to the vernal equinox
is given by

R3(–Ω)  .

So the state vector of the satellite in the ECSF coordinate system is then
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where
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For given six Keplerian elements (Ω, i, ω, a, e, M0) of t0, where M0 = n(t0 – tp), the
satellite state vector of time t can be computed, e.g., as follows:

1. Using Eq. 3.32 to compute the mean angular velocity n;
2. Using Eqs. 3.40, 3.39, 3.33 and 3.30 to compute the three anomalies M, E, f and r;
3. Using Eqs. 3.41 and 3.42 to compute the state vector q➞ and q

·➞ in orbital coordinates;
4. Using Eq. 3.43 to rotate state vector q➞ and q

·➞ to the ECSF coordinates.

Keplerian Elements can be given in practice at any time. For example, with t0, where
only f is a function of t0, other parameters are constants. In this case, the related E
and M can be computed by Eqs. 3.35 and 3.39, thus tp can be computed by Eq. 3.40.
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From Eq. 3.42, one has
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Taking Eqs. 3.32 and 3.34 into account leads to
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where v2/ 2 is the kinetic energy scaled by mass, µ / r is the potential energy, and a is the
semimajor axis of the ellipse. This is the total energy conservative law of mechanics.

Rotate the vector q➞ and q
·➞ in Eqs. 3.41 and 3.42 by R3(–ω) and denote by p➞ and p

·➞, i.e.:
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and
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The reverse problem of Eq. 3.43, i.e., for given rectangular satellite state vector (r➞, r
·➞)T

to compute the Keplerian elements, can be carried out as follows. ω + f is called argu-
ment of latitude and denoted by u.

1. Using the given state vector to compute the modulus r and v (r = |r➞|, v = |r·➞|);
2. Using Eqs. 3.10 and 3.11 to compute vector h

➞

 and its modulus h;
3. Using Eqs. 3.13 and 3.14 to compute inclination i and the right ascension of as-

cending node Ω;
4. Using Eqs. 3.45, 3.29 and 3.32 to compute semimajor axis a, eccentricity e and av-

erage angular velocity n;
5. Rotating r➞ by p➞ = R1(i)R3(Ω)r➞ and then using Eq. 3.46 to compute ω + f;
6. Rotating r

·➞ by p
·➞ = R1(i)R3(Ω)r

·➞ and then using Eq. 3.47 to compute ω and f;
7. Using Eqs. 3.33, 3.39 and 3.40 to compute E, M and tp.

To transform the GPS state vector from the ECSF coordinate system to other coor-
dinate systems, the formulas discussed in Chap. 2 can be used.

3.2
Disturbed Satellite Motion

Keplerian motion of the satellite is a motion under the assumption that the satellite is
only attracted by the central force of the Earth. This is, of course, an approximation.
The Earth cannot be considered a mass point or a homogenous sphere for a satellite
problem. The total attracting force of the Earth can be considered the central force
plus the non-central force. The latter one is called Earth’s disturbing force, which has

3.2  ·  Disturbed Satellite Motion
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an order of 10–4 compared with the central force. The other attracting forces are sim-
ply called disturbing forces. They are the attracting forces of the Sun and the Moon,
the Earth and ocean tide, as well as surface forces such as solar radiation pressure,
atmospheric drag, etc. The satellite motion can then be considered a nominal motion
(e.g., Keplerian motion) plus a disturbed motion.

If we further use the Keplerian elements to describe the disturbed motion of the
satellite, all elements should be functions of time. Keplerian elements (Ω(t), i(t), ω(t),
a(t), e(t), M(t)) can be represented by σj(t), j = 1, …, 6, thus the polynomial approxi-
mations are

   j = 1, …, 6 . (3.48)

In other words, the disturbed orbit can be further represented by Keplerian elements;
however, all elements are time variables. If the initial elements and their changing rates
are given, the instantaneous elements can be obtained. This principle is used in the
broadcast ephemerides.

Detailed disturbing theory and orbit correction as well as orbit determination will
be discussed in Chap. 11 later.

3.3
GPS Broadcast Ephemerides

GPS broadcast ephemerides are forecasted, predicted or extrapolated satellite orbits
data which are transmitted from the satellite to the receiver in the navigation mes-
sage. Because of the nature of the extrapolation, broadcast ephemerides do not have
enough high qualities for precise applications. The predicted orbits are curve fitted to
a set of relatively simple disturbed Keplerian elements and transmitted to the users.

The broadcast messages are

■ SV-id : satellite number;
■ tc : reference epoch of the satellite clock;
■ a0,a1,a2: polynomial coefficients of the clock error;
■ toe : reference epoch of the ephemerides;
■ √a

_
: square root of the semimajor axis of the orbital ellipse;

■ e : numerical eccentricity of the ellipse;
■ M0 : mean anomaly at the reference epoch toe;
■ ω0 : argument of perigee;
■ i0 : inclination of the orbital plane;
■ Ω0 : right ascension of ascending node;
■ ∆n : mean motion difference;
■ idot : rate of inclination angle;
■ Ω·

: rate of node’s right ascension;
■ Cuc, Cus : correction coefficients (of argument of latitude);
■ Crc, Crs : correction coefficients (of geocentric distance);
■ Cic, Cis : correction coefficients (of inclination).
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The satellite position at epoch t can be computed as follows:

 ,

 ,

 ,

 ,   and

 , (3.49)

where

E = M + e sin E  ,

 ,

 ,   and

 . (3.50)

µ is the Earth’s gravitational constant (which can be read from the IERS Conventions,
cf., table of constants). The satellite position in the orbital plane coordinate system
(the 1st-axis points to the ascending node, the 3rd-axis is vertical to the orbital plane,
and the 2nd-axis completes a right-handed system) is then

 ,

where u = ω + f. The position vector can be rotated to the ECSF coordinate system by
R3(–Ω)R1(–i) and then rotated to the ECEF coordinate system by R3(Θ), where Θ is
Greenwich Sidereal Time and

 , (3.51)

where ωe is the angular velocity of the Earth (can be read from the IERS Conventions,
cf., table of constants). The satellite position vector in the ECEF coordinate system is
then

 . (3.52)

3.3  ·  GPS Broadcast Ephemerides
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The first equation of 3.50 is the Keplerian equation, which may be solved iteratively.
It is notable that the time t above should be the signal transmitting time. (t – toe) should
be the actual total time difference of the two time epochs and must account for the
beginning and end of week crossovers (cf., Spilker 1996). That is, if the difference is
greater (or less) than 302 400 sec, subtract (or add) 604 800 sec. The satellite clock er-
ror can be computed by (denoting k as the satellite’s id)

2
210 )()( cck ttattaat −+−+=δ  . (3.53)

Unit seconds are used for the time variable; the computed clock error has units of
10–6 sec.

3.4
IGS Precise Ephemerides

GPS satellite precise orbits are available through the International GPS Service (IGS)
in the form of post-proceeded results. Such orbits data are called IGS precise ephemeri-
des. They can be downloaded for free from several internet homepages (e.g., www.gfz-
potsdam.de).

IGS data are given in the ECEF coordinate system. For all possible satellites, the
position vectors are given in x, y, z three components (units: km), and the related clock
errors are also given (units: 10–6 sec). The data are given in a suitable time interval
(15 min).

To obtain the ephemerides of any interested epoch, a Lagrange polynomial is used
to fit the given data and then to interpolate the data at the needed epoch. The general
Lagrange polynomial is (e.g., Wang et al. 1979):
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where symbol Π is a multiplying operator from k = 0 to k = m, m is the order of the
polynomial, y(tj) are given data at the time tj, Lj(t) is called the base function of order m,
and t is the time on which data will be interpolated. Generally speaking, t should be
placed around the middle of the time duration (t0, tm) if possible. Therefore, m is usu-
ally selected as an odd number. For IGS orbit interpolation, a standard m is selected
as 7 or 9 from experience.

For the equal distance Lagrange interpolation there is
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where ∆t is the data interval.
In order to deal with the broadcast ephemerides in a manner similar to IGS pre-

cise ephemerides, the broadcast orbit may be first computed and then transformed to
an IGS like data for use.

The forecasted IGS ephemerides are now also available to download for free.

3.5
GLONASS Ephemerides

GLONASS broadcast ephemerides are forecasted, predicted or extrapolated satellite
orbit data which are transmitted from the satellite to the receiver in the navigation
message. The broadcast messages include the following: satellite number, reference
epoch of the ephemerides, relative frequency offset, satellite clock offset, satellite
position, satellite velocity, satellite acceleration, time system correction with respect
to UTCSU, the time difference between GLONASS time and GPS time, etc.

The satellite position and velocity at desired epoch t can be interpolated by using
the Lagrange polynomial discussed in Sect. 3.4, or alternatively, by a five-order
polynomial discussed in Sect. 5.4.2 where the position, velocity and acceleration data
are used.

The precise GLONASS ephemerides are similarly available. The data has nearly the
same format as that of GPS and includes the message of the time differences of the
GLONASS time and GPS time.

3.5  ·  GLONASS Ephemerides
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GPS Observables

The basic GPS observables are code pseudoranges and carrier phases as well as Dop-
pler measurements. The principle of the GPS measurements and their mathematical
expressions are described.

4.1
Code Pseudoranges

The pseudorange is a measure of the distance between the satellite and the receiver’s an-
tenna. The distance is measured through measuring the GPS signal transmitting time from
the satellite to the GPS receiver’s antenna. Therefore, such a distance is referred to the dis-
tance between the satellite at the time of the GPS signal emission and the GPS antenna at
the time of GPS signal reception. The transmitting time is measured through maximum
correlation analysis of the receiver code and the GPS signal. The receiver code is derived
from the clock used in the GPS receiver. The GPS signal is, of course, generated by the clock
used in the GPS satellite. The measured pseudorange is different from the geometric dis-
tance between the satellite and the receiver’s antenna because of the errors of the both clocks
and the influences of the signal transmitting mediums. It is also notable that the path of the
signal transmission differs slightly from the geometric path. The transmitting medium not
only delays the transmitting of the signal, but also bends the transmitting path of the signal.

The GPS signal emission time of the satellite is denoted by te, and the GPS signal recep-
tion time of the receiver is denoted by tr. In case of vacuum medium and error-free situa-
tion, the measured pseudorange is equal to the geometric distance and can be presented by

 , (4.1)

where c denotes the speed of light, and subscript r and superscript s denote the receiver
and satellite, respectively. On the left-hand side, tr denotes the epoch at which the
pseudorange is measured.

te and tr are considered true emission time and reception time of the GPS signal. Taking both
the satellite and receiver clock errors into account, the pseudorange can be represented as

 , (4.2)

where δtr and δts denote the clock errors of the receiver and satellite, respectively. The GPS
satellite clock error term δts is indeed known through GPS satellite orbit determination.
The clock errors are usually modelled by polynomials of time. The constant term repre-
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sents the bias and the linear term the drift of the clocks. These coefficients are transmitted
along with the navigation message to the users. More precisely, the satellite clock error
corrections can be also obtained from all IGS data centres (cf., e.g., www.gfz-potsdam.de).
They are determined along with the precise IGS orbits and have higher resolution in time.

The geometric distance of the first term on the right-hand side of Eq. 4.2 is given by

 , (4.3)

where the satellite coordinate vector (xs, ys, zs) is a vector function of the time te, and
the receiver coordinate (xr, yr, zr) is a function of the time tr. Therefore, the geometric
distance is indeed a function of two time variables. Furthermore, the emission time te
is unknown in practice. Denoting the transmitting time as ∆t, there is

 . (4.4)

For illustrating the transmitting time computation, the geometric distance can be
generally written as

 . (4.5)

The transmitting time of the signal travelling from the GPS satellite to the receiver is about
0.07 sec. The geometric distance function on the right-hand side of Eq. 4.5 can be expanded
into a Taylor series at the reception time tr with respect to the transmitting time by

 , (4.6)

where dρs
r(tr) / dt denotes the time derivation of the radial distance between satellite

and receiver. The second term on the right-hand side of Eq. 4.6 is called the transmit-
ting time correction. It is notable that the coordinates of GPS antennas are usually given
in the ECEF coordinate system. During the signal transmission, the receiver rotates
with the Earth, therefore by computing the distance of Eq. 4.3, the so-called Earth ro-
tation correction has to be considered.

Taking the ionospheric effects, tropospheric effects, Earth tide and loading tide
effects, multipath and relativistic effects as well as remaining errors into account, the
pseudorange model Eq. 4.2 can be completed by

 . (4.7)

Where the measured pseudorange is on the left-hand side, it equals to the geometric dis-
tance between the satellite at the emission time and the antenna at the reception time plus
or minus several corrections. The clock error corrections are scaled by the velocity of light c.
δion and δtro denote the ionospheric and tropospheric effects of the station r. δtide denotes
the Earth tide and ocean loading tide effects, δmul denotes the multipath effects, and
δrel denotes the relativistic effects. The remaining errors are denoted by ε. For convenience,
unit meter is used for all terms and instrumental biases are omitted here.

The height of the GPS satellite is about 20 200 km; thus, the GPS signal transmit-
ting time is about 0.07 sec. The Earth rotates during the signal transition. The angular
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velocity of the Earth rotation is about 15 arcsec sec–1. The related Earth rotation cor-
rection is about 1 arcsec (cf., Goad 1996). The effects of such a correction depend on
the latitude of the station. At the equator, 1 arcsec rotation is equivalent to about
31 meters position displacement. The clock errors could be very big. There are ex-
amples where the negative pseudoranges are observed in practice.

The above-discussed pseudorange model is generally valid for both C/A code and
P code. The precision of the pseudorange measurements depends on the electronic
abilities. Generally speaking, it is no problem nowadays to measure with precision up
to 1% of the chip length. Therefore, the C/A code has a precision of about 3 m, and the
P code 30 cm. The mentioned corrections will be discussed later in detail.

4.2
Carrier Phases

The carrier phase is a measure of the phase of the received satellite signal relative to the
receiver-generated carrier phase at the reception time. The measurement is made by shift-
ing the receiver-generated phase to track the received phase. The number of full carrier
waves between the receiver and the satellite cannot be accounted for at the initial signal
acquisition. Therefore, measuring the carrier phase is to measure the fractional phase and
to keep track of changes in the cycles. The carrier phase observable is indeed an accumu-
lated carrier phase observation. The fractional carrier phase can be measured by electronics
with precision better than 1% of the wavelength, which corresponds to millimetre preci-
sion. This is also the reason why the phase measurement is more precise than that of the
code. A full carrier wave is called a cycle. The ambiguous integer number of cycles in the
carrier phase measurement is called ambiguity. The initial measuring has correct fractional
phase and an arbitrary integer counter setting at the start epoch. Such an arbitrary initial
setting will be adjusted to the correct one by modelling with ambiguity parameters.

In the case of a vacuum medium and an error-free situation, the measured phase can
be presented by

s
rr

s
rrr

s
r )()()( Nttt +−= ΦΦΦ  , (4.8)

where subscript r and superscript s denote the receiver and satellite, respectively. tr denotes
the GPS signal reception time of the receiver. Φr denotes the phase of receiver’s oscillator.
Φ s denotes the received signal phase of the satellite. Ns

r is the ambiguity related to receiver r
and satellite s.

There is an interesting property of the signal phase transmission, i.e., the received phase
of the satellite signal at the reception time is exactly the same as the phase of the emitted
satellite signal at the emission time (Remondi 1984; Leick 1995), i.e.:

)()( r
s
er

s ttt ∆−=ΦΦ  , (4.9)

where Φ s
e denotes the satellite emitted phase and ∆t is the GPS signal transmitting

time. This can be represented by

 , (4.10)

4.2  ·  Carrier Phases
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where ρs
r(tr, te) is geometric distance between the satellite at the emission time te, and the

GPS antenna at the reception time tr, c is the speed of light. Then Eq. 4.8 can be written as:

s
rr

s
errr

s
r )()()( Ntttt +∆−−= ΦΦΦ  . (4.11)

Suppose the initial time is zero and the received satellite signal and the reference car-
rier of the receiver have the nominal frequency f. Then one has

rrr )( tft =Φ    and (4.12)

)()( rr
s
e ttftt ∆−=∆−Φ  . (4.13)

Substituting Eqs. 4.10, 4.12 and 4.13 into Eq. 4.11 gives

 . (4.14)

Taking both the satellite and receiver clock errors into account, the carrier phase can
be represented as

 , (4.15)

where δtr and δts denote the clock errors of the receiver and satellite, respectively. The
frequency f and wavelength λ have the relation of

c = f λ  . (4.16)

Taking the ionospheric effects, tropospheric effects, Earth tide and loading tide
effects, multipath and relativistic effects as well as remaining errors into account, the
carrier phase model Eq. 4.15 can be completed by

(4.17)

or

 , (4.18)

where the measured phase on the left-hand side with a factor of λ equals the geometric
distance between the satellite at the emission time and the antenna at the reception time
plus or minus several corrections. The clock error corrections are scaled by the speed
of light c. δion and δtro denote the ionospheric and tropospheric effects of the station r.
δtide denotes the Earth tide and ocean loading tide effects. The multipath and relativis-
tic effects as well as remaining errors are denoted by δmul, δrel, ε respectively. Equa-
tion 4.18 is convenient to use, because all terms have units of length (meter). It is no-
table that the sign of the ionospheric term is negative, whereas in the pseudorange
model it is positive (see Sect. 4.1). This will be discussed later in Sect. 5.1 in detail.
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During GPS signal tracking, the phase and the integer account are continuously
modelled and frequently measured. In this way, the changing oscillator frequency is
accounted for. Every time the phase is measured, the coefficients in the tracking loop
model are updated (Remondi 1984) to ensure sufficient precision of measurement.

4.3
Doppler Measurements

The Doppler effect is a phenomenon of frequency shift of the electromagnetic signal
caused by the relative motion of the emitter and receiver. Supposing the emitted signal
has the nominal frequency f, the radial velocity of the satellite related to the receiver is

α
ρρ

cosVUVV
���

=⋅=  , (4.19)

where V
➞

 is the velocity vector of the satellite related to the receiver, V = |V
➞

|, U
➞

ρ is the
identity vector in the direction from the receiver to the satellite, α is the projection
angle of the vector V

➞

 to U
➞

ρ (see Fig. 4.1), index ρ is the distance from the receiver to
satellite. Then the received signal has a frequency of
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where c is the speed of light. The Doppler frequency shift is then
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where λ = (f / c) is the wavelength.
The Doppler count (or integrated Doppler) D is the historical observable of the

TRANSIT satellite and is the integration of the frequency shift over a time interval
(ca. 1 minute). If the time interval is selected small enough, the Doppler count is the
same as the instantaneous frequency shift, or

t
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d
d
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=  . (4.22)

Fig. 4.1.
Doppler effects

4.3  ·  Doppler Measurements
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The approximately predicted Doppler frequency shift is required to get the satel-
lite signal acquired. Prediction of D is a part of the GPS signal tracking process. The
predicted D is used to predict the phase change first, and then the phase change is
compared with the measured value to get the precise value of the Doppler frequency
shift. The accumulated integer account of cycles is obtained through a polynomial fit-
ting of a series of predicted phase changes and measured values (Remondi 1984).
Therefore, the Doppler frequency shift is a by-product of the carrier phase measure-
ments. However, the Doppler frequency shift is an independent observable and a mea-
sure of the instantaneous range rate.

Notice that in an error free environment, dρ / (λdt) is the same as dΦ / dt and Φ is
the phase measurement discussed in Sect. 4.2. Then the model of Eq. 4.22 can be ob-
tained by differentiating the Eq. 4.17 with respect to the time t:

 , (4.23)

where β is the term of clock error (δtr – δts), δ f is the frequency correction of the rela-
tivistic effects and ε is error. Effects with low frequency properties such as ionosphere,
troposphere, tide, and multipath effects are cancelled out.
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Physical Influences of GPS Surveying

This chapter covers all physical influences of GPS observations, including ionospheric
effects, tropospheric effects, relativistic effects, Earth tide and ocean loading tide ef-
fects, clock errors, antenna mass centre and phase centre corrections, multipath ef-
fects, anti-spoofing and historical selective availability, as well as instrumental biases.
Theories, models and algorithms are discussed in detail.

5.1
Ionospheric Effects

The ionospheric effect is an important error source in GPS measuring. The amount of
the ionospheric delay or advance of the GPS signal can vary from a few meters to more
than twenty meters within one day. Generally, it is difficult to model the ionospheric
effects due to complicated physical interactions among the geomagnetic field and so-
lar activities. However, the ionosphere is a dispersive medium, i.e., the ionospheric
effect is frequency dependent. Using this property, the GPS system is designed with
several working frequencies, so that ionospheric effects can be measured or corrected.

5.1.1
Code Delay and Phase Advance

The phase velocity vp of an electromagnetic wave with one frequency propagating in
the space can be represented by

vp = λf , (5.1)

where λ is the wavelength and f is the frequency; index p denotes phase. This formula
is valid for both GPS L1 and L2 phase signals.

A modulated signal will propagate in the space with a velocity, which is called group
velocity. Group velocity is different from phase velocity. The relationship between group
velocity and phase velocity was found more than 100 years ago by Rayleigh (Seeber 1993):

 , (5.2)

where dvp / dλ is the differentiation of vp with respect to wave length λ; index g de-
notes group. This group velocity is valid for GPS code measurements.
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From Eq. 5.1, one has the total differentiation

dλ / λ = –df / f  , (5.3)

and Eq. 5.2 can be rewritten as

)d/d( ppg fvfvv +=  . (5.4)

If the electromagnetic wave is transmitted in vacuum space, the phase velocity and
the group velocity are the same and are equal to the speed of light in a vacuum. In
such a case, the medium is called a non-dispersive one; otherwise, the medium is called
a dispersive one. Two factors np and ng are introduced so that both

cnv =gg    and (5.5)

cnv =pp (5.6)

are valid. These two factors np and ng are called refractive indices. Such a refractive
index characterises how the medium delays or advances the signal propagating ve-
locity from the speed of light in a vacuum.

Differentiation of vp with respect to frequency f can then be obtained from Eq. 5.6 by

 . (5.7)

Substituting the above three formulas into Eq. 5.4 yields

    or     . (5.8)

Using the mathematical expansion

11)1( 21
<−−+=−

− xxxx …  , (5.9)

Eq. 5.8 can be approximated to the first order by

)d/d( ppg fnfnn +=  . (5.10)

The phase refractive index can be represented by

…+++=

3
2

2
1p //1 fafan  , (5.11)

where coefficients a1 and a2 depend on the electronic density Ne and can be deter-
mined. Substituting Eq. 5.11 into Eq. 5.10 yields

3
2

2
1g /2/1 fafan −−=  . (5.12)
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The change of the length of the signal transmitting path in the medium with
refractivity n is

∫ −=∆ snr d)1(  . (5.13)

The integration is made along the signal transmitting path. Therefore, the ionospheric
effects on the phase and code signal transmission can be represented as

   and

 . (5.14)

Omitting the second term on the right-hand side, one gets

 . (5.15)

That is, the ionospheric effects on the phase and code measurements have the op-
posite signs and have approximately the same amount. The coefficient a1 has been
estimated by (cf. Seeber 1993)

e1 3.40 Na −=  , (5.16)

where Ne is the electronic density.
The total electronic content (TEC) in the zenith direction can be defined as

∫=

zenith
edTEC sN  , (5.17)

which can be computed from special models. To combine the TEC in the zenith and in
the signal transmitting path, a so-called slant factor or mapping function has to be
introduced and will be discussed in Sect. 5.1.4 in detail.

The electronic density always has a positive value; therefore, δg has a positive value
and δp negative. That is, the ionosphere delays the code signal transmission and ad-
vances the phase signal transmission.

5.1.2
Elimination of the Ionospheric Effects

Dual-Frequency Combination

The ionospheric effects on the phase (cf. Sect. 5.1.1) is rewritten as

 . (5.18)
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For the dual-frequency GPS phase observations, the ionospheric effects can be written as

   and (5.19)

 . (5.20)

It is obvious that the following combination leads to an elimination of the ionospheric effects:

 . (5.21)

In other words, through linear combination of the GPS phase observations, the iono-
spheric effects can be eliminated. The above discussion is valid for both the code and car-
rier phase measurements of dual-frequencies, i.e., there is

 . (5.22)

It should be pointed out that such ionosphere-free combination is indeed a first order
approximation because of the omission of the terms of the second order ionospheric ef-
fects of Eq. 5.14 in 5.15. Furthermore, the combinations of Eqs. 5.21 and 5.22 have to be
standardised by dividing f1

2 – f2
2, so that the combined code and phase observations also

have the sense that they are code and phase observables at a special frequency. The stan-
dard (first order) ionosphere-free phase and code combinations can be represented then as

   and (5.23)

 . (5.24)

Formally the combined observations are observed at frequency

 , (5.25)

which has the wavelength of λ = c / f, where c is the speed of light in a vacuum.

Triple-Frequency Combination

As mentioned above, a dual-frequency combination can only eliminate the first order
ionospheric effects. It is obvious that a triple-frequency combination can eliminate
the ionospheric effects up to the second order.

The ionospheric effects on the phase (cf. Sect. 5.1.1) are rewritten as

 . (5.26)
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For the triple-frequency GPS phase observations, the ionospheric effects can be writ-
ten as

 , (5.27)

   and (5.28)

 . (5.29)

The first order ionosphere-free combinations can be formed as

   and (5.30)

   or (5.31)

   and (5.32)

 . (5.33)

Then the second order ionosphere-free combination can be formed by

(5.34)

or

 , (5.35)

where

 , (5.36)

   and (5.37)

 . (5.38)
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A standardisation of the combination in Eq. 5.35 can be made through

   or (5.39)

 , (5.40)

where

 , (5.41)

 , (5.42)

   and (5.43)

 . (5.44)

The above discussion is also valid for the code measurements of triple-frequencies,
i.e., there is

 . (5.45)

Phase-Code Combination

Recalling the discussion in Sect. 5.1.1 and limiting ourselves to the first order approxi-
mation, the ionospheric effects on the phase and code measurements have the oppo-
site signs and have approximately the same amount, i.e.,

 . (5.46)

Therefore, a straightforward method to eliminate the ionospheric effects is then to
combine the phase and code observables at the same frequency f together, i.e.,

 . (5.47)

It is notable that such a combination has lower precision than that of the carrier
phase and code measurements, respectively.

5.1.3
Ionospheric Models

The Broadcast Ionospheric Model

The GPS broadcast message includes the parameters of a predicted ionospheric model
(Klobuchar 1996; Leick 1995). Using the model parameters, the ionospheric effects can
be computed and corrected.
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The input parameters of the broadcast ionospheric model are the eight model co-
efficients of αi, βi, i = 1, 2, 3, 4, geodetic latitude ϕ and longitude λ of the GPS antenna,
GPS observing time T in seconds, as well as the azimuth A and elevation E of the ob-
served satellite. All four angular arguments ϕ, λ, A and E have the units of semicircles
(SC), and 1 SC equals 180 degrees. The formulas are given below:

3)53.0(161 EF −+=  , (5.48)

 , (5.49)

Ai cosΨϕϕ +=  , (5.50)

 , (5.51)

 , (5.52)

)167.1cos(064.0 −+= ii λϕφ  , (5.53)

Tt i += 20043λ  , (5.54)

40086if,40086 ≥−= ttt  , (5.55)

0if,40086 <+= ttt  , (5.56)

i

i
iP φβ∑

=

=
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1
 , (5.57)

00072if,00072 <= PP  , (5.58)

  , (5.59)

∑

=

=

4

1i

i
iQ φα  , (5.60)

0if,0 <= QQ  , (5.61)

   and (5.62)

 . (5.63)

ϕi and λi are the geodetic latitude and longitude of the sub-ionospheric point. The
ionospheric point is defined as the point on the sight of the satellite, which has the
average ionospheric height (350 km), and the sub-ionospheric point is the projection
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point of the ionospheric point onto the Earth’s surface, which has a height of 50 km,
φ being the geomagnetic latitude of the sub-ionospheric point. ψ is the Earth’s cen-
tral angle between the GPS station and the ionospheric point. F is the slant factor or
mapping function that maps the ionospheric effects of the zenith direction onto the
signal transmitting path. The local time at the sub-ionospheric point is denoted by t.
P and Q are the period and amplitude in seconds. The phase is denoted by x. c is the
speed of light. Frequency of L1 is denoted by f1.

The ionospheric group delay on the L2 frequency can be computed by

 . (5.64)

The phase advance has only an opposite sign if the phase has been scaled to have
units of length. Dividing the length with the wavelength can transform the units of
length to the units of cycle.

Figure 5.1 shows the ionospheric effects of the broadcasted ionospheric model of
9 September 2001. The ionospheric parameters are

   and

 .

Station coordinates are selected as (ϕ = 45°, λ = 0°). Computation has been carried out
for a whole day of 24 hours in GPS time. The continuous line shows the ionospheric
effects on a satellite that repeats its orbit every four hours and changes its elevation and
azimuth regularly from (5°–85°–5°) and (30°–150°), respectively. The broken line shows
the (zenith) ionospheric effects of a space fixed satellite in the zenith direction (eleva-
tion = 90°, azimuth = 180°). It shows the strong dependency of the ionospheric effects on
the time and zenith angle of the satellite. In the zenith direction, the ionospheric effects
remain constant (1.5 meter) before 9 o’clock and after 19 o’clock. Strong changes hap-
pen at the time of sunrise and sunset and the ionospheric noon (14:00). Depending on
the elevation of the satellite, the ionospheric effects may be amplified up to three times.

The broadcast ionospheric model can remove the ionospheric delay more than 50%
(Langly 1998).

Fig. 5.1.
Broadcasted ionospheric model
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Dual-Frequency Ionosphere Measuring Model

In pseudorange measurement only the ionospheric effects depend on the working fre-
quency. Therefore, a simple difference of the pseudoranges of the dual-frequencies can
eliminate all other effects except the ionospheric effects and subsequently can be used
for determining the ionospheric delay:

   or (5.65)

 
, (5.66)

where R1 and R2 are the L1 and L2 pseudoranges, and f1 and f2 are the frequencies of the L1
and L2 carriers. Here the random measurement error and un-modelled bias are omitted.

Similarly, the ionospheric effects can be determined by dual-frequency phase ob-
servables. Recall the phase observable model discussed in Sect. 4.2 where a simple differ-
ential combination of both phase pseudoranges can be formed as:

 
, (5.67)

or

 , (5.68)

where Φ1 and Φ2 are the L1 and L2 phase pseudoranges (in units of cycles), and N1 and N2
are the ambiguities of the L1 and L2 carriers. The random measurement error and un-
modelled bias are omitted here. As long as the phase measurements are continuous (no
cycle slips), the λ1N1 – λ2N2 remains a constant. Through a long term statistic comparison
of Eqs. 5.66 and 5.68, the constant λ1N1 – λ2N2 can be approximately determined. The varia-
tion of the ionospheric effects can be determined very well by using this method.

5.1.4
Mapping Functions

As mentioned in Sect. 5.1.1, in order to combine the TEC in zenith direction and in
the signal transmitting path, the slant factor or mapping function F is needed so that:

FzTECTEC =

ρ
 , (5.69)

where indices ρ and z denote the path and zenith directions, respectively.
Generally, the ionosphere begins at a height of 50 km and ends at a height of about

750 km. It is therefore assumed that the ionosphere has an average height of 350 km
(see Fig. 5.2). The sight line of the satellite crosses over the shell at the so-called iono-
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spheric point. The projection of the ionospheric point at a height of 50 km is called the
sub-ionospheric point. The point at the sight line of the satellite at a height of 50 km is
called the sub-ionospheric point in sight. The point at the sight line of the satellite at a
height of 750 km is called the sup-ionospheric point in sight. These four points are de-
noted by Pip, Psip, Psips and Psupip respectively.

Projection Mapping Function

Based on a single layer model, a homogeneous distribution of the free electrons is
assumed (Fig. 5.2). This is equivalent to assuming all free electrons are concentrated
in a shell of infinitesimal thickness at a height of 350 km. In such a case, the mapping
function may be written as

 , (5.70)

where zip is the satellite zenith angle at the ionospheric point. Using the sinus theo-
rem, the relationship between the zip and zenith distance (z) of the satellite viewed from
the receiver can be obtained by

 , (5.71)

where r is the mean radius of the Earth in km. Such a mapping function is called a
single layer mapping function or projection mapping function. It is notable that
Eq. 5.71 is exactly valid only for the spherical zenith angles.

Geometric Mapping Function

If a height-dependent homogeneous distribution of the free electrons is assumed, then
the mapping function is a geometric one and is equivalent to

dρ = dHF  , (5.72)

where dρ and dH are the ionospheric path delay and zenith delay respectively.

Fig. 5.2.
Single-layer ionospheric model
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The zenith angle of the satellite at the sub-ionospheric point (in sight) Psips is de-
noted by zsips (Fig. 5.3). It can be computed by using the sinus theorem

 , (5.73)

where z is the zenith angle of the satellite viewed from the receiver and r is the mean
radius of the Earth in km. In the geometry, the spherical zenith angles are used here.
The difference between the spherical zenith and geodetic zenith depends on the lati-
tude of the station and the azimuth of the satellite. The maximum difference is the
difference between geodetic latitude and geocentric latitude of the computing point;
this is about (e2 / 2) sin (2ϕ) (Torge 1991), where e2 is the first numerical eccentricity
(<0.0067) and ϕ is the geodetic latitude of the computing point. Therefore, the small
angle difference can be omitted. Of course, for correctness the spherical zenith angle
should be used here. It is the angle of the sight line to satellite with respect to the Earth
centred radius vector of the station. Using the cosines theorem, one has

)180cos()50(2)50()50( sips
222 zrrHr −+−++=++ ρρ (5.74)

or

0)50()50()cos()50(2 22
sips

2
=++−++++ Hrrzr ρρ  , (5.75)

where ρ and H are the lengths of lines from the sup-ionospheric point to the sub-iono-
spheric point in sight and sub-ionospheric point, respectively. The second order equa-
tion can be solved by

22
sips

22
sips )50()50()(cos)50()cos()50( Hrrzrzr ++++−+±+−=ρ (5.76)

or

)(sin)50()50()cos()50( sips
222

sips zrHrzr +−++±+−=ρ  . (5.77)

Because ρ > 0, Eq. 5.75 has a unique solution:

)(sin)50()50()cos()50( sips
222

sips zrHrzr +−++++−=ρ  . (5.78)

Fig. 5.3.
Spherical ionospheric model
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Comparing Eq. 5.72 with Eq. 5.78, one gets the geometric mapping function

 , (5.79)

or approximately

)(sin81.01183.10)cos(183.9 sips
2

sips zzF −+−=  , (5.80)

where r = 6 378 km and H = 700 km are used.
Above, the derived geometric mapping function of Eq. 5.79 is a spherical approxi-

mation if r is considered a constant.

Ellipsoidal Mapping Function

Taking the dependency of the radius r on the latitude ϕ into account, an ellipsoidal
mapping function can be derived. According to Torge (1991),

r2 = a2 cos2β + b2 sin2β    and (5.81)

  ,

where r is the radius of the rotational ellipsoid, a and b are the semimajor axis and
semiminor axis of the ellipsoid, and β is an angle that has the relation with geodetic
latitude ϕ. Using the triangle formulae

β

β

ββ
2

2
22

tan1

tan1
sin211cos2

+

−

=−=−  , (5.82)

Eq. 5.81 can be rewritten as

 ,    or (5.83)

 . (5.84)

In an ellipsoid case, Eqs. 5.74 and 5.79 turn out to be

)180cos()50(2)50()50( sips
222 zrrHr iis −+−++=++ ρρ     and

 , (5.85)

where rs and ri denote the geocentric radius of the sub-ionospheric point and sub-
ionospheric point in sight, respectively. They can be obtained by substituting the geo-
detic latitudes ϕs and ϕi of the related two positions into Eq. 5.84. The ellipsoidal
mapping function is then Eq. 5.85.



55

The mapping functions are needed if the ionospheric effects have to be determined.
In Eq. 5.72, dρ may be considered to be an ionospheric path delay observed by GPS,
and dH may be considered to be an ionospheric model, which is independent from
the path zenith such as given in Eq. 5.27. The determined parameters have then the
physical meanings of the total electron contents in the zenith direction.

5.2
Tropospheric Effects

Troposphere is the lower part of atmosphere over the Earth’s surface. Unlike the
ionosphere, the troposphere is a non-dispersive medium at GPS carrier frequencies.
That is, the tropospheric effects on the GPS signal transmission are independent
from the working frequency. The electromagnetic signals are affected by the neutral
atoms and molecules in the troposphere. The effects are called tropospheric delay,
or tropospheric refraction. Indeed, the word “tropospheric” used here is not an exact
one; however, due to historical reasons, tropospheric effects are simply considered
to be the effects of the atmosphere below the ionosphere. The amount of tropospheric
delay in the zenith direction is about 2 m. It increases with the increase of the zenith
angle of the sight line to the satellite. In the case of a lower satellite elevation of a few
degrees, the tropospheric delay of the GPS signal can reach up to more than a few
meters. Therefore, the tropospheric effect is an important error source in precise GPS
applications.

Generally speaking, the tropospheric delay depends on temperature, pressure, hu-
midity as well as the location of the GPS antenna. Analogous to the ionospheric path
delay, the tropospheric path delay can be written as

 , (5.86)

where n is the refractive index of the troposphere, the integration is taken along the
signal transmitting path, which could be simplified as the geometric path. Scaling of
the refractive index anomaly (n – 1) is usually made by

)1(106
−= nN  , (5.87)

where N is called tropospheric refractivity. N can be separated into wet (about 10%)
and dry (about 90%) parts:

dw NNN +=  , (5.88)

where indices w and d denote the wet and dry. They are caused by the water vapour
and the dry atmosphere, respectively. Therefore Eq. 5.86 becomes

 , (5.89)

where

   and (5.90)
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 . (5.91)

If the integrations are made along the zenith direction, then the related mapping
functions should be defined by

 , (5.92)

   and (5.93)

 , (5.94)

where index z denotes the tropospheric delays in the zenith direction, and Fw and Fd
are mapping functions related to the wet and dry components. Analogous to the dis-
cussions made in Sect. 5.1.4, mapping functions are needed for determining the re-
lated delay models in the zenith direction. All empirical tropospheric path delay models
have their own mapping functions.

5.2.1
Tropospheric Models

Modified Saastamoinen Model

The modified Saastamoinen tropospheric model (Saastamoinen 1972, 1973) for cal-
culating the tropospheric path delay can be outlined as

 , (5.95)

where z is the zenith angle of the satellite, T is the temperature at the station (in units
of Kelvin (K)), P is the atmospheric pressure (in units of millibars (mb)), e is the par-
tial pressure of water vapour (in mb). B and δR are the correction terms that depend
on H and z, respectively. H is the height of the station. δ  is the tropospheric path de-
lay (in meters), and (cf. e.g. Wang et al. 1988)

)000256908.0213166.02465.37exp( 2
h TTRe −+−=  , (5.96)

where Rh is the relative humidity (in %) and exp() is the exponential function. B and
δR can be interpolated from Table 5.1 and Table 5.2, respectively.

To transform the unit of the temperature T from K (Kelvin) to °C (Celsius) one may use:

16.273)Celsius()K( +=TT  . (5.97)

In the model either measured values of pressure, temperature, and humidity or
the values derived from a standard atmospheric model may be used. The height-depen-
dent values of pressure, temperature and humidity may be obtained by the equations

225.5
00 )](000226.01[ HHPP −−=  , (5.98)
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)(0065.0 00 HHTT −−=    and (5.99)

)](0006396.0exp[ 00hh HHRR −−=  , (5.100)

where P0, T0, and Rh0 are called standard pressure, temperature, and humidity at the refer-
ence height H0. It is obvious that the values are dependent on the geographic position of
the station and time as well as the weather. Without the values of P0, T0 and Rh0, a direct
correction using the model is not possible. In such a case, the tropospheric effects are usu-
ally estimated through the factor parameters of the mapping function, which will be dis-
cussed later. Additionally, the following values will be used as standard input:

m00 =H  , (5.101)

 , (5.102)

Celsius180 °=T    and (5.103)

%50h0 =R  . (5.104)

Table 5.1.
Function of B(H)

Table 5.2. Function of δR(H, z)

5.2  ·  Tropospheric Effects



Chapter 5  ·  Physical Influences of GPS Surveying58

The original Saastamoinen tropospheric model has a constant value of B and
δR = 0 in the modified model of Eq. 5.95. Three kinds of mapping functions are used
in the modified model. The first one is obviously 1 / cos z; this is the mapping
function of the flat Earth model or single layer model. The second one is tan2 z / cos z
(cf. Eq. 5.95). The third one is an implicit one, which is represented by the numerical
Table 5.2.

Modified Hopfield Model

The modified Hopfield model (Hopfield 1969, 1970, 1972) for calculating the tropo-
spheric path delay can be summarised as:

   and (5.105)

 . (5.106)

Subscript i is used to identify the dry and wet components of the tropospheric delay,
and

 , (5.107)

 ,

 ,

 ,

 ,

 ,

 ,

 ,

 ,

 ,

   and

 , (5.108)
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where z is the zenith angle of the satellite, T is the temperature at the station (in units
of Kelvin (K)), P is the atmospheric pressure (in units of millibars (mb)), and e is the
partial pressure of water vapour (in mb, c.f. Eq 5.96). RE is the Earth’s radius. δ  is the
tropospheric path delay (in meters).

In the model either measured values of pressure, temperature, and humidity or the
values derived from a standard atmospheric model may be used. The height-dependent
values of pressure, temperature and humidity may be obtained using Eqs. 5.98–5.104.
As mentioned before, the tropospheric effects are usually estimated through suitable
parameterisation, which will be discussed in the next section.

A graphic of the modified Hopfield model with standard input parameters is given in
Fig. 5.4.

There are still many other models for computing the tropospheric delay, such as the
Davis model (Davis and Herring 1984), original Hopfield and Saastamoinen models (cf.
e.g. Hof-mann-Wellenhof et al. 1997), Niellis model and Yionoulis model (Zhu 2001). The
differences between these models are generally very small for a zenith distance less than
75 degrees.

5.2.2
Mapping Functions and Parameterisation

In Sect. 5.1.4 the ionospheric mapping functions are discussed under the assumptions
of symmetry of the sphere and rotating ellipsoid shapes of the ionosphere. For similar
assumptions of the troposphere shapes, all mapping functions discussed in Sect. 5.1.4
can be directly used here for troposphere by changing the related values.

Projection Mapping Function

Because the troposphere has a maximal height of 50 km, the zenith angle of the satel-
lite at the observation point may be simply used in the single layer mapping function:

  . (5.109)

Fig. 5.4.
Modified Hopfield tropo-
spheric model (troposphere
delay of GPS signal)
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Geometric Mapping Function

It can be similarly derived as in Sect. 5.1.4 by:

 , (5.110)

where r = 6 378 km, H = 50 km may be used, and z is the spherical zenith distance of
the satellite viewed from the station.

Due to the complexity of the troposphere, the so-called co-mapping function is
needed. If a height-dependent homogeneous distribution of the troposphere is as-
sumed, then the co-mapping function is a geometric one and is defined as

cdd SF=ρ  , (5.111)

where dρ and dS are the tropospheric path delay and the delay mapped to the line
from station to the sub-tropospheric point. In the case of zenith angle z equals zero,
the dS is zero and co-mapping function is undefined. Index c in Fc is used to denote
the co-mapping function. It is obvious that the projection co-mapping function is

 . (5.112)

Geometric Co-Mapping Function

The zenith angle of the satellite at the sup-tropospheric point is denoted by zst (Fig. 5.5).
It can be computed by using the sinus theorem

 , (5.113)

where z is the zenith angle of the satellite viewed from the receiver and r is the mean
radius of the Earth in km. Using the cosines theorem, one has

st
222 cos2 zHHS ρρ −+=    or (5.114)

st
22 cos2 zHHS ρρ −+=  , (5.115)

where ρ and S are the lengths of lines from the station to the sup-tropospheric point
and sub-tropospheric point, respectively. Then the geometric co-mapping function is

 , (5.116)

where

zrHrzr 222 sin)(cos −++−=ρ  , (5.117)
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where r = 6 378 km, H = 50 km may be used. Above, the derived geometric co-map-
ping function of Eq. 5.116 is a spherical approximation if r is considered a constant.

The mapping and co-mapping functions are necessary for two purposes: one is for
the determination of a related tropospheric model; the other is for the determination
of the tropospheric path delay effects on the GPS observations. Recall the definitions
of dρ = dH · F (cf. Eq. 5.72). Here, dH may be considered a tropospheric model that is
independent from the zenith distance of the signal transmitting path, whereas dρ rep-
resents observed tropospheric delays of path direction. With the observed dρ and
known mapping function F, the parameters of the model dH may be determined. Usu-
ally the model dH is a function of the temperature, pressure and humidity as seen in
the models discussed in Sect. 5.2.1. For correction of the tropospheric effects on the
GPS observations, one needs tropospheric models. However, the input parameters of
the models are usually not measured together with the GPS measurements. The stan-
dard method of dealing with such a problem includes two steps. First, the standard
temperature, pressure and humidity values for everywhere and any time will be used
as input of the tropospheric model to compute the path delay dρ. Then, the computed
dρ should be amplified with a functional factor g and the g has to be determined by
GPS data processing. The formulation of g is called parameterisation of the tropo-
spheric path delay effects. Two factorisation methods are given here:

 . (5.118)

Physically, gρ, gz and ga are factors in path direction, zenith direction and in azimuth
component, respectively. Mapping function F and co-mapping function Fc are used to
map the computed dρ to the desired directions.

A step function or a first order polynomial function
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   or (5.119)
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Fig. 5.5.
Spherical troposphere model
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may be used as path factor gρ. Where in Eqs. 5.119 and 5.120 ∆t = (te – t0) / n, t0 and te
are the beginning time and ending time of the GPS surveying, n is an integer that may
be selected with a reasonable value, ti = t0 + (i – 1)∆t, gi are constant unknowns which
shall be determined.

The azimuth dependency may be assumed as

agagg sincos 21a +=  , (5.121)

where a is the azimuth of the satellite at the station, g1 and g2 may be in turn a step
function or a first order polynomial function given in Eqs. 5.119 and 5.120.

5.3
Relativistic Effects

5.3.1
Special Relativity and General Relativity

Einstein’s special relativity is based on two postulates. The first one is called the principle of
relativity, i.e., “No inertial system is preferred. The equations expressing the laws of physics
have the same form in all inertial systems.” The second one is called the principle of the con-
stancy of the speed of light, i.e., “The speed of light is a universal constant independent of
the state of motion of the source. Any light ray moves in the inertial system of coordinates
with constant velocity, c, whether the ray is emitted by a stationary or by a moving source.”
Of course, the speed of light refers to velocity in a vacuum (Ashby and Spilker 1996).

Consider two inertial coordinate systems S' and S in Fig. 5.6, where the x'-axis and
x-axis coincide. Two origins are placed at point A and B, respectively. Origin A of system S'
moves with a constant velocity v along the x-axis toward B. The distance between A and B
viewed in system S is ∆x. The mirror surface is parallel to the x-axis and is faced to the x-
axis. The perpendicular distance of the mirror to the x-axis is ∆L. Suppose a light flash is
emitted from A and the reflected light is receipted at B by the moving system S'. Then the
transmitting time of the light measured in system S is

c

xL
t

22 )2/()(2 ∆+∆

=∆  . (5.122)

According to our assumption, one gets ∆x = v∆t. Substituting this into Eq. 5.122,
∆t can be obtained by
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Because of Einstein’s postulates, the speed of light, c, is the same in two systems. There-
fore, 2∆L / c is the light flash transmitting time viewed in the moving system S', i.e.,
∆t' = 2∆L / c, and
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This indicates that the time interval viewed in the system at rest is shorter than the
time interval viewed in the system, which is moving with velocity v.

Again, because of the constant c in the two systems, one may denote ∆s = c∆t and
∆s' = c∆t', where ∆s and ∆s' are the lengths of the light transmitting paths viewed in
the two systems. Multiplying c by Eq. 5.124 gets
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This indicates that the length viewed in the moving system is lengthened.
Consider the relation of c = fλ, where c is constant in both systems, λ is wavelength

and f is the related frequency. Because the wavelength λ viewed in two systems is dif-
ferent, denoted by λ = ∆s and λ' = ∆s', the relationship of the frequencies f and f ', which
are viewed in two systems, can be obtained by dividing c into Eq. 5.125:

2)/(1' cvff −=  . (5.126)

This indicates that the frequency f ' viewed in the moving system is reduced to f when
it is viewed by a resting system.

Using mathematical expansions
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for Eqs. 5.124, 5.125 and 5.126, we have
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This is the formula of the special relativity effects caused by a constant motion
of a moving inertial coordinate system viewed from a resting inertial coordinate
system.

Fig. 5.6.
Light transmission viewed in
two inertial frames
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Einstein’s general relativity incorporates gravitation by virtue of the principle of
equivalence. The mathematics of the general relativity is extremely complex. However,
for treatment of the relativistic effects on GPS, only a simplified and small fraction of
the theory is required. Note that the right-hand side of Eq. 5.129 is indeed the point-
mass (or unit mass) kinetic energy (v2 / 2) scaled by the speed of light c (exactly 1 / c2).
That is, the special relativity effects may be interpreted as the effects caused by kinetic
energy due to motion. The analogous effects may also be caused by potential energy
∆U due to the presence of the gravitation field U. Then
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represents the relativistic relations in the case of the presence of a gravitational field U.
Thus the total relativistic effects may be formulated as
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The presence of a gravitational field indicates an acceleration of the frame S' with re-
spect to the system S in rest.

The special relativity effects of rotation may be similarly discussed. Details can be found,
e.g., in Ashby and Spilker (1996).

5.3.2
Relativistic Effects on GPS

The inertial coordinate system at rest, its origin located at the centre of the Earth, is taken
as reference to view all GPS related activities. Because of the large motion velocities and
near circular orbits of the GPS satellite, the non-negligible gravitational potential differ-
ence between the satellite and the users, as well as the rotation of the Earth, the relativistic
effects have to be taken into account. For convenience, we may imagine that the whole GPS
process is viewed in an inertial reference at a point where the gravitational potential is the
same as that of the geoid of the Earth. Taking the Earth’s rotational effects into account,
the view point is equivalent to the point of the GPS user on the geoid of the rotating Earth.

Frequency Effects

The fundamental frequency f0 of the GPS system is selected as 10.23 MHz. All clocks
on the GPS satellites and GPS receivers operate based on this frequency. If all the GPS
satellites are working simply on the frequency f ' = f0, then we will view a frequency f
at our reference point, and f is not the same as f0 due to relativistic effects. In order to
be able to view the fundamental frequency f = f0, the desired working frequency f ' of
the GPS satellites can be computed using Eq. 5.131 by
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where v is the velocity of the satellite and ∆U is the difference of the Earth’s gravita-
tional potential between the satellite and the geoid. The difference between the set-
ting frequency f ' of satellite clock and the fundamental frequency f0 is called the off-
set in the satellite clock frequency. Such an offset of the relativistic effects has been
implemented in the satellite clock settings, and therefore users do not need to con-
sider this effect. The offset can be computed by using the mean velocity of the satellite
and ∆U = µ / (RE + H) – µ / RE, where µ is the gravitational constant of the Earth, RE is
the Earth radius (ca. 6 370 km), and H is the height of the satellite above the Earth (ca.
20 200 km). The offset is approximately 0.00457 Hz; in other words, the satellite clock
frequency is set to f0 – 4.57 × 10–9 MHz.

For the receiver fixed on the earth’s surface, the frequency of the clock in the re-
ceiver is also affected by the relativistic effects. The effects can be represented analo-
gously by Eq. 5.132, where ∆U = 0 and v is the velocity of the receiver due to the rota-
tion of the Earth. Such effects are corrected by the software of the receiver.

Path Range Effects

The general relativity effects of the signal transmitting from the GPS satellite to the
receiver can be represented by the Holdridge (1967) model:
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where ρ j and ρi are the geocentric distances of the satellite j and station i, respectively,
ρi

j is the distance between the satellite and the observing station, ∆ρrel has the units of
meters and a maximum value of about 2 cm. It is notable that by computing the
distance ρi

j, the effect of the rotation of the Earth during the signal transmission has
to be taken into account (if it is done in the Earth’s fixed system).

Earth’s Rotational Effects

All corrections related to the rotation of the Earth are called Sagnac corrections.
The geocentric vector of the GPS satellite is denoted by r➞s, the geocentric vector of
the receiver by r➞r, and the velocity vector of the receiver by v➞r. These are the vec-
tors during GPS signal emission. Suppose the transmitting time between the signal
emission from satellite and signal reception of receiver is ∆t. During the time of
GPS signal transmission, the receiver has moved to position r➞r + v➞r ∆t. Observing
from the non-rotating frame, the distance of the signal transmission can be repre-
sented by

srr rtvrtc
���

−∆+=∆  . (5.134)

Therefore the transmitting path correction due to the rotation of the Earth can be
presented as

srsrr rrrtvr
�����

−−−∆+=∆ρ  . (5.135)

5.3  ·  Relativistic Effects



Chapter 5  ·  Physical Influences of GPS Surveying66

This can be simplified as (Ashby and Spiler 1996)

 . (5.136)

The correction can reach up to 30 meters and must be taken into account.
If the signal transmitting time ∆t has been solved through iteration of Eq. 5.134,

then the Sagnac correction will automatically be taken into account.
This term of correction is also valid for the kinematic GPS receivers that are not

fixed on the Earth’s surface. The velocity vector in Eq. 5.136 is

krer vrv
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+×=ω  , (5.137)

where the first term on the right-hand side is the velocity vector of the receiver due to
the Earth’s rotation, and the second term v➞k is the kinematic velocity vector of the re-
ceiver related to the Earth’s surface. A kinematic motion of 100 km h–1 related to the
Earth’s surface can cause additional Sagnac effects up to 2 meters.

The Sagnac correction also has to be taken into account for low-Earth orbit (LEO)
satellites (e.g., TOPEX, CHAMP and GRACE), which are equipped with GPS receivers
onboard for satellite-satellite tracking (SST).

Relativistic Effects due to the Orbit Eccentricity

The theoretical formula of the clock correction of the satellite can be written as (Ashby
and Spilker 1996)
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where a is the semimajor axis of the satellite orbit, e is the eccentricity of the orbit, E is the
eccentric anomaly of the orbit, µ is the gravitational constant of the Earth, and ∆te is the
clock correction due to the eccentricity of the orbit. The second term on the right-hand
side is a constant that cannot be separated from the clock offset. This total correction has
already been taken into account in the GPS orbits determination and is broadcasted in the
navigation message by the parameters of the clock error polynomial. Therefore, this term
of correction only needs to be considered in the satellite orbits determination.

Using the relation of e sin E = (xvx + yvy + zvz) / ⎯√(⎯µ⎯a) (cf. Kaula 1966), the Eq. 5.138
can be presented by the position (x, y, z) and velocity (vx, vy, vz) of the satellite.

General Relativity Acceleration of the Satellite

The IERS standard correction for the acceleration of the Earth satellite is (McCarthy 1996)
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where c is the speed of light, µ is the gravitational constant of the Earth, r➞, v➞, and a➞ are
the geocentric satellite position, velocity and acceleration vectors, respectively.
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5.4
Earth Tide and Ocean Loading Tide Corrections

5.4.1
Earth Tide Displacements of the GPS Station

The Earth tide is a phenomenon of the deformation of the elastic body of the Earth
caused by the gravitational attracting force of the Moon and the Sun. Such a deforma-
tion depends not only on the changing of the force, but also on the physical structure
and motion of the Earth (Melchior 1978).

Generally, the Sun-Moon-Earth system may be separated into two two-body sys-
tems for discussing the effects of the Sun and the Moon on the Earth, respectively. For
the Moon-Earth system, the mass centre can be found out according to the definition.
It lies on a straight line between the centres of the Earth and the Moon, and has a dis-
tance to the centre of the Earth of about 0.73RE, where RE is the radius of the Earth
(Fig. 5.7). For the point-mass p (with unit mass) on the Earth, the tidal potential gen-
erated by the Moon can be derived as
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where r is the geocentric distance of the Moon, ρ is the geocentric distance of point p,
µm is the gravitational constant of the Moon, z is the geocentric zenith angle of the
Moon, and r' is the distance between the point p and the centre of the Moon. The 1 / r'
in Eq. 5.140 can be developed by Legendre polynomials, and then
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where Pn(cos z) is the conventional Legendre polynomials of n degree. Applying the
well-known formula of spherical astronomy (cf., e.g., Lambeck 1988),

  , (5.142)

Fig. 5.7. The Earth-Moon system
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to Eq. 5.141 and using the addition theorem (cf., e.g., Lambeck 1988), Laplace’s for-
mula of the tidal potential can be obtained by

(5.143)

where ϕ is the latitude of computing point p, δ and H are the declination and local hour
angle of the Moon, and Pnk(x) is the associated Legendre polynomials of degree n and
order k. Laplace’s formula shows the significant geometric and periodic characters of
the tidal potential. Similar discussions can be made for the Earth-Sun system, and the
related tidal potential can be obtained by substituting the gravitational constant of the
Sun µs and geocentric distance of the Sun into Eq. 5.143. The total tidal potential is the
summation of both potentials generated by the Moon and the Sun. The truncating order
of the summation can be selected due to the precision requirement and the truncating
errors can be estimated by considering µm, µs and the ratio RE/ r of the Moon and the Sun.

The tidal displacements resulting from the tidal potential are then
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where ∆Sr, ∆Sϕ and ∆Sλ are the tidal displacements in the radial, north and east directions,
respectively; h and l are the Love and Shida numbers (in more detailed words, hn and ln
are the Love and Shida numbers of degree n); Wp(n) is the tidal potential of degree n,
g ≈ µ/R2

E; µ is the gravitational constant of the Earth; and RE is the radius of the Earth.
It is notable that the tidal potential includes a permanent (i.e., time independent)

part. This part of the tide is now included in the geoid definition, which has already
been accepted by IAG in 1983 (Poutanen et al. 1996). Therefore, such a term has to be
carefully dealt with. Examples to move or to keep the permanent tidal term from the
above formulas may be found in IERS standard (McCarthy 1996).

5.4.2
Simplified Model of the Earth Tide Displacements

The vector displacement of the station due to degree 2 of the tidal potential is
(McCarthy 1996; Zhu et al. 1996)
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where µ is the gravitational constant of the Earth, RE is the equatorial radius of the Earth,
j = 1, 2 are indices for the Moon and Sun, respectively, r�i and ρ�  are the geocentric iden-
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tity vectors of the Moon (or Sun) and station, rj and ρ are the magnitude of the related
geocentric vectors, and h2 and l2 are nominal degree 2 Love and Shida numbers (for an
elastic Earth model, the nominal values are 0.6078 and 0.0847). In Eq. 5.147, the terms
factorised by h2 and l2 are the radial and transverse components of the tidal displace-
ment. Taking the latitude dependence into account, h2 and l2 shall have the forms of

   and

 . (5.148)

The vector displacement of the station due to degree 3 of the tidal potential is
(McCarthy 1996)

 , (5.149)

where h3 = 0.292. Here only the radial component of the Moon is considered.
As discussed in Sect. 5.4.1, there is a permanent part of the tidal deformation in-

cluded in the degree 2 tidal potential. The projects of the permanent displacement into
the radial and north directions are

–0.0603(3 sin2 ϕ – 1)   and   –0.0252 sin 2ϕ  .

This must be removed from the computation of Eq. 5.147 according to the IERS stan-
dard. Generally, the tidal displacements computed using the model given above have
accuracy on a mm level.

In GPS applications, the computing time is usually the GPS time, and the coordi-
nates of the stations are given in the CTS system. However, the ephemerides of the Sun
and Moon are given in the CIS coordinate system with time TDT. Therefore, time and
coordinates have to be transformed to a unique time-coordinate system. The details
of the time-coordinate system can be found in Chap. 2.

Usually the ephemerides of the Sun and the Moon are computed or forecasted every
half day (12 hours). The ephemerides of the Sun and the Moon at a required epoch are inter-
polated from the data of the two adjacent epochs (t1, t2) by using a 5-order polynomial:

 .

For data at two epochs, e.g.:

   and

 ,

where x·  and x·· are the velocity and acceleration components related to x. Considering
the formulas of f(t), df(t) / dt, d2f(t) / dt2 and letting t = t1, one gets a = x1, b = x·1 and
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c = x··1 / 2. Letting t = t2, coefficients of d, e, f can be derived theoretically, e.g., in the case
of t2 – t1 = 0.5:

 ,

 ,

 .

For y and z components, the formulas are similar. Such an interpolating algorithm
is accurate enough for using the given half day ephemerides of the Sun and Moon to
get the data at the required epoch. The computation of the ephemerides of the Sun and
Moon will be discussed in Sect. 11.2.8.

5.4.3
Numerical Examples of the Earth Tide Effects

The Earth tide effects could reach up to 60 cm world-wide (Melchior 1978; Poutanen
et al. 1996) and, e.g., 30 cm in Greenland (Xu and Knudsen 2000). The effect of the Earth
tide on the GPS positioning is a well-known correction term, which has to be taken
into account in many cases as soon as the Earth tide effect is greater than the accu-
racy requirement of GPS results. The tidal parameters (Love and Shida numbers) can
be also determined through global GPS observations.

Only the GPS positioning, which is carried out on the air without fixed reference on the
Earth, is free from the Earth tide effects. For the GPS relative positioning of a small re-
gional area, the tidal effects may be neglected because of the small differences in the tidal
displacements. In the relative airborne kinematic GPS positioning, the airborne antennas
are free from Earth tide effects. However, the static references fixed on the Earth are not
free from tidal effects. In this case, the tidal displacements are independent from the
size of the applied area or lengths of the baselines and have to be taken into account.

Three examples are given to illustrate the tidal displacements (Xu and Knudsen
2000). The IERS standards are used as the principle of the Earth tide effect computa-
tion (McCarthy 1996).

Three stations in Greenland were selected for computation of a whole day (GPS time
used) of tidal displacements on 31 December 1998. Coordinates were quite roughly
selected for Narsarsuaq (60°, 315°), Scoresbysund (70°, 339°) and Thule (77°, 290°).
Heights were selected as 50 meters. Results of the vertical components are illus-
trated as 2-D graphics with the 1st axis time in hours and the 2nd axis displacement in
meters. Continuous, broken-dot, broken lines represent the results of the 1st, 2nd and
3rd stations, respectively (Fig. 5.8, units: meters). The tidal displacements of the three
stations in Greenland have a maximum difference of about 15 cm. The size of the tri-
angle of the three stations is about 2 000 km. The change of the tidal displacements in
the vertical component is about 27 cm. That change could happen within the dura-
tion of 4 to 5 hours.

Two grid data of 0.2 × 0.3 degrees for Denmark (54.0° ≤ ϕ ≤ 57.8°, 8° ≤ λ ≤ 12.9°) and
1 × 1 degrees for Greenland (59.5° ≤ ϕ ≤ 84°, 285° ≤ λ ≤ 350°) with real topography height
are used to compute vertical tidal displacements at time 1:00 and 1:45, respectively.
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The displacements are illustrated with contour lines (units: meters) plotted in Fig. 5.9
and Fig. 5.10 with the 1st axis longitude in degrees and the 2nd axis latitude in degrees.
In Fig. 5.9 there is a tidal difference of 15 mm, which shows that within an 80 km dis-
tance or area in Denmark the tidal difference can reach up to 5 mm. Figure 5.10 shows
that there is a vertical tidal difference of about 17 cm in Greenland.

Fig. 5.8.
Earth tide displacements at
three stations in Greenland
(vertical component; date:
Dec. 31, 1998)

Fig. 5.9.
Earth tide displacement (in
meters) in Denmark (Dec. 31,
1998; GPS time 1:00; height
component)
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These computations indicate that in differential GPS kinematic airborne (not touch-
ing the Earth) applications, a lack of the Earth tide correction could cause an accu-
racy of less than 30 cm in Denmark and Greenland. For the Earth-touched kinematic
and static differential GPS applications, a lack of Earth tide correction would cause
an accuracy of less than 2 cm in Denmark and 15 cm in Greenland.

It is worth mentioning that the average value of the Earth tide effects on a GPS sta-
tion during 24 hours is generally not zero (it may be up to a few cm). This is because
the Earth tide is an effect that includes many periodical components. This indicates
that the Earth tide effects cannot be eliminated through daily averaging.

5.4.4
Ocean Loading Tide Displacement

The ocean tide is a time varying load on the Earth’s surface. The displacement of the
Earth’s surface due to loading is called the ocean tide loading effect. Similar to the Earth
tide, the loading Love numbers are introduced to describe the relationships of the load-
ing potential and the loading displacement as

Fig. 5.10.
Earth tide displacement
(in meters) in Greenland
(Dec. 31, 1998; GPS
time 1:45; height com-
ponent)
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where ∆Sr, ∆Sϕ and ∆Sλ are the loading tide displacements in the radial, north and east
directions, respectively, h' and l' are the loading Love numbers (in more detail, h'n and l'n
are the loading Love numbers of degree n), Wp(n) is the loading potential of degree n,
g ≈ µ / R2

E, µ is the gravitational constant of the Earth, and RE is the radius of the Earth. It
is notable that the zero degree loading Love number and 1 degree loading displacement
exist and in the case of n → ∞, h'n → h∞, nl'n → l∞. Loading Love numbers can be obtained
from a theoretical model.

The loading displacement shall fulfil the elastic balance equation under the bound-
ary condition of loading. This is called the Boussinesq boundary value problem. The
response of the spherical Earth under the loading of a point-mass (or unit mass) is called
the Green function. In other words, the Green function is the solution of the partial
differential equation of the Boussinesq problem under a certain spherical boundary
condition of a point-mass loading. For a related boundary condition, the related Green
function can be derived. Farrell derived the following loading displacement Green func-
tions (Farrel 1972):
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where R is the radius of the Earth, Me is the mass of the Earth, k is the geocentric ze-
nith distance of the loading point (related to the computing point, see Fig. 5.11),
Pn(cos k) is the Legendre function, and u(k) and v(k) are the radial and tangential load-
ing displacement Green functions, respectively.

According to the definition of the Green function, the loading displacements of the
ocean tide of the whole Earth can be obtained by multiplying the tidal mass to the
Green function and integrating that over the whole ocean

 , (5.155)

   and (5.156)

 , (5.157)
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where a is the azimuth of the integrating surface element dσ, δ is the density of the
oceanic water (δ ≈ 1.03), H is the height of ocean tide, and ur, uϕ and uλ are the load-
ing displacements of radial, north and east components, respectively. It is obvious that
an ocean tide model is needed here.

The Schwiderski global ocean tide model is one of the most used models, which has a
resolution of 1° × 1° and represents the tidal amplitude and phase (Schwiderski 1978, 1979,
1980, 1981a–c). The accuracy of the loading tide modelling depends on the accuracy of
the loading response and ocean tide model. Because of the irregularity of coastlines and
because the loading response is more dependent on the local variable properties of the
lithosphere (Farrel 1972), modelling of the loading effects cannot be done very accurately.

Let

 ,

where Hi is the ocean tide constituent with angular velocity ωi, I is the truncating wave
number, F is any to be integrated function, F(n) and dσn are the functional value and
the size of the nth surface element, and N is the total elements number. If one changes
the order sequence of the summations then Eqs. 5.155–5.157 turn out to be

 , (5.158)

   and (5.159)

 . (5.160)

Fig. 5.11.
Ocean loading
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In other words, the loading displacements can be represented by summations of
displacements of the different wave of frequencies, and the amplitude and phase of
the related wave are dependent on the computing position.

5.4.5
Computation of the Ocean Loading Tide Displacement

Computation of the loading displacement depends on which ocean tide model is used.
Because of the strong dependence of the loading on the coast near tide, besides a glo-
bal ocean tide model a modified model near the coastlines is added quite often to raise
the precision of computation. Taking advantage of the fact that the amplitude and phase
of the related wave depends only on the computing position, the computation can be
greatly simplified. Generally, only 11 tidal constituents are taken into account. These
are the semi-diurnal waves M2, S2, K2 and N2, the diurnal waves O1, K1, P1 and Q1, and
the long-period waves Mf, Mm and Msa. The loading displacement vector in IERS stan-
dard (McCarthy 1996) is

∑

=

−⋅⋅=∆

11

1
)](phase),cos[arg()(amp

i
jjij itiifρ    and (5.161)

iii utti ++= χω),arg(  . (5.162)

where j = 1, 2, 3 represent the displacement in radial, west and south directions, re-
spectively, ampj(i) and phasej(i) are the amplitude and phase of the ith wave related to
the computing station of jth component, arg(i, t) is the argument of ith wave at the com-
puting time t, ωi is the angular velocity of the ith wave, χi is the astronomical argument
at time of 0 hour, and fi and ui depend on the longitude of the lunar node. ωi, fi and ui
can be found in Table 26 of Doodson (1928). The ampj(i) and phasej(i) are computed
for a list of stations by Scherneck (McCarthy 1996). The coefficients and software are
available by Scherneck.

5.4.6
Numerical Examples of Loading Tide Effects

Loading tide effects could reach up to 10 cm at some special coast regions (cf., e.g.,
Andersen 1994; Khan 1999). The loading displacements affect mostly only the GPS
stations near the coast. The displacements at most continental stations are less than
1 cm. Loading correction has not been commonly considered in GPS data processing
because the computation is more complicated, and modelling is less accurate. How-
ever, for precise applications, loading effects have to be taken into account. Using soft-
ware, e.g., designed by Scherneck, the loading amplitude and phase of the significant
waves can be obtained for static stations. The coefficients can be computed before-
hand and used for even real time applications. Kinematic GPS receivers on the air are
free of loading effects. Car-borne kinematic GPS applications are generally limited
within regional areas, and the relative effects are generally very small. For exactness,
the loading effects can be interpolated from that of the surrounding static stations.

5.4  ·  Earth Tide and Ocean Loading Tide Corrections
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An example is given to illustrate the loading tide displacements of a vertical com-
ponent (Fig. 5.12). The AG95 model is used as the principle of the loading effects com-
putation (Andersen 1994). Loading displacements of two stations are computed for a
whole day (GPS time used) on the 18 March 1999. Coordinates are quite roughly se-
lected for station Brst (48.3805°, 355.5034°) and IGS station Wtzr (49.1442°, 12.8789°).
Results of the height components are illustrated as 2-D graphics with the 1st axis as
time in hours and the 2nd axis displacement in meters. Continuous and broken lines
represent the results of the 1st and 2nd stations, respectively. The loading displacements
of the two stations have a maximum difference of about 6 cm.

This computation indicates that a lack of loading tide correction could cause an accu-
racy of a few centimetres for some applications. Even for differential applications, a lack
of loading tide correction could cause an accuracy of less than 6 cm in the given example.

It is worth mentioning that the average value of the loading effects on a GPS sta-
tion during 24 hours is generally very small. This indicates that the loading effects could
be eliminated through daily averaging. In a static case, either loading correction or
no loading correction may cause a difference of the standard deviation of the length
of a baseline up to 0.5 cm (Khan 1999).

Analogue to the tropospheric model parameterisation, a loading parameter may
be introduced for a static station near the coast due to less accuracy of the loading
modelling. The parameter (e.g., a factor of the total loading vector) may be determined
through GPS data processing.

5.5
Clock Errors

As discussed in Chap. 4 in the models of GPS observables, the clocks on the satellites
and receivers play a very important role in precise GPS surveying. The influences of
the clock errors on the GPS may be grouped into three types. One is factorised with
the speed of light, c. Another is factorised with the speed of satellites. And the third is
factorised with the working frequency.

The influence of the first type of clock error is obvious. For code measurements,
one measures the transmitting time of the signal and multiplies the transmitting

Fig. 5.12.
Ocean loading tide effects of
two GPS stations (height
components)
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time with c to obtain the transmitting path length. A clock error of δt will cause a
path length error of cδt. Similarly, a clock error of δt will cause a phase error of
cδt / λ . Because of the factor c, a small clock error may cause a very large code and
phase error. Therefore, high quality clocks have to be used on the satellites and
receivers. Meanwhile, clock errors must be carefully modelled. A simple model may
be expressed as

21
2 , tttatdtbt ≤≤++=δ  , (5.163)

where b is the bias, d is the drift and a is the acceleration of the related clock. Time
interval (t1, t2) is the valid period of clock error polynomial. The length of the inter-
val depends directly on the stability of the clock. Such a model describes that the
clock has a small drift and acceleration, and the drift and acceleration as well as
bias are stable ones. The interval may be estimated by using the drift and acceleration
accordingly.

In the case of SA (selective availability, for details cf. Sect. 5.7), the frequency of the
clock on the satellite is manipulated artificially. In other words, the scale of the clock
on the satellite is not any more a constant; i.e., the clock is not any more stable. There-
fore in such a case, the model of Eq. 5.163 is not good enough for use. An alternative
model of the clock error of the satellite in the case of SA is

ii ttbt == ,δ  . (5.164)

That is, the clock bias has to be modelled for every measuring epoch. The clock error
parameters have to be determined or equivalently eliminated every epoch.

The influence of the second type of clock error is more or less implicit. Recalling the
code and phase models discussed in Chap. 4, there is a geometric distance between the
satellite at the signal emission time and the receiver at the signal reception time. The posi-
tion and velocity of the satellite are functions of time. Therefore, a clock error causes a
computing error of the position of the satellite by v➞sδt, where v➞s is the velocity vector of
the satellite. These errors pass through the distance function and cause errors of the com-
puted distance. Such an influence is implicitly presented in all the GPS observation mod-
els and cannot be eliminated through forming differences. However, the influence of the
clock error is factorised by the velocity of the satellite (about 3 km s–1), so an estimation
of δt up to an accuracy of 10–6 would be enough to ensure the needed accuracy of the
computed satellite position. Usually, such an estimation is made through the single point
positioning of every station at the every epoch (details cf. the section of single point posi-
tioning in Sect. 9.42). Of course, we must also take the relativistic effects into account.

As discussed above, the clock error causes a phase error of cδt / λ ; this is equiva-
lent to a frequency error of fδt. It is obvious that this correction has to be taken into
account in Doppler data processing.

Synchronisation of the clocks on the satellites and receivers is a basic prerequisite
of a meaningful GPS measurement. Clock modeling leads automatically to the
synchronisation of all clocks.

A recent study showed that the clock error parameters are linearly correlated with
the ambiguity parameters (for details, see Sect. 9.1).

5.5  ·  Clock Errors
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5.6
Multipath Effects

Multipath is the phenomenon whereby a GPS signal arrives at a receiver’s antenna via
more than one different paths. Multipath propagation affects both pseudorange and
carrier phase measurements. In GPS static and kinematic precise positioning, the
multipath effect is an error source that has to be taken into account. Related studies
have been carried out for many years to reduce or eliminate the multipath effects (cf.,
e.g., Braasch 1996; Langley 1998; Hofmann-Wellenhof et al. 1997).

Multipath is a very localised effect, which depends only on the local environment
surrounding the antenna. As illustrated in Fig. 5.13, the receiver may receive both the
direct transmitted signal and the reflected (indirect) signal. The indirect path is obvi-
ously dependent on the reflecting surface and the satellite position. The reflecting
surface is usually a static one related to the receiver; however, the satellite moves with
time. Therefore, the multipath effect is also a variable of time.

Consider the direct signal s(t) = A cos (ωt + ϕ), where A is the amplitude, ω is the an-
gular velocity and ϕ is the phase; then the indirect signal can be represented as f · s(t + δt),
where f is a factor which has the physical meaning of reduced energy through reflection
and δt is the time delay. The multipath effect is indeed the influence of the indirect signal on
the observations of the receiver. Because different receiver deals with the signals with a dif-
ferent manner, multipath error is highly dependent upon the architecture of the receivers.

Theoretically (Braasch 1996; Langley 1998), the multipath effect may reach up to
15 meters for P-code measurements and 150 meters for C/A-code. Due to the chip
length, P-code is much less sensitive to the indirect signal. Typically, multipath error
of the carrier phase is on the order of a few cm.

GPS signals are right-handed circularly polarised (RHCP); therefore, conventional
GPS antennas are designed as RHCP antennas. This property helps to reject the multi-
path signal because the reflected signal has changed its polarisation. The pure reflected
signals received by the RHCP antenna usually have only 1/3 of the signal to noise ra-
tio compared with that of the direct signals (Knudsen et al. 1999). This may also be
used for detecting multipath effects. The simplest method to avoid the influence of
the multipath effects is to set up the antenna far away from possible reflecting sur-
faces. Using only the carrier phase measurement is possibly the other method. (Code

Fig. 5.13.
Geometry of multipath effects
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is usually used for clock error correction for the satellite coordinates computation; this
would be accurate enough even if the multipath effects existed in code; for details, see
the discussion in Sect. 5.5). In the case of code positioning, a phase smoothed code
should be used. This can reduce the maximum multipath effects to a few cm.

An exact method to deal with the multipath effects is to detect the multipath using
code-phase data, and then reject the related phase data or set the phase data to a lower
weight for phase data processing. Recalling the models of the code and phase
observables discussed in Sect. 4.1 and Sect. 4.2, a code-phase difference can be formed
by using Eqs. 4.7 and 4.18 as

 , (5.165)

where Rs
r(tr, te) and Φ s

r(tr) are the measured pseudorange and phase, λ is the wave
length, te is the GPS signal emission time and tr the signal reception time, δion denotes
the ionospheric effects of the station r, Ns

r is the integer ambiguity parameter, δmul is
the multipath effect of code measurements, and ε is error of code measurements. The
errors of phase and frequency as well as multipath in phase measurements are omit-
ted here. Using the above formula, multipath effects in code measurements can be
determined or detected. Because of the higher noise level of the code measurements,
detection over a given period of time is reasonable so that the noise can be smoothed.

5.6.1
GPS-Altimetry, Signals Reflected from the Earth-Surface

The existence of multipath effects indicates that a GPS receiver can be used for receiv-
ing the reflected GPS signal. That is to say, through receiving the reflected GPS signal,
GPS may be used for measuring the reflecting surface topography. Early in 1993, the
European Space Agency’s Manuel Martin-Neira first suggested using a GPS reflected
signal as a signal source for measuring. The accidental acquisition of ocean-reflected
GPS signals by an airborne receiver was reported by French engineers in 1994. Katzberg
and Garrison (1996) discussed how the GPS signal reflected from the ocean can be used
for the determination of ionospheric effects in satellite altimetry. Komjathy et al. (1999)
used the GPS signal reflected from the ocean to determine the wave height, wind speed
and direction. Knudsen et al. (1999) used a downward-pointing GPS antenna to receive
the reflected GPS signal to see if it was possible to use it for determining the topogra-
phy of the sea surface and ice sheet as well as snow covered land. CHAMP satellite has
a downward-pointing GPS antenna on board for an experiment of GPS-altimetry.

Usually, profiles of footprints over the sea surface are measured from satellite al-
timetry or airborne altimetry; however, by using GPS-altimetry, every profile of foot-
prints has a bandwidth, so that such GPS-altimetry can be used for covering the to-
pography of the reflecting surface. The sea and ice sheet as well as snow covered land
are good reflecting surfaces for the GPS signals (Knudsen et al. 1999).

The polarisation of the reflected signal changes after the reflection. A conventional GPS
antenna is right-handed circularly polarised; therefore, for receiving the reflected GPS
signals a left-handed circularly polarised antenna shall be used (Komjathy et al. 1999;
Katzberg and Garrison 1996). Such an antenna has been designed and used in the ex-
periments reported. The power of the reflected signal is then reduced insignificantly.

5.6  ·  Multipath Effects
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5.6.2
Reflecting Point Positioning

The method to process the downward-pointing antenna measured GPS data is quite
different from the known method to process the GPS data obtained by an upward-
pointing antenna. As shown in Fig. 5.14, the GPS signal is transmitted from the satel-
lite to the downward-pointing antenna through the reflecting point R (or more exactly,
a small zone surrounding R, cf. Komjathy et al. 1999) of the reflecting surface. The
satellite orbit is known. The position of the downward-pointing antenna can be de-
termined by using the data received from an upward-looking antenna. So the purpose
of the GPS-altimetry is to determine the unknown point R. The vertical line of the
satellite and the antenna forms a plane. Such a plane will intersect with the Earth’s
surface and form a curved line. The reflecting point shall be on the line. Due to the
principle of reflection, the angle of fall in and the angle of fall out must be equal. In
other words, the elevations of the antenna and the satellite related to the reflecting
surface at the reflecting point must be the same. Therefore, the reflecting point shall
be generally a unique one if the reflecting surface is a fixed surface. Even in a static
case, i.e., the GPS antenna does not move, the reflecting point R is a kinematic point
because of the movement of the satellite. Different satellites have generally different
reflecting points. These points are independent if one does not take the a priori knowl-
edge of the reflecting surface into account.

For every observed satellite of every epoch there are three new coordinate unknowns.
A straightforward solution is mathematically impossible. However, suppose the reflect-
ing surface is a geoid or a known sea surface, for example, then the latitude and longi-
tude of the reflecting point can be computed from the satellite position and the known
antenna position. Then the left unknown is just one parameter of height. Suppose the
reflecting surface is just needed to be determined up to, say, a resolution of two kilo-
metres, then the height of every point located within the one km radius could be con-
sidered the same, and in such case the GPS altimetry problem is clearly solvable.

Fig. 5.14.
Geometry of the reflecting
signal
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The signal transmitting distance d can be described below:
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where indices s, r and k denote satellite, reflecting point and downward-pointing GPS
antenna, respectively. Of course the transmitting time correction has to be taken into
account. Cartesian coordinates x, y and z of the reflecting point can be represented by
geodetic coordinates ϕ, λ and h. ϕ and λ of the reflecting point shall fulfil the follow-
ing linear equation:

 . (5.167)

For any given ϕ between value ϕk and ϕs, a related λ can be obtained. Then the zero
height reflecting point in Cartesian coordinates can be obtained. The zenith distances
of the downward-pointing GPS antenna and the GPS satellite related to the reflecting
point can be then computed respectively. By using the criteria that both zenith dis-
tances shall be the same, a best set of ϕ and λ can be found. Taking the known coordi-
nates of the zero height reflecting point into account, there is just one parameter of
height remaining as an unknown in the Eq. 5.166.

By reducing the resolution rate to every two epochs, i.e., suppose within every
two epochs the height of the reflecting point remained the same, the problem in-
cluding the receiver clock error and ambiguity can be solved with enough redun-
dancies.

5.6.3
Image Point and Reflecting Surface Determination

An alternative method to determine the reflecting surface is proposed below.
The reflecting surface is considered a mirror and the downward-pointing antenna

is an image point behind the mirror. If the reflecting surface is a plane, then the image
point positioning can be done with the same method used in kinematic positioning of
the upward-looking antenna. Usually, the longitude and latitude of the image point can
be obtained from the results of the upward-looking antenna; therefore, the image point
positioning problem has just one coordinate-unknown height and can be well deter-
mined. Now one has two heights, one is the height of the downward-pointing antenna;
another is the height of the image point. The average value of these two heights is then
the footprint height of the downward-pointing antenna on the reflecting surface. The
longitude and latitude of the reflecting point can be determined by using the method
discussed in Sect. 5.6.2; therefore in this way, the reflecting point can be determined.

However, the reflecting surface is usually not a plane; therefore, the above-discussed
image point positioning result is a kind of average height. For convenience, we define
the reflecting point, which has such an average height, as a nominal reflecting point. The
distances between the nominal reflecting point and the satellite and downward-point-
ing antenna can be computed. Comparing the computed value with the true signal trans-
mitting distance, the bias of heights of the real reflecting point and the nominal reflecting
point can be determined. In such a way, the reflecting surface can be determined.

5.6  ·  Multipath Effects
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5.7
Anti-Spoofing and Selective Availability Effects

Anti-Spoofing

The function of anti-spoofing (AS) of the GPS system is designed for an anti potential
spoofer (or jammer). A spoofer generates a signal that mimics the GPS signal and at-
tempts to cause the receiver to track the wrong signal. When the AS mode of operation
is activated, the P code will be replaced with a secure Y code available only to authorised
users, and the unauthorised receiver becomes a single L1 frequency receiver. AS had
been tested frequently since 1 August 1992 and formally activated at 00:00 UT on
31 January 1994 and now is in continuous operation on all Block II and later satellites.

The broadcasted ionospheric model (in the navigation message) may be used to
overcome the problem of absence of the dual-frequencies, which are originally imple-
mented for eliminating the ionospheric effects. Of course, the method of using the iono-
spheric model cannot be as accurate as the method of using dual-frequencies data, and
consequently the precision is degraded. Carrier phase smoothed C/A code may be used
to replace the absence of the P code.

Selective Availability

Selective availability (SA) is a degradation of the GPS signal with the objective to deny full
position and velocity accuracy to unauthorised users by dithering the satellite clock and
manipulating the ephemerides. In case SA is on, the fundament frequency of the satellite
clock is dithered, so that the GPS measurements are affected. The broadcast ephemerides
are manipulated so that the computed orbit will have slow variations. Several levels of SA
effects are possible. The SA is enabled on Block II and later satellites (Graas and Braasch 1996).

The authorised users may recover the un-degraded data and exploit the full sys-
tem potential. For doing so they must possess a key that allows them to decrypt cor-
rection data transmitted in the navigation message (Georgiadou and Daucet 1990).
For high-precision users, IGS precise orbit and forecast orbit data may be used. Using
known positions (or monitor stations), the range corrections can be computed. Dif-
ferential GPS may also eliminate at least a part of the SA effects.

SA has been switched off since May 2000.

5.8
Antenna Phase Centre Offset and Variation

Satellite Antenna Phase Centre Correction

The geometric distance between the satellite (at signal emission time) and the receiver
(at signal reception time) is in fact the distance of the phase centres of the two antennas.
However, the orbit data, which describes the position of the satellite, is usually referred
to the mass centre of the satellite. Therefore, a phase centre correction (also called mass
centre correction) has to be applied to the satellite coordinates in precise applications.

A satellite fixed coordinate system shall be set up for describing the antenna phase
centre offset to the mass centre of the satellite. As shown in Fig. 5.15, the origin of the
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frame coincides with the mass centre of the satellite, the z-axis is parallel to the an-
tenna pointing direction, the y-axis is parallel to the solar-panel axis, and the x-axis is
selected to complete the right-handed frame. A solar vector is a vector from the satel-
lite mass centre pointed to the Sun. During the motion of the satellite, the z-axis is
always pointing to the Earth, and the y-axis (solar-panel axis) shall be kept perpen-
dicular to the solar vector. In other words, the y-axis is always perpendicular to the plane,
which is formed by the Sun, the Earth and satellite. The solar-panel can be rotated around
its axis to keep the solar-panel perpendicular to the ray of the Sun for optimally col-
lecting the solar energy. The solar angle β is defined as the angle between the z-axis
and the solar identity vector n➞sun (see Fig. 5.16). Denoting the identity vector of the
satellite fixed frame as (e➞x   e➞y   e➞z), then the solar identity vector can be represented as

n➞sun = (sinβ    0    cosβ )  . (5.168)

β is needed for computation of the solar radiation pressure in orbit determination.

Fig. 5.15.
Satellite fixed coordinate system

Fig. 5.16.
The Sun vector in satellite
fixed frame

5.8  ·  Antenna Phase Centre Offset and Variation
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Denoting r➞ as the geocentric satellite vector and r➞s as the geocentric solar vector
(Fig. 5.17),
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then in a geocentric coordinate system one has
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Suppose the satellite antenna phase centre in the satellite fixed frame is (x, y, z), then
the offset vector in the geocentric frame can be obtained by substituting Eqs. 5.175,
5.177 and 5.178 into the following formula:

 , (5.181)

which may be added to the vector r➞.
GPS satellite antenna phase centre offsets in the satellite fixed frame are given in

Table 5.3.
The dependence of the phase centre on the signal direction and frequencies is not

considered for the satellite here. A mis-orientation of the e➞y (e➞x too) of the satellite with
respect to the Sun may cause errors in the geometrical phase centre correction. In the
Earth’s shadow (for up to 55 minutes), the mis-orientation becomes worse. The geo-
metrical mis-orientation may be modelled and estimated.

Receiver Antenna Phase Centre Correction

In the case of receiver antenna phase centre correction, the dependence of the phase
centre on the signal direction and frequencies has to be taken into account. Both the
phase centre offset and variation should be modelled. Generally, the phase centre cor-
rections can be obtained through careful calibration. Receiver antenna phase centre
offset is also antenna type dependent. For a GPS network, antenna phase centre cor-
rections are usually predetermined and listed in a table for use.

5.9
Instrumental Biases

Study of ionospheric effects by using GPS observations indicates the existence of the in-
strumental biases (cf., e.g., Yuan and Ou 1999). The biases are systematic errors, which are

5.9  ·  Instrumental Biases

Fig. 5.17.
The Earth-Sun-satellite vectors

Table 5.3.
GPS satellite antenna phase
centre offset
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different from the frequency-to-frequency and from the code to phase measurements.
However, they are constants for given frequency and given observable type as well as
given instruments (receiver or GPS satellite). For code, phase and Doppler observable
of receiver i, satellite j at working frequency k, instrumental biases can be modelled as

   and (5.182)

respectively, where indices c, p and d denote the code, phase and Doppler observables.
δI and δJ denote the instrumental biases of the GPS receiver and GPS satellite. The
separation of the instrumental biases and the ambiguities are possible because the
biases of the receiver and satellite are independent from each other, whereas the am-
biguity parameters are dependent both on the receiver and the satellite. However, by
modelling and solving the problem, the correlation between the parameters has to be
carefully studied. Instrumental biases of one of the frequencies and one of the chan-
nels are linearly correlated with the clock biases. Without modelling of the instrumental
biases, the biases may merge into the ambiguity parameters so that the integer prop-
erty of the ambiguities may be destroyed.



Chapter 6

GPS Observation Equations and Equivalence Properties

In this chapter, first the general mathematical model of GPS observation and its
linearisation are discussed. All partial derivatives of the observational function are
given in detail. These are necessary for forming GPS observation equations. Then, linear
transformation and covariance propagation are outlined. In the data combinations
section, all meaningful and useful data combinations are discussed, such as ionosphere-
free, geometry-free, code-phase combinations, ionospheric residuals, as well as dif-
ferential Doppler and Doppler integration. In the section of data differentiation, single,
double and triple differences as well as their related observation equations and weight
propagation are discussed. The parameters in the equations are greatly reduced
through difference forming; however, the covariance derivations are tedious. In the
last two sections, the equivalent properties between the uncombined and combining
as well as undifferenced and differencing algorithms are discussed. A unified GPS data
processing method is proposed in detail. The method is selectively equivalent to the
zero-, single-, double-, triple-, and user-defined differential methods.

6.1
General Mathematical Models of GPS Observations

Recalling the discussions in Chap. 4, the GPS code pseudorange, carrier phase and
Doppler observables are formulated as (cf. Eqs. 4.7, 4.18, 4.23):

 , (6.1)

 and (6.2)

 . (6.3)

Where ionospheric effects can be approximated as (cf. Sect. 5.1.2, Eq. 5.26)
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and R is the observed pseudorange, Φ is the observed phase, D is Doppler measure-
ment, te denotes the GPS signal emission time of the satellite k, tr denotes the GPS sig-
nal reception time of the receiver i, c denotes the speed of light, subscript i and
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superscript k denote the receiver and satellite, and δtr and δtk denote the clock errors
of the receiver and satellite at the time tr and te, respectively. The terms δion, δtrop, δtide,
and δrel denote the ionospheric, tropospheric, tidal and relativistic effects, respectively.
Tidal effects include Earth tide and ocean loading tide effects. The multipath effect has
been discussed in Sect. 5.6 and is omitted here. εc, εp and εd are the remaining errors,
respectively. f is the frequency, wavelength is denoted by λ, A1 and A2 are ionospheric
parameters, Nk

i is the ambiguity related to receiver i and satellite k, δrel_f is the frequency
correction of the relativistic effects, the ρk

i is the geometric distance, and (cf. Eq. 4.6)
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ρ

ρρ  , (6.4)

where ∆t denotes the signal transmitting time and ∆t = tr – te. dρk
i(tr) / dt denotes the

time derivation of the radial distance between the satellite and receiver at the time tr.
All terms in Eqs. 6.1 and 6.2 have units of length (meters).

Considering Eq. 6.4 in the ECEF coordinate system, the geometric distance is a func-
tion of station state vector (xi, yi, zi, x· i, y·i, z· i) (denoted by Xi) and satellite state vector
(xk, yk, zk, x· k, y·k, z·k) (denoted by Xk). GPS observation Eqs. 6.1, 6.2 and 6.3 can then be
generally presented as

)( rel_reltidetropion f
k
ikiki δ,N,δ,δ,δ,δ,δt,δt,X,XO = F  , (6.5)

where O denotes observation and F denotes implicit function. In other words, the GPS
observable is a function of state vectors of the station and satellite, and numbers of
physical effects as well as ambiguity parameters. In principle, through GPS observa-
tions, the desired parameters of the function in Eq. 6.5 can be solved for. This is why
nowadays GPS has been widely used for positioning and navigation (to determine the
state vector of the station), for orbit determination (to determine the state vector of
satellite), for timing (to synchronise clocks), for meteorological applications (i.e. tro-
posphere profiling), and for ionospheric occultation (i.e. ionosphere sounding). In turn,
the satellite orbit is a function of the gravitational field of the Earth and numbers of
disturbing effects such as solar radiation pressure and atmospheric drags. GPS is now
also used for gravity field mapping, as well as solar and Earth system study.

It is obvious that Eq. 6.5 is a non-linear one. The straightforward mathematical method
to solve problem 6.5 is to search for the optimal solution by using some effective search
algorithms. The so-called ambiguity function (AF, see Sect. 8.5 and Sect. 12.2) method is
one of the examples. Generally speaking, solving a non-linear problem is much more com-
plicated than first linearising the problem and then solving the linearised problem.

It is notable that the satellite state vector and the station state vector shall be repre-
sented in the same coordinate system; otherwise coordinate transformation discussed
in Chap. 2 shall be made. Because the rotations are “distance keeping” transformations,
the distances computed in two different coordinate systems must be the same. How-
ever, because of the Earth’s rotation, the velocities expressed in the ECI and ECEF co-
ordinate systems are not the same. Generally, the station coordinates and ionospheric
effects as well as tropospheric effects are given and presented in the ECEF system. A
satellite state vector may be given in both the ECSF system and the ECEF system. This
depends on the need of the concerned applications.
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6.2
Linearisation of the Observational Model

The non-linear multivariable function F in Eq. 6.5 can be further generalised as

),,,()( 21 nyyyFYFO …==  , (6.6)

where variable vector Y has n elements. The linearisation is accomplished by expand-
ing the function in a Taylor series to the first order (linear term) as
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the symbol |Y 0 means that the partial derivative ∂F(Y) / ∂Y takes the value of
Y = Y0 and ε is the truncating error, which is a function of the second order partial
derivative and dY. Y0 is called the initial value vector. Equation 6.7 turns out then
to be
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where F(Y0) is denoted by C (or say, the computed value). So GPS observation Eq. 6.6
is linearised as a linear equation (Eq. 6.8). Denoting the observational error and trun-
cating error as v and O – C as l, partial derivative (∂F / ∂yj)|Y0 = aj, then Eq. 6.8 can be
written as
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where l is also often called “observable” in adjustment or O – C (observed minus com-
puted), and j and i are indices of unknowns and the observations. Equation 6.9 is a
linear error equation. A set of GPS observables then forms a linear error equation sys-
tem:

6.2  ·  Linearisation of the Observational Model
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or in matrix form (denotes dY by X)

L = AX + V , (6.10)

where m is the observable number. A number of adjustment and filtering methods (cf.
Chap. 7) can be applied for solving the GPS problem 6.10. The solved parameter vec-
tor is X (or dY). The original unknown vector Y can be obtained by adding dY to Y0.
V is the residual vector. Statistically, V shall be assumed to be a random vector, and is
normally distributed with zero expectation and variance var(V). To characterise the
different qualities and correlation situations of the observables, a so-called weight
matrix P is introduced to Eq. 6.10. Supposing all observations are linearly indepen-
dent or un-correlated, the covariance of observable vector L is

 )cov( 2ELQLL σ==

(6.11)

or

 , (6.12)

where E is an identity matrix of dimension m × m, superscript –1 is an inversion op-
erator, and cov(L) is covariance of L.

Generally, only if the solved unknown vector dY is small enough, the linearisation
process can be considered done well. Therefore, the initial vector Y0 has to be care-
fully given. In case the initial vector is not well-known or not well-given, the
linearisation process has to be iterated. In other words, the initial vector that is not
well-known has to be modified by the solved vector dY, and the linearisation process
has to be made again until dY converges. If X = 0, then L = V; therefore, the “observ-
able” vector L is also called a residual vector sometimes. If the initial vector Y0 is well-
known or well-given, then the residual vector V can also be used as a criterion to judge
the “goodness or badness” of the original observable vector. This property is used in
robust Kalman filtering to adjust the weight of the observable (cf. Chap. 7).

6.3
Partial Derivatives of Observational Function

Partial Derivatives of Geometric Path Distance with Respect to the
State Vector (xi, yi, zi, x····· i, y····· i, z····· i) of the GPS Receiver

The signal transmitting path is described by (cf. Eqs. 4.3 and 4.6 in Chap. 4)
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where index k denotes the satellite, and the satellite coordinates are related to the sig-
nal emission time te, i denotes the station, and the station coordinates are related to
the signal reception time tr, ∆t = te – tr. Then one has

 

, (6.15)

where the satellite state vector is related to the time tr, and
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Partial Derivatives of Geometric Path Distance with Respect to
the State Vector (xk, yk, zk, x····· k, y····· k, z····· k) of the GPS Satellite

Similar to above, one has
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Partial Derivatives of the Doppler Observable with Respect to
the Velocity Vector of the Station

The time differentiation of the geometric signal path distance can be derived as
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then one has
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6.3  ·  Partial Derivatives of Observational Function
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Partial Derivatives of Clock Errors with Respect to the Clock Parameters

If the clock errors are modelled by Eq. 5.163 (cf. Sect. 5.5)

22 , tetdbttetdbt kkkkiiii ++=++= δδ  , (6.22)

where i and k are the indices of the clock error parameters of the receiver and satel-
lite, then one has
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If the clock errors are modelled by Eq. 5.164 (cf. Sect. 5.5)
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The above derivatives are valid for both the code and phase observable equations.
For the Doppler observable, denote (cf. Eq. 6.3)
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then for the clock error model of Eq. 6.22 one has
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Partial Derivatives of Tropospheric Effects with Respect to
the Tropospheric Parameters

If the tropospheric effects can be modelled by (cf. Sect. 5.2)

I: ρδ dptrop f=    and

II:  , (6.28)

where dρ is the tropospheric effect computed by using the standard tropospheric
model, fp, fz, fa are parameters of the tropospheric delay in path, zenith, azimuth di-
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rections, and F and Fc are the mapping and co-mapping functions discussed in Sect. 5.2.
The derivatives with respect to the parameters fp, fz, fa are then

 . (6.29)

Furthermore, if the tropospheric parameters are defined as a step function or first
order polynomial (cf. Sect. 5.2) by

 , (6.30)

where ∆t = (tn – t0) / n, t0 and tn are the beginning and the ending times of the GPS
survey, and ∆t is usually selected by two to four hours. Then one has

 . (6.31)

The azimuth dependency may be assumed to be (cf. Eq. 5.121)

 , (6.32)

where a is the azimuth, and g1 and g2 are called azimuth-dependent parameters. Then
one gets

 . (6.33)

If parameters g1 and g2 are also defined as step functions or first order polynomials
like Eq. 6.30, the partial derivatives can be obtained in a similar manner to Eq. 6.31.

Partial Derivatives of the Phase Observable with Respect to
the Ambiguity Parameters

Depending on which scale one prefers, there is

 . (6.34)

6.3  ·  Partial Derivatives of Observational Function
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Partial Derivatives of Tidal Effects with Respect to the Tidal Parameters

If the Earth tide model in Eqs. 5.147 and 5.149 are used, then the tidal effects can be
generally written as

332221tideearth hslshs ++=
−

δ  , (6.35)

where s1, s2 and s3 are the coefficient functions, which are given in Sect. 5.4.2 in detail,
and h2, h3 and l2 are the love numbers and Shida number, respectively. Then one has
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Ocean loading tide effects can be modelled as

( )loadloadloadloadtideloading ddd zyxf=

−

δ  , (6.37)

where fload is the factor of the computed ocean loading effect vector (dxload   dyload   dzload).
Then one has

 . (6.38)

6.4
Linear Transformation and Covariance Propagation

For any linear equation system

L = AX    or (6.39)
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a linear transformation can be defined as a multiplying operation of matrix T to
Eq. 6.39, i.e.,

TL = TAX     or (6.40)
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where T is called the linear transformation matrix and has a dimension of k × m. An
inverse transformation of T is denoted by T–1. An invertible linear transformation does
not change the property (and solutions) of the original linear equations. This may be
verified by multiplying T–1 to Eq. 6.40. A non-invertible linear transformation is called
a rank deficient (or not full rank) transformation.

The covariance matrix of L is denoted by cov(L) or QLL (cf. Sect. 6.2); then the co-
variance of the transformed L (i.e., TL) can be obtained by covariance propagation
theorem by (cf., e.g., Koch 1988)

T
LL

T TTQTLTTL == )cov()cov(  , (6.41)

where superscript T denotes the transpose of the transformation matrix.
If transformation matrix T is a vector (i.e., k = 1) and L is an inhomogeneous and

independent observable vector (i.e., covariance matrix QLL is a diagonal matrix with
elements of σ 2

j, where σ 2
j is the variance (σ j is called standard deviation) of the ob-

servable lj), then Eqs. 6.40 and 6.41 can be written as
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Denoting cov(TL) as σ 2
TL, one gets
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Equation 6.43 is called the error propagation theorem.

6.5
Data Combinations

Data combinations are methods of combining GPS data measured with the same re-
ceiver at the same station. Usually, observables are the code pseudoranges, carrier
phases and Doppler at working frequencies such as C/A code, P1 and P2 code,
L1 phase Φ1 and L2 phase Φ2, and Doppler D1 and D2. In the future, there will also be
P5 code, L5 phase Φ5 and Doppler D5. According to the observation equations of the
observables, a suitable combination can be advantageous for understanding and solv-
ing GPS problems.

6.5  ·  Data Combinations
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For convenience, code, phase and Doppler observables are simplified and rewrit-
ten as (cf. Eqs. 6.1–6.3)

 , (6.44)

 , (6.45)

   and (6.46)
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Where j is the index of frequency f, the means of the other symbols are the same as
the notes of Eqs. 6.1–6.3. Equation 6.47 is an approximation for code.

A general code-code combination can be formed by n1R1 + n2R2 + n5R5, where n1,
n2 and n5 are arbitrary constants. However, in order to make such a combination that
still has the sense of a code survey, a standardised combination has to be formed by

 . (6.48)

The newly-formed code R can then be interpreted as a weight-averaged code sur-
vey of R1, R2 and R5. The mathematical model of the observable Eq. 6.44 is generally
still valid for R. Denoting the standard deviation of code observable Ri as σci (i = 1, 2, 5),
the newly-formed code observation R has the standard deviation of
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(cf., e.g., Wang et al. 1979; Bronstein and Semendjajew 1987), one has the property of
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where m is the maximum index. Therefore in our case, one has

  ,   m = 2 or 3

for combinations of two or three code observables.
A general phase-phase linear combination can be formed by

 , (6.49)
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where the combined signal has the frequency and wavelength

 . (6.50)

λΦ means the measured distance (with ambiguity!) and can be presented alternatively as

 . (6.51)

Mathematical model of Eq. 6.45 is generally still valid for the newly-formed λΦ.
Denoting the standard deviation of phase observable λiΦi as σi (i = 1, 2, 5), the newly-
formed observation has a variance of

     and (6.52)

 ,

with m = 2 or 3 for combinations of two or three phases.
That is, the data combination will degrade the quality of the original data.
Linear combinations ΦW = Φ1 – Φ2 and ΦX = 2Φ1 – Φ2 are called wide-lane and x-lane

combinations with wavelengths of about 86.2 cm and 15.5 cm. They reduce the first order
ionospheric effects on frequency f2 to 40% and 20%, respectively. ΦN = Φ1 + Φ2 is called
a narrow-lane combination.

6.5.1
Ionosphere-Free Combinations

Due to Eqs. 6.44–6.47, phase-phase and code-code ionosphere-free combinations can
be formed by (cf. Sect. 5.1)
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The related observation equations can be formed from Eqs. 6.44 and 6.45 as
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εcc and εpc denote the residuals after the combination of code and phase, respectively.

6.5  ·  Data Combinations
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The advantages of such ionosphere-free combinations are that the ionospheric ef-
fects have disappeared from the observation Eqs. 6.55 and 6.56 and the other terms of
the equations have remained the same. However, the combined ambiguity is not an
integer anymore, and the combined observables have higher standard deviations.
Equations 6.55 and 6.56 are indeed first order ionosphere-free combinations.

Second order ionosphere-free combinations can be formed by (see Sect. 5.1.2 for de-
tails)

   and (6.58)

 , (6.59)

where

 ,

 ,

 .

The related observation equations are the same as Eqs. 6.55 and 6.56, with λ and N
given above.

6.5.2
Geometry-Free Combinations

Due to Eqs. 6.44–6.46, code-code, phase-phase and phase-code geometry-free combi-
nations can be formed by
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NN  , (6.61)

d2211 ελλ ∆=− DD  , (6.62)

pcion )(2 εδλΦλ ∆+−=− jNR jjjjj    and   j=1,2,5 , (6.63)
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For an ionospheric model of the second order, one has approximately
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The geometry-free code-code and phase-phase combinations cancel out all other
terms in the observation equations except the ionospheric term and the ambiguity
parameters. Recalling the discussions of Sect. 5.1, δion is the ionospheric path delay
and can be considered a mapping of the zenith delay δ z

ion  or δ ion = δ z
ionF, where F is

the mapping function (cf. Sect. 5.1). So one has

 , (6.65)

where A1 and Az
1 have the physical meaning of total electronic contents at the signal

path direction and the zenith direction, respectively. Az
1 is then independent from the

zenith angle of the satellite. If the variability of the electronic contents at the zenith
direction is stable enough, Az

1 can be modelled by a step function or a first order poly-
nomial with a reasonably short time interval ∆t by

Az
1 = gj   if   tj–1 < t ≤ tj ,   j = 1, 2, …, n+1 (6.66)

or
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where ∆t = (tn – t0) / n, and t0 and tn are the beginning and ending time of the
GPS survey. ∆t can be, e.g., selected by 30 minutes. gj is the coefficient of the poly-
nomial.

Geometry-free combinations of Eqs. 6.60, 6.61 and 6.63 (only for j = 1) can be consid-
ered a linear transformation of the original observable vector L = (R1 R2 λ1Φ1 λ2Φ2)T

by

 , (6.68)

where Eq. 6.65 is used and

 .
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Equation 6.68 is called an ambiguity-ionospheric equation. For any viewed GPS sat-
ellite, Eq. 6.68 is solvable. If the variance vector of the observable vector is

( )
T2

p
2
p

2
c

2
c σσσσ  ,

then the covariance matrix of the original observable vector is (cf. Sect. 6.2)
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and the covariance matrix of the transformed observable vector (left side of Eq. 6.68)
is (cf. Sect. 6.4)
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 . (6.69)

Taking all the data measured at a station into account, the ambiguity and the iono-
spheric parameters (as a step function of the polynomial) can be solved by using Eq. 6.68
with the weight of Eq. 6.69. Taking the data station by station into account, all ambigu-
ity and ionospheric parameters can be determined. The different weights of the code
and phase measurements are considered exactly here. Due to the physical property of
the ionosphere, all solved ionospheric parameters shall have the same sign. Even though
the observation Eq. 6.68 is already a linear equation system, an initialisation is still help-
ful to avoid numbers from ambiguities that are too big. The broadcasting ionospheric
model can be used for initialisation of the related ionospheric parameters.

A geometry-free combination of Eq. 6.62 can be used as a quality check of the Dop-
pler data.

6.5.3
Standard Phase-Code Combination

Traditionally, phase and code combinations are used to compute the wide-lane ambi-
guity (cf. Sjoeberg 1999; Hofmann-Wellenhof et al. 1997). The formulas can be derived as
follows. Dividing λj into Eq. 6.63 and forming the difference for j = 1 and j = 2, one gets
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where ΦW = Φ1 – Φ2, NW = N1 – N2, and they are called wide-lane observable and am-
biguity; c is the velocity of light and A1 is the ionospheric parameter. The error term
is omitted here. Equation 6.60 can be rewritten as (by omitting the error term)
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and then one gets
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Substituting Eq. 6.72 into 6.70 yields
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Equation 6.73 is the most popular formula for computing wide-lane ambiguities using
phase and code observables. The un-differenced ambiguity N1 can be derived as follows.
Setting Φ2 = Φ1 – ΦW, N2 = N1 – NW into Eq. 6.61 and omitting the error term, one has
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where fw = f1 – f2 is the wide-lane frequency.
Compared with the adjustment method derived in Sect. 6.5.2, it is obvious that the

quality differences of the phase and code data are not considered by using Eqs. 6.73
and 6.74 for determining the ambiguity parameters. Therefore, the method proposed
in Sect. 6.5.2 is suggested for use.

6.5.4
Ionospheric Residuals

Considering the GPS observables as a time series, the geometry-free combinations of
Eqs. 6.60–6.64 can be rewritten as

cion21 )()()( εδ ∆+∆=− jjj ttRtR  , (6.75)

pion22112211 )()()( εδλλΦλΦλ ∆+∆−−=− jjj tNNtt  and (6.76)

pcion ),(2)()( εδλΦλ ∆+−=− jiijijii tiNtRt  ,   i=1,2,5 , (6.77)
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where
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The differences of the above observable combinations at the two succeeded epochs tj
and tj–1 can be formed:

cion21 )()()( ε∆δ∆∆∆ ∆+∆=− tjtjtjt ttRtR  , (6.79)

pion22112211 )()()( ε∆δ∆∆λ∆λΦ∆λΦ∆λ ∆+∆−−=− tjtttjtjt tNNtt   and (6.80)

pcion ),(2)()( ε∆δ∆∆λ∆Φ∆λ ∆+−=− tjtitijitjiti tiNtRt  ,   i = 1, 2, 5 , (6.81)

where ∆t is a time difference operator, for any time function G(t), ∆tG(tj) = G(tj) – G(tj–1)
is valid.

Because the time differences of the ionospheric effects ∆tδion and ∆t∆δion are gen-
erally very small, they are called ionospheric residuals. In the case of no cycle slips,
i.e., ambiguities N1 and N2 are constant, ∆N1 and ∆N2 equal zero. Equations 6.79–6.81
are called ionospheric residual combinations. The first combination of Eq. 6.79 can
be used for a consistency check of two code measurements. Equations 6.80 and 6.81
can be used for a cycle slip check. Equation 6.81 is a phase-code combination, due to
the lower accuracy of the code measurements; it can be used only to check for big cycle
slips. Equation 6.80 is a phase-phase combination, and therefore it has higher sensi-
bility related to the cycle slips. However, two special cycle slips ∆N1 and ∆N2 can lead
to a very small combination of δ1∆tN1 – δ2∆tN2. Examples of the combinations can be
found, e.g., in (Hofmann-Wellenhof et al. 1997). That is, even the ionospheric residual
of Eq. 6.80 is very small; it may not guarantee that there are no cycle slips.

6.5.5
Differential Doppler and Doppler Integration

Differential Doppler

The numerical differentiation of the original observables given in Eqs. 6.44 and 6.45
at the two succeeded epochs tj and tj–1 can be formed as

 ,   j = 1,2 ,   and (6.82)

 ,   j = 1,2 , (6.83)

where ∆t / ∆t  is a numerical differentiation operator and ∆t = tj – tj–1.
The left-hand side of Eq. 6.83 is called differential Doppler. Ionospheric residuals

are negligible and omitted here. The third terms of Eqs. 6.82 and 6.83 on the right-
hand side are small residual errors. For convenience of comparison, the Doppler ob-
servable model of Eq. 6.46 is copied below:
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 . (6.84)

It is obvious that Eqs. 6.83 and 6.84 are nearly the same. The only difference is that
in Doppler Eq. 6.84 the observed Doppler is an instantaneous one and its model is
presented by theoretical differentiation, whereas the term on the left-hand side of
Eq. 6.83 is the numerically differenced Doppler (formed by phases) and its model is
presented by numerical differentiation. Doppler measurement measures the instan-
taneous motion of the GPS antenna, whereas differential Doppler describes a kind of
average velocity of the antenna during the two succeeded epochs. The velocity solu-
tion of Eq. 6.83 (denoted by (x· y· z· )T) can be used to predict the future kinematic
position by
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In other words, differential Doppler can be used as the system equation of a Kalman
filter for kinematic positioning. The Kalman filter will be discussed in the next chap-
ter. A Kalman filter using differential Doppler will be discussed in Sect. 9.8.

Doppler Integration

Integrating the instantaneous Doppler Eq. 6.84, one has

 .

Using the operator ∆t to the un-differenced phase Eq. 6.45 and code Eq. 6.44, one
gets

   and

 , (6.86)

where the same symbols are used for the error terms (later too). Differencing the first
equation of Eq. 6.86 with the integrated Doppler leads to
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That is, the integrated Doppler can be used for cycle slip detection. Such a cycle slip
detection method is very reasonable. Phase is measured by keeping track of the partial
phase and accumulating the integer count. If any loss of lock of the signal happens
during the time, the integer accumulating will be wrong, i.e., cycle slip happens. There-
fore, an external instantaneous Doppler integration can be used as an alternative method
of cycle slip detection. The integration can be made first by fitting the Doppler with a
suitable order polynomial, and then integrating that within the time interval.

Code Smoothing

Comparing the two formulas of Eq. 6.86, one has

2ε∆λΦ∆λ∆ +−= jtjjtjjt NR    or

3εΦ∆λ∆ += jtjjt R  . (6.88)

Equation 6.88 can be used for smoothing the code survey by phase if there are no cycle
slips.

Differential Phases

The first formula of Eq. 6.86 is the numerical difference of the phases at the two suc-
ceeded epochs tj and tj–1

 ,   j = 1,2 .

All other terms on the right-hand side are of low variation ones except the ambiguity
term. Any cycle slips will lead to a sudden jump of the time difference of the phases.
Therefore, the time differenced phase can be used as an alternative method of cycle
slip detection.

6.6
Data Differentiations

Data differentiations are methods of combining GPS data (of the same type) measured
at different stations. For the convenience of later discussions, tidal effects and relativ-
istic effects are considered corrected before forming the differences. The original code,
phase and Doppler observables as well as their standardised combinations can be re-
written as (cf. Eqs. 6.44–6.47)
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where j (j = 1, 2, 5) is the index of frequency f, subscript i is the index of station num-
ber and superscript k  is the id number of satellite.

6.6.1
Single Differences

Single difference (SD) is the difference formed by data observed at two stations on
the same satellite as

k
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k
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k
ii OOO 1221, )(SD −=  , (6.93)

where O is the original observable, and i1 and i2 are two id number of the stations.
Supposing the original observables have the same variance of σ2, then the single dif-
ference observable has a variance of 2σ2. Considering Eqs. 6.89–6.92, one has
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where ρ ·  is the time differentiation of ρ, and dδion(j) and dδtrop are the differenced iono-
spheric and tropospheric effects at the two stations related to the satellite k , respectively.

The most important property of single differences is that the satellite clock error
terms in the model are eliminated. However, it should be emphasised that the satellite
clock error, which implicitly affects the computation of satellite position, still has to be
carefully considered. Ionospheric and tropospheric effects are reduced through differ-
ence forming, especially for those stations that are not very far away from each other.
Because of the identical mathematical models of the station clock errors and ambigu-
ities, not all clock and ambiguity parameters can be resolved in the single difference
equations of Eqs. 6.94–6.96.

For the original observable vector of station i1 and i2,

( ) EOOOOOOOO
Tk

i
k
i

k
i

k
i

k
i

k
i

23
2

2
2

1
2

3
1

2
1

1
1 )cov(, σ==  ,

the single differences
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can be formed by a linear transformation
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Where common satellites k1, k2, k3 are observed, E is an identity matrix that has the
size of the observed satellite number; in the above example the size is 3 × 3.

The covariance matrix of the single differences is then

ECCCOCO TT 22 2)cov())(SDcov( σσ =⋅=⋅⋅=  , (6.98)

i.e., the weight matrix is

EP
22

1

σ

=  .

That is, the single differences are un-correlated observables in the case of a single
baseline. C in Eq. 6.97 is a general form, so C is denoted by Cs = (–En×n En×n), and n is
the number of commonly viewed satellites.

Single differences can be formed for any baselines as long as the two stations have com-
mon satellites in sight. However, the baselines should be a set of “independent” ones. The
most-used methods are to form the radial baselines or traverse baselines. Supposing the
stations’ id vector is (i1, i2, i3, …, i(m – 1), im) and the baseline between station i1 and i2
is denoted by (i1, i2), then the radial baselines could be formed, e.g., by (i1, i2), (i1, i3),
…, (i1, im), and the traverse baselines could be formed, e.g., by (i1, i2), (i2, i3), …,
(i(m – 1), im). Station i1 is called a reference station and is freely selectable. In some cases,
a mixed radial and traverse baselines have to be formed such as, e.g., by (i1, i2), (i1, i3),
(i3, i4), …, (i3, i(m – 1)), (i3, im). Sometimes the baselines have to be formed by several
groups, and therefore several references have to be selected. A method of forming an in-
dependent and optimal baseline network will be discussed Sects. 9.1 and 9.2.

In case three stations are used to measure the GPS data, the original observable
vector of station i1, i2 and i3 is
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where n is the commonly observed satellite number. The single differences of the
baseline (i, j) are
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If the baselines are formed in a radial way, i.e., baselines are formed as (i1, i2) and
(i1, i3), then one has
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If the baselines are formed in a traverse way, i.e., baselines are formed as (i1, i2)
and (i2, i3), then one has
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It is obvious that the single differences are correlated if the station numbers are
more than two. And the correlation depends on the ways the baselines are formed.
Therefore, a general covariance formula of the single differences of a network is not
possible to be derived. Furthermore, the commonly viewed satellite number n could
be different from baseline to baseline, so the formulation of the covariance matrix could
be more complicated.

A baseline-wise processing of the GPS data of a network by using single differences
is equivalent to an omission of the correlation between the baselines.

6.6.2
Double Differences

Double differences are formed between two single differences related to two observed
satellites as
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where k1 and k2 are the two id numbers of the satellites. Supposing the original
observables have the same variance of σ2, then the double differenced observables have
a variance of 4σ2. Considering Eqs. 6.89–6.92, one has
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where ddδion(j) and ddδtrop are the differenced ionospheric and tropospheric effects
at the two stations related to the two satellites, respectively. For the ionosphere-free
combined observables (denoted by j = 4 for distinguishing), the ionospheric error terms
have vanished from above equations.

The most important property of the double differences is that the clock error terms
in the equation (model) are completely eliminated. It should be emphasised that the
clock error, which implicitly affects the computation of the position of the satellite,
still has to be carefully considered. Ionospheric and tropospheric effects are reduced
greatly through difference forming, especially for those stations that are not very far
away from each other. Double differenced Doppler directly describes the geometry
change. Double differenced ambiguities can be denoted by
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The original ambiguities used in Eq. 6.103 are for convenience in case of reference
satellite changing.

For the single difference observable vector
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the double differences
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can be formed by a linear transformation

)(SD)(DD d OCO ⋅=  , (6.108)
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where E is an identity matrix of size m × m, I is a 1 vector of size m (all elements of the
vector are 1), m is the number of formed double differences, and m = n – 1. The cova-
riance matrix of the double differences is then
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For single and double differences
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the linear transformation matrix Cd and the covariance matrix can be obtained by
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For the general case of
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it is obvious that the general transformation matrix Cd and the related covariance
matrix can be represented as
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where Im×m is an m × m matrix whose elements are all 1, and the weight matrix has
the form of
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where n = m + 1. Equation 6.118 can be verified by an identity matrix test (i.e.,
P · cov(DD(O)) = E).

In the case of three stations, supposing n common satellites (k1, k2, …, kn) are
viewed, then the single and double differences can be written as
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Then one has the transformation and covariance

   and

 .

Because of the dependency of the cov(SD) on the baselines forming, cov(DD) is also
dependent on the baselines forming. A baseline-wise processing of a network GPS data
using double differences is equivalent to an omission of the correlation between the
baselines.

6.6.3
Triple Differences

Triple differences are formed between two double differences related to the same sta-
tions and satellites at the two adjacent epochs as

or

 , (6.120)

where t1 and t2 are two adjacent epochs. Supposing the original observables have the
same variance of σ2, then the triple differenced observables have a variance of 8σ2.
Considering Eqs. 6.102–6.104, one has

 , (6.121)

 and (6.122)

 , (6.123)

where

 . (6.124)
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Ionospheric and tropospheric effects are eliminated. If there are no cycle slips dur-
ing the time, the term of Eq. 6.124 is zero. Therefore, triple differences of Eq. 6.122
can also be used as a check for the cycle slips. Through triple difference forming, the
systematic cycle slip turns out to be an effect like an outlier.

The most important property of the triple differences is that only the geometric
changing is left in the models. Triple differences of Doppler describe the acceleration
of the position.

For double differences
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one has
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Then the related covariance matrix can be represented as
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where Cd2 is the double difference transformation matrix of two epochs. Because double
differences are independent epoch wise, Cd2 is a diagonal matrix of Cd, i.e.,
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It is notable that the triple differences formed by epochs (t1, t2) are correlated to
the differences formed by epochs (t0, t1) and (t1, t2). Such a correlation makes a se-
quential processing of the triple difference data very complicated. Sequentially using
the above covariance formula indicates an omission of the correlation related to the
previous epoch and the next epoch.

Taking the correlation between the baselines into account, an exact correlation de-
scription of the triple differences of a GPS network turns out to be very complicated.

6.7
Equivalence of the Uncombined and Combining Algorithms

Uncombined and combining algorithms are standard GPS data processing methods,
which can often be found in the literature (cf., e.g., Leick 2004, Hofmann-Wellenhof et
al. 2001). Different combinations own different properties and are beneficial for deal-
ing with the data and solving the problem in different cases (Hugentobler et al. 2001,
Kouba and Heroux 2001, Zumberge et al. 1997). The equivalence between the undif-
ferenced and differencing algorithms were proved, and a unified equivalent data pro-
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cessing method was proposed by Xu (2002, cf. Sect. 6.8). The question of whether the
uncombined and combining algorithms are also equivalent is an interesting topic and
will be addressed here in detail (cf. Xu et al. 2006a).

6.7.1
Uncombined GPS Data Processing Algorithms

Original GPS Observation Equations

The original GPS code pseudorange and carrier phase measurements represented in
Eqs. 6.44 and 6.45 (cf. Sect. 6.5) can be simplified as

(6.130)

(6.131)

where

(6.132)

(6.133)

Where symbols have the same meanings as those of Eqs. 6.44−6.47. j is the index of the
frequency f and wavelength λ. A1 and A1

z are the ionospheric parameters in the path
and zenith directions; B1 and B1

z are scaled A1 and A1
z with fs

2 for numerical reasons.
c denotes the speed of light, index c denotes code. Cρ is called geometry and Nj is the
ambiguity. For simplicity, the residuals of the codes (and phases) are denoted with the same
symbol εc (and εp) and have the same standard deviations of σc (and σp). Equations 6.130
and 6.131 can be written in a matrix form with weight matrix P as (Blewitt 1998)

(6.134)

Solutions of Uncombined Observation Equations

Equation 6.134 includes the observations of one satellite viewed by one receiver at one
epoch. Alternatively, Eq. 6.134 can be considered a transformation between the ob-
servations and unknowns, and the transformation is a linear and invertible one. De-
noting

(6.135)
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then one has relations of

(6.136)

and

(6.137)

Where a and b are the coefficients of the ionosphere-free combinations of the observables
of L1 and L2. The solution of Eq. 6.134 has a form of (by multiplying the transforma-
tion matrix T to Eq. 6.134)

(6.138)

The related covariance matrix of the above solution vector is then

(6.139)

Equation 6.139 can be simplified by using the relation of 1 − a = b and neglecting
the terms of (σp / σc)

2 (because (σp / σc) is less than 0.01) as well as letting fs = f1 (so that
q = 1/b). Taking the relationships of ratios of the frequencies into account (f1 = 154 f0
and f2 = 120 f0, f0 is the fundamental frequency), one has approximately
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(6.140)

The precisions of the solutions will be further discussed in Sect. 6.7.3. The para-
meterisation of the GPS observation models is an important issue and can be found in
Chap. 9 or (Blewitt 1998; Xu 2004), if interested.

6.7.2
Combining Algorithms of GPS Data Processing

Ionosphere-free Combinations

Letting transformation matrix

(6.141)

and applying the transform to the Eq. 6.134, one has

(6.142)

The ionosphere parameter in Eq. 6.142 is free in the last three equations, which are tradi-
tionally called ionosphere-free combinations. To solve the ionosphere-free equations or the
whole Eq. 6.142 will lead to the same results. Equation 6.142 has a unique solution vector of

(6.143)

or (noticing (1 − a) = b, cf., Eq. 6.136)

(6.144)
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Equations 6.144 and 6.138 are identical. Therefore the covariance matrix of the so-
lution vector on the left side of Eq. 6.144 is the same as that given in Eq. 6.139. This
shows that the uncombined algorithms and the ionosphere-free combinations are
equivalent in this discussed case.

Geometry-free Combinations

Letting transformation matrix

(6.145)

and applying the transformation to Eq. 6.134, one has

(6.146)

The geometric component in Eq. 6.146 is free in the last three equations, which are
traditionally called geometry-free combinations. The geometry-free equations must
be solved or Eq. 6.146 will lead to the same results. Equation 6.146 has a unique solu-
tion vector of

(6.147)

or (noticing 1/(f1
2g)=b, cf., Eq. 6.136)

(6.148)

Taking the relations of Eq. 6.136 (i.e., b = 1 − a) into account, Eqs. 6.148 and 6.138
are identical. Therefore the covariance matrix of the solution vector on the left side of
Eq. 6.148 is identical with Eq. 6.139. This shows that the uncombined algorithms and
the geometry-free combinations are equivalent in this discussed case.
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Ionosphere-free and Geometry-free Combinations

Letting transformation matrix

(6.149)

one then has

(6.150)

Applying the transformation 6.150 to Eq. 6.134 or applying the transformation 6.149
to Eq. 6.142 leads to the same results, and one has

    or (6.151)

(6.152)

The ionosphere and geometry are both free in the last two equations, which are
called ionosphere-geometry-free combinations. Solving the ionosphere-free and ge-
ometry-free equations or directly solving Eq. 6.152 will lead to the same results. Eq. 6.152
has a unique solution vector of

(6.153)

or (noticing (1 − a)/b = 1, cf., Eq. 6.136)

(6.154)
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Equations 6.154 and 6.138 are identical. This shows that the uncombined algorithms
and the ionosphere-geometry-free combinations are equivalent in this discussed case.

Diagonal Combinations

Letting transformation matrix

(6.155)

one has

(6.156)

If applying the transformation 6.156 to Eq. 6.134 or applying the transformation
6.155 to Eq. 6.151, one has the same results of

(6.157)

In the above equation, the ionosphere and geometry as well as the ambiguities are
diagonal to each other. Such combinations are called diagonal ones. The solution vec-
tor of Eq. 6.157 may be easily derived:

(6.158)

or

(6.159)
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Equations 6.159 and 6.138 are identical. This shows that the uncombined algorithms
and the diagonal combinations are equivalent in the discussed case.

General Combinations

For arbitrary combinations, as soon as the transformation matrix is an invertible one,
the transformed equations are equivalent to the original ones based on algebra theory.
Both the solution vector and the variance-covariance matrix are identical. That is, no
matter what kinds of combinations are used, neither different solutions nor different
precisions of the solutions will be obtained. The different combinations lead to an easier
dealing of the related special problems.

Wide- and Narrow-lane Combinations

Denoting

(6.160)

and letting transformation matrix

(6.161)

one may form the wide and narrow lanes (Petovello 2006) directly by multiplying
Eq. 6.161 to Eq. 6.158 to obtain the related wide- and narrow-lane ambiguities

(6.162)

Indeed, there is T5T4T3T1 = T. Because of the unique property of the solutions of
different combinations, any direct combinations of the solutions must be equivalent to
each other. None of the combinations will lead to better solutions or better precisions
of the solutions. From this rigorous theoretical aspect, the traditional wide-lane ambi-
guity fixing technique may lead to a more effective search, but not a better solution and
precision of the ambiguity.
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6.7.3
Secondary GPS Data Processing Algorithms

In the Case of More Satellites in View

Up to now, the discussions have been limited for the observations of one satellite viewed
by one receiver at one epoch. The original observation equation is given in Eq. 6.134.
The solution vector and its covariance matrix are given in Eqs. 6.138 and 6.139, respec-
tively. The elements of the covariance matrix depend on the coefficients of Eq. 6.134,
and the coefficients of the observation equation depend on the way of parameterisation.
E.g., if instead of B1, B1

z is used, then Eq. 6.134 turns out to be

(6.163)

where k is the index of the satellite. Ionospheric mapping function Fk is dependent on
the zenith distance of the satellite k. The solution vector of Eq. 6.163 is then similar to
that of Eq. 6.138:

(6.164)

where qk = qFk and Q(k) is the covariance matrix, which can be similarly derived and
given by adding the index k to q in Q of Eq. 6.139. The terms on the right-hand side can
be considered secondary “observations” of the unknowns on the left-hand side. If
K satellites are viewed, one has the observation equations of one receiver

(6.165)

and variance matrix
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(6.166)

Multiplying a transformation matrix

(6.167)

to Eq. 6.165, one has the solutions of GPS observation equations of one station

(6.168)

and the related

(6.169)

where mapping function is used to combine the K ionosphere parameters into one. Simi-
lar discussions can be made for the cases of using more receivers. The original obser-
vation vector and the so-called secondary “observation” vector are

(6.170)

Both vectors are equivalent as proved in Sect. 6.7.2 and they can be transformed
uniquely from one to the other. Any further data processing can be considered process-
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ing based on the secondary “observations”. The secondary “observations” own the
equivalence property whether they are uncombined or combining ones. Therefore the
equivalence property is valid for further data processing based on the secondary “ob-
servations”.

GPS Data Processing Using Secondary “Observations”

A by-product of the above equivalence discussions is that the GPS data processing can
be performed directly by using the so-called secondary observations. Besides the two
ambiguity parameters (scaled with the wavelengths), the other two secondary obser-
vations are the electronic density in the observing path (scaled by square of f1) and the
geometry. The geometry includes the whole observation model except the ionosphere
and ambiguity terms. For a time series of the secondary “observations”, the electron
density (or, for simplicity, “ionosphere”) and the “geometry” are real time observations,
whereas the “ambiguities” are constants in case no cycle-slip occurs (Langley 1998a, b).
Sequential adjustment or filtering methods can be used to deal with the observation
time series. It is notable that the secondary “observations” are correlated with each other
(see the covariance matrix Eq. 6.139). However, the “ambiguities” are direct observa-
tions of the ambiguity parameters, and the “ionosphere” and “geometry” are modelled
by Eqs. 6.132 and 6.133, respectively. The “ambiguity” observables are ionosphere-ge-
ometry-free. The “ionosphere” observable is geometry-free and ambiguity-free. The
“geometry” observable is ionosphere-free. It is notable that some algorithms may be
more effective; however, the results and the precisions of the solutions are equivalent
no matter which algorithms are used. It should be emphasized that all the above dis-
cussions are based on the observation Model 6.134. The problem concerning the
parameterisation of the GPS observation model will not affect the conclusions of the
discussions and will be further discussed in Chap. 9.

Precision Analysis

If the sequential time series of the original observations are considered time indepen-
dent as they traditionally have been, then the secondary “observations” and their pre-
cisions are also independent time series. From Eq. 6.140, the standard deviations of
the L1 and L2 ambiguities are approximately 5.1281σc and 6.5317σc. The standard de-
viation of ionosphere and geometry “observations” are about 2.1860σc and 2.9783σc,
respectively. That is, the precisions of the “observed” ambiguities are worse than that
of the others at one epoch. If the standard deviation of the P code is about 1 decimetre
(phase smoothed), then the precisions of the ambiguities determined by one epoch are
worse than 0.5 meters. However, an average filter of m epoch data will raise the preci-
sions by a factor of sqrt(m) (square root of m). After 100 or 10000 epochs, the ambigu-
ities are able to be determined with precisions of about 5 cm or 5 mm. “Ionosphere”
data are observed with better precisions. However, due to the high dynamic of the elec-
tron movements, ionosphere effects may not be easily smoothed to raise the precision.
The “Geometry” model is the most complicated one compared with the others, and dis-
cussions can be found from numerous publications for static, kinematic and dynamic
applications (cf., e.g., ION proceedings, Chap. 10).
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6.7.4
Summary

The equivalence properties between uncombined and combining algorithms are proved
theoretically by algebraic linear transformations. The solution vector and the related
covariance matrix are identical no matter which algorithms are used. Different combi-
nations can lead to a more effective and easier dealing with the data. The so-called iono-
sphere-geometry-free and diagonal combinations are derived, which own better prop-
erties than that of the traditional combinations. A data processing algorithm using the
uniquely transformed secondary “observations” is outlined and used to prove the equiva-
lence. Because of the unique property of the solutions of different combinations, any
direct combinations of the solutions must be equivalent to each other. None of the com-
binations will lead to better solutions or better precisions of the solutions than that of
the others. From this aspect, the traditional wide-lane ambiguity fixing technique may
lead to a more effective search of ambiguity, but it will not lead to a better solution and
precision of the ambiguity.

6.8
Equivalence of Undifferenced and Differencing Algorithms

In Sect. 6.6 the single, double and triple differences as well as their related observa-
tion equations are discussed. The number of unknown parameters in the equations is
greatly reduced through difference forming; however, the covariance derivations are
tedious, especially for a GPS network.

In this section, a unified GPS data processing method based on equivalently
eliminated equations is proposed and the equivalence between undifferenced and
differencing algorithms is proved. The theoretic background of the method is given.
By selecting the eliminated unknown vector as a vector of zero, a vector of satellite
clock error, a vector of all clock error, a vector of clock and ambiguity parameters,
or a vector of user-defined unknowns, the selectively eliminated equivalent obser-
vation equations can be formed, respectively. The equations are equivalent to the
zero-, single-, double-, triple-, or user-defined differencing equations. The advan-
tage of such a method is that the different GPS data processing methods are unified
to a unique one, whereas the observational vector remains the original one and
the weight matrix keeps the un-correlated diagonal form. In other words, by using
this equivalent method, one may selectively reduce the unknown number; however,
one does not have to deal with the complicated correlation problem. Several special
cases of single-, double-, and triple-difference are discussed in detail to illustrate
the theory. The reference-related parameters are dealt with using the a priori datum
method.

6.8.1
Introduction

In GPS data processing practice, the commonly used methods are so-called zero-
difference (un-differential), single-difference, double-difference and triple-differ-
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ence methods (Bauer 1994; Hofmann-Wellenhof et al. 1997; King et al. 1987; Leick
1995; Remondi 1984; Seeber 1993; Strang and Borre 1997; Wang et al. 1988). It is
well-known that the observation equations of the differencing methods can be
obtained by carrying out a related linear transformation to the original equations.
As soon as the weight matrix is similarly transformed according to the law of co-
variance propagation, all methods are equivalent, theoretically. A theoretical proof
of the equivalence between the un-differential and differential methods can be found
in Schaffrin and Grafarend (1986). A comparison of the advantages and disadvantages
of the un-differential and differential methods can be found, e.g., in de Jong (1998).
The advantage of the differential methods is that the unknown parameters are fewer
so that the whole problem to be solved becomes smaller. The disadvantage of the dif-
ferential methods is that there is a correlation problem, which appears in cases of
multiple baselines of single-difference and all double difference as well as triple dif-
ference. The correlation problem is often complicated and not easy to be dealt with
exactly (compared with the un-correlated problem). The advantages and disadvan-
tages reach a balance. If one wants to deal with a reduced problem (cancellation of
many unknowns), then one has to deal with the correlation problem. As an alterna-
tive, we use the equivalent observation equation approach to unify the un-differential
and differential methods, while keeping all the advantages of the un-differential and
differential methods.

In the next sections, the theoretical basis of the equivalently eliminated equations
will be given based on the derivation of Zhou (1985). Several detailed cases are then
discussed to illustrate the theory. The reference-related parameters are dealt with us-
ing the a priori datum method. A summary of the selectively eliminated equivalent
GPS data processing method is outlined at the end.

6.8.2
Formation of Equivalent Observation Equations

For the convenience of later discussion, the method to form an equivalently eliminated
equation system is outlined here. The theory is given in Sect. 7.6 in detail. In practice,
sometimes only one group of unknowns is of interest; it is better to eliminate the other
group of unknowns (called nuisance parameters), for example, because of their size.
In this case, using the so-called equivalently eliminated observation equation system
could be very beneficial (Wang et al. 1988; Xu and Qian 1986; Zhou 1985). The nui-
sance parameters can be eliminated directly from the observation equations instead
of from the normal equations.

The linearised observation equation system can be represented using the matrix:
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X

X
BALV    and   P , (6.171)

where L is an observation vector of dimension n, A and B are coefficient matrices of
dimension n × (s – r) and n × r, X1 and X2 are unknown vectors of dimension s – r and r,
V is residual error, s is the total number of unknowns, and P is the weight matrix of
dimension n × n.
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The related least squares normal equation can be formed then as:
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After eliminating the unknown vector X1, the eliminated equivalent normal equa-
tion system is then

 , (6.176)

where

   and (6.177)

 . (6.178)

The related equivalent observation equation of Eq. 6.176 is then (cf. Sect. 7.6; Xu
and Qian 1986; Zhou 1985)

2)( BXJELU −−=  ,   P , (6.179)

where

PAAMJ T1
11
−

=  . (6.180)

E is an identity matrix of size n, L and P are the original observation vector and weight
matrix, and U is the residual vector, which has the same property as V in Eq. 6.171.
The advantage of using Eq. 6.179 is that the unknown vector X1 has been eliminated;
however, L vector and P matrix remain the same as the originals.

Similarly, the X2 eliminated equivalent equation system is:

11 )( AXKELU −−=    and   P , (6.181)

where

PBBMPBBMK TT
==

−

22
1

22 ,  ,

and U1 is the residual vector (which has the same property as V).
We have separated the observation Eq. 6.171 into two equations, Eqs. 6.179 and

6.181; each equation contains only one of the unknown vectors. Each unknown vec-
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tor can be solved independently and separately. Equations 6.179 and 6.181 are called
equivalent observation equations of Eq. 6.171.

The equivalence property of Eqs. 6.171 and 6.179 is valid under three implicit as-
sumptions. The first one is that the identical observation vector is used. The second is
that the parameterisation of X2 is identical. The third is that X1 could be eliminated.
Otherwise, the equivalence does not hold.

6.8.3
Equivalent Equations of Single Differences

In this section, the equivalent equations are formed to eliminate the satellite clock
errors from the original zero-difference equations first, then the equivalency of
the single differences (in two cases) related to the original zero-difference equations
is proved.

Single differences cancel all the satellite clock errors out of the observation equa-
tions. This can also be achieved by forming equivalent equations where satellite clock
errors are eliminated. Considering Eq. 6.171 the original observation equation and X1
the vector of satellite clock errors, the equivalent equations of single differences can
be formed as outlined in Sect. 6.8.2.

Suppose n common satellites (k1, k2, …, kn) are observed at station i1 and i2. The
original observation equation can then be written as
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where X1 is the vector of satellite clock errors and X2 is the vector of other unknowns.
For simplicity, clock errors are scaled by the speed of light c and directly used as un-
knowns; then the X1-related coefficient matrix is an identity matrix, E.

Comparing Eq. 6.182 with Eq. 6.171, one has (cf. Sect. 6.8.2)
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So the equivalently eliminated equation system of Eq. 6.182 is
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where the satellite clock error vector X1 is eliminated, and the observable vector and
weight matrix are unchanged.

Denoting Bs = Bi2 – Bi1, the least squares normal equation of Eq. 6.183 can then be
formed as (cf. Chap. 7) (suppose Eq. 6.183 is solvable)
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Alternatively, a single difference equation can be obtained by multiplying Eq. 6.182
with a transformation matrix Cs
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where Ps is the weight matrix of single differences, and cov(SD(O)) is the covariance
of the single differences (SD) observational vector (O). Supposing Eq. 6.185 is solv-
able, the least squares normal equation system of Eq. 6.185 is then
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It is obvious that Eqs. 6.187 and 6.184 are identical. Therefore in the case of two
stations, the single difference Eq. 6.185 is equivalent to the equivalently eliminated
Eq. 6.183 and consequently equivalent to the original zero-difference equation.

Suppose n common satellites (k1, k2, …, kn) are observed at station i1, i2 and i3.
The original observation equation can then be written as
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Comparing Eq. 6.188 with Eq. 6.171, one has (cf. Sect. 6.8.2)
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So the equivalently eliminated equation system of Eq. 6.188 is
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and the related least squares normal equation can be formed as
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Alternatively, for the Eq. system 6.188, single differences can be formed using trans-
formation (cf. Sect. 6.6.1):
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The correlation problem appears in the case of single differences of multiple baselines.
The related observation equations and the least squares normal equation can be writ-
ten as
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Equations 6.190 and 6.192 are identical. This may be proved by expanding both
equations and comparing the results. Again, this shows that the equivalently eliminated
equations are equivalent to the single difference equations, however, without the need
to deal with the correlation problem.

6.8.4
Equivalent Equations of Double Differences

Double differences cancel all the clock errors out of the observation equations. This
can also be achieved by forming equivalent equations where all clock errors are elimi-
nated. Considering Eq. 6.171 the original observation equation and X1 the vector of
all clock errors, the equivalent equation of double differences can be formed as out-
lined in Sect. 6.8.2.

In the case of two stations, supposing n common satellites (k1, k2, …, kn) are
observed at station i1 and i2, the equivalent single difference observation equation is
then Eq. 6.183. Denoting Bs1 = Bi2 – Bi1, the station clock error parameter as δti1 – δti2
(cf. Eqs. 6.89–6.92), and assigning the coefficients of the first column to the station
clock errors, i.e., Bs1 = (In×1 Bs), Eq. 6.183 turns out to be
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where Xc is the station clock error vector, X3 is the other unknown vector, Bs is the
X3-related coefficient matrix, In×1 is a 1 matrix (where all elements are 1), and clock
errors are scaled by the speed of light.

Comparing Eq. 6.193 with Eq. 6.171, one has (cf. Sect. 6.8.2)
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So the equivalently eliminated equation system of Eq. 6.193 is
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where the receiver clock error vector Xc is eliminated, observable vector and weight
matrix are unchanged. The normal equation has a simple form of
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Alternatively, the traditional single difference observation Eqs. 6.185 and 6.186 can
be rewritten as
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where m = n – 1, and the superscript 1 and k denote the first row and remaining rows
of the matrices (or columns in case of vectors). The double difference transformation
matrix and covariance are (cf. Sect. 6.6.2, Eqs. 6.116–6.118)
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i.e.,
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The above three equations can be proved readily. Substituting Eqs. 6.199–6.201 into
Eq. 6.198, then Eq. 6.198 turns out to be the same as Eq. 6.195. So the equivalency be-
tween the double difference equation and the directly formed equivalent Eq. 6.193 is
proved.

6.8.5
Equivalent Equations of Triple Differences

Triple differences cancel all the clock errors and ambiguities out of the observation
equations. This can also be achieved by forming equivalent equations where all clock
errors and ambiguities are eliminated. Considering Eq. 6.171 the original observation
equation and X1 the parameter vector of all clock errors and ambiguities, then the
equivalent equations of triple differences can be formed as outlined in Sect. 6.8.2.

It is well-known that traditional triple differences are correlated between adjacent
epochs and between baselines. In the case of sequential (epoch by epoch) data pro-
cessing of triple differences, the correlation problem is difficult to be dealt with. How-
ever, using the equivalently eliminated equations, the weight matrix remains diago-
nal. The GPS observables remain the original ones.

6.8.6
Method of Dealing with the Reference Parameters

In differential GPS data processing, the reference-related parameters are usually con-
sidered known and are fixed (or not adjusted). This may be realised by the a priori
datum method (for details cf. Sect. 7.8.2). Here we just outline the basic principle.
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The equivalent observation Eq. system 6.179 can be rewritten as
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where

 .

Suppose there are a priori constraints of (cf. e.g. Zhou et al. 1997)

2222 XXW −=    and   P2 , (6.203)

where X–22 is the “directly observed” parameter sub-vector, P2 is the weight matrix with
respect to the parameter sub-vector X22, and W is a residual vector, which has the same
property as U. Usually, X–22 is “observed” independently, so P2 is a diagonal matrix. If
X22 is a sub-vector of station coordinates, then the constraint of Eq. 6.203 is called a
datum constraint. (This is also the reason why the name a priori datum is used). We
consider here X22 a vector of reference-related parameters (such as clock errors and
ambiguities of the reference satellite and reference station). Generally, the a priori
weight matrix P2 is given by covariance matrix QW and

1
2

−

= WQP  . (6.204)

In practice, the sub-vector X–22 is usually a zero vector; this can be achieved through
careful initialisation by forming observation Eq. 6.171.

The least squares normal equation of the a priori datum problem of Eqs. 6.202 and
6.203 can be formed (cf. Sect. 7.8.2). Compared with the normal equation of Eq. 6.202,
the only difference between the two normal equations is that the a priori weight
matrix P2 has been added to the normal matrix. This indicates that the a priori datum
problem can be dealt with simply by adding P2 to the normal equation of observation
Eq. 6.202.

If some diagonal components of the weight matrix P2 is set to zero, then the related
parameters (in X22) are free parameters (or free datum) of the adjustment problem
(without a priori constraints). Otherwise, parameters with a priori constraints are
called a priori datum. Large weight indicates strong constraint and small weight indi-
cates soft constraint. The strongest constraint is to keep the datum fixed. The refer-
ence-related datum (coordinates and clock errors as well as ambiguities) can be fixed
by applying the strongest constraints to the related parameters, i.e., by adding the stron-
gest constraints to the datum-related diagonal elements of the normal matrix.

6.8.7
Summary of the Unified Equivalent Algorithm

For any linearised zero-difference GPS observation Eq. system 6.171
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the X1 eliminated equivalent GPS observation equation system is then Eq. 6.179:

2)( BXJELU −−=    and   P , (6.206)

where
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−

11
1

11 ,  ,

E is an identity matrix, L is original observational vector, P is original weight matrix,
and U is residual vector, which has the same property as V.

Similarly, the X2 eliminated equivalent equation system is Eq. 6.181

11 )( AXKELU −−=    and   P , (6.207)

where
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−

22
1

22 ,  ,

and U1 is the residual vector (which has the same property as V).
Fixing the values of sub-vector X22 (of X2) can be realised by adding the stron-

gest constraints to the X22-related diagonal elements of the normal matrix formed
by Eq. 6.206. Alternatively, we may apply the strongest constraints directly to the nor-
mal equation formed by Eq. 6.205 first. In this way, the reference-related parameters
(clock errors, ambiguities, coordinates, etc.) are fixed. And then we may form the
equivalently eliminated observation Eq. 6.206. In this way, the relative and differen-
tial GPS data processing can be realised by using Eq. 6.206 after selecting the to be
eliminated X1.

The GPS data processing algorithm using Eq. 6.206 is then a selectively elimi-
nated equivalent method. Selecting X1 in Eq. 6.205 as a zero vector, then the algo-
rithm is identical to the zero-difference method. Selecting X1 in Eq. 6.205 as the
satellite clock error vector, the vector of all clock errors, the clock error and ambigu-
ity vector, and any user-defined vector, then the algorithm is equivalent to the single-
difference method, double-difference method, triple-difference method, and user-
defined eliminating method, respectively. The eliminated unknown X1 can be solved
separately if desired.

The advantages of this method are (compared with un-differential and differential
methods):

■ The un-differential and differential GPS data processing can be dealt with in an
equivalent and unified way. The data processing scenarios can be selected by a
switch and used in a combinative way;

■ The eliminated parameters can be also solved separately with the same algorithm;
■ The weight matrix remains the original diagonal one;
■ The original observations are used; no differencing is required.

It is obvious that the described algorithm meanwhile has all the advantages of all
un-differential and differential GPS data processing methods.



Chapter 7

Adjustment and Filtering Methods

7.1
Introduction

Most useful and necessary adjustment and filtering algorithms for static and kinematic as
well as dynamic GPS data processing are outlined in this chapter. The necessary estimators
are derived. The relationships between the presented methods are also discussed in detail.

The adjustment algorithms discussed here include least squares adjustment, sequen-
tial application of least squares adjustment via accumulation, sequential least squares
adjustment, conditional least squares adjustment, a sequential application of conditional
least squares adjustment, block-wise least squares adjustment, a sequential application
of block-wise least squares adjustment, a special application of block-wise least squares
adjustment for code-phase combination, an equivalent algorithm to form the eliminated
observation equation system and the algorithm to diagonalise the normal equation and
equivalent observation equation.

The filtering algorithms discussed here include the classic Kalman filter, the sequen-
tial least squares adjustment method as a special case of Kalman filtering, the robust
Kalman filter, and the adaptively robust Kalman filter.

A priori constrained adjustment and filtering are discussed for solving the rank
deficient problems. After a general discussion on the a priori parameter constraints, a
special case of the so-called a priori datum method is given. A quasi-stable datum
method is also discussed.

A summary is given at the end of this chapter. The applications of the discussed
methods in GPS data processing are outlined.

7.2
Least Squares Adjustment

The principle of least squares adjustment can be summarised as below (Gotthardt 1978;
Cui et al. 1982):

1. The linearised observation equation system can be represented by:

V = L – AX  ,   P (7.1)

where
L : observation vector of dimension m,
A : coefficient matrix of dimension m × n,
X : unknown parameter vector of dimension n,
V : residual vector of dimension m,
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n : number of unknowns,
m : number of observations, and
P : symmetric and definite weight matrix of dimension m × m.

2. The least squares criterion for solving the observation equations is well-known as

 , (7.2)

where VT is the transpose of the related vector V.
3. To solve X and compute V, a function F is set as

 . (7.3)

The function F reaches minimum value if the partial differentiation of F with re-
spect to X equals zero, i.e.,

or

 , (7.4)

where
AT : transpose matrix of A.

4. Multiplying ATP with Eq. 7.1, one has

 . (7.5)

Setting Eq. 7.4 into 7.5, one has:

 . (7.6)

5. For simplification, let M = ATPA, Q = M–1, where superscript –1 is an inverse operator,
and M is usually called a normal matrix. The least squares solution of Eq. 7.1 is then

 . (7.7)

6. The precision of the ith element of the estimated parameter is

 , (7.8)

where i is the element index of a vector or a matrix, m0 is the so-called standard
deviation (or sigma), p[i] is the ith element of the precision vector, Q[i][i] is the
ith diagonal element of the cofactor matrix Q, and

)(if,))/((sqrt0 nmnmPVVm T
>−=  . (7.9)
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7. For convenience of sequential computation, VTPV can be calculated by using

 . (7.10)

This can be obtained by substituting Eq. 7.1 into VTPV and considering Eq. 7.4.
Up to now the complete formulas of least squares adjustment have been derived.

7.2.1
Least Squares Adjustment with Sequential Observation Groups

Suppose one has two sequential observation equation systems:

(7.11)

and

 , (7.12)

with weight matrices P1 and P2. These two equation systems are un-correlated or inde-
pendent and have the common unknown vector X. The combined problem can be rep-
resented as

 . (7.13)

The least squares normal equation can be formed then as:

or

 . (7.14)

This is indeed the accumulation of the two least squares normal equations formed
from Eqs. 7.11 and 7.12, respectively:

(7.15)

and

 . (7.16)

The solution is then

 . (7.17)

7.2  ·  Least Squares Adjustment
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The precision of the ith element of the estimated parameter is

 , (7.18)

where

 , (7.19)

and

 , (7.20)

where m is the number of total observations and n is the number of unknowns. And
VTPV can be calculated by using

 . (7.21)

Equation 7.17 indicates that the sequential least squares problem can be solved by
simply accumulating the normal equations of the observation equations. The weighted
squares residuals can also be computed by accumulating the individual quadratic forms
of the residuals using Eq. 7.21.

For further sequential and independent observation equation systems,

 , (7.22)

 , (7.23)

…

 , (7.24)

the solution can be similarly derived as:

(7.25)

and

 . (7.26)

It is obvious that if the solution is needed for every epoch, then the accumulated
equation system has to be solved at each epoch. The accumulations always have to be
made with the sequential normal equations. Of course, the solutions can be computed
after a defined epoch or at the last epoch. This could be very useful if the solution of
the problem is unstable at the beginning.
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7.3
Sequential Least Squares Adjustment

Recalling the discussions in Sect. 7.2, one has sequential observation equation systems

   and (7.27)

 . (7.28)

These two equation systems are un-correlated. The sequential problem can be
then solved by accumulating the individual normal equations as discussed in
Sect. 7.2:

   or (7.29)

 . (7.30)

And VTPV can be calculated by using

 . (7.31)

If Eq. 7.27 is solvable, then the least squares solution can be represented as

   and (7.32)

 . (7.33)

For convenience, the estimated vector of X by using the first group of observa-
tions is denoted by X1 and the quadratic form of the residuals by (VTPV)1 as well as
Q1 = (AT

1P1A1)–1.
Using the formula (Cui et al. 1982; Gotthardt 1978)

 , (7.34)

where A and B are any matrices, C and D are matrices that can be inversed and

 , (7.35)

the inversion of the accumulated normal matrix can be represented as Q:

   and (7.36)

 , (7.37)

7.3  ·  Sequential Least Squares Adjustment
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where E is an identity matrix. The total term in the parenthesis on the right-hand
side of Eq. 7.36 can be interpreted as a modifying factor for Q1 matrix; in other
words, due to the sequential Eq. 7.28, the Q matrix can be computed by multiplying a
factor to the Q1 matrix. So sequential least squares solution of Eqs. 7.27 and 7.28 can
be obtained:

(7.38)

Mathematically, the solutions of the sequential problem of Eqs. 7.27 and 7.28
that are solved by using accumulation of the least squares method as discussed in
Sect. 7.2.1 or using sequential adjustment as discussed above shall be the same.
However, in practice, accuracy of the computation is always limited by the effective
digits of the computer being used. Such a limit on the effective digits causes an inac-
curacy of numerical computation. And this inaccuracy will be accumulated and pro-
pagated in further computing processes. By comparing the results obtained with the
above-mentioned methods, it is noticed that the sequential method will give a drift
in the results. The drift increases with time and is generally not negligible after a long
time interval.

7.4
Conditional Least Squares Adjustment

The principle of least squares adjustment with condition equations can be summarised
as below (Gotthardt 1978; Cui et al. 1982):

1. The linearised observation equation system can be represented by Eq. 7.1
(cf. Sect. 7.2).

2. The corresponding condition equation system can be written as

 , (7.39)

where
C : coefficient matrix of dimension r × n,
W : constant vector of dimension r, and
r : number of conditions.

3. The least squares criterion for solving the observation equations with condition
equations is well-known as

 , (7.40)

where VT  is the transpose of the related vector V.
4. To solve X and compute V, a function F can be formed as

 , (7.41)

where K  is a gain vector (of dimension r) to be determined.
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The function F reaches minimum value if the partial differentiation of F with
respect to X equals zero, i.e.,

 ;

then one has

(7.42)

or

 , (7.43)

where AT, CT  are transpose matrices of A and C, respectively.
5. Combining Eqs. 7.43 and 7.39 together, one has

   and (7.44)

 . (7.45)

6. For simplification, let M = ATPA, W1 = ATPL, Q = M–1, where superscript –1 is an
inverse operator. The solutions of Eqs. 7.44 and 7.45 are then

 , (7.46)

or

 . (7.47)

7. The precisions of the solutions are then

 , (7.48)

where i is the element index of a vector or a matrix, m0 is the so-called standard
deviation (or sigma), p[i] is the ith element of the precision vector, Qc[i][i] is the
ith diagonal element of the quadratic matrix Qc, and

 , (7.49)

   and (7.50)

 . (7.51)

7.4  ·  Conditional Least Squares Adjustment
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8. For convenience of sequential computation, VTPV can be calculated by using

 . (7.52)

This can be obtained by substituting Eq. 7.1 into VTPV and using the relations of
Eqs. 7.39 and 7.42.

Up to now the complete formulas of conditional least squares adjustment have
been derived.

7.4.1
Sequential Application of Conditional Least Squares Adjustment

Recalling the least squares adjustment discussed in Sect. 7.2, the linearised observa-
tion equation system

 ,   P (7.53)

has the solution

 . (7.54)

The precisions of the solutions can be obtained by

 , (7.55)

where

 , (7.56)

and VTPV can be calculated by using

 . (7.57)

For convenience, the least squares solution vector is denoted by X0 and weighted
residuals square by (VTPV)0.

Similarly, in the conditional least squares adjustment discussed in Sect. 7.4, the
linearised observation equation system and conditional equations read

   and (7.58)

 ; (7.59)

the solution follows

 , (7.60)
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where K is the gain, and

 . (7.61)

The precision vector of the solution vector can be obtained by using Eqs. 7.48–7.52.
Using the notations obtained in least squares solution, one has

    and (7.62)

 . (7.63)

Equation 7.62 indicates that the conditional least squares problem can be solved first
without the conditions, and then through the gain K to compute a modification’s term.
The change of the solution is caused by the conditions. For computing the weighted
squares of the residuals, Eq. 7.63 can be used (by adding two modification’s terms to
the weighted squares of residuals of the least squares solution). This property is very
important for many practical applications such as ambiguity fixing or coordinates fix-
ing. For example, after the least squares solution and fixing the ambiguity values, one
needs to compute the ambiguity fixed solution. Of course, one can put the fixed ambi-
guities as known parameters and go back to solve the problem once again. However,
using the above formulas, one can use the fixed ambiguities as conditions to compute
the gain and the modification’s terms to get the ambiguity fixed solution directly. Simi-
larly, this property can be also used for solutions with some fixed station coordinates.

7.5
Block-Wise Least Squares Adjustment

The principle of block-wise least squares adjustment can be summarised as below
(Gotthardt 1978; Cui et al. 1982):

1. The linearised observation equation system can be represented by Eq. 7.1
(cf. Sect. 7.2).

2. The unknown vector X and observable vector L is rewritten as two sub-vectors:

 . (7.64)

The least squares normal equation can then be formed as:

 . (7.65)

The normal equation can be denoted by

    or (7.66)

7.5  ·  Block-Wise Least Squares Adjustment
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   and (7.67)

 , (7.68)

where

 , (7.69)

 , (7.70)

 , (7.71)

   and (7.72)

 . (7.73)

3. Normal Eqs. 7.67 and 7.68 can be solved as follows: from Eq. 7.67, one has

 . (7.74)

Substituting X1 into Eq. 7.68, one gets a normal equation related to the second block
of unknowns:

 , (7.75)

where

   and (7.76)

 . (7.77)

The solution of Eq. 7.75 is then:

 . (7.78)

From Eqs. 7.78 and 7.74, the block-wise least squares solution of Eqs. 7.1 and
7.64 can be computed. For estimating the precision of the solved vector, one has
(see discussion in Sect. 7.2):

(7.79)

where

 . (7.80)

Q is the inversion of the total normal matrix M. m is the number of total observa-
tions, and n is the number of unknowns.
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Furthermore,

    is denoted, (7.81)

where (Gotthardt 1978; Cui et al. 1982)

 , (7.82)

 , (7.83)

 ,    and (7.84)

 . (7.85)

And VTPV can be calculated by using

 . (7.86)

One finds very important applications in GPS data processing by separating the
unknowns into two groups, which will be discussed in the next sub-section.

7.5.1
Sequential Solution of Block-Wise Least Squares Adjustment

Suppose one has two sequential observation equation systems

    and (7.87)

 , (7.88)

with weight matrices Pt1 and Pt2. The unknown vector Y can be separated into two sub-
vectors, one is sequential dependent, and another is time independent. Let us assume

 , (7.89)

where X2 is the common unknown vector, and Xt1 and Xt2 are sequential (time) inde-
pendent unknowns (i.e., they are different from each other).

Equations 7.87 and 7.88 can be solved separately by using the block-wise least
squares method as follows (cf. Sect. 7.5):

 , (7.90)

    and (7.91)

 , (7.92)

7.5  ·  Block-Wise Least Squares Adjustment
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and

 , (7.93)

    and (7.94)

 , (7.95)

where indices t1 and t2 outside of the parenthesis indicate that the matrices and vec-
tors are related to Eqs. 7.87 and 7.88, respectively.

The combined solution of Eqs. 7.87 and 7.88 then can be derived as:

 , (7.96)

 , (7.97)

    and (7.98)

 , (7.99)

where index ta means that the solution is related to all equations. The normal equa-
tions related to the common unknowns are accumulated and solved for. The solved
common unknowns are used for computing sequentially different unknowns.

In the case of many sequential observations, a combined solution could be diffi-
cult or even impossible because of the large number of unknowns and the require-
ment of the computing capacities. Therefore, a sequential solution could be a good
alternative. For the sequential observation equations

 , (7.100)

…

 , (7.101)

the sequential solutions are

 , (7.102)

 , (7.103)

 , (7.104)

…

 , (7.105)

     and (7.106)

 . (7.107)
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It is notable that the sequential solution of the second unknown sub-vector X2 is
exactly the same as the combined solution at the last step. The only difference between
the combined solution and the sequential solution is that the X2 used are different. In
the sequential solution, only the up-to-date X2 is used. Therefore at end of the sequen-
tial solution (Eq. 7.107), the last obtained X2 has to be sub-stituted into all Xtj comput-
ing formulas, where j < i. This can be done in two ways. The first way is to remember all
formulas for computing Xtj, after X2 is obtained from Eq. 7.107, using X2 to compute
Xtj. The second way is to go back to the beginning after the X2 is obtained, and use X2 as
the known vector to solve Xtj once again. In these ways, the combined sequential obser-
vation equations can be solved exactly in a sequential way.

7.5.2
Block-Wise Least Squares for Code-Phase Combination

Recalling the block-wise observation equations discussed in Sect. 7.5, one has

 . (7.108)

Such an observation equation can be used for solving the problem of codephase
combination. Supposing L1 and L2 are phase and code observation vectors, respec-
tively, and they have the same dimensions, then X2 is a sub-vector that only exists
in phase observational equations. Then one has A22 = 0, and A11 = A21, as well as
P1 = wpP0, P2 = wcP0, where P0 is the weight matrix, and wp and wc are weight fac-
tors of phase and code observables. In order to keep the coefficient matrices A11 = A21,
the observable vectors L1 and L2 have to be carefully scaled. Equation 7.108 can be
rewritten as:

 . (7.109)

The least squares normal equation can be formed then as:

(7.110)

The normal equation can be denoted by

(7.111)

where

 , (7.112)

7.5  ·  Block-Wise Least Squares Adjustment
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 , (7.113)

 , (7.114)

    and (7.115)

 . (7.116)

Normal equation 7.111 can be solved using the general formulas derived in Sect. 7.2
and Sect. 7.5.

7.6
Equivalently Eliminated Observation Equation System

In least squares adjustment, the unknowns can be divided into two groups and then
solved in a block-wise manner as discussed in Sect. 7.5. In practice, sometimes only one
group of unknowns is of interest, and it is better to eliminate the other group of unknowns
(called nuisance parameters) because of its size, for example. In this case, using the so-
called equivalently eliminated observation equation system could be very beneficial (Wang
et al. 1988; Xu and Qian 1986; Zhou 1985). The nuisance parameters can be eliminated
directly from the observation equations instead of from the normal equations.

The linearised observation equation system can be represented by

 ,    P , (7.117)

where
L : observational vector of dimension m,
A, B : coefficient matrices of dimension m × (n – r) and m × r,
X1, X2 : unknown vectors of dimension n – r and r,
V : residual vector of dimension m,
n : number of total unknowns,
m : number of observations, and
P : symmetric and definite weight matrix, of dimension m × m.

The least squares normal equation can then be formed by

 . (7.118)

where

 , (7.119)

where

 . (7.120)
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The elimination matrix

    is formed, (7.121)

where E is the identity matrix, 0 is a zero matrix, and Z = M21M–
1

1
1. M–

1
1
1 is the inversion

of M11. Multiplying the elimination matrix Eq. 7.121 to the normal Eq. 7.118 one has

 ,    or

(7.122)

where

(7.123)

 . (7.124)

If one is only interested in the unknown vector X2, one just needs to solve the second
equation of 7.122. The solution is identical to that of solving whole Eq. 7.122. The above
eliminating process is similar with the Gauss-Jordan algorithm, which has often been used
for the inversion of the normal matrix (or for solving linear equation system). Indeed, the
second equation of 7.122 is identical to Eq. 7.75 derived in the block-wise least squares
adjustment (cf. Sect. 7.5).

Letting

 , (7.125)

one has properties of

 ,

    and

 ,

i.e., matrices J and (E – J) are idempotent and (E – J)TP is symmetric, or

 . (7.126)

Using the above derived properties, M2 in Eq. 7.123 and R2 in Eq. 7.124 can be re-
written as

    and (7.127)

 . (7.128)

7.6  ·  Equivalently Eliminated Observation Equation System
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Denoting

 , (7.129)

then the eliminated normal equation (the secons equation of 7.122) can be rewritten as

    or (7.130)

 . (7.131)

This is the least squares normal equation of the following linear observation equation:

 ,    P    or (7.132)

 ,    P , (7.133)

where L and P are the original observational vector and weight matrix, and U2 is the
residual vector, which has the same property as V in Eq. 7.117.

The advantage of using Eq. 7.133 is that the unknown vector X1 has been eliminated;
however, L vector and P matrix remain the same as the originals. Applications of this
theory can be found in Sect. 6.8, 8.3 and 9.2.

7.6.1
Diagonalised Normal Equation and the Equivalent Observation Equation

In least squares adjustment, the unknowns can be divided into two groups. One group of

unknowns can be eliminated by matrix partitioning to obtain an equivalently eliminated

normal equation system of the other group of unknowns. Using the elimination process

twice for the two groups of unknowns respectively, the normal equation can be

diagonalised. The algorithm can be outlined as follows.

A linearised observation equation and the normal equations can be represented by

Eqs. 7.117 and 7.118. From the first equation of 7.118, one has

 . (7.134)

Setting X
1
 into the second equation of 7.118, one gets an equivalently eliminated

normal equation of X
2
:

 , (7.135)

where

 . (7.136)

Similarly, from the second equation of 7.118, one has

 . (7.137)
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Setting X
2
 into the first equation of 7.118, one gets an equivalently eliminated normal

equation of X
1
:

 , (7.138)

where

 . (7.139)

Combining Eqs. 7.138 and 7.135 together, one has

 , (7.140)

where (cf., e.g., Cui et al. 1982; Gotthardt 1978)

 . (7.141)

It is obvious that Eqs. 7.118 and 7.140 are two equivalent normal equations. The

solutions of the both equations are identical. Equation 7.140 is a diagonalised normal

equation related to X
1
 and X

2
. The process of forming Eq. 7.140 from Eq. 7.118 is called

the diagonalisation process of a normal equation.

As discussed in Sect. 7.6, the equivalently eliminated observation equation of the
second equation of 7.140 is Eq. 7.133. Similarly, if denote

    and

 ,

then the equivalently eliminated observation equation of the first normal equation of
Eq. 7.140 has a form of

 ,    P .

Where U1 is a residual vector which has the same property as V in Eq. 7.117. L and P
are the original observational vector and weight matrix.

Above equation and Eq. 7.133 can be written together as

 . (7.142)

Equation 7.142 is derived from the normal Eq. 7.140; therefore, it is true inversely,

i.e., Eq. 7.140 is the least squares normal equation of the observation Eq. 7.142. Equa-

tions 7.118 and 7.140 are normal equations of the observation Eqs. 7.117 and 7.142. So

Eq. 7.142 is an equivalent observation equation of Eq. 7.117. Equations 7.140 and 7.142

are called diagonalised equations of 7.118 and 7.117, respectively.
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7.7
Kalman Filter

7.7.1
Classic Kalman Filter

The principle of the classical Kalman filter can be summarised as below (Yang et al. 1999):
The linearised observation equation system can be represented by

 , (7.143)

where
L : observational vector of dimension m,
A : coefficient matrix of dimension m × n,
X : unknown vector of dimension n,
V : residual vector of dimension m,
n : number of unknowns,
m : number of observations,
i : sequential index, i = 1, 2, 3, …, and
Pi : weight matrix of index i.

Suppose system equations are known and can be presented as

 , (7.144)

where
F : transition matrix of dimension n × n, and
U : residual vector of dimension n.

U and V are un-correlated and have zero expectations. Using the covariance propaga-
tion law, one has from Eq. 7.144

 . (7.145)

The normal Eq. 7.143 can be formed as

 . (7.146)

For the initial step or epoch, i.e., i = 1, Eq. 7.146 has the solution under the least
squares principle

 , (7.147)

and here one will assume

 , (7.148)
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where X
~

i and Q
~

i are called estimated values. Using the estimated values and transition
matrix, one can predict the unknown values and covariance matrix of the next epoch
(say i = 2):

   and (7.149)

 , (7.150)

where X_i and Q_i are called predicted values (vector and matrix). Then estimated val-
ues of this epoch can be calculated by

 , (7.151)

   and (7.152)

 , (7.153)

where K is the gain matrix.
For the next sequential step i, the predicted values have to be computed by using

Eqs. 7.149 and 7.150, and the estimated values can be computed by using Eqs. 7.151
and 7.152. Such an iterative process is called Kalman filtering.

In classical Kalman filtering, it is assumed that for the problem of Eq. 7.143 there
exists a system transition matrix Fi,i–1 in Eq. 7.144 and the cofactor QU. Therefore, the
estimated values in the Kalman filter process are dependent on Fi,i–1 and QU. The tran-
sition matrix shall be based on strengthened physical models, and the cofactor shall
be well-known or reasonably given. If the system description is accurate enough, of
course Kalman filtering will lead to a more precise solution. However, if the system is
not sufficiently well-known, the results of Kalman filter will sometimes not converge
to the true values (divergence). Furthermore, a kinematic process is generally diffi-
cult to be precisely represented by theoretical system equations. However, for a dy-
namic process (like on-board GPS for satellite to satellite tracking or orbit determi-
nation) the system equation can be well-formulated (by an orbital equation of mo-
tion). Another problem of Kalman filtering is the strong dependency of the given ini-
tial values. Many studies have been made in this area to overcome the above-mentioned
shortages.

7.7.2
Kalman Filter – A General Form of Sequential Least Squares Adjustment

The sequential Least Squares problem is a special case of the classic Kalman filter. If one lets

 , (7.154)

then the system Eq. 7.144 in Sect. 7.7.1 turns out to be

 . (7.155)
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The Kalman filter process is then as follows, for the initial step or epoch, i.e., i = 1,
Eq. 7.27 in Sect. 7.3 has the solution under the least squares principle:

 , (7.156)

with

Q
~

i = Qi , (7.157)

where X
~

i  and Q
~

i  are called estimated values. The predicted unknown values and cova-
riance matrix of the next epoch (say i = 2) of Eqs. 7.149 and 7.150 in Sect. 7.7.1 are then

   and (7.158)

 . (7.159)

The estimated values of Eqs. 7.151, 7.152 and 7.153 in Sect. 7.7.1 can be simpli-
fied as

 , (7.160)

   and (7.161)

 , (7.162)

where G denotes the gain matrix. If one notices that QV = (Pi)
–1 and applies the for-

mula of Bennet (Cui et al. 1982; Koch 1986), one has:

 . (7.163)

Equation 7.160 can then be rewritten as

 . (7.164)

Comparing the derived Eqs. 7.161 and 7.164 with the Eqs. 7.36 and 7.38 derived in
Sect. 7.3, one can easily find out that they are identical. Therefore, the sequential least
squares adjustment is a special case of Kalman filtering.

7.7.3
Robust Kalman Filter

The classical Kalman filter is suitable for real time applications. The key problem of
Kalman filtering is the divergence caused by the inexact descriptions of system equa-
tions and its statistic properties, as well as the divergence caused by data with inho-
mogeneous precisions.

Efforts have been made to modify the performance of Kalman filtering. In the clas-
sical Kalman filter, the weight matrix P of the observables is a static one, i.e., P is as-
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sumed to be a definite matrix. Taking the residuals of Kalman filtering into account,
one may adjust the weight P of the observables accordingly. Such a process is called a
robust Kalman filter (Koch and Yang 1998; Yang 1999).

Usually the observations are either accepted or rejected in least squares adjustment
and the classical Kalman filter. In other words, the weight is either set as one (accepted)
or zero (rejected). In the robust Kalman filter, a continuous weight between one and
zero is introduced.

Originally one has P = (QV)–1, the adjusted P is denoted by P
_

; then the Eq. 7.153 in
the classical Kalman filter can be rewritten as

 . (7.165)

In the case of independent observations, Pi is a diagonal matrix. Taking the residu-
als into account, Pi may be adjusted as (Huber 1964; Yang et al. 2000)

 , (7.166)

where Vi(k) is the kth element of the vector V, Pi(k) is the diagonal element of ma-
trix Pi, and c is a constant, which is usually chosen as 1.3~2.0 (Yang et al. 2000). Vi is
the residual of the observation Li, σi is the standard deviation of the ith epoch, and
Pi = 1/σi. In this way, the weight of the observation Li is adjusted due to the related
residual.

If the observations are correlated with each other, the weight matrix may be given
by (Yang et al. 2000)

 . (7.167)

It is obvious that an adjusted weight matrix can better reflect the different data
quality and can better fit the reality of the observations.

Usually the outlier will be rejected if the absolute value of the residual is greater
than eσi, i.e., |Vi | > eσi, where e is a constant, e may be selected as 3~4, σi is the stan-
dard deviation, and i is the iterative calculation index. That is, P

_
i = 0 if |Vi /σi | ≥ e. Set-

ting |Vi /σi | = e into Eq. 7.166 one gets P
_

i = (c / e)Pi. In other words, the weight defini-
tions of Eqs. 7.166 and 7.167 are not continuous at point e. A modification of Eq. 7.166
can be made by defining

 , (7.168)
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where

    and (7.169)

 , (7.170)

where b is the value of y1 if |Vi(k) / σi | = d. c, d, e are constants, and 0 < c < d < e. For
simplification, if one lets b = (e – d) / (e – c), then one has 1 – b = (d – c) / (e – c). One
may let d = (e + c) / 2 for further simplification and have

    and

 .

By selecting c = 1, e = 3, and using the above assumptions, the weight functions of
Eqs. 7.166 and 7.168 are shown in Fig. 7.1 with broken and continuous lines. It is ob-
vious that Eq. 7.168 is a more reasonable weight function, which may make the Kalman
filter more robust.

Discussions can be made similarly for correlated case. Denoting |Vi(k) / σi | as v(k),
a modification of Eq. 7.167 can be rewritten as

 , (7.171)

where

    and (7.172)

Fig. 7.1.
Weight functions
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 , (7.173)

where b is the value of z1 if max{v(k), v(j)} = d. For simplification, if one lets b = (e – d) /
(e – c), then one has 1 – b = (d – c) / (e – c). Further if one lets d = (e – c) / 2, then one has

    and

 .

7.7.4
Adaptively Robust Kalman Filtering

The reliability of the linear filtering results, however, will degrade when the noise of
the kinematic model is not accurately modelled in filtering or the measurement noises
at any measurement epoch are not normally distributed. A new adaptively robust fil-
tering proposed by (Yang et al. 2001) based on the robust M (Maximum likelihood type)
estimation is introduced in this section. It consists in weighting the influence of the
updated parameters in accordance with the magnitude of discrepancy between the
updated parameters and the robust estimates obtained from the kinematic measure-
ments and in weighting individual measurement at each discrete epoch. The new pro-
cedure is different from functional model error compensation; it changes the covari-
ance matrix or equivalently changes the weight matrix of the predicted parameters to
cover the model errors. A general estimator for an adaptively robust filter is presented,
which includes the estimators of the classical Kalman filter, adaptive Kalman filter, ro-
bust filter, sequential least squares (LS) adjustment and robust sequential adjustment.
The procedure can not only resist the influence of outlying kinematic model errors, but
also control the effects of measurement outliers. In addition to the robustising proper-
ties, feasibility in implementation of the new filter is achieved through the equivalent
weights of the measurements and the predicted state parameters.

Applications of the Kalman filter in dynamic or kinematic positioning have sometimes
encountered difficulties, which have been referred to as divergences. These divergences
can often be traced to three factors: (1) insufficient accuracy in modelling the dynam-
ics or kinematics (functional model errors of the state equations); (2) insufficient accu-
racy in modelling the observations (functional model errors of observation equations);
and (3) insufficient accuracy in modelling the distributions or the priori covariance
matrices of the measurements and the updated parameters (stochastic model errors).

The current basic procedure for the quality control of a Kalman filter consists of:

■ Functional model compensation for model errors by introducing uncertain param-
eters into the state and/or the observation equations. Any model error term can be
introduced into the models arbitrarily. One could then augment the state (Jazwinski
1970, p. 308). A similar approach is developed by Schaffrin (1991, p. 32–34). He par-
titions the state vector into h groups, each being affected by a common scale error.
Then, h × 1 vectors of scale parameters are introduced into the models. This kind of
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approach may, of course, lead to a high-dimensional state vector which, in turn,
greatly increases the filter computational load (Jazwinski 1970, p. 305).

■ Stochastic model compensation by introducing a variance-covariance matrix of
the model errors. In taking this approach to prevent divergence, one has to deter-
mine what covariance matrix to add. A reasonable covariance matrix may compen-
sate for the model errors. An ineffective covariance matrix, however, adds to the
model divergence. For instance, when the model is accurate in some dynamic or
kinematic periods, an unsuitable increasing of the covariance matrix of model er-
ror will degrade the state estimators. An effective covariance matrix for model er-
rors can only be determined by trial and error.

■ The DIA procedure – detection, identification and adaptation (Teunissen 1990). It uses
a recursive testing procedure to eliminate outliers. In the detection step, one looks for
unspecified model errors. In the identification step, one tries to find the cause of the
model error and its most likely starting time. After a model error has been detected
and identified, the bias in the state estimate caused by the model error has to be elimi-
nated as well. This model recovery from errors is called adaptation (Salzmanm 1995).
The identification of the model, however, is quite difficult, especially when the mea-
surements are not accurate enough to detect the unspecified model errors.

■ The sequential least squares procedure. A quite different procedure that has been
frequently used for kinematic positioning does not use the dynamic model infor-
mation at all but determines discrete positions at the measurement epochs (Cannon
et al. 1986). In this case, no assumption on a dynamic model is made, only the mea-
surements at the discrete epoch are employed to estimate the state parameters. The
model error, therefore, does not affect the estimates of new state parameters. Usu-
ally, this method is presented as a sequential least squares algorithm (Schwarz et al.
1989). The current limitation of this approach is that it wastes the good information
of the state model when the model accurately describes the dynamic process in cases.

■ Adaptive Kalman filtering. An innovation-based adaptive Kalman filter for an in-
tegrated INS/GPS has been developed by Mohamed and Schwarz (1999), based on
the maximum likelihood criterion by proper choice of the filter weight. Another
adaptive Kalman filter algorithm to directly estimate the variance and covariance
components for the measurements is studied by Wang et al. (1999). Both of the
algorithms need to collect the residuals of the measurements or the update series
to calculate the state variance-covariance matrices.

■ A robust filter based on the min-max robust theory. The deviation of observation
error distribution from the Gaussian one may also seriously degrade the perfor-
mance of Kalman filtering. Thus, there appears to be considerable motivation for
considering filters which are robustised to perform fairly well in non-Gaussian en-
vironments. Facing this problem, Masreliez and Martin (1997) applied the influence
function of the min-max robust theory to replace the score function of the classical
Kalman filter. The basic disadvantages associated with this kind of robust filter are
that the estimator requires the unknown contaminating distribution to be symmetri-
cal, and it cannot work as well as the standard Kalman filter does in Gaussian noise.

■ A robust filter based on M estimation theory (Huber 1964) and Bayesian statistics. To
resist the bad influences of both state model errors and measurement outliers, a robust
M-M filter has been developed (Yang 1991, 1997; Zhou et al. 1997, p. 299) by which the
measurement outliers are controlled by robust equivalent weights of the measurements,
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and the model errors are resisted by the equivalent weights of the update parameters
according to the divergence of the predicted parameters and the estimated ones. Fur-
thermore, a robust filter for rank deficient observation models has been developed by
Koch and Yang (1998), by using Bayesian statistics and by applying the robust M estimate.

All the methods described above depend on the knowledge of the dynamic model
errors, with which the functional or stochastic models for compensation for the model
errors and the equivalent weights for the robust filter are constructed. In practical ap-
plications, it is very difficult to predict the error distribution or the error type of the
updated parameters or the dynamic model errors; thus, it is very difficult to construct
functional and stochastic models. Furthermore, when a moving vehicle has accelerated
from zero or decelerated to a stop, the acceleration profile is discontinuous. If this dis-
continuity falls between two measurement epochs, the dynamics cannot be accurately
modelled or predicted by state equations; in this case, the predicted information from
the dynamic model should not be referred too much. Thus the filter procedure should
weaken the effects of the updated parameters. In addition, if the updated parameter
vector is contaminated by a model error, then it is usually distorted in its entirety. Thus,
we do not need to consider the error influence of the individual element of the updated
parameter vector like the robust M-M filter does. An adaptive filter is suitable in this
case to balance the dynamic model information and the measurements.

1. General Estimator of Adaptively Robust Filtering

An adaptively robust filter is constructed as (cf. Yang et al. 2001)

    and (7.174)

 , (7.175)

where P
_

i  is the equivalent weight matrix of the observational vector, PX_i
 is the weight

matrix of the predicted vector X_i, QX
~

i
 is the covariance matrix of the estimated state

vector, σ 2
0 is a scale factor, and α is an adaptive factor which can be chosen as

 , (7.176)

where c0 and c1 are constants that are experienced valued as c0 = 1.0~1.5, c1 = 3.0~4.5,

 , (7.177)

and  �Xi is a robust estimate of state vector (state position), which is only evaluated by
new measurements at epoch i, and the raw velocity observations are not included in
it.  �X_i is a predicted position from Eq. 7.149 in which the a priori velocity components
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are not included. The change of the position expressed by Eq. 7.177 can also reflect
the stability of the velocity (cf. Yang et al. 2001).

Expression 7.174 is a general estimator of an adaptively robust filter. In the case of
α ≠ 0, Eq. 7.174 is changed into, by using the matrix identities (Koch 1988, p. 40)

 . (7.178)

2. Special Estimators

The adaptive factor α changes between 0~1, which balances the contribution of the new
measurements and the updated parameters to the new estimates of state parameters.

Case 1: If α = 0 and P
_

i = Pi, then

 , (7.179)

which is an LS estimator by using only the new measurements at epoch i. This estima-
tor is suitable in the case where the measurements are not contaminated by outliers
and the updated parameters are biased so much that ∆X

~
i  in Eq. 7.177 is larger than c1

(rejecting point), and the information of updated parameters is forgotten completely.

Case 2: If α = 1 and P
_

i = Pi, then

 , (7.180)

which is a general estimator of the classical Kalman filter.

Case 3: If α is determined by Eq. 7.177 and P
_

i = Pi, then

 , (7.181)

which is an adaptive LS estimator of the Kalman filter. It balances the contribution of
the updated parameters and the measurements. The only difference between Eqs. 7.174
and 7.181 is the weight matrix of Li. The former uses the equivalent weights and the
latter uses the original weights of Li.

Case 4: If α = 0, then we obtain

 , (7.182)

which is a robust estimator by using only the new measurements at epoch i.

Case 5: If α = 1, then

 , (7.183)

which is an M-LS filter estimator (Yang 1997).
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Further Development of the Theory

The adaptive factor α is considered a diagonal matrix by Ou (2004) and grouped
by the physical meanings of the parameters by Yang (2004). Since then, several
progresses have been made (cf. Yang and Cui 2006; Yang and Gao 2005, 2006; Yang
et al. 2006).

7.8
A Priori Constrained Least Squares Adjustment

Up to now in this chapter, several adjustment and filtering methods have been
discussed. All of them are methods suitable for full rank linear equation problems.
A full rank quadratic matrix means such a matrix can be inversed to obtain its
inversion. A rank deficient linear equation system is sometimes called an
over-parameterised problem. Except for the conditional least squares adjustment
method, all other methods discussed above cannot be directly used for solving a
rank deficient problem. The conditional least squares adjustment method with
extra conditions can make the problem solvable. The conditions, of course, should
be well-formulated mathematically and well-reasoned physically. In other words,
the conditions are considered as exactly known. In practice, quite often, the condi-
tions are known with certain a priori precisions. Adjustment, which uses such a priori
information as constraints, is called a priori constrained adjustment, which will be
discussed in this section.

7.8.1
A Priori Parameter Constraints

1. A linearised observation equation system can be represented by

 , (7.184)

where PL  is the symmetric and definite weight matrix of dimension m × m.
2. The corresponding a priori condition equation system can be written as:

 , (7.185)

where
B : coefficient matrix of dimension r × n,
W : constant vector of dimension r,
U : residual vector of dimension r,
PW : a priori (symmetric and definite) weight matrix of dimension r × r, and
r : number of condition equations; r < n.

3. One may interpret the constraints of Eq. 7.185 as additional pseudo-observations
or as fictitious observations. This leads to the total observation equations:

 . (7.186)
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Then the least squares normal equations are well-known as (see, e.g., Sect. 7.2.1):

    or

 . (7.187)

For convenience, a factor k (here k = 1) is introduced in Eq. 7.187:

 . (7.188)

Equation 7.188 shows that the a priori information constraints can be added to the
original least squares normal equations. In other words, the a priori information can
be used for solving the rank deficient problem and making the normal matrix pos-
sible to be inversed. Of course, these a priori information constraints should be rea-
sonable and realistic ones; otherwise the solutions could be disturbed by worse a priori
constraints. In case of k = 0, the normal Eq. 7.188 turns to be the original one and will
give the free solution (without any a priori constraints).

The solution of the a priori constrained least squares solution is then

 , (7.189)

where k = 1. Generally, the a priori weight matrix is given by covariance matrix QW and

 . (7.190)

The a priori constraints only cause two additional terms in both sides of the nor-
mal equations; therefore, all the above discussed adjustment and filtering methods can
be directly used for solving the a priori constrained problem.

7.8.2
A Priori Datum

Suppose the B matrix in the a priori constraints of Eq. 7.185 is an identity matrix, and
the parameter vector W is just a coordinate sub-vector of the total parameter vector.
Then it turns out to be a special case called a priori datum. The observation equations
and a priori constraints may be rewritten as

    and (7.191)

 , (7.192)

where X
_

2 is the “observed” parameter sub-vector, P2 is the weight matrix with respect
to the parameter sub-vector X2 and is generally a diagonal matrix, and U is a residual
vector that has the same property as V. Usually, X

_
2 is “observed” independently, so P2

is a diagonal matrix. If X2 is a sub-vector of station coordinates, then the constraint of
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Eq. 7.192 is called the datum constraint. (This is also the reason why the name a priori
datum is used).

The least squares normal equation of problems 7.191 and 7.192 can be formed then
(similar to what discussed in Sect. 7.8.1) as

    or (7.193)

    and (7.194)

 , (7.195)

where

 , (7.196)

 , (7.197)

 , (7.198)

    and (7.199)

 . (7.200)

The least squares principle used here is

 . (7.201)

The normal Eq. 7.193 can be also derived by differentiating Eq. 7.201 with respect
to X, and then letting it equal zero and taking Eq. 7.192 into account. In practice, the
sub-vector X

_
2 is usually a zero vector; this can be achieved through careful initialisation

by forming the observation Eq. 7.191. Comparing the normal equation system of the
a priori datum problem of Eqs. 7.191 and 7.192 with the normal equation of Eq. 7.191,
the only difference is that the a priori weight matrix P2 has been added to M22. This
indicates that the a priori datum problem can be dealt with simply by adding P2 to the
normal equation of the observation Eq. 7.191.

If some diagonal components of the weight matrix P2 are set to zero, then the re-
lated parameters (X2) are free parameters (or free datum) of the adjustment problem
(without a priori constraints). Otherwise, parameters with a priori constraints are
called a priori datum. Large weight indicates strong constraint and small weight indi-
cates soft constraint. The strongest constraint is to keep the datum fixed.

7.8.3
Quasi-Stable Datum

The quasi-stable datum method was proposed by Zhou (Zhou et al. 1997). The basic
idea is that the network is a dynamic one, i.e., most parameters are changing all the
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time. However, a few points are relatively stable, or their geometric centre is relatively
stable. All the assumptions and observation equations are the same as in Sect. 7.8.2:

    and (7.202)

 . (7.203)

The least squares principles for the quasi-stable datum are

   and (7.204)

 . (7.205)

Equation 7.204 is the same as the original least squares principle. From Eq. 7.204,
one has the normal equation

 , (7.206)

where

 ,

 ,

 ,

   and

 . (7.207)

Even if Eq. 7.206 is a rank deficient equation, one may first solve Eq. 7.206 to get an
explicit expression for X2. Recalling the discussion in Sect. 7.5, one gets a normal equa-
tion related to X2:

 , (7.208)

where

   and

 . (7.209)

The new condition can be considered by forming
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and

 .

Considering the symmetry of M2, we have

 . (7.210)

Substituting Eq. 7.210 into 7.203, one gets

(7.211)

or

 . (7.212)

Substituting Eq. 7.208 into 7.212, one has

 . (7.213)

Thus,

 , (7.214)

   and (7.215)

 , (7.216)

where m0 is the standard deviation, n is the number of observations, and r is the sum-
mation of the both ranks of the matrices A1 and A2.

7.9
Summary

In this chapter, the most applicable and necessary algorithms for static and kinematic
as well as dynamic GPS data processing are outlined.

Least squares adjustment is the most basic adjustment method. It starts by estab-
lishing observation equations and forming normal equations; then it solves the un-
knowns. It is a suitable method for static GPS data processing. The sequential applica-
tion of least squares adjustment by accumulating the sequential normal equations makes
applications of least squares adjustment more effective. Normal equations can be formed
epoch-wise and then accumulated. This method can be used not only for solving the
problem at the end, but also for obtaining epoch-wise solutions. It is suitable for static
GPS data processing. The equivalent sequential least squares adjustment, which can be
read from different publications, is also derived. This is an epoch-wise solving method
and therefore is generally not suitable for static GPS data processing. Xu (author) and
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Morujao (Coimbra University, Portugal) have independently pointed out that by ap-
plying such an algorithm, the obtained results compared with that which was obtained
by the accumulating method will have differences. The differences increase with time
and are generally not negligible. Therefore by using this method, the numerical pro-
cess has to be carefully examined to avoid the accumulation of numerical errors.

The conditional least squares adjustment is needed if there are some constraints
that have to be taken into account. The commonly used least squares ambiguity search
criterion is derived from this principle (cf. Sect. 8.3.4). The general criterion of inte-
ger ambiguity search is also based on this theory (cf. Sect. 8.3.5). The typical applica-
tion of this method in GPS data processing is taking into account the known distance
of multiple kinematic antennas. The sequential application of conditional least squares
adjustment is discussed because of practical needs. The problem may be solved first
without conditions, and then the conditions may be applied afterward. The constraints
such as the known distances of multiple antennas fixed on an aircraft have to be con-
sidered for every epoch.

Block-wise least squares adjustment is discussed for separating the unknowns into
two groups. For example, one group is time dependent parameters such as kinematic
coordinates, and the other is the group of time independent parameters such as am-
biguities. The sequential application of block-wise least squares adjustment makes it
possible to give up some unknowns (say, out of date unknowns, such as past coordi-
nates) and keep the information related to the common unknowns during the pro-
cessing process. This method avoids the problem that may be caused by rapid enlarg-
ing of the number of unknowns. There are two ways to keep the solution equivalent
with a solution that is not sequential. One is to use the time independent unknowns at
the end of data processing as known, and then go back to process the data once again.
The other is to remember all sequential normal equations until the best solution of
the time independent unknowns are obtained, and then the coordinates can be recom-
puted. A special application of block-wise least squares adjustment is discussed for a
code-phase combination model. Of course, the two observables have to be suitably
scaled and weighted.

The equivalently eliminated observation equation system is discussed for eliminat-
ing some nuisance parameters. This method is nearly the same as block-wise least
squares adjustment if one carefully compares the normal equations of the second group
of unknowns (see Sect. 7.5) and the eliminated normal equations (see Sect. 7.6). How-
ever, the most important point is that the equivalently eliminated observation equa-
tions have been derived here. Instead of solving the original problem, one may directly
solve the equivalently eliminated observation equations, where the unknowns are
greatly reduced, whereas the observation vector and weight matrix remain the origi-
nals (i.e., the problem remains un-correlated). The precision estimation can also be
made more easily by using the formulas derived in least squares adjustment. The deri-
vation of such an equivalent observation equation was made first by Zhou (1985) and
applied in GPS theory by Xu (2002). The unified GPS data processing method is de-
rived by using this principle (cf. Sect. 6.8). Based on the derivation of the equivalent
equation, a diagonaliation algorithm of the normal equation and the observation equa-
tion are discussed. The diagonalisation algorithm can be used for separating one ad-
justment problem into two sub-problems.
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The classic Kalman filter is discussed. It is suitable for real time applications. A key
problem of the classic Kalman filter is the divergence caused by the inexact descrip-
tion of system equations and its statistic properties as well as the inhomogeneous
quality of the data. Furthermore, the solutions could be strongly dependent on the given
initial values. The sequential least squares adjustment method as a special case of
Kalman filtering is outlined.

Efforts have been made to modify the performance of classic Kalman filtering. In
the classic Kalman filter, the weight matrix P of observables is a static one, i.e., P is
assumed to be a definitive defined matrix. Taking the residuals of Kalman filtering
into account, one may adjust the weight P of the observables accordingly; such a pro-
cess is called robust Kalman filtering (Koch and Yang 1998). This principle can be also
used for controlling the outliers of observations (Yang 1999). Such an idea indeed can
be also used in all of the adjustment methods. Usually the weight of an observation is
either one (be accepted) or zero (be rejected). In robust Kalman filtering, a continu-
ous weight between one and zero is defined and introduced. A modified weight func-
tion is also discussed and given for use. Generally speaking, the robust weighting
method may modify the convergence process of the filtering procedure.

As soon as the system is defined, the Kalman filter also obtains remembering abili-
ties. However, if the system makes a discontinuous change (for example, aircraft from
static begins to run), the Kalman filter should be able to forget a part of the updated
parameters. Adding such ability to the robust Kalman filter is called an adaptively
robust Kalman filter (Yang et al. 2001) and is discussed in detail.

A priori constrained least squares adjustment is discussed in Sect. 7.8 for solving
the rank deficient problems. A general discussion on the a priori parameter constraints
is given. This method makes it possible to form the observation equations in a general
way, and then a priori information can be added to keep some references fixed, such as
the clock error of the reference satellite and the coordinates of the reference station. As
a special case of the a priori parameter constraints, a so-called a priori datum method
is discussed. The advantage of this method is that the a priori constraints just change
the normal equation by adding a term (the a priori weight matrix), so that all discussed
least squares adjustment and filtering methods can be directly used for solving the rank
deficient problems. Linear conditions related to the coordinate parameters can be in-
troduced by using this method. A quasi-stable datum method is also discussed. From
the point of view of the dynamic Earth, all stations are not fixed stations. The quasi-
stable datum method takes such dynamic behaviour of the stations into account.

7.9  ·  Summary



Chapter 8

Cycle Slip Detection and Ambiguity Resolution

In phase measurement there is an ambiguity problem. If the signal happens with a loss of
lock, the phase measurement has to be initiated again. This phenomenon is called cycle
slips, i.e., the cycle counting has a new beginning because of an interruption of signal. The
consequence of the cycle slips is that the adjacent carrier phase observable jumps by an
integer number of cycles, and in the related observation model the ambiguity parameter
should be a new one. Correct cycle slip detection becomes a guarantee for a correct ambi-
guity parameterisation. After the discussion of cycle slip detection, emphasis given to the
integer ambiguity resolution problem includes the criteria of the integer ambiguity search.
The historical ambiguity function method is also outlined and discussed.

8.1
Cycle Slip Detection

Recalling the discussions made in Sect. 6.5, several methods of cycle slip detection can
be summarised as follows.

1. Phase-Code Comparison

Using the first equation of 6.88

 , (8.1)

cycle slips of the phase observable in working frequency j can be detected. ∆t, Rj, Φj, Nj, λj,
ε, and j are the time difference operator, code range, phase, ambiguity, wavelength, residual,
and index of the frequency, respectively. In the case of no cycle slips, the time difference of
the ambiguity should be zero, i.e. ∆tNj = 0. Because the noise level of the code range is much
higher than that of the phase, this method can only be used for big cycle slip detection.

2. Phase-Phase Ionospheric Residual

Using Eq. 6.80

 , (8.2)

cycle slips of the two phase observables in frequency 1 and 2 can be detected. ∆t∆δion(tj)
is the so-called ionospheric residual. Generally speaking, the computed ionospheric
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residual of the two adjacent epochs should be very small. Any unusual change of the
ionospheric residual may indicate cycle slips in one or two phases. However, two spe-
cial cycle slips, ∆N1 and ∆N2, can lead also to a very small combination of λ1∆tN1 – λ2∆tN2.
Examples of such combinations can be found, e.g., in (Hofmann-Wellenhof et al. 1997).
Therefore, a big ionospheric residual indicates the cycle slips, whereas a small iono-
spheric residual does not guarantee that there are no cycle slips. Another shortcoming
of this method is that the ionospheric residual itself provides no possibility to check in
which phase the cycle slips happen.

3. Doppler Integration

Using Eq. 6.87

 , (8.3)

cycle slips of the phase observable in working frequency j can be detected. Dj is the
Doppler observable of frequency j. Recalling the discussions made in Chap. 4, the phase
is measured by keeping track of the partial phase and accumulating the integer count.
If there is any loss of lock of the signal during this time, the integer accumulation will
be wrong, i.e., cycle slip happens. Therefore, an external instantaneous Doppler inte-
gration is a good choice for cycle slip detection. The integration can be made first by
fitting the Doppler data with a polynomial of suitable order, and then integrating that
within the desired time interval. Polynomial fitting and numerical integration meth-
ods can be found in Sect. 11.5.2 and 3.4.

4. Differential Phases (of Time)

Using the first equation of 6.86

 ,    j = 1,2, (8.4)

cycle slips can be detected. Except for the ambiguity term, all other terms on the right
side are of low variation ones. Any cycle slips will lead to a sudden jump of the time
difference of the phases. The differenced data may be fitted with polynomials, and the
polynomials can be used for interpolating or extrapolating the data at the checking
epoch; the computed and differenced data then can be compared to decide if there are
any cycle slips.

8.2
Method of Dealing with Cycle Slips

As soon as the cycle slips have been detected, there are two ways to deal with them. One
is to repair the cycle slips, the other is to set a new ambiguity unknown parameter in
the GPS observation equations. To repair the cycle slips, the cycle slips have to be known
exactly. Any incorrect reparation will affect all observations later. Setting a new unknown
ambiguity parameter after a cycle slip is a more secure method. It seems that in this
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way there will be more unknowns in the observation equations. However, there exists a
condition between the former ambiguity parameter N(1) and the new one N(2), i.e.,

 , (8.5)

where I is an integer constant and i, j and k are indices of the receiver, satellite, and ob-
serving frequency, respectively. For any solution of N(1) and N(2) with good qualities,
the integer constant should be able to be easily distinguished. If I = 0, then no cycle slips
have really happened.

If instrumental biases have not been modelled, the biases may destroy the integer
property of the original ambiguity parameters. However, in such a case, the double
differenced ambiguities are still integers.

8.3
A General Criterion of Integer Ambiguity Search

An integer ambiguity search method based on conditional adjustment theory is pro-
posed in this section. By taking the coordinate and ambiguity residuals into account, a
general criterion for ambiguity searching is derived. The search can be carried out in
both ambiguity and coordinate domains. The optimality and uniqueness properties of
the general criterion are also discussed. A numerical explanation of the general criterion
is outlined. An equivalent criterion of the general criterion is derived based on a
diagonalised normal equation. It shows that the commonly used least squares ambiguity
search (LSAS) criterion is just one of the terms of the equivalent general criterion. Nu-
merical examples are given to illustrate the two components of the equivalent criterion.

8.3.1
Introduction

It is well-known that the ambiguity resolution is a key problem that has to be solved in
GPS precise positioning. Some well-derived ambiguity fixing and searching algorithms
have been published during the last ten years. There are four types of methods that are
categorized. The first type includes Remondi’s static initialisation approach (cf., e.g., Remon-
di 1984; Wang et al. 1988; Hofmann-Wellenhof et al. 1997), which requires a static survey
time to solve the ambiguity unknowns even after a complete loss of lock. Normally, the
results are good enough to take a round up ambiguity fixing. The second type includes the
so-called phase-code combined methods (cf., e.g., Goad and Remondi 1984; Han and Rizos
1997; Sjoeberg 1999); the phase and code have to be used in the derivation as if they have
the same precision, and in the case of anti-spoofing (AS), the C/A code has to be used. A
search process is still needed in this case. The third type is the so-called ambiguity function
method (Remondi 1984; Han and Rizos 1997); its search domain is a geometric one. The
fourth type includes approaches; their search domain is only in domain of ambiguity, in-
cluding some optimal algorithms to reduce the search area and to accelerate the search pro-
cess (cf., e.g., Euler and Landau 1992; Teunissen 1995; Cannon et al. 1997; Han and Rizos 1997).
Because of the statistic character of validation criteria, sometimes no valid result is ob-
tained at the end of the search processes. Gehlich and Lelgemann (1997) separated the am-
biguities from the other parameters; this is similar to the equivalent method (cf. Sect. 6.7).
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The effort to develop KSGsoft (Kinematic/Static GPS Software) at the GeoForschungs-
Zentrum (GFZ) in Potsdam began at the beginning of 1994 due to the requirement of
kinematic GPS positioning in aerogravimetry applications (Xu et al. 1998). An optimal
ambiguity resolution method is needed in order to implement it into the software;
however, selecting the published algorithms has turned out to be a difficult task. This
has led to the independent development of this so-called integer ambiguity search
method. It turns out to be a very promising algorithm. Using this general criterion, an
optimal solution vector can be searched for and found out. The searched result is the
optimal one under the least squares principle and integer ambiguity property.

In the following sections, a brief summary of the conditional adjustment is given for
the convenience of discussion. Then the ambiguity searches in the ambiguity domain,
and both ambiguity and coordinate domains are discussed. Properties of the general
criterion are discussed. An equivalent criterion of the general criterion is derived. Nu-
merical examples, conclusions and comments are given.

8.3.2
Summary of Conditional Least Squares Adjustment

The principle of least squares adjustment with condition equations can be summarised
as below (for details cf. Sect. 7.4; Gotthardt 1978; Cui et al. 1982):

1. The linearised observation equation system can be represented by

(8.6)

where L is the observation vector of dimension m, A is the coefficient matrix of di-
mension m × n, X is the unknown vector of dimension n, V is the residual vector of
dimension m, n and m are numbers of unknowns and observations, and P is the
symmetric and quadratic weight matrix of dimension m × m.

2. The condition equation system can be written as

 , (8.7)

where C is the coefficient matrix of dimension r × n, W is the constant vector of
dimension r, and r is the number of conditions.

3. The least squares criterion for solving the observation equations with condition
equations is well-known as

 , (8.8)

where VT is the transpose of the related vector V.
4. The solution of the conditional problem in Eqs. 8.6 and 8.7 under the least squares

principle of Eq. 8.8 is then

(8.9)
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and

 , (8.10)

where AT and CT are the transpose matrices of A and C, superscript −1 is an inversion
operator, Q = (ATPA)−1, K is a gain vector (of dimension r), index c is used to denote
the variables related to the conditional solution, and W1 = ATPL.

5. The precisions of the solutions are then

 , (8.11)

where i is the element index of a vector or a matrix, sd is the standard deviation (or
sigma) of unit weight, p[i] is the ith element of the precision vector, Qc[i][i] is the
ith diagonal element of the quadratic matrix Qc, and

 , (8.12)

 , (8.13)

 . (8.14)

6. For recursive convenience, (VTPV)c can be calculated by using

 . (8.15)

Above are the complete formulas of conditional least squares adjustment. The ap-
plication of such an algorithm for the purpose of integer ambiguity search will be fur-
ther discussed in later sections.

8.3.3
Float Solution

GPS observation equation can be represented with Eq. 8.6. Considering the case with-
out condition (Eq. 8.7), i.e., C = 0 and W = 0, the least squares solution of Eq. 8.6 is

 , (8.16)

and

 , (8.17)

    and (8.18)

 , (8.19)

8.3  ·  A General Criterion of Integer Ambiguity Search
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where index 0 is used for convenience to denote the variables related to the least squares
solution without conditions. X0 is the complete unknown vector including coordinates
and ambiguities and is called a float solution later on. Solution X0 is the optimal one
under the least squares principle. However, because of the observation and model er-
rors as well as method limitations, float solution X0 may not be exactly the right one,
e.g., the ambiguity parameters are real numbers and do not fit to the integer property.
Therefore, one sometimes needs to search for a solution, say X, which not only fulfils
some special conditions, but also meanwhile keeps the deviation of the solution as small
as possible (minimum). This can be represented by

 , (8.20)

or equivalently by a symmetric quadratic form of (cf. also Eq. 8.35 derived later)

 . (8.21)

In Eq. 8.20, Vx is the residual vector in the case of solution X. For simplification, let:

 ,

 , (8.22)

where Y is the coordinate vector, N is the ambiguity vector (generally, a real vector). The
float solution is denoted by

 ,

where X0 is the solution of Eq. 8.6 without Condition 8.7.

8.3.4
Integer Ambiguity Search in Ambiguity Domain

To use the conditional adjustment algorithm for integer ambiguity searching in the
ambiguity domain, the condition shall be selected as N = W; here W of course is an in-
teger vector. Generally, letting C = (0, E), then Condition 8.7 turns out to be:

 . (8.23)

Using the definitions of C and Q, one has

    and

 .
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The gain KN can be computed by using Eq. 8.10:

 . (8.24)

So under Condition 8.23, the conditional least squares solution in Eq. 8.9 can be writ-
ten as

 . (8.25)

Simplifying Eq. 8.25, one gets:

(8.26)

and

 . (8.27)

The precision computing formulas under Condition 8.23 can be derived as below:

    and (8.28)

 , (8.29)

where (VTPV)0 is the value obtained without Condition 8.23. The second term on the
right side of the last line in Eq. 8.29 is the often-used least squares ambiguity search
(LSAS) criterion for an integer ambiguity search in the ambiguity domain, which can
be expressed as

 . (8.30)

It indicates that any ambiguity fixing will cause an enlargement of the standard devia-
tion. However, one may also notice that here only the enlargement of the standard devia-
tion caused by ambiguity parameter changing has been considered. Furthermore, the
Condition 8.23 does not really exist. Ambiguities are integers, however, they are unknowns.
The formula to compute the accuracy vector of the ambiguity does not exist too, because
the ambiguity condition is considered exactly known in conditional adjustment.
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8.3.5
Integer Ambiguity Search in Coordinate and Ambiguity Domains

In order to see the enlargement of the standard deviation caused by the fixed solution,
the condition shall be selected as X = W; here, W consists of two sub-vectors (coordi-
nate and ambiguity parameter related sub-vectors). And only the ambiguity parameter
related sub-vector is an integer one. Letting C = E, Condition 8.7 is then:

 . (8.31)

One has

 .

Denote X0 = QW1; here X0 is the solution of Eq. 8.6 without Condition 8.31. The gain
K can be computed by using Eq. 8.10:

 . (8.32)

So under Condition 8.31, the conditional least squares solution in Eq. 8.9 can be written as

 . (8.33)

Precision computing formulas under Condition 8.31 can be derived as below:

 ,

 , (8.34)

where (VTPV)0 is the value obtained without Condition 8.31.
Condition 8.31 will force the observation Eq. 8.6 to take the condition W as the solu-

tion and will take the zero value as the precision of the conditional solution (i.e., the preci-
sion is undefined). The reason for this is that the condition is considered exactly known in
conditional adjustment. The second term on the right side of Eq. 8.34 is denoted as

 . (8.35)

This term in Eq. 8.34 indicates that any solution vector X, which is different from the
float solution vector X0, will enlarge the weighted squares residuals. It is well-known
that the float solution is the optimal solution under the least squares principle. There-
fore, statistically, the optimal solution X shall be that X which takes the minimum value
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of δ in Eq. 8.35. Mathematically speaking, Eq. 8.35 is the “distance” between vector X
and X0 in the solution space (of dimension n). If one considers n = 3 and Q−1 to be a
diagonal matrix, then δ is the geometric distance of point X and X0 in a cubic space. So
Eq. 8.35 can be used as a general criterion to express the nearness of the two vectors. By
using criterion of Eq. 8.35, one may search for solution X in the area being searched so
that the value of δ reaches the minimum. Under such a criterion, the deviation of the
result vector X related to the float vector X0 is homogenously considered.

Furthermore, Condition 8.31 is considered exactly known in conditional adjustment.
However, in integer ambiguity searching, we just know the ambiguities are integers, but
their values are indeed not known, or say, they are known with uncertainty (precision)
within an area around the float solution. So the best solution shall be searched for. For
computing the precision of the searched X, the formulas of least squares adjustment shall
be further used, and meanwhile the enlarged residuals shall be taken into account by

 ,

 ,    if    (m > n)    and

 . (8.36)

In other words, the original Q matrix and (VTPV)0 of the least squares problem in Eq. 8.6
are further used. The δ has the function of enlarging the standard deviation. The precision
computing formulas have nothing to do with the conditions. Searching for a minimum δ
leads to a minimum of standard deviation sd and therefore the best precision values.

Equation 8.35 is called the general criterion of an integer ambiguity search, which may
be used for searching for the optimal solution in the ambiguity domain, or both coordinate
and ambiguity domains. In most cases, the search will be started from the ambiguity do-
main. An integer vector N can be selected in the searching area, then the related coordinate
vector Y can be computed using the consistent relation of Y and N (cf. Eqs. 8.26 and 8.24).
The optimal solution searched shall be that X which leads Eq. 8.35 to a minimum value.

In the case of searching in the ambiguity domain, X consists of the selected sub-
vector of Nc in Eq. 8.27 and the computed coordinate sub-vector Yc in Eq. 8.26, i.e.,

⎟
⎟
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⎜
⎜
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N

Y
W  . (8.37)

8.3.6
Properties of the General Criterion

1. Equivalence of the Two Searching Scenarios

It should be emphasised that the same searching criterion of Eq. 8.35 and the same for-
mulas of precision estimation in Eq. 8.36 are used in the two integer ambiguity search
scenarios. And the same normal equation of 8.6 is used to compute the Yc using the
selected Nc if necessary. The two searching processes indeed deal with the same prob-
lem, just as different ways of searching are used.



Chapter 8  ·  Cycle Slip Detection and Ambiguity Resolution176

Suppose by searching in the ambiguity domain, the vector X = (Yc   Nc)
T is found so

that δ reaches the minimum, where Nc is the selected integer sub-vector and Yc is the
computed one. And in the case of searching in both coordinate and ambiguity domains,
a candidate vector X = (Y   N)T is selected so that δ reaches the minimum, where N is
the selected integer sub-vector and Y is the selected coordinate vector. Because of the
optimality and uniqueness properties of the vector X in Eq. 8.35 (please refer to 2, which
is discussed next), here the selected (Y   N)T must be equal to (Yc   Nc)

T. So the theoreti-
cal equivalency of the two searching processes is confirmed.

2. Optimality and Uniqueness Properties

The float solution X0 is the optimal and unique solution of Eq. 8.6 under the principle
of least squares. A minimum of δ in Eq. 8.35 will lead to a minimum of (VTPV)c
in Eq. 8.36. Therefore using criterion of Eq. 8.35 analogously, the searched vector X
is the optimal solution of Eq. 8.6 under the least squares principle and integer
ambiguity properties. The uniqueness property is obvious. If X1 and X2 are such that
δ(X1) = δ(X2) = min or δ(X1) – δ(X2) = 0, then by using Eq. 8.35, one may assume that
X1 must be equal to X2.

3. Geometric Explanation of the General Criterion

Geometrically, δ = (X0 – X)T (Q)–1(X0 – X) is the “distance” between the vector X and
float vector X0. The distance contributed to enlarge the standard deviation sd (cf.
Eq. 8.36). Ambiguity searching is then the search for the solution vector, which owns
the integer ambiguity property and has the minimum distance to the float solution
vector.

8.3.7
An Equivalent Ambiguity Search Criterion and its Properties

Suppose undifferenced GPS observation equation and related LS normal equation are

 ,    P (8.38)

 , (8.39)

where

 , (8.40)

 .

Where all symbols have the same meanings as that of Eqs. 7.117 and 7.118. Equation
8.39 can be diagonalised as (cf. Sect. 7.6.1)
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 , (8.41)

where

 . (8.42)

The related equivalent observation equation of the diagonal normal Eq. 8.41 can be
written (cf. Sect. 7.6.1)

 , (8.43)

where all symbols have the same meanings as that of Eqs. 7.140 and 7.142.
Suppose GPS observation equation is Eq. 8.38 and the related least squares normal

equation is Eq. 8.39, where X2 = N (N is the ambiguity sub-vector) and X1 = Y (Y is the
other unknown sub-vector). The general criterion is (cf. Eq. 8.35)

 , (8.44)

where X = (Y   N)T, X0 = (Y0   N0)T, dX = X0 – X and index 0 denotes the float solution.
The search process in the ambiguity domain is a process to find out a solution X (which
includes N in the searching area and the computed Y) so that the value of δ(dX) reaches
the minimum. The optimality property of this criterion is obvious.

For the equivalent observation Eq. 8.43, the related least squares normal equation is
Eq. 8.41. The related equivalent general criterion is then (putting the diagonal cofactor
of Eq. 8.41 into Eq. 8.44 and taking Eqs. 8.40 and 8.42 into account)

(8.45)

where index 1 is used to distinguish criterion of Eq. 8.45 from Eq. 8.44. The observa-
tion equations 8.38 and 8.43 are equivalent, and the related normal Eqs. 8.39 and 8.41
are also equivalent. Therefore, the Criterion 8.45 is called an equivalent criterion of the
general Criterion 8.44.

Furthermore, Y and N shall be consistent to each other because they are presented
in the same normal Eqs. 8.39 and 8.41. Using condition W = N and notation of Eq. 8.42,
one has from Eqs. 8.26 and 8.24

 . (8.46)

Putting Eq. 8.46 into Eq. 8.45, one has

 . (8.47)

It is notable that the second term δ(dN) of the equivalent criterion Eq. 8.45 is exactly
the same as the commonly used least squares ambiguity search (LSAS) criterion of Eq. 8.30
(cf., e.g., Teunissen 1995; Leick 1995; Hofmann-Wellenhof et al. 1997; Euler and Landau
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1992; Han and Rizos 1997). Through Eq. 8.47 one may clearly see the differences between
the criteria of Eqs. 8.30 and 8.45. When the results searched using Eq. 8.30 are different
from that of using Eq. 8.45, the results from the search using Eq. 8.30 shall be only sub-
optimal ones due to the optimality and uniqueness property of Eq. 8.45. The first term
on the right side of Eq. 8.45 signifies an enlarging of the residuals due to the coordinate
change caused by ambiguity fixing (cf. Sect. 8.3.3). The second term on the right side of
Eq. 8.45 signifies an enlarging of the residuals due to the ambiguity change caused by
ambiguity fixing (cf. Sect. 8.3.4). Equation 8.45 takes both effects into account.

1. Optimality and Uniqueness Properties of the Equivalent Criterion

The float solution X0 is the optimal and unique solution of Eq. 7.117 under the least
squares principle. Criterion Eq. 8.45 is equivalent to criterion Eq. 8.44. A X leads to the
minimum of δ1(dX) in Eq. 8.45, which will lead to the minimum of δ(dX) in Eq. 8.44
and consequentially the minimum of (VTPV)c in Eq. 8.36; therefore using criterion of
Eq. 8.45, analogously, the searched vector X is the optimal solution of Eq. 8.38 under
the least squares principle and integer ambiguity properties. The uniqueness property is
obvious. If one has X1 and X2 so that δ1(dX1) = δ2(dX2) = min., or δ1(dX1) – δ1(dX2) = 0,
then by using Eq. 8.45, one may assume that X1 must be equal to X2.

It is notable that Eqs. 8.44 and 8.45 are equivalent for use in searching; however, they
are neither the same nor equal. For computing the precision, δ  in Eq. 8.36 has to be
computed using Eq. 8.44.

8.3.8
Numerical Examples of the Equivalent Criterion

Several numerical examples are given here to illustrate the behaviour of the two terms
of the criterion. The first and second terms on the right-hand side of Eq. 8.45 are de-
noted as δ(dY) and δ(dN), respectively. δ1(dX) = δ(dY) + δ(dN) is the equivalent cri-
terion of the general criterion and is denoted as δ(total). The term δ(dN) is the LSAS
criterion. Of course, the search is made in the ambiguity domain. The search area is deter-
mined by the precision vector of the float solution. All possible candidates are tested one
by one, and the related δ1(dX) are compared with each other to find out the minimum.

In the first example, precise orbits and dual frequency GPS data of 15 April 1999 at
station Brst (N 48.3805°, E 355.5034°) and Hers (N 50.8673°, E 0.3363°) are used. The
session length is 4 hours. The total search candidate number is 1 020. Results of the two
delta components are illustrated as 2-D graphics with the 1st axis of search number and
the 2nd axis of delta in Fig. 8.1. The red and blue lines represent δ(dY) and δ(dN), re-
spectively. δ(dY) reaches the minimum at the search No. 237, and δ(dN) at 769. δ(total)
is plotted in Fig. 8.2, and it shows that the general criterion reaches the minimum at the
search No. 493. For more detail, a part of the results are listed in Table 8.1.

δ(dN) reaches the second minimum at search No. 771. This example shows that the
minimum of δ(dN) may not lead to the minimum of total delta, because the related
δ(dY) is large. If the delta ratio criterion is used in this case, the LSAS method will
reject the found minimum and explain that no significant ambiguity fixing can be made.
However, because of the uniqueness principle of the general criterion, the search reaches
the total minimum uniquely.
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Fig. 8.1. Two components of the equivalent ambiguity search criterion

Fig. 8.2. Equivalent ambiguity search criterion
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The second example is very similar to the first one. The delta values of the search
process are plotted in Fig. 8.3, where δ(dY) is much smaller than δ(dN). δ(dN) reaches
the minimum at the search No. 5 and δ(dY) at 171. δ(total) reaches the minimum at the
search No. 129. The total 11 ambiguity parameters are fixed and listed in Table 8.2. Two
ambiguity fixings have just one cycle difference at the 6th ambiguity parameter. The
related coordinate solutions after the ambiguity fixings are listed in Table 8.3. The co-
ordinate differences at component x and z are about 5 mm. Even the results are very
similar; however, two criteria do give different results.

In the third example, real GPS data of 3 October 1997 at station Faim (N 38.5295°,
E 331.3711°) and Flor (N 39.4493°, E 328.8715°) are used. The delta values of the search
process are listed in Table 8.4. Both δ(dN) and δ(total) reach the minimum at the search
No. 5. This indicates that the LSAS criterion may sometimes reach the same result as
that of the equivalent criterion being used.

Table 8.1. Delta values of searching process

Table 8.4.
Deltas of the ambiguity search
process

Table 8.2. Two kinds of ambiguity fixing due to two criteria

Table 8.3.
Ambiguity fixed coordinate
solutions (in meters)
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8.3.9
Conclusions and Comments

1. Conclusions

A general criterion and its equivalent criterion of integer ambiguity searching are pro-
posed in this section. Using these two criteria, the searched result is optimal and unique
under the least squares minimum principle and under the condition of integer ambi-
guities. The general criterion has a clear geometrical explanation. The theoretical rela-
tionship between the equivalent criterion and the commonly used least squares ambi-
guity search (LSAS) criterion is obvious. It shows that the LSAS criterion is just one of
the terms of the equivalent criterion of the general criterion (this does not take into
account the residual enlarging effect caused by coordinate change due to ambiguity fix-
ing). Numerical examples show that a minimum δ(dN) may have a relatively large δ(dY),
and therefore a minimum δ(dN) may not guarantee a minimum δ(total). For an opti-
mal search, the equivalent criterion or the general criterion shall be used.

2. Comments

The float solution is the optimal solution of the GPS problem under the least squares
minimum principle. Using the equivalent general criterion, the searched solution is the
optimal solution under the least squares minimum principle and under the condition
of integer ambiguities. However, the ambiguity-searching criterion is just a statistic
criterion. Statistic correctness does not guarantee correctness in all applications. Am-
biguity fixing only makes sense when the GPS observables are good enough and the
data processing models are accurate enough.

Fig. 8.3. Example of equivalent ambiguity search criterion
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8.4
Ambiguity Function

It is well-known that in GPS precise positioning, ambiguity resolution is one of the key
problems that has to be solved. Some well-derived ambiguity fixing and searching al-
gorithms have been published in the past. One of these methods is the ambiguity func-
tion (AF) method, which can be found in many standard publications (Remondi 1984;
Wang et al. 1988; Han and Rizos 1995; Hofmann-Wellenhof et al. 1997).

The principle of the ambiguity function method is to use the single-differenced
phase observation

 , (8.48)

to form an exponential complex function

    or (8.49)

 , (8.50)

where Φ is the phase observable, ρ is the geometric distance of the signal transmitting path,
λ is the wavelength, index j denotes the observed satellite, tk is the kth  observational time,
N is ambiguity, γ is the model of the receiver clock errors, and i is the imaginary unit. All
terms in Eq. 8.48 have the units of cycles and are single-differenced terms. Property

is used in order to get Eq. 8.50.
Making a summation over all satellites and then taking the modulus operation, one

has

 , (8.51)

where property

is used, nj is the satellite number and nj(k) is the observed satellite number at epoch k.
Making a summation of Eq. 8.51 over all the observed time epochs, one has

 , (8.52)

where nk is the total epochs number. The left side of Eq. 8.52 is called the ambiguity
function, where unknowns are the coordinates of the remote station. The values of the
ambiguity function have to be computed for all candidates of coordinates, and the op-
timum solution is found if the function reaches the maximum, i.e.,
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 . (8.53)

The search area can be determined by the standard deviations (σ) of the initial
coordinates (e.g., a cube with side lengths of 3σ or a sphere with a radius of 3σ). The
AF method is indeed an ambiguity free method. The ambiguity can be computed using
the optimal coordinate solution of Eq. 8.53.

Further discussion on the AF method is given in the next sub-section.

8.4.1
Maximum Property of Ambiguity Function

The ambiguity function is discussed in Sect. 8.4. Here a numerical study of the maxi-
mum property of the ambiguity function (AF) is given. It seems that the maximum value
of the AF trends to be reached at the boundary of any given search area. Numerical
examples are given to illustrate the conclusion. However, a theoretical proof has still
not been found up to now; even the author tried to find one, but failed.

Numerical Examples

Several numerical examples are given here to illustrate the behaviours of the ambigu-
ity function criterion. The GPS data of the EU AGMASCO project (cf., e.g., Xu et al. 1997)
are used. Data are combined with the data of IGS network and solved for precise coor-
dinates as references. The station Faim (N 38.5295°, E 331.3711°) is used as the refer-
ence and Flor (N 39.4493°, E 328.8715°) is used as the remote station. The baseline length
is about 240 km. The data length is about four hours of 3 October, 1997. KSGsoft (Xu
et al. 1998) is used for computing a static solution of the coordinates of Flor. The differ-
ences of the KSGsoft solution and IGS solution are (0.26, 1.93, 1.37) cm in the global
Cartesian coordinate system. Related standard deviations of the KSGsoft solution are
(0.04, 0.04, 0.02) cm. The differences are caused partly by the different data lengths. This
assures a good standard for the software being used.

The search step is selected as 1 mm. Tropospheric and ionospheric effects are cor-
rected. In the first example, three hours of data are used. The search area is a 3-D cube
with side lengths of ±(0.7, 0.7, 0.4) cm in (x, y, z). Results show that the AF maximum is
reached at point (–0.7, 0.7, 0.4) cm, which is on the boundary of the area being searched.

A search process (with a search area of ±7 mm and one hour of data) is illustrated
in 2-D graphics with the 1st axis containing search numbers and the 2nd axis containing
AF values in Fig. 8.4. The graphic looks like a 3-D AF projection of the cubic searching
area (the picture could be quite different in other examples). Figure 8.4 clearly shows
the boundary maximum effect of the AF criterion. Expanding the searched area (and,
of course, its boundary), the maximum is reached on the new boundary (of the new
cubic surface).

Alternatively, the search may be made on a spherical surface with an expanding
radius. The results of such an example are illustrated in Fig. 8.5, where only radii of
1, 2, …, 10 mm are given. As the radius expands, the AF maximum becomes greater
and is always reached over the spherical surface with the maximum radius.
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Fig. 8.4. 3-D coordinate search using ambiguity function

Fig. 8.5. Spherical coordinate search using ambiguity function
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Theoretical Indications

The AF Eq. 8.53 is rewritten as

 , (8.54)

 , (8.55)

    and (8.56)

 , (8.57)

where Y is the coordinate vector, Ω  is to be the searched coordinate area and is a closed area
(i.e., it includes the boundary Γ), vj(tk) are the residuals of GPS observation equations (a
continuous function of Y), Sk is a complex function of Y, and G(tk) is the modulus of Sk.

If the GPS data sampling intervals are sufficiently close and the numerical integra-
tion error is negligible (cf. Xu 1992), then one has

 , (8.58)

where T = te – t1, te = t(nk), and t1 and te are the beginning and end time of the observa-
tions. According to the middle value theorem of the integration (cf., e.g., Bronstain and
Semendjajew 1987; Wang et al. 1979) (such a theorem can be found in all integration
related books), one has a time point ξ  (t1 < ξ < te) so that

 , (8.59)

i.e., the AF can be represented by a unique G(t) at time ξ  (the constant factor is omitted
here). Equation 8.54 turns out to be

 . (8.60)

Because of the definition of AF, G(ξ) is a modulus of a complex function.
In complex function analysis theory, there is a so-called maximum theorem (cf., e.g.,

Bronstain and Semendjajew 1987; Wang et al. 1979), i.e.:

Maximum Modulus Theorem: if complex function f(z) is analytic within a limited area Z
and is continuous over the closed Z, then modulus |f(z)| reaches the maximum on the
boundary Γ  of Z.

However, such a theorem cannot be directly used for Eq. 8.60 because the theorem is
valid only for the analytic complex function defined over a complex plane, whereas
function G(ξ) is a complicated three-dimensional complex function.

Maybe the interested reader will consider this in detail and find out a theoretical proof.

8.4  ·  Ambiguity Function
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The parameterisation problems of the bias parameters in the GPS observation model
are outlined in the Sect. 12.1 of the first edition of this book. The problems are then
mostly solved and the theory will be addressed here in detail (cf. Xu 2004; Xu et al.
2006b). The equivalence properties of the algorithms of GPS data processing are de-
scribed. The standard algorithms are outlined.

9.1
Parameterisation of the GPS Observation Model

The commonly used GPS data processing methods are the so-called uncombined and com-
bining, undifferenced and differencing algorithms (e.g., Hofmann-Wellenhof et al. 2001;
Leick 2004; Remondi 1984; Seeber 1993; Strang and Borre 1997; Blewitt 1998). The obser-
vation equations of the combining and differencing methods can be obtained by carrying
out linear transformations of the original (uncombined and undifferenced) equations. As
soon as the weight matrix is similarly transformed according to the law of variance-cova-
riance propagation, all methods are theoretically equivalent. The equivalences of combin-
ing and differencing algorithms are discussed in Sects. 6.7 and 6.8, respectively. The equiva-
lence of the combining methods is an exact one, whereas the equivalence of the differencing
algorithms is slightly different (Xu 2004, cf. Sect. 9.2). The parameters are implicitly ex-
pressed in the discussions; therefore, the parameterisation problems of the equivalent
methods have not been discussed in detail. At that time, this topic was considered one of
the remaining GPS theoretical problems (Xu 2003, p 279–280, Wells et al. 1987, p 34), and
it will be discussed in the next subsection.

Three pieces of evidence of the parameterisation problem of the undifferenced GPS ob-
servation model are given first. Then the theoretical analysis and numerical derivation are
made to show how to parameterise the bias effects of the undifferenced GPS observation
model independently. A geometry-free illustration and a correlation analysis in the case of
a phase-code combination are discussed. At the end, conclusions and comments are given.

9.1.1
Evidence of the Parameterisation Problem of the Undifferenced Observation Model

Evidence from Undifferenced and Differencing Algorithms

Suppose the undifferenced GPS observation equation and the related LS normal equa-
tion are

Parameterisation and Algorithms
of GPS Data Processing
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 ,    P (9.1)

 , (9.2)

where all symbols have the same meanings as that of Eqs. 7.117 and 7.118. Equation 9.2
can be diagonalised as (cf. Sect. 7.6.1)

 . (9.3)

The related equivalent observation equation of the diagonal normal Eq. 9.3 can be
written (cf. Sect. 7.6.1)

 , (9.4)

where all symbols have the same meanings as that of Eqs. 7.142 and 7.140. If X1 is the
vector containing all clock errors, then the second equation of Eq. 9.3 is the equiva-
lent double differencing GPS normal equation. It is well known that in a double
differencing algorithm, the ambiguity sub-vector contained in X2 must be the double
differencing ambiguities; otherwise, the problem will be generally singular. It is no-
table that X2 is identical with that of in the original undifferenced observation Eq. 9.1.
Therefore, the ambiguity sub-vector contained in X2 (in Eq. 9.1) must be a set of double
differencing ambiguities (or an equivalent set of ambiguities). This is the first piece
of evidence (or indication) of the singularity of the undifferenced GPS observation
model in which the undifferenced ambiguities are used.

Evidence from Uncombined and Combining Algorithms

Suppose the original GPS observation equation of one viewed satellite is (cf. Eq. 6.134)

 ,    P; (9.5)

then the uncombined or combining algorithms have the same solution of (cf. Eq. 6.138)

 , (9.6)
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where all symbols have the same meanings as that of Eqs. 6.134 and 6.138. Then one
notices that the ionosphere (B1) and geometry (Cρ) are functions of the codes (R1 and
R2) and are independent from phases (Φ1 and Φ2) in Eq. 9.6. In other words, the phase
observables do not have any contribution to the ionosphere and geometry. And this is
not possible. Such an illogical conclusion is caused by the parameterisation of the am-
biguities given in the observation model of Eq. 9.5. If one takes the first evidence dis-
cussed above into account and defines that for each station one of the satellites in view
must be selected as reference and the related ambiguity has to be merged into the clock
parameter, then the phases do have contributions to ionosphere and geometry. One
notices again that the parameterisation is a very important topic and has to be dis-
cussed more specifically. An improper parameterisation of the observation model will
lead to incorrect conclusions through the derivation from the model.

Evidence from Practice

Without using a priori information, a straightforward programming of the GPS data
processing using an undifferenced algorithm leads to no results (i.e., the normal equa-
tion is singular, cf. Xu 2004). Therefore an exact parameterisation description is nec-
essary and will be discussed in the next section.

9.1.2
A Method of Uncorrelated Bias Parameterisation

We restrict ourselves here to discuss the parameterisation problem of the bias param-
eters (or constant effects, i.e., the clock errors and ambiguities) only.

Recall the discussions of the equivalence of undifferenced and differencing algo-
rithms in Sect. 6.8. The equivalence property is valid under three conditions: observa-
tion vector L used in Eq. 9.1 is identical; parameterisation of X2 is identical; and X1 is
able to be eliminated (cf. Sect. 6.8).

The first condition is necessary for the exactness of the equivalence because of the
fact that through forming differences, the unpaired data will be cancelled out in the
differencing.

The second condition states that the parameterisation of the undifferenced and
differencing model should be the same. This may be interpreted as the following: the
rank of the undifferenced and differencing equations should be the same if the
differencing is formed by a full rank linear transformation. If only the differencing
equations are taken into account, then the rank of the undifferenced model should
equal the rank of the differencing model plus the number of eliminated independent
parameters.

It is well known that one of the clock error parameters is linearly correlated with
the others. This may be seen in the proof of the equivalence property of the double
differences, where the two receiver clock errors of the baseline may not be separated
from each other and have to be transformed to one parameter and then eliminated
(Xu 2002, Sect. 6.8). This indicates that if in the undifferenced model all clock errors
are modelled, the problem will be singular (i.e. rank defect). Indeed, Wells et al. (1987)
noticed that the equivalence is valid if measures are taken to avoid rank defect in the
bias parameterisation. Which clock error has to be kept fixed is arbitrary. Because of
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the different qualities of the satellite and receiver clocks, a good choice is to fix a
satellite clock error (the clock is called a reference clock). In practice, the clock error
is an unknown; therefore, there is no way to keep that fixed except to fix it to zero. In
such a case, the meaning of the other bias parameters will be changed and may repre-
sent the relative errors between the other biases.

The third condition is important to ensure a full-ranked parameterisation of the
parameter vector X1, which is going to be eliminated.

The undifferenced Eq. 9.1 is solvable if the parameters X1 and X2 are not over-
parameterised. In the case of single differences, X1 includes satellite clock errors and
is able to be eliminated. Therefore, to guarantee that the undifferenced model Eq. 9.1
is not singular, X2 in Eq. 9.1 must be not over-parameterised. In the case of double
differences, X1 includes all clock errors except the reference one. Here we notice that
the second observation equation of 9.1 is equivalent to the double differencing obser-
vation equation and the second equation of 9.2 is the related normal equation. In a
traditional double differencing observation equation, the ambiguity parameters are
represented by double differencing ambiguities. Recall that for the equivalence prop-
erty, the number (or rank) of ambiguity parameters in X2 that are not linearly corre-
lated must be equal to the number of the double differencing ambiguities. In the case
of triple differences, X1 includes all clock errors and ambiguities. The fact that X1
should able to be eliminated leads again to the conclusion that the ambiguities should
be linearly independent.

The two equivalent linear equations should have the same rank. Therefore, if all
clock errors except the reference one are modelled, the number of independent
undifferenced ambiguity parameters should be equal to the number of double
differencing ambiguities. According to the definition of the double differencing ambi-
guity, one has for one baseline

 (9.7)

where i1 and i2 are station indices, kj is the jth satellite’s identification, n is the com-
mon observed satellite number and is a function of the baseline, and N is ambiguity.
Then there are n – 1 double differencing ambiguities and 2n undifferenced ambigu-
ities. Taking the connection of the baselines into account, there are n – 1 double
differencing ambiguities and n new undifferenced ambiguities for any further baseline.
If i1 is defined as the reference station of the whole network and k1 as the reference
satellite of station i2, then undifferenced ambiguities of the reference station cannot
be separated from the others (i.e., they are linearly correlated with the others). The
undifferenced ambiguity of the reference satellite of station i2 cannot be separated
from the others (i.e., it is linearly correlated with the others). That is, the ambiguities
of the reference station cannot be determined, and the ambiguities of the reference
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satellites of non-reference stations cannot be determined. Either they should not be
modelled or they should be kept fixed. A straightforward parameterisation of all
undifferenced ambiguities will lead to rank defect, and the problem will be singular
and not able to be solved.

Therefore, using the equivalence properties of the equivalent equation of GPS data
processing, we come to the conclusion that the ambiguities of the reference station
and ambiguities of the reference satellite of every station are linearly correlated with
the other ambiguities and clock error parameters. However, a general method of
parameterisation should be independent of the selection of the references (station
and satellite). Therefore, we use a two-baseline network to further our analysis. The
original observation equation can be written as follows:

(9.8)

(9.9)

(9.10)

where only the bias terms are listed and L and δ  represent observable and clock
error, respectively. Observation equations of station i1, i2 and i3 are Eqs. 9.8, 9.9 and
9.10. Define that the baseline 1, 2 are formed by station i1 and i2, as well as i2 and
i3, respectively. Select i1 as the reference station and then keep the related ambi-
guities fixed (set to zero for simplification). For convenience of later discussion,

9.1  ·  Parameterisation of the GPS Observation Model
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select δ i1 as the reference clock (set to zero, too) and select k1, k2 as reference
satellites of the station i2, i3 (set the related ambiguities to zero), respectively. Then
Eqs. 9.8–9.10 become

(9.11)

(9.12)

(9.13)

Differences can be formed through linear operations. The total operation is a full
rank linear transformation, which does not change the least squares solution of the
original equations. Single differences can be formed by the following (Eq. 9.11 re-
mains unchanged and therefore will not be listed again):

(9.14)
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(9.15)

where two observations are unpaired due to the baseline definitions. Double differ-
ences can be formed by

(9.16)

(9.17)

Using Eqs. 9.16 and 9.11, Eq. 9.17 can be further modified to

(9.18)

9.1  ·  Parameterisation of the GPS Observation Model



Chapter 9  ·  Parameterisation and Algorithms of GPS Data Processing194

or

(9.19)

From the last equation of Eqs. 9.16 and 9.19, it is obvious that the clock error
and the ambiguities of satellite k7, which is not observed by the reference station,
are linearly correlated. Keeping one of the ambiguities of the satellite k7 at station i2
or i3 is necessary and equivalent. Therefore, for any satellite that is not observed
by the reference station, one of the related ambiguities should be kept fixed (station
selection is arbitrary). In other words, one of the ambiguities of all satellites has to
be kept fixed. In this way, every transformed equation includes only one bias pa-
rameter and the bias parameters are linearly independent (regular). Furthermore,
the differencing cannot be formed for the unpaired observations of every baseline.
However, in the case of an undifferenced adjustment, the situation would be dif-
ferent. We notice that the equation for k6 in Eq. 9.18 can be transformed to a double
differencing one in Eq. 9.19. If more data is used in the undifferenced algorithm
than in the differencing method, the number of undifferenced ambiguity para-
meters will be larger than that of the double differencing ones. Therefore, we have
to drive the so-called data condition to guarantee that the data are able to be dif-
ferenced, or equivalently, we have to extend the way of double differencing forming
so that the differencing will be not limited by special baseline design. Both will be
discussed in Sect. 9.2.

The meanings of the parameters are changed by independent parameterisation,
and they can be read from Eqs. 9.11–9.13. The clock errors of the satellites observed
by the reference station include the errors of receiver clock and ambiguities. The re-
ceiver clock errors include the error of ambiguity of the reference satellite of the same
station. Due to the inseparable property of the bias parameters, the clock error pa-
rameters no longer represent pure clock errors, and the ambiguities represent no longer
pure physical ambiguity. Theoretically speaking, the synchronisation applications of
GPS may not be realised using the carrier-phase observations. Furthermore, Eq. 9.19
shows that the undifferenced ambiguities of i3 have the meaning of double differencing
ambiguities of the station i3 and i1 in this case.

Up to now, we have discussed the correlation problem of the bias parameters and
found a method of how to parameterise the GPS observations regularly to avoid the
problem of rank defect. Of course, many other ways to parameterise the GPS observa-
tion model can be similarly derived. However, the parameter sets should be equiva-
lent to each other and can be transformed from one set to another uniquely as long as
the same data is used.
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9.1.3
Geometry-Free Illustration

The reason why the reference parameters have to be fixed lies in the nature of range
measurements, which cannot provide information of the datum origin (cf., e.g., Wells
et al. 1987, p 9). Suppose d is the direct measurement of clock errors of satellite k and
receiver i, i.e. dk

i = δi + δk, no matter how many observations were made and how the
indices were changed, one parameter (i.e. reference clock) is inseparable from the oth-
ers and has to be fixed. Suppose h is the direct measurement of ambiguity N and clock
errors of satellite k and receiver i, i.e., hk

i = δi + δk + Nk
i , the number of over-parame-

terised biases is exactly the number of total observed satellites and used receivers. This
ensures again that our parameterisation method to fix the reference clock and one
ambiguity of every satellite as well as one ambiguity of the reference satellite of every
non-reference station is reasonable. The case of combination of d and h (as code and
phase observations) will be discussed in the next section.

9.1.4
Correlation Analysis in the Case of Phase-Code Combinations

A phase-code combined observation equation can be written by (cf. Sect. 7.5.2)

 , (9.20)

where L1 and L2 are the observational vectors of phase (scaled in length) and code,
respectively; V1 and V2 are related residual vectors; X2 and X1 are unknown vectors of
ambiguity and others; A12 and A11 are related coefficient matrices; P0 is a symmetric
and definite weight matrix; and wp and wc are weight factors of the phase and code
observations.

The phase, code and phase-code normal equations can be formed respectively by

 ,

 ,    and

 , (9.21)

where

 ,

 ,

 , (9.22)

9.1  ·  Parameterisation of the GPS Observation Model
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 ,    and

 .

The covariance matrix Q is denoted

 , (9.23)

where (Gotthardt 1978; Cui et al. 1982)

 ,

 , (9.24)

    and

 .

i.e.,

 ,

    and (9.25)

 .

Thus the correlation coefficient Cij is a function of wp and wc, i.e.,

 , (9.26)

where indices i and j are the indices of unknown parameters in X1 and X2. For wc = 0
(only phase is used, X1 and X2 are partly linear correlated) and wc = wp (X1 and X2 are
uncorrelated), there exists indices ij, so that

 . (9.27)

In other words, there exists indices i and j, the related unknowns are correlated if
wc = 0 and uncorrelated if wc = wp. In the case of a phase-code combination, wc = 0.01wp
can be selected, and one has

 , (9.28)

whose value should be very close to 1 (strong correlated) in the discussed case. Equa-
tions 9.26, 9.27 and 9.28 indicate that for the correlated unknown pair ij, the correla-
tion situation may not change much by combining the code to the phase because of
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the lower weight of the code related to the phase. A numerical test confirmed this con-
clusion (Xu 2004).

9.1.5
Conclusions and Comments

In this section, the singularity problem of the undifferenced GPS data processing is
pointed out and an independent parameterisation method is proposed for bias pa-
rameters of the GPS observation model. The method is implemented into software,
and the results confirm the correctness of the theory and algorithm. Conclusions can
be summarised by

1. Bias parameterisation of undifferenced GPS phase observations with all clock er-
rors except the reference one, and all undifferenced ambiguities are linearly corre-
lated. The linear equation system of undifferenced GPS is then singular and cannot
be solved theoretically;

2. A linear independent bias parameterisation can be reached by fixing the reference
clock of the reference station, fixing one of the ambiguities of every satellite of
arbitrary station (called reference station of every satellite), and fixing the ambi-
guities of the reference satellite of every non-reference station. The selections of
the references are arbitrary; however, the selections are not allowed to be dupli-
cated;

3. The linear independent ambiguity parameter set is equivalent to the parameter set
of double differencing ambiguities, and they can be transformed from one to an-
other uniquely if the same data is used;

4. The physical meanings of the bias parameters are varied depending on the way of
parameterisation. Due to the inseparable property of the bias parameters, the
synchronisation applications of GPS may not be realised using the carrier-phase
observations;

5. The phase-code combination does not change the correlation relation between the
correlated biases significantly.

Due to the facts regarding the use of the undifferenced algorithm, it is worthy to
give some comments:

1. In the undifferenced algorithm, the observation equation is a rank defect one if the
over-parameterisation problem has not been taken into account. The numerical
inexactness introduced by eliminating the clock error parameters and the use of a
priori information of some other parameters are the reason why the singular prob-
lem is solvable in practice so far;

2. Using the undifferenced and differencing methods, solutions of the common pa-
rameters must be the same if the undifferenced GPS data modelling is really an
equivalent one and not over-parameterised;

3. A singular undifferenced parameterisation may become regular by introducing
conditions or by fixing some of the parameters through introducing a priori infor-
mation.

9.1  ·  Parameterisation of the GPS Observation Model



Chapter 9  ·  Parameterisation and Algorithms of GPS Data Processing198

9.2
Equivalence of the GPS Data Processing Algorithms

The equivalence theorem, an optimal method for forming an independent baseline
network and a data condition as well as the equivalent algorithms using secondary
observables are discussed in this section (cf. Xu et al. 2006c).

9.2.1
Equivalence Theorem of GPS Data Processing Algorithms

In Sect. 6.7 the equivalence properties of uncombined and combining algorithms of
GPS data processing are given. Whether uncombined or combining algorithms are
used, the results obtained are identical and the precisions of the solutions are identi-
cal, too. It is notable that the parameterisation is very important. The solutions de-
pend on the parameterisation. For convenience, the original GPS observation equa-
tion and the solution are listed as (cf. Sect. 6.7)

 , (9.29)

and

 , (9.30)

where the meanings of the symbols are the same as that of Eqs. 6.134 and 6.138.
In Sect. 6.8, the equivalence properties of undifferenced and differencing algorithms

of GPS data processing are given. Whether undifferenced or differencing algorithms
are used, the results obtained are identical and the precisions of the solutions are
equivalent. It is notable that the equivalence here is slightly different from the equiva-
lence in combining algorithms. To distinguish them, we call the equivalence in
differencing case a soft equivalence. The soft equivalence is valid under three so-called
conditions. The first is a data condition, which guarantees that the data used in
undifferenced or differencing algorithms are the same. The data condition will be
discussed in the next section. The second is a parameterisation condition, i.e., the
parameterisation must be the same. The third is the elimination condition, i.e., the
parameter set to be eliminated should be able to be eliminated. (Implicitly, the param-
eter set of the problem should be a regular one). Because of the process of elimination,
the cofactor matrices of the undifferenced and differencing equations are different. If
the cofactor of an undifferenced normal equation has the form of



1999.2  ·  Equivalence of the GPS Data Processing Algorithms

 , (9.31)

then we call the diagonal part of the cofactor

(9.32)

an equivalent cofactor. The equivalent cofactor has the same diagonal element blocks
as the original cofactor matrix Q and guarantees that the precision relation between
the unknowns remains the same. The soft equivalence is defined as follows: the solu-
tions are identical and the covariance matrices are equivalent. Such a definition is im-
plicitly used in the traditional block-wise least squares adjustment. It is notable that
the parameterisation is very important and the rank of the normal equation of the
undifferenced observation equation must be equal to the rank of the normal equa-
tion of the differencing observation equation plus the number of the eliminated inde-
pendent parameters. For convenience, the original GPS observation equation and the
equivalent differencing equation can be generally written as (cf. Eqs. 9.1 and 9.4)

 ,    P (9.33)

 . (9.34)

In Sect. 9.1 the way to parameterise the GPS observables independently is pro-
posed. A correct and reasonable parameterisation is the key to a correct conclusion by
combining and differencing derivations. An example is given in Sect. 6.7 where an
illogical conclusion is derived due to the inexact parameterisation.

For any GPS survey with a definitive space-time configuration, observed GPS data
can be parameterised (or modelled) in a suitable way and listed together in a form of
linear equations for processing. Combining and differencing are two linear transfor-
mations. Because the uncombined and combining data (or equations) are equivalent,
differencing the uncombined or combining equations is (soft) equivalent. Inversely,
the combining operator is an invertible transformation; making or not making the
combination operation on the equivalent undifferenced or differencing equations
(Eqs. 9.33 and 9.34) is equivalent. That is, the mixtures of the combining and differencing
algorithms are also equivalent to the original undifferenced and uncombined algo-
rithms. The equivalence properties can be summarised in a theorem as follows.

Equivalence Theorem of GPS Data Processing Algorithms

Under the three so-called equivalence conditions and the definition of the so-called
soft equivalence, for any GPS survey with definitive space-time configuration, GPS data
processing algorithms – uncombined and combining algorithms, undifferenced and
differencing algorithms, as well as their mixtures – are at least soft equivalent. That is,
the results obtained by using any algorithm or any mixture of the algorithms are iden-
tical. The diagonal elements of the covariance matrix are identical. The ratios of the
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precisions of the solutions are identical. None of the algorithms are preferred in view
of the results and precisions. Suitable algorithms or mixtures of the algorithms will
be specifically advantageous for special kinds of data dealings.

The implicit condition of this theorem is that the parameterisation must be the
same and regular. The parameterisation depends on different configurations of the
GPS surveys and strategies of the GPS data processing. The theorem says that if the
data used are the same and the model is parameterised identically and regularly, then
the results must be identical and the precision should be equivalent. This is a guiding
principle for the GPS data processing practice.

9.2.2
Optimal Baseline Network Forming and Data Condition

It is well known that for a network with n stations there are n-1 independent baselines.
An independent baseline network can be stated in words: all stations are connected
through these baselines, and the shortest way from one station to any other stations is
unique. Generally speaking, a shorter baseline leads to a better common view of the
satellites. Therefore, the baseline should be formed so that the length of the baseline
falls as short as possible. For a network, an optimal choice should be that the summa-
tion of weighted lengths of all independent baselines should be minimal. This is a spe-
cific mathematic problem called a minimum spanning tree (cf., e.g., Wang et al. 1977).

Algorithms exist to solve this minimum spanning tree problem with software. There-
fore, we will just show an example here. An IGS network with ca. 100 stations and the
related optimal and independent baseline tree is shown in Fig. 9.1. The average length
of the baselines is ca. 1300 km. The maximum distance is ca. 3700 km.

In the traditional double differencing model, the unpaired GPS observations of
every designed baseline have to be omitted because of the requirement of differencing
(in the example of Sect. 9.1.2, two observations of k6 will be omitted. However, if the
differencing is not limited by baseline design, no observations have to be cancelled

Fig. 9.1. Independent and Optimal IGS GPS Baseline Network (100 stations)
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out). Therefore, an optimal means of double differencing should be based on an opti-
mal baseline design to form the differencing first, then, without limitation of the base-
line design, to check for the unpaired observations in order to form possible
differencing. This measure is useful for raising the rate of data used by the differencing
method. An example of an IGS network with 47 stations and one day’s observations
has shown (Xu 2004) that 87.9% of all data is used in difference forming based on the
optimal baseline design, whereas 99.1% of all data is used in the extended method of
difference forming without limitation of the baseline design. That is, the original data
may be nearly 100% used for such a means of double differencing.

In the undifferenced model, in order to be able to eliminate the clock error param-
eters, it is sufficient that every satellite is observed at least at two stations (for eliminat-
ing the satellite clock errors) and at every station there is a satellite combined with one
of the other satellites that are commonly viewed by at least one of the other stations (for
eliminating the receiver clock errors). The condition ensures that extended double
differencing can be formed from the data. The data has to be cancelled out if the condi-
tion is not fulfilled or the ambiguities including in the related data have to be kept fixed.

For convenience, we state the data condition as follows.

Data Condition: All satellites must be observed at least twice (for forming single dif-
ferences) and one satellite combined with one of the other satellites should be com-
monly viewed by at least one of the other stations (for forming double differences).

It is notable that the data condition above is valid for single and double differencing.
For triple differencing and user defined differencing the data condition may be simi-
larly defined. The data condition is one of the conditions of the equivalence of the
undifferenced and differencing algorithms. The data condition is derived from the
difference forming; however, it is suggested to use it also in undifferenced methods to
reduce the singular data. The optimal baseline network forming is beneficial for
differencing methods to raise the rate of used data.

9.2.3
Algorithms Using Secondary GPS Observables

As stated in Sects. 6.7 and 9.2, the uncombined and combining algorithms are equivalent.
A method of GPS data processing using secondary data is outlined in Sect. 6.7.3. However,
a concrete parameterisation of the observation model is only possible after the method of
independent parameterisation is discussed in Sect. 9.1. The data processing using secondary
observables leads to equivalent results of any combining algorithms. Therefore the con-
crete parameterisation of the GPS observation model has to be specifically discussed again.
The observation model of m satellites viewed at one station is (cf. Eqs. 6.134 and 9.5)

 ,    k = 1, …, m , (9.35)

9.2  ·  Equivalence of the GPS Data Processing Algorithms
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where the relation

(9.36)

can be used to map the ionospheric parameters in the path directions to the param-
eter in the zenith direction. The meanings of the symbols are the same as stated in
Sect. 6.7. Solutions of Eq. 9.35 are (similar to Eq. 9.6)

 ,    Q(k), k = 1, …, m , (9.37)

where the covariance matrix Q(k) can be obtained by variance-covariance propaga-
tion law. The vector on the left side of Eq. 9.37 is called the secondary observation
vector. In the case where K satellites are viewed, the traditional combinations of the
observation model and the related secondary solutions are the same as the Eqs. 9.35
and 9.37, where the m = K. However, taking the parameterisation method into account,
at least one satellite has to be selected as reference and the related ambiguities cannot
be modelled. If one were to suppose that the satellite of index K is the reference one,
then the first m = K − 1 observation equations are the same as Eq. 9.35. The satellite
K-related observation equations can be written as

 ,    k = K , (9.38)

where the ambiguities are not modelled and the constant effects will be absorbed by
the clock parameters. Solutions of Eq. 9.38 are

 ,    Q(K) . (9.39)

It is notable that the solutions of the traditional combinations are Eq. 9.37 with
m=K, whereas for the combinations with independent bias parameterisation, the so-
lutions are the combinations of the Eq. 9.37 with m = K − 1 and Eq. 9.39. It is obvious
that the two solutions are different. Because the traditional observation model used is
an inexact one, the solutions of the traditional combinations are also inexact. The bias
effects (of ambiguities) that are not modelled are merged into the clock bias param-
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eters. Due to the fact that the bias effects cannot be absorbed into the non-bias pa-
rameters, only the clock error parameters will be different in the results and the clock
errors will have different meanings. Further, the ionosphere-free and geometry-free
combinations are correct under the independent parameterisation.

It shows that through exact parameterisation, the combinations are not any more
independent from satellite to satellite. For surveys with multiple stations, through cor-
rect parameterisation the combinations will be not any more independent from sta-
tion to station. Therefore, traditional combinations will lead to incorrect results be-
cause of the inexact parameterisation.

The so-called secondary observables on the left-hand side of Eqs. 9.37 and 9.39
can be further processed. The original observables can be uniquely transformed to
secondary observables. The secondary observables are equivalent and direct meas-
urements of the ambiguities and ionosphere as well as geometry. Any further GPS
data processing can be based on the secondary observables (cf. Sect. 6.7).

9.3
Non-Equivalent Algorithms

As stated in the equivalence theorem of GPS algorithms, the equivalence properties
are valid for GPS surveys with definitive space-time configuration. As long as the mea-
sures are the same and the parameterisation is identical and regular, the GPS data pro-
cessing algorithms are equivalent. It is notable that if the surveys and the parameteri-
sation are different, then the algorithms are not equivalent to each other. For example,
algorithms of single point positioning and multi-points positioning, algorithms of
orbit-fixed and orbit co-determined positioning, algorithms of static and kinematic
as well as dynamic applications, etc., are non-equivalent algorithms.

9.4
Standard Algorithms of GPS Data Processing

9.4.1
Preparation of GPS Data Processing

Preparation of GPS data processing can be carried out either in a pre-processing
process or in the main data processing process. It depends on the strategy and the
purpose of the data processing. Only in the case of data post-processing (i.e., data
are available before the processing) is pre-processing possible. In the case of data
quasi real time or real time processing, usually data are only available up to the in-
stantaneous epoch. Data availability also causes different strategies of the data pro-
cessing.

Data preparation may include raw GPS data decoding. ASCII code data are usually
given in RINEX format (Gurthner 1994). Even in the unified format, different decod-
ers may work a little bit differently from one another. This has to be noted only if one
is going to process the data decoded by using different decoders. Usually, most GPS
data processing software has its own internal input data format. Transforming the
data from the RINEX format (maybe also from multiple stations) into the internal
input data format should be no principle problem.
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Cycle slip detection is one of the most important works in data preparation. Marks
are given for further use in the data where the cycle slips are detected. There are two
types of cycle slips; one is repairable, and another is not repairable. Non-repairable
cycle slips have to be modelled by new ambiguity unknowns. Repairing and setting
new unknowns are equivalent if the repair is made correctly and the new unknown is
well-solved. By real time data processing, such a process has to be done in the main
data processing process.

Orbit data are also needed. Depending on the purposes of the data processing,
broadcast navigation data, IGS precise orbits and IGS predicted orbits can be used
where the satellite clock error model is also included. In broadcast data, there is also
an ionospheric model available. Even for the GPS precise orbit determination, initial
orbits are still needed.

Further preparations depend on the organisation and purpose of the data process-
ing. Generally speaking, standard tropospheric models are needed for use (cf. Sect. 5.2).
An ionospheric model (from broadcast) can be used as an initial model (cf. Sect. 5.1)
if the non-ionosphere-free combination is used. An ionospheric model can be also
obtained from the ambiguity-ionospheric equations (see discussions in Sect. 6.5.2).
Earth tide and ocean loading tide as well as relativistic effects have to be computed for
use (cf. Sect. 5.4).

In the case of orbit determination and/or geopotential determination, an initial
geopotential model is needed. The initial models of the solar radiation and air drag
have to be computed. All corrections can be computed in real time or in advance and
then listed in tables for use. Coordinate transformations between the ECEF system
and the ECSF system are also needed.

9.4.2
Single Point Positioning

Single point positioning is a sub-process of GPS data processing, which is needed in
almost all GPS data processing. Station coordinates and receiver clock error are deter-
mined with such a sub-process. Depending on the accuracy requirement, single point
positioning can be done with single frequency code or phase data, dual-frequency code
or phase data, and combined code-phase data. Generally speaking, single point posi-
tioning has a lower accuracy than that of relative positioning, where systematic errors
are reduced (through keeping the reference fixed). However, the receiver clock bias
determined by single point positioning is accurate enough to correct the second type
of clock error influence (the influence scaled by the velocity of the satellite, cf. Sect. 5.5).

Code Data Single Point Positioning

The GPS code pseudorange model is (cf. Sect. 6.1):

 , (9.40)

where R is the observed pseudorange, te denotes the GPS signal emission time of the
satellite k, tr denotes the GPS signal reception time of the receiver i, c is the speed of
light, subscript i and superscript k denote the receiver and satellite, and δ tr and δtk are
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the clock errors of the receiver and satellite at the times tr and te, respectively. The terms
δ ion, δ trop, δ tide and δ rel denote the ionospheric, tropospheric, tidal, and relativistic effects,
respectively. The multipath effect is omitted here. The remaining error is denoted as ε.
ρk

i is the geometric distance. The computed value (denoted as C) of the pseudorange is

 , (9.41)

where the clock error of the satellites can be interpolated from the IGS orbit data or
broadcast navigation message, models of other effects can be found in Chap. 5, and
the initial value of receiver clock error is assumed to be zero. It should be emphasised
that the earth rotation correction has to be taken into account by the geometric dis-
tance computation no matter if it is done in the Earth or space fixed coordinate sys-
tems (cf. Sect. 5.3.2).

The linearised observation Eq. 9.40 is then (cf. Sects. 6.2 and 6.3)

 , (9.42)

where lk is the so-called O – C (observed minus computed pseudorange), vk is the re-
sidual, vector (∆x   ∆y   ∆z)T is the difference between the coordinate vector (xi    yi    zi)

T

and the initial coordinate vector (xi0   yi0   zi0)T, ∆t is the receiver clock error in length
(i.e. ∆t = δ trc), and the initial coordinate vector is used for computing the geometric
distance. Equation 9.42 can be written in a more general form as

 , (9.43)

where akj is the related coefficient given in Eq. 9.42. Putting all of the equations from
all observed satellites together, we find the single point positioning equation system
has a general form of

L = AX + V ,    P , (9.44)

where L is called the observation vector, X is the unknown vector, A is the coefficient
matrix, V is the residual vector, and P is the weight matrix of the observation vector.
The least squares solution of observational Eq. 9.44 is then (cf. Sect. 7.2)

X = (ATPA)–1ATPL . (9.45)

The formulas for computing the precision vector of the solved X can be found in
Sect. 7.2. It is notable that the coefficients of the equation are computed using the ini-
tial coordinate vector, and the initial coordinate vector is usually not (exactly) known;
therefore, an iterative process has to be carried out to solve the single point positioning
problem. For the given initial vector, a modified one can be obtained by solving the

9.4  ·  Standard Algorithms of GPS Data Processing
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above problem; the modified initial vector can be used in turn as the initial vector to
form the equations, and the problem can be solved again until the process converges.
Because there are four unknowns in the single point positioning equation, at least four
observables are needed to make the problem solvable. In other words, as soon as four
or more satellites are observed, single point positioning is always possible.

For static reference stations, as soon as the coordinates are known with sufficient
accuracy, the unknown vector (∆x   ∆y   ∆z)T can be considered zero. Then the Eq. 9.43
turns out to be

 , (9.46)

and the receiver clock error can be computed directly by

 , (9.47)

where K is the total number of observed satellites at this epoch. Equation 9.47 can be
used to compute the receiver clock error of the static reference.

Dual Codes Ionosphere-Free Single Point Positioning

The above-mentioned single point positioning (using single frequency code data) is
accurate enough for correcting the second type of clock error influence (the influence
scaled by the velocity of the satellite). For more precise single point positioning, dual-
frequency code data can be used to form the ionosphere-free combinations (cf.
Sect. 6.5). Assuming that for frequencies 1 and 2, the single point positioning equa-
tion of Eq. 9.44 can be formed as

L1 = AX + V1 ,    P1 , (9.48)

L2 = AX + V2 ,    P2 ,

then the ionosphere-free combination can be formed by (cf. Sect. 6.5.1)

 ,    P , (9.49)

where

 ,

and V is the residual vector. Because the ionospheric effects have been cancelled out
of Eq. 9.49, the ionospheric model can be also omitted by computing L1 and L2 in
Eq. 9.48. The solution of Eq. 9.49 is then the solution of the dual codes ionosphere-
free single point positioning problem.
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Phase Single Point Positioning

GPS carrier phase model is (cf. Sect. 6.1)

 , (9.50)

where λΦ  is the observed phase in length, Φ  is the phase in cycle, wave length is
denoted as λ, and Nk

i is the ambiguity related to receiver i and satellite k, except
for the ambiguity term and the sign difference of the term of ionospheric effect;
other terms are the same as that of the pseudorange discussed at the beginning of
this section.

The computed value (denoted as C) of phase is

 , (9.51)

where Nk
i0 is the initial ambiguity parameter related to the receiver i and satellite k.

Scaling the ambiguity parameter in length and denoting

 , (9.52)

the phase single point positioning equation is (very similar to Eq. 9.43)

 . (9.53)

Putting all equations related to all observed satellites together, the single point po-
sitioning equation system has a general form of

L = AX + EN + V ,    P , (9.54)

where L is called the observation vector, X is the unknown vector of coordinates and
clock error, A is the X related coefficient matrix, E is an identity matrix of order K, K is
the number of observed satellites, N is the unknown vector of ambiguity parameters
∆Nk

i, V is the residual vector, and P is the weight matrix. If K satellites are observed,
then there are K ambiguity parameters, three coordinate parameters and one clock
parameter, so that the phase single point positioning problem is not solvable at the
first few epochs. Using the ambiguity parameters obtained from the ambiguity-iono-
spheric equations (cf. Sect. 6.5) as the initial ambiguity values, N is then zero (can be
cancelled), and Eq. 9.54 has the same form as that of Eq. 9.44. In this way, the equa-
tion system of single frequency phase point positioning can be formed and solved every
epoch. Even the codes are used in the ambiguity-ionospheric equations, ambiguity
parameters can be obtained with high accuracy through a reasonable weight and in-
strumental bias model (cf. Sects. 6.7 and 9.2).

9.4  ·  Standard Algorithms of GPS Data Processing
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Dual Phases Ionosphere-Free Single Point Positioning

The single point positioning equation of the dual phase observables for frequencies 1
and 2 can be formed as

L1 = AX + EN1 + V1 ,    P1    and (9.55)

L2 = AX + EN2 + V2 ,    P2 .

Then the ionosphere-free combinations can be formed by (cf. Sect. 6.5.1)

 ,    P , (9.56)

where

    and (9.57)

 . (9.58)

V is the residual vector, and index c is used to denote the ionosphere-free combina-
tions. Equation 9.56 is the dual phases ionosphere-free single point positioning equa-
tion system. The solution of Eq. 9.56 is then the solution of the dual phases ionosphere-
free single point positioning problem.

Phase-Code Combined Single Point Positioning

Phase and code ionosphere-free single point positioning Eqs. 9.56 and 9.49 can be writ-
ten in more compact forms as

Lp = A11X1 + A12N + Vp ,    Pp    and (9.59)

Lc = A11X1 + Vc ,    Pc ,

where index p and c denote the phase and code related variables, X1 is the vector of the
coordinate and receiver clock error, N is the ambiguity vector, P is the weight matrix, and
V is the residual vector. To guarantee the same coefficient matrix A11 for both the phase
and code observation equations, data of commonly observed satellites have to be used.

Usually the code single point positioning problem (second equation system of Eq. 9.59)
is always solvable (as soon as more than four satellites are observed). And the ambiguity
parameter number is equal to the number of phase observables. Therefore, the phase-code
combined single point positioning problem in Eq. 9.59 is usually solvable at every epoch.

Block-wise least squares adjustment for solving the phase-code combined problem
has been discussed in Sect. 7.5.2. The algorithm can be used directly to solve the com-
bined Eq. 9.59.
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9.4.3
Standard Un-Differential GPS Data Processing

In single point positioning, un-differenced GPS data are used. Usually, only four un-
knowns are solved for, as discussed in Sect. 9.4.2. Single point positioning has also a
speciality of epoch-wise solution. Based on the algorithms of single point position-
ing, standard static un-differential GPS data processing should take more unknown
models and more station data into account. In a kinematic case, because of the move-
ment of the receiver, coordinates of the receiver are time variables; therefore, model
parameters are usually pre-determined or determined with another algorithm in or-
der to reduce the number of the unknowns.

The GPS code pseudorange and carrier phase are modelled as (cf. Sect. 6.1, Eqs. 6.1
and 6.2, or Eqs. 9.40 and 9.50)

    and (9.60)

 . (9.61)

Except for the ambiguity parameter and the sign of the ionospheric effect term, the
other terms on the right sides of Eqs. 9.60 and 9.61 are the same.

For any standard data combinations (cf. Sect. 6.5 for details) as given in Eqs. 6.48
and 6.51, the above models of Eqs. 9.60 and 9.61 are still valid. Of course, on the left
sides of Eqs. 9.60 and 9.61 the combined pseudorange and combined phase (scaled by
wavelength) are used, and on the right side the ambiguity and ionospheric effect are
combined ones respectively. Exactly, for combinations of

 , (9.62)

 ,    or (9.63)

 , (9.64)

where the combined signal has the frequency and wavelength

 , (9.65)

the combined ambiguity and ionospheric effects are

 , (9.66)

    and

 , (9.67)

9.4  ·  Standard Algorithms of GPS Data Processing
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where n1 and n2 are the selected real constants, indices 1 and 2 are referred to frequen-
cies 1 and 2, and indices comc and comp denote the code and phase combined terms.

The computed pseudorange and phase range are

    and (9.68)

 , (9.69)

where superscript 0 denotes the initial values of individual models, indices c and p denote
the terms related to the code and phase measurements, and index com denotes the com-
bined terms. In the case of ionosphere-free combinations, the ionospheric effect terms will
vanish. Otherwise, we should assume that the ionospheric effects are known by the given
model or by the ambiguity-ionospheric equations.

The linearisation of GPS observation equations is generally discussed in Sect. 6.2, and the
related partial derivatives are given in Sect. 6.3. Equations 9.62 and 9.64 can be linearised as

Lc = A11Xcoor + A12Xclock + A13Xtrop + A14Xtide + Vc ,    Pc    and

Lp = A11Xcoor + A12Xclock + A13Xtrop + A14Xtide + A15N + Vp ,    Pp , (9.70)

where Xcoor is the coordinate vector, Xclock is clock error vector, indices trop and tide
are used to denote the related unknown vectors, N is the ambiguity vector, P is the
weight matrix, V is the residual vector, and A is the related coefficient matrix. The data
of commonly observed satellites have to be used to guarantee the common coefficient
matrices A for both phase and code observation equations.

To process the data of more stations, Eq. 9.70 shall be formed station by station and
then combine them together. It is notable that some of the parameters are common
ones for all stations, such as satellite clock errors and love numbers of the earth tide.
In the case of orbit determination (cf. Chap. 11 for details), the orbit parameters and
force model parameters are also common ones. The total observation equations of the
un-differential GPS can then be written symbolically as

Lc = A1X1 + A4X4 + Vc ,    Pc    and (9.71)

Lp = A1X1 + A4X4 + A5X5 + Vp ,   Pp ,

where X1 is a sub-vector of the common variables of the both equations, X4 is the other
variable vector of the both equations, and X5 is the ambiguity vector. Adding 0X5 to
the first equation and denoting X2 = [X4 X5]T, Eq. 9.71 can be further simplified as

Lc = A1X1 + A2X2 + Vc ,    Pc    and (9.72)

Lp = A1X1 + A3X2 + Vp ,    Pp .

Equation 9.72 can be considered an epoch-wise formed observation equation or
observation equation of all observed epochs. Most adjustment algorithms discussed
in Chap. 7 can be used directly to solve the above equation system.
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9.4.4
Equivalent Method of GPS Data Processing

As already discussed in Sect. 6.8, the equivalently eliminated equations of Eq. 9.72 can
be formed as (cf. Sect. 6.8 and 7.6 for details)

Uc = Lc – (E – Jc)A2X2 ,    Pc    and (9.73)

Up = Lp – (E – Jp)A3X2 ,    Pp ,

where

 , (9.74)

 ,

 ,    and

 .

E is an identity matrix of size J, L and P are the original observation vector and weight
matrix, and U is the residual vector, which has the same statistic property as V in
Eq. 9.72. As soon as the X1 in Eq. 9.72 is able to be eliminated, the equivalent Eq. 9.73
can be formed whether Eq. 9.72 is an epoch-wise equation or an all epoch equation.

Equation 9.73 is the zero-difference (un-differential) GPS observation equation sys-
tem if the variable vector X1 in Eq. 9.72 is considered a zero vector.

Equation 9.73 is the equivalent single-difference GPS observation equation system
if the variable vector X1 in Eq. 9.72 is considered an unknown vector of satellite clock
errors.

Equation 9.73 is the equivalent double-difference GPS observation equation sys-
tem if the variable vector X1 in Eq. 9.72 is considered an unknown vector of satellite
and receiver clock errors.

The second equation of 9.73 is the equivalent triple-difference GPS observation
equation system if the variable vector X1 in the second equation of 9.72 is considered
an unknown vector of all clock errors and ambiguities.

The un-differential and differential GPS data processing can be dealt with in an
equivalent and unified way. The advantages of this method are:

1. The weight remains the original one, so one does not have to deal with the correla-
tion problem;

2. The original data are used, so one does not need to form the differences;
3. The un-differential and differential GPS data processing can be easily selected by a

switch or can be used in a combined way, so that the number of unknowns (i.e.,
matrix size) of the whole adjustment and filtering problem can be greatly reduced.

The combinative way of using the equivalent method can be realised as follows.
First, equivalent triple differences are used to determine the unknowns other than the
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clock error and ambiguity parameters. Taking these parameters as known, the obser-
vation Eq. system 9.72 can be reduced so that only the clock error and ambiguity pa-
rameters are included. Then second, equivalent double differences are used to deter-
mine the ambiguity vector. Again, taking the ambiguity vector as known, Eq. 9.72 can
be further reduced so that only the clock error parameters are included. Then third,
equivalent single differences are used to determine the receiver clock errors. At the
end, Eq. 9.72 can be reduced so that only satellite clock errors are included in the
equations, and they can be determined. The last two steps can be also done together
in one step.

By the way, the ambiguity parameters are usually dealt with in an un-differential
form for all methods, so that the problems caused by changing the reference satellite
in a double difference case can be avoided. This is especially important for kinematic
GPS applications.

9.4.5
Relative Positioning

Relative positioning is traditionally carried out with differential positioning. The key
point of relative positioning is to keep the coordinates of the reference station fixed.
In other words, the initial coordinate values of the reference station are considered
true values so that the related unknowns are either not necessary to be adjusted or
equal to zero. Therefore, the following two ways outline how relative positioning can
be done. (1) Cancelling the reference coordinate unknowns out of Eq. 9.72; (2) The a
priori datum method discussed in Sect. 7.8.2 and 6.8.6 is used to keep the coordinates
fixed on the initial values. Both methods are equivalent. The a priori datum method
(cf. Sect. 7.8.2 and 6.8.6) can be also used to keep some of the un-differential ambigu-
ity parameters and clock parameters fixed. Keeping the reference coordinates fixed
in relative positioning may lead to a better determination of the other parameters in
the reference-related equations, and therefore may lead to an indirect reduction of the
residuals.

9.4.6
Velocity Determination

Single Point Velocity Determination

Analogous to the single point positioning discussed in Sect. 9.4.2, single point veloc-
ity determination can be carried out by using Doppler data. The GPS Doppler obser-
vation is modelled as (cf. Eq. 6.46)

 , (9.75)

where D is the observed Doppler measurement, te denotes the GPS signal emission time
of the satellite k, tr denotes the GPS signal reception time of the receiver i, subscript i
and superscript k denote receiver and satellite, and δ tr and δ tk denote the clock er-
rors of the receiver and satellite at the time tr and te, respectively. The remaining error
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is denoted as ε , f is the frequency, wavelength is denoted as λ , δ rel_f is the frequency
correction of the relativistic effects, ρk

i is the geometric distance, and dρk
i / dt denotes

the time derivation of the radial distance between satellite and receiver at the time tr.
The computed value (denoted as C) of Doppler is

 , (9.76)

where the first term on the right-hand side can be computed by using Eqs. 6.14
and 6.15.

The time derivative of the satellite clock error and the satellite position as well
as velocity can be computed from the IGS orbit data or broadcast navigation mes-
sage; the relativistic effect on frequency can be found in Chap. 5. It is obvious that
the initial position of the receiver is also needed for computing Eq. 9.76. Initial ve-
locity of the receiver is assumed zero. It should be emphasised that the earth rotation
correction has to be taken into account by the geometric distance computation (cf.
Sect. 5.3.2).

The linearised observation Eq. 9.76 is then (cf. Sects. 6.2 and 6.3 as well as partial
derivative Eq. 6.20)

 , (9.77)

where lk is the O – C (observed minus computed Doppler), vk is the residual, the
receiver’s velocity vector is (x�i   y

�

i   z
�

i)
T, (x   y   z)T is the coordinate vector with index k

for satellite and i for receiver. ∆D is the receiver clock drift in cycle/second (i.e.,
∆D = f(dρ tr / dt). Equation 9.77 can be written in a more general form as

 , (9.78)

where akj is the related coefficient given in Eq. 9.77. If one puts all of the equations
that are related to all of the observed satellites together, the equation system of single
point velocity determination has a general form of

L = AX + V ,    P , (9.79)

where L is called the observation vector, X is the unknown velocity vector including
clock drift, A is the coefficient matrix, V is the residual vector, and P is the weight matrix
of observation vector. The least squares solution of observation Eq. 9.79 is then (cf.
Sect. 7.2)

X = (ATPA)–1ATPL . (9.80)

9.4  ·  Standard Algorithms of GPS Data Processing
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The formulas for computing the precision vector of the solved X can be found in
Sect. 7.2. It is notable that the coefficients of the equation are computed using the
initial velocity vector, and the initial velocity vector is usually not known; therefore,
an iterative process has to be carried out to solve the single point velocity determin-
ing problem. For the given initial velocity vector, a modified one can be obtained by
solving the problem; the modified initial velocity vector can be used in turn to form
the equation and solve it again until the process converges. Such an iterative process is
needed if the kinematic motion is very fast. Because there are four unknowns in the
single velocity determining equation, at least four observables are needed to make the
problem solvable; in other words, when four or more satellites are observed, it is al-
ways possible to determine the single point velocity.

For static stations, the unknown velocity vector (x�   y�   z�)T can be considered the
zero one. Then the Eq. 9.77 turns out to be

 , (9.81)

and the receiver frequency error can be computed directly by

 , (9.82)

where K is the total number of observed satellites. Equation 9.82 can be used to com-
pute the frequency drift of the static reference receiver. The frequency drift of kine-
matic receiver can be also computed by static initialisation.

Differential Doppler Data Processing

A more general model of Doppler data processing takes the satellite clock frequency
bias (clock drift) into account:

 , (9.83)

where index i and k denote the receiver and satellite, and ∆D is the related frequency
bias. For the satellite frequency bias, the initial value from the IGS data or navigation
data can be used. If one puts together all of the equations related to all observed satel-
lites of all of the stations, Eq. 9.83 has a general form of

LD = A1X1 + A2X2 + VD , PD . (9.84)

where X1 is a sub-vector of the common variables, X2 is the vector of the other vari-
able, and A is the related coefficient matrix. The equivalently eliminated equations of
Eq. 9.84 can be formed as (cf. Sect. 6.8 for details)

UD = LD – (E – JD)A2X2 , PD , (9.85)
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where

    and (9.86)

 .

E is an identity matrix of size JD, L and P are the original observation vector and weight
matrix, and U is the residual vector, which has the same property as V in Eq. 9.84.

Equation 9.85 is the equivalent single-difference GPS Doppler observation equation if
the variable vector X1 in Eq. 9.84 is considered a vector of satellite clock frequency bias.

Equation 9.85 is the equivalent double-difference GPS Doppler observation equa-
tion if the variable vector X1 in Eq. 9.84 is considered a vector of the satellite and re-
ceiver clock frequency bias.

Relative Velocity Determination

Relative velocity determining is usually carried out with a differential method. The
key point of relative velocity determination is to keep the velocity of the reference sta-
tion as fixed, or zero. Therefore, relative velocity determination can be done the fol-
lowing two ways: (1) Cancel the reference velocity unknowns out of the Eq. 9.84; (2) Use
the method of a priori datum discussed in Sect. 7.8.2 to keep the reference velocity
fixed on the initial values.

9.4.7
Kalman Filtering Using Velocity Information

As already discussed in Sect. 6.5.5, velocity information from the differential Doppler
can be used to describe the system that is needed in Kalman filtering. Whether the
receiver is moving or resting, the differential Doppler includes information about the
motion state of the receiver. Therefore, using velocity information as a system descrip-
tion should be better than any empirical model.

The principle of Kalman filtering using velocity information can be outlined as
follows (cf. also Sect. 7.7):

For the initial (or predicted) vector Z
–

, the normal equation of the phase observa-
tion equation can be formed by

 , (9.87)

where Mz is the normal matrix, and Bz is the vector on the right side of the equation.
These are formed by using initial vector Z

–
; Z includes sub-vector X (coordinates) and

N (ambiguities). The estimated solution of Eq. 9.87 is then

 . (9.88)

The normal equation of the differential Doppler observation equation (cf. Eq. 9.85,
only the velocity vector is unknown) can be formed by

9.4  ·  Standard Algorithms of GPS Data Processing
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 , (9.89)

where X� is the velocity vector of the receiver; it is also used as an index to denote the
related normal matrix and vector on the right side of the equation. The solution of
Eq. 9.89 is then

 . (9.90)

Thus for the next epoch, denoted as k, the predicted vector turns out to be

 , (9.91)

where ∆t is the time interval of the epoch k – 1 and k, and

 . (9.92)

Equation 9.91 indicates that the differential Doppler has to be used in Eq. 9.90 as
observations, because the velocity is considered an average one here. The related
covariance matrix of the predicted vector is then

 . (9.93)

The weight matrix is

 . (9.94)

The normal Eq. 9.87 of epoch k is

 , (9.95)

and the Kalman filter solution of Eq. 9.95 is then

 . (9.96)

It is notable that the normal equation 9.95 must be computed using the predicted
vector Z

–
(k) of Eq. 9.91.

Repeating the steps from Eqs. 9.89 to 9.96 for the further epoch is a process of
Kalman filtering using velocity information. The algorithm outlined above is suitable
both for the kinematic and static data processing. This is true especially for static data
processing, because the station has not been exactly assumed as fixed (as described
by Eq. 9.89); such an algorithm will modify the property of the strong dependency on
the initial value of the Kalman filter. The forming of normal Eq. 9.89 is an iterative
process (cf. Sect. 9.4.6), i.e., the velocity information has to be used for forming the
equation. Equation 9.89 represents a realistic system description.
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9.5
Accuracy of the Observational Geometry

Recalling the discussions made in the adjustment of Chap. 7, the precision vector of
the solved vector is usually represented as (cf., e.g., Eq. 7.8)

    and (9.97)

 ,    if    (m>n) .

where i is the element index, m0 is the so-called standard deviation (or sigma), p[i] is
the ith element of the precision vector, Q[i][i] is the ith diagonal element of the qua-
dratic matrix Q (the inverse of the normal matrix), V is the residual vector,
superscript T is the transpose of the vector, P is the weight matrix, n is the unknown
number, and m is the observation number.

Equation 9.97 is used to describe the precision of the individual parameter of the
unknown vector X. The parameters can be usually classified into several groups ac-
cording to their physical properties, e.g., position unknowns and clock unknowns; in
turn the position unknowns can be classified by stations, and the clock errors can be
classified by satellites and receivers, etc. To describe the precision of a group of un-
knowns, a so-called mean-squares-root precision can be defined as

 , (9.98)

where j is the first index and J is the last index of the parameters of the discussed group,
and n is the total parameter number of the group. Of course, here we assume the pa-
rameters are ordered in groups. Putting Eq. 9.97 into above, one has

 , (9.99)

where DOP is the shortening of the Dilution of Precision factor. So we see that the
DOP factor is a very important factor to describe the precision of a group of param-
eters that are the same kind. Supposing in the unknown vector X[i], i = 1, 2, 3 are
coordinate x, y, z of a receiver, and i = 4 is the receiver clock error, then the Position
DOP (PDOP) is defined by j = 1, J = 3 in Eq. 9.99, and the Time DOP (TDOP) is de-
fined by j = J = 4 in Eq. 9.99. The Geometric DOP (GDOP) is defined by j = 1, J = 4 in
Eq. 9.99 (cf. Hofmann-Wellenhof et al. 1997). For the case of multiple stations, the
definition can be similarly extended.

The PDOP is a factor, which indicates the factor of precision of the position. Quite
often, one would prefer to express the position precision in a local coordinate system,

9.5  ·  Accuracy of the Observational Geometry
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i.e., in horizontal and vertical components. Recalling the relation between the global
and local coordinates (cf. Sect. 2.3), there are

Xlocal = RXglobal ,    and    Xglobal = RTXlocal , (9.100)

where Xlocal and Xglobal are identical vectors represented in local and global coordi-
nate systems. R is the rotation matrix given in Eq. 2.11. According to the covariance
propagation theorem, one has then

Qlocal = RQglobalR
T ,    and    Qglobal = RTQlocalR , (9.101)

where Qglobal is the sub-matrix of Q, which is related to the coordinates part. Suppos-
ing in the unknown vector Xlocal[i], i = 1, 2, 3 are coordinates of horizontal x, y, and
vertical z of a receiver, then the Horizontal Dilution of Precision (HDOP) and Vertical
Dilution of Precision (VDOP) are defined as

 . (9.102)

For many stations, the definition can be similarly given.
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Applications of GPS Theory and Algorithms

Software development using GPS theory and algorithms is discussed in this chapter.
A concept of precise kinematic positioning and flight-state monitoring of an airborne
remote sensing system is presented.

10.1
Software Development

GPS/Galileo software consists generally of three basic components: a functional library,
a data platform, and a data processing core. The functional library provides all possi-
bly needed physical models, algorithms and tools for use. The data platform prepared
all possibly needed data for use and performing the preparation in a time loop. The
data processing core forms the observation equations, accumulates them within the
time loop and solves the problem if desired. Software can be developed using the theory
and algorithms outlined in this reference and handbook.

10.1.1
Functional Library

A functional library consists of physical models, algorithms and tools. For convenience,
the functions are listed below with the references referring to the contents described
in this book (cf. Figs. 10.1–10.3).

Physical Models

1. Tropospheric models for correcting or determining the tropospheric effects (cf.
Sect. 5.2);

2. Ionospheric model for correcting the ionospheric effects (cf. Sect. 5.1);
3. Relativity models for correcting the relativistic effects (cf. Sect. 5.3);
4. Earth tide model for the correction of the tidal displacements of the Earth-fixed

stations (cf. Sect. 5.4);
5. Ocean loading tide model for computing corrections of the ocean loading displace-

ments especially for the stations near the coast (cf. Sect. 5.4);
6. Satellite mass centre model for transformation between the mass centre and re-

ceiver antenna centre of the GPS satellite (cf. Sect. 5.8);
7. Solar radiation model for orbit determination (cf. Sect. 11.2.4);
8. Atmospheric drag model for LEO orbit determination (cf. Sect. 11.2.5);
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9. Geopotential disturbance model for dynamic orbit determination and LEO satel-
lite geopotential determination (cf. Sect. 11.2.1);

10. Tidal potential disturbance model for precise dynamic orbit determination and
LEO satellite geopotential determination (cf. Sect. 11.2.3);

11. Multi-body disturbance models for the correction of the perturbations (cf.
Sect. 11.2.2);

12. Dynamic orbit fitting model for orbit correction in a regional network (cf. Sect. 11.4);

Fig. 10.1. Physical models
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13. Sun, Moon, and planet orbit models for computing the ephemerides of the Sun, Moon
and planets, the multi-body disturbance and the Earth tide effects (cf. Sects. 11.2.8,
11.2.2 and 5.4);

14. Tropospheric mapping functions (cf. Sect. 5.2);
15. Ionospheric mapping functions (cf. Sect. 5.1);
16. Tropospheric model for kinematic receiver (cf. Sect. 10.2.2);
17. Keplerian orbit model (cf. Sect. 3.1.3);

Fig. 10.2. Algorithms
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18. Jacobian matrices of the Keplerian elements and the state vector of the satellite (cf.
Sects. 3.1.1, 3.1.2, 3.1.3, 11.3 and 11.7).

Algorithms

1. Data pre-processing (cf. Sect. 9.4.1);
2. Forming GPS observation equations (cf. Sects. 4.1, 4.2, 4.3 and 6.1);
3. Differential Doppler data creation if necessary (cf. Sect. 6.5.5);
4. Cycle slip detections (cf. Sect. 8.1);
5. Independent parameterisation algorithms (cf. Sect. 9.1);
6. Linearisation and covariance propagation (cf. Sects. 6.3, 6.4, 11.5 and 11.7);
7. Equivalent algorithms of uncombined and combining methods (cf. Sects. 6.5, 6.7

and 9.2);
8. Equivalent algorithms of undifferenced and differencing algorithms (cf. Sects. 6.6,

6.8, 7.6 and 9.2);
9. Diagonalisation algorithm (cf. Sects. 7.6.1 and 9.1);

Fig. 10.3. Tools
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10. Algebraic solution of the variation equation (cf. Sect. 11.5.1);
11. Ambiguity search using general and equivalent criteria (cf. Sect. 8.3);
12. Classical adjustment tools (Least Squares adjustment (LSA), sequential LSA, con-

ditional LSA, block-wise LSA, and equivalent algorithms, cf. Sects. 7.1–7.5);
13. Filtering algorithms (Kalman filter, robust Kalman filter, and adaptive robust

Kalman filter, cf. Sects. 7.7.1, 7.7.2 and 7.7.3);
14. A priori constrained LSA (cf. Sects. 7.8.1 and 7.8.2);
15. Clock error corrections (cf. Sect. 5.5);
16. Single point positioning (cf. Sect. 9.4.2);
17. Single point velocity determination (cf. Sect. 9.4.6);
18. Accuracy of the observational geometry (cf. Sect. 9.5).

Tools

1. Coordinate transformation tools (cf. Sects. 2.1, 2.3, 2.4 and 2.5);
2. Time system transformation functions (cf. Sect. 2.6);
3. Broadcast orbit transformation in IGS format (cf. Sect. 3.3);
4. Interpolation tools (cf. Sects. 3.4, 5.4.2 and 11.6.5);
5. Integration methods (cf. Sects. 11.6.1, 11.6.2, 11.6.3 and 11.6.4);
6. Matrix inverse functions (Gauss-Jordan and Cholesky algorithms)
7. Helmert transformation (cf. Sect. 2.2);
8. Flight state computation (cf. Sect. 10.2.3);
9. Minimum spanning tree method for forming optimal baseline network (cf. Sect. 9.2);
10. Spectral analysis methods (cf. Xu 1992);
11. Statistic analysis (cf. Sects. 6.4 and 7.2);
12. Graphic representation.

10.1.2
Data Platform

A data platform consists of three parts: the common part, the sequential time loop
part, and the summary part. For convenience, the functions are listed below with the
references referring to the contents described in this book (cf. Fig. 10.4).

Common Part

1. Program start;
2. Read input parameter file for controlling the run of the software (an example of

the definition of the input parameter file, cf., e.g., Xu 2004);
3. Read all possible data files necessary for the run of the software (e.g., satellite in-

formation file, station information file, geopotential data file, ocean loading coeffi-
cients, GPS orbit data file, polar motion data file, etc.);

4. Read or create the Sun-Moon-planet orbit data;
5. Compute Earth/ocean loading tide displacements;
6. GPS satellite orbit data transformation if necessary;
7. Data pre-processing if possible;
8. Optimal baseline network construction and initialisations.

10.1  ·  Software Development
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Fig. 10.4. Program common part, sequential time loop part, summary part
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Sequential Time Loop Part

1. Sequential time loop start;
2. Get the needed data for use at the related epoch (e.g., initial coordinates of the

receivers, etc.);
3. Compute all possible parameters and model values for use at the related epoch (e.g.,

transformation matrices, interpolated orbit data, values of correcting models, etc.);
4. Read the GPS observation data and transform to a suitable form for use;
5. Single point positioning (e.g., for the second type of clock error correction);
6. Single point velocity determination (velocity belongs to the state vector of the sta-

tion);
7. Data processing core (cf. Sect. 10.1.3);
8. End of the sequential time loop.

Summary Part

1. Statistic analysis and spectral analysis of the results;
2. Quality control and report;
3. Iteration if necessary;
4. Documentation and graphic representation;
5. Forecast if needed;
6. End of the run of the program.

10.1.3
A Data Processing Core

A data processing core is a collection of GPS data processing algorithms controlled by
switches. Based on the above functional library and data platform, to realise a specific
function of GPS software turns out to be a relatively simple job – one just needs to
construct the function and add it to the data processing core. A multifunctional data
processing core is a collection of individual functions and can be switched from one
to the other through input parameters. Therefore, a data processing core is a list of
specific program functions with switches. A specific function can be called a sub-core,
which is dependent on the specific purposes of the data processing. Indeed the single
point positioning and velocity determination functions are two functions of the data
processing core. A list of the possible functions of a multifunctional data processing
core and a structure of a sub-core are given below as examples.

Functions of a Multi-Functional Data Processing Core

1. Single point state vector determination for static and kinematic as well as dynamic
applications;

2. Relative positioning for static and kinematic applications;
3. Ionosphere and atmosphere soundings;
4. Regional tectonic monitoring with orbit corrections;
5. Global network positioning and GPS orbit determination;
6. LEO orbit determination and geopotential determination.

10.1  ·  Software Development
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Structure of a Sub-Core

1. Computing the computed observables using the orbit and station data as well as
the values of the physical models (may be used for system simulation);

2. Computing the coefficients of linearised observation equations;
3. In the case of dynamic applications, solving the variance equations for forming the

orbit related observation equations;
4. Forming the normal equations;
5. Accumulation of the normal equations;
6. Solving the problem if desired.

10.2
Concept of Precise Kinematic Positioning and Flight-State Monitoring

A concept of precise kinematic positioning and flight-state monitoring of an airborne
remote sensing system is presented here, based on the practical experiences from the
EU project AGMASCO. Within the project, about two months of kinematic GPS flight
data and static reference data have been collected in Europe over four campaigns dur-
ing three years. An independently developed GPS software package and several com-
mercial GPS software packages have been used for data processing. In this chapter,
the methods of creating the tropospheric model for the aircraft trajectory and the use
of static ambiguity results as conditions in the kinematic positioning are discussed.
These concepts are implemented in the kinematic/static GPS software KSGsoft, and
they have demonstrated excellent performance (cf. Xu 2000).

10.2.1
Introduction

The EU (European Union) project AGMASCO (Airborne Geoid Mapping System for
Coastal Oceanography), in which five European institutions participated, has col-
lected about two months of multiple static and airborne kinematic GPS data for the
purpose of kinematic positioning and flight state monitoring of an airborne remote
sensing system. The remote sensing system includes an aerogravimeter, accelerom-
eter, radar and laser altimeter, INS and datalogger. During the project, four flight cam-
paigns were performed in Europe (Fig. 10.5). They were the test campaign in Braun-
schweig in June 1996 (Fig. 10.6), the Skagerrak campaign in September 1996 (Fig. 10.7),
the Fram Strait campaign in July 1997 (Fig. 10.8) and the Azores campaign in October
1997 (Fig. 10.9). Two to three kinematic GPS antennas were mounted on the fuselage,
the back and the wing of the aircraft, and at least three GPS receivers were used as
static reference receivers.

The above-mentioned remote sensing system has two very important objectives:
to measure the gravity acceleration of the Earth and to determine the sea sur-
face topography. Because the aerogravimeter (or accelerometer) and the altimeter
are firmly attached to the aircraft, kinematic positioning and flight-state monitoring
using GPS plays a key role for determining the flight acceleration, velocity and posi-
tion, as well as orientation of the aircraft. The high sensitivity of the sensors requires
high quality aircraft positioning and flight-state monitoring. Therefore, new strate-
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gies and methods have been studied, developed, tested and implemented for GPS
data processing.

Fig. 10.6. Flights in the Braunschweig campaign (June 1996)

Fig. 10.5. Measured areas of the four flight campaigns

10.2  ·  Concept of Precise Kinematic Positioning and Flight-State Monitoring
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The adopted concept of precise kinematic positioning and flight-state monitoring
are discussed in Sects. 10.2.2 and 10.2.3, respectively.

Fig. 10.8. Flights in the Fram Strait campaign (July 1997)

Fig. 10.7. Flights in the Skagerrak campaign (September 1996)
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10.2.2
Concept of Precise Kinematic Positioning

A vast literature exists on the topic of precise kinematic positioning (see, e.g., Goad
and Remondi 1984; Wang et al. 1988; Schwarz et al. 1989; Cannon et al. 1997; Hofmann-
Wellenhof et al. 1997). Based on AGMASCO practice, a modified concept has been
developed and applied to data processing.

10.2.2.1
Combining the Static References with IGS Station

It is well-known that differential GPS positioning results depend on the accuracy
of the reference station(s). However, it is not quite clear how strong this depen-
dency is, or in the other words, how accurate the reference coordinates should be
determined for use in kinematic differential positioning. During AGMASCO data
processing, it was noticed that the accuracy of the reference coordinates is very im-
portant. A bias in the reference station coordinates will cause not only a bias in the
kinematic flight path, but also a significant linear trend. Such a liner trend depends
on the flight direction and the location of the reference receiver(s). Therefore, in pre-
cise kinematic positioning, the coordinates of the static reference station should be
carefully determined by, for example, connecting these stations to the nearby IGS sta-
tions. A detailed study of the relationship between the accuracy of the reference sta-
tion coordinate and the quality of kinematic and static positioning has been carried
out by Jensen (1999).

Fig. 10.9. Flights in the Azores campaign (October 1997)

10.2  ·  Concept of Precise Kinematic Positioning and Flight-State Monitoring
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10.2.2.2
Earth Tide and Loading Tide Corrections

A detailed study of the Earth tide effects on GPS kinematic/static positioning is given
in Xu and Knudsen (2000). For airborne kinematic differential GPS positioning, Earth
tide effects on the static reference station need to be corrected for. Such tidal effects could
reach up to 30 cm in Denmark and Greenland, and 60 cm at other locations in the world.
Tidal effects could induce a “drift” over a few hours of measurement duration. For
ground-based kinematic and static differential GPS positioning with baseline lengths less
than 80 km, the impact of the Earth tide effects could reach more than 5 mm. In precise
application of GPS positioning, both in kinematic and static cases, the Earth tide ef-
fects have to therefore be taken into account even for a relatively small local GPS network.

Ocean loading tide effects could also reach up to a few cm in magnitude, in special
cases (Ramatschi 1998). Generally, ocean loading tide effects should be considered at
the cm level in coastal areas, so that these effects have to be corrected for GPS data
processing. However, unlike the Earth tide, ocean loading tide effects can only be mod-
elled by ocean tide models at about 60% to 90% (Ramatschi 1998). Therefore, simply
using a model to correct for the effects is not enough, and a detailed study of ocean
loading tide effects is necessary for precise positioning. It is, however, possible to use
GPS for determining the parameters of the local ocean loading tide effects (Khan 1999).

10.2.2.3
Multiple Static References for Kinematic Positioning

In differential GPS kinematic positioning, usually there is only one static reference
used. It is obvious that if multiple static references are used, the reference station de-
pendent errors, such as those due to the troposphere and ionosphere as well as ocean
loading tide effects, could be reduced and the geometric stability could be strength-
ened. For simplicity, only the case of using two static reference receivers will be dis-
cussed here. In Fig. 10.10, 1 and 2 denote the static reference receivers, and k denotes
the kinematic object. Suppose the two static stations are placed close by and both have
the same GPS satellites in view. Using one static reference receiver for kinematic posi-
tioning, one has unknown vector (Xk   N1k), where X is the coordinate sub-vector and
N is the ambiguity sub-vector. Using two static references, one has unknown

Fig. 10.10.
Multiple static references for
kinematic positioning
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vector (Xk   N1k   N2k), because the unknown coordinate sub-vector X is the same. The
number of elements of the sub-vector N compared with that of X is very small in the
kinematic case. Therefore, by using multiple static reference receivers for kinematic
positioning, the total number of observations is increased, but the total number of
unknowns remains almost the same; hence the results will be modified.

Furthermore, according to the definition of double differenced ambiguities, one has

 , (10.1)

(10.2)

and

 , (10.3)

where N on the right sides is un-differenced ambiguity, indices j and J denote satellites,
1 and 2 denote the static stations, and k denotes the kinematic station. Then one gets

 , (10.4)

where N12 is the double difference ambiguity vector of the static baseline, which can
be obtained from the static solution. Using relation Eq. 10.4, N2k can be represented
by (N1k – N12). Thus, using two static references for kinematic positioning, one has
nearly doubled the number of observables, yet the unknowns remain the same, if in
addition the static results are used. (Usually static measuring can be made over a longer
time, and hence the static results can be obtained precisely).

In the case of a single difference, one has

 , (10.5)

 , (10.6)

and

 , (10.7)

where N on the right sides is un-differenced ambiguity, index j denotes the satellite,
1, 2 denote the static stations, and k denotes the kinematic station. Then one gets the
same relation as in the case of double difference:

 . (10.8)

For un-differenced data processing, ambiguity vectors are (N1
j   Nk

j) and (N2
j   Nk

j) in
kinematic data processing using a single reference. (N1

j   N2
j) is the ambiguity vector in

static data processing. No matter how one deals with the reference-related ambigui-
ties, the common part of ambiguities obtained from static data processing can be
used in kinematic data processing.

10.2  ·  Concept of Precise Kinematic Positioning and Flight-State Monitoring
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Using multiple static reference receivers and introducing the ambiguities from
the static solution as conditions, the accuracy of the kinematic positioning can
be increased significantly. An example showing the differences in the height of
the front antenna determined using multiple reference receivers, with and with-
out using the static ambiguity condition, is given in Fig. 10.14 (the ambiguity
float solutions are used). The average and standard deviation of the differences
are 27.07 and 4.34 cm, respectively. These results clearly indicate that the multiple
static conditions have modified the results. A change of ambiguity not only caused
a bias in the position solution, but also a high frequency variation. The base-
base separation is about 200 km, and the length of the kinematic path is about 400 km
(cf. Fig. 10.9).

For three or more static references receivers, similar arguments and improved re-
sults can be presented.

10.2.2.4
Introducing Height Information as a Condition

Even after using multiple static reference receivers and the static conditions, the am-
biguities in kinematic positioning can still be wrong. In such a case, there could be a
bias and a variation in the kinematic trajectory (see Sect. 10.2.4.2 and Fig. 10.14).
Therefore, introducing the height information of the aircraft at the start and/or rest-
ing point into the data processing is a great help, especially in the airborne altimetry
applications. The bias of the results obtained by using different software can then be
eliminated.

10.2.2.5
Creation of a Kinematic Tropospheric Model

Using the multiple static reference receivers, the parameters of the tropospheric model
can be determined. Using these parameters, the tropospheric model parameters for
the kinematic receiver can be interpolated. Such a model, however, generally is only
suitable for the footprint point of the kinematic platform. Therefore, the vertical gra-
dient of temperature and the exponential changes of pressure and humidity
(Syndergaard 1999) are introduced into the standard model to create a tropospheric
model for the kinematic station in the air. This is, of course, not an ideal model; how-
ever, it is a very reasonable one.

10.2.2.6
Higher Order Ionospheric Effect Correction

For long distance kinematic positioning, the ionosphere-free combination has to be
used to eliminate the ionospheric effects. It is well-known that the ionosphere-free
combination is indeed only a first order approximation (Klobuchar 1996). The sec-
ond order ionospheric effects are about 0.1% of that of the first order (Syndergaard
1999). Therefore the residual ionospheric effects can reach the level of a few cm. This
has to be taken into account by using some form of modelling of the total ionospheric
effects.
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10.2.2.7
A General Method of Integer Ambiguity Fixing

An integer ambiguity search method based on the conditional adjustment theory was
proposed in Sect. 8.3. This method has been implemented in the GPS software KSGsoft
(Kinematic/Static GPS Software), developed in GFZ Potsdam (Xu et al. 1998), and used
extensively for real data processing in the EU project AGMASCO (Xu et al. 1997). The
search can be carried out in the coordinate domain, ambiguity domain or both do-
mains. Most other least squares ambiguity search methods (Euler and Landau 1992;
Teunissen 1995; Merbart 1995; Han and Rizos 1995, 1997) are special cases of this al-
gorithm, if only the ambiguity search domain is selected and without considering the
uncertainty of the coordinates caused by ambiguity fixing. By taking the coordinate
and ambiguity residuals into account, a general criterion for ambiguity searching is
proposed to ensure an optimal search result. Detailed formulas are derived and their
usage can be found in Sect. 8.3. The theoretical relationship between the general cri-
terion and the least squares ambiguity search criterion is also derived and illustrated
by numerical examples in Sect. 8.3.

10.2.3
Concept of Flight-State Monitoring

For flight-state monitoring of an aircraft, it is necessary that several GPS antennas have
to be used. The relative positions between the multiple antennas should be determined.
Using, as an example, the method presented in Sect. 10.2.2, the position and velocity
of one of the kinematic antennas can be determined. Using this point as a reference,
the related position differences of other antennas can be determined. Because the dis-
tances between the multiple antennas are only a few meters, the atmospheric and iono-
spheric effects are nearly identical, and therefore only the single frequency L1 obser-
vations are needed for relative positioning. In addition, due to the short ranges, such
relative positioning can be performed with high accuracy.

Early stage tests of multiple kinematic GPS antennas mounted on a platform were
made for checking purposes, using the known baseline length. Typically, such checks
indicate that the distance has a systematic bias if the distance is computed from the two
positions and these two positions are determined separately. However, a combined so-
lution of multiple kinematic positioning does not overcome the distance bias problem
completely because of inaccuracies in the ambiguity solution. Therefore, for precise
flight-state monitoring, it is necessary to introduce the known distances between the
antennas fixed on the aircraft as additional constraints in the data processing.

The distance condition can be represented as

 , (10.9)

where ∆X, ∆Y and ∆Z are the coordinate differences between two antennas, and ρ  is
the distance. Because of the short distances, the linearisation of the condition cannot
be done precisely in the initial step, and therefore an iterative process has to be used.
The conditions can be used in a conditional adjustment, or the conditions can be used
for eliminating unknowns. Both methods are equivalent.

10.2  ·  Concept of Precise Kinematic Positioning and Flight-State Monitoring
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Flight-state is usually represented by so-called “state angles” (heading, pitch, and roll).
They are rotation angles between the body and the local horizontal coordinate frames of
the aircraft. The axes of the local horizontal frame are selected as follows: the xb axis points
out the nose, the yb axis points to the right parallel to the wing, and the zb axis points out
the belly to form a right-handed coordinate system, where b denotes the body frame. The
body frame can be rotated to be aligned to the local horizontal frame in a positive, right-
handed sense, which is outlined in three steps. First, the body frame is rotated about the
local vertical downward axis z by angle ψ  (heading). Then the body frame is rotated
about the new yb axis by angle θ  (pitch). Finally, the body frame is rotated about the new
xb axis by angle φ  (roll). In the local horizontal coordinate system, the heading is the
azimuth of axis xb of the body frame, the pitch is the elevation of axis xb of the aircraft
and the roll is the elevation of axis yb of the aircraft. Note that the directions of the
axis xb and the velocity vector of aircraft are usually not the same. Through kinematic
positioning, the three flight state monitoring angles can be computed (Cohen 1996).

Suppose three kinematic GPS antennas are mounted on the aircraft at the front, the
back and the right wing (denoted as f, b, w), so that the y components of the coordi-
nates of front and back antennas in the body frame are zero, i.e., yb

f = yb
b = 0, and x,

z components of the coordinates of the wing antenna in the body frame are zero, i.e.,
xb

w = zb
w = 0. Then the coordinates of three antennas in body fixed frame are Pf(xb

f, 0, zb
f),

Pb(xb
b, 0, zb

b), and Pw(0, yb
w, 0). Because the antennas are mounted as above supposed

and because the flight-state is computed by the positions of three antennas, there are
pitch and roll correction angles that can be computed from the three coordinates by

    and (10.10)

 , (10.11)

where

 . (10.12)

Through kinematic positioning and coordinate transformation, one has the coor-
dinates of the three points in the local horizontal frame Pf(xf, yf, zf), Pb(xb, yb, zb), and
Pw(xw, yw, zw). Then the three flight-state monitoring angles can be computed by

 , (10.13)

 , (10.14)

 , (10.15)

    and (10.16)

 , (10.17)
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where √ is the squares root operator and

 , (10.18)

 , (10.19)

    and (10.20)

 . (10.21)

Comparisons of numerical GPS flight-state monitoring results are made with the
results of INS. It is possible to use GPS to determine the heading with an accuracy up
to 0.1 degree, and pitch and roll up to 0.2 degree. In this case, the distances between
the three antennas were 5.224 m, 5.510 m and 4.798 m.

10.2.4
Results, Precision Estimation and Comparisons

Examples demonstrating the above-mentioned methods are given through kinematic/
static processing a set of kinematic/static GPS data collected on the 3 October 1997 at
the islands of Portugal in the Atlantic Ocean within the Azores campaign. Two refer-
ence stations (Faim and Flor) served as static references and have a distance of about
239.4 km. Three antennas are fixed at the front, the back and the wing of the aircraft
for determining the flight-state. The distances between the baselines of front-back,
front-wing, and back-wing are 5.224, 5.510, and 4.798 meters, respectively. The flight
time is about 4 hours. The length of the area is about 400 km (Fig. 10.11). The height
of the flight is about 400 meters (Fig. 10.12).

Fig. 10.11. One flight trace determined by kinematic GPS
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10.2.4.1
Multiple Static References for Kinematic Positioning

The flight trajectory determined by using multiple references is a kind of weighted aver-
age path of the trajectories determined by using a single reference separately. The heights
of the front antenna are determined by using a single reference and multiple references,
respectively. The height differences of Flor-Faim, Flor-2ref, and Faim-2ref are given in
Fig. 10.13 with dark, light, and medium grey lines. Where Flor-Faim means the height dif-
ferences between the results obtained by using Flor and Faim as a static reference sepa-

Fig. 10.13. Height differences caused by static references

Fig. 10.12. Height profile of one flight determined by kinematic GPS
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rately, 2ref means two references are used. The statistics of the differences are given in
Table 10.1 (units: cm). It shows that the multiple references helped to stabilise the results.

10.2.4.2
Ambiguity of Multiple Static References as a Condition for Kinematic Positioning

In the case of multiple static references, a static solution between the static references
can be made for obtaining the static ambiguity vector. Such a vector usually can be
obtained with excellent quality. By introducing such results as conditions for kinematic
positioning, the accuracy of the position solution can be modified. The differences of
the heights of the front antenna determined by using multiple references with and
without using static ambiguities as conditions are given in Fig. 10.14. The average and
standard deviation of the differences are 27.07 and 4.34 cm, respectively. These have
shown that the multiple static conditions have helped to modify the results. A change
of ambiguity not only caused a bias, but also a variation in the results.

Using multiple static references and introducing the static ambiguities as conditions,
accuracy of the kinematic positioning can rise significantly. However, the airborne altimetry
results have shown that the GPS height solution still has a bias. Therefore, airport height
information is introduced as a condition for modifying ambiguity resolution and eliminat-
ing the height bias of the GPS solution. To introduce tropospheric parameters for the air-
craft, statically determined parameters and the vertical temperature gradient have been used.

Table 10.1.
Statistics of the differences of
the heights determined

Fig. 10.14. Height differences caused by static references
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10.2.4.3
Multiple Kinematic GPS for Flight-State Monitoring and its Comparison with INS

GPS determined heading, pitch and roll are given in Fig. 10.15 and 10.16 (with dark
and light lines), respectively. Comparisons are made with the results of INS. The dif-
ferences of the flight-state angles determined by GPS and INS are given in Fig. 10.17.
The differences of the heading, pitch and roll are represented with dark, medium and

Fig. 10.15. Heading determined by GPS

Fig. 10.16. Pitch and roll determined by GPS
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light grey lines, respectively. The statistics of differences of the heading, pitch and roll
are given in Table 10.2 (units: degrees). The larger deviations of the pitch and roll are
due to larger uncertainties of the height components determined by GPS. Consider-
ing the large deviation around epoch 66 000 and the data gap in INS around ep-
och 68 000, it is possible to use GPS to determine the heading with accuracy up to 0.1 de-
gree and pitch and roll up to 0.2 degree.

10.2.4.4
Static GPS Data Kinematic Processing

Static GPS data kinematic processing is one of the methods used to check the reliabil-
ity of the GPS software working in a kinematic module. Such static data kinematic pro-
cessing has been used for studying Earth tide effects (Xu and Knudsen 2000) and ocean
loading tide effects. Faim has been used as a reference, and the position of Flor has been
solved with static and kinematic modules. The static height of Flor is 98.257 m. The
kinematic height average is 98.272 m, and its standard deviation is 3.8 cm. This indicates
that kinematic data processing can reach an accuracy of about 4 cm with a baseline length
of about 240 km. It seems that the results are very good; however, the kinematic height
graphic (see Fig. 10.18) shows a clear ambiguity problem in kinematic data processing.
As soon as a satellite goes up or down, a jump will occur in the solution trajectory.

Table 10.2.
Statistics of the differences of
the flight-state angles deter-
mined by GPS and INS

Fig. 10.17. Differences of flight state determined by GPS and INS
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Table 10.3.
Statistics of the differences of
the velocity

Fig. 10.18. Height changes by static data kinematic processing

10.2.4.5
Doppler Velocity Comparisons

Previous study (Xu et al. 1997) has shown that the velocity solution derived from Dop-
pler measurements has a very high accuracy. It seems that the velocity solutions are
independent from the static references. A statistic analysis of the differences of the
velocity solved by using a different static reference (Flor or Faim) is given in Table 10.3
(units: cm s–1), which confirms again the previous conclusion. The nominal flight ve-
locity is about 80 m s–1 in horizontal. In the vertical component, the maximum veloc-
ity is about 5 m s–1.

10.2.5
Conclusions

GPS research during the AGMASCO project has concluded that GPS is able to be used
for airborne kinematic positioning and flight-state monitoring to fulfil the needs of
navigating a remote sensing system for applications in aerogravimetry and oceanog-
raphy.

A methodology has been proposed for precise kinematic GPS positioning that ad-
dresses the following issues:

■ Using IGS stations to obtain precise reference coordinates, and introducing Earth tide
and ocean loading tide corrections;
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■ Introducing multiple static reference receivers, and using static ambiguity solution as
conditions;

■ Introducing the initial height information as a condition, and introducing the tropo-
spheric model to the aircraft kinematic GPS receivers; and

■ Modelling the higher order ionospheric effects, and using the general method of ambi-
guity searching in coordinate and ambiguity domains.

For flight-state monitoring, the kinematic reference and data of the single frequency L1
are used. Known distances between the multiple kinematic antennas are used as addi-
tional constraints.

Results have shown adequate performance of this methodology.

10.2  ·  Concept of Precise Kinematic Positioning and Flight-State Monitoring
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Perturbed Orbit and its Determination

Satellites are attracted not only by the central force of the Earth, but also by the non-cen-
tral force of the Earth, the attracting forces of the Sun and the Moon, and the drag force of
the atmosphere. They are also affected by solar radiation pressure, Earth and ocean tides,
general relativity effects (cf. Chap. 5) as well as coordinate perturbations. Equations of
satellite motion have to be represented by perturbed equations. In this chapter, after dis-
cussions of the perturbed equations of motion and the attracting forces, for convenience
of the Earth tide and ocean loading tide computations, the ephemerides of the Sun and
the Moon are described. Orbit correction is discussed based on an analysis solution of the
C–20 perturbation. Emphasis is given to the precise orbit determination, which includes the
principle of orbit determination, algebraic solution of the variation equation, numerical
integration and interpolation algorithms as well as the related partial derivatives.

11.1
Perturbed Equation of Satellite Motion

The perturbed equation of motion of the satellite is described by Newton’s second law
in an inertial Cartesian coordinate system as

 , (11.1)

where f
➞

 is the summated force vector acting on the satellite, and r➞ is the radius vector of
the satellite with mass m. r

··➞ is the acceleration. Equation 11.1 is a second-order differential
equation. For convenience, it can be written as two first-order differential equations as

 . (11.2)

Denoting the state vector of the satellite as

 , (11.3)

then Eq. 11.2 can be written as

 , (11.4)
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where

 . (11.5)

Equation 11.4 is called the state equation of the satellite motion. Integrating Eq. 11.4
from t0 to t, one has

 , (11.6)

where  X
➞

(t) is the instantaneous state vector of the satellite,   X
➞

(t0) is the initial state
vector at time t0, and F

➞

 is a function of the state vector X
➞

(t) and time t. Denoting the
initial state vector as X

➞

0, then the perturbed satellite orbit problem turns out to be a
problem of solving the differential state equation under the initial condition as

 . (11.7)

11.1.1
Lagrangian Perturbed Equation of Satellite Motion

If the force f
➞

 includes only the conservative forces, then there is a potential function V so that

 , (11.8)

where (x, y, z) and (r, ϕ, λ) are Cartesian coordinates and spherical coordinates, respectively.
Denotin R as the disturbance potential, V0 as the potential of the centred force  f

➞

 0, then

 . (11.9)

The perturbed Eq. 11.2 of satellite motion in Cartesian coordinates is then

 , (11.10)

where µ is the gravitational constant of the Earth. The state vector (r➞, r
·➞) of the satellite corres-

ponds to an instantaneous Keplerian ellipse (a, e, ω , i, Ω , M). Using the relationships be-
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tween the two sets of parameters (cf. Chap. 3), the perturbed equation of motion 11.10 can
be transformed into a so-called Lagrangian perturbed equation system (cf., e.g., Kaula 1966)

 . (11.11)

Based on the above equation system, Kaula derived the first order perturbed analysis
solution (cf. Kaula 1966). In the case of a small e (e << 1), the orbit is nearly circular, so that
the perigee and the related Keplerian elements f and ω are not defined (this is not to be
confused with the force vector f

➞

 and true anomaly f). To overcome this problem, let
u = f + ω , and a parameter set of (a, i, Ω, ξ, η, λ) is used to describe the motion of the
satellite, where

 . (11.12)

Thus, one has

(11.13)

and

 . (11.14)
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Substituting Eq. 11.14 into Eq. 11.11 and then substituting the 2nd, 3rd and
6th equations into Eq. 11.13, one has

 . (11.15)

The new variables of Eq. 11.12 do not have clear geometric meanings. An alternative
is to use the Hill variables (cf., e.g., Cui 1990).

11.1.2
Gaussian Perturbed Equation of Satellite Motion

Considering the non-conservative disturbance forces such as solar radiation and air
drag, no potential functions exist for use; therefore, the Lagrangian perturbed equa-
tion of motion cannot be directly used in such a case. The equation of motion perturbed
by non-conservative disturbance force has to be derived.

Considering any force vector f
➞

 = (fx   fy   fz)
T in ECSF coordinate system, one has

 , (11.16)

where (fr   fα   fh)T is a force vector with three orthogonal components in an orbital plane
coordinate system, the first two components are in the orbital plane, fr is the radial force
component, fα is the force component perpendicular to fr and pointed in the direction
of satellite motion, and fh completes a right-handed system. For convenience, the force
vector may also be represented by tangential, central components in the orbital plane
(ft, fc) as well as fh (cf. Fig. 11.1). It is obvious that

 , (11.17)

where
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Fig. 11.1.
Relation of radial and
tangential forces
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   or (11.18)

 . (11.19)

In order to replace the partial derivatives ∂R / ∂σ by force components, the relation-
ships between them have to be derived, where σ is a symbol for all Keplerian elements.
Using the regulation of partial derivatives, one has

(11.20)

where e➞r is the radial identity vector of the satellite, the dot is the vector dot product, and

 . (11.21)
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Substituting Eq. 11.21 into Eq. 11.20 and simplifying it, one has

 . (11.22)

For deriving the partial derivatives of r and u (= f + ω) with respect to the six
Keplerian elements, the following basic relations (cf. Chap. 3) are used

 , (11.23)

where E is a function of (e, M), f is a function of (e, E), i.e., (e, M), r is a function of
(a, e, M), and u is a function of (ω, f), i.e., (ω, e, M). Thus,

 . (11.24)

Substituting Eq. 11.24 into Eq. 11.22, one has
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 . (11.25)

Putting Eq. 11.25 into Lagrangian perturbed equations of motion 11.11, the so-called
Gaussian perturbed equations of motion are then

 . (11.26)

The force components of (fr,  fα,  fh) are used. Using Eq. 11.17, the Gaussian
perturbed equations of motion can be represented by a disturbed force vector of
(ft,  fc,  fh).

11.2
Perturbation Forces of Satellite Motion

Perturbation forces of satellite motion will be discussed in this section. They are the
gravitational forces of the Earth, the attracting forces of the Sun, the Moon and the plan-
ets, the drag force of the atmosphere, solar radiation pressure, Earth and ocean tides,
as well as coordinate perturbations.

11.2.1
Perturbation of the Earth’s Gravitational Field

After a brief review of the Earth’s gravitational field, the perturbation force of the Earth
will be outlined here.
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11.2.1.1
The Earth’s Gravitational Field

The complete real solution of the Laplace equation is called potential function V of the
Earth. In spherical coordinates, V can be expressed by (Moritz 1980; Sigl 1989):

 , (11.27)

where r is the radius, ϕ is the latitude, and λ is the longitude measured eastward
(counter-clockwise looking toward the origin from the positive end of the z-axis). One
can, of course, use the co-latitude ϑ (or polar distance) instead of the latitude ϕ
(sinϕ = cosϑ). The subscript i in the first term denotes the cos mλ or sinmλ term.
Plm(sinϕ) is the so-called associated Legendre function, Vlmi denotes surface spherical
harmonics, Clm, Slm are coefficients of the spherical functions, and

 , (11.28)

where k is the integer part of (l – m) / 2, and

 . (11.29)

An important property of surface spherical harmonics Vlmi is that they are ortho-
gonal ones. Namely for the integration over the surface of a sphere there is (Heiskanen
and Moritz 1967; Kaula 1966):

 . (11.30)

The integral of the square of Vlmi for Clm = 1 or Slm = 1 is

 , (11.31)

where the Kronecker delta δ0m is equal to 1 for m = 0 and 0 for m ≠ 0.
The normalised Legendre functions can be defined and denoted by

 , (11.32)

where x = sinϕ = cosϑ. Recurrence formulae can be easily derived (Wenzel 1985):

 ,

 ,
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 ,   and

 . (11.33)

Since the first term of V (i.e., l= 0) is represented by GM / r, the fully normalised
geopotential function is taken as follows (Torge 1989; Rapp 1986):

 , (11.34)

where GM is the geocentric gravitational constant, C
_

lm, S
_

lm are normalised coefficients and
a is the mean equatorial radius of the Earth. The first term of V is the potential of the cen-
tral force of the Earth. The perturbation potential of the Earth is then (denoting GM = µ )

 . (11.35)

For any initial external potential of the Earth

 , (11.36)

the disturbing potential T is then

 , (11.37)

where C
_

N
lm, S

_
N
lm are known normalised coefficients of the disturbing potential and

 . (11.38)

11.2.1.2
Perturbation Force of the Earth’s Gravitational Field

Denoting (x', y', z') as three orthogonal Cartesian coordinates in ECEF system, then the
force vector is

 . (11.39)
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From the relation between the Cartesian and spherical coordinates

 ,     one has (11.40)

 . (11.41)

For differentiations of the associated Legendre function, from the Eq. 11.33, one has
similar recurrence formulae:

 , (11.42)

 ,

 ,

 ,

 ,

 ,

 ,

 ,

 ,

     
and
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 , (11.43)

 ,

 ,

 ,

The partial derivatives of the potential function with respect to the spherical coordi-
nates are

 . (11.44)

Using the transformation formula of Eq. 2.14, the perturbation force of the Earth’s
gravitational field in the ECSF system is then

  . (11.45)

The computation process of disturbance force of the Earth’s gravitational field in
the ECSF coordinate system may be carried out by

1. Using Eq. 2.14 to transform the satellite coordinates in the ECSF system to the ECEF
system;

2. Using Eq. 11.40 to compute the spherical coordinates of the satellite in the ECEF
system;

3. Using Eq. 11.39 to compute the force vector in the ECEF system;
4. Using Eq. 11.45 to transform the force vector to the ECSF system.
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11.2.2
Perturbation of the Sun and the Moon as well as Planets

The equations of motion of two point-masses M and m under their mutual action can
be given by

 , (11.46)

where r is the length of the vector r➞, index Mm means the vector is pointing from point-
mass M to m, and single index M or m means the vector is pointing to point-mass M or
m. Introducing additional point-masses m(j), j = 1, 2, …, the attractions of m(j) on M
and m can be given as equations similar to Eq. 11.46, and the total attractions may be
obtained by summations

 . (11.47)

By dividing the above two equations with –M and m, respectively, then adding them
together, one has

 . (11.48)

Letting r➞ = r➞m – r➞M, i.e., using the point-mass M as the origin, substituting r➞mm(j)
= − (r➞m – r➞m(j)) in the right side of Eq. 11.48 and omitting the mass m (mass of satel-
lite), one has

 . (11.49)

It is obvious that the first term on the right side is the central force of the Earth;
therefore, the disturbance forces of multiple point-masses acting on the satellite are
then

 , (11.50)

where Gm(j) are the gravitational constants of the Sun and the Moon as well as the
planets.
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11.2.3
Earth Tide and Ocean Tide Perturbations

As discussed in Sect. 5.4, the tidal potential generated by the Moon and the Sun can be
written as

or

 , (11.51)

where j is the index of the Moon (j = 1) and the Sun (j = 2), µj is the gravitational con-
stant of body j, ρ is the geocentric distance of the Earth’s surface (set as ae), rj is the
geocentric distance of the body j, Pn(x) and Pnk(x) are the Legendre function and as-
sociated Legendre function, zj is the zenith distance of the body j, δj and hj are the dec-
lination and local hour angle of body j, hj = Hj – λ, and Hj is the hour angle of j. The
tidal deformation of the Earth caused by the tidal potential can be considered a tidal
deformation potential acting on the satellite by Dirichlet’s theorem (Melchior 1978;
Dow 1988):

or

 , (11.52)

where kn is the Love number, (r, ϕ, λ) is the spherical coordinate of the satellite in the
ECEF system, and N is the truncating number. The recurrence formulas of the Legendre
function are (cf., e.g., Xu 1992)

 . (11.53)

The disturbing force vector of the tidal potential in the ECEF coordinate system is then
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 , (11.54)

where

 ,

and

 . (11.55)

Other partial derivatives in Eq. 11.54 have been given in Sect. 11.2.1. The transfor-
mation of the force vector from the ECEF to the ECSF coordinate system can be done
by Eq. 11.45.

As discussed in Sect. 5.4, the ocean tidal potential generated by tide element σHds
can be written as

 , (11.56)

where H is the ocean tide height of the area ds, G is the gravitational constant, σ  is the
water density, r' is the distance between the satellite and the water element ds, r is the
geocentric distance of the satellite, z is the zenith distance of the ds, and ae is the radius
of the Earth. Using the spherical triangle

 ,

where (ϕs, λs) is the spherical coordinate of ds and (r, ϕ, λ) is the spherical coordinate
of satellite in the ECEF system, Eq. 11.56 turns out to be (denoted by Q)
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 . (11.57)

The direct ocean tide potential is then the integration of Q / ds over the ocean (de-
notes by O), including the potential of the deformation of the ocean loading. The ocean
tide potential is then

 , (11.58)

where k'n is the ocean loading Love number. Equation 11.58 does not include the potential
changing due to the loading deformation over the continents, which may give a non neg-
ligible contribution to the orbit motion of the satellite (cf. Knudsen et al. 2000). Recalling
the discussion in Sect. 5.4, the loading deformation generated by the ocean tide can be
represented as

 , (11.59)

where ae is the radius of the Earth, M is the mass of the Earth, z is the geocentric zenith
distance of the loading point (related to the computing point, see Fig. 5.11), Pn(cosz) is
the Legendre function, u(z) is the radial loading displacement Green function, h'n is the
loading Love number of order n, and ur is the radial loading deformation. Substituting
ur for H in Eq. 11.57 and integrating Q / ds over the continents (denoted by C), the po-
tential of the loading deformation is then

 , (11.60)

where σe is the density of the mass urds on the Earth’s surface. The total ocean tide po-
tential disturbance is the summation of Eqs. 11.58 and 11.60. Similar to above, the dis-
turbing force can be derived and transformed to the ECSF system. There are

 , (11.61)
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where

 ,

 ,

 ,

 ,

and

 . (11.62)

11.2.4
Solar Radiation Pressure

Solar radiation pressure is force acting on the satellite’s surface caused by the sunlight.
The radiation force can be represented as (cf., e.g., Seeber 1993)

 , (11.63)

where γ is the shadow factor, Ps is the luminosity of the Sun, Cr is the surface reflectivity,
rsun is the geocentric distance of the Sun, (S / m) is the surface to mass ratio of the satel-
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Fig. 11.2. Satellite-Earth-Sun system
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lite, and r➞ and r➞sun are the geocentric vector of the satellite and the Sun. Usually, Ps has
the value of 4.5605 × 10–6 Newton / meter, Cr has values from 1 to 2, 1 is for the complete
absorption of the sunlight, and for aluminium, Cr = 1.95.

The shadow factor is defined as

 , (11.64)

where As is the sight surface of the Sun viewed from the satellite, and Ass is the shad-
owed sight surface of the Sun. The sunlight may be shadowed by the Earth and the Moon.
For convenience, we will discuss both parameters that are only in the satellite-Earth-
Sun system (cf. Fig. 11.2). It is obvious that the half sight angles of the Earth and the
Moon as well as the Sun viewed from the satellite are

 , (11.65)

where ae, as and am are semimajor radii of the Earth, Sun and Moon, respectively;
am = 0.272493ae, and as = 959.63π/ (3 600 × 180) (AU). For the GPS satellite, αs < 0.3°,
αe ≈ 16.5° and αm ≈ αs ±0.03°. Furthermore, As = α2

sπ and Am = α2
mπ. The angles between

the centre of the Earth and the Sun, as well as the centre of the Moon and the Sun are

 , (11.66)

where the vectors with indices s and m are the geocentric vectors of the Sun and Moon, re-
spectively. The vector without an index is the geocentric vector of the satellite, and r = | r➞ |. If
βes ≥ αe + αs, then the satellite is not in the shadow of the Earth (i.e., Ass = 0). If βes ≥ αe − αs,
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then the Sun is not in view of the satellite (i.e. Ass = As). If αe − αs < βes  <  αe + αs, then the
sunlight is partly shadowed by the Earth. The formula of the shadowed surface can be
derived as follows (cf. Fig. 11.3). The two circles with radius αe and αs cut each other at
point p and q, line p

_
q is called a chord (denoted by 2a), the chord-related central angle

at origin os is denoted by φ1, the surface area between the chord and the arc of the
circle αs on the right side of the chord is denoted by A1. Line p

_
q cuts O

_
sO
_

e at point g,
while O

_
s g
_
  and g

_
O
_

e are denoted by b and b1. Then one has

 . (11.67)

Similarly, the chord-related central angle at origin oe is denoted by φ2, while the
surface area between the chord and the arc of the circle αe on the left side of chord is
denoted by A2. Then one has

(11.68)

and

 . (11.69)

Fig. 11.3.
Shadowed surface area
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A similar discussion can be made for the Moon. If βms ≥ αm + αs, then the satellite is
not in the shadow of the Moon, i.e., Ass = 0. If βms ≥ αm − αs, then the full shadow has
occurred, i.e., Ass = min(As, Am). If |αm – αs |< βms < αm + αs, then the sunlight is par-
tially shadowed by the Moon. The formula of the shadowed surface can be similarly
derived by changing the index e to m in Eqs. 11.67 and 11.68. Because of the small sight
angle of the Moon viewed from the satellite, the shadowed time will be very short if it
happens. By GPS satellite dynamic orbit determination (e.g., in IGS orbit determina-
tion), only the data that have the γ  value of 0 or 1 are used.

Because of the complex shape of the satellite, the use of constant reflectivity and
homogenous luminosity of the Sun, as well as the existence of indirect solar radiation
(reflected from the Earth’s surface), the model of Eq. 11.63 discussed above is not accu-
rate enough for precise purposes and will be used as a first order approximation. A
further model for the adjustment to fit solar radiation effects is needed.

The force vector is pointed from the Sun to the satellite. The satellite fixed coordi-
nate system is introduced in Sect. 5.8 (cf. Sect. 5.8 for details). The solar radiation force
vector in the ECSF system is then

(11.70)

where

 . (11.71)

Further formulas of Eq. 11.71 can be found in Sect. 5.8. Taking the remaining error
of the radiation pressure into account, the solar radiation force model can be repre-
sented as (cf. Fliegel et al. 1992; Beutler et al. 1994)

 . (11.72)

That is, 9 parameters are used to model the solar radiation force error for every
satellite.

An alternative adjustment model of solar radiation is given by introducing a so-
called disturbance coordinate system and will be outlined below (cf. Xu 2004).

Disturbance Coordinate System and Radiation Error Model

The solar radiation force vector is pointed from the Sun to the satellite. If the shadow
factor is computed exactly, the luminosity of the Sun is a constant, and the surface
reflectivity of the satellite is a constant, then the length of the solar force vector can be
considered as a constant, because
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 , (11.73)

and

 .

Any bias error in Ps, Cr and (S / m) may cause a model error of αf
➞

solar, where α is a param-
eter. So the  αf

➞

solar can be considered a main error model of the solar radiation. Because
the ratio of the geocentric distances of the satellite and the Sun is so small, the direction
and distance changes of the Sun-satellite vector are negligible. With the motion of the Sun,
the solar radiation force vector changes its direction with the time in the ECSF (Earth-
Centred-Space-Fixed) coordinate system ca. 1 degree per day. Such an effect can only be
considered a small drift, not a periodical change for the orbit determination. To model
such an effect in the ECSF, system one needs three bias parameters in three coordinate
axes and three drift terms instead of a few periodical parameters. It is obvious that to model
such an effect in the direction of n➞, just one parameter α is needed. Therefore, it is very
advantageous to define a so-called disturbance coordinate system as follows: the origin is
the geo-centre, and the three axes are defined by r➞   (radial vector of the satellite), n➞   (the
Sun-satellite identity vector) and p➞   (the atmospheric drag identity vector). These three axes
are always in the main disturbance directions of the indirect solar radiation (reflected from
the Earth’s surface), direct solar radiation and atmospheric drag, respectively. This coor-
dinate system is not a Cartesian one and the axes are not orthogonal to each other. The
parameters in individual axes are mainly used to model the related disturbance effects,
and meanwhile to absorb the remained error of other un-modelled effects.

In the so-called disturbance coordinate system, the solar radiation pressure error
model can be represented alternatively by (cf. Xu 2004)

 , (11.74)

where b-terms are very small.

11.2.5
Atmospheric Drag

Atmospheric drag is the disturbance force acting on the satellite’s surface caused by the
air. Air drag force can be represented as (cf., e.g., Seeber 1993; Liu and Zhao 1979)

 , (11.75)

where S is the cross section (or effective area) of the satellite, Cd is the drag factor, m is
the mass of the satellite, r

·➞ and r
·➞

air are the geocentric velocity vectors of the satellite and
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the atmosphere, and σ  is the density of the atmosphere. Usually, S has a value of 1 / 4 of
the outer surface area of the satellite, and Cd has labour values of 2.2 ±0.2. The velocity
vector of the atmosphere can be modelled by

 , (11.76)

where ω➞  is the angular velocity vector of the Earth’s rotation, and ω = |ω➞ |, k is the at-
mospheric rotation factor. For the lower layer of the atmosphere, k = 1, i.e., the lower
layer of the atmosphere is considered rotating with the Earth. For the higher layer,
k = 1.2, because the higher ionosphere is accelerated by the Earth’s magnetic field.

Gravity balanced atmospheric density model has the exponential form of (cf. Liu
and Zhao 1979)

 , (11.77)

where σ0 is the atmospheric density at the reference point ρ, q is the daily change fac-
tor of the density, r is the geocentric distance of the satellite, and H is the density-height
scale factor. For the spherical and rotating ellipsoidal layer atmospheric models, one
has

(11.78)

and

 , (11.79)

respectively. Where ae is the semimajor radius of the Earth, hi (i = 1, 2, …) is a set of
numbers, ϕ is the geocentric latitude of the satellite, and e is the eccentricity of the el-
lipsoid. Equations 11.78 and 11.79 are sphere with radius ae + hi and rotating ellipsoid
with semimajor axis ae + hi. Equation 11.79 can be derived from the relation of tanϕ
and the ellipsoid equation

  .

A reference of atmospheric densities can be read from Table 11.1, which is given by
Cappellari (1976) (cf. Seeber 1993)

The density-height scale H between every two layers can be then computed from
the above values. It is notable that the air density may change its value up to a factor of
10 due to the radiation of the Sun. The density of the atmosphere at a defined point
reaches its maximum value at 14h local time and its minimum at 3.5h. The most sig-
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nificant period of change is the daily change and is represented by the daily changing
factor as

 , (11.80)

where f is the ratio of the maximum density and the minimum density, and ψ  is the
angle between the satellite vector r➞ and the daily maximum density direction  r➞m. The
f may have the value of 3 and

 , (11.81)

where

 , (11.82)

where (α, δ) are the coordinates (right ascension, latitude) of the Sun in the ECSF coor-
dinate system.

Taking the remaining error of the atmospheric drag into account, the air drag force
model can be represented as

 . (11.83)

Table 11.1.
Reference of atmospheric
densities
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Where the force error vector is denoted by ∆f
➞

drag and the time variation part of
atmospheric density is considered in parameter q.

Error Model in Disturbance Coordinate System

In the atmospheric drag model Eq.11.75, the velocity vector of the atmosphere is al-
ways perpendicular to the z-axis of the ECSF coordinates and the satellite velocity vec-
tor is always in the tangential direction of the orbit. The variation of the term |r

·➞ – r
·➞

air|
(denoted by g) is dominated by the direction changes of the velocity vectors of the
satellite and the atmosphere. Any bias error in S (effective area of the satellite), Cd (drag
factor) and σ  (density of the atmosphere) may cause a model error of µf

➞

drag, where µ
is a parameter. So the µf

➞

drag can be considered a main error model of the un-mod-
elled atmospheric drag. To simplify our discussion, we consider the velocities of the
satellite and atmosphere are constants, and call the satellite positions with max(z) and
−max(z) the highest and lowest points, respectively. With the satellite at the lowest point,
the two velocity vectors are in the same direction and therefore the g reaches the mini-
mum. At the ascending node, the two vectors have the maximum angle of inclination
i and the g reaches the maximum. Then g reaches the minimum again at the highest
point and reaches the maximum again at the descending node, and at the end reaches
the minimum at the lowest point. It is obvious that, besides the constant part, g has a
dominant periodical component of cos2f and sin2f where f is the true anomaly of the
satellite.

In the so-called disturbance coordinate system the atmospheric drag error model
can be represented alternatively by (cf. Xu 2004)

 , (11.84)

where

 ,     k = 1, 2, 3 (11.85)

where ω is the angle of perigee and f is the true anomaly of the satellite; a, b, c and d are
model parameters to be determined. According to the simulation, a-term and b-term
are the most significant terms. The amount of d is just about 1% of the amount of c,
and the amount of c is about 1% of that of b.

11.2.6
Additional Perturbations

As mentioned above, the disturbed equation of motion of the satellite is valid only in
an inertial coordinate system, or ECSF system. Therefore, the state vector and force
vectors as well as the disturbing potential function have also to be represented in the
ECSF system. As seen above, for some reason, the state vector and the force vectors as
well as the disturbing potential function R are sometimes given in the ECEF system
and then transformed to the ECSF system by (cf. Sect. 11.2.4)
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 , (11.86)

where Rt is the transformation matrix in general. Variable transformation is further
denoted by XECSF = RtXECEF. We have also seen that sometimes the state vectors (of the
satellite, the Sun, the Moon) in the ECSF system have to be transformed to the ECEF
system for use, and then the result vectors will be transformed back to the ECSF system
again. However, due to the complication of transformation Rt

–1, quite often a simplified
Rs

–1 is used. (cf. in later discussions, for example to represent the disturbing potential
function using Keplerian elements, only the Earth rotation is considered). Thus,

 , (11.87)

where the first term on the right side is the correction because of the approximation
using the second term. The transformations of Eqs. 11.86 and 11.87 are exact opera-
tions, and their differentiation with respect to time t and the partial derivatives with
respect to variable XECSF are then

 . (11.88)

That is, the time differentiations of the state vector and force vectors cannot be trans-
formed directly like in Eq. 11.86. In other words, if the state vector and force vectors are
not directly given in the ECSF system, they are not allowed to be differentiated as usual
afterward. An approximated and transformed perturbing potential function will intro-
duce an error. The first term on the right-hand side of Eq. 11.88 signifies additional
perturbations, or coordinate perturbations. The order of such perturbations can be
estimated by the first term on the right-hand side. If the relationship between two co-
ordinate systems changes with time or the transformation has not been made exactly,
such perturbations will occur. Recalling

and their definitions (cf. Chap. 2), one has

 , (11.89)
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Where

 , (11.90)

where all elements are defined and given in Chap. 2, (x· p, y·p) is the polar motion rate of
time, and

 . (11.91)

Further formulas may be easily derived.

11.2.7
Order Estimations of Perturbations

Perturbation forces that are scaled by the mass of the satellite are the accelerations. The
accelerations caused by the discussed forces have been estimated for the GPS satellite
by several authors and are summarised in Table 11.2.

If the coordinate system is used without taking precession and nutation into ac-
count, additional perturbation acceleration can reach up to 3 × 10–10. Additional accel-
eration of gravitational potential can reach up to 1 × 10–9 (cf. Liu and Zhao 1979).

11.2.8
Ephemerides of the Moon, the Sun and Planets

The ephemerides of the Sun and the Moon are used above for the computation of shadow
functions of the Sun and Moon (solar radiation pressure), the tidal disturbance forces, and
tidal and loading deformations (cf. Sect. 5.8). The computation of the ephemerides of the
Sun and the Moon can be simplified by considering the orbit of the Sun (indeed it is the
Earth!) and the Moon as Keplerian motion. Consider the orbital right-handed coordinate
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system, the origin in the geocentre, the xy-plane as the orbital plane, the x-axis pointing to
the perigee, and the z-axis pointing in the direction of q➞ × q

·➞, where q➞ and q
·➞ are the posi-

tion and velocity vectors of the Sun or the Moon. The two vectors are (cf. Eqs. 3.41, 3.42)

 , (11.92)

where

 . (11.93)

The position and velocity vectors of the Sun or the Moon in the ECEI and ECSF
coordinate systems are then (cf. Sect. 2.5 and Eq. 3.43)

 , (11.94)

where a and i are the semimajor axis of the orbit and the inclination angle of the orbital
plane of the Moon or the Sun in the ecliptic coordinate system (ECEI). Ω  is the ecliptic right
ascension of the ascending node, e is the eccentricity of the ellipse, ω is the argument of peri-
gee, f is the true anomaly of the Moon or the Sun, and ε  is the mean obliquity (the formula
is given in Sect. 2.4). Because the Sun moves along the ecliptic and the ascending node is
defined as the equinox, parameters i and Ω  are zero. True anomaly f, eccentric anomaly E
and mean anomaly M are given by the Keplerian equation and the following formulas

 . (11.95)

Table 11.2.
Accelerations (m s–2) caused
by forces (cf. Seeber 1993;
Kang 1998)
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For the Moon, eccentricity em = 0.05490, inclination im = 5.°145396 and semimajor
axis am = 384 401 km. For the Sun, eccentricity es = 0.016709114 – 0.000042052T –
0.000000126T2 and semimajor axis as = 1.0000002 AU. AU signifies the astronomical
units (AU = 1.49597870691 × 108 km). The fundamental arguments are given in the IERS
Conventions (cf. McCarthy 1996) as follows:

(11.96)

where l and l' are the mean anomalies of the Moon and the Sun, respectively. D is the
mean elongation of the Moon from the Sun. Ω is the mean longitude of the ascending
node of the Moon. F = L – Ω, L is the mean longitude of the Moon (or Lmoon), and T is
the Julian centuries measured from epoch J2000.0. Formulas of Eq. 11.96 are the argu-
ments used to compute the nutation. Mean angular velocities n of the Sun and Moon
are the coefficients of the linear terms of l and l' (units: second / century), respectively.

For computation of the ephemerides of the Sun, l' is set as M in Eq. 11.95, so that E
and f of the Sun can be computed. Using D = Lmoon – Lsun = F + Ω – Lsun, the mean lon-
gitude Lsun can be computed. ω can be computed by relation Lsun = ω + f.

For computation of the ephemerides of the Moon, l is set as M in Eq. 11.95, so that E
and f of the Moon can be computed. ω can be computed by using the spherical triangle
formula:

 , (11.97)

where angles u (= ω + f) and F are in the same compartment.
Substituting the above values of the Moon and the Sun into Eqs. 11.92–11.94 respec-

tively, ephemerides of the Moon and the Sun are obtained in the ECSF coordinate sys-
tem. For more precise computation of the ephemerides of the Moon, several correc-
tions have to be considered (cf. Meeus 1992; Montenbruck 1989). Equivalently, a
correction dF can be added to F, and the change of du in Eq. 11.97 can be considered df
and added to f, where dF has the form of (units: seconds)

 .

The orbits of the planets are given in the Sun-centred ecliptic coordinate system by
six Keplerian elements. They are the mean longitude (L) of the planet, the semimajor
axis (a, units: AU) of the orbit of the planet, the eccentricity (e) of the orbit, the
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inclination (i) of the orbit to the ecliptic plane, the argument (ω) of the perihelion, and
the longitude (Ω) of the ascending node. The orbital elements are expressed as a poly-
nomial function of the instant of time T (Julian centuries) for planet Mercury, Venus,
Mars, Jupiter, and Saturn as follows (cf. Meeus 1992):

 ,

 ,

 ,

and

 ,
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where except for the semimajor axis a and eccentricity e, all other elements have units
of degrees. F = L – Ω, and f and E can be computed by using Eqs. 11.97 and 11.95. Mean
angular velocities n of the planets are the coefficients of the linear term of L (units:
degree / century). The coordinate vector of the planet can then be computed by using
Eqs. 11.92–11.94. The results are in the Sun-centred equatorial coordinate system. The
results have to be transformed to the ECSF coordinate system by a translation

 , (11.98)

where vectors with an index of sun and SCEF are geocentric position and velocity vec-
tors of the Sun and the planet in the Sun-centred equatorial system.

Gravitational constants of the Sun, the Moon and planets are given in Table 11.3.

11.3
Analysis Solution of the C–20 Perturbed Orbit

The geopotential term of C
_

20 is a zonal term. Compared with other geopotential terms,
C
_

20 has a value that is at least 100 times larger. According to the order estimation dis-
cussed in Sect. 11.2.7, C

_
20 term perturbation is one of the most significant disturbing

factors. C
_

20 disturbance is a perturbation of first order. The analysis solution of the
C
_

20 perturbation will give a clear insight of the orbit disturbance. The related perturb-
ing potential is (cf. Sect. 11.2.1.1)

or

 , (11.99)

where

 .

Table 11.3.
Gravitational constants of the
Sun, the Moon and planets
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The variables (r, ϕ, λ) of the geopotential disturbance function in the ECEF system
are transformed into orbital elements in the ECSF system by using the following rela-
tions (cf. Fig. 11.4, cf. Kaula 1966):

 . (11.100)

Where α  is the right ascension of the satellite, u = ω + f, Θ  is the Greenwich Side-
real Time, and other parameters are Keplerian elements. It is obvious that such a coor-
dinate transformation only takes the Earth’s rotation into account; this will cause a
coordinate perturbation (cf. Sect. 11.2.6). But such an effect can be neglected by the
first order solution. Substituting the first formula of Eq. 11.100 into Eq. 11.99 and tak-
ing the triangle formula (for reducing the order) into account, one has

 , (11.101)

where

 , (11.102)

where Ω has not appeared in the zonal disturbance. Taking the partial derivatives of f
with respect to (M, e) and r with respect to (a, M, e) into account (cf. Sect. 11.1), the
derivatives of R2 with respect to Keplerian elements are then

 ,

 ,

Fig. 11.4.
Orbit-equator-meridian
triangle
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 ,

   and

 . (11.103)

Substituting the above derivatives and R2 into the equation of motion 11.103, one has

 ,

 ,

    and

(11.104)
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For convenience the right-hand side of the above equations will be separated into
three parts:

     or (11.105)

 , (11.106)

where the first term (denoted by σ·
i0) on the right-hand side includes all terms that are

only functions of (a, i, e), the second term includes all terms of ω (without f ) (denoted
by σ·

iω), and the third term includes all terms of f. They are denoted by the sub-index of
0, ω and f, respectively. Equation 11.106 is needed for later integral variable transfor-
mation. The second terms on the right-hand side of the above two equations are the
same. It is notable that the r is a function of f. The solution of the R2 perturbed orbit is
the integration of the above equations between initial epoch t0 and any instantaneous
epoch t. The three terms on the right side can be integrated with the integral variable
of t, ω, and f respectively. The integral variable dt can be changed to df by

 . (11.107)

All terms of ω are presented in the terms of sin2u and cos2u. Omitting the terms of
sin2u and cos2u in Eq. 11.104, the remaining terms of f are included in the following
functions:

 , (11.108)

where

 ,
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 , (11.109)

and

 . (11.110)

Then the first term (long term perturbation) in Eq. 11.106 is

 . (11.111)

Due to the slow changing property of the variable ω, the integral variable changing
between t and ω can be approximated by

 . (11.112)

The second term (long period perturbation) in Eq. 11.106 exists only in sin2u and
cos2u related terms. All sin2u and cos2u terms are factorised by the following func-
tions:

 , (11.113)

Where

   and
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 . (11.114)

From properties of Eq. 11.110 and

 , (11.115)

it is obvious that all ω terms (without f) may be created only by multiplying sin2u and
cos2u by sin2f and cos2f in Eq. 11.113. In other words, only sin22f and cos22f will lead
to a constant of 0.5. Therefore when seeking the ω terms (without f), just sin2f and cos2f
related terms in Eq. 11.113 have to be taken into account. Thus,

 ,

 ,

 ,

 ,

   and

 . (11.116)

The third term of Eq. 11.106 includes all terms of f and can be denoted and repre-
sented by

 , (11.117)

where m(i) is the upper limit of the summation, m(i) = (7, 7, 7, 5, 5, 7) for the related
Keplerian elements, A'''

im, B'''
im are coefficients as well as functions of (a, e, i, ω) and can

be derived from Eqs. 11.104, 11.111 and 11.116. Through integral variable transforma-
tion (cf. Eq. 11.107), one has



27711.4  ·  Orbit Correction

 , (11.118)

where the upper limit of the summation is reduced by 2. A''
im, B''

im are transformed coef-
ficients. It is notable that in Eq. 11.118 the constant term (m = 0) doesn’t exist because
of the property of the short periodic term perturbations.

For the integral area of (t0, t), related areas for ω and f are (ω0,  ω) and (f0, f) respec-
tively. For any f there is an integer k, so that k2π + f0 ≤ f ≤ (k + 1)2π + f0. Using the peri-
odic property, the integration of the terms of Eq. 11.118 over the area of (f0, f0 + 2kπ) is
zero; therefore, Eq. 11.118 just needs to be integrated over the area of (f0 + 2kπ, f). De-
noting the coefficients of sin2ω and cos2ω in Eq. 11.116 as

 ,

the total integration of Eq. 11.106 is then

(11.119)

or

 . (11.120)

That is, the C
_

20 term perturbation of the orbit has a linear term (long-term pertur-
bation), a long periodic term (with argument of ω), and a short period term (with
argument of f). The instantaneous Keplerian elements are equal to the initial elements
plus the perturbations.

Such a C
_

20 disturbed orbit solution provides an indication of a general model of the
perturbed orbit, which will be used as a basis for orbit correction purposes and will be
discussed in the next section.

11.4
Orbit Correction

When the orbit errors of GPS satellites become not negligible for special GPS applica-
tions, a process of orbit correction is the first option. Generally, orbit correction is ap-
plied to the regional or very long baseline of GPS precise positioning. Even IGS precise
GPS orbits are not homogenously precise, because they are dependent on the distribu-
tion of the IGS reference stations and the length of the data used. The orbit correction
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is an adjustment or filtering process in which, besides the station position, the orbit
errors are also modelled, determined, and corrected based on a known orbit.

Keplerian elements also describe the orbit geometry for instantaneous time. Orbit
errors can be considered geometric element errors of the orbit in general. Recalling
above discussions of the C–20 perturbed orbit solution, a general orbit model can be
written as

 , (11.121)

where σj(t), σ jc(t),  σ·
i0 are true orbit element at time t, computed element at t, element

rate with respect to the initial epoch t0, A
j ù

, B
j ù

, A'jm, B'jm are the coefficients of the long
and short periodic perturbations respectively, and m(j) is the truncating integer of
index m related to the jth Keplerian element. ω and f are Keplerian elements. Generally
speaking, the coefficients of A'jm, B'jm are also functions of ω, and ω can be considered
in the short periodic term as a constant. Therefore Eq. 11.121 is equivalent to

 , (11.122)

where u = ω + f. The order of the polynomial term can be risen to 2, further terms of ω
may also be added, and m(j) is selectable. The selection of the number of the order de-
pends on the need and the situation of orbit errors.

In the GPS observation equations (cf. Chap. 6), the orbit state vector is presented in
the range or range rate functions. It depends on the use of the GPS observables. We
denote the range and range rate function generally as ρ ; their partial derivatives with
respect to the orbit state vector are given in Sect. 6.3 and have the forms of

 ,

where the satellite state vector is (r➞, r
·➞). The relations between (r➞, r

·➞) and Keplerian
elements σj are discussed in Sect. 3.1. Also, the relations between σj and the parameters
of the orbit correction model are given in Eq. 11.122. Therefore, the orbit correction
parts in the GPS observation equations are then

 , (11.123)

where y➞, ∆y➞ are the parameter vector in model 11.122 and the parameter correction
vector of the model, and σ➞ is the vector of Keplerian elements. If the initial parameter
vector is selected as zero, then y➞ = ∆y➞. It is obvious that

(11.124)
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and

 . (11.125)

Here parameters Ajm, Bjm represent symbolically the unknowns of all m. For the con-
venience of presenting the partial derivatives of the state vector with respect to the
Keplerian elements, the Keplerian element vector is reordered as

 . (11.126)

This does not affect Eq. 11.125, because the right-hand side of the equation has noth-
ing to do with index j. According to the formulas in Sect. 3.1.3 (Eqs. 3.41–3.43)

 , (11.127)

where

   and (11.128)

 , (11.129)

one has

 , (11.130)

where (q➞, q
·➞) are position and velocity vectors of the satellite in the orbital plane coor-

dinate system, and

   and (11.131)

 ,

where

 ,
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   and

 .

For the Keplerian elements in the orbital plane (a, e, M), one has

 , (11.132)

where

and

 .

The partial derivatives formulas given in Sect. 11.1 and the relation in Eq. 3.32 be-
tween n and a (mean angular velocity and semimajor axis of the satellite) given in
Chap. 3 are used, i.e.

   and

 .
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11.5
Principle of GPS Precise Orbit Determination

Recalling the discussions made in Sect. 11.1, the perturbed orbit of the satellite is the
solution (or integration)

 , (11.133)

which can be obtained by integrating the differential state equation under the initial
condition

 , (11.134)

where X
➞

(t) is the instantaneous state vector of the satellite, X
➞

(t0) is the initial state vec-
tor at time t0 (denoted by X

➞

0), F
➞

 is a function of the state vector X
➞

(t) and time t, and

 ,

where f
➞

 is the summated force vector of all possible force vectors acting on the satellite,
m is the mass of satellite, and r➞, r

·➞ are the position and velocity vectors of the satellite.
If the initial state vector and the force vectors are precisely known, then the precise

orbits can be computed through the integration in Eq. 11.133. Expanding the integra-
tion time t into the future, the so-called forecasted orbits can be obtained. Therefore,
suitable numerical integration algorithms are needed (see next section).

In practice, the precise initiate state vector and force models have to be determined,
which are related to the approximate initial state vector and force models. These can be
realised through suitable parameterisation of the models in the GPS observation equa-
tions and then the parameters can be solved by adjustment or filtering.

We denote the range and range rate function generally by ρ; their partial derivatives
with respect to the orbit state vector are given in Sect. 6.3 and have the forms of

 .

Therefore, the orbit parameter related parts in the linearised GPS observation equa-
tion are then

 , (11.135)

where

 .
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X
➞

, Y
➞

 are the state vector of satellite and the parameter vector of the force models,
and index 0 denotes the related initial vectors of time t0. yy➞ is the total unknown vector
of the orbit determination problem, the related correction vector is ∆y➞ = yy➞ – y➞0, and
∆X

➞

0 is the correction vector of the initial state vector. The partial derivatives of X
➞

 with
respect to yyy➞ is called transition matrix which has the dimension of 6 × (6 + n), where n
is the dimension of vector Y

➞

. The partial derivatives of the equation of motion of the
satellite (cf., Eq. 11.134) with respect to the vector yy➞ are

 , (11.136)

where the superscript * denotes the partial derivatives of F
➞

 with respect to the explicit
parameter vector yy➞ in F

➞

, and

 ,

 , (11.137)

where E is an identity matrix; the partial derivatives will be discussed and derived in a
later section in detail. It is notable that the force parameters are not functions of t.
Therefore the order of the differentiations can be exchanged. Denoting transition ma-
trix by Φ(t, t0), then Eq. 11.136 turns out to be

 . (11.138)

Equation 11.138 is called differential equation of the transition matrix or variational
equation (cf., e.g., Montenbruck and Gill 2000). Denoting

 , (11.139)

an alternate expression of Eq. 11.138 can be obtained by substituting Eqs. 11.139 and
11.137 into Eq. 11.138

 . (11.140)

The initial value matrix is (initial state vector does not depend on force parameters):

 . (11.141)

That is, in the GPS observation equation, the transition matrix has to be obtained by
solving initial value problem of the variation equation 11.138 or 11.140. The problem is
solved by integration traditionally.
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11.5.1
Algebra Solution of the Variation Equation

The variation equation can also be solved by numerical differentiation.
Equation 11.140 is a matrix differential equation system of size 3 × (6 + n). Because

A(t) and B(t) are 3 × 3 matrices, the differential equations are independent from col-
umn to column. That is, we need just to discuss the solution of the equation of a col-
umn. For column j, the Eqs. 11.140 and 11.141 are

 , (11.142)

,       ,

where index ij denotes the related element of the matrix. For time interval [t0, t] and
differentiation step h = (t – t0) / m, one has tn = t0 + nh, n = 1, …, m and

 ,

 . (11.143)

Then Eq. 11.142 turns out to be

 .

 , (11.144)

where n = 1, 2, … , m − 1. For i = 1, 2, 3 and the sequential number n, there are three
equations and three unknowns of time tn+1; so that the initial value problem has a
set of unique solutions sequentially. Eqquation 11.144 can be rewritten as

 , (11.145)

11.5  ·  Principle of GPS Precise Orbit Determination
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where

 .

For n=1,…,m-1, above equation is solvable. It is notable that the three matrices

are independent from the column number j. The solutions of Eq. 11.145 are vectors

 , (11.146)

where the velocity vector can be computed using definition of Eq. 11.143. Solving the
equations of all column j, the solutions of the initial value problem of Eqs. 11.140 and
11.141 can be obtained. It is notable that the needed values are the values of tn and can
be computed by averaging the values of tn+1 and tn–1.

11.6
Numerical Integration and Interpolation Algorithms

The Runge-Kutta algorithm, Adams algorithm, Cowell algorithm and mixed algorithm
as well as interpolation algorithms are discussed in this section (cf., e.g., Brouwer and
Clemence 1961; Bate et al. 1971; Herrick 1972; Xu 1994; Liu et al. 1996; Press et al. 1992).

11.6.1
Runge-Kutta Algorithms

The Runge-Kutta algorithm is a method that can be used to solve the initial value prob-
lem of

 , (11.147)

where X0 is the initial value of variable X at time t0, and F is the function of t and X.
For step size h, the Runge-Kutta algorithm can be used to compute X(t0 + h). By repeating
such process, a series of solutions can be obtained as X(t0 + h), X(t0 + 2h), …, X(t0 + nh),
where n is an integer. Denoting tn = t0 + nh, X(tn + h) can be represented by the Taylor
expansion at tn by
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 , (11.148)

where

 ,

 ,

   and (11.149)

 .

…

The principle of the Runge-Kutta algorithm is to use a set of combinations of the
first order partial derivatives around the (tn, X(tn)) to replace the higher order deriva-
tives in Eq. 11.148; that is,

 , (11.150)

where

   and

 ,   (i=2,3,…) , (11.151)

where wi, αi, and βij are constants to be determined, and L is an integer. The Taylor ex-
pansions of Ki (i = 2, 3, …) at (tn, X(tn)) to the first order are

   or (11.152)

 , (11.153)
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 ,

…

where F and the related partial derivatives have values at (tn, X(tn)). Substituting the
above formulas into Eq. 11.150 and comparing the coefficients of hn (= 1 / n!) with
Eq. 11.148, a group of equations of constants wi, αi and βij can be obtained by separat-
ing them through the partial derivative combinations. For example, for L = 4, one has

 ,

 ,

 ,

 , (11.154)

 ,
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   and

 .

There are 13 coefficients in the seven equations above, so the solution set of Eq. 11.154
is not a unique one. Considering w has the meaning of weight, and α is the step factor,
one may set, e.g., w1 = w2 = w3 = w4 = 1 / 4, α2 = 1 / 3,  α3 = 2 / 3,  α4 = 1 into the above
equations and have

 ,

 ,

 ,

 ,   and

 .

Letting β32 = 1, one has β42 = 0,  β31 = –1 / 3, and  β41 = 1 / 2. Thus, a four-order Runge-
Kutta formula is

 , (11.155)

where

 , (11.156)

 ,

 ,   and

 .

Similarly, a commonly used eighth order Runge-Kutta formula can be derived. It is
quoted as follows (cf. Xu 1994; Liu et al. 1996):

 , (11.157)
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where

 ,   Xn = X(tn) , (11.158)

 ,

 ,

 ,

 ,

 ,

 ,

 ,

 ,   and

 .

From the derivation process, it is obvious that the Runge-Kutta algorithm is an ap-
proximation of the same order Taylor expansions. For every step of the solution, the
function values of F have to be computed several times. The Runge-Kutta algorithm is
also called the single step method and is commonly used for computing the start values
for other multiple step methods.

Errors of the integration are dependent on the step size and the properties of function F.
To ensure the needed accuracy of the orbit integration, a step size adaptive control is also
meaningful in computing efficiency (cf. Press et al. 1992). Because of the periodical mo-
tion of the orbit, the step control just needs to be made in a few special cycles of the mo-
tion. A step doubling method is suggested by Press et al. (1992). Integration is taken twice
for each step, first with a full step, then independently with two half steps. Through com-
paring the results, the step size can be adjusted to fit the accuracy requirement.

To apply the above formulas for solving the initial value problem of the equation of
motion 11.134, Eq. 11.147 shall be rewritten as
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 ,    ,   k=1,2,3 ,

where X = (X1, X2, X3, X·
1,X·

2,X·
3). Using the Runge-Kutta algorithm to solve the above

problem, an additional index k shall be added to all X and K in Eq. 11.157:

 ,

and the same index k shall be added to K on the left side and F on the right side of
Eq. 11.158. For the last three equations, Fk = fk / m, so X·

k can be computed. For the first
three equations, Fk = X·

k, so Fk can be computed through computing X·
k at the needed

coordinates t and X.

11.6.2
Adams Algorithms

For the initial value problem of

 , (11.159)

there exists

 . (11.160)

The Adams algorithm uses the Newtonian backward differential interpolation for-
mula to present the function F by

 , (11.161)

where Fn is the value of F at the time tn, h is the step size, ∇kF is the kth order backward
numerical difference of F, and

 ,

…

 , (11.162)

11.6  ·  Numerical Integration and Interpolation Algorithms
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where C j
m is the binomial coefficient. Letting s = (t – tn) / h, then dt = hds, s = 0 if t = tn,

s = 1 if t = tn+1, so that Eqs. 11.161 and 11.160 turn out to be

   and

 . (11.163)

By denoting

 , (11.164)

one has

 , (11.165)

where the sequences of the two sequential summations have been changed. For the first
equation of  11.164, there is (cf. Xu 1994)

 . (11.166)

Equation 11.165 is also called the Adams-Bashforth formula. It uses the function
values of {Fn–j, j = 0, …, k} to compute the Xn+1. When the order of the algorithm is
selected, the coefficients of βj are constants. This makes the computation using Eq. 11.165
very simple. For every integration step, just one function value of Fn has to be com-
puted. However, the Adams algorithm needs {Fn–j, j = 0, …, k} as initial values, whereas
to compute those values, the states {Xn–j, j = 0, …, k} are needed. In other words, the
Adams algorithm is not able to start the integration itself. The Runge-Kutta algorithm
is usually used for computing the start values.

The Adams-Bashforth formula does not take the function value Fn+1 into account.
Using Fn+1, the Adams algorithm is expressed by the Adams-Moulton formula. Similar
to the above discussions, function F can be represented by

 , (11.167)

where

 . (11.168)
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If one lets s = (t – tn+1) / h, then dt = hds, s = –1 if t = tn, and s = 0 if t = tn+1; similar
formulas of Eqs. 11.165 and 11.164 can be obtained:

 , (11.169)

(11.170)

and (cf. Xu 1994)

 . (11.171)

Because of the use of Fn+1 to approximate F, the Adams-Moulton formula may reach
a higher accuracy than that of the Adams-Bashforth formula. However, before Xn+1 has
been computed, Fn+1 might not have been computed exactly. So an iterative process is
needed to use the Adams-Moulton formula. A simplified way to use the Adams-Moulton
formula is to use the Adams-Bashforth formula to compute Xn+1 and Fn+1, and then to
use the Adams-Moulton formula to compute the modified Xn+1 using Fn+1. Experience
shows that such a process will be accurate enough for many applications.

11.6.3
Cowell Algorithms

For the initial value problem of

 , (11.172)

there is

 . (11.173)

It is notable that here X is the position coordinate of the satellite. In other words, the
disturbing force F is not the function of the velocity of the satellite.

By integrating Eq. 11.173 in areas of [tn, tn+1] and [tn, tn–1] respectively, one has

   and (11.174)

 , (11.175)
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where (tn+1 – tn) = h = (tn – tn–1). Adding both equations together, one has

. (11.176)

Similar to the Adams-Bashforth formula, function F can be represented by

 . (11.177)

Substituting Eq. 11.177 into Eq. 11.176, one has (similar to the derivation of Admas
algorithms) (cf. Xu 1994)

 , (11.178)

where

 , (11.179)

 ,

 .

Equation 11.178 is called the Stormer formula. Similar to the discussions in Adams
algorithms, taking Fn+1 into account, one has

(11.180)

and (cf. Xu 1994)

 , (11.181)

where

 , (11.182)
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 .

Equation 11.181 is called the Cowell formula. Because of the use of Fn+1 to approximate F,
the Cowell formula may reach a higher accuracy than that of the Stormer formula. How-
ever, before Xn+1 has been computed, Fn+1 may not be computed exactly. So an iterative
process is needed to use the Cowell formula. A simplified way to use the Cowell formula is
to use the Stormer formula to compute Xn+1 and Fn+1, and then to use the Cowell formula
to compute the modified Xn+1 using Fn+1. Experience shows that such a process will be
accurate enough for many applications.

11.6.4
Mixed Algorithms and Discussions

Above we discussed three algorithms for solving the initial value problem of the orbit dif-
ferential equation. The Runge-Kutta algorithm is a single step method. The formulas of
different order Runge-Kutta algorithms do not have simple relationships, and even for a
definite order the formulas are not unique. For every step of integration, several function
values of F have to be computed for use. The most important property of the Runge-Kutta
algorithm is that the method is a self-starting one. Generally, the Runge-Kutta algorithm
is often used for providing the starting values for multiple-step algorithms.

Adams algorithms are multiple-step methods. The order of the formulas can be easily
risen because of their sequential relationships. However, the Adams algorithms cannot start
themselves. For every step of integration, only one function value has to be computed. The
disturbing function is considered a function of time and the state of the satellite. So
Adams methods can be used in orbit determination problems without any problem
with the disturbing function. In the case of a higher accuracy requirement, a mixed Adams-
Bashforth method and Adams-Moulton methods can be used in an iterative process.

Cowell algorithms are multiple-step methods too. The order can be changed easily.
Cowell methods also need starting help from other methods. Analysis shows that Cowell
algorithms have a higher accuracy than that of Adams algorithms when the same orders
of formulas are used. However, Cowell formulas are only suitable for that kind of disturb-
ing function F, which is the function of the time and the position of the satellite. It is well
known that the atmospheric drag is a disturbing force, which is a function of the velocity
of the satellite. Therefore Cowell algorithms can only be used for integrating a part of the
disturbing forces. A mixed Cowell method still keeps such a property.

Obviously, the forces of the equation of motion have to be separated into two parts, one
includes the forces that are functions of the velocity of the satellite, and the other includes
all remaining forces. The first part can be integrated using Adams methods, and the other
can be integrated using Cowell methods. The Runge-Kutta algorithm will be used for pro-
viding the needed starting values.

The selections of the order number and step size are dependent on the accuracy re-
quirements and the orbit conditions. Usually the order and the step size are selectable
input variables of the software, and can be properly selected after several test runs. Scheinert

11.6  ·  Numerical Integration and Interpolation Algorithms
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suggested using 8-order Runge-Kutta algorithms, as well as 12-order Adams and Cowell
algorithms (cf. Scheinert 1996). It is notable that by order selection, it is not the higher the
order is, the higher the accuracy will be. For the step size selection, it is not the smaller the
step size is, the better the results will be.

11.6.5
Interpolation Algorithms

Orbits are given through integration at the step points t0 + nh (n = 0, 1, …). For GPS satel-
lites, h is usually selected as 300 seconds. However, GPS observations are made, usually in
IGS, every 15 seconds. For linearisation and formation of the GPS observation equations,
the orbit data sometimes have to be interpolated to the needed epochs. This is why we have
to discuss the method of interpolation. The often-used Lagrange interpolation algorithm
has been discussed in Sect. 3.4. A 5-order polynomial interpolation method has been given
in Sect. 5.4.2. By deriving the Adams and Cowell algorithms, the Newtonian backward dif-
ferentiation formula has been used to represent the disturbing function F. By simply con-
sidering F a function of t (t is any variable), then one has

 . (11.183)

This is an interpolating formula of F(t) using a set of function values of {Fn–j, j = 0, …, k}.

11.7
Orbit-Related Partial Derivatives

As mentioned in Sect. 11.5.1 the partial derivatives of

(11.184)

will be derived in this section in detail, where the force vector is a summated vector of
all disturbing forces in the ECSF coordinate system. If the force vector is given in the
ECEF coordinate system, there is

 . (11.185)

Because of

 ,

one may have the velocity transformation formula
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 ,

where

 .

Therefore one has

 ,

 ,

and

 ,

 .

1. Geopotential Disturbing Force

The geopotential disturbing force vector (cf. Sect. 11.2) has the form of

 , (11.186)

where

 ,

and (x', y', z') are the three orthogonal Cartesian coordinates in the ECEF system. Thus,
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 . (11.187)

Using index j (= 1, 2, 3) to denote index (x', y', z'), one has

, (11.188)

where

 ,

    and

 (11.189)
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and

 ,

 ,

 ,

 ,

 ,   and

 , (11.190)

where

 ,

   and

 . (11.191)
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Other needed functions are already given in Sect. 11.1. Because the force is not a
function of velocity, it is obvious that

 . (11.192)

Only non-zero partial derivatives will be given in later text.
Supposing the geopotential parameters C

_
N
lm, S 

_
N
lm  are known (as initial values), C

_
lm,   S 

_
lm

are true values, and ∆C
_

lm, ∆S 
_

lm are searched corrections (unknowns), then the geopo-
tential force is

(11.193)

And

 ,

 ,

   and

 . (11.194)

2. Perturbation Forces of the Sun and the Moon as well as Planets

The perturbation forces of the Sun, the Moon and the planets are given in Sect. 11.2.2
as (cf. Eq. 11.50)

 , (11.195)

where Gm(j) are the gravitational constants of the Sun and the Moon as well as the plan-
ets, and the vector with index m(j) are the geocentric vector of the Sun, the Moon and
the planets. The partial derivatives of the perturbation force with respect to the satel-
lite vector are then
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 , (11.196)

where E is an identity matrix of size 3 × 3. The partial derivatives of the force vector
with respect to the velocity vector of the satellite are zero. The disturbances of the Sun,
Moon and planets are considered well-modelled; therefore, no parameters will be ad-
justed. In other words, the partial derivatives of the force vector with respect to the model
parameters do not exist.

3. Tidal Disturbing Forces

Similar to the geopotential attracting force, the tidal force (cf. Sect. 11.2.3) has the form of

 . (11.197)

Where V = δV + δV1 + δV2, it is a summation of the Earth tide potential and the two
parts of ocean loading tide potentials. The Eq. 11.188 is still valid for this case. Other
higher order partial derivatives can be derived as follows:

 ,

 ,

 ,

 ,
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 ,

 ,

 ,

 ,

 ,

 ,

 ,

 ,
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 ,

 ,

 ,

 ,

   and

 , (11.198)

where

   and

 . (11.199)
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4. Solar Radiation Pressure

Solar radiation force acting on the satellite’s surface is (cf. Sect. 11.2.4)

 ; (11.200)

the partial derivatives of the perturbation force with respect to the satellite vector are
then

 , (11.201)

where E is an identity matrix of size 3 × 3. The partial derivatives of the force vector
with respect to the velocity vector of the satellite are zero. The disturbance of the solar
radiation is considered not well-modelled; therefore, unknown parameters will also be
adjusted. The total model is (cf. Sect. 11.2)

 . (11.202)

Thus,

 , (11.203)

where

 . (11.204)

On the right-hand side of above equation there are three matrices, the first one is a
1 × 6 matrix (vector) and is given in Sect. 11.1.2 (cf. Eq. 11.24), the second one is given as
its inverse in Sect. 11.4 (cf. Eqs. 11.130 and 11.132), and the third one is a 6 × 3 matrix, or

 ,

   and
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 . (11.205)

   and

 . (11.206)

The partial derivatives of the force vector with respect to the model parameters are
(for i = 1, 2, 3)

 . (11.207)

If the Model 11.74

(11.208)

is used, then one has

 . (11.209)

5. Atmospheric Drag

Atmospheric drag force has a form of (cf. Sect. 11.2.5)

 , (11.210)

and the air drag force model is

 , (11.211)

where (cf. Eqs. 11.84 and 11.85)

 , (11.212)

(11.213)
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It is obvious that the partial derivatives of the air drag force with respect to the
satellite position vector are zero, and

 , (11.214)

 , (11.215)

 , (11.216)

(11.217)

 , (11.218)

where

 ,

Some of the formulas have been derived before in this subsection. The partial derivatives
of the force vector with respect to the model parameters can be obtained from Eq. 11.215.



Chapter 12

Discussions

The previous chapters of this book covered the most important contents of static and
kinematic as well as dynamic GPS, including theory, algorithms, and applications. At
the end of this book, the author will emphasize, discuss and comment on some impor-
tant topics and remaining problems with GPS.

12.1
Independent Parameterisation and A Priori Information

A Priori Information

As already discussed in the parameterisation of the GPS observation model (Sects. 9.1
and 9.2), clock errors and instrumental biases as well as ambiguities are partially over-
parameterised or linearly correlated (related to themselves and between them). Can-
celling the over-parameterised unknowns out of the equation or modelling them first
and then keeping them fixed using the a priori method (Sect. 7.8) is, generally speak-
ing, equivalent. As long as one knows which parameters should be kept fixed, the a priori
information used is true one and is just used as a tool for fixing the parameters to zero.
If the model is not parameterised regularly and one does not exactly know which pa-
rameters are over-parameterised, then the normal equation will be singular and can-
not be solved. Again, using a priori information may make the equation solvable. How-
ever, in this case, the a priori information has the meaning of the direct “measures” on the
related parameters. Therefore the a priori information used must be a true and reason-
able one; otherwise, the given a priori information will affect the solution in some unrea-
sonable ways. If different a priori information is given, different results will be obtained.
Therefore, the a priori information used should be based on true information.

Independent Parameterisation of the Observation Model

A priori information can be obtained from external surveys or from the experiences of
long term data processing that does not use a priori information. A regular (indepen-
dent) parameterisation of the GPS observation model is a precondition for a stable
solution of the normal equation without using a priori information. As mentioned above,
to parameterise the model independently or to fix the over-parameterised unknowns
are equivalent. However, in order to keep some parameters fixed one has to know which
parameters are over-parameterised and have to be fixed. Therefore, in any case, one has
to know how to parameterise the GPS observation model regularly. Fixing the over-
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parameterised unknowns after a general parameterisation is equivalent to a direct in-
dependent parameterisation. Therefore, the parameterisation of the GPS observation
model should be regular.

Inseparability of Some of the Bias Effects

Independent parameterisation is necessary because of the linear correlation of some
parameters. The linear correlation partially merges the different effects together so
that these effects cannot be separated exactly from each other. The constant parts of
the different effects are nearly impossible to be separated without precise physical
models, whereas many model parameters are presented in the GPS observation equa-
tion and have to be codetermined. The inseparability of the bias effects comes par-
tially from the physics of the surveys and depends on strategy of the surveys. Under-
standing the inseparability of the bias effects is important for designing surveys. The
physical models have to be determined more precisely in order to separate the con-
stant parts of the effects.

Changing of the Physical Meanings of the Parameters

Because of the linear correlation and inseparability of some parameters, the param-
eters that are to be adjusted may sometimes change their physical meanings. For ex-
ample, the instrumental biases of the reference frequency and channel are linearly cor-
related with the clock errors. This indicates that the mentioned biases cannot be mod-
eled separately so that the clock error parameters represent the summation of the clock
errors and the related instrumental biases. They may only be separated through extra
surveys or alternative models. If the clock errors of the reference satellite and receiver
are not adjusted, then the other clock errors represent the relative errors between the
other clocks and the reference ones. If the other instrumental biases are not modelled,
then they will be absorbed partly into the ambiguities. In such a case the ambiguities
represent not only the ambiguities but also parts of instrumental biases so that the
ambiguities are not integers anymore. The double difference may eliminate the instru-
mental biases so that the double differenced ambiguities are free from the effects of
instrumental biases, whereas the un-differenced ambiguities include those biases. If the
instrumental errors are not modeled, the un-differenced ambiguities are not integers
anymore, whereas the double differenced ambiguities are integers (no data combina-
tions are considered here).

Zero Setting and Fixing of the Parameters

Setting a parameter to zero or fixing the parameter to a definite value must be done
carefully. Any incorrect setting or fixing is similar to a linear transformation (transla-
tion) of the linearly correlated parameters. For example, the clock errors and instru-
mental biases of the reference station and satellite generally are not zero. Keeping the
clock errors and instrumental biases of the reference as zero is similar to making a time
system translation with an unknown amount, and such a translation is an inhomoge-
neous one, because the orbit data are given in the GPS time system. External surveys
may help for a correct zero setting.
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Independent Parameterisation of Physical Models

Independent parameterisation of the bias parameters of the GPS observation model
indicates the necessity of further study of the parameterisation problem. As long as the
parameters of the physical models should be codetermined by the GPS observation
equations, how to parameterise the physical models should be investigated with great care.

12.2
Equivalence of the GPS Data Processing Algorithms

Equivalence Principle

For definitive measures and parameterisation of the observation model, the uncombined
und combining algorithms, undifferenced and differencing algorithms, as well as their
mixtures are equivalent. The results must be identical and the precisions are equiva-
lent. The practical results should obey this principle.

The equivalence comes from the definite information contents of the surveys and
the definitive parameterisation of the observation model. For better results or better
precisions of the results, better measures should be made.

Traditional Combinations

Under the traditional parameterisation, the combinations are equivalent. Under the
independent parameterisation, the combinations are equivalent, too. However, the com-
binations under the traditional parameterisation and independent parameterisation are
not equivalent. Due to the inexactness of the traditional parameterisation, traditional
combinations will lead to inexact results.

Traditional Differencing Algorithms

Traditional differencing algorithms usually only take the differencing equations into
account and leave the undifferenced part aside. In this way, the differencing part of
equations includes fewer parameters and the systematic effects are reduced. Meanwhile,
however, the information contents of the observables are also reduced proportionally.
The results of the interested parameters remain the same.

Equivalent Algorithms

Equivalent algorithms are general forms of undifferenced and differencing algorithms.
The observation equation can be separated into two diagonal parts, respectively. Each
part uses the original observation vector (therefore the original weight matrix); how-
ever, the equation owns only a part of the unknown parameters. The normal equation
of the original observation equation can be separated into two parts, too. This indicates
that any solvable adjustment problem can be separated into two sub-problems.

12.2  ·  Equivalence of the GPS Data Processing Algorithms
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Table A.1. The units of Ai and Bi are 0.''0001, units of A'i and B'i are 0.''00001 (cf. McCarthy 1996)

IAU 1980 Theory of Nutation
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Table A.1. Continued



Appendix 2

As discussed in Sect. 8.3.7, a normal equation can be diagonalised and the related
observation equation can be formed.

For the linearised observation equation (cf. Eq. 8.38)
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the least squares normal equation can be written as (cf. Eqs. 8.39 and 8.40)
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The normal Eq. a2.2 can be diagonalised as (cf. Eq. 8.41)
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The above diagonalisation process can be repeated r – 1 times to the second normal
equation of Eq. a2.4, so that the second equation of Eq. a2.4 can be fully diagonalised
and Eq. a2.4 can be represented as:

Numerical Examples of the Diagonalisation
of the Equations
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where M'
2 is a diagonal matrix, r is the dimension of X2, and B'

2 is a vector.
Normal Eq. a2.4 related observation equation is (cf. Eq. 8.43)
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where E is an identity matrix, and U1 and U2 are residual vectors, which have the same
property as V in Eq. a2.1.

By similarly repeating the above process r – 1 times to the observation equation of X2
(i.e., the second equation of Eq. a2.8), then Eq. a2.8 turns out to have a form of
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where D'
2 is in a form of a diagonal matrix where all elements are vectors of dimension r,

P' is a diagonal matrix of P, L' is a vector of L, and U'
2 is a residual vector that has the same

property as V in Eq. a2.1. Equation a2.11 is the observation equation of normal Eq. a2.7.
Numerical examples to illustrate the diagonalisation process of the normal equa-

tion and observation equation are given below.

1. The Case of Two Variables

For the observation equation (where σ is set to 1, which does not affect all results)
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the least squares normal equation is
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Because

M1 = 3 – 4(1 / 6)4 = 1 / 3 ,   B1 = 2 – 4(1 / 6)4 = –2 / 3   and

M2 = 6 – 4(1 / 3)4 = 2 / 3 ,   B2 = 4 – 4(1 / 3)2 = 4 / 3 ,

Eq. a2.13 is diagonalised as
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The solution (X1 = –2, X2 = 2) of Eq. a2.14 is the same as that of Eq. a2.13. Further-
more, to form the equivalent observation equation, there are
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thus, the observation equation related to Eq. a2.14 is
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The normal equation of the observation Eq. a2.15 is exactly the same as Eq. a2.14.
This numerical example shows that the normal equation and the related observation
equation can be diagonalised.

2. The Case of Three Variables

For the observation equation (where σ is set to 1, which does not affect all results)
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Appendix 2  ·  Numerical Examples of the Diagonalisation of the Equations
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the least squares normal equation is
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Eq. a2.17 is diagonalised as
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The X2 and X3 related normal equation can be further diagonalised. Because of

13/2)7/5()13/1(57/3,13/2)7/5()13/1(57/3 '
1

'
1 −=−−−==−= BM  ,

0)7/3()3/1(57/5,3/2)7/5()3/1(57/13 '
2

'
2 =−−−==−= BM  ,

Eq. a2.19 is further diagonalised as
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The solution (X1 = 1, X2 = –1, X3 = 0) of Eq. a2.20 is the same as that of Eqs. a2.17 and
a2.19. Furthermore, to form the equivalent observation equation of Eq. a2.19, there are
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thus, the observation equation related to Eq. a2.19 is
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The X2 and X3 related observation equation can be further diagonalised as follows.
Because
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the observation equation related to Eq. a2.20 is
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The normal Eq. a2.17 and its related observation Eq. a2.16 are fully diagonalised
as Eqs. a2.20 and a2.22, respectively. These numerical examples show that the normal
equation and the related observation equation can be diagonalised as described in
Sect. 8.3.7.
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